Deleted Added
full compact
1/* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
4 Free Software Foundation, Inc.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 2, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING. If not, write to the Free
20Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2102110-1301, USA. */
22
23/* This file contains the low level primitives for operating on tree nodes,
24 including allocation, list operations, interning of identifiers,
25 construction of data type nodes and statement nodes,
26 and construction of type conversion nodes. It also contains
27 tables index by tree code that describe how to take apart
28 nodes of that code.
29
30 It is intended to be language-independent, but occasionally
31 calls language-dependent routines defined (for C) in typecheck.c. */
32
33#include "config.h"
34#include "system.h"
35#include "coretypes.h"
36#include "tm.h"
37#include "flags.h"
38#include "tree.h"
39#include "real.h"
40#include "tm_p.h"
41#include "function.h"
42#include "obstack.h"
43#include "toplev.h"
44#include "ggc.h"
45#include "hashtab.h"
46#include "output.h"
47#include "target.h"
48#include "langhooks.h"
49#include "tree-iterator.h"
50#include "basic-block.h"
51#include "tree-flow.h"
52#include "params.h"
53#include "pointer-set.h"
54
55/* Each tree code class has an associated string representation.
56 These must correspond to the tree_code_class entries. */
57
58const char *const tree_code_class_strings[] =
59{
60 "exceptional",
61 "constant",
62 "type",
63 "declaration",
64 "reference",
65 "comparison",
66 "unary",
67 "binary",
68 "statement",
69 "expression",
70};
71
72/* obstack.[ch] explicitly declined to prototype this. */
73extern int _obstack_allocated_p (struct obstack *h, void *obj);
74
75#ifdef GATHER_STATISTICS
76/* Statistics-gathering stuff. */
77
78int tree_node_counts[(int) all_kinds];
79int tree_node_sizes[(int) all_kinds];
80
81/* Keep in sync with tree.h:enum tree_node_kind. */
82static const char * const tree_node_kind_names[] = {
83 "decls",
84 "types",
85 "blocks",
86 "stmts",
87 "refs",
88 "exprs",
89 "constants",
90 "identifiers",
91 "perm_tree_lists",
92 "temp_tree_lists",
93 "vecs",
94 "binfos",
95 "phi_nodes",
96 "ssa names",
97 "constructors",
98 "random kinds",
99 "lang_decl kinds",
100 "lang_type kinds",
101 "omp clauses"
102};
103#endif /* GATHER_STATISTICS */
104
105/* Unique id for next decl created. */
106static GTY(()) int next_decl_uid;
107/* Unique id for next type created. */
108static GTY(()) int next_type_uid = 1;
109
110/* Since we cannot rehash a type after it is in the table, we have to
111 keep the hash code. */
112
113struct type_hash GTY(())
114{
115 unsigned long hash;
116 tree type;
117};
118
119/* Initial size of the hash table (rounded to next prime). */
120#define TYPE_HASH_INITIAL_SIZE 1000
121
122/* Now here is the hash table. When recording a type, it is added to
123 the slot whose index is the hash code. Note that the hash table is
124 used for several kinds of types (function types, array types and
125 array index range types, for now). While all these live in the
126 same table, they are completely independent, and the hash code is
127 computed differently for each of these. */
128
129static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
130 htab_t type_hash_table;
131
132/* Hash table and temporary node for larger integer const values. */
133static GTY (()) tree int_cst_node;
134static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
135 htab_t int_cst_hash_table;
136
137/* General tree->tree mapping structure for use in hash tables. */
138
139
140static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
141 htab_t debug_expr_for_decl;
142
143static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
144 htab_t value_expr_for_decl;
145
146static GTY ((if_marked ("tree_int_map_marked_p"), param_is (struct tree_int_map)))
147 htab_t init_priority_for_decl;
148
149static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
150 htab_t restrict_base_for_decl;
151
152struct tree_int_map GTY(())
153{
154 tree from;
155 unsigned short to;
156};
157static unsigned int tree_int_map_hash (const void *);
158static int tree_int_map_eq (const void *, const void *);
159static int tree_int_map_marked_p (const void *);
160static void set_type_quals (tree, int);
161static int type_hash_eq (const void *, const void *);
162static hashval_t type_hash_hash (const void *);
163static hashval_t int_cst_hash_hash (const void *);
164static int int_cst_hash_eq (const void *, const void *);
165static void print_type_hash_statistics (void);
166static void print_debug_expr_statistics (void);
167static void print_value_expr_statistics (void);
168static int type_hash_marked_p (const void *);
169static unsigned int type_hash_list (tree, hashval_t);
170static unsigned int attribute_hash_list (tree, hashval_t);
171
172tree global_trees[TI_MAX];
173tree integer_types[itk_none];
174
175unsigned char tree_contains_struct[256][64];
176
177/* Number of operands for each OpenMP clause. */
178unsigned const char omp_clause_num_ops[] =
179{
180 0, /* OMP_CLAUSE_ERROR */
181 1, /* OMP_CLAUSE_PRIVATE */
182 1, /* OMP_CLAUSE_SHARED */
183 1, /* OMP_CLAUSE_FIRSTPRIVATE */
184 1, /* OMP_CLAUSE_LASTPRIVATE */
185 4, /* OMP_CLAUSE_REDUCTION */
186 1, /* OMP_CLAUSE_COPYIN */
187 1, /* OMP_CLAUSE_COPYPRIVATE */
188 1, /* OMP_CLAUSE_IF */
189 1, /* OMP_CLAUSE_NUM_THREADS */
190 1, /* OMP_CLAUSE_SCHEDULE */
191 0, /* OMP_CLAUSE_NOWAIT */
192 0, /* OMP_CLAUSE_ORDERED */
193 0 /* OMP_CLAUSE_DEFAULT */
194};
195
196const char * const omp_clause_code_name[] =
197{
198 "error_clause",
199 "private",
200 "shared",
201 "firstprivate",
202 "lastprivate",
203 "reduction",
204 "copyin",
205 "copyprivate",
206 "if",
207 "num_threads",
208 "schedule",
209 "nowait",
210 "ordered",
211 "default"
212};
213
214/* Init tree.c. */
215
216void
217init_ttree (void)
218{
219 /* Initialize the hash table of types. */
220 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
221 type_hash_eq, 0);
222
223 debug_expr_for_decl = htab_create_ggc (512, tree_map_hash,
224 tree_map_eq, 0);
225
226 value_expr_for_decl = htab_create_ggc (512, tree_map_hash,
227 tree_map_eq, 0);
228 init_priority_for_decl = htab_create_ggc (512, tree_int_map_hash,
229 tree_int_map_eq, 0);
230 restrict_base_for_decl = htab_create_ggc (256, tree_map_hash,
231 tree_map_eq, 0);
232
233 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
234 int_cst_hash_eq, NULL);
235
236 int_cst_node = make_node (INTEGER_CST);
237
238 tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON] = 1;
239 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_NON_COMMON] = 1;
240 tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON] = 1;
241
242
243 tree_contains_struct[CONST_DECL][TS_DECL_COMMON] = 1;
244 tree_contains_struct[VAR_DECL][TS_DECL_COMMON] = 1;
245 tree_contains_struct[PARM_DECL][TS_DECL_COMMON] = 1;
246 tree_contains_struct[RESULT_DECL][TS_DECL_COMMON] = 1;
247 tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON] = 1;
248 tree_contains_struct[TYPE_DECL][TS_DECL_COMMON] = 1;
249 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON] = 1;
250 tree_contains_struct[LABEL_DECL][TS_DECL_COMMON] = 1;
251 tree_contains_struct[FIELD_DECL][TS_DECL_COMMON] = 1;
252
253
254 tree_contains_struct[CONST_DECL][TS_DECL_WRTL] = 1;
255 tree_contains_struct[VAR_DECL][TS_DECL_WRTL] = 1;
256 tree_contains_struct[PARM_DECL][TS_DECL_WRTL] = 1;
257 tree_contains_struct[RESULT_DECL][TS_DECL_WRTL] = 1;
258 tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL] = 1;
259 tree_contains_struct[LABEL_DECL][TS_DECL_WRTL] = 1;
260
261 tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL] = 1;
262 tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL] = 1;
263 tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL] = 1;
264 tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL] = 1;
265 tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL] = 1;
266 tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL] = 1;
267 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL] = 1;
268 tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL] = 1;
269 tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL] = 1;
270 tree_contains_struct[STRUCT_FIELD_TAG][TS_DECL_MINIMAL] = 1;
271 tree_contains_struct[NAME_MEMORY_TAG][TS_DECL_MINIMAL] = 1;
272 tree_contains_struct[SYMBOL_MEMORY_TAG][TS_DECL_MINIMAL] = 1;
273
274 tree_contains_struct[STRUCT_FIELD_TAG][TS_MEMORY_TAG] = 1;
275 tree_contains_struct[NAME_MEMORY_TAG][TS_MEMORY_TAG] = 1;
276 tree_contains_struct[SYMBOL_MEMORY_TAG][TS_MEMORY_TAG] = 1;
277
278 tree_contains_struct[STRUCT_FIELD_TAG][TS_STRUCT_FIELD_TAG] = 1;
279
280 tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS] = 1;
281 tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS] = 1;
282 tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS] = 1;
283 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_WITH_VIS] = 1;
284
285 tree_contains_struct[VAR_DECL][TS_VAR_DECL] = 1;
286 tree_contains_struct[FIELD_DECL][TS_FIELD_DECL] = 1;
287 tree_contains_struct[PARM_DECL][TS_PARM_DECL] = 1;
288 tree_contains_struct[LABEL_DECL][TS_LABEL_DECL] = 1;
289 tree_contains_struct[RESULT_DECL][TS_RESULT_DECL] = 1;
290 tree_contains_struct[CONST_DECL][TS_CONST_DECL] = 1;
291 tree_contains_struct[TYPE_DECL][TS_TYPE_DECL] = 1;
292 tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL] = 1;
293
294 lang_hooks.init_ts ();
295}
296
297
298/* The name of the object as the assembler will see it (but before any
299 translations made by ASM_OUTPUT_LABELREF). Often this is the same
300 as DECL_NAME. It is an IDENTIFIER_NODE. */
301tree
302decl_assembler_name (tree decl)
303{
304 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
305 lang_hooks.set_decl_assembler_name (decl);
306 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
307}
308
309/* Compute the number of bytes occupied by a tree with code CODE.
310 This function cannot be used for TREE_VEC, PHI_NODE, or STRING_CST
311 codes, which are of variable length. */
312size_t
313tree_code_size (enum tree_code code)
314{
315 switch (TREE_CODE_CLASS (code))
316 {
317 case tcc_declaration: /* A decl node */
318 {
319 switch (code)
320 {
321 case FIELD_DECL:
322 return sizeof (struct tree_field_decl);
323 case PARM_DECL:
324 return sizeof (struct tree_parm_decl);
325 case VAR_DECL:
326 return sizeof (struct tree_var_decl);
327 case LABEL_DECL:
328 return sizeof (struct tree_label_decl);
329 case RESULT_DECL:
330 return sizeof (struct tree_result_decl);
331 case CONST_DECL:
332 return sizeof (struct tree_const_decl);
333 case TYPE_DECL:
334 return sizeof (struct tree_type_decl);
335 case FUNCTION_DECL:
336 return sizeof (struct tree_function_decl);
337 case NAME_MEMORY_TAG:
338 case SYMBOL_MEMORY_TAG:
339 return sizeof (struct tree_memory_tag);
340 case STRUCT_FIELD_TAG:
341 return sizeof (struct tree_struct_field_tag);
342 default:
343 return sizeof (struct tree_decl_non_common);
344 }
345 }
346
347 case tcc_type: /* a type node */
348 return sizeof (struct tree_type);
349
350 case tcc_reference: /* a reference */
351 case tcc_expression: /* an expression */
352 case tcc_statement: /* an expression with side effects */
353 case tcc_comparison: /* a comparison expression */
354 case tcc_unary: /* a unary arithmetic expression */
355 case tcc_binary: /* a binary arithmetic expression */
356 return (sizeof (struct tree_exp)
357 + (TREE_CODE_LENGTH (code) - 1) * sizeof (char *));
358
359 case tcc_constant: /* a constant */
360 switch (code)
361 {
362 case INTEGER_CST: return sizeof (struct tree_int_cst);
363 case REAL_CST: return sizeof (struct tree_real_cst);
364 case COMPLEX_CST: return sizeof (struct tree_complex);
365 case VECTOR_CST: return sizeof (struct tree_vector);
366 case STRING_CST: gcc_unreachable ();
367 default:
368 return lang_hooks.tree_size (code);
369 }
370
371 case tcc_exceptional: /* something random, like an identifier. */
372 switch (code)
373 {
374 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
375 case TREE_LIST: return sizeof (struct tree_list);
376
377 case ERROR_MARK:
378 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
379
380 case TREE_VEC:
381 case OMP_CLAUSE:
382 case PHI_NODE: gcc_unreachable ();
383
384 case SSA_NAME: return sizeof (struct tree_ssa_name);
385
386 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
387 case BLOCK: return sizeof (struct tree_block);
388 case VALUE_HANDLE: return sizeof (struct tree_value_handle);
389 case CONSTRUCTOR: return sizeof (struct tree_constructor);
390
391 default:
392 return lang_hooks.tree_size (code);
393 }
394
395 default:
396 gcc_unreachable ();
397 }
398}
399
400/* Compute the number of bytes occupied by NODE. This routine only
401 looks at TREE_CODE, except for PHI_NODE and TREE_VEC nodes. */
402size_t
403tree_size (tree node)
404{
405 enum tree_code code = TREE_CODE (node);
406 switch (code)
407 {
408 case PHI_NODE:
409 return (sizeof (struct tree_phi_node)
410 + (PHI_ARG_CAPACITY (node) - 1) * sizeof (struct phi_arg_d));
411
412 case TREE_BINFO:
413 return (offsetof (struct tree_binfo, base_binfos)
414 + VEC_embedded_size (tree, BINFO_N_BASE_BINFOS (node)));
415
416 case TREE_VEC:
417 return (sizeof (struct tree_vec)
418 + (TREE_VEC_LENGTH (node) - 1) * sizeof(char *));
419
420 case STRING_CST:
421 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
422
423 case OMP_CLAUSE:
424 return (sizeof (struct tree_omp_clause)
425 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
426 * sizeof (tree));
427
428 default:
429 return tree_code_size (code);
430 }
431}
432
433/* Return a newly allocated node of code CODE. For decl and type
434 nodes, some other fields are initialized. The rest of the node is
435 initialized to zero. This function cannot be used for PHI_NODE,
436 TREE_VEC or OMP_CLAUSE nodes, which is enforced by asserts in
437 tree_code_size.
438
439 Achoo! I got a code in the node. */
440
441tree
442make_node_stat (enum tree_code code MEM_STAT_DECL)
443{
444 tree t;
445 enum tree_code_class type = TREE_CODE_CLASS (code);
446 size_t length = tree_code_size (code);
447#ifdef GATHER_STATISTICS
448 tree_node_kind kind;
449
450 switch (type)
451 {
452 case tcc_declaration: /* A decl node */
453 kind = d_kind;
454 break;
455
456 case tcc_type: /* a type node */
457 kind = t_kind;
458 break;
459
460 case tcc_statement: /* an expression with side effects */
461 kind = s_kind;
462 break;
463
464 case tcc_reference: /* a reference */
465 kind = r_kind;
466 break;
467
468 case tcc_expression: /* an expression */
469 case tcc_comparison: /* a comparison expression */
470 case tcc_unary: /* a unary arithmetic expression */
471 case tcc_binary: /* a binary arithmetic expression */
472 kind = e_kind;
473 break;
474
475 case tcc_constant: /* a constant */
476 kind = c_kind;
477 break;
478
479 case tcc_exceptional: /* something random, like an identifier. */
480 switch (code)
481 {
482 case IDENTIFIER_NODE:
483 kind = id_kind;
484 break;
485
486 case TREE_VEC:
487 kind = vec_kind;
488 break;
489
490 case TREE_BINFO:
491 kind = binfo_kind;
492 break;
493
494 case PHI_NODE:
495 kind = phi_kind;
496 break;
497
498 case SSA_NAME:
499 kind = ssa_name_kind;
500 break;
501
502 case BLOCK:
503 kind = b_kind;
504 break;
505
506 case CONSTRUCTOR:
507 kind = constr_kind;
508 break;
509
510 default:
511 kind = x_kind;
512 break;
513 }
514 break;
515
516 default:
517 gcc_unreachable ();
518 }
519
520 tree_node_counts[(int) kind]++;
521 tree_node_sizes[(int) kind] += length;
522#endif
523
524 if (code == IDENTIFIER_NODE)
525 t = ggc_alloc_zone_pass_stat (length, &tree_id_zone);
526 else
527 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
528
529 memset (t, 0, length);
530
531 TREE_SET_CODE (t, code);
532
533 switch (type)
534 {
535 case tcc_statement:
536 TREE_SIDE_EFFECTS (t) = 1;
537 break;
538
539 case tcc_declaration:
540 if (CODE_CONTAINS_STRUCT (code, TS_DECL_WITH_VIS))
541 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
542 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
543 {
544 if (code != FUNCTION_DECL)
545 DECL_ALIGN (t) = 1;
546 DECL_USER_ALIGN (t) = 0;
547 /* We have not yet computed the alias set for this declaration. */
548 DECL_POINTER_ALIAS_SET (t) = -1;
549 }
550 DECL_SOURCE_LOCATION (t) = input_location;
551 DECL_UID (t) = next_decl_uid++;
552
553 break;
554
555 case tcc_type:
556 TYPE_UID (t) = next_type_uid++;
557 TYPE_ALIGN (t) = BITS_PER_UNIT;
558 TYPE_USER_ALIGN (t) = 0;
559 TYPE_MAIN_VARIANT (t) = t;
560
561 /* Default to no attributes for type, but let target change that. */
562 TYPE_ATTRIBUTES (t) = NULL_TREE;
563 targetm.set_default_type_attributes (t);
564
565 /* We have not yet computed the alias set for this type. */
566 TYPE_ALIAS_SET (t) = -1;
567 break;
568
569 case tcc_constant:
570 TREE_CONSTANT (t) = 1;
571 TREE_INVARIANT (t) = 1;
572 break;
573
574 case tcc_expression:
575 switch (code)
576 {
577 case INIT_EXPR:
578 case MODIFY_EXPR:
579 case VA_ARG_EXPR:
580 case PREDECREMENT_EXPR:
581 case PREINCREMENT_EXPR:
582 case POSTDECREMENT_EXPR:
583 case POSTINCREMENT_EXPR:
584 /* All of these have side-effects, no matter what their
585 operands are. */
586 TREE_SIDE_EFFECTS (t) = 1;
587 break;
588
589 default:
590 break;
591 }
592 break;
593
594 default:
595 /* Other classes need no special treatment. */
596 break;
597 }
598
599 return t;
600}
601
602/* Return a new node with the same contents as NODE except that its
603 TREE_CHAIN is zero and it has a fresh uid. */
604
605tree
606copy_node_stat (tree node MEM_STAT_DECL)
607{
608 tree t;
609 enum tree_code code = TREE_CODE (node);
610 size_t length;
611
612 gcc_assert (code != STATEMENT_LIST);
613
614 length = tree_size (node);
615 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
616 memcpy (t, node, length);
617
618 TREE_CHAIN (t) = 0;
619 TREE_ASM_WRITTEN (t) = 0;
620 TREE_VISITED (t) = 0;
621 t->common.ann = 0;
622
623 if (TREE_CODE_CLASS (code) == tcc_declaration)
624 {
625 DECL_UID (t) = next_decl_uid++;
626 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
627 && DECL_HAS_VALUE_EXPR_P (node))
628 {
629 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
630 DECL_HAS_VALUE_EXPR_P (t) = 1;
631 }
632 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
633 {
634 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
635 DECL_HAS_INIT_PRIORITY_P (t) = 1;
636 }
637 if (TREE_CODE (node) == VAR_DECL && DECL_BASED_ON_RESTRICT_P (node))
638 {
639 SET_DECL_RESTRICT_BASE (t, DECL_GET_RESTRICT_BASE (node));
640 DECL_BASED_ON_RESTRICT_P (t) = 1;
641 }
642 }
643 else if (TREE_CODE_CLASS (code) == tcc_type)
644 {
645 TYPE_UID (t) = next_type_uid++;
646 /* The following is so that the debug code for
647 the copy is different from the original type.
648 The two statements usually duplicate each other
649 (because they clear fields of the same union),
650 but the optimizer should catch that. */
651 TYPE_SYMTAB_POINTER (t) = 0;
652 TYPE_SYMTAB_ADDRESS (t) = 0;
653
654 /* Do not copy the values cache. */
655 if (TYPE_CACHED_VALUES_P(t))
656 {
657 TYPE_CACHED_VALUES_P (t) = 0;
658 TYPE_CACHED_VALUES (t) = NULL_TREE;
659 }
660 }
661
662 return t;
663}
664
665/* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
666 For example, this can copy a list made of TREE_LIST nodes. */
667
668tree
669copy_list (tree list)
670{
671 tree head;
672 tree prev, next;
673
674 if (list == 0)
675 return 0;
676
677 head = prev = copy_node (list);
678 next = TREE_CHAIN (list);
679 while (next)
680 {
681 TREE_CHAIN (prev) = copy_node (next);
682 prev = TREE_CHAIN (prev);
683 next = TREE_CHAIN (next);
684 }
685 return head;
686}
687
688
689/* Create an INT_CST node with a LOW value sign extended. */
690
691tree
692build_int_cst (tree type, HOST_WIDE_INT low)
693{
694 return build_int_cst_wide (type, low, low < 0 ? -1 : 0);
695}
696
697/* Create an INT_CST node with a LOW value zero extended. */
698
699tree
700build_int_cstu (tree type, unsigned HOST_WIDE_INT low)
701{
702 return build_int_cst_wide (type, low, 0);
703}
704
705/* Create an INT_CST node with a LOW value in TYPE. The value is sign extended
706 if it is negative. This function is similar to build_int_cst, but
707 the extra bits outside of the type precision are cleared. Constants
708 with these extra bits may confuse the fold so that it detects overflows
709 even in cases when they do not occur, and in general should be avoided.
710 We cannot however make this a default behavior of build_int_cst without
711 more intrusive changes, since there are parts of gcc that rely on the extra
712 precision of the integer constants. */
713
714tree
715build_int_cst_type (tree type, HOST_WIDE_INT low)
716{
717 unsigned HOST_WIDE_INT val = (unsigned HOST_WIDE_INT) low;
718 unsigned HOST_WIDE_INT hi, mask;
719 unsigned bits;
720 bool signed_p;
721 bool negative;
722
723 if (!type)
724 type = integer_type_node;
725
726 bits = TYPE_PRECISION (type);
727 signed_p = !TYPE_UNSIGNED (type);
728
729 if (bits >= HOST_BITS_PER_WIDE_INT)
730 negative = (low < 0);
731 else
732 {
733 /* If the sign bit is inside precision of LOW, use it to determine
734 the sign of the constant. */
735 negative = ((val >> (bits - 1)) & 1) != 0;
736
737 /* Mask out the bits outside of the precision of the constant. */
738 mask = (((unsigned HOST_WIDE_INT) 2) << (bits - 1)) - 1;
739
740 if (signed_p && negative)
741 val |= ~mask;
742 else
743 val &= mask;
744 }
745
746 /* Determine the high bits. */
747 hi = (negative ? ~(unsigned HOST_WIDE_INT) 0 : 0);
748
749 /* For unsigned type we need to mask out the bits outside of the type
750 precision. */
751 if (!signed_p)
752 {
753 if (bits <= HOST_BITS_PER_WIDE_INT)
754 hi = 0;
755 else
756 {
757 bits -= HOST_BITS_PER_WIDE_INT;
758 mask = (((unsigned HOST_WIDE_INT) 2) << (bits - 1)) - 1;
759 hi &= mask;
760 }
761 }
762
763 return build_int_cst_wide (type, val, hi);
764}
765
766/* These are the hash table functions for the hash table of INTEGER_CST
767 nodes of a sizetype. */
768
769/* Return the hash code code X, an INTEGER_CST. */
770
771static hashval_t
772int_cst_hash_hash (const void *x)
773{
774 tree t = (tree) x;
775
776 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
777 ^ htab_hash_pointer (TREE_TYPE (t)));
778}
779
780/* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
781 is the same as that given by *Y, which is the same. */
782
783static int
784int_cst_hash_eq (const void *x, const void *y)
785{
786 tree xt = (tree) x;
787 tree yt = (tree) y;
788
789 return (TREE_TYPE (xt) == TREE_TYPE (yt)
790 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
791 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
792}
793
794/* Create an INT_CST node of TYPE and value HI:LOW. If TYPE is NULL,
795 integer_type_node is used. The returned node is always shared.
796 For small integers we use a per-type vector cache, for larger ones
797 we use a single hash table. */
798
799tree
800build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
801{
802 tree t;
803 int ix = -1;
804 int limit = 0;
805
806 if (!type)
807 type = integer_type_node;
808
809 switch (TREE_CODE (type))
810 {
811 case POINTER_TYPE:
812 case REFERENCE_TYPE:
813 /* Cache NULL pointer. */
814 if (!hi && !low)
815 {
816 limit = 1;
817 ix = 0;
818 }
819 break;
820
821 case BOOLEAN_TYPE:
822 /* Cache false or true. */
823 limit = 2;
824 if (!hi && low < 2)
825 ix = low;
826 break;
827
828 case INTEGER_TYPE:
829 case OFFSET_TYPE:
830 if (TYPE_UNSIGNED (type))
831 {
832 /* Cache 0..N */
833 limit = INTEGER_SHARE_LIMIT;
834 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
835 ix = low;
836 }
837 else
838 {
839 /* Cache -1..N */
840 limit = INTEGER_SHARE_LIMIT + 1;
841 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
842 ix = low + 1;
843 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
844 ix = 0;
845 }
846 break;
847 default:
848 break;
849 }
850
851 if (ix >= 0)
852 {
853 /* Look for it in the type's vector of small shared ints. */
854 if (!TYPE_CACHED_VALUES_P (type))
855 {
856 TYPE_CACHED_VALUES_P (type) = 1;
857 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
858 }
859
860 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
861 if (t)
862 {
863 /* Make sure no one is clobbering the shared constant. */
864 gcc_assert (TREE_TYPE (t) == type);
865 gcc_assert (TREE_INT_CST_LOW (t) == low);
866 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
867 }
868 else
869 {
870 /* Create a new shared int. */
871 t = make_node (INTEGER_CST);
872
873 TREE_INT_CST_LOW (t) = low;
874 TREE_INT_CST_HIGH (t) = hi;
875 TREE_TYPE (t) = type;
876
877 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
878 }
879 }
880 else
881 {
882 /* Use the cache of larger shared ints. */
883 void **slot;
884
885 TREE_INT_CST_LOW (int_cst_node) = low;
886 TREE_INT_CST_HIGH (int_cst_node) = hi;
887 TREE_TYPE (int_cst_node) = type;
888
889 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
890 t = *slot;
891 if (!t)
892 {
893 /* Insert this one into the hash table. */
894 t = int_cst_node;
895 *slot = t;
896 /* Make a new node for next time round. */
897 int_cst_node = make_node (INTEGER_CST);
898 }
899 }
900
901 return t;
902}
903
904/* Builds an integer constant in TYPE such that lowest BITS bits are ones
905 and the rest are zeros. */
906
907tree
908build_low_bits_mask (tree type, unsigned bits)
909{
910 unsigned HOST_WIDE_INT low;
911 HOST_WIDE_INT high;
912 unsigned HOST_WIDE_INT all_ones = ~(unsigned HOST_WIDE_INT) 0;
913
914 gcc_assert (bits <= TYPE_PRECISION (type));
915
916 if (bits == TYPE_PRECISION (type)
917 && !TYPE_UNSIGNED (type))
918 {
919 /* Sign extended all-ones mask. */
920 low = all_ones;
921 high = -1;
922 }
923 else if (bits <= HOST_BITS_PER_WIDE_INT)
924 {
925 low = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
926 high = 0;
927 }
928 else
929 {
930 bits -= HOST_BITS_PER_WIDE_INT;
931 low = all_ones;
932 high = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
933 }
934
935 return build_int_cst_wide (type, low, high);
936}
937
938/* Checks that X is integer constant that can be expressed in (unsigned)
939 HOST_WIDE_INT without loss of precision. */
940
941bool
942cst_and_fits_in_hwi (tree x)
943{
944 if (TREE_CODE (x) != INTEGER_CST)
945 return false;
946
947 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
948 return false;
949
950 return (TREE_INT_CST_HIGH (x) == 0
951 || TREE_INT_CST_HIGH (x) == -1);
952}
953
954/* Return a new VECTOR_CST node whose type is TYPE and whose values
955 are in a list pointed to by VALS. */
956
957tree
958build_vector (tree type, tree vals)
959{
960 tree v = make_node (VECTOR_CST);
961 int over1 = 0, over2 = 0;
962 tree link;
963
964 TREE_VECTOR_CST_ELTS (v) = vals;
965 TREE_TYPE (v) = type;
966
967 /* Iterate through elements and check for overflow. */
968 for (link = vals; link; link = TREE_CHAIN (link))
969 {
970 tree value = TREE_VALUE (link);
971
972 /* Don't crash if we get an address constant. */
973 if (!CONSTANT_CLASS_P (value))
974 continue;
975
976 over1 |= TREE_OVERFLOW (value);
977 over2 |= TREE_CONSTANT_OVERFLOW (value);
978 }
979
980 TREE_OVERFLOW (v) = over1;
981 TREE_CONSTANT_OVERFLOW (v) = over2;
982
983 return v;
984}
985
986/* Return a new VECTOR_CST node whose type is TYPE and whose values
987 are extracted from V, a vector of CONSTRUCTOR_ELT. */
988
989tree
990build_vector_from_ctor (tree type, VEC(constructor_elt,gc) *v)
991{
992 tree list = NULL_TREE;
993 unsigned HOST_WIDE_INT idx;
994 tree value;
995
996 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
997 list = tree_cons (NULL_TREE, value, list);
998 return build_vector (type, nreverse (list));
999}
1000
1001/* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1002 are in the VEC pointed to by VALS. */
1003tree
1004build_constructor (tree type, VEC(constructor_elt,gc) *vals)
1005{
1006 tree c = make_node (CONSTRUCTOR);
1007 TREE_TYPE (c) = type;
1008 CONSTRUCTOR_ELTS (c) = vals;
1009 return c;
1010}
1011
1012/* Build a CONSTRUCTOR node made of a single initializer, with the specified
1013 INDEX and VALUE. */
1014tree
1015build_constructor_single (tree type, tree index, tree value)
1016{
1017 VEC(constructor_elt,gc) *v;
1018 constructor_elt *elt;
1019 tree t;
1020
1021 v = VEC_alloc (constructor_elt, gc, 1);
1022 elt = VEC_quick_push (constructor_elt, v, NULL);
1023 elt->index = index;
1024 elt->value = value;
1025
1026 t = build_constructor (type, v);
1027 TREE_CONSTANT (t) = TREE_CONSTANT (value);
1028 return t;
1029}
1030
1031
1032/* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1033 are in a list pointed to by VALS. */
1034tree
1035build_constructor_from_list (tree type, tree vals)
1036{
1037 tree t, val;
1038 VEC(constructor_elt,gc) *v = NULL;
1039 bool constant_p = true;
1040
1041 if (vals)
1042 {
1043 v = VEC_alloc (constructor_elt, gc, list_length (vals));
1044 for (t = vals; t; t = TREE_CHAIN (t))
1045 {
1046 constructor_elt *elt = VEC_quick_push (constructor_elt, v, NULL);
1047 val = TREE_VALUE (t);
1048 elt->index = TREE_PURPOSE (t);
1049 elt->value = val;
1050 if (!TREE_CONSTANT (val))
1051 constant_p = false;
1052 }
1053 }
1054
1055 t = build_constructor (type, v);
1056 TREE_CONSTANT (t) = constant_p;
1057 return t;
1058}
1059
1060
1061/* Return a new REAL_CST node whose type is TYPE and value is D. */
1062
1063tree
1064build_real (tree type, REAL_VALUE_TYPE d)
1065{
1066 tree v;
1067 REAL_VALUE_TYPE *dp;
1068 int overflow = 0;
1069
1070 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1071 Consider doing it via real_convert now. */
1072
1073 v = make_node (REAL_CST);
1074 dp = ggc_alloc (sizeof (REAL_VALUE_TYPE));
1075 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1076
1077 TREE_TYPE (v) = type;
1078 TREE_REAL_CST_PTR (v) = dp;
1079 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
1080 return v;
1081}
1082
1083/* Return a new REAL_CST node whose type is TYPE
1084 and whose value is the integer value of the INTEGER_CST node I. */
1085
1086REAL_VALUE_TYPE
1087real_value_from_int_cst (tree type, tree i)
1088{
1089 REAL_VALUE_TYPE d;
1090
1091 /* Clear all bits of the real value type so that we can later do
1092 bitwise comparisons to see if two values are the same. */
1093 memset (&d, 0, sizeof d);
1094
1095 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1096 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1097 TYPE_UNSIGNED (TREE_TYPE (i)));
1098 return d;
1099}
1100
1101/* Given a tree representing an integer constant I, return a tree
1102 representing the same value as a floating-point constant of type TYPE. */
1103
1104tree
1105build_real_from_int_cst (tree type, tree i)
1106{
1107 tree v;
1108 int overflow = TREE_OVERFLOW (i);
1109
1110 v = build_real (type, real_value_from_int_cst (type, i));
1111
1112 TREE_OVERFLOW (v) |= overflow;
1113 TREE_CONSTANT_OVERFLOW (v) |= overflow;
1114 return v;
1115}
1116
1117/* Return a newly constructed STRING_CST node whose value is
1118 the LEN characters at STR.
