Deleted Added
sdiff udiff text old ( 146906 ) new ( 169699 )
full compact
1/* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING. If not, write to the Free
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA. */
21
22/* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
28
29 Before processing the first insn of the function, call `init_reload'.
30
31 To scan an insn, call `find_reloads'. This does two things:
32 1. sets up tables describing which values must be reloaded
33 for this insn, and what kind of hard regs they must be reloaded into;
34 2. optionally record the locations where those values appear in
35 the data, so they can be replaced properly later.
36 This is done only if the second arg to `find_reloads' is nonzero.
37

--- 55 unchanged lines hidden (view full) ---

93#include "rtl.h"
94#include "tm_p.h"
95#include "insn-config.h"
96#include "expr.h"
97#include "optabs.h"
98#include "recog.h"
99#include "reload.h"
100#include "regs.h"
101#include "hard-reg-set.h"
102#include "flags.h"
103#include "real.h"
104#include "output.h"
105#include "function.h"
106#include "toplev.h"
107#include "params.h"
108
109#ifndef REGNO_MODE_OK_FOR_BASE_P
110#define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) REGNO_OK_FOR_BASE_P (REGNO)
111#endif
112
113#ifndef REG_MODE_OK_FOR_BASE_P
114#define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
115#endif
116
117/* All reloads of the current insn are recorded here. See reload.h for
118 comments. */
119int n_reloads;
120struct reload rld[MAX_RELOADS];
121
122/* All the "earlyclobber" operands of the current insn
123 are recorded here. */

--- 74 unchanged lines hidden (view full) ---

198static int subst_reg_equivs_changed;
199
200/* On return from push_reload, holds the reload-number for the OUT
201 operand, which can be different for that from the input operand. */
202static int output_reloadnum;
203
204 /* Compare two RTX's. */
205#define MATCHES(x, y) \
206 (x == y || (x != 0 && (GET_CODE (x) == REG \
207 ? GET_CODE (y) == REG && REGNO (x) == REGNO (y) \
208 : rtx_equal_p (x, y) && ! side_effects_p (x))))
209
210 /* Indicates if two reloads purposes are for similar enough things that we
211 can merge their reloads. */
212#define MERGABLE_RELOADS(when1, when2, op1, op2) \
213 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
214 || ((when1) == (when2) && (op1) == (op2)) \
215 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \

--- 14 unchanged lines hidden (view full) ---

230 use. */
231#define ADDR_TYPE(type) \
232 ((type) == RELOAD_FOR_INPUT_ADDRESS \
233 ? RELOAD_FOR_INPADDR_ADDRESS \
234 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
235 ? RELOAD_FOR_OUTADDR_ADDRESS \
236 : (type)))
237
238#ifdef HAVE_SECONDARY_RELOADS
239static int push_secondary_reload (int, rtx, int, int, enum reg_class,
240 enum machine_mode, enum reload_type,
241 enum insn_code *);
242#endif
243static enum reg_class find_valid_class (enum machine_mode, int, unsigned int);
244static int reload_inner_reg_of_subreg (rtx, enum machine_mode, int);
245static void push_replacement (rtx *, int, enum machine_mode);
246static void dup_replacements (rtx *, rtx *);
247static void combine_reloads (void);
248static int find_reusable_reload (rtx *, rtx, enum reg_class,
249 enum reload_type, int, int);
250static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
251 enum machine_mode, enum reg_class, int, int);

--- 5 unchanged lines hidden (view full) ---

257 int *);
258static rtx make_memloc (rtx, int);
259static int maybe_memory_address_p (enum machine_mode, rtx, rtx *);
260static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
261 int, enum reload_type, int, rtx);
262static rtx subst_reg_equivs (rtx, rtx);
263static rtx subst_indexed_address (rtx);
264static void update_auto_inc_notes (rtx, int, int);
265static int find_reloads_address_1 (enum machine_mode, rtx, int, rtx *,
266 int, enum reload_type,int, rtx);
267static void find_reloads_address_part (rtx, rtx *, enum reg_class,
268 enum machine_mode, int,
269 enum reload_type, int);
270static rtx find_reloads_subreg_address (rtx, int, int, enum reload_type,
271 int, rtx);
272static void copy_replacements_1 (rtx *, rtx *, int);
273static int find_inc_amount (rtx, rtx);
274
275#ifdef HAVE_SECONDARY_RELOADS
276
277/* Determine if any secondary reloads are needed for loading (if IN_P is
278 nonzero) or storing (if IN_P is zero) X to or from a reload register of
279 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
280 are needed, push them.
281
282 Return the reload number of the secondary reload we made, or -1 if
283 we didn't need one. *PICODE is set to the insn_code to use if we do
284 need a secondary reload. */
285
286static int
287push_secondary_reload (int in_p, rtx x, int opnum, int optional,
288 enum reg_class reload_class,
289 enum machine_mode reload_mode, enum reload_type type,
290 enum insn_code *picode)
291{
292 enum reg_class class = NO_REGS;
293 enum machine_mode mode = reload_mode;
294 enum insn_code icode = CODE_FOR_nothing;
295 enum reg_class t_class = NO_REGS;
296 enum machine_mode t_mode = VOIDmode;
297 enum insn_code t_icode = CODE_FOR_nothing;
298 enum reload_type secondary_type;
299 int s_reload, t_reload = -1;
300
301 if (type == RELOAD_FOR_INPUT_ADDRESS
302 || type == RELOAD_FOR_OUTPUT_ADDRESS
303 || type == RELOAD_FOR_INPADDR_ADDRESS
304 || type == RELOAD_FOR_OUTADDR_ADDRESS)
305 secondary_type = type;
306 else
307 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;

--- 11 unchanged lines hidden (view full) ---

319 }
320
321 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
322 is still a pseudo-register by now, it *must* have an equivalent MEM
323 but we don't want to assume that), use that equivalent when seeing if
324 a secondary reload is needed since whether or not a reload is needed
325 might be sensitive to the form of the MEM. */
326
327 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
328 && reg_equiv_mem[REGNO (x)] != 0)
329 x = reg_equiv_mem[REGNO (x)];
330
331#ifdef SECONDARY_INPUT_RELOAD_CLASS
332 if (in_p)
333 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
334#endif
335
336#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
337 if (! in_p)
338 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
339#endif
340
341 /* If we don't need any secondary registers, done. */
342 if (class == NO_REGS)
343 return -1;
344
345 /* Get a possible insn to use. If the predicate doesn't accept X, don't
346 use the insn. */
347
348 icode = (in_p ? reload_in_optab[(int) reload_mode]
349 : reload_out_optab[(int) reload_mode]);
350
351 if (icode != CODE_FOR_nothing
352 && insn_data[(int) icode].operand[in_p].predicate
353 && (! (insn_data[(int) icode].operand[in_p].predicate) (x, reload_mode)))
354 icode = CODE_FOR_nothing;
355
356 /* If we will be using an insn, see if it can directly handle the reload
357 register we will be using. If it can, the secondary reload is for a
358 scratch register. If it can't, we will use the secondary reload for
359 an intermediate register and require a tertiary reload for the scratch
360 register. */
361
362 if (icode != CODE_FOR_nothing)
363 {
364 /* If IN_P is nonzero, the reload register will be the output in
365 operand 0. If IN_P is zero, the reload register will be the input
366 in operand 1. Outputs should have an initial "=", which we must
367 skip. */
368
369 enum reg_class insn_class;
370
371 if (insn_data[(int) icode].operand[!in_p].constraint[0] == 0)
372 insn_class = ALL_REGS;
373 else
374 {
375 const char *insn_constraint
376 = &insn_data[(int) icode].operand[!in_p].constraint[in_p];
377 char insn_letter = *insn_constraint;
378 insn_class
379 = (insn_letter == 'r' ? GENERAL_REGS
380 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) insn_letter,
381 insn_constraint));
382
383 if (insn_class == NO_REGS)
384 abort ();
385 if (in_p
386 && insn_data[(int) icode].operand[!in_p].constraint[0] != '=')
387 abort ();
388 }
389
390 /* The scratch register's constraint must start with "=&". */
391 if (insn_data[(int) icode].operand[2].constraint[0] != '='
392 || insn_data[(int) icode].operand[2].constraint[1] != '&')
393 abort ();
394
395 if (reg_class_subset_p (reload_class, insn_class))
396 mode = insn_data[(int) icode].operand[2].mode;
397 else
398 {
399 const char *t_constraint
400 = &insn_data[(int) icode].operand[2].constraint[2];
401 char t_letter = *t_constraint;
402 class = insn_class;
403 t_mode = insn_data[(int) icode].operand[2].mode;
404 t_class = (t_letter == 'r' ? GENERAL_REGS
405 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) t_letter,
406 t_constraint));
407 t_icode = icode;
408 icode = CODE_FOR_nothing;
409 }
410 }
411
412 /* This case isn't valid, so fail. Reload is allowed to use the same
413 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
414 in the case of a secondary register, we actually need two different
415 registers for correct code. We fail here to prevent the possibility of
416 silently generating incorrect code later.
417
418 The convention is that secondary input reloads are valid only if the
419 secondary_class is different from class. If you have such a case, you
420 can not use secondary reloads, you must work around the problem some
421 other way.
422
423 Allow this when a reload_in/out pattern is being used. I.e. assume
424 that the generated code handles this case. */
425
426 if (in_p && class == reload_class && icode == CODE_FOR_nothing
427 && t_icode == CODE_FOR_nothing)
428 abort ();
429
430 /* If we need a tertiary reload, see if we have one we can reuse or else
431 make a new one. */
432
433 if (t_class != NO_REGS)
434 {
435 for (t_reload = 0; t_reload < n_reloads; t_reload++)
436 if (rld[t_reload].secondary_p
437 && (reg_class_subset_p (t_class, rld[t_reload].class)
438 || reg_class_subset_p (rld[t_reload].class, t_class))
439 && ((in_p && rld[t_reload].inmode == t_mode)
440 || (! in_p && rld[t_reload].outmode == t_mode))
441 && ((in_p && (rld[t_reload].secondary_in_icode
442 == CODE_FOR_nothing))
443 || (! in_p &&(rld[t_reload].secondary_out_icode
444 == CODE_FOR_nothing)))
445 && (reg_class_size[(int) t_class] == 1 || SMALL_REGISTER_CLASSES)
446 && MERGABLE_RELOADS (secondary_type,
447 rld[t_reload].when_needed,
448 opnum, rld[t_reload].opnum))
449 {
450 if (in_p)
451 rld[t_reload].inmode = t_mode;
452 if (! in_p)
453 rld[t_reload].outmode = t_mode;
454
455 if (reg_class_subset_p (t_class, rld[t_reload].class))
456 rld[t_reload].class = t_class;
457
458 rld[t_reload].opnum = MIN (rld[t_reload].opnum, opnum);
459 rld[t_reload].optional &= optional;
460 rld[t_reload].secondary_p = 1;
461 if (MERGE_TO_OTHER (secondary_type, rld[t_reload].when_needed,
462 opnum, rld[t_reload].opnum))
463 rld[t_reload].when_needed = RELOAD_OTHER;
464 }
465
466 if (t_reload == n_reloads)
467 {
468 /* We need to make a new tertiary reload for this register class. */
469 rld[t_reload].in = rld[t_reload].out = 0;
470 rld[t_reload].class = t_class;
471 rld[t_reload].inmode = in_p ? t_mode : VOIDmode;
472 rld[t_reload].outmode = ! in_p ? t_mode : VOIDmode;
473 rld[t_reload].reg_rtx = 0;
474 rld[t_reload].optional = optional;
475 rld[t_reload].inc = 0;
476 /* Maybe we could combine these, but it seems too tricky. */
477 rld[t_reload].nocombine = 1;
478 rld[t_reload].in_reg = 0;
479 rld[t_reload].out_reg = 0;
480 rld[t_reload].opnum = opnum;
481 rld[t_reload].when_needed = secondary_type;
482 rld[t_reload].secondary_in_reload = -1;
483 rld[t_reload].secondary_out_reload = -1;
484 rld[t_reload].secondary_in_icode = CODE_FOR_nothing;
485 rld[t_reload].secondary_out_icode = CODE_FOR_nothing;
486 rld[t_reload].secondary_p = 1;
487
488 n_reloads++;
489 }
490 }
491
492 /* See if we can reuse an existing secondary reload. */
493 for (s_reload = 0; s_reload < n_reloads; s_reload++)
494 if (rld[s_reload].secondary_p
495 && (reg_class_subset_p (class, rld[s_reload].class)
496 || reg_class_subset_p (rld[s_reload].class, class))
497 && ((in_p && rld[s_reload].inmode == mode)
498 || (! in_p && rld[s_reload].outmode == mode))
499 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
500 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
501 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
502 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
503 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
504 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
505 opnum, rld[s_reload].opnum))
506 {
507 if (in_p)
508 rld[s_reload].inmode = mode;
509 if (! in_p)
510 rld[s_reload].outmode = mode;
511

--- 56 unchanged lines hidden (view full) ---

568 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
569 get_secondary_mem (x, mode, opnum, type);
570#endif
571 }
572
573 *picode = icode;
574 return s_reload;
575}
576#endif /* HAVE_SECONDARY_RELOADS */
577
578#ifdef SECONDARY_MEMORY_NEEDED
579
580/* Return a memory location that will be used to copy X in mode MODE.
581 If we haven't already made a location for this mode in this insn,
582 call find_reloads_address on the location being returned. */
583
584rtx

--- 69 unchanged lines hidden (view full) ---

654
655void
656clear_secondary_mem (void)
657{
658 memset (secondary_memlocs, 0, sizeof secondary_memlocs);
659}
660#endif /* SECONDARY_MEMORY_NEEDED */
661
662/* Find the largest class for which every register number plus N is valid in
663 M1 (if in range) and is cheap to move into REGNO.
664 Abort if no such class exists. */
665
666static enum reg_class
667find_valid_class (enum machine_mode m1 ATTRIBUTE_UNUSED, int n,
668 unsigned int dest_regno ATTRIBUTE_UNUSED)
669{
670 int best_cost = -1;
671 int class;
672 int regno;
673 enum reg_class best_class = NO_REGS;
674 enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
675 unsigned int best_size = 0;
676 int cost;
677
678 for (class = 1; class < N_REG_CLASSES; class++)
679 {
680 int bad = 0;
681 for (regno = 0; regno < FIRST_PSEUDO_REGISTER && ! bad; regno++)
682 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
683 && TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
684 && ! HARD_REGNO_MODE_OK (regno + n, m1))
685 bad = 1;
686
687 if (bad)
688 continue;
689 cost = REGISTER_MOVE_COST (m1, class, dest_class);
690
691 if ((reg_class_size[class] > best_size
692 && (best_cost < 0 || best_cost >= cost))
693 || best_cost > cost)
694 {
695 best_class = class;
696 best_size = reg_class_size[class];
697 best_cost = REGISTER_MOVE_COST (m1, class, dest_class);
698 }
699 }
700
701 if (best_size == 0)
702 abort ();
703
704 return best_class;
705}
706
707/* Return the number of a previously made reload that can be combined with
708 a new one, or n_reloads if none of the existing reloads can be used.
709 OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
710 push_reload, they determine the kind of the new reload that we try to

--- 29 unchanged lines hidden (view full) ---

740 && (rld[i].reg_rtx == 0
741 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
742 true_regnum (rld[i].reg_rtx)))
743 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
744 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
745 || (out != 0 && MATCHES (rld[i].out, out)
746 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
747 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
748 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
749 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
750 return i;
751
752 /* Reloading a plain reg for input can match a reload to postincrement
753 that reg, since the postincrement's value is the right value.
754 Likewise, it can match a preincrement reload, since we regard
755 the preincrementation as happening before any ref in this insn
756 to that register. */
757 for (i = 0; i < n_reloads; i++)
758 if ((reg_class_subset_p (class, rld[i].class)
759 || reg_class_subset_p (rld[i].class, class))
760 /* If the existing reload has a register, it must fit our
761 class. */
762 && (rld[i].reg_rtx == 0
763 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
764 true_regnum (rld[i].reg_rtx)))
765 && out == 0 && rld[i].out == 0 && rld[i].in != 0
766 && ((GET_CODE (in) == REG
767 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == 'a'
768 && MATCHES (XEXP (rld[i].in, 0), in))
769 || (GET_CODE (rld[i].in) == REG
770 && GET_RTX_CLASS (GET_CODE (in)) == 'a'
771 && MATCHES (XEXP (in, 0), rld[i].in)))
772 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
773 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
774 && MERGABLE_RELOADS (type, rld[i].when_needed,
775 opnum, rld[i].opnum))
776 {
777 /* Make sure reload_in ultimately has the increment,
778 not the plain register. */
779 if (GET_CODE (in) == REG)
780 *p_in = rld[i].in;
781 return i;
782 }
783 return n_reloads;
784}
785
786/* Return nonzero if X is a SUBREG which will require reloading of its
787 SUBREG_REG expression. */

--- 10 unchanged lines hidden (view full) ---

798 inner = SUBREG_REG (x);
799
800 /* If INNER is a constant or PLUS, then INNER must be reloaded. */
801 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
802 return 1;
803
804 /* If INNER is not a hard register, then INNER will not need to
805 be reloaded. */
806 if (GET_CODE (inner) != REG
807 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
808 return 0;
809
810 /* If INNER is not ok for MODE, then INNER will need reloading. */
811 if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
812 return 1;
813
814 /* If the outer part is a word or smaller, INNER larger than a
815 word and the number of regs for INNER is not the same as the
816 number of words in INNER, then INNER will need reloading. */
817 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
818 && output
819 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
820 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
821 != (int) HARD_REGNO_NREGS (REGNO (inner), GET_MODE (inner))));
822}
823
824/* Return nonzero if IN can be reloaded into REGNO with mode MODE without
825 requiring an extra reload register. The caller has already found that
826 IN contains some reference to REGNO, so check that we can produce the
827 new value in a single step. E.g. if we have
828 (set (reg r13) (plus (reg r13) (const int 1))), and there is an
829 instruction that adds one to a register, this should succeed.

