Deleted Added
full compact
ASTContext.cpp (193380) ASTContext.cpp (193401)
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclCXX.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/ExternalASTSource.h"
20#include "clang/AST/RecordLayout.h"
21#include "clang/Basic/SourceManager.h"
22#include "clang/Basic/TargetInfo.h"
23#include "llvm/ADT/StringExtras.h"
24#include "llvm/Support/MathExtras.h"
25#include "llvm/Support/MemoryBuffer.h"
26using namespace clang;
27
28enum FloatingRank {
29 FloatRank, DoubleRank, LongDoubleRank
30};
31
32ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
33 TargetInfo &t,
34 IdentifierTable &idents, SelectorTable &sels,
35 bool FreeMem, unsigned size_reserve,
36 bool InitializeBuiltins) :
37 GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
38 ObjCFastEnumerationStateTypeDecl(0), SourceMgr(SM), LangOpts(LOpts),
39 FreeMemory(FreeMem), Target(t), Idents(idents), Selectors(sels),
40 ExternalSource(0) {
41 if (size_reserve > 0) Types.reserve(size_reserve);
42 InitBuiltinTypes();
43 TUDecl = TranslationUnitDecl::Create(*this);
44 BuiltinInfo.InitializeTargetBuiltins(Target);
45 if (InitializeBuiltins)
46 this->InitializeBuiltins(idents);
47 PrintingPolicy.CPlusPlus = LangOpts.CPlusPlus;
48}
49
50ASTContext::~ASTContext() {
51 // Deallocate all the types.
52 while (!Types.empty()) {
53 Types.back()->Destroy(*this);
54 Types.pop_back();
55 }
56
57 {
58 llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
59 I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end();
60 while (I != E) {
61 ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
62 delete R;
63 }
64 }
65
66 {
67 llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>::iterator
68 I = ObjCLayouts.begin(), E = ObjCLayouts.end();
69 while (I != E) {
70 ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
71 delete R;
72 }
73 }
74
75 // Destroy nested-name-specifiers.
76 for (llvm::FoldingSet<NestedNameSpecifier>::iterator
77 NNS = NestedNameSpecifiers.begin(),
78 NNSEnd = NestedNameSpecifiers.end();
79 NNS != NNSEnd;
80 /* Increment in loop */)
81 (*NNS++).Destroy(*this);
82
83 if (GlobalNestedNameSpecifier)
84 GlobalNestedNameSpecifier->Destroy(*this);
85
86 TUDecl->Destroy(*this);
87}
88
89void ASTContext::InitializeBuiltins(IdentifierTable &idents) {
90 BuiltinInfo.InitializeBuiltins(idents, LangOpts.NoBuiltin);
91}
92
93void
94ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
95 ExternalSource.reset(Source.take());
96}
97
98void ASTContext::PrintStats() const {
99 fprintf(stderr, "*** AST Context Stats:\n");
100 fprintf(stderr, " %d types total.\n", (int)Types.size());
101
102 unsigned counts[] = {
103#define TYPE(Name, Parent) 0,
104#define ABSTRACT_TYPE(Name, Parent)
105#include "clang/AST/TypeNodes.def"
106 0 // Extra
107 };
108
109 for (unsigned i = 0, e = Types.size(); i != e; ++i) {
110 Type *T = Types[i];
111 counts[(unsigned)T->getTypeClass()]++;
112 }
113
114 unsigned Idx = 0;
115 unsigned TotalBytes = 0;
116#define TYPE(Name, Parent) \
117 if (counts[Idx]) \
118 fprintf(stderr, " %d %s types\n", (int)counts[Idx], #Name); \
119 TotalBytes += counts[Idx] * sizeof(Name##Type); \
120 ++Idx;
121#define ABSTRACT_TYPE(Name, Parent)
122#include "clang/AST/TypeNodes.def"
123
124 fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
125
126 if (ExternalSource.get()) {
127 fprintf(stderr, "\n");
128 ExternalSource->PrintStats();
129 }
130}
131
132
133void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) {
134 Types.push_back((R = QualType(new (*this,8) BuiltinType(K),0)).getTypePtr());
135}
136
137void ASTContext::InitBuiltinTypes() {
138 assert(VoidTy.isNull() && "Context reinitialized?");
139
140 // C99 6.2.5p19.
141 InitBuiltinType(VoidTy, BuiltinType::Void);
142
143 // C99 6.2.5p2.
144 InitBuiltinType(BoolTy, BuiltinType::Bool);
145 // C99 6.2.5p3.
146 if (Target.isCharSigned())
147 InitBuiltinType(CharTy, BuiltinType::Char_S);
148 else
149 InitBuiltinType(CharTy, BuiltinType::Char_U);
150 // C99 6.2.5p4.
151 InitBuiltinType(SignedCharTy, BuiltinType::SChar);
152 InitBuiltinType(ShortTy, BuiltinType::Short);
153 InitBuiltinType(IntTy, BuiltinType::Int);
154 InitBuiltinType(LongTy, BuiltinType::Long);
155 InitBuiltinType(LongLongTy, BuiltinType::LongLong);
156
157 // C99 6.2.5p6.
158 InitBuiltinType(UnsignedCharTy, BuiltinType::UChar);
159 InitBuiltinType(UnsignedShortTy, BuiltinType::UShort);
160 InitBuiltinType(UnsignedIntTy, BuiltinType::UInt);
161 InitBuiltinType(UnsignedLongTy, BuiltinType::ULong);
162 InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong);
163
164 // C99 6.2.5p10.
165 InitBuiltinType(FloatTy, BuiltinType::Float);
166 InitBuiltinType(DoubleTy, BuiltinType::Double);
167 InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble);
168
169 // GNU extension, 128-bit integers.
170 InitBuiltinType(Int128Ty, BuiltinType::Int128);
171 InitBuiltinType(UnsignedInt128Ty, BuiltinType::UInt128);
172
173 if (LangOpts.CPlusPlus) // C++ 3.9.1p5
174 InitBuiltinType(WCharTy, BuiltinType::WChar);
175 else // C99
176 WCharTy = getFromTargetType(Target.getWCharType());
177
178 // Placeholder type for functions.
179 InitBuiltinType(OverloadTy, BuiltinType::Overload);
180
181 // Placeholder type for type-dependent expressions whose type is
182 // completely unknown. No code should ever check a type against
183 // DependentTy and users should never see it; however, it is here to
184 // help diagnose failures to properly check for type-dependent
185 // expressions.
186 InitBuiltinType(DependentTy, BuiltinType::Dependent);
187
188 // C99 6.2.5p11.
189 FloatComplexTy = getComplexType(FloatTy);
190 DoubleComplexTy = getComplexType(DoubleTy);
191 LongDoubleComplexTy = getComplexType(LongDoubleTy);
192
193 BuiltinVaListType = QualType();
194 ObjCIdType = QualType();
195 IdStructType = 0;
196 ObjCClassType = QualType();
197 ClassStructType = 0;
198
199 ObjCConstantStringType = QualType();
200
201 // void * type
202 VoidPtrTy = getPointerType(VoidTy);
203
204 // nullptr type (C++0x 2.14.7)
205 InitBuiltinType(NullPtrTy, BuiltinType::NullPtr);
206}
207
208//===----------------------------------------------------------------------===//
209// Type Sizing and Analysis
210//===----------------------------------------------------------------------===//
211
212/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
213/// scalar floating point type.
214const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
215 const BuiltinType *BT = T->getAsBuiltinType();
216 assert(BT && "Not a floating point type!");
217 switch (BT->getKind()) {
218 default: assert(0 && "Not a floating point type!");
219 case BuiltinType::Float: return Target.getFloatFormat();
220 case BuiltinType::Double: return Target.getDoubleFormat();
221 case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
222 }
223}
224
225/// getDeclAlign - Return a conservative estimate of the alignment of the
226/// specified decl. Note that bitfields do not have a valid alignment, so
227/// this method will assert on them.
228unsigned ASTContext::getDeclAlignInBytes(const Decl *D) {
229 unsigned Align = Target.getCharWidth();
230
231 if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
232 Align = std::max(Align, AA->getAlignment());
233
234 if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
235 QualType T = VD->getType();
236 if (const ReferenceType* RT = T->getAsReferenceType()) {
237 unsigned AS = RT->getPointeeType().getAddressSpace();
238 Align = Target.getPointerAlign(AS);
239 } else if (!T->isIncompleteType() && !T->isFunctionType()) {
240 // Incomplete or function types default to 1.
241 while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
242 T = cast<ArrayType>(T)->getElementType();
243
244 Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
245 }
246 }
247
248 return Align / Target.getCharWidth();
249}
250
251/// getTypeSize - Return the size of the specified type, in bits. This method
252/// does not work on incomplete types.
253std::pair<uint64_t, unsigned>
254ASTContext::getTypeInfo(const Type *T) {
255 uint64_t Width=0;
256 unsigned Align=8;
257 switch (T->getTypeClass()) {
258#define TYPE(Class, Base)
259#define ABSTRACT_TYPE(Class, Base)
260#define NON_CANONICAL_TYPE(Class, Base)
261#define DEPENDENT_TYPE(Class, Base) case Type::Class:
262#include "clang/AST/TypeNodes.def"
263 assert(false && "Should not see dependent types");
264 break;
265
266 case Type::FunctionNoProto:
267 case Type::FunctionProto:
268 // GCC extension: alignof(function) = 32 bits
269 Width = 0;
270 Align = 32;
271 break;
272
273 case Type::IncompleteArray:
274 case Type::VariableArray:
275 Width = 0;
276 Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
277 break;
278
279 case Type::ConstantArray: {
280 const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
281
282 std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
283 Width = EltInfo.first*CAT->getSize().getZExtValue();
284 Align = EltInfo.second;
285 break;
286 }
287 case Type::ExtVector:
288 case Type::Vector: {
289 std::pair<uint64_t, unsigned> EltInfo =
290 getTypeInfo(cast<VectorType>(T)->getElementType());
291 Width = EltInfo.first*cast<VectorType>(T)->getNumElements();
292 Align = Width;
293 // If the alignment is not a power of 2, round up to the next power of 2.
294 // This happens for non-power-of-2 length vectors.
295 // FIXME: this should probably be a target property.
296 Align = 1 << llvm::Log2_32_Ceil(Align);
297 break;
298 }
299
300 case Type::Builtin:
301 switch (cast<BuiltinType>(T)->getKind()) {
302 default: assert(0 && "Unknown builtin type!");
303 case BuiltinType::Void:
304 // GCC extension: alignof(void) = 8 bits.
305 Width = 0;
306 Align = 8;
307 break;
308
309 case BuiltinType::Bool:
310 Width = Target.getBoolWidth();
311 Align = Target.getBoolAlign();
312 break;
313 case BuiltinType::Char_S:
314 case BuiltinType::Char_U:
315 case BuiltinType::UChar:
316 case BuiltinType::SChar:
317 Width = Target.getCharWidth();
318 Align = Target.getCharAlign();
319 break;
320 case BuiltinType::WChar:
321 Width = Target.getWCharWidth();
322 Align = Target.getWCharAlign();
323 break;
324 case BuiltinType::UShort:
325 case BuiltinType::Short:
326 Width = Target.getShortWidth();
327 Align = Target.getShortAlign();
328 break;
329 case BuiltinType::UInt:
330 case BuiltinType::Int:
331 Width = Target.getIntWidth();
332 Align = Target.getIntAlign();
333 break;
334 case BuiltinType::ULong:
335 case BuiltinType::Long:
336 Width = Target.getLongWidth();
337 Align = Target.getLongAlign();
338 break;
339 case BuiltinType::ULongLong:
340 case BuiltinType::LongLong:
341 Width = Target.getLongLongWidth();
342 Align = Target.getLongLongAlign();
343 break;
344 case BuiltinType::Int128:
345 case BuiltinType::UInt128:
346 Width = 128;
347 Align = 128; // int128_t is 128-bit aligned on all targets.
348 break;
349 case BuiltinType::Float:
350 Width = Target.getFloatWidth();
351 Align = Target.getFloatAlign();
352 break;
353 case BuiltinType::Double:
354 Width = Target.getDoubleWidth();
355 Align = Target.getDoubleAlign();
356 break;
357 case BuiltinType::LongDouble:
358 Width = Target.getLongDoubleWidth();
359 Align = Target.getLongDoubleAlign();
360 break;
361 case BuiltinType::NullPtr:
362 Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
363 Align = Target.getPointerAlign(0); // == sizeof(void*)
364 break;
365 }
366 break;
367 case Type::FixedWidthInt:
368 // FIXME: This isn't precisely correct; the width/alignment should depend
369 // on the available types for the target
370 Width = cast<FixedWidthIntType>(T)->getWidth();
371 Width = std::max(llvm::NextPowerOf2(Width - 1), (uint64_t)8);
372 Align = Width;
373 break;
374 case Type::ExtQual:
375 // FIXME: Pointers into different addr spaces could have different sizes and
376 // alignment requirements: getPointerInfo should take an AddrSpace.
377 return getTypeInfo(QualType(cast<ExtQualType>(T)->getBaseType(), 0));
378 case Type::ObjCQualifiedId:
379 case Type::ObjCQualifiedInterface:
380 Width = Target.getPointerWidth(0);
381 Align = Target.getPointerAlign(0);
382 break;
383 case Type::BlockPointer: {
384 unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
385 Width = Target.getPointerWidth(AS);
386 Align = Target.getPointerAlign(AS);
387 break;
388 }
389 case Type::Pointer: {
390 unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
391 Width = Target.getPointerWidth(AS);
392 Align = Target.getPointerAlign(AS);
393 break;
394 }
395 case Type::LValueReference:
396 case Type::RValueReference:
397 // "When applied to a reference or a reference type, the result is the size
398 // of the referenced type." C++98 5.3.3p2: expr.sizeof.
399 // FIXME: This is wrong for struct layout: a reference in a struct has
400 // pointer size.
401 return getTypeInfo(cast<ReferenceType>(T)->getPointeeType());
402 case Type::MemberPointer: {
403 // FIXME: This is ABI dependent. We use the Itanium C++ ABI.
404 // http://www.codesourcery.com/public/cxx-abi/abi.html#member-pointers
405 // If we ever want to support other ABIs this needs to be abstracted.
406
407 QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
408 std::pair<uint64_t, unsigned> PtrDiffInfo =
409 getTypeInfo(getPointerDiffType());
410 Width = PtrDiffInfo.first;
411 if (Pointee->isFunctionType())
412 Width *= 2;
413 Align = PtrDiffInfo.second;
414 break;
415 }
416 case Type::Complex: {
417 // Complex types have the same alignment as their elements, but twice the
418 // size.
419 std::pair<uint64_t, unsigned> EltInfo =
420 getTypeInfo(cast<ComplexType>(T)->getElementType());
421 Width = EltInfo.first*2;
422 Align = EltInfo.second;
423 break;
424 }
425 case Type::ObjCInterface: {
426 const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
427 const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
428 Width = Layout.getSize();
429 Align = Layout.getAlignment();
430 break;
431 }
432 case Type::Record:
433 case Type::Enum: {
434 const TagType *TT = cast<TagType>(T);
435
436 if (TT->getDecl()->isInvalidDecl()) {
437 Width = 1;
438 Align = 1;
439 break;
440 }
441
442 if (const EnumType *ET = dyn_cast<EnumType>(TT))
443 return getTypeInfo(ET->getDecl()->getIntegerType());
444
445 const RecordType *RT = cast<RecordType>(TT);
446 const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
447 Width = Layout.getSize();
448 Align = Layout.getAlignment();
449 break;
450 }
451
452 case Type::Typedef: {
453 const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
454 if (const AlignedAttr *Aligned = Typedef->getAttr<AlignedAttr>()) {
455 Align = Aligned->getAlignment();
456 Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
457 } else
458 return getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
459 break;
460 }
461
462 case Type::TypeOfExpr:
463 return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
464 .getTypePtr());
465
466 case Type::TypeOf:
467 return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
468
469 case Type::QualifiedName:
470 return getTypeInfo(cast<QualifiedNameType>(T)->getNamedType().getTypePtr());
471
472 case Type::TemplateSpecialization:
473 assert(getCanonicalType(T) != T &&
474 "Cannot request the size of a dependent type");
475 // FIXME: this is likely to be wrong once we support template
476 // aliases, since a template alias could refer to a typedef that
477 // has an __aligned__ attribute on it.
478 return getTypeInfo(getCanonicalType(T));
479 }
480
481 assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
482 return std::make_pair(Width, Align);
483}
484
485/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
486/// type for the current target in bits. This can be different than the ABI
487/// alignment in cases where it is beneficial for performance to overalign
488/// a data type.
489unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
490 unsigned ABIAlign = getTypeAlign(T);
491
492 // Double and long long should be naturally aligned if possible.
493 if (const ComplexType* CT = T->getAsComplexType())
494 T = CT->getElementType().getTypePtr();
495 if (T->isSpecificBuiltinType(BuiltinType::Double) ||
496 T->isSpecificBuiltinType(BuiltinType::LongLong))
497 return std::max(ABIAlign, (unsigned)getTypeSize(T));
498
499 return ABIAlign;
500}
501
502
503/// LayoutField - Field layout.
504void ASTRecordLayout::LayoutField(const FieldDecl *FD, unsigned FieldNo,
505 bool IsUnion, unsigned StructPacking,
506 ASTContext &Context) {
507 unsigned FieldPacking = StructPacking;
508 uint64_t FieldOffset = IsUnion ? 0 : Size;
509 uint64_t FieldSize;
510 unsigned FieldAlign;
511
512 // FIXME: Should this override struct packing? Probably we want to
513 // take the minimum?
514 if (const PackedAttr *PA = FD->getAttr<PackedAttr>())
515 FieldPacking = PA->getAlignment();
516
517 if (const Expr *BitWidthExpr = FD->getBitWidth()) {
518 // TODO: Need to check this algorithm on other targets!
519 // (tested on Linux-X86)
520 FieldSize = BitWidthExpr->EvaluateAsInt(Context).getZExtValue();
521
522 std::pair<uint64_t, unsigned> FieldInfo =
523 Context.getTypeInfo(FD->getType());
524 uint64_t TypeSize = FieldInfo.first;
525
526 // Determine the alignment of this bitfield. The packing
527 // attributes define a maximum and the alignment attribute defines
528 // a minimum.
529 // FIXME: What is the right behavior when the specified alignment
530 // is smaller than the specified packing?
531 FieldAlign = FieldInfo.second;
532 if (FieldPacking)
533 FieldAlign = std::min(FieldAlign, FieldPacking);
534 if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
535 FieldAlign = std::max(FieldAlign, AA->getAlignment());
536
537 // Check if we need to add padding to give the field the correct
538 // alignment.
539 if (FieldSize == 0 || (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)
540 FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
541
542 // Padding members don't affect overall alignment
543 if (!FD->getIdentifier())
544 FieldAlign = 1;
545 } else {
546 if (FD->getType()->isIncompleteArrayType()) {
547 // This is a flexible array member; we can't directly
548 // query getTypeInfo about these, so we figure it out here.
549 // Flexible array members don't have any size, but they
550 // have to be aligned appropriately for their element type.
551 FieldSize = 0;
552 const ArrayType* ATy = Context.getAsArrayType(FD->getType());
553 FieldAlign = Context.getTypeAlign(ATy->getElementType());
554 } else if (const ReferenceType *RT = FD->getType()->getAsReferenceType()) {
555 unsigned AS = RT->getPointeeType().getAddressSpace();
556 FieldSize = Context.Target.getPointerWidth(AS);
557 FieldAlign = Context.Target.getPointerAlign(AS);
558 } else {
559 std::pair<uint64_t, unsigned> FieldInfo =
560 Context.getTypeInfo(FD->getType());
561 FieldSize = FieldInfo.first;
562 FieldAlign = FieldInfo.second;
563 }
564
565 // Determine the alignment of this bitfield. The packing
566 // attributes define a maximum and the alignment attribute defines
567 // a minimum. Additionally, the packing alignment must be at least
568 // a byte for non-bitfields.
569 //
570 // FIXME: What is the right behavior when the specified alignment
571 // is smaller than the specified packing?
572 if (FieldPacking)
573 FieldAlign = std::min(FieldAlign, std::max(8U, FieldPacking));
574 if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
575 FieldAlign = std::max(FieldAlign, AA->getAlignment());
576
577 // Round up the current record size to the field's alignment boundary.
578 FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
579 }
580
581 // Place this field at the current location.
582 FieldOffsets[FieldNo] = FieldOffset;
583
584 // Reserve space for this field.
585 if (IsUnion) {
586 Size = std::max(Size, FieldSize);
587 } else {
588 Size = FieldOffset + FieldSize;
589 }
590
591 // Remember the next available offset.
592 NextOffset = Size;
593
594 // Remember max struct/class alignment.
595 Alignment = std::max(Alignment, FieldAlign);
596}
597
598static void CollectLocalObjCIvars(ASTContext *Ctx,
599 const ObjCInterfaceDecl *OI,
600 llvm::SmallVectorImpl<FieldDecl*> &Fields) {
601 for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
602 E = OI->ivar_end(); I != E; ++I) {
603 ObjCIvarDecl *IVDecl = *I;
604 if (!IVDecl->isInvalidDecl())
605 Fields.push_back(cast<FieldDecl>(IVDecl));
606 }
607}
608
609void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
610 llvm::SmallVectorImpl<FieldDecl*> &Fields) {
611 if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
612 CollectObjCIvars(SuperClass, Fields);
613 CollectLocalObjCIvars(this, OI, Fields);
614}
615
616void ASTContext::CollectProtocolSynthesizedIvars(const ObjCProtocolDecl *PD,
617 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
618 for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(*this),
619 E = PD->prop_end(*this); I != E; ++I)
620 if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
621 Ivars.push_back(Ivar);
622
623 // Also look into nested protocols.
624 for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
625 E = PD->protocol_end(); P != E; ++P)
626 CollectProtocolSynthesizedIvars(*P, Ivars);
627}
628
629/// CollectSynthesizedIvars -
630/// This routine collect synthesized ivars for the designated class.
631///
632void ASTContext::CollectSynthesizedIvars(const ObjCInterfaceDecl *OI,
633 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
634 for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(*this),
635 E = OI->prop_end(*this); I != E; ++I) {
636 if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
637 Ivars.push_back(Ivar);
638 }
639 // Also look into interface's protocol list for properties declared
640 // in the protocol and whose ivars are synthesized.
641 for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
642 PE = OI->protocol_end(); P != PE; ++P) {
643 ObjCProtocolDecl *PD = (*P);
644 CollectProtocolSynthesizedIvars(PD, Ivars);
645 }
646}
647
648/// getInterfaceLayoutImpl - Get or compute information about the
649/// layout of the given interface.
650///
651/// \param Impl - If given, also include the layout of the interface's
652/// implementation. This may differ by including synthesized ivars.
653const ASTRecordLayout &
654ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
655 const ObjCImplementationDecl *Impl) {
656 assert(!D->isForwardDecl() && "Invalid interface decl!");
657
658 // Look up this layout, if already laid out, return what we have.
659 ObjCContainerDecl *Key =
660 Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D;
661 if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
662 return *Entry;
663
664 unsigned FieldCount = D->ivar_size();
665 // Add in synthesized ivar count if laying out an implementation.
666 if (Impl) {
667 llvm::SmallVector<ObjCIvarDecl*, 16> Ivars;
668 CollectSynthesizedIvars(D, Ivars);
669 FieldCount += Ivars.size();
670 // If there aren't any sythesized ivars then reuse the interface
671 // entry. Note we can't cache this because we simply free all
672 // entries later; however we shouldn't look up implementations
673 // frequently.
674 if (FieldCount == D->ivar_size())
675 return getObjCLayout(D, 0);
676 }
677
678 ASTRecordLayout *NewEntry = NULL;
679 if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
680 const ASTRecordLayout &SL = getASTObjCInterfaceLayout(SD);
681 unsigned Alignment = SL.getAlignment();
682
683 // We start laying out ivars not at the end of the superclass
684 // structure, but at the next byte following the last field.
685 uint64_t Size = llvm::RoundUpToAlignment(SL.NextOffset, 8);
686
687 ObjCLayouts[Key] = NewEntry = new ASTRecordLayout(Size, Alignment);
688 NewEntry->InitializeLayout(FieldCount);
689 } else {
690 ObjCLayouts[Key] = NewEntry = new ASTRecordLayout();
691 NewEntry->InitializeLayout(FieldCount);
692 }
693
694 unsigned StructPacking = 0;
695 if (const PackedAttr *PA = D->getAttr<PackedAttr>())
696 StructPacking = PA->getAlignment();
697
698 if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
699 NewEntry->SetAlignment(std::max(NewEntry->getAlignment(),
700 AA->getAlignment()));
701
702 // Layout each ivar sequentially.
703 unsigned i = 0;
704 for (ObjCInterfaceDecl::ivar_iterator IVI = D->ivar_begin(),
705 IVE = D->ivar_end(); IVI != IVE; ++IVI) {
706 const ObjCIvarDecl* Ivar = (*IVI);
707 NewEntry->LayoutField(Ivar, i++, false, StructPacking, *this);
708 }
709 // And synthesized ivars, if this is an implementation.
710 if (Impl) {
711 // FIXME. Do we need to colltect twice?
712 llvm::SmallVector<ObjCIvarDecl*, 16> Ivars;
713 CollectSynthesizedIvars(D, Ivars);
714 for (unsigned k = 0, e = Ivars.size(); k != e; ++k)
715 NewEntry->LayoutField(Ivars[k], i++, false, StructPacking, *this);
716 }
717
718 // Finally, round the size of the total struct up to the alignment of the
719 // struct itself.
720 NewEntry->FinalizeLayout();
721 return *NewEntry;
722}
723
724const ASTRecordLayout &
725ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
726 return getObjCLayout(D, 0);
727}
728
729const ASTRecordLayout &
730ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
731 return getObjCLayout(D->getClassInterface(), D);
732}
733
734/// getASTRecordLayout - Get or compute information about the layout of the
735/// specified record (struct/union/class), which indicates its size and field
736/// position information.
737const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
738 D = D->getDefinition(*this);
739 assert(D && "Cannot get layout of forward declarations!");
740
741 // Look up this layout, if already laid out, return what we have.
742 const ASTRecordLayout *&Entry = ASTRecordLayouts[D];
743 if (Entry) return *Entry;
744
745 // Allocate and assign into ASTRecordLayouts here. The "Entry" reference can
746 // be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
747 ASTRecordLayout *NewEntry = new ASTRecordLayout();
748 Entry = NewEntry;
749
750 // FIXME: Avoid linear walk through the fields, if possible.
751 NewEntry->InitializeLayout(std::distance(D->field_begin(*this),
752 D->field_end(*this)));
753 bool IsUnion = D->isUnion();
754
755 unsigned StructPacking = 0;
756 if (const PackedAttr *PA = D->getAttr<PackedAttr>())
757 StructPacking = PA->getAlignment();
758
759 if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
760 NewEntry->SetAlignment(std::max(NewEntry->getAlignment(),
761 AA->getAlignment()));
762
763 // Layout each field, for now, just sequentially, respecting alignment. In
764 // the future, this will need to be tweakable by targets.
765 unsigned FieldIdx = 0;
766 for (RecordDecl::field_iterator Field = D->field_begin(*this),
767 FieldEnd = D->field_end(*this);
768 Field != FieldEnd; (void)++Field, ++FieldIdx)
769 NewEntry->LayoutField(*Field, FieldIdx, IsUnion, StructPacking, *this);
770
771 // Finally, round the size of the total struct up to the alignment of the
772 // struct itself.
773 NewEntry->FinalizeLayout(getLangOptions().CPlusPlus);
774 return *NewEntry;
775}
776
777//===----------------------------------------------------------------------===//
778// Type creation/memoization methods
779//===----------------------------------------------------------------------===//
780
781QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
782 QualType CanT = getCanonicalType(T);
783 if (CanT.getAddressSpace() == AddressSpace)
784 return T;
785
786 // If we are composing extended qualifiers together, merge together into one
787 // ExtQualType node.
788 unsigned CVRQuals = T.getCVRQualifiers();
789 QualType::GCAttrTypes GCAttr = QualType::GCNone;
790 Type *TypeNode = T.getTypePtr();
791
792 if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
793 // If this type already has an address space specified, it cannot get
794 // another one.
795 assert(EQT->getAddressSpace() == 0 &&
796 "Type cannot be in multiple addr spaces!");
797 GCAttr = EQT->getObjCGCAttr();
798 TypeNode = EQT->getBaseType();
799 }
800
801 // Check if we've already instantiated this type.
802 llvm::FoldingSetNodeID ID;
803 ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
804 void *InsertPos = 0;
805 if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
806 return QualType(EXTQy, CVRQuals);
807
808 // If the base type isn't canonical, this won't be a canonical type either,
809 // so fill in the canonical type field.
810 QualType Canonical;
811 if (!TypeNode->isCanonical()) {
812 Canonical = getAddrSpaceQualType(CanT, AddressSpace);
813
814 // Update InsertPos, the previous call could have invalidated it.
815 ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
816 assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
817 }
818 ExtQualType *New =
819 new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
820 ExtQualTypes.InsertNode(New, InsertPos);
821 Types.push_back(New);
822 return QualType(New, CVRQuals);
823}
824
825QualType ASTContext::getObjCGCQualType(QualType T,
826 QualType::GCAttrTypes GCAttr) {
827 QualType CanT = getCanonicalType(T);
828 if (CanT.getObjCGCAttr() == GCAttr)
829 return T;
830
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclCXX.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/ExternalASTSource.h"
20#include "clang/AST/RecordLayout.h"
21#include "clang/Basic/SourceManager.h"
22#include "clang/Basic/TargetInfo.h"
23#include "llvm/ADT/StringExtras.h"
24#include "llvm/Support/MathExtras.h"
25#include "llvm/Support/MemoryBuffer.h"
26using namespace clang;
27
28enum FloatingRank {
29 FloatRank, DoubleRank, LongDoubleRank
30};
31
32ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
33 TargetInfo &t,
34 IdentifierTable &idents, SelectorTable &sels,
35 bool FreeMem, unsigned size_reserve,
36 bool InitializeBuiltins) :
37 GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
38 ObjCFastEnumerationStateTypeDecl(0), SourceMgr(SM), LangOpts(LOpts),
39 FreeMemory(FreeMem), Target(t), Idents(idents), Selectors(sels),
40 ExternalSource(0) {
41 if (size_reserve > 0) Types.reserve(size_reserve);
42 InitBuiltinTypes();
43 TUDecl = TranslationUnitDecl::Create(*this);
44 BuiltinInfo.InitializeTargetBuiltins(Target);
45 if (InitializeBuiltins)
46 this->InitializeBuiltins(idents);
47 PrintingPolicy.CPlusPlus = LangOpts.CPlusPlus;
48}
49
50ASTContext::~ASTContext() {
51 // Deallocate all the types.
52 while (!Types.empty()) {
53 Types.back()->Destroy(*this);
54 Types.pop_back();
55 }
56
57 {
58 llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
59 I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end();
60 while (I != E) {
61 ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
62 delete R;
63 }
64 }
65
66 {
67 llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>::iterator
68 I = ObjCLayouts.begin(), E = ObjCLayouts.end();
69 while (I != E) {
70 ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
71 delete R;
72 }
73 }
74
75 // Destroy nested-name-specifiers.
