Deleted Added
sdiff udiff text old ( 146906 ) new ( 169699 )
full compact
1/* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation,
4 Inc.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 2, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING. If not, write to the Free
20Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2102110-1301, USA. */
22
23/* This file contains subroutines used only from the file reload1.c.
24 It knows how to scan one insn for operands and values
25 that need to be copied into registers to make valid code.
26 It also finds other operands and values which are valid
27 but for which equivalent values in registers exist and
28 ought to be used instead.
29
30 Before processing the first insn of the function, call `init_reload'.
31 init_reload actually has to be called earlier anyway.
32
33 To scan an insn, call `find_reloads'. This does two things:
34 1. sets up tables describing which values must be reloaded
35 for this insn, and what kind of hard regs they must be reloaded into;
36 2. optionally record the locations where those values appear in
37 the data, so they can be replaced properly later.
38 This is done only if the second arg to `find_reloads' is nonzero.
39

--- 55 unchanged lines hidden (view full) ---

95#include "rtl.h"
96#include "tm_p.h"
97#include "insn-config.h"
98#include "expr.h"
99#include "optabs.h"
100#include "recog.h"
101#include "reload.h"
102#include "regs.h"
103#include "addresses.h"
104#include "hard-reg-set.h"
105#include "flags.h"
106#include "real.h"
107#include "output.h"
108#include "function.h"
109#include "toplev.h"
110#include "params.h"
111#include "target.h"
112
113/* True if X is a constant that can be forced into the constant pool. */
114#define CONST_POOL_OK_P(X) \
115 (CONSTANT_P (X) \
116 && GET_CODE (X) != HIGH \
117 && !targetm.cannot_force_const_mem (X))
118
119/* True if C is a non-empty register class that has too few registers
120 to be safely used as a reload target class. */
121#define SMALL_REGISTER_CLASS_P(C) \
122 (reg_class_size [(C)] == 1 \
123 || (reg_class_size [(C)] >= 1 && CLASS_LIKELY_SPILLED_P (C)))
124
125
126/* All reloads of the current insn are recorded here. See reload.h for
127 comments. */
128int n_reloads;
129struct reload rld[MAX_RELOADS];
130
131/* All the "earlyclobber" operands of the current insn
132 are recorded here. */

--- 74 unchanged lines hidden (view full) ---

207static int subst_reg_equivs_changed;
208
209/* On return from push_reload, holds the reload-number for the OUT
210 operand, which can be different for that from the input operand. */
211static int output_reloadnum;
212
213 /* Compare two RTX's. */
214#define MATCHES(x, y) \
215 (x == y || (x != 0 && (REG_P (x) \
216 ? REG_P (y) && REGNO (x) == REGNO (y) \
217 : rtx_equal_p (x, y) && ! side_effects_p (x))))
218
219 /* Indicates if two reloads purposes are for similar enough things that we
220 can merge their reloads. */
221#define MERGABLE_RELOADS(when1, when2, op1, op2) \
222 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
223 || ((when1) == (when2) && (op1) == (op2)) \
224 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \

--- 14 unchanged lines hidden (view full) ---

239 use. */
240#define ADDR_TYPE(type) \
241 ((type) == RELOAD_FOR_INPUT_ADDRESS \
242 ? RELOAD_FOR_INPADDR_ADDRESS \
243 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
244 ? RELOAD_FOR_OUTADDR_ADDRESS \
245 : (type)))
246
247static int push_secondary_reload (int, rtx, int, int, enum reg_class,
248 enum machine_mode, enum reload_type,
249 enum insn_code *, secondary_reload_info *);
250static enum reg_class find_valid_class (enum machine_mode, enum machine_mode,
251 int, unsigned int);
252static int reload_inner_reg_of_subreg (rtx, enum machine_mode, int);
253static void push_replacement (rtx *, int, enum machine_mode);
254static void dup_replacements (rtx *, rtx *);
255static void combine_reloads (void);
256static int find_reusable_reload (rtx *, rtx, enum reg_class,
257 enum reload_type, int, int);
258static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
259 enum machine_mode, enum reg_class, int, int);

--- 5 unchanged lines hidden (view full) ---

265 int *);
266static rtx make_memloc (rtx, int);
267static int maybe_memory_address_p (enum machine_mode, rtx, rtx *);
268static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
269 int, enum reload_type, int, rtx);
270static rtx subst_reg_equivs (rtx, rtx);
271static rtx subst_indexed_address (rtx);
272static void update_auto_inc_notes (rtx, int, int);
273static int find_reloads_address_1 (enum machine_mode, rtx, int,
274 enum rtx_code, enum rtx_code, rtx *,
275 int, enum reload_type,int, rtx);
276static void find_reloads_address_part (rtx, rtx *, enum reg_class,
277 enum machine_mode, int,
278 enum reload_type, int);
279static rtx find_reloads_subreg_address (rtx, int, int, enum reload_type,
280 int, rtx);
281static void copy_replacements_1 (rtx *, rtx *, int);
282static int find_inc_amount (rtx, rtx);
283static int refers_to_mem_for_reload_p (rtx);
284static int refers_to_regno_for_reload_p (unsigned int, unsigned int,
285 rtx, rtx *);
286
287/* Add NEW to reg_equiv_alt_mem_list[REGNO] if it's not present in the
288 list yet. */
289
290static void
291push_reg_equiv_alt_mem (int regno, rtx mem)
292{
293 rtx it;
294
295 for (it = reg_equiv_alt_mem_list [regno]; it; it = XEXP (it, 1))
296 if (rtx_equal_p (XEXP (it, 0), mem))
297 return;
298
299 reg_equiv_alt_mem_list [regno]
300 = alloc_EXPR_LIST (REG_EQUIV, mem,
301 reg_equiv_alt_mem_list [regno]);
302}
303
304/* Determine if any secondary reloads are needed for loading (if IN_P is
305 nonzero) or storing (if IN_P is zero) X to or from a reload register of
306 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
307 are needed, push them.
308
309 Return the reload number of the secondary reload we made, or -1 if
310 we didn't need one. *PICODE is set to the insn_code to use if we do
311 need a secondary reload. */
312
313static int
314push_secondary_reload (int in_p, rtx x, int opnum, int optional,
315 enum reg_class reload_class,
316 enum machine_mode reload_mode, enum reload_type type,
317 enum insn_code *picode, secondary_reload_info *prev_sri)
318{
319 enum reg_class class = NO_REGS;
320 enum reg_class scratch_class;
321 enum machine_mode mode = reload_mode;
322 enum insn_code icode = CODE_FOR_nothing;
323 enum insn_code t_icode = CODE_FOR_nothing;
324 enum reload_type secondary_type;
325 int s_reload, t_reload = -1;
326 const char *scratch_constraint;
327 char letter;
328 secondary_reload_info sri;
329
330 if (type == RELOAD_FOR_INPUT_ADDRESS
331 || type == RELOAD_FOR_OUTPUT_ADDRESS
332 || type == RELOAD_FOR_INPADDR_ADDRESS
333 || type == RELOAD_FOR_OUTADDR_ADDRESS)
334 secondary_type = type;
335 else
336 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;

--- 11 unchanged lines hidden (view full) ---

348 }
349
350 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
351 is still a pseudo-register by now, it *must* have an equivalent MEM
352 but we don't want to assume that), use that equivalent when seeing if
353 a secondary reload is needed since whether or not a reload is needed
354 might be sensitive to the form of the MEM. */
355
356 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
357 && reg_equiv_mem[REGNO (x)] != 0)
358 x = reg_equiv_mem[REGNO (x)];
359
360 sri.icode = CODE_FOR_nothing;
361 sri.prev_sri = prev_sri;
362 class = targetm.secondary_reload (in_p, x, reload_class, reload_mode, &sri);
363 icode = sri.icode;
364
365 /* If we don't need any secondary registers, done. */
366 if (class == NO_REGS && icode == CODE_FOR_nothing)
367 return -1;
368
369 if (class != NO_REGS)
370 t_reload = push_secondary_reload (in_p, x, opnum, optional, class,
371 reload_mode, type, &t_icode, &sri);
372
373 /* If we will be using an insn, the secondary reload is for a
374 scratch register. */
375
376 if (icode != CODE_FOR_nothing)
377 {
378 /* If IN_P is nonzero, the reload register will be the output in
379 operand 0. If IN_P is zero, the reload register will be the input
380 in operand 1. Outputs should have an initial "=", which we must
381 skip. */
382
383 /* ??? It would be useful to be able to handle only two, or more than
384 three, operands, but for now we can only handle the case of having
385 exactly three: output, input and one temp/scratch. */
386 gcc_assert (insn_data[(int) icode].n_operands == 3);
387
388 /* ??? We currently have no way to represent a reload that needs
389 an icode to reload from an intermediate tertiary reload register.
390 We should probably have a new field in struct reload to tag a
391 chain of scratch operand reloads onto. */
392 gcc_assert (class == NO_REGS);
393
394 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
395 gcc_assert (*scratch_constraint == '=');
396 scratch_constraint++;
397 if (*scratch_constraint == '&')
398 scratch_constraint++;
399 letter = *scratch_constraint;
400 scratch_class = (letter == 'r' ? GENERAL_REGS
401 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) letter,
402 scratch_constraint));
403
404 class = scratch_class;
405 mode = insn_data[(int) icode].operand[2].mode;
406 }
407
408 /* This case isn't valid, so fail. Reload is allowed to use the same
409 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
410 in the case of a secondary register, we actually need two different
411 registers for correct code. We fail here to prevent the possibility of
412 silently generating incorrect code later.
413
414 The convention is that secondary input reloads are valid only if the
415 secondary_class is different from class. If you have such a case, you
416 can not use secondary reloads, you must work around the problem some
417 other way.
418
419 Allow this when a reload_in/out pattern is being used. I.e. assume
420 that the generated code handles this case. */
421
422 gcc_assert (!in_p || class != reload_class || icode != CODE_FOR_nothing
423 || t_icode != CODE_FOR_nothing);
424
425 /* See if we can reuse an existing secondary reload. */
426 for (s_reload = 0; s_reload < n_reloads; s_reload++)
427 if (rld[s_reload].secondary_p
428 && (reg_class_subset_p (class, rld[s_reload].class)
429 || reg_class_subset_p (rld[s_reload].class, class))
430 && ((in_p && rld[s_reload].inmode == mode)
431 || (! in_p && rld[s_reload].outmode == mode))
432 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
433 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
434 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
435 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
436 && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
437 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
438 opnum, rld[s_reload].opnum))
439 {
440 if (in_p)
441 rld[s_reload].inmode = mode;
442 if (! in_p)
443 rld[s_reload].outmode = mode;
444

--- 56 unchanged lines hidden (view full) ---

501 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
502 get_secondary_mem (x, mode, opnum, type);
503#endif
504 }
505
506 *picode = icode;
507 return s_reload;
508}
509
510/* If a secondary reload is needed, return its class. If both an intermediate
511 register and a scratch register is needed, we return the class of the
512 intermediate register. */
513enum reg_class
514secondary_reload_class (bool in_p, enum reg_class class,
515 enum machine_mode mode, rtx x)
516{
517 enum insn_code icode;
518 secondary_reload_info sri;
519
520 sri.icode = CODE_FOR_nothing;
521 sri.prev_sri = NULL;
522 class = targetm.secondary_reload (in_p, x, class, mode, &sri);
523 icode = sri.icode;
524
525 /* If there are no secondary reloads at all, we return NO_REGS.
526 If an intermediate register is needed, we return its class. */
527 if (icode == CODE_FOR_nothing || class != NO_REGS)
528 return class;
529
530 /* No intermediate register is needed, but we have a special reload
531 pattern, which we assume for now needs a scratch register. */
532 return scratch_reload_class (icode);
533}
534
535/* ICODE is the insn_code of a reload pattern. Check that it has exactly
536 three operands, verify that operand 2 is an output operand, and return
537 its register class.
538 ??? We'd like to be able to handle any pattern with at least 2 operands,
539 for zero or more scratch registers, but that needs more infrastructure. */
540enum reg_class
541scratch_reload_class (enum insn_code icode)
542{
543 const char *scratch_constraint;
544 char scratch_letter;
545 enum reg_class class;
546
547 gcc_assert (insn_data[(int) icode].n_operands == 3);
548 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
549 gcc_assert (*scratch_constraint == '=');
550 scratch_constraint++;
551 if (*scratch_constraint == '&')
552 scratch_constraint++;
553 scratch_letter = *scratch_constraint;
554 if (scratch_letter == 'r')
555 return GENERAL_REGS;
556 class = REG_CLASS_FROM_CONSTRAINT ((unsigned char) scratch_letter,
557 scratch_constraint);
558 gcc_assert (class != NO_REGS);
559 return class;
560}
561
562#ifdef SECONDARY_MEMORY_NEEDED
563
564/* Return a memory location that will be used to copy X in mode MODE.
565 If we haven't already made a location for this mode in this insn,
566 call find_reloads_address on the location being returned. */
567
568rtx

--- 69 unchanged lines hidden (view full) ---

638
639void
640clear_secondary_mem (void)
641{
642 memset (secondary_memlocs, 0, sizeof secondary_memlocs);
643}
644#endif /* SECONDARY_MEMORY_NEEDED */
645
646
647/* Find the largest class which has at least one register valid in
648 mode INNER, and which for every such register, that register number
649 plus N is also valid in OUTER (if in range) and is cheap to move
650 into REGNO. Such a class must exist. */
651
652static enum reg_class
653find_valid_class (enum machine_mode outer ATTRIBUTE_UNUSED,
654 enum machine_mode inner ATTRIBUTE_UNUSED, int n,
655 unsigned int dest_regno ATTRIBUTE_UNUSED)
656{
657 int best_cost = -1;
658 int class;
659 int regno;
660 enum reg_class best_class = NO_REGS;
661 enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
662 unsigned int best_size = 0;
663 int cost;
664
665 for (class = 1; class < N_REG_CLASSES; class++)
666 {
667 int bad = 0;
668 int good = 0;
669 for (regno = 0; regno < FIRST_PSEUDO_REGISTER - n && ! bad; regno++)
670 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno))
671 {
672 if (HARD_REGNO_MODE_OK (regno, inner))
673 {
674 good = 1;
675 if (! TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
676 || ! HARD_REGNO_MODE_OK (regno + n, outer))
677 bad = 1;
678 }
679 }
680
681 if (bad || !good)
682 continue;
683 cost = REGISTER_MOVE_COST (outer, class, dest_class);
684
685 if ((reg_class_size[class] > best_size
686 && (best_cost < 0 || best_cost >= cost))
687 || best_cost > cost)
688 {
689 best_class = class;
690 best_size = reg_class_size[class];
691 best_cost = REGISTER_MOVE_COST (outer, class, dest_class);
692 }
693 }
694
695 gcc_assert (best_size != 0);
696
697 return best_class;
698}
699
700/* Return the number of a previously made reload that can be combined with
701 a new one, or n_reloads if none of the existing reloads can be used.
702 OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
703 push_reload, they determine the kind of the new reload that we try to

--- 29 unchanged lines hidden (view full) ---

733 && (rld[i].reg_rtx == 0
734 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
735 true_regnum (rld[i].reg_rtx)))
736 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
737 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
738 || (out != 0 && MATCHES (rld[i].out, out)
739 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
740 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
741 && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
742 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
743 return i;
744
745 /* Reloading a plain reg for input can match a reload to postincrement
746 that reg, since the postincrement's value is the right value.
747 Likewise, it can match a preincrement reload, since we regard
748 the preincrementation as happening before any ref in this insn
749 to that register. */
750 for (i = 0; i < n_reloads; i++)
751 if ((reg_class_subset_p (class, rld[i].class)
752 || reg_class_subset_p (rld[i].class, class))
753 /* If the existing reload has a register, it must fit our
754 class. */
755 && (rld[i].reg_rtx == 0
756 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
757 true_regnum (rld[i].reg_rtx)))
758 && out == 0 && rld[i].out == 0 && rld[i].in != 0
759 && ((REG_P (in)
760 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
761 && MATCHES (XEXP (rld[i].in, 0), in))
762 || (REG_P (rld[i].in)
763 && GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
764 && MATCHES (XEXP (in, 0), rld[i].in)))
765 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
766 && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
767 && MERGABLE_RELOADS (type, rld[i].when_needed,
768 opnum, rld[i].opnum))
769 {
770 /* Make sure reload_in ultimately has the increment,
771 not the plain register. */
772 if (REG_P (in))
773 *p_in = rld[i].in;
774 return i;
775 }
776 return n_reloads;
777}
778
779/* Return nonzero if X is a SUBREG which will require reloading of its
780 SUBREG_REG expression. */

--- 10 unchanged lines hidden (view full) ---

791 inner = SUBREG_REG (x);
792
793 /* If INNER is a constant or PLUS, then INNER must be reloaded. */
794 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
795 return 1;
796
797 /* If INNER is not a hard register, then INNER will not need to
798 be reloaded. */
799 if (!REG_P (inner)
800 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
801 return 0;
802
803 /* If INNER is not ok for MODE, then INNER will need reloading. */
804 if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
805 return 1;
806
807 /* If the outer part is a word or smaller, INNER larger than a
808 word and the number of regs for INNER is not the same as the
809 number of words in INNER, then INNER will need reloading. */
810 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
811 && output
812 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
813 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
814 != (int) hard_regno_nregs[REGNO (inner)][GET_MODE (inner)]));
815}
816
817/* Return nonzero if IN can be reloaded into REGNO with mode MODE without
818 requiring an extra reload register. The caller has already found that
819 IN contains some reference to REGNO, so check that we can produce the
820 new value in a single step. E.g. if we have
821 (set (reg r13) (plus (reg r13) (const int 1))), and there is an
822 instruction that adds one to a register, this should succeed.