--- 12 unchanged lines hidden (view full) ---

842 int r = 0;
843 struct recog_data save_recog_data;
844
845 /* For matching constraints, we often get notional input reloads where
846 we want to use the original register as the reload register. I.e.
847 technically this is a non-optional input-output reload, but IN is
848 already a valid register, and has been chosen as the reload register.
849 Speed this up, since it trivially works. */
850 if (GET_CODE (in) == REG)
851 return 1;
852
853 /* To test MEMs properly, we'd have to take into account all the reloads
854 that are already scheduled, which can become quite complicated.
855 And since we've already handled address reloads for this MEM, it
856 should always succeed anyway. */
857 if (GET_CODE (in) == MEM)
858 return 1;
859
860 /* If we can make a simple SET insn that does the job, everything should
861 be fine. */
862 dst = gen_rtx_REG (mode, regno);
863 test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
864 save_recog_data = recog_data;
865 if (recog_memoized (test_insn) >= 0)

--- 59 unchanged lines hidden (view full) ---

925 inmode = GET_MODE (in);
926 if (outmode == VOIDmode && out != 0)
927 outmode = GET_MODE (out);
928
929 /* If IN is a pseudo register everywhere-equivalent to a constant, and
930 it is not in a hard register, reload straight from the constant,
931 since we want to get rid of such pseudo registers.
932 Often this is done earlier, but not always in find_reloads_address. */
933 if (in != 0 && GET_CODE (in) == REG)
934 {
935 int regno = REGNO (in);
936
937 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
938 && reg_equiv_constant[regno] != 0)
939 in = reg_equiv_constant[regno];
940 }
941
942 /* Likewise for OUT. Of course, OUT will never be equivalent to
943 an actual constant, but it might be equivalent to a memory location
944 (in the case of a parameter). */
945 if (out != 0 && GET_CODE (out) == REG)
946 {
947 int regno = REGNO (out);
948
949 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
950 && reg_equiv_constant[regno] != 0)
951 out = reg_equiv_constant[regno];
952 }
953
954 /* If we have a read-write operand with an address side-effect,
955 change either IN or OUT so the side-effect happens only once. */
956 if (in != 0 && out != 0 && GET_CODE (in) == MEM && rtx_equal_p (in, out))
957 switch (GET_CODE (XEXP (in, 0)))
958 {
959 case POST_INC: case POST_DEC: case POST_MODIFY:
960 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
961 break;
962
963 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
964 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));

--- 36 unchanged lines hidden (view full) ---

1001 if (in != 0 && GET_CODE (in) == SUBREG
1002 && (subreg_lowpart_p (in) || strict_low)
1003#ifdef CANNOT_CHANGE_MODE_CLASS
1004 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, class)
1005#endif
1006 && (CONSTANT_P (SUBREG_REG (in))
1007 || GET_CODE (SUBREG_REG (in)) == PLUS
1008 || strict_low
1009 || (((GET_CODE (SUBREG_REG (in)) == REG
1010 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
1011 || GET_CODE (SUBREG_REG (in)) == MEM)
1012 && ((GET_MODE_SIZE (inmode)
1013 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1014#ifdef LOAD_EXTEND_OP
1015 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1016 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1017 <= UNITS_PER_WORD)
1018 && (GET_MODE_SIZE (inmode)
1019 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1020 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
1021 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != NIL)
1022#endif
1023#ifdef WORD_REGISTER_OPERATIONS
1024 || ((GET_MODE_SIZE (inmode)
1025 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1026 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1027 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1028 / UNITS_PER_WORD)))
1029#endif
1030 ))
1031 || (GET_CODE (SUBREG_REG (in)) == REG
1032 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1033 /* The case where out is nonzero
1034 is handled differently in the following statement. */
1035 && (out == 0 || subreg_lowpart_p (in))
1036 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1037 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1038 > UNITS_PER_WORD)
1039 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1040 / UNITS_PER_WORD)
1041 != (int) HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
1042 GET_MODE (SUBREG_REG (in)))))
1043 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1044#ifdef SECONDARY_INPUT_RELOAD_CLASS
1045 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
1046 && (SECONDARY_INPUT_RELOAD_CLASS (class,
1047 GET_MODE (SUBREG_REG (in)),
1048 SUBREG_REG (in))
1049 == NO_REGS))
1050#endif
1051#ifdef CANNOT_CHANGE_MODE_CLASS
1052 || (GET_CODE (SUBREG_REG (in)) == REG
1053 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1054 && REG_CANNOT_CHANGE_MODE_P
1055 (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
1056#endif
1057 ))
1058 {
1059 in_subreg_loc = inloc;
1060 inloc = &SUBREG_REG (in);
1061 in = *inloc;
1062#if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1063 if (GET_CODE (in) == MEM)
1064 /* This is supposed to happen only for paradoxical subregs made by
1065 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1066 if (GET_MODE_SIZE (GET_MODE (in)) > GET_MODE_SIZE (inmode))
1067 abort ();
1068#endif
1069 inmode = GET_MODE (in);
1070 }
1071
1072 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1073 either M1 is not valid for R or M2 is wider than a word but we only
1074 need one word to store an M2-sized quantity in R.
1075
1076 However, we must reload the inner reg *as well as* the subreg in
1077 that case. */
1078
1079 /* Similar issue for (SUBREG constant ...) if it was not handled by the
1080 code above. This can happen if SUBREG_BYTE != 0. */
1081
1082 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, 0))
1083 {
1084 enum reg_class in_class = class;
1085
1086 if (GET_CODE (SUBREG_REG (in)) == REG)
1087 in_class
1088 = find_valid_class (inmode,
1089 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1090 GET_MODE (SUBREG_REG (in)),
1091 SUBREG_BYTE (in),
1092 GET_MODE (in)),
1093 REGNO (SUBREG_REG (in)));
1094
1095 /* This relies on the fact that emit_reload_insns outputs the
1096 instructions for input reloads of type RELOAD_OTHER in the same

--- 13 unchanged lines hidden (view full) ---

1110 and in that case the constraint should label it input-output.) */
1111 if (out != 0 && GET_CODE (out) == SUBREG
1112 && (subreg_lowpart_p (out) || strict_low)
1113#ifdef CANNOT_CHANGE_MODE_CLASS
1114 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, class)
1115#endif
1116 && (CONSTANT_P (SUBREG_REG (out))
1117 || strict_low
1118 || (((GET_CODE (SUBREG_REG (out)) == REG
1119 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1120 || GET_CODE (SUBREG_REG (out)) == MEM)
1121 && ((GET_MODE_SIZE (outmode)
1122 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1123#ifdef WORD_REGISTER_OPERATIONS
1124 || ((GET_MODE_SIZE (outmode)
1125 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1126 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1127 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1128 / UNITS_PER_WORD)))
1129#endif
1130 ))
1131 || (GET_CODE (SUBREG_REG (out)) == REG
1132 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1133 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1134 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1135 > UNITS_PER_WORD)
1136 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1137 / UNITS_PER_WORD)
1138 != (int) HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
1139 GET_MODE (SUBREG_REG (out)))))
1140 || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
1141#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1142 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
1143 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
1144 GET_MODE (SUBREG_REG (out)),
1145 SUBREG_REG (out))
1146 == NO_REGS))
1147#endif
1148#ifdef CANNOT_CHANGE_MODE_CLASS
1149 || (GET_CODE (SUBREG_REG (out)) == REG
1150 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1151 && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1152 GET_MODE (SUBREG_REG (out)),
1153 outmode))
1154#endif
1155 ))
1156 {
1157 out_subreg_loc = outloc;
1158 outloc = &SUBREG_REG (out);
1159 out = *outloc;
1160#if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1161 if (GET_CODE (out) == MEM
1162 && GET_MODE_SIZE (GET_MODE (out)) > GET_MODE_SIZE (outmode))
1163 abort ();
1164#endif
1165 outmode = GET_MODE (out);
1166 }
1167
1168 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1169 either M1 is not valid for R or M2 is wider than a word but we only
1170 need one word to store an M2-sized quantity in R.
1171

--- 5 unchanged lines hidden (view full) ---

1177 /* This relies on the fact that emit_reload_insns outputs the
1178 instructions for output reloads of type RELOAD_OTHER in reverse
1179 order of the reloads. Thus if the outer reload is also of type
1180 RELOAD_OTHER, we are guaranteed that this inner reload will be
1181 output after the outer reload. */
1182 dont_remove_subreg = 1;
1183 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1184 &SUBREG_REG (out),
1185 find_valid_class (outmode,
1186 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1187 GET_MODE (SUBREG_REG (out)),
1188 SUBREG_BYTE (out),
1189 GET_MODE (out)),
1190 REGNO (SUBREG_REG (out))),
1191 VOIDmode, VOIDmode, 0, 0,
1192 opnum, RELOAD_OTHER);
1193 }
1194
1195 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1196 if (in != 0 && out != 0 && GET_CODE (out) == MEM
1197 && (GET_CODE (in) == REG || GET_CODE (in) == MEM)
1198 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1199 dont_share = 1;
1200
1201 /* If IN is a SUBREG of a hard register, make a new REG. This
1202 simplifies some of the cases below. */
1203
1204 if (in != 0 && GET_CODE (in) == SUBREG && GET_CODE (SUBREG_REG (in)) == REG
1205 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1206 && ! dont_remove_subreg)
1207 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1208
1209 /* Similarly for OUT. */
1210 if (out != 0 && GET_CODE (out) == SUBREG
1211 && GET_CODE (SUBREG_REG (out)) == REG
1212 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1213 && ! dont_remove_subreg)
1214 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1215
1216 /* Narrow down the class of register wanted if that is
1217 desirable on this machine for efficiency. */
1218 if (in != 0)
1219 class = PREFERRED_RELOAD_CLASS (in, class);
1220
1221 /* Output reloads may need analogous treatment, different in detail. */
1222#ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1223 if (out != 0)
1224 class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1225#endif
1226
1227 /* Make sure we use a class that can handle the actual pseudo
1228 inside any subreg. For example, on the 386, QImode regs
1229 can appear within SImode subregs. Although GENERAL_REGS
1230 can handle SImode, QImode needs a smaller class. */
1231#ifdef LIMIT_RELOAD_CLASS
1232 if (in_subreg_loc)
1233 class = LIMIT_RELOAD_CLASS (inmode, class);
1234 else if (in != 0 && GET_CODE (in) == SUBREG)

--- 11 unchanged lines hidden (view full) ---

1246 {
1247 enum machine_mode mode;
1248 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1249 mode = inmode;
1250 else
1251 mode = outmode;
1252 if (mode == VOIDmode)
1253 {
1254 error_for_asm (this_insn, "cannot reload integer constant operand in `asm'");
1255 mode = word_mode;
1256 if (in != 0)
1257 inmode = word_mode;
1258 if (out != 0)
1259 outmode = word_mode;
1260 }
1261 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1262 if (HARD_REGNO_MODE_OK (i, mode)
1263 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1264 {
1265 int nregs = HARD_REGNO_NREGS (i, mode);
1266
1267 int j;
1268 for (j = 1; j < nregs; j++)
1269 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1270 break;
1271 if (j == nregs)
1272 break;
1273 }
1274 if (i == FIRST_PSEUDO_REGISTER)
1275 {
1276 error_for_asm (this_insn, "impossible register constraint in `asm'");
1277 class = ALL_REGS;
1278 }
1279 }
1280
1281 /* Optional output reloads are always OK even if we have no register class,
1282 since the function of these reloads is only to have spill_reg_store etc.
1283 set, so that the storing insn can be deleted later. */
1284 if (class == NO_REGS
1285 && (optional == 0 || type != RELOAD_FOR_OUTPUT))
1286 abort ();
1287
1288 i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
1289
1290 if (i == n_reloads)
1291 {
1292 /* See if we need a secondary reload register to move between CLASS
1293 and IN or CLASS and OUT. Get the icode and push any required reloads
1294 needed for each of them if so. */
1295
1296#ifdef SECONDARY_INPUT_RELOAD_CLASS
1297 if (in != 0)
1298 secondary_in_reload
1299 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1300 &secondary_in_icode);
1301#endif
1302
1303#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1304 if (out != 0 && GET_CODE (out) != SCRATCH)
1305 secondary_out_reload
1306 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1307 type, &secondary_out_icode);
1308#endif
1309
1310 /* We found no existing reload suitable for re-use.
1311 So add an additional reload. */
1312
1313#ifdef SECONDARY_MEMORY_NEEDED
1314 /* If a memory location is needed for the copy, make one. */
1315 if (in != 0 && (GET_CODE (in) == REG || GET_CODE (in) == SUBREG)
1316 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
1317 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
1318 class, inmode))
1319 get_secondary_mem (in, inmode, opnum, type);
1320#endif
1321
1322 i = n_reloads;
1323 rld[i].in = in;

--- 13 unchanged lines hidden (view full) ---

1337 rld[i].secondary_out_reload = secondary_out_reload;
1338 rld[i].secondary_in_icode = secondary_in_icode;
1339 rld[i].secondary_out_icode = secondary_out_icode;
1340 rld[i].secondary_p = 0;
1341
1342 n_reloads++;
1343
1344#ifdef SECONDARY_MEMORY_NEEDED
1345 if (out != 0 && (GET_CODE (out) == REG || GET_CODE (out) == SUBREG)
1346 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1347 && SECONDARY_MEMORY_NEEDED (class,
1348 REGNO_REG_CLASS (reg_or_subregno (out)),
1349 outmode))
1350 get_secondary_mem (out, outmode, opnum, type);
1351#endif
1352 }
1353 else

--- 78 unchanged lines hidden (view full) ---

1432 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1433 {
1434 out = 0;
1435 rld[i].out = 0;
1436 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1437 /* If we did not find a nonzero amount-to-increment-by,
1438 that contradicts the belief that IN is being incremented
1439 in an address in this insn. */
1440 if (rld[i].inc == 0)
1441 abort ();
1442 }
1443#endif
1444
1445 /* If we will replace IN and OUT with the reload-reg,
1446 record where they are located so that substitution need
1447 not do a tree walk. */
1448
1449 if (replace_reloads)

--- 31 unchanged lines hidden (view full) ---

1481 rld[i].class, i,
1482 earlyclobber_operand_p (out));
1483
1484 /* If the outgoing register already contains the same value
1485 as the incoming one, we can dispense with loading it.
1486 The easiest way to tell the caller that is to give a phony
1487 value for the incoming operand (same as outgoing one). */
1488 if (rld[i].reg_rtx == out
1489 && (GET_CODE (in) == REG || CONSTANT_P (in))
1490 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1491 static_reload_reg_p, i, inmode))
1492 rld[i].in = out;
1493 }
1494
1495 /* If this is an input reload and the operand contains a register that
1496 dies in this insn and is used nowhere else, see if it is the right class
1497 to be used for this reload. Use it if so. (This occurs most commonly
1498 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1499 this if it is also an output reload that mentions the register unless
1500 the output is a SUBREG that clobbers an entire register.
1501
1502 Note that the operand might be one of the spill regs, if it is a
1503 pseudo reg and we are in a block where spilling has not taken place.
1504 But if there is no spilling in this block, that is OK.
1505 An explicitly used hard reg cannot be a spill reg. */
1506
1507 if (rld[i].reg_rtx == 0 && in != 0)
1508 {
1509 rtx note;
1510 int regno;
1511 enum machine_mode rel_mode = inmode;
1512
1513 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1514 rel_mode = outmode;
1515
1516 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1517 if (REG_NOTE_KIND (note) == REG_DEAD
1518 && GET_CODE (XEXP (note, 0)) == REG
1519 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1520 && reg_mentioned_p (XEXP (note, 0), in)
1521 && ! refers_to_regno_for_reload_p (regno,
1522 (regno
1523 + HARD_REGNO_NREGS (regno,
1524 rel_mode)),
1525 PATTERN (this_insn), inloc)
1526 /* If this is also an output reload, IN cannot be used as
1527 the reload register if it is set in this insn unless IN
1528 is also OUT. */
1529 && (out == 0 || in == out
1530 || ! hard_reg_set_here_p (regno,
1531 (regno
1532 + HARD_REGNO_NREGS (regno,
1533 rel_mode)),
1534 PATTERN (this_insn)))
1535 /* ??? Why is this code so different from the previous?
1536 Is there any simple coherent way to describe the two together?
1537 What's going on here. */
1538 && (in != out
1539 || (GET_CODE (in) == SUBREG
1540 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1541 / UNITS_PER_WORD)
1542 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1543 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1544 /* Make sure the operand fits in the reg that dies. */
1545 && (GET_MODE_SIZE (rel_mode)
1546 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1547 && HARD_REGNO_MODE_OK (regno, inmode)
1548 && HARD_REGNO_MODE_OK (regno, outmode))
1549 {
1550 unsigned int offs;
1551 unsigned int nregs = MAX (HARD_REGNO_NREGS (regno, inmode),
1552 HARD_REGNO_NREGS (regno, outmode));
1553
1554 for (offs = 0; offs < nregs; offs++)
1555 if (fixed_regs[regno + offs]
1556 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1557 regno + offs))
1558 break;
1559
1560 if (offs == nregs
1561 && (! (refers_to_regno_for_reload_p
1562 (regno, (regno + HARD_REGNO_NREGS (regno, inmode)),
1563 in, (rtx *)0))
1564 || can_reload_into (in, regno, inmode)))
1565 {
1566 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1567 break;
1568 }
1569 }
1570 }