76 for (llvm::FoldingSet<NestedNameSpecifier>::iterator
77 NNS = NestedNameSpecifiers.begin(),
78 NNSEnd = NestedNameSpecifiers.end();
79 NNS != NNSEnd;
80 /* Increment in loop */)
81 (*NNS++).Destroy(*this);
82
83 if (GlobalNestedNameSpecifier)
84 GlobalNestedNameSpecifier->Destroy(*this);
85
86 TUDecl->Destroy(*this);
87}
88
89void ASTContext::InitializeBuiltins(IdentifierTable &idents) {
90 BuiltinInfo.InitializeBuiltins(idents, LangOpts.NoBuiltin);
91}
92
93void
94ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
95 ExternalSource.reset(Source.take());
96}
97
98void ASTContext::PrintStats() const {
99 fprintf(stderr, "*** AST Context Stats:\n");
100 fprintf(stderr, " %d types total.\n", (int)Types.size());
101
102 unsigned counts[] = {
103#define TYPE(Name, Parent) 0,
104#define ABSTRACT_TYPE(Name, Parent)
105#include "clang/AST/TypeNodes.def"
106 0 // Extra
107 };
108
109 for (unsigned i = 0, e = Types.size(); i != e; ++i) {
110 Type *T = Types[i];
111 counts[(unsigned)T->getTypeClass()]++;
112 }
113
114 unsigned Idx = 0;
115 unsigned TotalBytes = 0;
116#define TYPE(Name, Parent) \
117 if (counts[Idx]) \
118 fprintf(stderr, " %d %s types\n", (int)counts[Idx], #Name); \
119 TotalBytes += counts[Idx] * sizeof(Name##Type); \
120 ++Idx;
121#define ABSTRACT_TYPE(Name, Parent)
122#include "clang/AST/TypeNodes.def"
123
124 fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
125
126 if (ExternalSource.get()) {
127 fprintf(stderr, "\n");
128 ExternalSource->PrintStats();
129 }
130}
131
132
133void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) {
134 Types.push_back((R = QualType(new (*this,8) BuiltinType(K),0)).getTypePtr());
135}
136
137void ASTContext::InitBuiltinTypes() {
138 assert(VoidTy.isNull() && "Context reinitialized?");
139
140 // C99 6.2.5p19.
141 InitBuiltinType(VoidTy, BuiltinType::Void);
142
143 // C99 6.2.5p2.
144 InitBuiltinType(BoolTy, BuiltinType::Bool);
145 // C99 6.2.5p3.
146 if (Target.isCharSigned())
147 InitBuiltinType(CharTy, BuiltinType::Char_S);
148 else
149 InitBuiltinType(CharTy, BuiltinType::Char_U);
150 // C99 6.2.5p4.
151 InitBuiltinType(SignedCharTy, BuiltinType::SChar);
152 InitBuiltinType(ShortTy, BuiltinType::Short);
153 InitBuiltinType(IntTy, BuiltinType::Int);
154 InitBuiltinType(LongTy, BuiltinType::Long);
155 InitBuiltinType(LongLongTy, BuiltinType::LongLong);
156
157 // C99 6.2.5p6.
158 InitBuiltinType(UnsignedCharTy, BuiltinType::UChar);
159 InitBuiltinType(UnsignedShortTy, BuiltinType::UShort);
160 InitBuiltinType(UnsignedIntTy, BuiltinType::UInt);
161 InitBuiltinType(UnsignedLongTy, BuiltinType::ULong);
162 InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong);
163
164 // C99 6.2.5p10.
165 InitBuiltinType(FloatTy, BuiltinType::Float);
166 InitBuiltinType(DoubleTy, BuiltinType::Double);
167 InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble);
168
169 // GNU extension, 128-bit integers.
170 InitBuiltinType(Int128Ty, BuiltinType::Int128);
171 InitBuiltinType(UnsignedInt128Ty, BuiltinType::UInt128);
172
173 if (LangOpts.CPlusPlus) // C++ 3.9.1p5
174 InitBuiltinType(WCharTy, BuiltinType::WChar);
175 else // C99
176 WCharTy = getFromTargetType(Target.getWCharType());
177
178 // Placeholder type for functions.
179 InitBuiltinType(OverloadTy, BuiltinType::Overload);
180
181 // Placeholder type for type-dependent expressions whose type is
182 // completely unknown. No code should ever check a type against
183 // DependentTy and users should never see it; however, it is here to
184 // help diagnose failures to properly check for type-dependent
185 // expressions.
186 InitBuiltinType(DependentTy, BuiltinType::Dependent);
187
188 // C99 6.2.5p11.
189 FloatComplexTy = getComplexType(FloatTy);
190 DoubleComplexTy = getComplexType(DoubleTy);
191 LongDoubleComplexTy = getComplexType(LongDoubleTy);
192
193 BuiltinVaListType = QualType();
194 ObjCIdType = QualType();
195 IdStructType = 0;
196 ObjCClassType = QualType();
197 ClassStructType = 0;
198
199 ObjCConstantStringType = QualType();
200
201 // void * type
202 VoidPtrTy = getPointerType(VoidTy);
203
204 // nullptr type (C++0x 2.14.7)
205 InitBuiltinType(NullPtrTy, BuiltinType::NullPtr);
206}
207
208//===----------------------------------------------------------------------===//
209// Type Sizing and Analysis
210//===----------------------------------------------------------------------===//
211
212/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
213/// scalar floating point type.
214const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
215 const BuiltinType *BT = T->getAsBuiltinType();
216 assert(BT && "Not a floating point type!");
217 switch (BT->getKind()) {
218 default: assert(0 && "Not a floating point type!");
219 case BuiltinType::Float: return Target.getFloatFormat();
220 case BuiltinType::Double: return Target.getDoubleFormat();
221 case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
222 }
223}
224
225/// getDeclAlign - Return a conservative estimate of the alignment of the
226/// specified decl. Note that bitfields do not have a valid alignment, so
227/// this method will assert on them.
228unsigned ASTContext::getDeclAlignInBytes(const Decl *D) {
229 unsigned Align = Target.getCharWidth();
230
231 if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
232 Align = std::max(Align, AA->getAlignment());
233
234 if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
235 QualType T = VD->getType();
236 if (const ReferenceType* RT = T->getAsReferenceType()) {
237 unsigned AS = RT->getPointeeType().getAddressSpace();
238 Align = Target.getPointerAlign(AS);
239 } else if (!T->isIncompleteType() && !T->isFunctionType()) {
240 // Incomplete or function types default to 1.
241 while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
242 T = cast<ArrayType>(T)->getElementType();
243
244 Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
245 }
246 }
247
248 return Align / Target.getCharWidth();
249}
250
251/// getTypeSize - Return the size of the specified type, in bits. This method
252/// does not work on incomplete types.
253std::pair<uint64_t, unsigned>
254ASTContext::getTypeInfo(const Type *T) {
255 uint64_t Width=0;
256 unsigned Align=8;
257 switch (T->getTypeClass()) {
258#define TYPE(Class, Base)
259#define ABSTRACT_TYPE(Class, Base)
260#define NON_CANONICAL_TYPE(Class, Base)
261#define DEPENDENT_TYPE(Class, Base) case Type::Class:
262#include "clang/AST/TypeNodes.def"
263 assert(false && "Should not see dependent types");
264 break;
265
266 case Type::FunctionNoProto:
267 case Type::FunctionProto:
268 // GCC extension: alignof(function) = 32 bits
269 Width = 0;
270 Align = 32;
271 break;
272
273 case Type::IncompleteArray:
274 case Type::VariableArray:
275 Width = 0;
276 Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
277 break;
278
279 case Type::ConstantArray: {
280 const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
281
282 std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
283 Width = EltInfo.first*CAT->getSize().getZExtValue();
284 Align = EltInfo.second;
285 break;
286 }
287 case Type::ExtVector:
288 case Type::Vector: {
289 std::pair<uint64_t, unsigned> EltInfo =
290 getTypeInfo(cast<VectorType>(T)->getElementType());
291 Width = EltInfo.first*cast<VectorType>(T)->getNumElements();
292 Align = Width;
293 // If the alignment is not a power of 2, round up to the next power of 2.
294 // This happens for non-power-of-2 length vectors.
295 // FIXME: this should probably be a target property.
296 Align = 1 << llvm::Log2_32_Ceil(Align);
297 break;
298 }
299
300 case Type::Builtin:
301 switch (cast<BuiltinType>(T)->getKind()) {
302 default: assert(0 && "Unknown builtin type!");
303 case BuiltinType::Void:
304 // GCC extension: alignof(void) = 8 bits.
305 Width = 0;
306 Align = 8;
307 break;
308
309 case BuiltinType::Bool:
310 Width = Target.getBoolWidth();
311 Align = Target.getBoolAlign();
312 break;
313 case BuiltinType::Char_S:
314 case BuiltinType::Char_U:
315 case BuiltinType::UChar:
316 case BuiltinType::SChar:
317 Width = Target.getCharWidth();
318 Align = Target.getCharAlign();
319 break;
320 case BuiltinType::WChar:
321 Width = Target.getWCharWidth();
322 Align = Target.getWCharAlign();
323 break;
324 case BuiltinType::UShort:
325 case BuiltinType::Short:
326 Width = Target.getShortWidth();
327 Align = Target.getShortAlign();
328 break;
329 case BuiltinType::UInt:
330 case BuiltinType::Int:
331 Width = Target.getIntWidth();
332 Align = Target.getIntAlign();
333 break;
334 case BuiltinType::ULong:
335 case BuiltinType::Long:
336 Width = Target.getLongWidth();
337 Align = Target.getLongAlign();
338 break;
339 case BuiltinType::ULongLong:
340 case BuiltinType::LongLong:
341 Width = Target.getLongLongWidth();
342 Align = Target.getLongLongAlign();
343 break;
344 case BuiltinType::Int128:
345 case BuiltinType::UInt128:
346 Width = 128;
347 Align = 128; // int128_t is 128-bit aligned on all targets.
348 break;
349 case BuiltinType::Float:
350 Width = Target.getFloatWidth();
351 Align = Target.getFloatAlign();
352 break;
353 case BuiltinType::Double:
354 Width = Target.getDoubleWidth();
355 Align = Target.getDoubleAlign();
356 break;
357 case BuiltinType::LongDouble:
358 Width = Target.getLongDoubleWidth();
359 Align = Target.getLongDoubleAlign();
360 break;
361 case BuiltinType::NullPtr:
362 Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
363 Align = Target.getPointerAlign(0); // == sizeof(void*)
364 break;
365 }
366 break;
367 case Type::FixedWidthInt:
368 // FIXME: This isn't precisely correct; the width/alignment should depend
369 // on the available types for the target
370 Width = cast<FixedWidthIntType>(T)->getWidth();
371 Width = std::max(llvm::NextPowerOf2(Width - 1), (uint64_t)8);
372 Align = Width;
373 break;
374 case Type::ExtQual:
375 // FIXME: Pointers into different addr spaces could have different sizes and
376 // alignment requirements: getPointerInfo should take an AddrSpace.
377 return getTypeInfo(QualType(cast<ExtQualType>(T)->getBaseType(), 0));
378 case Type::ObjCQualifiedId:
379 case Type::ObjCQualifiedInterface:
380 Width = Target.getPointerWidth(0);
381 Align = Target.getPointerAlign(0);
382 break;
383 case Type::BlockPointer: {
384 unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
385 Width = Target.getPointerWidth(AS);
386 Align = Target.getPointerAlign(AS);
387 break;
388 }
389 case Type::Pointer: {
390 unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
391 Width = Target.getPointerWidth(AS);
392 Align = Target.getPointerAlign(AS);
393 break;
394 }
395 case Type::LValueReference:
396 case Type::RValueReference:
397 // "When applied to a reference or a reference type, the result is the size
398 // of the referenced type." C++98 5.3.3p2: expr.sizeof.
399 // FIXME: This is wrong for struct layout: a reference in a struct has
400 // pointer size.
401 return getTypeInfo(cast<ReferenceType>(T)->getPointeeType());
402 case Type::MemberPointer: {
403 // FIXME: This is ABI dependent. We use the Itanium C++ ABI.
404 // http://www.codesourcery.com/public/cxx-abi/abi.html#member-pointers
405 // If we ever want to support other ABIs this needs to be abstracted.
406
407 QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
408 std::pair<uint64_t, unsigned> PtrDiffInfo =
409 getTypeInfo(getPointerDiffType());
410 Width = PtrDiffInfo.first;
411 if (Pointee->isFunctionType())
412 Width *= 2;
413 Align = PtrDiffInfo.second;
414 break;
415 }
416 case Type::Complex: {
417 // Complex types have the same alignment as their elements, but twice the
418 // size.
419 std::pair<uint64_t, unsigned> EltInfo =
420 getTypeInfo(cast<ComplexType>(T)->getElementType());
421 Width = EltInfo.first*2;
422 Align = EltInfo.second;
423 break;
424 }
425 case Type::ObjCInterface: {
426 const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
427 const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
428 Width = Layout.getSize();
429 Align = Layout.getAlignment();
430 break;
431 }
432 case Type::Record:
433 case Type::Enum: {
434 const TagType *TT = cast<TagType>(T);
435
436 if (TT->getDecl()->isInvalidDecl()) {
437 Width = 1;
438 Align = 1;
439 break;
440 }
441
442 if (const EnumType *ET = dyn_cast<EnumType>(TT))
443 return getTypeInfo(ET->getDecl()->getIntegerType());
444
445 const RecordType *RT = cast<RecordType>(TT);
446 const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
447 Width = Layout.getSize();
448 Align = Layout.getAlignment();
449 break;
450 }
451
452 case Type::Typedef: {
453 const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
454 if (const AlignedAttr *Aligned = Typedef->getAttr<AlignedAttr>()) {
455 Align = Aligned->getAlignment();
456 Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
457 } else
458 return getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
459 break;
460 }
461
462 case Type::TypeOfExpr:
463 return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
464 .getTypePtr());
465
466 case Type::TypeOf:
467 return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
468
469 case Type::QualifiedName:
470 return getTypeInfo(cast<QualifiedNameType>(T)->getNamedType().getTypePtr());
471
472 case Type::TemplateSpecialization:
473 assert(getCanonicalType(T) != T &&
474 "Cannot request the size of a dependent type");
475 // FIXME: this is likely to be wrong once we support template
476 // aliases, since a template alias could refer to a typedef that
477 // has an __aligned__ attribute on it.
478 return getTypeInfo(getCanonicalType(T));
479 }
480
481 assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
482 return std::make_pair(Width, Align);
483}
484
485/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
486/// type for the current target in bits. This can be different than the ABI
487/// alignment in cases where it is beneficial for performance to overalign
488/// a data type.
489unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
490 unsigned ABIAlign = getTypeAlign(T);
491
492 // Double and long long should be naturally aligned if possible.
493 if (const ComplexType* CT = T->getAsComplexType())
494 T = CT->getElementType().getTypePtr();
495 if (T->isSpecificBuiltinType(BuiltinType::Double) ||
496 T->isSpecificBuiltinType(BuiltinType::LongLong))
497 return std::max(ABIAlign, (unsigned)getTypeSize(T));
498
499 return ABIAlign;
500}
501
502
503/// LayoutField - Field layout.
504void ASTRecordLayout::LayoutField(const FieldDecl *FD, unsigned FieldNo,
505 bool IsUnion, unsigned StructPacking,
506 ASTContext &Context) {
507 unsigned FieldPacking = StructPacking;
508 uint64_t FieldOffset = IsUnion ? 0 : Size;
509 uint64_t FieldSize;
510 unsigned FieldAlign;
511
512 // FIXME: Should this override struct packing? Probably we want to
513 // take the minimum?
514 if (const PackedAttr *PA = FD->getAttr<PackedAttr>())
515 FieldPacking = PA->getAlignment();
516
517 if (const Expr *BitWidthExpr = FD->getBitWidth()) {
518 // TODO: Need to check this algorithm on other targets!
519 // (tested on Linux-X86)
520 FieldSize = BitWidthExpr->EvaluateAsInt(Context).getZExtValue();
521
522 std::pair<uint64_t, unsigned> FieldInfo =
523 Context.getTypeInfo(FD->getType());
524 uint64_t TypeSize = FieldInfo.first;
525
526 // Determine the alignment of this bitfield. The packing
527 // attributes define a maximum and the alignment attribute defines
528 // a minimum.
529 // FIXME: What is the right behavior when the specified alignment
530 // is smaller than the specified packing?
531 FieldAlign = FieldInfo.second;
532 if (FieldPacking)
533 FieldAlign = std::min(FieldAlign, FieldPacking);
534 if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
535 FieldAlign = std::max(FieldAlign, AA->getAlignment());
536
537 // Check if we need to add padding to give the field the correct
538 // alignment.
539 if (FieldSize == 0 || (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)
540 FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
541
542 // Padding members don't affect overall alignment
543 if (!FD->getIdentifier())
544 FieldAlign = 1;
545 } else {
546 if (FD->getType()->isIncompleteArrayType()) {
547 // This is a flexible array member; we can't directly
548 // query getTypeInfo about these, so we figure it out here.
549 // Flexible array members don't have any size, but they
550 // have to be aligned appropriately for their element type.
551 FieldSize = 0;
552 const ArrayType* ATy = Context.getAsArrayType(FD->getType());
553 FieldAlign = Context.getTypeAlign(ATy->getElementType());
554 } else if (const ReferenceType *RT = FD->getType()->getAsReferenceType()) {
555 unsigned AS = RT->getPointeeType().getAddressSpace();
556 FieldSize = Context.Target.getPointerWidth(AS);
557 FieldAlign = Context.Target.getPointerAlign(AS);
558 } else {
559 std::pair<uint64_t, unsigned> FieldInfo =
560 Context.getTypeInfo(FD->getType());
561 FieldSize = FieldInfo.first;
562 FieldAlign = FieldInfo.second;
563 }
564
565 // Determine the alignment of this bitfield. The packing
566 // attributes define a maximum and the alignment attribute defines
567 // a minimum. Additionally, the packing alignment must be at least
568 // a byte for non-bitfields.
569 //
570 // FIXME: What is the right behavior when the specified alignment
571 // is smaller than the specified packing?
572 if (FieldPacking)
573 FieldAlign = std::min(FieldAlign, std::max(8U, FieldPacking));
574 if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
575 FieldAlign = std::max(FieldAlign, AA->getAlignment());
576
577 // Round up the current record size to the field's alignment boundary.
578 FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
579 }
580
581 // Place this field at the current location.
582 FieldOffsets[FieldNo] = FieldOffset;
583
584 // Reserve space for this field.
585 if (IsUnion) {
586 Size = std::max(Size, FieldSize);
587 } else {
588 Size = FieldOffset + FieldSize;
589 }
590
591 // Remember the next available offset.
592 NextOffset = Size;
593
594 // Remember max struct/class alignment.
595 Alignment = std::max(Alignment, FieldAlign);
596}
597
598static void CollectLocalObjCIvars(ASTContext *Ctx,
599 const ObjCInterfaceDecl *OI,
600 llvm::SmallVectorImpl<FieldDecl*> &Fields) {
601 for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
602 E = OI->ivar_end(); I != E; ++I) {
603 ObjCIvarDecl *IVDecl = *I;
604 if (!IVDecl->isInvalidDecl())
605 Fields.push_back(cast<FieldDecl>(IVDecl));
606 }
607}
608
609void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
610 llvm::SmallVectorImpl<FieldDecl*> &Fields) {
611 if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
612 CollectObjCIvars(SuperClass, Fields);
613 CollectLocalObjCIvars(this, OI, Fields);
614}
615
616void ASTContext::CollectProtocolSynthesizedIvars(const ObjCProtocolDecl *PD,
617 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
618 for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(*this),
619 E = PD->prop_end(*this); I != E; ++I)
620 if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
621 Ivars.push_back(Ivar);
622
623 // Also look into nested protocols.
624 for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
625 E = PD->protocol_end(); P != E; ++P)
626 CollectProtocolSynthesizedIvars(*P, Ivars);
627}
628
629/// CollectSynthesizedIvars -
630/// This routine collect synthesized ivars for the designated class.
631///
632void ASTContext::CollectSynthesizedIvars(const ObjCInterfaceDecl *OI,
633 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
634 for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(*this),
635 E = OI->prop_end(*this); I != E; ++I) {
636 if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
637 Ivars.push_back(Ivar);
638 }
639 // Also look into interface's protocol list for properties declared
640 // in the protocol and whose ivars are synthesized.
641 for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
642 PE = OI->protocol_end(); P != PE; ++P) {
643 ObjCProtocolDecl *PD = (*P);
644 CollectProtocolSynthesizedIvars(PD, Ivars);
645 }
646}
647
648/// getInterfaceLayoutImpl - Get or compute information about the
649/// layout of the given interface.
650///
651/// \param Impl - If given, also include the layout of the interface's
652/// implementation. This may differ by including synthesized ivars.
653const ASTRecordLayout &
654ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
655 const ObjCImplementationDecl *Impl) {
656 assert(!D->isForwardDecl() && "Invalid interface decl!");
657
658 // Look up this layout, if already laid out, return what we have.
659 ObjCContainerDecl *Key =
660 Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D;
661 if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
662 return *Entry;
663
664 unsigned FieldCount = D->ivar_size();
665 // Add in synthesized ivar count if laying out an implementation.
666 if (Impl) {
667 llvm::SmallVector<ObjCIvarDecl*, 16> Ivars;
668 CollectSynthesizedIvars(D, Ivars);
669 FieldCount += Ivars.size();
670 // If there aren't any sythesized ivars then reuse the interface
671 // entry. Note we can't cache this because we simply free all
672 // entries later; however we shouldn't look up implementations
673 // frequently.
674 if (FieldCount == D->ivar_size())
675 return getObjCLayout(D, 0);
676 }
677
678 ASTRecordLayout *NewEntry = NULL;
679 if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
680 const ASTRecordLayout &SL = getASTObjCInterfaceLayout(SD);
681 unsigned Alignment = SL.getAlignment();
682
683 // We start laying out ivars not at the end of the superclass
684 // structure, but at the next byte following the last field.
685 uint64_t Size = llvm::RoundUpToAlignment(SL.NextOffset, 8);
686
687 ObjCLayouts[Key] = NewEntry = new ASTRecordLayout(Size, Alignment);
688 NewEntry->InitializeLayout(FieldCount);
689 } else {
690 ObjCLayouts[Key] = NewEntry = new ASTRecordLayout();
691 NewEntry->InitializeLayout(FieldCount);
692 }
693
694 unsigned StructPacking = 0;
695 if (const PackedAttr *PA = D->getAttr<PackedAttr>())
696 StructPacking = PA->getAlignment();
697
698 if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
699 NewEntry->SetAlignment(std::max(NewEntry->getAlignment(),
700 AA->getAlignment()));
701
702 // Layout each ivar sequentially.
703 unsigned i = 0;
704 for (ObjCInterfaceDecl::ivar_iterator IVI = D->ivar_begin(),
705 IVE = D->ivar_end(); IVI != IVE; ++IVI) {
706 const ObjCIvarDecl* Ivar = (*IVI);
707 NewEntry->LayoutField(Ivar, i++, false, StructPacking, *this);
708 }
709 // And synthesized ivars, if this is an implementation.
710 if (Impl) {
711 // FIXME. Do we need to colltect twice?
712 llvm::SmallVector<ObjCIvarDecl*, 16> Ivars;
713 CollectSynthesizedIvars(D, Ivars);
714 for (unsigned k = 0, e = Ivars.size(); k != e; ++k)
715 NewEntry->LayoutField(Ivars[k], i++, false, StructPacking, *this);
716 }
717
718 // Finally, round the size of the total struct up to the alignment of the
719 // struct itself.
720 NewEntry->FinalizeLayout();
721 return *NewEntry;
722}
723
724const ASTRecordLayout &
725ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
726 return getObjCLayout(D, 0);
727}
728
729const ASTRecordLayout &
730ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
731 return getObjCLayout(D->getClassInterface(), D);
732}
733
734/// getASTRecordLayout - Get or compute information about the layout of the
735/// specified record (struct/union/class), which indicates its size and field
736/// position information.
737const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
738 D = D->getDefinition(*this);
739 assert(D && "Cannot get layout of forward declarations!");
740
741 // Look up this layout, if already laid out, return what we have.
742 const ASTRecordLayout *&Entry = ASTRecordLayouts[D];
743 if (Entry) return *Entry;
744
745 // Allocate and assign into ASTRecordLayouts here. The "Entry" reference can
746 // be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
747 ASTRecordLayout *NewEntry = new ASTRecordLayout();
748 Entry = NewEntry;
749
750 // FIXME: Avoid linear walk through the fields, if possible.
751 NewEntry->InitializeLayout(std::distance(D->field_begin(*this),
752 D->field_end(*this)));
753 bool IsUnion = D->isUnion();
754
755 unsigned StructPacking = 0;
756 if (const PackedAttr *PA = D->getAttr<PackedAttr>())
757 StructPacking = PA->getAlignment();
758
759 if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
760 NewEntry->SetAlignment(std::max(NewEntry->getAlignment(),
761 AA->getAlignment()));
762
763 // Layout each field, for now, just sequentially, respecting alignment. In
764 // the future, this will need to be tweakable by targets.
765 unsigned FieldIdx = 0;
766 for (RecordDecl::field_iterator Field = D->field_begin(*this),
767 FieldEnd = D->field_end(*this);
768 Field != FieldEnd; (void)++Field, ++FieldIdx)
769 NewEntry->LayoutField(*Field, FieldIdx, IsUnion, StructPacking, *this);
770
771 // Finally, round the size of the total struct up to the alignment of the
772 // struct itself.
773 NewEntry->FinalizeLayout(getLangOptions().CPlusPlus);
774 return *NewEntry;
775}
776
777//===----------------------------------------------------------------------===//
778// Type creation/memoization methods
779//===----------------------------------------------------------------------===//
780
781QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
782 QualType CanT = getCanonicalType(T);
783 if (CanT.getAddressSpace() == AddressSpace)
784 return T;
785
786 // If we are composing extended qualifiers together, merge together into one
787 // ExtQualType node.
788 unsigned CVRQuals = T.getCVRQualifiers();
789 QualType::GCAttrTypes GCAttr = QualType::GCNone;
790 Type *TypeNode = T.getTypePtr();
791
792 if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
793 // If this type already has an address space specified, it cannot get
794 // another one.
795 assert(EQT->getAddressSpace() == 0 &&
796 "Type cannot be in multiple addr spaces!");
797 GCAttr = EQT->getObjCGCAttr();
798 TypeNode = EQT->getBaseType();
799 }
800
801 // Check if we've already instantiated this type.
802 llvm::FoldingSetNodeID ID;
803 ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
804 void *InsertPos = 0;
805 if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
806 return QualType(EXTQy, CVRQuals);
807
808 // If the base type isn't canonical, this won't be a canonical type either,
809 // so fill in the canonical type field.
810 QualType Canonical;
811 if (!TypeNode->isCanonical()) {
812 Canonical = getAddrSpaceQualType(CanT, AddressSpace);
813
814 // Update InsertPos, the previous call could have invalidated it.
815 ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
816 assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
817 }
818 ExtQualType *New =
819 new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
820 ExtQualTypes.InsertNode(New, InsertPos);
821 Types.push_back(New);
822 return QualType(New, CVRQuals);
823}
824
825QualType ASTContext::getObjCGCQualType(QualType T,
826 QualType::GCAttrTypes GCAttr) {
827 QualType CanT = getCanonicalType(T);
828 if (CanT.getObjCGCAttr() == GCAttr)
829 return T;
830
831 if (T->isPointerType()) {
832 QualType Pointee = T->getAsPointerType()->getPointeeType();
833 if (Pointee->isPointerType()) {
834 QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
835 return getPointerType(ResultType);
836 }
837 }
831 // If we are composing extended qualifiers together, merge together into one
832 // ExtQualType node.
833 unsigned CVRQuals = T.getCVRQualifiers();
834 Type *TypeNode = T.getTypePtr();
835 unsigned AddressSpace = 0;
836
837 if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
838 // If this type already has an address space specified, it cannot get
839 // another one.
840 assert(EQT->getObjCGCAttr() == QualType::GCNone &&
841 "Type cannot be in multiple addr spaces!");
842 AddressSpace = EQT->getAddressSpace();
843 TypeNode = EQT->getBaseType();
844 }
845
846 // Check if we've already instantiated an gc qual'd type of this type.
847 llvm::FoldingSetNodeID ID;
848 ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
849 void *InsertPos = 0;
850 if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
851 return QualType(EXTQy, CVRQuals);
852
853 // If the base type isn't canonical, this won't be a canonical type either,
854 // so fill in the canonical type field.
855 // FIXME: Isn't this also not canonical if the base type is a array
856 // or pointer type? I can't find any documentation for objc_gc, though...
857 QualType Canonical;
858 if (!T->isCanonical()) {
859 Canonical = getObjCGCQualType(CanT, GCAttr);
860
861 // Update InsertPos, the previous call could have invalidated it.
862 ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
863 assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
864 }
865 ExtQualType *New =
866 new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
867 ExtQualTypes.InsertNode(New, InsertPos);
868 Types.push_back(New);
869 return QualType(New, CVRQuals);
870}
871
872/// getComplexType - Return the uniqued reference to the type for a complex
873/// number with the specified element type.
874QualType ASTContext::getComplexType(QualType T) {
875 // Unique pointers, to guarantee there is only one pointer of a particular
876 // structure.
877 llvm::FoldingSetNodeID ID;
878 ComplexType::Profile(ID, T);
879
880 void *InsertPos = 0;
881 if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
882 return QualType(CT, 0);
883
884 // If the pointee type isn't canonical, this won't be a canonical type either,
885 // so fill in the canonical type field.
886 QualType Canonical;
887 if (!T->isCanonical()) {
888 Canonical = getComplexType(getCanonicalType(T));
889
890 // Get the new insert position for the node we care about.
891 ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
892 assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
893 }
894 ComplexType *New = new (*this,8) ComplexType(T, Canonical);
895 Types.push_back(New);
896 ComplexTypes.InsertNode(New, InsertPos);
897 return QualType(New, 0);
898}
899
900QualType ASTContext::getFixedWidthIntType(unsigned Width, bool Signed) {
901 llvm::DenseMap<unsigned, FixedWidthIntType*> &Map = Signed ?
902 SignedFixedWidthIntTypes : UnsignedFixedWidthIntTypes;
903 FixedWidthIntType *&Entry = Map[Width];
904 if (!Entry)
905 Entry = new FixedWidthIntType(Width, Signed);
906 return QualType(Entry, 0);
907}
908
909/// getPointerType - Return the uniqued reference to the type for a pointer to
910/// the specified type.
911QualType ASTContext::getPointerType(QualType T) {
912 // Unique pointers, to guarantee there is only one pointer of a particular
913 // structure.
914 llvm::FoldingSetNodeID ID;
915 PointerType::Profile(ID, T);
916
917 void *InsertPos = 0;
918 if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
919 return QualType(PT, 0);
920
921 // If the pointee type isn't canonical, this won't be a canonical type either,
922 // so fill in the canonical type field.
923 QualType Canonical;
924 if (!T->isCanonical()) {
925 Canonical = getPointerType(getCanonicalType(T));
926
927 // Get the new insert position for the node we care about.
