Deleted Added
full compact
final.c (132727) final.c (169699)
1/* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
1/* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
4 Free Software Foundation, Inc.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING. If not, write to the Free
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 2, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING. If not, write to the Free
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA. */
20Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2102110-1301, USA. */
21
22/* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
24
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is

--- 37 unchanged lines hidden (view full) ---

66#include "toplev.h"
67#include "reload.h"
68#include "intl.h"
69#include "basic-block.h"
70#include "target.h"
71#include "debug.h"
72#include "expr.h"
73#include "cfglayout.h"
22
23/* This is the final pass of the compiler.
24 It looks at the rtl code for a function and outputs assembler code.
25
26 Call `final_start_function' to output the assembler code for function entry,
27 `final' to output assembler code for some RTL code,
28 `final_end_function' to output assembler code for function exit.
29 If a function is compiled in several pieces, each piece is

--- 37 unchanged lines hidden (view full) ---

67#include "toplev.h"
68#include "reload.h"
69#include "intl.h"
70#include "basic-block.h"
71#include "target.h"
72#include "debug.h"
73#include "expr.h"
74#include "cfglayout.h"
75#include "tree-pass.h"
76#include "timevar.h"
77#include "cgraph.h"
78#include "coverage.h"
74
75#ifdef XCOFF_DEBUGGING_INFO
76#include "xcoffout.h" /* Needed for external data
77 declarations for e.g. AIX 4.x. */
78#endif
79
80#if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
81#include "dwarf2out.h"
82#endif
83
84#ifdef DBX_DEBUGGING_INFO
85#include "dbxout.h"
86#endif
87
79
80#ifdef XCOFF_DEBUGGING_INFO
81#include "xcoffout.h" /* Needed for external data
82 declarations for e.g. AIX 4.x. */
83#endif
84
85#if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
86#include "dwarf2out.h"
87#endif
88
89#ifdef DBX_DEBUGGING_INFO
90#include "dbxout.h"
91#endif
92
93#ifdef SDB_DEBUGGING_INFO
94#include "sdbout.h"
95#endif
96
88/* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
89 null default for it to save conditionalization later. */
90#ifndef CC_STATUS_INIT
91#define CC_STATUS_INIT
92#endif
93
94/* How to start an assembler comment. */
95#ifndef ASM_COMMENT_START

--- 4 unchanged lines hidden (view full) ---

100#ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
101#define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
102#endif
103
104#ifndef JUMP_TABLES_IN_TEXT_SECTION
105#define JUMP_TABLES_IN_TEXT_SECTION 0
106#endif
107
97/* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
98 null default for it to save conditionalization later. */
99#ifndef CC_STATUS_INIT
100#define CC_STATUS_INIT
101#endif
102
103/* How to start an assembler comment. */
104#ifndef ASM_COMMENT_START

--- 4 unchanged lines hidden (view full) ---

109#ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
110#define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
111#endif
112
113#ifndef JUMP_TABLES_IN_TEXT_SECTION
114#define JUMP_TABLES_IN_TEXT_SECTION 0
115#endif
116
108#if defined(READONLY_DATA_SECTION) || defined(READONLY_DATA_SECTION_ASM_OP)
109#define HAVE_READONLY_DATA_SECTION 1
110#else
111#define HAVE_READONLY_DATA_SECTION 0
112#endif
113
114/* Bitflags used by final_scan_insn. */
115#define SEEN_BB 1
116#define SEEN_NOTE 2
117#define SEEN_EMITTED 4
118
119/* Last insn processed by final_scan_insn. */
120static rtx debug_insn;
121rtx current_output_insn;

--- 5 unchanged lines hidden (view full) ---

127static int high_block_linenum;
128
129/* Likewise for function. */
130static int high_function_linenum;
131
132/* Filename of last NOTE. */
133static const char *last_filename;
134
117/* Bitflags used by final_scan_insn. */
118#define SEEN_BB 1
119#define SEEN_NOTE 2
120#define SEEN_EMITTED 4
121
122/* Last insn processed by final_scan_insn. */
123static rtx debug_insn;
124rtx current_output_insn;

--- 5 unchanged lines hidden (view full) ---

130static int high_block_linenum;
131
132/* Likewise for function. */
133static int high_function_linenum;
134
135/* Filename of last NOTE. */
136static const char *last_filename;
137
135extern int length_unit_log; /* This is defined in insn-attrtab.c. */
138/* Whether to force emission of a line note before the next insn. */
139static bool force_source_line = false;
136
140
141extern const int length_unit_log; /* This is defined in insn-attrtab.c. */
142
137/* Nonzero while outputting an `asm' with operands.
143/* Nonzero while outputting an `asm' with operands.
138 This means that inconsistencies are the user's fault, so don't abort.
144 This means that inconsistencies are the user's fault, so don't die.
139 The precise value is the insn being output, to pass to error_for_asm. */
140rtx this_is_asm_operands;
141
142/* Number of operands of this insn, for an `asm' with operands. */
143static unsigned int insn_noperands;
144
145/* Compare optimization flag. */
146

--- 222 unchanged lines hidden (view full) ---

369 if (uid_align)
370 {
371 free (uid_align);
372 uid_align = 0;
373 }
374}
375
376/* Obtain the current length of an insn. If branch shortening has been done,
145 The precise value is the insn being output, to pass to error_for_asm. */
146rtx this_is_asm_operands;
147
148/* Number of operands of this insn, for an `asm' with operands. */
149static unsigned int insn_noperands;
150
151/* Compare optimization flag. */
152