--- 178 unchanged lines hidden (view full) ---

1749 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1750 rld[i].in)
1751 /* However, if the input is a register that appears inside
1752 the output, then we also can't share.
1753 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1754 If the same reload reg is used for both reg 69 and the
1755 result to be stored in memory, then that result
1756 will clobber the address of the memory ref. */
1757 && ! (GET_CODE (rld[i].in) == REG
1758 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1759 rld[output_reload].out))))
1760 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1761 rld[i].when_needed != RELOAD_FOR_INPUT)
1762 && (reg_class_size[(int) rld[i].class]
1763 || SMALL_REGISTER_CLASSES)
1764 /* We will allow making things slightly worse by combining an
1765 input and an output, but no worse than that. */

--- 52 unchanged lines hidden (view full) ---

1818 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1819 return;
1820
1821 /* See if some hard register that dies in this insn and is not used in
1822 the output is the right class. Only works if the register we pick
1823 up can fully hold our output reload. */
1824 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1825 if (REG_NOTE_KIND (note) == REG_DEAD
1826 && GET_CODE (XEXP (note, 0)) == REG
1827 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1828 rld[output_reload].out)
1829 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1830 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1831 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
1832 REGNO (XEXP (note, 0)))
1833 && (HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1834 <= HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), GET_MODE (XEXP (note, 0))))
1835 /* Ensure that a secondary or tertiary reload for this output
1836 won't want this register. */
1837 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1838 || (! (TEST_HARD_REG_BIT
1839 (reg_class_contents[(int) rld[secondary_out].class],
1840 REGNO (XEXP (note, 0))))
1841 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1842 || ! (TEST_HARD_REG_BIT
1843 (reg_class_contents[(int) rld[secondary_out].class],
1844 REGNO (XEXP (note, 0)))))))
1845 && ! fixed_regs[REGNO (XEXP (note, 0))])
1846 {
1847 rld[output_reload].reg_rtx
1848 = gen_rtx_REG (rld[output_reload].outmode,
1849 REGNO (XEXP (note, 0)));
1850 return;
1851 }
1852}
1853

--- 36 unchanged lines hidden (view full) ---

1890 return 0;
1891
1892 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1893 respectively refers to a hard register. */
1894
1895 /* Find the inside of any subregs. */
1896 while (GET_CODE (out) == SUBREG)
1897 {
1898 if (GET_CODE (SUBREG_REG (out)) == REG
1899 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1900 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1901 GET_MODE (SUBREG_REG (out)),
1902 SUBREG_BYTE (out),
1903 GET_MODE (out));
1904 out = SUBREG_REG (out);
1905 }
1906 while (GET_CODE (in) == SUBREG)
1907 {
1908 if (GET_CODE (SUBREG_REG (in)) == REG
1909 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1910 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1911 GET_MODE (SUBREG_REG (in)),
1912 SUBREG_BYTE (in),
1913 GET_MODE (in));
1914 in = SUBREG_REG (in);
1915 }
1916
1917 /* Narrow down the reg class, the same way push_reload will;
1918 otherwise we might find a dummy now, but push_reload won't. */
1919 class = PREFERRED_RELOAD_CLASS (in, class);
1920
1921 /* See if OUT will do. */
1922 if (GET_CODE (out) == REG
1923 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1924 {
1925 unsigned int regno = REGNO (out) + out_offset;
1926 unsigned int nwords = HARD_REGNO_NREGS (regno, outmode);
1927 rtx saved_rtx;
1928
1929 /* When we consider whether the insn uses OUT,
1930 ignore references within IN. They don't prevent us
1931 from copying IN into OUT, because those refs would
1932 move into the insn that reloads IN.
1933
1934 However, we only ignore IN in its role as this reload.

--- 12 unchanged lines hidden (view full) ---

1947
1948 for (i = 0; i < nwords; i++)
1949 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1950 regno + i))
1951 break;
1952
1953 if (i == nwords)
1954 {
1955 if (GET_CODE (real_out) == REG)
1956 value = real_out;
1957 else
1958 value = gen_rtx_REG (outmode, regno);
1959 }
1960 }
1961
1962 *inloc = saved_rtx;
1963 }
1964
1965 /* Consider using IN if OUT was not acceptable
1966 or if OUT dies in this insn (like the quotient in a divmod insn).
1967 We can't use IN unless it is dies in this insn,
1968 which means we must know accurately which hard regs are live.
1969 Also, the result can't go in IN if IN is used within OUT,
1970 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1971 if (hard_regs_live_known
1972 && GET_CODE (in) == REG
1973 && REGNO (in) < FIRST_PSEUDO_REGISTER
1974 && (value == 0
1975 || find_reg_note (this_insn, REG_UNUSED, real_out))
1976 && find_reg_note (this_insn, REG_DEAD, real_in)
1977 && !fixed_regs[REGNO (in)]
1978 && HARD_REGNO_MODE_OK (REGNO (in),
1979 /* The only case where out and real_out might
1980 have different modes is where real_out
1981 is a subreg, and in that case, out
1982 has a real mode. */
1983 (GET_MODE (out) != VOIDmode
1984 ? GET_MODE (out) : outmode)))
1985 {
1986 unsigned int regno = REGNO (in) + in_offset;
1987 unsigned int nwords = HARD_REGNO_NREGS (regno, inmode);
1988
1989 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
1990 && ! hard_reg_set_here_p (regno, regno + nwords,
1991 PATTERN (this_insn))
1992 && (! earlyclobber
1993 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
1994 PATTERN (this_insn), inloc)))
1995 {

--- 6 unchanged lines hidden (view full) ---

2002
2003 if (i == nwords)
2004 {
2005 /* If we were going to use OUT as the reload reg
2006 and changed our mind, it means OUT is a dummy that
2007 dies here. So don't bother copying value to it. */
2008 if (for_real >= 0 && value == real_out)
2009 rld[for_real].out = 0;
2010 if (GET_CODE (real_in) == REG)
2011 value = real_in;
2012 else
2013 value = gen_rtx_REG (inmode, regno);
2014 }
2015 }
2016 }
2017
2018 return value;

--- 26 unchanged lines hidden (view full) ---

2045hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
2046{
2047 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2048 {
2049 rtx op0 = SET_DEST (x);
2050
2051 while (GET_CODE (op0) == SUBREG)
2052 op0 = SUBREG_REG (op0);
2053 if (GET_CODE (op0) == REG)
2054 {
2055 unsigned int r = REGNO (op0);
2056
2057 /* See if this reg overlaps range under consideration. */
2058 if (r < end_regno
2059 && r + HARD_REGNO_NREGS (r, GET_MODE (op0)) > beg_regno)
2060 return 1;
2061 }
2062 }
2063 else if (GET_CODE (x) == PARALLEL)
2064 {
2065 int i = XVECLEN (x, 0) - 1;
2066
2067 for (; i >= 0; i--)

--- 38 unchanged lines hidden (view full) ---

2106{
2107 int i;
2108 RTX_CODE code = GET_CODE (x);
2109 const char *fmt;
2110 int success_2;
2111
2112 if (x == y)
2113 return 1;
2114 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
2115 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
2116 && GET_CODE (SUBREG_REG (y)) == REG)))
2117 {
2118 int j;
2119
2120 if (code == SUBREG)
2121 {
2122 i = REGNO (SUBREG_REG (x));
2123 if (i >= FIRST_PSEUDO_REGISTER)
2124 goto slow;

--- 20 unchanged lines hidden (view full) ---

2145
2146 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2147 multiple hard register group of scalar integer registers, so that
2148 for example (reg:DI 0) and (reg:SI 1) will be considered the same
2149 register. */
2150 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2151 && SCALAR_INT_MODE_P (GET_MODE (x))
2152 && i < FIRST_PSEUDO_REGISTER)
2153 i += HARD_REGNO_NREGS (i, GET_MODE (x)) - 1;
2154 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2155 && SCALAR_INT_MODE_P (GET_MODE (y))
2156 && j < FIRST_PSEUDO_REGISTER)
2157 j += HARD_REGNO_NREGS (j, GET_MODE (y)) - 1;
2158
2159 return i == j;
2160 }
2161 /* If two operands must match, because they are really a single
2162 operand of an assembler insn, then two postincrements are invalid
2163 because the assembler insn would increment only once.
2164 On the other hand, a postincrement matches ordinary indexing
2165 if the postincrement is the output operand. */

--- 6 unchanged lines hidden (view full) ---

2172 In this case, return 2, since some callers need to do special
2173 things when this happens. */
2174 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2175 || GET_CODE (y) == PRE_MODIFY)
2176 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2177
2178 slow:
2179
2180 /* Now we have disposed of all the cases
2181 in which different rtx codes can match. */
2182 if (code != GET_CODE (y))
2183 return 0;
2184 if (code == LABEL_REF)
2185 return XEXP (x, 0) == XEXP (y, 0);
2186 if (code == SYMBOL_REF)
2187 return XSTR (x, 0) == XSTR (y, 0);
2188
2189 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2190
2191 if (GET_MODE (x) != GET_MODE (y))
2192 return 0;
2193
2194 /* Compare the elements. If any pair of corresponding elements
2195 fail to match, return 0 for the whole things. */
2196
2197 success_2 = 0;
2198 fmt = GET_RTX_FORMAT (code);
2199 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2200 {
2201 int val, j;

--- 34 unchanged lines hidden (view full) ---

2236 success_2 = 1;
2237 }
2238 break;
2239
2240 /* It is believed that rtx's at this level will never
2241 contain anything but integers and other rtx's,
2242 except for within LABEL_REFs and SYMBOL_REFs. */
2243 default:
2244 abort ();
2245 }
2246 }
2247 return 1 + success_2;
2248}
2249
2250/* Describe the range of registers or memory referenced by X.
2251 If X is a register, set REG_FLAG and put the first register
2252 number into START and the last plus one into END.
2253 If X is a memory reference, put a base address into BASE
2254 and a range of integer offsets into START and END.
2255 If X is pushing on the stack, we can assume it causes no trouble,
2256 so we set the SAFE field. */
2257
2258static struct decomposition
2259decompose (rtx x)
2260{
2261 struct decomposition val;
2262 int all_const = 0;
2263
2264 val.reg_flag = 0;
2265 val.safe = 0;
2266 val.base = 0;
2267 if (GET_CODE (x) == MEM)
2268 {
2269 rtx base = NULL_RTX, offset = 0;
2270 rtx addr = XEXP (x, 0);
2271
2272 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2273 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2274 {
2275 val.base = XEXP (addr, 0);
2276 val.start = -GET_MODE_SIZE (GET_MODE (x));
2277 val.end = GET_MODE_SIZE (GET_MODE (x));
2278 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2279 return val;
2280 }
2281
2282 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2283 {
2284 if (GET_CODE (XEXP (addr, 1)) == PLUS
2285 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2286 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2287 {
2288 val.base = XEXP (addr, 0);
2289 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2290 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2291 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2292 return val;
2293 }
2294 }
2295
2296 if (GET_CODE (addr) == CONST)
2297 {
2298 addr = XEXP (addr, 0);
2299 all_const = 1;
2300 }
2301 if (GET_CODE (addr) == PLUS)
2302 {
2303 if (CONSTANT_P (XEXP (addr, 0)))
2304 {
2305 base = XEXP (addr, 1);
2306 offset = XEXP (addr, 0);
2307 }
2308 else if (CONSTANT_P (XEXP (addr, 1)))
2309 {
2310 base = XEXP (addr, 0);
2311 offset = XEXP (addr, 1);
2312 }
2313 }
2314
2315 if (offset == 0)
2316 {
2317 base = addr;
2318 offset = const0_rtx;
2319 }
2320 if (GET_CODE (offset) == CONST)
2321 offset = XEXP (offset, 0);
2322 if (GET_CODE (offset) == PLUS)
2323 {
2324 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2325 {
2326 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2327 offset = XEXP (offset, 0);
2328 }
2329 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2330 {
2331 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2332 offset = XEXP (offset, 1);
2333 }
2334 else
2335 {
2336 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2337 offset = const0_rtx;
2338 }
2339 }
2340 else if (GET_CODE (offset) != CONST_INT)
2341 {
2342 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2343 offset = const0_rtx;
2344 }
2345
2346 if (all_const && GET_CODE (base) == PLUS)
2347 base = gen_rtx_CONST (GET_MODE (base), base);
2348
2349 if (GET_CODE (offset) != CONST_INT)
2350 abort ();
2351
2352 val.start = INTVAL (offset);
2353 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2354 val.base = base;
2355 return val;
2356 }
2357 else if (GET_CODE (x) == REG)
2358 {
2359 val.reg_flag = 1;
2360 val.start = true_regnum (x);
2361 if (val.start < 0)
2362 {
2363 /* A pseudo with no hard reg. */
2364 val.start = REGNO (x);
2365 val.end = val.start + 1;
2366 }
2367 else
2368 /* A hard reg. */
2369 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2370 }
2371 else if (GET_CODE (x) == SUBREG)
2372 {
2373 if (GET_CODE (SUBREG_REG (x)) != REG)
2374 /* This could be more precise, but it's good enough. */
2375 return decompose (SUBREG_REG (x));
2376 val.reg_flag = 1;
2377 val.start = true_regnum (x);
2378 if (val.start < 0)
2379 return decompose (SUBREG_REG (x));
2380 else
2381 /* A hard reg. */
2382 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2383 }
2384 else if (CONSTANT_P (x)
2385 /* This hasn't been assigned yet, so it can't conflict yet. */
2386 || GET_CODE (x) == SCRATCH)
2387 val.safe = 1;
2388 else
2389 abort ();
2390 return val;
2391}
2392
2393/* Return 1 if altering Y will not modify the value of X.
2394 Y is also described by YDATA, which should be decompose (Y). */
2395
2396static int
2397immune_p (rtx x, rtx y, struct decomposition ydata)
2398{
2399 struct decomposition xdata;
2400
2401 if (ydata.reg_flag)
2402 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2403 if (ydata.safe)
2404 return 1;
2405
2406 if (GET_CODE (y) != MEM)
2407 abort ();
2408 /* If Y is memory and X is not, Y can't affect X. */
2409 if (GET_CODE (x) != MEM)
2410 return 1;
2411
2412 xdata = decompose (x);
2413
2414 if (! rtx_equal_p (xdata.base, ydata.base))
2415 {
2416 /* If bases are distinct symbolic constants, there is no overlap. */
2417 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))

--- 58 unchanged lines hidden (view full) ---

2476 int noperands;
2477 /* These start out as the constraints for the insn
2478 and they are chewed up as we consider alternatives. */
2479 char *constraints[MAX_RECOG_OPERANDS];
2480 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2481 a register. */
2482 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2483 char pref_or_nothing[MAX_RECOG_OPERANDS];
2484 /* Nonzero for a MEM operand whose entire address needs a reload. */
2485 int address_reloaded[MAX_RECOG_OPERANDS];
2486 /* Nonzero for an address operand that needs to be completely reloaded. */
2487 int address_operand_reloaded[MAX_RECOG_OPERANDS];
2488 /* Value of enum reload_type to use for operand. */
2489 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2490 /* Value of enum reload_type to use within address of operand. */
2491 enum reload_type address_type[MAX_RECOG_OPERANDS];
2492 /* Save the usage of each operand. */
2493 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2494 int no_input_reloads = 0, no_output_reloads = 0;

--- 32 unchanged lines hidden (view full) ---

2527 n_earlyclobbers = 0;
2528 replace_reloads = replace;
2529 hard_regs_live_known = live_known;
2530 static_reload_reg_p = reload_reg_p;
2531
2532 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2533 neither are insns that SET cc0. Insns that use CC0 are not allowed
2534 to have any input reloads. */
2535 if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN)
2536 no_output_reloads = 1;
2537
2538#ifdef HAVE_cc0
2539 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2540 no_input_reloads = 1;
2541 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2542 no_output_reloads = 1;
2543#endif

--- 9 unchanged lines hidden (view full) ---

2553 secondary_memlocs_elim_used = 0;
2554 }
2555#endif
2556
2557 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2558 is cheap to move between them. If it is not, there may not be an insn
2559 to do the copy, so we may need a reload. */
2560 if (GET_CODE (body) == SET
2561 && GET_CODE (SET_DEST (body)) == REG
2562 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2563 && GET_CODE (SET_SRC (body)) == REG
2564 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2565 && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
2566 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2567 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2568 return 0;
2569
2570 extract_insn (insn);
2571

--- 29 unchanged lines hidden (view full) ---

2601 modified[i] = RELOAD_READ;
2602
2603 /* Scan this operand's constraint to see if it is an output operand,
2604 an in-out operand, is commutative, or should match another. */
2605
2606 while ((c = *p))
2607 {
2608 p += CONSTRAINT_LEN (c, p);
2609 if (c == '=')
2610 modified[i] = RELOAD_WRITE;
2611 else if (c == '+')
2612 modified[i] = RELOAD_READ_WRITE;
2613 else if (c == '%')
2614 {
2615 /* The last operand should not be marked commutative. */
2616 if (i == noperands - 1)
2617 abort ();
2618
2619 /* We currently only support one commutative pair of
2620 operands. Some existing asm code currently uses more
2621 than one pair. Previously, that would usually work,
2622 but sometimes it would crash the compiler. We
2623 continue supporting that case as well as we can by
2624 silently ignoring all but the first pair. In the
2625 future we may handle it correctly. */
2626 if (commutative < 0)
2627 commutative = i;
2628 else if (!this_insn_is_asm)
2629 abort ();
2630 }
2631 else if (ISDIGIT (c))
2632 {
2633 c = strtoul (p - 1, &p, 10);
2634
2635 operands_match[c][i]
2636 = operands_match_p (recog_data.operand[c],
2637 recog_data.operand[i]);
2638
2639 /* An operand may not match itself. */
2640 if (c == i)
2641 abort ();
2642
2643 /* If C can be commuted with C+1, and C might need to match I,
2644 then C+1 might also need to match I. */
2645 if (commutative >= 0)
2646 {
2647 if (c == commutative || c == commutative + 1)
2648 {
2649 int other = c + (c == commutative ? 1 : -1);
2650 operands_match[other][i]
2651 = operands_match_p (recog_data.operand[other],
2652 recog_data.operand[i]);
2653 }
2654 if (i == commutative || i == commutative + 1)
2655 {
2656 int other = i + (i == commutative ? 1 : -1);
2657 operands_match[c][other]
2658 = operands_match_p (recog_data.operand[c],
2659 recog_data.operand[other]);
2660 }
2661 /* Note that C is supposed to be less than I.
2662 No need to consider altering both C and I because in
2663 that case we would alter one into the other. */
2664 }
2665 }
2666 }
2667 }
2668
2669 /* Examine each operand that is a memory reference or memory address
2670 and reload parts of the addresses into index registers.
2671 Also here any references to pseudo regs that didn't get hard regs
2672 but are equivalent to constants get replaced in the insn itself

