Deleted Added
sdiff udiff text old ( 50397 ) new ( 52284 )
full compact
1/* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987, 88, 92-98, 1999 Free Software Foundation, Inc.
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING. If not, write to
18the Free Software Foundation, 59 Temple Place - Suite 330,
19Boston, MA 02111-1307, USA. */
20
21/*@@ This file should be rewritten to use an arbitrary precision
22 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
23 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
24 @@ The routines that translate from the ap rep should
25 @@ warn if precision et. al. is lost.
26 @@ This would also make life easier when this technology is used
27 @@ for cross-compilers. */
28
29
30/* The entry points in this file are fold, size_int_wide, size_binop
31 and force_fit_type.
32
33 fold takes a tree as argument and returns a simplified tree.
34
35 size_binop takes a tree code for an arithmetic operation
36 and two operands that are trees, and produces a tree for the
37 result, assuming the type comes from `sizetype'.
38
39 size_int takes an integer value, and creates a tree constant
40 with type from `sizetype'.
41
42 force_fit_type takes a constant and prior overflow indicator, and
43 forces the value to fit the type. It returns an overflow indicator. */
44
45#include "config.h"
46#include "system.h"
47#include <setjmp.h>
48#include "flags.h"
49#include "tree.h"
50#include "rtl.h"
51#include "toplev.h"
52
53static void encode PROTO((HOST_WIDE_INT *,
54 HOST_WIDE_INT, HOST_WIDE_INT));
55static void decode PROTO((HOST_WIDE_INT *,
56 HOST_WIDE_INT *, HOST_WIDE_INT *));
57int div_and_round_double PROTO((enum tree_code, int, HOST_WIDE_INT,
58 HOST_WIDE_INT, HOST_WIDE_INT,
59 HOST_WIDE_INT, HOST_WIDE_INT *,
60 HOST_WIDE_INT *, HOST_WIDE_INT *,
61 HOST_WIDE_INT *));
62static int split_tree PROTO((tree, enum tree_code, tree *,
63 tree *, int *));
64static tree int_const_binop PROTO((enum tree_code, tree, tree, int, int));
65static tree const_binop PROTO((enum tree_code, tree, tree, int));
66static tree fold_convert PROTO((tree, tree));
67static enum tree_code invert_tree_comparison PROTO((enum tree_code));
68static enum tree_code swap_tree_comparison PROTO((enum tree_code));
69static int truth_value_p PROTO((enum tree_code));
70static int operand_equal_for_comparison_p PROTO((tree, tree, tree));
71static int twoval_comparison_p PROTO((tree, tree *, tree *, int *));
72static tree eval_subst PROTO((tree, tree, tree, tree, tree));
73static tree omit_one_operand PROTO((tree, tree, tree));
74static tree pedantic_omit_one_operand PROTO((tree, tree, tree));
75static tree distribute_bit_expr PROTO((enum tree_code, tree, tree, tree));
76static tree make_bit_field_ref PROTO((tree, tree, int, int, int));
77static tree optimize_bit_field_compare PROTO((enum tree_code, tree,
78 tree, tree));
79static tree decode_field_reference PROTO((tree, int *, int *,
80 enum machine_mode *, int *,
81 int *, tree *, tree *));
82static int all_ones_mask_p PROTO((tree, int));
83static int simple_operand_p PROTO((tree));
84static tree range_binop PROTO((enum tree_code, tree, tree, int,
85 tree, int));
86static tree make_range PROTO((tree, int *, tree *, tree *));
87static tree build_range_check PROTO((tree, tree, int, tree, tree));
88static int merge_ranges PROTO((int *, tree *, tree *, int, tree, tree,
89 int, tree, tree));
90static tree fold_range_test PROTO((tree));
91static tree unextend PROTO((tree, int, int, tree));
92static tree fold_truthop PROTO((enum tree_code, tree, tree, tree));
93static tree strip_compound_expr PROTO((tree, tree));
94static int multiple_of_p PROTO((tree, tree, tree));
95static tree constant_boolean_node PROTO((int, tree));
96static int count_cond PROTO((tree, int));
97static void const_binop_1 PROTO((PTR));
98static void fold_convert_1 PROTO((PTR));
99
100#ifndef BRANCH_COST
101#define BRANCH_COST 1
102#endif
103
104/* Suppose A1 + B1 = SUM1, using 2's complement arithmetic ignoring overflow.
105 Suppose A, B and SUM have the same respective signs as A1, B1, and SUM1.
106 Then this yields nonzero if overflow occurred during the addition.
107 Overflow occurs if A and B have the same sign, but A and SUM differ in sign.
108 Use `^' to test whether signs differ, and `< 0' to isolate the sign. */
109#define overflow_sum_sign(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0)
110
111/* To do constant folding on INTEGER_CST nodes requires two-word arithmetic.
112 We do that by representing the two-word integer in 4 words, with only
113 HOST_BITS_PER_WIDE_INT/2 bits stored in each word, as a positive number. */
114
115#define LOWPART(x) \
116 ((x) & (((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT/2)) - 1))
117#define HIGHPART(x) \
118 ((unsigned HOST_WIDE_INT) (x) >> HOST_BITS_PER_WIDE_INT/2)
119#define BASE ((unsigned HOST_WIDE_INT) 1 << HOST_BITS_PER_WIDE_INT/2)
120
121/* Unpack a two-word integer into 4 words.
122 LOW and HI are the integer, as two `HOST_WIDE_INT' pieces.
123 WORDS points to the array of HOST_WIDE_INTs. */
124
125static void
126encode (words, low, hi)
127 HOST_WIDE_INT *words;
128 HOST_WIDE_INT low, hi;
129{
130 words[0] = LOWPART (low);
131 words[1] = HIGHPART (low);
132 words[2] = LOWPART (hi);
133 words[3] = HIGHPART (hi);
134}
135
136/* Pack an array of 4 words into a two-word integer.
137 WORDS points to the array of words.
138 The integer is stored into *LOW and *HI as two `HOST_WIDE_INT' pieces. */
139
140static void
141decode (words, low, hi)
142 HOST_WIDE_INT *words;
143 HOST_WIDE_INT *low, *hi;
144{
145 *low = words[0] | words[1] * BASE;
146 *hi = words[2] | words[3] * BASE;
147}
148
149/* Make the integer constant T valid for its type
150 by setting to 0 or 1 all the bits in the constant
151 that don't belong in the type.
152 Yield 1 if a signed overflow occurs, 0 otherwise.
153 If OVERFLOW is nonzero, a signed overflow has already occurred
154 in calculating T, so propagate it.
155
156 Make the real constant T valid for its type by calling CHECK_FLOAT_VALUE,
157 if it exists. */
158
159int
160force_fit_type (t, overflow)
161 tree t;
162 int overflow;
163{
164 HOST_WIDE_INT low, high;
165 register int prec;
166
167 if (TREE_CODE (t) == REAL_CST)
168 {
169#ifdef CHECK_FLOAT_VALUE
170 CHECK_FLOAT_VALUE (TYPE_MODE (TREE_TYPE (t)), TREE_REAL_CST (t),
171 overflow);
172#endif
173 return overflow;
174 }
175
176 else if (TREE_CODE (t) != INTEGER_CST)
177 return overflow;
178
179 low = TREE_INT_CST_LOW (t);
180 high = TREE_INT_CST_HIGH (t);
181
182 if (POINTER_TYPE_P (TREE_TYPE (t)))
183 prec = POINTER_SIZE;
184 else
185 prec = TYPE_PRECISION (TREE_TYPE (t));
186
187 /* First clear all bits that are beyond the type's precision. */
188
189 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
190 ;
191 else if (prec > HOST_BITS_PER_WIDE_INT)
192 {
193 TREE_INT_CST_HIGH (t)
194 &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
195 }
196 else
197 {
198 TREE_INT_CST_HIGH (t) = 0;
199 if (prec < HOST_BITS_PER_WIDE_INT)
200 TREE_INT_CST_LOW (t) &= ~((HOST_WIDE_INT) (-1) << prec);
201 }
202
203 /* Unsigned types do not suffer sign extension or overflow. */
204 if (TREE_UNSIGNED (TREE_TYPE (t)))
205 return overflow;
206
207 /* If the value's sign bit is set, extend the sign. */
208 if (prec != 2 * HOST_BITS_PER_WIDE_INT
209 && (prec > HOST_BITS_PER_WIDE_INT
210 ? (TREE_INT_CST_HIGH (t)
211 & ((HOST_WIDE_INT) 1 << (prec - HOST_BITS_PER_WIDE_INT - 1)))
212 : TREE_INT_CST_LOW (t) & ((HOST_WIDE_INT) 1 << (prec - 1))))
213 {
214 /* Value is negative:
215 set to 1 all the bits that are outside this type's precision. */
216 if (prec > HOST_BITS_PER_WIDE_INT)
217 {
218 TREE_INT_CST_HIGH (t)
219 |= ((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
220 }
221 else
222 {
223 TREE_INT_CST_HIGH (t) = -1;
224 if (prec < HOST_BITS_PER_WIDE_INT)
225 TREE_INT_CST_LOW (t) |= ((HOST_WIDE_INT) (-1) << prec);
226 }
227 }
228
229 /* Yield nonzero if signed overflow occurred. */
230 return
231 ((overflow | (low ^ TREE_INT_CST_LOW (t)) | (high ^ TREE_INT_CST_HIGH (t)))
232 != 0);
233}
234
235/* Add two doubleword integers with doubleword result.
236 Each argument is given as two `HOST_WIDE_INT' pieces.
237 One argument is L1 and H1; the other, L2 and H2.
238 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
239
240int
241add_double (l1, h1, l2, h2, lv, hv)
242 HOST_WIDE_INT l1, h1, l2, h2;
243 HOST_WIDE_INT *lv, *hv;
244{
245 HOST_WIDE_INT l, h;
246
247 l = l1 + l2;
248 h = h1 + h2 + ((unsigned HOST_WIDE_INT) l < l1);
249
250 *lv = l;
251 *hv = h;
252 return overflow_sum_sign (h1, h2, h);
253}
254
255/* Negate a doubleword integer with doubleword result.
256 Return nonzero if the operation overflows, assuming it's signed.
257 The argument is given as two `HOST_WIDE_INT' pieces in L1 and H1.
258 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
259
260int
261neg_double (l1, h1, lv, hv)
262 HOST_WIDE_INT l1, h1;
263 HOST_WIDE_INT *lv, *hv;
264{
265 if (l1 == 0)
266 {
267 *lv = 0;
268 *hv = - h1;
269 return (*hv & h1) < 0;
270 }
271 else
272 {
273 *lv = - l1;
274 *hv = ~ h1;
275 return 0;
276 }
277}
278
279/* Multiply two doubleword integers with doubleword result.
280 Return nonzero if the operation overflows, assuming it's signed.
281 Each argument is given as two `HOST_WIDE_INT' pieces.
282 One argument is L1 and H1; the other, L2 and H2.
283 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
284
285int
286mul_double (l1, h1, l2, h2, lv, hv)
287 HOST_WIDE_INT l1, h1, l2, h2;
288 HOST_WIDE_INT *lv, *hv;
289{
290 HOST_WIDE_INT arg1[4];
291 HOST_WIDE_INT arg2[4];
292 HOST_WIDE_INT prod[4 * 2];
293 register unsigned HOST_WIDE_INT carry;
294 register int i, j, k;
295 HOST_WIDE_INT toplow, tophigh, neglow, neghigh;
296
297 encode (arg1, l1, h1);
298 encode (arg2, l2, h2);
299
300 bzero ((char *) prod, sizeof prod);
301
302 for (i = 0; i < 4; i++)
303 {
304 carry = 0;
305 for (j = 0; j < 4; j++)
306 {
307 k = i + j;
308 /* This product is <= 0xFFFE0001, the sum <= 0xFFFF0000. */
309 carry += arg1[i] * arg2[j];
310 /* Since prod[p] < 0xFFFF, this sum <= 0xFFFFFFFF. */
311 carry += prod[k];
312 prod[k] = LOWPART (carry);
313 carry = HIGHPART (carry);
314 }
315 prod[i + 4] = carry;
316 }
317
318 decode (prod, lv, hv); /* This ignores prod[4] through prod[4*2-1] */
319
320 /* Check for overflow by calculating the top half of the answer in full;
321 it should agree with the low half's sign bit. */
322 decode (prod+4, &toplow, &tophigh);
323 if (h1 < 0)
324 {
325 neg_double (l2, h2, &neglow, &neghigh);
326 add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
327 }
328 if (h2 < 0)
329 {
330 neg_double (l1, h1, &neglow, &neghigh);
331 add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
332 }
333 return (*hv < 0 ? ~(toplow & tophigh) : toplow | tophigh) != 0;
334}
335
336/* Shift the doubleword integer in L1, H1 left by COUNT places
337 keeping only PREC bits of result.
338 Shift right if COUNT is negative.
339 ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
340 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
341
342void
343lshift_double (l1, h1, count, prec, lv, hv, arith)
344 HOST_WIDE_INT l1, h1, count;
345 int prec;
346 HOST_WIDE_INT *lv, *hv;
347 int arith;
348{
349 if (count < 0)
350 {
351 rshift_double (l1, h1, - count, prec, lv, hv, arith);
352 return;
353 }
354
355#ifdef SHIFT_COUNT_TRUNCATED
356 if (SHIFT_COUNT_TRUNCATED)
357 count %= prec;
358#endif
359
360 if (count >= HOST_BITS_PER_WIDE_INT)
361 {
362 *hv = (unsigned HOST_WIDE_INT) l1 << (count - HOST_BITS_PER_WIDE_INT);
363 *lv = 0;
364 }
365 else
366 {
367 *hv = (((unsigned HOST_WIDE_INT) h1 << count)
368 | ((unsigned HOST_WIDE_INT) l1 >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1));
369 *lv = (unsigned HOST_WIDE_INT) l1 << count;
370 }
371}
372
373/* Shift the doubleword integer in L1, H1 right by COUNT places
374 keeping only PREC bits of result. COUNT must be positive.
375 ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
376 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
377
378void
379rshift_double (l1, h1, count, prec, lv, hv, arith)
380 HOST_WIDE_INT l1, h1, count;
381 int prec ATTRIBUTE_UNUSED;
382 HOST_WIDE_INT *lv, *hv;
383 int arith;
384{
385 unsigned HOST_WIDE_INT signmask;
386 signmask = (arith
387 ? -((unsigned HOST_WIDE_INT) h1 >> (HOST_BITS_PER_WIDE_INT - 1))
388 : 0);
389
390#ifdef SHIFT_COUNT_TRUNCATED
391 if (SHIFT_COUNT_TRUNCATED)
392 count %= prec;
393#endif
394
395 if (count >= HOST_BITS_PER_WIDE_INT)
396 {
397 *hv = signmask;
398 *lv = ((signmask << (2 * HOST_BITS_PER_WIDE_INT - count - 1) << 1)
399 | ((unsigned HOST_WIDE_INT) h1 >> (count - HOST_BITS_PER_WIDE_INT)));
400 }
401 else
402 {
403 *lv = (((unsigned HOST_WIDE_INT) l1 >> count)
404 | ((unsigned HOST_WIDE_INT) h1 << (HOST_BITS_PER_WIDE_INT - count - 1) << 1));
405 *hv = ((signmask << (HOST_BITS_PER_WIDE_INT - count))
406 | ((unsigned HOST_WIDE_INT) h1 >> count));
407 }
408}
409
410/* Rotate the doubleword integer in L1, H1 left by COUNT places
411 keeping only PREC bits of result.
412 Rotate right if COUNT is negative.
413 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
414
415void
416lrotate_double (l1, h1, count, prec, lv, hv)
417 HOST_WIDE_INT l1, h1, count;
418 int prec;
419 HOST_WIDE_INT *lv, *hv;
420{
421 HOST_WIDE_INT s1l, s1h, s2l, s2h;
422
423 count %= prec;
424 if (count < 0)
425 count += prec;
426
427 lshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
428 rshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
429 *lv = s1l | s2l;
430 *hv = s1h | s2h;
431}
432
433/* Rotate the doubleword integer in L1, H1 left by COUNT places
434 keeping only PREC bits of result. COUNT must be positive.
435 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
436
437void
438rrotate_double (l1, h1, count, prec, lv, hv)
439 HOST_WIDE_INT l1, h1, count;
440 int prec;
441 HOST_WIDE_INT *lv, *hv;
442{
443 HOST_WIDE_INT s1l, s1h, s2l, s2h;
444
445 count %= prec;
446 if (count < 0)
447 count += prec;
448
449 rshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
450 lshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
451 *lv = s1l | s2l;
452 *hv = s1h | s2h;
453}
454
455/* Divide doubleword integer LNUM, HNUM by doubleword integer LDEN, HDEN
456 for a quotient (stored in *LQUO, *HQUO) and remainder (in *LREM, *HREM).
457 CODE is a tree code for a kind of division, one of
458 TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR, ROUND_DIV_EXPR
459 or EXACT_DIV_EXPR
460 It controls how the quotient is rounded to a integer.
461 Return nonzero if the operation overflows.
462 UNS nonzero says do unsigned division. */
463
464int
465div_and_round_double (code, uns,
466 lnum_orig, hnum_orig, lden_orig, hden_orig,
467 lquo, hquo, lrem, hrem)
468 enum tree_code code;
469 int uns;
470 HOST_WIDE_INT lnum_orig, hnum_orig; /* num == numerator == dividend */
471 HOST_WIDE_INT lden_orig, hden_orig; /* den == denominator == divisor */
472 HOST_WIDE_INT *lquo, *hquo, *lrem, *hrem;
473{
474 int quo_neg = 0;
475 HOST_WIDE_INT num[4 + 1]; /* extra element for scaling. */
476 HOST_WIDE_INT den[4], quo[4];
477 register int i, j;
478 unsigned HOST_WIDE_INT work;
479 register unsigned HOST_WIDE_INT carry = 0;
480 HOST_WIDE_INT lnum = lnum_orig;
481 HOST_WIDE_INT hnum = hnum_orig;
482 HOST_WIDE_INT lden = lden_orig;
483 HOST_WIDE_INT hden = hden_orig;
484 int overflow = 0;
485
486 if ((hden == 0) && (lden == 0))
487 overflow = 1, lden = 1;
488
489 /* calculate quotient sign and convert operands to unsigned. */
490 if (!uns)
491 {
492 if (hnum < 0)
493 {
494 quo_neg = ~ quo_neg;
495 /* (minimum integer) / (-1) is the only overflow case. */
496 if (neg_double (lnum, hnum, &lnum, &hnum) && (lden & hden) == -1)
497 overflow = 1;
498 }
499 if (hden < 0)
500 {
501 quo_neg = ~ quo_neg;
502 neg_double (lden, hden, &lden, &hden);
503 }
504 }
505
506 if (hnum == 0 && hden == 0)
507 { /* single precision */
508 *hquo = *hrem = 0;
509 /* This unsigned division rounds toward zero. */
510 *lquo = lnum / (unsigned HOST_WIDE_INT) lden;
511 goto finish_up;
512 }
513
514 if (hnum == 0)
515 { /* trivial case: dividend < divisor */
516 /* hden != 0 already checked. */
517 *hquo = *lquo = 0;
518 *hrem = hnum;
519 *lrem = lnum;
520 goto finish_up;
521 }
522
523 bzero ((char *) quo, sizeof quo);
524
525 bzero ((char *) num, sizeof num); /* to zero 9th element */
526 bzero ((char *) den, sizeof den);
527
528 encode (num, lnum, hnum);
529 encode (den, lden, hden);
530
531 /* Special code for when the divisor < BASE. */
532 if (hden == 0 && lden < (HOST_WIDE_INT) BASE)
533 {
534 /* hnum != 0 already checked. */
535 for (i = 4 - 1; i >= 0; i--)
536 {
537 work = num[i] + carry * BASE;
538 quo[i] = work / (unsigned HOST_WIDE_INT) lden;
539 carry = work % (unsigned HOST_WIDE_INT) lden;
540 }
541 }
542 else
543 {
544 /* Full double precision division,
545 with thanks to Don Knuth's "Seminumerical Algorithms". */
546 int num_hi_sig, den_hi_sig;
547 unsigned HOST_WIDE_INT quo_est, scale;
548
549 /* Find the highest non-zero divisor digit. */
550 for (i = 4 - 1; ; i--)
551 if (den[i] != 0) {
552 den_hi_sig = i;
553 break;
554 }
555
556 /* Insure that the first digit of the divisor is at least BASE/2.
557 This is required by the quotient digit estimation algorithm. */
558
559 scale = BASE / (den[den_hi_sig] + 1);
560 if (scale > 1) { /* scale divisor and dividend */
561 carry = 0;
562 for (i = 0; i <= 4 - 1; i++) {
563 work = (num[i] * scale) + carry;
564 num[i] = LOWPART (work);
565 carry = HIGHPART (work);
566 } num[4] = carry;
567 carry = 0;
568 for (i = 0; i <= 4 - 1; i++) {
569 work = (den[i] * scale) + carry;
570 den[i] = LOWPART (work);
571 carry = HIGHPART (work);
572 if (den[i] != 0) den_hi_sig = i;
573 }
574 }
575
576 num_hi_sig = 4;
577
578 /* Main loop */
579 for (i = num_hi_sig - den_hi_sig - 1; i >= 0; i--) {
580 /* guess the next quotient digit, quo_est, by dividing the first
581 two remaining dividend digits by the high order quotient digit.
582 quo_est is never low and is at most 2 high. */
583 unsigned HOST_WIDE_INT tmp;
584
585 num_hi_sig = i + den_hi_sig + 1;
586 work = num[num_hi_sig] * BASE + num[num_hi_sig - 1];
587 if (num[num_hi_sig] != den[den_hi_sig])
588 quo_est = work / den[den_hi_sig];
589 else
590 quo_est = BASE - 1;
591
592 /* refine quo_est so it's usually correct, and at most one high. */
593 tmp = work - quo_est * den[den_hi_sig];
594 if (tmp < BASE
595 && den[den_hi_sig - 1] * quo_est > (tmp * BASE + num[num_hi_sig - 2]))
596 quo_est--;
597
598 /* Try QUO_EST as the quotient digit, by multiplying the
599 divisor by QUO_EST and subtracting from the remaining dividend.
600 Keep in mind that QUO_EST is the I - 1st digit. */
601
602 carry = 0;
603 for (j = 0; j <= den_hi_sig; j++)
604 {
605 work = quo_est * den[j] + carry;
606 carry = HIGHPART (work);
607 work = num[i + j] - LOWPART (work);
608 num[i + j] = LOWPART (work);
609 carry += HIGHPART (work) != 0;
610 }
611
612 /* if quo_est was high by one, then num[i] went negative and
613 we need to correct things. */
614
615 if (num[num_hi_sig] < carry)
616 {
617 quo_est--;
618 carry = 0; /* add divisor back in */
619 for (j = 0; j <= den_hi_sig; j++)
620 {
621 work = num[i + j] + den[j] + carry;
622 carry = HIGHPART (work);
623 num[i + j] = LOWPART (work);
624 }
625 num [num_hi_sig] += carry;
626 }
627
628 /* store the quotient digit. */
629 quo[i] = quo_est;
630 }
631 }
632
633 decode (quo, lquo, hquo);
634
635 finish_up:
636 /* if result is negative, make it so. */
637 if (quo_neg)
638 neg_double (*lquo, *hquo, lquo, hquo);
639
640 /* compute trial remainder: rem = num - (quo * den) */
641 mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
642 neg_double (*lrem, *hrem, lrem, hrem);
643 add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
644
645 switch (code)
646 {
647 case TRUNC_DIV_EXPR:
648 case TRUNC_MOD_EXPR: /* round toward zero */
649 case EXACT_DIV_EXPR: /* for this one, it shouldn't matter */
650 return overflow;
651
652 case FLOOR_DIV_EXPR:
653 case FLOOR_MOD_EXPR: /* round toward negative infinity */
654 if (quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio < 0 && rem != 0 */
655 {
656 /* quo = quo - 1; */
657 add_double (*lquo, *hquo, (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1,
658 lquo, hquo);
659 }
660 else return overflow;
661 break;
662
663 case CEIL_DIV_EXPR:
664 case CEIL_MOD_EXPR: /* round toward positive infinity */
665 if (!quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio > 0 && rem != 0 */
666 {
667 add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
668 lquo, hquo);
669 }
670 else return overflow;
671 break;
672
673 case ROUND_DIV_EXPR:
674 case ROUND_MOD_EXPR: /* round to closest integer */
675 {
676 HOST_WIDE_INT labs_rem = *lrem, habs_rem = *hrem;
677 HOST_WIDE_INT labs_den = lden, habs_den = hden, ltwice, htwice;
678
679 /* get absolute values */
680 if (*hrem < 0) neg_double (*lrem, *hrem, &labs_rem, &habs_rem);
681 if (hden < 0) neg_double (lden, hden, &labs_den, &habs_den);
682
683 /* if (2 * abs (lrem) >= abs (lden)) */
684 mul_double ((HOST_WIDE_INT) 2, (HOST_WIDE_INT) 0,
685 labs_rem, habs_rem, &ltwice, &htwice);
686 if (((unsigned HOST_WIDE_INT) habs_den
687 < (unsigned HOST_WIDE_INT) htwice)
688 || (((unsigned HOST_WIDE_INT) habs_den
689 == (unsigned HOST_WIDE_INT) htwice)
690 && ((HOST_WIDE_INT unsigned) labs_den
691 < (unsigned HOST_WIDE_INT) ltwice)))
692 {
693 if (*hquo < 0)
694 /* quo = quo - 1; */
695 add_double (*lquo, *hquo,
696 (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1, lquo, hquo);
697 else
698 /* quo = quo + 1; */
699 add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
700 lquo, hquo);
701 }
702 else return overflow;
703 }
704 break;
705
706 default:
707 abort ();
708 }
709
710 /* compute true remainder: rem = num - (quo * den) */
711 mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
712 neg_double (*lrem, *hrem, lrem, hrem);
713 add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
714 return overflow;
715}
716
717#ifndef REAL_ARITHMETIC
718/* Effectively truncate a real value to represent the nearest possible value
719 in a narrower mode. The result is actually represented in the same data
720 type as the argument, but its value is usually different.
721
722 A trap may occur during the FP operations and it is the responsibility
723 of the calling function to have a handler established. */
724
725REAL_VALUE_TYPE
726real_value_truncate (mode, arg)
727 enum machine_mode mode;
728 REAL_VALUE_TYPE arg;
729{
730 return REAL_VALUE_TRUNCATE (mode, arg);
731}
732
733#if TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
734
735/* Check for infinity in an IEEE double precision number. */
736
737int
738target_isinf (x)
739 REAL_VALUE_TYPE x;
740{
741 /* The IEEE 64-bit double format. */
742 union {
743 REAL_VALUE_TYPE d;
744 struct {
745 unsigned sign : 1;
746 unsigned exponent : 11;
747 unsigned mantissa1 : 20;
748 unsigned mantissa2;
749 } little_endian;
750 struct {
751 unsigned mantissa2;
752 unsigned mantissa1 : 20;
753 unsigned exponent : 11;
754 unsigned sign : 1;
755 } big_endian;
756 } u;
757
758 u.d = dconstm1;
759 if (u.big_endian.sign == 1)
760 {
761 u.d = x;
762 return (u.big_endian.exponent == 2047
763 && u.big_endian.mantissa1 == 0
764 && u.big_endian.mantissa2 == 0);
765 }
766 else
767 {
768 u.d = x;
769 return (u.little_endian.exponent == 2047
770 && u.little_endian.mantissa1 == 0
771 && u.little_endian.mantissa2 == 0);
772 }
773}
774
775/* Check whether an IEEE double precision number is a NaN. */
776
777int
778target_isnan (x)
779 REAL_VALUE_TYPE x;
780{
781 /* The IEEE 64-bit double format. */
782 union {
783 REAL_VALUE_TYPE d;
784 struct {
785 unsigned sign : 1;
786 unsigned exponent : 11;
787 unsigned mantissa1 : 20;
788 unsigned mantissa2;
789 } little_endian;
790 struct {
791 unsigned mantissa2;
792 unsigned mantissa1 : 20;
793 unsigned exponent : 11;
794 unsigned sign : 1;
795 } big_endian;
796 } u;
797
798 u.d = dconstm1;
799 if (u.big_endian.sign == 1)
800 {
801 u.d = x;
802 return (u.big_endian.exponent == 2047
803 && (u.big_endian.mantissa1 != 0
804 || u.big_endian.mantissa2 != 0));
805 }
806 else
807 {
808 u.d = x;
809 return (u.little_endian.exponent == 2047
810 && (u.little_endian.mantissa1 != 0
811 || u.little_endian.mantissa2 != 0));
812 }
813}
814
815/* Check for a negative IEEE double precision number. */
816
817int
818target_negative (x)
819 REAL_VALUE_TYPE x;
820{
821 /* The IEEE 64-bit double format. */
822 union {
823 REAL_VALUE_TYPE d;
824 struct {
825 unsigned sign : 1;
826 unsigned exponent : 11;
827 unsigned mantissa1 : 20;
828 unsigned mantissa2;
829 } little_endian;
830 struct {
831 unsigned mantissa2;
832 unsigned mantissa1 : 20;
833 unsigned exponent : 11;
834 unsigned sign : 1;
835 } big_endian;
836 } u;
837
838 u.d = dconstm1;
839 if (u.big_endian.sign == 1)
840 {
841 u.d = x;
842 return u.big_endian.sign;
843 }
844 else
845 {
846 u.d = x;
847 return u.little_endian.sign;
848 }
849}
850#else /* Target not IEEE */
851
852/* Let's assume other float formats don't have infinity.
853 (This can be overridden by redefining REAL_VALUE_ISINF.) */
854
855target_isinf (x)
856 REAL_VALUE_TYPE x;
857{
858 return 0;
859}
860
861/* Let's assume other float formats don't have NaNs.
862 (This can be overridden by redefining REAL_VALUE_ISNAN.) */
863
864target_isnan (x)
865 REAL_VALUE_TYPE x;
866{
867 return 0;
868}
869
870/* Let's assume other float formats don't have minus zero.
871 (This can be overridden by redefining REAL_VALUE_NEGATIVE.) */
872
873target_negative (x)
874 REAL_VALUE_TYPE x;
875{
876 return x < 0;
877}
878#endif /* Target not IEEE */
879
880/* Try to change R into its exact multiplicative inverse in machine mode
881 MODE. Return nonzero function value if successful. */
882
883int
884exact_real_inverse (mode, r)
885 enum machine_mode mode;
886 REAL_VALUE_TYPE *r;
887{
888 jmp_buf float_error;
889 union
890 {
891 double d;
892 unsigned short i[4];
893 }x, t, y;
894 int i;
895
896 /* Usually disable if bounds checks are not reliable. */
897 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT) && !flag_pretend_float)
898 return 0;
899
900 /* Set array index to the less significant bits in the unions, depending
901 on the endian-ness of the host doubles.
902 Disable if insufficient information on the data structure. */
903#if HOST_FLOAT_FORMAT == UNKNOWN_FLOAT_FORMAT
904 return 0;
905#else
906#if HOST_FLOAT_FORMAT == VAX_FLOAT_FORMAT
907#define K 2
908#else
909#if HOST_FLOAT_FORMAT == IBM_FLOAT_FORMAT
910#define K 2
911#else
912#define K (2 * HOST_FLOAT_WORDS_BIG_ENDIAN)
913#endif
914#endif
915#endif
916
917 if (setjmp (float_error))
918 {
919 /* Don't do the optimization if there was an arithmetic error. */
920fail:
921 set_float_handler (NULL_PTR);
922 return 0;
923 }
924 set_float_handler (float_error);
925
926 /* Domain check the argument. */
927 x.d = *r;
928 if (x.d == 0.0)
929 goto fail;
930
931#ifdef REAL_INFINITY
932 if (REAL_VALUE_ISINF (x.d) || REAL_VALUE_ISNAN (x.d))
933 goto fail;
934#endif
935
936 /* Compute the reciprocal and check for numerical exactness.