--- 222 unchanged lines hidden (view full) ---

375 if (uid_align)
376 {
377 free (uid_align);
378 uid_align = 0;
379 }
380}
381
382/* Obtain the current length of an insn. If branch shortening has been done,
377 get its actual length. Otherwise, get its maximum length. */
378
379int
380get_attr_length (rtx insn ATTRIBUTE_UNUSED)
383 get its actual length. Otherwise, use FALLBACK_FN to calculate the
384 length. */
385static inline int
386get_attr_length_1 (rtx insn ATTRIBUTE_UNUSED,
387 int (*fallback_fn) (rtx) ATTRIBUTE_UNUSED)
381{
382#ifdef HAVE_ATTR_length
383 rtx body;
384 int i;
385 int length = 0;
386
387 if (insn_lengths_max_uid > INSN_UID (insn))
388 return insn_lengths[INSN_UID (insn)];
389 else
390 switch (GET_CODE (insn))
391 {
392 case NOTE:
393 case BARRIER:
394 case CODE_LABEL:
395 return 0;
396
397 case CALL_INSN:
388{
389#ifdef HAVE_ATTR_length
390 rtx body;
391 int i;
392 int length = 0;
393
394 if (insn_lengths_max_uid > INSN_UID (insn))
395 return insn_lengths[INSN_UID (insn)];
396 else
397 switch (GET_CODE (insn))
398 {
399 case NOTE:
400 case BARRIER:
401 case CODE_LABEL:
402 return 0;
403
404 case CALL_INSN:
398 length = insn_default_length (insn);
405 length = fallback_fn (insn);
399 break;
400
401 case JUMP_INSN:
402 body = PATTERN (insn);
403 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
404 {
405 /* Alignment is machine-dependent and should be handled by
406 ADDR_VEC_ALIGN. */
407 }
408 else
406 break;
407
408 case JUMP_INSN:
409 body = PATTERN (insn);
410 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
411 {
412 /* Alignment is machine-dependent and should be handled by
413 ADDR_VEC_ALIGN. */
414 }
415 else
409 length = insn_default_length (insn);
416 length = fallback_fn (insn);
410 break;
411
412 case INSN:
413 body = PATTERN (insn);
414 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
415 return 0;
416
417 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
417 break;
418
419 case INSN:
420 body = PATTERN (insn);
421 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
422 return 0;
423
424 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
418 length = asm_insn_count (body) * insn_default_length (insn);
425 length = asm_insn_count (body) * fallback_fn (insn);
419 else if (GET_CODE (body) == SEQUENCE)
420 for (i = 0; i < XVECLEN (body, 0); i++)
421 length += get_attr_length (XVECEXP (body, 0, i));
422 else
426 else if (GET_CODE (body) == SEQUENCE)
427 for (i = 0; i < XVECLEN (body, 0); i++)
428 length += get_attr_length (XVECEXP (body, 0, i));
429 else
423 length = insn_default_length (insn);
430 length = fallback_fn (insn);
424 break;
425
426 default:
427 break;
428 }
429
430#ifdef ADJUST_INSN_LENGTH
431 ADJUST_INSN_LENGTH (insn, length);
432#endif
433 return length;
434#else /* not HAVE_ATTR_length */
435 return 0;
431 break;
432
433 default:
434 break;
435 }
436
437#ifdef ADJUST_INSN_LENGTH
438 ADJUST_INSN_LENGTH (insn, length);
439#endif
440 return length;
441#else /* not HAVE_ATTR_length */
442 return 0;
443#define insn_default_length 0
444#define insn_min_length 0
436#endif /* not HAVE_ATTR_length */
437}
445#endif /* not HAVE_ATTR_length */
446}
447
448/* Obtain the current length of an insn. If branch shortening has been done,
449 get its actual length. Otherwise, get its maximum length. */
450int
451get_attr_length (rtx insn)
452{
453 return get_attr_length_1 (insn, insn_default_length);
454}
455
456/* Obtain the current length of an insn. If branch shortening has been done,
457 get its actual length. Otherwise, get its minimum length. */
458int
459get_attr_min_length (rtx insn)
460{
461 return get_attr_length_1 (insn, insn_min_length);
462}
438
439/* Code to handle alignment inside shorten_branches. */
440
441/* Here is an explanation how the algorithm in align_fuzz can give
442 proper results:
443
444 Call a sequence of instructions beginning with alignment point X
445 and continuing until the next alignment point `block X'. When `X'

--- 174 unchanged lines hidden (view full) ---

620 rtx dest, seq;
621 int seq_uid;
622
623 if (! INSN_ADDRESSES_SET_P ())
624 return 0;
625
626 seq = NEXT_INSN (PREV_INSN (branch));
627 seq_uid = INSN_UID (seq);
463
464/* Code to handle alignment inside shorten_branches. */
465
466/* Here is an explanation how the algorithm in align_fuzz can give
467 proper results:
468
469 Call a sequence of instructions beginning with alignment point X
470 and continuing until the next alignment point `block X'. When `X'

--- 174 unchanged lines hidden (view full) ---

645 rtx dest, seq;
646 int seq_uid;
647
648 if (! INSN_ADDRESSES_SET_P ())
649 return 0;
650
651 seq = NEXT_INSN (PREV_INSN (branch));
652 seq_uid = INSN_UID (seq);
628 if (GET_CODE (branch) != JUMP_INSN)
653 if (!JUMP_P (branch))
629 /* This can happen for example on the PA; the objective is to know the
630 offset to address something in front of the start of the function.
631 Thus, we can treat it like a backward branch.
632 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
633 any alignment we'd encounter, so we skip the call to align_fuzz. */
634 return insn_current_address;
635 dest = JUMP_LABEL (branch);
636

--- 9 unchanged lines hidden (view full) ---

646 {
647 /* Backward branch. */
648 return (insn_current_address
649 + align_fuzz (dest, seq, length_unit_log, ~0));
650 }
651}
652#endif /* HAVE_ATTR_length */
653
654 /* This can happen for example on the PA; the objective is to know the
655 offset to address something in front of the start of the function.
656 Thus, we can treat it like a backward branch.
657 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
658 any alignment we'd encounter, so we skip the call to align_fuzz. */
659 return insn_current_address;
660 dest = JUMP_LABEL (branch);
661