--- 24 unchanged lines hidden (view full) ---

2697 address_operand_reloaded[i]
2698 = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2699 recog_data.operand[i],
2700 recog_data.operand_loc[i],
2701 i, operand_type[i], ind_levels, insn);
2702
2703 /* If we now have a simple operand where we used to have a
2704 PLUS or MULT, re-recognize and try again. */
2705 if ((GET_RTX_CLASS (GET_CODE (*recog_data.operand_loc[i])) == 'o'
2706 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2707 && (GET_CODE (recog_data.operand[i]) == MULT
2708 || GET_CODE (recog_data.operand[i]) == PLUS))
2709 {
2710 INSN_CODE (insn) = -1;
2711 retval = find_reloads (insn, replace, ind_levels, live_known,
2712 reload_reg_p);
2713 return retval;

--- 29 unchanged lines hidden (view full) ---

2743 &address_reloaded[i]);
2744
2745 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2746 that didn't get a hard register, emit a USE with a REG_EQUAL
2747 note in front so that we might inherit a previous, possibly
2748 wider reload. */
2749
2750 if (replace
2751 && GET_CODE (op) == MEM
2752 && GET_CODE (reg) == REG
2753 && (GET_MODE_SIZE (GET_MODE (reg))
2754 >= GET_MODE_SIZE (GET_MODE (op))))
2755 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2756 insn),
2757 REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
2758
2759 substed_operand[i] = recog_data.operand[i] = op;
2760 }
2761 else if (code == PLUS || GET_RTX_CLASS (code) == '1')
2762 /* We can get a PLUS as an "operand" as a result of register
2763 elimination. See eliminate_regs and gen_reload. We handle
2764 a unary operator by reloading the operand. */
2765 substed_operand[i] = recog_data.operand[i]
2766 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2767 ind_levels, 0, insn,
2768 &address_reloaded[i]);
2769 else if (code == REG)

--- 111 unchanged lines hidden (view full) ---

2881 /* Nonzero if a constant forced into memory would be OK for this
2882 operand. */
2883 int constmemok = 0;
2884 int earlyclobber = 0;
2885
2886 /* If the predicate accepts a unary operator, it means that
2887 we need to reload the operand, but do not do this for
2888 match_operator and friends. */
2889 if (GET_RTX_CLASS (GET_CODE (operand)) == '1' && *p != 0)
2890 operand = XEXP (operand, 0);
2891
2892 /* If the operand is a SUBREG, extract
2893 the REG or MEM (or maybe even a constant) within.
2894 (Constants can occur as a result of reg_equiv_constant.) */
2895
2896 while (GET_CODE (operand) == SUBREG)
2897 {
2898 /* Offset only matters when operand is a REG and
2899 it is a hard reg. This is because it is passed
2900 to reg_fits_class_p if it is a REG and all pseudos
2901 return 0 from that function. */
2902 if (GET_CODE (SUBREG_REG (operand)) == REG
2903 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
2904 {
2905 if (!subreg_offset_representable_p
2906 (REGNO (SUBREG_REG (operand)),
2907 GET_MODE (SUBREG_REG (operand)),
2908 SUBREG_BYTE (operand),
2909 GET_MODE (operand)))
2910 force_reload = 1;

--- 26 unchanged lines hidden (view full) ---

2937 This is doubly true if WORD_REGISTER_OPERATIONS. In
2938 this case eliminate_regs has left non-paradoxical
2939 subregs for push_reload to see. Make sure it does
2940 by forcing the reload.
2941
2942 ??? When is it right at this stage to have a subreg
2943 of a mem that is _not_ to be handled specially? IMO
2944 those should have been reduced to just a mem. */
2945 || ((GET_CODE (operand) == MEM
2946 || (GET_CODE (operand)== REG
2947 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
2948#ifndef WORD_REGISTER_OPERATIONS
2949 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2950 < BIGGEST_ALIGNMENT)
2951 && (GET_MODE_SIZE (operand_mode[i])
2952 > GET_MODE_SIZE (GET_MODE (operand))))
2953 || BYTES_BIG_ENDIAN
2954#ifdef LOAD_EXTEND_OP
2955 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2956 && (GET_MODE_SIZE (GET_MODE (operand))
2957 <= UNITS_PER_WORD)
2958 && (GET_MODE_SIZE (operand_mode[i])
2959 > GET_MODE_SIZE (GET_MODE (operand)))
2960 && INTEGRAL_MODE_P (GET_MODE (operand))
2961 && LOAD_EXTEND_OP (GET_MODE (operand)) != NIL)
2962#endif
2963 )
2964#endif
2965 )
2966 )
2967 force_reload = 1;
2968 }
2969

--- 78 unchanged lines hidden (view full) ---

3048 [(i == commutative || i == commutative + 1)
3049 ? 2 * commutative + 1 - i : i])
3050 : operands_match[m][i])
3051 {
3052 /* If we are matching a non-offsettable address where an
3053 offsettable address was expected, then we must reject
3054 this combination, because we can't reload it. */
3055 if (this_alternative_offmemok[m]
3056 && GET_CODE (recog_data.operand[m]) == MEM
3057 && this_alternative[m] == (int) NO_REGS
3058 && ! this_alternative_win[m])
3059 bad = 1;
3060
3061 did_match = this_alternative_win[m];
3062 }
3063 else
3064 {

--- 49 unchanged lines hidden (view full) ---

3114 if (this_alternative_matches[j]
3115 == this_alternative_matches[i])
3116 badop = 1;
3117 break;
3118
3119 case 'p':
3120 /* All necessary reloads for an address_operand
3121 were handled in find_reloads_address. */
3122 this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3123 win = 1;
3124 badop = 0;
3125 break;
3126
3127 case 'm':
3128 if (force_reload)
3129 break;
3130 if (GET_CODE (operand) == MEM
3131 || (GET_CODE (operand) == REG
3132 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3133 && reg_renumber[REGNO (operand)] < 0))
3134 win = 1;
3135 if (CONSTANT_P (operand)
3136 /* force_const_mem does not accept HIGH. */
3137 && GET_CODE (operand) != HIGH)
3138 badop = 0;
3139 constmemok = 1;
3140 break;
3141
3142 case '<':
3143 if (GET_CODE (operand) == MEM
3144 && ! address_reloaded[i]
3145 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3146 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3147 win = 1;
3148 break;
3149
3150 case '>':
3151 if (GET_CODE (operand) == MEM
3152 && ! address_reloaded[i]
3153 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3154 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3155 win = 1;
3156 break;
3157
3158 /* Memory operand whose address is not offsettable. */
3159 case 'V':
3160 if (force_reload)
3161 break;
3162 if (GET_CODE (operand) == MEM
3163 && ! (ind_levels ? offsettable_memref_p (operand)
3164 : offsettable_nonstrict_memref_p (operand))
3165 /* Certain mem addresses will become offsettable
3166 after they themselves are reloaded. This is important;
3167 we don't want our own handling of unoffsettables
3168 to override the handling of reg_equiv_address. */
3169 && !(GET_CODE (XEXP (operand, 0)) == REG
3170 && (ind_levels == 0
3171 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3172 win = 1;
3173 break;
3174
3175 /* Memory operand whose address is offsettable. */
3176 case 'o':
3177 if (force_reload)
3178 break;
3179 if ((GET_CODE (operand) == MEM
3180 /* If IND_LEVELS, find_reloads_address won't reload a
3181 pseudo that didn't get a hard reg, so we have to
3182 reject that case. */
3183 && ((ind_levels ? offsettable_memref_p (operand)
3184 : offsettable_nonstrict_memref_p (operand))
3185 /* A reloaded address is offsettable because it is now
3186 just a simple register indirect. */
3187 || address_reloaded[i]))
3188 || (GET_CODE (operand) == REG
3189 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3190 && reg_renumber[REGNO (operand)] < 0
3191 /* If reg_equiv_address is nonzero, we will be
3192 loading it into a register; hence it will be
3193 offsettable, but we cannot say that reg_equiv_mem
3194 is offsettable without checking. */
3195 && ((reg_equiv_mem[REGNO (operand)] != 0
3196 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3197 || (reg_equiv_address[REGNO (operand)] != 0))))
3198 win = 1;
3199 /* force_const_mem does not accept HIGH. */
3200 if ((CONSTANT_P (operand) && GET_CODE (operand) != HIGH)
3201 || GET_CODE (operand) == MEM)
3202 badop = 0;
3203 constmemok = 1;
3204 offmemok = 1;
3205 break;
3206
3207 case '&':
3208 /* Output operand that is stored before the need for the
3209 input operands (and their index registers) is over. */

--- 18 unchanged lines hidden (view full) ---

3228
3229 case 's':
3230 if (GET_CODE (operand) == CONST_INT
3231 || (GET_CODE (operand) == CONST_DOUBLE
3232 && GET_MODE (operand) == VOIDmode))
3233 break;
3234 case 'i':
3235 if (CONSTANT_P (operand)
3236#ifdef LEGITIMATE_PIC_OPERAND_P
3237 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand))
3238#endif
3239 )
3240 win = 1;
3241 break;
3242
3243 case 'n':
3244 if (GET_CODE (operand) == CONST_INT
3245 || (GET_CODE (operand) == CONST_DOUBLE
3246 && GET_MODE (operand) == VOIDmode))
3247 win = 1;

--- 8 unchanged lines hidden (view full) ---

3256 case 'O':
3257 case 'P':
3258 if (GET_CODE (operand) == CONST_INT
3259 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
3260 win = 1;
3261 break;
3262
3263 case 'X':
3264 win = 1;
3265 break;
3266
3267 case 'g':
3268 if (! force_reload
3269 /* A PLUS is never a valid operand, but reload can make
3270 it from a register when eliminating registers. */
3271 && GET_CODE (operand) != PLUS
3272 /* A SCRATCH is not a valid operand. */
3273 && GET_CODE (operand) != SCRATCH
3274#ifdef LEGITIMATE_PIC_OPERAND_P
3275 && (! CONSTANT_P (operand)
3276 || ! flag_pic
3277 || LEGITIMATE_PIC_OPERAND_P (operand))
3278#endif
3279 && (GENERAL_REGS == ALL_REGS
3280 || GET_CODE (operand) != REG
3281 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3282 && reg_renumber[REGNO (operand)] < 0)))
3283 win = 1;
3284 /* Drop through into 'r' case. */
3285
3286 case 'r':
3287 this_alternative[i]
3288 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];

--- 6 unchanged lines hidden (view full) ---

3295 if (EXTRA_MEMORY_CONSTRAINT (c, p))
3296 {
3297 if (force_reload)
3298 break;
3299 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3300 win = 1;
3301 /* If the address was already reloaded,
3302 we win as well. */
3303 else if (GET_CODE (operand) == MEM
3304 && address_reloaded[i])
3305 win = 1;
3306 /* Likewise if the address will be reloaded because
3307 reg_equiv_address is nonzero. For reg_equiv_mem
3308 we have to check. */
3309 else if (GET_CODE (operand) == REG
3310 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3311 && reg_renumber[REGNO (operand)] < 0
3312 && ((reg_equiv_mem[REGNO (operand)] != 0
3313 && EXTRA_CONSTRAINT_STR (reg_equiv_mem[REGNO (operand)], c, p))
3314 || (reg_equiv_address[REGNO (operand)] != 0)))
3315 win = 1;
3316
3317 /* If we didn't already win, we can reload
3318 constants via force_const_mem, and other
3319 MEMs by reloading the address like for 'o'. */
3320 if ((CONSTANT_P (operand) && GET_CODE (operand) != HIGH)
3321 || GET_CODE (operand) == MEM)
3322 badop = 0;
3323 constmemok = 1;
3324 offmemok = 1;
3325 break;
3326 }
3327 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
3328 {
3329 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3330 win = 1;
3331
3332 /* If we didn't already win, we can reload
3333 the address into a base register. */
3334 this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3335 badop = 0;
3336 break;
3337 }
3338
3339 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3340 win = 1;
3341#endif
3342 break;
3343 }
3344
3345 this_alternative[i]
3346 = (int) (reg_class_subunion
3347 [this_alternative[i]]
3348 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
3349 reg:
3350 if (GET_MODE (operand) == BLKmode)
3351 break;
3352 winreg = 1;
3353 if (GET_CODE (operand) == REG
3354 && reg_fits_class_p (operand, this_alternative[i],
3355 offset, GET_MODE (recog_data.operand[i])))
3356 win = 1;
3357 break;
3358 }
3359 while ((p += len), c);
3360
3361 constraints[i] = p;

--- 13 unchanged lines hidden (view full) ---

3375 {
3376 int const_to_mem = 0;
3377
3378 this_alternative_offmemok[i] = offmemok;
3379 losers++;
3380 if (badop)
3381 bad = 1;
3382 /* Alternative loses if it has no regs for a reg operand. */
3383 if (GET_CODE (operand) == REG
3384 && this_alternative[i] == (int) NO_REGS
3385 && this_alternative_matches[i] < 0)
3386 bad = 1;
3387
3388 /* If this is a constant that is reloaded into the desired
3389 class by copying it to memory first, count that as another
3390 reload. This is consistent with other code and is
3391 required to avoid choosing another alternative when
3392 the constant is moved into memory by this function on
3393 an early reload pass. Note that the test here is
3394 precisely the same as in the code below that calls
3395 force_const_mem. */
3396 if (CONSTANT_P (operand)
3397 /* force_const_mem does not accept HIGH. */
3398 && GET_CODE (operand) != HIGH
3399 && ((PREFERRED_RELOAD_CLASS (operand,
3400 (enum reg_class) this_alternative[i])
3401 == NO_REGS)
3402 || no_input_reloads)
3403 && operand_mode[i] != VOIDmode)
3404 {
3405 const_to_mem = 1;
3406 if (this_alternative[i] != (int) NO_REGS)
3407 losers++;
3408 }
3409
3410 /* If we can't reload this value at all, reject this
3411 alternative. Note that we could also lose due to
3412 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3413 here. */
3414
3415 if (! CONSTANT_P (operand)
3416 && (enum reg_class) this_alternative[i] != NO_REGS
3417 && (PREFERRED_RELOAD_CLASS (operand,
3418 (enum reg_class) this_alternative[i])
3419 == NO_REGS))
3420 bad = 1;
3421
3422 /* Alternative loses if it requires a type of reload not
3423 permitted for this insn. We can always reload SCRATCH
3424 and objects with a REG_UNUSED note. */
3425 else if (GET_CODE (operand) != SCRATCH
3426 && modified[i] != RELOAD_READ && no_output_reloads
3427 && ! find_reg_note (insn, REG_UNUSED, operand))
3428 bad = 1;
3429 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3430 && ! const_to_mem)
3431 bad = 1;
3432
3433#ifdef DISPARAGE_RELOAD_CLASS
3434 reject
3435 += DISPARAGE_RELOAD_CLASS (operand,
3436 (enum reg_class) this_alternative[i]);
3437#endif
3438
3439 /* We prefer to reload pseudos over reloading other things,
3440 since such reloads may be able to be eliminated later.
3441 If we are reloading a SCRATCH, we won't be generating any
3442 insns, just using a register, so it is also preferred.
3443 So bump REJECT in other cases. Don't do this in the
3444 case where we are forcing a constant into memory and
3445 it will then win since we don't want to have a different
3446 alternative match then. */
3447 if (! (GET_CODE (operand) == REG
3448 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3449 && GET_CODE (operand) != SCRATCH
3450 && ! (const_to_mem && constmemok))
3451 reject += 2;
3452
3453 /* Input reloads can be inherited more often than output
3454 reloads can be removed, so penalize output reloads. */
3455 if (operand_type[i] != RELOAD_FOR_INPUT

--- 20 unchanged lines hidden (view full) ---

3476 which could cause a large loss.
3477
3478 Don't do this if the preferred class has only one register
3479 because we might otherwise exhaust the class. */
3480
3481 if (! win && ! did_match
3482 && this_alternative[i] != (int) NO_REGS
3483 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3484 && reg_class_size[(int) preferred_class[i]] > 1)
3485 {
3486 if (! reg_class_subset_p (this_alternative[i],
3487 preferred_class[i]))
3488 {
3489 /* Since we don't have a way of forming the intersection,
3490 we just do something special if the preferred class
3491 is a subset of the class we have; that's the most
3492 common case anyway. */