928 PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
929 assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
930 }
931 PointerType *New = new (*this,8) PointerType(T, Canonical);
932 Types.push_back(New);
933 PointerTypes.InsertNode(New, InsertPos);
934 return QualType(New, 0);
935}
936
937/// getBlockPointerType - Return the uniqued reference to the type for
938/// a pointer to the specified block.
939QualType ASTContext::getBlockPointerType(QualType T) {
940 assert(T->isFunctionType() && "block of function types only");
941 // Unique pointers, to guarantee there is only one block of a particular
942 // structure.
943 llvm::FoldingSetNodeID ID;
944 BlockPointerType::Profile(ID, T);
945
946 void *InsertPos = 0;
947 if (BlockPointerType *PT =
948 BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
949 return QualType(PT, 0);
950
951 // If the block pointee type isn't canonical, this won't be a canonical
952 // type either so fill in the canonical type field.
953 QualType Canonical;
954 if (!T->isCanonical()) {
955 Canonical = getBlockPointerType(getCanonicalType(T));
956
957 // Get the new insert position for the node we care about.
958 BlockPointerType *NewIP =
959 BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
960 assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
961 }
962 BlockPointerType *New = new (*this,8) BlockPointerType(T, Canonical);
963 Types.push_back(New);
964 BlockPointerTypes.InsertNode(New, InsertPos);
965 return QualType(New, 0);
966}
967
968/// getLValueReferenceType - Return the uniqued reference to the type for an
969/// lvalue reference to the specified type.
970QualType ASTContext::getLValueReferenceType(QualType T) {
971 // Unique pointers, to guarantee there is only one pointer of a particular
972 // structure.
973 llvm::FoldingSetNodeID ID;
974 ReferenceType::Profile(ID, T);
975
976 void *InsertPos = 0;
977 if (LValueReferenceType *RT =
978 LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
979 return QualType(RT, 0);
980
981 // If the referencee type isn't canonical, this won't be a canonical type
982 // either, so fill in the canonical type field.
983 QualType Canonical;
984 if (!T->isCanonical()) {
985 Canonical = getLValueReferenceType(getCanonicalType(T));
986
987 // Get the new insert position for the node we care about.
988 LValueReferenceType *NewIP =
989 LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
990 assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
991 }
992
993 LValueReferenceType *New = new (*this,8) LValueReferenceType(T, Canonical);
994 Types.push_back(New);
995 LValueReferenceTypes.InsertNode(New, InsertPos);
996 return QualType(New, 0);
997}
998
999/// getRValueReferenceType - Return the uniqued reference to the type for an
1000/// rvalue reference to the specified type.
1001QualType ASTContext::getRValueReferenceType(QualType T) {
1002 // Unique pointers, to guarantee there is only one pointer of a particular
1003 // structure.
1004 llvm::FoldingSetNodeID ID;
1005 ReferenceType::Profile(ID, T);
1006
1007 void *InsertPos = 0;
1008 if (RValueReferenceType *RT =
1009 RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1010 return QualType(RT, 0);
1011
1012 // If the referencee type isn't canonical, this won't be a canonical type
1013 // either, so fill in the canonical type field.
1014 QualType Canonical;
1015 if (!T->isCanonical()) {
1016 Canonical = getRValueReferenceType(getCanonicalType(T));
1017
1018 // Get the new insert position for the node we care about.
1019 RValueReferenceType *NewIP =
1020 RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1021 assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1022 }
1023
1024 RValueReferenceType *New = new (*this,8) RValueReferenceType(T, Canonical);
1025 Types.push_back(New);
1026 RValueReferenceTypes.InsertNode(New, InsertPos);
1027 return QualType(New, 0);
1028}
1029
1030/// getMemberPointerType - Return the uniqued reference to the type for a
1031/// member pointer to the specified type, in the specified class.
1032QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls)
1033{
1034 // Unique pointers, to guarantee there is only one pointer of a particular
1035 // structure.
1036 llvm::FoldingSetNodeID ID;
1037 MemberPointerType::Profile(ID, T, Cls);
1038
1039 void *InsertPos = 0;
1040 if (MemberPointerType *PT =
1041 MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1042 return QualType(PT, 0);
1043
1044 // If the pointee or class type isn't canonical, this won't be a canonical
1045 // type either, so fill in the canonical type field.
1046 QualType Canonical;
1047 if (!T->isCanonical()) {
1048 Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1049
1050 // Get the new insert position for the node we care about.
1051 MemberPointerType *NewIP =
1052 MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1053 assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1054 }
1055 MemberPointerType *New = new (*this,8) MemberPointerType(T, Cls, Canonical);
1056 Types.push_back(New);
1057 MemberPointerTypes.InsertNode(New, InsertPos);
1058 return QualType(New, 0);
1059}
1060
1061/// getConstantArrayType - Return the unique reference to the type for an
1062/// array of the specified element type.
1063QualType ASTContext::getConstantArrayType(QualType EltTy,
1064 const llvm::APInt &ArySizeIn,
1065 ArrayType::ArraySizeModifier ASM,
1066 unsigned EltTypeQuals) {
1067 assert((EltTy->isDependentType() || EltTy->isConstantSizeType()) &&
1068 "Constant array of VLAs is illegal!");
1069
1070 // Convert the array size into a canonical width matching the pointer size for
1071 // the target.
1072 llvm::APInt ArySize(ArySizeIn);
1073 ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1074
1075 llvm::FoldingSetNodeID ID;
1076 ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1077
1078 void *InsertPos = 0;
1079 if (ConstantArrayType *ATP =
1080 ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1081 return QualType(ATP, 0);
1082
1083 // If the element type isn't canonical, this won't be a canonical type either,
1084 // so fill in the canonical type field.
1085 QualType Canonical;
1086 if (!EltTy->isCanonical()) {
1087 Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1088 ASM, EltTypeQuals);
1089 // Get the new insert position for the node we care about.
1090 ConstantArrayType *NewIP =
1091 ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1092 assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1093 }
1094
1095 ConstantArrayType *New =
1096 new(*this,8)ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1097 ConstantArrayTypes.InsertNode(New, InsertPos);
1098 Types.push_back(New);
1099 return QualType(New, 0);
1100}
1101
1102/// getVariableArrayType - Returns a non-unique reference to the type for a
1103/// variable array of the specified element type.
1104QualType ASTContext::getVariableArrayType(QualType EltTy, Expr *NumElts,
1105 ArrayType::ArraySizeModifier ASM,
1106 unsigned EltTypeQuals) {
1107 // Since we don't unique expressions, it isn't possible to unique VLA's
1108 // that have an expression provided for their size.
1109
1110 VariableArrayType *New =
1111 new(*this,8)VariableArrayType(EltTy,QualType(), NumElts, ASM, EltTypeQuals);
1112
1113 VariableArrayTypes.push_back(New);
1114 Types.push_back(New);
1115 return QualType(New, 0);
1116}
1117
1118/// getDependentSizedArrayType - Returns a non-unique reference to
1119/// the type for a dependently-sized array of the specified element
1120/// type. FIXME: We will need these to be uniqued, or at least
1121/// comparable, at some point.
1122QualType ASTContext::getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
1123 ArrayType::ArraySizeModifier ASM,
1124 unsigned EltTypeQuals) {
1125 assert((NumElts->isTypeDependent() || NumElts->isValueDependent()) &&
1126 "Size must be type- or value-dependent!");
1127
1128 // Since we don't unique expressions, it isn't possible to unique
1129 // dependently-sized array types.
1130
1131 DependentSizedArrayType *New =
1132 new (*this,8) DependentSizedArrayType(EltTy, QualType(), NumElts,
1133 ASM, EltTypeQuals);
1134
1135 DependentSizedArrayTypes.push_back(New);
1136 Types.push_back(New);
1137 return QualType(New, 0);
1138}
1139
1140QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1141 ArrayType::ArraySizeModifier ASM,
1142 unsigned EltTypeQuals) {
1143 llvm::FoldingSetNodeID ID;
1144 IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1145
1146 void *InsertPos = 0;
1147 if (IncompleteArrayType *ATP =
1148 IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1149 return QualType(ATP, 0);
1150
1151 // If the element type isn't canonical, this won't be a canonical type
1152 // either, so fill in the canonical type field.
1153 QualType Canonical;
1154
1155 if (!EltTy->isCanonical()) {
1156 Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1157 ASM, EltTypeQuals);
1158
1159 // Get the new insert position for the node we care about.
1160 IncompleteArrayType *NewIP =
1161 IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1162 assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1163 }
1164
1165 IncompleteArrayType *New = new (*this,8) IncompleteArrayType(EltTy, Canonical,
1166 ASM, EltTypeQuals);
1167
1168 IncompleteArrayTypes.InsertNode(New, InsertPos);
1169 Types.push_back(New);
1170 return QualType(New, 0);
1171}
1172
1173/// getVectorType - Return the unique reference to a vector type of
1174/// the specified element type and size. VectorType must be a built-in type.
1175QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
1176 BuiltinType *baseType;
1177
1178 baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1179 assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1180
1181 // Check if we've already instantiated a vector of this type.
1182 llvm::FoldingSetNodeID ID;
1183 VectorType::Profile(ID, vecType, NumElts, Type::Vector);
1184 void *InsertPos = 0;
1185 if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1186 return QualType(VTP, 0);
1187
1188 // If the element type isn't canonical, this won't be a canonical type either,
1189 // so fill in the canonical type field.
1190 QualType Canonical;
1191 if (!vecType->isCanonical()) {
1192 Canonical = getVectorType(getCanonicalType(vecType), NumElts);
1193
1194 // Get the new insert position for the node we care about.
1195 VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1196 assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1197 }
1198 VectorType *New = new (*this,8) VectorType(vecType, NumElts, Canonical);
1199 VectorTypes.InsertNode(New, InsertPos);
1200 Types.push_back(New);
1201 return QualType(New, 0);
1202}
1203
1204/// getExtVectorType - Return the unique reference to an extended vector type of
1205/// the specified element type and size. VectorType must be a built-in type.
1206QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1207 BuiltinType *baseType;
1208
1209 baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1210 assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1211
1212 // Check if we've already instantiated a vector of this type.
1213 llvm::FoldingSetNodeID ID;
1214 VectorType::Profile(ID, vecType, NumElts, Type::ExtVector);
1215 void *InsertPos = 0;
1216 if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1217 return QualType(VTP, 0);
1218
1219 // If the element type isn't canonical, this won't be a canonical type either,
1220 // so fill in the canonical type field.
1221 QualType Canonical;
1222 if (!vecType->isCanonical()) {
1223 Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1224
1225 // Get the new insert position for the node we care about.
1226 VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1227 assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1228 }
1229 ExtVectorType *New = new (*this,8) ExtVectorType(vecType, NumElts, Canonical);
1230 VectorTypes.InsertNode(New, InsertPos);
1231 Types.push_back(New);
1232 return QualType(New, 0);
1233}
1234
1235/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1236///
1237QualType ASTContext::getFunctionNoProtoType(QualType ResultTy) {
1238 // Unique functions, to guarantee there is only one function of a particular
1239 // structure.
1240 llvm::FoldingSetNodeID ID;
1241 FunctionNoProtoType::Profile(ID, ResultTy);
1242
1243 void *InsertPos = 0;
1244 if (FunctionNoProtoType *FT =
1245 FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1246 return QualType(FT, 0);
1247
1248 QualType Canonical;
1249 if (!ResultTy->isCanonical()) {
1250 Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy));
1251
1252 // Get the new insert position for the node we care about.
1253 FunctionNoProtoType *NewIP =
1254 FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1255 assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1256 }
1257
1258 FunctionNoProtoType *New =new(*this,8)FunctionNoProtoType(ResultTy,Canonical);
1259 Types.push_back(New);
1260 FunctionNoProtoTypes.InsertNode(New, InsertPos);
1261 return QualType(New, 0);
1262}
1263
1264/// getFunctionType - Return a normal function type with a typed argument
1265/// list. isVariadic indicates whether the argument list includes '...'.
1266QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1267 unsigned NumArgs, bool isVariadic,
1268 unsigned TypeQuals, bool hasExceptionSpec,
1269 bool hasAnyExceptionSpec, unsigned NumExs,
1270 const QualType *ExArray) {
1271 // Unique functions, to guarantee there is only one function of a particular
1272 // structure.
1273 llvm::FoldingSetNodeID ID;
1274 FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1275 TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1276 NumExs, ExArray);
1277
1278 void *InsertPos = 0;
1279 if (FunctionProtoType *FTP =
1280 FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1281 return QualType(FTP, 0);
1282
1283 // Determine whether the type being created is already canonical or not.
1284 bool isCanonical = ResultTy->isCanonical();
1285 if (hasExceptionSpec)
1286 isCanonical = false;
1287 for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1288 if (!ArgArray[i]->isCanonical())
1289 isCanonical = false;
1290
1291 // If this type isn't canonical, get the canonical version of it.
1292 // The exception spec is not part of the canonical type.
1293 QualType Canonical;
1294 if (!isCanonical) {
1295 llvm::SmallVector<QualType, 16> CanonicalArgs;
1296 CanonicalArgs.reserve(NumArgs);
1297 for (unsigned i = 0; i != NumArgs; ++i)
1298 CanonicalArgs.push_back(getCanonicalType(ArgArray[i]));
1299
1300 Canonical = getFunctionType(getCanonicalType(ResultTy),
1301 CanonicalArgs.data(), NumArgs,
1302 isVariadic, TypeQuals);
1303
1304 // Get the new insert position for the node we care about.
1305 FunctionProtoType *NewIP =
1306 FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1307 assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1308 }
1309
1310 // FunctionProtoType objects are allocated with extra bytes after them
1311 // for two variable size arrays (for parameter and exception types) at the
1312 // end of them.
1313 FunctionProtoType *FTP =
1314 (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1315 NumArgs*sizeof(QualType) +
1316 NumExs*sizeof(QualType), 8);
1317 new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1318 TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1319 ExArray, NumExs, Canonical);
1320 Types.push_back(FTP);
1321 FunctionProtoTypes.InsertNode(FTP, InsertPos);
1322 return QualType(FTP, 0);
1323}
1324
1325/// getTypeDeclType - Return the unique reference to the type for the
1326/// specified type declaration.
1327QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) {
1328 assert(Decl && "Passed null for Decl param");
1329 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1330
1331 if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1332 return getTypedefType(Typedef);
1333 else if (isa<TemplateTypeParmDecl>(Decl)) {
1334 assert(false && "Template type parameter types are always available.");
1335 } else if (ObjCInterfaceDecl *ObjCInterface = dyn_cast<ObjCInterfaceDecl>(Decl))
1336 return getObjCInterfaceType(ObjCInterface);
1337
1338 if (RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1339 if (PrevDecl)
1340 Decl->TypeForDecl = PrevDecl->TypeForDecl;
1341 else
1342 Decl->TypeForDecl = new (*this,8) RecordType(Record);
1343 }
1344 else if (EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1345 if (PrevDecl)
1346 Decl->TypeForDecl = PrevDecl->TypeForDecl;
1347 else
1348 Decl->TypeForDecl = new (*this,8) EnumType(Enum);
1349 }
1350 else
1351 assert(false && "TypeDecl without a type?");
1352
1353 if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
1354 return QualType(Decl->TypeForDecl, 0);
1355}
1356
1357/// getTypedefType - Return the unique reference to the type for the
1358/// specified typename decl.
1359QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
1360 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1361
1362 QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1363 Decl->TypeForDecl = new(*this,8) TypedefType(Type::Typedef, Decl, Canonical);
1364 Types.push_back(Decl->TypeForDecl);
1365 return QualType(Decl->TypeForDecl, 0);
1366}
1367
1368/// getObjCInterfaceType - Return the unique reference to the type for the
1369/// specified ObjC interface decl.
1370QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl) {
1371 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1372
1373 ObjCInterfaceDecl *OID = const_cast<ObjCInterfaceDecl*>(Decl);
1374 Decl->TypeForDecl = new(*this,8) ObjCInterfaceType(Type::ObjCInterface, OID);
1375 Types.push_back(Decl->TypeForDecl);
1376 return QualType(Decl->TypeForDecl, 0);
1377}
1378
1379/// \brief Retrieve the template type parameter type for a template
1380/// parameter with the given depth, index, and (optionally) name.
1381QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1382 IdentifierInfo *Name) {
1383 llvm::FoldingSetNodeID ID;
1384 TemplateTypeParmType::Profile(ID, Depth, Index, Name);
1385 void *InsertPos = 0;
1386 TemplateTypeParmType *TypeParm
1387 = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1388
1389 if (TypeParm)
1390 return QualType(TypeParm, 0);
1391
1392 if (Name)
1393 TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index, Name,
1394 getTemplateTypeParmType(Depth, Index));
1395 else
1396 TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index);
1397
1398 Types.push_back(TypeParm);
1399 TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1400
1401 return QualType(TypeParm, 0);
1402}
1403
1404QualType
1405ASTContext::getTemplateSpecializationType(TemplateName Template,
1406 const TemplateArgument *Args,
1407 unsigned NumArgs,
1408 QualType Canon) {
1409 if (!Canon.isNull())
1410 Canon = getCanonicalType(Canon);
1411
1412 llvm::FoldingSetNodeID ID;
1413 TemplateSpecializationType::Profile(ID, Template, Args, NumArgs);
1414
1415 void *InsertPos = 0;
1416 TemplateSpecializationType *Spec
1417 = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1418
1419 if (Spec)
1420 return QualType(Spec, 0);
1421
1422 void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1423 sizeof(TemplateArgument) * NumArgs),
1424 8);
1425 Spec = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, Canon);
1426 Types.push_back(Spec);
1427 TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1428
1429 return QualType(Spec, 0);
1430}
1431
1432QualType
1433ASTContext::getQualifiedNameType(NestedNameSpecifier *NNS,
1434 QualType NamedType) {
1435 llvm::FoldingSetNodeID ID;
1436 QualifiedNameType::Profile(ID, NNS, NamedType);
1437
1438 void *InsertPos = 0;
1439 QualifiedNameType *T
1440 = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1441 if (T)
1442 return QualType(T, 0);
1443
1444 T = new (*this) QualifiedNameType(NNS, NamedType,
1445 getCanonicalType(NamedType));
1446 Types.push_back(T);
1447 QualifiedNameTypes.InsertNode(T, InsertPos);
1448 return QualType(T, 0);
1449}
1450
1451QualType ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1452 const IdentifierInfo *Name,
1453 QualType Canon) {
1454 assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1455
1456 if (Canon.isNull()) {
1457 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1458 if (CanonNNS != NNS)
1459 Canon = getTypenameType(CanonNNS, Name);
1460 }
1461
1462 llvm::FoldingSetNodeID ID;
1463 TypenameType::Profile(ID, NNS, Name);
1464
1465 void *InsertPos = 0;
1466 TypenameType *T
1467 = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1468 if (T)
1469 return QualType(T, 0);
1470
1471 T = new (*this) TypenameType(NNS, Name, Canon);
1472 Types.push_back(T);
1473 TypenameTypes.InsertNode(T, InsertPos);
1474 return QualType(T, 0);
1475}
1476
1477QualType
1478ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1479 const TemplateSpecializationType *TemplateId,
1480 QualType Canon) {
1481 assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1482
1483 if (Canon.isNull()) {
1484 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1485 QualType CanonType = getCanonicalType(QualType(TemplateId, 0));
1486 if (CanonNNS != NNS || CanonType != QualType(TemplateId, 0)) {
1487 const TemplateSpecializationType *CanonTemplateId
1488 = CanonType->getAsTemplateSpecializationType();
1489 assert(CanonTemplateId &&
1490 "Canonical type must also be a template specialization type");
1491 Canon = getTypenameType(CanonNNS, CanonTemplateId);
1492 }
1493 }
1494
1495 llvm::FoldingSetNodeID ID;
1496 TypenameType::Profile(ID, NNS, TemplateId);
1497
1498 void *InsertPos = 0;
1499 TypenameType *T
1500 = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1501 if (T)
1502 return QualType(T, 0);
1503
1504 T = new (*this) TypenameType(NNS, TemplateId, Canon);
1505 Types.push_back(T);
1506 TypenameTypes.InsertNode(T, InsertPos);
1507 return QualType(T, 0);
1508}
1509
1510/// CmpProtocolNames - Comparison predicate for sorting protocols
1511/// alphabetically.
1512static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
1513 const ObjCProtocolDecl *RHS) {
1514 return LHS->getDeclName() < RHS->getDeclName();
1515}
1516
1517static void SortAndUniqueProtocols(ObjCProtocolDecl **&Protocols,
1518 unsigned &NumProtocols) {
1519 ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
1520
1521 // Sort protocols, keyed by name.
1522 std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
1523
1524 // Remove duplicates.
1525 ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
1526 NumProtocols = ProtocolsEnd-Protocols;
1527}
1528
1529
1530/// getObjCQualifiedInterfaceType - Return a ObjCQualifiedInterfaceType type for
1531/// the given interface decl and the conforming protocol list.
1532QualType ASTContext::getObjCQualifiedInterfaceType(ObjCInterfaceDecl *Decl,
1533 ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
1534 // Sort the protocol list alphabetically to canonicalize it.
1535 SortAndUniqueProtocols(Protocols, NumProtocols);
1536
1537 llvm::FoldingSetNodeID ID;
1538 ObjCQualifiedInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
1539
1540 void *InsertPos = 0;
1541 if (ObjCQualifiedInterfaceType *QT =
1542 ObjCQualifiedInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
1543 return QualType(QT, 0);
1544
1545 // No Match;
1546 ObjCQualifiedInterfaceType *QType =
1547 new (*this,8) ObjCQualifiedInterfaceType(Decl, Protocols, NumProtocols);
1548
1549 Types.push_back(QType);
1550 ObjCQualifiedInterfaceTypes.InsertNode(QType, InsertPos);
1551 return QualType(QType, 0);
1552}
1553
1554/// getObjCQualifiedIdType - Return an ObjCQualifiedIdType for the 'id' decl
1555/// and the conforming protocol list.
1556QualType ASTContext::getObjCQualifiedIdType(ObjCProtocolDecl **Protocols,
1557 unsigned NumProtocols) {
1558 // Sort the protocol list alphabetically to canonicalize it.
1559 SortAndUniqueProtocols(Protocols, NumProtocols);
1560
1561 llvm::FoldingSetNodeID ID;
1562 ObjCQualifiedIdType::Profile(ID, Protocols, NumProtocols);
1563
1564 void *InsertPos = 0;
1565 if (ObjCQualifiedIdType *QT =
1566 ObjCQualifiedIdTypes.FindNodeOrInsertPos(ID, InsertPos))
1567 return QualType(QT, 0);
1568
1569 // No Match;
1570 ObjCQualifiedIdType *QType =
1571 new (*this,8) ObjCQualifiedIdType(Protocols, NumProtocols);
1572 Types.push_back(QType);
1573 ObjCQualifiedIdTypes.InsertNode(QType, InsertPos);
1574 return QualType(QType, 0);
1575}
1576
1577/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
1578/// TypeOfExprType AST's (since expression's are never shared). For example,
1579/// multiple declarations that refer to "typeof(x)" all contain different
1580/// DeclRefExpr's. This doesn't effect the type checker, since it operates
1581/// on canonical type's (which are always unique).
1582QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
1583 QualType Canonical = getCanonicalType(tofExpr->getType());
1584 TypeOfExprType *toe = new (*this,8) TypeOfExprType(tofExpr, Canonical);
1585 Types.push_back(toe);
1586 return QualType(toe, 0);
1587}
1588
1589/// getTypeOfType - Unlike many "get<Type>" functions, we don't unique
1590/// TypeOfType AST's. The only motivation to unique these nodes would be
1591/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
1592/// an issue. This doesn't effect the type checker, since it operates
1593/// on canonical type's (which are always unique).
1594QualType ASTContext::getTypeOfType(QualType tofType) {
1595 QualType Canonical = getCanonicalType(tofType);
1596 TypeOfType *tot = new (*this,8) TypeOfType(tofType, Canonical);
1597 Types.push_back(tot);
1598 return QualType(tot, 0);
1599}
1600
1601/// getTagDeclType - Return the unique reference to the type for the
1602/// specified TagDecl (struct/union/class/enum) decl.
1603QualType ASTContext::getTagDeclType(TagDecl *Decl) {
1604 assert (Decl);
1605 return getTypeDeclType(Decl);
1606}
1607
1608/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
1609/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
1610/// needs to agree with the definition in <stddef.h>.
1611QualType ASTContext::getSizeType() const {
1612 return getFromTargetType(Target.getSizeType());
1613}
1614
1615/// getSignedWCharType - Return the type of "signed wchar_t".
1616/// Used when in C++, as a GCC extension.
1617QualType ASTContext::getSignedWCharType() const {
1618 // FIXME: derive from "Target" ?
1619 return WCharTy;
1620}
1621
1622/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
1623/// Used when in C++, as a GCC extension.
1624QualType ASTContext::getUnsignedWCharType() const {
1625 // FIXME: derive from "Target" ?
1626 return UnsignedIntTy;
1627}
1628
1629/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
1630/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1631QualType ASTContext::getPointerDiffType() const {
1632 return getFromTargetType(Target.getPtrDiffType(0));
1633}
1634
1635//===----------------------------------------------------------------------===//
1636// Type Operators
1637//===----------------------------------------------------------------------===//
1638
1639/// getCanonicalType - Return the canonical (structural) type corresponding to
1640/// the specified potentially non-canonical type. The non-canonical version
1641/// of a type may have many "decorated" versions of types. Decorators can
1642/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
1643/// to be free of any of these, allowing two canonical types to be compared
1644/// for exact equality with a simple pointer comparison.
1645QualType ASTContext::getCanonicalType(QualType T) {
1646 QualType CanType = T.getTypePtr()->getCanonicalTypeInternal();
1647
1648 // If the result has type qualifiers, make sure to canonicalize them as well.
1649 unsigned TypeQuals = T.getCVRQualifiers() | CanType.getCVRQualifiers();
1650 if (TypeQuals == 0) return CanType;
1651
1652 // If the type qualifiers are on an array type, get the canonical type of the
1653 // array with the qualifiers applied to the element type.
1654 ArrayType *AT = dyn_cast<ArrayType>(CanType);
1655 if (!AT)
1656 return CanType.getQualifiedType(TypeQuals);
1657
1658 // Get the canonical version of the element with the extra qualifiers on it.
1659 // This can recursively sink qualifiers through multiple levels of arrays.
1660 QualType NewEltTy=AT->getElementType().getWithAdditionalQualifiers(TypeQuals);
1661 NewEltTy = getCanonicalType(NewEltTy);
1662
1663 if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
1664 return getConstantArrayType(NewEltTy, CAT->getSize(),CAT->getSizeModifier(),
1665 CAT->getIndexTypeQualifier());
1666 if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
1667 return getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
1668 IAT->getIndexTypeQualifier());
1669
1670 if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
1671 return getDependentSizedArrayType(NewEltTy, DSAT->getSizeExpr(),
1672 DSAT->getSizeModifier(),
1673 DSAT->getIndexTypeQualifier());
1674
1675 VariableArrayType *VAT = cast<VariableArrayType>(AT);
1676 return getVariableArrayType(NewEltTy, VAT->getSizeExpr(),
1677 VAT->getSizeModifier(),
1678 VAT->getIndexTypeQualifier());
1679}
1680
1681Decl *ASTContext::getCanonicalDecl(Decl *D) {
1682 if (!D)
1683 return 0;
1684
1685 if (TagDecl *Tag = dyn_cast<TagDecl>(D)) {
1686 QualType T = getTagDeclType(Tag);
1687 return cast<TagDecl>(cast<TagType>(T.getTypePtr()->CanonicalType)
1688 ->getDecl());
1689 }
1690
1691 if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(D)) {
1692 while (Template->getPreviousDeclaration())
1693 Template = Template->getPreviousDeclaration();
1694 return Template;
1695 }
1696
1697 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1698 while (Function->getPreviousDeclaration())
1699 Function = Function->getPreviousDeclaration();
1700 return const_cast<FunctionDecl *>(Function);
1701 }
1702
1703 if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
1704 while (Var->getPreviousDeclaration())
1705 Var = Var->getPreviousDeclaration();
1706 return const_cast<VarDecl *>(Var);
1707 }
1708
1709 return D;
1710}
1711
1712TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
1713 // If this template name refers to a template, the canonical
1714 // template name merely stores the template itself.
1715 if (TemplateDecl *Template = Name.getAsTemplateDecl())
1716 return TemplateName(cast<TemplateDecl>(getCanonicalDecl(Template)));
1717
1718 DependentTemplateName *DTN = Name.getAsDependentTemplateName();
1719 assert(DTN && "Non-dependent template names must refer to template decls.");
1720 return DTN->CanonicalTemplateName;
1721}
1722
1723NestedNameSpecifier *
1724ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
1725 if (!NNS)
1726 return 0;
1727
1728 switch (NNS->getKind()) {
1729 case NestedNameSpecifier::Identifier:
1730 // Canonicalize the prefix but keep the identifier the same.
1731 return NestedNameSpecifier::Create(*this,
1732 getCanonicalNestedNameSpecifier(NNS->getPrefix()),
1733 NNS->getAsIdentifier());
1734
1735 case NestedNameSpecifier::Namespace:
1736 // A namespace is canonical; build a nested-name-specifier with
1737 // this namespace and no prefix.
1738 return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
1739
1740 case NestedNameSpecifier::TypeSpec:
1741 case NestedNameSpecifier::TypeSpecWithTemplate: {
1742 QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
1743 NestedNameSpecifier *Prefix = 0;
1744
1745 // FIXME: This isn't the right check!
1746 if (T->isDependentType())
1747 Prefix = getCanonicalNestedNameSpecifier(NNS->getPrefix());
1748
1749 return NestedNameSpecifier::Create(*this, Prefix,
1750 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
1751 T.getTypePtr());
1752 }
1753
1754 case NestedNameSpecifier::Global:
1755 // The global specifier is canonical and unique.
1756 return NNS;
1757 }
1758
1759 // Required to silence a GCC warning
1760 return 0;
1761}
1762
1763
1764const ArrayType *ASTContext::getAsArrayType(QualType T) {
1765 // Handle the non-qualified case efficiently.
1766 if (T.getCVRQualifiers() == 0) {
1767 // Handle the common positive case fast.
1768 if (const ArrayType *AT = dyn_cast<ArrayType>(T))
1769 return AT;
1770 }
1771
1772 // Handle the common negative case fast, ignoring CVR qualifiers.
1773 QualType CType = T->getCanonicalTypeInternal();
1774
1775 // Make sure to look through type qualifiers (like ExtQuals) for the negative
1776 // test.
1777 if (!isa<ArrayType>(CType) &&
1778 !isa<ArrayType>(CType.getUnqualifiedType()))
1779 return 0;
1780
1781 // Apply any CVR qualifiers from the array type to the element type. This
1782 // implements C99 6.7.3p8: "If the specification of an array type includes
1783 // any type qualifiers, the element type is so qualified, not the array type."
1784
1785 // If we get here, we either have type qualifiers on the type, or we have
1786 // sugar such as a typedef in the way. If we have type qualifiers on the type
1787 // we must propagate them down into the elemeng type.