--- 12 unchanged lines hidden (view full) ---

835 int r = 0;
836 struct recog_data save_recog_data;
837
838 /* For matching constraints, we often get notional input reloads where
839 we want to use the original register as the reload register. I.e.
840 technically this is a non-optional input-output reload, but IN is
841 already a valid register, and has been chosen as the reload register.
842 Speed this up, since it trivially works. */
843 if (REG_P (in))
844 return 1;
845
846 /* To test MEMs properly, we'd have to take into account all the reloads
847 that are already scheduled, which can become quite complicated.
848 And since we've already handled address reloads for this MEM, it
849 should always succeed anyway. */
850 if (MEM_P (in))
851 return 1;
852
853 /* If we can make a simple SET insn that does the job, everything should
854 be fine. */
855 dst = gen_rtx_REG (mode, regno);
856 test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
857 save_recog_data = recog_data;
858 if (recog_memoized (test_insn) >= 0)

--- 59 unchanged lines hidden (view full) ---

918 inmode = GET_MODE (in);
919 if (outmode == VOIDmode && out != 0)
920 outmode = GET_MODE (out);
921
922 /* If IN is a pseudo register everywhere-equivalent to a constant, and
923 it is not in a hard register, reload straight from the constant,
924 since we want to get rid of such pseudo registers.
925 Often this is done earlier, but not always in find_reloads_address. */
926 if (in != 0 && REG_P (in))
927 {
928 int regno = REGNO (in);
929
930 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
931 && reg_equiv_constant[regno] != 0)
932 in = reg_equiv_constant[regno];
933 }
934
935 /* Likewise for OUT. Of course, OUT will never be equivalent to
936 an actual constant, but it might be equivalent to a memory location
937 (in the case of a parameter). */
938 if (out != 0 && REG_P (out))
939 {
940 int regno = REGNO (out);
941
942 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
943 && reg_equiv_constant[regno] != 0)
944 out = reg_equiv_constant[regno];
945 }
946
947 /* If we have a read-write operand with an address side-effect,
948 change either IN or OUT so the side-effect happens only once. */
949 if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
950 switch (GET_CODE (XEXP (in, 0)))
951 {
952 case POST_INC: case POST_DEC: case POST_MODIFY:
953 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
954 break;
955
956 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
957 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));

--- 36 unchanged lines hidden (view full) ---

994 if (in != 0 && GET_CODE (in) == SUBREG
995 && (subreg_lowpart_p (in) || strict_low)
996#ifdef CANNOT_CHANGE_MODE_CLASS
997 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, class)
998#endif
999 && (CONSTANT_P (SUBREG_REG (in))
1000 || GET_CODE (SUBREG_REG (in)) == PLUS
1001 || strict_low
1002 || (((REG_P (SUBREG_REG (in))
1003 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
1004 || MEM_P (SUBREG_REG (in)))
1005 && ((GET_MODE_SIZE (inmode)
1006 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1007#ifdef LOAD_EXTEND_OP
1008 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1009 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1010 <= UNITS_PER_WORD)
1011 && (GET_MODE_SIZE (inmode)
1012 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1013 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
1014 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != UNKNOWN)
1015#endif
1016#ifdef WORD_REGISTER_OPERATIONS
1017 || ((GET_MODE_SIZE (inmode)
1018 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1019 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1020 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1021 / UNITS_PER_WORD)))
1022#endif
1023 ))
1024 || (REG_P (SUBREG_REG (in))
1025 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1026 /* The case where out is nonzero
1027 is handled differently in the following statement. */
1028 && (out == 0 || subreg_lowpart_p (in))
1029 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1030 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1031 > UNITS_PER_WORD)
1032 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1033 / UNITS_PER_WORD)
1034 != (int) hard_regno_nregs[REGNO (SUBREG_REG (in))]
1035 [GET_MODE (SUBREG_REG (in))]))
1036 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1037 || (secondary_reload_class (1, class, inmode, in) != NO_REGS
1038 && (secondary_reload_class (1, class, GET_MODE (SUBREG_REG (in)),
1039 SUBREG_REG (in))
1040 == NO_REGS))
1041#ifdef CANNOT_CHANGE_MODE_CLASS
1042 || (REG_P (SUBREG_REG (in))
1043 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1044 && REG_CANNOT_CHANGE_MODE_P
1045 (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
1046#endif
1047 ))
1048 {
1049 in_subreg_loc = inloc;
1050 inloc = &SUBREG_REG (in);
1051 in = *inloc;
1052#if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1053 if (MEM_P (in))
1054 /* This is supposed to happen only for paradoxical subregs made by
1055 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1056 gcc_assert (GET_MODE_SIZE (GET_MODE (in)) <= GET_MODE_SIZE (inmode));
1057#endif
1058 inmode = GET_MODE (in);
1059 }
1060
1061 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1062 either M1 is not valid for R or M2 is wider than a word but we only
1063 need one word to store an M2-sized quantity in R.
1064
1065 However, we must reload the inner reg *as well as* the subreg in
1066 that case. */
1067
1068 /* Similar issue for (SUBREG constant ...) if it was not handled by the
1069 code above. This can happen if SUBREG_BYTE != 0. */
1070
1071 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, 0))
1072 {
1073 enum reg_class in_class = class;
1074
1075 if (REG_P (SUBREG_REG (in)))
1076 in_class
1077 = find_valid_class (inmode, GET_MODE (SUBREG_REG (in)),
1078 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1079 GET_MODE (SUBREG_REG (in)),
1080 SUBREG_BYTE (in),
1081 GET_MODE (in)),
1082 REGNO (SUBREG_REG (in)));
1083
1084 /* This relies on the fact that emit_reload_insns outputs the
1085 instructions for input reloads of type RELOAD_OTHER in the same

--- 13 unchanged lines hidden (view full) ---

1099 and in that case the constraint should label it input-output.) */
1100 if (out != 0 && GET_CODE (out) == SUBREG
1101 && (subreg_lowpart_p (out) || strict_low)
1102#ifdef CANNOT_CHANGE_MODE_CLASS
1103 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, class)
1104#endif
1105 && (CONSTANT_P (SUBREG_REG (out))
1106 || strict_low
1107 || (((REG_P (SUBREG_REG (out))
1108 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1109 || MEM_P (SUBREG_REG (out)))
1110 && ((GET_MODE_SIZE (outmode)
1111 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1112#ifdef WORD_REGISTER_OPERATIONS
1113 || ((GET_MODE_SIZE (outmode)
1114 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1115 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1116 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1117 / UNITS_PER_WORD)))
1118#endif
1119 ))
1120 || (REG_P (SUBREG_REG (out))
1121 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1122 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1123 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1124 > UNITS_PER_WORD)
1125 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1126 / UNITS_PER_WORD)
1127 != (int) hard_regno_nregs[REGNO (SUBREG_REG (out))]
1128 [GET_MODE (SUBREG_REG (out))]))
1129 || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
1130 || (secondary_reload_class (0, class, outmode, out) != NO_REGS
1131 && (secondary_reload_class (0, class, GET_MODE (SUBREG_REG (out)),
1132 SUBREG_REG (out))
1133 == NO_REGS))
1134#ifdef CANNOT_CHANGE_MODE_CLASS
1135 || (REG_P (SUBREG_REG (out))
1136 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1137 && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1138 GET_MODE (SUBREG_REG (out)),
1139 outmode))
1140#endif
1141 ))
1142 {
1143 out_subreg_loc = outloc;
1144 outloc = &SUBREG_REG (out);
1145 out = *outloc;
1146#if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1147 gcc_assert (!MEM_P (out)
1148 || GET_MODE_SIZE (GET_MODE (out))
1149 <= GET_MODE_SIZE (outmode));
1150#endif
1151 outmode = GET_MODE (out);
1152 }
1153
1154 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1155 either M1 is not valid for R or M2 is wider than a word but we only
1156 need one word to store an M2-sized quantity in R.
1157

--- 5 unchanged lines hidden (view full) ---

1163 /* This relies on the fact that emit_reload_insns outputs the
1164 instructions for output reloads of type RELOAD_OTHER in reverse
1165 order of the reloads. Thus if the outer reload is also of type
1166 RELOAD_OTHER, we are guaranteed that this inner reload will be
1167 output after the outer reload. */
1168 dont_remove_subreg = 1;
1169 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1170 &SUBREG_REG (out),
1171 find_valid_class (outmode, GET_MODE (SUBREG_REG (out)),
1172 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1173 GET_MODE (SUBREG_REG (out)),
1174 SUBREG_BYTE (out),
1175 GET_MODE (out)),
1176 REGNO (SUBREG_REG (out))),
1177 VOIDmode, VOIDmode, 0, 0,
1178 opnum, RELOAD_OTHER);
1179 }
1180
1181 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1182 if (in != 0 && out != 0 && MEM_P (out)
1183 && (REG_P (in) || MEM_P (in))
1184 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1185 dont_share = 1;
1186
1187 /* If IN is a SUBREG of a hard register, make a new REG. This
1188 simplifies some of the cases below. */
1189
1190 if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
1191 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1192 && ! dont_remove_subreg)
1193 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1194
1195 /* Similarly for OUT. */
1196 if (out != 0 && GET_CODE (out) == SUBREG
1197 && REG_P (SUBREG_REG (out))
1198 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1199 && ! dont_remove_subreg)
1200 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1201
1202 /* Narrow down the class of register wanted if that is
1203 desirable on this machine for efficiency. */
1204 {
1205 enum reg_class preferred_class = class;
1206
1207 if (in != 0)
1208 preferred_class = PREFERRED_RELOAD_CLASS (in, class);
1209
1210 /* Output reloads may need analogous treatment, different in detail. */
1211#ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1212 if (out != 0)
1213 preferred_class = PREFERRED_OUTPUT_RELOAD_CLASS (out, preferred_class);
1214#endif
1215
1216 /* Discard what the target said if we cannot do it. */
1217 if (preferred_class != NO_REGS
1218 || (optional && type == RELOAD_FOR_OUTPUT))
1219 class = preferred_class;
1220 }
1221
1222 /* Make sure we use a class that can handle the actual pseudo
1223 inside any subreg. For example, on the 386, QImode regs
1224 can appear within SImode subregs. Although GENERAL_REGS
1225 can handle SImode, QImode needs a smaller class. */
1226#ifdef LIMIT_RELOAD_CLASS
1227 if (in_subreg_loc)
1228 class = LIMIT_RELOAD_CLASS (inmode, class);
1229 else if (in != 0 && GET_CODE (in) == SUBREG)

--- 11 unchanged lines hidden (view full) ---

1241 {
1242 enum machine_mode mode;
1243 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1244 mode = inmode;
1245 else
1246 mode = outmode;
1247 if (mode == VOIDmode)
1248 {
1249 error_for_asm (this_insn, "cannot reload integer constant "
1250 "operand in %<asm%>");
1251 mode = word_mode;
1252 if (in != 0)
1253 inmode = word_mode;
1254 if (out != 0)
1255 outmode = word_mode;
1256 }
1257 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1258 if (HARD_REGNO_MODE_OK (i, mode)
1259 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1260 {
1261 int nregs = hard_regno_nregs[i][mode];
1262
1263 int j;
1264 for (j = 1; j < nregs; j++)
1265 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1266 break;
1267 if (j == nregs)
1268 break;
1269 }
1270 if (i == FIRST_PSEUDO_REGISTER)
1271 {
1272 error_for_asm (this_insn, "impossible register constraint "
1273 "in %<asm%>");
1274 /* Avoid further trouble with this insn. */
1275 PATTERN (this_insn) = gen_rtx_USE (VOIDmode, const0_rtx);
1276 /* We used to continue here setting class to ALL_REGS, but it triggers
1277 sanity check on i386 for:
1278 void foo(long double d)
1279 {
1280 asm("" :: "a" (d));
1281 }
1282 Returning zero here ought to be safe as we take care in
1283 find_reloads to not process the reloads when instruction was
1284 replaced by USE. */
1285
1286 return 0;
1287 }
1288 }
1289
1290 /* Optional output reloads are always OK even if we have no register class,
1291 since the function of these reloads is only to have spill_reg_store etc.
1292 set, so that the storing insn can be deleted later. */
1293 gcc_assert (class != NO_REGS
1294 || (optional != 0 && type == RELOAD_FOR_OUTPUT));
1295
1296 i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
1297
1298 if (i == n_reloads)
1299 {
1300 /* See if we need a secondary reload register to move between CLASS
1301 and IN or CLASS and OUT. Get the icode and push any required reloads
1302 needed for each of them if so. */
1303
1304 if (in != 0)
1305 secondary_in_reload
1306 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1307 &secondary_in_icode, NULL);
1308 if (out != 0 && GET_CODE (out) != SCRATCH)
1309 secondary_out_reload
1310 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1311 type, &secondary_out_icode, NULL);
1312
1313 /* We found no existing reload suitable for re-use.
1314 So add an additional reload. */
1315
1316#ifdef SECONDARY_MEMORY_NEEDED
1317 /* If a memory location is needed for the copy, make one. */
1318 if (in != 0
1319 && (REG_P (in)
1320 || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
1321 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
1322 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
1323 class, inmode))
1324 get_secondary_mem (in, inmode, opnum, type);
1325#endif
1326
1327 i = n_reloads;
1328 rld[i].in = in;

--- 13 unchanged lines hidden (view full) ---

1342 rld[i].secondary_out_reload = secondary_out_reload;
1343 rld[i].secondary_in_icode = secondary_in_icode;
1344 rld[i].secondary_out_icode = secondary_out_icode;
1345 rld[i].secondary_p = 0;
1346
1347 n_reloads++;
1348
1349#ifdef SECONDARY_MEMORY_NEEDED
1350 if (out != 0
1351 && (REG_P (out)
1352 || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
1353 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1354 && SECONDARY_MEMORY_NEEDED (class,
1355 REGNO_REG_CLASS (reg_or_subregno (out)),
1356 outmode))
1357 get_secondary_mem (out, outmode, opnum, type);
1358#endif
1359 }
1360 else

--- 78 unchanged lines hidden (view full) ---

1439 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1440 {
1441 out = 0;
1442 rld[i].out = 0;
1443 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1444 /* If we did not find a nonzero amount-to-increment-by,
1445 that contradicts the belief that IN is being incremented
1446 in an address in this insn. */
1447 gcc_assert (rld[i].inc != 0);
1448 }
1449#endif
1450
1451 /* If we will replace IN and OUT with the reload-reg,
1452 record where they are located so that substitution need
1453 not do a tree walk. */
1454
1455 if (replace_reloads)

--- 31 unchanged lines hidden (view full) ---

1487 rld[i].class, i,
1488 earlyclobber_operand_p (out));
1489
1490 /* If the outgoing register already contains the same value
1491 as the incoming one, we can dispense with loading it.
1492 The easiest way to tell the caller that is to give a phony
1493 value for the incoming operand (same as outgoing one). */
1494 if (rld[i].reg_rtx == out
1495 && (REG_P (in) || CONSTANT_P (in))
1496 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1497 static_reload_reg_p, i, inmode))
1498 rld[i].in = out;
1499 }
1500
1501 /* If this is an input reload and the operand contains a register that
1502 dies in this insn and is used nowhere else, see if it is the right class
1503 to be used for this reload. Use it if so. (This occurs most commonly
1504 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1505 this if it is also an output reload that mentions the register unless
1506 the output is a SUBREG that clobbers an entire register.
1507
1508 Note that the operand might be one of the spill regs, if it is a
1509 pseudo reg and we are in a block where spilling has not taken place.
1510 But if there is no spilling in this block, that is OK.
1511 An explicitly used hard reg cannot be a spill reg. */
1512
1513 if (rld[i].reg_rtx == 0 && in != 0 && hard_regs_live_known)
1514 {
1515 rtx note;
1516 int regno;
1517 enum machine_mode rel_mode = inmode;
1518
1519 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1520 rel_mode = outmode;
1521
1522 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1523 if (REG_NOTE_KIND (note) == REG_DEAD
1524 && REG_P (XEXP (note, 0))
1525 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1526 && reg_mentioned_p (XEXP (note, 0), in)
1527 /* Check that we don't use a hardreg for an uninitialized
1528 pseudo. See also find_dummy_reload(). */
1529 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1530 || ! bitmap_bit_p (ENTRY_BLOCK_PTR->il.rtl->global_live_at_end,
1531 ORIGINAL_REGNO (XEXP (note, 0))))
1532 && ! refers_to_regno_for_reload_p (regno,
1533 (regno
1534 + hard_regno_nregs[regno]
1535 [rel_mode]),
1536 PATTERN (this_insn), inloc)
1537 /* If this is also an output reload, IN cannot be used as
1538 the reload register if it is set in this insn unless IN
1539 is also OUT. */
1540 && (out == 0 || in == out
1541 || ! hard_reg_set_here_p (regno,
1542 (regno
1543 + hard_regno_nregs[regno]
1544 [rel_mode]),
1545 PATTERN (this_insn)))
1546 /* ??? Why is this code so different from the previous?
1547 Is there any simple coherent way to describe the two together?
1548 What's going on here. */
1549 && (in != out
1550 || (GET_CODE (in) == SUBREG
1551 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1552 / UNITS_PER_WORD)
1553 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1554 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1555 /* Make sure the operand fits in the reg that dies. */
1556 && (GET_MODE_SIZE (rel_mode)
1557 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1558 && HARD_REGNO_MODE_OK (regno, inmode)
1559 && HARD_REGNO_MODE_OK (regno, outmode))
1560 {
1561 unsigned int offs;
1562 unsigned int nregs = MAX (hard_regno_nregs[regno][inmode],
1563 hard_regno_nregs[regno][outmode]);
1564
1565 for (offs = 0; offs < nregs; offs++)
1566 if (fixed_regs[regno + offs]
1567 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1568 regno + offs))
1569 break;
1570
1571 if (offs == nregs
1572 && (! (refers_to_regno_for_reload_p
1573 (regno, (regno + hard_regno_nregs[regno][inmode]),
1574 in, (rtx *)0))
1575 || can_reload_into (in, regno, inmode)))
1576 {
1577 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1578 break;
1579 }
1580 }
1581 }

--- 178 unchanged lines hidden (view full) ---

1760 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1761 rld[i].in)
1762 /* However, if the input is a register that appears inside
1763 the output, then we also can't share.
1764 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1765 If the same reload reg is used for both reg 69 and the
1766 result to be stored in memory, then that result
1767 will clobber the address of the memory ref. */
1768 && ! (REG_P (rld[i].in)
1769 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1770 rld[output_reload].out))))
1771 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1772 rld[i].when_needed != RELOAD_FOR_INPUT)
1773 && (reg_class_size[(int) rld[i].class]
1774 || SMALL_REGISTER_CLASSES)
1775 /* We will allow making things slightly worse by combining an
1776 input and an output, but no worse than that. */

--- 52 unchanged lines hidden (view full) ---

1829 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1830 return;
1831
1832 /* See if some hard register that dies in this insn and is not used in
1833 the output is the right class. Only works if the register we pick
1834 up can fully hold our output reload. */
1835 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1836 if (REG_NOTE_KIND (note) == REG_DEAD
1837 && REG_P (XEXP (note, 0))
1838 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1839 rld[output_reload].out)
1840 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1841 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1842 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
1843 REGNO (XEXP (note, 0)))
1844 && (hard_regno_nregs[REGNO (XEXP (note, 0))][rld[output_reload].outmode]
1845 <= hard_regno_nregs[REGNO (XEXP (note, 0))][GET_MODE (XEXP (note, 0))])
1846 /* Ensure that a secondary or tertiary reload for this output
1847 won't want this register. */
1848 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1849 || (! (TEST_HARD_REG_BIT
1850 (reg_class_contents[(int) rld[secondary_out].class],
1851 REGNO (XEXP (note, 0))))
1852 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1853 || ! (TEST_HARD_REG_BIT
1854 (reg_class_contents[(int) rld[secondary_out].class],
1855 REGNO (XEXP (note, 0)))))))
1856 && ! fixed_regs[REGNO (XEXP (note, 0))]
1857 /* Check that we don't use a hardreg for an uninitialized
1858 pseudo. See also find_dummy_reload(). */
1859 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1860 || ! bitmap_bit_p (ENTRY_BLOCK_PTR->il.rtl->global_live_at_end,
1861 ORIGINAL_REGNO (XEXP (note, 0)))))
1862 {
1863 rld[output_reload].reg_rtx
1864 = gen_rtx_REG (rld[output_reload].outmode,
1865 REGNO (XEXP (note, 0)));
1866 return;
1867 }
1868}
1869

--- 36 unchanged lines hidden (view full) ---

1906 return 0;
1907
1908 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1909 respectively refers to a hard register. */
1910
1911 /* Find the inside of any subregs. */
1912 while (GET_CODE (out) == SUBREG)
1913 {
1914 if (REG_P (SUBREG_REG (out))
1915 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1916 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1917 GET_MODE (SUBREG_REG (out)),
1918 SUBREG_BYTE (out),
1919 GET_MODE (out));
1920 out = SUBREG_REG (out);
1921 }
1922 while (GET_CODE (in) == SUBREG)
1923 {
1924 if (REG_P (SUBREG_REG (in))
1925 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1926 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1927 GET_MODE (SUBREG_REG (in)),
1928 SUBREG_BYTE (in),
1929 GET_MODE (in));
1930 in = SUBREG_REG (in);
1931 }
1932
1933 /* Narrow down the reg class, the same way push_reload will;
1934 otherwise we might find a dummy now, but push_reload won't. */
1935 {
1936 enum reg_class preferred_class = PREFERRED_RELOAD_CLASS (in, class);
1937 if (preferred_class != NO_REGS)
1938 class = preferred_class;
1939 }
1940
1941 /* See if OUT will do. */
1942 if (REG_P (out)
1943 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1944 {
1945 unsigned int regno = REGNO (out) + out_offset;
1946 unsigned int nwords = hard_regno_nregs[regno][outmode];
1947 rtx saved_rtx;
1948
1949 /* When we consider whether the insn uses OUT,
1950 ignore references within IN. They don't prevent us
1951 from copying IN into OUT, because those refs would
1952 move into the insn that reloads IN.
1953
1954 However, we only ignore IN in its role as this reload.