--- 13 unchanged lines hidden (view full) ---

3506 for (i = 0; i < noperands; i++)
3507 if (this_alternative_earlyclobber[i]
3508 && (this_alternative_win[i] || this_alternative_match_win[i]))
3509 {
3510 struct decomposition early_data;
3511
3512 early_data = decompose (recog_data.operand[i]);
3513
3514 if (modified[i] == RELOAD_READ)
3515 abort ();
3516
3517 if (this_alternative[i] == NO_REGS)
3518 {
3519 this_alternative_earlyclobber[i] = 0;
3520 if (this_insn_is_asm)
3521 error_for_asm (this_insn,
3522 "`&' constraint used with no register class");
3523 else
3524 abort ();
3525 }
3526
3527 for (j = 0; j < noperands; j++)
3528 /* Is this an input operand or a memory ref? */
3529 if ((GET_CODE (recog_data.operand[j]) == MEM
3530 || modified[j] != RELOAD_WRITE)
3531 && j != i
3532 /* Ignore things like match_operator operands. */
3533 && *recog_data.constraints[j] != 0
3534 /* Don't count an input operand that is constrained to match
3535 the early clobber operand. */
3536 && ! (this_alternative_matches[j] == i
3537 && rtx_equal_p (recog_data.operand[i],
3538 recog_data.operand[j]))
3539 /* Is it altered by storing the earlyclobber operand? */
3540 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3541 early_data))
3542 {
3543 /* If the output is in a single-reg class,
3544 it's costly to reload it, so reload the input instead. */
3545 if (reg_class_size[this_alternative[i]] == 1
3546 && (GET_CODE (recog_data.operand[j]) == REG
3547 || GET_CODE (recog_data.operand[j]) == SUBREG))
3548 {
3549 losers++;
3550 this_alternative_win[j] = 0;
3551 this_alternative_match_win[j] = 0;
3552 }
3553 else
3554 break;

--- 100 unchanged lines hidden (view full) ---

3655 tclass = preferred_class[commutative];
3656 preferred_class[commutative] = preferred_class[commutative + 1];
3657 preferred_class[commutative + 1] = tclass;
3658
3659 t = pref_or_nothing[commutative];
3660 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3661 pref_or_nothing[commutative + 1] = t;
3662
3663 memcpy (constraints, recog_data.constraints,
3664 noperands * sizeof (char *));
3665 goto try_swapped;
3666 }
3667 else
3668 {
3669 recog_data.operand[commutative] = substed_operand[commutative];
3670 recog_data.operand[commutative + 1]

--- 12 unchanged lines hidden (view full) ---

3683 that we could reach by reloading the fewest operands.
3684 Reload so as to fit it. */
3685
3686 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3687 {
3688 /* No alternative works with reloads?? */
3689 if (insn_code_number >= 0)
3690 fatal_insn ("unable to generate reloads for:", insn);
3691 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3692 /* Avoid further trouble with this insn. */
3693 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3694 n_reloads = 0;
3695 return 0;
3696 }
3697
3698 /* Jump to `finish' from above if all operands are valid already.
3699 In that case, goal_alternative_win is all 1. */

--- 70 unchanged lines hidden (view full) ---

3770 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3771 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3772 }
3773
3774 /* Any constants that aren't allowed and can't be reloaded
3775 into registers are here changed into memory references. */
3776 for (i = 0; i < noperands; i++)
3777 if (! goal_alternative_win[i]
3778 && CONSTANT_P (recog_data.operand[i])
3779 /* force_const_mem does not accept HIGH. */
3780 && GET_CODE (recog_data.operand[i]) != HIGH
3781 && ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
3782 (enum reg_class) goal_alternative[i])
3783 == NO_REGS)
3784 || no_input_reloads)
3785 && operand_mode[i] != VOIDmode)
3786 {
3787 substed_operand[i] = recog_data.operand[i]
3788 = find_reloads_toplev (force_const_mem (operand_mode[i],
3789 recog_data.operand[i]),
3790 i, address_type[i], ind_levels, 0, insn,
3791 NULL);
3792 if (alternative_allows_memconst (recog_data.constraints[i],
3793 goal_alternative_number))
3794 goal_alternative_win[i] = 1;
3795 }
3796
3797 /* Record the values of the earlyclobber operands for the caller. */
3798 if (goal_earlyclobber)
3799 for (i = 0; i < noperands; i++)
3800 if (goal_alternative_earlyclobber[i])
3801 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3802
3803 /* Now record reloads for all the operands that need them. */
3804 for (i = 0; i < noperands; i++)

--- 6 unchanged lines hidden (view full) ---

3811 appearing where an offsettable address will do
3812 by reloading the address into a base register.
3813
3814 ??? We can also do this when the operand is a register and
3815 reg_equiv_mem is not offsettable, but this is a bit tricky,
3816 so we don't bother with it. It may not be worth doing. */
3817 else if (goal_alternative_matched[i] == -1
3818 && goal_alternative_offmemok[i]
3819 && GET_CODE (recog_data.operand[i]) == MEM)
3820 {
3821 operand_reloadnum[i]
3822 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3823 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
3824 MODE_BASE_REG_CLASS (VOIDmode),
3825 GET_MODE (XEXP (recog_data.operand[i], 0)),
3826 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3827 rld[operand_reloadnum[i]].inc
3828 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3829
3830 /* If this operand is an output, we will have made any
3831 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3832 now we are treating part of the operand as an input, so
3833 we must change these to RELOAD_FOR_INPUT_ADDRESS. */

--- 59 unchanged lines hidden (view full) ---

3893 recog_data.operand_loc[goal_alternative_matched[i]],
3894 recog_data.operand_loc[i],
3895 (enum reg_class) goal_alternative[i],
3896 operand_mode[goal_alternative_matched[i]],
3897 operand_mode[i],
3898 0, 0, i, RELOAD_OTHER);
3899 operand_reloadnum[i] = output_reloadnum;
3900 }
3901 else if (insn_code_number >= 0)
3902 abort ();
3903 else
3904 {
3905 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3906 /* Avoid further trouble with this insn. */
3907 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3908 n_reloads = 0;
3909 return 0;
3910 }
3911 }
3912 else if (goal_alternative_matched[i] < 0
3913 && goal_alternative_matches[i] < 0
3914 && !address_operand_reloaded[i]
3915 && optimize)
3916 {
3917 /* For each non-matching operand that's a MEM or a pseudo-register
3918 that didn't get a hard register, make an optional reload.
3919 This may get done even if the insn needs no reloads otherwise. */
3920
3921 rtx operand = recog_data.operand[i];
3922
3923 while (GET_CODE (operand) == SUBREG)
3924 operand = SUBREG_REG (operand);
3925 if ((GET_CODE (operand) == MEM
3926 || (GET_CODE (operand) == REG
3927 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3928 /* If this is only for an output, the optional reload would not
3929 actually cause us to use a register now, just note that
3930 something is stored here. */
3931 && ((enum reg_class) goal_alternative[i] != NO_REGS
3932 || modified[i] == RELOAD_WRITE)
3933 && ! no_input_reloads
3934 /* An optional output reload might allow to delete INSN later.

--- 23 unchanged lines hidden (view full) ---

3958 : insn_data[insn_code_number].operand[i].strict_low),
3959 1, i, operand_type[i]);
3960 /* If a memory reference remains (either as a MEM or a pseudo that
3961 did not get a hard register), yet we can't make an optional
3962 reload, check if this is actually a pseudo register reference;
3963 we then need to emit a USE and/or a CLOBBER so that reload
3964 inheritance will do the right thing. */
3965 else if (replace
3966 && (GET_CODE (operand) == MEM
3967 || (GET_CODE (operand) == REG
3968 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3969 && reg_renumber [REGNO (operand)] < 0)))
3970 {
3971 operand = *recog_data.operand_loc[i];
3972
3973 while (GET_CODE (operand) == SUBREG)
3974 operand = SUBREG_REG (operand);
3975 if (GET_CODE (operand) == REG)
3976 {
3977 if (modified[i] != RELOAD_WRITE)
3978 /* We mark the USE with QImode so that we recognize
3979 it as one that can be safely deleted at the end
3980 of reload. */
3981 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
3982 insn), QImode);
3983 if (modified[i] != RELOAD_READ)

--- 10 unchanged lines hidden (view full) ---

3994 {
3995 /* Similarly, make an optional reload for a pair of matching
3996 objects that are in MEM or a pseudo that didn't get a hard reg. */
3997
3998 rtx operand = recog_data.operand[i];
3999
4000 while (GET_CODE (operand) == SUBREG)
4001 operand = SUBREG_REG (operand);
4002 if ((GET_CODE (operand) == MEM
4003 || (GET_CODE (operand) == REG
4004 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4005 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
4006 != NO_REGS))
4007 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
4008 = push_reload (recog_data.operand[goal_alternative_matches[i]],
4009 recog_data.operand[i],
4010 recog_data.operand_loc[goal_alternative_matches[i]],
4011 recog_data.operand_loc[i],

--- 6 unchanged lines hidden (view full) ---

4018 /* Perform whatever substitutions on the operands we are supposed
4019 to make due to commutativity or replacement of registers
4020 with equivalent constants or memory slots. */
4021
4022 for (i = 0; i < noperands; i++)
4023 {
4024 /* We only do this on the last pass through reload, because it is
4025 possible for some data (like reg_equiv_address) to be changed during
4026 later passes. Moreover, we loose the opportunity to get a useful
4027 reload_{in,out}_reg when we do these replacements. */
4028
4029 if (replace)
4030 {
4031 rtx substitution = substed_operand[i];
4032
4033 *recog_data.operand_loc[i] = substitution;
4034
4035 /* If we're replacing an operand with a LABEL_REF, we need
4036 to make sure that there's a REG_LABEL note attached to
4037 this instruction. */
4038 if (GET_CODE (insn) != JUMP_INSN
4039 && GET_CODE (substitution) == LABEL_REF
4040 && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
4041 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
4042 XEXP (substitution, 0),
4043 REG_NOTES (insn));
4044 }
4045 else
4046 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);

--- 23 unchanged lines hidden (view full) ---

4070 Now this optimization is done safely in choose_reload_regs. */
4071
4072 /* For each reload of a reg into some other class of reg,
4073 search for an existing equivalent reg (same value now) in the right class.
4074 We can use it as long as we don't need to change its contents. */
4075 for (i = 0; i < n_reloads; i++)
4076 if (rld[i].reg_rtx == 0
4077 && rld[i].in != 0
4078 && GET_CODE (rld[i].in) == REG
4079 && rld[i].out == 0)
4080 {
4081 rld[i].reg_rtx
4082 = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
4083 static_reload_reg_p, 0, rld[i].inmode);
4084 /* Prevent generation of insn to load the value
4085 because the one we found already has the value. */
4086 if (rld[i].reg_rtx)
4087 rld[i].in = rld[i].reg_rtx;
4088 }
4089#endif
4090
4091 /* Perhaps an output reload can be combined with another
4092 to reduce needs by one. */
4093 if (!goal_earlyclobber)
4094 combine_reloads ();
4095
4096 /* If we have a pair of reloads for parts of an address, they are reloading
4097 the same object, the operands themselves were not reloaded, and they
4098 are for two operands that are supposed to match, merge the reloads and

--- 253 unchanged lines hidden (view full) ---

4352 }
4353
4354#ifdef HAVE_cc0
4355 /* If we made any reloads for addresses, see if they violate a
4356 "no input reloads" requirement for this insn. But loads that we
4357 do after the insn (such as for output addresses) are fine. */
4358 if (no_input_reloads)
4359 for (i = 0; i < n_reloads; i++)
4360 if (rld[i].in != 0
4361 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
4362 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS)
4363 abort ();
4364#endif
4365
4366 /* Compute reload_mode and reload_nregs. */
4367 for (i = 0; i < n_reloads; i++)
4368 {
4369 rld[i].mode
4370 = (rld[i].inmode == VOIDmode
4371 || (GET_MODE_SIZE (rld[i].outmode)
4372 > GET_MODE_SIZE (rld[i].inmode)))
4373 ? rld[i].outmode : rld[i].inmode;
4374
4375 rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
4376 }
4377
4378 /* Special case a simple move with an input reload and a
4379 destination of a hard reg, if the hard reg is ok, use it. */
4380 for (i = 0; i < n_reloads; i++)
4381 if (rld[i].when_needed == RELOAD_FOR_INPUT
4382 && GET_CODE (PATTERN (insn)) == SET
4383 && GET_CODE (SET_DEST (PATTERN (insn))) == REG
4384 && SET_SRC (PATTERN (insn)) == rld[i].in)
4385 {
4386 rtx dest = SET_DEST (PATTERN (insn));
4387 unsigned int regno = REGNO (dest);
4388
4389 if (regno < FIRST_PSEUDO_REGISTER
4390 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno)
4391 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4392 {
4393 int nr = HARD_REGNO_NREGS (regno, rld[i].mode);
4394 int ok = 1, nri;
4395
4396 for (nri = 1; nri < nr; nri ++)
4397 if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno + nri))
4398 ok = 0;
4399
4400 if (ok)
4401 rld[i].reg_rtx = dest;

--- 84 unchanged lines hidden (view full) ---

4486 /* We mark the USE with QImode so that we recognize it
4487 as one that can be safely deleted at the end of
4488 reload. */
4489 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4490 QImode);
4491 x = mem;
4492 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4493 opnum, type, ind_levels, insn);
4494 if (address_reloaded)
4495 *address_reloaded = i;
4496 }
4497 }
4498 return x;
4499 }
4500 if (code == MEM)
4501 {
4502 rtx tem = x;
4503
4504 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4505 opnum, type, ind_levels, insn);
4506 if (address_reloaded)
4507 *address_reloaded = i;
4508
4509 return tem;
4510 }
4511
4512 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG)
4513 {
4514 /* Check for SUBREG containing a REG that's equivalent to a constant.
4515 If the constant has a known value, truncate it right now.
4516 Similarly if we are extracting a single-word of a multi-word
4517 constant. If the constant is symbolic, allow it to be substituted
4518 normally. push_reload will strip the subreg later. If the
4519 constant is VOIDmode, abort because we will lose the mode of
4520 the register (this should never happen because one of the cases
4521 above should handle it). */
4522
4523 int regno = REGNO (SUBREG_REG (x));
4524 rtx tem;
4525
4526 if (subreg_lowpart_p (x)
4527 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4528 && reg_equiv_constant[regno] != 0
4529 && (tem = gen_lowpart_common (GET_MODE (x),
4530 reg_equiv_constant[regno])) != 0)
4531 return tem;
4532
4533 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4534 && reg_equiv_constant[regno] != 0)
4535 {
4536 tem =
4537 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant[regno],
4538 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4539 if (!tem)
4540 abort ();
4541 return tem;
4542 }
4543
4544 /* If the subreg contains a reg that will be converted to a mem,
4545 convert the subreg to a narrower memref now.
4546 Otherwise, we would get (subreg (mem ...) ...),
4547 which would force reload of the mem.
4548
4549 We also need to do this if there is an equivalent MEM that is
4550 not offsettable. In that case, alter_subreg would produce an
4551 invalid address on big-endian machines.
4552
4553 For machines that extend byte loads, we must not reload using
4554 a wider mode if we have a paradoxical SUBREG. find_reloads will
4555 force a reload in that case. So we should not do anything here. */
4556
4557 else if (regno >= FIRST_PSEUDO_REGISTER
4558#ifdef LOAD_EXTEND_OP
4559 && (GET_MODE_SIZE (GET_MODE (x))
4560 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4561#endif
4562 && (reg_equiv_address[regno] != 0
4563 || (reg_equiv_mem[regno] != 0
4564 && (! strict_memory_address_p (GET_MODE (x),
4565 XEXP (reg_equiv_mem[regno], 0))

--- 80 unchanged lines hidden (view full) ---

4646
4647 IND_LEVELS says how many levels of indirect addressing this machine
4648 supports.
4649
4650 INSN, if nonzero, is the insn in which we do the reload. It is used
4651 to determine if we may generate output reloads, and where to put USEs
4652 for pseudos that we have to replace with stack slots.
4653
4654 Value is nonzero if this address is reloaded or replaced as a whole.
4655 This is interesting to the caller if the address is an autoincrement.
4656
4657 Note that there is no verification that the address will be valid after
4658 this routine does its work. Instead, we rely on the fact that the address
4659 was valid when reload started. So we need only undo things that reload
4660 could have broken. These are wrong register types, pseudos not allocated
4661 to a hard register, and frame pointer elimination. */
4662
4663static int
4664find_reloads_address (enum machine_mode mode, rtx *memrefloc, rtx ad,
4665 rtx *loc, int opnum, enum reload_type type,
4666 int ind_levels, rtx insn)
4667{
4668 int regno;
4669 int removed_and = 0;
4670 rtx tem;
4671
4672 /* If the address is a register, see if it is a legitimate address and
4673 reload if not. We first handle the cases where we need not reload
4674 or where we must reload in a non-standard way. */
4675
4676 if (GET_CODE (ad) == REG)
4677 {
4678 regno = REGNO (ad);
4679
4680 /* If the register is equivalent to an invariant expression, substitute
4681 the invariant, and eliminate any eliminable register references. */
4682 tem = reg_equiv_constant[regno];
4683 if (tem != 0
4684 && (tem = eliminate_regs (tem, mode, insn))

--- 6 unchanged lines hidden (view full) ---

4691 tem = reg_equiv_memory_loc[regno];
4692 if (tem != 0)
4693 {
4694 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4695 {
4696 tem = make_memloc (ad, regno);
4697 if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4698 {
4699 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4700 &XEXP (tem, 0), opnum,
4701 ADDR_TYPE (type), ind_levels, insn);
4702 }
4703 /* We can avoid a reload if the register's equivalent memory
4704 expression is valid as an indirect memory address.
4705 But not all addresses are valid in a mem used as an indirect
4706 address: only reg or reg+constant. */
4707
4708 if (ind_levels > 0
4709 && strict_memory_address_p (mode, tem)
4710 && (GET_CODE (XEXP (tem, 0)) == REG
4711 || (GET_CODE (XEXP (tem, 0)) == PLUS
4712 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4713 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4714 {
4715 /* TEM is not the same as what we'll be replacing the
4716 pseudo with after reload, put a USE in front of INSN
4717 in the final reload pass. */
4718 if (replace_reloads
4719 && num_not_at_initial_offset
4720 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))