1788 unsigned CVRQuals = T.getCVRQualifiers();
1789 unsigned AddrSpace = 0;
1790 Type *Ty = T.getTypePtr();
1791
1792 // Rip through ExtQualType's and typedefs to get to a concrete type.
1793 while (1) {
1794 if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(Ty)) {
1795 AddrSpace = EXTQT->getAddressSpace();
1796 Ty = EXTQT->getBaseType();
1797 } else {
1798 T = Ty->getDesugaredType();
1799 if (T.getTypePtr() == Ty && T.getCVRQualifiers() == 0)
1800 break;
1801 CVRQuals |= T.getCVRQualifiers();
1802 Ty = T.getTypePtr();
1803 }
1804 }
1805
1806 // If we have a simple case, just return now.
1807 const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
1808 if (ATy == 0 || (AddrSpace == 0 && CVRQuals == 0))
1809 return ATy;
1810
1811 // Otherwise, we have an array and we have qualifiers on it. Push the
1812 // qualifiers into the array element type and return a new array type.
1813 // Get the canonical version of the element with the extra qualifiers on it.
1814 // This can recursively sink qualifiers through multiple levels of arrays.
1815 QualType NewEltTy = ATy->getElementType();
1816 if (AddrSpace)
1817 NewEltTy = getAddrSpaceQualType(NewEltTy, AddrSpace);
1818 NewEltTy = NewEltTy.getWithAdditionalQualifiers(CVRQuals);
1819
1820 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
1821 return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
1822 CAT->getSizeModifier(),
1823 CAT->getIndexTypeQualifier()));
1824 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
1825 return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
1826 IAT->getSizeModifier(),
1827 IAT->getIndexTypeQualifier()));
1828
1829 if (const DependentSizedArrayType *DSAT
1830 = dyn_cast<DependentSizedArrayType>(ATy))
1831 return cast<ArrayType>(
1832 getDependentSizedArrayType(NewEltTy,
1833 DSAT->getSizeExpr(),
1834 DSAT->getSizeModifier(),
1835 DSAT->getIndexTypeQualifier()));
1836
1837 const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
1838 return cast<ArrayType>(getVariableArrayType(NewEltTy, VAT->getSizeExpr(),
1839 VAT->getSizeModifier(),
1840 VAT->getIndexTypeQualifier()));
1841}
1842
1843
1844/// getArrayDecayedType - Return the properly qualified result of decaying the
1845/// specified array type to a pointer. This operation is non-trivial when
1846/// handling typedefs etc. The canonical type of "T" must be an array type,
1847/// this returns a pointer to a properly qualified element of the array.
1848///
1849/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
1850QualType ASTContext::getArrayDecayedType(QualType Ty) {
1851 // Get the element type with 'getAsArrayType' so that we don't lose any
1852 // typedefs in the element type of the array. This also handles propagation
1853 // of type qualifiers from the array type into the element type if present
1854 // (C99 6.7.3p8).
1855 const ArrayType *PrettyArrayType = getAsArrayType(Ty);
1856 assert(PrettyArrayType && "Not an array type!");
1857
1858 QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
1859
1860 // int x[restrict 4] -> int *restrict
1861 return PtrTy.getQualifiedType(PrettyArrayType->getIndexTypeQualifier());
1862}
1863
1864QualType ASTContext::getBaseElementType(const VariableArrayType *VAT) {
1865 QualType ElemTy = VAT->getElementType();
1866
1867 if (const VariableArrayType *VAT = getAsVariableArrayType(ElemTy))
1868 return getBaseElementType(VAT);
1869
1870 return ElemTy;
1871}
1872
1873/// getFloatingRank - Return a relative rank for floating point types.
1874/// This routine will assert if passed a built-in type that isn't a float.
1875static FloatingRank getFloatingRank(QualType T) {
1876 if (const ComplexType *CT = T->getAsComplexType())
1877 return getFloatingRank(CT->getElementType());
1878
1879 assert(T->getAsBuiltinType() && "getFloatingRank(): not a floating type");
1880 switch (T->getAsBuiltinType()->getKind()) {
1881 default: assert(0 && "getFloatingRank(): not a floating type");
1882 case BuiltinType::Float: return FloatRank;
1883 case BuiltinType::Double: return DoubleRank;
1884 case BuiltinType::LongDouble: return LongDoubleRank;
1885 }
1886}
1887
1888/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
1889/// point or a complex type (based on typeDomain/typeSize).
1890/// 'typeDomain' is a real floating point or complex type.
1891/// 'typeSize' is a real floating point or complex type.
1892QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
1893 QualType Domain) const {
1894 FloatingRank EltRank = getFloatingRank(Size);
1895 if (Domain->isComplexType()) {
1896 switch (EltRank) {
1897 default: assert(0 && "getFloatingRank(): illegal value for rank");
1898 case FloatRank: return FloatComplexTy;
1899 case DoubleRank: return DoubleComplexTy;
1900 case LongDoubleRank: return LongDoubleComplexTy;
1901 }
1902 }
1903
1904 assert(Domain->isRealFloatingType() && "Unknown domain!");
1905 switch (EltRank) {
1906 default: assert(0 && "getFloatingRank(): illegal value for rank");
1907 case FloatRank: return FloatTy;
1908 case DoubleRank: return DoubleTy;
1909 case LongDoubleRank: return LongDoubleTy;
1910 }
1911}
1912
1913/// getFloatingTypeOrder - Compare the rank of the two specified floating
1914/// point types, ignoring the domain of the type (i.e. 'double' ==
1915/// '_Complex double'). If LHS > RHS, return 1. If LHS == RHS, return 0. If
1916/// LHS < RHS, return -1.
1917int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
1918 FloatingRank LHSR = getFloatingRank(LHS);
1919 FloatingRank RHSR = getFloatingRank(RHS);
1920
1921 if (LHSR == RHSR)
1922 return 0;
1923 if (LHSR > RHSR)
1924 return 1;
1925 return -1;
1926}
1927
1928/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
1929/// routine will assert if passed a built-in type that isn't an integer or enum,
1930/// or if it is not canonicalized.
1931unsigned ASTContext::getIntegerRank(Type *T) {
1932 assert(T->isCanonical() && "T should be canonicalized");
1933 if (EnumType* ET = dyn_cast<EnumType>(T))
1934 T = ET->getDecl()->getIntegerType().getTypePtr();
1935
1936 // There are two things which impact the integer rank: the width, and
1937 // the ordering of builtins. The builtin ordering is encoded in the
1938 // bottom three bits; the width is encoded in the bits above that.
1939 if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T)) {
1940 return FWIT->getWidth() << 3;
1941 }
1942
1943 switch (cast<BuiltinType>(T)->getKind()) {
1944 default: assert(0 && "getIntegerRank(): not a built-in integer");
1945 case BuiltinType::Bool:
1946 return 1 + (getIntWidth(BoolTy) << 3);
1947 case BuiltinType::Char_S:
1948 case BuiltinType::Char_U:
1949 case BuiltinType::SChar:
1950 case BuiltinType::UChar:
1951 return 2 + (getIntWidth(CharTy) << 3);
1952 case BuiltinType::Short:
1953 case BuiltinType::UShort:
1954 return 3 + (getIntWidth(ShortTy) << 3);
1955 case BuiltinType::Int:
1956 case BuiltinType::UInt:
1957 return 4 + (getIntWidth(IntTy) << 3);
1958 case BuiltinType::Long:
1959 case BuiltinType::ULong:
1960 return 5 + (getIntWidth(LongTy) << 3);
1961 case BuiltinType::LongLong:
1962 case BuiltinType::ULongLong:
1963 return 6 + (getIntWidth(LongLongTy) << 3);
1964 case BuiltinType::Int128:
1965 case BuiltinType::UInt128:
1966 return 7 + (getIntWidth(Int128Ty) << 3);
1967 }
1968}
1969
1970/// getIntegerTypeOrder - Returns the highest ranked integer type:
1971/// C99 6.3.1.8p1. If LHS > RHS, return 1. If LHS == RHS, return 0. If
1972/// LHS < RHS, return -1.
1973int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
1974 Type *LHSC = getCanonicalType(LHS).getTypePtr();
1975 Type *RHSC = getCanonicalType(RHS).getTypePtr();
1976 if (LHSC == RHSC) return 0;
1977
1978 bool LHSUnsigned = LHSC->isUnsignedIntegerType();
1979 bool RHSUnsigned = RHSC->isUnsignedIntegerType();
1980
1981 unsigned LHSRank = getIntegerRank(LHSC);
1982 unsigned RHSRank = getIntegerRank(RHSC);
1983
1984 if (LHSUnsigned == RHSUnsigned) { // Both signed or both unsigned.
1985 if (LHSRank == RHSRank) return 0;
1986 return LHSRank > RHSRank ? 1 : -1;
1987 }
1988
1989 // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
1990 if (LHSUnsigned) {
1991 // If the unsigned [LHS] type is larger, return it.
1992 if (LHSRank >= RHSRank)
1993 return 1;
1994
1995 // If the signed type can represent all values of the unsigned type, it
1996 // wins. Because we are dealing with 2's complement and types that are
1997 // powers of two larger than each other, this is always safe.
1998 return -1;
1999 }
2000
2001 // If the unsigned [RHS] type is larger, return it.
2002 if (RHSRank >= LHSRank)
2003 return -1;
2004
2005 // If the signed type can represent all values of the unsigned type, it
2006 // wins. Because we are dealing with 2's complement and types that are
2007 // powers of two larger than each other, this is always safe.
2008 return 1;
2009}
2010
2011// getCFConstantStringType - Return the type used for constant CFStrings.
2012QualType ASTContext::getCFConstantStringType() {
2013 if (!CFConstantStringTypeDecl) {
2014 CFConstantStringTypeDecl =
2015 RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2016 &Idents.get("NSConstantString"));
2017 QualType FieldTypes[4];
2018
2019 // const int *isa;
2020 FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const));
2021 // int flags;
2022 FieldTypes[1] = IntTy;
2023 // const char *str;
2024 FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const));
2025 // long length;
2026 FieldTypes[3] = LongTy;
2027
2028 // Create fields
2029 for (unsigned i = 0; i < 4; ++i) {
2030 FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
2031 SourceLocation(), 0,
2032 FieldTypes[i], /*BitWidth=*/0,
2033 /*Mutable=*/false);
2034 CFConstantStringTypeDecl->addDecl(*this, Field);
2035 }
2036
2037 CFConstantStringTypeDecl->completeDefinition(*this);
2038 }
2039
2040 return getTagDeclType(CFConstantStringTypeDecl);
2041}
2042
2043void ASTContext::setCFConstantStringType(QualType T) {
2044 const RecordType *Rec = T->getAsRecordType();
2045 assert(Rec && "Invalid CFConstantStringType");
2046 CFConstantStringTypeDecl = Rec->getDecl();
2047}
2048
2049QualType ASTContext::getObjCFastEnumerationStateType()
2050{
2051 if (!ObjCFastEnumerationStateTypeDecl) {
2052 ObjCFastEnumerationStateTypeDecl =
2053 RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2054 &Idents.get("__objcFastEnumerationState"));
2055
2056 QualType FieldTypes[] = {
2057 UnsignedLongTy,
2058 getPointerType(ObjCIdType),
2059 getPointerType(UnsignedLongTy),
2060 getConstantArrayType(UnsignedLongTy,
2061 llvm::APInt(32, 5), ArrayType::Normal, 0)
2062 };
2063
2064 for (size_t i = 0; i < 4; ++i) {
2065 FieldDecl *Field = FieldDecl::Create(*this,
2066 ObjCFastEnumerationStateTypeDecl,
2067 SourceLocation(), 0,
2068 FieldTypes[i], /*BitWidth=*/0,
2069 /*Mutable=*/false);
2070 ObjCFastEnumerationStateTypeDecl->addDecl(*this, Field);
2071 }
2072
2073 ObjCFastEnumerationStateTypeDecl->completeDefinition(*this);
2074 }
2075
2076 return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
2077}
2078
2079void ASTContext::setObjCFastEnumerationStateType(QualType T) {
2080 const RecordType *Rec = T->getAsRecordType();
2081 assert(Rec && "Invalid ObjCFAstEnumerationStateType");
2082 ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
2083}
2084
2085// This returns true if a type has been typedefed to BOOL:
2086// typedef <type> BOOL;
2087static bool isTypeTypedefedAsBOOL(QualType T) {
2088 if (const TypedefType *TT = dyn_cast<TypedefType>(T))
2089 if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
2090 return II->isStr("BOOL");
2091
2092 return false;
2093}
2094
2095/// getObjCEncodingTypeSize returns size of type for objective-c encoding
2096/// purpose.
2097int ASTContext::getObjCEncodingTypeSize(QualType type) {
2098 uint64_t sz = getTypeSize(type);
2099
2100 // Make all integer and enum types at least as large as an int
2101 if (sz > 0 && type->isIntegralType())
2102 sz = std::max(sz, getTypeSize(IntTy));
2103 // Treat arrays as pointers, since that's how they're passed in.
2104 else if (type->isArrayType())
2105 sz = getTypeSize(VoidPtrTy);
2106 return sz / getTypeSize(CharTy);
2107}
2108
2109/// getObjCEncodingForMethodDecl - Return the encoded type for this method
2110/// declaration.
2111void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
2112 std::string& S) {
2113 // FIXME: This is not very efficient.
2114 // Encode type qualifer, 'in', 'inout', etc. for the return type.
2115 getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
2116 // Encode result type.
2117 getObjCEncodingForType(Decl->getResultType(), S);
2118 // Compute size of all parameters.
2119 // Start with computing size of a pointer in number of bytes.
2120 // FIXME: There might(should) be a better way of doing this computation!
2121 SourceLocation Loc;
2122 int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
2123 // The first two arguments (self and _cmd) are pointers; account for
2124 // their size.
2125 int ParmOffset = 2 * PtrSize;
2126 for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
2127 E = Decl->param_end(); PI != E; ++PI) {
2128 QualType PType = (*PI)->getType();
2129 int sz = getObjCEncodingTypeSize(PType);
2130 assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type");
2131 ParmOffset += sz;
2132 }
2133 S += llvm::utostr(ParmOffset);
2134 S += "@0:";
2135 S += llvm::utostr(PtrSize);
2136
2137 // Argument types.
2138 ParmOffset = 2 * PtrSize;
2139 for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
2140 E = Decl->param_end(); PI != E; ++PI) {
2141 ParmVarDecl *PVDecl = *PI;
2142 QualType PType = PVDecl->getOriginalType();
2143 if (const ArrayType *AT =
2144 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
2145 // Use array's original type only if it has known number of
2146 // elements.
2147 if (!isa<ConstantArrayType>(AT))
2148 PType = PVDecl->getType();
2149 } else if (PType->isFunctionType())
2150 PType = PVDecl->getType();
2151 // Process argument qualifiers for user supplied arguments; such as,
2152 // 'in', 'inout', etc.
2153 getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
2154 getObjCEncodingForType(PType, S);
2155 S += llvm::utostr(ParmOffset);
2156 ParmOffset += getObjCEncodingTypeSize(PType);
2157 }
2158}
2159
2160/// getObjCEncodingForPropertyDecl - Return the encoded type for this
2161/// property declaration. If non-NULL, Container must be either an
2162/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
2163/// NULL when getting encodings for protocol properties.
2164/// Property attributes are stored as a comma-delimited C string. The simple
2165/// attributes readonly and bycopy are encoded as single characters. The
2166/// parametrized attributes, getter=name, setter=name, and ivar=name, are
2167/// encoded as single characters, followed by an identifier. Property types
2168/// are also encoded as a parametrized attribute. The characters used to encode
2169/// these attributes are defined by the following enumeration:
2170/// @code
2171/// enum PropertyAttributes {
2172/// kPropertyReadOnly = 'R', // property is read-only.
2173/// kPropertyBycopy = 'C', // property is a copy of the value last assigned
2174/// kPropertyByref = '&', // property is a reference to the value last assigned
2175/// kPropertyDynamic = 'D', // property is dynamic
2176/// kPropertyGetter = 'G', // followed by getter selector name
2177/// kPropertySetter = 'S', // followed by setter selector name
2178/// kPropertyInstanceVariable = 'V' // followed by instance variable name
2179/// kPropertyType = 't' // followed by old-style type encoding.
2180/// kPropertyWeak = 'W' // 'weak' property
2181/// kPropertyStrong = 'P' // property GC'able
2182/// kPropertyNonAtomic = 'N' // property non-atomic
2183/// };
2184/// @endcode
2185void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
2186 const Decl *Container,
2187 std::string& S) {
2188 // Collect information from the property implementation decl(s).
2189 bool Dynamic = false;
2190 ObjCPropertyImplDecl *SynthesizePID = 0;
2191
2192 // FIXME: Duplicated code due to poor abstraction.
2193 if (Container) {
2194 if (const ObjCCategoryImplDecl *CID =
2195 dyn_cast<ObjCCategoryImplDecl>(Container)) {
2196 for (ObjCCategoryImplDecl::propimpl_iterator
2197 i = CID->propimpl_begin(*this), e = CID->propimpl_end(*this);
2198 i != e; ++i) {
2199 ObjCPropertyImplDecl *PID = *i;
2200 if (PID->getPropertyDecl() == PD) {
2201 if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
2202 Dynamic = true;
2203 } else {
2204 SynthesizePID = PID;
2205 }
2206 }
2207 }
2208 } else {
2209 const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
2210 for (ObjCCategoryImplDecl::propimpl_iterator
2211 i = OID->propimpl_begin(*this), e = OID->propimpl_end(*this);
2212 i != e; ++i) {
2213 ObjCPropertyImplDecl *PID = *i;
2214 if (PID->getPropertyDecl() == PD) {
2215 if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
2216 Dynamic = true;
2217 } else {
2218 SynthesizePID = PID;
2219 }
2220 }
2221 }
2222 }
2223 }
2224
2225 // FIXME: This is not very efficient.
2226 S = "T";
2227
2228 // Encode result type.
2229 // GCC has some special rules regarding encoding of properties which
2230 // closely resembles encoding of ivars.
2231 getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
2232 true /* outermost type */,
2233 true /* encoding for property */);
2234
2235 if (PD->isReadOnly()) {
2236 S += ",R";
2237 } else {
2238 switch (PD->getSetterKind()) {
2239 case ObjCPropertyDecl::Assign: break;
2240 case ObjCPropertyDecl::Copy: S += ",C"; break;
2241 case ObjCPropertyDecl::Retain: S += ",&"; break;
2242 }
2243 }
2244
2245 // It really isn't clear at all what this means, since properties
2246 // are "dynamic by default".
2247 if (Dynamic)
2248 S += ",D";
2249
2250 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
2251 S += ",N";
2252
2253 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
2254 S += ",G";
2255 S += PD->getGetterName().getAsString();
2256 }
2257
2258 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
2259 S += ",S";
2260 S += PD->getSetterName().getAsString();
2261 }
2262
2263 if (SynthesizePID) {
2264 const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
2265 S += ",V";
2266 S += OID->getNameAsString();
2267 }
2268
2269 // FIXME: OBJCGC: weak & strong
2270}
2271
2272/// getLegacyIntegralTypeEncoding -
2273/// Another legacy compatibility encoding: 32-bit longs are encoded as
2274/// 'l' or 'L' , but not always. For typedefs, we need to use
2275/// 'i' or 'I' instead if encoding a struct field, or a pointer!
2276///
2277void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
2278 if (dyn_cast<TypedefType>(PointeeTy.getTypePtr())) {
2279 if (const BuiltinType *BT = PointeeTy->getAsBuiltinType()) {
2280 if (BT->getKind() == BuiltinType::ULong &&
2281 ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
2282 PointeeTy = UnsignedIntTy;
2283 else
2284 if (BT->getKind() == BuiltinType::Long &&
2285 ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
2286 PointeeTy = IntTy;
2287 }
2288 }
2289}
2290
2291void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
2292 const FieldDecl *Field) {
2293 // We follow the behavior of gcc, expanding structures which are
2294 // directly pointed to, and expanding embedded structures. Note that
2295 // these rules are sufficient to prevent recursive encoding of the
2296 // same type.
2297 getObjCEncodingForTypeImpl(T, S, true, true, Field,
2298 true /* outermost type */);
2299}
2300
2301static void EncodeBitField(const ASTContext *Context, std::string& S,
2302 const FieldDecl *FD) {
2303 const Expr *E = FD->getBitWidth();
2304 assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
2305 ASTContext *Ctx = const_cast<ASTContext*>(Context);
2306 unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
2307 S += 'b';
2308 S += llvm::utostr(N);
2309}
2310
2311void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
2312 bool ExpandPointedToStructures,
2313 bool ExpandStructures,
2314 const FieldDecl *FD,
2315 bool OutermostType,
2316 bool EncodingProperty) {
2317 if (const BuiltinType *BT = T->getAsBuiltinType()) {
2318 if (FD && FD->isBitField()) {
2319 EncodeBitField(this, S, FD);
2320 }
2321 else {
2322 char encoding;
2323 switch (BT->getKind()) {
2324 default: assert(0 && "Unhandled builtin type kind");
2325 case BuiltinType::Void: encoding = 'v'; break;
2326 case BuiltinType::Bool: encoding = 'B'; break;
2327 case BuiltinType::Char_U:
2328 case BuiltinType::UChar: encoding = 'C'; break;
2329 case BuiltinType::UShort: encoding = 'S'; break;
2330 case BuiltinType::UInt: encoding = 'I'; break;
2331 case BuiltinType::ULong:
2332 encoding =
2333 (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q';
2334 break;
2335 case BuiltinType::UInt128: encoding = 'T'; break;
2336 case BuiltinType::ULongLong: encoding = 'Q'; break;
2337 case BuiltinType::Char_S:
2338 case BuiltinType::SChar: encoding = 'c'; break;
2339 case BuiltinType::Short: encoding = 's'; break;
2340 case BuiltinType::Int: encoding = 'i'; break;
2341 case BuiltinType::Long:
2342 encoding =
2343 (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q';
2344 break;
2345 case BuiltinType::LongLong: encoding = 'q'; break;
2346 case BuiltinType::Int128: encoding = 't'; break;
2347 case BuiltinType::Float: encoding = 'f'; break;
2348 case BuiltinType::Double: encoding = 'd'; break;
2349 case BuiltinType::LongDouble: encoding = 'd'; break;
2350 }
2351
2352 S += encoding;
2353 }
2354 } else if (const ComplexType *CT = T->getAsComplexType()) {
2355 S += 'j';
2356 getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
2357 false);
2358 } else if (T->isObjCQualifiedIdType()) {
2359 getObjCEncodingForTypeImpl(getObjCIdType(), S,
2360 ExpandPointedToStructures,
2361 ExpandStructures, FD);
2362 if (FD || EncodingProperty) {
2363 // Note that we do extended encoding of protocol qualifer list
2364 // Only when doing ivar or property encoding.
2365 const ObjCQualifiedIdType *QIDT = T->getAsObjCQualifiedIdType();
2366 S += '"';
2367 for (ObjCQualifiedIdType::qual_iterator I = QIDT->qual_begin(),
2368 E = QIDT->qual_end(); I != E; ++I) {
2369 S += '<';
2370 S += (*I)->getNameAsString();
2371 S += '>';
2372 }
2373 S += '"';
2374 }
2375 return;
2376 }
2377 else if (const PointerType *PT = T->getAsPointerType()) {
2378 QualType PointeeTy = PT->getPointeeType();
2379 bool isReadOnly = false;
2380 // For historical/compatibility reasons, the read-only qualifier of the
2381 // pointee gets emitted _before_ the '^'. The read-only qualifier of
2382 // the pointer itself gets ignored, _unless_ we are looking at a typedef!
2383 // Also, do not emit the 'r' for anything but the outermost type!
2384 if (dyn_cast<TypedefType>(T.getTypePtr())) {
2385 if (OutermostType && T.isConstQualified()) {
2386 isReadOnly = true;
2387 S += 'r';
2388 }
2389 }
2390 else if (OutermostType) {
2391 QualType P = PointeeTy;
2392 while (P->getAsPointerType())
2393 P = P->getAsPointerType()->getPointeeType();
2394 if (P.isConstQualified()) {
2395 isReadOnly = true;
2396 S += 'r';
2397 }
2398 }
2399 if (isReadOnly) {
2400 // Another legacy compatibility encoding. Some ObjC qualifier and type
2401 // combinations need to be rearranged.
2402 // Rewrite "in const" from "nr" to "rn"
2403 const char * s = S.c_str();
2404 int len = S.length();
2405 if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
2406 std::string replace = "rn";
2407 S.replace(S.end()-2, S.end(), replace);
2408 }
2409 }
2410 if (isObjCIdStructType(PointeeTy)) {
2411 S += '@';
2412 return;
2413 }
2414 else if (PointeeTy->isObjCInterfaceType()) {
2415 if (!EncodingProperty &&
2416 isa<TypedefType>(PointeeTy.getTypePtr())) {
2417 // Another historical/compatibility reason.
2418 // We encode the underlying type which comes out as
2419 // {...};
2420 S += '^';
2421 getObjCEncodingForTypeImpl(PointeeTy, S,
2422 false, ExpandPointedToStructures,
2423 NULL);
2424 return;
2425 }
2426 S += '@';
2427 if (FD || EncodingProperty) {
2428 const ObjCInterfaceType *OIT =
2429 PointeeTy.getUnqualifiedType()->getAsObjCInterfaceType();
2430 ObjCInterfaceDecl *OI = OIT->getDecl();
2431 S += '"';
2432 S += OI->getNameAsCString();
2433 for (ObjCInterfaceType::qual_iterator I = OIT->qual_begin(),
2434 E = OIT->qual_end(); I != E; ++I) {
2435 S += '<';
2436 S += (*I)->getNameAsString();
2437 S += '>';
2438 }
2439 S += '"';
2440 }
2441 return;
2442 } else if (isObjCClassStructType(PointeeTy)) {
2443 S += '#';
2444 return;
2445 } else if (isObjCSelType(PointeeTy)) {
2446 S += ':';
2447 return;
2448 }
2449
2450 if (PointeeTy->isCharType()) {
2451 // char pointer types should be encoded as '*' unless it is a
2452 // type that has been typedef'd to 'BOOL'.
2453 if (!isTypeTypedefedAsBOOL(PointeeTy)) {
2454 S += '*';
2455 return;
2456 }
2457 }
2458
2459 S += '^';
2460 getLegacyIntegralTypeEncoding(PointeeTy);
2461
2462 getObjCEncodingForTypeImpl(PointeeTy, S,
2463 false, ExpandPointedToStructures,
2464 NULL);
2465 } else if (const ArrayType *AT =
2466 // Ignore type qualifiers etc.
2467 dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
2468 if (isa<IncompleteArrayType>(AT)) {
2469 // Incomplete arrays are encoded as a pointer to the array element.
2470 S += '^';
2471
2472 getObjCEncodingForTypeImpl(AT->getElementType(), S,
2473 false, ExpandStructures, FD);
2474 } else {
2475 S += '[';
2476
2477 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2478 S += llvm::utostr(CAT->getSize().getZExtValue());
2479 else {
2480 //Variable length arrays are encoded as a regular array with 0 elements.
2481 assert(isa<VariableArrayType>(AT) && "Unknown array type!");
2482 S += '0';
2483 }
2484
2485 getObjCEncodingForTypeImpl(AT->getElementType(), S,
2486 false, ExpandStructures, FD);
2487 S += ']';
2488 }
2489 } else if (T->getAsFunctionType()) {
2490 S += '?';
2491 } else if (const RecordType *RTy = T->getAsRecordType()) {
2492 RecordDecl *RDecl = RTy->getDecl();
2493 S += RDecl->isUnion() ? '(' : '{';
2494 // Anonymous structures print as '?'
2495 if (const IdentifierInfo *II = RDecl->getIdentifier()) {
2496 S += II->getName();
2497 } else {
2498 S += '?';
2499 }
2500 if (ExpandStructures) {
2501 S += '=';
2502 for (RecordDecl::field_iterator Field = RDecl->field_begin(*this),
2503 FieldEnd = RDecl->field_end(*this);
2504 Field != FieldEnd; ++Field) {
2505 if (FD) {
2506 S += '"';
2507 S += Field->getNameAsString();
2508 S += '"';
2509 }
2510
2511 // Special case bit-fields.
2512 if (Field->isBitField()) {
2513 getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
2514 (*Field));
2515 } else {
2516 QualType qt = Field->getType();
2517 getLegacyIntegralTypeEncoding(qt);
2518 getObjCEncodingForTypeImpl(qt, S, false, true,
2519 FD);
2520 }
2521 }
2522 }
2523 S += RDecl->isUnion() ? ')' : '}';
2524 } else if (T->isEnumeralType()) {
2525 if (FD && FD->isBitField())
2526 EncodeBitField(this, S, FD);
2527 else
2528 S += 'i';
2529 } else if (T->isBlockPointerType()) {
2530 S += "@?"; // Unlike a pointer-to-function, which is "^?".
2531 } else if (T->isObjCInterfaceType()) {
2532 // @encode(class_name)
2533 ObjCInterfaceDecl *OI = T->getAsObjCInterfaceType()->getDecl();
2534 S += '{';
2535 const IdentifierInfo *II = OI->getIdentifier();
2536 S += II->getName();
2537 S += '=';
2538 llvm::SmallVector<FieldDecl*, 32> RecFields;
2539 CollectObjCIvars(OI, RecFields);
2540 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
2541 if (RecFields[i]->isBitField())
2542 getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
2543 RecFields[i]);
2544 else
2545 getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
2546 FD);
2547 }
2548 S += '}';
2549 }
2550 else
2551 assert(0 && "@encode for type not implemented!");
2552}
2553
2554void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
2555 std::string& S) const {
2556 if (QT & Decl::OBJC_TQ_In)
2557 S += 'n';
2558 if (QT & Decl::OBJC_TQ_Inout)
2559 S += 'N';
2560 if (QT & Decl::OBJC_TQ_Out)
2561 S += 'o';
2562 if (QT & Decl::OBJC_TQ_Bycopy)
2563 S += 'O';
2564 if (QT & Decl::OBJC_TQ_Byref)
2565 S += 'R';
2566 if (QT & Decl::OBJC_TQ_Oneway)
2567 S += 'V';
2568}
2569
2570void ASTContext::setBuiltinVaListType(QualType T)
2571{
2572 assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
2573
2574 BuiltinVaListType = T;
2575}
2576
2577void ASTContext::setObjCIdType(QualType T)
2578{
2579 ObjCIdType = T;
2580
2581 const TypedefType *TT = T->getAsTypedefType();
2582 if (!TT)
2583 return;
2584
2585 TypedefDecl *TD = TT->getDecl();
2586
2587 // typedef struct objc_object *id;
2588 const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
2589 // User error - caller will issue diagnostics.
2590 if (!ptr)
2591 return;
2592 const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
2593 // User error - caller will issue diagnostics.