--- 12 unchanged lines hidden (view full) ---

1967
1968 for (i = 0; i < nwords; i++)
1969 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1970 regno + i))
1971 break;
1972
1973 if (i == nwords)
1974 {
1975 if (REG_P (real_out))
1976 value = real_out;
1977 else
1978 value = gen_rtx_REG (outmode, regno);
1979 }
1980 }
1981
1982 *inloc = saved_rtx;
1983 }
1984
1985 /* Consider using IN if OUT was not acceptable
1986 or if OUT dies in this insn (like the quotient in a divmod insn).
1987 We can't use IN unless it is dies in this insn,
1988 which means we must know accurately which hard regs are live.
1989 Also, the result can't go in IN if IN is used within OUT,
1990 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1991 if (hard_regs_live_known
1992 && REG_P (in)
1993 && REGNO (in) < FIRST_PSEUDO_REGISTER
1994 && (value == 0
1995 || find_reg_note (this_insn, REG_UNUSED, real_out))
1996 && find_reg_note (this_insn, REG_DEAD, real_in)
1997 && !fixed_regs[REGNO (in)]
1998 && HARD_REGNO_MODE_OK (REGNO (in),
1999 /* The only case where out and real_out might
2000 have different modes is where real_out
2001 is a subreg, and in that case, out
2002 has a real mode. */
2003 (GET_MODE (out) != VOIDmode
2004 ? GET_MODE (out) : outmode))
2005 /* But only do all this if we can be sure, that this input
2006 operand doesn't correspond with an uninitialized pseudoreg.
2007 global can assign some hardreg to it, which is the same as
2008 a different pseudo also currently live (as it can ignore the
2009 conflict). So we never must introduce writes to such hardregs,
2010 as they would clobber the other live pseudo using the same.
2011 See also PR20973. */
2012 && (ORIGINAL_REGNO (in) < FIRST_PSEUDO_REGISTER
2013 || ! bitmap_bit_p (ENTRY_BLOCK_PTR->il.rtl->global_live_at_end,
2014 ORIGINAL_REGNO (in))))
2015 {
2016 unsigned int regno = REGNO (in) + in_offset;
2017 unsigned int nwords = hard_regno_nregs[regno][inmode];
2018
2019 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
2020 && ! hard_reg_set_here_p (regno, regno + nwords,
2021 PATTERN (this_insn))
2022 && (! earlyclobber
2023 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
2024 PATTERN (this_insn), inloc)))
2025 {

--- 6 unchanged lines hidden (view full) ---

2032
2033 if (i == nwords)
2034 {
2035 /* If we were going to use OUT as the reload reg
2036 and changed our mind, it means OUT is a dummy that
2037 dies here. So don't bother copying value to it. */
2038 if (for_real >= 0 && value == real_out)
2039 rld[for_real].out = 0;
2040 if (REG_P (real_in))
2041 value = real_in;
2042 else
2043 value = gen_rtx_REG (inmode, regno);
2044 }
2045 }
2046 }
2047
2048 return value;

--- 26 unchanged lines hidden (view full) ---

2075hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
2076{
2077 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2078 {
2079 rtx op0 = SET_DEST (x);
2080
2081 while (GET_CODE (op0) == SUBREG)
2082 op0 = SUBREG_REG (op0);
2083 if (REG_P (op0))
2084 {
2085 unsigned int r = REGNO (op0);
2086
2087 /* See if this reg overlaps range under consideration. */
2088 if (r < end_regno
2089 && r + hard_regno_nregs[r][GET_MODE (op0)] > beg_regno)
2090 return 1;
2091 }
2092 }
2093 else if (GET_CODE (x) == PARALLEL)
2094 {
2095 int i = XVECLEN (x, 0) - 1;
2096
2097 for (; i >= 0; i--)

--- 38 unchanged lines hidden (view full) ---

2136{
2137 int i;
2138 RTX_CODE code = GET_CODE (x);
2139 const char *fmt;
2140 int success_2;
2141
2142 if (x == y)
2143 return 1;
2144 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
2145 && (REG_P (y) || (GET_CODE (y) == SUBREG
2146 && REG_P (SUBREG_REG (y)))))
2147 {
2148 int j;
2149
2150 if (code == SUBREG)
2151 {
2152 i = REGNO (SUBREG_REG (x));
2153 if (i >= FIRST_PSEUDO_REGISTER)
2154 goto slow;

--- 20 unchanged lines hidden (view full) ---

2175
2176 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2177 multiple hard register group of scalar integer registers, so that
2178 for example (reg:DI 0) and (reg:SI 1) will be considered the same
2179 register. */
2180 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2181 && SCALAR_INT_MODE_P (GET_MODE (x))
2182 && i < FIRST_PSEUDO_REGISTER)
2183 i += hard_regno_nregs[i][GET_MODE (x)] - 1;
2184 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2185 && SCALAR_INT_MODE_P (GET_MODE (y))
2186 && j < FIRST_PSEUDO_REGISTER)
2187 j += hard_regno_nregs[j][GET_MODE (y)] - 1;
2188
2189 return i == j;
2190 }
2191 /* If two operands must match, because they are really a single
2192 operand of an assembler insn, then two postincrements are invalid
2193 because the assembler insn would increment only once.
2194 On the other hand, a postincrement matches ordinary indexing
2195 if the postincrement is the output operand. */

--- 6 unchanged lines hidden (view full) ---

2202 In this case, return 2, since some callers need to do special
2203 things when this happens. */
2204 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2205 || GET_CODE (y) == PRE_MODIFY)
2206 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2207
2208 slow:
2209
2210 /* Now we have disposed of all the cases in which different rtx codes
2211 can match. */
2212 if (code != GET_CODE (y))
2213 return 0;
2214
2215 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2216 if (GET_MODE (x) != GET_MODE (y))
2217 return 0;
2218
2219 switch (code)
2220 {
2221 case CONST_INT:
2222 case CONST_DOUBLE:
2223 return 0;
2224
2225 case LABEL_REF:
2226 return XEXP (x, 0) == XEXP (y, 0);
2227 case SYMBOL_REF:
2228 return XSTR (x, 0) == XSTR (y, 0);
2229
2230 default:
2231 break;
2232 }
2233
2234 /* Compare the elements. If any pair of corresponding elements
2235 fail to match, return 0 for the whole things. */
2236
2237 success_2 = 0;
2238 fmt = GET_RTX_FORMAT (code);
2239 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2240 {
2241 int val, j;

--- 34 unchanged lines hidden (view full) ---

2276 success_2 = 1;
2277 }
2278 break;
2279
2280 /* It is believed that rtx's at this level will never
2281 contain anything but integers and other rtx's,
2282 except for within LABEL_REFs and SYMBOL_REFs. */
2283 default:
2284 gcc_unreachable ();
2285 }
2286 }
2287 return 1 + success_2;
2288}
2289
2290/* Describe the range of registers or memory referenced by X.
2291 If X is a register, set REG_FLAG and put the first register
2292 number into START and the last plus one into END.
2293 If X is a memory reference, put a base address into BASE
2294 and a range of integer offsets into START and END.
2295 If X is pushing on the stack, we can assume it causes no trouble,
2296 so we set the SAFE field. */
2297
2298static struct decomposition
2299decompose (rtx x)
2300{
2301 struct decomposition val;
2302 int all_const = 0;
2303
2304 memset (&val, 0, sizeof (val));
2305
2306 switch (GET_CODE (x))
2307 {
2308 case MEM:
2309 {
2310 rtx base = NULL_RTX, offset = 0;
2311 rtx addr = XEXP (x, 0);
2312
2313 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2314 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2315 {
2316 val.base = XEXP (addr, 0);
2317 val.start = -GET_MODE_SIZE (GET_MODE (x));
2318 val.end = GET_MODE_SIZE (GET_MODE (x));
2319 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2320 return val;
2321 }
2322
2323 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2324 {
2325 if (GET_CODE (XEXP (addr, 1)) == PLUS
2326 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2327 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2328 {
2329 val.base = XEXP (addr, 0);
2330 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2331 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2332 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2333 return val;
2334 }
2335 }
2336
2337 if (GET_CODE (addr) == CONST)
2338 {
2339 addr = XEXP (addr, 0);
2340 all_const = 1;
2341 }
2342 if (GET_CODE (addr) == PLUS)
2343 {
2344 if (CONSTANT_P (XEXP (addr, 0)))
2345 {
2346 base = XEXP (addr, 1);
2347 offset = XEXP (addr, 0);
2348 }
2349 else if (CONSTANT_P (XEXP (addr, 1)))
2350 {
2351 base = XEXP (addr, 0);
2352 offset = XEXP (addr, 1);
2353 }
2354 }
2355
2356 if (offset == 0)
2357 {
2358 base = addr;
2359 offset = const0_rtx;
2360 }
2361 if (GET_CODE (offset) == CONST)
2362 offset = XEXP (offset, 0);
2363 if (GET_CODE (offset) == PLUS)
2364 {
2365 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2366 {
2367 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2368 offset = XEXP (offset, 0);
2369 }
2370 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2371 {
2372 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2373 offset = XEXP (offset, 1);
2374 }
2375 else
2376 {
2377 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2378 offset = const0_rtx;
2379 }
2380 }
2381 else if (GET_CODE (offset) != CONST_INT)
2382 {
2383 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2384 offset = const0_rtx;
2385 }
2386
2387 if (all_const && GET_CODE (base) == PLUS)
2388 base = gen_rtx_CONST (GET_MODE (base), base);
2389
2390 gcc_assert (GET_CODE (offset) == CONST_INT);
2391
2392 val.start = INTVAL (offset);
2393 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2394 val.base = base;
2395 }
2396 break;
2397
2398 case REG:
2399 val.reg_flag = 1;
2400 val.start = true_regnum (x);
2401 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2402 {
2403 /* A pseudo with no hard reg. */
2404 val.start = REGNO (x);
2405 val.end = val.start + 1;
2406 }
2407 else
2408 /* A hard reg. */
2409 val.end = val.start + hard_regno_nregs[val.start][GET_MODE (x)];
2410 break;
2411
2412 case SUBREG:
2413 if (!REG_P (SUBREG_REG (x)))
2414 /* This could be more precise, but it's good enough. */
2415 return decompose (SUBREG_REG (x));
2416 val.reg_flag = 1;
2417 val.start = true_regnum (x);
2418 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2419 return decompose (SUBREG_REG (x));
2420 else
2421 /* A hard reg. */
2422 val.end = val.start + hard_regno_nregs[val.start][GET_MODE (x)];
2423 break;
2424
2425 case SCRATCH:
2426 /* This hasn't been assigned yet, so it can't conflict yet. */
2427 val.safe = 1;
2428 break;
2429
2430 default:
2431 gcc_assert (CONSTANT_P (x));
2432 val.safe = 1;
2433 break;
2434 }
2435 return val;
2436}
2437
2438/* Return 1 if altering Y will not modify the value of X.
2439 Y is also described by YDATA, which should be decompose (Y). */
2440
2441static int
2442immune_p (rtx x, rtx y, struct decomposition ydata)
2443{
2444 struct decomposition xdata;
2445
2446 if (ydata.reg_flag)
2447 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2448 if (ydata.safe)
2449 return 1;
2450
2451 gcc_assert (MEM_P (y));
2452 /* If Y is memory and X is not, Y can't affect X. */
2453 if (!MEM_P (x))
2454 return 1;
2455
2456 xdata = decompose (x);
2457
2458 if (! rtx_equal_p (xdata.base, ydata.base))
2459 {
2460 /* If bases are distinct symbolic constants, there is no overlap. */
2461 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))

--- 58 unchanged lines hidden (view full) ---

2520 int noperands;
2521 /* These start out as the constraints for the insn
2522 and they are chewed up as we consider alternatives. */
2523 char *constraints[MAX_RECOG_OPERANDS];
2524 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2525 a register. */
2526 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2527 char pref_or_nothing[MAX_RECOG_OPERANDS];
2528 /* Nonzero for a MEM operand whose entire address needs a reload.
2529 May be -1 to indicate the entire address may or may not need a reload. */
2530 int address_reloaded[MAX_RECOG_OPERANDS];
2531 /* Nonzero for an address operand that needs to be completely reloaded.
2532 May be -1 to indicate the entire operand may or may not need a reload. */
2533 int address_operand_reloaded[MAX_RECOG_OPERANDS];
2534 /* Value of enum reload_type to use for operand. */
2535 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2536 /* Value of enum reload_type to use within address of operand. */
2537 enum reload_type address_type[MAX_RECOG_OPERANDS];
2538 /* Save the usage of each operand. */
2539 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2540 int no_input_reloads = 0, no_output_reloads = 0;

--- 32 unchanged lines hidden (view full) ---

2573 n_earlyclobbers = 0;
2574 replace_reloads = replace;
2575 hard_regs_live_known = live_known;
2576 static_reload_reg_p = reload_reg_p;
2577
2578 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2579 neither are insns that SET cc0. Insns that use CC0 are not allowed
2580 to have any input reloads. */
2581 if (JUMP_P (insn) || CALL_P (insn))
2582 no_output_reloads = 1;
2583
2584#ifdef HAVE_cc0
2585 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2586 no_input_reloads = 1;
2587 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2588 no_output_reloads = 1;
2589#endif

--- 9 unchanged lines hidden (view full) ---

2599 secondary_memlocs_elim_used = 0;
2600 }
2601#endif
2602
2603 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2604 is cheap to move between them. If it is not, there may not be an insn
2605 to do the copy, so we may need a reload. */
2606 if (GET_CODE (body) == SET
2607 && REG_P (SET_DEST (body))
2608 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2609 && REG_P (SET_SRC (body))
2610 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2611 && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
2612 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2613 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2614 return 0;
2615
2616 extract_insn (insn);
2617

--- 29 unchanged lines hidden (view full) ---

2647 modified[i] = RELOAD_READ;
2648
2649 /* Scan this operand's constraint to see if it is an output operand,
2650 an in-out operand, is commutative, or should match another. */
2651
2652 while ((c = *p))
2653 {
2654 p += CONSTRAINT_LEN (c, p);
2655 switch (c)
2656 {
2657 case '=':
2658 modified[i] = RELOAD_WRITE;
2659 break;
2660 case '+':
2661 modified[i] = RELOAD_READ_WRITE;
2662 break;
2663 case '%':
2664 {
2665 /* The last operand should not be marked commutative. */
2666 gcc_assert (i != noperands - 1);
2667
2668 /* We currently only support one commutative pair of
2669 operands. Some existing asm code currently uses more
2670 than one pair. Previously, that would usually work,
2671 but sometimes it would crash the compiler. We
2672 continue supporting that case as well as we can by
2673 silently ignoring all but the first pair. In the
2674 future we may handle it correctly. */
2675 if (commutative < 0)
2676 commutative = i;
2677 else
2678 gcc_assert (this_insn_is_asm);
2679 }
2680 break;
2681 /* Use of ISDIGIT is tempting here, but it may get expensive because
2682 of locale support we don't want. */
2683 case '0': case '1': case '2': case '3': case '4':
2684 case '5': case '6': case '7': case '8': case '9':
2685 {
2686 c = strtoul (p - 1, &p, 10);
2687
2688 operands_match[c][i]
2689 = operands_match_p (recog_data.operand[c],
2690 recog_data.operand[i]);
2691
2692 /* An operand may not match itself. */
2693 gcc_assert (c != i);
2694
2695 /* If C can be commuted with C+1, and C might need to match I,
2696 then C+1 might also need to match I. */
2697 if (commutative >= 0)
2698 {
2699 if (c == commutative || c == commutative + 1)
2700 {
2701 int other = c + (c == commutative ? 1 : -1);
2702 operands_match[other][i]
2703 = operands_match_p (recog_data.operand[other],
2704 recog_data.operand[i]);
2705 }
2706 if (i == commutative || i == commutative + 1)
2707 {
2708 int other = i + (i == commutative ? 1 : -1);
2709 operands_match[c][other]
2710 = operands_match_p (recog_data.operand[c],
2711 recog_data.operand[other]);
2712 }
2713 /* Note that C is supposed to be less than I.
2714 No need to consider altering both C and I because in
2715 that case we would alter one into the other. */
2716 }
2717 }
2718 }
2719 }
2720 }
2721
2722 /* Examine each operand that is a memory reference or memory address
2723 and reload parts of the addresses into index registers.
2724 Also here any references to pseudo regs that didn't get hard regs
2725 but are equivalent to constants get replaced in the insn itself