--- 9 unchanged lines hidden (view full) ---

671 {
672 /* Backward branch. */
673 return (insn_current_address
674 + align_fuzz (dest, seq, length_unit_log, ~0));
675 }
676}
677#endif /* HAVE_ATTR_length */
678
654void
679/* Compute branch alignments based on frequency information in the
680 CFG. */
681
682static unsigned int
655compute_alignments (void)
656{
657 int log, max_skip, max_log;
658 basic_block bb;
659
660 if (label_align)
661 {
662 free (label_align);
663 label_align = 0;
664 }
665
666 max_labelno = max_label_num ();
667 min_labelno = get_first_label_num ();
683compute_alignments (void)
684{
685 int log, max_skip, max_log;
686 basic_block bb;
687
688 if (label_align)
689 {
690 free (label_align);
691 label_align = 0;
692 }
693
694 max_labelno = max_label_num ();
695 min_labelno = get_first_label_num ();
668 label_align = xcalloc (max_labelno - min_labelno + 1,
669 sizeof (struct label_alignment));
696 label_align = XCNEWVEC (struct label_alignment, max_labelno - min_labelno + 1);
670
671 /* If not optimizing or optimizing for size, don't assign any alignments. */
672 if (! optimize || optimize_size)
697
698 /* If not optimizing or optimizing for size, don't assign any alignments. */
699 if (! optimize || optimize_size)
673 return;
700 return 0;
674
675 FOR_EACH_BB (bb)
676 {
677 rtx label = BB_HEAD (bb);
678 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
679 edge e;
701
702 FOR_EACH_BB (bb)
703 {
704 rtx label = BB_HEAD (bb);
705 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
706 edge e;
707 edge_iterator ei;
680
708
681 if (GET_CODE (label) != CODE_LABEL
709 if (!LABEL_P (label)
682 || probably_never_executed_bb_p (bb))
683 continue;
684 max_log = LABEL_ALIGN (label);
685 max_skip = LABEL_ALIGN_MAX_SKIP;
686
710 || probably_never_executed_bb_p (bb))
711 continue;
712 max_log = LABEL_ALIGN (label);
713 max_skip = LABEL_ALIGN_MAX_SKIP;
714
687 for (e = bb->pred; e; e = e->pred_next)
715 FOR_EACH_EDGE (e, ei, bb->preds)
688 {
689 if (e->flags & EDGE_FALLTHRU)
690 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
691 else
692 branch_frequency += EDGE_FREQUENCY (e);
693 }
694
695 /* There are two purposes to align block with no fallthru incoming edge:

--- 31 unchanged lines hidden (view full) ---

727 {
728 max_log = log;
729 max_skip = LOOP_ALIGN_MAX_SKIP;
730 }
731 }
732 LABEL_TO_ALIGNMENT (label) = max_log;
733 LABEL_TO_MAX_SKIP (label) = max_skip;
734 }
716 {
717 if (e->flags & EDGE_FALLTHRU)
718 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
719 else
720 branch_frequency += EDGE_FREQUENCY (e);
721 }
722
723 /* There are two purposes to align block with no fallthru incoming edge:

--- 31 unchanged lines hidden (view full) ---

755 {
756 max_log = log;
757 max_skip = LOOP_ALIGN_MAX_SKIP;
758 }
759 }
760 LABEL_TO_ALIGNMENT (label) = max_log;
761 LABEL_TO_MAX_SKIP (label) = max_skip;
762 }
763 return 0;
735}
764}
765
766struct tree_opt_pass pass_compute_alignments =
767{
768 NULL, /* name */
769 NULL, /* gate */
770 compute_alignments, /* execute */
771 NULL, /* sub */
772 NULL, /* next */
773 0, /* static_pass_number */
774 0, /* tv_id */
775 0, /* properties_required */
776 0, /* properties_provided */
777 0, /* properties_destroyed */
778 0, /* todo_flags_start */
779 0, /* todo_flags_finish */
780 0 /* letter */
781};
782
736
737/* Make a pass over all insns and compute their actual lengths by shortening
738 any branches of variable length if possible. */
739
740/* shorten_branches might be called multiple times: for example, the SH
741 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
742 In order to do this, it needs proper length information, which it obtains
743 by calling shorten_branches. This cannot be collapsed with

--- 18 unchanged lines hidden (view full) ---

762 int uid;
763 rtx align_tab[MAX_CODE_ALIGN];
764
765#endif
766
767 /* Compute maximum UID and allocate label_align / uid_shuid. */
768 max_uid = get_max_uid ();
769
783
784/* Make a pass over all insns and compute their actual lengths by shortening
785 any branches of variable length if possible. */
786
787/* shorten_branches might be called multiple times: for example, the SH
788 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
789 In order to do this, it needs proper length information, which it obtains
790 by calling shorten_branches. This cannot be collapsed with

--- 18 unchanged lines hidden (view full) ---

809 int uid;
810 rtx align_tab[MAX_CODE_ALIGN];
811
812#endif
813
814 /* Compute maximum UID and allocate label_align / uid_shuid. */
815 max_uid = get_max_uid ();
816
770 uid_shuid = xmalloc (max_uid * sizeof *uid_shuid);
817 /* Free uid_shuid before reallocating it. */
818 free (uid_shuid);
771
819
820 uid_shuid = XNEWVEC (int, max_uid);
821
772 if (max_labelno != max_label_num ())
773 {
774 int old = max_labelno;
775 int n_labels;
776 int n_old_labels;
777
778 max_labelno = max_label_num ();
779
780 n_labels = max_labelno - min_labelno + 1;
781 n_old_labels = old - min_labelno + 1;
782
783 label_align = xrealloc (label_align,
784 n_labels * sizeof (struct label_alignment));
785
822 if (max_labelno != max_label_num ())
823 {
824 int old = max_labelno;
825 int n_labels;
826 int n_old_labels;
827
828 max_labelno = max_label_num ();
829
830 n_labels = max_labelno - min_labelno + 1;
831 n_old_labels = old - min_labelno + 1;
832
833 label_align = xrealloc (label_align,
834 n_labels * sizeof (struct label_alignment));
835
786 /* Range of labels grows monotonically in the function. Abort here
836 /* Range of labels grows monotonically in the function. Failing here
787 means that the initialization of array got lost. */
837 means that the initialization of array got lost. */
788 if (n_old_labels > n_labels)
789 abort ();
838 gcc_assert (n_old_labels <= n_labels);
790
791 memset (label_align + n_old_labels, 0,
792 (n_labels - n_old_labels) * sizeof (struct label_alignment));
793 }
794
795 /* Initialize label_align and set up uid_shuid to be strictly
796 monotonically rising with insn order. */
797 /* We use max_log here to keep track of the maximum alignment we want to