2594 if (!rec)
2595 return;
2596 IdStructType = rec;
2597}
2598
2599void ASTContext::setObjCSelType(QualType T)
2600{
2601 ObjCSelType = T;
2602
2603 const TypedefType *TT = T->getAsTypedefType();
2604 if (!TT)
2605 return;
2606 TypedefDecl *TD = TT->getDecl();
2607
2608 // typedef struct objc_selector *SEL;
2609 const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
2610 if (!ptr)
2611 return;
2612 const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
2613 if (!rec)
2614 return;
2615 SelStructType = rec;
2616}
2617
2618void ASTContext::setObjCProtoType(QualType QT)
2619{
2620 ObjCProtoType = QT;
2621}
2622
2623void ASTContext::setObjCClassType(QualType T)
2624{
2625 ObjCClassType = T;
2626
2627 const TypedefType *TT = T->getAsTypedefType();
2628 if (!TT)
2629 return;
2630 TypedefDecl *TD = TT->getDecl();
2631
2632 // typedef struct objc_class *Class;
2633 const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
2634 assert(ptr && "'Class' incorrectly typed");
2635 const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
2636 assert(rec && "'Class' incorrectly typed");
2637 ClassStructType = rec;
2638}
2639
2640void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
2641 assert(ObjCConstantStringType.isNull() &&
2642 "'NSConstantString' type already set!");
2643
2644 ObjCConstantStringType = getObjCInterfaceType(Decl);
2645}
2646
2647/// \brief Retrieve the template name that represents a qualified
2648/// template name such as \c std::vector.
2649TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
2650 bool TemplateKeyword,
2651 TemplateDecl *Template) {
2652 llvm::FoldingSetNodeID ID;
2653 QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
2654
2655 void *InsertPos = 0;
2656 QualifiedTemplateName *QTN =
2657 QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
2658 if (!QTN) {
2659 QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
2660 QualifiedTemplateNames.InsertNode(QTN, InsertPos);
2661 }
2662
2663 return TemplateName(QTN);
2664}
2665
2666/// \brief Retrieve the template name that represents a dependent
2667/// template name such as \c MetaFun::template apply.
2668TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
2669 const IdentifierInfo *Name) {
2670 assert(NNS->isDependent() && "Nested name specifier must be dependent");
2671
2672 llvm::FoldingSetNodeID ID;
2673 DependentTemplateName::Profile(ID, NNS, Name);
2674
2675 void *InsertPos = 0;
2676 DependentTemplateName *QTN =
2677 DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
2678
2679 if (QTN)
2680 return TemplateName(QTN);
2681
2682 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2683 if (CanonNNS == NNS) {
2684 QTN = new (*this,4) DependentTemplateName(NNS, Name);
2685 } else {
2686 TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
2687 QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
2688 }
2689
2690 DependentTemplateNames.InsertNode(QTN, InsertPos);
2691 return TemplateName(QTN);
2692}
2693
2694/// getFromTargetType - Given one of the integer types provided by
2695/// TargetInfo, produce the corresponding type. The unsigned @p Type
2696/// is actually a value of type @c TargetInfo::IntType.
2697QualType ASTContext::getFromTargetType(unsigned Type) const {
2698 switch (Type) {
2699 case TargetInfo::NoInt: return QualType();
2700 case TargetInfo::SignedShort: return ShortTy;
2701 case TargetInfo::UnsignedShort: return UnsignedShortTy;
2702 case TargetInfo::SignedInt: return IntTy;
2703 case TargetInfo::UnsignedInt: return UnsignedIntTy;
2704 case TargetInfo::SignedLong: return LongTy;
2705 case TargetInfo::UnsignedLong: return UnsignedLongTy;
2706 case TargetInfo::SignedLongLong: return LongLongTy;
2707 case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
2708 }
2709
2710 assert(false && "Unhandled TargetInfo::IntType value");
2711 return QualType();
2712}
2713
2714//===----------------------------------------------------------------------===//
2715// Type Predicates.
2716//===----------------------------------------------------------------------===//
2717
2718/// isObjCNSObjectType - Return true if this is an NSObject object using
2719/// NSObject attribute on a c-style pointer type.
2720/// FIXME - Make it work directly on types.
2721///
2722bool ASTContext::isObjCNSObjectType(QualType Ty) const {
2723 if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
2724 if (TypedefDecl *TD = TDT->getDecl())
2725 if (TD->getAttr<ObjCNSObjectAttr>())
2726 return true;
2727 }
2728 return false;
2729}
2730
2731/// isObjCObjectPointerType - Returns true if type is an Objective-C pointer
2732/// to an object type. This includes "id" and "Class" (two 'special' pointers
2733/// to struct), Interface* (pointer to ObjCInterfaceType) and id<P> (qualified
2734/// ID type).
2735bool ASTContext::isObjCObjectPointerType(QualType Ty) const {
2736 if (Ty->isObjCQualifiedIdType())
2737 return true;
2738
2739 // Blocks are objects.
2740 if (Ty->isBlockPointerType())
2741 return true;
2742
2743 // All other object types are pointers.
2744 const PointerType *PT = Ty->getAsPointerType();
2745 if (PT == 0)
2746 return false;
2747
2748 // If this a pointer to an interface (e.g. NSString*), it is ok.
2749 if (PT->getPointeeType()->isObjCInterfaceType() ||
2750 // If is has NSObject attribute, OK as well.
2751 isObjCNSObjectType(Ty))
2752 return true;
2753
2754 // Check to see if this is 'id' or 'Class', both of which are typedefs for
2755 // pointer types. This looks for the typedef specifically, not for the
2756 // underlying type. Iteratively strip off typedefs so that we can handle
2757 // typedefs of typedefs.
2758 while (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
2759 if (Ty.getUnqualifiedType() == getObjCIdType() ||
2760 Ty.getUnqualifiedType() == getObjCClassType())
2761 return true;
2762
2763 Ty = TDT->getDecl()->getUnderlyingType();
2764 }
2765
2766 return false;
2767}
2768
2769/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
2770/// garbage collection attribute.
2771///
2772QualType::GCAttrTypes ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
2773 QualType::GCAttrTypes GCAttrs = QualType::GCNone;
2774 if (getLangOptions().ObjC1 &&
2775 getLangOptions().getGCMode() != LangOptions::NonGC) {
2776 GCAttrs = Ty.getObjCGCAttr();
2777 // Default behavious under objective-c's gc is for objective-c pointers
2778 // (or pointers to them) be treated as though they were declared
2779 // as __strong.
2780 if (GCAttrs == QualType::GCNone) {
2781 if (isObjCObjectPointerType(Ty))
2782 GCAttrs = QualType::Strong;
2783 else if (Ty->isPointerType())
2784 return getObjCGCAttrKind(Ty->getAsPointerType()->getPointeeType());
2785 }
2786 // Non-pointers have none gc'able attribute regardless of the attribute
2787 // set on them.
2788 else if (!Ty->isPointerType() && !isObjCObjectPointerType(Ty))
2789 return QualType::GCNone;
2790 }
2791 return GCAttrs;
2792}
2793
2794//===----------------------------------------------------------------------===//
2795// Type Compatibility Testing
2796//===----------------------------------------------------------------------===//
2797
2798/// typesAreBlockCompatible - This routine is called when comparing two
2799/// block types. Types must be strictly compatible here. For example,
2800/// C unfortunately doesn't produce an error for the following:
2801///
2802/// int (*emptyArgFunc)();
2803/// int (*intArgList)(int) = emptyArgFunc;
2804///
2805/// For blocks, we will produce an error for the following (similar to C++):
2806///
2807/// int (^emptyArgBlock)();
2808/// int (^intArgBlock)(int) = emptyArgBlock;
2809///
2810/// FIXME: When the dust settles on this integration, fold this into mergeTypes.
2811///
2812bool ASTContext::typesAreBlockCompatible(QualType lhs, QualType rhs) {
2813 const FunctionType *lbase = lhs->getAsFunctionType();
2814 const FunctionType *rbase = rhs->getAsFunctionType();
2815 const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
2816 const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
2817 if (lproto && rproto == 0)
2818 return false;
2819 return !mergeTypes(lhs, rhs).isNull();
2820}
2821
2822/// areCompatVectorTypes - Return true if the two specified vector types are
2823/// compatible.
2824static bool areCompatVectorTypes(const VectorType *LHS,
2825 const VectorType *RHS) {
2826 assert(LHS->isCanonical() && RHS->isCanonical());
2827 return LHS->getElementType() == RHS->getElementType() &&
2828 LHS->getNumElements() == RHS->getNumElements();
2829}
2830
2831/// canAssignObjCInterfaces - Return true if the two interface types are
2832/// compatible for assignment from RHS to LHS. This handles validation of any
2833/// protocol qualifiers on the LHS or RHS.
2834///
2835bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
2836 const ObjCInterfaceType *RHS) {
2837 // Verify that the base decls are compatible: the RHS must be a subclass of
2838 // the LHS.
2839 if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
2840 return false;
2841
2842 // RHS must have a superset of the protocols in the LHS. If the LHS is not
2843 // protocol qualified at all, then we are good.
2844 if (!isa<ObjCQualifiedInterfaceType>(LHS))
2845 return true;
2846
2847 // Okay, we know the LHS has protocol qualifiers. If the RHS doesn't, then it
2848 // isn't a superset.
2849 if (!isa<ObjCQualifiedInterfaceType>(RHS))
2850 return true; // FIXME: should return false!
2851
2852 // Finally, we must have two protocol-qualified interfaces.
2853 const ObjCQualifiedInterfaceType *LHSP =cast<ObjCQualifiedInterfaceType>(LHS);
2854 const ObjCQualifiedInterfaceType *RHSP =cast<ObjCQualifiedInterfaceType>(RHS);
2855
2856 // All LHS protocols must have a presence on the RHS.
2857 assert(LHSP->qual_begin() != LHSP->qual_end() && "Empty LHS protocol list?");
2858
2859 for (ObjCQualifiedInterfaceType::qual_iterator LHSPI = LHSP->qual_begin(),
2860 LHSPE = LHSP->qual_end();
2861 LHSPI != LHSPE; LHSPI++) {
2862 bool RHSImplementsProtocol = false;
2863
2864 // If the RHS doesn't implement the protocol on the left, the types
2865 // are incompatible.
2866 for (ObjCQualifiedInterfaceType::qual_iterator RHSPI = RHSP->qual_begin(),
2867 RHSPE = RHSP->qual_end();
2868 !RHSImplementsProtocol && (RHSPI != RHSPE); RHSPI++) {
2869 if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier()))
2870 RHSImplementsProtocol = true;
2871 }
2872 // FIXME: For better diagnostics, consider passing back the protocol name.
2873 if (!RHSImplementsProtocol)
2874 return false;
2875 }
2876 // The RHS implements all protocols listed on the LHS.
2877 return true;
2878}
2879
2880bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
2881 // get the "pointed to" types
2882 const PointerType *LHSPT = LHS->getAsPointerType();
2883 const PointerType *RHSPT = RHS->getAsPointerType();
2884
2885 if (!LHSPT || !RHSPT)
2886 return false;
2887
2888 QualType lhptee = LHSPT->getPointeeType();
2889 QualType rhptee = RHSPT->getPointeeType();
2890 const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
2891 const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
2892 // ID acts sort of like void* for ObjC interfaces
2893 if (LHSIface && isObjCIdStructType(rhptee))
2894 return true;
2895 if (RHSIface && isObjCIdStructType(lhptee))
2896 return true;
2897 if (!LHSIface || !RHSIface)
2898 return false;
2899 return canAssignObjCInterfaces(LHSIface, RHSIface) ||
2900 canAssignObjCInterfaces(RHSIface, LHSIface);
2901}
2902
2903/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
2904/// both shall have the identically qualified version of a compatible type.
2905/// C99 6.2.7p1: Two types have compatible types if their types are the
2906/// same. See 6.7.[2,3,5] for additional rules.
2907bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
2908 return !mergeTypes(LHS, RHS).isNull();
2909}
2910
2911QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
2912 const FunctionType *lbase = lhs->getAsFunctionType();
2913 const FunctionType *rbase = rhs->getAsFunctionType();
2914 const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
2915 const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
2916 bool allLTypes = true;
2917 bool allRTypes = true;
2918
2919 // Check return type
2920 QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
2921 if (retType.isNull()) return QualType();
2922 if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
2923 allLTypes = false;
2924 if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
2925 allRTypes = false;
2926
2927 if (lproto && rproto) { // two C99 style function prototypes
2928 assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
2929 "C++ shouldn't be here");
2930 unsigned lproto_nargs = lproto->getNumArgs();
2931 unsigned rproto_nargs = rproto->getNumArgs();
2932
2933 // Compatible functions must have the same number of arguments
2934 if (lproto_nargs != rproto_nargs)
2935 return QualType();
2936
2937 // Variadic and non-variadic functions aren't compatible
2938 if (lproto->isVariadic() != rproto->isVariadic())
2939 return QualType();
2940
2941 if (lproto->getTypeQuals() != rproto->getTypeQuals())
2942 return QualType();
2943
2944 // Check argument compatibility
2945 llvm::SmallVector<QualType, 10> types;
2946 for (unsigned i = 0; i < lproto_nargs; i++) {
2947 QualType largtype = lproto->getArgType(i).getUnqualifiedType();
2948 QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
2949 QualType argtype = mergeTypes(largtype, rargtype);
2950 if (argtype.isNull()) return QualType();
2951 types.push_back(argtype);
2952 if (getCanonicalType(argtype) != getCanonicalType(largtype))
2953 allLTypes = false;
2954 if (getCanonicalType(argtype) != getCanonicalType(rargtype))
2955 allRTypes = false;
2956 }
2957 if (allLTypes) return lhs;
2958 if (allRTypes) return rhs;
2959 return getFunctionType(retType, types.begin(), types.size(),
2960 lproto->isVariadic(), lproto->getTypeQuals());
2961 }
2962
2963 if (lproto) allRTypes = false;
2964 if (rproto) allLTypes = false;
2965
2966 const FunctionProtoType *proto = lproto ? lproto : rproto;
2967 if (proto) {
2968 assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
2969 if (proto->isVariadic()) return QualType();
2970 // Check that the types are compatible with the types that
2971 // would result from default argument promotions (C99 6.7.5.3p15).
2972 // The only types actually affected are promotable integer
2973 // types and floats, which would be passed as a different
2974 // type depending on whether the prototype is visible.
2975 unsigned proto_nargs = proto->getNumArgs();
2976 for (unsigned i = 0; i < proto_nargs; ++i) {
2977 QualType argTy = proto->getArgType(i);
2978 if (argTy->isPromotableIntegerType() ||
2979 getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
2980 return QualType();
2981 }
2982
2983 if (allLTypes) return lhs;
2984 if (allRTypes) return rhs;
2985 return getFunctionType(retType, proto->arg_type_begin(),
2986 proto->getNumArgs(), lproto->isVariadic(),
2987 lproto->getTypeQuals());
2988 }
2989
2990 if (allLTypes) return lhs;
2991 if (allRTypes) return rhs;
2992 return getFunctionNoProtoType(retType);
2993}
2994
2995QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
2996 // C++ [expr]: If an expression initially has the type "reference to T", the
2997 // type is adjusted to "T" prior to any further analysis, the expression
2998 // designates the object or function denoted by the reference, and the
2999 // expression is an lvalue unless the reference is an rvalue reference and
3000 // the expression is a function call (possibly inside parentheses).
3001 // FIXME: C++ shouldn't be going through here! The rules are different
3002 // enough that they should be handled separately.
3003 // FIXME: Merging of lvalue and rvalue references is incorrect. C++ *really*
3004 // shouldn't be going through here!
3005 if (const ReferenceType *RT = LHS->getAsReferenceType())
3006 LHS = RT->getPointeeType();
3007 if (const ReferenceType *RT = RHS->getAsReferenceType())
3008 RHS = RT->getPointeeType();
3009
3010 QualType LHSCan = getCanonicalType(LHS),
3011 RHSCan = getCanonicalType(RHS);
3012
3013 // If two types are identical, they are compatible.
3014 if (LHSCan == RHSCan)
3015 return LHS;
3016
3017 // If the qualifiers are different, the types aren't compatible
3018 // Note that we handle extended qualifiers later, in the
3019 // case for ExtQualType.
3020 if (LHSCan.getCVRQualifiers() != RHSCan.getCVRQualifiers())
3021 return QualType();
3022
3023 Type::TypeClass LHSClass = LHSCan->getTypeClass();
3024 Type::TypeClass RHSClass = RHSCan->getTypeClass();
3025
3026 // We want to consider the two function types to be the same for these
3027 // comparisons, just force one to the other.
3028 if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
3029 if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
3030
3031 // Strip off objc_gc attributes off the top level so they can be merged.
3032 // This is a complete mess, but the attribute itself doesn't make much sense.
3033 if (RHSClass == Type::ExtQual) {
3034 QualType::GCAttrTypes GCAttr = RHSCan.getObjCGCAttr();
3035 if (GCAttr != QualType::GCNone) {
3036 QualType::GCAttrTypes GCLHSAttr = LHSCan.getObjCGCAttr();
3037 // __weak attribute must appear on both declarations.
3038 // __strong attribue is redundant if other decl is an objective-c
3039 // object pointer (or decorated with __strong attribute); otherwise
3040 // issue error.
3041 if ((GCAttr == QualType::Weak && GCLHSAttr != GCAttr) ||
3042 (GCAttr == QualType::Strong && GCLHSAttr != GCAttr &&
3043 LHSCan->isPointerType() && !isObjCObjectPointerType(LHSCan) &&
3044 !isObjCIdStructType(LHSCan->getAsPointerType()->getPointeeType())))
3045 return QualType();
3046
3047 RHS = QualType(cast<ExtQualType>(RHS.getDesugaredType())->getBaseType(),
3048 RHS.getCVRQualifiers());
3049 QualType Result = mergeTypes(LHS, RHS);
3050 if (!Result.isNull()) {
3051 if (Result.getObjCGCAttr() == QualType::GCNone)
3052 Result = getObjCGCQualType(Result, GCAttr);
3053 else if (Result.getObjCGCAttr() != GCAttr)
3054 Result = QualType();
3055 }
3056 return Result;
3057 }
3058 }
3059 if (LHSClass == Type::ExtQual) {
3060 QualType::GCAttrTypes GCAttr = LHSCan.getObjCGCAttr();
3061 if (GCAttr != QualType::GCNone) {
3062 QualType::GCAttrTypes GCRHSAttr = RHSCan.getObjCGCAttr();
3063 // __weak attribute must appear on both declarations. __strong
3064 // __strong attribue is redundant if other decl is an objective-c
3065 // object pointer (or decorated with __strong attribute); otherwise
3066 // issue error.
3067 if ((GCAttr == QualType::Weak && GCRHSAttr != GCAttr) ||
3068 (GCAttr == QualType::Strong && GCRHSAttr != GCAttr &&
3069 RHSCan->isPointerType() && !isObjCObjectPointerType(RHSCan) &&
3070 !isObjCIdStructType(RHSCan->getAsPointerType()->getPointeeType())))
3071 return QualType();
3072
3073 LHS = QualType(cast<ExtQualType>(LHS.getDesugaredType())->getBaseType(),
3074 LHS.getCVRQualifiers());
3075 QualType Result = mergeTypes(LHS, RHS);
3076 if (!Result.isNull()) {
3077 if (Result.getObjCGCAttr() == QualType::GCNone)
3078 Result = getObjCGCQualType(Result, GCAttr);
3079 else if (Result.getObjCGCAttr() != GCAttr)
3080 Result = QualType();
3081 }
3082 return Result;
3083 }
3084 }
3085
3086 // Same as above for arrays
3087 if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
3088 LHSClass = Type::ConstantArray;
3089 if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
3090 RHSClass = Type::ConstantArray;
3091
3092 // Canonicalize ExtVector -> Vector.
3093 if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
3094 if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
3095
3096 // Consider qualified interfaces and interfaces the same.
3097 if (LHSClass == Type::ObjCQualifiedInterface) LHSClass = Type::ObjCInterface;
3098 if (RHSClass == Type::ObjCQualifiedInterface) RHSClass = Type::ObjCInterface;
3099
3100 // If the canonical type classes don't match.
3101 if (LHSClass != RHSClass) {
3102 const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
3103 const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
3104
3105 // 'id' and 'Class' act sort of like void* for ObjC interfaces
3106 if (LHSIface && (isObjCIdStructType(RHS) || isObjCClassStructType(RHS)))
3107 return LHS;
3108 if (RHSIface && (isObjCIdStructType(LHS) || isObjCClassStructType(LHS)))
3109 return RHS;
3110
3111 // ID is compatible with all qualified id types.
3112 if (LHS->isObjCQualifiedIdType()) {
3113 if (const PointerType *PT = RHS->getAsPointerType()) {
3114 QualType pType = PT->getPointeeType();
3115 if (isObjCIdStructType(pType) || isObjCClassStructType(pType))
3116 return LHS;
3117 // FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true).
3118 // Unfortunately, this API is part of Sema (which we don't have access
3119 // to. Need to refactor. The following check is insufficient, since we
3120 // need to make sure the class implements the protocol.
3121 if (pType->isObjCInterfaceType())
3122 return LHS;
3123 }
3124 }
3125 if (RHS->isObjCQualifiedIdType()) {
3126 if (const PointerType *PT = LHS->getAsPointerType()) {
3127 QualType pType = PT->getPointeeType();
3128 if (isObjCIdStructType(pType) || isObjCClassStructType(pType))
3129 return RHS;
3130 // FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true).
3131 // Unfortunately, this API is part of Sema (which we don't have access
3132 // to. Need to refactor. The following check is insufficient, since we
3133 // need to make sure the class implements the protocol.
3134 if (pType->isObjCInterfaceType())
3135 return RHS;
3136 }
3137 }
3138 // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
3139 // a signed integer type, or an unsigned integer type.
3140 if (const EnumType* ETy = LHS->getAsEnumType()) {
3141 if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
3142 return RHS;
3143 }
3144 if (const EnumType* ETy = RHS->getAsEnumType()) {
3145 if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
3146 return LHS;
3147 }
3148
3149 return QualType();
3150 }
3151
3152 // The canonical type classes match.
3153 switch (LHSClass) {
3154#define TYPE(Class, Base)
3155#define ABSTRACT_TYPE(Class, Base)
3156#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3157#define DEPENDENT_TYPE(Class, Base) case Type::Class:
3158#include "clang/AST/TypeNodes.def"
3159 assert(false && "Non-canonical and dependent types shouldn't get here");
3160 return QualType();
3161
3162 case Type::LValueReference:
3163 case Type::RValueReference:
3164 case Type::MemberPointer:
3165 assert(false && "C++ should never be in mergeTypes");
3166 return QualType();
3167
3168 case Type::IncompleteArray:
3169 case Type::VariableArray:
3170 case Type::FunctionProto:
3171 case Type::ExtVector:
3172 case Type::ObjCQualifiedInterface:
3173 assert(false && "Types are eliminated above");
3174 return QualType();
3175
3176 case Type::Pointer:
3177 {
3178 // Merge two pointer types, while trying to preserve typedef info
3179 QualType LHSPointee = LHS->getAsPointerType()->getPointeeType();
3180 QualType RHSPointee = RHS->getAsPointerType()->getPointeeType();
3181 QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
3182 if (ResultType.isNull()) return QualType();
3183 if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
3184 return LHS;
3185 if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
3186 return RHS;
3187 return getPointerType(ResultType);
3188 }
3189 case Type::BlockPointer:
3190 {
3191 // Merge two block pointer types, while trying to preserve typedef info
3192 QualType LHSPointee = LHS->getAsBlockPointerType()->getPointeeType();
3193 QualType RHSPointee = RHS->getAsBlockPointerType()->getPointeeType();
3194 QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
3195 if (ResultType.isNull()) return QualType();
3196 if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
3197 return LHS;
3198 if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
3199 return RHS;
3200 return getBlockPointerType(ResultType);
3201 }
3202 case Type::ConstantArray:
3203 {
3204 const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
3205 const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
3206 if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
3207 return QualType();
3208
3209 QualType LHSElem = getAsArrayType(LHS)->getElementType();
3210 QualType RHSElem = getAsArrayType(RHS)->getElementType();
3211 QualType ResultType = mergeTypes(LHSElem, RHSElem);
3212 if (ResultType.isNull()) return QualType();
3213 if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
3214 return LHS;
3215 if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
3216 return RHS;
3217 if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
3218 ArrayType::ArraySizeModifier(), 0);
3219 if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
3220 ArrayType::ArraySizeModifier(), 0);
3221 const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
3222 const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
3223 if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
3224 return LHS;
3225 if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
3226 return RHS;
3227 if (LVAT) {
3228 // FIXME: This isn't correct! But tricky to implement because
3229 // the array's size has to be the size of LHS, but the type
3230 // has to be different.
3231 return LHS;
3232 }
3233 if (RVAT) {
3234 // FIXME: This isn't correct! But tricky to implement because
3235 // the array's size has to be the size of RHS, but the type
3236 // has to be different.
3237 return RHS;
3238 }
3239 if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
3240 if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
3241 return getIncompleteArrayType(ResultType, ArrayType::ArraySizeModifier(),0);
3242 }
3243 case Type::FunctionNoProto:
3244 return mergeFunctionTypes(LHS, RHS);
3245 case Type::Record:
3246 case Type::Enum:
3247 // FIXME: Why are these compatible?
3248 if (isObjCIdStructType(LHS) && isObjCClassStructType(RHS)) return LHS;
3249 if (isObjCClassStructType(LHS) && isObjCIdStructType(RHS)) return LHS;
3250 return QualType();
3251 case Type::Builtin:
3252 // Only exactly equal builtin types are compatible, which is tested above.
3253 return QualType();
3254 case Type::Complex:
3255 // Distinct complex types are incompatible.
3256 return QualType();
3257 case Type::Vector:
3258 // FIXME: The merged type should be an ExtVector!
3259 if (areCompatVectorTypes(LHS->getAsVectorType(), RHS->getAsVectorType()))
3260 return LHS;
3261 return QualType();
3262 case Type::ObjCInterface: {
3263 // Check if the interfaces are assignment compatible.
3264 // FIXME: This should be type compatibility, e.g. whether
3265 // "LHS x; RHS x;" at global scope is legal.
3266 const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
3267 const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
3268 if (LHSIface && RHSIface &&
3269 canAssignObjCInterfaces(LHSIface, RHSIface))
3270 return LHS;
3271
3272 return QualType();
3273 }
3274 case Type::ObjCQualifiedId:
3275 // Distinct qualified id's are not compatible.
3276 return QualType();
3277 case Type::FixedWidthInt:
3278 // Distinct fixed-width integers are not compatible.
3279 return QualType();
3280 case Type::ExtQual:
3281 // FIXME: ExtQual types can be compatible even if they're not
3282 // identical!
3283 return QualType();
3284 // First attempt at an implementation, but I'm not really sure it's
3285 // right...
3286#if 0
3287 ExtQualType* LQual = cast<ExtQualType>(LHSCan);
3288 ExtQualType* RQual = cast<ExtQualType>(RHSCan);
3289 if (LQual->getAddressSpace() != RQual->getAddressSpace() ||
3290 LQual->getObjCGCAttr() != RQual->getObjCGCAttr())
3291 return QualType();
3292 QualType LHSBase, RHSBase, ResultType, ResCanUnqual;
3293 LHSBase = QualType(LQual->getBaseType(), 0);
3294 RHSBase = QualType(RQual->getBaseType(), 0);
3295 ResultType = mergeTypes(LHSBase, RHSBase);
3296 if (ResultType.isNull()) return QualType();
3297 ResCanUnqual = getCanonicalType(ResultType).getUnqualifiedType();
3298 if (LHSCan.getUnqualifiedType() == ResCanUnqual)
3299 return LHS;
3300 if (RHSCan.getUnqualifiedType() == ResCanUnqual)
3301 return RHS;
3302 ResultType = getAddrSpaceQualType(ResultType, LQual->getAddressSpace());
3303 ResultType = getObjCGCQualType(ResultType, LQual->getObjCGCAttr());
3304 ResultType.setCVRQualifiers(LHSCan.getCVRQualifiers());
3305 return ResultType;
3306#endif
3307
3308 case Type::TemplateSpecialization:
3309 assert(false && "Dependent types have no size");
3310 break;
3311 }
3312
3313 return QualType();
3314}
3315
3316//===----------------------------------------------------------------------===//
3317// Integer Predicates
3318//===----------------------------------------------------------------------===//
3319
3320unsigned ASTContext::getIntWidth(QualType T) {
3321 if (T == BoolTy)
3322 return 1;
3323 if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T)) {
3324 return FWIT->getWidth();
3325 }
3326 // For builtin types, just use the standard type sizing method
3327 return (unsigned)getTypeSize(T);
3328}
3329
3330QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
3331 assert(T->isSignedIntegerType() && "Unexpected type");
3332 if (const EnumType* ETy = T->getAsEnumType())
3333 T = ETy->getDecl()->getIntegerType();
3334 const BuiltinType* BTy = T->getAsBuiltinType();
3335 assert (BTy && "Unexpected signed integer type");
3336 switch (BTy->getKind()) {
3337 case BuiltinType::Char_S:
3338 case BuiltinType::SChar:
3339 return UnsignedCharTy;
3340 case BuiltinType::Short:
3341 return UnsignedShortTy;
3342 case BuiltinType::Int:
3343 return UnsignedIntTy;
3344 case BuiltinType::Long:
3345 return UnsignedLongTy;
3346 case BuiltinType::LongLong:
3347 return UnsignedLongLongTy;
3348 case BuiltinType::Int128:
3349 return UnsignedInt128Ty;
3350 default:
3351 assert(0 && "Unexpected signed integer type");
3352 return QualType();
3353 }
3354}
3355
3356ExternalASTSource::~ExternalASTSource() { }
3357
3358void ExternalASTSource::PrintStats() { }
838 // If we are composing extended qualifiers together, merge together into one
839 // ExtQualType node.
840 unsigned CVRQuals = T.getCVRQualifiers();
841 Type *TypeNode = T.getTypePtr();
842 unsigned AddressSpace = 0;
843
844 if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
845 // If this type already has an address space specified, it cannot get
846 // another one.
847 assert(EQT->getObjCGCAttr() == QualType::GCNone &&
848 "Type cannot be in multiple addr spaces!");
849 AddressSpace = EQT->getAddressSpace();
850 TypeNode = EQT->getBaseType();
851 }
852
853 // Check if we've already instantiated an gc qual'd type of this type.
854 llvm::FoldingSetNodeID ID;
855 ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
856 void *InsertPos = 0;
857 if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
858 return QualType(EXTQy, CVRQuals);
859
860 // If the base type isn't canonical, this won't be a canonical type either,
861 // so fill in the canonical type field.
862 // FIXME: Isn't this also not canonical if the base type is a array
863 // or pointer type? I can't find any documentation for objc_gc, though...
864 QualType Canonical;
865 if (!T->isCanonical()) {
866 Canonical = getObjCGCQualType(CanT, GCAttr);
867
868 // Update InsertPos, the previous call could have invalidated it.
869 ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
870 assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
871 }
872 ExtQualType *New =
873 new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
874 ExtQualTypes.InsertNode(New, InsertPos);
875 Types.push_back(New);
876 return QualType(New, CVRQuals);
877}
878
879/// getComplexType - Return the uniqued reference to the type for a complex
880/// number with the specified element type.
881QualType ASTContext::getComplexType(QualType T) {
882 // Unique pointers, to guarantee there is only one pointer of a particular
883 // structure.