--- 24 unchanged lines hidden (view full) ---

2750 address_operand_reloaded[i]
2751 = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2752 recog_data.operand[i],
2753 recog_data.operand_loc[i],
2754 i, operand_type[i], ind_levels, insn);
2755
2756 /* If we now have a simple operand where we used to have a
2757 PLUS or MULT, re-recognize and try again. */
2758 if ((OBJECT_P (*recog_data.operand_loc[i])
2759 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2760 && (GET_CODE (recog_data.operand[i]) == MULT
2761 || GET_CODE (recog_data.operand[i]) == PLUS))
2762 {
2763 INSN_CODE (insn) = -1;
2764 retval = find_reloads (insn, replace, ind_levels, live_known,
2765 reload_reg_p);
2766 return retval;

--- 29 unchanged lines hidden (view full) ---

2796 &address_reloaded[i]);
2797
2798 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2799 that didn't get a hard register, emit a USE with a REG_EQUAL
2800 note in front so that we might inherit a previous, possibly
2801 wider reload. */
2802
2803 if (replace
2804 && MEM_P (op)
2805 && REG_P (reg)
2806 && (GET_MODE_SIZE (GET_MODE (reg))
2807 >= GET_MODE_SIZE (GET_MODE (op))))
2808 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2809 insn),
2810 REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
2811
2812 substed_operand[i] = recog_data.operand[i] = op;
2813 }
2814 else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
2815 /* We can get a PLUS as an "operand" as a result of register
2816 elimination. See eliminate_regs and gen_reload. We handle
2817 a unary operator by reloading the operand. */
2818 substed_operand[i] = recog_data.operand[i]
2819 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2820 ind_levels, 0, insn,
2821 &address_reloaded[i]);
2822 else if (code == REG)

--- 111 unchanged lines hidden (view full) ---

2934 /* Nonzero if a constant forced into memory would be OK for this
2935 operand. */
2936 int constmemok = 0;
2937 int earlyclobber = 0;
2938
2939 /* If the predicate accepts a unary operator, it means that
2940 we need to reload the operand, but do not do this for
2941 match_operator and friends. */
2942 if (UNARY_P (operand) && *p != 0)
2943 operand = XEXP (operand, 0);
2944
2945 /* If the operand is a SUBREG, extract
2946 the REG or MEM (or maybe even a constant) within.
2947 (Constants can occur as a result of reg_equiv_constant.) */
2948
2949 while (GET_CODE (operand) == SUBREG)
2950 {
2951 /* Offset only matters when operand is a REG and
2952 it is a hard reg. This is because it is passed
2953 to reg_fits_class_p if it is a REG and all pseudos
2954 return 0 from that function. */
2955 if (REG_P (SUBREG_REG (operand))
2956 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
2957 {
2958 if (!subreg_offset_representable_p
2959 (REGNO (SUBREG_REG (operand)),
2960 GET_MODE (SUBREG_REG (operand)),
2961 SUBREG_BYTE (operand),
2962 GET_MODE (operand)))
2963 force_reload = 1;

--- 26 unchanged lines hidden (view full) ---

2990 This is doubly true if WORD_REGISTER_OPERATIONS. In
2991 this case eliminate_regs has left non-paradoxical
2992 subregs for push_reload to see. Make sure it does
2993 by forcing the reload.
2994
2995 ??? When is it right at this stage to have a subreg
2996 of a mem that is _not_ to be handled specially? IMO
2997 those should have been reduced to just a mem. */
2998 || ((MEM_P (operand)
2999 || (REG_P (operand)
3000 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3001#ifndef WORD_REGISTER_OPERATIONS
3002 && (((GET_MODE_BITSIZE (GET_MODE (operand))
3003 < BIGGEST_ALIGNMENT)
3004 && (GET_MODE_SIZE (operand_mode[i])
3005 > GET_MODE_SIZE (GET_MODE (operand))))
3006 || BYTES_BIG_ENDIAN
3007#ifdef LOAD_EXTEND_OP
3008 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3009 && (GET_MODE_SIZE (GET_MODE (operand))
3010 <= UNITS_PER_WORD)
3011 && (GET_MODE_SIZE (operand_mode[i])
3012 > GET_MODE_SIZE (GET_MODE (operand)))
3013 && INTEGRAL_MODE_P (GET_MODE (operand))
3014 && LOAD_EXTEND_OP (GET_MODE (operand)) != UNKNOWN)
3015#endif
3016 )
3017#endif
3018 )
3019 )
3020 force_reload = 1;
3021 }
3022

--- 78 unchanged lines hidden (view full) ---

3101 [(i == commutative || i == commutative + 1)
3102 ? 2 * commutative + 1 - i : i])
3103 : operands_match[m][i])
3104 {
3105 /* If we are matching a non-offsettable address where an
3106 offsettable address was expected, then we must reject
3107 this combination, because we can't reload it. */
3108 if (this_alternative_offmemok[m]
3109 && MEM_P (recog_data.operand[m])
3110 && this_alternative[m] == (int) NO_REGS
3111 && ! this_alternative_win[m])
3112 bad = 1;
3113
3114 did_match = this_alternative_win[m];
3115 }
3116 else
3117 {

--- 49 unchanged lines hidden (view full) ---

3167 if (this_alternative_matches[j]
3168 == this_alternative_matches[i])
3169 badop = 1;
3170 break;
3171
3172 case 'p':
3173 /* All necessary reloads for an address_operand
3174 were handled in find_reloads_address. */
3175 this_alternative[i]
3176 = (int) base_reg_class (VOIDmode, ADDRESS, SCRATCH);
3177 win = 1;
3178 badop = 0;
3179 break;
3180
3181 case 'm':
3182 if (force_reload)
3183 break;
3184 if (MEM_P (operand)
3185 || (REG_P (operand)
3186 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3187 && reg_renumber[REGNO (operand)] < 0))
3188 win = 1;
3189 if (CONST_POOL_OK_P (operand))
3190 badop = 0;
3191 constmemok = 1;
3192 break;
3193
3194 case '<':
3195 if (MEM_P (operand)
3196 && ! address_reloaded[i]
3197 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3198 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3199 win = 1;
3200 break;
3201
3202 case '>':
3203 if (MEM_P (operand)
3204 && ! address_reloaded[i]
3205 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3206 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3207 win = 1;
3208 break;
3209
3210 /* Memory operand whose address is not offsettable. */
3211 case 'V':
3212 if (force_reload)
3213 break;
3214 if (MEM_P (operand)
3215 && ! (ind_levels ? offsettable_memref_p (operand)
3216 : offsettable_nonstrict_memref_p (operand))
3217 /* Certain mem addresses will become offsettable
3218 after they themselves are reloaded. This is important;
3219 we don't want our own handling of unoffsettables
3220 to override the handling of reg_equiv_address. */
3221 && !(REG_P (XEXP (operand, 0))
3222 && (ind_levels == 0
3223 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3224 win = 1;
3225 break;
3226
3227 /* Memory operand whose address is offsettable. */
3228 case 'o':
3229 if (force_reload)
3230 break;
3231 if ((MEM_P (operand)
3232 /* If IND_LEVELS, find_reloads_address won't reload a
3233 pseudo that didn't get a hard reg, so we have to
3234 reject that case. */
3235 && ((ind_levels ? offsettable_memref_p (operand)
3236 : offsettable_nonstrict_memref_p (operand))
3237 /* A reloaded address is offsettable because it is now
3238 just a simple register indirect. */
3239 || address_reloaded[i] == 1))
3240 || (REG_P (operand)
3241 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3242 && reg_renumber[REGNO (operand)] < 0
3243 /* If reg_equiv_address is nonzero, we will be
3244 loading it into a register; hence it will be
3245 offsettable, but we cannot say that reg_equiv_mem
3246 is offsettable without checking. */
3247 && ((reg_equiv_mem[REGNO (operand)] != 0
3248 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3249 || (reg_equiv_address[REGNO (operand)] != 0))))
3250 win = 1;
3251 if (CONST_POOL_OK_P (operand)
3252 || MEM_P (operand))
3253 badop = 0;
3254 constmemok = 1;
3255 offmemok = 1;
3256 break;
3257
3258 case '&':
3259 /* Output operand that is stored before the need for the
3260 input operands (and their index registers) is over. */

--- 18 unchanged lines hidden (view full) ---

3279
3280 case 's':
3281 if (GET_CODE (operand) == CONST_INT
3282 || (GET_CODE (operand) == CONST_DOUBLE
3283 && GET_MODE (operand) == VOIDmode))
3284 break;
3285 case 'i':
3286 if (CONSTANT_P (operand)
3287 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand)))
3288 win = 1;
3289 break;
3290
3291 case 'n':
3292 if (GET_CODE (operand) == CONST_INT
3293 || (GET_CODE (operand) == CONST_DOUBLE
3294 && GET_MODE (operand) == VOIDmode))
3295 win = 1;

--- 8 unchanged lines hidden (view full) ---

3304 case 'O':
3305 case 'P':
3306 if (GET_CODE (operand) == CONST_INT
3307 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
3308 win = 1;
3309 break;
3310
3311 case 'X':
3312 force_reload = 0;
3313 win = 1;
3314 break;
3315
3316 case 'g':
3317 if (! force_reload
3318 /* A PLUS is never a valid operand, but reload can make
3319 it from a register when eliminating registers. */
3320 && GET_CODE (operand) != PLUS
3321 /* A SCRATCH is not a valid operand. */
3322 && GET_CODE (operand) != SCRATCH
3323 && (! CONSTANT_P (operand)
3324 || ! flag_pic
3325 || LEGITIMATE_PIC_OPERAND_P (operand))
3326 && (GENERAL_REGS == ALL_REGS
3327 || !REG_P (operand)
3328 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3329 && reg_renumber[REGNO (operand)] < 0)))
3330 win = 1;
3331 /* Drop through into 'r' case. */
3332
3333 case 'r':
3334 this_alternative[i]
3335 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];

--- 6 unchanged lines hidden (view full) ---

3342 if (EXTRA_MEMORY_CONSTRAINT (c, p))
3343 {
3344 if (force_reload)
3345 break;
3346 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3347 win = 1;
3348 /* If the address was already reloaded,
3349 we win as well. */
3350 else if (MEM_P (operand)
3351 && address_reloaded[i] == 1)
3352 win = 1;
3353 /* Likewise if the address will be reloaded because
3354 reg_equiv_address is nonzero. For reg_equiv_mem
3355 we have to check. */
3356 else if (REG_P (operand)
3357 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3358 && reg_renumber[REGNO (operand)] < 0
3359 && ((reg_equiv_mem[REGNO (operand)] != 0
3360 && EXTRA_CONSTRAINT_STR (reg_equiv_mem[REGNO (operand)], c, p))
3361 || (reg_equiv_address[REGNO (operand)] != 0)))
3362 win = 1;
3363
3364 /* If we didn't already win, we can reload
3365 constants via force_const_mem, and other
3366 MEMs by reloading the address like for 'o'. */
3367 if (CONST_POOL_OK_P (operand)
3368 || MEM_P (operand))
3369 badop = 0;
3370 constmemok = 1;
3371 offmemok = 1;
3372 break;
3373 }
3374 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
3375 {
3376 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3377 win = 1;
3378
3379 /* If we didn't already win, we can reload
3380 the address into a base register. */
3381 this_alternative[i]
3382 = (int) base_reg_class (VOIDmode, ADDRESS, SCRATCH);
3383 badop = 0;
3384 break;
3385 }
3386
3387 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3388 win = 1;
3389#endif
3390 break;
3391 }
3392
3393 this_alternative[i]
3394 = (int) (reg_class_subunion
3395 [this_alternative[i]]
3396 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
3397 reg:
3398 if (GET_MODE (operand) == BLKmode)
3399 break;
3400 winreg = 1;
3401 if (REG_P (operand)
3402 && reg_fits_class_p (operand, this_alternative[i],
3403 offset, GET_MODE (recog_data.operand[i])))
3404 win = 1;
3405 break;
3406 }
3407 while ((p += len), c);
3408
3409 constraints[i] = p;

--- 13 unchanged lines hidden (view full) ---

3423 {
3424 int const_to_mem = 0;
3425
3426 this_alternative_offmemok[i] = offmemok;
3427 losers++;
3428 if (badop)
3429 bad = 1;
3430 /* Alternative loses if it has no regs for a reg operand. */
3431 if (REG_P (operand)
3432 && this_alternative[i] == (int) NO_REGS
3433 && this_alternative_matches[i] < 0)
3434 bad = 1;
3435
3436 /* If this is a constant that is reloaded into the desired
3437 class by copying it to memory first, count that as another
3438 reload. This is consistent with other code and is
3439 required to avoid choosing another alternative when
3440 the constant is moved into memory by this function on
3441 an early reload pass. Note that the test here is
3442 precisely the same as in the code below that calls
3443 force_const_mem. */
3444 if (CONST_POOL_OK_P (operand)
3445 && ((PREFERRED_RELOAD_CLASS (operand,
3446 (enum reg_class) this_alternative[i])
3447 == NO_REGS)
3448 || no_input_reloads)
3449 && operand_mode[i] != VOIDmode)
3450 {
3451 const_to_mem = 1;
3452 if (this_alternative[i] != (int) NO_REGS)
3453 losers++;
3454 }
3455
3456 /* Alternative loses if it requires a type of reload not
3457 permitted for this insn. We can always reload SCRATCH
3458 and objects with a REG_UNUSED note. */
3459 if (GET_CODE (operand) != SCRATCH
3460 && modified[i] != RELOAD_READ && no_output_reloads
3461 && ! find_reg_note (insn, REG_UNUSED, operand))
3462 bad = 1;
3463 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3464 && ! const_to_mem)
3465 bad = 1;
3466
3467 /* If we can't reload this value at all, reject this
3468 alternative. Note that we could also lose due to
3469 LIMIT_RELOAD_CLASS, but we don't check that
3470 here. */
3471
3472 if (! CONSTANT_P (operand)
3473 && (enum reg_class) this_alternative[i] != NO_REGS)
3474 {
3475 if (PREFERRED_RELOAD_CLASS
3476 (operand, (enum reg_class) this_alternative[i])
3477 == NO_REGS)
3478 reject = 600;
3479
3480#ifdef PREFERRED_OUTPUT_RELOAD_CLASS
3481 if (operand_type[i] == RELOAD_FOR_OUTPUT
3482 && PREFERRED_OUTPUT_RELOAD_CLASS
3483 (operand, (enum reg_class) this_alternative[i])
3484 == NO_REGS)
3485 reject = 600;
3486#endif
3487 }
3488
3489 /* We prefer to reload pseudos over reloading other things,
3490 since such reloads may be able to be eliminated later.
3491 If we are reloading a SCRATCH, we won't be generating any
3492 insns, just using a register, so it is also preferred.
3493 So bump REJECT in other cases. Don't do this in the
3494 case where we are forcing a constant into memory and
3495 it will then win since we don't want to have a different
3496 alternative match then. */
3497 if (! (REG_P (operand)
3498 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3499 && GET_CODE (operand) != SCRATCH
3500 && ! (const_to_mem && constmemok))
3501 reject += 2;
3502
3503 /* Input reloads can be inherited more often than output
3504 reloads can be removed, so penalize output reloads. */
3505 if (operand_type[i] != RELOAD_FOR_INPUT

--- 20 unchanged lines hidden (view full) ---

3526 which could cause a large loss.
3527
3528 Don't do this if the preferred class has only one register
3529 because we might otherwise exhaust the class. */
3530
3531 if (! win && ! did_match
3532 && this_alternative[i] != (int) NO_REGS
3533 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3534 && reg_class_size [(int) preferred_class[i]] > 0
3535 && ! SMALL_REGISTER_CLASS_P (preferred_class[i]))
3536 {
3537 if (! reg_class_subset_p (this_alternative[i],
3538 preferred_class[i]))
3539 {
3540 /* Since we don't have a way of forming the intersection,
3541 we just do something special if the preferred class
3542 is a subset of the class we have; that's the most
3543 common case anyway. */

--- 13 unchanged lines hidden (view full) ---

3557 for (i = 0; i < noperands; i++)
3558 if (this_alternative_earlyclobber[i]
3559 && (this_alternative_win[i] || this_alternative_match_win[i]))
3560 {
3561 struct decomposition early_data;
3562
3563 early_data = decompose (recog_data.operand[i]);
3564
3565 gcc_assert (modified[i] != RELOAD_READ);
3566
3567 if (this_alternative[i] == NO_REGS)
3568 {
3569 this_alternative_earlyclobber[i] = 0;
3570 gcc_assert (this_insn_is_asm);
3571 error_for_asm (this_insn,
3572 "%<&%> constraint used with no register class");
3573 }
3574
3575 for (j = 0; j < noperands; j++)
3576 /* Is this an input operand or a memory ref? */
3577 if ((MEM_P (recog_data.operand[j])
3578 || modified[j] != RELOAD_WRITE)
3579 && j != i
3580 /* Ignore things like match_operator operands. */
3581 && *recog_data.constraints[j] != 0
3582 /* Don't count an input operand that is constrained to match
3583 the early clobber operand. */
3584 && ! (this_alternative_matches[j] == i
3585 && rtx_equal_p (recog_data.operand[i],
3586 recog_data.operand[j]))
3587 /* Is it altered by storing the earlyclobber operand? */
3588 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3589 early_data))
3590 {
3591 /* If the output is in a non-empty few-regs class,
3592 it's costly to reload it, so reload the input instead. */
3593 if (SMALL_REGISTER_CLASS_P (this_alternative[i])
3594 && (REG_P (recog_data.operand[j])
3595 || GET_CODE (recog_data.operand[j]) == SUBREG))
3596 {
3597 losers++;
3598 this_alternative_win[j] = 0;
3599 this_alternative_match_win[j] = 0;
3600 }
3601 else
3602 break;

--- 100 unchanged lines hidden (view full) ---

3703 tclass = preferred_class[commutative];
3704 preferred_class[commutative] = preferred_class[commutative + 1];
3705 preferred_class[commutative + 1] = tclass;
3706
3707 t = pref_or_nothing[commutative];
3708 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3709 pref_or_nothing[commutative + 1] = t;
3710
3711 t = address_reloaded[commutative];
3712 address_reloaded[commutative] = address_reloaded[commutative + 1];
3713 address_reloaded[commutative + 1] = t;
3714
3715 memcpy (constraints, recog_data.constraints,
3716 noperands * sizeof (char *));
3717 goto try_swapped;
3718 }
3719 else
3720 {
3721 recog_data.operand[commutative] = substed_operand[commutative];
3722 recog_data.operand[commutative + 1]

--- 12 unchanged lines hidden (view full) ---

3735 that we could reach by reloading the fewest operands.
3736 Reload so as to fit it. */
3737
3738 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3739 {
3740 /* No alternative works with reloads?? */
3741 if (insn_code_number >= 0)
3742 fatal_insn ("unable to generate reloads for:", insn);
3743 error_for_asm (insn, "inconsistent operand constraints in an %<asm%>");
3744 /* Avoid further trouble with this insn. */
3745 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3746 n_reloads = 0;
3747 return 0;
3748 }
3749
3750 /* Jump to `finish' from above if all operands are valid already.
3751 In that case, goal_alternative_win is all 1. */