1119 The TREE_TYPE is not initialized. */
1120
1121tree
1122build_string (int len, const char *str)
1123{
1124 tree s;
1125 size_t length;
1126
1127 /* Do not waste bytes provided by padding of struct tree_string. */
1128 length = len + offsetof (struct tree_string, str) + 1;
1129
1130#ifdef GATHER_STATISTICS
1131 tree_node_counts[(int) c_kind]++;
1132 tree_node_sizes[(int) c_kind] += length;
1133#endif
1134
1135 s = ggc_alloc_tree (length);
1136
1137 memset (s, 0, sizeof (struct tree_common));
1138 TREE_SET_CODE (s, STRING_CST);
1139 TREE_CONSTANT (s) = 1;
1140 TREE_INVARIANT (s) = 1;
1141 TREE_STRING_LENGTH (s) = len;
1142 memcpy ((char *) TREE_STRING_POINTER (s), str, len);
1143 ((char *) TREE_STRING_POINTER (s))[len] = '\0';
1144
1145 return s;
1146}
1147
1148/* Return a newly constructed COMPLEX_CST node whose value is
1149 specified by the real and imaginary parts REAL and IMAG.
1150 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1151 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1152
1153tree
1154build_complex (tree type, tree real, tree imag)
1155{
1156 tree t = make_node (COMPLEX_CST);
1157
1158 TREE_REALPART (t) = real;
1159 TREE_IMAGPART (t) = imag;
1160 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1161 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1162 TREE_CONSTANT_OVERFLOW (t)
1163 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
1164 return t;
1165}
1166
1167/* Return a constant of arithmetic type TYPE which is the
1168 multiplicative identity of the set TYPE. */
1169
1170tree
1171build_one_cst (tree type)
1172{
1173 switch (TREE_CODE (type))
1174 {
1175 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1176 case POINTER_TYPE: case REFERENCE_TYPE:
1177 case OFFSET_TYPE:
1178 return build_int_cst (type, 1);
1179
1180 case REAL_TYPE:
1181 return build_real (type, dconst1);
1182
1183 case VECTOR_TYPE:
1184 {
1185 tree scalar, cst;
1186 int i;
1187
1188 scalar = build_one_cst (TREE_TYPE (type));
1189
1190 /* Create 'vect_cst_ = {cst,cst,...,cst}' */
1191 cst = NULL_TREE;
1192 for (i = TYPE_VECTOR_SUBPARTS (type); --i >= 0; )
1193 cst = tree_cons (NULL_TREE, scalar, cst);
1194
1195 return build_vector (type, cst);
1196 }
1197
1198 case COMPLEX_TYPE:
1199 return build_complex (type,
1200 build_one_cst (TREE_TYPE (type)),
1201 fold_convert (TREE_TYPE (type), integer_zero_node));
1202
1203 default:
1204 gcc_unreachable ();
1205 }
1206}
1207
1208/* Build a BINFO with LEN language slots. */
1209
1210tree
1211make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1212{
1213 tree t;
1214 size_t length = (offsetof (struct tree_binfo, base_binfos)
1215 + VEC_embedded_size (tree, base_binfos));
1216
1217#ifdef GATHER_STATISTICS
1218 tree_node_counts[(int) binfo_kind]++;
1219 tree_node_sizes[(int) binfo_kind] += length;
1220#endif
1221
1222 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
1223
1224 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1225
1226 TREE_SET_CODE (t, TREE_BINFO);
1227
1228 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
1229
1230 return t;
1231}
1232
1233
1234/* Build a newly constructed TREE_VEC node of length LEN. */
1235
1236tree
1237make_tree_vec_stat (int len MEM_STAT_DECL)
1238{
1239 tree t;
1240 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1241
1242#ifdef GATHER_STATISTICS
1243 tree_node_counts[(int) vec_kind]++;
1244 tree_node_sizes[(int) vec_kind] += length;
1245#endif
1246
1247 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
1248
1249 memset (t, 0, length);
1250
1251 TREE_SET_CODE (t, TREE_VEC);
1252 TREE_VEC_LENGTH (t) = len;
1253
1254 return t;
1255}
1256
1257/* Return 1 if EXPR is the integer constant zero or a complex constant
1258 of zero. */
1259
1260int
1261integer_zerop (tree expr)
1262{
1263 STRIP_NOPS (expr);
1264
1265 return ((TREE_CODE (expr) == INTEGER_CST
1266 && TREE_INT_CST_LOW (expr) == 0
1267 && TREE_INT_CST_HIGH (expr) == 0)
1268 || (TREE_CODE (expr) == COMPLEX_CST
1269 && integer_zerop (TREE_REALPART (expr))
1270 && integer_zerop (TREE_IMAGPART (expr))));
1271}
1272
1273/* Return 1 if EXPR is the integer constant one or the corresponding
1274 complex constant. */
1275
1276int
1277integer_onep (tree expr)
1278{
1279 STRIP_NOPS (expr);
1280
1281 return ((TREE_CODE (expr) == INTEGER_CST
1282 && TREE_INT_CST_LOW (expr) == 1
1283 && TREE_INT_CST_HIGH (expr) == 0)
1284 || (TREE_CODE (expr) == COMPLEX_CST
1285 && integer_onep (TREE_REALPART (expr))
1286 && integer_zerop (TREE_IMAGPART (expr))));
1287}
1288
1289/* Return 1 if EXPR is an integer containing all 1's in as much precision as
1290 it contains. Likewise for the corresponding complex constant. */
1291
1292int
1293integer_all_onesp (tree expr)
1294{
1295 int prec;
1296 int uns;
1297
1298 STRIP_NOPS (expr);
1299
1300 if (TREE_CODE (expr) == COMPLEX_CST
1301 && integer_all_onesp (TREE_REALPART (expr))
1302 && integer_zerop (TREE_IMAGPART (expr)))
1303 return 1;
1304
1305 else if (TREE_CODE (expr) != INTEGER_CST)
1306 return 0;
1307
1308 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1309 if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1310 && TREE_INT_CST_HIGH (expr) == -1)
1311 return 1;
1312 if (!uns)
1313 return 0;
1314
1315 /* Note that using TYPE_PRECISION here is wrong. We care about the
1316 actual bits, not the (arbitrary) range of the type. */
1317 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1318 if (prec >= HOST_BITS_PER_WIDE_INT)
1319 {
1320 HOST_WIDE_INT high_value;
1321 int shift_amount;
1322
1323 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1324
1325 /* Can not handle precisions greater than twice the host int size. */
1326 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1327 if (shift_amount == HOST_BITS_PER_WIDE_INT)
1328 /* Shifting by the host word size is undefined according to the ANSI
1329 standard, so we must handle this as a special case. */
1330 high_value = -1;
1331 else
1332 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1333
1334 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1335 && TREE_INT_CST_HIGH (expr) == high_value);
1336 }
1337 else
1338 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1339}
1340
1341/* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1342 one bit on). */
1343
1344int
1345integer_pow2p (tree expr)
1346{
1347 int prec;
1348 HOST_WIDE_INT high, low;
1349
1350 STRIP_NOPS (expr);
1351
1352 if (TREE_CODE (expr) == COMPLEX_CST
1353 && integer_pow2p (TREE_REALPART (expr))
1354 && integer_zerop (TREE_IMAGPART (expr)))
1355 return 1;
1356
1357 if (TREE_CODE (expr) != INTEGER_CST)
1358 return 0;
1359
1360 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1361 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1362 high = TREE_INT_CST_HIGH (expr);
1363 low = TREE_INT_CST_LOW (expr);
1364
1365 /* First clear all bits that are beyond the type's precision in case
1366 we've been sign extended. */
1367
1368 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1369 ;
1370 else if (prec > HOST_BITS_PER_WIDE_INT)
1371 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1372 else
1373 {
1374 high = 0;
1375 if (prec < HOST_BITS_PER_WIDE_INT)
1376 low &= ~((HOST_WIDE_INT) (-1) << prec);
1377 }
1378
1379 if (high == 0 && low == 0)
1380 return 0;
1381
1382 return ((high == 0 && (low & (low - 1)) == 0)
1383 || (low == 0 && (high & (high - 1)) == 0));
1384}
1385
1386/* Return 1 if EXPR is an integer constant other than zero or a
1387 complex constant other than zero. */
1388
1389int
1390integer_nonzerop (tree expr)
1391{
1392 STRIP_NOPS (expr);
1393
1394 return ((TREE_CODE (expr) == INTEGER_CST
1395 && (TREE_INT_CST_LOW (expr) != 0
1396 || TREE_INT_CST_HIGH (expr) != 0))
1397 || (TREE_CODE (expr) == COMPLEX_CST
1398 && (integer_nonzerop (TREE_REALPART (expr))
1399 || integer_nonzerop (TREE_IMAGPART (expr)))));
1400}
1401
1402/* Return the power of two represented by a tree node known to be a
1403 power of two. */
1404
1405int
1406tree_log2 (tree expr)
1407{
1408 int prec;
1409 HOST_WIDE_INT high, low;
1410
1411 STRIP_NOPS (expr);
1412
1413 if (TREE_CODE (expr) == COMPLEX_CST)
1414 return tree_log2 (TREE_REALPART (expr));
1415
1416 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1417 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1418
1419 high = TREE_INT_CST_HIGH (expr);
1420 low = TREE_INT_CST_LOW (expr);
1421
1422 /* First clear all bits that are beyond the type's precision in case
1423 we've been sign extended. */
1424
1425 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1426 ;
1427 else if (prec > HOST_BITS_PER_WIDE_INT)
1428 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1429 else
1430 {
1431 high = 0;
1432 if (prec < HOST_BITS_PER_WIDE_INT)
1433 low &= ~((HOST_WIDE_INT) (-1) << prec);
1434 }
1435
1436 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1437 : exact_log2 (low));
1438}
1439
1440/* Similar, but return the largest integer Y such that 2 ** Y is less
1441 than or equal to EXPR. */
1442
1443int
1444tree_floor_log2 (tree expr)
1445{
1446 int prec;
1447 HOST_WIDE_INT high, low;
1448
1449 STRIP_NOPS (expr);
1450
1451 if (TREE_CODE (expr) == COMPLEX_CST)
1452 return tree_log2 (TREE_REALPART (expr));
1453
1454 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1455 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1456
1457 high = TREE_INT_CST_HIGH (expr);
1458 low = TREE_INT_CST_LOW (expr);
1459
1460 /* First clear all bits that are beyond the type's precision in case
1461 we've been sign extended. Ignore if type's precision hasn't been set
1462 since what we are doing is setting it. */
1463
1464 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1465 ;
1466 else if (prec > HOST_BITS_PER_WIDE_INT)
1467 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1468 else
1469 {
1470 high = 0;
1471 if (prec < HOST_BITS_PER_WIDE_INT)
1472 low &= ~((HOST_WIDE_INT) (-1) << prec);
1473 }
1474
1475 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1476 : floor_log2 (low));
1477}
1478
1479/* Return 1 if EXPR is the real constant zero. */
1480
1481int
1482real_zerop (tree expr)
1483{
1484 STRIP_NOPS (expr);
1485
1486 return ((TREE_CODE (expr) == REAL_CST
1487 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
1488 || (TREE_CODE (expr) == COMPLEX_CST
1489 && real_zerop (TREE_REALPART (expr))
1490 && real_zerop (TREE_IMAGPART (expr))));
1491}
1492
1493/* Return 1 if EXPR is the real constant one in real or complex form. */
1494
1495int
1496real_onep (tree expr)
1497{
1498 STRIP_NOPS (expr);
1499
1500 return ((TREE_CODE (expr) == REAL_CST
1501 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
1502 || (TREE_CODE (expr) == COMPLEX_CST
1503 && real_onep (TREE_REALPART (expr))
1504 && real_zerop (TREE_IMAGPART (expr))));
1505}
1506
1507/* Return 1 if EXPR is the real constant two. */
1508
1509int
1510real_twop (tree expr)
1511{
1512 STRIP_NOPS (expr);
1513
1514 return ((TREE_CODE (expr) == REAL_CST
1515 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
1516 || (TREE_CODE (expr) == COMPLEX_CST
1517 && real_twop (TREE_REALPART (expr))
1518 && real_zerop (TREE_IMAGPART (expr))));
1519}
1520
1521/* Return 1 if EXPR is the real constant minus one. */
1522
1523int
1524real_minus_onep (tree expr)
1525{
1526 STRIP_NOPS (expr);
1527
1528 return ((TREE_CODE (expr) == REAL_CST
1529 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1))
1530 || (TREE_CODE (expr) == COMPLEX_CST
1531 && real_minus_onep (TREE_REALPART (expr))
1532 && real_zerop (TREE_IMAGPART (expr))));
1533}
1534
1535/* Nonzero if EXP is a constant or a cast of a constant. */
1536
1537int
1538really_constant_p (tree exp)
1539{
1540 /* This is not quite the same as STRIP_NOPS. It does more. */
1541 while (TREE_CODE (exp) == NOP_EXPR
1542 || TREE_CODE (exp) == CONVERT_EXPR
1543 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1544 exp = TREE_OPERAND (exp, 0);
1545 return TREE_CONSTANT (exp);
1546}
1547
1548/* Return first list element whose TREE_VALUE is ELEM.
1549 Return 0 if ELEM is not in LIST. */
1550
1551tree
1552value_member (tree elem, tree list)
1553{
1554 while (list)
1555 {
1556 if (elem == TREE_VALUE (list))
1557 return list;
1558 list = TREE_CHAIN (list);
1559 }
1560 return NULL_TREE;
1561}
1562
1563/* Return first list element whose TREE_PURPOSE is ELEM.
1564 Return 0 if ELEM is not in LIST. */
1565
1566tree
1567purpose_member (tree elem, tree list)
1568{
1569 while (list)
1570 {
1571 if (elem == TREE_PURPOSE (list))
1572 return list;
1573 list = TREE_CHAIN (list);
1574 }
1575 return NULL_TREE;
1576}
1577
1578/* Return nonzero if ELEM is part of the chain CHAIN. */
1579
1580int
1581chain_member (tree elem, tree chain)
1582{
1583 while (chain)
1584 {
1585 if (elem == chain)
1586 return 1;
1587 chain = TREE_CHAIN (chain);
1588 }
1589
1590 return 0;
1591}
1592
1593/* Return the length of a chain of nodes chained through TREE_CHAIN.
1594 We expect a null pointer to mark the end of the chain.
1595 This is the Lisp primitive `length'. */
1596
1597int
1598list_length (tree t)
1599{
1600 tree p = t;
1601#ifdef ENABLE_TREE_CHECKING
1602 tree q = t;
1603#endif
1604 int len = 0;
1605
1606 while (p)
1607 {
1608 p = TREE_CHAIN (p);
1609#ifdef ENABLE_TREE_CHECKING
1610 if (len % 2)
1611 q = TREE_CHAIN (q);
1612 gcc_assert (p != q);
1613#endif
1614 len++;
1615 }
1616
1617 return len;
1618}
1619
1620/* Returns the number of FIELD_DECLs in TYPE. */
1621
1622int
1623fields_length (tree type)
1624{
1625 tree t = TYPE_FIELDS (type);
1626 int count = 0;
1627
1628 for (; t; t = TREE_CHAIN (t))
1629 if (TREE_CODE (t) == FIELD_DECL)
1630 ++count;
1631
1632 return count;
1633}
1634
1635/* Concatenate two chains of nodes (chained through TREE_CHAIN)
1636 by modifying the last node in chain 1 to point to chain 2.
1637 This is the Lisp primitive `nconc'. */
1638
1639tree
1640chainon (tree op1, tree op2)
1641{
1642 tree t1;
1643
1644 if (!op1)
1645 return op2;
1646 if (!op2)
1647 return op1;
1648
1649 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1650 continue;
1651 TREE_CHAIN (t1) = op2;
1652
1653#ifdef ENABLE_TREE_CHECKING
1654 {
1655 tree t2;
1656 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1657 gcc_assert (t2 != t1);
1658 }
1659#endif
1660
1661 return op1;
1662}
1663
1664/* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1665
1666tree
1667tree_last (tree chain)
1668{
1669 tree next;
1670 if (chain)
1671 while ((next = TREE_CHAIN (chain)))
1672 chain = next;
1673 return chain;
1674}
1675
1676/* Reverse the order of elements in the chain T,
1677 and return the new head of the chain (old last element). */
1678
1679tree
1680nreverse (tree t)
1681{
1682 tree prev = 0, decl, next;
1683 for (decl = t; decl; decl = next)
1684 {
1685 next = TREE_CHAIN (decl);
1686 TREE_CHAIN (decl) = prev;
1687 prev = decl;
1688 }
1689 return prev;
1690}
1691
1692/* Return a newly created TREE_LIST node whose
1693 purpose and value fields are PARM and VALUE. */
1694
1695tree
1696build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
1697{
1698 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
1699 TREE_PURPOSE (t) = parm;
1700 TREE_VALUE (t) = value;
1701 return t;
1702}
1703
1704/* Return a newly created TREE_LIST node whose
1705 purpose and value fields are PURPOSE and VALUE
1706 and whose TREE_CHAIN is CHAIN. */
1707
1708tree
1709tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
1710{
1711 tree node;
1712
1713 node = ggc_alloc_zone_pass_stat (sizeof (struct tree_list), &tree_zone);
1714
1715 memset (node, 0, sizeof (struct tree_common));
1716
1717#ifdef GATHER_STATISTICS
1718 tree_node_counts[(int) x_kind]++;
1719 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1720#endif
1721
1722 TREE_SET_CODE (node, TREE_LIST);
1723 TREE_CHAIN (node) = chain;
1724 TREE_PURPOSE (node) = purpose;
1725 TREE_VALUE (node) = value;
1726 return node;
1727}
1728
1729
1730/* Return the size nominally occupied by an object of type TYPE
1731 when it resides in memory. The value is measured in units of bytes,
1732 and its data type is that normally used for type sizes
1733 (which is the first type created by make_signed_type or
1734 make_unsigned_type). */
1735
1736tree
1737size_in_bytes (tree type)
1738{
1739 tree t;
1740
1741 if (type == error_mark_node)
1742 return integer_zero_node;
1743
1744 type = TYPE_MAIN_VARIANT (type);
1745 t = TYPE_SIZE_UNIT (type);
1746
1747 if (t == 0)
1748 {
1749 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
1750 return size_zero_node;
1751 }
1752
1753 if (TREE_CODE (t) == INTEGER_CST)
1754 t = force_fit_type (t, 0, false, false);
1755
1756 return t;
1757}
1758
1759/* Return the size of TYPE (in bytes) as a wide integer
1760 or return -1 if the size can vary or is larger than an integer. */
1761
1762HOST_WIDE_INT
1763int_size_in_bytes (tree type)
1764{
1765 tree t;
1766
1767 if (type == error_mark_node)
1768 return 0;
1769
1770 type = TYPE_MAIN_VARIANT (type);
1771 t = TYPE_SIZE_UNIT (type);
1772 if (t == 0
1773 || TREE_CODE (t) != INTEGER_CST
1774 || TREE_INT_CST_HIGH (t) != 0
1775 /* If the result would appear negative, it's too big to represent. */
1776 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1777 return -1;
1778
1779 return TREE_INT_CST_LOW (t);
1780}
1781
1782/* Return the maximum size of TYPE (in bytes) as a wide integer
1783 or return -1 if the size can vary or is larger than an integer. */
1784
1785HOST_WIDE_INT
1786max_int_size_in_bytes (tree type)
1787{
1788 HOST_WIDE_INT size = -1;
1789 tree size_tree;
1790
1791 /* If this is an array type, check for a possible MAX_SIZE attached. */
1792
1793 if (TREE_CODE (type) == ARRAY_TYPE)
1794 {
1795 size_tree = TYPE_ARRAY_MAX_SIZE (type);
1796
1797 if (size_tree && host_integerp (size_tree, 1))
1798 size = tree_low_cst (size_tree, 1);
1799 }
1800
1801 /* If we still haven't been able to get a size, see if the language
1802 can compute a maximum size. */
1803
1804 if (size == -1)
1805 {
1806 size_tree = lang_hooks.types.max_size (type);
1807
1808 if (size_tree && host_integerp (size_tree, 1))
1809 size = tree_low_cst (size_tree, 1);
1810 }
1811
1812 return size;
1813}
1814
1815/* Return the bit position of FIELD, in bits from the start of the record.
1816 This is a tree of type bitsizetype. */
1817
1818tree
1819bit_position (tree field)
1820{
1821 return bit_from_pos (DECL_FIELD_OFFSET (field),
1822 DECL_FIELD_BIT_OFFSET (field));
1823}
1824
1825/* Likewise, but return as an integer. It must be representable in
1826 that way (since it could be a signed value, we don't have the
1827 option of returning -1 like int_size_in_byte can. */
1828
1829HOST_WIDE_INT
1830int_bit_position (tree field)
1831{
1832 return tree_low_cst (bit_position (field), 0);
1833}
1834
1835/* Return the byte position of FIELD, in bytes from the start of the record.
1836 This is a tree of type sizetype. */
1837
1838tree
1839byte_position (tree field)
1840{
1841 return byte_from_pos (DECL_FIELD_OFFSET (field),
1842 DECL_FIELD_BIT_OFFSET (field));
1843}
1844
1845/* Likewise, but return as an integer. It must be representable in
1846 that way (since it could be a signed value, we don't have the
1847 option of returning -1 like int_size_in_byte can. */
1848
1849HOST_WIDE_INT
1850int_byte_position (tree field)
1851{
1852 return tree_low_cst (byte_position (field), 0);
1853}
1854
1855/* Return the strictest alignment, in bits, that T is known to have. */
1856
1857unsigned int
1858expr_align (tree t)
1859{
1860 unsigned int align0, align1;
1861
1862 switch (TREE_CODE (t))
1863 {
1864 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1865 /* If we have conversions, we know that the alignment of the
1866 object must meet each of the alignments of the types. */
1867 align0 = expr_align (TREE_OPERAND (t, 0));
1868 align1 = TYPE_ALIGN (TREE_TYPE (t));
1869 return MAX (align0, align1);
1870
1871 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1872 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1873 case CLEANUP_POINT_EXPR:
1874 /* These don't change the alignment of an object. */
1875 return expr_align (TREE_OPERAND (t, 0));
1876
1877 case COND_EXPR:
1878 /* The best we can do is say that the alignment is the least aligned
1879 of the two arms. */
1880 align0 = expr_align (TREE_OPERAND (t, 1));
1881 align1 = expr_align (TREE_OPERAND (t, 2));
1882 return MIN (align0, align1);
1883
1884 case LABEL_DECL: case CONST_DECL:
1885 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1886 if (DECL_ALIGN (t) != 0)
1887 return DECL_ALIGN (t);
1888 break;
1889
1890 case FUNCTION_DECL:
1891 return FUNCTION_BOUNDARY;
1892
1893 default:
1894 break;
1895 }
1896
1897 /* Otherwise take the alignment from that of the type. */
1898 return TYPE_ALIGN (TREE_TYPE (t));
1899}
1900
1901/* Return, as a tree node, the number of elements for TYPE (which is an
1902 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1903
1904tree
1905array_type_nelts (tree type)
1906{
1907 tree index_type, min, max;
1908
1909 /* If they did it with unspecified bounds, then we should have already
1910 given an error about it before we got here. */
1911 if (! TYPE_DOMAIN (type))
1912 return error_mark_node;
1913
1914 index_type = TYPE_DOMAIN (type);
1915 min = TYPE_MIN_VALUE (index_type);
1916 max = TYPE_MAX_VALUE (index_type);
1917
1918 return (integer_zerop (min)
1919 ? max
1920 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
1921}
1922
1923/* If arg is static -- a reference to an object in static storage -- then
1924 return the object. This is not the same as the C meaning of `static'.
1925 If arg isn't static, return NULL. */
1926
1927tree
1928staticp (tree arg)
1929{
1930 switch (TREE_CODE (arg))
1931 {
1932 case FUNCTION_DECL:
1933 /* Nested functions are static, even though taking their address will
1934 involve a trampoline as we unnest the nested function and create
1935 the trampoline on the tree level. */
1936 return arg;
1937
1938 case VAR_DECL:
1939 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1940 && ! DECL_THREAD_LOCAL_P (arg)
1941 && ! DECL_DLLIMPORT_P (arg)
1942 ? arg : NULL);
1943
1944 case CONST_DECL:
1945 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1946 ? arg : NULL);
1947
1948 case CONSTRUCTOR:
1949 return TREE_STATIC (arg) ? arg : NULL;
1950
1951 case LABEL_DECL:
1952 case STRING_CST:
1953 return arg;
1954
1955 case COMPONENT_REF:
1956 /* If the thing being referenced is not a field, then it is
1957 something language specific. */
1958 if (TREE_CODE (TREE_OPERAND (arg, 1)) != FIELD_DECL)
1959 return (*lang_hooks.staticp) (arg);
1960
1961 /* If we are referencing a bitfield, we can't evaluate an
1962 ADDR_EXPR at compile time and so it isn't a constant. */
1963 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
1964 return NULL;
1965
1966 return staticp (TREE_OPERAND (arg, 0));
1967
1968 case BIT_FIELD_REF:
1969 return NULL;
1970
1971 case MISALIGNED_INDIRECT_REF:
1972 case ALIGN_INDIRECT_REF:
1973 case INDIRECT_REF:
1974 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
1975
1976 case ARRAY_REF:
1977 case ARRAY_RANGE_REF:
1978 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1979 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1980 return staticp (TREE_OPERAND (arg, 0));
1981 else
1982 return false;
1983
1984 default:
1985 if ((unsigned int) TREE_CODE (arg)
1986 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
1987 return lang_hooks.staticp (arg);
1988 else
1989 return NULL;
1990 }
1991}
1992
1993/* Wrap a SAVE_EXPR around EXPR, if appropriate.