884 llvm::FoldingSetNodeID ID;
885 ComplexType::Profile(ID, T);
886
887 void *InsertPos = 0;
888 if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
889 return QualType(CT, 0);
890
891 // If the pointee type isn't canonical, this won't be a canonical type either,
892 // so fill in the canonical type field.
893 QualType Canonical;
894 if (!T->isCanonical()) {
895 Canonical = getComplexType(getCanonicalType(T));
896
897 // Get the new insert position for the node we care about.
898 ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
899 assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
900 }
901 ComplexType *New = new (*this,8) ComplexType(T, Canonical);
902 Types.push_back(New);
903 ComplexTypes.InsertNode(New, InsertPos);
904 return QualType(New, 0);
905}
906
907QualType ASTContext::getFixedWidthIntType(unsigned Width, bool Signed) {
908 llvm::DenseMap<unsigned, FixedWidthIntType*> &Map = Signed ?
909 SignedFixedWidthIntTypes : UnsignedFixedWidthIntTypes;
910 FixedWidthIntType *&Entry = Map[Width];
911 if (!Entry)
912 Entry = new FixedWidthIntType(Width, Signed);
913 return QualType(Entry, 0);
914}
915
916/// getPointerType - Return the uniqued reference to the type for a pointer to
917/// the specified type.
918QualType ASTContext::getPointerType(QualType T) {
919 // Unique pointers, to guarantee there is only one pointer of a particular
920 // structure.
921 llvm::FoldingSetNodeID ID;
922 PointerType::Profile(ID, T);
923
924 void *InsertPos = 0;
925 if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
926 return QualType(PT, 0);
927
928 // If the pointee type isn't canonical, this won't be a canonical type either,
929 // so fill in the canonical type field.
930 QualType Canonical;
931 if (!T->isCanonical()) {
932 Canonical = getPointerType(getCanonicalType(T));
933
934 // Get the new insert position for the node we care about.
935 PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
936 assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
937 }
938 PointerType *New = new (*this,8) PointerType(T, Canonical);
939 Types.push_back(New);
940 PointerTypes.InsertNode(New, InsertPos);
941 return QualType(New, 0);
942}
943
944/// getBlockPointerType - Return the uniqued reference to the type for
945/// a pointer to the specified block.
946QualType ASTContext::getBlockPointerType(QualType T) {
947 assert(T->isFunctionType() && "block of function types only");
948 // Unique pointers, to guarantee there is only one block of a particular
949 // structure.
950 llvm::FoldingSetNodeID ID;
951 BlockPointerType::Profile(ID, T);
952
953 void *InsertPos = 0;
954 if (BlockPointerType *PT =
955 BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
956 return QualType(PT, 0);
957
958 // If the block pointee type isn't canonical, this won't be a canonical
959 // type either so fill in the canonical type field.
960 QualType Canonical;
961 if (!T->isCanonical()) {
962 Canonical = getBlockPointerType(getCanonicalType(T));
963
964 // Get the new insert position for the node we care about.
965 BlockPointerType *NewIP =
966 BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
967 assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
968 }
969 BlockPointerType *New = new (*this,8) BlockPointerType(T, Canonical);
970 Types.push_back(New);
971 BlockPointerTypes.InsertNode(New, InsertPos);
972 return QualType(New, 0);
973}
974
975/// getLValueReferenceType - Return the uniqued reference to the type for an
976/// lvalue reference to the specified type.
977QualType ASTContext::getLValueReferenceType(QualType T) {
978 // Unique pointers, to guarantee there is only one pointer of a particular
979 // structure.
980 llvm::FoldingSetNodeID ID;
981 ReferenceType::Profile(ID, T);
982
983 void *InsertPos = 0;
984 if (LValueReferenceType *RT =
985 LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
986 return QualType(RT, 0);
987
988 // If the referencee type isn't canonical, this won't be a canonical type
989 // either, so fill in the canonical type field.
990 QualType Canonical;
991 if (!T->isCanonical()) {
992 Canonical = getLValueReferenceType(getCanonicalType(T));
993
994 // Get the new insert position for the node we care about.
995 LValueReferenceType *NewIP =
996 LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
997 assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
998 }
999
1000 LValueReferenceType *New = new (*this,8) LValueReferenceType(T, Canonical);
1001 Types.push_back(New);
1002 LValueReferenceTypes.InsertNode(New, InsertPos);
1003 return QualType(New, 0);
1004}
1005
1006/// getRValueReferenceType - Return the uniqued reference to the type for an
1007/// rvalue reference to the specified type.
1008QualType ASTContext::getRValueReferenceType(QualType T) {
1009 // Unique pointers, to guarantee there is only one pointer of a particular
1010 // structure.
1011 llvm::FoldingSetNodeID ID;
1012 ReferenceType::Profile(ID, T);
1013
1014 void *InsertPos = 0;
1015 if (RValueReferenceType *RT =
1016 RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1017 return QualType(RT, 0);
1018
1019 // If the referencee type isn't canonical, this won't be a canonical type
1020 // either, so fill in the canonical type field.
1021 QualType Canonical;
1022 if (!T->isCanonical()) {
1023 Canonical = getRValueReferenceType(getCanonicalType(T));
1024
1025 // Get the new insert position for the node we care about.
1026 RValueReferenceType *NewIP =
1027 RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1028 assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1029 }
1030
1031 RValueReferenceType *New = new (*this,8) RValueReferenceType(T, Canonical);
1032 Types.push_back(New);
1033 RValueReferenceTypes.InsertNode(New, InsertPos);
1034 return QualType(New, 0);
1035}
1036
1037/// getMemberPointerType - Return the uniqued reference to the type for a
1038/// member pointer to the specified type, in the specified class.
1039QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls)
1040{
1041 // Unique pointers, to guarantee there is only one pointer of a particular
1042 // structure.
1043 llvm::FoldingSetNodeID ID;
1044 MemberPointerType::Profile(ID, T, Cls);
1045
1046 void *InsertPos = 0;
1047 if (MemberPointerType *PT =
1048 MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1049 return QualType(PT, 0);
1050
1051 // If the pointee or class type isn't canonical, this won't be a canonical
1052 // type either, so fill in the canonical type field.
1053 QualType Canonical;
1054 if (!T->isCanonical()) {
1055 Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1056
1057 // Get the new insert position for the node we care about.
1058 MemberPointerType *NewIP =
1059 MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1060 assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1061 }
1062 MemberPointerType *New = new (*this,8) MemberPointerType(T, Cls, Canonical);
1063 Types.push_back(New);
1064 MemberPointerTypes.InsertNode(New, InsertPos);
1065 return QualType(New, 0);
1066}
1067
1068/// getConstantArrayType - Return the unique reference to the type for an
1069/// array of the specified element type.
1070QualType ASTContext::getConstantArrayType(QualType EltTy,
1071 const llvm::APInt &ArySizeIn,
1072 ArrayType::ArraySizeModifier ASM,
1073 unsigned EltTypeQuals) {
1074 assert((EltTy->isDependentType() || EltTy->isConstantSizeType()) &&
1075 "Constant array of VLAs is illegal!");
1076
1077 // Convert the array size into a canonical width matching the pointer size for
1078 // the target.
1079 llvm::APInt ArySize(ArySizeIn);
1080 ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1081
1082 llvm::FoldingSetNodeID ID;
1083 ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1084
1085 void *InsertPos = 0;
1086 if (ConstantArrayType *ATP =
1087 ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1088 return QualType(ATP, 0);
1089
1090 // If the element type isn't canonical, this won't be a canonical type either,
1091 // so fill in the canonical type field.
1092 QualType Canonical;
1093 if (!EltTy->isCanonical()) {
1094 Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1095 ASM, EltTypeQuals);
1096 // Get the new insert position for the node we care about.
1097 ConstantArrayType *NewIP =
1098 ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1099 assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1100 }
1101
1102 ConstantArrayType *New =
1103 new(*this,8)ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1104 ConstantArrayTypes.InsertNode(New, InsertPos);
1105 Types.push_back(New);
1106 return QualType(New, 0);
1107}
1108
1109/// getVariableArrayType - Returns a non-unique reference to the type for a
1110/// variable array of the specified element type.
1111QualType ASTContext::getVariableArrayType(QualType EltTy, Expr *NumElts,
1112 ArrayType::ArraySizeModifier ASM,
1113 unsigned EltTypeQuals) {
1114 // Since we don't unique expressions, it isn't possible to unique VLA's
1115 // that have an expression provided for their size.
1116
1117 VariableArrayType *New =
1118 new(*this,8)VariableArrayType(EltTy,QualType(), NumElts, ASM, EltTypeQuals);
1119
1120 VariableArrayTypes.push_back(New);
1121 Types.push_back(New);
1122 return QualType(New, 0);
1123}
1124
1125/// getDependentSizedArrayType - Returns a non-unique reference to
1126/// the type for a dependently-sized array of the specified element
1127/// type. FIXME: We will need these to be uniqued, or at least
1128/// comparable, at some point.
1129QualType ASTContext::getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
1130 ArrayType::ArraySizeModifier ASM,
1131 unsigned EltTypeQuals) {
1132 assert((NumElts->isTypeDependent() || NumElts->isValueDependent()) &&
1133 "Size must be type- or value-dependent!");
1134
1135 // Since we don't unique expressions, it isn't possible to unique
1136 // dependently-sized array types.
1137
1138 DependentSizedArrayType *New =
1139 new (*this,8) DependentSizedArrayType(EltTy, QualType(), NumElts,
1140 ASM, EltTypeQuals);
1141
1142 DependentSizedArrayTypes.push_back(New);
1143 Types.push_back(New);
1144 return QualType(New, 0);
1145}
1146
1147QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1148 ArrayType::ArraySizeModifier ASM,
1149 unsigned EltTypeQuals) {
1150 llvm::FoldingSetNodeID ID;
1151 IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1152
1153 void *InsertPos = 0;
1154 if (IncompleteArrayType *ATP =
1155 IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1156 return QualType(ATP, 0);
1157
1158 // If the element type isn't canonical, this won't be a canonical type
1159 // either, so fill in the canonical type field.
1160 QualType Canonical;
1161
1162 if (!EltTy->isCanonical()) {
1163 Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1164 ASM, EltTypeQuals);
1165
1166 // Get the new insert position for the node we care about.
1167 IncompleteArrayType *NewIP =
1168 IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1169 assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1170 }
1171
1172 IncompleteArrayType *New = new (*this,8) IncompleteArrayType(EltTy, Canonical,
1173 ASM, EltTypeQuals);
1174
1175 IncompleteArrayTypes.InsertNode(New, InsertPos);
1176 Types.push_back(New);
1177 return QualType(New, 0);
1178}
1179
1180/// getVectorType - Return the unique reference to a vector type of
1181/// the specified element type and size. VectorType must be a built-in type.
1182QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
1183 BuiltinType *baseType;
1184
1185 baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1186 assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1187
1188 // Check if we've already instantiated a vector of this type.
1189 llvm::FoldingSetNodeID ID;
1190 VectorType::Profile(ID, vecType, NumElts, Type::Vector);
1191 void *InsertPos = 0;
1192 if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1193 return QualType(VTP, 0);
1194
1195 // If the element type isn't canonical, this won't be a canonical type either,
1196 // so fill in the canonical type field.
1197 QualType Canonical;
1198 if (!vecType->isCanonical()) {
1199 Canonical = getVectorType(getCanonicalType(vecType), NumElts);
1200
1201 // Get the new insert position for the node we care about.
1202 VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1203 assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1204 }
1205 VectorType *New = new (*this,8) VectorType(vecType, NumElts, Canonical);
1206 VectorTypes.InsertNode(New, InsertPos);
1207 Types.push_back(New);
1208 return QualType(New, 0);
1209}
1210
1211/// getExtVectorType - Return the unique reference to an extended vector type of
1212/// the specified element type and size. VectorType must be a built-in type.
1213QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1214 BuiltinType *baseType;
1215
1216 baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1217 assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1218
1219 // Check if we've already instantiated a vector of this type.
1220 llvm::FoldingSetNodeID ID;
1221 VectorType::Profile(ID, vecType, NumElts, Type::ExtVector);
1222 void *InsertPos = 0;
1223 if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1224 return QualType(VTP, 0);
1225
1226 // If the element type isn't canonical, this won't be a canonical type either,
1227 // so fill in the canonical type field.
1228 QualType Canonical;
1229 if (!vecType->isCanonical()) {
1230 Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1231
1232 // Get the new insert position for the node we care about.
1233 VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1234 assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1235 }
1236 ExtVectorType *New = new (*this,8) ExtVectorType(vecType, NumElts, Canonical);
1237 VectorTypes.InsertNode(New, InsertPos);
1238 Types.push_back(New);
1239 return QualType(New, 0);
1240}
1241
1242/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1243///
1244QualType ASTContext::getFunctionNoProtoType(QualType ResultTy) {
1245 // Unique functions, to guarantee there is only one function of a particular
1246 // structure.
1247 llvm::FoldingSetNodeID ID;
1248 FunctionNoProtoType::Profile(ID, ResultTy);
1249
1250 void *InsertPos = 0;
1251 if (FunctionNoProtoType *FT =
1252 FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1253 return QualType(FT, 0);
1254
1255 QualType Canonical;
1256 if (!ResultTy->isCanonical()) {
1257 Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy));
1258
1259 // Get the new insert position for the node we care about.
1260 FunctionNoProtoType *NewIP =
1261 FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1262 assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1263 }
1264
1265 FunctionNoProtoType *New =new(*this,8)FunctionNoProtoType(ResultTy,Canonical);
1266 Types.push_back(New);
1267 FunctionNoProtoTypes.InsertNode(New, InsertPos);
1268 return QualType(New, 0);
1269}
1270
1271/// getFunctionType - Return a normal function type with a typed argument
1272/// list. isVariadic indicates whether the argument list includes '...'.
1273QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1274 unsigned NumArgs, bool isVariadic,
1275 unsigned TypeQuals, bool hasExceptionSpec,
1276 bool hasAnyExceptionSpec, unsigned NumExs,
1277 const QualType *ExArray) {
1278 // Unique functions, to guarantee there is only one function of a particular
1279 // structure.
1280 llvm::FoldingSetNodeID ID;
1281 FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1282 TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1283 NumExs, ExArray);
1284
1285 void *InsertPos = 0;
1286 if (FunctionProtoType *FTP =
1287 FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1288 return QualType(FTP, 0);
1289
1290 // Determine whether the type being created is already canonical or not.
1291 bool isCanonical = ResultTy->isCanonical();
1292 if (hasExceptionSpec)
1293 isCanonical = false;
1294 for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1295 if (!ArgArray[i]->isCanonical())
1296 isCanonical = false;
1297
1298 // If this type isn't canonical, get the canonical version of it.
1299 // The exception spec is not part of the canonical type.
1300 QualType Canonical;
1301 if (!isCanonical) {
1302 llvm::SmallVector<QualType, 16> CanonicalArgs;
1303 CanonicalArgs.reserve(NumArgs);
1304 for (unsigned i = 0; i != NumArgs; ++i)
1305 CanonicalArgs.push_back(getCanonicalType(ArgArray[i]));
1306
1307 Canonical = getFunctionType(getCanonicalType(ResultTy),
1308 CanonicalArgs.data(), NumArgs,
1309 isVariadic, TypeQuals);
1310
1311 // Get the new insert position for the node we care about.
1312 FunctionProtoType *NewIP =
1313 FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1314 assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1315 }
1316
1317 // FunctionProtoType objects are allocated with extra bytes after them
1318 // for two variable size arrays (for parameter and exception types) at the
1319 // end of them.
1320 FunctionProtoType *FTP =
1321 (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1322 NumArgs*sizeof(QualType) +
1323 NumExs*sizeof(QualType), 8);
1324 new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1325 TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1326 ExArray, NumExs, Canonical);
1327 Types.push_back(FTP);
1328 FunctionProtoTypes.InsertNode(FTP, InsertPos);
1329 return QualType(FTP, 0);
1330}
1331
1332/// getTypeDeclType - Return the unique reference to the type for the
1333/// specified type declaration.
1334QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) {
1335 assert(Decl && "Passed null for Decl param");
1336 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1337
1338 if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1339 return getTypedefType(Typedef);
1340 else if (isa<TemplateTypeParmDecl>(Decl)) {
1341 assert(false && "Template type parameter types are always available.");
1342 } else if (ObjCInterfaceDecl *ObjCInterface = dyn_cast<ObjCInterfaceDecl>(Decl))
1343 return getObjCInterfaceType(ObjCInterface);
1344
1345 if (RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1346 if (PrevDecl)
1347 Decl->TypeForDecl = PrevDecl->TypeForDecl;
1348 else
1349 Decl->TypeForDecl = new (*this,8) RecordType(Record);
1350 }
1351 else if (EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1352 if (PrevDecl)
1353 Decl->TypeForDecl = PrevDecl->TypeForDecl;
1354 else
1355 Decl->TypeForDecl = new (*this,8) EnumType(Enum);
1356 }
1357 else
1358 assert(false && "TypeDecl without a type?");
1359
1360 if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
1361 return QualType(Decl->TypeForDecl, 0);
1362}
1363
1364/// getTypedefType - Return the unique reference to the type for the
1365/// specified typename decl.
1366QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
1367 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1368
1369 QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1370 Decl->TypeForDecl = new(*this,8) TypedefType(Type::Typedef, Decl, Canonical);
1371 Types.push_back(Decl->TypeForDecl);
1372 return QualType(Decl->TypeForDecl, 0);
1373}
1374
1375/// getObjCInterfaceType - Return the unique reference to the type for the
1376/// specified ObjC interface decl.
1377QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl) {
1378 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1379
1380 ObjCInterfaceDecl *OID = const_cast<ObjCInterfaceDecl*>(Decl);
1381 Decl->TypeForDecl = new(*this,8) ObjCInterfaceType(Type::ObjCInterface, OID);
1382 Types.push_back(Decl->TypeForDecl);
1383 return QualType(Decl->TypeForDecl, 0);
1384}
1385
1386/// \brief Retrieve the template type parameter type for a template
1387/// parameter with the given depth, index, and (optionally) name.
1388QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1389 IdentifierInfo *Name) {
1390 llvm::FoldingSetNodeID ID;
1391 TemplateTypeParmType::Profile(ID, Depth, Index, Name);
1392 void *InsertPos = 0;
1393 TemplateTypeParmType *TypeParm
1394 = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1395
1396 if (TypeParm)
1397 return QualType(TypeParm, 0);
1398
1399 if (Name)
1400 TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index, Name,
1401 getTemplateTypeParmType(Depth, Index));
1402 else
1403 TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index);
1404
1405 Types.push_back(TypeParm);
1406 TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1407
1408 return QualType(TypeParm, 0);
1409}
1410
1411QualType
1412ASTContext::getTemplateSpecializationType(TemplateName Template,
1413 const TemplateArgument *Args,
1414 unsigned NumArgs,
1415 QualType Canon) {
1416 if (!Canon.isNull())
1417 Canon = getCanonicalType(Canon);
1418
1419 llvm::FoldingSetNodeID ID;
1420 TemplateSpecializationType::Profile(ID, Template, Args, NumArgs);
1421
1422 void *InsertPos = 0;
1423 TemplateSpecializationType *Spec
1424 = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1425
1426 if (Spec)
1427 return QualType(Spec, 0);
1428
1429 void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1430 sizeof(TemplateArgument) * NumArgs),
1431 8);
1432 Spec = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, Canon);
1433 Types.push_back(Spec);
1434 TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1435
1436 return QualType(Spec, 0);
1437}
1438
1439QualType
1440ASTContext::getQualifiedNameType(NestedNameSpecifier *NNS,
1441 QualType NamedType) {
1442 llvm::FoldingSetNodeID ID;
1443 QualifiedNameType::Profile(ID, NNS, NamedType);
1444
1445 void *InsertPos = 0;
1446 QualifiedNameType *T
1447 = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1448 if (T)
1449 return QualType(T, 0);
1450
1451 T = new (*this) QualifiedNameType(NNS, NamedType,
1452 getCanonicalType(NamedType));
1453 Types.push_back(T);
1454 QualifiedNameTypes.InsertNode(T, InsertPos);
1455 return QualType(T, 0);
1456}
1457
1458QualType ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1459 const IdentifierInfo *Name,
1460 QualType Canon) {
1461 assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1462
1463 if (Canon.isNull()) {
1464 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1465 if (CanonNNS != NNS)
1466 Canon = getTypenameType(CanonNNS, Name);
1467 }
1468
1469 llvm::FoldingSetNodeID ID;
1470 TypenameType::Profile(ID, NNS, Name);
1471
1472 void *InsertPos = 0;
1473 TypenameType *T
1474 = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1475 if (T)
1476 return QualType(T, 0);
1477
1478 T = new (*this) TypenameType(NNS, Name, Canon);
1479 Types.push_back(T);
1480 TypenameTypes.InsertNode(T, InsertPos);
1481 return QualType(T, 0);
1482}
1483
1484QualType
1485ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1486 const TemplateSpecializationType *TemplateId,
1487 QualType Canon) {
1488 assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1489
1490 if (Canon.isNull()) {
1491 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1492 QualType CanonType = getCanonicalType(QualType(TemplateId, 0));
1493 if (CanonNNS != NNS || CanonType != QualType(TemplateId, 0)) {
1494 const TemplateSpecializationType *CanonTemplateId
1495 = CanonType->getAsTemplateSpecializationType();
1496 assert(CanonTemplateId &&
1497 "Canonical type must also be a template specialization type");
1498 Canon = getTypenameType(CanonNNS, CanonTemplateId);
1499 }
1500 }
1501
1502 llvm::FoldingSetNodeID ID;
1503 TypenameType::Profile(ID, NNS, TemplateId);
1504
1505 void *InsertPos = 0;
1506 TypenameType *T
1507 = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1508 if (T)
1509 return QualType(T, 0);
1510
1511 T = new (*this) TypenameType(NNS, TemplateId, Canon);
1512 Types.push_back(T);
1513 TypenameTypes.InsertNode(T, InsertPos);
1514 return QualType(T, 0);
1515}
1516
1517/// CmpProtocolNames - Comparison predicate for sorting protocols
1518/// alphabetically.
1519static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
1520 const ObjCProtocolDecl *RHS) {
1521 return LHS->getDeclName() < RHS->getDeclName();
1522}
1523
1524static void SortAndUniqueProtocols(ObjCProtocolDecl **&Protocols,
1525 unsigned &NumProtocols) {
1526 ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
1527
1528 // Sort protocols, keyed by name.
1529 std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
1530
1531 // Remove duplicates.
1532 ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
1533 NumProtocols = ProtocolsEnd-Protocols;
1534}
1535
1536
1537/// getObjCQualifiedInterfaceType - Return a ObjCQualifiedInterfaceType type for
1538/// the given interface decl and the conforming protocol list.
1539QualType ASTContext::getObjCQualifiedInterfaceType(ObjCInterfaceDecl *Decl,
1540 ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
1541 // Sort the protocol list alphabetically to canonicalize it.
1542 SortAndUniqueProtocols(Protocols, NumProtocols);
1543
1544 llvm::FoldingSetNodeID ID;
1545 ObjCQualifiedInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
1546
1547 void *InsertPos = 0;
1548 if (ObjCQualifiedInterfaceType *QT =
1549 ObjCQualifiedInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
1550 return QualType(QT, 0);
1551
1552 // No Match;
1553 ObjCQualifiedInterfaceType *QType =
1554 new (*this,8) ObjCQualifiedInterfaceType(Decl, Protocols, NumProtocols);
1555
1556 Types.push_back(QType);
1557 ObjCQualifiedInterfaceTypes.InsertNode(QType, InsertPos);
1558 return QualType(QType, 0);
1559}
1560
1561/// getObjCQualifiedIdType - Return an ObjCQualifiedIdType for the 'id' decl
1562/// and the conforming protocol list.
1563QualType ASTContext::getObjCQualifiedIdType(ObjCProtocolDecl **Protocols,
1564 unsigned NumProtocols) {
1565 // Sort the protocol list alphabetically to canonicalize it.
1566 SortAndUniqueProtocols(Protocols, NumProtocols);
1567
1568 llvm::FoldingSetNodeID ID;
1569 ObjCQualifiedIdType::Profile(ID, Protocols, NumProtocols);
1570
1571 void *InsertPos = 0;
1572 if (ObjCQualifiedIdType *QT =
1573 ObjCQualifiedIdTypes.FindNodeOrInsertPos(ID, InsertPos))
1574 return QualType(QT, 0);
1575
1576 // No Match;
1577 ObjCQualifiedIdType *QType =
1578 new (*this,8) ObjCQualifiedIdType(Protocols, NumProtocols);
1579 Types.push_back(QType);
1580 ObjCQualifiedIdTypes.InsertNode(QType, InsertPos);
1581 return QualType(QType, 0);
1582}
1583
1584/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
1585/// TypeOfExprType AST's (since expression's are never shared). For example,
1586/// multiple declarations that refer to "typeof(x)" all contain different
1587/// DeclRefExpr's. This doesn't effect the type checker, since it operates
1588/// on canonical type's (which are always unique).
1589QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
1590 QualType Canonical = getCanonicalType(tofExpr->getType());
1591 TypeOfExprType *toe = new (*this,8) TypeOfExprType(tofExpr, Canonical);
1592 Types.push_back(toe);
1593 return QualType(toe, 0);
1594}
1595
1596/// getTypeOfType - Unlike many "get<Type>" functions, we don't unique
1597/// TypeOfType AST's. The only motivation to unique these nodes would be
1598/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
1599/// an issue. This doesn't effect the type checker, since it operates
1600/// on canonical type's (which are always unique).
1601QualType ASTContext::getTypeOfType(QualType tofType) {
1602 QualType Canonical = getCanonicalType(tofType);
1603 TypeOfType *tot = new (*this,8) TypeOfType(tofType, Canonical);
1604 Types.push_back(tot);
1605 return QualType(tot, 0);
1606}
1607
1608/// getTagDeclType - Return the unique reference to the type for the
1609/// specified TagDecl (struct/union/class/enum) decl.
1610QualType ASTContext::getTagDeclType(TagDecl *Decl) {
1611 assert (Decl);
1612 return getTypeDeclType(Decl);
1613}
1614
1615/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
1616/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
1617/// needs to agree with the definition in <stddef.h>.
1618QualType ASTContext::getSizeType() const {
1619 return getFromTargetType(Target.getSizeType());
1620}
1621
1622/// getSignedWCharType - Return the type of "signed wchar_t".
1623/// Used when in C++, as a GCC extension.
1624QualType ASTContext::getSignedWCharType() const {
1625 // FIXME: derive from "Target" ?
1626 return WCharTy;
1627}
1628
1629/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
1630/// Used when in C++, as a GCC extension.
1631QualType ASTContext::getUnsignedWCharType() const {
1632 // FIXME: derive from "Target" ?
1633 return UnsignedIntTy;
1634}
1635
1636/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
1637/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1638QualType ASTContext::getPointerDiffType() const {
1639 return getFromTargetType(Target.getPtrDiffType(0));
1640}
1641
1642//===----------------------------------------------------------------------===//
1643// Type Operators
1644//===----------------------------------------------------------------------===//
1645
1646/// getCanonicalType - Return the canonical (structural) type corresponding to
1647/// the specified potentially non-canonical type. The non-canonical version
1648/// of a type may have many "decorated" versions of types. Decorators can
1649/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
1650/// to be free of any of these, allowing two canonical types to be compared
1651/// for exact equality with a simple pointer comparison.
1652QualType ASTContext::getCanonicalType(QualType T) {
1653 QualType CanType = T.getTypePtr()->getCanonicalTypeInternal();
1654
1655 // If the result has type qualifiers, make sure to canonicalize them as well.
1656 unsigned TypeQuals = T.getCVRQualifiers() | CanType.getCVRQualifiers();
1657 if (TypeQuals == 0) return CanType;
1658
1659 // If the type qualifiers are on an array type, get the canonical type of the
1660 // array with the qualifiers applied to the element type.
1661 ArrayType *AT = dyn_cast<ArrayType>(CanType);
1662 if (!AT)
1663 return CanType.getQualifiedType(TypeQuals);
1664
1665 // Get the canonical version of the element with the extra qualifiers on it.
1666 // This can recursively sink qualifiers through multiple levels of arrays.
1667 QualType NewEltTy=AT->getElementType().getWithAdditionalQualifiers(TypeQuals);
1668 NewEltTy = getCanonicalType(NewEltTy);
1669
1670 if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
1671 return getConstantArrayType(NewEltTy, CAT->getSize(),CAT->getSizeModifier(),
1672 CAT->getIndexTypeQualifier());
1673 if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
1674 return getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
1675 IAT->getIndexTypeQualifier());
1676
1677 if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
1678 return getDependentSizedArrayType(NewEltTy, DSAT->getSizeExpr(),
1679 DSAT->getSizeModifier(),
1680 DSAT->getIndexTypeQualifier());
1681
1682 VariableArrayType *VAT = cast<VariableArrayType>(AT);
1683 return getVariableArrayType(NewEltTy, VAT->getSizeExpr(),
1684 VAT->getSizeModifier(),
1685 VAT->getIndexTypeQualifier());
1686}
1687
1688Decl *ASTContext::getCanonicalDecl(Decl *D) {
1689 if (!D)
1690 return 0;
1691
1692 if (TagDecl *Tag = dyn_cast<TagDecl>(D)) {
1693 QualType T = getTagDeclType(Tag);
1694 return cast<TagDecl>(cast<TagType>(T.getTypePtr()->CanonicalType)
1695 ->getDecl());
1696 }
1697
1698 if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(D)) {
1699 while (Template->getPreviousDeclaration())
1700 Template = Template->getPreviousDeclaration();
1701 return Template;
1702 }
1703
1704 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1705 while (Function->getPreviousDeclaration())
1706 Function = Function->getPreviousDeclaration();
1707 return const_cast<FunctionDecl *>(Function);
1708 }
1709
1710 if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
1711 while (Var->getPreviousDeclaration())
1712 Var = Var->getPreviousDeclaration();
1713 return const_cast<VarDecl *>(Var);
1714 }
1715
1716 return D;
1717}
1718
1719TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
1720 // If this template name refers to a template, the canonical
1721 // template name merely stores the template itself.
1722 if (TemplateDecl *Template = Name.getAsTemplateDecl())
1723 return TemplateName(cast<TemplateDecl>(getCanonicalDecl(Template)));
1724
1725 DependentTemplateName *DTN = Name.getAsDependentTemplateName();
1726 assert(DTN && "Non-dependent template names must refer to template decls.");
1727 return DTN->CanonicalTemplateName;
1728}
1729
1730NestedNameSpecifier *
1731ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
1732 if (!NNS)
1733 return 0;
1734
1735 switch (NNS->getKind()) {
1736 case NestedNameSpecifier::Identifier:
1737 // Canonicalize the prefix but keep the identifier the same.
1738 return NestedNameSpecifier::Create(*this,
1739 getCanonicalNestedNameSpecifier(NNS->getPrefix()),
1740 NNS->getAsIdentifier());
1741
1742 case NestedNameSpecifier::Namespace:
1743 // A namespace is canonical; build a nested-name-specifier with
1744 // this namespace and no prefix.