937 It is unnecessary to check all the significand bits to determine
938 whether X is a power of 2. If X is not, then it is impossible for
939 the bottom half significand of both X and 1/X to be all zero bits.
940 Hence we ignore the data structure of the top half and examine only
941 the low order bits of the two significands. */
942 t.d = 1.0 / x.d;
943 if (x.i[K] != 0 || x.i[K + 1] != 0 || t.i[K] != 0 || t.i[K + 1] != 0)
944 goto fail;
945
946 /* Truncate to the required mode and range-check the result. */
947 y.d = REAL_VALUE_TRUNCATE (mode, t.d);
948#ifdef CHECK_FLOAT_VALUE
949 i = 0;
950 if (CHECK_FLOAT_VALUE (mode, y.d, i))
951 goto fail;
952#endif
953
954 /* Fail if truncation changed the value. */
955 if (y.d != t.d || y.d == 0.0)
956 goto fail;
957
958#ifdef REAL_INFINITY
959 if (REAL_VALUE_ISINF (y.d) || REAL_VALUE_ISNAN (y.d))
960 goto fail;
961#endif
962
963 /* Output the reciprocal and return success flag. */
964 set_float_handler (NULL_PTR);
965 *r = y.d;
966 return 1;
967}
968
969
970/* Convert C9X hexadecimal floating point string constant S. Return
971 real value type in mode MODE. This function uses the host computer's
972 fp arithmetic when there is no REAL_ARITHMETIC. */
973
974REAL_VALUE_TYPE
975real_hex_to_f (s, mode)
976 char *s;
977 enum machine_mode mode;
978{
979 REAL_VALUE_TYPE ip;
980 char *p = s;
981 unsigned HOST_WIDE_INT low, high;
982 int frexpon, expon, shcount, nrmcount, k;
983 int sign, expsign, decpt, isfloat, isldouble, gotp, lost;
984 char c;
985
986 isldouble = 0;
987 isfloat = 0;
988 frexpon = 0;
989 expon = 0;
990 expsign = 1;
991 ip = 0.0;
992
993 while (*p == ' ' || *p == '\t')
994 ++p;
995
996 /* Sign, if any, comes first. */
997 sign = 1;
998 if (*p == '-')
999 {
1000 sign = -1;
1001 ++p;
1002 }
1003
1004 /* The string is supposed to start with 0x or 0X . */
1005 if (*p == '0')
1006 {
1007 ++p;
1008 if (*p == 'x' || *p == 'X')
1009 ++p;
1010 else
1011 abort ();
1012 }
1013 else
1014 abort ();
1015
1016 while (*p == '0')
1017 ++p;
1018
1019 high = 0;
1020 low = 0;
1021 lost = 0; /* Nonzero low order bits shifted out and discarded. */
1022 frexpon = 0; /* Bits after the decimal point. */
1023 expon = 0; /* Value of exponent. */
1024 decpt = 0; /* How many decimal points. */
1025 gotp = 0; /* How many P's. */
1026 shcount = 0;
1027 while ((c = *p) != '\0')
1028 {
1029 if ((c >= '0' && c <= '9') || (c >= 'A' && c <= 'F')
1030 || (c >= 'a' && c <= 'f'))
1031 {
1032 k = c & 0x7f;
1033 if (k >= 'a')
1034 k = k - 'a' + 10;
1035 else if (k >= 'A')
1036 k = k - 'A' + 10;
1037 else
1038 k = k - '0';
1039
1040 if ((high & 0xf0000000) == 0)
1041 {
1042 high = (high << 4) + ((low >> 28) & 15);
1043 low = (low << 4) + k;
1044 shcount += 4;
1045 if (decpt)
1046 frexpon += 4;
1047 }
1048 else
1049 {
1050 /* Record nonzero lost bits. */
1051 lost |= k;
1052 if (!decpt)
1053 frexpon -= 4;
1054 }
1055 ++p;
1056 }
1057 else if ( c == '.')
1058 {
1059 ++decpt;
1060 ++p;
1061 }
1062 else if (c == 'p' || c == 'P')
1063 {
1064 ++gotp;
1065 ++p;
1066 /* Sign of exponent. */
1067 if (*p == '-')
1068 {
1069 expsign = -1;
1070 ++p;
1071 }
1072 /* Value of exponent.
1073 The exponent field is a decimal integer. */
1074 while (isdigit(*p))
1075 {
1076 k = (*p++ & 0x7f) - '0';
1077 expon = 10 * expon + k;
1078 }
1079 expon *= expsign;
1080 /* F suffix is ambiguous in the significand part
1081 so it must appear after the decimal exponent field. */
1082 if (*p == 'f' || *p == 'F')
1083 {
1084 isfloat = 1;
1085 ++p;
1086 break;
1087 }
1088 }
1089 else if (c == 'l' || c == 'L')
1090 {
1091 isldouble = 1;
1092 ++p;
1093 break;
1094 }
1095 else
1096 break;
1097 }
1098 /* Abort if last character read was not legitimate. */
1099 c = *p;
1100 if ((c != '\0' && c != ' ' && c != '\n' && c != '\r') || (decpt > 1))
1101 abort ();
1102 /* There must be either one decimal point or one p. */
1103 if (decpt == 0 && gotp == 0)
1104 abort ();
1105 shcount -= 4;
1106 if ((high == 0) && (low == 0))
1107 {
1108 return dconst0;
1109 }
1110
1111 /* Normalize. */
1112 nrmcount = 0;
1113 if (high == 0)
1114 {
1115 high = low;
1116 low = 0;
1117 nrmcount += 32;
1118 }
1119 /* Leave a high guard bit for carry-out. */
1120 if ((high & 0x80000000) != 0)
1121 {
1122 lost |= low & 1;
1123 low = (low >> 1) | (high << 31);
1124 high = high >> 1;
1125 nrmcount -= 1;
1126 }
1127 if ((high & 0xffff8000) == 0)
1128 {
1129 high = (high << 16) + ((low >> 16) & 0xffff);
1130 low = low << 16;
1131 nrmcount += 16;
1132 }
1133 while ((high & 0xc0000000) == 0)
1134 {
1135 high = (high << 1) + ((low >> 31) & 1);
1136 low = low << 1;
1137 nrmcount += 1;
1138 }
1139 if (isfloat || GET_MODE_SIZE(mode) == UNITS_PER_WORD)
1140 {
1141 /* Keep 24 bits precision, bits 0x7fffff80.
1142 Rounding bit is 0x40. */
1143 lost = lost | low | (high & 0x3f);
1144 low = 0;
1145 if (high & 0x40)
1146 {
1147 if ((high & 0x80) || lost)
1148 high += 0x40;
1149 }
1150 high &= 0xffffff80;
1151 }
1152 else
1153 {
1154 /* We need real.c to do long double formats, so here default
1155 to double precision. */
1156#if HOST_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
1157 /* IEEE double.
1158 Keep 53 bits precision, bits 0x7fffffff fffffc00.
1159 Rounding bit is low word 0x200. */
1160 lost = lost | (low & 0x1ff);
1161 if (low & 0x200)
1162 {
1163 if ((low & 0x400) || lost)
1164 {
1165 low = (low + 0x200) & 0xfffffc00;
1166 if (low == 0)
1167 high += 1;
1168 }
1169 }
1170 low &= 0xfffffc00;
1171#else
1172 /* Assume it's a VAX with 56-bit significand,
1173 bits 0x7fffffff ffffff80. */
1174 lost = lost | (low & 0x7f);
1175 if (low & 0x40)
1176 {
1177 if ((low & 0x80) || lost)
1178 {
1179 low = (low + 0x40) & 0xffffff80;
1180 if (low == 0)
1181 high += 1;
1182 }
1183 }
1184 low &= 0xffffff80;
1185#endif
1186 }
1187 ip = (double) high;
1188 ip = REAL_VALUE_LDEXP (ip, 32) + (double) low;
1189 /* Apply shifts and exponent value as power of 2. */
1190 ip = REAL_VALUE_LDEXP (ip, expon - (nrmcount + frexpon));
1191
1192 if (sign < 0)
1193 ip = -ip;
1194 return ip;
1195}
1196
1197#endif /* no REAL_ARITHMETIC */
1198
1199/* Split a tree IN into a constant and a variable part
1200 that could be combined with CODE to make IN.
1201 CODE must be a commutative arithmetic operation.
1202 Store the constant part into *CONP and the variable in &VARP.
1203 Return 1 if this was done; zero means the tree IN did not decompose
1204 this way.
1205
1206 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR.
1207 Therefore, we must tell the caller whether the variable part
1208 was subtracted. We do this by storing 1 or -1 into *VARSIGNP.
1209 The value stored is the coefficient for the variable term.
1210 The constant term we return should always be added;
1211 we negate it if necessary. */
1212
1213static int
1214split_tree (in, code, varp, conp, varsignp)
1215 tree in;
1216 enum tree_code code;
1217 tree *varp, *conp;
1218 int *varsignp;
1219{
1220 register tree outtype = TREE_TYPE (in);
1221 *varp = 0;
1222 *conp = 0;
1223
1224 /* Strip any conversions that don't change the machine mode. */
1225 while ((TREE_CODE (in) == NOP_EXPR
1226 || TREE_CODE (in) == CONVERT_EXPR)
1227 && (TYPE_MODE (TREE_TYPE (in))
1228 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (in, 0)))))
1229 in = TREE_OPERAND (in, 0);
1230
1231 if (TREE_CODE (in) == code
1232 || (! FLOAT_TYPE_P (TREE_TYPE (in))
1233 /* We can associate addition and subtraction together
1234 (even though the C standard doesn't say so)
1235 for integers because the value is not affected.
1236 For reals, the value might be affected, so we can't. */
1237 && ((code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
1238 || (code == MINUS_EXPR && TREE_CODE (in) == PLUS_EXPR))))
1239 {
1240 enum tree_code code = TREE_CODE (TREE_OPERAND (in, 0));
1241 if (code == INTEGER_CST)
1242 {
1243 *conp = TREE_OPERAND (in, 0);
1244 *varp = TREE_OPERAND (in, 1);
1245 if (TYPE_MODE (TREE_TYPE (*varp)) != TYPE_MODE (outtype)
1246 && TREE_TYPE (*varp) != outtype)
1247 *varp = convert (outtype, *varp);
1248 *varsignp = (TREE_CODE (in) == MINUS_EXPR) ? -1 : 1;
1249 return 1;
1250 }
1251 if (TREE_CONSTANT (TREE_OPERAND (in, 1)))
1252 {
1253 *conp = TREE_OPERAND (in, 1);
1254 *varp = TREE_OPERAND (in, 0);
1255 *varsignp = 1;
1256 if (TYPE_MODE (TREE_TYPE (*varp)) != TYPE_MODE (outtype)
1257 && TREE_TYPE (*varp) != outtype)
1258 *varp = convert (outtype, *varp);
1259 if (TREE_CODE (in) == MINUS_EXPR)
1260 {
1261 /* If operation is subtraction and constant is second,
1262 must negate it to get an additive constant.
1263 And this cannot be done unless it is a manifest constant.
1264 It could also be the address of a static variable.
1265 We cannot negate that, so give up. */
1266 if (TREE_CODE (*conp) == INTEGER_CST)
1267 /* Subtracting from integer_zero_node loses for long long. */
1268 *conp = fold (build1 (NEGATE_EXPR, TREE_TYPE (*conp), *conp));
1269 else
1270 return 0;
1271 }
1272 return 1;
1273 }
1274 if (TREE_CONSTANT (TREE_OPERAND (in, 0)))
1275 {
1276 *conp = TREE_OPERAND (in, 0);
1277 *varp = TREE_OPERAND (in, 1);
1278 if (TYPE_MODE (TREE_TYPE (*varp)) != TYPE_MODE (outtype)
1279 && TREE_TYPE (*varp) != outtype)
1280 *varp = convert (outtype, *varp);
1281 *varsignp = (TREE_CODE (in) == MINUS_EXPR) ? -1 : 1;
1282 return 1;
1283 }
1284 }
1285 return 0;
1286}
1287
1288/* Combine two integer constants ARG1 and ARG2 under operation CODE
1289 to produce a new constant.
1290
1291 If NOTRUNC is nonzero, do not truncate the result to fit the data type.
1292 If FORSIZE is nonzero, compute overflow for unsigned types. */
1293
1294static tree
1295int_const_binop (code, arg1, arg2, notrunc, forsize)
1296 enum tree_code code;
1297 register tree arg1, arg2;
1298 int notrunc, forsize;
1299{
1300 HOST_WIDE_INT int1l, int1h, int2l, int2h;
1301 HOST_WIDE_INT low, hi;
1302 HOST_WIDE_INT garbagel, garbageh;
1303 register tree t;
1304 int uns = TREE_UNSIGNED (TREE_TYPE (arg1));
1305 int overflow = 0;
1306 int no_overflow = 0;
1307
1308 int1l = TREE_INT_CST_LOW (arg1);
1309 int1h = TREE_INT_CST_HIGH (arg1);
1310 int2l = TREE_INT_CST_LOW (arg2);
1311 int2h = TREE_INT_CST_HIGH (arg2);
1312
1313 switch (code)
1314 {
1315 case BIT_IOR_EXPR:
1316 low = int1l | int2l, hi = int1h | int2h;
1317 break;
1318
1319 case BIT_XOR_EXPR:
1320 low = int1l ^ int2l, hi = int1h ^ int2h;
1321 break;
1322
1323 case BIT_AND_EXPR:
1324 low = int1l & int2l, hi = int1h & int2h;
1325 break;
1326
1327 case BIT_ANDTC_EXPR:
1328 low = int1l & ~int2l, hi = int1h & ~int2h;
1329 break;
1330
1331 case RSHIFT_EXPR:
1332 int2l = - int2l;
1333 case LSHIFT_EXPR:
1334 /* It's unclear from the C standard whether shifts can overflow.
1335 The following code ignores overflow; perhaps a C standard
1336 interpretation ruling is needed. */
1337 lshift_double (int1l, int1h, int2l,
1338 TYPE_PRECISION (TREE_TYPE (arg1)),
1339 &low, &hi,
1340 !uns);
1341 no_overflow = 1;
1342 break;
1343
1344 case RROTATE_EXPR:
1345 int2l = - int2l;
1346 case LROTATE_EXPR:
1347 lrotate_double (int1l, int1h, int2l,
1348 TYPE_PRECISION (TREE_TYPE (arg1)),
1349 &low, &hi);
1350 break;
1351
1352 case PLUS_EXPR:
1353 overflow = add_double (int1l, int1h, int2l, int2h, &low, &hi);
1354 break;
1355
1356 case MINUS_EXPR:
1357 neg_double (int2l, int2h, &low, &hi);
1358 add_double (int1l, int1h, low, hi, &low, &hi);
1359 overflow = overflow_sum_sign (hi, int2h, int1h);
1360 break;
1361
1362 case MULT_EXPR:
1363 overflow = mul_double (int1l, int1h, int2l, int2h, &low, &hi);
1364 break;
1365
1366 case TRUNC_DIV_EXPR:
1367 case FLOOR_DIV_EXPR: case CEIL_DIV_EXPR:
1368 case EXACT_DIV_EXPR:
1369 /* This is a shortcut for a common special case. */
1370 if (int2h == 0 && int2l > 0
1371 && ! TREE_CONSTANT_OVERFLOW (arg1)
1372 && ! TREE_CONSTANT_OVERFLOW (arg2)
1373 && int1h == 0 && int1l >= 0)
1374 {
1375 if (code == CEIL_DIV_EXPR)
1376 int1l += int2l - 1;
1377 low = int1l / int2l, hi = 0;
1378 break;
1379 }
1380
1381 /* ... fall through ... */
1382
1383 case ROUND_DIV_EXPR:
1384 if (int2h == 0 && int2l == 1)
1385 {
1386 low = int1l, hi = int1h;
1387 break;
1388 }
1389 if (int1l == int2l && int1h == int2h
1390 && ! (int1l == 0 && int1h == 0))
1391 {
1392 low = 1, hi = 0;
1393 break;
1394 }
1395 overflow = div_and_round_double (code, uns,
1396 int1l, int1h, int2l, int2h,
1397 &low, &hi, &garbagel, &garbageh);
1398 break;
1399
1400 case TRUNC_MOD_EXPR:
1401 case FLOOR_MOD_EXPR: case CEIL_MOD_EXPR:
1402 /* This is a shortcut for a common special case. */
1403 if (int2h == 0 && int2l > 0
1404 && ! TREE_CONSTANT_OVERFLOW (arg1)
1405 && ! TREE_CONSTANT_OVERFLOW (arg2)
1406 && int1h == 0 && int1l >= 0)
1407 {
1408 if (code == CEIL_MOD_EXPR)
1409 int1l += int2l - 1;
1410 low = int1l % int2l, hi = 0;
1411 break;
1412 }
1413
1414 /* ... fall through ... */
1415
1416 case ROUND_MOD_EXPR:
1417 overflow = div_and_round_double (code, uns,
1418 int1l, int1h, int2l, int2h,
1419 &garbagel, &garbageh, &low, &hi);
1420 break;
1421
1422 case MIN_EXPR:
1423 case MAX_EXPR:
1424 if (uns)
1425 {
1426 low = (((unsigned HOST_WIDE_INT) int1h
1427 < (unsigned HOST_WIDE_INT) int2h)
1428 || (((unsigned HOST_WIDE_INT) int1h
1429 == (unsigned HOST_WIDE_INT) int2h)
1430 && ((unsigned HOST_WIDE_INT) int1l
1431 < (unsigned HOST_WIDE_INT) int2l)));
1432 }
1433 else
1434 {
1435 low = ((int1h < int2h)
1436 || ((int1h == int2h)
1437 && ((unsigned HOST_WIDE_INT) int1l
1438 < (unsigned HOST_WIDE_INT) int2l)));
1439 }
1440 if (low == (code == MIN_EXPR))
1441 low = int1l, hi = int1h;
1442 else
1443 low = int2l, hi = int2h;
1444 break;
1445
1446 default:
1447 abort ();
1448 }
1449
1450 if (TREE_TYPE (arg1) == sizetype && hi == 0
1451 && low >= 0
1452 && (TYPE_MAX_VALUE (sizetype) == NULL
1453 || low <= TREE_INT_CST_LOW (TYPE_MAX_VALUE (sizetype)))
1454 && ! overflow
1455 && ! TREE_OVERFLOW (arg1) && ! TREE_OVERFLOW (arg2))
1456 t = size_int (low);
1457 else
1458 {
1459 t = build_int_2 (low, hi);
1460 TREE_TYPE (t) = TREE_TYPE (arg1);
1461 }
1462
1463 TREE_OVERFLOW (t)
1464 = ((notrunc ? (!uns || forsize) && overflow
1465 : force_fit_type (t, (!uns || forsize) && overflow) && ! no_overflow)
1466 | TREE_OVERFLOW (arg1)
1467 | TREE_OVERFLOW (arg2));
1468 /* If we're doing a size calculation, unsigned arithmetic does overflow.
1469 So check if force_fit_type truncated the value. */
1470 if (forsize
1471 && ! TREE_OVERFLOW (t)
1472 && (TREE_INT_CST_HIGH (t) != hi
1473 || TREE_INT_CST_LOW (t) != low))
1474 TREE_OVERFLOW (t) = 1;
1475 TREE_CONSTANT_OVERFLOW (t) = (TREE_OVERFLOW (t)
1476 | TREE_CONSTANT_OVERFLOW (arg1)
1477 | TREE_CONSTANT_OVERFLOW (arg2));
1478 return t;
1479}
1480
1481struct cb_args
1482{
1483 /* Input */
1484 tree arg1;
1485 REAL_VALUE_TYPE d1, d2;
1486 enum tree_code code;
1487 /* Output */
1488 tree t;
1489};
1490
1491static void
1492const_binop_1 (data)
1493 PTR data;
1494{
1495 struct cb_args * args = (struct cb_args *) data;
1496 REAL_VALUE_TYPE value;
1497
1498#ifdef REAL_ARITHMETIC
1499 REAL_ARITHMETIC (value, args->code, args->d1, args->d2);
1500#else
1501 switch (args->code)
1502 {
1503 case PLUS_EXPR:
1504 value = args->d1 + args->d2;
1505 break;
1506
1507 case MINUS_EXPR:
1508 value = args->d1 - args->d2;
1509 break;
1510
1511 case MULT_EXPR:
1512 value = args->d1 * args->d2;
1513 break;
1514
1515 case RDIV_EXPR:
1516#ifndef REAL_INFINITY
1517 if (args->d2 == 0)
1518 abort ();
1519#endif
1520
1521 value = args->d1 / args->d2;
1522 break;
1523
1524 case MIN_EXPR:
1525 value = MIN (args->d1, args->d2);
1526 break;
1527
1528 case MAX_EXPR:
1529 value = MAX (args->d1, args->d2);
1530 break;
1531
1532 default:
1533 abort ();
1534 }
1535#endif /* no REAL_ARITHMETIC */
1536 args->t =
1537 build_real (TREE_TYPE (args->arg1),
1538 real_value_truncate (TYPE_MODE (TREE_TYPE (args->arg1)),
1539 value));
1540}
1541
1542/* Combine two constants ARG1 and ARG2 under operation CODE
1543 to produce a new constant.
1544 We assume ARG1 and ARG2 have the same data type,
1545 or at least are the same kind of constant and the same machine mode.
1546
1547 If NOTRUNC is nonzero, do not truncate the result to fit the data type. */
1548
1549static tree
1550const_binop (code, arg1, arg2, notrunc)
1551 enum tree_code code;
1552 register tree arg1, arg2;
1553 int notrunc;
1554{
1555 STRIP_NOPS (arg1); STRIP_NOPS (arg2);
1556
1557 if (TREE_CODE (arg1) == INTEGER_CST)
1558 return int_const_binop (code, arg1, arg2, notrunc, 0);
1559
1560#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
1561 if (TREE_CODE (arg1) == REAL_CST)
1562 {
1563 REAL_VALUE_TYPE d1;
1564 REAL_VALUE_TYPE d2;
1565 int overflow = 0;
1566 tree t;
1567 struct cb_args args;
1568
1569 d1 = TREE_REAL_CST (arg1);
1570 d2 = TREE_REAL_CST (arg2);
1571
1572 /* If either operand is a NaN, just return it. Otherwise, set up
1573 for floating-point trap; we return an overflow. */
1574 if (REAL_VALUE_ISNAN (d1))
1575 return arg1;
1576 else if (REAL_VALUE_ISNAN (d2))
1577 return arg2;
1578
1579 /* Setup input for const_binop_1() */
1580 args.arg1 = arg1;
1581 args.d1 = d1;
1582 args.d2 = d2;
1583 args.code = code;
1584
1585 if (do_float_handler (const_binop_1, (PTR) &args))
1586 {
1587 /* Receive output from const_binop_1() */
1588 t = args.t;
1589 }
1590 else
1591 {
1592 /* We got an exception from const_binop_1() */
1593 t = copy_node (arg1);
1594 overflow = 1;
1595 }
1596
1597 TREE_OVERFLOW (t)
1598 = (force_fit_type (t, overflow)
1599 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2));
1600 TREE_CONSTANT_OVERFLOW (t)
1601 = TREE_OVERFLOW (t)
1602 | TREE_CONSTANT_OVERFLOW (arg1)
1603 | TREE_CONSTANT_OVERFLOW (arg2);
1604 return t;
1605 }
1606#endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
1607 if (TREE_CODE (arg1) == COMPLEX_CST)
1608 {
1609 register tree type = TREE_TYPE (arg1);
1610 register tree r1 = TREE_REALPART (arg1);
1611 register tree i1 = TREE_IMAGPART (arg1);
1612 register tree r2 = TREE_REALPART (arg2);
1613 register tree i2 = TREE_IMAGPART (arg2);
1614 register tree t;
1615
1616 switch (code)
1617 {
1618 case PLUS_EXPR:
1619 t = build_complex (type,
1620 const_binop (PLUS_EXPR, r1, r2, notrunc),
1621 const_binop (PLUS_EXPR, i1, i2, notrunc));
1622 break;
1623
1624 case MINUS_EXPR:
1625 t = build_complex (type,
1626 const_binop (MINUS_EXPR, r1, r2, notrunc),
1627 const_binop (MINUS_EXPR, i1, i2, notrunc));
1628 break;
1629
1630 case MULT_EXPR:
1631 t = build_complex (type,
1632 const_binop (MINUS_EXPR,
1633 const_binop (MULT_EXPR,
1634 r1, r2, notrunc),
1635 const_binop (MULT_EXPR,
1636 i1, i2, notrunc),
1637 notrunc),
1638 const_binop (PLUS_EXPR,
1639 const_binop (MULT_EXPR,
1640 r1, i2, notrunc),
1641 const_binop (MULT_EXPR,
1642 i1, r2, notrunc),
1643 notrunc));
1644 break;
1645
1646 case RDIV_EXPR:
1647 {
1648 register tree magsquared
1649 = const_binop (PLUS_EXPR,
1650 const_binop (MULT_EXPR, r2, r2, notrunc),
1651 const_binop (MULT_EXPR, i2, i2, notrunc),
1652 notrunc);
1653
1654 t = build_complex (type,
1655 const_binop
1656 (INTEGRAL_TYPE_P (TREE_TYPE (r1))
1657 ? TRUNC_DIV_EXPR : RDIV_EXPR,
1658 const_binop (PLUS_EXPR,
1659 const_binop (MULT_EXPR, r1, r2,
1660 notrunc),
1661 const_binop (MULT_EXPR, i1, i2,
1662 notrunc),
1663 notrunc),
1664 magsquared, notrunc),
1665 const_binop
1666 (INTEGRAL_TYPE_P (TREE_TYPE (r1))
1667 ? TRUNC_DIV_EXPR : RDIV_EXPR,
1668 const_binop (MINUS_EXPR,
1669 const_binop (MULT_EXPR, i1, r2,
1670 notrunc),
1671 const_binop (MULT_EXPR, r1, i2,
1672 notrunc),
1673 notrunc),
1674 magsquared, notrunc));
1675 }
1676 break;
1677
1678 default:
1679 abort ();
1680 }
1681 return t;
1682 }
1683 return 0;
1684}
1685
1686/* Return an INTEGER_CST with value V . The type is determined by bit_p:
1687 if it is zero, the type is taken from sizetype; if it is one, the type
1688 is taken from bitsizetype. */
1689
1690tree
1691size_int_wide (number, high, bit_p)
1692 unsigned HOST_WIDE_INT number, high;
1693 int bit_p;
1694{
1695 register tree t;
1696 /* Type-size nodes already made for small sizes. */
1697 static tree size_table[2*HOST_BITS_PER_WIDE_INT + 1][2];
1698
1699 if (number < 2*HOST_BITS_PER_WIDE_INT + 1 && ! high
1700 && size_table[number][bit_p] != 0)
1701 return size_table[number][bit_p];
1702 if (number < 2*HOST_BITS_PER_WIDE_INT + 1 && ! high)
1703 {
1704 push_obstacks_nochange ();
1705 /* Make this a permanent node. */
1706 end_temporary_allocation ();
1707 t = build_int_2 (number, 0);
1708 TREE_TYPE (t) = bit_p ? bitsizetype : sizetype;
1709 size_table[number][bit_p] = t;
1710 pop_obstacks ();
1711 }
1712 else
1713 {
1714 t = build_int_2 (number, high);
1715 TREE_TYPE (t) = bit_p ? bitsizetype : sizetype;
1716 TREE_OVERFLOW (t) = TREE_CONSTANT_OVERFLOW (t) = force_fit_type (t, 0);
1717 }
1718 return t;
1719}
1720
1721/* Combine operands OP1 and OP2 with arithmetic operation CODE.
1722 CODE is a tree code. Data type is taken from `sizetype',
1723 If the operands are constant, so is the result. */
1724
1725tree
1726size_binop (code, arg0, arg1)
1727 enum tree_code code;
1728 tree arg0, arg1;
1729{
1730 /* Handle the special case of two integer constants faster. */
1731 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
1732 {
1733 /* And some specific cases even faster than that. */
1734 if (code == PLUS_EXPR && integer_zerop (arg0))
1735 return arg1;
1736 else if ((code == MINUS_EXPR || code == PLUS_EXPR)
1737 && integer_zerop (arg1))
1738 return arg0;
1739 else if (code == MULT_EXPR && integer_onep (arg0))
1740 return arg1;
1741
1742 /* Handle general case of two integer constants. */
1743 return int_const_binop (code, arg0, arg1, 0, 1);
1744 }
1745
1746 if (arg0 == error_mark_node || arg1 == error_mark_node)
1747 return error_mark_node;
1748
1749 return fold (build (code, sizetype, arg0, arg1));
1750}
1751
1752/* Combine operands OP1 and OP2 with arithmetic operation CODE.
1753 CODE is a tree code. Data type is taken from `ssizetype',
1754 If the operands are constant, so is the result. */
1755
1756tree
1757ssize_binop (code, arg0, arg1)
1758 enum tree_code code;
1759 tree arg0, arg1;
1760{
1761 /* Handle the special case of two integer constants faster. */
1762 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
1763 {
1764 /* And some specific cases even faster than that. */
1765 if (code == PLUS_EXPR && integer_zerop (arg0))
1766 return arg1;
1767 else if ((code == MINUS_EXPR || code == PLUS_EXPR)
1768 && integer_zerop (arg1))
1769 return arg0;
1770 else if (code == MULT_EXPR && integer_onep (arg0))
1771 return arg1;
1772
1773 /* Handle general case of two integer constants. We convert
1774 arg0 to ssizetype because int_const_binop uses its type for the
1775 return value. */
1776 arg0 = convert (ssizetype, arg0);
1777 return int_const_binop (code, arg0, arg1, 0, 0);
1778 }
1779
1780 if (arg0 == error_mark_node || arg1 == error_mark_node)
1781 return error_mark_node;
1782
1783 return fold (build (code, ssizetype, arg0, arg1));
1784}
1785
1786struct fc_args
1787{
1788 /* Input */
1789 tree arg1, type;
1790 /* Output */
1791 tree t;
1792};
1793
1794static void
1795fold_convert_1 (data)
1796 PTR data;
1797{
1798 struct fc_args * args = (struct fc_args *) data;
1799
1800 args->t = build_real (args->type,
1801 real_value_truncate (TYPE_MODE (args->type),
1802 TREE_REAL_CST (args->arg1)));
1803}
1804
1805/* Given T, a tree representing type conversion of ARG1, a constant,
1806 return a constant tree representing the result of conversion. */
1807
1808static tree
1809fold_convert (t, arg1)
1810 register tree t;
1811 register tree arg1;
1812{
1813 register tree type = TREE_TYPE (t);
1814 int overflow = 0;
1815
1816 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type))
1817 {
1818 if (TREE_CODE (arg1) == INTEGER_CST)
1819 {
1820 /* If we would build a constant wider than GCC supports,
1821 leave the conversion unfolded. */
1822 if (TYPE_PRECISION (type) > 2 * HOST_BITS_PER_WIDE_INT)
1823 return t;
1824
1825 /* Given an integer constant, make new constant with new type,
1826 appropriately sign-extended or truncated. */
1827 t = build_int_2 (TREE_INT_CST_LOW (arg1),
1828 TREE_INT_CST_HIGH (arg1));
1829 TREE_TYPE (t) = type;
1830 /* Indicate an overflow if (1) ARG1 already overflowed,
1831 or (2) force_fit_type indicates an overflow.