--- 4 unchanged lines hidden (view full) ---

802 max_skip = 0;
803
804 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
805 {
806 int log;
807
808 INSN_SHUID (insn) = i++;
809 if (INSN_P (insn))
839
840 memset (label_align + n_old_labels, 0,
841 (n_labels - n_old_labels) * sizeof (struct label_alignment));
842 }
843
844 /* Initialize label_align and set up uid_shuid to be strictly
845 monotonically rising with insn order. */
846 /* We use max_log here to keep track of the maximum alignment we want to

--- 4 unchanged lines hidden (view full) ---

851 max_skip = 0;
852
853 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
854 {
855 int log;
856
857 INSN_SHUID (insn) = i++;
858 if (INSN_P (insn))
859 continue;
860
861 if (LABEL_P (insn))
810 {
862 {
811 /* reorg might make the first insn of a loop being run once only,
812 and delete the label in front of it. Then we want to apply
813 the loop alignment to the new label created by reorg, which
814 is separated by the former loop start insn from the
815 NOTE_INSN_LOOP_BEG. */
816 }
817 else if (GET_CODE (insn) == CODE_LABEL)
818 {
819 rtx next;
820
821 /* Merge in alignments computed by compute_alignments. */
822 log = LABEL_TO_ALIGNMENT (insn);
823 if (max_log < log)
824 {
825 max_log = log;
826 max_skip = LABEL_TO_MAX_SKIP (insn);
827 }
828
829 log = LABEL_ALIGN (insn);
830 if (max_log < log)
831 {
832 max_log = log;
833 max_skip = LABEL_ALIGN_MAX_SKIP;
834 }
863 rtx next;
864
865 /* Merge in alignments computed by compute_alignments. */
866 log = LABEL_TO_ALIGNMENT (insn);
867 if (max_log < log)
868 {
869 max_log = log;
870 max_skip = LABEL_TO_MAX_SKIP (insn);
871 }
872
873 log = LABEL_ALIGN (insn);
874 if (max_log < log)
875 {
876 max_log = log;
877 max_skip = LABEL_ALIGN_MAX_SKIP;
878 }
835 next = NEXT_INSN (insn);
879 next = next_nonnote_insn (insn);
836 /* ADDR_VECs only take room if read-only data goes into the text
837 section. */
880 /* ADDR_VECs only take room if read-only data goes into the text
881 section. */
838 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
839 if (next && GET_CODE (next) == JUMP_INSN)
882 if (JUMP_TABLES_IN_TEXT_SECTION
883 || readonly_data_section == text_section)
884 if (next && JUMP_P (next))
840 {
841 rtx nextbody = PATTERN (next);
842 if (GET_CODE (nextbody) == ADDR_VEC
843 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
844 {
845 log = ADDR_VEC_ALIGN (next);
846 if (max_log < log)
847 {
848 max_log = log;
849 max_skip = LABEL_ALIGN_MAX_SKIP;
850 }
851 }
852 }
853 LABEL_TO_ALIGNMENT (insn) = max_log;
854 LABEL_TO_MAX_SKIP (insn) = max_skip;
855 max_log = 0;
856 max_skip = 0;
857 }
885 {
886 rtx nextbody = PATTERN (next);
887 if (GET_CODE (nextbody) == ADDR_VEC
888 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
889 {
890 log = ADDR_VEC_ALIGN (next);
891 if (max_log < log)
892 {
893 max_log = log;
894 max_skip = LABEL_ALIGN_MAX_SKIP;
895 }
896 }
897 }
898 LABEL_TO_ALIGNMENT (insn) = max_log;
899 LABEL_TO_MAX_SKIP (insn) = max_skip;
900 max_log = 0;
901 max_skip = 0;
902 }
858 else if (GET_CODE (insn) == BARRIER)
903 else if (BARRIER_P (insn))
859 {
860 rtx label;
861
862 for (label = insn; label && ! INSN_P (label);
863 label = NEXT_INSN (label))
904 {
905 rtx label;
906
907 for (label = insn; label && ! INSN_P (label);
908 label = NEXT_INSN (label))
864 if (GET_CODE (label) == CODE_LABEL)
909 if (LABEL_P (label))
865 {
866 log = LABEL_ALIGN_AFTER_BARRIER (insn);
867 if (max_log < log)
868 {
869 max_log = log;
870 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
871 }
872 break;
873 }
874 }
875 }
876#ifdef HAVE_ATTR_length
877
878 /* Allocate the rest of the arrays. */
910 {
911 log = LABEL_ALIGN_AFTER_BARRIER (insn);
912 if (max_log < log)
913 {
914 max_log = log;
915 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
916 }
917 break;
918 }
919 }
920 }
921#ifdef HAVE_ATTR_length
922
923 /* Allocate the rest of the arrays. */
879 insn_lengths = xmalloc (max_uid * sizeof (*insn_lengths));
924 insn_lengths = XNEWVEC (int, max_uid);
880 insn_lengths_max_uid = max_uid;
881 /* Syntax errors can lead to labels being outside of the main insn stream.
882 Initialize insn_addresses, so that we get reproducible results. */
883 INSN_ADDRESSES_ALLOC (max_uid);
884
925 insn_lengths_max_uid = max_uid;
926 /* Syntax errors can lead to labels being outside of the main insn stream.
927 Initialize insn_addresses, so that we get reproducible results. */
928 INSN_ADDRESSES_ALLOC (max_uid);
929
885 varying_length = xcalloc (max_uid, sizeof (char));
930 varying_length = XCNEWVEC (char, max_uid);
886
887 /* Initialize uid_align. We scan instructions
888 from end to start, and keep in align_tab[n] the last seen insn
889 that does an alignment of at least n+1, i.e. the successor
890 in the alignment chain for an insn that does / has a known
891 alignment of n. */
931
932 /* Initialize uid_align. We scan instructions
933 from end to start, and keep in align_tab[n] the last seen insn
934 that does an alignment of at least n+1, i.e. the successor
935 in the alignment chain for an insn that does / has a known
936 alignment of n. */
892 uid_align = xcalloc (max_uid, sizeof *uid_align);
937 uid_align = XCNEWVEC (rtx, max_uid);
893
894 for (i = MAX_CODE_ALIGN; --i >= 0;)
895 align_tab[i] = NULL_RTX;
896 seq = get_last_insn ();
897 for (; seq; seq = PREV_INSN (seq))
898 {
899 int uid = INSN_UID (seq);
900 int log;
938
939 for (i = MAX_CODE_ALIGN; --i >= 0;)
940 align_tab[i] = NULL_RTX;
941 seq = get_last_insn ();
942 for (; seq; seq = PREV_INSN (seq))
943 {
944 int uid = INSN_UID (seq);
945 int log;
901 log = (GET_CODE (seq) == CODE_LABEL ? LABEL_TO_ALIGNMENT (seq) : 0);
946 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
902 uid_align[uid] = align_tab[0];
903 if (log)
904 {
905 /* Found an alignment label. */
906 uid_align[uid] = align_tab[log];
907 for (i = log - 1; i >= 0; i--)
908 align_tab[i] = seq;
909 }