1745 return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
1746
1747 case NestedNameSpecifier::TypeSpec:
1748 case NestedNameSpecifier::TypeSpecWithTemplate: {
1749 QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
1750 NestedNameSpecifier *Prefix = 0;
1751
1752 // FIXME: This isn't the right check!
1753 if (T->isDependentType())
1754 Prefix = getCanonicalNestedNameSpecifier(NNS->getPrefix());
1755
1756 return NestedNameSpecifier::Create(*this, Prefix,
1757 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
1758 T.getTypePtr());
1759 }
1760
1761 case NestedNameSpecifier::Global:
1762 // The global specifier is canonical and unique.
1763 return NNS;
1764 }
1765
1766 // Required to silence a GCC warning
1767 return 0;
1768}
1769
1770
1771const ArrayType *ASTContext::getAsArrayType(QualType T) {
1772 // Handle the non-qualified case efficiently.
1773 if (T.getCVRQualifiers() == 0) {
1774 // Handle the common positive case fast.
1775 if (const ArrayType *AT = dyn_cast<ArrayType>(T))
1776 return AT;
1777 }
1778
1779 // Handle the common negative case fast, ignoring CVR qualifiers.
1780 QualType CType = T->getCanonicalTypeInternal();
1781
1782 // Make sure to look through type qualifiers (like ExtQuals) for the negative
1783 // test.
1784 if (!isa<ArrayType>(CType) &&
1785 !isa<ArrayType>(CType.getUnqualifiedType()))
1786 return 0;
1787
1788 // Apply any CVR qualifiers from the array type to the element type. This
1789 // implements C99 6.7.3p8: "If the specification of an array type includes
1790 // any type qualifiers, the element type is so qualified, not the array type."
1791
1792 // If we get here, we either have type qualifiers on the type, or we have
1793 // sugar such as a typedef in the way. If we have type qualifiers on the type
1794 // we must propagate them down into the elemeng type.
1795 unsigned CVRQuals = T.getCVRQualifiers();
1796 unsigned AddrSpace = 0;
1797 Type *Ty = T.getTypePtr();
1798
1799 // Rip through ExtQualType's and typedefs to get to a concrete type.
1800 while (1) {
1801 if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(Ty)) {
1802 AddrSpace = EXTQT->getAddressSpace();
1803 Ty = EXTQT->getBaseType();
1804 } else {
1805 T = Ty->getDesugaredType();
1806 if (T.getTypePtr() == Ty && T.getCVRQualifiers() == 0)
1807 break;
1808 CVRQuals |= T.getCVRQualifiers();
1809 Ty = T.getTypePtr();
1810 }
1811 }
1812
1813 // If we have a simple case, just return now.
1814 const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
1815 if (ATy == 0 || (AddrSpace == 0 && CVRQuals == 0))
1816 return ATy;
1817
1818 // Otherwise, we have an array and we have qualifiers on it. Push the
1819 // qualifiers into the array element type and return a new array type.
1820 // Get the canonical version of the element with the extra qualifiers on it.
1821 // This can recursively sink qualifiers through multiple levels of arrays.
1822 QualType NewEltTy = ATy->getElementType();
1823 if (AddrSpace)
1824 NewEltTy = getAddrSpaceQualType(NewEltTy, AddrSpace);
1825 NewEltTy = NewEltTy.getWithAdditionalQualifiers(CVRQuals);
1826
1827 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
1828 return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
1829 CAT->getSizeModifier(),
1830 CAT->getIndexTypeQualifier()));
1831 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
1832 return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
1833 IAT->getSizeModifier(),
1834 IAT->getIndexTypeQualifier()));
1835
1836 if (const DependentSizedArrayType *DSAT
1837 = dyn_cast<DependentSizedArrayType>(ATy))
1838 return cast<ArrayType>(
1839 getDependentSizedArrayType(NewEltTy,
1840 DSAT->getSizeExpr(),
1841 DSAT->getSizeModifier(),
1842 DSAT->getIndexTypeQualifier()));
1843
1844 const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
1845 return cast<ArrayType>(getVariableArrayType(NewEltTy, VAT->getSizeExpr(),
1846 VAT->getSizeModifier(),
1847 VAT->getIndexTypeQualifier()));
1848}
1849
1850
1851/// getArrayDecayedType - Return the properly qualified result of decaying the
1852/// specified array type to a pointer. This operation is non-trivial when
1853/// handling typedefs etc. The canonical type of "T" must be an array type,
1854/// this returns a pointer to a properly qualified element of the array.
1855///
1856/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
1857QualType ASTContext::getArrayDecayedType(QualType Ty) {
1858 // Get the element type with 'getAsArrayType' so that we don't lose any
1859 // typedefs in the element type of the array. This also handles propagation
1860 // of type qualifiers from the array type into the element type if present
1861 // (C99 6.7.3p8).
1862 const ArrayType *PrettyArrayType = getAsArrayType(Ty);
1863 assert(PrettyArrayType && "Not an array type!");
1864
1865 QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
1866
1867 // int x[restrict 4] -> int *restrict
1868 return PtrTy.getQualifiedType(PrettyArrayType->getIndexTypeQualifier());
1869}
1870
1871QualType ASTContext::getBaseElementType(const VariableArrayType *VAT) {
1872 QualType ElemTy = VAT->getElementType();
1873
1874 if (const VariableArrayType *VAT = getAsVariableArrayType(ElemTy))
1875 return getBaseElementType(VAT);
1876
1877 return ElemTy;
1878}
1879
1880/// getFloatingRank - Return a relative rank for floating point types.
1881/// This routine will assert if passed a built-in type that isn't a float.
1882static FloatingRank getFloatingRank(QualType T) {
1883 if (const ComplexType *CT = T->getAsComplexType())
1884 return getFloatingRank(CT->getElementType());
1885
1886 assert(T->getAsBuiltinType() && "getFloatingRank(): not a floating type");
1887 switch (T->getAsBuiltinType()->getKind()) {
1888 default: assert(0 && "getFloatingRank(): not a floating type");
1889 case BuiltinType::Float: return FloatRank;
1890 case BuiltinType::Double: return DoubleRank;
1891 case BuiltinType::LongDouble: return LongDoubleRank;
1892 }
1893}
1894
1895/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
1896/// point or a complex type (based on typeDomain/typeSize).
1897/// 'typeDomain' is a real floating point or complex type.
1898/// 'typeSize' is a real floating point or complex type.
1899QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
1900 QualType Domain) const {
1901 FloatingRank EltRank = getFloatingRank(Size);
1902 if (Domain->isComplexType()) {
1903 switch (EltRank) {
1904 default: assert(0 && "getFloatingRank(): illegal value for rank");
1905 case FloatRank: return FloatComplexTy;
1906 case DoubleRank: return DoubleComplexTy;
1907 case LongDoubleRank: return LongDoubleComplexTy;
1908 }
1909 }
1910
1911 assert(Domain->isRealFloatingType() && "Unknown domain!");
1912 switch (EltRank) {
1913 default: assert(0 && "getFloatingRank(): illegal value for rank");
1914 case FloatRank: return FloatTy;
1915 case DoubleRank: return DoubleTy;
1916 case LongDoubleRank: return LongDoubleTy;
1917 }
1918}
1919
1920/// getFloatingTypeOrder - Compare the rank of the two specified floating
1921/// point types, ignoring the domain of the type (i.e. 'double' ==
1922/// '_Complex double'). If LHS > RHS, return 1. If LHS == RHS, return 0. If
1923/// LHS < RHS, return -1.
1924int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
1925 FloatingRank LHSR = getFloatingRank(LHS);
1926 FloatingRank RHSR = getFloatingRank(RHS);
1927
1928 if (LHSR == RHSR)
1929 return 0;
1930 if (LHSR > RHSR)
1931 return 1;
1932 return -1;
1933}
1934
1935/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
1936/// routine will assert if passed a built-in type that isn't an integer or enum,
1937/// or if it is not canonicalized.
1938unsigned ASTContext::getIntegerRank(Type *T) {
1939 assert(T->isCanonical() && "T should be canonicalized");
1940 if (EnumType* ET = dyn_cast<EnumType>(T))
1941 T = ET->getDecl()->getIntegerType().getTypePtr();
1942
1943 // There are two things which impact the integer rank: the width, and
1944 // the ordering of builtins. The builtin ordering is encoded in the
1945 // bottom three bits; the width is encoded in the bits above that.
1946 if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T)) {
1947 return FWIT->getWidth() << 3;
1948 }
1949
1950 switch (cast<BuiltinType>(T)->getKind()) {
1951 default: assert(0 && "getIntegerRank(): not a built-in integer");
1952 case BuiltinType::Bool:
1953 return 1 + (getIntWidth(BoolTy) << 3);
1954 case BuiltinType::Char_S:
1955 case BuiltinType::Char_U:
1956 case BuiltinType::SChar:
1957 case BuiltinType::UChar:
1958 return 2 + (getIntWidth(CharTy) << 3);
1959 case BuiltinType::Short:
1960 case BuiltinType::UShort:
1961 return 3 + (getIntWidth(ShortTy) << 3);
1962 case BuiltinType::Int:
1963 case BuiltinType::UInt:
1964 return 4 + (getIntWidth(IntTy) << 3);
1965 case BuiltinType::Long:
1966 case BuiltinType::ULong:
1967 return 5 + (getIntWidth(LongTy) << 3);
1968 case BuiltinType::LongLong:
1969 case BuiltinType::ULongLong:
1970 return 6 + (getIntWidth(LongLongTy) << 3);
1971 case BuiltinType::Int128:
1972 case BuiltinType::UInt128:
1973 return 7 + (getIntWidth(Int128Ty) << 3);
1974 }
1975}
1976
1977/// getIntegerTypeOrder - Returns the highest ranked integer type:
1978/// C99 6.3.1.8p1. If LHS > RHS, return 1. If LHS == RHS, return 0. If
1979/// LHS < RHS, return -1.
1980int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
1981 Type *LHSC = getCanonicalType(LHS).getTypePtr();
1982 Type *RHSC = getCanonicalType(RHS).getTypePtr();
1983 if (LHSC == RHSC) return 0;
1984
1985 bool LHSUnsigned = LHSC->isUnsignedIntegerType();
1986 bool RHSUnsigned = RHSC->isUnsignedIntegerType();
1987
1988 unsigned LHSRank = getIntegerRank(LHSC);
1989 unsigned RHSRank = getIntegerRank(RHSC);
1990
1991 if (LHSUnsigned == RHSUnsigned) { // Both signed or both unsigned.
1992 if (LHSRank == RHSRank) return 0;
1993 return LHSRank > RHSRank ? 1 : -1;
1994 }
1995
1996 // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
1997 if (LHSUnsigned) {
1998 // If the unsigned [LHS] type is larger, return it.
1999 if (LHSRank >= RHSRank)
2000 return 1;
2001
2002 // If the signed type can represent all values of the unsigned type, it
2003 // wins. Because we are dealing with 2's complement and types that are
2004 // powers of two larger than each other, this is always safe.
2005 return -1;
2006 }
2007
2008 // If the unsigned [RHS] type is larger, return it.
2009 if (RHSRank >= LHSRank)
2010 return -1;
2011
2012 // If the signed type can represent all values of the unsigned type, it
2013 // wins. Because we are dealing with 2's complement and types that are
2014 // powers of two larger than each other, this is always safe.
2015 return 1;
2016}
2017
2018// getCFConstantStringType - Return the type used for constant CFStrings.
2019QualType ASTContext::getCFConstantStringType() {
2020 if (!CFConstantStringTypeDecl) {
2021 CFConstantStringTypeDecl =
2022 RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2023 &Idents.get("NSConstantString"));
2024 QualType FieldTypes[4];
2025
2026 // const int *isa;
2027 FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const));
2028 // int flags;
2029 FieldTypes[1] = IntTy;
2030 // const char *str;
2031 FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const));
2032 // long length;
2033 FieldTypes[3] = LongTy;
2034
2035 // Create fields
2036 for (unsigned i = 0; i < 4; ++i) {
2037 FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
2038 SourceLocation(), 0,
2039 FieldTypes[i], /*BitWidth=*/0,
2040 /*Mutable=*/false);
2041 CFConstantStringTypeDecl->addDecl(*this, Field);
2042 }
2043
2044 CFConstantStringTypeDecl->completeDefinition(*this);
2045 }
2046
2047 return getTagDeclType(CFConstantStringTypeDecl);
2048}
2049
2050void ASTContext::setCFConstantStringType(QualType T) {
2051 const RecordType *Rec = T->getAsRecordType();
2052 assert(Rec && "Invalid CFConstantStringType");
2053 CFConstantStringTypeDecl = Rec->getDecl();
2054}
2055
2056QualType ASTContext::getObjCFastEnumerationStateType()
2057{
2058 if (!ObjCFastEnumerationStateTypeDecl) {
2059 ObjCFastEnumerationStateTypeDecl =
2060 RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2061 &Idents.get("__objcFastEnumerationState"));
2062
2063 QualType FieldTypes[] = {
2064 UnsignedLongTy,
2065 getPointerType(ObjCIdType),
2066 getPointerType(UnsignedLongTy),
2067 getConstantArrayType(UnsignedLongTy,
2068 llvm::APInt(32, 5), ArrayType::Normal, 0)
2069 };
2070
2071 for (size_t i = 0; i < 4; ++i) {
2072 FieldDecl *Field = FieldDecl::Create(*this,
2073 ObjCFastEnumerationStateTypeDecl,
2074 SourceLocation(), 0,
2075 FieldTypes[i], /*BitWidth=*/0,
2076 /*Mutable=*/false);
2077 ObjCFastEnumerationStateTypeDecl->addDecl(*this, Field);
2078 }
2079
2080 ObjCFastEnumerationStateTypeDecl->completeDefinition(*this);
2081 }
2082
2083 return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
2084}
2085
2086void ASTContext::setObjCFastEnumerationStateType(QualType T) {
2087 const RecordType *Rec = T->getAsRecordType();
2088 assert(Rec && "Invalid ObjCFAstEnumerationStateType");
2089 ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
2090}
2091
2092// This returns true if a type has been typedefed to BOOL:
2093// typedef <type> BOOL;
2094static bool isTypeTypedefedAsBOOL(QualType T) {
2095 if (const TypedefType *TT = dyn_cast<TypedefType>(T))
2096 if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
2097 return II->isStr("BOOL");
2098
2099 return false;
2100}
2101
2102/// getObjCEncodingTypeSize returns size of type for objective-c encoding
2103/// purpose.
2104int ASTContext::getObjCEncodingTypeSize(QualType type) {
2105 uint64_t sz = getTypeSize(type);
2106
2107 // Make all integer and enum types at least as large as an int
2108 if (sz > 0 && type->isIntegralType())
2109 sz = std::max(sz, getTypeSize(IntTy));
2110 // Treat arrays as pointers, since that's how they're passed in.
2111 else if (type->isArrayType())
2112 sz = getTypeSize(VoidPtrTy);
2113 return sz / getTypeSize(CharTy);
2114}
2115
2116/// getObjCEncodingForMethodDecl - Return the encoded type for this method
2117/// declaration.
2118void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
2119 std::string& S) {
2120 // FIXME: This is not very efficient.
2121 // Encode type qualifer, 'in', 'inout', etc. for the return type.
2122 getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
2123 // Encode result type.
2124 getObjCEncodingForType(Decl->getResultType(), S);
2125 // Compute size of all parameters.
2126 // Start with computing size of a pointer in number of bytes.
2127 // FIXME: There might(should) be a better way of doing this computation!
2128 SourceLocation Loc;
2129 int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
2130 // The first two arguments (self and _cmd) are pointers; account for
2131 // their size.
2132 int ParmOffset = 2 * PtrSize;
2133 for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
2134 E = Decl->param_end(); PI != E; ++PI) {
2135 QualType PType = (*PI)->getType();
2136 int sz = getObjCEncodingTypeSize(PType);
2137 assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type");
2138 ParmOffset += sz;
2139 }
2140 S += llvm::utostr(ParmOffset);
2141 S += "@0:";
2142 S += llvm::utostr(PtrSize);
2143
2144 // Argument types.
2145 ParmOffset = 2 * PtrSize;
2146 for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
2147 E = Decl->param_end(); PI != E; ++PI) {
2148 ParmVarDecl *PVDecl = *PI;
2149 QualType PType = PVDecl->getOriginalType();
2150 if (const ArrayType *AT =
2151 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
2152 // Use array's original type only if it has known number of
2153 // elements.
2154 if (!isa<ConstantArrayType>(AT))
2155 PType = PVDecl->getType();
2156 } else if (PType->isFunctionType())
2157 PType = PVDecl->getType();
2158 // Process argument qualifiers for user supplied arguments; such as,
2159 // 'in', 'inout', etc.
2160 getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
2161 getObjCEncodingForType(PType, S);
2162 S += llvm::utostr(ParmOffset);
2163 ParmOffset += getObjCEncodingTypeSize(PType);
2164 }
2165}
2166
2167/// getObjCEncodingForPropertyDecl - Return the encoded type for this
2168/// property declaration. If non-NULL, Container must be either an
2169/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
2170/// NULL when getting encodings for protocol properties.
2171/// Property attributes are stored as a comma-delimited C string. The simple
2172/// attributes readonly and bycopy are encoded as single characters. The
2173/// parametrized attributes, getter=name, setter=name, and ivar=name, are
2174/// encoded as single characters, followed by an identifier. Property types
2175/// are also encoded as a parametrized attribute. The characters used to encode
2176/// these attributes are defined by the following enumeration:
2177/// @code
2178/// enum PropertyAttributes {
2179/// kPropertyReadOnly = 'R', // property is read-only.
2180/// kPropertyBycopy = 'C', // property is a copy of the value last assigned
2181/// kPropertyByref = '&', // property is a reference to the value last assigned
2182/// kPropertyDynamic = 'D', // property is dynamic
2183/// kPropertyGetter = 'G', // followed by getter selector name
2184/// kPropertySetter = 'S', // followed by setter selector name
2185/// kPropertyInstanceVariable = 'V' // followed by instance variable name
2186/// kPropertyType = 't' // followed by old-style type encoding.
2187/// kPropertyWeak = 'W' // 'weak' property
2188/// kPropertyStrong = 'P' // property GC'able
2189/// kPropertyNonAtomic = 'N' // property non-atomic
2190/// };
2191/// @endcode
2192void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
2193 const Decl *Container,
2194 std::string& S) {
2195 // Collect information from the property implementation decl(s).
2196 bool Dynamic = false;
2197 ObjCPropertyImplDecl *SynthesizePID = 0;
2198
2199 // FIXME: Duplicated code due to poor abstraction.
2200 if (Container) {
2201 if (const ObjCCategoryImplDecl *CID =
2202 dyn_cast<ObjCCategoryImplDecl>(Container)) {
2203 for (ObjCCategoryImplDecl::propimpl_iterator
2204 i = CID->propimpl_begin(*this), e = CID->propimpl_end(*this);
2205 i != e; ++i) {
2206 ObjCPropertyImplDecl *PID = *i;
2207 if (PID->getPropertyDecl() == PD) {
2208 if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
2209 Dynamic = true;
2210 } else {
2211 SynthesizePID = PID;
2212 }
2213 }
2214 }
2215 } else {
2216 const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
2217 for (ObjCCategoryImplDecl::propimpl_iterator
2218 i = OID->propimpl_begin(*this), e = OID->propimpl_end(*this);
2219 i != e; ++i) {
2220 ObjCPropertyImplDecl *PID = *i;
2221 if (PID->getPropertyDecl() == PD) {
2222 if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
2223 Dynamic = true;
2224 } else {
2225 SynthesizePID = PID;
2226 }
2227 }
2228 }
2229 }
2230 }
2231
2232 // FIXME: This is not very efficient.
2233 S = "T";
2234
2235 // Encode result type.
2236 // GCC has some special rules regarding encoding of properties which
2237 // closely resembles encoding of ivars.
2238 getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
2239 true /* outermost type */,
2240 true /* encoding for property */);
2241
2242 if (PD->isReadOnly()) {
2243 S += ",R";
2244 } else {
2245 switch (PD->getSetterKind()) {
2246 case ObjCPropertyDecl::Assign: break;
2247 case ObjCPropertyDecl::Copy: S += ",C"; break;
2248 case ObjCPropertyDecl::Retain: S += ",&"; break;
2249 }
2250 }
2251
2252 // It really isn't clear at all what this means, since properties
2253 // are "dynamic by default".
2254 if (Dynamic)
2255 S += ",D";
2256
2257 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
2258 S += ",N";
2259
2260 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
2261 S += ",G";
2262 S += PD->getGetterName().getAsString();
2263 }
2264
2265 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
2266 S += ",S";
2267 S += PD->getSetterName().getAsString();
2268 }
2269
2270 if (SynthesizePID) {
2271 const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
2272 S += ",V";
2273 S += OID->getNameAsString();
2274 }
2275
2276 // FIXME: OBJCGC: weak & strong
2277}
2278
2279/// getLegacyIntegralTypeEncoding -
2280/// Another legacy compatibility encoding: 32-bit longs are encoded as
2281/// 'l' or 'L' , but not always. For typedefs, we need to use
2282/// 'i' or 'I' instead if encoding a struct field, or a pointer!
2283///
2284void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
2285 if (dyn_cast<TypedefType>(PointeeTy.getTypePtr())) {
2286 if (const BuiltinType *BT = PointeeTy->getAsBuiltinType()) {
2287 if (BT->getKind() == BuiltinType::ULong &&
2288 ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
2289 PointeeTy = UnsignedIntTy;
2290 else
2291 if (BT->getKind() == BuiltinType::Long &&
2292 ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
2293 PointeeTy = IntTy;
2294 }
2295 }
2296}
2297
2298void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
2299 const FieldDecl *Field) {
2300 // We follow the behavior of gcc, expanding structures which are
2301 // directly pointed to, and expanding embedded structures. Note that
2302 // these rules are sufficient to prevent recursive encoding of the
2303 // same type.
2304 getObjCEncodingForTypeImpl(T, S, true, true, Field,
2305 true /* outermost type */);
2306}
2307
2308static void EncodeBitField(const ASTContext *Context, std::string& S,
2309 const FieldDecl *FD) {
2310 const Expr *E = FD->getBitWidth();
2311 assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
2312 ASTContext *Ctx = const_cast<ASTContext*>(Context);
2313 unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
2314 S += 'b';
2315 S += llvm::utostr(N);
2316}
2317
2318void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
2319 bool ExpandPointedToStructures,
2320 bool ExpandStructures,
2321 const FieldDecl *FD,
2322 bool OutermostType,
2323 bool EncodingProperty) {
2324 if (const BuiltinType *BT = T->getAsBuiltinType()) {
2325 if (FD && FD->isBitField()) {
2326 EncodeBitField(this, S, FD);
2327 }
2328 else {
2329 char encoding;
2330 switch (BT->getKind()) {
2331 default: assert(0 && "Unhandled builtin type kind");
2332 case BuiltinType::Void: encoding = 'v'; break;
2333 case BuiltinType::Bool: encoding = 'B'; break;
2334 case BuiltinType::Char_U:
2335 case BuiltinType::UChar: encoding = 'C'; break;
2336 case BuiltinType::UShort: encoding = 'S'; break;
2337 case BuiltinType::UInt: encoding = 'I'; break;
2338 case BuiltinType::ULong:
2339 encoding =
2340 (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q';
2341 break;
2342 case BuiltinType::UInt128: encoding = 'T'; break;
2343 case BuiltinType::ULongLong: encoding = 'Q'; break;
2344 case BuiltinType::Char_S:
2345 case BuiltinType::SChar: encoding = 'c'; break;
2346 case BuiltinType::Short: encoding = 's'; break;
2347 case BuiltinType::Int: encoding = 'i'; break;
2348 case BuiltinType::Long:
2349 encoding =
2350 (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q';
2351 break;
2352 case BuiltinType::LongLong: encoding = 'q'; break;
2353 case BuiltinType::Int128: encoding = 't'; break;
2354 case BuiltinType::Float: encoding = 'f'; break;
2355 case BuiltinType::Double: encoding = 'd'; break;
2356 case BuiltinType::LongDouble: encoding = 'd'; break;
2357 }
2358
2359 S += encoding;
2360 }
2361 } else if (const ComplexType *CT = T->getAsComplexType()) {
2362 S += 'j';
2363 getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
2364 false);
2365 } else if (T->isObjCQualifiedIdType()) {
2366 getObjCEncodingForTypeImpl(getObjCIdType(), S,
2367 ExpandPointedToStructures,
2368 ExpandStructures, FD);
2369 if (FD || EncodingProperty) {
2370 // Note that we do extended encoding of protocol qualifer list
2371 // Only when doing ivar or property encoding.
2372 const ObjCQualifiedIdType *QIDT = T->getAsObjCQualifiedIdType();
2373 S += '"';
2374 for (ObjCQualifiedIdType::qual_iterator I = QIDT->qual_begin(),
2375 E = QIDT->qual_end(); I != E; ++I) {
2376 S += '<';
2377 S += (*I)->getNameAsString();
2378 S += '>';
2379 }
2380 S += '"';
2381 }
2382 return;
2383 }
2384 else if (const PointerType *PT = T->getAsPointerType()) {
2385 QualType PointeeTy = PT->getPointeeType();
2386 bool isReadOnly = false;
2387 // For historical/compatibility reasons, the read-only qualifier of the
2388 // pointee gets emitted _before_ the '^'. The read-only qualifier of
2389 // the pointer itself gets ignored, _unless_ we are looking at a typedef!
2390 // Also, do not emit the 'r' for anything but the outermost type!
2391 if (dyn_cast<TypedefType>(T.getTypePtr())) {
2392 if (OutermostType && T.isConstQualified()) {
2393 isReadOnly = true;
2394 S += 'r';
2395 }
2396 }
2397 else if (OutermostType) {
2398 QualType P = PointeeTy;
2399 while (P->getAsPointerType())
2400 P = P->getAsPointerType()->getPointeeType();
2401 if (P.isConstQualified()) {
2402 isReadOnly = true;
2403 S += 'r';
2404 }
2405 }
2406 if (isReadOnly) {
2407 // Another legacy compatibility encoding. Some ObjC qualifier and type
2408 // combinations need to be rearranged.
2409 // Rewrite "in const" from "nr" to "rn"
2410 const char * s = S.c_str();
2411 int len = S.length();
2412 if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
2413 std::string replace = "rn";
2414 S.replace(S.end()-2, S.end(), replace);
2415 }
2416 }
2417 if (isObjCIdStructType(PointeeTy)) {
2418 S += '@';
2419 return;
2420 }
2421 else if (PointeeTy->isObjCInterfaceType()) {
2422 if (!EncodingProperty &&
2423 isa<TypedefType>(PointeeTy.getTypePtr())) {
2424 // Another historical/compatibility reason.
2425 // We encode the underlying type which comes out as
2426 // {...};
2427 S += '^';
2428 getObjCEncodingForTypeImpl(PointeeTy, S,
2429 false, ExpandPointedToStructures,
2430 NULL);
2431 return;
2432 }
2433 S += '@';
2434 if (FD || EncodingProperty) {
2435 const ObjCInterfaceType *OIT =
2436 PointeeTy.getUnqualifiedType()->getAsObjCInterfaceType();
2437 ObjCInterfaceDecl *OI = OIT->getDecl();
2438 S += '"';
2439 S += OI->getNameAsCString();
2440 for (ObjCInterfaceType::qual_iterator I = OIT->qual_begin(),
2441 E = OIT->qual_end(); I != E; ++I) {
2442 S += '<';
2443 S += (*I)->getNameAsString();
2444 S += '>';
2445 }
2446 S += '"';
2447 }
2448 return;
2449 } else if (isObjCClassStructType(PointeeTy)) {
2450 S += '#';
2451 return;
2452 } else if (isObjCSelType(PointeeTy)) {
2453 S += ':';
2454 return;
2455 }
2456
2457 if (PointeeTy->isCharType()) {
2458 // char pointer types should be encoded as '*' unless it is a
2459 // type that has been typedef'd to 'BOOL'.
2460 if (!isTypeTypedefedAsBOOL(PointeeTy)) {
2461 S += '*';
2462 return;
2463 }
2464 }
2465
2466 S += '^';
2467 getLegacyIntegralTypeEncoding(PointeeTy);
2468
2469 getObjCEncodingForTypeImpl(PointeeTy, S,
2470 false, ExpandPointedToStructures,
2471 NULL);
2472 } else if (const ArrayType *AT =
2473 // Ignore type qualifiers etc.
2474 dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
2475 if (isa<IncompleteArrayType>(AT)) {
2476 // Incomplete arrays are encoded as a pointer to the array element.
2477 S += '^';
2478
2479 getObjCEncodingForTypeImpl(AT->getElementType(), S,
2480 false, ExpandStructures, FD);
2481 } else {
2482 S += '[';
2483
2484 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2485 S += llvm::utostr(CAT->getSize().getZExtValue());
2486 else {
2487 //Variable length arrays are encoded as a regular array with 0 elements.
2488 assert(isa<VariableArrayType>(AT) && "Unknown array type!");
2489 S += '0';
2490 }
2491
2492 getObjCEncodingForTypeImpl(AT->getElementType(), S,
2493 false, ExpandStructures, FD);
2494 S += ']';
2495 }
2496 } else if (T->getAsFunctionType()) {
2497 S += '?';
2498 } else if (const RecordType *RTy = T->getAsRecordType()) {
2499 RecordDecl *RDecl = RTy->getDecl();
2500 S += RDecl->isUnion() ? '(' : '{';
2501 // Anonymous structures print as '?'
2502 if (const IdentifierInfo *II = RDecl->getIdentifier()) {
2503 S += II->getName();
2504 } else {
2505 S += '?';
2506 }
2507 if (ExpandStructures) {
2508 S += '=';
2509 for (RecordDecl::field_iterator Field = RDecl->field_begin(*this),
2510 FieldEnd = RDecl->field_end(*this);
2511 Field != FieldEnd; ++Field) {
2512 if (FD) {
2513 S += '"';
2514 S += Field->getNameAsString();
2515 S += '"';
2516 }
2517
2518 // Special case bit-fields.
2519 if (Field->isBitField()) {
2520 getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
2521 (*Field));
2522 } else {
2523 QualType qt = Field->getType();
2524 getLegacyIntegralTypeEncoding(qt);
2525 getObjCEncodingForTypeImpl(qt, S, false, true,
2526 FD);
2527 }
2528 }
2529 }
2530 S += RDecl->isUnion() ? ')' : '}';
2531 } else if (T->isEnumeralType()) {
2532 if (FD && FD->isBitField())
2533 EncodeBitField(this, S, FD);
2534 else
2535 S += 'i';
2536 } else if (T->isBlockPointerType()) {
2537 S += "@?"; // Unlike a pointer-to-function, which is "^?".
2538 } else if (T->isObjCInterfaceType()) {
2539 // @encode(class_name)
2540 ObjCInterfaceDecl *OI = T->getAsObjCInterfaceType()->getDecl();
2541 S += '{';
2542 const IdentifierInfo *II = OI->getIdentifier();
2543 S += II->getName();
2544 S += '=';
2545 llvm::SmallVector<FieldDecl*, 32> RecFields;
2546 CollectObjCIvars(OI, RecFields);
2547 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
2548 if (RecFields[i]->isBitField())
2549 getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
2550 RecFields[i]);
2551 else
2552 getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
2553 FD);
2554 }
2555 S += '}';
2556 }
2557 else
2558 assert(0 && "@encode for type not implemented!");
2559}
2560
2561void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
2562 std::string& S) const {
2563 if (QT & Decl::OBJC_TQ_In)
2564 S += 'n';
2565 if (QT & Decl::OBJC_TQ_Inout)
2566 S += 'N';
2567 if (QT & Decl::OBJC_TQ_Out)
2568 S += 'o';
2569 if (QT & Decl::OBJC_TQ_Bycopy)
2570 S += 'O';
2571 if (QT & Decl::OBJC_TQ_Byref)
2572 S += 'R';
2573 if (QT & Decl::OBJC_TQ_Oneway)
2574 S += 'V';
2575}
2576
2577void ASTContext::setBuiltinVaListType(QualType T)
2578{
2579 assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
2580
2581 BuiltinVaListType = T;
2582}
2583
2584void ASTContext::setObjCIdType(QualType T)
2585{
2586 ObjCIdType = T;
2587
2588 const TypedefType *TT = T->getAsTypedefType();
2589 if (!TT)
2590 return;
2591
2592 TypedefDecl *TD = TT->getDecl();
2593
2594 // typedef struct objc_object *id;
2595 const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
2596 // User error - caller will issue diagnostics.