1832 Tell force_fit_type that an overflow has already occurred
1833 if ARG1 is a too-large unsigned value and T is signed.
1834 But don't indicate an overflow if converting a pointer. */
1835 TREE_OVERFLOW (t)
1836 = ((force_fit_type (t,
1837 (TREE_INT_CST_HIGH (arg1) < 0
1838 && (TREE_UNSIGNED (type)
1839 < TREE_UNSIGNED (TREE_TYPE (arg1)))))
1840 && ! POINTER_TYPE_P (TREE_TYPE (arg1)))
1841 || TREE_OVERFLOW (arg1));
1842 TREE_CONSTANT_OVERFLOW (t)
1843 = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg1);
1844 }
1845#if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
1846 else if (TREE_CODE (arg1) == REAL_CST)
1847 {
1848 /* Don't initialize these, use assignments.
1849 Initialized local aggregates don't work on old compilers. */
1850 REAL_VALUE_TYPE x;
1851 REAL_VALUE_TYPE l;
1852 REAL_VALUE_TYPE u;
1853 tree type1 = TREE_TYPE (arg1);
1854 int no_upper_bound;
1855
1856 x = TREE_REAL_CST (arg1);
1857 l = real_value_from_int_cst (type1, TYPE_MIN_VALUE (type));
1858
1859 no_upper_bound = (TYPE_MAX_VALUE (type) == NULL);
1860 if (!no_upper_bound)
1861 u = real_value_from_int_cst (type1, TYPE_MAX_VALUE (type));
1862
1863 /* See if X will be in range after truncation towards 0.
1864 To compensate for truncation, move the bounds away from 0,
1865 but reject if X exactly equals the adjusted bounds. */
1866#ifdef REAL_ARITHMETIC
1867 REAL_ARITHMETIC (l, MINUS_EXPR, l, dconst1);
1868 if (!no_upper_bound)
1869 REAL_ARITHMETIC (u, PLUS_EXPR, u, dconst1);
1870#else
1871 l--;
1872 if (!no_upper_bound)
1873 u++;
1874#endif
1875 /* If X is a NaN, use zero instead and show we have an overflow.
1876 Otherwise, range check. */
1877 if (REAL_VALUE_ISNAN (x))
1878 overflow = 1, x = dconst0;
1879 else if (! (REAL_VALUES_LESS (l, x)
1880 && !no_upper_bound
1881 && REAL_VALUES_LESS (x, u)))
1882 overflow = 1;
1883
1884#ifndef REAL_ARITHMETIC
1885 {
1886 HOST_WIDE_INT low, high;
1887 HOST_WIDE_INT half_word
1888 = (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2);
1889
1890 if (x < 0)
1891 x = -x;
1892
1893 high = (HOST_WIDE_INT) (x / half_word / half_word);
1894 x -= (REAL_VALUE_TYPE) high * half_word * half_word;
1895 if (x >= (REAL_VALUE_TYPE) half_word * half_word / 2)
1896 {
1897 low = x - (REAL_VALUE_TYPE) half_word * half_word / 2;
1898 low |= (HOST_WIDE_INT) -1 << (HOST_BITS_PER_WIDE_INT - 1);
1899 }
1900 else
1901 low = (HOST_WIDE_INT) x;
1902 if (TREE_REAL_CST (arg1) < 0)
1903 neg_double (low, high, &low, &high);
1904 t = build_int_2 (low, high);
1905 }
1906#else
1907 {
1908 HOST_WIDE_INT low, high;
1909 REAL_VALUE_TO_INT (&low, &high, x);
1910 t = build_int_2 (low, high);
1911 }
1912#endif
1913 TREE_TYPE (t) = type;
1914 TREE_OVERFLOW (t)
1915 = TREE_OVERFLOW (arg1) | force_fit_type (t, overflow);
1916 TREE_CONSTANT_OVERFLOW (t)
1917 = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg1);
1918 }
1919#endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
1920 TREE_TYPE (t) = type;
1921 }
1922 else if (TREE_CODE (type) == REAL_TYPE)
1923 {
1924#if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
1925 if (TREE_CODE (arg1) == INTEGER_CST)
1926 return build_real_from_int_cst (type, arg1);
1927#endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
1928 if (TREE_CODE (arg1) == REAL_CST)
1929 {
1930 struct fc_args args;
1931
1932 if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1)))
1933 {
1934 t = arg1;
1935 TREE_TYPE (arg1) = type;
1936 return t;
1937 }
1938
1939 /* Setup input for fold_convert_1() */
1940 args.arg1 = arg1;
1941 args.type = type;
1942
1943 if (do_float_handler (fold_convert_1, (PTR) &args))
1944 {
1945 /* Receive output from fold_convert_1() */
1946 t = args.t;
1947 }
1948 else
1949 {
1950 /* We got an exception from fold_convert_1() */
1951 overflow = 1;
1952 t = copy_node (arg1);
1953 }
1954
1955 TREE_OVERFLOW (t)
1956 = TREE_OVERFLOW (arg1) | force_fit_type (t, overflow);
1957 TREE_CONSTANT_OVERFLOW (t)
1958 = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg1);
1959 return t;
1960 }
1961 }
1962 TREE_CONSTANT (t) = 1;
1963 return t;
1964}
1965
1966/* Return an expr equal to X but certainly not valid as an lvalue. */
1967
1968tree
1969non_lvalue (x)
1970 tree x;
1971{
1972 tree result;
1973
1974 /* These things are certainly not lvalues. */
1975 if (TREE_CODE (x) == NON_LVALUE_EXPR
1976 || TREE_CODE (x) == INTEGER_CST
1977 || TREE_CODE (x) == REAL_CST
1978 || TREE_CODE (x) == STRING_CST
1979 || TREE_CODE (x) == ADDR_EXPR)
1980 return x;
1981
1982 result = build1 (NON_LVALUE_EXPR, TREE_TYPE (x), x);
1983 TREE_CONSTANT (result) = TREE_CONSTANT (x);
1984 return result;
1985}
1986
1987/* Nonzero means lvalues are limited to those valid in pedantic ANSI C.
1988 Zero means allow extended lvalues. */
1989
1990int pedantic_lvalues;
1991
1992/* When pedantic, return an expr equal to X but certainly not valid as a
1993 pedantic lvalue. Otherwise, return X. */
1994
1995tree
1996pedantic_non_lvalue (x)
1997 tree x;
1998{
1999 if (pedantic_lvalues)
2000 return non_lvalue (x);
2001 else
2002 return x;
2003}
2004
2005/* Given a tree comparison code, return the code that is the logical inverse
2006 of the given code. It is not safe to do this for floating-point
2007 comparisons, except for NE_EXPR and EQ_EXPR. */
2008
2009static enum tree_code
2010invert_tree_comparison (code)
2011 enum tree_code code;
2012{
2013 switch (code)
2014 {
2015 case EQ_EXPR:
2016 return NE_EXPR;
2017 case NE_EXPR:
2018 return EQ_EXPR;
2019 case GT_EXPR:
2020 return LE_EXPR;
2021 case GE_EXPR:
2022 return LT_EXPR;
2023 case LT_EXPR:
2024 return GE_EXPR;
2025 case LE_EXPR:
2026 return GT_EXPR;
2027 default:
2028 abort ();
2029 }
2030}
2031
2032/* Similar, but return the comparison that results if the operands are
2033 swapped. This is safe for floating-point. */
2034
2035static enum tree_code
2036swap_tree_comparison (code)
2037 enum tree_code code;
2038{
2039 switch (code)
2040 {
2041 case EQ_EXPR:
2042 case NE_EXPR:
2043 return code;
2044 case GT_EXPR:
2045 return LT_EXPR;
2046 case GE_EXPR:
2047 return LE_EXPR;
2048 case LT_EXPR:
2049 return GT_EXPR;
2050 case LE_EXPR:
2051 return GE_EXPR;
2052 default:
2053 abort ();
2054 }
2055}
2056
2057/* Return nonzero if CODE is a tree code that represents a truth value. */
2058
2059static int
2060truth_value_p (code)
2061 enum tree_code code;
2062{
2063 return (TREE_CODE_CLASS (code) == '<'
2064 || code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR
2065 || code == TRUTH_OR_EXPR || code == TRUTH_ORIF_EXPR
2066 || code == TRUTH_XOR_EXPR || code == TRUTH_NOT_EXPR);
2067}
2068
2069/* Return nonzero if two operands are necessarily equal.
2070 If ONLY_CONST is non-zero, only return non-zero for constants.
2071 This function tests whether the operands are indistinguishable;
2072 it does not test whether they are equal using C's == operation.
2073 The distinction is important for IEEE floating point, because
2074 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2075 (2) two NaNs may be indistinguishable, but NaN!=NaN. */
2076
2077int
2078operand_equal_p (arg0, arg1, only_const)
2079 tree arg0, arg1;
2080 int only_const;
2081{
2082 /* If both types don't have the same signedness, then we can't consider
2083 them equal. We must check this before the STRIP_NOPS calls
2084 because they may change the signedness of the arguments. */
2085 if (TREE_UNSIGNED (TREE_TYPE (arg0)) != TREE_UNSIGNED (TREE_TYPE (arg1)))
2086 return 0;
2087
2088 STRIP_NOPS (arg0);
2089 STRIP_NOPS (arg1);
2090
2091 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2092 /* This is needed for conversions and for COMPONENT_REF.
2093 Might as well play it safe and always test this. */
2094 || TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1)))
2095 return 0;
2096
2097 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
2098 We don't care about side effects in that case because the SAVE_EXPR
2099 takes care of that for us. In all other cases, two expressions are
2100 equal if they have no side effects. If we have two identical
2101 expressions with side effects that should be treated the same due
2102 to the only side effects being identical SAVE_EXPR's, that will
2103 be detected in the recursive calls below. */
2104 if (arg0 == arg1 && ! only_const
2105 && (TREE_CODE (arg0) == SAVE_EXPR
2106 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
2107 return 1;
2108
2109 /* Next handle constant cases, those for which we can return 1 even
2110 if ONLY_CONST is set. */
2111 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
2112 switch (TREE_CODE (arg0))
2113 {
2114 case INTEGER_CST:
2115 return (! TREE_CONSTANT_OVERFLOW (arg0)
2116 && ! TREE_CONSTANT_OVERFLOW (arg1)
2117 && TREE_INT_CST_LOW (arg0) == TREE_INT_CST_LOW (arg1)
2118 && TREE_INT_CST_HIGH (arg0) == TREE_INT_CST_HIGH (arg1));
2119
2120 case REAL_CST:
2121 return (! TREE_CONSTANT_OVERFLOW (arg0)
2122 && ! TREE_CONSTANT_OVERFLOW (arg1)
2123 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (arg0),
2124 TREE_REAL_CST (arg1)));
2125
2126 case COMPLEX_CST:
2127 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
2128 only_const)
2129 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
2130 only_const));
2131
2132 case STRING_CST:
2133 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
2134 && ! strncmp (TREE_STRING_POINTER (arg0),
2135 TREE_STRING_POINTER (arg1),
2136 TREE_STRING_LENGTH (arg0)));
2137
2138 case ADDR_EXPR:
2139 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
2140 0);
2141 default:
2142 break;
2143 }
2144
2145 if (only_const)
2146 return 0;
2147
2148 switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
2149 {
2150 case '1':
2151 /* Two conversions are equal only if signedness and modes match. */
2152 if ((TREE_CODE (arg0) == NOP_EXPR || TREE_CODE (arg0) == CONVERT_EXPR)
2153 && (TREE_UNSIGNED (TREE_TYPE (arg0))
2154 != TREE_UNSIGNED (TREE_TYPE (arg1))))
2155 return 0;
2156
2157 return operand_equal_p (TREE_OPERAND (arg0, 0),
2158 TREE_OPERAND (arg1, 0), 0);
2159
2160 case '<':
2161 case '2':
2162 if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0), 0)
2163 && operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 1),
2164 0))
2165 return 1;
2166
2167 /* For commutative ops, allow the other order. */
2168 return ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MULT_EXPR
2169 || TREE_CODE (arg0) == MIN_EXPR || TREE_CODE (arg0) == MAX_EXPR
2170 || TREE_CODE (arg0) == BIT_IOR_EXPR
2171 || TREE_CODE (arg0) == BIT_XOR_EXPR
2172 || TREE_CODE (arg0) == BIT_AND_EXPR
2173 || TREE_CODE (arg0) == NE_EXPR || TREE_CODE (arg0) == EQ_EXPR)
2174 && operand_equal_p (TREE_OPERAND (arg0, 0),
2175 TREE_OPERAND (arg1, 1), 0)
2176 && operand_equal_p (TREE_OPERAND (arg0, 1),
2177 TREE_OPERAND (arg1, 0), 0));
2178
2179 case 'r':
2180 switch (TREE_CODE (arg0))
2181 {
2182 case INDIRECT_REF:
2183 return operand_equal_p (TREE_OPERAND (arg0, 0),
2184 TREE_OPERAND (arg1, 0), 0);
2185
2186 case COMPONENT_REF:
2187 case ARRAY_REF:
2188 return (operand_equal_p (TREE_OPERAND (arg0, 0),
2189 TREE_OPERAND (arg1, 0), 0)
2190 && operand_equal_p (TREE_OPERAND (arg0, 1),
2191 TREE_OPERAND (arg1, 1), 0));
2192
2193 case BIT_FIELD_REF:
2194 return (operand_equal_p (TREE_OPERAND (arg0, 0),
2195 TREE_OPERAND (arg1, 0), 0)
2196 && operand_equal_p (TREE_OPERAND (arg0, 1),
2197 TREE_OPERAND (arg1, 1), 0)
2198 && operand_equal_p (TREE_OPERAND (arg0, 2),
2199 TREE_OPERAND (arg1, 2), 0));
2200 default:
2201 return 0;
2202 }
2203
2204 case 'e':
2205 if (TREE_CODE (arg0) == RTL_EXPR)
2206 return rtx_equal_p (RTL_EXPR_RTL (arg0), RTL_EXPR_RTL (arg1));
2207 return 0;
2208
2209 default:
2210 return 0;
2211 }
2212}
2213
2214/* Similar to operand_equal_p, but see if ARG0 might have been made by
2215 shorten_compare from ARG1 when ARG1 was being compared with OTHER.
2216
2217 When in doubt, return 0. */
2218
2219static int
2220operand_equal_for_comparison_p (arg0, arg1, other)
2221 tree arg0, arg1;
2222 tree other;
2223{
2224 int unsignedp1, unsignedpo;
2225 tree primarg0, primarg1, primother;
2226 unsigned correct_width;
2227
2228 if (operand_equal_p (arg0, arg1, 0))
2229 return 1;
2230
2231 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
2232 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
2233 return 0;
2234
2235 /* Discard any conversions that don't change the modes of ARG0 and ARG1
2236 and see if the inner values are the same. This removes any
2237 signedness comparison, which doesn't matter here. */
2238 primarg0 = arg0, primarg1 = arg1;
2239 STRIP_NOPS (primarg0); STRIP_NOPS (primarg1);
2240 if (operand_equal_p (primarg0, primarg1, 0))
2241 return 1;
2242
2243 /* Duplicate what shorten_compare does to ARG1 and see if that gives the
2244 actual comparison operand, ARG0.
2245
2246 First throw away any conversions to wider types
2247 already present in the operands. */
2248
2249 primarg1 = get_narrower (arg1, &unsignedp1);
2250 primother = get_narrower (other, &unsignedpo);
2251
2252 correct_width = TYPE_PRECISION (TREE_TYPE (arg1));
2253 if (unsignedp1 == unsignedpo
2254 && TYPE_PRECISION (TREE_TYPE (primarg1)) < correct_width
2255 && TYPE_PRECISION (TREE_TYPE (primother)) < correct_width)
2256 {
2257 tree type = TREE_TYPE (arg0);
2258
2259 /* Make sure shorter operand is extended the right way
2260 to match the longer operand. */
2261 primarg1 = convert (signed_or_unsigned_type (unsignedp1,
2262 TREE_TYPE (primarg1)),
2263 primarg1);
2264
2265 if (operand_equal_p (arg0, convert (type, primarg1), 0))
2266 return 1;
2267 }
2268
2269 return 0;
2270}
2271
2272/* See if ARG is an expression that is either a comparison or is performing
2273 arithmetic on comparisons. The comparisons must only be comparing
2274 two different values, which will be stored in *CVAL1 and *CVAL2; if
2275 they are non-zero it means that some operands have already been found.
2276 No variables may be used anywhere else in the expression except in the
2277 comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
2278 the expression and save_expr needs to be called with CVAL1 and CVAL2.
2279
2280 If this is true, return 1. Otherwise, return zero. */
2281
2282static int
2283twoval_comparison_p (arg, cval1, cval2, save_p)
2284 tree arg;
2285 tree *cval1, *cval2;
2286 int *save_p;
2287{
2288 enum tree_code code = TREE_CODE (arg);
2289 char class = TREE_CODE_CLASS (code);
2290
2291 /* We can handle some of the 'e' cases here. */
2292 if (class == 'e' && code == TRUTH_NOT_EXPR)
2293 class = '1';
2294 else if (class == 'e'
2295 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
2296 || code == COMPOUND_EXPR))
2297 class = '2';
2298
2299 /* ??? Disable this since the SAVE_EXPR might already be in use outside
2300 the expression. There may be no way to make this work, but it needs
2301 to be looked at again for 2.6. */
2302#if 0
2303 else if (class == 'e' && code == SAVE_EXPR && SAVE_EXPR_RTL (arg) == 0)
2304 {
2305 /* If we've already found a CVAL1 or CVAL2, this expression is
2306 two complex to handle. */
2307 if (*cval1 || *cval2)
2308 return 0;
2309
2310 class = '1';
2311 *save_p = 1;
2312 }
2313#endif
2314
2315 switch (class)
2316 {
2317 case '1':
2318 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p);
2319
2320 case '2':
2321 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p)
2322 && twoval_comparison_p (TREE_OPERAND (arg, 1),
2323 cval1, cval2, save_p));
2324
2325 case 'c':
2326 return 1;
2327
2328 case 'e':
2329 if (code == COND_EXPR)
2330 return (twoval_comparison_p (TREE_OPERAND (arg, 0),
2331 cval1, cval2, save_p)
2332 && twoval_comparison_p (TREE_OPERAND (arg, 1),
2333 cval1, cval2, save_p)
2334 && twoval_comparison_p (TREE_OPERAND (arg, 2),
2335 cval1, cval2, save_p));
2336 return 0;
2337
2338 case '<':
2339 /* First see if we can handle the first operand, then the second. For
2340 the second operand, we know *CVAL1 can't be zero. It must be that
2341 one side of the comparison is each of the values; test for the
2342 case where this isn't true by failing if the two operands
2343 are the same. */
2344
2345 if (operand_equal_p (TREE_OPERAND (arg, 0),
2346 TREE_OPERAND (arg, 1), 0))
2347 return 0;
2348
2349 if (*cval1 == 0)
2350 *cval1 = TREE_OPERAND (arg, 0);
2351 else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
2352 ;
2353 else if (*cval2 == 0)
2354 *cval2 = TREE_OPERAND (arg, 0);
2355 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
2356 ;
2357 else
2358 return 0;
2359
2360 if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
2361 ;
2362 else if (*cval2 == 0)
2363 *cval2 = TREE_OPERAND (arg, 1);
2364 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
2365 ;
2366 else
2367 return 0;
2368
2369 return 1;
2370
2371 default:
2372 return 0;
2373 }
2374}
2375
2376/* ARG is a tree that is known to contain just arithmetic operations and
2377 comparisons. Evaluate the operations in the tree substituting NEW0 for
2378 any occurrence of OLD0 as an operand of a comparison and likewise for
2379 NEW1 and OLD1. */
2380
2381static tree
2382eval_subst (arg, old0, new0, old1, new1)
2383 tree arg;
2384 tree old0, new0, old1, new1;
2385{
2386 tree type = TREE_TYPE (arg);
2387 enum tree_code code = TREE_CODE (arg);
2388 char class = TREE_CODE_CLASS (code);
2389
2390 /* We can handle some of the 'e' cases here. */
2391 if (class == 'e' && code == TRUTH_NOT_EXPR)
2392 class = '1';
2393 else if (class == 'e'
2394 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2395 class = '2';
2396
2397 switch (class)
2398 {
2399 case '1':
2400 return fold (build1 (code, type,
2401 eval_subst (TREE_OPERAND (arg, 0),
2402 old0, new0, old1, new1)));
2403
2404 case '2':
2405 return fold (build (code, type,
2406 eval_subst (TREE_OPERAND (arg, 0),
2407 old0, new0, old1, new1),
2408 eval_subst (TREE_OPERAND (arg, 1),
2409 old0, new0, old1, new1)));
2410
2411 case 'e':
2412 switch (code)
2413 {
2414 case SAVE_EXPR:
2415 return eval_subst (TREE_OPERAND (arg, 0), old0, new0, old1, new1);
2416
2417 case COMPOUND_EXPR:
2418 return eval_subst (TREE_OPERAND (arg, 1), old0, new0, old1, new1);
2419
2420 case COND_EXPR:
2421 return fold (build (code, type,
2422 eval_subst (TREE_OPERAND (arg, 0),
2423 old0, new0, old1, new1),
2424 eval_subst (TREE_OPERAND (arg, 1),
2425 old0, new0, old1, new1),
2426 eval_subst (TREE_OPERAND (arg, 2),
2427 old0, new0, old1, new1)));
2428 default:
2429 break;
2430 }
2431 /* fall through - ??? */
2432
2433 case '<':
2434 {
2435 tree arg0 = TREE_OPERAND (arg, 0);
2436 tree arg1 = TREE_OPERAND (arg, 1);
2437
2438 /* We need to check both for exact equality and tree equality. The
2439 former will be true if the operand has a side-effect. In that
2440 case, we know the operand occurred exactly once. */
2441
2442 if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
2443 arg0 = new0;
2444 else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
2445 arg0 = new1;
2446
2447 if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
2448 arg1 = new0;
2449 else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
2450 arg1 = new1;
2451
2452 return fold (build (code, type, arg0, arg1));
2453 }
2454
2455 default:
2456 return arg;
2457 }
2458}
2459
2460/* Return a tree for the case when the result of an expression is RESULT
2461 converted to TYPE and OMITTED was previously an operand of the expression
2462 but is now not needed (e.g., we folded OMITTED * 0).
2463
2464 If OMITTED has side effects, we must evaluate it. Otherwise, just do
2465 the conversion of RESULT to TYPE. */
2466
2467static tree
2468omit_one_operand (type, result, omitted)
2469 tree type, result, omitted;
2470{
2471 tree t = convert (type, result);
2472
2473 if (TREE_SIDE_EFFECTS (omitted))
2474 return build (COMPOUND_EXPR, type, omitted, t);
2475
2476 return non_lvalue (t);
2477}
2478
2479/* Similar, but call pedantic_non_lvalue instead of non_lvalue. */
2480
2481static tree
2482pedantic_omit_one_operand (type, result, omitted)
2483 tree type, result, omitted;
2484{
2485 tree t = convert (type, result);
2486
2487 if (TREE_SIDE_EFFECTS (omitted))
2488 return build (COMPOUND_EXPR, type, omitted, t);
2489
2490 return pedantic_non_lvalue (t);
2491}
2492
2493
2494
2495/* Return a simplified tree node for the truth-negation of ARG. This
2496 never alters ARG itself. We assume that ARG is an operation that
2497 returns a truth value (0 or 1). */
2498
2499tree
2500invert_truthvalue (arg)
2501 tree arg;
2502{
2503 tree type = TREE_TYPE (arg);
2504 enum tree_code code = TREE_CODE (arg);
2505
2506 if (code == ERROR_MARK)
2507 return arg;
2508
2509 /* If this is a comparison, we can simply invert it, except for
2510 floating-point non-equality comparisons, in which case we just
2511 enclose a TRUTH_NOT_EXPR around what we have. */
2512
2513 if (TREE_CODE_CLASS (code) == '<')
2514 {
2515 if (FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (arg, 0)))
2516 && !flag_fast_math && code != NE_EXPR && code != EQ_EXPR)
2517 return build1 (TRUTH_NOT_EXPR, type, arg);
2518 else
2519 return build (invert_tree_comparison (code), type,
2520 TREE_OPERAND (arg, 0), TREE_OPERAND (arg, 1));
2521 }
2522
2523 switch (code)
2524 {
2525 case INTEGER_CST:
2526 return convert (type, build_int_2 (TREE_INT_CST_LOW (arg) == 0
2527 && TREE_INT_CST_HIGH (arg) == 0, 0));
2528
2529 case TRUTH_AND_EXPR:
2530 return build (TRUTH_OR_EXPR, type,
2531 invert_truthvalue (TREE_OPERAND (arg, 0)),
2532 invert_truthvalue (TREE_OPERAND (arg, 1)));
2533
2534 case TRUTH_OR_EXPR:
2535 return build (TRUTH_AND_EXPR, type,
2536 invert_truthvalue (TREE_OPERAND (arg, 0)),
2537 invert_truthvalue (TREE_OPERAND (arg, 1)));
2538
2539 case TRUTH_XOR_EXPR:
2540 /* Here we can invert either operand. We invert the first operand
2541 unless the second operand is a TRUTH_NOT_EXPR in which case our
2542 result is the XOR of the first operand with the inside of the
2543 negation of the second operand. */
2544
2545 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
2546 return build (TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
2547 TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
2548 else
2549 return build (TRUTH_XOR_EXPR, type,
2550 invert_truthvalue (TREE_OPERAND (arg, 0)),
2551 TREE_OPERAND (arg, 1));
2552
2553 case TRUTH_ANDIF_EXPR:
2554 return build (TRUTH_ORIF_EXPR, type,
2555 invert_truthvalue (TREE_OPERAND (arg, 0)),
2556 invert_truthvalue (TREE_OPERAND (arg, 1)));
2557
2558 case TRUTH_ORIF_EXPR:
2559 return build (TRUTH_ANDIF_EXPR, type,
2560 invert_truthvalue (TREE_OPERAND (arg, 0)),
2561 invert_truthvalue (TREE_OPERAND (arg, 1)));
2562
2563 case TRUTH_NOT_EXPR:
2564 return TREE_OPERAND (arg, 0);
2565
2566 case COND_EXPR:
2567 return build (COND_EXPR, type, TREE_OPERAND (arg, 0),
2568 invert_truthvalue (TREE_OPERAND (arg, 1)),
2569 invert_truthvalue (TREE_OPERAND (arg, 2)));
2570
2571 case COMPOUND_EXPR:
2572 return build (COMPOUND_EXPR, type, TREE_OPERAND (arg, 0),
2573 invert_truthvalue (TREE_OPERAND (arg, 1)));
2574
2575 case NON_LVALUE_EXPR:
2576 return invert_truthvalue (TREE_OPERAND (arg, 0));
2577
2578 case NOP_EXPR:
2579 case CONVERT_EXPR:
2580 case FLOAT_EXPR:
2581 return build1 (TREE_CODE (arg), type,
2582 invert_truthvalue (TREE_OPERAND (arg, 0)));
2583
2584 case BIT_AND_EXPR:
2585 if (!integer_onep (TREE_OPERAND (arg, 1)))
2586 break;
2587 return build (EQ_EXPR, type, arg, convert (type, integer_zero_node));
2588
2589 case SAVE_EXPR:
2590 return build1 (TRUTH_NOT_EXPR, type, arg);
2591
2592 case CLEANUP_POINT_EXPR:
2593 return build1 (CLEANUP_POINT_EXPR, type,
2594 invert_truthvalue (TREE_OPERAND (arg, 0)));
2595
2596 default:
2597 break;
2598 }
2599 if (TREE_CODE (TREE_TYPE (arg)) != BOOLEAN_TYPE)
2600 abort ();
2601 return build1 (TRUTH_NOT_EXPR, type, arg);
2602}
2603
2604/* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
2605 operands are another bit-wise operation with a common input. If so,
2606 distribute the bit operations to save an operation and possibly two if
2607 constants are involved. For example, convert
2608 (A | B) & (A | C) into A | (B & C)
2609 Further simplification will occur if B and C are constants.
2610
2611 If this optimization cannot be done, 0 will be returned. */
2612
2613static tree
2614distribute_bit_expr (code, type, arg0, arg1)
2615 enum tree_code code;
2616 tree type;
2617 tree arg0, arg1;
2618{
2619 tree common;
2620 tree left, right;
2621
2622 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2623 || TREE_CODE (arg0) == code
2624 || (TREE_CODE (arg0) != BIT_AND_EXPR
2625 && TREE_CODE (arg0) != BIT_IOR_EXPR))
2626 return 0;
2627
2628 if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0), 0))
2629 {
2630 common = TREE_OPERAND (arg0, 0);
2631 left = TREE_OPERAND (arg0, 1);
2632 right = TREE_OPERAND (arg1, 1);
2633 }
2634 else if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 1), 0))
2635 {
2636 common = TREE_OPERAND (arg0, 0);
2637 left = TREE_OPERAND (arg0, 1);
2638 right = TREE_OPERAND (arg1, 0);
2639 }
2640 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 0), 0))
2641 {
2642 common = TREE_OPERAND (arg0, 1);
2643 left = TREE_OPERAND (arg0, 0);
2644 right = TREE_OPERAND (arg1, 1);
2645 }
2646 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 1), 0))
2647 {
2648 common = TREE_OPERAND (arg0, 1);
2649 left = TREE_OPERAND (arg0, 0);
2650 right = TREE_OPERAND (arg1, 0);
2651 }
2652 else
2653 return 0;
2654
2655 return fold (build (TREE_CODE (arg0), type, common,
2656 fold (build (code, type, left, right))));
2657}
2658
2659/* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
2660 starting at BITPOS. The field is unsigned if UNSIGNEDP is non-zero. */
2661
2662static tree
2663make_bit_field_ref (inner, type, bitsize, bitpos, unsignedp)
2664 tree inner;
2665 tree type;
2666 int bitsize, bitpos;
2667 int unsignedp;
2668{
2669 tree result = build (BIT_FIELD_REF, type, inner,
2670 size_int (bitsize), bitsize_int (bitpos, 0L));
2671
2672 TREE_UNSIGNED (result) = unsignedp;
2673
2674 return result;
2675}
2676
2677/* Optimize a bit-field compare.
2678
2679 There are two cases: First is a compare against a constant and the
2680 second is a comparison of two items where the fields are at the same
2681 bit position relative to the start of a chunk (byte, halfword, word)
2682 large enough to contain it. In these cases we can avoid the shift
2683 implicit in bitfield extractions.
2684
2685 For constants, we emit a compare of the shifted constant with the
2686 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
2687 compared. For two fields at the same position, we do the ANDs with the
2688 similar mask and compare the result of the ANDs.
2689
2690 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
2691 COMPARE_TYPE is the type of the comparison, and LHS and RHS
2692 are the left and right operands of the comparison, respectively.