--- 10 unchanged lines hidden (view full) ---

920
921 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
922 {
923 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
924 int len, i, min, max, insn_shuid;
925 int min_align;
926 addr_diff_vec_flags flags;
927
947 uid_align[uid] = align_tab[0];
948 if (log)
949 {
950 /* Found an alignment label. */
951 uid_align[uid] = align_tab[log];
952 for (i = log - 1; i >= 0; i--)
953 align_tab[i] = seq;
954 }

--- 10 unchanged lines hidden (view full) ---

965
966 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
967 {
968 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
969 int len, i, min, max, insn_shuid;
970 int min_align;
971 addr_diff_vec_flags flags;
972
928 if (GET_CODE (insn) != JUMP_INSN
973 if (!JUMP_P (insn)
929 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
930 continue;
931 pat = PATTERN (insn);
932 len = XVECLEN (pat, 1);
974 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
975 continue;
976 pat = PATTERN (insn);
977 len = XVECLEN (pat, 1);
933 if (len <= 0)
934 abort ();
978 gcc_assert (len > 0);
935 min_align = MAX_CODE_ALIGN;
936 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
937 {
938 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
939 int shuid = INSN_SHUID (lab);
940 if (shuid < min)
941 {
942 min = shuid;
943 min_lab = lab;
944 }
945 if (shuid > max)
946 {
947 max = shuid;
948 max_lab = lab;
949 }
950 if (min_align > LABEL_TO_ALIGNMENT (lab))
951 min_align = LABEL_TO_ALIGNMENT (lab);
952 }
979 min_align = MAX_CODE_ALIGN;
980 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
981 {
982 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
983 int shuid = INSN_SHUID (lab);
984 if (shuid < min)
985 {
986 min = shuid;
987 min_lab = lab;
988 }
989 if (shuid > max)
990 {
991 max = shuid;
992 max_lab = lab;
993 }
994 if (min_align > LABEL_TO_ALIGNMENT (lab))
995 min_align = LABEL_TO_ALIGNMENT (lab);
996 }
953 XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
954 XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
997 XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
998 XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
955 insn_shuid = INSN_SHUID (insn);
956 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
999 insn_shuid = INSN_SHUID (insn);
1000 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1001 memset (&flags, 0, sizeof (flags));
957 flags.min_align = min_align;
958 flags.base_after_vec = rel > insn_shuid;
959 flags.min_after_vec = min > insn_shuid;
960 flags.max_after_vec = max > insn_shuid;
961 flags.min_after_base = min > rel;
962 flags.max_after_base = max > rel;
963 ADDR_DIFF_VEC_FLAGS (pat) = flags;
964 }

--- 4 unchanged lines hidden (view full) ---

969 for (insn_current_address = 0, insn = first;
970 insn != 0;
971 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
972 {
973 uid = INSN_UID (insn);
974
975 insn_lengths[uid] = 0;
976
1002 flags.min_align = min_align;
1003 flags.base_after_vec = rel > insn_shuid;
1004 flags.min_after_vec = min > insn_shuid;
1005 flags.max_after_vec = max > insn_shuid;
1006 flags.min_after_base = min > rel;
1007 flags.max_after_base = max > rel;
1008 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1009 }

--- 4 unchanged lines hidden (view full) ---

1014 for (insn_current_address = 0, insn = first;
1015 insn != 0;
1016 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1017 {
1018 uid = INSN_UID (insn);
1019
1020 insn_lengths[uid] = 0;
1021
977 if (GET_CODE (insn) == CODE_LABEL)
1022 if (LABEL_P (insn))
978 {
979 int log = LABEL_TO_ALIGNMENT (insn);
980 if (log)
981 {
982 int align = 1 << log;
983 int new_address = (insn_current_address + align - 1) & -align;
984 insn_lengths[uid] = new_address - insn_current_address;
985 }
986 }
987
988 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
989
1023 {
1024 int log = LABEL_TO_ALIGNMENT (insn);
1025 if (log)
1026 {
1027 int align = 1 << log;
1028 int new_address = (insn_current_address + align - 1) & -align;
1029 insn_lengths[uid] = new_address - insn_current_address;
1030 }
1031 }
1032
1033 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1034
990 if (GET_CODE (insn) == NOTE || GET_CODE (insn) == BARRIER
991 || GET_CODE (insn) == CODE_LABEL)
1035 if (NOTE_P (insn) || BARRIER_P (insn)
1036 || LABEL_P (insn))
992 continue;
993 if (INSN_DELETED_P (insn))
994 continue;
995
996 body = PATTERN (insn);
997 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
998 {
999 /* This only takes room if read-only data goes into the text
1000 section. */
1037 continue;
1038 if (INSN_DELETED_P (insn))
1039 continue;
1040
1041 body = PATTERN (insn);
1042 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1043 {
1044 /* This only takes room if read-only data goes into the text
1045 section. */
1001 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1046 if (JUMP_TABLES_IN_TEXT_SECTION
1047 || readonly_data_section == text_section)
1002 insn_lengths[uid] = (XVECLEN (body,
1003 GET_CODE (body) == ADDR_DIFF_VEC)
1004 * GET_MODE_SIZE (GET_MODE (body)));
1005 /* Alignment is handled by ADDR_VEC_ALIGN. */
1006 }
1007 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1008 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1009 else if (GET_CODE (body) == SEQUENCE)