2597 if (!ptr)
2598 return;
2599 const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
2600 // User error - caller will issue diagnostics.
2601 if (!rec)
2602 return;
2603 IdStructType = rec;
2604}
2605
2606void ASTContext::setObjCSelType(QualType T)
2607{
2608 ObjCSelType = T;
2609
2610 const TypedefType *TT = T->getAsTypedefType();
2611 if (!TT)
2612 return;
2613 TypedefDecl *TD = TT->getDecl();
2614
2615 // typedef struct objc_selector *SEL;
2616 const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
2617 if (!ptr)
2618 return;
2619 const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
2620 if (!rec)
2621 return;
2622 SelStructType = rec;
2623}
2624
2625void ASTContext::setObjCProtoType(QualType QT)
2626{
2627 ObjCProtoType = QT;
2628}
2629
2630void ASTContext::setObjCClassType(QualType T)
2631{
2632 ObjCClassType = T;
2633
2634 const TypedefType *TT = T->getAsTypedefType();
2635 if (!TT)
2636 return;
2637 TypedefDecl *TD = TT->getDecl();
2638
2639 // typedef struct objc_class *Class;
2640 const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
2641 assert(ptr && "'Class' incorrectly typed");
2642 const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
2643 assert(rec && "'Class' incorrectly typed");
2644 ClassStructType = rec;
2645}
2646
2647void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
2648 assert(ObjCConstantStringType.isNull() &&
2649 "'NSConstantString' type already set!");
2650
2651 ObjCConstantStringType = getObjCInterfaceType(Decl);
2652}
2653
2654/// \brief Retrieve the template name that represents a qualified
2655/// template name such as \c std::vector.
2656TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
2657 bool TemplateKeyword,
2658 TemplateDecl *Template) {
2659 llvm::FoldingSetNodeID ID;
2660 QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
2661
2662 void *InsertPos = 0;
2663 QualifiedTemplateName *QTN =
2664 QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
2665 if (!QTN) {
2666 QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
2667 QualifiedTemplateNames.InsertNode(QTN, InsertPos);
2668 }
2669
2670 return TemplateName(QTN);
2671}
2672
2673/// \brief Retrieve the template name that represents a dependent
2674/// template name such as \c MetaFun::template apply.
2675TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
2676 const IdentifierInfo *Name) {
2677 assert(NNS->isDependent() && "Nested name specifier must be dependent");
2678
2679 llvm::FoldingSetNodeID ID;
2680 DependentTemplateName::Profile(ID, NNS, Name);
2681
2682 void *InsertPos = 0;
2683 DependentTemplateName *QTN =
2684 DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
2685
2686 if (QTN)
2687 return TemplateName(QTN);
2688
2689 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2690 if (CanonNNS == NNS) {
2691 QTN = new (*this,4) DependentTemplateName(NNS, Name);
2692 } else {
2693 TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
2694 QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
2695 }
2696
2697 DependentTemplateNames.InsertNode(QTN, InsertPos);
2698 return TemplateName(QTN);
2699}
2700
2701/// getFromTargetType - Given one of the integer types provided by
2702/// TargetInfo, produce the corresponding type. The unsigned @p Type
2703/// is actually a value of type @c TargetInfo::IntType.
2704QualType ASTContext::getFromTargetType(unsigned Type) const {
2705 switch (Type) {
2706 case TargetInfo::NoInt: return QualType();
2707 case TargetInfo::SignedShort: return ShortTy;
2708 case TargetInfo::UnsignedShort: return UnsignedShortTy;
2709 case TargetInfo::SignedInt: return IntTy;
2710 case TargetInfo::UnsignedInt: return UnsignedIntTy;
2711 case TargetInfo::SignedLong: return LongTy;
2712 case TargetInfo::UnsignedLong: return UnsignedLongTy;
2713 case TargetInfo::SignedLongLong: return LongLongTy;
2714 case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
2715 }
2716
2717 assert(false && "Unhandled TargetInfo::IntType value");
2718 return QualType();
2719}
2720
2721//===----------------------------------------------------------------------===//
2722// Type Predicates.
2723//===----------------------------------------------------------------------===//
2724
2725/// isObjCNSObjectType - Return true if this is an NSObject object using
2726/// NSObject attribute on a c-style pointer type.
2727/// FIXME - Make it work directly on types.
2728///
2729bool ASTContext::isObjCNSObjectType(QualType Ty) const {
2730 if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
2731 if (TypedefDecl *TD = TDT->getDecl())
2732 if (TD->getAttr<ObjCNSObjectAttr>())
2733 return true;
2734 }
2735 return false;
2736}
2737
2738/// isObjCObjectPointerType - Returns true if type is an Objective-C pointer
2739/// to an object type. This includes "id" and "Class" (two 'special' pointers
2740/// to struct), Interface* (pointer to ObjCInterfaceType) and id<P> (qualified
2741/// ID type).
2742bool ASTContext::isObjCObjectPointerType(QualType Ty) const {
2743 if (Ty->isObjCQualifiedIdType())
2744 return true;
2745
2746 // Blocks are objects.
2747 if (Ty->isBlockPointerType())
2748 return true;
2749
2750 // All other object types are pointers.
2751 const PointerType *PT = Ty->getAsPointerType();
2752 if (PT == 0)
2753 return false;
2754
2755 // If this a pointer to an interface (e.g. NSString*), it is ok.
2756 if (PT->getPointeeType()->isObjCInterfaceType() ||
2757 // If is has NSObject attribute, OK as well.
2758 isObjCNSObjectType(Ty))
2759 return true;
2760
2761 // Check to see if this is 'id' or 'Class', both of which are typedefs for
2762 // pointer types. This looks for the typedef specifically, not for the
2763 // underlying type. Iteratively strip off typedefs so that we can handle
2764 // typedefs of typedefs.
2765 while (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
2766 if (Ty.getUnqualifiedType() == getObjCIdType() ||
2767 Ty.getUnqualifiedType() == getObjCClassType())
2768 return true;
2769
2770 Ty = TDT->getDecl()->getUnderlyingType();
2771 }
2772
2773 return false;
2774}
2775
2776/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
2777/// garbage collection attribute.
2778///
2779QualType::GCAttrTypes ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
2780 QualType::GCAttrTypes GCAttrs = QualType::GCNone;
2781 if (getLangOptions().ObjC1 &&
2782 getLangOptions().getGCMode() != LangOptions::NonGC) {
2783 GCAttrs = Ty.getObjCGCAttr();
2784 // Default behavious under objective-c's gc is for objective-c pointers
2785 // (or pointers to them) be treated as though they were declared
2786 // as __strong.
2787 if (GCAttrs == QualType::GCNone) {
2788 if (isObjCObjectPointerType(Ty))
2789 GCAttrs = QualType::Strong;
2790 else if (Ty->isPointerType())
2791 return getObjCGCAttrKind(Ty->getAsPointerType()->getPointeeType());
2792 }
2793 // Non-pointers have none gc'able attribute regardless of the attribute
2794 // set on them.
2795 else if (!Ty->isPointerType() && !isObjCObjectPointerType(Ty))
2796 return QualType::GCNone;
2797 }
2798 return GCAttrs;
2799}
2800
2801//===----------------------------------------------------------------------===//
2802// Type Compatibility Testing
2803//===----------------------------------------------------------------------===//
2804
2805/// typesAreBlockCompatible - This routine is called when comparing two
2806/// block types. Types must be strictly compatible here. For example,
2807/// C unfortunately doesn't produce an error for the following:
2808///
2809/// int (*emptyArgFunc)();
2810/// int (*intArgList)(int) = emptyArgFunc;
2811///
2812/// For blocks, we will produce an error for the following (similar to C++):
2813///
2814/// int (^emptyArgBlock)();
2815/// int (^intArgBlock)(int) = emptyArgBlock;
2816///
2817/// FIXME: When the dust settles on this integration, fold this into mergeTypes.
2818///
2819bool ASTContext::typesAreBlockCompatible(QualType lhs, QualType rhs) {
2820 const FunctionType *lbase = lhs->getAsFunctionType();
2821 const FunctionType *rbase = rhs->getAsFunctionType();
2822 const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
2823 const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
2824 if (lproto && rproto == 0)
2825 return false;
2826 return !mergeTypes(lhs, rhs).isNull();
2827}
2828
2829/// areCompatVectorTypes - Return true if the two specified vector types are
2830/// compatible.
2831static bool areCompatVectorTypes(const VectorType *LHS,
2832 const VectorType *RHS) {
2833 assert(LHS->isCanonical() && RHS->isCanonical());
2834 return LHS->getElementType() == RHS->getElementType() &&
2835 LHS->getNumElements() == RHS->getNumElements();
2836}
2837
2838/// canAssignObjCInterfaces - Return true if the two interface types are
2839/// compatible for assignment from RHS to LHS. This handles validation of any
2840/// protocol qualifiers on the LHS or RHS.
2841///
2842bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
2843 const ObjCInterfaceType *RHS) {
2844 // Verify that the base decls are compatible: the RHS must be a subclass of
2845 // the LHS.
2846 if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
2847 return false;
2848
2849 // RHS must have a superset of the protocols in the LHS. If the LHS is not
2850 // protocol qualified at all, then we are good.
2851 if (!isa<ObjCQualifiedInterfaceType>(LHS))
2852 return true;
2853
2854 // Okay, we know the LHS has protocol qualifiers. If the RHS doesn't, then it
2855 // isn't a superset.
2856 if (!isa<ObjCQualifiedInterfaceType>(RHS))
2857 return true; // FIXME: should return false!
2858
2859 // Finally, we must have two protocol-qualified interfaces.
2860 const ObjCQualifiedInterfaceType *LHSP =cast<ObjCQualifiedInterfaceType>(LHS);
2861 const ObjCQualifiedInterfaceType *RHSP =cast<ObjCQualifiedInterfaceType>(RHS);
2862
2863 // All LHS protocols must have a presence on the RHS.
2864 assert(LHSP->qual_begin() != LHSP->qual_end() && "Empty LHS protocol list?");
2865
2866 for (ObjCQualifiedInterfaceType::qual_iterator LHSPI = LHSP->qual_begin(),
2867 LHSPE = LHSP->qual_end();
2868 LHSPI != LHSPE; LHSPI++) {
2869 bool RHSImplementsProtocol = false;
2870
2871 // If the RHS doesn't implement the protocol on the left, the types
2872 // are incompatible.
2873 for (ObjCQualifiedInterfaceType::qual_iterator RHSPI = RHSP->qual_begin(),
2874 RHSPE = RHSP->qual_end();
2875 !RHSImplementsProtocol && (RHSPI != RHSPE); RHSPI++) {
2876 if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier()))
2877 RHSImplementsProtocol = true;
2878 }
2879 // FIXME: For better diagnostics, consider passing back the protocol name.
2880 if (!RHSImplementsProtocol)
2881 return false;
2882 }
2883 // The RHS implements all protocols listed on the LHS.
2884 return true;
2885}
2886
2887bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
2888 // get the "pointed to" types
2889 const PointerType *LHSPT = LHS->getAsPointerType();
2890 const PointerType *RHSPT = RHS->getAsPointerType();
2891
2892 if (!LHSPT || !RHSPT)
2893 return false;
2894
2895 QualType lhptee = LHSPT->getPointeeType();
2896 QualType rhptee = RHSPT->getPointeeType();
2897 const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
2898 const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
2899 // ID acts sort of like void* for ObjC interfaces
2900 if (LHSIface && isObjCIdStructType(rhptee))
2901 return true;
2902 if (RHSIface && isObjCIdStructType(lhptee))
2903 return true;
2904 if (!LHSIface || !RHSIface)
2905 return false;
2906 return canAssignObjCInterfaces(LHSIface, RHSIface) ||
2907 canAssignObjCInterfaces(RHSIface, LHSIface);
2908}
2909
2910/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
2911/// both shall have the identically qualified version of a compatible type.
2912/// C99 6.2.7p1: Two types have compatible types if their types are the
2913/// same. See 6.7.[2,3,5] for additional rules.
2914bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
2915 return !mergeTypes(LHS, RHS).isNull();
2916}
2917
2918QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
2919 const FunctionType *lbase = lhs->getAsFunctionType();
2920 const FunctionType *rbase = rhs->getAsFunctionType();
2921 const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
2922 const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
2923 bool allLTypes = true;
2924 bool allRTypes = true;
2925
2926 // Check return type
2927 QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
2928 if (retType.isNull()) return QualType();
2929 if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
2930 allLTypes = false;
2931 if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
2932 allRTypes = false;
2933
2934 if (lproto && rproto) { // two C99 style function prototypes
2935 assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
2936 "C++ shouldn't be here");
2937 unsigned lproto_nargs = lproto->getNumArgs();
2938 unsigned rproto_nargs = rproto->getNumArgs();
2939
2940 // Compatible functions must have the same number of arguments
2941 if (lproto_nargs != rproto_nargs)
2942 return QualType();
2943
2944 // Variadic and non-variadic functions aren't compatible
2945 if (lproto->isVariadic() != rproto->isVariadic())
2946 return QualType();
2947
2948 if (lproto->getTypeQuals() != rproto->getTypeQuals())
2949 return QualType();
2950
2951 // Check argument compatibility
2952 llvm::SmallVector<QualType, 10> types;
2953 for (unsigned i = 0; i < lproto_nargs; i++) {
2954 QualType largtype = lproto->getArgType(i).getUnqualifiedType();
2955 QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
2956 QualType argtype = mergeTypes(largtype, rargtype);
2957 if (argtype.isNull()) return QualType();
2958 types.push_back(argtype);
2959 if (getCanonicalType(argtype) != getCanonicalType(largtype))
2960 allLTypes = false;
2961 if (getCanonicalType(argtype) != getCanonicalType(rargtype))
2962 allRTypes = false;
2963 }
2964 if (allLTypes) return lhs;
2965 if (allRTypes) return rhs;
2966 return getFunctionType(retType, types.begin(), types.size(),
2967 lproto->isVariadic(), lproto->getTypeQuals());
2968 }
2969
2970 if (lproto) allRTypes = false;
2971 if (rproto) allLTypes = false;
2972
2973 const FunctionProtoType *proto = lproto ? lproto : rproto;
2974 if (proto) {
2975 assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
2976 if (proto->isVariadic()) return QualType();
2977 // Check that the types are compatible with the types that
2978 // would result from default argument promotions (C99 6.7.5.3p15).
2979 // The only types actually affected are promotable integer
2980 // types and floats, which would be passed as a different
2981 // type depending on whether the prototype is visible.
2982 unsigned proto_nargs = proto->getNumArgs();
2983 for (unsigned i = 0; i < proto_nargs; ++i) {
2984 QualType argTy = proto->getArgType(i);
2985 if (argTy->isPromotableIntegerType() ||
2986 getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
2987 return QualType();
2988 }
2989
2990 if (allLTypes) return lhs;
2991 if (allRTypes) return rhs;
2992 return getFunctionType(retType, proto->arg_type_begin(),
2993 proto->getNumArgs(), lproto->isVariadic(),
2994 lproto->getTypeQuals());
2995 }
2996
2997 if (allLTypes) return lhs;
2998 if (allRTypes) return rhs;
2999 return getFunctionNoProtoType(retType);
3000}
3001
3002QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
3003 // C++ [expr]: If an expression initially has the type "reference to T", the
3004 // type is adjusted to "T" prior to any further analysis, the expression
3005 // designates the object or function denoted by the reference, and the
3006 // expression is an lvalue unless the reference is an rvalue reference and
3007 // the expression is a function call (possibly inside parentheses).
3008 // FIXME: C++ shouldn't be going through here! The rules are different
3009 // enough that they should be handled separately.
3010 // FIXME: Merging of lvalue and rvalue references is incorrect. C++ *really*
3011 // shouldn't be going through here!
3012 if (const ReferenceType *RT = LHS->getAsReferenceType())
3013 LHS = RT->getPointeeType();
3014 if (const ReferenceType *RT = RHS->getAsReferenceType())
3015 RHS = RT->getPointeeType();
3016
3017 QualType LHSCan = getCanonicalType(LHS),
3018 RHSCan = getCanonicalType(RHS);
3019
3020 // If two types are identical, they are compatible.
3021 if (LHSCan == RHSCan)
3022 return LHS;
3023
3024 // If the qualifiers are different, the types aren't compatible
3025 // Note that we handle extended qualifiers later, in the
3026 // case for ExtQualType.
3027 if (LHSCan.getCVRQualifiers() != RHSCan.getCVRQualifiers())
3028 return QualType();
3029
3030 Type::TypeClass LHSClass = LHSCan->getTypeClass();
3031 Type::TypeClass RHSClass = RHSCan->getTypeClass();
3032
3033 // We want to consider the two function types to be the same for these
3034 // comparisons, just force one to the other.
3035 if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
3036 if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
3037
3038 // Strip off objc_gc attributes off the top level so they can be merged.
3039 // This is a complete mess, but the attribute itself doesn't make much sense.
3040 if (RHSClass == Type::ExtQual) {
3041 QualType::GCAttrTypes GCAttr = RHSCan.getObjCGCAttr();
3042 if (GCAttr != QualType::GCNone) {
3043 QualType::GCAttrTypes GCLHSAttr = LHSCan.getObjCGCAttr();
3044 // __weak attribute must appear on both declarations.
3045 // __strong attribue is redundant if other decl is an objective-c
3046 // object pointer (or decorated with __strong attribute); otherwise
3047 // issue error.
3048 if ((GCAttr == QualType::Weak && GCLHSAttr != GCAttr) ||
3049 (GCAttr == QualType::Strong && GCLHSAttr != GCAttr &&
3050 LHSCan->isPointerType() && !isObjCObjectPointerType(LHSCan) &&
3051 !isObjCIdStructType(LHSCan->getAsPointerType()->getPointeeType())))
3052 return QualType();
3053
3054 RHS = QualType(cast<ExtQualType>(RHS.getDesugaredType())->getBaseType(),
3055 RHS.getCVRQualifiers());
3056 QualType Result = mergeTypes(LHS, RHS);
3057 if (!Result.isNull()) {
3058 if (Result.getObjCGCAttr() == QualType::GCNone)
3059 Result = getObjCGCQualType(Result, GCAttr);
3060 else if (Result.getObjCGCAttr() != GCAttr)
3061 Result = QualType();
3062 }
3063 return Result;
3064 }
3065 }
3066 if (LHSClass == Type::ExtQual) {
3067 QualType::GCAttrTypes GCAttr = LHSCan.getObjCGCAttr();
3068 if (GCAttr != QualType::GCNone) {
3069 QualType::GCAttrTypes GCRHSAttr = RHSCan.getObjCGCAttr();
3070 // __weak attribute must appear on both declarations. __strong
3071 // __strong attribue is redundant if other decl is an objective-c
3072 // object pointer (or decorated with __strong attribute); otherwise
3073 // issue error.
3074 if ((GCAttr == QualType::Weak && GCRHSAttr != GCAttr) ||
3075 (GCAttr == QualType::Strong && GCRHSAttr != GCAttr &&
3076 RHSCan->isPointerType() && !isObjCObjectPointerType(RHSCan) &&
3077 !isObjCIdStructType(RHSCan->getAsPointerType()->getPointeeType())))
3078 return QualType();
3079
3080 LHS = QualType(cast<ExtQualType>(LHS.getDesugaredType())->getBaseType(),
3081 LHS.getCVRQualifiers());
3082 QualType Result = mergeTypes(LHS, RHS);
3083 if (!Result.isNull()) {
3084 if (Result.getObjCGCAttr() == QualType::GCNone)
3085 Result = getObjCGCQualType(Result, GCAttr);
3086 else if (Result.getObjCGCAttr() != GCAttr)
3087 Result = QualType();
3088 }
3089 return Result;
3090 }
3091 }
3092
3093 // Same as above for arrays
3094 if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
3095 LHSClass = Type::ConstantArray;
3096 if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
3097 RHSClass = Type::ConstantArray;
3098
3099 // Canonicalize ExtVector -> Vector.
3100 if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
3101 if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
3102
3103 // Consider qualified interfaces and interfaces the same.
3104 if (LHSClass == Type::ObjCQualifiedInterface) LHSClass = Type::ObjCInterface;
3105 if (RHSClass == Type::ObjCQualifiedInterface) RHSClass = Type::ObjCInterface;
3106
3107 // If the canonical type classes don't match.
3108 if (LHSClass != RHSClass) {
3109 const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
3110 const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
3111
3112 // 'id' and 'Class' act sort of like void* for ObjC interfaces
3113 if (LHSIface && (isObjCIdStructType(RHS) || isObjCClassStructType(RHS)))
3114 return LHS;
3115 if (RHSIface && (isObjCIdStructType(LHS) || isObjCClassStructType(LHS)))
3116 return RHS;
3117
3118 // ID is compatible with all qualified id types.
3119 if (LHS->isObjCQualifiedIdType()) {
3120 if (const PointerType *PT = RHS->getAsPointerType()) {
3121 QualType pType = PT->getPointeeType();
3122 if (isObjCIdStructType(pType) || isObjCClassStructType(pType))
3123 return LHS;
3124 // FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true).
3125 // Unfortunately, this API is part of Sema (which we don't have access
3126 // to. Need to refactor. The following check is insufficient, since we
3127 // need to make sure the class implements the protocol.
3128 if (pType->isObjCInterfaceType())
3129 return LHS;
3130 }
3131 }
3132 if (RHS->isObjCQualifiedIdType()) {
3133 if (const PointerType *PT = LHS->getAsPointerType()) {
3134 QualType pType = PT->getPointeeType();
3135 if (isObjCIdStructType(pType) || isObjCClassStructType(pType))
3136 return RHS;
3137 // FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true).
3138 // Unfortunately, this API is part of Sema (which we don't have access
3139 // to. Need to refactor. The following check is insufficient, since we
3140 // need to make sure the class implements the protocol.
3141 if (pType->isObjCInterfaceType())
3142 return RHS;
3143 }
3144 }
3145 // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
3146 // a signed integer type, or an unsigned integer type.
3147 if (const EnumType* ETy = LHS->getAsEnumType()) {
3148 if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
3149 return RHS;
3150 }
3151 if (const EnumType* ETy = RHS->getAsEnumType()) {
3152 if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
3153 return LHS;
3154 }
3155
3156 return QualType();
3157 }
3158
3159 // The canonical type classes match.
3160 switch (LHSClass) {
3161#define TYPE(Class, Base)
3162#define ABSTRACT_TYPE(Class, Base)
3163#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3164#define DEPENDENT_TYPE(Class, Base) case Type::Class:
3165#include "clang/AST/TypeNodes.def"
3166 assert(false && "Non-canonical and dependent types shouldn't get here");
3167 return QualType();
3168
3169 case Type::LValueReference:
3170 case Type::RValueReference:
3171 case Type::MemberPointer:
3172 assert(false && "C++ should never be in mergeTypes");
3173 return QualType();
3174
3175 case Type::IncompleteArray:
3176 case Type::VariableArray:
3177 case Type::FunctionProto:
3178 case Type::ExtVector:
3179 case Type::ObjCQualifiedInterface:
3180 assert(false && "Types are eliminated above");
3181 return QualType();
3182
3183 case Type::Pointer:
3184 {
3185 // Merge two pointer types, while trying to preserve typedef info
3186 QualType LHSPointee = LHS->getAsPointerType()->getPointeeType();
3187 QualType RHSPointee = RHS->getAsPointerType()->getPointeeType();
3188 QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
3189 if (ResultType.isNull()) return QualType();
3190 if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
3191 return LHS;
3192 if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
3193 return RHS;
3194 return getPointerType(ResultType);
3195 }
3196 case Type::BlockPointer:
3197 {
3198 // Merge two block pointer types, while trying to preserve typedef info
3199 QualType LHSPointee = LHS->getAsBlockPointerType()->getPointeeType();
3200 QualType RHSPointee = RHS->getAsBlockPointerType()->getPointeeType();
3201 QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
3202 if (ResultType.isNull()) return QualType();
3203 if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
3204 return LHS;
3205 if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
3206 return RHS;
3207 return getBlockPointerType(ResultType);
3208 }
3209 case Type::ConstantArray:
3210 {
3211 const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
3212 const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
3213 if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
3214 return QualType();
3215
3216 QualType LHSElem = getAsArrayType(LHS)->getElementType();
3217 QualType RHSElem = getAsArrayType(RHS)->getElementType();
3218 QualType ResultType = mergeTypes(LHSElem, RHSElem);
3219 if (ResultType.isNull()) return QualType();
3220 if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
3221 return LHS;
3222 if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
3223 return RHS;
3224 if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
3225 ArrayType::ArraySizeModifier(), 0);
3226 if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
3227 ArrayType::ArraySizeModifier(), 0);
3228 const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
3229 const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
3230 if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
3231 return LHS;
3232 if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
3233 return RHS;
3234 if (LVAT) {
3235 // FIXME: This isn't correct! But tricky to implement because
3236 // the array's size has to be the size of LHS, but the type
3237 // has to be different.
3238 return LHS;
3239 }
3240 if (RVAT) {
3241 // FIXME: This isn't correct! But tricky to implement because
3242 // the array's size has to be the size of RHS, but the type
3243 // has to be different.
3244 return RHS;
3245 }
3246 if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
3247 if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
3248 return getIncompleteArrayType(ResultType, ArrayType::ArraySizeModifier(),0);
3249 }
3250 case Type::FunctionNoProto:
3251 return mergeFunctionTypes(LHS, RHS);
3252 case Type::Record:
3253 case Type::Enum:
3254 // FIXME: Why are these compatible?
3255 if (isObjCIdStructType(LHS) && isObjCClassStructType(RHS)) return LHS;
3256 if (isObjCClassStructType(LHS) && isObjCIdStructType(RHS)) return LHS;
3257 return QualType();
3258 case Type::Builtin:
3259 // Only exactly equal builtin types are compatible, which is tested above.
3260 return QualType();
3261 case Type::Complex:
3262 // Distinct complex types are incompatible.
3263 return QualType();
3264 case Type::Vector:
3265 // FIXME: The merged type should be an ExtVector!
3266 if (areCompatVectorTypes(LHS->getAsVectorType(), RHS->getAsVectorType()))
3267 return LHS;
3268 return QualType();
3269 case Type::ObjCInterface: {
3270 // Check if the interfaces are assignment compatible.
3271 // FIXME: This should be type compatibility, e.g. whether
3272 // "LHS x; RHS x;" at global scope is legal.
3273 const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
3274 const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
3275 if (LHSIface && RHSIface &&
3276 canAssignObjCInterfaces(LHSIface, RHSIface))
3277 return LHS;
3278
3279 return QualType();
3280 }
3281 case Type::ObjCQualifiedId:
3282 // Distinct qualified id's are not compatible.
3283 return QualType();
3284 case Type::FixedWidthInt:
3285 // Distinct fixed-width integers are not compatible.
3286 return QualType();
3287 case Type::ExtQual:
3288 // FIXME: ExtQual types can be compatible even if they're not
3289 // identical!
3290 return QualType();
3291 // First attempt at an implementation, but I'm not really sure it's
3292 // right...
3293#if 0
3294 ExtQualType* LQual = cast<ExtQualType>(LHSCan);
3295 ExtQualType* RQual = cast<ExtQualType>(RHSCan);
3296 if (LQual->getAddressSpace() != RQual->getAddressSpace() ||
3297 LQual->getObjCGCAttr() != RQual->getObjCGCAttr())
3298 return QualType();
3299 QualType LHSBase, RHSBase, ResultType, ResCanUnqual;
3300 LHSBase = QualType(LQual->getBaseType(), 0);
3301 RHSBase = QualType(RQual->getBaseType(), 0);
3302 ResultType = mergeTypes(LHSBase, RHSBase);
3303 if (ResultType.isNull()) return QualType();
3304 ResCanUnqual = getCanonicalType(ResultType).getUnqualifiedType();
3305 if (LHSCan.getUnqualifiedType() == ResCanUnqual)
3306 return LHS;
3307 if (RHSCan.getUnqualifiedType() == ResCanUnqual)
3308 return RHS;
3309 ResultType = getAddrSpaceQualType(ResultType, LQual->getAddressSpace());
3310 ResultType = getObjCGCQualType(ResultType, LQual->getObjCGCAttr());
3311 ResultType.setCVRQualifiers(LHSCan.getCVRQualifiers());
3312 return ResultType;
3313#endif
3314
3315 case Type::TemplateSpecialization:
3316 assert(false && "Dependent types have no size");
3317 break;
3318 }
3319
3320 return QualType();
3321}
3322
3323//===----------------------------------------------------------------------===//
3324// Integer Predicates
3325//===----------------------------------------------------------------------===//
3326
3327unsigned ASTContext::getIntWidth(QualType T) {
3328 if (T == BoolTy)
3329 return 1;
3330 if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T)) {
3331 return FWIT->getWidth();
3332 }
3333 // For builtin types, just use the standard type sizing method
3334 return (unsigned)getTypeSize(T);
3335}
3336
3337QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
3338 assert(T->isSignedIntegerType() && "Unexpected type");
3339 if (const EnumType* ETy = T->getAsEnumType())
3340 T = ETy->getDecl()->getIntegerType();
3341 const BuiltinType* BTy = T->getAsBuiltinType();
3342 assert (BTy && "Unexpected signed integer type");
3343 switch (BTy->getKind()) {
3344 case BuiltinType::Char_S:
3345 case BuiltinType::SChar:
3346 return UnsignedCharTy;
3347 case BuiltinType::Short:
3348 return UnsignedShortTy;
3349 case BuiltinType::Int:
3350 return UnsignedIntTy;
3351 case BuiltinType::Long:
3352 return UnsignedLongTy;
3353 case BuiltinType::LongLong:
3354 return UnsignedLongLongTy;
3355 case BuiltinType::Int128:
3356 return UnsignedInt128Ty;
3357 default:
3358 assert(0 && "Unexpected signed integer type");
3359 return QualType();
3360 }
3361}
3362
3363ExternalASTSource::~ExternalASTSource() { }
3364
3365void ExternalASTSource::PrintStats() { }