--- 14 unchanged lines hidden (view full) ---

4735 }
4736 }
4737
4738 /* The only remaining case where we can avoid a reload is if this is a
4739 hard register that is valid as a base register and which is not the
4740 subject of a CLOBBER in this insn. */
4741
4742 else if (regno < FIRST_PSEUDO_REGISTER
4743 && REGNO_MODE_OK_FOR_BASE_P (regno, mode)
4744 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4745 return 0;
4746
4747 /* If we do not have one of the cases above, we must do the reload. */
4748 push_reload (ad, NULL_RTX, loc, (rtx*) 0, MODE_BASE_REG_CLASS (mode),
4749 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4750 return 1;
4751 }
4752
4753 if (strict_memory_address_p (mode, ad))
4754 {
4755 /* The address appears valid, so reloads are not needed.
4756 But the address may contain an eliminable register.
4757 This can happen because a machine with indirect addressing
4758 may consider a pseudo register by itself a valid address even when
4759 it has failed to get a hard reg.
4760 So do a tree-walk to find and eliminate all such regs. */
4761
4762 /* But first quickly dispose of a common case. */
4763 if (GET_CODE (ad) == PLUS
4764 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4765 && GET_CODE (XEXP (ad, 0)) == REG
4766 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4767 return 0;
4768
4769 subst_reg_equivs_changed = 0;
4770 *loc = subst_reg_equivs (ad, insn);
4771
4772 if (! subst_reg_equivs_changed)
4773 return 0;

--- 11 unchanged lines hidden (view full) ---

4785 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4786 ind_levels, win);
4787 }
4788 break;
4789 win:
4790 *memrefloc = copy_rtx (*memrefloc);
4791 XEXP (*memrefloc, 0) = ad;
4792 move_replacements (&ad, &XEXP (*memrefloc, 0));
4793 return 1;
4794 }
4795 while (0);
4796#endif
4797
4798 /* The address is not valid. We have to figure out why. First see if
4799 we have an outer AND and remove it if so. Then analyze what's inside. */
4800
4801 if (GET_CODE (ad) == AND)

--- 4 unchanged lines hidden (view full) ---

4806 }
4807
4808 /* One possibility for why the address is invalid is that it is itself
4809 a MEM. This can happen when the frame pointer is being eliminated, a
4810 pseudo is not allocated to a hard register, and the offset between the
4811 frame and stack pointers is not its initial value. In that case the
4812 pseudo will have been replaced by a MEM referring to the
4813 stack pointer. */
4814 if (GET_CODE (ad) == MEM)
4815 {
4816 /* First ensure that the address in this MEM is valid. Then, unless
4817 indirect addresses are valid, reload the MEM into a register. */
4818 tem = ad;
4819 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4820 opnum, ADDR_TYPE (type),
4821 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4822

--- 9 unchanged lines hidden (view full) ---

4832 }
4833
4834 /* Check similar cases as for indirect addresses as above except
4835 that we can allow pseudos and a MEM since they should have been
4836 taken care of above. */
4837
4838 if (ind_levels == 0
4839 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4840 || GET_CODE (XEXP (tem, 0)) == MEM
4841 || ! (GET_CODE (XEXP (tem, 0)) == REG
4842 || (GET_CODE (XEXP (tem, 0)) == PLUS
4843 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4844 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4845 {
4846 /* Must use TEM here, not AD, since it is the one that will
4847 have any subexpressions reloaded, if needed. */
4848 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
4849 MODE_BASE_REG_CLASS (mode), GET_MODE (tem),
4850 VOIDmode, 0,
4851 0, opnum, type);
4852 return ! removed_and;
4853 }
4854 else
4855 return 0;
4856 }
4857
4858 /* If we have address of a stack slot but it's not valid because the
4859 displacement is too large, compute the sum in a register.
4860 Handle all base registers here, not just fp/ap/sp, because on some
4861 targets (namely SH) we can also get too large displacements from
4862 big-endian corrections. */
4863 else if (GET_CODE (ad) == PLUS
4864 && GET_CODE (XEXP (ad, 0)) == REG
4865 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4866 && REG_MODE_OK_FOR_BASE_P (XEXP (ad, 0), mode)
4867 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4868 {
4869 /* Unshare the MEM rtx so we can safely alter it. */
4870 if (memrefloc)
4871 {
4872 *memrefloc = copy_rtx (*memrefloc);
4873 loc = &XEXP (*memrefloc, 0);
4874 if (removed_and)
4875 loc = &XEXP (*loc, 0);

--- 11 unchanged lines hidden (view full) ---

4887 type, ind_levels);
4888 return 0;
4889 }
4890 else
4891 {
4892 /* If the sum of two regs is not necessarily valid,
4893 reload the sum into a base reg.
4894 That will at least work. */
4895 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
4896 Pmode, opnum, type, ind_levels);
4897 }
4898 return ! removed_and;
4899 }
4900
4901 /* If we have an indexed stack slot, there are three possible reasons why
4902 it might be invalid: The index might need to be reloaded, the address
4903 might have been made by frame pointer elimination and hence have a
4904 constant out of range, or both reasons might apply.
4905
4906 We can easily check for an index needing reload, but even if that is the
4907 case, we might also have an invalid constant. To avoid making the
4908 conservative assumption and requiring two reloads, we see if this address
4909 is valid when not interpreted strictly. If it is, the only problem is
4910 that the index needs a reload and find_reloads_address_1 will take care
4911 of it.
4912
4913 Handle all base registers here, not just fp/ap/sp, because on some
4914 targets (namely SPARC) we can also get invalid addresses from preventive
4915 subreg big-endian corrections made by find_reloads_toplev.
4916
4917 If we decide to do something, it must be that `double_reg_address_ok'
4918 is true. We generate a reload of the base register + constant and
4919 rework the sum so that the reload register will be added to the index.
4920 This is safe because we know the address isn't shared.
4921
4922 We check for the base register as both the first and second operand of
4923 the innermost PLUS. */
4924
4925 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4926 && GET_CODE (XEXP (ad, 0)) == PLUS
4927 && GET_CODE (XEXP (XEXP (ad, 0), 0)) == REG
4928 && REGNO (XEXP (XEXP (ad, 0), 0)) < FIRST_PSEUDO_REGISTER
4929 && (REG_MODE_OK_FOR_BASE_P (XEXP (XEXP (ad, 0), 0), mode)
4930 || XEXP (XEXP (ad, 0), 0) == frame_pointer_rtx
4931#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4932 || XEXP (XEXP (ad, 0), 0) == hard_frame_pointer_rtx
4933#endif
4934#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4935 || XEXP (XEXP (ad, 0), 0) == arg_pointer_rtx
4936#endif
4937 || XEXP (XEXP (ad, 0), 0) == stack_pointer_rtx)
4938 && ! maybe_memory_address_p (mode, ad, &XEXP (XEXP (ad, 0), 1)))
4939 {
4940 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4941 plus_constant (XEXP (XEXP (ad, 0), 0),
4942 INTVAL (XEXP (ad, 1))),
4943 XEXP (XEXP (ad, 0), 1));
4944 find_reloads_address_part (XEXP (ad, 0), &XEXP (ad, 0),
4945 MODE_BASE_REG_CLASS (mode),
4946 GET_MODE (ad), opnum, type, ind_levels);
4947 find_reloads_address_1 (mode, XEXP (ad, 1), 1, &XEXP (ad, 1), opnum,
4948 type, 0, insn);
4949
4950 return 0;
4951 }
4952
4953 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4954 && GET_CODE (XEXP (ad, 0)) == PLUS
4955 && GET_CODE (XEXP (XEXP (ad, 0), 1)) == REG
4956 && REGNO (XEXP (XEXP (ad, 0), 1)) < FIRST_PSEUDO_REGISTER
4957 && (REG_MODE_OK_FOR_BASE_P (XEXP (XEXP (ad, 0), 1), mode)
4958 || XEXP (XEXP (ad, 0), 1) == frame_pointer_rtx
4959#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4960 || XEXP (XEXP (ad, 0), 1) == hard_frame_pointer_rtx
4961#endif
4962#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4963 || XEXP (XEXP (ad, 0), 1) == arg_pointer_rtx
4964#endif
4965 || XEXP (XEXP (ad, 0), 1) == stack_pointer_rtx)
4966 && ! maybe_memory_address_p (mode, ad, &XEXP (XEXP (ad, 0), 0)))
4967 {
4968 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4969 XEXP (XEXP (ad, 0), 0),
4970 plus_constant (XEXP (XEXP (ad, 0), 1),
4971 INTVAL (XEXP (ad, 1))));
4972 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4973 MODE_BASE_REG_CLASS (mode),
4974 GET_MODE (ad), opnum, type, ind_levels);
4975 find_reloads_address_1 (mode, XEXP (ad, 0), 1, &XEXP (ad, 0), opnum,
4976 type, 0, insn);
4977
4978 return 0;
4979 }
4980
4981 /* See if address becomes valid when an eliminable register
4982 in a sum is replaced. */
4983
4984 tem = ad;
4985 if (GET_CODE (ad) == PLUS)
4986 tem = subst_indexed_address (ad);

--- 24 unchanged lines hidden (view full) ---

5011 && CONSTANT_POOL_ADDRESS_P (ad))
5012 {
5013 *memrefloc = copy_rtx (*memrefloc);
5014 loc = &XEXP (*memrefloc, 0);
5015 if (removed_and)
5016 loc = &XEXP (*loc, 0);
5017 }
5018
5019 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
5020 Pmode, opnum, type, ind_levels);
5021 return ! removed_and;
5022 }
5023
5024 return find_reloads_address_1 (mode, ad, 0, loc, opnum, type, ind_levels,
5025 insn);
5026}
5027
5028/* Find all pseudo regs appearing in AD
5029 that are eliminable in favor of equivalent values
5030 and do not have hard regs; replace them by their equivalents.
5031 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
5032 front of it for pseudos that we have to replace with stack slots. */
5033

--- 128 unchanged lines hidden (view full) ---

5162 rtx op0 = 0, op1 = 0, op2 = 0;
5163 rtx tem;
5164 int regno;
5165
5166 if (GET_CODE (addr) == PLUS)
5167 {
5168 /* Try to find a register to replace. */
5169 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5170 if (GET_CODE (op0) == REG
5171 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5172 && reg_renumber[regno] < 0
5173 && reg_equiv_constant[regno] != 0)
5174 op0 = reg_equiv_constant[regno];
5175 else if (GET_CODE (op1) == REG
5176 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5177 && reg_renumber[regno] < 0
5178 && reg_equiv_constant[regno] != 0)
5179 op1 = reg_equiv_constant[regno];
5180 else if (GET_CODE (op0) == PLUS
5181 && (tem = subst_indexed_address (op0)) != op0)
5182 op0 = tem;
5183 else if (GET_CODE (op1) == PLUS

--- 45 unchanged lines hidden (view full) ---

5229
5230/* Record the pseudo registers we must reload into hard registers in a
5231 subexpression of a would-be memory address, X referring to a value
5232 in mode MODE. (This function is not called if the address we find
5233 is strictly valid.)
5234
5235 CONTEXT = 1 means we are considering regs as index regs,
5236 = 0 means we are considering them as base regs.
5237
5238 OPNUM and TYPE specify the purpose of any reloads made.
5239
5240 IND_LEVELS says how many levels of indirect addressing are
5241 supported at this point in the address.
5242
5243 INSN, if nonzero, is the insn in which we do the reload. It is used
5244 to determine if we may generate output reloads.
5245
5246 We return nonzero if X, as a whole, is reloaded or replaced. */
5247
5248/* Note that we take shortcuts assuming that no multi-reg machine mode
5249 occurs as part of an address.
5250 Also, this is not fully machine-customizable; it works for machines
5251 such as VAXen and 68000's and 32000's, but other possible machines
5252 could have addressing modes that this does not handle right. */
5253
5254static int
5255find_reloads_address_1 (enum machine_mode mode, rtx x, int context,
5256 rtx *loc, int opnum, enum reload_type type,
5257 int ind_levels, rtx insn)
5258{
5259 RTX_CODE code = GET_CODE (x);
5260
5261 switch (code)
5262 {
5263 case PLUS:
5264 {
5265 rtx orig_op0 = XEXP (x, 0);
5266 rtx orig_op1 = XEXP (x, 1);
5267 RTX_CODE code0 = GET_CODE (orig_op0);
5268 RTX_CODE code1 = GET_CODE (orig_op1);