2693
2694 If the optimization described above can be done, we return the resulting
2695 tree. Otherwise we return zero. */
2696
2697static tree
2698optimize_bit_field_compare (code, compare_type, lhs, rhs)
2699 enum tree_code code;
2700 tree compare_type;
2701 tree lhs, rhs;
2702{
2703 int lbitpos, lbitsize, rbitpos, rbitsize;
2704 int lnbitpos, lnbitsize, rnbitpos = 0, rnbitsize = 0;
2705 tree type = TREE_TYPE (lhs);
2706 tree signed_type, unsigned_type;
2707 int const_p = TREE_CODE (rhs) == INTEGER_CST;
2708 enum machine_mode lmode, rmode, lnmode, rnmode = VOIDmode;
2709 int lunsignedp, runsignedp;
2710 int lvolatilep = 0, rvolatilep = 0;
2711 int alignment;
2712 tree linner, rinner = NULL_TREE;
2713 tree mask;
2714 tree offset;
2715
2716 /* Get all the information about the extractions being done. If the bit size
2717 if the same as the size of the underlying object, we aren't doing an
2718 extraction at all and so can do nothing. */
2719 linner = get_inner_reference (lhs, &lbitsize, &lbitpos, &offset, &lmode,
2720 &lunsignedp, &lvolatilep, &alignment);
2721 if (linner == lhs || lbitsize == GET_MODE_BITSIZE (lmode) || lbitsize < 0
2722 || offset != 0)
2723 return 0;
2724
2725 if (!const_p)
2726 {
2727 /* If this is not a constant, we can only do something if bit positions,
2728 sizes, and signedness are the same. */
2729 rinner = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
2730 &runsignedp, &rvolatilep, &alignment);
2731
2732 if (rinner == rhs || lbitpos != rbitpos || lbitsize != rbitsize
2733 || lunsignedp != runsignedp || offset != 0)
2734 return 0;
2735 }
2736
2737 /* See if we can find a mode to refer to this field. We should be able to,
2738 but fail if we can't. */
2739 lnmode = get_best_mode (lbitsize, lbitpos,
2740 TYPE_ALIGN (TREE_TYPE (linner)), word_mode,
2741 lvolatilep);
2742 if (lnmode == VOIDmode)
2743 return 0;
2744
2745 /* Set signed and unsigned types of the precision of this mode for the
2746 shifts below. */
2747 signed_type = type_for_mode (lnmode, 0);
2748 unsigned_type = type_for_mode (lnmode, 1);
2749
2750 if (! const_p)
2751 {
2752 rnmode = get_best_mode (rbitsize, rbitpos,
2753 TYPE_ALIGN (TREE_TYPE (rinner)), word_mode,
2754 rvolatilep);
2755 if (rnmode == VOIDmode)
2756 return 0;
2757 }
2758
2759 /* Compute the bit position and size for the new reference and our offset
2760 within it. If the new reference is the same size as the original, we
2761 won't optimize anything, so return zero. */
2762 lnbitsize = GET_MODE_BITSIZE (lnmode);
2763 lnbitpos = lbitpos & ~ (lnbitsize - 1);
2764 lbitpos -= lnbitpos;
2765 if (lnbitsize == lbitsize)
2766 return 0;
2767
2768 if (! const_p)
2769 {
2770 rnbitsize = GET_MODE_BITSIZE (rnmode);
2771 rnbitpos = rbitpos & ~ (rnbitsize - 1);
2772 rbitpos -= rnbitpos;
2773 if (rnbitsize == rbitsize)
2774 return 0;
2775 }
2776
2777 if (BYTES_BIG_ENDIAN)
2778 lbitpos = lnbitsize - lbitsize - lbitpos;
2779
2780 /* Make the mask to be used against the extracted field. */
2781 mask = build_int_2 (~0, ~0);
2782 TREE_TYPE (mask) = unsigned_type;
2783 force_fit_type (mask, 0);
2784 mask = convert (unsigned_type, mask);
2785 mask = const_binop (LSHIFT_EXPR, mask, size_int (lnbitsize - lbitsize), 0);
2786 mask = const_binop (RSHIFT_EXPR, mask,
2787 size_int (lnbitsize - lbitsize - lbitpos), 0);
2788
2789 if (! const_p)
2790 /* If not comparing with constant, just rework the comparison
2791 and return. */
2792 return build (code, compare_type,
2793 build (BIT_AND_EXPR, unsigned_type,
2794 make_bit_field_ref (linner, unsigned_type,
2795 lnbitsize, lnbitpos, 1),
2796 mask),
2797 build (BIT_AND_EXPR, unsigned_type,
2798 make_bit_field_ref (rinner, unsigned_type,
2799 rnbitsize, rnbitpos, 1),
2800 mask));
2801
2802 /* Otherwise, we are handling the constant case. See if the constant is too
2803 big for the field. Warn and return a tree of for 0 (false) if so. We do
2804 this not only for its own sake, but to avoid having to test for this
2805 error case below. If we didn't, we might generate wrong code.
2806
2807 For unsigned fields, the constant shifted right by the field length should
2808 be all zero. For signed fields, the high-order bits should agree with
2809 the sign bit. */
2810
2811 if (lunsignedp)
2812 {
2813 if (! integer_zerop (const_binop (RSHIFT_EXPR,
2814 convert (unsigned_type, rhs),
2815 size_int (lbitsize), 0)))
2816 {
2817 warning ("comparison is always %d due to width of bitfield",
2818 code == NE_EXPR);
2819 return convert (compare_type,
2820 (code == NE_EXPR
2821 ? integer_one_node : integer_zero_node));
2822 }
2823 }
2824 else
2825 {
2826 tree tem = const_binop (RSHIFT_EXPR, convert (signed_type, rhs),
2827 size_int (lbitsize - 1), 0);
2828 if (! integer_zerop (tem) && ! integer_all_onesp (tem))
2829 {
2830 warning ("comparison is always %d due to width of bitfield",
2831 code == NE_EXPR);
2832 return convert (compare_type,
2833 (code == NE_EXPR
2834 ? integer_one_node : integer_zero_node));
2835 }
2836 }
2837
2838 /* Single-bit compares should always be against zero. */
2839 if (lbitsize == 1 && ! integer_zerop (rhs))
2840 {
2841 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
2842 rhs = convert (type, integer_zero_node);
2843 }
2844
2845 /* Make a new bitfield reference, shift the constant over the
2846 appropriate number of bits and mask it with the computed mask
2847 (in case this was a signed field). If we changed it, make a new one. */
2848 lhs = make_bit_field_ref (linner, unsigned_type, lnbitsize, lnbitpos, 1);
2849 if (lvolatilep)
2850 {
2851 TREE_SIDE_EFFECTS (lhs) = 1;
2852 TREE_THIS_VOLATILE (lhs) = 1;
2853 }
2854
2855 rhs = fold (const_binop (BIT_AND_EXPR,
2856 const_binop (LSHIFT_EXPR,
2857 convert (unsigned_type, rhs),
2858 size_int (lbitpos), 0),
2859 mask, 0));
2860
2861 return build (code, compare_type,
2862 build (BIT_AND_EXPR, unsigned_type, lhs, mask),
2863 rhs);
2864}
2865
2866/* Subroutine for fold_truthop: decode a field reference.
2867
2868 If EXP is a comparison reference, we return the innermost reference.
2869
2870 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
2871 set to the starting bit number.
2872
2873 If the innermost field can be completely contained in a mode-sized
2874 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
2875
2876 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
2877 otherwise it is not changed.
2878
2879 *PUNSIGNEDP is set to the signedness of the field.
2880
2881 *PMASK is set to the mask used. This is either contained in a
2882 BIT_AND_EXPR or derived from the width of the field.
2883
2884 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
2885
2886 Return 0 if this is not a component reference or is one that we can't
2887 do anything with. */
2888
2889static tree
2890decode_field_reference (exp, pbitsize, pbitpos, pmode, punsignedp,
2891 pvolatilep, pmask, pand_mask)
2892 tree exp;
2893 int *pbitsize, *pbitpos;
2894 enum machine_mode *pmode;
2895 int *punsignedp, *pvolatilep;
2896 tree *pmask;
2897 tree *pand_mask;
2898{
2899 tree and_mask = 0;
2900 tree mask, inner, offset;
2901 tree unsigned_type;
2902 int precision;
2903 int alignment;
2904
2905 /* All the optimizations using this function assume integer fields.
2906 There are problems with FP fields since the type_for_size call
2907 below can fail for, e.g., XFmode. */
2908 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
2909 return 0;
2910
2911 STRIP_NOPS (exp);
2912
2913 if (TREE_CODE (exp) == BIT_AND_EXPR)
2914 {
2915 and_mask = TREE_OPERAND (exp, 1);
2916 exp = TREE_OPERAND (exp, 0);
2917 STRIP_NOPS (exp); STRIP_NOPS (and_mask);
2918 if (TREE_CODE (and_mask) != INTEGER_CST)
2919 return 0;
2920 }
2921
2922
2923 inner = get_inner_reference (exp, pbitsize, pbitpos, &offset, pmode,
2924 punsignedp, pvolatilep, &alignment);
2925 if ((inner == exp && and_mask == 0)
2926 || *pbitsize < 0 || offset != 0)
2927 return 0;
2928
2929 /* Compute the mask to access the bitfield. */
2930 unsigned_type = type_for_size (*pbitsize, 1);
2931 precision = TYPE_PRECISION (unsigned_type);
2932
2933 mask = build_int_2 (~0, ~0);
2934 TREE_TYPE (mask) = unsigned_type;
2935 force_fit_type (mask, 0);
2936 mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize), 0);
2937 mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize), 0);
2938
2939 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
2940 if (and_mask != 0)
2941 mask = fold (build (BIT_AND_EXPR, unsigned_type,
2942 convert (unsigned_type, and_mask), mask));
2943
2944 *pmask = mask;
2945 *pand_mask = and_mask;
2946 return inner;
2947}
2948
2949/* Return non-zero if MASK represents a mask of SIZE ones in the low-order
2950 bit positions. */
2951
2952static int
2953all_ones_mask_p (mask, size)
2954 tree mask;
2955 int size;
2956{
2957 tree type = TREE_TYPE (mask);
2958 int precision = TYPE_PRECISION (type);
2959 tree tmask;
2960
2961 tmask = build_int_2 (~0, ~0);
2962 TREE_TYPE (tmask) = signed_type (type);
2963 force_fit_type (tmask, 0);
2964 return
2965 tree_int_cst_equal (mask,
2966 const_binop (RSHIFT_EXPR,
2967 const_binop (LSHIFT_EXPR, tmask,
2968 size_int (precision - size),
2969 0),
2970 size_int (precision - size), 0));
2971}
2972
2973/* Subroutine for fold_truthop: determine if an operand is simple enough
2974 to be evaluated unconditionally. */
2975
2976static int
2977simple_operand_p (exp)
2978 tree exp;
2979{
2980 /* Strip any conversions that don't change the machine mode. */
2981 while ((TREE_CODE (exp) == NOP_EXPR
2982 || TREE_CODE (exp) == CONVERT_EXPR)
2983 && (TYPE_MODE (TREE_TYPE (exp))
2984 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
2985 exp = TREE_OPERAND (exp, 0);
2986
2987 return (TREE_CODE_CLASS (TREE_CODE (exp)) == 'c'
2988 || (TREE_CODE_CLASS (TREE_CODE (exp)) == 'd'
2989 && ! TREE_ADDRESSABLE (exp)
2990 && ! TREE_THIS_VOLATILE (exp)
2991 && ! DECL_NONLOCAL (exp)
2992 /* Don't regard global variables as simple. They may be
2993 allocated in ways unknown to the compiler (shared memory,
2994 #pragma weak, etc). */
2995 && ! TREE_PUBLIC (exp)
2996 && ! DECL_EXTERNAL (exp)
2997 /* Loading a static variable is unduly expensive, but global
2998 registers aren't expensive. */
2999 && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
3000}
3001
3002/* The following functions are subroutines to fold_range_test and allow it to
3003 try to change a logical combination of comparisons into a range test.
3004
3005 For example, both
3006 X == 2 && X == 3 && X == 4 && X == 5
3007 and
3008 X >= 2 && X <= 5
3009 are converted to
3010 (unsigned) (X - 2) <= 3
3011
3012 We describe each set of comparisons as being either inside or outside
3013 a range, using a variable named like IN_P, and then describe the
3014 range with a lower and upper bound. If one of the bounds is omitted,
3015 it represents either the highest or lowest value of the type.
3016
3017 In the comments below, we represent a range by two numbers in brackets
3018 preceded by a "+" to designate being inside that range, or a "-" to
3019 designate being outside that range, so the condition can be inverted by
3020 flipping the prefix. An omitted bound is represented by a "-". For
3021 example, "- [-, 10]" means being outside the range starting at the lowest
3022 possible value and ending at 10, in other words, being greater than 10.
3023 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
3024 always false.
3025
3026 We set up things so that the missing bounds are handled in a consistent
3027 manner so neither a missing bound nor "true" and "false" need to be
3028 handled using a special case. */
3029
3030/* Return the result of applying CODE to ARG0 and ARG1, but handle the case
3031 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
3032 and UPPER1_P are nonzero if the respective argument is an upper bound
3033 and zero for a lower. TYPE, if nonzero, is the type of the result; it
3034 must be specified for a comparison. ARG1 will be converted to ARG0's
3035 type if both are specified. */
3036
3037static tree
3038range_binop (code, type, arg0, upper0_p, arg1, upper1_p)
3039 enum tree_code code;
3040 tree type;
3041 tree arg0, arg1;
3042 int upper0_p, upper1_p;
3043{
3044 tree tem;
3045 int result;
3046 int sgn0, sgn1;
3047
3048 /* If neither arg represents infinity, do the normal operation.
3049 Else, if not a comparison, return infinity. Else handle the special
3050 comparison rules. Note that most of the cases below won't occur, but
3051 are handled for consistency. */
3052
3053 if (arg0 != 0 && arg1 != 0)
3054 {
3055 tem = fold (build (code, type != 0 ? type : TREE_TYPE (arg0),
3056 arg0, convert (TREE_TYPE (arg0), arg1)));
3057 STRIP_NOPS (tem);
3058 return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
3059 }
3060
3061 if (TREE_CODE_CLASS (code) != '<')
3062 return 0;
3063
3064 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
3065 for neither. In real maths, we cannot assume open ended ranges are
3066 the same. But, this is computer arithmetic, where numbers are finite.
3067 We can therefore make the transformation of any unbounded range with
3068 the value Z, Z being greater than any representable number. This permits
3069 us to treat unbounded ranges as equal. */
3070 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
3071 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
3072 switch (code)
3073 {
3074 case EQ_EXPR:
3075 result = sgn0 == sgn1;
3076 break;
3077 case NE_EXPR:
3078 result = sgn0 != sgn1;
3079 break;
3080 case LT_EXPR:
3081 result = sgn0 < sgn1;
3082 break;
3083 case LE_EXPR:
3084 result = sgn0 <= sgn1;
3085 break;
3086 case GT_EXPR:
3087 result = sgn0 > sgn1;
3088 break;
3089 case GE_EXPR:
3090 result = sgn0 >= sgn1;
3091 break;
3092 default:
3093 abort ();
3094 }
3095
3096 return convert (type, result ? integer_one_node : integer_zero_node);
3097}
3098
3099/* Given EXP, a logical expression, set the range it is testing into
3100 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
3101 actually being tested. *PLOW and *PHIGH will have be made the same type
3102 as the returned expression. If EXP is not a comparison, we will most
3103 likely not be returning a useful value and range. */
3104
3105static tree
3106make_range (exp, pin_p, plow, phigh)
3107 tree exp;
3108 int *pin_p;
3109 tree *plow, *phigh;
3110{
3111 enum tree_code code;
3112 tree arg0 = NULL_TREE, arg1 = NULL_TREE, type = NULL_TREE;
3113 tree orig_type = NULL_TREE;
3114 int in_p, n_in_p;
3115 tree low, high, n_low, n_high;
3116
3117 /* Start with simply saying "EXP != 0" and then look at the code of EXP
3118 and see if we can refine the range. Some of the cases below may not
3119 happen, but it doesn't seem worth worrying about this. We "continue"
3120 the outer loop when we've changed something; otherwise we "break"
3121 the switch, which will "break" the while. */
3122
3123 in_p = 0, low = high = convert (TREE_TYPE (exp), integer_zero_node);
3124
3125 while (1)
3126 {
3127 code = TREE_CODE (exp);
3128
3129 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
3130 {
3131 arg0 = TREE_OPERAND (exp, 0);
3132 if (TREE_CODE_CLASS (code) == '<'
3133 || TREE_CODE_CLASS (code) == '1'
3134 || TREE_CODE_CLASS (code) == '2')
3135 type = TREE_TYPE (arg0);
3136 if (TREE_CODE_CLASS (code) == '2'
3137 || TREE_CODE_CLASS (code) == '<'
3138 || (TREE_CODE_CLASS (code) == 'e'
3139 && tree_code_length[(int) code] > 1))
3140 arg1 = TREE_OPERAND (exp, 1);
3141 }
3142
3143 /* Set ORIG_TYPE as soon as TYPE is non-null so that we do not
3144 lose a cast by accident. */
3145 if (type != NULL_TREE && orig_type == NULL_TREE)
3146 orig_type = type;
3147
3148 switch (code)
3149 {
3150 case TRUTH_NOT_EXPR:
3151 in_p = ! in_p, exp = arg0;
3152 continue;
3153
3154 case EQ_EXPR: case NE_EXPR:
3155 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
3156 /* We can only do something if the range is testing for zero
3157 and if the second operand is an integer constant. Note that
3158 saying something is "in" the range we make is done by
3159 complementing IN_P since it will set in the initial case of
3160 being not equal to zero; "out" is leaving it alone. */
3161 if (low == 0 || high == 0
3162 || ! integer_zerop (low) || ! integer_zerop (high)
3163 || TREE_CODE (arg1) != INTEGER_CST)
3164 break;
3165
3166 switch (code)
3167 {
3168 case NE_EXPR: /* - [c, c] */
3169 low = high = arg1;
3170 break;
3171 case EQ_EXPR: /* + [c, c] */
3172 in_p = ! in_p, low = high = arg1;
3173 break;
3174 case GT_EXPR: /* - [-, c] */
3175 low = 0, high = arg1;
3176 break;
3177 case GE_EXPR: /* + [c, -] */
3178 in_p = ! in_p, low = arg1, high = 0;
3179 break;
3180 case LT_EXPR: /* - [c, -] */
3181 low = arg1, high = 0;
3182 break;
3183 case LE_EXPR: /* + [-, c] */
3184 in_p = ! in_p, low = 0, high = arg1;
3185 break;
3186 default:
3187 abort ();
3188 }
3189
3190 exp = arg0;
3191
3192 /* If this is an unsigned comparison, we also know that EXP is
3193 greater than or equal to zero. We base the range tests we make
3194 on that fact, so we record it here so we can parse existing
3195 range tests. */
3196 if (TREE_UNSIGNED (type) && (low == 0 || high == 0))
3197 {
3198 if (! merge_ranges (&n_in_p, &n_low, &n_high, in_p, low, high,
3199 1, convert (type, integer_zero_node),
3200 NULL_TREE))
3201 break;
3202
3203 in_p = n_in_p, low = n_low, high = n_high;
3204
3205 /* If the high bound is missing, reverse the range so it
3206 goes from zero to the low bound minus 1. */
3207 if (high == 0)
3208 {
3209 in_p = ! in_p;
3210 high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
3211 integer_one_node, 0);
3212 low = convert (type, integer_zero_node);
3213 }
3214 }
3215 continue;
3216
3217 case NEGATE_EXPR:
3218 /* (-x) IN [a,b] -> x in [-b, -a] */
3219 n_low = range_binop (MINUS_EXPR, type,
3220 convert (type, integer_zero_node), 0, high, 1);
3221 n_high = range_binop (MINUS_EXPR, type,
3222 convert (type, integer_zero_node), 0, low, 0);
3223 low = n_low, high = n_high;
3224 exp = arg0;
3225 continue;
3226
3227 case BIT_NOT_EXPR:
3228 /* ~ X -> -X - 1 */
3229 exp = build (MINUS_EXPR, type, build1 (NEGATE_EXPR, type, arg0),
3230 convert (type, integer_one_node));
3231 continue;
3232
3233 case PLUS_EXPR: case MINUS_EXPR:
3234 if (TREE_CODE (arg1) != INTEGER_CST)
3235 break;
3236
3237 /* If EXP is signed, any overflow in the computation is undefined,
3238 so we don't worry about it so long as our computations on
3239 the bounds don't overflow. For unsigned, overflow is defined
3240 and this is exactly the right thing. */
3241 n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
3242 type, low, 0, arg1, 0);
3243 n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
3244 type, high, 1, arg1, 0);
3245 if ((n_low != 0 && TREE_OVERFLOW (n_low))
3246 || (n_high != 0 && TREE_OVERFLOW (n_high)))
3247 break;
3248
3249 /* Check for an unsigned range which has wrapped around the maximum
3250 value thus making n_high < n_low, and normalize it. */
3251 if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
3252 {
3253 low = range_binop (PLUS_EXPR, type, n_high, 0,
3254 integer_one_node, 0);
3255 high = range_binop (MINUS_EXPR, type, n_low, 0,
3256 integer_one_node, 0);
3257 in_p = ! in_p;
3258 }
3259 else
3260 low = n_low, high = n_high;
3261
3262 exp = arg0;
3263 continue;
3264
3265 case NOP_EXPR: case NON_LVALUE_EXPR: case CONVERT_EXPR:
3266 if (TYPE_PRECISION (type) > TYPE_PRECISION (orig_type))
3267 break;
3268
3269 if (! INTEGRAL_TYPE_P (type)
3270 || (low != 0 && ! int_fits_type_p (low, type))
3271 || (high != 0 && ! int_fits_type_p (high, type)))
3272 break;
3273
3274 n_low = low, n_high = high;
3275
3276 if (n_low != 0)
3277 n_low = convert (type, n_low);
3278
3279 if (n_high != 0)
3280 n_high = convert (type, n_high);
3281
3282 /* If we're converting from an unsigned to a signed type,
3283 we will be doing the comparison as unsigned. The tests above
3284 have already verified that LOW and HIGH are both positive.
3285
3286 So we have to make sure that the original unsigned value will
3287 be interpreted as positive. */
3288 if (TREE_UNSIGNED (type) && ! TREE_UNSIGNED (TREE_TYPE (exp)))
3289 {
3290 tree equiv_type = type_for_mode (TYPE_MODE (type), 1);
3291 tree high_positive;
3292
3293 /* A range without an upper bound is, naturally, unbounded.
3294 Since convert would have cropped a very large value, use
3295 the max value for the destination type. */
3296
3297 high_positive = TYPE_MAX_VALUE (equiv_type);
3298 if (!high_positive)
3299 {
3300 high_positive = TYPE_MAX_VALUE (type);
3301 if (!high_positive)
3302 abort();
3303 }
3304 high_positive = fold (build (RSHIFT_EXPR, type,
3305 convert (type, high_positive),
3306 convert (type, integer_one_node)));
3307
3308 /* If the low bound is specified, "and" the range with the
3309 range for which the original unsigned value will be
3310 positive. */
3311 if (low != 0)
3312 {
3313 if (! merge_ranges (&n_in_p, &n_low, &n_high,
3314 1, n_low, n_high,
3315 1, convert (type, integer_zero_node),
3316 high_positive))
3317 break;
3318
3319 in_p = (n_in_p == in_p);
3320 }
3321 else
3322 {
3323 /* Otherwise, "or" the range with the range of the input
3324 that will be interpreted as negative. */
3325 if (! merge_ranges (&n_in_p, &n_low, &n_high,
3326 0, n_low, n_high,
3327 1, convert (type, integer_zero_node),
3328 high_positive))
3329 break;
3330
3331 in_p = (in_p != n_in_p);
3332 }
3333 }
3334
3335 exp = arg0;
3336 low = n_low, high = n_high;
3337 continue;
3338
3339 default:
3340 break;
3341 }
3342
3343 break;
3344 }
3345
3346 /* If EXP is a constant, we can evaluate whether this is true or false. */
3347 if (TREE_CODE (exp) == INTEGER_CST)
3348 {
3349 in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
3350 exp, 0, low, 0))
3351 && integer_onep (range_binop (LE_EXPR, integer_type_node,
3352 exp, 1, high, 1)));
3353 low = high = 0;
3354 exp = 0;
3355 }
3356
3357 *pin_p = in_p, *plow = low, *phigh = high;
3358 return exp;
3359}
3360
3361/* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
3362 type, TYPE, return an expression to test if EXP is in (or out of, depending
3363 on IN_P) the range. */
3364
3365static tree
3366build_range_check (type, exp, in_p, low, high)
3367 tree type;
3368 tree exp;
3369 int in_p;
3370 tree low, high;
3371{
3372 tree etype = TREE_TYPE (exp);
3373 tree utype, value;
3374
3375 if (! in_p
3376 && (0 != (value = build_range_check (type, exp, 1, low, high))))
3377 return invert_truthvalue (value);
3378
3379 else if (low == 0 && high == 0)
3380 return convert (type, integer_one_node);
3381
3382 else if (low == 0)
3383 return fold (build (LE_EXPR, type, exp, high));
3384
3385 else if (high == 0)
3386 return fold (build (GE_EXPR, type, exp, low));
3387
3388 else if (operand_equal_p (low, high, 0))
3389 return fold (build (EQ_EXPR, type, exp, low));
3390
3391 else if (TREE_UNSIGNED (etype) && integer_zerop (low))
3392 return build_range_check (type, exp, 1, 0, high);
3393
3394 else if (integer_zerop (low))
3395 {
3396 utype = unsigned_type (etype);
3397 return build_range_check (type, convert (utype, exp), 1, 0,
3398 convert (utype, high));
3399 }
3400
3401 else if (0 != (value = const_binop (MINUS_EXPR, high, low, 0))
3402 && ! TREE_OVERFLOW (value))
3403 return build_range_check (type,
3404 fold (build (MINUS_EXPR, etype, exp, low)),
3405 1, convert (etype, integer_zero_node), value);
3406 else
3407 return 0;
3408}
3409
3410/* Given two ranges, see if we can merge them into one. Return 1 if we
3411 can, 0 if we can't. Set the output range into the specified parameters. */
3412
3413static int
3414merge_ranges (pin_p, plow, phigh, in0_p, low0, high0, in1_p, low1, high1)
3415 int *pin_p;
3416 tree *plow, *phigh;
3417 int in0_p, in1_p;
3418 tree low0, high0, low1, high1;
3419{
3420 int no_overlap;
3421 int subset;
3422 int temp;
3423 tree tem;
3424 int in_p;
3425 tree low, high;
3426 int lowequal = ((low0 == 0 && low1 == 0)
3427 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
3428 low0, 0, low1, 0)));
3429 int highequal = ((high0 == 0 && high1 == 0)
3430 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
3431 high0, 1, high1, 1)));
3432
3433 /* Make range 0 be the range that starts first, or ends last if they
3434 start at the same value. Swap them if it isn't. */
3435 if (integer_onep (range_binop (GT_EXPR, integer_type_node,
3436 low0, 0, low1, 0))
3437 || (lowequal
3438 && integer_onep (range_binop (GT_EXPR, integer_type_node,
3439 high1, 1, high0, 1))))
3440 {
3441 temp = in0_p, in0_p = in1_p, in1_p = temp;
3442 tem = low0, low0 = low1, low1 = tem;
3443 tem = high0, high0 = high1, high1 = tem;
3444 }
3445
3446 /* Now flag two cases, whether the ranges are disjoint or whether the
3447 second range is totally subsumed in the first. Note that the tests
3448 below are simplified by the ones above. */
3449 no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
3450 high0, 1, low1, 0));
3451 subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
3452 high1, 1, high0, 1));
3453
3454 /* We now have four cases, depending on whether we are including or
3455 excluding the two ranges. */
3456 if (in0_p && in1_p)
3457 {
3458 /* If they don't overlap, the result is false. If the second range
3459 is a subset it is the result. Otherwise, the range is from the start
3460 of the second to the end of the first. */
3461 if (no_overlap)
3462 in_p = 0, low = high = 0;
3463 else if (subset)
3464 in_p = 1, low = low1, high = high1;
3465 else
3466 in_p = 1, low = low1, high = high0;
3467 }
3468
3469 else if (in0_p && ! in1_p)
3470 {
3471 /* If they don't overlap, the result is the first range. If they are
3472 equal, the result is false. If the second range is a subset of the
3473 first, and the ranges begin at the same place, we go from just after
3474 the end of the first range to the end of the second. If the second
3475 range is not a subset of the first, or if it is a subset and both
3476 ranges end at the same place, the range starts at the start of the
3477 first range and ends just before the second range.
3478 Otherwise, we can't describe this as a single range. */
3479 if (no_overlap)
3480 in_p = 1, low = low0, high = high0;
3481 else if (lowequal && highequal)
3482 in_p = 0, low = high = 0;
3483 else if (subset && lowequal)
3484 {
3485 in_p = 1, high = high0;
3486 low = range_binop (PLUS_EXPR, NULL_TREE, high1, 0,
3487 integer_one_node, 0);
3488 }
3489 else if (! subset || highequal)
3490 {
3491 in_p = 1, low = low0;
3492 high = range_binop (MINUS_EXPR, NULL_TREE, low1, 0,
3493 integer_one_node, 0);
3494 }
3495 else
3496 return 0;
3497 }
3498
3499 else if (! in0_p && in1_p)
3500 {
3501 /* If they don't overlap, the result is the second range. If the second
3502 is a subset of the first, the result is false. Otherwise,
3503 the range starts just after the first range and ends at the
3504 end of the second. */
3505 if (no_overlap)
3506 in_p = 1, low = low1, high = high1;
3507 else if (subset)
3508 in_p = 0, low = high = 0;
3509 else
3510 {
3511 in_p = 1, high = high1;
3512 low = range_binop (PLUS_EXPR, NULL_TREE, high0, 1,
3513 integer_one_node, 0);
3514 }
3515 }
3516
3517 else
3518 {
3519 /* The case where we are excluding both ranges. Here the complex case
3520 is if they don't overlap. In that case, the only time we have a
3521 range is if they are adjacent. If the second is a subset of the
3522 first, the result is the first. Otherwise, the range to exclude
3523 starts at the beginning of the first range and ends at the end of the
3524 second. */
3525 if (no_overlap)
3526 {
3527 if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
3528 range_binop (PLUS_EXPR, NULL_TREE,
3529 high0, 1,
3530 integer_one_node, 1),
3531 1, low1, 0)))
3532 in_p = 0, low = low0, high = high1;
3533 else
3534 return 0;
3535 }
3536 else if (subset)
3537 in_p = 0, low = low0, high = high0;
3538 else
3539 in_p = 0, low = low0, high = high1;
3540 }
3541
3542 *pin_p = in_p, *plow = low, *phigh = high;
3543 return 1;
3544}
3545
3546/* EXP is some logical combination of boolean tests. See if we can
3547 merge it into some range test. Return the new tree if so. */
3548
3549static tree
3550fold_range_test (exp)
3551 tree exp;
3552{
3553 int or_op = (TREE_CODE (exp) == TRUTH_ORIF_EXPR
3554 || TREE_CODE (exp) == TRUTH_OR_EXPR);
3555 int in0_p, in1_p, in_p;
3556 tree low0, low1, low, high0, high1, high;
3557 tree lhs = make_range (TREE_OPERAND (exp, 0), &in0_p, &low0, &high0);
3558 tree rhs = make_range (TREE_OPERAND (exp, 1), &in1_p, &low1, &high1);
3559 tree tem;
3560
3561 /* If this is an OR operation, invert both sides; we will invert
3562 again at the end. */
3563 if (or_op)
3564 in0_p = ! in0_p, in1_p = ! in1_p;
3565
3566 /* If both expressions are the same, if we can merge the ranges, and we
3567 can build the range test, return it or it inverted. If one of the
3568 ranges is always true or always false, consider it to be the same
3569 expression as the other. */
3570 if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
3571 && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
3572 in1_p, low1, high1)
3573 && 0 != (tem = (build_range_check (TREE_TYPE (exp),
3574 lhs != 0 ? lhs
3575 : rhs != 0 ? rhs : integer_zero_node,
3576 in_p, low, high))))
3577 return or_op ? invert_truthvalue (tem) : tem;
3578
3579 /* On machines where the branch cost is expensive, if this is a
3580 short-circuited branch and the underlying object on both sides
3581 is the same, make a non-short-circuit operation. */
3582 else if (BRANCH_COST >= 2
3583 && (TREE_CODE (exp) == TRUTH_ANDIF_EXPR
3584 || TREE_CODE (exp) == TRUTH_ORIF_EXPR)
3585 && operand_equal_p (lhs, rhs, 0))
3586 {
3587 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
3588 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
3589 which cases we can't do this. */
3590 if (simple_operand_p (lhs))
3591 return build (TREE_CODE (exp) == TRUTH_ANDIF_EXPR
3592 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
3593 TREE_TYPE (exp), TREE_OPERAND (exp, 0),
3594 TREE_OPERAND (exp, 1));
3595
3596 else if (current_function_decl != 0
3597 && ! contains_placeholder_p (lhs))
3598 {
3599 tree common = save_expr (lhs);
3600
3601 if (0 != (lhs = build_range_check (TREE_TYPE (exp), common,
3602 or_op ? ! in0_p : in0_p,
3603 low0, high0))
3604 && (0 != (rhs = build_range_check (TREE_TYPE (exp), common,
3605 or_op ? ! in1_p : in1_p,
3606 low1, high1))))
3607 return build (TREE_CODE (exp) == TRUTH_ANDIF_EXPR
3608 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
3609 TREE_TYPE (exp), lhs, rhs);
3610 }
3611 }
3612
3613 return 0;
3614}
3615
3616/* Subroutine for fold_truthop: C is an INTEGER_CST interpreted as a P
3617 bit value. Arrange things so the extra bits will be set to zero if and
3618 only if C is signed-extended to its full width. If MASK is nonzero,
3619 it is an INTEGER_CST that should be AND'ed with the extra bits. */
3620
3621static tree
3622unextend (c, p, unsignedp, mask)
3623 tree c;
3624 int p;
3625 int unsignedp;
3626 tree mask;
3627{
3628 tree type = TREE_TYPE (c);
3629 int modesize = GET_MODE_BITSIZE (TYPE_MODE (type));
3630 tree temp;
3631
3632 if (p == modesize || unsignedp)
3633 return c;
3634
3635 /* We work by getting just the sign bit into the low-order bit, then
3636 into the high-order bit, then sign-extend. We then XOR that value
3637 with C. */
3638 temp = const_binop (RSHIFT_EXPR, c, size_int (p - 1), 0);
3639 temp = const_binop (BIT_AND_EXPR, temp, size_int (1), 0);
3640
3641 /* We must use a signed type in order to get an arithmetic right shift.