1994 Do this to any expression which may be used in more than one place,
1995 but must be evaluated only once.
1996
1997 Normally, expand_expr would reevaluate the expression each time.
1998 Calling save_expr produces something that is evaluated and recorded
1999 the first time expand_expr is called on it. Subsequent calls to
2000 expand_expr just reuse the recorded value.
2001
2002 The call to expand_expr that generates code that actually computes
2003 the value is the first call *at compile time*. Subsequent calls
2004 *at compile time* generate code to use the saved value.
2005 This produces correct result provided that *at run time* control
2006 always flows through the insns made by the first expand_expr
2007 before reaching the other places where the save_expr was evaluated.
2008 You, the caller of save_expr, must make sure this is so.
2009
2010 Constants, and certain read-only nodes, are returned with no
2011 SAVE_EXPR because that is safe. Expressions containing placeholders
2012 are not touched; see tree.def for an explanation of what these
2013 are used for. */
2014
2015tree
2016save_expr (tree expr)
2017{
2018 tree t = fold (expr);
2019 tree inner;
2020
2021 /* If the tree evaluates to a constant, then we don't want to hide that
2022 fact (i.e. this allows further folding, and direct checks for constants).
2023 However, a read-only object that has side effects cannot be bypassed.
2024 Since it is no problem to reevaluate literals, we just return the
2025 literal node. */
2026 inner = skip_simple_arithmetic (t);
2027
2028 if (TREE_INVARIANT (inner)
2029 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
2030 || TREE_CODE (inner) == SAVE_EXPR
2031 || TREE_CODE (inner) == ERROR_MARK)
2032 return t;
2033
2034 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2035 it means that the size or offset of some field of an object depends on
2036 the value within another field.
2037
2038 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2039 and some variable since it would then need to be both evaluated once and
2040 evaluated more than once. Front-ends must assure this case cannot
2041 happen by surrounding any such subexpressions in their own SAVE_EXPR
2042 and forcing evaluation at the proper time. */
2043 if (contains_placeholder_p (inner))
2044 return t;
2045
2046 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
2047
2048 /* This expression might be placed ahead of a jump to ensure that the
2049 value was computed on both sides of the jump. So make sure it isn't
2050 eliminated as dead. */
2051 TREE_SIDE_EFFECTS (t) = 1;
2052 TREE_INVARIANT (t) = 1;
2053 return t;
2054}
2055
2056/* Look inside EXPR and into any simple arithmetic operations. Return
2057 the innermost non-arithmetic node. */
2058
2059tree
2060skip_simple_arithmetic (tree expr)
2061{
2062 tree inner;
2063
2064 /* We don't care about whether this can be used as an lvalue in this
2065 context. */
2066 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
2067 expr = TREE_OPERAND (expr, 0);
2068
2069 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
2070 a constant, it will be more efficient to not make another SAVE_EXPR since
2071 it will allow better simplification and GCSE will be able to merge the
2072 computations if they actually occur. */
2073 inner = expr;
2074 while (1)
2075 {
2076 if (UNARY_CLASS_P (inner))
2077 inner = TREE_OPERAND (inner, 0);
2078 else if (BINARY_CLASS_P (inner))
2079 {
2080 if (TREE_INVARIANT (TREE_OPERAND (inner, 1)))
2081 inner = TREE_OPERAND (inner, 0);
2082 else if (TREE_INVARIANT (TREE_OPERAND (inner, 0)))
2083 inner = TREE_OPERAND (inner, 1);
2084 else
2085 break;
2086 }
2087 else
2088 break;
2089 }
2090
2091 return inner;
2092}
2093
2094/* Return which tree structure is used by T. */
2095
2096enum tree_node_structure_enum
2097tree_node_structure (tree t)
2098{
2099 enum tree_code code = TREE_CODE (t);
2100
2101 switch (TREE_CODE_CLASS (code))
2102 {
2103 case tcc_declaration:
2104 {
2105 switch (code)
2106 {
2107 case FIELD_DECL:
2108 return TS_FIELD_DECL;
2109 case PARM_DECL:
2110 return TS_PARM_DECL;
2111 case VAR_DECL:
2112 return TS_VAR_DECL;
2113 case LABEL_DECL:
2114 return TS_LABEL_DECL;
2115 case RESULT_DECL:
2116 return TS_RESULT_DECL;
2117 case CONST_DECL:
2118 return TS_CONST_DECL;
2119 case TYPE_DECL:
2120 return TS_TYPE_DECL;
2121 case FUNCTION_DECL:
2122 return TS_FUNCTION_DECL;
2123 case SYMBOL_MEMORY_TAG:
2124 case NAME_MEMORY_TAG:
2125 case STRUCT_FIELD_TAG:
2126 return TS_MEMORY_TAG;
2127 default:
2128 return TS_DECL_NON_COMMON;
2129 }
2130 }
2131 case tcc_type:
2132 return TS_TYPE;
2133 case tcc_reference:
2134 case tcc_comparison:
2135 case tcc_unary:
2136 case tcc_binary:
2137 case tcc_expression:
2138 case tcc_statement:
2139 return TS_EXP;
2140 default: /* tcc_constant and tcc_exceptional */
2141 break;
2142 }
2143 switch (code)
2144 {
2145 /* tcc_constant cases. */
2146 case INTEGER_CST: return TS_INT_CST;
2147 case REAL_CST: return TS_REAL_CST;
2148 case COMPLEX_CST: return TS_COMPLEX;
2149 case VECTOR_CST: return TS_VECTOR;
2150 case STRING_CST: return TS_STRING;
2151 /* tcc_exceptional cases. */
2152 case ERROR_MARK: return TS_COMMON;
2153 case IDENTIFIER_NODE: return TS_IDENTIFIER;
2154 case TREE_LIST: return TS_LIST;
2155 case TREE_VEC: return TS_VEC;
2156 case PHI_NODE: return TS_PHI_NODE;
2157 case SSA_NAME: return TS_SSA_NAME;
2158 case PLACEHOLDER_EXPR: return TS_COMMON;
2159 case STATEMENT_LIST: return TS_STATEMENT_LIST;
2160 case BLOCK: return TS_BLOCK;
2161 case CONSTRUCTOR: return TS_CONSTRUCTOR;
2162 case TREE_BINFO: return TS_BINFO;
2163 case VALUE_HANDLE: return TS_VALUE_HANDLE;
2164 case OMP_CLAUSE: return TS_OMP_CLAUSE;
2165
2166 default:
2167 gcc_unreachable ();
2168 }
2169}
2170
2171/* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
2172 or offset that depends on a field within a record. */
2173
2174bool
2175contains_placeholder_p (tree exp)
2176{
2177 enum tree_code code;
2178
2179 if (!exp)
2180 return 0;
2181
2182 code = TREE_CODE (exp);
2183 if (code == PLACEHOLDER_EXPR)
2184 return 1;
2185
2186 switch (TREE_CODE_CLASS (code))
2187 {
2188 case tcc_reference:
2189 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2190 position computations since they will be converted into a
2191 WITH_RECORD_EXPR involving the reference, which will assume
2192 here will be valid. */
2193 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2194
2195 case tcc_exceptional:
2196 if (code == TREE_LIST)
2197 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
2198 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
2199 break;
2200
2201 case tcc_unary:
2202 case tcc_binary:
2203 case tcc_comparison:
2204 case tcc_expression:
2205 switch (code)
2206 {
2207 case COMPOUND_EXPR:
2208 /* Ignoring the first operand isn't quite right, but works best. */
2209 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2210
2211 case COND_EXPR:
2212 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2213 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
2214 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
2215
2216 case CALL_EXPR:
2217 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2218
2219 default:
2220 break;
2221 }
2222
2223 switch (TREE_CODE_LENGTH (code))
2224 {
2225 case 1:
2226 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2227 case 2:
2228 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2229 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
2230 default:
2231 return 0;
2232 }
2233
2234 default:
2235 return 0;
2236 }
2237 return 0;
2238}
2239
2240/* Return true if any part of the computation of TYPE involves a
2241 PLACEHOLDER_EXPR. This includes size, bounds, qualifiers
2242 (for QUAL_UNION_TYPE) and field positions. */
2243
2244static bool
2245type_contains_placeholder_1 (tree type)
2246{
2247 /* If the size contains a placeholder or the parent type (component type in
2248 the case of arrays) type involves a placeholder, this type does. */
2249 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
2250 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
2251 || (TREE_TYPE (type) != 0
2252 && type_contains_placeholder_p (TREE_TYPE (type))))
2253 return true;
2254
2255 /* Now do type-specific checks. Note that the last part of the check above
2256 greatly limits what we have to do below. */
2257 switch (TREE_CODE (type))
2258 {
2259 case VOID_TYPE:
2260 case COMPLEX_TYPE:
2261 case ENUMERAL_TYPE:
2262 case BOOLEAN_TYPE:
2263 case POINTER_TYPE:
2264 case OFFSET_TYPE:
2265 case REFERENCE_TYPE:
2266 case METHOD_TYPE:
2267 case FUNCTION_TYPE:
2268 case VECTOR_TYPE:
2269 return false;
2270
2271 case INTEGER_TYPE:
2272 case REAL_TYPE:
2273 /* Here we just check the bounds. */
2274 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
2275 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
2276
2277 case ARRAY_TYPE:
2278 /* We're already checked the component type (TREE_TYPE), so just check
2279 the index type. */
2280 return type_contains_placeholder_p (TYPE_DOMAIN (type));
2281
2282 case RECORD_TYPE:
2283 case UNION_TYPE:
2284 case QUAL_UNION_TYPE:
2285 {
2286 tree field;
2287
2288 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2289 if (TREE_CODE (field) == FIELD_DECL
2290 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
2291 || (TREE_CODE (type) == QUAL_UNION_TYPE
2292 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
2293 || type_contains_placeholder_p (TREE_TYPE (field))))
2294 return true;
2295
2296 return false;
2297 }
2298
2299 default:
2300 gcc_unreachable ();
2301 }
2302}
2303
2304bool
2305type_contains_placeholder_p (tree type)
2306{
2307 bool result;
2308
2309 /* If the contains_placeholder_bits field has been initialized,
2310 then we know the answer. */
2311 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
2312 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
2313
2314 /* Indicate that we've seen this type node, and the answer is false.
2315 This is what we want to return if we run into recursion via fields. */
2316 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
2317
2318 /* Compute the real value. */
2319 result = type_contains_placeholder_1 (type);
2320
2321 /* Store the real value. */
2322 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
2323
2324 return result;
2325}
2326
2327/* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
2328 return a tree with all occurrences of references to F in a
2329 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
2330 contains only arithmetic expressions or a CALL_EXPR with a
2331 PLACEHOLDER_EXPR occurring only in its arglist. */
2332
2333tree
2334substitute_in_expr (tree exp, tree f, tree r)
2335{
2336 enum tree_code code = TREE_CODE (exp);
2337 tree op0, op1, op2, op3;
2338 tree new;
2339 tree inner;
2340
2341 /* We handle TREE_LIST and COMPONENT_REF separately. */
2342 if (code == TREE_LIST)
2343 {
2344 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
2345 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
2346 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2347 return exp;
2348
2349 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2350 }
2351 else if (code == COMPONENT_REF)
2352 {
2353 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2354 and it is the right field, replace it with R. */
2355 for (inner = TREE_OPERAND (exp, 0);
2356 REFERENCE_CLASS_P (inner);
2357 inner = TREE_OPERAND (inner, 0))
2358 ;
2359 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2360 && TREE_OPERAND (exp, 1) == f)
2361 return r;
2362
2363 /* If this expression hasn't been completed let, leave it alone. */
2364 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && TREE_TYPE (inner) == 0)
2365 return exp;
2366
2367 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2368 if (op0 == TREE_OPERAND (exp, 0))
2369 return exp;
2370
2371 new = fold_build3 (COMPONENT_REF, TREE_TYPE (exp),
2372 op0, TREE_OPERAND (exp, 1), NULL_TREE);
2373 }
2374 else
2375 switch (TREE_CODE_CLASS (code))
2376 {
2377 case tcc_constant:
2378 case tcc_declaration:
2379 return exp;
2380
2381 case tcc_exceptional:
2382 case tcc_unary:
2383 case tcc_binary:
2384 case tcc_comparison:
2385 case tcc_expression:
2386 case tcc_reference:
2387 switch (TREE_CODE_LENGTH (code))
2388 {
2389 case 0:
2390 return exp;
2391
2392 case 1:
2393 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2394 if (op0 == TREE_OPERAND (exp, 0))
2395 return exp;
2396
2397 new = fold_build1 (code, TREE_TYPE (exp), op0);
2398 break;
2399
2400 case 2:
2401 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2402 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2403
2404 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2405 return exp;
2406
2407 new = fold_build2 (code, TREE_TYPE (exp), op0, op1);
2408 break;
2409
2410 case 3:
2411 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2412 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2413 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
2414
2415 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2416 && op2 == TREE_OPERAND (exp, 2))
2417 return exp;
2418
2419 new = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
2420 break;
2421
2422 case 4:
2423 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2424 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2425 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
2426 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
2427
2428 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2429 && op2 == TREE_OPERAND (exp, 2)
2430 && op3 == TREE_OPERAND (exp, 3))
2431 return exp;
2432
2433 new = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2434 break;
2435
2436 default:
2437 gcc_unreachable ();
2438 }
2439 break;
2440
2441 default:
2442 gcc_unreachable ();
2443 }
2444
2445 TREE_READONLY (new) = TREE_READONLY (exp);
2446 return new;
2447}
2448
2449/* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
2450 for it within OBJ, a tree that is an object or a chain of references. */
2451
2452tree
2453substitute_placeholder_in_expr (tree exp, tree obj)
2454{
2455 enum tree_code code = TREE_CODE (exp);
2456 tree op0, op1, op2, op3;
2457
2458 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
2459 in the chain of OBJ. */
2460 if (code == PLACEHOLDER_EXPR)
2461 {
2462 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
2463 tree elt;
2464
2465 for (elt = obj; elt != 0;
2466 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2467 || TREE_CODE (elt) == COND_EXPR)
2468 ? TREE_OPERAND (elt, 1)
2469 : (REFERENCE_CLASS_P (elt)
2470 || UNARY_CLASS_P (elt)
2471 || BINARY_CLASS_P (elt)
2472 || EXPRESSION_CLASS_P (elt))
2473 ? TREE_OPERAND (elt, 0) : 0))
2474 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
2475 return elt;
2476
2477 for (elt = obj; elt != 0;
2478 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2479 || TREE_CODE (elt) == COND_EXPR)
2480 ? TREE_OPERAND (elt, 1)
2481 : (REFERENCE_CLASS_P (elt)
2482 || UNARY_CLASS_P (elt)
2483 || BINARY_CLASS_P (elt)
2484 || EXPRESSION_CLASS_P (elt))
2485 ? TREE_OPERAND (elt, 0) : 0))
2486 if (POINTER_TYPE_P (TREE_TYPE (elt))
2487 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
2488 == need_type))
2489 return fold_build1 (INDIRECT_REF, need_type, elt);
2490
2491 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
2492 survives until RTL generation, there will be an error. */
2493 return exp;
2494 }
2495
2496 /* TREE_LIST is special because we need to look at TREE_VALUE
2497 and TREE_CHAIN, not TREE_OPERANDS. */
2498 else if (code == TREE_LIST)
2499 {
2500 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
2501 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
2502 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2503 return exp;
2504
2505 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2506 }
2507 else
2508 switch (TREE_CODE_CLASS (code))
2509 {
2510 case tcc_constant:
2511 case tcc_declaration:
2512 return exp;
2513
2514 case tcc_exceptional:
2515 case tcc_unary:
2516 case tcc_binary:
2517 case tcc_comparison:
2518 case tcc_expression:
2519 case tcc_reference:
2520 case tcc_statement:
2521 switch (TREE_CODE_LENGTH (code))
2522 {
2523 case 0:
2524 return exp;
2525
2526 case 1:
2527 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2528 if (op0 == TREE_OPERAND (exp, 0))
2529 return exp;
2530 else
2531 return fold_build1 (code, TREE_TYPE (exp), op0);
2532
2533 case 2:
2534 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2535 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2536
2537 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2538 return exp;
2539 else
2540 return fold_build2 (code, TREE_TYPE (exp), op0, op1);
2541
2542 case 3:
2543 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2544 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2545 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2546
2547 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2548 && op2 == TREE_OPERAND (exp, 2))
2549 return exp;
2550 else
2551 return fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
2552
2553 case 4:
2554 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2555 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2556 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2557 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
2558
2559 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2560 && op2 == TREE_OPERAND (exp, 2)
2561 && op3 == TREE_OPERAND (exp, 3))
2562 return exp;
2563 else
2564 return fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2565
2566 default:
2567 gcc_unreachable ();
2568 }
2569 break;
2570
2571 default:
2572 gcc_unreachable ();
2573 }
2574}
2575
2576/* Stabilize a reference so that we can use it any number of times
2577 without causing its operands to be evaluated more than once.
2578 Returns the stabilized reference. This works by means of save_expr,
2579 so see the caveats in the comments about save_expr.
2580
2581 Also allows conversion expressions whose operands are references.
2582 Any other kind of expression is returned unchanged. */
2583
2584tree
2585stabilize_reference (tree ref)
2586{
2587 tree result;
2588 enum tree_code code = TREE_CODE (ref);
2589
2590 switch (code)
2591 {
2592 case VAR_DECL:
2593 case PARM_DECL:
2594 case RESULT_DECL:
2595 /* No action is needed in this case. */
2596 return ref;
2597
2598 case NOP_EXPR:
2599 case CONVERT_EXPR:
2600 case FLOAT_EXPR:
2601 case FIX_TRUNC_EXPR:
2602 case FIX_FLOOR_EXPR:
2603 case FIX_ROUND_EXPR:
2604 case FIX_CEIL_EXPR:
2605 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2606 break;
2607
2608 case INDIRECT_REF:
2609 result = build_nt (INDIRECT_REF,
2610 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2611 break;
2612
2613 case COMPONENT_REF:
2614 result = build_nt (COMPONENT_REF,
2615 stabilize_reference (TREE_OPERAND (ref, 0)),
2616 TREE_OPERAND (ref, 1), NULL_TREE);
2617 break;
2618
2619 case BIT_FIELD_REF:
2620 result = build_nt (BIT_FIELD_REF,
2621 stabilize_reference (TREE_OPERAND (ref, 0)),
2622 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2623 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2624 break;
2625
2626 case ARRAY_REF:
2627 result = build_nt (ARRAY_REF,
2628 stabilize_reference (TREE_OPERAND (ref, 0)),
2629 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2630 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2631 break;
2632
2633 case ARRAY_RANGE_REF:
2634 result = build_nt (ARRAY_RANGE_REF,
2635 stabilize_reference (TREE_OPERAND (ref, 0)),
2636 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2637 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2638 break;
2639
2640 case COMPOUND_EXPR:
2641 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2642 it wouldn't be ignored. This matters when dealing with
2643 volatiles. */
2644 return stabilize_reference_1 (ref);
2645
2646 /* If arg isn't a kind of lvalue we recognize, make no change.
2647 Caller should recognize the error for an invalid lvalue. */
2648 default:
2649 return ref;
2650
2651 case ERROR_MARK:
2652 return error_mark_node;
2653 }
2654
2655 TREE_TYPE (result) = TREE_TYPE (ref);
2656 TREE_READONLY (result) = TREE_READONLY (ref);
2657 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2658 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2659
2660 return result;
2661}
2662
2663/* Subroutine of stabilize_reference; this is called for subtrees of
2664 references. Any expression with side-effects must be put in a SAVE_EXPR
2665 to ensure that it is only evaluated once.
2666
2667 We don't put SAVE_EXPR nodes around everything, because assigning very
2668 simple expressions to temporaries causes us to miss good opportunities
2669 for optimizations. Among other things, the opportunity to fold in the
2670 addition of a constant into an addressing mode often gets lost, e.g.
2671 "y[i+1] += x;". In general, we take the approach that we should not make
2672 an assignment unless we are forced into it - i.e., that any non-side effect
2673 operator should be allowed, and that cse should take care of coalescing
2674 multiple utterances of the same expression should that prove fruitful. */
2675
2676tree
2677stabilize_reference_1 (tree e)
2678{
2679 tree result;
2680 enum tree_code code = TREE_CODE (e);
2681
2682 /* We cannot ignore const expressions because it might be a reference
2683 to a const array but whose index contains side-effects. But we can
2684 ignore things that are actual constant or that already have been
2685 handled by this function. */
2686
2687 if (TREE_INVARIANT (e))
2688 return e;
2689
2690 switch (TREE_CODE_CLASS (code))
2691 {
2692 case tcc_exceptional:
2693 case tcc_type:
2694 case tcc_declaration:
2695 case tcc_comparison:
2696 case tcc_statement:
2697 case tcc_expression:
2698 case tcc_reference:
2699 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2700 so that it will only be evaluated once. */
2701 /* The reference (r) and comparison (<) classes could be handled as
2702 below, but it is generally faster to only evaluate them once. */
2703 if (TREE_SIDE_EFFECTS (e))
2704 return save_expr (e);
2705 return e;
2706
2707 case tcc_constant:
2708 /* Constants need no processing. In fact, we should never reach
2709 here. */
2710 return e;
2711
2712 case tcc_binary:
2713 /* Division is slow and tends to be compiled with jumps,
2714 especially the division by powers of 2 that is often
2715 found inside of an array reference. So do it just once. */
2716 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2717 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2718 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2719 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2720 return save_expr (e);
2721 /* Recursively stabilize each operand. */
2722 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2723 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2724 break;
2725
2726 case tcc_unary:
2727 /* Recursively stabilize each operand. */
2728 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2729 break;
2730
2731 default:
2732 gcc_unreachable ();
2733 }
2734
2735 TREE_TYPE (result) = TREE_TYPE (e);
2736 TREE_READONLY (result) = TREE_READONLY (e);
2737 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2738 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2739 TREE_INVARIANT (result) = 1;
2740
2741 return result;
2742}
2743
2744/* Low-level constructors for expressions. */
2745
2746/* A helper function for build1 and constant folders. Set TREE_CONSTANT,
2747 TREE_INVARIANT, and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
2748
2749void
2750recompute_tree_invariant_for_addr_expr (tree t)
2751{
2752 tree node;
2753 bool tc = true, ti = true, se = false;
2754
2755 /* We started out assuming this address is both invariant and constant, but
2756 does not have side effects. Now go down any handled components and see if
2757 any of them involve offsets that are either non-constant or non-invariant.
2758 Also check for side-effects.
2759
2760 ??? Note that this code makes no attempt to deal with the case where
2761 taking the address of something causes a copy due to misalignment. */
2762
2763#define UPDATE_TITCSE(NODE) \
2764do { tree _node = (NODE); \
2765 if (_node && !TREE_INVARIANT (_node)) ti = false; \
2766 if (_node && !TREE_CONSTANT (_node)) tc = false; \
2767 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
2768
2769 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
2770 node = TREE_OPERAND (node, 0))
2771 {
2772 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
2773 array reference (probably made temporarily by the G++ front end),
2774 so ignore all the operands. */
2775 if ((TREE_CODE (node) == ARRAY_REF
2776 || TREE_CODE (node) == ARRAY_RANGE_REF)
2777 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
2778 {
2779 UPDATE_TITCSE (TREE_OPERAND (node, 1));
2780 if (TREE_OPERAND (node, 2))
2781 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2782 if (TREE_OPERAND (node, 3))
2783 UPDATE_TITCSE (TREE_OPERAND (node, 3));
2784 }
2785 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
2786 FIELD_DECL, apparently. The G++ front end can put something else
2787 there, at least temporarily. */
2788 else if (TREE_CODE (node) == COMPONENT_REF
2789 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
2790 {
2791 if (TREE_OPERAND (node, 2))
2792 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2793 }
2794 else if (TREE_CODE (node) == BIT_FIELD_REF)
2795 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2796 }
2797
2798 node = lang_hooks.expr_to_decl (node, &tc, &ti, &se);
2799
2800 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
2801 the address, since &(*a)->b is a form of addition. If it's a decl, it's
2802 invariant and constant if the decl is static. It's also invariant if it's
2803 a decl in the current function. Taking the address of a volatile variable
2804 is not volatile. If it's a constant, the address is both invariant and
2805 constant. Otherwise it's neither. */
2806 if (TREE_CODE (node) == INDIRECT_REF)
2807 UPDATE_TITCSE (TREE_OPERAND (node, 0));
2808 else if (DECL_P (node))
2809 {
2810 if (staticp (node))
2811 ;
2812 else if (decl_function_context (node) == current_function_decl
2813 /* Addresses of thread-local variables are invariant. */
2814 || (TREE_CODE (node) == VAR_DECL
2815 && DECL_THREAD_LOCAL_P (node)))
2816 tc = false;
2817 else
2818 ti = tc = false;
2819 }
2820 else if (CONSTANT_CLASS_P (node))
2821 ;
2822 else
2823 {
2824 ti = tc = false;
2825 se |= TREE_SIDE_EFFECTS (node);
2826 }
2827
2828 TREE_CONSTANT (t) = tc;
2829 TREE_INVARIANT (t) = ti;
2830 TREE_SIDE_EFFECTS (t) = se;
2831#undef UPDATE_TITCSE
2832}
2833
2834/* Build an expression of code CODE, data type TYPE, and operands as
2835 specified. Expressions and reference nodes can be created this way.