--- 23 unchanged lines hidden (view full) ---

5292 op1 = gen_rtx_REG (GET_MODE (op1),
5293 (REGNO (op1) +
5294 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5295 GET_MODE (SUBREG_REG (orig_op1)),
5296 SUBREG_BYTE (orig_op1),
5297 GET_MODE (orig_op1))));
5298 }
5299 /* Plus in the index register may be created only as a result of
5300 register remateralization for expression like &localvar*4. Reload it.
5301 It may be possible to combine the displacement on the outer level,
5302 but it is probably not worthwhile to do so. */
5303 if (context)
5304 {
5305 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5306 opnum, ADDR_TYPE (type), ind_levels, insn);
5307 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5308 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5309 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5310 return 1;
5311 }
5312
5313 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5314 || code0 == ZERO_EXTEND || code1 == MEM)
5315 {
5316 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5317 type, ind_levels, insn);
5318 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5319 type, ind_levels, insn);
5320 }
5321
5322 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5323 || code1 == ZERO_EXTEND || code0 == MEM)
5324 {
5325 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5326 type, ind_levels, insn);
5327 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5328 type, ind_levels, insn);
5329 }
5330
5331 else if (code0 == CONST_INT || code0 == CONST
5332 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5333 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5334 type, ind_levels, insn);
5335
5336 else if (code1 == CONST_INT || code1 == CONST
5337 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5338 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5339 type, ind_levels, insn);
5340
5341 else if (code0 == REG && code1 == REG)
5342 {
5343 if (REG_OK_FOR_INDEX_P (op0)
5344 && REG_MODE_OK_FOR_BASE_P (op1, mode))
5345 return 0;
5346 else if (REG_OK_FOR_INDEX_P (op1)
5347 && REG_MODE_OK_FOR_BASE_P (op0, mode))
5348 return 0;
5349 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
5350 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5351 type, ind_levels, insn);
5352 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
5353 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5354 type, ind_levels, insn);
5355 else if (REG_OK_FOR_INDEX_P (op1))
5356 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5357 type, ind_levels, insn);
5358 else if (REG_OK_FOR_INDEX_P (op0))
5359 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5360 type, ind_levels, insn);
5361 else
5362 {
5363 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5364 type, ind_levels, insn);
5365 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5366 type, ind_levels, insn);
5367 }
5368 }
5369
5370 else if (code0 == REG)
5371 {
5372 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5373 type, ind_levels, insn);
5374 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5375 type, ind_levels, insn);
5376 }
5377
5378 else if (code1 == REG)
5379 {
5380 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5381 type, ind_levels, insn);
5382 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5383 type, ind_levels, insn);
5384 }
5385 }
5386
5387 return 0;
5388
5389 case POST_MODIFY:
5390 case PRE_MODIFY:
5391 {
5392 rtx op0 = XEXP (x, 0);
5393 rtx op1 = XEXP (x, 1);
5394
5395 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5396 return 0;
5397
5398 /* Currently, we only support {PRE,POST}_MODIFY constructs
5399 where a base register is {inc,dec}remented by the contents
5400 of another register or by a constant value. Thus, these
5401 operands must match. */
5402 if (op0 != XEXP (op1, 0))
5403 abort ();
5404
5405 /* Require index register (or constant). Let's just handle the
5406 register case in the meantime... If the target allows
5407 auto-modify by a constant then we could try replacing a pseudo
5408 register with its equivalent constant where applicable. */
5409 if (REG_P (XEXP (op1, 1)))
5410 if (!REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5411 find_reloads_address_1 (mode, XEXP (op1, 1), 1, &XEXP (op1, 1),
5412 opnum, type, ind_levels, insn);
5413
5414 if (REG_P (XEXP (op1, 0)))
5415 {
5416 int regno = REGNO (XEXP (op1, 0));
5417 int reloadnum;
5418
5419 /* A register that is incremented cannot be constant! */
5420 if (regno >= FIRST_PSEUDO_REGISTER
5421 && reg_equiv_constant[regno] != 0)
5422 abort ();
5423
5424 /* Handle a register that is equivalent to a memory location
5425 which cannot be addressed directly. */
5426 if (reg_equiv_memory_loc[regno] != 0
5427 && (reg_equiv_address[regno] != 0
5428 || num_not_at_initial_offset))
5429 {
5430 rtx tem = make_memloc (XEXP (x, 0), regno);
5431
5432 if (reg_equiv_address[regno]
5433 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5434 {
5435 /* First reload the memory location's address.
5436 We can't use ADDR_TYPE (type) here, because we need to
5437 write back the value after reading it, hence we actually
5438 need two registers. */
5439 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5440 &XEXP (tem, 0), opnum,
5441 RELOAD_OTHER,
5442 ind_levels, insn);
5443
5444 /* Then reload the memory location into a base
5445 register. */
5446 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5447 &XEXP (op1, 0),
5448 MODE_BASE_REG_CLASS (mode),
5449 GET_MODE (x), GET_MODE (x), 0,
5450 0, opnum, RELOAD_OTHER);
5451
5452 update_auto_inc_notes (this_insn, regno, reloadnum);
5453 return 0;
5454 }
5455 }
5456
5457 if (reg_renumber[regno] >= 0)
5458 regno = reg_renumber[regno];
5459
5460 /* We require a base register here... */
5461 if (!REGNO_MODE_OK_FOR_BASE_P (regno, GET_MODE (x)))
5462 {
5463 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5464 &XEXP (op1, 0), &XEXP (x, 0),
5465 MODE_BASE_REG_CLASS (mode),
5466 GET_MODE (x), GET_MODE (x), 0, 0,
5467 opnum, RELOAD_OTHER);
5468
5469 update_auto_inc_notes (this_insn, regno, reloadnum);
5470 return 0;
5471 }
5472 }
5473 else
5474 abort ();
5475 }
5476 return 0;
5477
5478 case POST_INC:
5479 case POST_DEC:
5480 case PRE_INC:
5481 case PRE_DEC:
5482 if (GET_CODE (XEXP (x, 0)) == REG)
5483 {
5484 int regno = REGNO (XEXP (x, 0));
5485 int value = 0;
5486 rtx x_orig = x;
5487
5488 /* A register that is incremented cannot be constant! */
5489 if (regno >= FIRST_PSEUDO_REGISTER
5490 && reg_equiv_constant[regno] != 0)
5491 abort ();
5492
5493 /* Handle a register that is equivalent to a memory location
5494 which cannot be addressed directly. */
5495 if (reg_equiv_memory_loc[regno] != 0
5496 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5497 {
5498 rtx tem = make_memloc (XEXP (x, 0), regno);
5499 if (reg_equiv_address[regno]
5500 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5501 {
5502 /* First reload the memory location's address.
5503 We can't use ADDR_TYPE (type) here, because we need to
5504 write back the value after reading it, hence we actually
5505 need two registers. */
5506 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5507 &XEXP (tem, 0), opnum, type,
5508 ind_levels, insn);
5509 /* Put this inside a new increment-expression. */
5510 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5511 /* Proceed to reload that, as if it contained a register. */
5512 }
5513 }
5514
5515 /* If we have a hard register that is ok as an index,
5516 don't make a reload. If an autoincrement of a nice register
5517 isn't "valid", it must be that no autoincrement is "valid".
5518 If that is true and something made an autoincrement anyway,
5519 this must be a special context where one is allowed.
5520 (For example, a "push" instruction.)
5521 We can't improve this address, so leave it alone. */
5522
5523 /* Otherwise, reload the autoincrement into a suitable hard reg
5524 and record how much to increment by. */
5525
5526 if (reg_renumber[regno] >= 0)
5527 regno = reg_renumber[regno];
5528 if ((regno >= FIRST_PSEUDO_REGISTER
5529 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5530 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5531 {
5532 int reloadnum;
5533
5534 /* If we can output the register afterwards, do so, this
5535 saves the extra update.
5536 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5537 CALL_INSN - and it does not set CC0.
5538 But don't do this if we cannot directly address the
5539 memory location, since this will make it harder to
5540 reuse address reloads, and increases register pressure.
5541 Also don't do this if we can probably update x directly. */
5542 rtx equiv = (GET_CODE (XEXP (x, 0)) == MEM
5543 ? XEXP (x, 0)
5544 : reg_equiv_mem[regno]);
5545 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5546 if (insn && GET_CODE (insn) == INSN && equiv
5547 && memory_operand (equiv, GET_MODE (equiv))
5548#ifdef HAVE_cc0
5549 && ! sets_cc0_p (PATTERN (insn))
5550#endif
5551 && ! (icode != CODE_FOR_nothing
5552 && ((*insn_data[icode].operand[0].predicate)
5553 (equiv, Pmode))
5554 && ((*insn_data[icode].operand[1].predicate)
5555 (equiv, Pmode))))
5556 {
5557 /* We use the original pseudo for loc, so that
5558 emit_reload_insns() knows which pseudo this
5559 reload refers to and updates the pseudo rtx, not
5560 its equivalent memory location, as well as the
5561 corresponding entry in reg_last_reload_reg. */
5562 loc = &XEXP (x_orig, 0);
5563 x = XEXP (x, 0);
5564 reloadnum
5565 = push_reload (x, x, loc, loc,
5566 (context ? INDEX_REG_CLASS :
5567 MODE_BASE_REG_CLASS (mode)),
5568 GET_MODE (x), GET_MODE (x), 0, 0,
5569 opnum, RELOAD_OTHER);
5570 }
5571 else
5572 {
5573 reloadnum
5574 = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5575 (context ? INDEX_REG_CLASS :
5576 MODE_BASE_REG_CLASS (mode)),
5577 GET_MODE (x), GET_MODE (x), 0, 0,
5578 opnum, type);
5579 rld[reloadnum].inc
5580 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5581
5582 value = 1;
5583 }
5584
5585 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5586 reloadnum);
5587 }
5588 return value;
5589 }
5590
5591 else if (GET_CODE (XEXP (x, 0)) == MEM)
5592 {
5593 /* This is probably the result of a substitution, by eliminate_regs,
5594 of an equivalent address for a pseudo that was not allocated to a
5595 hard register. Verify that the specified address is valid and
5596 reload it into a register. */
5597 /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE. */
5598 rtx tem ATTRIBUTE_UNUSED = XEXP (x, 0);
5599 rtx link;

--- 8 unchanged lines hidden (view full) ---

5608 /* We can't use ADDR_TYPE (type) here, because we need to
5609 write back the value after reading it, hence we actually
5610 need two registers. */
5611 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5612 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
5613 opnum, type, ind_levels, insn);
5614
5615 reloadnum = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5616 (context ? INDEX_REG_CLASS :
5617 MODE_BASE_REG_CLASS (mode)),
5618 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5619 rld[reloadnum].inc
5620 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5621
5622 link = FIND_REG_INC_NOTE (this_insn, tem);
5623 if (link != 0)
5624 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5625
5626 return 1;
5627 }
5628 return 0;
5629
5630 case MEM:
5631 /* This is probably the result of a substitution, by eliminate_regs, of
5632 an equivalent address for a pseudo that was not allocated to a hard
5633 register. Verify that the specified address is valid and reload it
5634 into a register.
5635
5636 Since we know we are going to reload this item, don't decrement for
5637 the indirection level.
5638
5639 Note that this is actually conservative: it would be slightly more
5640 efficient to use the value of SPILL_INDIRECT_LEVELS from
5641 reload1.c here. */
5642
5643 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5644 opnum, ADDR_TYPE (type), ind_levels, insn);
5645 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5646 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5647 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5648 return 1;
5649
5650 case REG:
5651 {
5652 int regno = REGNO (x);
5653
5654 if (reg_equiv_constant[regno] != 0)
5655 {
5656 find_reloads_address_part (reg_equiv_constant[regno], loc,
5657 (context ? INDEX_REG_CLASS :
5658 MODE_BASE_REG_CLASS (mode)),
5659 GET_MODE (x), opnum, type, ind_levels);
5660 return 1;
5661 }
5662
5663#if 0 /* This might screw code in reload1.c to delete prior output-reload
5664 that feeds this insn. */
5665 if (reg_equiv_mem[regno] != 0)
5666 {
5667 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
5668 (context ? INDEX_REG_CLASS :
5669 MODE_BASE_REG_CLASS (mode)),
5670 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5671 return 1;
5672 }
5673#endif
5674
5675 if (reg_equiv_memory_loc[regno]
5676 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5677 {
5678 rtx tem = make_memloc (x, regno);
5679 if (reg_equiv_address[regno] != 0
5680 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5681 {
5682 x = tem;
5683 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5684 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5685 ind_levels, insn);
5686 }
5687 }
5688
5689 if (reg_renumber[regno] >= 0)
5690 regno = reg_renumber[regno];
5691
5692 if ((regno >= FIRST_PSEUDO_REGISTER
5693 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5694 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5695 {
5696 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5697 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5698 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5699 return 1;
5700 }
5701
5702 /* If a register appearing in an address is the subject of a CLOBBER
5703 in this insn, reload it into some other register to be safe.
5704 The CLOBBER is supposed to make the register unavailable
5705 from before this insn to after it. */
5706 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5707 {
5708 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5709 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5710 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5711 return 1;
5712 }
5713 }
5714 return 0;
5715
5716 case SUBREG:
5717 if (GET_CODE (SUBREG_REG (x)) == REG)
5718 {
5719 /* If this is a SUBREG of a hard register and the resulting register
5720 is of the wrong class, reload the whole SUBREG. This avoids
5721 needless copies if SUBREG_REG is multi-word. */
5722 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5723 {
5724 int regno ATTRIBUTE_UNUSED = subreg_regno (x);
5725
5726 if (! (context ? REGNO_OK_FOR_INDEX_P (regno)
5727 : REGNO_MODE_OK_FOR_BASE_P (regno, mode)))
5728 {
5729 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5730 (context ? INDEX_REG_CLASS :
5731 MODE_BASE_REG_CLASS (mode)),
5732 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5733 return 1;
5734 }
5735 }
5736 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5737 is larger than the class size, then reload the whole SUBREG. */
5738 else
5739 {
5740 enum reg_class class = (context ? INDEX_REG_CLASS
5741 : MODE_BASE_REG_CLASS (mode));
5742 if ((unsigned) CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5743 > reg_class_size[class])
5744 {
5745 x = find_reloads_subreg_address (x, 0, opnum, type,
5746 ind_levels, insn);
5747 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5748 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5749 return 1;
5750 }
5751 }
5752 }
5753 break;

--- 4 unchanged lines hidden (view full) ---

5758
5759 {
5760 const char *fmt = GET_RTX_FORMAT (code);
5761 int i;
5762
5763 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5764 {
5765 if (fmt[i] == 'e')
5766 find_reloads_address_1 (mode, XEXP (x, i), context, &XEXP (x, i),
5767 opnum, type, ind_levels, insn);
5768 }
5769 }
5770
5771 return 0;
5772}
5773
5774/* X, which is found at *LOC, is a part of an address that needs to be
5775 reloaded into a register of class CLASS. If X is a constant, or if
5776 X is a PLUS that contains a constant, check that the constant is a
5777 legitimate operand and that we are supposed to be able to load
5778 it into the register.

--- 84 unchanged lines hidden (view full) ---

5863 /* If the address changes because of register elimination, then
5864 it must be replaced. */
5865 if (force_replace
5866 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5867 {
5868 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
5869 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
5870 int offset;
5871
5872 /* For big-endian paradoxical subregs, SUBREG_BYTE does not
5873 hold the correct (negative) byte offset. */
5874 if (BYTES_BIG_ENDIAN && outer_size > inner_size)
5875 offset = inner_size - outer_size;
5876 else
5877 offset = SUBREG_BYTE (x);
5878
5879 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
5880 PUT_MODE (tem, GET_MODE (x));
5881
5882 /* If this was a paradoxical subreg that we replaced, the
5883 resulting memory must be sufficiently aligned to allow
5884 us to widen the mode of the memory. */
5885 if (outer_size > inner_size && STRICT_ALIGNMENT)
5886 {
5887 rtx base;
5888
5889 base = XEXP (tem, 0);
5890 if (GET_CODE (base) == PLUS)
5891 {
5892 if (GET_CODE (XEXP (base, 1)) == CONST_INT
5893 && INTVAL (XEXP (base, 1)) % outer_size != 0)
5894 return x;
5895 base = XEXP (base, 0);
5896 }
5897 if (GET_CODE (base) != REG
5898 || (REGNO_POINTER_ALIGN (REGNO (base))
5899 < outer_size * BITS_PER_UNIT))
5900 return x;
5901 }
5902
5903 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5904 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
5905 ind_levels, insn);
5906
5907 /* If this is not a toplevel operand, find_reloads doesn't see
5908 this substitution. We have to emit a USE of the pseudo so
5909 that delete_output_reload can see it. */
5910 if (replace_reloads && recog_data.operand[opnum] != x)
5911 /* We mark the USE with QImode so that we recognize it
5912 as one that can be safely deleted at the end of
5913 reload. */
5914 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,

--- 32 unchanged lines hidden (view full) ---

5947 Otherwise, if the equivalence is used after that, it will
5948 have been modified, and the thing substituted (probably a
5949 register) is likely overwritten and not a usable equivalence. */
5950 int check_regno;
5951
5952 for (check_regno = 0; check_regno < max_regno; check_regno++)
5953 {
5954#define CHECK_MODF(ARRAY) \
5955 if (ARRAY[check_regno] \
5956 && loc_mentioned_in_p (r->where, \
5957 ARRAY[check_regno])) \
5958 abort ()
5959
5960 CHECK_MODF (reg_equiv_constant);
5961 CHECK_MODF (reg_equiv_memory_loc);
5962 CHECK_MODF (reg_equiv_address);
5963 CHECK_MODF (reg_equiv_mem);
5964#undef CHECK_MODF
5965 }
5966#endif /* ENABLE_CHECKING */
5967
5968 /* If we're replacing a LABEL_REF with a register, add a
5969 REG_LABEL note to indicate to flow which label this
5970 register refers to. */
5971 if (GET_CODE (*r->where) == LABEL_REF
5972 && GET_CODE (insn) == JUMP_INSN)
5973 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
5974 XEXP (*r->where, 0),
5975 REG_NOTES (insn));
5976
5977 /* Encapsulate RELOADREG so its machine mode matches what
5978 used to be there. Note that gen_lowpart_common will
5979 do the wrong thing if RELOADREG is multi-word. RELOADREG
5980 will always be a REG here. */
5981 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
5982 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
5983

--- 21 unchanged lines hidden (view full) ---

6005 *r->where = SUBREG_REG (reloadreg);
6006 SUBREG_BYTE (*r->subreg_loc) = final_offset;
6007 }
6008 }
6009 else
6010 *r->where = reloadreg;
6011 }
6012 /* If reload got no reg and isn't optional, something's wrong. */
6013 else if (! rld[r->what].optional)
6014 abort ();
6015 }
6016}
6017
6018/* Make a copy of any replacements being done into X and move those
6019 copies to locations in Y, a copy of X. */
6020
6021void
6022copy_replacements (rtx x, rtx y)
6023{
6024 /* We can't support X being a SUBREG because we might then need to know its
6025 location if something inside it was replaced. */
6026 if (GET_CODE (x) == SUBREG)
6027 abort ();
6028
6029 copy_replacements_1 (&x, &y, n_replacements);
6030}
6031
6032static void
6033copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
6034{
6035 int i, j;

--- 75 unchanged lines hidden (view full) ---

6111 return reloadreg;
6112 }
6113 else if (reloadreg && r->subreg_loc == loc)
6114 {
6115 /* RELOADREG must be either a REG or a SUBREG.
6116
6117 ??? Is it actually still ever a SUBREG? If so, why? */
6118
6119 if (GET_CODE (reloadreg) == REG)
6120 return gen_rtx_REG (GET_MODE (*loc),
6121 (REGNO (reloadreg) +
6122 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
6123 GET_MODE (SUBREG_REG (*loc)),
6124 SUBREG_BYTE (*loc),
6125 GET_MODE (*loc))));
6126 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
6127 return reloadreg;

--- 31 unchanged lines hidden (view full) ---

6159 other than being stored into (except for earlyclobber operands).
6160
6161 References contained within the substructure at LOC do not count.
6162 LOC may be zero, meaning don't ignore anything.
6163
6164 This is similar to refers_to_regno_p in rtlanal.c except that we
6165 look at equivalences for pseudos that didn't get hard registers. */
6166
6167int
6168refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6169 rtx x, rtx *loc)
6170{
6171 int i;
6172 unsigned int r;
6173 RTX_CODE code;
6174 const char *fmt;
6175

--- 12 unchanged lines hidden (view full) ---

6188 X must therefore either be a constant or be in memory. */
6189 if (r >= FIRST_PSEUDO_REGISTER)
6190 {
6191 if (reg_equiv_memory_loc[r])
6192 return refers_to_regno_for_reload_p (regno, endregno,
6193 reg_equiv_memory_loc[r],
6194 (rtx*) 0);
6195
6196 if (reg_equiv_constant[r])
6197 return 0;
6198
6199 abort ();
6200 }
6201
6202 return (endregno > r
6203 && regno < r + (r < FIRST_PSEUDO_REGISTER
6204 ? HARD_REGNO_NREGS (r, GET_MODE (x))
6205 : 1));
6206
6207 case SUBREG:
6208 /* If this is a SUBREG of a hard reg, we can see exactly which
6209 registers are being modified. Otherwise, handle normally. */
6210 if (GET_CODE (SUBREG_REG (x)) == REG
6211 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6212 {
6213 unsigned int inner_regno = subreg_regno (x);
6214 unsigned int inner_endregno
6215 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6216 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
6217
6218 return endregno > inner_regno && regno < inner_endregno;
6219 }
6220 break;
6221
6222 case CLOBBER:
6223 case SET:
6224 if (&SET_DEST (x) != loc
6225 /* Note setting a SUBREG counts as referring to the REG it is in for
6226 a pseudo but not for hard registers since we can
6227 treat each word individually. */
6228 && ((GET_CODE (SET_DEST (x)) == SUBREG
6229 && loc != &SUBREG_REG (SET_DEST (x))
6230 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
6231 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6232 && refers_to_regno_for_reload_p (regno, endregno,
6233 SUBREG_REG (SET_DEST (x)),
6234 loc))
6235 /* If the output is an earlyclobber operand, this is
6236 a conflict. */
6237 || ((GET_CODE (SET_DEST (x)) != REG
6238 || earlyclobber_operand_p (SET_DEST (x)))
6239 && refers_to_regno_for_reload_p (regno, endregno,
6240 SET_DEST (x), loc))))
6241 return 1;
6242
6243 if (code == CLOBBER || loc == &SET_SRC (x))
6244 return 0;
6245 x = SET_SRC (x);