--- 64 unchanged lines hidden (view full) ---

1074 int new_length;
1075#ifdef ADJUST_INSN_LENGTH
1076 int tmp_length;
1077#endif
1078 int length_align;
1079
1080 uid = INSN_UID (insn);
1081
1048 insn_lengths[uid] = (XVECLEN (body,
1049 GET_CODE (body) == ADDR_DIFF_VEC)
1050 * GET_MODE_SIZE (GET_MODE (body)));
1051 /* Alignment is handled by ADDR_VEC_ALIGN. */
1052 }
1053 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1054 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1055 else if (GET_CODE (body) == SEQUENCE)

--- 64 unchanged lines hidden (view full) ---

1120 int new_length;
1121#ifdef ADJUST_INSN_LENGTH
1122 int tmp_length;
1123#endif
1124 int length_align;
1125
1126 uid = INSN_UID (insn);
1127
1082 if (GET_CODE (insn) == CODE_LABEL)
1128 if (LABEL_P (insn))
1083 {
1084 int log = LABEL_TO_ALIGNMENT (insn);
1085 if (log > insn_current_align)
1086 {
1087 int align = 1 << log;
1088 int new_address= (insn_current_address + align - 1) & -align;
1089 insn_lengths[uid] = new_address - insn_current_address;
1090 insn_current_align = log;

--- 8 unchanged lines hidden (view full) ---

1099 length_align = INSN_LENGTH_ALIGNMENT (insn);
1100 if (length_align < insn_current_align)
1101 insn_current_align = length_align;
1102
1103 insn_last_address = INSN_ADDRESSES (uid);
1104 INSN_ADDRESSES (uid) = insn_current_address;
1105
1106#ifdef CASE_VECTOR_SHORTEN_MODE
1129 {
1130 int log = LABEL_TO_ALIGNMENT (insn);
1131 if (log > insn_current_align)
1132 {
1133 int align = 1 << log;
1134 int new_address= (insn_current_address + align - 1) & -align;
1135 insn_lengths[uid] = new_address - insn_current_address;
1136 insn_current_align = log;

--- 8 unchanged lines hidden (view full) ---

1145 length_align = INSN_LENGTH_ALIGNMENT (insn);
1146 if (length_align < insn_current_align)
1147 insn_current_align = length_align;
1148
1149 insn_last_address = INSN_ADDRESSES (uid);
1150 INSN_ADDRESSES (uid) = insn_current_address;
1151
1152#ifdef CASE_VECTOR_SHORTEN_MODE
1107 if (optimize && GET_CODE (insn) == JUMP_INSN
1153 if (optimize && JUMP_P (insn)
1108 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1109 {
1110 rtx body = PATTERN (insn);
1111 int old_length = insn_lengths[uid];
1112 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1113 rtx min_lab = XEXP (XEXP (body, 2), 0);
1114 rtx max_lab = XEXP (XEXP (body, 3), 0);
1115 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));

--- 78 unchanged lines hidden (view full) ---

1194 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1195 }
1196 else
1197 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1198 }
1199 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1200 max_addr - rel_addr,
1201 body));
1154 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1155 {
1156 rtx body = PATTERN (insn);
1157 int old_length = insn_lengths[uid];
1158 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1159 rtx min_lab = XEXP (XEXP (body, 2), 0);
1160 rtx max_lab = XEXP (XEXP (body, 3), 0);
1161 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));

--- 78 unchanged lines hidden (view full) ---

1240 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1241 }
1242 else
1243 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1244 }
1245 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1246 max_addr - rel_addr,
1247 body));
1202 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1248 if (JUMP_TABLES_IN_TEXT_SECTION
1249 || readonly_data_section == text_section)
1203 {
1204 insn_lengths[uid]
1205 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1206 insn_current_address += insn_lengths[uid];
1207 if (insn_lengths[uid] != old_length)
1208 something_changed = 1;
1209 }
1210
1211 continue;
1212 }
1213#endif /* CASE_VECTOR_SHORTEN_MODE */
1214
1215 if (! (varying_length[uid]))
1216 {
1250 {
1251 insn_lengths[uid]
1252 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1253 insn_current_address += insn_lengths[uid];
1254 if (insn_lengths[uid] != old_length)
1255 something_changed = 1;
1256 }
1257
1258 continue;
1259 }
1260#endif /* CASE_VECTOR_SHORTEN_MODE */
1261
1262 if (! (varying_length[uid]))
1263 {
1217 if (GET_CODE (insn) == INSN
1264 if (NONJUMP_INSN_P (insn)
1218 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1219 {
1220 int i;
1221
1222 body = PATTERN (insn);
1223 for (i = 0; i < XVECLEN (body, 0); i++)
1224 {
1225 rtx inner_insn = XVECEXP (body, 0, i);

--- 5 unchanged lines hidden (view full) ---

1231 }
1232 }
1233 else
1234 insn_current_address += insn_lengths[uid];
1235
1236 continue;
1237 }
1238
1265 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1266 {
1267 int i;
1268
1269 body = PATTERN (insn);
1270 for (i = 0; i < XVECLEN (body, 0); i++)
1271 {
1272 rtx inner_insn = XVECEXP (body, 0, i);