--- 70 unchanged lines hidden (view full) ---

3822 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3823 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3824 }
3825
3826 /* Any constants that aren't allowed and can't be reloaded
3827 into registers are here changed into memory references. */
3828 for (i = 0; i < noperands; i++)
3829 if (! goal_alternative_win[i]
3830 && CONST_POOL_OK_P (recog_data.operand[i])
3831 && ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
3832 (enum reg_class) goal_alternative[i])
3833 == NO_REGS)
3834 || no_input_reloads)
3835 && operand_mode[i] != VOIDmode)
3836 {
3837 substed_operand[i] = recog_data.operand[i]
3838 = find_reloads_toplev (force_const_mem (operand_mode[i],
3839 recog_data.operand[i]),
3840 i, address_type[i], ind_levels, 0, insn,
3841 NULL);
3842 if (alternative_allows_memconst (recog_data.constraints[i],
3843 goal_alternative_number))
3844 goal_alternative_win[i] = 1;
3845 }
3846
3847 /* Likewise any invalid constants appearing as operand of a PLUS
3848 that is to be reloaded. */
3849 for (i = 0; i < noperands; i++)
3850 if (! goal_alternative_win[i]
3851 && GET_CODE (recog_data.operand[i]) == PLUS
3852 && CONST_POOL_OK_P (XEXP (recog_data.operand[i], 1))
3853 && (PREFERRED_RELOAD_CLASS (XEXP (recog_data.operand[i], 1),
3854 (enum reg_class) goal_alternative[i])
3855 == NO_REGS)
3856 && operand_mode[i] != VOIDmode)
3857 {
3858 rtx tem = force_const_mem (operand_mode[i],
3859 XEXP (recog_data.operand[i], 1));
3860 tem = gen_rtx_PLUS (operand_mode[i],
3861 XEXP (recog_data.operand[i], 0), tem);
3862
3863 substed_operand[i] = recog_data.operand[i]
3864 = find_reloads_toplev (tem, i, address_type[i],
3865 ind_levels, 0, insn, NULL);
3866 }
3867
3868 /* Record the values of the earlyclobber operands for the caller. */
3869 if (goal_earlyclobber)
3870 for (i = 0; i < noperands; i++)
3871 if (goal_alternative_earlyclobber[i])
3872 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3873
3874 /* Now record reloads for all the operands that need them. */
3875 for (i = 0; i < noperands; i++)

--- 6 unchanged lines hidden (view full) ---

3882 appearing where an offsettable address will do
3883 by reloading the address into a base register.
3884
3885 ??? We can also do this when the operand is a register and
3886 reg_equiv_mem is not offsettable, but this is a bit tricky,
3887 so we don't bother with it. It may not be worth doing. */
3888 else if (goal_alternative_matched[i] == -1
3889 && goal_alternative_offmemok[i]
3890 && MEM_P (recog_data.operand[i]))
3891 {
3892 /* If the address to be reloaded is a VOIDmode constant,
3893 use Pmode as mode of the reload register, as would have
3894 been done by find_reloads_address. */
3895 enum machine_mode address_mode;
3896 address_mode = GET_MODE (XEXP (recog_data.operand[i], 0));
3897 if (address_mode == VOIDmode)
3898 address_mode = Pmode;
3899
3900 operand_reloadnum[i]
3901 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3902 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
3903 base_reg_class (VOIDmode, MEM, SCRATCH),
3904 address_mode,
3905 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3906 rld[operand_reloadnum[i]].inc
3907 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3908
3909 /* If this operand is an output, we will have made any
3910 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3911 now we are treating part of the operand as an input, so
3912 we must change these to RELOAD_FOR_INPUT_ADDRESS. */

--- 59 unchanged lines hidden (view full) ---

3972 recog_data.operand_loc[goal_alternative_matched[i]],
3973 recog_data.operand_loc[i],
3974 (enum reg_class) goal_alternative[i],
3975 operand_mode[goal_alternative_matched[i]],
3976 operand_mode[i],
3977 0, 0, i, RELOAD_OTHER);
3978 operand_reloadnum[i] = output_reloadnum;
3979 }
3980 else
3981 {
3982 gcc_assert (insn_code_number < 0);
3983 error_for_asm (insn, "inconsistent operand constraints "
3984 "in an %<asm%>");
3985 /* Avoid further trouble with this insn. */
3986 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3987 n_reloads = 0;
3988 return 0;
3989 }
3990 }
3991 else if (goal_alternative_matched[i] < 0
3992 && goal_alternative_matches[i] < 0
3993 && address_operand_reloaded[i] != 1
3994 && optimize)
3995 {
3996 /* For each non-matching operand that's a MEM or a pseudo-register
3997 that didn't get a hard register, make an optional reload.
3998 This may get done even if the insn needs no reloads otherwise. */
3999
4000 rtx operand = recog_data.operand[i];
4001
4002 while (GET_CODE (operand) == SUBREG)
4003 operand = SUBREG_REG (operand);
4004 if ((MEM_P (operand)
4005 || (REG_P (operand)
4006 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4007 /* If this is only for an output, the optional reload would not
4008 actually cause us to use a register now, just note that
4009 something is stored here. */
4010 && ((enum reg_class) goal_alternative[i] != NO_REGS
4011 || modified[i] == RELOAD_WRITE)
4012 && ! no_input_reloads
4013 /* An optional output reload might allow to delete INSN later.

--- 23 unchanged lines hidden (view full) ---

4037 : insn_data[insn_code_number].operand[i].strict_low),
4038 1, i, operand_type[i]);
4039 /* If a memory reference remains (either as a MEM or a pseudo that
4040 did not get a hard register), yet we can't make an optional
4041 reload, check if this is actually a pseudo register reference;
4042 we then need to emit a USE and/or a CLOBBER so that reload
4043 inheritance will do the right thing. */
4044 else if (replace
4045 && (MEM_P (operand)
4046 || (REG_P (operand)
4047 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
4048 && reg_renumber [REGNO (operand)] < 0)))
4049 {
4050 operand = *recog_data.operand_loc[i];
4051
4052 while (GET_CODE (operand) == SUBREG)
4053 operand = SUBREG_REG (operand);
4054 if (REG_P (operand))
4055 {
4056 if (modified[i] != RELOAD_WRITE)
4057 /* We mark the USE with QImode so that we recognize
4058 it as one that can be safely deleted at the end
4059 of reload. */
4060 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
4061 insn), QImode);
4062 if (modified[i] != RELOAD_READ)

--- 10 unchanged lines hidden (view full) ---

4073 {
4074 /* Similarly, make an optional reload for a pair of matching
4075 objects that are in MEM or a pseudo that didn't get a hard reg. */
4076
4077 rtx operand = recog_data.operand[i];
4078
4079 while (GET_CODE (operand) == SUBREG)
4080 operand = SUBREG_REG (operand);
4081 if ((MEM_P (operand)
4082 || (REG_P (operand)
4083 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4084 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
4085 != NO_REGS))
4086 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
4087 = push_reload (recog_data.operand[goal_alternative_matches[i]],
4088 recog_data.operand[i],
4089 recog_data.operand_loc[goal_alternative_matches[i]],
4090 recog_data.operand_loc[i],

--- 6 unchanged lines hidden (view full) ---

4097 /* Perform whatever substitutions on the operands we are supposed
4098 to make due to commutativity or replacement of registers
4099 with equivalent constants or memory slots. */
4100
4101 for (i = 0; i < noperands; i++)
4102 {
4103 /* We only do this on the last pass through reload, because it is
4104 possible for some data (like reg_equiv_address) to be changed during
4105 later passes. Moreover, we lose the opportunity to get a useful
4106 reload_{in,out}_reg when we do these replacements. */
4107
4108 if (replace)
4109 {
4110 rtx substitution = substed_operand[i];
4111
4112 *recog_data.operand_loc[i] = substitution;
4113
4114 /* If we're replacing an operand with a LABEL_REF, we need
4115 to make sure that there's a REG_LABEL note attached to
4116 this instruction. */
4117 if (!JUMP_P (insn)
4118 && GET_CODE (substitution) == LABEL_REF
4119 && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
4120 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
4121 XEXP (substitution, 0),
4122 REG_NOTES (insn));
4123 }
4124 else
4125 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);

--- 23 unchanged lines hidden (view full) ---

4149 Now this optimization is done safely in choose_reload_regs. */
4150
4151 /* For each reload of a reg into some other class of reg,
4152 search for an existing equivalent reg (same value now) in the right class.
4153 We can use it as long as we don't need to change its contents. */
4154 for (i = 0; i < n_reloads; i++)
4155 if (rld[i].reg_rtx == 0
4156 && rld[i].in != 0
4157 && REG_P (rld[i].in)
4158 && rld[i].out == 0)
4159 {
4160 rld[i].reg_rtx
4161 = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
4162 static_reload_reg_p, 0, rld[i].inmode);
4163 /* Prevent generation of insn to load the value
4164 because the one we found already has the value. */
4165 if (rld[i].reg_rtx)
4166 rld[i].in = rld[i].reg_rtx;
4167 }
4168#endif
4169
4170 /* If we detected error and replaced asm instruction by USE, forget about the
4171 reloads. */
4172 if (GET_CODE (PATTERN (insn)) == USE
4173 && GET_CODE (XEXP (PATTERN (insn), 0)) == CONST_INT)
4174 n_reloads = 0;
4175
4176 /* Perhaps an output reload can be combined with another
4177 to reduce needs by one. */
4178 if (!goal_earlyclobber)
4179 combine_reloads ();
4180
4181 /* If we have a pair of reloads for parts of an address, they are reloading
4182 the same object, the operands themselves were not reloaded, and they
4183 are for two operands that are supposed to match, merge the reloads and

--- 253 unchanged lines hidden (view full) ---

4437 }
4438
4439#ifdef HAVE_cc0
4440 /* If we made any reloads for addresses, see if they violate a
4441 "no input reloads" requirement for this insn. But loads that we
4442 do after the insn (such as for output addresses) are fine. */
4443 if (no_input_reloads)
4444 for (i = 0; i < n_reloads; i++)
4445 gcc_assert (rld[i].in == 0
4446 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS
4447 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS);
4448#endif
4449
4450 /* Compute reload_mode and reload_nregs. */
4451 for (i = 0; i < n_reloads; i++)
4452 {
4453 rld[i].mode
4454 = (rld[i].inmode == VOIDmode
4455 || (GET_MODE_SIZE (rld[i].outmode)
4456 > GET_MODE_SIZE (rld[i].inmode)))
4457 ? rld[i].outmode : rld[i].inmode;
4458
4459 rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
4460 }
4461
4462 /* Special case a simple move with an input reload and a
4463 destination of a hard reg, if the hard reg is ok, use it. */
4464 for (i = 0; i < n_reloads; i++)
4465 if (rld[i].when_needed == RELOAD_FOR_INPUT
4466 && GET_CODE (PATTERN (insn)) == SET
4467 && REG_P (SET_DEST (PATTERN (insn)))
4468 && SET_SRC (PATTERN (insn)) == rld[i].in)
4469 {
4470 rtx dest = SET_DEST (PATTERN (insn));
4471 unsigned int regno = REGNO (dest);
4472
4473 if (regno < FIRST_PSEUDO_REGISTER
4474 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno)
4475 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4476 {
4477 int nr = hard_regno_nregs[regno][rld[i].mode];
4478 int ok = 1, nri;
4479
4480 for (nri = 1; nri < nr; nri ++)
4481 if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno + nri))
4482 ok = 0;
4483
4484 if (ok)
4485 rld[i].reg_rtx = dest;

--- 84 unchanged lines hidden (view full) ---

4570 /* We mark the USE with QImode so that we recognize it
4571 as one that can be safely deleted at the end of
4572 reload. */
4573 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4574 QImode);
4575 x = mem;
4576 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4577 opnum, type, ind_levels, insn);
4578 if (x != mem)
4579 push_reg_equiv_alt_mem (regno, x);
4580 if (address_reloaded)
4581 *address_reloaded = i;
4582 }
4583 }
4584 return x;
4585 }
4586 if (code == MEM)
4587 {
4588 rtx tem = x;
4589
4590 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4591 opnum, type, ind_levels, insn);
4592 if (address_reloaded)
4593 *address_reloaded = i;
4594
4595 return tem;
4596 }
4597
4598 if (code == SUBREG && REG_P (SUBREG_REG (x)))
4599 {
4600 /* Check for SUBREG containing a REG that's equivalent to a
4601 constant. If the constant has a known value, truncate it
4602 right now. Similarly if we are extracting a single-word of a
4603 multi-word constant. If the constant is symbolic, allow it
4604 to be substituted normally. push_reload will strip the
4605 subreg later. The constant must not be VOIDmode, because we
4606 will lose the mode of the register (this should never happen
4607 because one of the cases above should handle it). */
4608
4609 int regno = REGNO (SUBREG_REG (x));
4610 rtx tem;
4611
4612 if (subreg_lowpart_p (x)
4613 && regno >= FIRST_PSEUDO_REGISTER
4614 && reg_renumber[regno] < 0
4615 && reg_equiv_constant[regno] != 0
4616 && (tem = gen_lowpart_common (GET_MODE (x),
4617 reg_equiv_constant[regno])) != 0)
4618 return tem;
4619
4620 if (regno >= FIRST_PSEUDO_REGISTER
4621 && reg_renumber[regno] < 0
4622 && reg_equiv_constant[regno] != 0)
4623 {
4624 tem =
4625 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant[regno],
4626 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4627 gcc_assert (tem);
4628 return tem;
4629 }
4630
4631 /* If the subreg contains a reg that will be converted to a mem,
4632 convert the subreg to a narrower memref now.
4633 Otherwise, we would get (subreg (mem ...) ...),
4634 which would force reload of the mem.
4635
4636 We also need to do this if there is an equivalent MEM that is
4637 not offsettable. In that case, alter_subreg would produce an
4638 invalid address on big-endian machines.
4639
4640 For machines that extend byte loads, we must not reload using
4641 a wider mode if we have a paradoxical SUBREG. find_reloads will
4642 force a reload in that case. So we should not do anything here. */
4643
4644 if (regno >= FIRST_PSEUDO_REGISTER
4645#ifdef LOAD_EXTEND_OP
4646 && (GET_MODE_SIZE (GET_MODE (x))
4647 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4648#endif
4649 && (reg_equiv_address[regno] != 0
4650 || (reg_equiv_mem[regno] != 0
4651 && (! strict_memory_address_p (GET_MODE (x),
4652 XEXP (reg_equiv_mem[regno], 0))

--- 80 unchanged lines hidden (view full) ---

4733
4734 IND_LEVELS says how many levels of indirect addressing this machine
4735 supports.
4736
4737 INSN, if nonzero, is the insn in which we do the reload. It is used
4738 to determine if we may generate output reloads, and where to put USEs
4739 for pseudos that we have to replace with stack slots.
4740
4741 Value is one if this address is reloaded or replaced as a whole; it is
4742 zero if the top level of this address was not reloaded or replaced, and
4743 it is -1 if it may or may not have been reloaded or replaced.
4744
4745 Note that there is no verification that the address will be valid after
4746 this routine does its work. Instead, we rely on the fact that the address
4747 was valid when reload started. So we need only undo things that reload
4748 could have broken. These are wrong register types, pseudos not allocated
4749 to a hard register, and frame pointer elimination. */
4750
4751static int
4752find_reloads_address (enum machine_mode mode, rtx *memrefloc, rtx ad,
4753 rtx *loc, int opnum, enum reload_type type,
4754 int ind_levels, rtx insn)
4755{
4756 int regno;
4757 int removed_and = 0;
4758 int op_index;
4759 rtx tem;
4760
4761 /* If the address is a register, see if it is a legitimate address and
4762 reload if not. We first handle the cases where we need not reload
4763 or where we must reload in a non-standard way. */
4764
4765 if (REG_P (ad))
4766 {
4767 regno = REGNO (ad);
4768
4769 /* If the register is equivalent to an invariant expression, substitute
4770 the invariant, and eliminate any eliminable register references. */
4771 tem = reg_equiv_constant[regno];
4772 if (tem != 0
4773 && (tem = eliminate_regs (tem, mode, insn))

--- 6 unchanged lines hidden (view full) ---

4780 tem = reg_equiv_memory_loc[regno];
4781 if (tem != 0)
4782 {
4783 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4784 {
4785 tem = make_memloc (ad, regno);
4786 if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4787 {
4788 rtx orig = tem;
4789
4790 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4791 &XEXP (tem, 0), opnum,
4792 ADDR_TYPE (type), ind_levels, insn);
4793 if (tem != orig)
4794 push_reg_equiv_alt_mem (regno, tem);
4795 }
4796 /* We can avoid a reload if the register's equivalent memory
4797 expression is valid as an indirect memory address.
4798 But not all addresses are valid in a mem used as an indirect
4799 address: only reg or reg+constant. */
4800
4801 if (ind_levels > 0
4802 && strict_memory_address_p (mode, tem)
4803 && (REG_P (XEXP (tem, 0))
4804 || (GET_CODE (XEXP (tem, 0)) == PLUS
4805 && REG_P (XEXP (XEXP (tem, 0), 0))
4806 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4807 {
4808 /* TEM is not the same as what we'll be replacing the
4809 pseudo with after reload, put a USE in front of INSN
4810 in the final reload pass. */
4811 if (replace_reloads
4812 && num_not_at_initial_offset
4813 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))

--- 14 unchanged lines hidden (view full) ---

4828 }
4829 }
4830
4831 /* The only remaining case where we can avoid a reload is if this is a
4832 hard register that is valid as a base register and which is not the
4833 subject of a CLOBBER in this insn. */
4834
4835 else if (regno < FIRST_PSEUDO_REGISTER
4836 && regno_ok_for_base_p (regno, mode, MEM, SCRATCH)
4837 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4838 return 0;
4839
4840 /* If we do not have one of the cases above, we must do the reload. */
4841 push_reload (ad, NULL_RTX, loc, (rtx*) 0, base_reg_class (mode, MEM, SCRATCH),
4842 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4843 return 1;
4844 }
4845
4846 if (strict_memory_address_p (mode, ad))
4847 {
4848 /* The address appears valid, so reloads are not needed.
4849 But the address may contain an eliminable register.
4850 This can happen because a machine with indirect addressing
4851 may consider a pseudo register by itself a valid address even when
4852 it has failed to get a hard reg.
4853 So do a tree-walk to find and eliminate all such regs. */
4854
4855 /* But first quickly dispose of a common case. */
4856 if (GET_CODE (ad) == PLUS
4857 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4858 && REG_P (XEXP (ad, 0))
4859 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4860 return 0;
4861
4862 subst_reg_equivs_changed = 0;
4863 *loc = subst_reg_equivs (ad, insn);
4864
4865 if (! subst_reg_equivs_changed)
4866 return 0;