--- 44 unchanged lines hidden (view full) ---

6290
6291int
6292reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
6293{
6294 int regno, endregno;
6295
6296 /* Overly conservative. */
6297 if (GET_CODE (x) == STRICT_LOW_PART
6298 || GET_RTX_CLASS (GET_CODE (x)) == 'a')
6299 x = XEXP (x, 0);
6300
6301 /* If either argument is a constant, then modifying X can not affect IN. */
6302 if (CONSTANT_P (x) || CONSTANT_P (in))
6303 return 0;
6304 else if (GET_CODE (x) == SUBREG)
6305 {
6306 regno = REGNO (SUBREG_REG (x));
6307 if (regno < FIRST_PSEUDO_REGISTER)
6308 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6309 GET_MODE (SUBREG_REG (x)),
6310 SUBREG_BYTE (x),
6311 GET_MODE (x));
6312 }
6313 else if (GET_CODE (x) == REG)
6314 {
6315 regno = REGNO (x);
6316
6317 /* If this is a pseudo, it must not have been assigned a hard register.
6318 Therefore, it must either be in memory or be a constant. */
6319
6320 if (regno >= FIRST_PSEUDO_REGISTER)
6321 {
6322 if (reg_equiv_memory_loc[regno])
6323 return refers_to_mem_for_reload_p (in);
6324 else if (reg_equiv_constant[regno])
6325 return 0;
6326 abort ();
6327 }
6328 }
6329 else if (GET_CODE (x) == MEM)
6330 return refers_to_mem_for_reload_p (in);
6331 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6332 || GET_CODE (x) == CC0)
6333 return reg_mentioned_p (x, in);
6334 else if (GET_CODE (x) == PLUS)
6335 {
6336 /* We actually want to know if X is mentioned somewhere inside IN.
6337 We must not say that (plus (sp) (const_int 124)) is in
6338 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6339 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6340 into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
6341 while (GET_CODE (in) == MEM)
6342 in = XEXP (in, 0);
6343 if (GET_CODE (in) == REG)
6344 return 0;
6345 else if (GET_CODE (in) == PLUS)
6346 return (reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
6347 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6348 else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6349 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6350 }
6351 else
6352 abort ();
6353
6354 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6355 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
6356
6357 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6358}
6359
6360/* Return nonzero if anything in X contains a MEM. Look also for pseudo
6361 registers. */
6362
6363int
6364refers_to_mem_for_reload_p (rtx x)
6365{
6366 const char *fmt;
6367 int i;
6368
6369 if (GET_CODE (x) == MEM)
6370 return 1;
6371
6372 if (GET_CODE (x) == REG)
6373 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6374 && reg_equiv_memory_loc[REGNO (x)]);
6375
6376 fmt = GET_RTX_FORMAT (GET_CODE (x));
6377 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6378 if (fmt[i] == 'e'
6379 && (GET_CODE (XEXP (x, i)) == MEM
6380 || refers_to_mem_for_reload_p (XEXP (x, i))))
6381 return 1;
6382
6383 return 0;
6384}
6385
6386/* Check the insns before INSN to see if there is a suitable register
6387 containing the same value as GOAL.

--- 36 unchanged lines hidden (view full) ---

6424 int goal_mem_addr_varies = 0;
6425 int need_stable_sp = 0;
6426 int nregs;
6427 int valuenregs;
6428 int num = 0;
6429
6430 if (goal == 0)
6431 regno = goalreg;
6432 else if (GET_CODE (goal) == REG)
6433 regno = REGNO (goal);
6434 else if (GET_CODE (goal) == MEM)
6435 {
6436 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6437 if (MEM_VOLATILE_P (goal))
6438 return 0;
6439 if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
6440 return 0;
6441 /* An address with side effects must be reexecuted. */
6442 switch (code)
6443 {
6444 case POST_INC:
6445 case PRE_INC:
6446 case POST_DEC:
6447 case PRE_DEC:

--- 22 unchanged lines hidden (view full) ---

6470 /* Scan insns back from INSN, looking for one that copies
6471 a value into or out of GOAL.
6472 Stop and give up if we reach a label. */
6473
6474 while (1)
6475 {
6476 p = PREV_INSN (p);
6477 num++;
6478 if (p == 0 || GET_CODE (p) == CODE_LABEL
6479 || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
6480 return 0;
6481
6482 if (GET_CODE (p) == INSN
6483 /* If we don't want spill regs ... */
6484 && (! (reload_reg_p != 0
6485 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6486 /* ... then ignore insns introduced by reload; they aren't
6487 useful and can cause results in reload_as_needed to be
6488 different from what they were when calculating the need for
6489 spills. If we notice an input-reload insn here, we will
6490 reject it below, but it might hide a usable equivalent.
6491 That makes bad code. It may even abort: perhaps no reg was
6492 spilled for this insn because it was assumed we would find
6493 that equivalent. */
6494 || INSN_UID (p) < reload_first_uid))
6495 {
6496 rtx tem;
6497 pat = single_set (p);
6498
6499 /* First check for something that sets some reg equal to GOAL. */

--- 20 unchanged lines hidden (view full) ---

6520 /* If we are looking for a constant,
6521 and something equivalent to that constant was copied
6522 into a reg, we can use that reg. */
6523 || (goal_const && REG_NOTES (p) != 0
6524 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6525 && ((rtx_equal_p (XEXP (tem, 0), goal)
6526 && (valueno
6527 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6528 || (GET_CODE (SET_DEST (pat)) == REG
6529 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6530 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6531 == MODE_FLOAT)
6532 && GET_CODE (goal) == CONST_INT
6533 && 0 != (goaltry
6534 = operand_subword (XEXP (tem, 0), 0, 0,
6535 VOIDmode))
6536 && rtx_equal_p (goal, goaltry)
6537 && (valtry
6538 = operand_subword (SET_DEST (pat), 0, 0,
6539 VOIDmode))
6540 && (valueno = true_regnum (valtry)) >= 0)))
6541 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6542 NULL_RTX))
6543 && GET_CODE (SET_DEST (pat)) == REG
6544 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6545 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6546 == MODE_FLOAT)
6547 && GET_CODE (goal) == CONST_INT
6548 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6549 VOIDmode))
6550 && rtx_equal_p (goal, goaltry)
6551 && (valtry
6552 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6553 && (valueno = true_regnum (valtry)) >= 0)))
6554 {
6555 if (other >= 0)
6556 {
6557 if (valueno != other)
6558 continue;
6559 }
6560 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6561 continue;
6562 else
6563 {
6564 int i;
6565
6566 for (i = HARD_REGNO_NREGS (valueno, mode) - 1; i >= 0; i--)
6567 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
6568 valueno + i))
6569 break;
6570 if (i >= 0)
6571 continue;
6572 }
6573 value = valtry;
6574 where = p;

--- 25 unchanged lines hidden (view full) ---

6600 return 0;
6601
6602 /* Reject VALUE if it was loaded from GOAL
6603 and is also a register that appears in the address of GOAL. */
6604
6605 if (goal_mem && value == SET_DEST (single_set (where))
6606 && refers_to_regno_for_reload_p (valueno,
6607 (valueno
6608 + HARD_REGNO_NREGS (valueno, mode)),
6609 goal, (rtx*) 0))
6610 return 0;
6611
6612 /* Reject registers that overlap GOAL. */
6613
6614 if (!goal_mem && !goal_const
6615 && regno + (int) HARD_REGNO_NREGS (regno, mode) > valueno
6616 && regno < valueno + (int) HARD_REGNO_NREGS (valueno, mode))
6617 return 0;
6618
6619 nregs = HARD_REGNO_NREGS (regno, mode);
6620 valuenregs = HARD_REGNO_NREGS (valueno, mode);
6621
6622 /* Reject VALUE if it is one of the regs reserved for reloads.
6623 Reload1 knows how to reuse them anyway, and it would get
6624 confused if we allocated one without its knowledge.
6625 (Now that insns introduced by reload are ignored above,
6626 this case shouldn't happen, but I'm not positive.) */
6627
6628 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6629 {

--- 8 unchanged lines hidden (view full) ---

6638
6639 if (reload_reg_p != 0)
6640 {
6641 int i;
6642 for (i = 0; i < n_reloads; i++)
6643 if (rld[i].reg_rtx != 0 && rld[i].in)
6644 {
6645 int regno1 = REGNO (rld[i].reg_rtx);
6646 int nregs1 = HARD_REGNO_NREGS (regno1,
6647 GET_MODE (rld[i].reg_rtx));
6648 if (regno1 < valueno + valuenregs
6649 && regno1 + nregs1 > valueno)
6650 return 0;
6651 }
6652 }
6653
6654 if (goal_mem)
6655 /* We must treat frame pointer as varying here,

--- 7 unchanged lines hidden (view full) ---

6663 while (1)
6664 {
6665 p = PREV_INSN (p);
6666 if (p == where)
6667 return value;
6668
6669 /* Don't trust the conversion past a function call
6670 if either of the two is in a call-clobbered register, or memory. */
6671 if (GET_CODE (p) == CALL_INSN)
6672 {
6673 int i;
6674
6675 if (goal_mem || need_stable_sp)
6676 return 0;
6677
6678 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6679 for (i = 0; i < nregs; ++i)
6680 if (call_used_regs[regno + i])
6681 return 0;
6682
6683 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6684 for (i = 0; i < valuenregs; ++i)
6685 if (call_used_regs[valueno + i])
6686 return 0;
6687#ifdef NON_SAVING_SETJMP
6688 if (NON_SAVING_SETJMP && find_reg_note (p, REG_SETJMP, NULL))
6689 return 0;
6690#endif
6691 }
6692
6693 if (INSN_P (p))
6694 {
6695 pat = PATTERN (p);
6696
6697 /* Watch out for unspec_volatile, and volatile asms. */
6698 if (volatile_insn_p (pat))

--- 6 unchanged lines hidden (view full) ---

6705
6706 if (GET_CODE (pat) == COND_EXEC)
6707 pat = COND_EXEC_CODE (pat);
6708 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6709 {
6710 rtx dest = SET_DEST (pat);
6711 while (GET_CODE (dest) == SUBREG
6712 || GET_CODE (dest) == ZERO_EXTRACT
6713 || GET_CODE (dest) == SIGN_EXTRACT
6714 || GET_CODE (dest) == STRICT_LOW_PART)
6715 dest = XEXP (dest, 0);
6716 if (GET_CODE (dest) == REG)
6717 {
6718 int xregno = REGNO (dest);
6719 int xnregs;
6720 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6721 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6722 else
6723 xnregs = 1;
6724 if (xregno < regno + nregs && xregno + xnregs > regno)
6725 return 0;
6726 if (xregno < valueno + valuenregs
6727 && xregno + xnregs > valueno)
6728 return 0;
6729 if (goal_mem_addr_varies
6730 && reg_overlap_mentioned_for_reload_p (dest, goal))
6731 return 0;
6732 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6733 return 0;
6734 }
6735 else if (goal_mem && GET_CODE (dest) == MEM
6736 && ! push_operand (dest, GET_MODE (dest)))
6737 return 0;
6738 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6739 && reg_equiv_memory_loc[regno] != 0)
6740 return 0;
6741 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6742 return 0;
6743 }
6744 else if (GET_CODE (pat) == PARALLEL)
6745 {
6746 int i;
6747 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6748 {
6749 rtx v1 = XVECEXP (pat, 0, i);
6750 if (GET_CODE (v1) == COND_EXEC)
6751 v1 = COND_EXEC_CODE (v1);
6752 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6753 {
6754 rtx dest = SET_DEST (v1);
6755 while (GET_CODE (dest) == SUBREG
6756 || GET_CODE (dest) == ZERO_EXTRACT
6757 || GET_CODE (dest) == SIGN_EXTRACT
6758 || GET_CODE (dest) == STRICT_LOW_PART)
6759 dest = XEXP (dest, 0);
6760 if (GET_CODE (dest) == REG)
6761 {
6762 int xregno = REGNO (dest);
6763 int xnregs;
6764 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6765 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6766 else
6767 xnregs = 1;
6768 if (xregno < regno + nregs
6769 && xregno + xnregs > regno)
6770 return 0;
6771 if (xregno < valueno + valuenregs
6772 && xregno + xnregs > valueno)
6773 return 0;
6774 if (goal_mem_addr_varies
6775 && reg_overlap_mentioned_for_reload_p (dest,
6776 goal))
6777 return 0;
6778 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6779 return 0;
6780 }
6781 else if (goal_mem && GET_CODE (dest) == MEM
6782 && ! push_operand (dest, GET_MODE (dest)))
6783 return 0;
6784 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6785 && reg_equiv_memory_loc[regno] != 0)
6786 return 0;
6787 else if (need_stable_sp
6788 && push_operand (dest, GET_MODE (dest)))
6789 return 0;
6790 }
6791 }
6792 }
6793
6794 if (GET_CODE (p) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (p))
6795 {
6796 rtx link;
6797
6798 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6799 link = XEXP (link, 1))
6800 {
6801 pat = XEXP (link, 0);
6802 if (GET_CODE (pat) == CLOBBER)
6803 {
6804 rtx dest = SET_DEST (pat);
6805
6806 if (GET_CODE (dest) == REG)
6807 {
6808 int xregno = REGNO (dest);
6809 int xnregs
6810 = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6811
6812 if (xregno < regno + nregs
6813 && xregno + xnregs > regno)
6814 return 0;
6815 else if (xregno < valueno + valuenregs
6816 && xregno + xnregs > valueno)
6817 return 0;
6818 else if (goal_mem_addr_varies
6819 && reg_overlap_mentioned_for_reload_p (dest,
6820 goal))
6821 return 0;
6822 }
6823
6824 else if (goal_mem && GET_CODE (dest) == MEM
6825 && ! push_operand (dest, GET_MODE (dest)))
6826 return 0;
6827 else if (need_stable_sp
6828 && push_operand (dest, GET_MODE (dest)))
6829 return 0;
6830 }
6831 }
6832 }
6833
6834#ifdef AUTO_INC_DEC
6835 /* If this insn auto-increments or auto-decrements
6836 either regno or valueno, return 0 now.
6837 If GOAL is a memory ref and its address is not constant,
6838 and this insn P increments a register used in GOAL, return 0. */
6839 {
6840 rtx link;
6841
6842 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6843 if (REG_NOTE_KIND (link) == REG_INC
6844 && GET_CODE (XEXP (link, 0)) == REG)
6845 {
6846 int incno = REGNO (XEXP (link, 0));
6847 if (incno < regno + nregs && incno >= regno)
6848 return 0;
6849 if (incno < valueno + valuenregs && incno >= valueno)
6850 return 0;
6851 if (goal_mem_addr_varies
6852 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),

--- 57 unchanged lines hidden (view full) ---

6910 return tem;
6911 }
6912 }
6913 }
6914
6915 return 0;
6916}
6917
6918/* Return 1 if register REGNO is the subject of a clobber in insn INSN.
6919 If SETS is nonzero, also consider SETs. */
6920
6921int
6922regno_clobbered_p (unsigned int regno, rtx insn, enum machine_mode mode,
6923 int sets)
6924{
6925 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
6926 unsigned int endregno = regno + nregs;
6927
6928 if ((GET_CODE (PATTERN (insn)) == CLOBBER
6929 || (sets && GET_CODE (PATTERN (insn)) == SET))
6930 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
6931 {
6932 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
6933
6934 return test >= regno && test < endregno;
6935 }
6936
6937 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6938 {
6939 int i = XVECLEN (PATTERN (insn), 0) - 1;
6940
6941 for (; i >= 0; i--)
6942 {
6943 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6944 if ((GET_CODE (elt) == CLOBBER
6945 || (sets && GET_CODE (PATTERN (insn)) == SET))
6946 && GET_CODE (XEXP (elt, 0)) == REG)
6947 {
6948 unsigned int test = REGNO (XEXP (elt, 0));
6949
6950 if (test >= regno && test < endregno)
6951 return 1;
6952 }
6953 }
6954 }
6955
6956 return 0;
6957}
6958
6959/* Find the low part, with mode MODE, of a hard regno RELOADREG. */
6960rtx
6961reload_adjust_reg_for_mode (rtx reloadreg, enum machine_mode mode)
6962{
6963 int regno;
6964
6965 if (GET_MODE (reloadreg) == mode)
6966 return reloadreg;
6967
6968 regno = REGNO (reloadreg);
6969
6970 if (WORDS_BIG_ENDIAN)
6971 regno += HARD_REGNO_NREGS (regno, GET_MODE (reloadreg))
6972 - HARD_REGNO_NREGS (regno, mode);
6973
6974 return gen_rtx_REG (mode, regno);
6975}
6976
6977static const char *const reload_when_needed_name[] =
6978{
6979 "RELOAD_FOR_INPUT",
6980 "RELOAD_FOR_OUTPUT",
6981 "RELOAD_FOR_INSN",
6982 "RELOAD_FOR_INPUT_ADDRESS",
6983 "RELOAD_FOR_INPADDR_ADDRESS",
6984 "RELOAD_FOR_OUTPUT_ADDRESS",
6985 "RELOAD_FOR_OUTADDR_ADDRESS",
6986 "RELOAD_FOR_OPERAND_ADDRESS",
6987 "RELOAD_FOR_OPADDR_ADDR",
6988 "RELOAD_OTHER",
6989 "RELOAD_FOR_OTHER_ADDRESS"
6990};
6991
6992static const char * const reg_class_names[] = REG_CLASS_NAMES;
6993
6994/* These functions are used to print the variables set by 'find_reloads' */
6995
6996void
6997debug_reload_to_stream (FILE *f)
6998{
6999 int r;
7000 const char *prefix;
7001

--- 94 unchanged lines hidden ---