2836 Constants, decls, types and misc nodes cannot be.
2837
2838 We define 5 non-variadic functions, from 0 to 4 arguments. This is
2839 enough for all extant tree codes. */
2840
2841tree
2842build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
2843{
2844 tree t;
2845
2846 gcc_assert (TREE_CODE_LENGTH (code) == 0);
2847
2848 t = make_node_stat (code PASS_MEM_STAT);
2849 TREE_TYPE (t) = tt;
2850
2851 return t;
2852}
2853
2854tree
2855build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
2856{
2857 int length = sizeof (struct tree_exp);
2858#ifdef GATHER_STATISTICS
2859 tree_node_kind kind;
2860#endif
2861 tree t;
2862
2863#ifdef GATHER_STATISTICS
2864 switch (TREE_CODE_CLASS (code))
2865 {
2866 case tcc_statement: /* an expression with side effects */
2867 kind = s_kind;
2868 break;
2869 case tcc_reference: /* a reference */
2870 kind = r_kind;
2871 break;
2872 default:
2873 kind = e_kind;
2874 break;
2875 }
2876
2877 tree_node_counts[(int) kind]++;
2878 tree_node_sizes[(int) kind] += length;
2879#endif
2880
2881 gcc_assert (TREE_CODE_LENGTH (code) == 1);
2882
2883 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
2884
2885 memset (t, 0, sizeof (struct tree_common));
2886
2887 TREE_SET_CODE (t, code);
2888
2889 TREE_TYPE (t) = type;
2890#ifdef USE_MAPPED_LOCATION
2891 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
2892#else
2893 SET_EXPR_LOCUS (t, NULL);
2894#endif
2895 TREE_COMPLEXITY (t) = 0;
2896 TREE_OPERAND (t, 0) = node;
2897 TREE_BLOCK (t) = NULL_TREE;
2898 if (node && !TYPE_P (node))
2899 {
2900 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2901 TREE_READONLY (t) = TREE_READONLY (node);
2902 }
2903
2904 if (TREE_CODE_CLASS (code) == tcc_statement)
2905 TREE_SIDE_EFFECTS (t) = 1;
2906 else switch (code)
2907 {
2908 case VA_ARG_EXPR:
2909 /* All of these have side-effects, no matter what their
2910 operands are. */
2911 TREE_SIDE_EFFECTS (t) = 1;
2912 TREE_READONLY (t) = 0;
2913 break;
2914
2915 case MISALIGNED_INDIRECT_REF:
2916 case ALIGN_INDIRECT_REF:
2917 case INDIRECT_REF:
2918 /* Whether a dereference is readonly has nothing to do with whether
2919 its operand is readonly. */
2920 TREE_READONLY (t) = 0;
2921 break;
2922
2923 case ADDR_EXPR:
2924 if (node)
2925 recompute_tree_invariant_for_addr_expr (t);
2926 break;
2927
2928 default:
2929 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
2930 && node && !TYPE_P (node)
2931 && TREE_CONSTANT (node))
2932 TREE_CONSTANT (t) = 1;
2933 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
2934 && node && TREE_INVARIANT (node))
2935 TREE_INVARIANT (t) = 1;
2936 if (TREE_CODE_CLASS (code) == tcc_reference
2937 && node && TREE_THIS_VOLATILE (node))
2938 TREE_THIS_VOLATILE (t) = 1;
2939 break;
2940 }
2941
2942 return t;
2943}
2944
2945#define PROCESS_ARG(N) \
2946 do { \
2947 TREE_OPERAND (t, N) = arg##N; \
2948 if (arg##N &&!TYPE_P (arg##N)) \
2949 { \
2950 if (TREE_SIDE_EFFECTS (arg##N)) \
2951 side_effects = 1; \
2952 if (!TREE_READONLY (arg##N)) \
2953 read_only = 0; \
2954 if (!TREE_CONSTANT (arg##N)) \
2955 constant = 0; \
2956 if (!TREE_INVARIANT (arg##N)) \
2957 invariant = 0; \
2958 } \
2959 } while (0)
2960
2961tree
2962build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
2963{
2964 bool constant, read_only, side_effects, invariant;
2965 tree t;
2966
2967 gcc_assert (TREE_CODE_LENGTH (code) == 2);
2968
2969 t = make_node_stat (code PASS_MEM_STAT);
2970 TREE_TYPE (t) = tt;
2971
2972 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2973 result based on those same flags for the arguments. But if the
2974 arguments aren't really even `tree' expressions, we shouldn't be trying
2975 to do this. */
2976
2977 /* Expressions without side effects may be constant if their
2978 arguments are as well. */
2979 constant = (TREE_CODE_CLASS (code) == tcc_comparison
2980 || TREE_CODE_CLASS (code) == tcc_binary);
2981 read_only = 1;
2982 side_effects = TREE_SIDE_EFFECTS (t);
2983 invariant = constant;
2984
2985 PROCESS_ARG(0);
2986 PROCESS_ARG(1);
2987
2988 TREE_READONLY (t) = read_only;
2989 TREE_CONSTANT (t) = constant;
2990 TREE_INVARIANT (t) = invariant;
2991 TREE_SIDE_EFFECTS (t) = side_effects;
2992 TREE_THIS_VOLATILE (t)
2993 = (TREE_CODE_CLASS (code) == tcc_reference
2994 && arg0 && TREE_THIS_VOLATILE (arg0));
2995
2996 return t;
2997}
2998
2999tree
3000build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3001 tree arg2 MEM_STAT_DECL)
3002{
3003 bool constant, read_only, side_effects, invariant;
3004 tree t;
3005
3006 gcc_assert (TREE_CODE_LENGTH (code) == 3);
3007
3008 t = make_node_stat (code PASS_MEM_STAT);
3009 TREE_TYPE (t) = tt;
3010
3011 side_effects = TREE_SIDE_EFFECTS (t);
3012
3013 PROCESS_ARG(0);
3014 PROCESS_ARG(1);
3015 PROCESS_ARG(2);
3016
3017 if (code == CALL_EXPR && !side_effects)
3018 {
3019 tree node;
3020 int i;
3021
3022 /* Calls have side-effects, except those to const or
3023 pure functions. */
3024 i = call_expr_flags (t);
3025 if (!(i & (ECF_CONST | ECF_PURE)))
3026 side_effects = 1;
3027
3028 /* And even those have side-effects if their arguments do. */
3029 else for (node = arg1; node; node = TREE_CHAIN (node))
3030 if (TREE_SIDE_EFFECTS (TREE_VALUE (node)))
3031 {
3032 side_effects = 1;
3033 break;
3034 }
3035 }
3036
3037 TREE_SIDE_EFFECTS (t) = side_effects;
3038 TREE_THIS_VOLATILE (t)
3039 = (TREE_CODE_CLASS (code) == tcc_reference
3040 && arg0 && TREE_THIS_VOLATILE (arg0));
3041
3042 return t;
3043}
3044
3045tree
3046build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3047 tree arg2, tree arg3 MEM_STAT_DECL)
3048{
3049 bool constant, read_only, side_effects, invariant;
3050 tree t;
3051
3052 gcc_assert (TREE_CODE_LENGTH (code) == 4);
3053
3054 t = make_node_stat (code PASS_MEM_STAT);
3055 TREE_TYPE (t) = tt;
3056
3057 side_effects = TREE_SIDE_EFFECTS (t);
3058
3059 PROCESS_ARG(0);
3060 PROCESS_ARG(1);
3061 PROCESS_ARG(2);
3062 PROCESS_ARG(3);
3063
3064 TREE_SIDE_EFFECTS (t) = side_effects;
3065 TREE_THIS_VOLATILE (t)
3066 = (TREE_CODE_CLASS (code) == tcc_reference
3067 && arg0 && TREE_THIS_VOLATILE (arg0));
3068
3069 return t;
3070}
3071
3072tree
3073build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3074 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
3075{
3076 bool constant, read_only, side_effects, invariant;
3077 tree t;
3078
3079 gcc_assert (TREE_CODE_LENGTH (code) == 5);
3080
3081 t = make_node_stat (code PASS_MEM_STAT);
3082 TREE_TYPE (t) = tt;
3083
3084 side_effects = TREE_SIDE_EFFECTS (t);
3085
3086 PROCESS_ARG(0);
3087 PROCESS_ARG(1);
3088 PROCESS_ARG(2);
3089 PROCESS_ARG(3);
3090 PROCESS_ARG(4);
3091
3092 TREE_SIDE_EFFECTS (t) = side_effects;
3093 TREE_THIS_VOLATILE (t)
3094 = (TREE_CODE_CLASS (code) == tcc_reference
3095 && arg0 && TREE_THIS_VOLATILE (arg0));
3096
3097 return t;
3098}
3099
3100tree
3101build7_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3102 tree arg2, tree arg3, tree arg4, tree arg5,
3103 tree arg6 MEM_STAT_DECL)
3104{
3105 bool constant, read_only, side_effects, invariant;
3106 tree t;
3107
3108 gcc_assert (code == TARGET_MEM_REF);
3109
3110 t = make_node_stat (code PASS_MEM_STAT);
3111 TREE_TYPE (t) = tt;
3112
3113 side_effects = TREE_SIDE_EFFECTS (t);
3114
3115 PROCESS_ARG(0);
3116 PROCESS_ARG(1);
3117 PROCESS_ARG(2);
3118 PROCESS_ARG(3);
3119 PROCESS_ARG(4);
3120 PROCESS_ARG(5);
3121 PROCESS_ARG(6);
3122
3123 TREE_SIDE_EFFECTS (t) = side_effects;
3124 TREE_THIS_VOLATILE (t) = 0;
3125
3126 return t;
3127}
3128
3129/* Similar except don't specify the TREE_TYPE
3130 and leave the TREE_SIDE_EFFECTS as 0.
3131 It is permissible for arguments to be null,
3132 or even garbage if their values do not matter. */
3133
3134tree
3135build_nt (enum tree_code code, ...)
3136{
3137 tree t;
3138 int length;
3139 int i;
3140 va_list p;
3141
3142 va_start (p, code);
3143
3144 t = make_node (code);
3145 length = TREE_CODE_LENGTH (code);
3146
3147 for (i = 0; i < length; i++)
3148 TREE_OPERAND (t, i) = va_arg (p, tree);
3149
3150 va_end (p);
3151 return t;
3152}
3153
3154/* Create a DECL_... node of code CODE, name NAME and data type TYPE.
3155 We do NOT enter this node in any sort of symbol table.
3156
3157 layout_decl is used to set up the decl's storage layout.
3158 Other slots are initialized to 0 or null pointers. */
3159
3160tree
3161build_decl_stat (enum tree_code code, tree name, tree type MEM_STAT_DECL)
3162{
3163 tree t;
3164
3165 t = make_node_stat (code PASS_MEM_STAT);
3166
3167/* if (type == error_mark_node)
3168 type = integer_type_node; */
3169/* That is not done, deliberately, so that having error_mark_node
3170 as the type can suppress useless errors in the use of this variable. */
3171
3172 DECL_NAME (t) = name;
3173 TREE_TYPE (t) = type;
3174
3175 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
3176 layout_decl (t, 0);
3177 else if (code == FUNCTION_DECL)
3178 DECL_MODE (t) = FUNCTION_MODE;
3179
3180 return t;
3181}
3182
3183/* Builds and returns function declaration with NAME and TYPE. */
3184
3185tree
3186build_fn_decl (const char *name, tree type)
3187{
3188 tree id = get_identifier (name);
3189 tree decl = build_decl (FUNCTION_DECL, id, type);
3190
3191 DECL_EXTERNAL (decl) = 1;
3192 TREE_PUBLIC (decl) = 1;
3193 DECL_ARTIFICIAL (decl) = 1;
3194 TREE_NOTHROW (decl) = 1;
3195
3196 return decl;
3197}
3198
3199
3200/* BLOCK nodes are used to represent the structure of binding contours
3201 and declarations, once those contours have been exited and their contents
3202 compiled. This information is used for outputting debugging info. */
3203
3204tree
3205build_block (tree vars, tree subblocks, tree supercontext, tree chain)
3206{
3207 tree block = make_node (BLOCK);
3208
3209 BLOCK_VARS (block) = vars;
3210 BLOCK_SUBBLOCKS (block) = subblocks;
3211 BLOCK_SUPERCONTEXT (block) = supercontext;
3212 BLOCK_CHAIN (block) = chain;
3213 return block;
3214}
3215
3216#if 1 /* ! defined(USE_MAPPED_LOCATION) */
3217/* ??? gengtype doesn't handle conditionals */
3218static GTY(()) source_locus last_annotated_node;
3219#endif
3220
3221#ifdef USE_MAPPED_LOCATION
3222
3223expanded_location
3224expand_location (source_location loc)
3225{
3226 expanded_location xloc;
3227 if (loc == 0) { xloc.file = NULL; xloc.line = 0; xloc.column = 0; }
3228 else
3229 {
3230 const struct line_map *map = linemap_lookup (&line_table, loc);
3231 xloc.file = map->to_file;
3232 xloc.line = SOURCE_LINE (map, loc);
3233 xloc.column = SOURCE_COLUMN (map, loc);
3234 };
3235 return xloc;
3236}
3237
3238#else
3239
3240/* Record the exact location where an expression or an identifier were
3241 encountered. */
3242
3243void
3244annotate_with_file_line (tree node, const char *file, int line)
3245{
3246 /* Roughly one percent of the calls to this function are to annotate
3247 a node with the same information already attached to that node!
3248 Just return instead of wasting memory. */
3249 if (EXPR_LOCUS (node)
3250 && EXPR_LINENO (node) == line
3251 && (EXPR_FILENAME (node) == file
3252 || !strcmp (EXPR_FILENAME (node), file)))
3253 {
3254 last_annotated_node = EXPR_LOCUS (node);
3255 return;
3256 }
3257
3258 /* In heavily macroized code (such as GCC itself) this single
3259 entry cache can reduce the number of allocations by more
3260 than half. */
3261 if (last_annotated_node
3262 && last_annotated_node->line == line
3263 && (last_annotated_node->file == file
3264 || !strcmp (last_annotated_node->file, file)))
3265 {
3266 SET_EXPR_LOCUS (node, last_annotated_node);
3267 return;
3268 }
3269
3270 SET_EXPR_LOCUS (node, ggc_alloc (sizeof (location_t)));
3271 EXPR_LINENO (node) = line;
3272 EXPR_FILENAME (node) = file;
3273 last_annotated_node = EXPR_LOCUS (node);
3274}
3275
3276void
3277annotate_with_locus (tree node, location_t locus)
3278{
3279 annotate_with_file_line (node, locus.file, locus.line);
3280}
3281#endif
3282
3283/* Return a declaration like DDECL except that its DECL_ATTRIBUTES
3284 is ATTRIBUTE. */
3285
3286tree
3287build_decl_attribute_variant (tree ddecl, tree attribute)
3288{
3289 DECL_ATTRIBUTES (ddecl) = attribute;
3290 return ddecl;
3291}
3292
3293/* Borrowed from hashtab.c iterative_hash implementation. */
3294#define mix(a,b,c) \
3295{ \
3296 a -= b; a -= c; a ^= (c>>13); \
3297 b -= c; b -= a; b ^= (a<< 8); \
3298 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
3299 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
3300 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
3301 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
3302 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
3303 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
3304 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
3305}
3306
3307
3308/* Produce good hash value combining VAL and VAL2. */
3309static inline hashval_t
3310iterative_hash_hashval_t (hashval_t val, hashval_t val2)
3311{
3312 /* the golden ratio; an arbitrary value. */
3313 hashval_t a = 0x9e3779b9;
3314
3315 mix (a, val, val2);
3316 return val2;
3317}
3318
3319/* Produce good hash value combining PTR and VAL2. */
3320static inline hashval_t
3321iterative_hash_pointer (void *ptr, hashval_t val2)
3322{
3323 if (sizeof (ptr) == sizeof (hashval_t))
3324 return iterative_hash_hashval_t ((size_t) ptr, val2);
3325 else
3326 {
3327 hashval_t a = (hashval_t) (size_t) ptr;
3328 /* Avoid warnings about shifting of more than the width of the type on
3329 hosts that won't execute this path. */
3330 int zero = 0;
3331 hashval_t b = (hashval_t) ((size_t) ptr >> (sizeof (hashval_t) * 8 + zero));
3332 mix (a, b, val2);
3333 return val2;
3334 }
3335}
3336
3337/* Produce good hash value combining VAL and VAL2. */
3338static inline hashval_t
3339iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
3340{
3341 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
3342 return iterative_hash_hashval_t (val, val2);
3343 else
3344 {
3345 hashval_t a = (hashval_t) val;
3346 /* Avoid warnings about shifting of more than the width of the type on
3347 hosts that won't execute this path. */
3348 int zero = 0;
3349 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
3350 mix (a, b, val2);
3351 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
3352 {
3353 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
3354 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
3355 mix (a, b, val2);
3356 }
3357 return val2;
3358 }
3359}
3360
3361/* Return a type like TTYPE except that its TYPE_ATTRIBUTE
3362 is ATTRIBUTE and its qualifiers are QUALS.
3363
3364 Record such modified types already made so we don't make duplicates. */
3365
3366static tree
3367build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
3368{
3369 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
3370 {
3371 hashval_t hashcode = 0;
3372 tree ntype;
3373 enum tree_code code = TREE_CODE (ttype);
3374
3375 ntype = copy_node (ttype);
3376
3377 TYPE_POINTER_TO (ntype) = 0;
3378 TYPE_REFERENCE_TO (ntype) = 0;
3379 TYPE_ATTRIBUTES (ntype) = attribute;
3380
3381 /* Create a new main variant of TYPE. */
3382 TYPE_MAIN_VARIANT (ntype) = ntype;
3383 TYPE_NEXT_VARIANT (ntype) = 0;
3384 set_type_quals (ntype, TYPE_UNQUALIFIED);
3385
3386 hashcode = iterative_hash_object (code, hashcode);
3387 if (TREE_TYPE (ntype))
3388 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
3389 hashcode);
3390 hashcode = attribute_hash_list (attribute, hashcode);
3391
3392 switch (TREE_CODE (ntype))
3393 {
3394 case FUNCTION_TYPE:
3395 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
3396 break;
3397 case ARRAY_TYPE:
3398 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
3399 hashcode);
3400 break;
3401 case INTEGER_TYPE:
3402 hashcode = iterative_hash_object
3403 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
3404 hashcode = iterative_hash_object
3405 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
3406 break;
3407 case REAL_TYPE:
3408 {
3409 unsigned int precision = TYPE_PRECISION (ntype);
3410 hashcode = iterative_hash_object (precision, hashcode);
3411 }
3412 break;
3413 default:
3414 break;
3415 }
3416
3417 ntype = type_hash_canon (hashcode, ntype);
3418 ttype = build_qualified_type (ntype, quals);
3419 }
3420
3421 return ttype;
3422}
3423
3424
3425/* Return a type like TTYPE except that its TYPE_ATTRIBUTE
3426 is ATTRIBUTE.
3427
3428 Record such modified types already made so we don't make duplicates. */
3429
3430tree
3431build_type_attribute_variant (tree ttype, tree attribute)
3432{
3433 return build_type_attribute_qual_variant (ttype, attribute,
3434 TYPE_QUALS (ttype));
3435}
3436
3437/* Return nonzero if IDENT is a valid name for attribute ATTR,
3438 or zero if not.
3439
3440 We try both `text' and `__text__', ATTR may be either one. */
3441/* ??? It might be a reasonable simplification to require ATTR to be only
3442 `text'. One might then also require attribute lists to be stored in
3443 their canonicalized form. */
3444
3445static int
3446is_attribute_with_length_p (const char *attr, int attr_len, tree ident)
3447{
3448 int ident_len;
3449 const char *p;
3450
3451 if (TREE_CODE (ident) != IDENTIFIER_NODE)
3452 return 0;
3453
3454 p = IDENTIFIER_POINTER (ident);
3455 ident_len = IDENTIFIER_LENGTH (ident);
3456
3457 if (ident_len == attr_len
3458 && strcmp (attr, p) == 0)
3459 return 1;
3460
3461 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
3462 if (attr[0] == '_')
3463 {
3464 gcc_assert (attr[1] == '_');
3465 gcc_assert (attr[attr_len - 2] == '_');
3466 gcc_assert (attr[attr_len - 1] == '_');
3467 if (ident_len == attr_len - 4
3468 && strncmp (attr + 2, p, attr_len - 4) == 0)
3469 return 1;
3470 }
3471 else
3472 {
3473 if (ident_len == attr_len + 4
3474 && p[0] == '_' && p[1] == '_'
3475 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
3476 && strncmp (attr, p + 2, attr_len) == 0)
3477 return 1;
3478 }
3479
3480 return 0;
3481}
3482
3483/* Return nonzero if IDENT is a valid name for attribute ATTR,
3484 or zero if not.
3485
3486 We try both `text' and `__text__', ATTR may be either one. */
3487
3488int
3489is_attribute_p (const char *attr, tree ident)
3490{
3491 return is_attribute_with_length_p (attr, strlen (attr), ident);
3492}
3493
3494/* Given an attribute name and a list of attributes, return a pointer to the
3495 attribute's list element if the attribute is part of the list, or NULL_TREE
3496 if not found. If the attribute appears more than once, this only
3497 returns the first occurrence; the TREE_CHAIN of the return value should
3498 be passed back in if further occurrences are wanted. */
3499
3500tree
3501lookup_attribute (const char *attr_name, tree list)
3502{
3503 tree l;
3504 size_t attr_len = strlen (attr_name);
3505
3506 for (l = list; l; l = TREE_CHAIN (l))
3507 {
3508 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
3509 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
3510 return l;
3511 }
3512
3513 return NULL_TREE;
3514}
3515
3516/* Remove any instances of attribute ATTR_NAME in LIST and return the
3517 modified list. */
3518
3519tree
3520remove_attribute (const char *attr_name, tree list)
3521{
3522 tree *p;
3523 size_t attr_len = strlen (attr_name);
3524
3525 for (p = &list; *p; )
3526 {
3527 tree l = *p;
3528 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
3529 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
3530 *p = TREE_CHAIN (l);
3531 else
3532 p = &TREE_CHAIN (l);
3533 }
3534
3535 return list;
3536}
3537
3538/* Return an attribute list that is the union of a1 and a2. */
3539
3540tree
3541merge_attributes (tree a1, tree a2)
3542{
3543 tree attributes;
3544
3545 /* Either one unset? Take the set one. */
3546
3547 if ((attributes = a1) == 0)
3548 attributes = a2;
3549
3550 /* One that completely contains the other? Take it. */
3551
3552 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
3553 {
3554 if (attribute_list_contained (a2, a1))
3555 attributes = a2;
3556 else
3557 {
3558 /* Pick the longest list, and hang on the other list. */
3559
3560 if (list_length (a1) < list_length (a2))
3561 attributes = a2, a2 = a1;
3562
3563 for (; a2 != 0; a2 = TREE_CHAIN (a2))
3564 {
3565 tree a;
3566 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3567 attributes);
3568 a != NULL_TREE;
3569 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3570 TREE_CHAIN (a)))
3571 {
3572 if (TREE_VALUE (a) != NULL
3573 && TREE_CODE (TREE_VALUE (a)) == TREE_LIST
3574 && TREE_VALUE (a2) != NULL
3575 && TREE_CODE (TREE_VALUE (a2)) == TREE_LIST)
3576 {
3577 if (simple_cst_list_equal (TREE_VALUE (a),
3578 TREE_VALUE (a2)) == 1)
3579 break;
3580 }
3581 else if (simple_cst_equal (TREE_VALUE (a),
3582 TREE_VALUE (a2)) == 1)
3583 break;
3584 }
3585 if (a == NULL_TREE)
3586 {
3587 a1 = copy_node (a2);
3588 TREE_CHAIN (a1) = attributes;
3589 attributes = a1;
3590 }
3591 }
3592 }
3593 }
3594 return attributes;
3595}
3596
3597/* Given types T1 and T2, merge their attributes and return
3598 the result. */
3599
3600tree
3601merge_type_attributes (tree t1, tree t2)
3602{
3603 return merge_attributes (TYPE_ATTRIBUTES (t1),
3604 TYPE_ATTRIBUTES (t2));
3605}
3606
3607/* Given decls OLDDECL and NEWDECL, merge their attributes and return
3608 the result. */
3609
3610tree
3611merge_decl_attributes (tree olddecl, tree newdecl)
3612{
3613 return merge_attributes (DECL_ATTRIBUTES (olddecl),
3614 DECL_ATTRIBUTES (newdecl));
3615}
3616
3617#if TARGET_DLLIMPORT_DECL_ATTRIBUTES
3618
3619/* Specialization of merge_decl_attributes for various Windows targets.
3620
3621 This handles the following situation:
3622
3623 __declspec (dllimport) int foo;
3624 int foo;
3625
3626 The second instance of `foo' nullifies the dllimport. */
3627
3628tree
3629merge_dllimport_decl_attributes (tree old, tree new)
3630{
3631 tree a;
3632 int delete_dllimport_p = 1;
3633
3634 /* What we need to do here is remove from `old' dllimport if it doesn't
3635 appear in `new'. dllimport behaves like extern: if a declaration is
3636 marked dllimport and a definition appears later, then the object
3637 is not dllimport'd. We also remove a `new' dllimport if the old list
3638 contains dllexport: dllexport always overrides dllimport, regardless
3639 of the order of declaration. */
3640 if (!VAR_OR_FUNCTION_DECL_P (new))
3641 delete_dllimport_p = 0;
3642 else if (DECL_DLLIMPORT_P (new)
3643 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
3644 {
3645 DECL_DLLIMPORT_P (new) = 0;
3646 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
3647 "dllimport ignored", new);
3648 }
3649 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new))
3650 {
3651 /* Warn about overriding a symbol that has already been used. eg:
3652 extern int __attribute__ ((dllimport)) foo;
3653 int* bar () {return &foo;}
3654 int foo;
3655 */
3656 if (TREE_USED (old))
3657 {
3658 warning (0, "%q+D redeclared without dllimport attribute "
3659 "after being referenced with dll linkage", new);
3660 /* If we have used a variable's address with dllimport linkage,
3661 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
3662 decl may already have had TREE_INVARIANT and TREE_CONSTANT
3663 computed.
3664 We still remove the attribute so that assembler code refers
3665 to '&foo rather than '_imp__foo'. */
3666 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
3667 DECL_DLLIMPORT_P (new) = 1;
3668 }
3669
3670 /* Let an inline definition silently override the external reference,
3671 but otherwise warn about attribute inconsistency. */
3672 else if (TREE_CODE (new) == VAR_DECL
3673 || !DECL_DECLARED_INLINE_P (new))
3674 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
3675 "previous dllimport ignored", new);
3676 }
3677 else
3678 delete_dllimport_p = 0;
3679
3680 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new));
3681
3682 if (delete_dllimport_p)
3683 {
3684 tree prev, t;
3685 const size_t attr_len = strlen ("dllimport");
3686
3687 /* Scan the list for dllimport and delete it. */
3688 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
3689 {
3690 if (is_attribute_with_length_p ("dllimport", attr_len,
3691 TREE_PURPOSE (t)))
3692 {
3693 if (prev == NULL_TREE)
3694 a = TREE_CHAIN (a);
3695 else
3696 TREE_CHAIN (prev) = TREE_CHAIN (t);
3697 break;
3698 }
3699 }
3700 }
3701
3702 return a;
3703}
3704
3705/* Handle a "dllimport" or "dllexport" attribute; arguments as in
3706 struct attribute_spec.handler. */
3707
3708tree
3709handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
3710 bool *no_add_attrs)
3711{
3712 tree node = *pnode;
3713
3714 /* These attributes may apply to structure and union types being created,
3715 but otherwise should pass to the declaration involved. */
3716 if (!DECL_P (node))
3717 {
3718 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
3719 | (int) ATTR_FLAG_ARRAY_NEXT))
3720 {
3721 *no_add_attrs = true;
3722 return tree_cons (name, args, NULL_TREE);
3723 }
3724 if (TREE_CODE (node) != RECORD_TYPE && TREE_CODE (node) != UNION_TYPE)
3725 {
3726 warning (OPT_Wattributes, "%qs attribute ignored",
3727 IDENTIFIER_POINTER (name));
3728 *no_add_attrs = true;
3729 }
3730
3731 return NULL_TREE;
3732 }
3733
3734 if (TREE_CODE (node) != FUNCTION_DECL
3735 && TREE_CODE (node) != VAR_DECL)
3736 {
3737 *no_add_attrs = true;
3738 warning (OPT_Wattributes, "%qs attribute ignored",
3739 IDENTIFIER_POINTER (name));
3740 return NULL_TREE;
3741 }
3742
3743 /* Report error on dllimport ambiguities seen now before they cause
3744 any damage. */
3745 else if (is_attribute_p ("dllimport", name))
3746 {
3747 /* Honor any target-specific overrides. */
3748 if (!targetm.valid_dllimport_attribute_p (node))
3749 *no_add_attrs = true;
3750
3751 else if (TREE_CODE (node) == FUNCTION_DECL
3752 && DECL_DECLARED_INLINE_P (node))
3753 {
3754 warning (OPT_Wattributes, "inline function %q+D declared as "
3755 " dllimport: attribute ignored", node);
3756 *no_add_attrs = true;
3757 }
3758 /* Like MS, treat definition of dllimported variables and
3759 non-inlined functions on declaration as syntax errors. */
3760 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
3761 {
3762 error ("function %q+D definition is marked dllimport", node);
3763 *no_add_attrs = true;
3764 }
3765
3766 else if (TREE_CODE (node) == VAR_DECL)
3767 {
3768 if (DECL_INITIAL (node))
3769 {
3770 error ("variable %q+D definition is marked dllimport",
3771 node);
3772 *no_add_attrs = true;
3773 }
3774
3775 /* `extern' needn't be specified with dllimport.
3776 Specify `extern' now and hope for the best. Sigh. */
3777 DECL_EXTERNAL (node) = 1;
3778 /* Also, implicitly give dllimport'd variables declared within
3779 a function global scope, unless declared static. */
3780 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
3781 TREE_PUBLIC (node) = 1;
3782 }
3783
3784 if (*no_add_attrs == false)
3785 DECL_DLLIMPORT_P (node) = 1;
3786 }
3787
3788 /* Report error if symbol is not accessible at global scope. */
3789 if (!TREE_PUBLIC (node)
3790 && (TREE_CODE (node) == VAR_DECL
3791 || TREE_CODE (node) == FUNCTION_DECL))
3792 {
3793 error ("external linkage required for symbol %q+D because of "
3794 "%qs attribute", node, IDENTIFIER_POINTER (name));
3795 *no_add_attrs = true;
3796 }
3797
3798 return NULL_TREE;
3799}
3800
3801#endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
3802
3803/* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
3804 of the various TYPE_QUAL values. */
3805
3806static void
3807set_type_quals (tree type, int type_quals)
3808{
3809 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
3810 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
3811 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
3812}
3813
3814/* Returns true iff cand is equivalent to base with type_quals. */
3815
3816bool
3817check_qualified_type (tree cand, tree base, int type_quals)
3818{
3819 return (TYPE_QUALS (cand) == type_quals
3820 && TYPE_NAME (cand) == TYPE_NAME (base)
3821 /* Apparently this is needed for Objective-C. */
3822 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
3823 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
3824 TYPE_ATTRIBUTES (base)));
3825}
3826
3827/* Return a version of the TYPE, qualified as indicated by the
3828 TYPE_QUALS, if one exists. If no qualified version exists yet,
3829 return NULL_TREE. */
3830
3831tree
3832get_qualified_type (tree type, int type_quals)
3833{
3834 tree t;
3835
3836 if (TYPE_QUALS (type) == type_quals)
3837 return type;
3838
3839 /* Search the chain of variants to see if there is already one there just
3840 like the one we need to have. If so, use that existing one. We must
3841 preserve the TYPE_NAME, since there is code that depends on this. */
3842 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
3843 if (check_qualified_type (t, type, type_quals))
3844 return t;
3845
3846 return NULL_TREE;
3847}
3848
3849/* Like get_qualified_type, but creates the type if it does not
3850 exist. This function never returns NULL_TREE. */
3851
3852tree
3853build_qualified_type (tree type, int type_quals)
3854{
3855 tree t;
3856
3857 /* See if we already have the appropriate qualified variant. */
3858 t = get_qualified_type (type, type_quals);
3859
3860 /* If not, build it. */
3861 if (!t)
3862 {
3863 t = build_variant_type_copy (type);
3864 set_type_quals (t, type_quals);
3865 }
3866
3867 return t;
3868}
3869
3870/* Create a new distinct copy of TYPE. The new type is made its own
3871 MAIN_VARIANT. */
3872
3873tree
3874build_distinct_type_copy (tree type)
3875{
3876 tree t = copy_node (type);
3877
3878 TYPE_POINTER_TO (t) = 0;
3879 TYPE_REFERENCE_TO (t) = 0;
3880
3881 /* Make it its own variant. */
3882 TYPE_MAIN_VARIANT (t) = t;
3883 TYPE_NEXT_VARIANT (t) = 0;
3884
3885 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
3886 whose TREE_TYPE is not t. This can also happen in the Ada
3887 frontend when using subtypes. */
3888
3889 return t;
3890}
3891
3892/* Create a new variant of TYPE, equivalent but distinct.