3642 However, we must also avoid introducing accidental overflows, so that
3643 a subsequent call to integer_zerop will work. Hence we must
3644 do the type conversion here. At this point, the constant is either
3645 zero or one, and the conversion to a signed type can never overflow.
3646 We could get an overflow if this conversion is done anywhere else. */
3647 if (TREE_UNSIGNED (type))
3648 temp = convert (signed_type (type), temp);
3649
3650 temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1), 0);
3651 temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1), 0);
3652 if (mask != 0)
3653 temp = const_binop (BIT_AND_EXPR, temp, convert (TREE_TYPE (c), mask), 0);
3654 /* If necessary, convert the type back to match the type of C. */
3655 if (TREE_UNSIGNED (type))
3656 temp = convert (type, temp);
3657
3658 return convert (type, const_binop (BIT_XOR_EXPR, c, temp, 0));
3659}
3660
3661/* Find ways of folding logical expressions of LHS and RHS:
3662 Try to merge two comparisons to the same innermost item.
3663 Look for range tests like "ch >= '0' && ch <= '9'".
3664 Look for combinations of simple terms on machines with expensive branches
3665 and evaluate the RHS unconditionally.
3666
3667 For example, if we have p->a == 2 && p->b == 4 and we can make an
3668 object large enough to span both A and B, we can do this with a comparison
3669 against the object ANDed with the a mask.
3670
3671 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
3672 operations to do this with one comparison.
3673
3674 We check for both normal comparisons and the BIT_AND_EXPRs made this by
3675 function and the one above.
3676
3677 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
3678 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
3679
3680 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
3681 two operands.
3682
3683 We return the simplified tree or 0 if no optimization is possible. */
3684
3685static tree
3686fold_truthop (code, truth_type, lhs, rhs)
3687 enum tree_code code;
3688 tree truth_type, lhs, rhs;
3689{
3690 /* If this is the "or" of two comparisons, we can do something if we
3691 the comparisons are NE_EXPR. If this is the "and", we can do something
3692 if the comparisons are EQ_EXPR. I.e.,
3693 (a->b == 2 && a->c == 4) can become (a->new == NEW).
3694
3695 WANTED_CODE is this operation code. For single bit fields, we can
3696 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
3697 comparison for one-bit fields. */
3698
3699 enum tree_code wanted_code;
3700 enum tree_code lcode, rcode;
3701 tree ll_arg, lr_arg, rl_arg, rr_arg;
3702 tree ll_inner, lr_inner, rl_inner, rr_inner;
3703 int ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
3704 int rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
3705 int xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
3706 int lnbitsize, lnbitpos, rnbitsize, rnbitpos;
3707 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
3708 enum machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
3709 enum machine_mode lnmode, rnmode;
3710 tree ll_mask, lr_mask, rl_mask, rr_mask;
3711 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
3712 tree l_const, r_const;
3713 tree lntype, rntype, result;
3714 int first_bit, end_bit;
3715 int volatilep;
3716
3717 /* Start by getting the comparison codes. Fail if anything is volatile.
3718 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
3719 it were surrounded with a NE_EXPR. */
3720
3721 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
3722 return 0;
3723
3724 lcode = TREE_CODE (lhs);
3725 rcode = TREE_CODE (rhs);
3726
3727 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
3728 lcode = NE_EXPR, lhs = build (NE_EXPR, truth_type, lhs, integer_zero_node);
3729
3730 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
3731 rcode = NE_EXPR, rhs = build (NE_EXPR, truth_type, rhs, integer_zero_node);
3732
3733 if (TREE_CODE_CLASS (lcode) != '<' || TREE_CODE_CLASS (rcode) != '<')
3734 return 0;
3735
3736 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
3737 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
3738
3739 ll_arg = TREE_OPERAND (lhs, 0);
3740 lr_arg = TREE_OPERAND (lhs, 1);
3741 rl_arg = TREE_OPERAND (rhs, 0);
3742 rr_arg = TREE_OPERAND (rhs, 1);
3743
3744 /* If the RHS can be evaluated unconditionally and its operands are
3745 simple, it wins to evaluate the RHS unconditionally on machines
3746 with expensive branches. In this case, this isn't a comparison
3747 that can be merged. */
3748
3749 /* @@ I'm not sure it wins on the m88110 to do this if the comparisons
3750 are with zero (tmw). */
3751
3752 if (BRANCH_COST >= 2
3753 && INTEGRAL_TYPE_P (TREE_TYPE (rhs))
3754 && simple_operand_p (rl_arg)
3755 && simple_operand_p (rr_arg))
3756 return build (code, truth_type, lhs, rhs);
3757
3758 /* See if the comparisons can be merged. Then get all the parameters for
3759 each side. */
3760
3761 if ((lcode != EQ_EXPR && lcode != NE_EXPR)
3762 || (rcode != EQ_EXPR && rcode != NE_EXPR))
3763 return 0;
3764
3765 volatilep = 0;
3766 ll_inner = decode_field_reference (ll_arg,
3767 &ll_bitsize, &ll_bitpos, &ll_mode,
3768 &ll_unsignedp, &volatilep, &ll_mask,
3769 &ll_and_mask);
3770 lr_inner = decode_field_reference (lr_arg,
3771 &lr_bitsize, &lr_bitpos, &lr_mode,
3772 &lr_unsignedp, &volatilep, &lr_mask,
3773 &lr_and_mask);
3774 rl_inner = decode_field_reference (rl_arg,
3775 &rl_bitsize, &rl_bitpos, &rl_mode,
3776 &rl_unsignedp, &volatilep, &rl_mask,
3777 &rl_and_mask);
3778 rr_inner = decode_field_reference (rr_arg,
3779 &rr_bitsize, &rr_bitpos, &rr_mode,
3780 &rr_unsignedp, &volatilep, &rr_mask,
3781 &rr_and_mask);
3782
3783 /* It must be true that the inner operation on the lhs of each
3784 comparison must be the same if we are to be able to do anything.
3785 Then see if we have constants. If not, the same must be true for
3786 the rhs's. */
3787 if (volatilep || ll_inner == 0 || rl_inner == 0
3788 || ! operand_equal_p (ll_inner, rl_inner, 0))
3789 return 0;
3790
3791 if (TREE_CODE (lr_arg) == INTEGER_CST
3792 && TREE_CODE (rr_arg) == INTEGER_CST)
3793 l_const = lr_arg, r_const = rr_arg;
3794 else if (lr_inner == 0 || rr_inner == 0
3795 || ! operand_equal_p (lr_inner, rr_inner, 0))
3796 return 0;
3797 else
3798 l_const = r_const = 0;
3799
3800 /* If either comparison code is not correct for our logical operation,
3801 fail. However, we can convert a one-bit comparison against zero into
3802 the opposite comparison against that bit being set in the field. */
3803
3804 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
3805 if (lcode != wanted_code)
3806 {
3807 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
3808 {
3809 /* Make the left operand unsigned, since we are only interested
3810 in the value of one bit. Otherwise we are doing the wrong
3811 thing below. */
3812 ll_unsignedp = 1;
3813 l_const = ll_mask;
3814 }
3815 else
3816 return 0;
3817 }
3818
3819 /* This is analogous to the code for l_const above. */
3820 if (rcode != wanted_code)
3821 {
3822 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
3823 {
3824 rl_unsignedp = 1;
3825 r_const = rl_mask;
3826 }
3827 else
3828 return 0;
3829 }
3830
3831 /* See if we can find a mode that contains both fields being compared on
3832 the left. If we can't, fail. Otherwise, update all constants and masks
3833 to be relative to a field of that size. */
3834 first_bit = MIN (ll_bitpos, rl_bitpos);
3835 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
3836 lnmode = get_best_mode (end_bit - first_bit, first_bit,
3837 TYPE_ALIGN (TREE_TYPE (ll_inner)), word_mode,
3838 volatilep);
3839 if (lnmode == VOIDmode)
3840 return 0;
3841
3842 lnbitsize = GET_MODE_BITSIZE (lnmode);
3843 lnbitpos = first_bit & ~ (lnbitsize - 1);
3844 lntype = type_for_size (lnbitsize, 1);
3845 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
3846
3847 if (BYTES_BIG_ENDIAN)
3848 {
3849 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
3850 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
3851 }
3852
3853 ll_mask = const_binop (LSHIFT_EXPR, convert (lntype, ll_mask),
3854 size_int (xll_bitpos), 0);
3855 rl_mask = const_binop (LSHIFT_EXPR, convert (lntype, rl_mask),
3856 size_int (xrl_bitpos), 0);
3857
3858 if (l_const)
3859 {
3860 l_const = convert (lntype, l_const);
3861 l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
3862 l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos), 0);
3863 if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
3864 fold (build1 (BIT_NOT_EXPR,
3865 lntype, ll_mask)),
3866 0)))
3867 {
3868 warning ("comparison is always %d", wanted_code == NE_EXPR);
3869
3870 return convert (truth_type,
3871 wanted_code == NE_EXPR
3872 ? integer_one_node : integer_zero_node);
3873 }
3874 }
3875 if (r_const)
3876 {
3877 r_const = convert (lntype, r_const);
3878 r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
3879 r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos), 0);
3880 if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
3881 fold (build1 (BIT_NOT_EXPR,
3882 lntype, rl_mask)),
3883 0)))
3884 {
3885 warning ("comparison is always %d", wanted_code == NE_EXPR);
3886
3887 return convert (truth_type,
3888 wanted_code == NE_EXPR
3889 ? integer_one_node : integer_zero_node);
3890 }
3891 }
3892
3893 /* If the right sides are not constant, do the same for it. Also,
3894 disallow this optimization if a size or signedness mismatch occurs
3895 between the left and right sides. */
3896 if (l_const == 0)
3897 {
3898 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
3899 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
3900 /* Make sure the two fields on the right
3901 correspond to the left without being swapped. */
3902 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
3903 return 0;
3904
3905 first_bit = MIN (lr_bitpos, rr_bitpos);
3906 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
3907 rnmode = get_best_mode (end_bit - first_bit, first_bit,
3908 TYPE_ALIGN (TREE_TYPE (lr_inner)), word_mode,
3909 volatilep);
3910 if (rnmode == VOIDmode)
3911 return 0;
3912
3913 rnbitsize = GET_MODE_BITSIZE (rnmode);
3914 rnbitpos = first_bit & ~ (rnbitsize - 1);
3915 rntype = type_for_size (rnbitsize, 1);
3916 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
3917
3918 if (BYTES_BIG_ENDIAN)
3919 {
3920 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
3921 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
3922 }
3923
3924 lr_mask = const_binop (LSHIFT_EXPR, convert (rntype, lr_mask),
3925 size_int (xlr_bitpos), 0);
3926 rr_mask = const_binop (LSHIFT_EXPR, convert (rntype, rr_mask),
3927 size_int (xrr_bitpos), 0);
3928
3929 /* Make a mask that corresponds to both fields being compared.
3930 Do this for both items being compared. If the operands are the
3931 same size and the bits being compared are in the same position
3932 then we can do this by masking both and comparing the masked
3933 results. */
3934 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask, 0);
3935 lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask, 0);
3936 if (lnbitsize == rnbitsize && xll_bitpos == xlr_bitpos)
3937 {
3938 lhs = make_bit_field_ref (ll_inner, lntype, lnbitsize, lnbitpos,
3939 ll_unsignedp || rl_unsignedp);
3940 if (! all_ones_mask_p (ll_mask, lnbitsize))
3941 lhs = build (BIT_AND_EXPR, lntype, lhs, ll_mask);
3942
3943 rhs = make_bit_field_ref (lr_inner, rntype, rnbitsize, rnbitpos,
3944 lr_unsignedp || rr_unsignedp);
3945 if (! all_ones_mask_p (lr_mask, rnbitsize))
3946 rhs = build (BIT_AND_EXPR, rntype, rhs, lr_mask);
3947
3948 return build (wanted_code, truth_type, lhs, rhs);
3949 }
3950
3951 /* There is still another way we can do something: If both pairs of
3952 fields being compared are adjacent, we may be able to make a wider
3953 field containing them both.
3954
3955 Note that we still must mask the lhs/rhs expressions. Furthermore,
3956 the mask must be shifted to account for the shift done by
3957 make_bit_field_ref. */
3958 if ((ll_bitsize + ll_bitpos == rl_bitpos
3959 && lr_bitsize + lr_bitpos == rr_bitpos)
3960 || (ll_bitpos == rl_bitpos + rl_bitsize
3961 && lr_bitpos == rr_bitpos + rr_bitsize))
3962 {
3963 tree type;
3964
3965 lhs = make_bit_field_ref (ll_inner, lntype, ll_bitsize + rl_bitsize,
3966 MIN (ll_bitpos, rl_bitpos), ll_unsignedp);
3967 rhs = make_bit_field_ref (lr_inner, rntype, lr_bitsize + rr_bitsize,
3968 MIN (lr_bitpos, rr_bitpos), lr_unsignedp);
3969
3970 ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
3971 size_int (MIN (xll_bitpos, xrl_bitpos)), 0);
3972 lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
3973 size_int (MIN (xlr_bitpos, xrr_bitpos)), 0);
3974
3975 /* Convert to the smaller type before masking out unwanted bits. */
3976 type = lntype;
3977 if (lntype != rntype)
3978 {
3979 if (lnbitsize > rnbitsize)
3980 {
3981 lhs = convert (rntype, lhs);
3982 ll_mask = convert (rntype, ll_mask);
3983 type = rntype;
3984 }
3985 else if (lnbitsize < rnbitsize)
3986 {
3987 rhs = convert (lntype, rhs);
3988 lr_mask = convert (lntype, lr_mask);
3989 type = lntype;
3990 }
3991 }
3992
3993 if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
3994 lhs = build (BIT_AND_EXPR, type, lhs, ll_mask);
3995
3996 if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
3997 rhs = build (BIT_AND_EXPR, type, rhs, lr_mask);
3998
3999 return build (wanted_code, truth_type, lhs, rhs);
4000 }
4001
4002 return 0;
4003 }
4004
4005 /* Handle the case of comparisons with constants. If there is something in
4006 common between the masks, those bits of the constants must be the same.
4007 If not, the condition is always false. Test for this to avoid generating
4008 incorrect code below. */
4009 result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask, 0);
4010 if (! integer_zerop (result)
4011 && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const, 0),
4012 const_binop (BIT_AND_EXPR, result, r_const, 0)) != 1)
4013 {
4014 if (wanted_code == NE_EXPR)
4015 {
4016 warning ("`or' of unmatched not-equal tests is always 1");
4017 return convert (truth_type, integer_one_node);
4018 }
4019 else
4020 {
4021 warning ("`and' of mutually exclusive equal-tests is always 0");
4022 return convert (truth_type, integer_zero_node);
4023 }
4024 }
4025
4026 /* Construct the expression we will return. First get the component
4027 reference we will make. Unless the mask is all ones the width of
4028 that field, perform the mask operation. Then compare with the
4029 merged constant. */
4030 result = make_bit_field_ref (ll_inner, lntype, lnbitsize, lnbitpos,
4031 ll_unsignedp || rl_unsignedp);
4032
4033 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask, 0);
4034 if (! all_ones_mask_p (ll_mask, lnbitsize))
4035 result = build (BIT_AND_EXPR, lntype, result, ll_mask);
4036
4037 return build (wanted_code, truth_type, result,
4038 const_binop (BIT_IOR_EXPR, l_const, r_const, 0));
4039}
4040
4041/* If T contains a COMPOUND_EXPR which was inserted merely to evaluate
4042 S, a SAVE_EXPR, return the expression actually being evaluated. Note
4043 that we may sometimes modify the tree. */
4044
4045static tree
4046strip_compound_expr (t, s)
4047 tree t;
4048 tree s;
4049{
4050 enum tree_code code = TREE_CODE (t);
4051
4052 /* See if this is the COMPOUND_EXPR we want to eliminate. */
4053 if (code == COMPOUND_EXPR && TREE_CODE (TREE_OPERAND (t, 0)) == CONVERT_EXPR
4054 && TREE_OPERAND (TREE_OPERAND (t, 0), 0) == s)
4055 return TREE_OPERAND (t, 1);
4056
4057 /* See if this is a COND_EXPR or a simple arithmetic operator. We
4058 don't bother handling any other types. */
4059 else if (code == COND_EXPR)
4060 {
4061 TREE_OPERAND (t, 0) = strip_compound_expr (TREE_OPERAND (t, 0), s);
4062 TREE_OPERAND (t, 1) = strip_compound_expr (TREE_OPERAND (t, 1), s);
4063 TREE_OPERAND (t, 2) = strip_compound_expr (TREE_OPERAND (t, 2), s);
4064 }
4065 else if (TREE_CODE_CLASS (code) == '1')
4066 TREE_OPERAND (t, 0) = strip_compound_expr (TREE_OPERAND (t, 0), s);
4067 else if (TREE_CODE_CLASS (code) == '<'
4068 || TREE_CODE_CLASS (code) == '2')
4069 {
4070 TREE_OPERAND (t, 0) = strip_compound_expr (TREE_OPERAND (t, 0), s);
4071 TREE_OPERAND (t, 1) = strip_compound_expr (TREE_OPERAND (t, 1), s);
4072 }
4073
4074 return t;
4075}
4076
4077/* Return a node which has the indicated constant VALUE (either 0 or
4078 1), and is of the indicated TYPE. */
4079
4080static tree
4081constant_boolean_node (value, type)
4082 int value;
4083 tree type;
4084{
4085 if (type == integer_type_node)
4086 return value ? integer_one_node : integer_zero_node;
4087 else if (TREE_CODE (type) == BOOLEAN_TYPE)
4088 return truthvalue_conversion (value ? integer_one_node :
4089 integer_zero_node);
4090 else
4091 {
4092 tree t = build_int_2 (value, 0);
4093 TREE_TYPE (t) = type;
4094 return t;
4095 }
4096}
4097
4098/* Utility function for the following routine, to see how complex a nesting of
4099 COND_EXPRs can be. EXPR is the expression and LIMIT is a count beyond which
4100 we don't care (to avoid spending too much time on complex expressions.). */
4101
4102static int
4103count_cond (expr, lim)
4104 tree expr;
4105 int lim;
4106{
4107 int true, false;
4108
4109 if (TREE_CODE (expr) != COND_EXPR)
4110 return 0;
4111 else if (lim <= 0)
4112 return 0;
4113
4114 true = count_cond (TREE_OPERAND (expr, 1), lim - 1);
4115 false = count_cond (TREE_OPERAND (expr, 2), lim - 1 - true);
4116 return MIN (lim, 1 + true + false);
4117}
4118
4119/* Perform constant folding and related simplification of EXPR.
4120 The related simplifications include x*1 => x, x*0 => 0, etc.,
4121 and application of the associative law.
4122 NOP_EXPR conversions may be removed freely (as long as we
4123 are careful not to change the C type of the overall expression)
4124 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
4125 but we can constant-fold them if they have constant operands. */
4126
4127tree
4128fold (expr)
4129 tree expr;
4130{
4131 register tree t = expr;
4132 tree t1 = NULL_TREE;
4133 tree tem;
4134 tree type = TREE_TYPE (expr);
4135 register tree arg0 = NULL_TREE, arg1 = NULL_TREE;
4136 register enum tree_code code = TREE_CODE (t);
4137 register int kind;
4138 int invert;
4139
4140 /* WINS will be nonzero when the switch is done
4141 if all operands are constant. */
4142
4143 int wins = 1;
4144
4145 /* Don't try to process an RTL_EXPR since its operands aren't trees.
4146 Likewise for a SAVE_EXPR that's already been evaluated. */
4147 if (code == RTL_EXPR || (code == SAVE_EXPR && SAVE_EXPR_RTL (t)) != 0)
4148 return t;
4149
4150 /* Return right away if already constant. */
4151 if (TREE_CONSTANT (t))
4152 {
4153 if (code == CONST_DECL)
4154 return DECL_INITIAL (t);
4155 return t;
4156 }
4157
4158#ifdef MAX_INTEGER_COMPUTATION_MODE
4159 check_max_integer_computation_mode (expr);
4160#endif
4161
4162 kind = TREE_CODE_CLASS (code);
4163 if (code == NOP_EXPR || code == FLOAT_EXPR || code == CONVERT_EXPR)
4164 {
4165 tree subop;
4166
4167 /* Special case for conversion ops that can have fixed point args. */
4168 arg0 = TREE_OPERAND (t, 0);
4169
4170 /* Don't use STRIP_NOPS, because signedness of argument type matters. */
4171 if (arg0 != 0)
4172 STRIP_TYPE_NOPS (arg0);
4173
4174 if (arg0 != 0 && TREE_CODE (arg0) == COMPLEX_CST)
4175 subop = TREE_REALPART (arg0);
4176 else
4177 subop = arg0;
4178
4179 if (subop != 0 && TREE_CODE (subop) != INTEGER_CST
4180#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
4181 && TREE_CODE (subop) != REAL_CST
4182#endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
4183 )
4184 /* Note that TREE_CONSTANT isn't enough:
4185 static var addresses are constant but we can't
4186 do arithmetic on them. */
4187 wins = 0;
4188 }
4189 else if (kind == 'e' || kind == '<'
4190 || kind == '1' || kind == '2' || kind == 'r')
4191 {
4192 register int len = tree_code_length[(int) code];
4193 register int i;
4194 for (i = 0; i < len; i++)
4195 {
4196 tree op = TREE_OPERAND (t, i);
4197 tree subop;
4198
4199 if (op == 0)
4200 continue; /* Valid for CALL_EXPR, at least. */
4201
4202 if (kind == '<' || code == RSHIFT_EXPR)
4203 {
4204 /* Signedness matters here. Perhaps we can refine this
4205 later. */
4206 STRIP_TYPE_NOPS (op);
4207 }
4208 else
4209 {
4210 /* Strip any conversions that don't change the mode. */
4211 STRIP_NOPS (op);
4212 }
4213
4214 if (TREE_CODE (op) == COMPLEX_CST)
4215 subop = TREE_REALPART (op);
4216 else
4217 subop = op;
4218
4219 if (TREE_CODE (subop) != INTEGER_CST
4220#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
4221 && TREE_CODE (subop) != REAL_CST
4222#endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
4223 )
4224 /* Note that TREE_CONSTANT isn't enough:
4225 static var addresses are constant but we can't
4226 do arithmetic on them. */
4227 wins = 0;
4228
4229 if (i == 0)
4230 arg0 = op;
4231 else if (i == 1)
4232 arg1 = op;
4233 }
4234 }
4235
4236 /* If this is a commutative operation, and ARG0 is a constant, move it
4237 to ARG1 to reduce the number of tests below. */
4238 if ((code == PLUS_EXPR || code == MULT_EXPR || code == MIN_EXPR
4239 || code == MAX_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR
4240 || code == BIT_AND_EXPR)
4241 && (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST))
4242 {
4243 tem = arg0; arg0 = arg1; arg1 = tem;
4244
4245 tem = TREE_OPERAND (t, 0); TREE_OPERAND (t, 0) = TREE_OPERAND (t, 1);
4246 TREE_OPERAND (t, 1) = tem;
4247 }
4248
4249 /* Now WINS is set as described above,
4250 ARG0 is the first operand of EXPR,
4251 and ARG1 is the second operand (if it has more than one operand).
4252
4253 First check for cases where an arithmetic operation is applied to a
4254 compound, conditional, or comparison operation. Push the arithmetic
4255 operation inside the compound or conditional to see if any folding
4256 can then be done. Convert comparison to conditional for this purpose.
4257 The also optimizes non-constant cases that used to be done in
4258 expand_expr.
4259
4260 Before we do that, see if this is a BIT_AND_EXPR or a BIT_OR_EXPR,
4261 one of the operands is a comparison and the other is a comparison, a
4262 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
4263 code below would make the expression more complex. Change it to a
4264 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
4265 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
4266
4267 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
4268 || code == EQ_EXPR || code == NE_EXPR)
4269 && ((truth_value_p (TREE_CODE (arg0))
4270 && (truth_value_p (TREE_CODE (arg1))
4271 || (TREE_CODE (arg1) == BIT_AND_EXPR
4272 && integer_onep (TREE_OPERAND (arg1, 1)))))
4273 || (truth_value_p (TREE_CODE (arg1))
4274 && (truth_value_p (TREE_CODE (arg0))
4275 || (TREE_CODE (arg0) == BIT_AND_EXPR
4276 && integer_onep (TREE_OPERAND (arg0, 1)))))))
4277 {
4278 t = fold (build (code == BIT_AND_EXPR ? TRUTH_AND_EXPR
4279 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
4280 : TRUTH_XOR_EXPR,
4281 type, arg0, arg1));
4282
4283 if (code == EQ_EXPR)
4284 t = invert_truthvalue (t);
4285
4286 return t;
4287 }
4288
4289 if (TREE_CODE_CLASS (code) == '1')
4290 {
4291 if (TREE_CODE (arg0) == COMPOUND_EXPR)
4292 return build (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
4293 fold (build1 (code, type, TREE_OPERAND (arg0, 1))));
4294 else if (TREE_CODE (arg0) == COND_EXPR)
4295 {
4296 t = fold (build (COND_EXPR, type, TREE_OPERAND (arg0, 0),
4297 fold (build1 (code, type, TREE_OPERAND (arg0, 1))),
4298 fold (build1 (code, type, TREE_OPERAND (arg0, 2)))));
4299
4300 /* If this was a conversion, and all we did was to move into
4301 inside the COND_EXPR, bring it back out. But leave it if
4302 it is a conversion from integer to integer and the
4303 result precision is no wider than a word since such a
4304 conversion is cheap and may be optimized away by combine,
4305 while it couldn't if it were outside the COND_EXPR. Then return
4306 so we don't get into an infinite recursion loop taking the
4307 conversion out and then back in. */
4308
4309 if ((code == NOP_EXPR || code == CONVERT_EXPR
4310 || code == NON_LVALUE_EXPR)
4311 && TREE_CODE (t) == COND_EXPR
4312 && TREE_CODE (TREE_OPERAND (t, 1)) == code
4313 && TREE_CODE (TREE_OPERAND (t, 2)) == code
4314 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 1), 0))
4315 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 2), 0)))
4316 && ! (INTEGRAL_TYPE_P (TREE_TYPE (t))
4317 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 1), 0)))
4318 && TYPE_PRECISION (TREE_TYPE (t)) <= BITS_PER_WORD))
4319 t = build1 (code, type,
4320 build (COND_EXPR,
4321 TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 1), 0)),
4322 TREE_OPERAND (t, 0),
4323 TREE_OPERAND (TREE_OPERAND (t, 1), 0),
4324 TREE_OPERAND (TREE_OPERAND (t, 2), 0)));
4325 return t;
4326 }
4327 else if (TREE_CODE_CLASS (TREE_CODE (arg0)) == '<')
4328 return fold (build (COND_EXPR, type, arg0,
4329 fold (build1 (code, type, integer_one_node)),
4330 fold (build1 (code, type, integer_zero_node))));
4331 }
4332 else if (TREE_CODE_CLASS (code) == '2'
4333 || TREE_CODE_CLASS (code) == '<')
4334 {
4335 if (TREE_CODE (arg1) == COMPOUND_EXPR)
4336 return build (COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
4337 fold (build (code, type,
4338 arg0, TREE_OPERAND (arg1, 1))));
4339 else if ((TREE_CODE (arg1) == COND_EXPR
4340 || (TREE_CODE_CLASS (TREE_CODE (arg1)) == '<'
4341 && TREE_CODE_CLASS (code) != '<'))
4342 && (TREE_CODE (arg0) != COND_EXPR
4343 || count_cond (arg0, 25) + count_cond (arg1, 25) <= 25)
4344 && (! TREE_SIDE_EFFECTS (arg0)
4345 || (current_function_decl != 0
4346 && ! contains_placeholder_p (arg0))))
4347 {
4348 tree test, true_value, false_value;
4349 tree lhs = 0, rhs = 0;
4350
4351 if (TREE_CODE (arg1) == COND_EXPR)
4352 {
4353 test = TREE_OPERAND (arg1, 0);
4354 true_value = TREE_OPERAND (arg1, 1);
4355 false_value = TREE_OPERAND (arg1, 2);
4356 }
4357 else
4358 {
4359 tree testtype = TREE_TYPE (arg1);
4360 test = arg1;
4361 true_value = convert (testtype, integer_one_node);
4362 false_value = convert (testtype, integer_zero_node);
4363 }
4364
4365 /* If ARG0 is complex we want to make sure we only evaluate
4366 it once. Though this is only required if it is volatile, it
4367 might be more efficient even if it is not. However, if we
4368 succeed in folding one part to a constant, we do not need
4369 to make this SAVE_EXPR. Since we do this optimization
4370 primarily to see if we do end up with constant and this
4371 SAVE_EXPR interferes with later optimizations, suppressing
4372 it when we can is important.