--- 11 unchanged lines hidden (view full) ---

4878 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4879 ind_levels, win);
4880 }
4881 break;
4882 win:
4883 *memrefloc = copy_rtx (*memrefloc);
4884 XEXP (*memrefloc, 0) = ad;
4885 move_replacements (&ad, &XEXP (*memrefloc, 0));
4886 return -1;
4887 }
4888 while (0);
4889#endif
4890
4891 /* The address is not valid. We have to figure out why. First see if
4892 we have an outer AND and remove it if so. Then analyze what's inside. */
4893
4894 if (GET_CODE (ad) == AND)

--- 4 unchanged lines hidden (view full) ---

4899 }
4900
4901 /* One possibility for why the address is invalid is that it is itself
4902 a MEM. This can happen when the frame pointer is being eliminated, a
4903 pseudo is not allocated to a hard register, and the offset between the
4904 frame and stack pointers is not its initial value. In that case the
4905 pseudo will have been replaced by a MEM referring to the
4906 stack pointer. */
4907 if (MEM_P (ad))
4908 {
4909 /* First ensure that the address in this MEM is valid. Then, unless
4910 indirect addresses are valid, reload the MEM into a register. */
4911 tem = ad;
4912 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4913 opnum, ADDR_TYPE (type),
4914 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4915

--- 9 unchanged lines hidden (view full) ---

4925 }
4926
4927 /* Check similar cases as for indirect addresses as above except
4928 that we can allow pseudos and a MEM since they should have been
4929 taken care of above. */
4930
4931 if (ind_levels == 0
4932 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4933 || MEM_P (XEXP (tem, 0))
4934 || ! (REG_P (XEXP (tem, 0))
4935 || (GET_CODE (XEXP (tem, 0)) == PLUS
4936 && REG_P (XEXP (XEXP (tem, 0), 0))
4937 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4938 {
4939 /* Must use TEM here, not AD, since it is the one that will
4940 have any subexpressions reloaded, if needed. */
4941 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
4942 base_reg_class (mode, MEM, SCRATCH), GET_MODE (tem),
4943 VOIDmode, 0,
4944 0, opnum, type);
4945 return ! removed_and;
4946 }
4947 else
4948 return 0;
4949 }
4950
4951 /* If we have address of a stack slot but it's not valid because the
4952 displacement is too large, compute the sum in a register.
4953 Handle all base registers here, not just fp/ap/sp, because on some
4954 targets (namely SH) we can also get too large displacements from
4955 big-endian corrections. */
4956 else if (GET_CODE (ad) == PLUS
4957 && REG_P (XEXP (ad, 0))
4958 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4959 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4960 && regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, PLUS,
4961 CONST_INT))
4962
4963 {
4964 /* Unshare the MEM rtx so we can safely alter it. */
4965 if (memrefloc)
4966 {
4967 *memrefloc = copy_rtx (*memrefloc);
4968 loc = &XEXP (*memrefloc, 0);
4969 if (removed_and)
4970 loc = &XEXP (*loc, 0);

--- 11 unchanged lines hidden (view full) ---

4982 type, ind_levels);
4983 return 0;
4984 }
4985 else
4986 {
4987 /* If the sum of two regs is not necessarily valid,
4988 reload the sum into a base reg.
4989 That will at least work. */
4990 find_reloads_address_part (ad, loc,
4991 base_reg_class (mode, MEM, SCRATCH),
4992 Pmode, opnum, type, ind_levels);
4993 }
4994 return ! removed_and;
4995 }
4996
4997 /* If we have an indexed stack slot, there are three possible reasons why
4998 it might be invalid: The index might need to be reloaded, the address
4999 might have been made by frame pointer elimination and hence have a
5000 constant out of range, or both reasons might apply.
5001
5002 We can easily check for an index needing reload, but even if that is the
5003 case, we might also have an invalid constant. To avoid making the
5004 conservative assumption and requiring two reloads, we see if this address
5005 is valid when not interpreted strictly. If it is, the only problem is
5006 that the index needs a reload and find_reloads_address_1 will take care
5007 of it.
5008
5009 Handle all base registers here, not just fp/ap/sp, because on some
5010 targets (namely SPARC) we can also get invalid addresses from preventive
5011 subreg big-endian corrections made by find_reloads_toplev. We
5012 can also get expressions involving LO_SUM (rather than PLUS) from
5013 find_reloads_subreg_address.
5014
5015 If we decide to do something, it must be that `double_reg_address_ok'
5016 is true. We generate a reload of the base register + constant and
5017 rework the sum so that the reload register will be added to the index.
5018 This is safe because we know the address isn't shared.
5019
5020 We check for the base register as both the first and second operand of
5021 the innermost PLUS and/or LO_SUM. */
5022
5023 for (op_index = 0; op_index < 2; ++op_index)
5024 {
5025 rtx operand, addend;
5026 enum rtx_code inner_code;
5027
5028 if (GET_CODE (ad) != PLUS)
5029 continue;
5030
5031 inner_code = GET_CODE (XEXP (ad, 0));
5032 if (!(GET_CODE (ad) == PLUS
5033 && GET_CODE (XEXP (ad, 1)) == CONST_INT
5034 && (inner_code == PLUS || inner_code == LO_SUM)))
5035 continue;
5036
5037 operand = XEXP (XEXP (ad, 0), op_index);
5038 if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
5039 continue;
5040
5041 addend = XEXP (XEXP (ad, 0), 1 - op_index);
5042
5043 if ((regno_ok_for_base_p (REGNO (operand), mode, inner_code,
5044 GET_CODE (addend))
5045 || operand == frame_pointer_rtx
5046#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
5047 || operand == hard_frame_pointer_rtx
5048#endif
5049#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
5050 || operand == arg_pointer_rtx
5051#endif
5052 || operand == stack_pointer_rtx)
5053 && ! maybe_memory_address_p (mode, ad,
5054 &XEXP (XEXP (ad, 0), 1 - op_index)))
5055 {
5056 rtx offset_reg;
5057 enum reg_class cls;
5058
5059 offset_reg = plus_constant (operand, INTVAL (XEXP (ad, 1)));
5060
5061 /* Form the adjusted address. */
5062 if (GET_CODE (XEXP (ad, 0)) == PLUS)
5063 ad = gen_rtx_PLUS (GET_MODE (ad),
5064 op_index == 0 ? offset_reg : addend,
5065 op_index == 0 ? addend : offset_reg);
5066 else
5067 ad = gen_rtx_LO_SUM (GET_MODE (ad),
5068 op_index == 0 ? offset_reg : addend,
5069 op_index == 0 ? addend : offset_reg);
5070 *loc = ad;
5071
5072 cls = base_reg_class (mode, MEM, GET_CODE (addend));
5073 find_reloads_address_part (XEXP (ad, op_index),
5074 &XEXP (ad, op_index), cls,
5075 GET_MODE (ad), opnum, type, ind_levels);
5076 find_reloads_address_1 (mode,
5077 XEXP (ad, 1 - op_index), 1, GET_CODE (ad),
5078 GET_CODE (XEXP (ad, op_index)),
5079 &XEXP (ad, 1 - op_index), opnum,
5080 type, 0, insn);
5081
5082 return 0;
5083 }
5084 }
5085
5086 /* See if address becomes valid when an eliminable register
5087 in a sum is replaced. */
5088
5089 tem = ad;
5090 if (GET_CODE (ad) == PLUS)
5091 tem = subst_indexed_address (ad);

--- 24 unchanged lines hidden (view full) ---

5116 && CONSTANT_POOL_ADDRESS_P (ad))
5117 {
5118 *memrefloc = copy_rtx (*memrefloc);
5119 loc = &XEXP (*memrefloc, 0);
5120 if (removed_and)
5121 loc = &XEXP (*loc, 0);
5122 }
5123
5124 find_reloads_address_part (ad, loc, base_reg_class (mode, MEM, SCRATCH),
5125 Pmode, opnum, type, ind_levels);
5126 return ! removed_and;
5127 }
5128
5129 return find_reloads_address_1 (mode, ad, 0, MEM, SCRATCH, loc, opnum, type,
5130 ind_levels, insn);
5131}
5132
5133/* Find all pseudo regs appearing in AD
5134 that are eliminable in favor of equivalent values
5135 and do not have hard regs; replace them by their equivalents.
5136 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
5137 front of it for pseudos that we have to replace with stack slots. */
5138

--- 128 unchanged lines hidden (view full) ---

5267 rtx op0 = 0, op1 = 0, op2 = 0;
5268 rtx tem;
5269 int regno;
5270
5271 if (GET_CODE (addr) == PLUS)
5272 {
5273 /* Try to find a register to replace. */
5274 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5275 if (REG_P (op0)
5276 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5277 && reg_renumber[regno] < 0
5278 && reg_equiv_constant[regno] != 0)
5279 op0 = reg_equiv_constant[regno];
5280 else if (REG_P (op1)
5281 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5282 && reg_renumber[regno] < 0
5283 && reg_equiv_constant[regno] != 0)
5284 op1 = reg_equiv_constant[regno];
5285 else if (GET_CODE (op0) == PLUS
5286 && (tem = subst_indexed_address (op0)) != op0)
5287 op0 = tem;
5288 else if (GET_CODE (op1) == PLUS

--- 45 unchanged lines hidden (view full) ---

5334
5335/* Record the pseudo registers we must reload into hard registers in a
5336 subexpression of a would-be memory address, X referring to a value
5337 in mode MODE. (This function is not called if the address we find
5338 is strictly valid.)
5339
5340 CONTEXT = 1 means we are considering regs as index regs,
5341 = 0 means we are considering them as base regs.
5342 OUTER_CODE is the code of the enclosing RTX, typically a MEM, a PLUS,
5343 or an autoinc code.
5344 If CONTEXT == 0 and OUTER_CODE is a PLUS or LO_SUM, then INDEX_CODE
5345 is the code of the index part of the address. Otherwise, pass SCRATCH
5346 for this argument.
5347 OPNUM and TYPE specify the purpose of any reloads made.
5348
5349 IND_LEVELS says how many levels of indirect addressing are
5350 supported at this point in the address.
5351
5352 INSN, if nonzero, is the insn in which we do the reload. It is used
5353 to determine if we may generate output reloads.
5354
5355 We return nonzero if X, as a whole, is reloaded or replaced. */
5356
5357/* Note that we take shortcuts assuming that no multi-reg machine mode
5358 occurs as part of an address.
5359 Also, this is not fully machine-customizable; it works for machines
5360 such as VAXen and 68000's and 32000's, but other possible machines
5361 could have addressing modes that this does not handle right.
5362 If you add push_reload calls here, you need to make sure gen_reload
5363 handles those cases gracefully. */
5364
5365static int
5366find_reloads_address_1 (enum machine_mode mode, rtx x, int context,
5367 enum rtx_code outer_code, enum rtx_code index_code,
5368 rtx *loc, int opnum, enum reload_type type,
5369 int ind_levels, rtx insn)
5370{
5371#define REG_OK_FOR_CONTEXT(CONTEXT, REGNO, MODE, OUTER, INDEX) \
5372 ((CONTEXT) == 0 \
5373 ? regno_ok_for_base_p (REGNO, MODE, OUTER, INDEX) \
5374 : REGNO_OK_FOR_INDEX_P (REGNO))
5375
5376 enum reg_class context_reg_class;
5377 RTX_CODE code = GET_CODE (x);
5378
5379 if (context == 1)
5380 context_reg_class = INDEX_REG_CLASS;
5381 else
5382 context_reg_class = base_reg_class (mode, outer_code, index_code);
5383
5384 switch (code)
5385 {
5386 case PLUS:
5387 {
5388 rtx orig_op0 = XEXP (x, 0);
5389 rtx orig_op1 = XEXP (x, 1);
5390 RTX_CODE code0 = GET_CODE (orig_op0);
5391 RTX_CODE code1 = GET_CODE (orig_op1);

--- 23 unchanged lines hidden (view full) ---

5415 op1 = gen_rtx_REG (GET_MODE (op1),
5416 (REGNO (op1) +
5417 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5418 GET_MODE (SUBREG_REG (orig_op1)),
5419 SUBREG_BYTE (orig_op1),
5420 GET_MODE (orig_op1))));
5421 }
5422 /* Plus in the index register may be created only as a result of
5423 register rematerialization for expression like &localvar*4. Reload it.
5424 It may be possible to combine the displacement on the outer level,
5425 but it is probably not worthwhile to do so. */
5426 if (context == 1)
5427 {
5428 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5429 opnum, ADDR_TYPE (type), ind_levels, insn);
5430 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5431 context_reg_class,
5432 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5433 return 1;
5434 }
5435
5436 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5437 || code0 == ZERO_EXTEND || code1 == MEM)
5438 {
5439 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5440 &XEXP (x, 0), opnum, type, ind_levels,
5441 insn);
5442 find_reloads_address_1 (mode, orig_op1, 0, PLUS, code0,
5443 &XEXP (x, 1), opnum, type, ind_levels,
5444 insn);
5445 }
5446
5447 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5448 || code1 == ZERO_EXTEND || code0 == MEM)
5449 {
5450 find_reloads_address_1 (mode, orig_op0, 0, PLUS, code1,
5451 &XEXP (x, 0), opnum, type, ind_levels,
5452 insn);
5453 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5454 &XEXP (x, 1), opnum, type, ind_levels,
5455 insn);
5456 }
5457
5458 else if (code0 == CONST_INT || code0 == CONST
5459 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5460 find_reloads_address_1 (mode, orig_op1, 0, PLUS, code0,
5461 &XEXP (x, 1), opnum, type, ind_levels,
5462 insn);
5463
5464 else if (code1 == CONST_INT || code1 == CONST
5465 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5466 find_reloads_address_1 (mode, orig_op0, 0, PLUS, code1,
5467 &XEXP (x, 0), opnum, type, ind_levels,
5468 insn);
5469
5470 else if (code0 == REG && code1 == REG)
5471 {
5472 if (REGNO_OK_FOR_INDEX_P (REGNO (op0))
5473 && regno_ok_for_base_p (REGNO (op1), mode, PLUS, REG))
5474 return 0;
5475 else if (REGNO_OK_FOR_INDEX_P (REGNO (op1))
5476 && regno_ok_for_base_p (REGNO (op0), mode, PLUS, REG))
5477 return 0;
5478 else if (regno_ok_for_base_p (REGNO (op1), mode, PLUS, REG))
5479 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5480 &XEXP (x, 0), opnum, type, ind_levels,
5481 insn);
5482 else if (regno_ok_for_base_p (REGNO (op0), mode, PLUS, REG))
5483 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5484 &XEXP (x, 1), opnum, type, ind_levels,
5485 insn);
5486 else if (REGNO_OK_FOR_INDEX_P (REGNO (op1)))
5487 find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
5488 &XEXP (x, 0), opnum, type, ind_levels,
5489 insn);
5490 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0)))
5491 find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
5492 &XEXP (x, 1), opnum, type, ind_levels,
5493 insn);
5494 else
5495 {
5496 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5497 &XEXP (x, 0), opnum, type, ind_levels,
5498 insn);
5499 find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
5500 &XEXP (x, 1), opnum, type, ind_levels,
5501 insn);
5502 }
5503 }
5504
5505 else if (code0 == REG)
5506 {
5507 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5508 &XEXP (x, 0), opnum, type, ind_levels,
5509 insn);
5510 find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
5511 &XEXP (x, 1), opnum, type, ind_levels,
5512 insn);
5513 }
5514
5515 else if (code1 == REG)
5516 {
5517 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5518 &XEXP (x, 1), opnum, type, ind_levels,
5519 insn);
5520 find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
5521 &XEXP (x, 0), opnum, type, ind_levels,
5522 insn);
5523 }
5524 }
5525
5526 return 0;
5527
5528 case POST_MODIFY:
5529 case PRE_MODIFY:
5530 {
5531 rtx op0 = XEXP (x, 0);
5532 rtx op1 = XEXP (x, 1);
5533 enum rtx_code index_code;
5534 int regno;
5535 int reloadnum;
5536
5537 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5538 return 0;
5539
5540 /* Currently, we only support {PRE,POST}_MODIFY constructs
5541 where a base register is {inc,dec}remented by the contents
5542 of another register or by a constant value. Thus, these
5543 operands must match. */
5544 gcc_assert (op0 == XEXP (op1, 0));
5545
5546 /* Require index register (or constant). Let's just handle the
5547 register case in the meantime... If the target allows
5548 auto-modify by a constant then we could try replacing a pseudo
5549 register with its equivalent constant where applicable.
5550
5551 If we later decide to reload the whole PRE_MODIFY or
5552 POST_MODIFY, inc_for_reload might clobber the reload register
5553 before reading the index. The index register might therefore
5554 need to live longer than a TYPE reload normally would, so be
5555 conservative and class it as RELOAD_OTHER. */
5556 if (REG_P (XEXP (op1, 1)))
5557 if (!REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5558 find_reloads_address_1 (mode, XEXP (op1, 1), 1, code, SCRATCH,
5559 &XEXP (op1, 1), opnum, RELOAD_OTHER,
5560 ind_levels, insn);
5561
5562 gcc_assert (REG_P (XEXP (op1, 0)));
5563
5564 regno = REGNO (XEXP (op1, 0));
5565 index_code = GET_CODE (XEXP (op1, 1));
5566
5567 /* A register that is incremented cannot be constant! */
5568 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5569 || reg_equiv_constant[regno] == 0);
5570
5571 /* Handle a register that is equivalent to a memory location
5572 which cannot be addressed directly. */
5573 if (reg_equiv_memory_loc[regno] != 0
5574 && (reg_equiv_address[regno] != 0
5575 || num_not_at_initial_offset))
5576 {
5577 rtx tem = make_memloc (XEXP (x, 0), regno);
5578
5579 if (reg_equiv_address[regno]
5580 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5581 {
5582 rtx orig = tem;
5583
5584 /* First reload the memory location's address.
5585 We can't use ADDR_TYPE (type) here, because we need to
5586 write back the value after reading it, hence we actually
5587 need two registers. */
5588 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5589 &XEXP (tem, 0), opnum,
5590 RELOAD_OTHER,
5591 ind_levels, insn);
5592
5593 if (tem != orig)
5594 push_reg_equiv_alt_mem (regno, tem);
5595
5596 /* Then reload the memory location into a base
5597 register. */
5598 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5599 &XEXP (op1, 0),
5600 base_reg_class (mode, code,
5601 index_code),
5602 GET_MODE (x), GET_MODE (x), 0,
5603 0, opnum, RELOAD_OTHER);
5604
5605 update_auto_inc_notes (this_insn, regno, reloadnum);
5606 return 0;
5607 }
5608 }
5609
5610 if (reg_renumber[regno] >= 0)
5611 regno = reg_renumber[regno];
5612
5613 /* We require a base register here... */
5614 if (!regno_ok_for_base_p (regno, GET_MODE (x), code, index_code))
5615 {
5616 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5617 &XEXP (op1, 0), &XEXP (x, 0),
5618 base_reg_class (mode, code, index_code),
5619 GET_MODE (x), GET_MODE (x), 0, 0,
5620 opnum, RELOAD_OTHER);
5621
5622 update_auto_inc_notes (this_insn, regno, reloadnum);
5623 return 0;
5624 }
5625 }
5626 return 0;
5627
5628 case POST_INC:
5629 case POST_DEC:
5630 case PRE_INC:
5631 case PRE_DEC:
5632 if (REG_P (XEXP (x, 0)))
5633 {
5634 int regno = REGNO (XEXP (x, 0));
5635 int value = 0;
5636 rtx x_orig = x;
5637
5638 /* A register that is incremented cannot be constant! */
5639 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5640 || reg_equiv_constant[regno] == 0);
5641
5642 /* Handle a register that is equivalent to a memory location
5643 which cannot be addressed directly. */
5644 if (reg_equiv_memory_loc[regno] != 0
5645 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5646 {
5647 rtx tem = make_memloc (XEXP (x, 0), regno);
5648 if (reg_equiv_address[regno]
5649 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5650 {
5651 rtx orig = tem;
5652
5653 /* First reload the memory location's address.
5654 We can't use ADDR_TYPE (type) here, because we need to
5655 write back the value after reading it, hence we actually
5656 need two registers. */
5657 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5658 &XEXP (tem, 0), opnum, type,
5659 ind_levels, insn);
5660 if (tem != orig)
5661 push_reg_equiv_alt_mem (regno, tem);
5662 /* Put this inside a new increment-expression. */
5663 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5664 /* Proceed to reload that, as if it contained a register. */
5665 }
5666 }
5667
5668 /* If we have a hard register that is ok as an index,
5669 don't make a reload. If an autoincrement of a nice register
5670 isn't "valid", it must be that no autoincrement is "valid".
5671 If that is true and something made an autoincrement anyway,
5672 this must be a special context where one is allowed.
5673 (For example, a "push" instruction.)
5674 We can't improve this address, so leave it alone. */
5675
5676 /* Otherwise, reload the autoincrement into a suitable hard reg
5677 and record how much to increment by. */
5678
5679 if (reg_renumber[regno] >= 0)
5680 regno = reg_renumber[regno];
5681 if (regno >= FIRST_PSEUDO_REGISTER
5682 || !REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
5683 index_code))
5684 {
5685 int reloadnum;
5686
5687 /* If we can output the register afterwards, do so, this
5688 saves the extra update.
5689 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5690 CALL_INSN - and it does not set CC0.
5691 But don't do this if we cannot directly address the
5692 memory location, since this will make it harder to
5693 reuse address reloads, and increases register pressure.
5694 Also don't do this if we can probably update x directly. */
5695 rtx equiv = (MEM_P (XEXP (x, 0))
5696 ? XEXP (x, 0)
5697 : reg_equiv_mem[regno]);
5698 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5699 if (insn && NONJUMP_INSN_P (insn) && equiv
5700 && memory_operand (equiv, GET_MODE (equiv))
5701#ifdef HAVE_cc0
5702 && ! sets_cc0_p (PATTERN (insn))
5703#endif
5704 && ! (icode != CODE_FOR_nothing
5705 && ((*insn_data[icode].operand[0].predicate)
5706 (equiv, Pmode))
5707 && ((*insn_data[icode].operand[1].predicate)
5708 (equiv, Pmode))))
5709 {
5710 /* We use the original pseudo for loc, so that
5711 emit_reload_insns() knows which pseudo this
5712 reload refers to and updates the pseudo rtx, not
5713 its equivalent memory location, as well as the
5714 corresponding entry in reg_last_reload_reg. */
5715 loc = &XEXP (x_orig, 0);
5716 x = XEXP (x, 0);
5717 reloadnum
5718 = push_reload (x, x, loc, loc,
5719 context_reg_class,
5720 GET_MODE (x), GET_MODE (x), 0, 0,
5721 opnum, RELOAD_OTHER);
5722 }
5723 else
5724 {
5725 reloadnum
5726 = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5727 context_reg_class,
5728 GET_MODE (x), GET_MODE (x), 0, 0,
5729 opnum, type);
5730 rld[reloadnum].inc
5731 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5732
5733 value = 1;
5734 }
5735
5736 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5737 reloadnum);
5738 }
5739 return value;
5740 }
5741
5742 else if (MEM_P (XEXP (x, 0)))
5743 {
5744 /* This is probably the result of a substitution, by eliminate_regs,
5745 of an equivalent address for a pseudo that was not allocated to a
5746 hard register. Verify that the specified address is valid and
5747 reload it into a register. */
5748 /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE. */
5749 rtx tem ATTRIBUTE_UNUSED = XEXP (x, 0);
5750 rtx link;