3893 This is so the caller can modify it. */
3894
3895tree
3896build_variant_type_copy (tree type)
3897{
3898 tree t, m = TYPE_MAIN_VARIANT (type);
3899
3900 t = build_distinct_type_copy (type);
3901
3902 /* Add the new type to the chain of variants of TYPE. */
3903 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
3904 TYPE_NEXT_VARIANT (m) = t;
3905 TYPE_MAIN_VARIANT (t) = m;
3906
3907 return t;
3908}
3909
3910/* Return true if the from tree in both tree maps are equal. */
3911
3912int
3913tree_map_eq (const void *va, const void *vb)
3914{
3915 const struct tree_map *a = va, *b = vb;
3916 return (a->from == b->from);
3917}
3918
3919/* Hash a from tree in a tree_map. */
3920
3921unsigned int
3922tree_map_hash (const void *item)
3923{
3924 return (((const struct tree_map *) item)->hash);
3925}
3926
3927/* Return true if this tree map structure is marked for garbage collection
3928 purposes. We simply return true if the from tree is marked, so that this
3929 structure goes away when the from tree goes away. */
3930
3931int
3932tree_map_marked_p (const void *p)
3933{
3934 tree from = ((struct tree_map *) p)->from;
3935
3936 return ggc_marked_p (from);
3937}
3938
3939/* Return true if the trees in the tree_int_map *'s VA and VB are equal. */
3940
3941static int
3942tree_int_map_eq (const void *va, const void *vb)
3943{
3944 const struct tree_int_map *a = va, *b = vb;
3945 return (a->from == b->from);
3946}
3947
3948/* Hash a from tree in the tree_int_map * ITEM. */
3949
3950static unsigned int
3951tree_int_map_hash (const void *item)
3952{
3953 return htab_hash_pointer (((const struct tree_int_map *)item)->from);
3954}
3955
3956/* Return true if this tree int map structure is marked for garbage collection
3957 purposes. We simply return true if the from tree_int_map *P's from tree is marked, so that this
3958 structure goes away when the from tree goes away. */
3959
3960static int
3961tree_int_map_marked_p (const void *p)
3962{
3963 tree from = ((struct tree_int_map *) p)->from;
3964
3965 return ggc_marked_p (from);
3966}
3967/* Lookup an init priority for FROM, and return it if we find one. */
3968
3969unsigned short
3970decl_init_priority_lookup (tree from)
3971{
3972 struct tree_int_map *h, in;
3973 in.from = from;
3974
3975 h = htab_find_with_hash (init_priority_for_decl,
3976 &in, htab_hash_pointer (from));
3977 if (h)
3978 return h->to;
3979 return 0;
3980}
3981
3982/* Insert a mapping FROM->TO in the init priority hashtable. */
3983
3984void
3985decl_init_priority_insert (tree from, unsigned short to)
3986{
3987 struct tree_int_map *h;
3988 void **loc;
3989
3990 h = ggc_alloc (sizeof (struct tree_int_map));
3991 h->from = from;
3992 h->to = to;
3993 loc = htab_find_slot_with_hash (init_priority_for_decl, h,
3994 htab_hash_pointer (from), INSERT);
3995 *(struct tree_int_map **) loc = h;
3996}
3997
3998/* Look up a restrict qualified base decl for FROM. */
3999
4000tree
4001decl_restrict_base_lookup (tree from)
4002{
4003 struct tree_map *h;
4004 struct tree_map in;
4005
4006 in.from = from;
4007 h = htab_find_with_hash (restrict_base_for_decl, &in,
4008 htab_hash_pointer (from));
4009 return h ? h->to : NULL_TREE;
4010}
4011
4012/* Record the restrict qualified base TO for FROM. */
4013
4014void
4015decl_restrict_base_insert (tree from, tree to)
4016{
4017 struct tree_map *h;
4018 void **loc;
4019
4020 h = ggc_alloc (sizeof (struct tree_map));
4021 h->hash = htab_hash_pointer (from);
4022 h->from = from;
4023 h->to = to;
4024 loc = htab_find_slot_with_hash (restrict_base_for_decl, h, h->hash, INSERT);
4025 *(struct tree_map **) loc = h;
4026}
4027
4028/* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
4029
4030static void
4031print_debug_expr_statistics (void)
4032{
4033 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
4034 (long) htab_size (debug_expr_for_decl),
4035 (long) htab_elements (debug_expr_for_decl),
4036 htab_collisions (debug_expr_for_decl));
4037}
4038
4039/* Print out the statistics for the DECL_VALUE_EXPR hash table. */
4040
4041static void
4042print_value_expr_statistics (void)
4043{
4044 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
4045 (long) htab_size (value_expr_for_decl),
4046 (long) htab_elements (value_expr_for_decl),
4047 htab_collisions (value_expr_for_decl));
4048}
4049
4050/* Print out statistics for the RESTRICT_BASE_FOR_DECL hash table, but
4051 don't print anything if the table is empty. */
4052
4053static void
4054print_restrict_base_statistics (void)
4055{
4056 if (htab_elements (restrict_base_for_decl) != 0)
4057 fprintf (stderr,
4058 "RESTRICT_BASE hash: size %ld, %ld elements, %f collisions\n",
4059 (long) htab_size (restrict_base_for_decl),
4060 (long) htab_elements (restrict_base_for_decl),
4061 htab_collisions (restrict_base_for_decl));
4062}
4063
4064/* Lookup a debug expression for FROM, and return it if we find one. */
4065
4066tree
4067decl_debug_expr_lookup (tree from)
4068{
4069 struct tree_map *h, in;
4070 in.from = from;
4071
4072 h = htab_find_with_hash (debug_expr_for_decl, &in, htab_hash_pointer (from));
4073 if (h)
4074 return h->to;
4075 return NULL_TREE;
4076}
4077
4078/* Insert a mapping FROM->TO in the debug expression hashtable. */
4079
4080void
4081decl_debug_expr_insert (tree from, tree to)
4082{
4083 struct tree_map *h;
4084 void **loc;
4085
4086 h = ggc_alloc (sizeof (struct tree_map));
4087 h->hash = htab_hash_pointer (from);
4088 h->from = from;
4089 h->to = to;
4090 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, h->hash, INSERT);
4091 *(struct tree_map **) loc = h;
4092}
4093
4094/* Lookup a value expression for FROM, and return it if we find one. */
4095
4096tree
4097decl_value_expr_lookup (tree from)
4098{
4099 struct tree_map *h, in;
4100 in.from = from;
4101
4102 h = htab_find_with_hash (value_expr_for_decl, &in, htab_hash_pointer (from));
4103 if (h)
4104 return h->to;
4105 return NULL_TREE;
4106}
4107
4108/* Insert a mapping FROM->TO in the value expression hashtable. */
4109
4110void
4111decl_value_expr_insert (tree from, tree to)
4112{
4113 struct tree_map *h;
4114 void **loc;
4115
4116 h = ggc_alloc (sizeof (struct tree_map));
4117 h->hash = htab_hash_pointer (from);
4118 h->from = from;
4119 h->to = to;
4120 loc = htab_find_slot_with_hash (value_expr_for_decl, h, h->hash, INSERT);
4121 *(struct tree_map **) loc = h;
4122}
4123
4124/* Hashing of types so that we don't make duplicates.
4125 The entry point is `type_hash_canon'. */
4126
4127/* Compute a hash code for a list of types (chain of TREE_LIST nodes
4128 with types in the TREE_VALUE slots), by adding the hash codes
4129 of the individual types. */
4130
4131unsigned int
4132type_hash_list (tree list, hashval_t hashcode)
4133{
4134 tree tail;
4135
4136 for (tail = list; tail; tail = TREE_CHAIN (tail))
4137 if (TREE_VALUE (tail) != error_mark_node)
4138 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
4139 hashcode);
4140
4141 return hashcode;
4142}
4143
4144/* These are the Hashtable callback functions. */
4145
4146/* Returns true iff the types are equivalent. */
4147
4148static int
4149type_hash_eq (const void *va, const void *vb)
4150{
4151 const struct type_hash *a = va, *b = vb;
4152
4153 /* First test the things that are the same for all types. */
4154 if (a->hash != b->hash
4155 || TREE_CODE (a->type) != TREE_CODE (b->type)
4156 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
4157 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
4158 TYPE_ATTRIBUTES (b->type))
4159 || TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
4160 || TYPE_MODE (a->type) != TYPE_MODE (b->type))
4161 return 0;
4162
4163 switch (TREE_CODE (a->type))
4164 {
4165 case VOID_TYPE:
4166 case COMPLEX_TYPE:
4167 case POINTER_TYPE:
4168 case REFERENCE_TYPE:
4169 return 1;
4170
4171 case VECTOR_TYPE:
4172 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
4173
4174 case ENUMERAL_TYPE:
4175 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
4176 && !(TYPE_VALUES (a->type)
4177 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
4178 && TYPE_VALUES (b->type)
4179 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
4180 && type_list_equal (TYPE_VALUES (a->type),
4181 TYPE_VALUES (b->type))))
4182 return 0;
4183
4184 /* ... fall through ... */
4185
4186 case INTEGER_TYPE:
4187 case REAL_TYPE:
4188 case BOOLEAN_TYPE:
4189 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
4190 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
4191 TYPE_MAX_VALUE (b->type)))
4192 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
4193 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
4194 TYPE_MIN_VALUE (b->type))));
4195
4196 case OFFSET_TYPE:
4197 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
4198
4199 case METHOD_TYPE:
4200 return (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
4201 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
4202 || (TYPE_ARG_TYPES (a->type)
4203 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
4204 && TYPE_ARG_TYPES (b->type)
4205 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
4206 && type_list_equal (TYPE_ARG_TYPES (a->type),
4207 TYPE_ARG_TYPES (b->type)))));
4208
4209 case ARRAY_TYPE:
4210 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
4211
4212 case RECORD_TYPE:
4213 case UNION_TYPE:
4214 case QUAL_UNION_TYPE:
4215 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
4216 || (TYPE_FIELDS (a->type)
4217 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
4218 && TYPE_FIELDS (b->type)
4219 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
4220 && type_list_equal (TYPE_FIELDS (a->type),
4221 TYPE_FIELDS (b->type))));
4222
4223 case FUNCTION_TYPE:
4224 return (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
4225 || (TYPE_ARG_TYPES (a->type)
4226 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
4227 && TYPE_ARG_TYPES (b->type)
4228 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
4229 && type_list_equal (TYPE_ARG_TYPES (a->type),
4230 TYPE_ARG_TYPES (b->type))));
4231
4232 default:
4233 return 0;
4234 }
4235}
4236
4237/* Return the cached hash value. */
4238
4239static hashval_t
4240type_hash_hash (const void *item)
4241{
4242 return ((const struct type_hash *) item)->hash;
4243}
4244
4245/* Look in the type hash table for a type isomorphic to TYPE.
4246 If one is found, return it. Otherwise return 0. */
4247
4248tree
4249type_hash_lookup (hashval_t hashcode, tree type)
4250{
4251 struct type_hash *h, in;
4252
4253 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
4254 must call that routine before comparing TYPE_ALIGNs. */
4255 layout_type (type);
4256
4257 in.hash = hashcode;
4258 in.type = type;
4259
4260 h = htab_find_with_hash (type_hash_table, &in, hashcode);
4261 if (h)
4262 return h->type;
4263 return NULL_TREE;
4264}
4265
4266/* Add an entry to the type-hash-table
4267 for a type TYPE whose hash code is HASHCODE. */
4268
4269void
4270type_hash_add (hashval_t hashcode, tree type)
4271{
4272 struct type_hash *h;
4273 void **loc;
4274
4275 h = ggc_alloc (sizeof (struct type_hash));
4276 h->hash = hashcode;
4277 h->type = type;
4278 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
4279 *(struct type_hash **) loc = h;
4280}
4281
4282/* Given TYPE, and HASHCODE its hash code, return the canonical
4283 object for an identical type if one already exists.
4284 Otherwise, return TYPE, and record it as the canonical object.
4285
4286 To use this function, first create a type of the sort you want.
4287 Then compute its hash code from the fields of the type that
4288 make it different from other similar types.
4289 Then call this function and use the value. */
4290
4291tree
4292type_hash_canon (unsigned int hashcode, tree type)
4293{
4294 tree t1;
4295
4296 /* The hash table only contains main variants, so ensure that's what we're
4297 being passed. */
4298 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
4299
4300 if (!lang_hooks.types.hash_types)
4301 return type;
4302
4303 /* See if the type is in the hash table already. If so, return it.
4304 Otherwise, add the type. */
4305 t1 = type_hash_lookup (hashcode, type);
4306 if (t1 != 0)
4307 {
4308#ifdef GATHER_STATISTICS
4309 tree_node_counts[(int) t_kind]--;
4310 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
4311#endif
4312 return t1;
4313 }
4314 else
4315 {
4316 type_hash_add (hashcode, type);
4317 return type;
4318 }
4319}
4320
4321/* See if the data pointed to by the type hash table is marked. We consider
4322 it marked if the type is marked or if a debug type number or symbol
4323 table entry has been made for the type. This reduces the amount of
4324 debugging output and eliminates that dependency of the debug output on
4325 the number of garbage collections. */
4326
4327static int
4328type_hash_marked_p (const void *p)
4329{
4330 tree type = ((struct type_hash *) p)->type;
4331
4332 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
4333}
4334
4335static void
4336print_type_hash_statistics (void)
4337{
4338 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
4339 (long) htab_size (type_hash_table),
4340 (long) htab_elements (type_hash_table),
4341 htab_collisions (type_hash_table));
4342}
4343
4344/* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
4345 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
4346 by adding the hash codes of the individual attributes. */
4347
4348unsigned int
4349attribute_hash_list (tree list, hashval_t hashcode)
4350{
4351 tree tail;
4352
4353 for (tail = list; tail; tail = TREE_CHAIN (tail))
4354 /* ??? Do we want to add in TREE_VALUE too? */
4355 hashcode = iterative_hash_object
4356 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
4357 return hashcode;
4358}
4359
4360/* Given two lists of attributes, return true if list l2 is
4361 equivalent to l1. */
4362
4363int
4364attribute_list_equal (tree l1, tree l2)
4365{
4366 return attribute_list_contained (l1, l2)
4367 && attribute_list_contained (l2, l1);
4368}
4369
4370/* Given two lists of attributes, return true if list L2 is
4371 completely contained within L1. */
4372/* ??? This would be faster if attribute names were stored in a canonicalized
4373 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
4374 must be used to show these elements are equivalent (which they are). */
4375/* ??? It's not clear that attributes with arguments will always be handled
4376 correctly. */
4377
4378int
4379attribute_list_contained (tree l1, tree l2)
4380{
4381 tree t1, t2;
4382
4383 /* First check the obvious, maybe the lists are identical. */
4384 if (l1 == l2)
4385 return 1;
4386
4387 /* Maybe the lists are similar. */
4388 for (t1 = l1, t2 = l2;
4389 t1 != 0 && t2 != 0
4390 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
4391 && TREE_VALUE (t1) == TREE_VALUE (t2);
4392 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
4393
4394 /* Maybe the lists are equal. */
4395 if (t1 == 0 && t2 == 0)
4396 return 1;
4397
4398 for (; t2 != 0; t2 = TREE_CHAIN (t2))
4399 {
4400 tree attr;
4401 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
4402 attr != NULL_TREE;
4403 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
4404 TREE_CHAIN (attr)))
4405 {
4406 if (TREE_VALUE (t2) != NULL
4407 && TREE_CODE (TREE_VALUE (t2)) == TREE_LIST
4408 && TREE_VALUE (attr) != NULL
4409 && TREE_CODE (TREE_VALUE (attr)) == TREE_LIST)
4410 {
4411 if (simple_cst_list_equal (TREE_VALUE (t2),
4412 TREE_VALUE (attr)) == 1)
4413 break;
4414 }
4415 else if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
4416 break;
4417 }
4418
4419 if (attr == 0)
4420 return 0;
4421 }
4422
4423 return 1;
4424}
4425
4426/* Given two lists of types
4427 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
4428 return 1 if the lists contain the same types in the same order.
4429 Also, the TREE_PURPOSEs must match. */
4430
4431int
4432type_list_equal (tree l1, tree l2)
4433{
4434 tree t1, t2;
4435
4436 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
4437 if (TREE_VALUE (t1) != TREE_VALUE (t2)
4438 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
4439 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
4440 && (TREE_TYPE (TREE_PURPOSE (t1))
4441 == TREE_TYPE (TREE_PURPOSE (t2))))))
4442 return 0;
4443
4444 return t1 == t2;
4445}
4446
4447/* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
4448 given by TYPE. If the argument list accepts variable arguments,
4449 then this function counts only the ordinary arguments. */
4450
4451int
4452type_num_arguments (tree type)
4453{
4454 int i = 0;
4455 tree t;
4456
4457 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
4458 /* If the function does not take a variable number of arguments,
4459 the last element in the list will have type `void'. */
4460 if (VOID_TYPE_P (TREE_VALUE (t)))
4461 break;
4462 else
4463 ++i;
4464
4465 return i;
4466}
4467
4468/* Nonzero if integer constants T1 and T2
4469 represent the same constant value. */
4470
4471int
4472tree_int_cst_equal (tree t1, tree t2)
4473{
4474 if (t1 == t2)
4475 return 1;
4476
4477 if (t1 == 0 || t2 == 0)
4478 return 0;
4479
4480 if (TREE_CODE (t1) == INTEGER_CST
4481 && TREE_CODE (t2) == INTEGER_CST
4482 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
4483 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
4484 return 1;
4485
4486 return 0;
4487}
4488
4489/* Nonzero if integer constants T1 and T2 represent values that satisfy <.
4490 The precise way of comparison depends on their data type. */
4491
4492int
4493tree_int_cst_lt (tree t1, tree t2)
4494{
4495 if (t1 == t2)
4496 return 0;
4497
4498 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
4499 {
4500 int t1_sgn = tree_int_cst_sgn (t1);
4501 int t2_sgn = tree_int_cst_sgn (t2);
4502
4503 if (t1_sgn < t2_sgn)
4504 return 1;
4505 else if (t1_sgn > t2_sgn)
4506 return 0;
4507 /* Otherwise, both are non-negative, so we compare them as
4508 unsigned just in case one of them would overflow a signed
4509 type. */
4510 }
4511 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
4512 return INT_CST_LT (t1, t2);
4513
4514 return INT_CST_LT_UNSIGNED (t1, t2);
4515}
4516
4517/* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
4518
4519int
4520tree_int_cst_compare (tree t1, tree t2)
4521{
4522 if (tree_int_cst_lt (t1, t2))
4523 return -1;
4524 else if (tree_int_cst_lt (t2, t1))
4525 return 1;
4526 else
4527 return 0;
4528}
4529
4530/* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
4531 the host. If POS is zero, the value can be represented in a single
4532 HOST_WIDE_INT. If POS is nonzero, the value must be non-negative and can
4533 be represented in a single unsigned HOST_WIDE_INT. */
4534
4535int
4536host_integerp (tree t, int pos)
4537{
4538 return (TREE_CODE (t) == INTEGER_CST
4539 && ((TREE_INT_CST_HIGH (t) == 0
4540 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
4541 || (! pos && TREE_INT_CST_HIGH (t) == -1
4542 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
4543 && !TYPE_UNSIGNED (TREE_TYPE (t)))
4543 && (!TYPE_UNSIGNED (TREE_TYPE (t))
4544 || TYPE_IS_SIZETYPE (TREE_TYPE (t))))
4545 || (pos && TREE_INT_CST_HIGH (t) == 0)));
4546}
4547
4548/* Return the HOST_WIDE_INT least significant bits of T if it is an
4549 INTEGER_CST and there is no overflow. POS is nonzero if the result must
4550 be non-negative. We must be able to satisfy the above conditions. */
4551
4552HOST_WIDE_INT
4553tree_low_cst (tree t, int pos)
4554{
4555 gcc_assert (host_integerp (t, pos));
4556 return TREE_INT_CST_LOW (t);
4557}
4558
4559/* Return the most significant bit of the integer constant T. */
4560
4561int
4562tree_int_cst_msb (tree t)
4563{
4564 int prec;
4565 HOST_WIDE_INT h;
4566 unsigned HOST_WIDE_INT l;
4567
4568 /* Note that using TYPE_PRECISION here is wrong. We care about the
4569 actual bits, not the (arbitrary) range of the type. */
4570 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
4571 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
4572 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
4573 return (l & 1) == 1;
4574}
4575
4576/* Return an indication of the sign of the integer constant T.
4577 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
4578 Note that -1 will never be returned if T's type is unsigned. */
4579
4580int
4581tree_int_cst_sgn (tree t)
4582{
4583 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
4584 return 0;
4585 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
4586 return 1;
4587 else if (TREE_INT_CST_HIGH (t) < 0)
4588 return -1;
4589 else
4590 return 1;
4591}
4592
4593/* Compare two constructor-element-type constants. Return 1 if the lists
4594 are known to be equal; otherwise return 0. */
4595
4596int
4597simple_cst_list_equal (tree l1, tree l2)
4598{
4599 while (l1 != NULL_TREE && l2 != NULL_TREE)
4600 {
4601 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
4602 return 0;
4603
4604 l1 = TREE_CHAIN (l1);
4605 l2 = TREE_CHAIN (l2);
4606 }
4607
4608 return l1 == l2;
4609}
4610
4611/* Return truthvalue of whether T1 is the same tree structure as T2.
4612 Return 1 if they are the same.
4613 Return 0 if they are understandably different.
4614 Return -1 if either contains tree structure not understood by
4615 this function. */
4616
4617int
4618simple_cst_equal (tree t1, tree t2)
4619{
4620 enum tree_code code1, code2;
4621 int cmp;
4622 int i;
4623
4624 if (t1 == t2)
4625 return 1;
4626 if (t1 == 0 || t2 == 0)
4627 return 0;
4628
4629 code1 = TREE_CODE (t1);
4630 code2 = TREE_CODE (t2);
4631
4632 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
4633 {
4634 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
4635 || code2 == NON_LVALUE_EXPR)
4636 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4637 else
4638 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
4639 }
4640
4641 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
4642 || code2 == NON_LVALUE_EXPR)
4643 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
4644
4645 if (code1 != code2)
4646 return 0;
4647
4648 switch (code1)
4649 {
4650 case INTEGER_CST:
4651 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
4652 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
4653
4654 case REAL_CST:
4655 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
4656
4657 case STRING_CST:
4658 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
4659 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
4660 TREE_STRING_LENGTH (t1)));
4661
4662 case CONSTRUCTOR:
4663 {
4664 unsigned HOST_WIDE_INT idx;
4665 VEC(constructor_elt, gc) *v1 = CONSTRUCTOR_ELTS (t1);
4666 VEC(constructor_elt, gc) *v2 = CONSTRUCTOR_ELTS (t2);
4667
4668 if (VEC_length (constructor_elt, v1) != VEC_length (constructor_elt, v2))
4669 return false;
4670
4671 for (idx = 0; idx < VEC_length (constructor_elt, v1); ++idx)
4672 /* ??? Should we handle also fields here? */
4673 if (!simple_cst_equal (VEC_index (constructor_elt, v1, idx)->value,
4674 VEC_index (constructor_elt, v2, idx)->value))
4675 return false;
4676 return true;
4677 }
4678
4679 case SAVE_EXPR:
4680 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4681
4682 case CALL_EXPR:
4683 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4684 if (cmp <= 0)
4685 return cmp;
4686 return
4687 simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
4688
4689 case TARGET_EXPR:
4690 /* Special case: if either target is an unallocated VAR_DECL,
4691 it means that it's going to be unified with whatever the
4692 TARGET_EXPR is really supposed to initialize, so treat it
4693 as being equivalent to anything. */
4694 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
4695 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
4696 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
4697 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
4698 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
4699 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
4700 cmp = 1;
4701 else
4702 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4703
4704 if (cmp <= 0)
4705 return cmp;
4706
4707 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
4708
4709 case WITH_CLEANUP_EXPR:
4710 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4711 if (cmp <= 0)
4712 return cmp;
4713
4714 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
4715
4716 case COMPONENT_REF:
4717 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
4718 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4719
4720 return 0;
4721
4722 case VAR_DECL:
4723 case PARM_DECL:
4724 case CONST_DECL:
4725 case FUNCTION_DECL:
4726 return 0;
4727
4728 default:
4729 break;
4730 }
4731
4732 /* This general rule works for most tree codes. All exceptions should be
4733 handled above. If this is a language-specific tree code, we can't
4734 trust what might be in the operand, so say we don't know
4735 the situation. */
4736 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
4737 return -1;
4738
4739 switch (TREE_CODE_CLASS (code1))
4740 {
4741 case tcc_unary:
4742 case tcc_binary:
4743 case tcc_comparison:
4744 case tcc_expression:
4745 case tcc_reference:
4746 case tcc_statement:
4747 cmp = 1;
4748 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
4749 {
4750 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
4751 if (cmp <= 0)
4752 return cmp;
4753 }
4754
4755 return cmp;
4756
4757 default:
4758 return -1;
4759 }
4760}
4761
4762/* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
4763 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
4764 than U, respectively. */
4765
4766int
4767compare_tree_int (tree t, unsigned HOST_WIDE_INT u)
4768{
4769 if (tree_int_cst_sgn (t) < 0)
4770 return -1;
4771 else if (TREE_INT_CST_HIGH (t) != 0)
4772 return 1;
4773 else if (TREE_INT_CST_LOW (t) == u)
4774 return 0;
4775 else if (TREE_INT_CST_LOW (t) < u)
4776 return -1;
4777 else
4778 return 1;
4779}
4780
4781/* Return true if CODE represents an associative tree code. Otherwise
4782 return false. */
4783bool
4784associative_tree_code (enum tree_code code)
4785{
4786 switch (code)
4787 {
4788 case BIT_IOR_EXPR:
4789 case BIT_AND_EXPR:
4790 case BIT_XOR_EXPR:
4791 case PLUS_EXPR:
4792 case MULT_EXPR:
4793 case MIN_EXPR:
4794 case MAX_EXPR:
4795 return true;
4796
4797 default:
4798 break;
4799 }
4800 return false;
4801}
4802
4803/* Return true if CODE represents a commutative tree code. Otherwise
4804 return false. */
4805bool
4806commutative_tree_code (enum tree_code code)
4807{
4808 switch (code)
4809 {
4810 case PLUS_EXPR:
4811 case MULT_EXPR:
4812 case MIN_EXPR:
4813 case MAX_EXPR:
4814 case BIT_IOR_EXPR:
4815 case BIT_XOR_EXPR:
4816 case BIT_AND_EXPR:
4817 case NE_EXPR:
4818 case EQ_EXPR:
4819 case UNORDERED_EXPR:
4820 case ORDERED_EXPR:
4821 case UNEQ_EXPR:
4822 case LTGT_EXPR:
4823 case TRUTH_AND_EXPR:
4824 case TRUTH_XOR_EXPR:
4825 case TRUTH_OR_EXPR:
4826 return true;
4827
4828 default:
4829 break;
4830 }
4831 return false;
4832}
4833
4834/* Generate a hash value for an expression. This can be used iteratively
4835 by passing a previous result as the "val" argument.
4836
4837 This function is intended to produce the same hash for expressions which
4838 would compare equal using operand_equal_p. */
4839
4840hashval_t
4841iterative_hash_expr (tree t, hashval_t val)
4842{
4843 int i;
4844 enum tree_code code;
4845 char class;
4846
4847 if (t == NULL_TREE)
4848 return iterative_hash_pointer (t, val);
4849
4850 code = TREE_CODE (t);
4851
4852 switch (code)
4853 {
4854 /* Alas, constants aren't shared, so we can't rely on pointer
4855 identity. */
4856 case INTEGER_CST:
4857 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
4858 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
4859 case REAL_CST:
4860 {
4861 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
4862
4863 return iterative_hash_hashval_t (val2, val);
4864 }
4865 case STRING_CST:
4866 return iterative_hash (TREE_STRING_POINTER (t),
4867 TREE_STRING_LENGTH (t), val);
4868 case COMPLEX_CST:
4869 val = iterative_hash_expr (TREE_REALPART (t), val);
4870 return iterative_hash_expr (TREE_IMAGPART (t), val);
4871 case VECTOR_CST:
4872 return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
4873
4874 case SSA_NAME:
4875 case VALUE_HANDLE:
4876 /* we can just compare by pointer. */
4877 return iterative_hash_pointer (t, val);
4878
4879 case TREE_LIST:
4880 /* A list of expressions, for a CALL_EXPR or as the elements of a
4881 VECTOR_CST. */
4882 for (; t; t = TREE_CHAIN (t))
4883 val = iterative_hash_expr (TREE_VALUE (t), val);
4884 return val;
4885 case CONSTRUCTOR:
4886 {
4887 unsigned HOST_WIDE_INT idx;
4888 tree field, value;
4889 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
4890 {
4891 val = iterative_hash_expr (field, val);
4892 val = iterative_hash_expr (value, val);
4893 }
4894 return val;
4895 }
4896 case FUNCTION_DECL:
4897 /* When referring to a built-in FUNCTION_DECL, use the
4898 __builtin__ form. Otherwise nodes that compare equal
4899 according to operand_equal_p might get different
4900 hash codes. */
4901 if (DECL_BUILT_IN (t))
4902 {
4903 val = iterative_hash_pointer (built_in_decls[DECL_FUNCTION_CODE (t)],
4904 val);
4905 return val;
4906 }
4907 /* else FALL THROUGH */
4908 default:
4909 class = TREE_CODE_CLASS (code);
4910
4911 if (class == tcc_declaration)
4912 {
4913 /* DECL's have a unique ID */
4914 val = iterative_hash_host_wide_int (DECL_UID (t), val);
4915 }
4916 else
4917 {
4918 gcc_assert (IS_EXPR_CODE_CLASS (class));
4919
4920 val = iterative_hash_object (code, val);
4921
4922 /* Don't hash the type, that can lead to having nodes which
4923 compare equal according to operand_equal_p, but which
4924 have different hash codes. */
4925 if (code == NOP_EXPR
4926 || code == CONVERT_EXPR
4927 || code == NON_LVALUE_EXPR)
4928 {
4929 /* Make sure to include signness in the hash computation. */
4930 val += TYPE_UNSIGNED (TREE_TYPE (t));
4931 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
4932 }
4933
4934 else if (commutative_tree_code (code))
4935 {
4936 /* It's a commutative expression. We want to hash it the same
4937 however it appears. We do this by first hashing both operands
4938 and then rehashing based on the order of their independent
4939 hashes. */
4940 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
4941 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
4942 hashval_t t;
4943
4944 if (one > two)
4945 t = one, one = two, two = t;
4946
4947 val = iterative_hash_hashval_t (one, val);
4948 val = iterative_hash_hashval_t (two, val);
4949 }
4950 else
4951 for (i = TREE_CODE_LENGTH (code) - 1; i >= 0; --i)
4952 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
4953 }
4954 return val;
4955 break;
4956 }
4957}
4958
4959/* Constructors for pointer, array and function types.