4373
4374 If we are not in a function, we can't make a SAVE_EXPR, so don't
4375 try to do so. Don't try to see if the result is a constant
4376 if an arm is a COND_EXPR since we get exponential behavior
4377 in that case. */
4378
4379 if (TREE_CODE (arg0) != SAVE_EXPR && ! TREE_CONSTANT (arg0)
4380 && current_function_decl != 0
4381 && ((TREE_CODE (arg0) != VAR_DECL
4382 && TREE_CODE (arg0) != PARM_DECL)
4383 || TREE_SIDE_EFFECTS (arg0)))
4384 {
4385 if (TREE_CODE (true_value) != COND_EXPR)
4386 lhs = fold (build (code, type, arg0, true_value));
4387
4388 if (TREE_CODE (false_value) != COND_EXPR)
4389 rhs = fold (build (code, type, arg0, false_value));
4390
4391 if ((lhs == 0 || ! TREE_CONSTANT (lhs))
4392 && (rhs == 0 || !TREE_CONSTANT (rhs)))
4393 arg0 = save_expr (arg0), lhs = rhs = 0;
4394 }
4395
4396 if (lhs == 0)
4397 lhs = fold (build (code, type, arg0, true_value));
4398 if (rhs == 0)
4399 rhs = fold (build (code, type, arg0, false_value));
4400
4401 test = fold (build (COND_EXPR, type, test, lhs, rhs));
4402
4403 if (TREE_CODE (arg0) == SAVE_EXPR)
4404 return build (COMPOUND_EXPR, type,
4405 convert (void_type_node, arg0),
4406 strip_compound_expr (test, arg0));
4407 else
4408 return convert (type, test);
4409 }
4410
4411 else if (TREE_CODE (arg0) == COMPOUND_EXPR)
4412 return build (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
4413 fold (build (code, type, TREE_OPERAND (arg0, 1), arg1)));
4414 else if ((TREE_CODE (arg0) == COND_EXPR
4415 || (TREE_CODE_CLASS (TREE_CODE (arg0)) == '<'
4416 && TREE_CODE_CLASS (code) != '<'))
4417 && (TREE_CODE (arg1) != COND_EXPR
4418 || count_cond (arg0, 25) + count_cond (arg1, 25) <= 25)
4419 && (! TREE_SIDE_EFFECTS (arg1)
4420 || (current_function_decl != 0
4421 && ! contains_placeholder_p (arg1))))
4422 {
4423 tree test, true_value, false_value;
4424 tree lhs = 0, rhs = 0;
4425
4426 if (TREE_CODE (arg0) == COND_EXPR)
4427 {
4428 test = TREE_OPERAND (arg0, 0);
4429 true_value = TREE_OPERAND (arg0, 1);
4430 false_value = TREE_OPERAND (arg0, 2);
4431 }
4432 else
4433 {
4434 tree testtype = TREE_TYPE (arg0);
4435 test = arg0;
4436 true_value = convert (testtype, integer_one_node);
4437 false_value = convert (testtype, integer_zero_node);
4438 }
4439
4440 if (TREE_CODE (arg1) != SAVE_EXPR && ! TREE_CONSTANT (arg0)
4441 && current_function_decl != 0
4442 && ((TREE_CODE (arg1) != VAR_DECL
4443 && TREE_CODE (arg1) != PARM_DECL)
4444 || TREE_SIDE_EFFECTS (arg1)))
4445 {
4446 if (TREE_CODE (true_value) != COND_EXPR)
4447 lhs = fold (build (code, type, true_value, arg1));
4448
4449 if (TREE_CODE (false_value) != COND_EXPR)
4450 rhs = fold (build (code, type, false_value, arg1));
4451
4452 if ((lhs == 0 || ! TREE_CONSTANT (lhs))
4453 && (rhs == 0 || !TREE_CONSTANT (rhs)))
4454 arg1 = save_expr (arg1), lhs = rhs = 0;
4455 }
4456
4457 if (lhs == 0)
4458 lhs = fold (build (code, type, true_value, arg1));
4459
4460 if (rhs == 0)
4461 rhs = fold (build (code, type, false_value, arg1));
4462
4463 test = fold (build (COND_EXPR, type, test, lhs, rhs));
4464 if (TREE_CODE (arg1) == SAVE_EXPR)
4465 return build (COMPOUND_EXPR, type,
4466 convert (void_type_node, arg1),
4467 strip_compound_expr (test, arg1));
4468 else
4469 return convert (type, test);
4470 }
4471 }
4472 else if (TREE_CODE_CLASS (code) == '<'
4473 && TREE_CODE (arg0) == COMPOUND_EXPR)
4474 return build (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
4475 fold (build (code, type, TREE_OPERAND (arg0, 1), arg1)));
4476 else if (TREE_CODE_CLASS (code) == '<'
4477 && TREE_CODE (arg1) == COMPOUND_EXPR)
4478 return build (COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
4479 fold (build (code, type, arg0, TREE_OPERAND (arg1, 1))));
4480
4481 switch (code)
4482 {
4483 case INTEGER_CST:
4484 case REAL_CST:
4485 case STRING_CST:
4486 case COMPLEX_CST:
4487 case CONSTRUCTOR:
4488 return t;
4489
4490 case CONST_DECL:
4491 return fold (DECL_INITIAL (t));
4492
4493 case NOP_EXPR:
4494 case FLOAT_EXPR:
4495 case CONVERT_EXPR:
4496 case FIX_TRUNC_EXPR:
4497 /* Other kinds of FIX are not handled properly by fold_convert. */
4498
4499 if (TREE_TYPE (TREE_OPERAND (t, 0)) == TREE_TYPE (t))
4500 return TREE_OPERAND (t, 0);
4501
4502 /* Handle cases of two conversions in a row. */
4503 if (TREE_CODE (TREE_OPERAND (t, 0)) == NOP_EXPR
4504 || TREE_CODE (TREE_OPERAND (t, 0)) == CONVERT_EXPR)
4505 {
4506 tree inside_type = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 0), 0));
4507 tree inter_type = TREE_TYPE (TREE_OPERAND (t, 0));
4508 tree final_type = TREE_TYPE (t);
4509 int inside_int = INTEGRAL_TYPE_P (inside_type);
4510 int inside_ptr = POINTER_TYPE_P (inside_type);
4511 int inside_float = FLOAT_TYPE_P (inside_type);
4512 int inside_prec = TYPE_PRECISION (inside_type);
4513 int inside_unsignedp = TREE_UNSIGNED (inside_type);
4514 int inter_int = INTEGRAL_TYPE_P (inter_type);
4515 int inter_ptr = POINTER_TYPE_P (inter_type);
4516 int inter_float = FLOAT_TYPE_P (inter_type);
4517 int inter_prec = TYPE_PRECISION (inter_type);
4518 int inter_unsignedp = TREE_UNSIGNED (inter_type);
4519 int final_int = INTEGRAL_TYPE_P (final_type);
4520 int final_ptr = POINTER_TYPE_P (final_type);
4521 int final_float = FLOAT_TYPE_P (final_type);
4522 int final_prec = TYPE_PRECISION (final_type);
4523 int final_unsignedp = TREE_UNSIGNED (final_type);
4524
4525 /* In addition to the cases of two conversions in a row
4526 handled below, if we are converting something to its own
4527 type via an object of identical or wider precision, neither
4528 conversion is needed. */
4529 if (inside_type == final_type
4530 && ((inter_int && final_int) || (inter_float && final_float))
4531 && inter_prec >= final_prec)
4532 return TREE_OPERAND (TREE_OPERAND (t, 0), 0);
4533
4534 /* Likewise, if the intermediate and final types are either both
4535 float or both integer, we don't need the middle conversion if
4536 it is wider than the final type and doesn't change the signedness
4537 (for integers). Avoid this if the final type is a pointer
4538 since then we sometimes need the inner conversion. Likewise if
4539 the outer has a precision not equal to the size of its mode. */
4540 if ((((inter_int || inter_ptr) && (inside_int || inside_ptr))
4541 || (inter_float && inside_float))
4542 && inter_prec >= inside_prec
4543 && (inter_float || inter_unsignedp == inside_unsignedp)
4544 && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (final_type))
4545 && TYPE_MODE (final_type) == TYPE_MODE (inter_type))
4546 && ! final_ptr)
4547 return convert (final_type, TREE_OPERAND (TREE_OPERAND (t, 0), 0));
4548
4549 /* If we have a sign-extension of a zero-extended value, we can
4550 replace that by a single zero-extension. */
4551 if (inside_int && inter_int && final_int
4552 && inside_prec < inter_prec && inter_prec < final_prec
4553 && inside_unsignedp && !inter_unsignedp)
4554 return convert (final_type, TREE_OPERAND (TREE_OPERAND (t, 0), 0));
4555
4556 /* Two conversions in a row are not needed unless:
4557 - some conversion is floating-point (overstrict for now), or
4558 - the intermediate type is narrower than both initial and
4559 final, or
4560 - the intermediate type and innermost type differ in signedness,
4561 and the outermost type is wider than the intermediate, or
4562 - the initial type is a pointer type and the precisions of the
4563 intermediate and final types differ, or
4564 - the final type is a pointer type and the precisions of the
4565 initial and intermediate types differ. */
4566 if (! inside_float && ! inter_float && ! final_float
4567 && (inter_prec > inside_prec || inter_prec > final_prec)
4568 && ! (inside_int && inter_int
4569 && inter_unsignedp != inside_unsignedp
4570 && inter_prec < final_prec)
4571 && ((inter_unsignedp && inter_prec > inside_prec)
4572 == (final_unsignedp && final_prec > inter_prec))
4573 && ! (inside_ptr && inter_prec != final_prec)
4574 && ! (final_ptr && inside_prec != inter_prec)
4575 && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (final_type))
4576 && TYPE_MODE (final_type) == TYPE_MODE (inter_type))
4577 && ! final_ptr)
4578 return convert (final_type, TREE_OPERAND (TREE_OPERAND (t, 0), 0));
4579 }
4580
4581 if (TREE_CODE (TREE_OPERAND (t, 0)) == MODIFY_EXPR
4582 && TREE_CONSTANT (TREE_OPERAND (TREE_OPERAND (t, 0), 1))
4583 /* Detect assigning a bitfield. */
4584 && !(TREE_CODE (TREE_OPERAND (TREE_OPERAND (t, 0), 0)) == COMPONENT_REF
4585 && DECL_BIT_FIELD (TREE_OPERAND (TREE_OPERAND (TREE_OPERAND (t, 0), 0), 1))))
4586 {
4587 /* Don't leave an assignment inside a conversion
4588 unless assigning a bitfield. */
4589 tree prev = TREE_OPERAND (t, 0);
4590 TREE_OPERAND (t, 0) = TREE_OPERAND (prev, 1);
4591 /* First do the assignment, then return converted constant. */
4592 t = build (COMPOUND_EXPR, TREE_TYPE (t), prev, fold (t));
4593 TREE_USED (t) = 1;
4594 return t;
4595 }
4596 if (!wins)
4597 {
4598 TREE_CONSTANT (t) = TREE_CONSTANT (arg0);
4599 return t;
4600 }
4601 return fold_convert (t, arg0);
4602
4603#if 0 /* This loses on &"foo"[0]. */
4604 case ARRAY_REF:
4605 {
4606 int i;
4607
4608 /* Fold an expression like: "foo"[2] */
4609 if (TREE_CODE (arg0) == STRING_CST
4610 && TREE_CODE (arg1) == INTEGER_CST
4611 && !TREE_INT_CST_HIGH (arg1)
4612 && (i = TREE_INT_CST_LOW (arg1)) < TREE_STRING_LENGTH (arg0))
4613 {
4614 t = build_int_2 (TREE_STRING_POINTER (arg0)[i], 0);
4615 TREE_TYPE (t) = TREE_TYPE (TREE_TYPE (arg0));
4616 force_fit_type (t, 0);
4617 }
4618 }
4619 return t;
4620#endif /* 0 */
4621
4622 case COMPONENT_REF:
4623 if (TREE_CODE (arg0) == CONSTRUCTOR)
4624 {
4625 tree m = purpose_member (arg1, CONSTRUCTOR_ELTS (arg0));
4626 if (m)
4627 t = TREE_VALUE (m);
4628 }
4629 return t;
4630
4631 case RANGE_EXPR:
4632 TREE_CONSTANT (t) = wins;
4633 return t;
4634
4635 case NEGATE_EXPR:
4636 if (wins)
4637 {
4638 if (TREE_CODE (arg0) == INTEGER_CST)
4639 {
4640 HOST_WIDE_INT low, high;
4641 int overflow = neg_double (TREE_INT_CST_LOW (arg0),
4642 TREE_INT_CST_HIGH (arg0),
4643 &low, &high);
4644 t = build_int_2 (low, high);
4645 TREE_TYPE (t) = type;
4646 TREE_OVERFLOW (t)
4647 = (TREE_OVERFLOW (arg0)
4648 | force_fit_type (t, overflow && !TREE_UNSIGNED (type)));
4649 TREE_CONSTANT_OVERFLOW (t)
4650 = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg0);
4651 }
4652 else if (TREE_CODE (arg0) == REAL_CST)
4653 t = build_real (type, REAL_VALUE_NEGATE (TREE_REAL_CST (arg0)));
4654 }
4655 else if (TREE_CODE (arg0) == NEGATE_EXPR)
4656 return TREE_OPERAND (arg0, 0);
4657
4658 /* Convert - (a - b) to (b - a) for non-floating-point. */
4659 else if (TREE_CODE (arg0) == MINUS_EXPR && ! FLOAT_TYPE_P (type))
4660 return build (MINUS_EXPR, type, TREE_OPERAND (arg0, 1),
4661 TREE_OPERAND (arg0, 0));
4662
4663 return t;
4664
4665 case ABS_EXPR:
4666 if (wins)
4667 {
4668 if (TREE_CODE (arg0) == INTEGER_CST)
4669 {
4670 if (! TREE_UNSIGNED (type)
4671 && TREE_INT_CST_HIGH (arg0) < 0)
4672 {
4673 HOST_WIDE_INT low, high;
4674 int overflow = neg_double (TREE_INT_CST_LOW (arg0),
4675 TREE_INT_CST_HIGH (arg0),
4676 &low, &high);
4677 t = build_int_2 (low, high);
4678 TREE_TYPE (t) = type;
4679 TREE_OVERFLOW (t)
4680 = (TREE_OVERFLOW (arg0)
4681 | force_fit_type (t, overflow));
4682 TREE_CONSTANT_OVERFLOW (t)
4683 = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg0);
4684 }
4685 }
4686 else if (TREE_CODE (arg0) == REAL_CST)
4687 {
4688 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
4689 t = build_real (type,
4690 REAL_VALUE_NEGATE (TREE_REAL_CST (arg0)));
4691 }
4692 }
4693 else if (TREE_CODE (arg0) == ABS_EXPR || TREE_CODE (arg0) == NEGATE_EXPR)
4694 return build1 (ABS_EXPR, type, TREE_OPERAND (arg0, 0));
4695 return t;
4696
4697 case CONJ_EXPR:
4698 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
4699 return arg0;
4700 else if (TREE_CODE (arg0) == COMPLEX_EXPR)
4701 return build (COMPLEX_EXPR, TREE_TYPE (arg0),
4702 TREE_OPERAND (arg0, 0),
4703 fold (build1 (NEGATE_EXPR,
4704 TREE_TYPE (TREE_TYPE (arg0)),
4705 TREE_OPERAND (arg0, 1))));
4706 else if (TREE_CODE (arg0) == COMPLEX_CST)
4707 return build_complex (type, TREE_OPERAND (arg0, 0),
4708 fold (build1 (NEGATE_EXPR,
4709 TREE_TYPE (TREE_TYPE (arg0)),
4710 TREE_OPERAND (arg0, 1))));
4711 else if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
4712 return fold (build (TREE_CODE (arg0), type,
4713 fold (build1 (CONJ_EXPR, type,
4714 TREE_OPERAND (arg0, 0))),
4715 fold (build1 (CONJ_EXPR,
4716 type, TREE_OPERAND (arg0, 1)))));
4717 else if (TREE_CODE (arg0) == CONJ_EXPR)
4718 return TREE_OPERAND (arg0, 0);
4719 return t;
4720
4721 case BIT_NOT_EXPR:
4722 if (wins)
4723 {
4724 t = build_int_2 (~ TREE_INT_CST_LOW (arg0),
4725 ~ TREE_INT_CST_HIGH (arg0));
4726 TREE_TYPE (t) = type;
4727 force_fit_type (t, 0);
4728 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg0);
4729 TREE_CONSTANT_OVERFLOW (t) = TREE_CONSTANT_OVERFLOW (arg0);
4730 }
4731 else if (TREE_CODE (arg0) == BIT_NOT_EXPR)
4732 return TREE_OPERAND (arg0, 0);
4733 return t;
4734
4735 case PLUS_EXPR:
4736 /* A + (-B) -> A - B */
4737 if (TREE_CODE (arg1) == NEGATE_EXPR)
4738 return fold (build (MINUS_EXPR, type, arg0, TREE_OPERAND (arg1, 0)));
4739 else if (! FLOAT_TYPE_P (type))
4740 {
4741 if (integer_zerop (arg1))
4742 return non_lvalue (convert (type, arg0));
4743
4744 /* If we are adding two BIT_AND_EXPR's, both of which are and'ing
4745 with a constant, and the two constants have no bits in common,
4746 we should treat this as a BIT_IOR_EXPR since this may produce more
4747 simplifications. */
4748 if (TREE_CODE (arg0) == BIT_AND_EXPR
4749 && TREE_CODE (arg1) == BIT_AND_EXPR
4750 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
4751 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
4752 && integer_zerop (const_binop (BIT_AND_EXPR,
4753 TREE_OPERAND (arg0, 1),
4754 TREE_OPERAND (arg1, 1), 0)))
4755 {
4756 code = BIT_IOR_EXPR;
4757 goto bit_ior;
4758 }
4759
4760 if (TREE_CODE (arg0) == MULT_EXPR && TREE_CODE (arg1) == MULT_EXPR)
4761 {
4762 tree arg00, arg01, arg10, arg11;
4763 tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;
4764
4765 /* (A * C) + (B * C) -> (A+B) * C.
4766 We are most concerned about the case where C is a constant,
4767 but other combinations show up during loop reduction. Since
4768 it is not difficult, try all four possibilities. */
4769
4770 arg00 = TREE_OPERAND (arg0, 0);
4771 arg01 = TREE_OPERAND (arg0, 1);
4772 arg10 = TREE_OPERAND (arg1, 0);
4773 arg11 = TREE_OPERAND (arg1, 1);
4774 same = NULL_TREE;
4775
4776 if (operand_equal_p (arg01, arg11, 0))
4777 same = arg01, alt0 = arg00, alt1 = arg10;
4778 else if (operand_equal_p (arg00, arg10, 0))
4779 same = arg00, alt0 = arg01, alt1 = arg11;
4780 else if (operand_equal_p (arg00, arg11, 0))
4781 same = arg00, alt0 = arg01, alt1 = arg10;
4782 else if (operand_equal_p (arg01, arg10, 0))
4783 same = arg01, alt0 = arg00, alt1 = arg11;
4784
4785 if (same)
4786 return fold (build (MULT_EXPR, type,
4787 fold (build (PLUS_EXPR, type, alt0, alt1)),
4788 same));
4789 }
4790 }
4791 /* In IEEE floating point, x+0 may not equal x. */
4792 else if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
4793 || flag_fast_math)
4794 && real_zerop (arg1))
4795 return non_lvalue (convert (type, arg0));
4796 associate:
4797 /* In most languages, can't associate operations on floats
4798 through parentheses. Rather than remember where the parentheses
4799 were, we don't associate floats at all. It shouldn't matter much.
4800 However, associating multiplications is only very slightly
4801 inaccurate, so do that if -ffast-math is specified. */
4802 if (FLOAT_TYPE_P (type)
4803 && ! (flag_fast_math && code == MULT_EXPR))
4804 goto binary;
4805
4806 /* The varsign == -1 cases happen only for addition and subtraction.
4807 It says that the arg that was split was really CON minus VAR.
4808 The rest of the code applies to all associative operations. */
4809 if (!wins)
4810 {
4811 tree var, con;
4812 int varsign;
4813
4814 if (split_tree (arg0, code, &var, &con, &varsign))
4815 {
4816 if (varsign == -1)
4817 {
4818 /* EXPR is (CON-VAR) +- ARG1. */
4819 /* If it is + and VAR==ARG1, return just CONST. */
4820 if (code == PLUS_EXPR && operand_equal_p (var, arg1, 0))
4821 return convert (TREE_TYPE (t), con);
4822
4823 /* If ARG0 is a constant, don't change things around;
4824 instead keep all the constant computations together. */
4825
4826 if (TREE_CONSTANT (arg0))
4827 return t;
4828
4829 /* Otherwise return (CON +- ARG1) - VAR. */
4830 t = build (MINUS_EXPR, type,
4831 fold (build (code, type, con, arg1)), var);
4832 }
4833 else
4834 {
4835 /* EXPR is (VAR+CON) +- ARG1. */
4836 /* If it is - and VAR==ARG1, return just CONST. */
4837 if (code == MINUS_EXPR && operand_equal_p (var, arg1, 0))
4838 return convert (TREE_TYPE (t), con);
4839
4840 /* If ARG0 is a constant, don't change things around;
4841 instead keep all the constant computations together. */
4842
4843 if (TREE_CONSTANT (arg0))
4844 return t;
4845
4846 /* Otherwise return VAR +- (ARG1 +- CON). */
4847 tem = fold (build (code, type, arg1, con));
4848 t = build (code, type, var, tem);
4849
4850 if (integer_zerop (tem)
4851 && (code == PLUS_EXPR || code == MINUS_EXPR))
4852 return convert (type, var);
4853 /* If we have x +/- (c - d) [c an explicit integer]
4854 change it to x -/+ (d - c) since if d is relocatable
4855 then the latter can be a single immediate insn
4856 and the former cannot. */
4857 if (TREE_CODE (tem) == MINUS_EXPR
4858 && TREE_CODE (TREE_OPERAND (tem, 0)) == INTEGER_CST)
4859 {
4860 tree tem1 = TREE_OPERAND (tem, 1);
4861 TREE_OPERAND (tem, 1) = TREE_OPERAND (tem, 0);
4862 TREE_OPERAND (tem, 0) = tem1;
4863 TREE_SET_CODE (t,
4864 (code == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR));
4865 }
4866 }
4867 return t;
4868 }
4869
4870 if (split_tree (arg1, code, &var, &con, &varsign))
4871 {
4872 if (TREE_CONSTANT (arg1))
4873 return t;
4874
4875 if (varsign == -1)
4876 TREE_SET_CODE (t,
4877 (code == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR));
4878
4879 /* EXPR is ARG0 +- (CON +- VAR). */
4880 if (TREE_CODE (t) == MINUS_EXPR
4881 && operand_equal_p (var, arg0, 0))
4882 {
4883 /* If VAR and ARG0 cancel, return just CON or -CON. */
4884 if (code == PLUS_EXPR)
4885 return convert (TREE_TYPE (t), con);
4886 return fold (build1 (NEGATE_EXPR, TREE_TYPE (t),
4887 convert (TREE_TYPE (t), con)));
4888 }
4889
4890 t = build (TREE_CODE (t), type,
4891 fold (build (code, TREE_TYPE (t), arg0, con)), var);
4892
4893 if (integer_zerop (TREE_OPERAND (t, 0))
4894 && TREE_CODE (t) == PLUS_EXPR)
4895 return convert (TREE_TYPE (t), var);
4896 return t;
4897 }
4898 }
4899 binary:
4900#if defined (REAL_IS_NOT_DOUBLE) && ! defined (REAL_ARITHMETIC)
4901 if (TREE_CODE (arg1) == REAL_CST)
4902 return t;
4903#endif /* REAL_IS_NOT_DOUBLE, and no REAL_ARITHMETIC */
4904 if (wins)
4905 t1 = const_binop (code, arg0, arg1, 0);
4906 if (t1 != NULL_TREE)
4907 {
4908 /* The return value should always have
4909 the same type as the original expression. */
4910 if (TREE_TYPE (t1) != TREE_TYPE (t))
4911 t1 = convert (TREE_TYPE (t), t1);
4912
4913 return t1;
4914 }
4915 return t;
4916
4917 case MINUS_EXPR:
4918 if (! FLOAT_TYPE_P (type))
4919 {
4920 if (! wins && integer_zerop (arg0))
4921 return build1 (NEGATE_EXPR, type, arg1);
4922 if (integer_zerop (arg1))
4923 return non_lvalue (convert (type, arg0));
4924
4925 /* (A * C) - (B * C) -> (A-B) * C. Since we are most concerned
4926 about the case where C is a constant, just try one of the
4927 four possibilities. */
4928
4929 if (TREE_CODE (arg0) == MULT_EXPR && TREE_CODE (arg1) == MULT_EXPR
4930 && operand_equal_p (TREE_OPERAND (arg0, 1),
4931 TREE_OPERAND (arg1, 1), 0))
4932 return fold (build (MULT_EXPR, type,
4933 fold (build (MINUS_EXPR, type,
4934 TREE_OPERAND (arg0, 0),
4935 TREE_OPERAND (arg1, 0))),
4936 TREE_OPERAND (arg0, 1)));
4937 }
4938 /* Convert A - (-B) to A + B. */
4939 else if (TREE_CODE (arg1) == NEGATE_EXPR)
4940 return fold (build (PLUS_EXPR, type, arg0, TREE_OPERAND (arg1, 0)));
4941
4942 else if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
4943 || flag_fast_math)
4944 {
4945 /* Except with IEEE floating point, 0-x equals -x. */
4946 if (! wins && real_zerop (arg0))
4947 return build1 (NEGATE_EXPR, type, arg1);
4948 /* Except with IEEE floating point, x-0 equals x. */
4949 if (real_zerop (arg1))
4950 return non_lvalue (convert (type, arg0));
4951 }
4952
4953 /* Fold &x - &x. This can happen from &x.foo - &x.
4954 This is unsafe for certain floats even in non-IEEE formats.
4955 In IEEE, it is unsafe because it does wrong for NaNs.
4956 Also note that operand_equal_p is always false if an operand
4957 is volatile. */
4958
4959 if ((! FLOAT_TYPE_P (type) || flag_fast_math)
4960 && operand_equal_p (arg0, arg1, 0))
4961 return convert (type, integer_zero_node);
4962
4963 goto associate;
4964
4965 case MULT_EXPR:
4966 if (! FLOAT_TYPE_P (type))
4967 {
4968 if (integer_zerop (arg1))
4969 return omit_one_operand (type, arg1, arg0);
4970 if (integer_onep (arg1))
4971 return non_lvalue (convert (type, arg0));
4972
4973 /* ((A / C) * C) is A if the division is an
4974 EXACT_DIV_EXPR. Since C is normally a constant,
4975 just check for one of the four possibilities. */
4976
4977 if (TREE_CODE (arg0) == EXACT_DIV_EXPR
4978 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
4979 return TREE_OPERAND (arg0, 0);
4980
4981 /* (a * (1 << b)) is (a << b) */
4982 if (TREE_CODE (arg1) == LSHIFT_EXPR
4983 && integer_onep (TREE_OPERAND (arg1, 0)))
4984 return fold (build (LSHIFT_EXPR, type, arg0,
4985 TREE_OPERAND (arg1, 1)));
4986 if (TREE_CODE (arg0) == LSHIFT_EXPR
4987 && integer_onep (TREE_OPERAND (arg0, 0)))
4988 return fold (build (LSHIFT_EXPR, type, arg1,
4989 TREE_OPERAND (arg0, 1)));
4990 }
4991 else
4992 {
4993 /* x*0 is 0, except for IEEE floating point. */
4994 if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
4995 || flag_fast_math)
4996 && real_zerop (arg1))
4997 return omit_one_operand (type, arg1, arg0);
4998 /* In IEEE floating point, x*1 is not equivalent to x for snans.
4999 However, ANSI says we can drop signals,
5000 so we can do this anyway. */
5001 if (real_onep (arg1))
5002 return non_lvalue (convert (type, arg0));
5003 /* x*2 is x+x */
5004 if (! wins && real_twop (arg1) && current_function_decl != 0
5005 && ! contains_placeholder_p (arg0))
5006 {
5007 tree arg = save_expr (arg0);
5008 return build (PLUS_EXPR, type, arg, arg);
5009 }
5010 }
5011 goto associate;
5012
5013 case BIT_IOR_EXPR:
5014 bit_ior:
5015 {
5016 register enum tree_code code0, code1;
5017
5018 if (integer_all_onesp (arg1))
5019 return omit_one_operand (type, arg1, arg0);
5020 if (integer_zerop (arg1))
5021 return non_lvalue (convert (type, arg0));
5022 t1 = distribute_bit_expr (code, type, arg0, arg1);
5023 if (t1 != NULL_TREE)
5024 return t1;
5025
5026 /* (A << C1) | (A >> C2) if A is unsigned and C1+C2 is the size of A
5027 is a rotate of A by C1 bits. */
5028 /* (A << B) | (A >> (Z - B)) if A is unsigned and Z is the size of A
5029 is a rotate of A by B bits. */
5030
5031 code0 = TREE_CODE (arg0);
5032 code1 = TREE_CODE (arg1);
5033 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
5034 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
5035 && operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1,0), 0)
5036 && TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
5037 {
5038 register tree tree01, tree11;
5039 register enum tree_code code01, code11;
5040
5041 tree01 = TREE_OPERAND (arg0, 1);
5042 tree11 = TREE_OPERAND (arg1, 1);
5043 STRIP_NOPS (tree01);
5044 STRIP_NOPS (tree11);
5045 code01 = TREE_CODE (tree01);
5046 code11 = TREE_CODE (tree11);
5047 if (code01 == INTEGER_CST
5048 && code11 == INTEGER_CST
5049 && TREE_INT_CST_HIGH (tree01) == 0
5050 && TREE_INT_CST_HIGH (tree11) == 0
5051 && ((TREE_INT_CST_LOW (tree01) + TREE_INT_CST_LOW (tree11))
5052 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)))))
5053 return build (LROTATE_EXPR, type, TREE_OPERAND (arg0, 0),
5054 code0 == LSHIFT_EXPR ? tree01 : tree11);
5055 else if (code11 == MINUS_EXPR)
5056 {
5057 tree tree110, tree111;
5058 tree110 = TREE_OPERAND (tree11, 0);
5059 tree111 = TREE_OPERAND (tree11, 1);
5060 STRIP_NOPS (tree110);
5061 STRIP_NOPS (tree111);
5062 if (TREE_CODE (tree110) == INTEGER_CST
5063 && TREE_INT_CST_HIGH (tree110) == 0
5064 && (TREE_INT_CST_LOW (tree110)
5065 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0))))
5066 && operand_equal_p (tree01, tree111, 0))
5067 return build ((code0 == LSHIFT_EXPR
5068 ? LROTATE_EXPR
5069 : RROTATE_EXPR),
5070 type, TREE_OPERAND (arg0, 0), tree01);
5071 }
5072 else if (code01 == MINUS_EXPR)
5073 {
5074 tree tree010, tree011;
5075 tree010 = TREE_OPERAND (tree01, 0);
5076 tree011 = TREE_OPERAND (tree01, 1);
5077 STRIP_NOPS (tree010);
5078 STRIP_NOPS (tree011);
5079 if (TREE_CODE (tree010) == INTEGER_CST
5080 && TREE_INT_CST_HIGH (tree010) == 0
5081 && (TREE_INT_CST_LOW (tree010)
5082 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0))))
5083 && operand_equal_p (tree11, tree011, 0))
5084 return build ((code0 != LSHIFT_EXPR
5085 ? LROTATE_EXPR
5086 : RROTATE_EXPR),
5087 type, TREE_OPERAND (arg0, 0), tree11);
5088 }
5089 }
5090
5091 goto associate;
5092 }
5093
5094 case BIT_XOR_EXPR:
5095 if (integer_zerop (arg1))
5096 return non_lvalue (convert (type, arg0));
5097 if (integer_all_onesp (arg1))
5098 return fold (build1 (BIT_NOT_EXPR, type, arg0));
5099 goto associate;
5100
5101 case BIT_AND_EXPR:
5102 bit_and:
5103 if (integer_all_onesp (arg1))
5104 return non_lvalue (convert (type, arg0));
5105 if (integer_zerop (arg1))
5106 return omit_one_operand (type, arg1, arg0);
5107 t1 = distribute_bit_expr (code, type, arg0, arg1);
5108 if (t1 != NULL_TREE)
5109 return t1;
5110 /* Simplify ((int)c & 0x377) into (int)c, if c is unsigned char. */
5111 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == NOP_EXPR
5112 && TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg1, 0))))
5113 {
5114 int prec = TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1, 0)));
5115 if (prec < BITS_PER_WORD && prec < HOST_BITS_PER_WIDE_INT
5116 && (~TREE_INT_CST_LOW (arg0)
5117 & (((HOST_WIDE_INT) 1 << prec) - 1)) == 0)
5118 return build1 (NOP_EXPR, type, TREE_OPERAND (arg1, 0));
5119 }
5120 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
5121 && TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
5122 {
5123 int prec = TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)));
5124 if (prec < BITS_PER_WORD && prec < HOST_BITS_PER_WIDE_INT
5125 && (~TREE_INT_CST_LOW (arg1)
5126 & (((HOST_WIDE_INT) 1 << prec) - 1)) == 0)
5127 return build1 (NOP_EXPR, type, TREE_OPERAND (arg0, 0));
5128 }
5129 goto associate;
5130
5131 case BIT_ANDTC_EXPR:
5132 if (integer_all_onesp (arg0))
5133 return non_lvalue (convert (type, arg1));
5134 if (integer_zerop (arg0))
5135 return omit_one_operand (type, arg0, arg1);
5136 if (TREE_CODE (arg1) == INTEGER_CST)
5137 {
5138 arg1 = fold (build1 (BIT_NOT_EXPR, type, arg1));
5139 code = BIT_AND_EXPR;
5140 goto bit_and;
5141 }
5142 goto binary;
5143
5144 case RDIV_EXPR:
5145 /* In most cases, do nothing with a divide by zero. */
5146#if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
5147#ifndef REAL_INFINITY
5148 if (TREE_CODE (arg1) == REAL_CST && real_zerop (arg1))
5149 return t;
5150#endif
5151#endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
5152
5153 /* In IEEE floating point, x/1 is not equivalent to x for snans.