--- 8 unchanged lines hidden (view full) ---

5759 /* We can't use ADDR_TYPE (type) here, because we need to
5760 write back the value after reading it, hence we actually
5761 need two registers. */
5762 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5763 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
5764 opnum, type, ind_levels, insn);
5765
5766 reloadnum = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5767 context_reg_class,
5768 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5769 rld[reloadnum].inc
5770 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5771
5772 link = FIND_REG_INC_NOTE (this_insn, tem);
5773 if (link != 0)
5774 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5775
5776 return 1;
5777 }
5778 return 0;
5779
5780 case TRUNCATE:
5781 case SIGN_EXTEND:
5782 case ZERO_EXTEND:
5783 /* Look for parts to reload in the inner expression and reload them
5784 too, in addition to this operation. Reloading all inner parts in
5785 addition to this one shouldn't be necessary, but at this point,
5786 we don't know if we can possibly omit any part that *can* be
5787 reloaded. Targets that are better off reloading just either part
5788 (or perhaps even a different part of an outer expression), should
5789 define LEGITIMIZE_RELOAD_ADDRESS. */
5790 find_reloads_address_1 (GET_MODE (XEXP (x, 0)), XEXP (x, 0),
5791 context, code, SCRATCH, &XEXP (x, 0), opnum,
5792 type, ind_levels, insn);
5793 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5794 context_reg_class,
5795 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5796 return 1;
5797
5798 case MEM:
5799 /* This is probably the result of a substitution, by eliminate_regs, of
5800 an equivalent address for a pseudo that was not allocated to a hard
5801 register. Verify that the specified address is valid and reload it
5802 into a register.
5803
5804 Since we know we are going to reload this item, don't decrement for
5805 the indirection level.
5806
5807 Note that this is actually conservative: it would be slightly more
5808 efficient to use the value of SPILL_INDIRECT_LEVELS from
5809 reload1.c here. */
5810
5811 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5812 opnum, ADDR_TYPE (type), ind_levels, insn);
5813 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5814 context_reg_class,
5815 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5816 return 1;
5817
5818 case REG:
5819 {
5820 int regno = REGNO (x);
5821
5822 if (reg_equiv_constant[regno] != 0)
5823 {
5824 find_reloads_address_part (reg_equiv_constant[regno], loc,
5825 context_reg_class,
5826 GET_MODE (x), opnum, type, ind_levels);
5827 return 1;
5828 }
5829
5830#if 0 /* This might screw code in reload1.c to delete prior output-reload
5831 that feeds this insn. */
5832 if (reg_equiv_mem[regno] != 0)
5833 {
5834 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
5835 context_reg_class,
5836 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5837 return 1;
5838 }
5839#endif
5840
5841 if (reg_equiv_memory_loc[regno]
5842 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5843 {
5844 rtx tem = make_memloc (x, regno);
5845 if (reg_equiv_address[regno] != 0
5846 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5847 {
5848 x = tem;
5849 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5850 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5851 ind_levels, insn);
5852 if (x != tem)
5853 push_reg_equiv_alt_mem (regno, x);
5854 }
5855 }
5856
5857 if (reg_renumber[regno] >= 0)
5858 regno = reg_renumber[regno];
5859
5860 if (regno >= FIRST_PSEUDO_REGISTER
5861 || !REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
5862 index_code))
5863 {
5864 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5865 context_reg_class,
5866 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5867 return 1;
5868 }
5869
5870 /* If a register appearing in an address is the subject of a CLOBBER
5871 in this insn, reload it into some other register to be safe.
5872 The CLOBBER is supposed to make the register unavailable
5873 from before this insn to after it. */
5874 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5875 {
5876 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5877 context_reg_class,
5878 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5879 return 1;
5880 }
5881 }
5882 return 0;
5883
5884 case SUBREG:
5885 if (REG_P (SUBREG_REG (x)))
5886 {
5887 /* If this is a SUBREG of a hard register and the resulting register
5888 is of the wrong class, reload the whole SUBREG. This avoids
5889 needless copies if SUBREG_REG is multi-word. */
5890 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5891 {
5892 int regno ATTRIBUTE_UNUSED = subreg_regno (x);
5893
5894 if (!REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
5895 index_code))
5896 {
5897 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5898 context_reg_class,
5899 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5900 return 1;
5901 }
5902 }
5903 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5904 is larger than the class size, then reload the whole SUBREG. */
5905 else
5906 {
5907 enum reg_class class = context_reg_class;
5908 if ((unsigned) CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5909 > reg_class_size[class])
5910 {
5911 x = find_reloads_subreg_address (x, 0, opnum,
5912 ADDR_TYPE (type),
5913 ind_levels, insn);
5914 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5915 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5916 return 1;
5917 }
5918 }
5919 }
5920 break;

--- 4 unchanged lines hidden (view full) ---

5925
5926 {
5927 const char *fmt = GET_RTX_FORMAT (code);
5928 int i;
5929
5930 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5931 {
5932 if (fmt[i] == 'e')
5933 /* Pass SCRATCH for INDEX_CODE, since CODE can never be a PLUS once
5934 we get here. */
5935 find_reloads_address_1 (mode, XEXP (x, i), context, code, SCRATCH,
5936 &XEXP (x, i), opnum, type, ind_levels, insn);
5937 }
5938 }
5939
5940#undef REG_OK_FOR_CONTEXT
5941 return 0;
5942}
5943
5944/* X, which is found at *LOC, is a part of an address that needs to be
5945 reloaded into a register of class CLASS. If X is a constant, or if
5946 X is a PLUS that contains a constant, check that the constant is a
5947 legitimate operand and that we are supposed to be able to load
5948 it into the register.

--- 84 unchanged lines hidden (view full) ---

6033 /* If the address changes because of register elimination, then
6034 it must be replaced. */
6035 if (force_replace
6036 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
6037 {
6038 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
6039 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
6040 int offset;
6041 rtx orig = tem;
6042 enum machine_mode orig_mode = GET_MODE (orig);
6043 int reloaded;
6044
6045 /* For big-endian paradoxical subregs, SUBREG_BYTE does not
6046 hold the correct (negative) byte offset. */
6047 if (BYTES_BIG_ENDIAN && outer_size > inner_size)
6048 offset = inner_size - outer_size;
6049 else
6050 offset = SUBREG_BYTE (x);
6051
6052 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
6053 PUT_MODE (tem, GET_MODE (x));
6054
6055 /* If this was a paradoxical subreg that we replaced, the
6056 resulting memory must be sufficiently aligned to allow
6057 us to widen the mode of the memory. */
6058 if (outer_size > inner_size)
6059 {
6060 rtx base;
6061
6062 base = XEXP (tem, 0);
6063 if (GET_CODE (base) == PLUS)
6064 {
6065 if (GET_CODE (XEXP (base, 1)) == CONST_INT
6066 && INTVAL (XEXP (base, 1)) % outer_size != 0)
6067 return x;
6068 base = XEXP (base, 0);
6069 }
6070 if (!REG_P (base)
6071 || (REGNO_POINTER_ALIGN (REGNO (base))
6072 < outer_size * BITS_PER_UNIT))
6073 return x;
6074 }
6075
6076 reloaded = find_reloads_address (GET_MODE (tem), &tem,
6077 XEXP (tem, 0), &XEXP (tem, 0),
6078 opnum, type, ind_levels, insn);
6079 /* ??? Do we need to handle nonzero offsets somehow? */
6080 if (!offset && tem != orig)
6081 push_reg_equiv_alt_mem (regno, tem);
6082
6083 /* For some processors an address may be valid in the
6084 original mode but not in a smaller mode. For
6085 example, ARM accepts a scaled index register in
6086 SImode but not in HImode. find_reloads_address
6087 assumes that we pass it a valid address, and doesn't
6088 force a reload. This will probably be fine if
6089 find_reloads_address finds some reloads. But if it
6090 doesn't find any, then we may have just converted a
6091 valid address into an invalid one. Check for that
6092 here. */
6093 if (reloaded != 1
6094 && strict_memory_address_p (orig_mode, XEXP (tem, 0))
6095 && !strict_memory_address_p (GET_MODE (tem),
6096 XEXP (tem, 0)))
6097 push_reload (XEXP (tem, 0), NULL_RTX, &XEXP (tem, 0), (rtx*) 0,
6098 base_reg_class (GET_MODE (tem), MEM, SCRATCH),
6099 GET_MODE (XEXP (tem, 0)), VOIDmode, 0, 0,
6100 opnum, type);
6101
6102 /* If this is not a toplevel operand, find_reloads doesn't see
6103 this substitution. We have to emit a USE of the pseudo so
6104 that delete_output_reload can see it. */
6105 if (replace_reloads && recog_data.operand[opnum] != x)
6106 /* We mark the USE with QImode so that we recognize it
6107 as one that can be safely deleted at the end of
6108 reload. */
6109 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,

--- 32 unchanged lines hidden (view full) ---

6142 Otherwise, if the equivalence is used after that, it will
6143 have been modified, and the thing substituted (probably a
6144 register) is likely overwritten and not a usable equivalence. */
6145 int check_regno;
6146
6147 for (check_regno = 0; check_regno < max_regno; check_regno++)
6148 {
6149#define CHECK_MODF(ARRAY) \
6150 gcc_assert (!ARRAY[check_regno] \
6151 || !loc_mentioned_in_p (r->where, \
6152 ARRAY[check_regno]))
6153
6154 CHECK_MODF (reg_equiv_constant);
6155 CHECK_MODF (reg_equiv_memory_loc);
6156 CHECK_MODF (reg_equiv_address);
6157 CHECK_MODF (reg_equiv_mem);
6158#undef CHECK_MODF
6159 }
6160#endif /* ENABLE_CHECKING */
6161
6162 /* If we're replacing a LABEL_REF with a register, add a
6163 REG_LABEL note to indicate to flow which label this
6164 register refers to. */
6165 if (GET_CODE (*r->where) == LABEL_REF
6166 && JUMP_P (insn))
6167 {
6168 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
6169 XEXP (*r->where, 0),
6170 REG_NOTES (insn));
6171 JUMP_LABEL (insn) = XEXP (*r->where, 0);
6172 }
6173
6174 /* Encapsulate RELOADREG so its machine mode matches what
6175 used to be there. Note that gen_lowpart_common will
6176 do the wrong thing if RELOADREG is multi-word. RELOADREG
6177 will always be a REG here. */
6178 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
6179 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6180

--- 21 unchanged lines hidden (view full) ---

6202 *r->where = SUBREG_REG (reloadreg);
6203 SUBREG_BYTE (*r->subreg_loc) = final_offset;
6204 }
6205 }
6206 else
6207 *r->where = reloadreg;
6208 }
6209 /* If reload got no reg and isn't optional, something's wrong. */
6210 else
6211 gcc_assert (rld[r->what].optional);
6212 }
6213}
6214
6215/* Make a copy of any replacements being done into X and move those
6216 copies to locations in Y, a copy of X. */
6217
6218void
6219copy_replacements (rtx x, rtx y)
6220{
6221 /* We can't support X being a SUBREG because we might then need to know its
6222 location if something inside it was replaced. */
6223 gcc_assert (GET_CODE (x) != SUBREG);
6224
6225 copy_replacements_1 (&x, &y, n_replacements);
6226}
6227
6228static void
6229copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
6230{
6231 int i, j;

--- 75 unchanged lines hidden (view full) ---

6307 return reloadreg;
6308 }
6309 else if (reloadreg && r->subreg_loc == loc)
6310 {
6311 /* RELOADREG must be either a REG or a SUBREG.
6312
6313 ??? Is it actually still ever a SUBREG? If so, why? */
6314
6315 if (REG_P (reloadreg))
6316 return gen_rtx_REG (GET_MODE (*loc),
6317 (REGNO (reloadreg) +
6318 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
6319 GET_MODE (SUBREG_REG (*loc)),
6320 SUBREG_BYTE (*loc),
6321 GET_MODE (*loc))));
6322 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
6323 return reloadreg;

--- 31 unchanged lines hidden (view full) ---

6355 other than being stored into (except for earlyclobber operands).
6356
6357 References contained within the substructure at LOC do not count.
6358 LOC may be zero, meaning don't ignore anything.
6359
6360 This is similar to refers_to_regno_p in rtlanal.c except that we
6361 look at equivalences for pseudos that didn't get hard registers. */
6362
6363static int
6364refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6365 rtx x, rtx *loc)
6366{
6367 int i;
6368 unsigned int r;
6369 RTX_CODE code;
6370 const char *fmt;
6371

--- 12 unchanged lines hidden (view full) ---

6384 X must therefore either be a constant or be in memory. */
6385 if (r >= FIRST_PSEUDO_REGISTER)
6386 {
6387 if (reg_equiv_memory_loc[r])
6388 return refers_to_regno_for_reload_p (regno, endregno,
6389 reg_equiv_memory_loc[r],
6390 (rtx*) 0);
6391
6392 gcc_assert (reg_equiv_constant[r] || reg_equiv_invariant[r]);
6393 return 0;
6394 }
6395
6396 return (endregno > r
6397 && regno < r + (r < FIRST_PSEUDO_REGISTER
6398 ? hard_regno_nregs[r][GET_MODE (x)]
6399 : 1));
6400
6401 case SUBREG:
6402 /* If this is a SUBREG of a hard reg, we can see exactly which
6403 registers are being modified. Otherwise, handle normally. */
6404 if (REG_P (SUBREG_REG (x))
6405 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6406 {
6407 unsigned int inner_regno = subreg_regno (x);
6408 unsigned int inner_endregno
6409 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6410 ? hard_regno_nregs[inner_regno][GET_MODE (x)] : 1);
6411
6412 return endregno > inner_regno && regno < inner_endregno;
6413 }
6414 break;
6415
6416 case CLOBBER:
6417 case SET:
6418 if (&SET_DEST (x) != loc
6419 /* Note setting a SUBREG counts as referring to the REG it is in for
6420 a pseudo but not for hard registers since we can
6421 treat each word individually. */
6422 && ((GET_CODE (SET_DEST (x)) == SUBREG
6423 && loc != &SUBREG_REG (SET_DEST (x))
6424 && REG_P (SUBREG_REG (SET_DEST (x)))
6425 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6426 && refers_to_regno_for_reload_p (regno, endregno,
6427 SUBREG_REG (SET_DEST (x)),
6428 loc))
6429 /* If the output is an earlyclobber operand, this is
6430 a conflict. */
6431 || ((!REG_P (SET_DEST (x))
6432 || earlyclobber_operand_p (SET_DEST (x)))
6433 && refers_to_regno_for_reload_p (regno, endregno,
6434 SET_DEST (x), loc))))
6435 return 1;
6436
6437 if (code == CLOBBER || loc == &SET_SRC (x))
6438 return 0;
6439 x = SET_SRC (x);