4960 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
4961 constructed by language-dependent code, not here.) */
4962
4963/* Construct, lay out and return the type of pointers to TO_TYPE with
4964 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
4965 reference all of memory. If such a type has already been
4966 constructed, reuse it. */
4967
4968tree
4969build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
4970 bool can_alias_all)
4971{
4972 tree t;
4973
4974 if (to_type == error_mark_node)
4975 return error_mark_node;
4976
4977 /* In some cases, languages will have things that aren't a POINTER_TYPE
4978 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
4979 In that case, return that type without regard to the rest of our
4980 operands.
4981
4982 ??? This is a kludge, but consistent with the way this function has
4983 always operated and there doesn't seem to be a good way to avoid this
4984 at the moment. */
4985 if (TYPE_POINTER_TO (to_type) != 0
4986 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
4987 return TYPE_POINTER_TO (to_type);
4988
4989 /* First, if we already have a type for pointers to TO_TYPE and it's
4990 the proper mode, use it. */
4991 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
4992 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
4993 return t;
4994
4995 t = make_node (POINTER_TYPE);
4996
4997 TREE_TYPE (t) = to_type;
4998 TYPE_MODE (t) = mode;
4999 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
5000 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
5001 TYPE_POINTER_TO (to_type) = t;
5002
5003 /* Lay out the type. This function has many callers that are concerned
5004 with expression-construction, and this simplifies them all. */
5005 layout_type (t);
5006
5007 return t;
5008}
5009
5010/* By default build pointers in ptr_mode. */
5011
5012tree
5013build_pointer_type (tree to_type)
5014{
5015 return build_pointer_type_for_mode (to_type, ptr_mode, false);
5016}
5017
5018/* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
5019
5020tree
5021build_reference_type_for_mode (tree to_type, enum machine_mode mode,
5022 bool can_alias_all)
5023{
5024 tree t;
5025
5026 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
5027 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
5028 In that case, return that type without regard to the rest of our
5029 operands.
5030
5031 ??? This is a kludge, but consistent with the way this function has
5032 always operated and there doesn't seem to be a good way to avoid this
5033 at the moment. */
5034 if (TYPE_REFERENCE_TO (to_type) != 0
5035 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
5036 return TYPE_REFERENCE_TO (to_type);
5037
5038 /* First, if we already have a type for pointers to TO_TYPE and it's
5039 the proper mode, use it. */
5040 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
5041 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
5042 return t;
5043
5044 t = make_node (REFERENCE_TYPE);
5045
5046 TREE_TYPE (t) = to_type;
5047 TYPE_MODE (t) = mode;
5048 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
5049 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
5050 TYPE_REFERENCE_TO (to_type) = t;
5051
5052 layout_type (t);
5053
5054 return t;
5055}
5056
5057
5058/* Build the node for the type of references-to-TO_TYPE by default
5059 in ptr_mode. */
5060
5061tree
5062build_reference_type (tree to_type)
5063{
5064 return build_reference_type_for_mode (to_type, ptr_mode, false);
5065}
5066
5067/* Build a type that is compatible with t but has no cv quals anywhere
5068 in its type, thus
5069
5070 const char *const *const * -> char ***. */
5071
5072tree
5073build_type_no_quals (tree t)
5074{
5075 switch (TREE_CODE (t))
5076 {
5077 case POINTER_TYPE:
5078 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
5079 TYPE_MODE (t),
5080 TYPE_REF_CAN_ALIAS_ALL (t));
5081 case REFERENCE_TYPE:
5082 return
5083 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
5084 TYPE_MODE (t),
5085 TYPE_REF_CAN_ALIAS_ALL (t));
5086 default:
5087 return TYPE_MAIN_VARIANT (t);
5088 }
5089}
5090
5091/* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
5092 MAXVAL should be the maximum value in the domain
5093 (one less than the length of the array).
5094
5095 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
5096 We don't enforce this limit, that is up to caller (e.g. language front end).
5097 The limit exists because the result is a signed type and we don't handle
5098 sizes that use more than one HOST_WIDE_INT. */
5099
5100tree
5101build_index_type (tree maxval)
5102{
5103 tree itype = make_node (INTEGER_TYPE);
5104
5105 TREE_TYPE (itype) = sizetype;
5106 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
5107 TYPE_MIN_VALUE (itype) = size_zero_node;
5108 TYPE_MAX_VALUE (itype) = fold_convert (sizetype, maxval);
5109 TYPE_MODE (itype) = TYPE_MODE (sizetype);
5110 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
5111 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
5112 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
5113 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
5114
5115 if (host_integerp (maxval, 1))
5116 return type_hash_canon (tree_low_cst (maxval, 1), itype);
5117 else
5118 return itype;
5119}
5120
5121/* Builds a signed or unsigned integer type of precision PRECISION.
5122 Used for C bitfields whose precision does not match that of
5123 built-in target types. */
5124tree
5125build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
5126 int unsignedp)
5127{
5128 tree itype = make_node (INTEGER_TYPE);
5129
5130 TYPE_PRECISION (itype) = precision;
5131
5132 if (unsignedp)
5133 fixup_unsigned_type (itype);
5134 else
5135 fixup_signed_type (itype);
5136
5137 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
5138 return type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
5139
5140 return itype;
5141}
5142
5143/* Create a range of some discrete type TYPE (an INTEGER_TYPE,
5144 ENUMERAL_TYPE or BOOLEAN_TYPE), with low bound LOWVAL and
5145 high bound HIGHVAL. If TYPE is NULL, sizetype is used. */
5146
5147tree
5148build_range_type (tree type, tree lowval, tree highval)
5149{
5150 tree itype = make_node (INTEGER_TYPE);
5151
5152 TREE_TYPE (itype) = type;
5153 if (type == NULL_TREE)
5154 type = sizetype;
5155
5156 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
5157 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
5158
5159 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
5160 TYPE_MODE (itype) = TYPE_MODE (type);
5161 TYPE_SIZE (itype) = TYPE_SIZE (type);
5162 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
5163 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
5164 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
5165
5166 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
5167 return type_hash_canon (tree_low_cst (highval, 0)
5168 - tree_low_cst (lowval, 0),
5169 itype);
5170 else
5171 return itype;
5172}
5173
5174/* Just like build_index_type, but takes lowval and highval instead
5175 of just highval (maxval). */
5176
5177tree
5178build_index_2_type (tree lowval, tree highval)
5179{
5180 return build_range_type (sizetype, lowval, highval);
5181}
5182
5183/* Construct, lay out and return the type of arrays of elements with ELT_TYPE
5184 and number of elements specified by the range of values of INDEX_TYPE.
5185 If such a type has already been constructed, reuse it. */
5186
5187tree
5188build_array_type (tree elt_type, tree index_type)
5189{
5190 tree t;
5191 hashval_t hashcode = 0;
5192
5193 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
5194 {
5195 error ("arrays of functions are not meaningful");
5196 elt_type = integer_type_node;
5197 }
5198
5199 t = make_node (ARRAY_TYPE);
5200 TREE_TYPE (t) = elt_type;
5201 TYPE_DOMAIN (t) = index_type;
5202
5203 if (index_type == 0)
5204 {
5205 tree save = t;
5206 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
5207 t = type_hash_canon (hashcode, t);
5208 if (save == t)
5209 layout_type (t);
5210 return t;
5211 }
5212
5213 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
5214 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
5215 t = type_hash_canon (hashcode, t);
5216
5217 if (!COMPLETE_TYPE_P (t))
5218 layout_type (t);
5219 return t;
5220}
5221
5222/* Return the TYPE of the elements comprising
5223 the innermost dimension of ARRAY. */
5224
5225tree
5226get_inner_array_type (tree array)
5227{
5228 tree type = TREE_TYPE (array);
5229
5230 while (TREE_CODE (type) == ARRAY_TYPE)
5231 type = TREE_TYPE (type);
5232
5233 return type;
5234}
5235
5236/* Construct, lay out and return
5237 the type of functions returning type VALUE_TYPE
5238 given arguments of types ARG_TYPES.
5239 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
5240 are data type nodes for the arguments of the function.
5241 If such a type has already been constructed, reuse it. */
5242
5243tree
5244build_function_type (tree value_type, tree arg_types)
5245{
5246 tree t;
5247 hashval_t hashcode = 0;
5248
5249 if (TREE_CODE (value_type) == FUNCTION_TYPE)
5250 {
5251 error ("function return type cannot be function");
5252 value_type = integer_type_node;
5253 }
5254
5255 /* Make a node of the sort we want. */
5256 t = make_node (FUNCTION_TYPE);
5257 TREE_TYPE (t) = value_type;
5258 TYPE_ARG_TYPES (t) = arg_types;
5259
5260 /* If we already have such a type, use the old one. */
5261 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
5262 hashcode = type_hash_list (arg_types, hashcode);
5263 t = type_hash_canon (hashcode, t);
5264
5265 if (!COMPLETE_TYPE_P (t))
5266 layout_type (t);
5267 return t;
5268}
5269
5270/* Build a function type. The RETURN_TYPE is the type returned by the
5271 function. If additional arguments are provided, they are
5272 additional argument types. The list of argument types must always
5273 be terminated by NULL_TREE. */
5274
5275tree
5276build_function_type_list (tree return_type, ...)
5277{
5278 tree t, args, last;
5279 va_list p;
5280
5281 va_start (p, return_type);
5282
5283 t = va_arg (p, tree);
5284 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (p, tree))
5285 args = tree_cons (NULL_TREE, t, args);
5286
5287 if (args == NULL_TREE)
5288 args = void_list_node;
5289 else
5290 {
5291 last = args;
5292 args = nreverse (args);
5293 TREE_CHAIN (last) = void_list_node;
5294 }
5295 args = build_function_type (return_type, args);
5296
5297 va_end (p);
5298 return args;
5299}
5300
5301/* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
5302 and ARGTYPES (a TREE_LIST) are the return type and arguments types
5303 for the method. An implicit additional parameter (of type
5304 pointer-to-BASETYPE) is added to the ARGTYPES. */
5305
5306tree
5307build_method_type_directly (tree basetype,
5308 tree rettype,
5309 tree argtypes)
5310{
5311 tree t;
5312 tree ptype;
5313 int hashcode = 0;
5314
5315 /* Make a node of the sort we want. */
5316 t = make_node (METHOD_TYPE);
5317
5318 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
5319 TREE_TYPE (t) = rettype;
5320 ptype = build_pointer_type (basetype);
5321
5322 /* The actual arglist for this function includes a "hidden" argument
5323 which is "this". Put it into the list of argument types. */
5324 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
5325 TYPE_ARG_TYPES (t) = argtypes;
5326
5327 /* If we already have such a type, use the old one. */
5328 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
5329 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
5330 hashcode = type_hash_list (argtypes, hashcode);
5331 t = type_hash_canon (hashcode, t);
5332
5333 if (!COMPLETE_TYPE_P (t))
5334 layout_type (t);
5335
5336 return t;
5337}
5338
5339/* Construct, lay out and return the type of methods belonging to class
5340 BASETYPE and whose arguments and values are described by TYPE.
5341 If that type exists already, reuse it.
5342 TYPE must be a FUNCTION_TYPE node. */
5343
5344tree
5345build_method_type (tree basetype, tree type)
5346{
5347 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
5348
5349 return build_method_type_directly (basetype,
5350 TREE_TYPE (type),
5351 TYPE_ARG_TYPES (type));
5352}
5353
5354/* Construct, lay out and return the type of offsets to a value
5355 of type TYPE, within an object of type BASETYPE.
5356 If a suitable offset type exists already, reuse it. */
5357
5358tree
5359build_offset_type (tree basetype, tree type)
5360{
5361 tree t;
5362 hashval_t hashcode = 0;
5363
5364 /* Make a node of the sort we want. */
5365 t = make_node (OFFSET_TYPE);
5366
5367 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
5368 TREE_TYPE (t) = type;
5369
5370 /* If we already have such a type, use the old one. */
5371 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
5372 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
5373 t = type_hash_canon (hashcode, t);
5374
5375 if (!COMPLETE_TYPE_P (t))
5376 layout_type (t);
5377
5378 return t;
5379}
5380
5381/* Create a complex type whose components are COMPONENT_TYPE. */
5382
5383tree
5384build_complex_type (tree component_type)
5385{
5386 tree t;
5387 hashval_t hashcode;
5388
5389 /* Make a node of the sort we want. */
5390 t = make_node (COMPLEX_TYPE);
5391
5392 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
5393
5394 /* If we already have such a type, use the old one. */
5395 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
5396 t = type_hash_canon (hashcode, t);
5397
5398 if (!COMPLETE_TYPE_P (t))
5399 layout_type (t);
5400
5401 /* If we are writing Dwarf2 output we need to create a name,
5402 since complex is a fundamental type. */
5403 if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
5404 && ! TYPE_NAME (t))
5405 {
5406 const char *name;
5407 if (component_type == char_type_node)
5408 name = "complex char";
5409 else if (component_type == signed_char_type_node)
5410 name = "complex signed char";
5411 else if (component_type == unsigned_char_type_node)
5412 name = "complex unsigned char";
5413 else if (component_type == short_integer_type_node)
5414 name = "complex short int";
5415 else if (component_type == short_unsigned_type_node)
5416 name = "complex short unsigned int";
5417 else if (component_type == integer_type_node)
5418 name = "complex int";
5419 else if (component_type == unsigned_type_node)
5420 name = "complex unsigned int";
5421 else if (component_type == long_integer_type_node)
5422 name = "complex long int";
5423 else if (component_type == long_unsigned_type_node)
5424 name = "complex long unsigned int";
5425 else if (component_type == long_long_integer_type_node)
5426 name = "complex long long int";
5427 else if (component_type == long_long_unsigned_type_node)
5428 name = "complex long long unsigned int";
5429 else
5430 name = 0;
5431
5432 if (name != 0)
5433 TYPE_NAME (t) = get_identifier (name);
5434 }
5435
5436 return build_qualified_type (t, TYPE_QUALS (component_type));
5437}
5438
5439/* Return OP, stripped of any conversions to wider types as much as is safe.
5440 Converting the value back to OP's type makes a value equivalent to OP.
5441
5442 If FOR_TYPE is nonzero, we return a value which, if converted to
5443 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
5444
5445 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
5446 narrowest type that can hold the value, even if they don't exactly fit.
5447 Otherwise, bit-field references are changed to a narrower type
5448 only if they can be fetched directly from memory in that type.
5449
5450 OP must have integer, real or enumeral type. Pointers are not allowed!
5451
5452 There are some cases where the obvious value we could return
5453 would regenerate to OP if converted to OP's type,
5454 but would not extend like OP to wider types.
5455 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
5456 For example, if OP is (unsigned short)(signed char)-1,
5457 we avoid returning (signed char)-1 if FOR_TYPE is int,
5458 even though extending that to an unsigned short would regenerate OP,
5459 since the result of extending (signed char)-1 to (int)
5460 is different from (int) OP. */
5461
5462tree
5463get_unwidened (tree op, tree for_type)
5464{
5465 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
5466 tree type = TREE_TYPE (op);
5467 unsigned final_prec
5468 = TYPE_PRECISION (for_type != 0 ? for_type : type);
5469 int uns
5470 = (for_type != 0 && for_type != type
5471 && final_prec > TYPE_PRECISION (type)
5472 && TYPE_UNSIGNED (type));
5473 tree win = op;
5474
5475 while (TREE_CODE (op) == NOP_EXPR
5476 || TREE_CODE (op) == CONVERT_EXPR)
5477 {
5478 int bitschange;
5479
5480 /* TYPE_PRECISION on vector types has different meaning
5481 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
5482 so avoid them here. */
5483 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
5484 break;
5485
5486 bitschange = TYPE_PRECISION (TREE_TYPE (op))
5487 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
5488
5489 /* Truncations are many-one so cannot be removed.
5490 Unless we are later going to truncate down even farther. */
5491 if (bitschange < 0
5492 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
5493 break;
5494
5495 /* See what's inside this conversion. If we decide to strip it,
5496 we will set WIN. */
5497 op = TREE_OPERAND (op, 0);
5498
5499 /* If we have not stripped any zero-extensions (uns is 0),
5500 we can strip any kind of extension.
5501 If we have previously stripped a zero-extension,
5502 only zero-extensions can safely be stripped.
5503 Any extension can be stripped if the bits it would produce
5504 are all going to be discarded later by truncating to FOR_TYPE. */
5505
5506 if (bitschange > 0)
5507 {
5508 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
5509 win = op;
5510 /* TYPE_UNSIGNED says whether this is a zero-extension.
5511 Let's avoid computing it if it does not affect WIN
5512 and if UNS will not be needed again. */
5513 if ((uns
5514 || TREE_CODE (op) == NOP_EXPR
5515 || TREE_CODE (op) == CONVERT_EXPR)
5516 && TYPE_UNSIGNED (TREE_TYPE (op)))
5517 {
5518 uns = 1;
5519 win = op;
5520 }
5521 }
5522 }
5523
5524 if (TREE_CODE (op) == COMPONENT_REF
5525 /* Since type_for_size always gives an integer type. */
5526 && TREE_CODE (type) != REAL_TYPE
5527 /* Don't crash if field not laid out yet. */
5528 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
5529 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
5530 {
5531 unsigned int innerprec
5532 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
5533 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
5534 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
5535 type = lang_hooks.types.type_for_size (innerprec, unsignedp);
5536
5537 /* We can get this structure field in the narrowest type it fits in.
5538 If FOR_TYPE is 0, do this only for a field that matches the
5539 narrower type exactly and is aligned for it
5540 The resulting extension to its nominal type (a fullword type)
5541 must fit the same conditions as for other extensions. */
5542
5543 if (type != 0
5544 && INT_CST_LT_UNSIGNED (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (op)))
5545 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
5546 && (! uns || final_prec <= innerprec || unsignedp))
5547 {
5548 win = build3 (COMPONENT_REF, type, TREE_OPERAND (op, 0),
5549 TREE_OPERAND (op, 1), NULL_TREE);
5550 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
5551 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
5552 }
5553 }
5554
5555 return win;
5556}
5557
5558/* Return OP or a simpler expression for a narrower value
5559 which can be sign-extended or zero-extended to give back OP.
5560 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
5561 or 0 if the value should be sign-extended. */
5562
5563tree
5564get_narrower (tree op, int *unsignedp_ptr)
5565{
5566 int uns = 0;
5567 int first = 1;
5568 tree win = op;
5569 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
5570
5571 while (TREE_CODE (op) == NOP_EXPR)
5572 {
5573 int bitschange
5574 = (TYPE_PRECISION (TREE_TYPE (op))
5575 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
5576
5577 /* Truncations are many-one so cannot be removed. */
5578 if (bitschange < 0)
5579 break;
5580
5581 /* See what's inside this conversion. If we decide to strip it,
5582 we will set WIN. */
5583
5584 if (bitschange > 0)
5585 {
5586 op = TREE_OPERAND (op, 0);
5587 /* An extension: the outermost one can be stripped,
5588 but remember whether it is zero or sign extension. */
5589 if (first)
5590 uns = TYPE_UNSIGNED (TREE_TYPE (op));
5591 /* Otherwise, if a sign extension has been stripped,
5592 only sign extensions can now be stripped;
5593 if a zero extension has been stripped, only zero-extensions. */
5594 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
5595 break;
5596 first = 0;
5597 }
5598 else /* bitschange == 0 */
5599 {
5600 /* A change in nominal type can always be stripped, but we must
5601 preserve the unsignedness. */
5602 if (first)
5603 uns = TYPE_UNSIGNED (TREE_TYPE (op));
5604 first = 0;
5605 op = TREE_OPERAND (op, 0);
5606 /* Keep trying to narrow, but don't assign op to win if it
5607 would turn an integral type into something else. */
5608 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
5609 continue;
5610 }
5611
5612 win = op;
5613 }
5614
5615 if (TREE_CODE (op) == COMPONENT_REF
5616 /* Since type_for_size always gives an integer type. */
5617 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
5618 /* Ensure field is laid out already. */
5619 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
5620 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
5621 {
5622 unsigned HOST_WIDE_INT innerprec
5623 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
5624 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
5625 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
5626 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
5627
5628 /* We can get this structure field in a narrower type that fits it,
5629 but the resulting extension to its nominal type (a fullword type)
5630 must satisfy the same conditions as for other extensions.
5631
5632 Do this only for fields that are aligned (not bit-fields),
5633 because when bit-field insns will be used there is no
5634 advantage in doing this. */
5635
5636 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
5637 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
5638 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
5639 && type != 0)
5640 {
5641 if (first)
5642 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
5643 win = fold_convert (type, op);
5644 }
5645 }
5646
5647 *unsignedp_ptr = uns;
5648 return win;
5649}
5650
5651/* Nonzero if integer constant C has a value that is permissible
5652 for type TYPE (an INTEGER_TYPE). */
5653
5654int
5655int_fits_type_p (tree c, tree type)
5656{
5657 tree type_low_bound = TYPE_MIN_VALUE (type);
5658 tree type_high_bound = TYPE_MAX_VALUE (type);
5659 bool ok_for_low_bound, ok_for_high_bound;
5660 tree tmp;
5661
5662 /* If at least one bound of the type is a constant integer, we can check
5663 ourselves and maybe make a decision. If no such decision is possible, but
5664 this type is a subtype, try checking against that. Otherwise, use
5665 force_fit_type, which checks against the precision.
5666
5667 Compute the status for each possibly constant bound, and return if we see
5668 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
5669 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
5670 for "constant known to fit". */
5671
5672 /* Check if C >= type_low_bound. */
5673 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
5674 {
5675 if (tree_int_cst_lt (c, type_low_bound))
5676 return 0;
5677 ok_for_low_bound = true;
5678 }
5679 else
5680 ok_for_low_bound = false;
5681
5682 /* Check if c <= type_high_bound. */
5683 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
5684 {
5685 if (tree_int_cst_lt (type_high_bound, c))
5686 return 0;
5687 ok_for_high_bound = true;
5688 }
5689 else
5690 ok_for_high_bound = false;
5691
5692 /* If the constant fits both bounds, the result is known. */
5693 if (ok_for_low_bound && ok_for_high_bound)
5694 return 1;
5695
5696 /* Perform some generic filtering which may allow making a decision
5697 even if the bounds are not constant. First, negative integers
5698 never fit in unsigned types, */
5699 if (TYPE_UNSIGNED (type) && tree_int_cst_sgn (c) < 0)
5700 return 0;
5701
5702 /* Second, narrower types always fit in wider ones. */
5703 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
5704 return 1;
5705
5706 /* Third, unsigned integers with top bit set never fit signed types. */
5707 if (! TYPE_UNSIGNED (type)
5708 && TYPE_UNSIGNED (TREE_TYPE (c))
5709 && tree_int_cst_msb (c))
5710 return 0;
5711
5712 /* If we haven't been able to decide at this point, there nothing more we
5713 can check ourselves here. Look at the base type if we have one and it
5714 has the same precision. */
5715 if (TREE_CODE (type) == INTEGER_TYPE
5716 && TREE_TYPE (type) != 0
5717 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
5718 return int_fits_type_p (c, TREE_TYPE (type));
5719
5720 /* Or to force_fit_type, if nothing else. */
5721 tmp = copy_node (c);
5722 TREE_TYPE (tmp) = type;
5723 tmp = force_fit_type (tmp, -1, false, false);
5724 return TREE_INT_CST_HIGH (tmp) == TREE_INT_CST_HIGH (c)
5725 && TREE_INT_CST_LOW (tmp) == TREE_INT_CST_LOW (c);
5726}
5727
5728/* Subprogram of following function. Called by walk_tree.
5729
5730 Return *TP if it is an automatic variable or parameter of the
5731 function passed in as DATA. */
5732
5733static tree
5734find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
5735{
5736 tree fn = (tree) data;
5737
5738 if (TYPE_P (*tp))
5739 *walk_subtrees = 0;
5740
5741 else if (DECL_P (*tp)
5742 && lang_hooks.tree_inlining.auto_var_in_fn_p (*tp, fn))
5743 return *tp;
5744
5745 return NULL_TREE;
5746}
5747
5748/* Returns true if T is, contains, or refers to a type with variable
5749 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
5750 arguments, but not the return type. If FN is nonzero, only return
5751 true if a modifier of the type or position of FN is a variable or
5752 parameter inside FN.
5753
5754 This concept is more general than that of C99 'variably modified types':
5755 in C99, a struct type is never variably modified because a VLA may not
5756 appear as a structure member. However, in GNU C code like:
5757
5758 struct S { int i[f()]; };
5759
5760 is valid, and other languages may define similar constructs. */
5761
5762bool
5763variably_modified_type_p (tree type, tree fn)
5764{
5765 tree t;
5766
5767/* Test if T is either variable (if FN is zero) or an expression containing
5768 a variable in FN. */
5769#define RETURN_TRUE_IF_VAR(T) \
5770 do { tree _t = (T); \
5771 if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
5772 && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
5773 return true; } while (0)
5774
5775 if (type == error_mark_node)
5776 return false;
5777
5778 /* If TYPE itself has variable size, it is variably modified. */
5779 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
5780 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
5781
5782 switch (TREE_CODE (type))
5783 {
5784 case POINTER_TYPE:
5785 case REFERENCE_TYPE:
5786 case VECTOR_TYPE:
5787 if (variably_modified_type_p (TREE_TYPE (type), fn))
5788 return true;
5789 break;
5790
5791 case FUNCTION_TYPE:
5792 case METHOD_TYPE:
5793 /* If TYPE is a function type, it is variably modified if the
5794 return type is variably modified. */
5795 if (variably_modified_type_p (TREE_TYPE (type), fn))
5796 return true;
5797 break;
5798
5799 case INTEGER_TYPE:
5800 case REAL_TYPE:
5801 case ENUMERAL_TYPE:
5802 case BOOLEAN_TYPE:
5803 /* Scalar types are variably modified if their end points
5804 aren't constant. */
5805 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
5806 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
5807 break;
5808
5809 case RECORD_TYPE:
5810 case UNION_TYPE:
5811 case QUAL_UNION_TYPE:
5812 /* We can't see if any of the fields are variably-modified by the
5813 definition we normally use, since that would produce infinite
5814 recursion via pointers. */
5815 /* This is variably modified if some field's type is. */
5816 for (t = TYPE_FIELDS (type); t; t = TREE_CHAIN (t))
5817 if (TREE_CODE (t) == FIELD_DECL)
5818 {
5819 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
5820 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
5821 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
5822
5823 if (TREE_CODE (type) == QUAL_UNION_TYPE)
5824 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
5825 }
5826 break;
5827
5828 case ARRAY_TYPE:
5829 /* Do not call ourselves to avoid infinite recursion. This is
5830 variably modified if the element type is. */
5831 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
5832 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
5833 break;
5834
5835 default:
5836 break;
5837 }
5838
5839 /* The current language may have other cases to check, but in general,
5840 all other types are not variably modified. */
5841 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
5842
5843#undef RETURN_TRUE_IF_VAR
5844}
5845
5846/* Given a DECL or TYPE, return the scope in which it was declared, or
5847 NULL_TREE if there is no containing scope. */
5848
5849tree
5850get_containing_scope (tree t)
5851{
5852 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
5853}
5854
5855/* Return the innermost context enclosing DECL that is
5856 a FUNCTION_DECL, or zero if none. */
5857
5858tree
5859decl_function_context (tree decl)
5860{
5861 tree context;
5862
5863 if (TREE_CODE (decl) == ERROR_MARK)
5864 return 0;
5865
5866 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
5867 where we look up the function at runtime. Such functions always take
5868 a first argument of type 'pointer to real context'.