5154 However, ANSI says we can drop signals, so we can do this anyway. */
5155 if (real_onep (arg1))
5156 return non_lvalue (convert (type, arg0));
5157
5158 /* If ARG1 is a constant, we can convert this to a multiply by the
5159 reciprocal. This does not have the same rounding properties,
5160 so only do this if -ffast-math. We can actually always safely
5161 do it if ARG1 is a power of two, but it's hard to tell if it is
5162 or not in a portable manner. */
5163 if (TREE_CODE (arg1) == REAL_CST)
5164 {
5165 if (flag_fast_math
5166 && 0 != (tem = const_binop (code, build_real (type, dconst1),
5167 arg1, 0)))
5168 return fold (build (MULT_EXPR, type, arg0, tem));
5169 /* Find the reciprocal if optimizing and the result is exact. */
5170 else if (optimize)
5171 {
5172 REAL_VALUE_TYPE r;
5173 r = TREE_REAL_CST (arg1);
5174 if (exact_real_inverse (TYPE_MODE(TREE_TYPE(arg0)), &r))
5175 {
5176 tem = build_real (type, r);
5177 return fold (build (MULT_EXPR, type, arg0, tem));
5178 }
5179 }
5180 }
5181 goto binary;
5182
5183 case TRUNC_DIV_EXPR:
5184 case ROUND_DIV_EXPR:
5185 case FLOOR_DIV_EXPR:
5186 case CEIL_DIV_EXPR:
5187 case EXACT_DIV_EXPR:
5188 if (integer_onep (arg1))
5189 return non_lvalue (convert (type, arg0));
5190 if (integer_zerop (arg1))
5191 return t;
5192
5193 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
5194 operation, EXACT_DIV_EXPR.
5195
5196 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
5197 At one time others generated faster code, it's not clear if they do
5198 after the last round to changes to the DIV code in expmed.c. */
5199 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
5200 && multiple_of_p (type, arg0, arg1))
5201 return fold (build (EXACT_DIV_EXPR, type, arg0, arg1));
5202
5203 /* If we have ((a / C1) / C2) where both division are the same type, try
5204 to simplify. First see if C1 * C2 overflows or not. */
5205 if (TREE_CODE (arg0) == code && TREE_CODE (arg1) == INTEGER_CST
5206 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
5207 {
5208 tree new_divisor;
5209
5210 new_divisor = const_binop (MULT_EXPR, TREE_OPERAND (arg0, 1), arg1, 0);
5211 tem = const_binop (FLOOR_DIV_EXPR, new_divisor, arg1, 0);
5212
5213 if (TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)) == TREE_INT_CST_LOW (tem)
5214 && TREE_INT_CST_HIGH (TREE_OPERAND (arg0, 1)) == TREE_INT_CST_HIGH (tem))
5215 {
5216 /* If no overflow, divide by C1*C2. */
5217 return fold (build (code, type, TREE_OPERAND (arg0, 0), new_divisor));
5218 }
5219 }
5220
5221 /* Look for ((a * C1) / C3) or (((a * C1) + C2) / C3),
5222 where C1 % C3 == 0 or C3 % C1 == 0. We can simplify these
5223 expressions, which often appear in the offsets or sizes of
5224 objects with a varying size. Only deal with positive divisors
5225 and multiplicands. If C2 is negative, we must have C2 % C3 == 0.
5226
5227 Look for NOPs and SAVE_EXPRs inside. */
5228
5229 if (TREE_CODE (arg1) == INTEGER_CST
5230 && tree_int_cst_sgn (arg1) >= 0)
5231 {
5232 int have_save_expr = 0;
5233 tree c2 = integer_zero_node;
5234 tree xarg0 = arg0;
5235
5236 if (TREE_CODE (xarg0) == SAVE_EXPR && SAVE_EXPR_RTL (xarg0) == 0)
5237 have_save_expr = 1, xarg0 = TREE_OPERAND (xarg0, 0);
5238
5239 STRIP_NOPS (xarg0);
5240
5241 /* Look inside the dividend and simplify using EXACT_DIV_EXPR
5242 if possible. */
5243 if (TREE_CODE (xarg0) == MULT_EXPR
5244 && multiple_of_p (type, TREE_OPERAND (xarg0, 0), arg1))
5245 {
5246 tree t;
5247
5248 t = fold (build (MULT_EXPR, type,
5249 fold (build (EXACT_DIV_EXPR, type,
5250 TREE_OPERAND (xarg0, 0), arg1)),
5251 TREE_OPERAND (xarg0, 1)));
5252 if (have_save_expr)
5253 t = save_expr (t);
5254 return t;
5255
5256 }
5257
5258 if (TREE_CODE (xarg0) == MULT_EXPR
5259 && multiple_of_p (type, TREE_OPERAND (xarg0, 1), arg1))
5260 {
5261 tree t;
5262
5263 t = fold (build (MULT_EXPR, type,
5264 fold (build (EXACT_DIV_EXPR, type,
5265 TREE_OPERAND (xarg0, 1), arg1)),
5266 TREE_OPERAND (xarg0, 0)));
5267 if (have_save_expr)
5268 t = save_expr (t);
5269 return t;
5270 }
5271
5272 if (TREE_CODE (xarg0) == PLUS_EXPR
5273 && TREE_CODE (TREE_OPERAND (xarg0, 1)) == INTEGER_CST)
5274 c2 = TREE_OPERAND (xarg0, 1), xarg0 = TREE_OPERAND (xarg0, 0);
5275 else if (TREE_CODE (xarg0) == MINUS_EXPR
5276 && TREE_CODE (TREE_OPERAND (xarg0, 1)) == INTEGER_CST
5277 /* If we are doing this computation unsigned, the negate
5278 is incorrect. */
5279 && ! TREE_UNSIGNED (type))
5280 {
5281 c2 = fold (build1 (NEGATE_EXPR, type, TREE_OPERAND (xarg0, 1)));
5282 xarg0 = TREE_OPERAND (xarg0, 0);
5283 }
5284
5285 if (TREE_CODE (xarg0) == SAVE_EXPR && SAVE_EXPR_RTL (xarg0) == 0)
5286 have_save_expr = 1, xarg0 = TREE_OPERAND (xarg0, 0);
5287
5288 STRIP_NOPS (xarg0);
5289
5290 if (TREE_CODE (xarg0) == MULT_EXPR
5291 && TREE_CODE (TREE_OPERAND (xarg0, 1)) == INTEGER_CST
5292 && tree_int_cst_sgn (TREE_OPERAND (xarg0, 1)) >= 0
5293 && (integer_zerop (const_binop (TRUNC_MOD_EXPR,
5294 TREE_OPERAND (xarg0, 1), arg1, 1))
5295 || integer_zerop (const_binop (TRUNC_MOD_EXPR, arg1,
5296 TREE_OPERAND (xarg0, 1), 1)))
5297 && (tree_int_cst_sgn (c2) >= 0
5298 || integer_zerop (const_binop (TRUNC_MOD_EXPR, c2,
5299 arg1, 1))))
5300 {
5301 tree outer_div = integer_one_node;
5302 tree c1 = TREE_OPERAND (xarg0, 1);
5303 tree c3 = arg1;
5304
5305 /* If C3 > C1, set them equal and do a divide by
5306 C3/C1 at the end of the operation. */
5307 if (tree_int_cst_lt (c1, c3))
5308 outer_div = const_binop (code, c3, c1, 0), c3 = c1;
5309
5310 /* The result is A * (C1/C3) + (C2/C3). */
5311 t = fold (build (PLUS_EXPR, type,
5312 fold (build (MULT_EXPR, type,
5313 TREE_OPERAND (xarg0, 0),
5314 const_binop (code, c1, c3, 1))),
5315 const_binop (code, c2, c3, 1)));
5316
5317 if (! integer_onep (outer_div))
5318 t = fold (build (code, type, t, convert (type, outer_div)));
5319
5320 if (have_save_expr)
5321 t = save_expr (t);
5322
5323 return t;
5324 }
5325 }
5326
5327 goto binary;
5328
5329 case CEIL_MOD_EXPR:
5330 case FLOOR_MOD_EXPR:
5331 case ROUND_MOD_EXPR:
5332 case TRUNC_MOD_EXPR:
5333 if (integer_onep (arg1))
5334 return omit_one_operand (type, integer_zero_node, arg0);
5335 if (integer_zerop (arg1))
5336 return t;
5337
5338 /* Look for ((a * C1) % C3) or (((a * C1) + C2) % C3),
5339 where C1 % C3 == 0. Handle similarly to the division case,
5340 but don't bother with SAVE_EXPRs. */
5341
5342 if (TREE_CODE (arg1) == INTEGER_CST
5343 && ! integer_zerop (arg1))
5344 {
5345 tree c2 = integer_zero_node;
5346 tree xarg0 = arg0;
5347
5348 if (TREE_CODE (xarg0) == PLUS_EXPR
5349 && TREE_CODE (TREE_OPERAND (xarg0, 1)) == INTEGER_CST)
5350 c2 = TREE_OPERAND (xarg0, 1), xarg0 = TREE_OPERAND (xarg0, 0);
5351 else if (TREE_CODE (xarg0) == MINUS_EXPR
5352 && TREE_CODE (TREE_OPERAND (xarg0, 1)) == INTEGER_CST
5353 && ! TREE_UNSIGNED (type))
5354 {
5355 c2 = fold (build1 (NEGATE_EXPR, type, TREE_OPERAND (xarg0, 1)));
5356 xarg0 = TREE_OPERAND (xarg0, 0);
5357 }
5358
5359 STRIP_NOPS (xarg0);
5360
5361 if (TREE_CODE (xarg0) == MULT_EXPR
5362 && TREE_CODE (TREE_OPERAND (xarg0, 1)) == INTEGER_CST
5363 && integer_zerop (const_binop (TRUNC_MOD_EXPR,
5364 TREE_OPERAND (xarg0, 1),
5365 arg1, 1))
5366 && tree_int_cst_sgn (c2) >= 0)
5367 /* The result is (C2%C3). */
5368 return omit_one_operand (type, const_binop (code, c2, arg1, 1),
5369 TREE_OPERAND (xarg0, 0));
5370 }
5371
5372 goto binary;
5373
5374 case LSHIFT_EXPR:
5375 case RSHIFT_EXPR:
5376 case LROTATE_EXPR:
5377 case RROTATE_EXPR:
5378 if (integer_zerop (arg1))
5379 return non_lvalue (convert (type, arg0));
5380 /* Since negative shift count is not well-defined,
5381 don't try to compute it in the compiler. */
5382 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
5383 return t;
5384 /* Rewrite an LROTATE_EXPR by a constant into an
5385 RROTATE_EXPR by a new constant. */
5386 if (code == LROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST)
5387 {
5388 TREE_SET_CODE (t, RROTATE_EXPR);
5389 code = RROTATE_EXPR;
5390 TREE_OPERAND (t, 1) = arg1
5391 = const_binop
5392 (MINUS_EXPR,
5393 convert (TREE_TYPE (arg1),
5394 build_int_2 (GET_MODE_BITSIZE (TYPE_MODE (type)), 0)),
5395 arg1, 0);
5396 if (tree_int_cst_sgn (arg1) < 0)
5397 return t;
5398 }
5399
5400 /* If we have a rotate of a bit operation with the rotate count and
5401 the second operand of the bit operation both constant,
5402 permute the two operations. */
5403 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
5404 && (TREE_CODE (arg0) == BIT_AND_EXPR
5405 || TREE_CODE (arg0) == BIT_ANDTC_EXPR
5406 || TREE_CODE (arg0) == BIT_IOR_EXPR
5407 || TREE_CODE (arg0) == BIT_XOR_EXPR)
5408 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
5409 return fold (build (TREE_CODE (arg0), type,
5410 fold (build (code, type,
5411 TREE_OPERAND (arg0, 0), arg1)),
5412 fold (build (code, type,
5413 TREE_OPERAND (arg0, 1), arg1))));
5414
5415 /* Two consecutive rotates adding up to the width of the mode can
5416 be ignored. */
5417 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
5418 && TREE_CODE (arg0) == RROTATE_EXPR
5419 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
5420 && TREE_INT_CST_HIGH (arg1) == 0
5421 && TREE_INT_CST_HIGH (TREE_OPERAND (arg0, 1)) == 0
5422 && ((TREE_INT_CST_LOW (arg1)
5423 + TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)))
5424 == GET_MODE_BITSIZE (TYPE_MODE (type))))
5425 return TREE_OPERAND (arg0, 0);
5426
5427 goto binary;
5428
5429 case MIN_EXPR:
5430 if (operand_equal_p (arg0, arg1, 0))
5431 return arg0;
5432 if (INTEGRAL_TYPE_P (type)
5433 && operand_equal_p (arg1, TYPE_MIN_VALUE (type), 1))
5434 return omit_one_operand (type, arg1, arg0);
5435 goto associate;
5436
5437 case MAX_EXPR:
5438 if (operand_equal_p (arg0, arg1, 0))
5439 return arg0;
5440 if (INTEGRAL_TYPE_P (type)
5441 && TYPE_MAX_VALUE (type)
5442 && operand_equal_p (arg1, TYPE_MAX_VALUE (type), 1))
5443 return omit_one_operand (type, arg1, arg0);
5444 goto associate;
5445
5446 case TRUTH_NOT_EXPR:
5447 /* Note that the operand of this must be an int
5448 and its values must be 0 or 1.
5449 ("true" is a fixed value perhaps depending on the language,
5450 but we don't handle values other than 1 correctly yet.) */
5451 tem = invert_truthvalue (arg0);
5452 /* Avoid infinite recursion. */
5453 if (TREE_CODE (tem) == TRUTH_NOT_EXPR)
5454 return t;
5455 return convert (type, tem);
5456
5457 case TRUTH_ANDIF_EXPR:
5458 /* Note that the operands of this must be ints
5459 and their values must be 0 or 1.
5460 ("true" is a fixed value perhaps depending on the language.) */
5461 /* If first arg is constant zero, return it. */
5462 if (integer_zerop (arg0))
5463 return arg0;
5464 case TRUTH_AND_EXPR:
5465 /* If either arg is constant true, drop it. */
5466 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
5467 return non_lvalue (arg1);
5468 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
5469 return non_lvalue (arg0);
5470 /* If second arg is constant zero, result is zero, but first arg
5471 must be evaluated. */
5472 if (integer_zerop (arg1))
5473 return omit_one_operand (type, arg1, arg0);
5474 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
5475 case will be handled here. */
5476 if (integer_zerop (arg0))
5477 return omit_one_operand (type, arg0, arg1);
5478
5479 truth_andor:
5480 /* We only do these simplifications if we are optimizing. */
5481 if (!optimize)
5482 return t;
5483
5484 /* Check for things like (A || B) && (A || C). We can convert this
5485 to A || (B && C). Note that either operator can be any of the four
5486 truth and/or operations and the transformation will still be
5487 valid. Also note that we only care about order for the
5488 ANDIF and ORIF operators. If B contains side effects, this
5489 might change the truth-value of A. */
5490 if (TREE_CODE (arg0) == TREE_CODE (arg1)
5491 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
5492 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
5493 || TREE_CODE (arg0) == TRUTH_AND_EXPR
5494 || TREE_CODE (arg0) == TRUTH_OR_EXPR)
5495 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
5496 {
5497 tree a00 = TREE_OPERAND (arg0, 0);
5498 tree a01 = TREE_OPERAND (arg0, 1);
5499 tree a10 = TREE_OPERAND (arg1, 0);
5500 tree a11 = TREE_OPERAND (arg1, 1);
5501 int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
5502 || TREE_CODE (arg0) == TRUTH_AND_EXPR)
5503 && (code == TRUTH_AND_EXPR
5504 || code == TRUTH_OR_EXPR));
5505
5506 if (operand_equal_p (a00, a10, 0))
5507 return fold (build (TREE_CODE (arg0), type, a00,
5508 fold (build (code, type, a01, a11))));
5509 else if (commutative && operand_equal_p (a00, a11, 0))
5510 return fold (build (TREE_CODE (arg0), type, a00,
5511 fold (build (code, type, a01, a10))));
5512 else if (commutative && operand_equal_p (a01, a10, 0))
5513 return fold (build (TREE_CODE (arg0), type, a01,
5514 fold (build (code, type, a00, a11))));
5515
5516 /* This case if tricky because we must either have commutative
5517 operators or else A10 must not have side-effects. */
5518
5519 else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
5520 && operand_equal_p (a01, a11, 0))
5521 return fold (build (TREE_CODE (arg0), type,
5522 fold (build (code, type, a00, a10)),
5523 a01));
5524 }
5525
5526 /* See if we can build a range comparison. */
5527 if (0 != (tem = fold_range_test (t)))
5528 return tem;
5529
5530 /* Check for the possibility of merging component references. If our
5531 lhs is another similar operation, try to merge its rhs with our
5532 rhs. Then try to merge our lhs and rhs. */
5533 if (TREE_CODE (arg0) == code
5534 && 0 != (tem = fold_truthop (code, type,
5535 TREE_OPERAND (arg0, 1), arg1)))
5536 return fold (build (code, type, TREE_OPERAND (arg0, 0), tem));
5537
5538 if ((tem = fold_truthop (code, type, arg0, arg1)) != 0)
5539 return tem;
5540
5541 return t;
5542
5543 case TRUTH_ORIF_EXPR:
5544 /* Note that the operands of this must be ints
5545 and their values must be 0 or true.
5546 ("true" is a fixed value perhaps depending on the language.) */
5547 /* If first arg is constant true, return it. */
5548 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
5549 return arg0;
5550 case TRUTH_OR_EXPR:
5551 /* If either arg is constant zero, drop it. */
5552 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
5553 return non_lvalue (arg1);
5554 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1))
5555 return non_lvalue (arg0);
5556 /* If second arg is constant true, result is true, but we must
5557 evaluate first arg. */
5558 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
5559 return omit_one_operand (type, arg1, arg0);
5560 /* Likewise for first arg, but note this only occurs here for
5561 TRUTH_OR_EXPR. */
5562 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
5563 return omit_one_operand (type, arg0, arg1);
5564 goto truth_andor;
5565
5566 case TRUTH_XOR_EXPR:
5567 /* If either arg is constant zero, drop it. */
5568 if (integer_zerop (arg0))
5569 return non_lvalue (arg1);
5570 if (integer_zerop (arg1))
5571 return non_lvalue (arg0);
5572 /* If either arg is constant true, this is a logical inversion. */
5573 if (integer_onep (arg0))
5574 return non_lvalue (invert_truthvalue (arg1));
5575 if (integer_onep (arg1))
5576 return non_lvalue (invert_truthvalue (arg0));
5577 return t;
5578
5579 case EQ_EXPR:
5580 case NE_EXPR:
5581 case LT_EXPR:
5582 case GT_EXPR:
5583 case LE_EXPR:
5584 case GE_EXPR:
5585 /* If one arg is a constant integer, put it last. */
5586 if (TREE_CODE (arg0) == INTEGER_CST
5587 && TREE_CODE (arg1) != INTEGER_CST)
5588 {
5589 TREE_OPERAND (t, 0) = arg1;
5590 TREE_OPERAND (t, 1) = arg0;
5591 arg0 = TREE_OPERAND (t, 0);
5592 arg1 = TREE_OPERAND (t, 1);
5593 code = swap_tree_comparison (code);
5594 TREE_SET_CODE (t, code);
5595 }
5596
5597 /* Convert foo++ == CONST into ++foo == CONST + INCR.
5598 First, see if one arg is constant; find the constant arg
5599 and the other one. */
5600 {
5601 tree constop = 0, varop = NULL_TREE;
5602 int constopnum = -1;
5603
5604 if (TREE_CONSTANT (arg1))
5605 constopnum = 1, constop = arg1, varop = arg0;
5606 if (TREE_CONSTANT (arg0))
5607 constopnum = 0, constop = arg0, varop = arg1;
5608
5609 if (constop && TREE_CODE (varop) == POSTINCREMENT_EXPR)
5610 {
5611 /* This optimization is invalid for ordered comparisons
5612 if CONST+INCR overflows or if foo+incr might overflow.
5613 This optimization is invalid for floating point due to rounding.
5614 For pointer types we assume overflow doesn't happen. */
5615 if (POINTER_TYPE_P (TREE_TYPE (varop))
5616 || (! FLOAT_TYPE_P (TREE_TYPE (varop))
5617 && (code == EQ_EXPR || code == NE_EXPR)))
5618 {
5619 tree newconst
5620 = fold (build (PLUS_EXPR, TREE_TYPE (varop),
5621 constop, TREE_OPERAND (varop, 1)));
5622 TREE_SET_CODE (varop, PREINCREMENT_EXPR);
5623
5624 /* If VAROP is a reference to a bitfield, we must mask
5625 the constant by the width of the field. */
5626 if (TREE_CODE (TREE_OPERAND (varop, 0)) == COMPONENT_REF
5627 && DECL_BIT_FIELD(TREE_OPERAND
5628 (TREE_OPERAND (varop, 0), 1)))
5629 {
5630 int size
5631 = TREE_INT_CST_LOW (DECL_SIZE
5632 (TREE_OPERAND
5633 (TREE_OPERAND (varop, 0), 1)));
5634 tree mask, unsigned_type;
5635 int precision;
5636 tree folded_compare;
5637
5638 /* First check whether the comparison would come out
5639 always the same. If we don't do that we would
5640 change the meaning with the masking. */
5641 if (constopnum == 0)
5642 folded_compare = fold (build (code, type, constop,
5643 TREE_OPERAND (varop, 0)));
5644 else
5645 folded_compare = fold (build (code, type,
5646 TREE_OPERAND (varop, 0),
5647 constop));
5648 if (integer_zerop (folded_compare)
5649 || integer_onep (folded_compare))
5650 return omit_one_operand (type, folded_compare, varop);
5651
5652 unsigned_type = type_for_size (size, 1);
5653 precision = TYPE_PRECISION (unsigned_type);
5654 mask = build_int_2 (~0, ~0);
5655 TREE_TYPE (mask) = unsigned_type;
5656 force_fit_type (mask, 0);
5657 mask = const_binop (RSHIFT_EXPR, mask,
5658 size_int (precision - size), 0);
5659 newconst = fold (build (BIT_AND_EXPR,
5660 TREE_TYPE (varop), newconst,
5661 convert (TREE_TYPE (varop),
5662 mask)));
5663 }
5664
5665
5666 t = build (code, type, TREE_OPERAND (t, 0),
5667 TREE_OPERAND (t, 1));
5668 TREE_OPERAND (t, constopnum) = newconst;
5669 return t;
5670 }
5671 }
5672 else if (constop && TREE_CODE (varop) == POSTDECREMENT_EXPR)
5673 {
5674 if (POINTER_TYPE_P (TREE_TYPE (varop))
5675 || (! FLOAT_TYPE_P (TREE_TYPE (varop))
5676 && (code == EQ_EXPR || code == NE_EXPR)))
5677 {
5678 tree newconst
5679 = fold (build (MINUS_EXPR, TREE_TYPE (varop),
5680 constop, TREE_OPERAND (varop, 1)));
5681 TREE_SET_CODE (varop, PREDECREMENT_EXPR);
5682
5683 if (TREE_CODE (TREE_OPERAND (varop, 0)) == COMPONENT_REF
5684 && DECL_BIT_FIELD(TREE_OPERAND
5685 (TREE_OPERAND (varop, 0), 1)))
5686 {
5687 int size
5688 = TREE_INT_CST_LOW (DECL_SIZE
5689 (TREE_OPERAND
5690 (TREE_OPERAND (varop, 0), 1)));
5691 tree mask, unsigned_type;
5692 int precision;
5693 tree folded_compare;
5694
5695 if (constopnum == 0)
5696 folded_compare = fold (build (code, type, constop,
5697 TREE_OPERAND (varop, 0)));
5698 else
5699 folded_compare = fold (build (code, type,
5700 TREE_OPERAND (varop, 0),
5701 constop));
5702 if (integer_zerop (folded_compare)
5703 || integer_onep (folded_compare))
5704 return omit_one_operand (type, folded_compare, varop);
5705
5706 unsigned_type = type_for_size (size, 1);
5707 precision = TYPE_PRECISION (unsigned_type);
5708 mask = build_int_2 (~0, ~0);
5709 TREE_TYPE (mask) = TREE_TYPE (varop);
5710 force_fit_type (mask, 0);
5711 mask = const_binop (RSHIFT_EXPR, mask,
5712 size_int (precision - size), 0);
5713 newconst = fold (build (BIT_AND_EXPR,
5714 TREE_TYPE (varop), newconst,
5715 convert (TREE_TYPE (varop),
5716 mask)));
5717 }
5718
5719
5720 t = build (code, type, TREE_OPERAND (t, 0),
5721 TREE_OPERAND (t, 1));
5722 TREE_OPERAND (t, constopnum) = newconst;
5723 return t;
5724 }
5725 }
5726 }
5727
5728 /* Change X >= CST to X > (CST - 1) if CST is positive. */
5729 if (TREE_CODE (arg1) == INTEGER_CST
5730 && TREE_CODE (arg0) != INTEGER_CST
5731 && tree_int_cst_sgn (arg1) > 0)
5732 {
5733 switch (TREE_CODE (t))
5734 {
5735 case GE_EXPR:
5736 code = GT_EXPR;
5737 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
5738 t = build (code, type, TREE_OPERAND (t, 0), arg1);
5739 break;
5740
5741 case LT_EXPR:
5742 code = LE_EXPR;
5743 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
5744 t = build (code, type, TREE_OPERAND (t, 0), arg1);
5745 break;
5746
5747 default:
5748 break;
5749 }
5750 }
5751
5752 /* If this is an EQ or NE comparison with zero and ARG0 is
5753 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
5754 two operations, but the latter can be done in one less insn
5755 on machines that have only two-operand insns or on which a
5756 constant cannot be the first operand. */
5757 if (integer_zerop (arg1) && (code == EQ_EXPR || code == NE_EXPR)
5758 && TREE_CODE (arg0) == BIT_AND_EXPR)
5759 {
5760 if (TREE_CODE (TREE_OPERAND (arg0, 0)) == LSHIFT_EXPR
5761 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg0, 0), 0)))
5762 return
5763 fold (build (code, type,
5764 build (BIT_AND_EXPR, TREE_TYPE (arg0),
5765 build (RSHIFT_EXPR,
5766 TREE_TYPE (TREE_OPERAND (arg0, 0)),
5767 TREE_OPERAND (arg0, 1),
5768 TREE_OPERAND (TREE_OPERAND (arg0, 0), 1)),
5769 convert (TREE_TYPE (arg0),
5770 integer_one_node)),
5771 arg1));
5772 else if (TREE_CODE (TREE_OPERAND (arg0, 1)) == LSHIFT_EXPR
5773 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg0, 1), 0)))
5774 return
5775 fold (build (code, type,
5776 build (BIT_AND_EXPR, TREE_TYPE (arg0),
5777 build (RSHIFT_EXPR,
5778 TREE_TYPE (TREE_OPERAND (arg0, 1)),
5779 TREE_OPERAND (arg0, 0),
5780 TREE_OPERAND (TREE_OPERAND (arg0, 1), 1)),
5781 convert (TREE_TYPE (arg0),
5782 integer_one_node)),
5783 arg1));
5784 }
5785
5786 /* If this is an NE or EQ comparison of zero against the result of a
5787 signed MOD operation whose second operand is a power of 2, make
5788 the MOD operation unsigned since it is simpler and equivalent. */
5789 if ((code == NE_EXPR || code == EQ_EXPR)
5790 && integer_zerop (arg1)
5791 && ! TREE_UNSIGNED (TREE_TYPE (arg0))
5792 && (TREE_CODE (arg0) == TRUNC_MOD_EXPR
5793 || TREE_CODE (arg0) == CEIL_MOD_EXPR
5794 || TREE_CODE (arg0) == FLOOR_MOD_EXPR
5795 || TREE_CODE (arg0) == ROUND_MOD_EXPR)
5796 && integer_pow2p (TREE_OPERAND (arg0, 1)))
5797 {
5798 tree newtype = unsigned_type (TREE_TYPE (arg0));
5799 tree newmod = build (TREE_CODE (arg0), newtype,
5800 convert (newtype, TREE_OPERAND (arg0, 0)),
5801 convert (newtype, TREE_OPERAND (arg0, 1)));
5802
5803 return build (code, type, newmod, convert (newtype, arg1));
5804 }
5805
5806 /* If this is an NE comparison of zero with an AND of one, remove the
5807 comparison since the AND will give the correct value. */
5808 if (code == NE_EXPR && integer_zerop (arg1)
5809 && TREE_CODE (arg0) == BIT_AND_EXPR
5810 && integer_onep (TREE_OPERAND (arg0, 1)))
5811 return convert (type, arg0);
5812
5813 /* If we have (A & C) == C where C is a power of 2, convert this into
5814 (A & C) != 0. Similarly for NE_EXPR. */
5815 if ((code == EQ_EXPR || code == NE_EXPR)
5816 && TREE_CODE (arg0) == BIT_AND_EXPR
5817 && integer_pow2p (TREE_OPERAND (arg0, 1))
5818 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
5819 return build (code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
5820 arg0, integer_zero_node);
5821
5822 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
5823 and similarly for >= into !=. */
5824 if ((code == LT_EXPR || code == GE_EXPR)
5825 && TREE_UNSIGNED (TREE_TYPE (arg0))
5826 && TREE_CODE (arg1) == LSHIFT_EXPR
5827 && integer_onep (TREE_OPERAND (arg1, 0)))
5828 return build (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
5829 build (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
5830 TREE_OPERAND (arg1, 1)),
5831 convert (TREE_TYPE (arg0), integer_zero_node));
5832
5833 else if ((code == LT_EXPR || code == GE_EXPR)
5834 && TREE_UNSIGNED (TREE_TYPE (arg0))
5835 && (TREE_CODE (arg1) == NOP_EXPR
5836 || TREE_CODE (arg1) == CONVERT_EXPR)
5837 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
5838 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
5839 return
5840 build (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
5841 convert (TREE_TYPE (arg0),
5842 build (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
5843 TREE_OPERAND (TREE_OPERAND (arg1, 0), 1))),
5844 convert (TREE_TYPE (arg0), integer_zero_node));
5845
5846 /* Simplify comparison of something with itself. (For IEEE
5847 floating-point, we can only do some of these simplifications.) */
5848 if (operand_equal_p (arg0, arg1, 0))
5849 {
5850 switch (code)
5851 {
5852 case EQ_EXPR:
5853 case GE_EXPR:
5854 case LE_EXPR:
5855 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
5856 return constant_boolean_node (1, type);
5857 code = EQ_EXPR;
5858 TREE_SET_CODE (t, code);
5859 break;
5860
5861 case NE_EXPR:
5862 /* For NE, we can only do this simplification if integer. */
5863 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
5864 break;
5865 /* ... fall through ... */
5866 case GT_EXPR:
5867 case LT_EXPR:
5868 return constant_boolean_node (0, type);
5869 default:
5870 abort ();
5871 }
5872 }
5873
5874 /* An unsigned comparison against 0 can be simplified. */
5875 if (integer_zerop (arg1)
5876 && (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
5877 || POINTER_TYPE_P (TREE_TYPE (arg1)))
5878 && TREE_UNSIGNED (TREE_TYPE (arg1)))
5879 {
5880 switch (TREE_CODE (t))
5881 {
5882 case GT_EXPR:
5883 code = NE_EXPR;
5884 TREE_SET_CODE (t, NE_EXPR);
5885 break;
5886 case LE_EXPR:
5887 code = EQ_EXPR;
5888 TREE_SET_CODE (t, EQ_EXPR);
5889 break;
5890 case GE_EXPR:
5891 return omit_one_operand (type,
5892 convert (type, integer_one_node),
5893 arg0);
5894 case LT_EXPR:
5895 return omit_one_operand (type,
5896 convert (type, integer_zero_node),
5897 arg0);
5898 default:
5899 break;
5900 }
5901 }
5902
5903 /* An unsigned <= 0x7fffffff can be simplified. */
5904 {
5905 int width = TYPE_PRECISION (TREE_TYPE (arg1));
5906 if (TREE_CODE (arg1) == INTEGER_CST
5907 && ! TREE_CONSTANT_OVERFLOW (arg1)
5908 && width <= HOST_BITS_PER_WIDE_INT
5909 && TREE_INT_CST_LOW (arg1) == ((HOST_WIDE_INT) 1 << (width - 1)) - 1
5910 && TREE_INT_CST_HIGH (arg1) == 0
5911 && (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
5912 || POINTER_TYPE_P (TREE_TYPE (arg1)))
5913 && TREE_UNSIGNED (TREE_TYPE (arg1)))
5914 {
5915 switch (TREE_CODE (t))
5916 {
5917 case LE_EXPR:
5918 return fold (build (GE_EXPR, type,
5919 convert (signed_type (TREE_TYPE (arg0)),
5920 arg0),
5921 convert (signed_type (TREE_TYPE (arg1)),
5922 integer_zero_node)));
5923 case GT_EXPR:
5924 return fold (build (LT_EXPR, type,
5925 convert (signed_type (TREE_TYPE (arg0)),
5926 arg0),
5927 convert (signed_type (TREE_TYPE (arg1)),
5928 integer_zero_node)));
5929 default:
5930 break;
5931 }
5932 }
5933 }
5934
5935 /* If we are comparing an expression that just has comparisons
5936 of two integer values, arithmetic expressions of those comparisons,
5937 and constants, we can simplify it. There are only three cases
5938 to check: the two values can either be equal, the first can be
5939 greater, or the second can be greater. Fold the expression for
5940 those three values. Since each value must be 0 or 1, we have
5941 eight possibilities, each of which corresponds to the constant 0
5942 or 1 or one of the six possible comparisons.