--- 5 unchanged lines hidden (view full) ---

1278 }
1279 }
1280 else
1281 insn_current_address += insn_lengths[uid];
1282
1283 continue;
1284 }
1285
1239 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
1286 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1240 {
1241 int i;
1242
1243 body = PATTERN (insn);
1244 new_length = 0;
1245 for (i = 0; i < XVECLEN (body, 0); i++)
1246 {
1247 rtx inner_insn = XVECEXP (body, 0, i);

--- 91 unchanged lines hidden (view full) ---

1339
1340 last_filename = locator_file (prologue_locator);
1341 last_linenum = locator_line (prologue_locator);
1342
1343 high_block_linenum = high_function_linenum = last_linenum;
1344
1345 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1346
1287 {
1288 int i;
1289
1290 body = PATTERN (insn);
1291 new_length = 0;
1292 for (i = 0; i < XVECLEN (body, 0); i++)
1293 {
1294 rtx inner_insn = XVECEXP (body, 0, i);

--- 91 unchanged lines hidden (view full) ---

1386
1387 last_filename = locator_file (prologue_locator);
1388 last_linenum = locator_line (prologue_locator);
1389
1390 high_block_linenum = high_function_linenum = last_linenum;
1391
1392 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1393
1347#if defined (DWARF2_UNWIND_INFO) || defined (IA64_UNWIND_INFO)
1394#if defined (DWARF2_UNWIND_INFO) || defined (TARGET_UNWIND_INFO)
1348 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1349 dwarf2out_begin_prologue (0, NULL);
1350#endif
1351
1352#ifdef LEAF_REG_REMAP
1353 if (current_function_uses_only_leaf_regs)
1354 leaf_renumber_regs (first);
1355#endif
1356
1357 /* The Sun386i and perhaps other machines don't work right
1358 if the profiling code comes after the prologue. */
1359#ifdef PROFILE_BEFORE_PROLOGUE
1360 if (current_function_profile)
1361 profile_function (file);
1362#endif /* PROFILE_BEFORE_PROLOGUE */
1363
1364#if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1365 if (dwarf2out_do_frame ())
1395 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1396 dwarf2out_begin_prologue (0, NULL);
1397#endif
1398
1399#ifdef LEAF_REG_REMAP
1400 if (current_function_uses_only_leaf_regs)
1401 leaf_renumber_regs (first);
1402#endif
1403
1404 /* The Sun386i and perhaps other machines don't work right
1405 if the profiling code comes after the prologue. */
1406#ifdef PROFILE_BEFORE_PROLOGUE
1407 if (current_function_profile)
1408 profile_function (file);
1409#endif /* PROFILE_BEFORE_PROLOGUE */
1410
1411#if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1412 if (dwarf2out_do_frame ())
1366 dwarf2out_frame_debug (NULL_RTX);
1413 dwarf2out_frame_debug (NULL_RTX, false);
1367#endif
1368
1369 /* If debugging, assign block numbers to all of the blocks in this
1370 function. */
1371 if (write_symbols)
1372 {
1414#endif
1415
1416 /* If debugging, assign block numbers to all of the blocks in this
1417 function. */
1418 if (write_symbols)
1419 {
1373 remove_unnecessary_notes ();
1374 reemit_insn_block_notes ();
1375 number_blocks (current_function_decl);
1376 /* We never actually put out begin/end notes for the top-level
1377 block in the function. But, conceptually, that block is
1378 always needed. */
1379 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1380 }
1381
1382 /* First output the function prologue: code to set up the stack frame. */
1420 reemit_insn_block_notes ();
1421 number_blocks (current_function_decl);
1422 /* We never actually put out begin/end notes for the top-level
1423 block in the function. But, conceptually, that block is
1424 always needed. */
1425 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1426 }
1427
1428 /* First output the function prologue: code to set up the stack frame. */
1383 (*targetm.asm_out.function_prologue) (file, get_frame_size ());
1429 targetm.asm_out.function_prologue (file, get_frame_size ());
1384
1385 /* If the machine represents the prologue as RTL, the profiling code must
1386 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1387#ifdef HAVE_prologue
1388 if (! HAVE_prologue)
1389#endif
1390 profile_after_prologue (file);
1391}

--- 12 unchanged lines hidden (view full) ---

1404{
1405#ifndef NO_PROFILE_COUNTERS
1406# define NO_PROFILE_COUNTERS 0
1407#endif
1408#if defined(ASM_OUTPUT_REG_PUSH)
1409 int sval = current_function_returns_struct;
1410 rtx svrtx = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl), 1);
1411#if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1430
1431 /* If the machine represents the prologue as RTL, the profiling code must
1432 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1433#ifdef HAVE_prologue
1434 if (! HAVE_prologue)
1435#endif
1436 profile_after_prologue (file);
1437}

--- 12 unchanged lines hidden (view full) ---

1450{
1451#ifndef NO_PROFILE_COUNTERS
1452# define NO_PROFILE_COUNTERS 0
1453#endif
1454#if defined(ASM_OUTPUT_REG_PUSH)
1455 int sval = current_function_returns_struct;
1456 rtx svrtx = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl), 1);
1457#if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1412 int cxt = current_function_needs_context;
1458 int cxt = cfun->static_chain_decl != NULL;
1413#endif
1414#endif /* ASM_OUTPUT_REG_PUSH */
1415
1416 if (! NO_PROFILE_COUNTERS)
1417 {
1418 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1459#endif
1460#endif /* ASM_OUTPUT_REG_PUSH */
1461
1462 if (! NO_PROFILE_COUNTERS)
1463 {
1464 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1419 data_section ();
1465 switch_to_section (data_section);
1420 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1466 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1421 (*targetm.asm_out.internal_label) (file, "LP", current_function_funcdef_no);
1467 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1422 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1423 }
1424
1468 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1469 }
1470
1425 function_section (current_function_decl);
1471 switch_to_section (current_function_section ());
1426
1427#if defined(ASM_OUTPUT_REG_PUSH)
1472
1473#if defined(ASM_OUTPUT_REG_PUSH)
1428 if (sval && svrtx != NULL_RTX && GET_CODE (svrtx) == REG)
1474 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1429 ASM_OUTPUT_REG_PUSH (file, REGNO (svrtx));
1430#endif
1431
1432#if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1433 if (cxt)
1434 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1435#else
1436#if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)