5869
5870 C++ should really be fixed to use DECL_CONTEXT for the real context,
5871 and use something else for the "virtual context". */
5872 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
5873 context
5874 = TYPE_MAIN_VARIANT
5875 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
5876 else
5877 context = DECL_CONTEXT (decl);
5878
5879 while (context && TREE_CODE (context) != FUNCTION_DECL)
5880 {
5881 if (TREE_CODE (context) == BLOCK)
5882 context = BLOCK_SUPERCONTEXT (context);
5883 else
5884 context = get_containing_scope (context);
5885 }
5886
5887 return context;
5888}
5889
5890/* Return the innermost context enclosing DECL that is
5891 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
5892 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
5893
5894tree
5895decl_type_context (tree decl)
5896{
5897 tree context = DECL_CONTEXT (decl);
5898
5899 while (context)
5900 switch (TREE_CODE (context))
5901 {
5902 case NAMESPACE_DECL:
5903 case TRANSLATION_UNIT_DECL:
5904 return NULL_TREE;
5905
5906 case RECORD_TYPE:
5907 case UNION_TYPE:
5908 case QUAL_UNION_TYPE:
5909 return context;
5910
5911 case TYPE_DECL:
5912 case FUNCTION_DECL:
5913 context = DECL_CONTEXT (context);
5914 break;
5915
5916 case BLOCK:
5917 context = BLOCK_SUPERCONTEXT (context);
5918 break;
5919
5920 default:
5921 gcc_unreachable ();
5922 }
5923
5924 return NULL_TREE;
5925}
5926
5927/* CALL is a CALL_EXPR. Return the declaration for the function
5928 called, or NULL_TREE if the called function cannot be
5929 determined. */
5930
5931tree
5932get_callee_fndecl (tree call)
5933{
5934 tree addr;
5935
5936 if (call == error_mark_node)
5937 return call;
5938
5939 /* It's invalid to call this function with anything but a
5940 CALL_EXPR. */
5941 gcc_assert (TREE_CODE (call) == CALL_EXPR);
5942
5943 /* The first operand to the CALL is the address of the function
5944 called. */
5945 addr = TREE_OPERAND (call, 0);
5946
5947 STRIP_NOPS (addr);
5948
5949 /* If this is a readonly function pointer, extract its initial value. */
5950 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
5951 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
5952 && DECL_INITIAL (addr))
5953 addr = DECL_INITIAL (addr);
5954
5955 /* If the address is just `&f' for some function `f', then we know
5956 that `f' is being called. */
5957 if (TREE_CODE (addr) == ADDR_EXPR
5958 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
5959 return TREE_OPERAND (addr, 0);
5960
5961 /* We couldn't figure out what was being called. Maybe the front
5962 end has some idea. */
5963 return lang_hooks.lang_get_callee_fndecl (call);
5964}
5965
5966/* Print debugging information about tree nodes generated during the compile,
5967 and any language-specific information. */
5968
5969void
5970dump_tree_statistics (void)
5971{
5972#ifdef GATHER_STATISTICS
5973 int i;
5974 int total_nodes, total_bytes;
5975#endif
5976
5977 fprintf (stderr, "\n??? tree nodes created\n\n");
5978#ifdef GATHER_STATISTICS
5979 fprintf (stderr, "Kind Nodes Bytes\n");
5980 fprintf (stderr, "---------------------------------------\n");
5981 total_nodes = total_bytes = 0;
5982 for (i = 0; i < (int) all_kinds; i++)
5983 {
5984 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
5985 tree_node_counts[i], tree_node_sizes[i]);
5986 total_nodes += tree_node_counts[i];
5987 total_bytes += tree_node_sizes[i];
5988 }
5989 fprintf (stderr, "---------------------------------------\n");
5990 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
5991 fprintf (stderr, "---------------------------------------\n");
5992 ssanames_print_statistics ();
5993 phinodes_print_statistics ();
5994#else
5995 fprintf (stderr, "(No per-node statistics)\n");
5996#endif
5997 print_type_hash_statistics ();
5998 print_debug_expr_statistics ();
5999 print_value_expr_statistics ();
6000 print_restrict_base_statistics ();
6001 lang_hooks.print_statistics ();
6002}
6003
6004#define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
6005
6006/* Generate a crc32 of a string. */
6007
6008unsigned
6009crc32_string (unsigned chksum, const char *string)
6010{
6011 do
6012 {
6013 unsigned value = *string << 24;
6014 unsigned ix;
6015
6016 for (ix = 8; ix--; value <<= 1)
6017 {
6018 unsigned feedback;
6019
6020 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
6021 chksum <<= 1;
6022 chksum ^= feedback;
6023 }
6024 }
6025 while (*string++);
6026 return chksum;
6027}
6028
6029/* P is a string that will be used in a symbol. Mask out any characters
6030 that are not valid in that context. */
6031
6032void
6033clean_symbol_name (char *p)
6034{
6035 for (; *p; p++)
6036 if (! (ISALNUM (*p)
6037#ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
6038 || *p == '$'
6039#endif
6040#ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
6041 || *p == '.'
6042#endif
6043 ))
6044 *p = '_';
6045}
6046
6047/* Generate a name for a function unique to this translation unit.
6048 TYPE is some string to identify the purpose of this function to the
6049 linker or collect2. */
6050
6051tree
6052get_file_function_name_long (const char *type)
6053{
6054 char *buf;
6055 const char *p;
6056 char *q;
6057
6058 if (first_global_object_name)
6059 {
6060 p = first_global_object_name;
6061
6062 /* For type 'F', the generated name must be unique not only to this
6063 translation unit but also to any given link. Since global names
6064 can be overloaded, we concatenate the first global object name
6065 with a string derived from the file name of this object. */
6066 if (!strcmp (type, "F"))
6067 {
6068 const char *file = main_input_filename;
6069
6070 if (! file)
6071 file = input_filename;
6072
6073 q = alloca (strlen (p) + 10);
6074 sprintf (q, "%s_%08X", p, crc32_string (0, file));
6075
6076 p = q;
6077 }
6078 }
6079 else
6080 {
6081 /* We don't have anything that we know to be unique to this translation
6082 unit, so use what we do have and throw in some randomness. */
6083 unsigned len;
6084 const char *name = weak_global_object_name;
6085 const char *file = main_input_filename;
6086
6087 if (! name)
6088 name = "";
6089 if (! file)
6090 file = input_filename;
6091
6092 len = strlen (file);
6093 q = alloca (9 * 2 + len + 1);
6094 memcpy (q, file, len + 1);
6095 clean_symbol_name (q);
6096
6097 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
6098 crc32_string (0, flag_random_seed));
6099
6100 p = q;
6101 }
6102
6103 buf = alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p) + strlen (type));
6104
6105 /* Set up the name of the file-level functions we may need.
6106 Use a global object (which is already required to be unique over
6107 the program) rather than the file name (which imposes extra
6108 constraints). */
6109 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
6110
6111 return get_identifier (buf);
6112}
6113
6114/* If KIND=='I', return a suitable global initializer (constructor) name.
6115 If KIND=='D', return a suitable global clean-up (destructor) name. */
6116
6117tree
6118get_file_function_name (int kind)
6119{
6120 char p[2];
6121
6122 p[0] = kind;
6123 p[1] = 0;
6124
6125 return get_file_function_name_long (p);
6126}
6127
6128#if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
6129
6130/* Complain that the tree code of NODE does not match the expected 0
6131 terminated list of trailing codes. The trailing code list can be
6132 empty, for a more vague error message. FILE, LINE, and FUNCTION
6133 are of the caller. */
6134
6135void
6136tree_check_failed (const tree node, const char *file,
6137 int line, const char *function, ...)
6138{
6139 va_list args;
6140 char *buffer;
6141 unsigned length = 0;
6142 int code;
6143
6144 va_start (args, function);
6145 while ((code = va_arg (args, int)))
6146 length += 4 + strlen (tree_code_name[code]);
6147 va_end (args);
6148 if (length)
6149 {
6150 va_start (args, function);
6151 length += strlen ("expected ");
6152 buffer = alloca (length);
6153 length = 0;
6154 while ((code = va_arg (args, int)))
6155 {
6156 const char *prefix = length ? " or " : "expected ";
6157
6158 strcpy (buffer + length, prefix);
6159 length += strlen (prefix);
6160 strcpy (buffer + length, tree_code_name[code]);
6161 length += strlen (tree_code_name[code]);
6162 }
6163 va_end (args);
6164 }
6165 else
6166 buffer = (char *)"unexpected node";
6167
6168 internal_error ("tree check: %s, have %s in %s, at %s:%d",
6169 buffer, tree_code_name[TREE_CODE (node)],
6170 function, trim_filename (file), line);
6171}
6172
6173/* Complain that the tree code of NODE does match the expected 0
6174 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
6175 the caller. */
6176
6177void
6178tree_not_check_failed (const tree node, const char *file,
6179 int line, const char *function, ...)
6180{
6181 va_list args;
6182 char *buffer;
6183 unsigned length = 0;
6184 int code;
6185
6186 va_start (args, function);
6187 while ((code = va_arg (args, int)))
6188 length += 4 + strlen (tree_code_name[code]);
6189 va_end (args);
6190 va_start (args, function);
6191 buffer = alloca (length);
6192 length = 0;
6193 while ((code = va_arg (args, int)))
6194 {
6195 if (length)
6196 {
6197 strcpy (buffer + length, " or ");
6198 length += 4;
6199 }
6200 strcpy (buffer + length, tree_code_name[code]);
6201 length += strlen (tree_code_name[code]);
6202 }
6203 va_end (args);
6204
6205 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
6206 buffer, tree_code_name[TREE_CODE (node)],
6207 function, trim_filename (file), line);
6208}
6209
6210/* Similar to tree_check_failed, except that we check for a class of tree
6211 code, given in CL. */
6212
6213void
6214tree_class_check_failed (const tree node, const enum tree_code_class cl,
6215 const char *file, int line, const char *function)
6216{
6217 internal_error
6218 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
6219 TREE_CODE_CLASS_STRING (cl),
6220 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
6221 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
6222}
6223
6224/* Similar to tree_check_failed, except that instead of specifying a
6225 dozen codes, use the knowledge that they're all sequential. */
6226
6227void
6228tree_range_check_failed (const tree node, const char *file, int line,
6229 const char *function, enum tree_code c1,
6230 enum tree_code c2)
6231{
6232 char *buffer;
6233 unsigned length = 0;
6234 enum tree_code c;
6235
6236 for (c = c1; c <= c2; ++c)
6237 length += 4 + strlen (tree_code_name[c]);
6238
6239 length += strlen ("expected ");
6240 buffer = alloca (length);
6241 length = 0;
6242
6243 for (c = c1; c <= c2; ++c)
6244 {
6245 const char *prefix = length ? " or " : "expected ";
6246
6247 strcpy (buffer + length, prefix);
6248 length += strlen (prefix);
6249 strcpy (buffer + length, tree_code_name[c]);
6250 length += strlen (tree_code_name[c]);
6251 }
6252
6253 internal_error ("tree check: %s, have %s in %s, at %s:%d",
6254 buffer, tree_code_name[TREE_CODE (node)],
6255 function, trim_filename (file), line);
6256}
6257
6258
6259/* Similar to tree_check_failed, except that we check that a tree does
6260 not have the specified code, given in CL. */
6261
6262void
6263tree_not_class_check_failed (const tree node, const enum tree_code_class cl,
6264 const char *file, int line, const char *function)
6265{
6266 internal_error
6267 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
6268 TREE_CODE_CLASS_STRING (cl),
6269 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
6270 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
6271}
6272
6273
6274/* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
6275
6276void
6277omp_clause_check_failed (const tree node, const char *file, int line,
6278 const char *function, enum omp_clause_code code)
6279{
6280 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
6281 omp_clause_code_name[code], tree_code_name[TREE_CODE (node)],
6282 function, trim_filename (file), line);
6283}
6284
6285
6286/* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
6287
6288void
6289omp_clause_range_check_failed (const tree node, const char *file, int line,
6290 const char *function, enum omp_clause_code c1,
6291 enum omp_clause_code c2)
6292{
6293 char *buffer;
6294 unsigned length = 0;
6295 enum omp_clause_code c;
6296
6297 for (c = c1; c <= c2; ++c)
6298 length += 4 + strlen (omp_clause_code_name[c]);
6299
6300 length += strlen ("expected ");
6301 buffer = alloca (length);
6302 length = 0;
6303
6304 for (c = c1; c <= c2; ++c)
6305 {
6306 const char *prefix = length ? " or " : "expected ";
6307
6308 strcpy (buffer + length, prefix);
6309 length += strlen (prefix);
6310 strcpy (buffer + length, omp_clause_code_name[c]);
6311 length += strlen (omp_clause_code_name[c]);
6312 }
6313
6314 internal_error ("tree check: %s, have %s in %s, at %s:%d",
6315 buffer, omp_clause_code_name[TREE_CODE (node)],
6316 function, trim_filename (file), line);
6317}
6318
6319
6320#undef DEFTREESTRUCT
6321#define DEFTREESTRUCT(VAL, NAME) NAME,
6322
6323static const char *ts_enum_names[] = {
6324#include "treestruct.def"
6325};
6326#undef DEFTREESTRUCT
6327
6328#define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
6329
6330/* Similar to tree_class_check_failed, except that we check for
6331 whether CODE contains the tree structure identified by EN. */
6332
6333void
6334tree_contains_struct_check_failed (const tree node,
6335 const enum tree_node_structure_enum en,
6336 const char *file, int line,
6337 const char *function)
6338{
6339 internal_error
6340 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
6341 TS_ENUM_NAME(en),
6342 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
6343}
6344
6345
6346/* Similar to above, except that the check is for the bounds of a TREE_VEC's
6347 (dynamically sized) vector. */
6348
6349void
6350tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
6351 const char *function)
6352{
6353 internal_error
6354 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
6355 idx + 1, len, function, trim_filename (file), line);
6356}
6357
6358/* Similar to above, except that the check is for the bounds of a PHI_NODE's
6359 (dynamically sized) vector. */
6360
6361void
6362phi_node_elt_check_failed (int idx, int len, const char *file, int line,
6363 const char *function)
6364{
6365 internal_error
6366 ("tree check: accessed elt %d of phi_node with %d elts in %s, at %s:%d",
6367 idx + 1, len, function, trim_filename (file), line);
6368}
6369
6370/* Similar to above, except that the check is for the bounds of the operand
6371 vector of an expression node. */
6372
6373void
6374tree_operand_check_failed (int idx, enum tree_code code, const char *file,
6375 int line, const char *function)
6376{
6377 internal_error
6378 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
6379 idx + 1, tree_code_name[code], TREE_CODE_LENGTH (code),
6380 function, trim_filename (file), line);
6381}
6382
6383/* Similar to above, except that the check is for the number of
6384 operands of an OMP_CLAUSE node. */
6385
6386void
6387omp_clause_operand_check_failed (int idx, tree t, const char *file,
6388 int line, const char *function)
6389{
6390 internal_error
6391 ("tree check: accessed operand %d of omp_clause %s with %d operands "
6392 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
6393 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
6394 trim_filename (file), line);
6395}
6396#endif /* ENABLE_TREE_CHECKING */
6397
6398/* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
6399 and mapped to the machine mode MODE. Initialize its fields and build
6400 the information necessary for debugging output. */
6401
6402static tree
6403make_vector_type (tree innertype, int nunits, enum machine_mode mode)
6404{
6405 tree t;
6406 hashval_t hashcode = 0;
6407
6408 /* Build a main variant, based on the main variant of the inner type, then
6409 use it to build the variant we return. */
6410 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
6411 && TYPE_MAIN_VARIANT (innertype) != innertype)
6412 return build_type_attribute_qual_variant (
6413 make_vector_type (TYPE_MAIN_VARIANT (innertype), nunits, mode),
6414 TYPE_ATTRIBUTES (innertype),
6415 TYPE_QUALS (innertype));
6416
6417 t = make_node (VECTOR_TYPE);
6418 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
6419 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
6420 TYPE_MODE (t) = mode;
6421 TYPE_READONLY (t) = TYPE_READONLY (innertype);
6422 TYPE_VOLATILE (t) = TYPE_VOLATILE (innertype);
6423
6424 layout_type (t);
6425
6426 {
6427 tree index = build_int_cst (NULL_TREE, nunits - 1);
6428 tree array = build_array_type (innertype, build_index_type (index));
6429 tree rt = make_node (RECORD_TYPE);
6430
6431 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
6432 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
6433 layout_type (rt);
6434 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
6435 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
6436 the representation type, and we want to find that die when looking up
6437 the vector type. This is most easily achieved by making the TYPE_UID
6438 numbers equal. */
6439 TYPE_UID (rt) = TYPE_UID (t);
6440 }
6441
6442 hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
6443 hashcode = iterative_hash_host_wide_int (mode, hashcode);
6444 hashcode = iterative_hash_object (TYPE_HASH (innertype), hashcode);
6445 return type_hash_canon (hashcode, t);
6446}
6447
6448static tree
6449make_or_reuse_type (unsigned size, int unsignedp)
6450{
6451 if (size == INT_TYPE_SIZE)
6452 return unsignedp ? unsigned_type_node : integer_type_node;
6453 if (size == CHAR_TYPE_SIZE)
6454 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
6455 if (size == SHORT_TYPE_SIZE)
6456 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
6457 if (size == LONG_TYPE_SIZE)
6458 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
6459 if (size == LONG_LONG_TYPE_SIZE)
6460 return (unsignedp ? long_long_unsigned_type_node
6461 : long_long_integer_type_node);
6462
6463 if (unsignedp)
6464 return make_unsigned_type (size);
6465 else
6466 return make_signed_type (size);
6467}
6468
6469/* Create nodes for all integer types (and error_mark_node) using the sizes
6470 of C datatypes. The caller should call set_sizetype soon after calling
6471 this function to select one of the types as sizetype. */
6472
6473void
6474build_common_tree_nodes (bool signed_char, bool signed_sizetype)
6475{
6476 error_mark_node = make_node (ERROR_MARK);
6477 TREE_TYPE (error_mark_node) = error_mark_node;
6478
6479 initialize_sizetypes (signed_sizetype);
6480
6481 /* Define both `signed char' and `unsigned char'. */
6482 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
6483 TYPE_STRING_FLAG (signed_char_type_node) = 1;
6484 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
6485 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
6486
6487 /* Define `char', which is like either `signed char' or `unsigned char'
6488 but not the same as either. */
6489 char_type_node
6490 = (signed_char
6491 ? make_signed_type (CHAR_TYPE_SIZE)
6492 : make_unsigned_type (CHAR_TYPE_SIZE));
6493 TYPE_STRING_FLAG (char_type_node) = 1;
6494
6495 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
6496 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
6497 integer_type_node = make_signed_type (INT_TYPE_SIZE);
6498 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
6499 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
6500 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
6501 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
6502 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
6503
6504 /* Define a boolean type. This type only represents boolean values but
6505 may be larger than char depending on the value of BOOL_TYPE_SIZE.
6506 Front ends which want to override this size (i.e. Java) can redefine
6507 boolean_type_node before calling build_common_tree_nodes_2. */
6508 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
6509 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
6510 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
6511 TYPE_PRECISION (boolean_type_node) = 1;
6512
6513 /* Fill in the rest of the sized types. Reuse existing type nodes
6514 when possible. */
6515 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
6516 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
6517 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
6518 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
6519 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
6520
6521 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
6522 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
6523 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
6524 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
6525 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
6526
6527 access_public_node = get_identifier ("public");
6528 access_protected_node = get_identifier ("protected");
6529 access_private_node = get_identifier ("private");
6530}
6531
6532/* Call this function after calling build_common_tree_nodes and set_sizetype.
6533 It will create several other common tree nodes. */
6534
6535void
6536build_common_tree_nodes_2 (int short_double)
6537{
6538 /* Define these next since types below may used them. */
6539 integer_zero_node = build_int_cst (NULL_TREE, 0);
6540 integer_one_node = build_int_cst (NULL_TREE, 1);
6541 integer_minus_one_node = build_int_cst (NULL_TREE, -1);
6542
6543 size_zero_node = size_int (0);
6544 size_one_node = size_int (1);
6545 bitsize_zero_node = bitsize_int (0);
6546 bitsize_one_node = bitsize_int (1);
6547 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
6548
6549 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
6550 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
6551
6552 void_type_node = make_node (VOID_TYPE);
6553 layout_type (void_type_node);
6554
6555 /* We are not going to have real types in C with less than byte alignment,
6556 so we might as well not have any types that claim to have it. */
6557 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
6558 TYPE_USER_ALIGN (void_type_node) = 0;
6559
6560 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
6561 layout_type (TREE_TYPE (null_pointer_node));
6562
6563 ptr_type_node = build_pointer_type (void_type_node);
6564 const_ptr_type_node
6565 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
6566 fileptr_type_node = ptr_type_node;
6567
6568 float_type_node = make_node (REAL_TYPE);
6569 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
6570 layout_type (float_type_node);
6571
6572 double_type_node = make_node (REAL_TYPE);
6573 if (short_double)
6574 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
6575 else
6576 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
6577 layout_type (double_type_node);
6578
6579 long_double_type_node = make_node (REAL_TYPE);
6580 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
6581 layout_type (long_double_type_node);
6582
6583 float_ptr_type_node = build_pointer_type (float_type_node);
6584 double_ptr_type_node = build_pointer_type (double_type_node);
6585 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
6586 integer_ptr_type_node = build_pointer_type (integer_type_node);
6587
6588 /* Decimal float types. */
6589 dfloat32_type_node = make_node (REAL_TYPE);
6590 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
6591 layout_type (dfloat32_type_node);
6592 TYPE_MODE (dfloat32_type_node) = SDmode;
6593 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
6594
6595 dfloat64_type_node = make_node (REAL_TYPE);
6596 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
6597 layout_type (dfloat64_type_node);
6598 TYPE_MODE (dfloat64_type_node) = DDmode;
6599 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
6600
6601 dfloat128_type_node = make_node (REAL_TYPE);
6602 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
6603 layout_type (dfloat128_type_node);
6604 TYPE_MODE (dfloat128_type_node) = TDmode;
6605 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
6606
6607 complex_integer_type_node = make_node (COMPLEX_TYPE);
6608 TREE_TYPE (complex_integer_type_node) = integer_type_node;
6609 layout_type (complex_integer_type_node);
6610
6611 complex_float_type_node = make_node (COMPLEX_TYPE);
6612 TREE_TYPE (complex_float_type_node) = float_type_node;
6613 layout_type (complex_float_type_node);
6614
6615 complex_double_type_node = make_node (COMPLEX_TYPE);
6616 TREE_TYPE (complex_double_type_node) = double_type_node;
6617 layout_type (complex_double_type_node);
6618
6619 complex_long_double_type_node = make_node (COMPLEX_TYPE);
6620 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
6621 layout_type (complex_long_double_type_node);
6622
6623 {
6624 tree t = targetm.build_builtin_va_list ();
6625
6626 /* Many back-ends define record types without setting TYPE_NAME.
6627 If we copied the record type here, we'd keep the original
6628 record type without a name. This breaks name mangling. So,
6629 don't copy record types and let c_common_nodes_and_builtins()
6630 declare the type to be __builtin_va_list. */
6631 if (TREE_CODE (t) != RECORD_TYPE)
6632 t = build_variant_type_copy (t);
6633
6634 va_list_type_node = t;
6635 }
6636}
6637
6638/* A subroutine of build_common_builtin_nodes. Define a builtin function. */
6639
6640static void
6641local_define_builtin (const char *name, tree type, enum built_in_function code,
6642 const char *library_name, int ecf_flags)
6643{
6644 tree decl;
6645
6646 decl = lang_hooks.builtin_function (name, type, code, BUILT_IN_NORMAL,
6647 library_name, NULL_TREE);
6648 if (ecf_flags & ECF_CONST)
6649 TREE_READONLY (decl) = 1;
6650 if (ecf_flags & ECF_PURE)
6651 DECL_IS_PURE (decl) = 1;
6652 if (ecf_flags & ECF_NORETURN)
6653 TREE_THIS_VOLATILE (decl) = 1;
6654 if (ecf_flags & ECF_NOTHROW)
6655 TREE_NOTHROW (decl) = 1;
6656 if (ecf_flags & ECF_MALLOC)
6657 DECL_IS_MALLOC (decl) = 1;
6658
6659 built_in_decls[code] = decl;
6660 implicit_built_in_decls[code] = decl;
6661}
6662
6663/* Call this function after instantiating all builtins that the language
6664 front end cares about. This will build the rest of the builtins that
6665 are relied upon by the tree optimizers and the middle-end. */
6666
6667void
6668build_common_builtin_nodes (void)
6669{
6670 tree tmp, ftype;
6671
6672 if (built_in_decls[BUILT_IN_MEMCPY] == NULL
6673 || built_in_decls[BUILT_IN_MEMMOVE] == NULL)
6674 {
6675 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
6676 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
6677 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
6678 ftype = build_function_type (ptr_type_node, tmp);
6679
6680 if (built_in_decls[BUILT_IN_MEMCPY] == NULL)
6681 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
6682 "memcpy", ECF_NOTHROW);
6683 if (built_in_decls[BUILT_IN_MEMMOVE] == NULL)
6684 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
6685 "memmove", ECF_NOTHROW);
6686 }
6687
6688 if (built_in_decls[BUILT_IN_MEMCMP] == NULL)
6689 {
6690 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
6691 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
6692 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
6693 ftype = build_function_type (integer_type_node, tmp);
6694 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
6695 "memcmp", ECF_PURE | ECF_NOTHROW);
6696 }
6697
6698 if (built_in_decls[BUILT_IN_MEMSET] == NULL)
6699 {
6700 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
6701 tmp = tree_cons (NULL_TREE, integer_type_node, tmp);
6702 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
6703 ftype = build_function_type (ptr_type_node, tmp);
6704 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
6705 "memset", ECF_NOTHROW);
6706 }
6707
6708 if (built_in_decls[BUILT_IN_ALLOCA] == NULL)
6709 {
6710 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
6711 ftype = build_function_type (ptr_type_node, tmp);
6712 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
6713 "alloca", ECF_NOTHROW | ECF_MALLOC);
6714 }
6715
6716 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6717 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
6718 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
6719 ftype = build_function_type (void_type_node, tmp);
6720 local_define_builtin ("__builtin_init_trampoline", ftype,
6721 BUILT_IN_INIT_TRAMPOLINE,
6722 "__builtin_init_trampoline", ECF_NOTHROW);
6723
6724 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6725 ftype = build_function_type (ptr_type_node, tmp);
6726 local_define_builtin ("__builtin_adjust_trampoline", ftype,
6727 BUILT_IN_ADJUST_TRAMPOLINE,
6728 "__builtin_adjust_trampoline",
6729 ECF_CONST | ECF_NOTHROW);
6730
6731 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6732 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
6733 ftype = build_function_type (void_type_node, tmp);
6734 local_define_builtin ("__builtin_nonlocal_goto", ftype,
6735 BUILT_IN_NONLOCAL_GOTO,
6736 "__builtin_nonlocal_goto",
6737 ECF_NORETURN | ECF_NOTHROW);
6738
6739 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6740 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
6741 ftype = build_function_type (void_type_node, tmp);
6742 local_define_builtin ("__builtin_setjmp_setup", ftype,
6743 BUILT_IN_SETJMP_SETUP,
6744 "__builtin_setjmp_setup", ECF_NOTHROW);
6745
6746 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6747 ftype = build_function_type (ptr_type_node, tmp);
6748 local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
6749 BUILT_IN_SETJMP_DISPATCHER,
6750 "__builtin_setjmp_dispatcher",
6751 ECF_PURE | ECF_NOTHROW);
6752
6753 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6754 ftype = build_function_type (void_type_node, tmp);
6755 local_define_builtin ("__builtin_setjmp_receiver", ftype,
6756 BUILT_IN_SETJMP_RECEIVER,
6757 "__builtin_setjmp_receiver", ECF_NOTHROW);
6758
6759 ftype = build_function_type (ptr_type_node, void_list_node);
6760 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
6761 "__builtin_stack_save", ECF_NOTHROW);
6762
6763 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6764 ftype = build_function_type (void_type_node, tmp);
6765 local_define_builtin ("__builtin_stack_restore", ftype,
6766 BUILT_IN_STACK_RESTORE,
6767 "__builtin_stack_restore", ECF_NOTHROW);
6768
6769 ftype = build_function_type (void_type_node, void_list_node);
6770 local_define_builtin ("__builtin_profile_func_enter", ftype,
6771 BUILT_IN_PROFILE_FUNC_ENTER, "profile_func_enter", 0);
6772 local_define_builtin ("__builtin_profile_func_exit", ftype,
6773 BUILT_IN_PROFILE_FUNC_EXIT, "profile_func_exit", 0);
6774
6775 /* Complex multiplication and division. These are handled as builtins
6776 rather than optabs because emit_library_call_value doesn't support
6777 complex. Further, we can do slightly better with folding these
6778 beasties if the real and complex parts of the arguments are separate. */
6779 {
6780 enum machine_mode mode;
6781
6782 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
6783 {
6784 char mode_name_buf[4], *q;
6785 const char *p;
6786 enum built_in_function mcode, dcode;
6787 tree type, inner_type;
6788
6789 type = lang_hooks.types.type_for_mode (mode, 0);
6790 if (type == NULL)
6791 continue;
6792 inner_type = TREE_TYPE (type);
6793
6794 tmp = tree_cons (NULL_TREE, inner_type, void_list_node);
6795 tmp = tree_cons (NULL_TREE, inner_type, tmp);
6796 tmp = tree_cons (NULL_TREE, inner_type, tmp);
6797 tmp = tree_cons (NULL_TREE, inner_type, tmp);
6798 ftype = build_function_type (type, tmp);
6799
6800 mcode = BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
6801 dcode = BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
6802
6803 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
6804 *q = TOLOWER (*p);
6805 *q = '\0';
6806
6807 built_in_names[mcode] = concat ("__mul", mode_name_buf, "3", NULL);
6808 local_define_builtin (built_in_names[mcode], ftype, mcode,
6809 built_in_names[mcode], ECF_CONST | ECF_NOTHROW);
6810
6811 built_in_names[dcode] = concat ("__div", mode_name_buf, "3", NULL);
6812 local_define_builtin (built_in_names[dcode], ftype, dcode,
6813 built_in_names[dcode], ECF_CONST | ECF_NOTHROW);
6814 }
6815 }
6816}
6817
6818/* HACK. GROSS. This is absolutely disgusting. I wish there was a
6819 better way.