5943
5944 This handles common cases like (a > b) == 0 but also handles
5945 expressions like ((x > y) - (y > x)) > 0, which supposedly
5946 occur in macroized code. */
5947
5948 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
5949 {
5950 tree cval1 = 0, cval2 = 0;
5951 int save_p = 0;
5952
5953 if (twoval_comparison_p (arg0, &cval1, &cval2, &save_p)
5954 /* Don't handle degenerate cases here; they should already
5955 have been handled anyway. */
5956 && cval1 != 0 && cval2 != 0
5957 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
5958 && TREE_TYPE (cval1) == TREE_TYPE (cval2)
5959 && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
5960 && TYPE_MAX_VALUE (TREE_TYPE (cval1))
5961 && TYPE_MAX_VALUE (TREE_TYPE (cval2))
5962 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
5963 TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
5964 {
5965 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
5966 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
5967
5968 /* We can't just pass T to eval_subst in case cval1 or cval2
5969 was the same as ARG1. */
5970
5971 tree high_result
5972 = fold (build (code, type,
5973 eval_subst (arg0, cval1, maxval, cval2, minval),
5974 arg1));
5975 tree equal_result
5976 = fold (build (code, type,
5977 eval_subst (arg0, cval1, maxval, cval2, maxval),
5978 arg1));
5979 tree low_result
5980 = fold (build (code, type,
5981 eval_subst (arg0, cval1, minval, cval2, maxval),
5982 arg1));
5983
5984 /* All three of these results should be 0 or 1. Confirm they
5985 are. Then use those values to select the proper code
5986 to use. */
5987
5988 if ((integer_zerop (high_result)
5989 || integer_onep (high_result))
5990 && (integer_zerop (equal_result)
5991 || integer_onep (equal_result))
5992 && (integer_zerop (low_result)
5993 || integer_onep (low_result)))
5994 {
5995 /* Make a 3-bit mask with the high-order bit being the
5996 value for `>', the next for '=', and the low for '<'. */
5997 switch ((integer_onep (high_result) * 4)
5998 + (integer_onep (equal_result) * 2)
5999 + integer_onep (low_result))
6000 {
6001 case 0:
6002 /* Always false. */
6003 return omit_one_operand (type, integer_zero_node, arg0);
6004 case 1:
6005 code = LT_EXPR;
6006 break;
6007 case 2:
6008 code = EQ_EXPR;
6009 break;
6010 case 3:
6011 code = LE_EXPR;
6012 break;
6013 case 4:
6014 code = GT_EXPR;
6015 break;
6016 case 5:
6017 code = NE_EXPR;
6018 break;
6019 case 6:
6020 code = GE_EXPR;
6021 break;
6022 case 7:
6023 /* Always true. */
6024 return omit_one_operand (type, integer_one_node, arg0);
6025 }
6026
6027 t = build (code, type, cval1, cval2);
6028 if (save_p)
6029 return save_expr (t);
6030 else
6031 return fold (t);
6032 }
6033 }
6034 }
6035
6036 /* If this is a comparison of a field, we may be able to simplify it. */
6037 if ((TREE_CODE (arg0) == COMPONENT_REF
6038 || TREE_CODE (arg0) == BIT_FIELD_REF)
6039 && (code == EQ_EXPR || code == NE_EXPR)
6040 /* Handle the constant case even without -O
6041 to make sure the warnings are given. */
6042 && (optimize || TREE_CODE (arg1) == INTEGER_CST))
6043 {
6044 t1 = optimize_bit_field_compare (code, type, arg0, arg1);
6045 return t1 ? t1 : t;
6046 }
6047
6048 /* If this is a comparison of complex values and either or both sides
6049 are a COMPLEX_EXPR or COMPLEX_CST, it is best to split up the
6050 comparisons and join them with a TRUTH_ANDIF_EXPR or TRUTH_ORIF_EXPR.
6051 This may prevent needless evaluations. */
6052 if ((code == EQ_EXPR || code == NE_EXPR)
6053 && TREE_CODE (TREE_TYPE (arg0)) == COMPLEX_TYPE
6054 && (TREE_CODE (arg0) == COMPLEX_EXPR
6055 || TREE_CODE (arg1) == COMPLEX_EXPR
6056 || TREE_CODE (arg0) == COMPLEX_CST
6057 || TREE_CODE (arg1) == COMPLEX_CST))
6058 {
6059 tree subtype = TREE_TYPE (TREE_TYPE (arg0));
6060 tree real0, imag0, real1, imag1;
6061
6062 arg0 = save_expr (arg0);
6063 arg1 = save_expr (arg1);
6064 real0 = fold (build1 (REALPART_EXPR, subtype, arg0));
6065 imag0 = fold (build1 (IMAGPART_EXPR, subtype, arg0));
6066 real1 = fold (build1 (REALPART_EXPR, subtype, arg1));
6067 imag1 = fold (build1 (IMAGPART_EXPR, subtype, arg1));
6068
6069 return fold (build ((code == EQ_EXPR ? TRUTH_ANDIF_EXPR
6070 : TRUTH_ORIF_EXPR),
6071 type,
6072 fold (build (code, type, real0, real1)),
6073 fold (build (code, type, imag0, imag1))));
6074 }
6075
6076 /* From here on, the only cases we handle are when the result is
6077 known to be a constant.
6078
6079 To compute GT, swap the arguments and do LT.
6080 To compute GE, do LT and invert the result.
6081 To compute LE, swap the arguments, do LT and invert the result.
6082 To compute NE, do EQ and invert the result.
6083
6084 Therefore, the code below must handle only EQ and LT. */
6085
6086 if (code == LE_EXPR || code == GT_EXPR)
6087 {
6088 tem = arg0, arg0 = arg1, arg1 = tem;
6089 code = swap_tree_comparison (code);
6090 }
6091
6092 /* Note that it is safe to invert for real values here because we
6093 will check below in the one case that it matters. */
6094
6095 invert = 0;
6096 if (code == NE_EXPR || code == GE_EXPR)
6097 {
6098 invert = 1;
6099 code = invert_tree_comparison (code);
6100 }
6101
6102 /* Compute a result for LT or EQ if args permit;
6103 otherwise return T. */
6104 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
6105 {
6106 if (code == EQ_EXPR)
6107 t1 = build_int_2 ((TREE_INT_CST_LOW (arg0)
6108 == TREE_INT_CST_LOW (arg1))
6109 && (TREE_INT_CST_HIGH (arg0)
6110 == TREE_INT_CST_HIGH (arg1)),
6111 0);
6112 else
6113 t1 = build_int_2 ((TREE_UNSIGNED (TREE_TYPE (arg0))
6114 ? INT_CST_LT_UNSIGNED (arg0, arg1)
6115 : INT_CST_LT (arg0, arg1)),
6116 0);
6117 }
6118
6119#if 0 /* This is no longer useful, but breaks some real code. */
6120 /* Assume a nonexplicit constant cannot equal an explicit one,
6121 since such code would be undefined anyway.
6122 Exception: on sysvr4, using #pragma weak,
6123 a label can come out as 0. */
6124 else if (TREE_CODE (arg1) == INTEGER_CST
6125 && !integer_zerop (arg1)
6126 && TREE_CONSTANT (arg0)
6127 && TREE_CODE (arg0) == ADDR_EXPR
6128 && code == EQ_EXPR)
6129 t1 = build_int_2 (0, 0);
6130#endif
6131 /* Two real constants can be compared explicitly. */
6132 else if (TREE_CODE (arg0) == REAL_CST && TREE_CODE (arg1) == REAL_CST)
6133 {
6134 /* If either operand is a NaN, the result is false with two
6135 exceptions: First, an NE_EXPR is true on NaNs, but that case
6136 is already handled correctly since we will be inverting the
6137 result for NE_EXPR. Second, if we had inverted a LE_EXPR
6138 or a GE_EXPR into a LT_EXPR, we must return true so that it
6139 will be inverted into false. */
6140
6141 if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg0))
6142 || REAL_VALUE_ISNAN (TREE_REAL_CST (arg1)))
6143 t1 = build_int_2 (invert && code == LT_EXPR, 0);
6144
6145 else if (code == EQ_EXPR)
6146 t1 = build_int_2 (REAL_VALUES_EQUAL (TREE_REAL_CST (arg0),
6147 TREE_REAL_CST (arg1)),
6148 0);
6149 else
6150 t1 = build_int_2 (REAL_VALUES_LESS (TREE_REAL_CST (arg0),
6151 TREE_REAL_CST (arg1)),
6152 0);
6153 }
6154
6155 if (t1 == NULL_TREE)
6156 return t;
6157
6158 if (invert)
6159 TREE_INT_CST_LOW (t1) ^= 1;
6160
6161 TREE_TYPE (t1) = type;
6162 if (TREE_CODE (type) == BOOLEAN_TYPE)
6163 return truthvalue_conversion (t1);
6164 return t1;
6165
6166 case COND_EXPR:
6167 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
6168 so all simple results must be passed through pedantic_non_lvalue. */
6169 if (TREE_CODE (arg0) == INTEGER_CST)
6170 return pedantic_non_lvalue
6171 (TREE_OPERAND (t, (integer_zerop (arg0) ? 2 : 1)));
6172 else if (operand_equal_p (arg1, TREE_OPERAND (expr, 2), 0))
6173 return pedantic_omit_one_operand (type, arg1, arg0);
6174
6175 /* If the second operand is zero, invert the comparison and swap
6176 the second and third operands. Likewise if the second operand
6177 is constant and the third is not or if the third operand is
6178 equivalent to the first operand of the comparison. */
6179
6180 if (integer_zerop (arg1)
6181 || (TREE_CONSTANT (arg1) && ! TREE_CONSTANT (TREE_OPERAND (t, 2)))
6182 || (TREE_CODE_CLASS (TREE_CODE (arg0)) == '<'
6183 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
6184 TREE_OPERAND (t, 2),
6185 TREE_OPERAND (arg0, 1))))
6186 {
6187 /* See if this can be inverted. If it can't, possibly because
6188 it was a floating-point inequality comparison, don't do
6189 anything. */
6190 tem = invert_truthvalue (arg0);
6191
6192 if (TREE_CODE (tem) != TRUTH_NOT_EXPR)
6193 {
6194 t = build (code, type, tem,
6195 TREE_OPERAND (t, 2), TREE_OPERAND (t, 1));
6196 arg0 = tem;
6197 /* arg1 should be the first argument of the new T. */
6198 arg1 = TREE_OPERAND (t, 1);
6199 STRIP_NOPS (arg1);
6200 }
6201 }
6202
6203 /* If we have A op B ? A : C, we may be able to convert this to a
6204 simpler expression, depending on the operation and the values
6205 of B and C. IEEE floating point prevents this though,
6206 because A or B might be -0.0 or a NaN. */
6207
6208 if (TREE_CODE_CLASS (TREE_CODE (arg0)) == '<'
6209 && (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
6210 || ! FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (arg0, 0)))
6211 || flag_fast_math)
6212 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
6213 arg1, TREE_OPERAND (arg0, 1)))
6214 {
6215 tree arg2 = TREE_OPERAND (t, 2);
6216 enum tree_code comp_code = TREE_CODE (arg0);
6217
6218 STRIP_NOPS (arg2);
6219
6220 /* If we have A op 0 ? A : -A, this is A, -A, abs (A), or abs (-A),
6221 depending on the comparison operation. */
6222 if ((FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (arg0, 1)))
6223 ? real_zerop (TREE_OPERAND (arg0, 1))
6224 : integer_zerop (TREE_OPERAND (arg0, 1)))
6225 && TREE_CODE (arg2) == NEGATE_EXPR
6226 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
6227 switch (comp_code)
6228 {
6229 case EQ_EXPR:
6230 return pedantic_non_lvalue
6231 (fold (build1 (NEGATE_EXPR, type, arg1)));
6232 case NE_EXPR:
6233 return pedantic_non_lvalue (convert (type, arg1));
6234 case GE_EXPR:
6235 case GT_EXPR:
6236 if (TREE_UNSIGNED (TREE_TYPE (arg1)))
6237 arg1 = convert (signed_type (TREE_TYPE (arg1)), arg1);
6238 return pedantic_non_lvalue
6239 (convert (type, fold (build1 (ABS_EXPR,
6240 TREE_TYPE (arg1), arg1))));
6241 case LE_EXPR:
6242 case LT_EXPR:
6243 if (TREE_UNSIGNED (TREE_TYPE (arg1)))
6244 arg1 = convert (signed_type (TREE_TYPE (arg1)), arg1);
6245 return pedantic_non_lvalue
6246 (fold (build1 (NEGATE_EXPR, type,
6247 convert (type,
6248 fold (build1 (ABS_EXPR,
6249 TREE_TYPE (arg1),
6250 arg1))))));
6251 default:
6252 abort ();
6253 }
6254
6255 /* If this is A != 0 ? A : 0, this is simply A. For ==, it is
6256 always zero. */
6257
6258 if (integer_zerop (TREE_OPERAND (arg0, 1)) && integer_zerop (arg2))
6259 {
6260 if (comp_code == NE_EXPR)
6261 return pedantic_non_lvalue (convert (type, arg1));
6262 else if (comp_code == EQ_EXPR)
6263 return pedantic_non_lvalue (convert (type, integer_zero_node));
6264 }
6265
6266 /* If this is A op B ? A : B, this is either A, B, min (A, B),
6267 or max (A, B), depending on the operation. */
6268
6269 if (operand_equal_for_comparison_p (TREE_OPERAND (arg0, 1),
6270 arg2, TREE_OPERAND (arg0, 0)))
6271 {
6272 tree comp_op0 = TREE_OPERAND (arg0, 0);
6273 tree comp_op1 = TREE_OPERAND (arg0, 1);
6274 tree comp_type = TREE_TYPE (comp_op0);
6275
6276 switch (comp_code)
6277 {
6278 case EQ_EXPR:
6279 return pedantic_non_lvalue (convert (type, arg2));
6280 case NE_EXPR:
6281 return pedantic_non_lvalue (convert (type, arg1));
6282 case LE_EXPR:
6283 case LT_EXPR:
6284 /* In C++ a ?: expression can be an lvalue, so put the
6285 operand which will be used if they are equal first
6286 so that we can convert this back to the
6287 corresponding COND_EXPR. */
6288 return pedantic_non_lvalue
6289 (convert (type, (fold (build (MIN_EXPR, comp_type,
6290 (comp_code == LE_EXPR
6291 ? comp_op0 : comp_op1),
6292 (comp_code == LE_EXPR
6293 ? comp_op1 : comp_op0))))));
6294 break;
6295 case GE_EXPR:
6296 case GT_EXPR:
6297 return pedantic_non_lvalue
6298 (convert (type, fold (build (MAX_EXPR, comp_type,
6299 (comp_code == GE_EXPR
6300 ? comp_op0 : comp_op1),
6301 (comp_code == GE_EXPR
6302 ? comp_op1 : comp_op0)))));
6303 break;
6304 default:
6305 abort ();
6306 }
6307 }
6308
6309 /* If this is A op C1 ? A : C2 with C1 and C2 constant integers,
6310 we might still be able to simplify this. For example,
6311 if C1 is one less or one more than C2, this might have started
6312 out as a MIN or MAX and been transformed by this function.
6313 Only good for INTEGER_TYPEs, because we need TYPE_MAX_VALUE. */
6314
6315 if (INTEGRAL_TYPE_P (type)
6316 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
6317 && TREE_CODE (arg2) == INTEGER_CST)
6318 switch (comp_code)
6319 {
6320 case EQ_EXPR:
6321 /* We can replace A with C1 in this case. */
6322 arg1 = convert (type, TREE_OPERAND (arg0, 1));
6323 t = build (code, type, TREE_OPERAND (t, 0), arg1,
6324 TREE_OPERAND (t, 2));
6325 break;
6326
6327 case LT_EXPR:
6328 /* If C1 is C2 + 1, this is min(A, C2). */
6329 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type), 1)
6330 && operand_equal_p (TREE_OPERAND (arg0, 1),
6331 const_binop (PLUS_EXPR, arg2,
6332 integer_one_node, 0), 1))
6333 return pedantic_non_lvalue
6334 (fold (build (MIN_EXPR, type, arg1, arg2)));
6335 break;
6336
6337 case LE_EXPR:
6338 /* If C1 is C2 - 1, this is min(A, C2). */
6339 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type), 1)
6340 && operand_equal_p (TREE_OPERAND (arg0, 1),
6341 const_binop (MINUS_EXPR, arg2,
6342 integer_one_node, 0), 1))
6343 return pedantic_non_lvalue
6344 (fold (build (MIN_EXPR, type, arg1, arg2)));
6345 break;
6346
6347 case GT_EXPR:
6348 /* If C1 is C2 - 1, this is max(A, C2). */
6349 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type), 1)
6350 && operand_equal_p (TREE_OPERAND (arg0, 1),
6351 const_binop (MINUS_EXPR, arg2,
6352 integer_one_node, 0), 1))
6353 return pedantic_non_lvalue
6354 (fold (build (MAX_EXPR, type, arg1, arg2)));
6355 break;
6356
6357 case GE_EXPR:
6358 /* If C1 is C2 + 1, this is max(A, C2). */
6359 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type), 1)
6360 && operand_equal_p (TREE_OPERAND (arg0, 1),
6361 const_binop (PLUS_EXPR, arg2,
6362 integer_one_node, 0), 1))
6363 return pedantic_non_lvalue
6364 (fold (build (MAX_EXPR, type, arg1, arg2)));
6365 break;
6366 case NE_EXPR:
6367 break;
6368 default:
6369 abort ();
6370 }
6371 }
6372
6373 /* If the second operand is simpler than the third, swap them
6374 since that produces better jump optimization results. */
6375 if ((TREE_CONSTANT (arg1) || TREE_CODE_CLASS (TREE_CODE (arg1)) == 'd'
6376 || TREE_CODE (arg1) == SAVE_EXPR)
6377 && ! (TREE_CONSTANT (TREE_OPERAND (t, 2))
6378 || TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (t, 2))) == 'd'
6379 || TREE_CODE (TREE_OPERAND (t, 2)) == SAVE_EXPR))
6380 {
6381 /* See if this can be inverted. If it can't, possibly because
6382 it was a floating-point inequality comparison, don't do
6383 anything. */
6384 tem = invert_truthvalue (arg0);
6385
6386 if (TREE_CODE (tem) != TRUTH_NOT_EXPR)
6387 {
6388 t = build (code, type, tem,
6389 TREE_OPERAND (t, 2), TREE_OPERAND (t, 1));
6390 arg0 = tem;
6391 /* arg1 should be the first argument of the new T. */
6392 arg1 = TREE_OPERAND (t, 1);
6393 STRIP_NOPS (arg1);
6394 }
6395 }
6396
6397 /* Convert A ? 1 : 0 to simply A. */
6398 if (integer_onep (TREE_OPERAND (t, 1))
6399 && integer_zerop (TREE_OPERAND (t, 2))
6400 /* If we try to convert TREE_OPERAND (t, 0) to our type, the
6401 call to fold will try to move the conversion inside
6402 a COND, which will recurse. In that case, the COND_EXPR
6403 is probably the best choice, so leave it alone. */
6404 && type == TREE_TYPE (arg0))
6405 return pedantic_non_lvalue (arg0);
6406
6407 /* Look for expressions of the form A & 2 ? 2 : 0. The result of this
6408 operation is simply A & 2. */
6409
6410 if (integer_zerop (TREE_OPERAND (t, 2))
6411 && TREE_CODE (arg0) == NE_EXPR
6412 && integer_zerop (TREE_OPERAND (arg0, 1))
6413 && integer_pow2p (arg1)
6414 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
6415 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
6416 arg1, 1))
6417 return pedantic_non_lvalue (convert (type, TREE_OPERAND (arg0, 0)));
6418
6419 return t;
6420
6421 case COMPOUND_EXPR:
6422 /* When pedantic, a compound expression can be neither an lvalue
6423 nor an integer constant expression. */
6424 if (TREE_SIDE_EFFECTS (arg0) || pedantic)
6425 return t;
6426 /* Don't let (0, 0) be null pointer constant. */
6427 if (integer_zerop (arg1))
6428 return build1 (NOP_EXPR, TREE_TYPE (arg1), arg1);
6429 return arg1;
6430
6431 case COMPLEX_EXPR:
6432 if (wins)
6433 return build_complex (type, arg0, arg1);
6434 return t;
6435
6436 case REALPART_EXPR:
6437 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
6438 return t;
6439 else if (TREE_CODE (arg0) == COMPLEX_EXPR)
6440 return omit_one_operand (type, TREE_OPERAND (arg0, 0),
6441 TREE_OPERAND (arg0, 1));
6442 else if (TREE_CODE (arg0) == COMPLEX_CST)
6443 return TREE_REALPART (arg0);
6444 else if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
6445 return fold (build (TREE_CODE (arg0), type,
6446 fold (build1 (REALPART_EXPR, type,
6447 TREE_OPERAND (arg0, 0))),
6448 fold (build1 (REALPART_EXPR,
6449 type, TREE_OPERAND (arg0, 1)))));
6450 return t;
6451
6452 case IMAGPART_EXPR:
6453 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
6454 return convert (type, integer_zero_node);
6455 else if (TREE_CODE (arg0) == COMPLEX_EXPR)
6456 return omit_one_operand (type, TREE_OPERAND (arg0, 1),
6457 TREE_OPERAND (arg0, 0));
6458 else if (TREE_CODE (arg0) == COMPLEX_CST)
6459 return TREE_IMAGPART (arg0);
6460 else if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
6461 return fold (build (TREE_CODE (arg0), type,
6462 fold (build1 (IMAGPART_EXPR, type,
6463 TREE_OPERAND (arg0, 0))),
6464 fold (build1 (IMAGPART_EXPR, type,
6465 TREE_OPERAND (arg0, 1)))));
6466 return t;
6467
6468 /* Pull arithmetic ops out of the CLEANUP_POINT_EXPR where
6469 appropriate. */
6470 case CLEANUP_POINT_EXPR:
6471 if (! has_cleanups (arg0))
6472 return TREE_OPERAND (t, 0);
6473
6474 {
6475 enum tree_code code0 = TREE_CODE (arg0);
6476 int kind0 = TREE_CODE_CLASS (code0);
6477 tree arg00 = TREE_OPERAND (arg0, 0);
6478 tree arg01;
6479
6480 if (kind0 == '1' || code0 == TRUTH_NOT_EXPR)
6481 return fold (build1 (code0, type,
6482 fold (build1 (CLEANUP_POINT_EXPR,
6483 TREE_TYPE (arg00), arg00))));
6484
6485 if (kind0 == '<' || kind0 == '2'
6486 || code0 == TRUTH_ANDIF_EXPR || code0 == TRUTH_ORIF_EXPR
6487 || code0 == TRUTH_AND_EXPR || code0 == TRUTH_OR_EXPR
6488 || code0 == TRUTH_XOR_EXPR)
6489 {
6490 arg01 = TREE_OPERAND (arg0, 1);
6491
6492 if (TREE_CONSTANT (arg00)
6493 || ((code0 == TRUTH_ANDIF_EXPR || code0 == TRUTH_ORIF_EXPR)
6494 && ! has_cleanups (arg00)))
6495 return fold (build (code0, type, arg00,
6496 fold (build1 (CLEANUP_POINT_EXPR,
6497 TREE_TYPE (arg01), arg01))));
6498
6499 if (TREE_CONSTANT (arg01))
6500 return fold (build (code0, type,
6501 fold (build1 (CLEANUP_POINT_EXPR,
6502 TREE_TYPE (arg00), arg00)),
6503 arg01));
6504 }
6505
6506 return t;
6507 }
6508
6509 default:
6510 return t;
6511 } /* switch (code) */
6512}
6513
6514/* Determine if first argument is a multiple of second argument.
6515 Return 0 if it is not, or is not easily determined to so be.
6516
6517 An example of the sort of thing we care about (at this point --
6518 this routine could surely be made more general, and expanded
6519 to do what the *_DIV_EXPR's fold() cases do now) is discovering
6520 that
6521
6522 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
6523
6524 is a multiple of
6525
6526 SAVE_EXPR (J * 8)
6527
6528 when we know that the two `SAVE_EXPR (J * 8)' nodes are the
6529 same node (which means they will have the same value at run
6530 time, even though we don't know when they'll be assigned).
6531
6532 This code also handles discovering that
6533
6534 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
6535
6536 is a multiple of
6537
6538 8
6539
6540 (of course) so we don't have to worry about dealing with a
6541 possible remainder.
6542
6543 Note that we _look_ inside a SAVE_EXPR only to determine
6544 how it was calculated; it is not safe for fold() to do much
6545 of anything else with the internals of a SAVE_EXPR, since
6546 fold() cannot know when it will be evaluated at run time.
6547 For example, the latter example above _cannot_ be implemented
6548 as
6549
6550 SAVE_EXPR (I) * J
6551
6552 or any variant thereof, since the value of J at evaluation time
6553 of the original SAVE_EXPR is not necessarily the same at the time
6554 the new expression is evaluated. The only optimization of this
6555 sort that would be valid is changing
6556
6557 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
6558 divided by
6559 8
6560
6561 to
6562
6563 SAVE_EXPR (I) * SAVE_EXPR (J)
6564
6565 (where the same SAVE_EXPR (J) is used in the original and the
6566 transformed version). */
6567
6568static int
6569multiple_of_p (type, top, bottom)
6570 tree type;
6571 tree top;
6572 tree bottom;
6573{
6574 if (operand_equal_p (top, bottom, 0))
6575 return 1;
6576
6577 if (TREE_CODE (type) != INTEGER_TYPE)
6578 return 0;
6579
6580 switch (TREE_CODE (top))
6581 {
6582 case MULT_EXPR:
6583 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
6584 || multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
6585
6586 case PLUS_EXPR:
6587 case MINUS_EXPR:
6588 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
6589 && multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
6590
6591 case NOP_EXPR:
6592 /* Punt if conversion from non-integral or wider integral type. */
6593 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
6594 || (TYPE_PRECISION (type)
6595 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
6596 return 0;
6597 /* Fall through. */
6598 case SAVE_EXPR:
6599 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom);
6600
6601 case INTEGER_CST:
6602 if ((TREE_CODE (bottom) != INTEGER_CST)
6603 || (tree_int_cst_sgn (top) < 0)
6604 || (tree_int_cst_sgn (bottom) < 0))
6605 return 0;
6606 return integer_zerop (const_binop (TRUNC_MOD_EXPR,
6607 top, bottom, 0));
6608
6609 default:
6610 return 0;
6611 }
6612}
6613