--- 44 unchanged lines hidden (view full) ---

6484
6485int
6486reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
6487{
6488 int regno, endregno;
6489
6490 /* Overly conservative. */
6491 if (GET_CODE (x) == STRICT_LOW_PART
6492 || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
6493 x = XEXP (x, 0);
6494
6495 /* If either argument is a constant, then modifying X can not affect IN. */
6496 if (CONSTANT_P (x) || CONSTANT_P (in))
6497 return 0;
6498 else if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
6499 return refers_to_mem_for_reload_p (in);
6500 else if (GET_CODE (x) == SUBREG)
6501 {
6502 regno = REGNO (SUBREG_REG (x));
6503 if (regno < FIRST_PSEUDO_REGISTER)
6504 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6505 GET_MODE (SUBREG_REG (x)),
6506 SUBREG_BYTE (x),
6507 GET_MODE (x));
6508 }
6509 else if (REG_P (x))
6510 {
6511 regno = REGNO (x);
6512
6513 /* If this is a pseudo, it must not have been assigned a hard register.
6514 Therefore, it must either be in memory or be a constant. */
6515
6516 if (regno >= FIRST_PSEUDO_REGISTER)
6517 {
6518 if (reg_equiv_memory_loc[regno])
6519 return refers_to_mem_for_reload_p (in);
6520 gcc_assert (reg_equiv_constant[regno]);
6521 return 0;
6522 }
6523 }
6524 else if (MEM_P (x))
6525 return refers_to_mem_for_reload_p (in);
6526 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6527 || GET_CODE (x) == CC0)
6528 return reg_mentioned_p (x, in);
6529 else
6530 {
6531 gcc_assert (GET_CODE (x) == PLUS);
6532
6533 /* We actually want to know if X is mentioned somewhere inside IN.
6534 We must not say that (plus (sp) (const_int 124)) is in
6535 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6536 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6537 into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
6538 while (MEM_P (in))
6539 in = XEXP (in, 0);
6540 if (REG_P (in))
6541 return 0;
6542 else if (GET_CODE (in) == PLUS)
6543 return (reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
6544 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6545 else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6546 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6547 }
6548
6549 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6550 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
6551
6552 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6553}
6554
6555/* Return nonzero if anything in X contains a MEM. Look also for pseudo
6556 registers. */
6557
6558static int
6559refers_to_mem_for_reload_p (rtx x)
6560{
6561 const char *fmt;
6562 int i;
6563
6564 if (MEM_P (x))
6565 return 1;
6566
6567 if (REG_P (x))
6568 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6569 && reg_equiv_memory_loc[REGNO (x)]);
6570
6571 fmt = GET_RTX_FORMAT (GET_CODE (x));
6572 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6573 if (fmt[i] == 'e'
6574 && (MEM_P (XEXP (x, i))
6575 || refers_to_mem_for_reload_p (XEXP (x, i))))
6576 return 1;
6577
6578 return 0;
6579}
6580
6581/* Check the insns before INSN to see if there is a suitable register
6582 containing the same value as GOAL.

--- 36 unchanged lines hidden (view full) ---

6619 int goal_mem_addr_varies = 0;
6620 int need_stable_sp = 0;
6621 int nregs;
6622 int valuenregs;
6623 int num = 0;
6624
6625 if (goal == 0)
6626 regno = goalreg;
6627 else if (REG_P (goal))
6628 regno = REGNO (goal);
6629 else if (MEM_P (goal))
6630 {
6631 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6632 if (MEM_VOLATILE_P (goal))
6633 return 0;
6634 if (flag_float_store && SCALAR_FLOAT_MODE_P (GET_MODE (goal)))
6635 return 0;
6636 /* An address with side effects must be reexecuted. */
6637 switch (code)
6638 {
6639 case POST_INC:
6640 case PRE_INC:
6641 case POST_DEC:
6642 case PRE_DEC:

--- 22 unchanged lines hidden (view full) ---

6665 /* Scan insns back from INSN, looking for one that copies
6666 a value into or out of GOAL.
6667 Stop and give up if we reach a label. */
6668
6669 while (1)
6670 {
6671 p = PREV_INSN (p);
6672 num++;
6673 if (p == 0 || LABEL_P (p)
6674 || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
6675 return 0;
6676
6677 if (NONJUMP_INSN_P (p)
6678 /* If we don't want spill regs ... */
6679 && (! (reload_reg_p != 0
6680 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6681 /* ... then ignore insns introduced by reload; they aren't
6682 useful and can cause results in reload_as_needed to be
6683 different from what they were when calculating the need for
6684 spills. If we notice an input-reload insn here, we will
6685 reject it below, but it might hide a usable equivalent.
6686 That makes bad code. It may even fail: perhaps no reg was
6687 spilled for this insn because it was assumed we would find
6688 that equivalent. */
6689 || INSN_UID (p) < reload_first_uid))
6690 {
6691 rtx tem;
6692 pat = single_set (p);
6693
6694 /* First check for something that sets some reg equal to GOAL. */

--- 20 unchanged lines hidden (view full) ---

6715 /* If we are looking for a constant,
6716 and something equivalent to that constant was copied
6717 into a reg, we can use that reg. */
6718 || (goal_const && REG_NOTES (p) != 0
6719 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6720 && ((rtx_equal_p (XEXP (tem, 0), goal)
6721 && (valueno
6722 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6723 || (REG_P (SET_DEST (pat))
6724 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6725 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6726 && GET_CODE (goal) == CONST_INT
6727 && 0 != (goaltry
6728 = operand_subword (XEXP (tem, 0), 0, 0,
6729 VOIDmode))
6730 && rtx_equal_p (goal, goaltry)
6731 && (valtry
6732 = operand_subword (SET_DEST (pat), 0, 0,
6733 VOIDmode))
6734 && (valueno = true_regnum (valtry)) >= 0)))
6735 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6736 NULL_RTX))
6737 && REG_P (SET_DEST (pat))
6738 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6739 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6740 && GET_CODE (goal) == CONST_INT
6741 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6742 VOIDmode))
6743 && rtx_equal_p (goal, goaltry)
6744 && (valtry
6745 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6746 && (valueno = true_regnum (valtry)) >= 0)))
6747 {
6748 if (other >= 0)
6749 {
6750 if (valueno != other)
6751 continue;
6752 }
6753 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6754 continue;
6755 else
6756 {
6757 int i;
6758
6759 for (i = hard_regno_nregs[valueno][mode] - 1; i >= 0; i--)
6760 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
6761 valueno + i))
6762 break;
6763 if (i >= 0)
6764 continue;
6765 }
6766 value = valtry;
6767 where = p;

--- 25 unchanged lines hidden (view full) ---

6793 return 0;
6794
6795 /* Reject VALUE if it was loaded from GOAL
6796 and is also a register that appears in the address of GOAL. */
6797
6798 if (goal_mem && value == SET_DEST (single_set (where))
6799 && refers_to_regno_for_reload_p (valueno,
6800 (valueno
6801 + hard_regno_nregs[valueno][mode]),
6802 goal, (rtx*) 0))
6803 return 0;
6804
6805 /* Reject registers that overlap GOAL. */
6806
6807 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6808 nregs = hard_regno_nregs[regno][mode];
6809 else
6810 nregs = 1;
6811 valuenregs = hard_regno_nregs[valueno][mode];
6812
6813 if (!goal_mem && !goal_const
6814 && regno + nregs > valueno && regno < valueno + valuenregs)
6815 return 0;
6816
6817 /* Reject VALUE if it is one of the regs reserved for reloads.
6818 Reload1 knows how to reuse them anyway, and it would get
6819 confused if we allocated one without its knowledge.
6820 (Now that insns introduced by reload are ignored above,
6821 this case shouldn't happen, but I'm not positive.) */
6822
6823 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6824 {

--- 8 unchanged lines hidden (view full) ---

6833
6834 if (reload_reg_p != 0)
6835 {
6836 int i;
6837 for (i = 0; i < n_reloads; i++)
6838 if (rld[i].reg_rtx != 0 && rld[i].in)
6839 {
6840 int regno1 = REGNO (rld[i].reg_rtx);
6841 int nregs1 = hard_regno_nregs[regno1]
6842 [GET_MODE (rld[i].reg_rtx)];
6843 if (regno1 < valueno + valuenregs
6844 && regno1 + nregs1 > valueno)
6845 return 0;
6846 }
6847 }
6848
6849 if (goal_mem)
6850 /* We must treat frame pointer as varying here,

--- 7 unchanged lines hidden (view full) ---

6858 while (1)
6859 {
6860 p = PREV_INSN (p);
6861 if (p == where)
6862 return value;
6863
6864 /* Don't trust the conversion past a function call
6865 if either of the two is in a call-clobbered register, or memory. */
6866 if (CALL_P (p))
6867 {
6868 int i;
6869
6870 if (goal_mem || need_stable_sp)
6871 return 0;
6872
6873 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6874 for (i = 0; i < nregs; ++i)
6875 if (call_used_regs[regno + i]
6876 || HARD_REGNO_CALL_PART_CLOBBERED (regno + i, mode))
6877 return 0;
6878
6879 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6880 for (i = 0; i < valuenregs; ++i)
6881 if (call_used_regs[valueno + i]
6882 || HARD_REGNO_CALL_PART_CLOBBERED (valueno + i, mode))
6883 return 0;
6884 }
6885
6886 if (INSN_P (p))
6887 {
6888 pat = PATTERN (p);
6889
6890 /* Watch out for unspec_volatile, and volatile asms. */
6891 if (volatile_insn_p (pat))

--- 6 unchanged lines hidden (view full) ---

6898
6899 if (GET_CODE (pat) == COND_EXEC)
6900 pat = COND_EXEC_CODE (pat);
6901 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6902 {
6903 rtx dest = SET_DEST (pat);
6904 while (GET_CODE (dest) == SUBREG
6905 || GET_CODE (dest) == ZERO_EXTRACT
6906 || GET_CODE (dest) == STRICT_LOW_PART)
6907 dest = XEXP (dest, 0);
6908 if (REG_P (dest))
6909 {
6910 int xregno = REGNO (dest);
6911 int xnregs;
6912 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6913 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6914 else
6915 xnregs = 1;
6916 if (xregno < regno + nregs && xregno + xnregs > regno)
6917 return 0;
6918 if (xregno < valueno + valuenregs
6919 && xregno + xnregs > valueno)
6920 return 0;
6921 if (goal_mem_addr_varies
6922 && reg_overlap_mentioned_for_reload_p (dest, goal))
6923 return 0;
6924 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6925 return 0;
6926 }
6927 else if (goal_mem && MEM_P (dest)
6928 && ! push_operand (dest, GET_MODE (dest)))
6929 return 0;
6930 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6931 && reg_equiv_memory_loc[regno] != 0)
6932 return 0;
6933 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6934 return 0;
6935 }
6936 else if (GET_CODE (pat) == PARALLEL)
6937 {
6938 int i;
6939 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6940 {
6941 rtx v1 = XVECEXP (pat, 0, i);
6942 if (GET_CODE (v1) == COND_EXEC)
6943 v1 = COND_EXEC_CODE (v1);
6944 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6945 {
6946 rtx dest = SET_DEST (v1);
6947 while (GET_CODE (dest) == SUBREG
6948 || GET_CODE (dest) == ZERO_EXTRACT
6949 || GET_CODE (dest) == STRICT_LOW_PART)
6950 dest = XEXP (dest, 0);
6951 if (REG_P (dest))
6952 {
6953 int xregno = REGNO (dest);
6954 int xnregs;
6955 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6956 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6957 else
6958 xnregs = 1;
6959 if (xregno < regno + nregs
6960 && xregno + xnregs > regno)
6961 return 0;
6962 if (xregno < valueno + valuenregs
6963 && xregno + xnregs > valueno)
6964 return 0;
6965 if (goal_mem_addr_varies
6966 && reg_overlap_mentioned_for_reload_p (dest,
6967 goal))
6968 return 0;
6969 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6970 return 0;
6971 }
6972 else if (goal_mem && MEM_P (dest)
6973 && ! push_operand (dest, GET_MODE (dest)))
6974 return 0;
6975 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6976 && reg_equiv_memory_loc[regno] != 0)
6977 return 0;
6978 else if (need_stable_sp
6979 && push_operand (dest, GET_MODE (dest)))
6980 return 0;
6981 }
6982 }
6983 }
6984
6985 if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
6986 {
6987 rtx link;
6988
6989 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6990 link = XEXP (link, 1))
6991 {
6992 pat = XEXP (link, 0);
6993 if (GET_CODE (pat) == CLOBBER)
6994 {
6995 rtx dest = SET_DEST (pat);
6996
6997 if (REG_P (dest))
6998 {
6999 int xregno = REGNO (dest);
7000 int xnregs
7001 = hard_regno_nregs[xregno][GET_MODE (dest)];
7002
7003 if (xregno < regno + nregs
7004 && xregno + xnregs > regno)
7005 return 0;
7006 else if (xregno < valueno + valuenregs
7007 && xregno + xnregs > valueno)
7008 return 0;
7009 else if (goal_mem_addr_varies
7010 && reg_overlap_mentioned_for_reload_p (dest,
7011 goal))
7012 return 0;
7013 }
7014
7015 else if (goal_mem && MEM_P (dest)
7016 && ! push_operand (dest, GET_MODE (dest)))
7017 return 0;
7018 else if (need_stable_sp
7019 && push_operand (dest, GET_MODE (dest)))
7020 return 0;
7021 }
7022 }
7023 }
7024
7025#ifdef AUTO_INC_DEC
7026 /* If this insn auto-increments or auto-decrements
7027 either regno or valueno, return 0 now.
7028 If GOAL is a memory ref and its address is not constant,
7029 and this insn P increments a register used in GOAL, return 0. */
7030 {
7031 rtx link;
7032
7033 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
7034 if (REG_NOTE_KIND (link) == REG_INC
7035 && REG_P (XEXP (link, 0)))
7036 {
7037 int incno = REGNO (XEXP (link, 0));
7038 if (incno < regno + nregs && incno >= regno)
7039 return 0;
7040 if (incno < valueno + valuenregs && incno >= valueno)
7041 return 0;
7042 if (goal_mem_addr_varies
7043 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),

--- 57 unchanged lines hidden (view full) ---

7101 return tem;
7102 }
7103 }
7104 }
7105
7106 return 0;
7107}
7108
7109/* Return 1 if registers from REGNO to ENDREGNO are the subjects of a
7110 REG_INC note in insn INSN. REGNO must refer to a hard register. */
7111
7112#ifdef AUTO_INC_DEC
7113static int
7114reg_inc_found_and_valid_p (unsigned int regno, unsigned int endregno,
7115 rtx insn)
7116{
7117 rtx link;
7118
7119 gcc_assert (insn);
7120
7121 if (! INSN_P (insn))
7122 return 0;
7123
7124 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
7125 if (REG_NOTE_KIND (link) == REG_INC)
7126 {
7127 unsigned int test = (int) REGNO (XEXP (link, 0));
7128 if (test >= regno && test < endregno)
7129 return 1;
7130 }
7131 return 0;
7132}
7133#else
7134
7135#define reg_inc_found_and_valid_p(regno,endregno,insn) 0
7136
7137#endif
7138
7139/* Return 1 if register REGNO is the subject of a clobber in insn INSN.
7140 If SETS is 1, also consider SETs. If SETS is 2, enable checking
7141 REG_INC. REGNO must refer to a hard register. */
7142
7143int
7144regno_clobbered_p (unsigned int regno, rtx insn, enum machine_mode mode,
7145 int sets)
7146{
7147 unsigned int nregs, endregno;
7148
7149 /* regno must be a hard register. */
7150 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
7151
7152 nregs = hard_regno_nregs[regno][mode];
7153 endregno = regno + nregs;
7154
7155 if ((GET_CODE (PATTERN (insn)) == CLOBBER
7156 || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7157 && REG_P (XEXP (PATTERN (insn), 0)))
7158 {
7159 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
7160
7161 return test >= regno && test < endregno;
7162 }
7163
7164 if (sets == 2 && reg_inc_found_and_valid_p (regno, endregno, insn))
7165 return 1;
7166
7167 if (GET_CODE (PATTERN (insn)) == PARALLEL)
7168 {
7169 int i = XVECLEN (PATTERN (insn), 0) - 1;
7170
7171 for (; i >= 0; i--)
7172 {
7173 rtx elt = XVECEXP (PATTERN (insn), 0, i);
7174 if ((GET_CODE (elt) == CLOBBER
7175 || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7176 && REG_P (XEXP (elt, 0)))
7177 {
7178 unsigned int test = REGNO (XEXP (elt, 0));
7179
7180 if (test >= regno && test < endregno)
7181 return 1;
7182 }
7183 if (sets == 2
7184 && reg_inc_found_and_valid_p (regno, endregno, elt))
7185 return 1;
7186 }
7187 }
7188
7189 return 0;
7190}
7191
7192/* Find the low part, with mode MODE, of a hard regno RELOADREG. */
7193rtx
7194reload_adjust_reg_for_mode (rtx reloadreg, enum machine_mode mode)
7195{
7196 int regno;
7197
7198 if (GET_MODE (reloadreg) == mode)
7199 return reloadreg;
7200
7201 regno = REGNO (reloadreg);
7202
7203 if (WORDS_BIG_ENDIAN)
7204 regno += (int) hard_regno_nregs[regno][GET_MODE (reloadreg)]
7205 - (int) hard_regno_nregs[regno][mode];
7206
7207 return gen_rtx_REG (mode, regno);
7208}
7209
7210static const char *const reload_when_needed_name[] =
7211{
7212 "RELOAD_FOR_INPUT",
7213 "RELOAD_FOR_OUTPUT",
7214 "RELOAD_FOR_INSN",
7215 "RELOAD_FOR_INPUT_ADDRESS",
7216 "RELOAD_FOR_INPADDR_ADDRESS",
7217 "RELOAD_FOR_OUTPUT_ADDRESS",
7218 "RELOAD_FOR_OUTADDR_ADDRESS",
7219 "RELOAD_FOR_OPERAND_ADDRESS",
7220 "RELOAD_FOR_OPADDR_ADDR",
7221 "RELOAD_OTHER",
7222 "RELOAD_FOR_OTHER_ADDRESS"
7223};
7224
7225/* These functions are used to print the variables set by 'find_reloads' */
7226
7227void
7228debug_reload_to_stream (FILE *f)
7229{
7230 int r;
7231 const char *prefix;
7232

--- 94 unchanged lines hidden ---