6820
6821 If we requested a pointer to a vector, build up the pointers that
6822 we stripped off while looking for the inner type. Similarly for
6823 return values from functions.
6824
6825 The argument TYPE is the top of the chain, and BOTTOM is the
6826 new type which we will point to. */
6827
6828tree
6829reconstruct_complex_type (tree type, tree bottom)
6830{
6831 tree inner, outer;
6832
6833 if (POINTER_TYPE_P (type))
6834 {
6835 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
6836 outer = build_pointer_type (inner);
6837 }
6838 else if (TREE_CODE (type) == ARRAY_TYPE)
6839 {
6840 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
6841 outer = build_array_type (inner, TYPE_DOMAIN (type));
6842 }
6843 else if (TREE_CODE (type) == FUNCTION_TYPE)
6844 {
6845 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
6846 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
6847 }
6848 else if (TREE_CODE (type) == METHOD_TYPE)
6849 {
6850 tree argtypes;
6851 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
6852 /* The build_method_type_directly() routine prepends 'this' to argument list,
6853 so we must compensate by getting rid of it. */
6854 argtypes = TYPE_ARG_TYPES (type);
6855 outer = build_method_type_directly (TYPE_METHOD_BASETYPE (type),
6856 inner,
6857 TYPE_ARG_TYPES (type));
6858 TYPE_ARG_TYPES (outer) = argtypes;
6859 }
6860 else
6861 return bottom;
6862
6863 TYPE_READONLY (outer) = TYPE_READONLY (type);
6864 TYPE_VOLATILE (outer) = TYPE_VOLATILE (type);
6865
6866 return outer;
6867}
6868
6869/* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
6870 the inner type. */
6871tree
6872build_vector_type_for_mode (tree innertype, enum machine_mode mode)
6873{
6874 int nunits;
6875
6876 switch (GET_MODE_CLASS (mode))
6877 {
6878 case MODE_VECTOR_INT:
6879 case MODE_VECTOR_FLOAT:
6880 nunits = GET_MODE_NUNITS (mode);
6881 break;
6882
6883 case MODE_INT:
6884 /* Check that there are no leftover bits. */
6885 gcc_assert (GET_MODE_BITSIZE (mode)
6886 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
6887
6888 nunits = GET_MODE_BITSIZE (mode)
6889 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
6890 break;
6891
6892 default:
6893 gcc_unreachable ();
6894 }
6895
6896 return make_vector_type (innertype, nunits, mode);
6897}
6898
6899/* Similarly, but takes the inner type and number of units, which must be
6900 a power of two. */
6901
6902tree
6903build_vector_type (tree innertype, int nunits)
6904{
6905 return make_vector_type (innertype, nunits, VOIDmode);
6906}
6907
6908
6909/* Build RESX_EXPR with given REGION_NUMBER. */
6910tree
6911build_resx (int region_number)
6912{
6913 tree t;
6914 t = build1 (RESX_EXPR, void_type_node,
6915 build_int_cst (NULL_TREE, region_number));
6916 return t;
6917}
6918
6919/* Given an initializer INIT, return TRUE if INIT is zero or some
6920 aggregate of zeros. Otherwise return FALSE. */
6921bool
6922initializer_zerop (tree init)
6923{
6924 tree elt;
6925
6926 STRIP_NOPS (init);
6927
6928 switch (TREE_CODE (init))
6929 {
6930 case INTEGER_CST:
6931 return integer_zerop (init);
6932
6933 case REAL_CST:
6934 /* ??? Note that this is not correct for C4X float formats. There,
6935 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
6936 negative exponent. */
6937 return real_zerop (init)
6938 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
6939
6940 case COMPLEX_CST:
6941 return integer_zerop (init)
6942 || (real_zerop (init)
6943 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
6944 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
6945
6946 case VECTOR_CST:
6947 for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
6948 if (!initializer_zerop (TREE_VALUE (elt)))
6949 return false;
6950 return true;
6951
6952 case CONSTRUCTOR:
6953 {
6954 unsigned HOST_WIDE_INT idx;
6955
6956 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
6957 if (!initializer_zerop (elt))
6958 return false;
6959 return true;
6960 }
6961
6962 default:
6963 return false;
6964 }
6965}
6966
6967/* Build an empty statement. */
6968
6969tree
6970build_empty_stmt (void)
6971{
6972 return build1 (NOP_EXPR, void_type_node, size_zero_node);
6973}
6974
6975
6976/* Build an OpenMP clause with code CODE. */
6977
6978tree
6979build_omp_clause (enum omp_clause_code code)
6980{
6981 tree t;
6982 int size, length;
6983
6984 length = omp_clause_num_ops[code];
6985 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
6986
6987 t = ggc_alloc (size);
6988 memset (t, 0, size);
6989 TREE_SET_CODE (t, OMP_CLAUSE);
6990 OMP_CLAUSE_SET_CODE (t, code);
6991
6992#ifdef GATHER_STATISTICS
6993 tree_node_counts[(int) omp_clause_kind]++;
6994 tree_node_sizes[(int) omp_clause_kind] += size;
6995#endif
6996
6997 return t;
6998}
6999
7000
7001/* Returns true if it is possible to prove that the index of
7002 an array access REF (an ARRAY_REF expression) falls into the
7003 array bounds. */
7004
7005bool
7006in_array_bounds_p (tree ref)
7007{
7008 tree idx = TREE_OPERAND (ref, 1);
7009 tree min, max;
7010
7011 if (TREE_CODE (idx) != INTEGER_CST)
7012 return false;
7013
7014 min = array_ref_low_bound (ref);
7015 max = array_ref_up_bound (ref);
7016 if (!min
7017 || !max
7018 || TREE_CODE (min) != INTEGER_CST
7019 || TREE_CODE (max) != INTEGER_CST)
7020 return false;
7021
7022 if (tree_int_cst_lt (idx, min)
7023 || tree_int_cst_lt (max, idx))
7024 return false;
7025
7026 return true;
7027}
7028
7029/* Returns true if it is possible to prove that the range of
7030 an array access REF (an ARRAY_RANGE_REF expression) falls
7031 into the array bounds. */
7032
7033bool
7034range_in_array_bounds_p (tree ref)
7035{
7036 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
7037 tree range_min, range_max, min, max;
7038
7039 range_min = TYPE_MIN_VALUE (domain_type);
7040 range_max = TYPE_MAX_VALUE (domain_type);
7041 if (!range_min
7042 || !range_max
7043 || TREE_CODE (range_min) != INTEGER_CST
7044 || TREE_CODE (range_max) != INTEGER_CST)
7045 return false;
7046
7047 min = array_ref_low_bound (ref);
7048 max = array_ref_up_bound (ref);
7049 if (!min
7050 || !max
7051 || TREE_CODE (min) != INTEGER_CST
7052 || TREE_CODE (max) != INTEGER_CST)
7053 return false;
7054
7055 if (tree_int_cst_lt (range_min, min)
7056 || tree_int_cst_lt (max, range_max))
7057 return false;
7058
7059 return true;
7060}
7061
7062/* Return true if T (assumed to be a DECL) is a global variable. */
7063
7064bool
7065is_global_var (tree t)
7066{
7067 if (MTAG_P (t))
7068 return (TREE_STATIC (t) || MTAG_GLOBAL (t));
7069 else
7070 return (TREE_STATIC (t) || DECL_EXTERNAL (t));
7071}
7072
7073/* Return true if T (assumed to be a DECL) must be assigned a memory
7074 location. */
7075
7076bool
7077needs_to_live_in_memory (tree t)
7078{
7079 return (TREE_ADDRESSABLE (t)
7080 || is_global_var (t)
7081 || (TREE_CODE (t) == RESULT_DECL
7082 && aggregate_value_p (t, current_function_decl)));
7083}
7084
7085/* There are situations in which a language considers record types
7086 compatible which have different field lists. Decide if two fields
7087 are compatible. It is assumed that the parent records are compatible. */
7088
7089bool
7090fields_compatible_p (tree f1, tree f2)
7091{
7092 if (!operand_equal_p (DECL_FIELD_BIT_OFFSET (f1),
7093 DECL_FIELD_BIT_OFFSET (f2), OEP_ONLY_CONST))
7094 return false;
7095
7096 if (!operand_equal_p (DECL_FIELD_OFFSET (f1),
7097 DECL_FIELD_OFFSET (f2), OEP_ONLY_CONST))
7098 return false;
7099
7100 if (!lang_hooks.types_compatible_p (TREE_TYPE (f1), TREE_TYPE (f2)))
7101 return false;
7102
7103 return true;
7104}
7105
7106/* Locate within RECORD a field that is compatible with ORIG_FIELD. */
7107
7108tree
7109find_compatible_field (tree record, tree orig_field)
7110{
7111 tree f;
7112
7113 for (f = TYPE_FIELDS (record); f ; f = TREE_CHAIN (f))
7114 if (TREE_CODE (f) == FIELD_DECL
7115 && fields_compatible_p (f, orig_field))
7116 return f;
7117
7118 /* ??? Why isn't this on the main fields list? */
7119 f = TYPE_VFIELD (record);
7120 if (f && TREE_CODE (f) == FIELD_DECL
7121 && fields_compatible_p (f, orig_field))
7122 return f;
7123
7124 /* ??? We should abort here, but Java appears to do Bad Things
7125 with inherited fields. */
7126 return orig_field;
7127}
7128
7129/* Return value of a constant X. */
7130
7131HOST_WIDE_INT
7132int_cst_value (tree x)
7133{
7134 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
7135 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
7136 bool negative = ((val >> (bits - 1)) & 1) != 0;
7137
7138 gcc_assert (bits <= HOST_BITS_PER_WIDE_INT);
7139
7140 if (negative)
7141 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
7142 else
7143 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
7144
7145 return val;
7146}
7147
7148/* Returns the greatest common divisor of A and B, which must be
7149 INTEGER_CSTs. */
7150
7151tree
7152tree_fold_gcd (tree a, tree b)
7153{
7154 tree a_mod_b;
7155 tree type = TREE_TYPE (a);
7156
7157 gcc_assert (TREE_CODE (a) == INTEGER_CST);
7158 gcc_assert (TREE_CODE (b) == INTEGER_CST);
7159
7160 if (integer_zerop (a))
7161 return b;
7162
7163 if (integer_zerop (b))
7164 return a;
7165
7166 if (tree_int_cst_sgn (a) == -1)
7167 a = fold_build2 (MULT_EXPR, type, a,
7168 build_int_cst (type, -1));
7169
7170 if (tree_int_cst_sgn (b) == -1)
7171 b = fold_build2 (MULT_EXPR, type, b,
7172 build_int_cst (type, -1));
7173
7174 while (1)
7175 {
7176 a_mod_b = fold_build2 (FLOOR_MOD_EXPR, type, a, b);
7177
7178 if (!TREE_INT_CST_LOW (a_mod_b)
7179 && !TREE_INT_CST_HIGH (a_mod_b))
7180 return b;
7181
7182 a = b;
7183 b = a_mod_b;
7184 }
7185}
7186
7187/* Returns unsigned variant of TYPE. */
7188
7189tree
7190unsigned_type_for (tree type)
7191{
7192 if (POINTER_TYPE_P (type))
7193 return lang_hooks.types.unsigned_type (size_type_node);
7194 return lang_hooks.types.unsigned_type (type);
7195}
7196
7197/* Returns signed variant of TYPE. */
7198
7199tree
7200signed_type_for (tree type)
7201{
7202 if (POINTER_TYPE_P (type))
7203 return lang_hooks.types.signed_type (size_type_node);
7204 return lang_hooks.types.signed_type (type);
7205}
7206
7207/* Returns the largest value obtainable by casting something in INNER type to
7208 OUTER type. */
7209
7210tree
7211upper_bound_in_type (tree outer, tree inner)
7212{
7213 unsigned HOST_WIDE_INT lo, hi;
7214 unsigned int det = 0;
7215 unsigned oprec = TYPE_PRECISION (outer);
7216 unsigned iprec = TYPE_PRECISION (inner);
7217 unsigned prec;
7218
7219 /* Compute a unique number for every combination. */
7220 det |= (oprec > iprec) ? 4 : 0;
7221 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
7222 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
7223
7224 /* Determine the exponent to use. */
7225 switch (det)
7226 {
7227 case 0:
7228 case 1:
7229 /* oprec <= iprec, outer: signed, inner: don't care. */
7230 prec = oprec - 1;
7231 break;
7232 case 2:
7233 case 3:
7234 /* oprec <= iprec, outer: unsigned, inner: don't care. */
7235 prec = oprec;
7236 break;
7237 case 4:
7238 /* oprec > iprec, outer: signed, inner: signed. */
7239 prec = iprec - 1;
7240 break;
7241 case 5:
7242 /* oprec > iprec, outer: signed, inner: unsigned. */
7243 prec = iprec;
7244 break;
7245 case 6:
7246 /* oprec > iprec, outer: unsigned, inner: signed. */
7247 prec = oprec;
7248 break;
7249 case 7:
7250 /* oprec > iprec, outer: unsigned, inner: unsigned. */
7251 prec = iprec;
7252 break;
7253 default:
7254 gcc_unreachable ();
7255 }
7256
7257 /* Compute 2^^prec - 1. */
7258 if (prec <= HOST_BITS_PER_WIDE_INT)
7259 {
7260 hi = 0;
7261 lo = ((~(unsigned HOST_WIDE_INT) 0)
7262 >> (HOST_BITS_PER_WIDE_INT - prec));
7263 }
7264 else
7265 {
7266 hi = ((~(unsigned HOST_WIDE_INT) 0)
7267 >> (2 * HOST_BITS_PER_WIDE_INT - prec));
7268 lo = ~(unsigned HOST_WIDE_INT) 0;
7269 }
7270
7271 return build_int_cst_wide (outer, lo, hi);
7272}
7273
7274/* Returns the smallest value obtainable by casting something in INNER type to
7275 OUTER type. */
7276
7277tree
7278lower_bound_in_type (tree outer, tree inner)
7279{
7280 unsigned HOST_WIDE_INT lo, hi;
7281 unsigned oprec = TYPE_PRECISION (outer);
7282 unsigned iprec = TYPE_PRECISION (inner);
7283
7284 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
7285 and obtain 0. */
7286 if (TYPE_UNSIGNED (outer)
7287 /* If we are widening something of an unsigned type, OUTER type
7288 contains all values of INNER type. In particular, both INNER
7289 and OUTER types have zero in common. */
7290 || (oprec > iprec && TYPE_UNSIGNED (inner)))
7291 lo = hi = 0;
7292 else
7293 {
7294 /* If we are widening a signed type to another signed type, we
7295 want to obtain -2^^(iprec-1). If we are keeping the
7296 precision or narrowing to a signed type, we want to obtain
7297 -2^(oprec-1). */
7298 unsigned prec = oprec > iprec ? iprec : oprec;
7299
7300 if (prec <= HOST_BITS_PER_WIDE_INT)
7301 {
7302 hi = ~(unsigned HOST_WIDE_INT) 0;
7303 lo = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
7304 }
7305 else
7306 {
7307 hi = ((~(unsigned HOST_WIDE_INT) 0)
7308 << (prec - HOST_BITS_PER_WIDE_INT - 1));
7309 lo = 0;
7310 }
7311 }
7312
7313 return build_int_cst_wide (outer, lo, hi);
7314}
7315
7316/* Return nonzero if two operands that are suitable for PHI nodes are
7317 necessarily equal. Specifically, both ARG0 and ARG1 must be either
7318 SSA_NAME or invariant. Note that this is strictly an optimization.
7319 That is, callers of this function can directly call operand_equal_p
7320 and get the same result, only slower. */
7321
7322int
7323operand_equal_for_phi_arg_p (tree arg0, tree arg1)
7324{
7325 if (arg0 == arg1)
7326 return 1;
7327 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
7328 return 0;
7329 return operand_equal_p (arg0, arg1, 0);
7330}
7331
7332/* Returns number of zeros at the end of binary representation of X.
7333
7334 ??? Use ffs if available? */
7335
7336tree
7337num_ending_zeros (tree x)
7338{
7339 unsigned HOST_WIDE_INT fr, nfr;
7340 unsigned num, abits;
7341 tree type = TREE_TYPE (x);
7342
7343 if (TREE_INT_CST_LOW (x) == 0)
7344 {
7345 num = HOST_BITS_PER_WIDE_INT;
7346 fr = TREE_INT_CST_HIGH (x);
7347 }
7348 else
7349 {
7350 num = 0;
7351 fr = TREE_INT_CST_LOW (x);
7352 }
7353
7354 for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
7355 {
7356 nfr = fr >> abits;
7357 if (nfr << abits == fr)
7358 {
7359 num += abits;
7360 fr = nfr;
7361 }
7362 }
7363
7364 if (num > TYPE_PRECISION (type))
7365 num = TYPE_PRECISION (type);
7366
7367 return build_int_cst_type (type, num);
7368}
7369
7370
7371#define WALK_SUBTREE(NODE) \
7372 do \
7373 { \
7374 result = walk_tree (&(NODE), func, data, pset); \
7375 if (result) \
7376 return result; \
7377 } \
7378 while (0)
7379
7380/* This is a subroutine of walk_tree that walks field of TYPE that are to
7381 be walked whenever a type is seen in the tree. Rest of operands and return
7382 value are as for walk_tree. */
7383
7384static tree
7385walk_type_fields (tree type, walk_tree_fn func, void *data,
7386 struct pointer_set_t *pset)
7387{
7388 tree result = NULL_TREE;
7389
7390 switch (TREE_CODE (type))
7391 {
7392 case POINTER_TYPE:
7393 case REFERENCE_TYPE:
7394 /* We have to worry about mutually recursive pointers. These can't
7395 be written in C. They can in Ada. It's pathological, but
7396 there's an ACATS test (c38102a) that checks it. Deal with this
7397 by checking if we're pointing to another pointer, that one
7398 points to another pointer, that one does too, and we have no htab.
7399 If so, get a hash table. We check three levels deep to avoid
7400 the cost of the hash table if we don't need one. */
7401 if (POINTER_TYPE_P (TREE_TYPE (type))
7402 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
7403 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
7404 && !pset)
7405 {
7406 result = walk_tree_without_duplicates (&TREE_TYPE (type),
7407 func, data);
7408 if (result)
7409 return result;
7410
7411 break;
7412 }
7413
7414 /* ... fall through ... */
7415
7416 case COMPLEX_TYPE:
7417 WALK_SUBTREE (TREE_TYPE (type));
7418 break;
7419
7420 case METHOD_TYPE:
7421 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
7422
7423 /* Fall through. */
7424
7425 case FUNCTION_TYPE:
7426 WALK_SUBTREE (TREE_TYPE (type));
7427 {
7428 tree arg;
7429
7430 /* We never want to walk into default arguments. */
7431 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
7432 WALK_SUBTREE (TREE_VALUE (arg));
7433 }
7434 break;
7435
7436 case ARRAY_TYPE:
7437 /* Don't follow this nodes's type if a pointer for fear that
7438 we'll have infinite recursion. If we have a PSET, then we
7439 need not fear. */
7440 if (pset
7441 || (!POINTER_TYPE_P (TREE_TYPE (type))
7442 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
7443 WALK_SUBTREE (TREE_TYPE (type));
7444 WALK_SUBTREE (TYPE_DOMAIN (type));
7445 break;
7446
7447 case BOOLEAN_TYPE:
7448 case ENUMERAL_TYPE:
7449 case INTEGER_TYPE:
7450 case REAL_TYPE:
7451 WALK_SUBTREE (TYPE_MIN_VALUE (type));
7452 WALK_SUBTREE (TYPE_MAX_VALUE (type));
7453 break;
7454
7455 case OFFSET_TYPE:
7456 WALK_SUBTREE (TREE_TYPE (type));
7457 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
7458 break;
7459
7460 default:
7461 break;
7462 }
7463
7464 return NULL_TREE;
7465}
7466
7467/* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
7468 called with the DATA and the address of each sub-tree. If FUNC returns a
7469 non-NULL value, the traversal is stopped, and the value returned by FUNC
7470 is returned. If PSET is non-NULL it is used to record the nodes visited,
7471 and to avoid visiting a node more than once. */
7472
7473tree
7474walk_tree (tree *tp, walk_tree_fn func, void *data, struct pointer_set_t *pset)
7475{
7476 enum tree_code code;
7477 int walk_subtrees;
7478 tree result;
7479
7480#define WALK_SUBTREE_TAIL(NODE) \
7481 do \
7482 { \
7483 tp = & (NODE); \
7484 goto tail_recurse; \
7485 } \
7486 while (0)
7487
7488 tail_recurse:
7489 /* Skip empty subtrees. */
7490 if (!*tp)
7491 return NULL_TREE;
7492
7493 /* Don't walk the same tree twice, if the user has requested
7494 that we avoid doing so. */
7495 if (pset && pointer_set_insert (pset, *tp))
7496 return NULL_TREE;
7497
7498 /* Call the function. */
7499 walk_subtrees = 1;
7500 result = (*func) (tp, &walk_subtrees, data);
7501
7502 /* If we found something, return it. */
7503 if (result)
7504 return result;
7505
7506 code = TREE_CODE (*tp);
7507
7508 /* Even if we didn't, FUNC may have decided that there was nothing
7509 interesting below this point in the tree. */
7510 if (!walk_subtrees)
7511 {
7512 /* But we still need to check our siblings. */
7513 if (code == TREE_LIST)
7514 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
7515 else if (code == OMP_CLAUSE)
7516 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
7517 else
7518 return NULL_TREE;
7519 }
7520
7521 result = lang_hooks.tree_inlining.walk_subtrees (tp, &walk_subtrees, func,
7522 data, pset);
7523 if (result || ! walk_subtrees)
7524 return result;
7525
7526 switch (code)
7527 {
7528 case ERROR_MARK:
7529 case IDENTIFIER_NODE:
7530 case INTEGER_CST:
7531 case REAL_CST:
7532 case VECTOR_CST:
7533 case STRING_CST:
7534 case BLOCK:
7535 case PLACEHOLDER_EXPR:
7536 case SSA_NAME:
7537 case FIELD_DECL:
7538 case RESULT_DECL:
7539 /* None of these have subtrees other than those already walked
7540 above. */
7541 break;
7542
7543 case TREE_LIST:
7544 WALK_SUBTREE (TREE_VALUE (*tp));
7545 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
7546 break;
7547
7548 case TREE_VEC:
7549 {
7550 int len = TREE_VEC_LENGTH (*tp);
7551
7552 if (len == 0)
7553 break;
7554
7555 /* Walk all elements but the first. */
7556 while (--len)
7557 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
7558
7559 /* Now walk the first one as a tail call. */
7560 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
7561 }
7562
7563 case COMPLEX_CST:
7564 WALK_SUBTREE (TREE_REALPART (*tp));
7565 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
7566
7567 case CONSTRUCTOR:
7568 {
7569 unsigned HOST_WIDE_INT idx;
7570 constructor_elt *ce;
7571
7572 for (idx = 0;
7573 VEC_iterate(constructor_elt, CONSTRUCTOR_ELTS (*tp), idx, ce);
7574 idx++)
7575 WALK_SUBTREE (ce->value);
7576 }
7577 break;
7578
7579 case SAVE_EXPR:
7580 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
7581
7582 case BIND_EXPR:
7583 {
7584 tree decl;
7585 for (decl = BIND_EXPR_VARS (*tp); decl; decl = TREE_CHAIN (decl))
7586 {
7587 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
7588 into declarations that are just mentioned, rather than
7589 declared; they don't really belong to this part of the tree.
7590 And, we can see cycles: the initializer for a declaration
7591 can refer to the declaration itself. */
7592 WALK_SUBTREE (DECL_INITIAL (decl));
7593 WALK_SUBTREE (DECL_SIZE (decl));
7594 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
7595 }
7596 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
7597 }
7598
7599 case STATEMENT_LIST:
7600 {
7601 tree_stmt_iterator i;
7602 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
7603 WALK_SUBTREE (*tsi_stmt_ptr (i));
7604 }
7605 break;
7606
7607 case OMP_CLAUSE:
7608 switch (OMP_CLAUSE_CODE (*tp))
7609 {
7610 case OMP_CLAUSE_PRIVATE:
7611 case OMP_CLAUSE_SHARED:
7612 case OMP_CLAUSE_FIRSTPRIVATE:
7613 case OMP_CLAUSE_LASTPRIVATE:
7614 case OMP_CLAUSE_COPYIN:
7615 case OMP_CLAUSE_COPYPRIVATE:
7616 case OMP_CLAUSE_IF:
7617 case OMP_CLAUSE_NUM_THREADS:
7618 case OMP_CLAUSE_SCHEDULE:
7619 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
7620 /* FALLTHRU */
7621
7622 case OMP_CLAUSE_NOWAIT:
7623 case OMP_CLAUSE_ORDERED:
7624 case OMP_CLAUSE_DEFAULT:
7625 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
7626
7627 case OMP_CLAUSE_REDUCTION:
7628 {
7629 int i;
7630 for (i = 0; i < 4; i++)
7631 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
7632 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
7633 }
7634
7635 default:
7636 gcc_unreachable ();
7637 }
7638 break;
7639
7640 case TARGET_EXPR:
7641 {
7642 int i, len;
7643
7644 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
7645 But, we only want to walk once. */
7646 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
7647 for (i = 0; i < len; ++i)
7648 WALK_SUBTREE (TREE_OPERAND (*tp, i));
7649 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
7650 }
7651
7652 case DECL_EXPR:
7653 /* Walk into various fields of the type that it's defining. We only
7654 want to walk into these fields of a type in this case. Note that
7655 decls get walked as part of the processing of a BIND_EXPR.
7656
7657 ??? Precisely which fields of types that we are supposed to walk in
7658 this case vs. the normal case aren't well defined. */
7659 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL
7660 && TREE_CODE (TREE_TYPE (DECL_EXPR_DECL (*tp))) != ERROR_MARK)
7661 {
7662 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
7663
7664 /* Call the function for the type. See if it returns anything or
7665 doesn't want us to continue. If we are to continue, walk both
7666 the normal fields and those for the declaration case. */
7667 result = (*func) (type_p, &walk_subtrees, data);
7668 if (result || !walk_subtrees)
7669 return NULL_TREE;
7670
7671 result = walk_type_fields (*type_p, func, data, pset);
7672 if (result)
7673 return result;
7674
7675 /* If this is a record type, also walk the fields. */
7676 if (TREE_CODE (*type_p) == RECORD_TYPE
7677 || TREE_CODE (*type_p) == UNION_TYPE
7678 || TREE_CODE (*type_p) == QUAL_UNION_TYPE)
7679 {
7680 tree field;
7681
7682 for (field = TYPE_FIELDS (*type_p); field;
7683 field = TREE_CHAIN (field))
7684 {
7685 /* We'd like to look at the type of the field, but we can
7686 easily get infinite recursion. So assume it's pointed
7687 to elsewhere in the tree. Also, ignore things that
7688 aren't fields. */
7689 if (TREE_CODE (field) != FIELD_DECL)
7690 continue;
7691
7692 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
7693 WALK_SUBTREE (DECL_SIZE (field));
7694 WALK_SUBTREE (DECL_SIZE_UNIT (field));
7695 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
7696 WALK_SUBTREE (DECL_QUALIFIER (field));
7697 }
7698 }
7699
7700 WALK_SUBTREE (TYPE_SIZE (*type_p));
7701 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
7702 }
7703 /* FALLTHRU */
7704
7705 default:
7706 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
7707 {
7708 int i, len;
7709
7710 /* Walk over all the sub-trees of this operand. */
7711 len = TREE_CODE_LENGTH (code);
7712
7713 /* Go through the subtrees. We need to do this in forward order so
7714 that the scope of a FOR_EXPR is handled properly. */
7715 if (len)
7716 {
7717 for (i = 0; i < len - 1; ++i)
7718 WALK_SUBTREE (TREE_OPERAND (*tp, i));
7719 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
7720 }
7721 }
7722
7723 /* If this is a type, walk the needed fields in the type. */
7724 else if (TYPE_P (*tp))
7725 return walk_type_fields (*tp, func, data, pset);
7726 break;
7727 }
7728
7729 /* We didn't find what we were looking for. */
7730 return NULL_TREE;
7731
7732#undef WALK_SUBTREE_TAIL
7733}
7734#undef WALK_SUBTREE
7735
7736/* Like walk_tree, but does not walk duplicate nodes more than once. */
7737
7738tree
7739walk_tree_without_duplicates (tree *tp, walk_tree_fn func, void *data)
7740{
7741 tree result;
7742 struct pointer_set_t *pset;
7743
7744 pset = pointer_set_create ();
7745 result = walk_tree (tp, func, data, pset);
7746 pointer_set_destroy (pset);
7747 return result;
7748}
7749
7750
7751/* Return true if STMT is an empty statement or contains nothing but
7752 empty statements. */
7753
7754bool
7755empty_body_p (tree stmt)
7756{
7757 tree_stmt_iterator i;
7758 tree body;
7759
7760 if (IS_EMPTY_STMT (stmt))
7761 return true;
7762 else if (TREE_CODE (stmt) == BIND_EXPR)
7763 body = BIND_EXPR_BODY (stmt);
7764 else if (TREE_CODE (stmt) == STATEMENT_LIST)
7765 body = stmt;
7766 else
7767 return false;
7768
7769 for (i = tsi_start (body); !tsi_end_p (i); tsi_next (&i))
7770 if (!empty_body_p (tsi_stmt (i)))
7771 return false;
7772
7773 return true;
7774}
7775
7776#include "gt-tree.h"