--- 14 unchanged lines hidden (view full) ---

1451 if (cxt)
1452 {
1453 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1454 }
1455#endif
1456#endif
1457
1458#if defined(ASM_OUTPUT_REG_PUSH)
1475 ASM_OUTPUT_REG_PUSH (file, REGNO (svrtx));
1476#endif
1477
1478#if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1479 if (cxt)
1480 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1481#else
1482#if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)

--- 14 unchanged lines hidden (view full) ---

1497 if (cxt)
1498 {
1499 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1500 }
1501#endif
1502#endif
1503
1504#if defined(ASM_OUTPUT_REG_PUSH)
1459 if (sval && svrtx != NULL_RTX && GET_CODE (svrtx) == REG)
1505 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1460 ASM_OUTPUT_REG_POP (file, REGNO (svrtx));
1461#endif
1462}
1463
1464/* Output assembler code for the end of a function.
1465 For clarity, args are same as those of `final_start_function'
1466 even though not all of them are needed. */
1467
1468void
1469final_end_function (void)
1470{
1471 app_disable ();
1472
1473 (*debug_hooks->end_function) (high_function_linenum);
1474
1475 /* Finally, output the function epilogue:
1476 code to restore the stack frame and return to the caller. */
1506 ASM_OUTPUT_REG_POP (file, REGNO (svrtx));
1507#endif
1508}
1509
1510/* Output assembler code for the end of a function.
1511 For clarity, args are same as those of `final_start_function'
1512 even though not all of them are needed. */
1513
1514void
1515final_end_function (void)
1516{
1517 app_disable ();
1518
1519 (*debug_hooks->end_function) (high_function_linenum);
1520
1521 /* Finally, output the function epilogue:
1522 code to restore the stack frame and return to the caller. */
1477 (*targetm.asm_out.function_epilogue) (asm_out_file, get_frame_size ());
1523 targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1478
1479 /* And debug output. */
1480 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
1481
1482#if defined (DWARF2_UNWIND_INFO)
1483 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1484 && dwarf2out_do_frame ())
1485 dwarf2out_end_epilogue (last_linenum, last_filename);
1486#endif
1487}
1488
1489/* Output assembler code for some insns: all or part of a function.
1524
1525 /* And debug output. */
1526 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
1527
1528#if defined (DWARF2_UNWIND_INFO)
1529 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1530 && dwarf2out_do_frame ())
1531 dwarf2out_end_epilogue (last_linenum, last_filename);
1532#endif
1533}
1534
1535/* Output assembler code for some insns: all or part of a function.
1490 For description of args, see `final_start_function', above.
1536 For description of args, see `final_start_function', above. */
1491
1537
1492 PRESCAN is 1 if we are not really outputting,
1493 just scanning as if we were outputting.
1494 Prescanning deletes and rearranges insns just like ordinary output.
1495 PRESCAN is -2 if we are outputting after having prescanned.
1496 In this case, don't try to delete or rearrange insns
1497 because that has already been done.
1498 Prescanning is done only on certain machines. */
1499
1500void
1538void
1501final (rtx first, FILE *file, int optimize, int prescan)
1539final (rtx first, FILE *file, int optimize)
1502{
1503 rtx insn;
1504 int max_uid = 0;
1505 int seen = 0;
1506
1507 last_ignored_compare = 0;
1508
1509#ifdef SDB_DEBUGGING_INFO
1510 /* When producing SDB debugging info, delete troublesome line number
1511 notes from inlined functions in other files as well as duplicate
1512 line number notes. */
1513 if (write_symbols == SDB_DEBUG)
1514 {
1515 rtx last = 0;
1516 for (insn = first; insn; insn = NEXT_INSN (insn))
1540{
1541 rtx insn;
1542 int max_uid = 0;
1543 int seen = 0;
1544
1545 last_ignored_compare = 0;
1546
1547#ifdef SDB_DEBUGGING_INFO
1548 /* When producing SDB debugging info, delete troublesome line number
1549 notes from inlined functions in other files as well as duplicate
1550 line number notes. */
1551 if (write_symbols == SDB_DEBUG)
1552 {
1553 rtx last = 0;
1554 for (insn = first; insn; insn = NEXT_INSN (insn))
1517 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1555 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
1518 {
1556 {
1519 if ((RTX_INTEGRATED_P (insn)
1520 && strcmp (NOTE_SOURCE_FILE (insn), main_input_filename) != 0)
1521 || (last != 0
1522 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1523 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)))
1557 if (last != 0
1558#ifdef USE_MAPPED_LOCATION
1559 && NOTE_SOURCE_LOCATION (insn) == NOTE_SOURCE_LOCATION (last)
1560#else
1561 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1562 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)
1563#endif
1564 )
1524 {
1525 delete_insn (insn); /* Use delete_note. */
1526 continue;
1527 }
1528 last = insn;
1529 }
1530 }
1531#endif
1532
1533 for (insn = first; insn; insn = NEXT_INSN (insn))
1534 {
1535 if (INSN_UID (insn) > max_uid) /* Find largest UID. */
1536 max_uid = INSN_UID (insn);
1537#ifdef HAVE_cc0
1538 /* If CC tracking across branches is enabled, record the insn which
1539 jumps to each branch only reached from one place. */
1565 {
1566 delete_insn (insn); /* Use delete_note. */
1567 continue;
1568 }
1569 last = insn;
1570 }
1571 }
1572#endif
1573
1574 for (insn = first; insn; insn = NEXT_INSN (insn))
1575 {
1576 if (INSN_UID (insn) > max_uid) /* Find largest UID. */
1577 max_uid = INSN_UID (insn);
1578#ifdef HAVE_cc0
1579 /* If CC tracking across branches is enabled, record the insn which
1580 jumps to each branch only reached from one place. */
1540 if (optimize && GET_CODE (insn) == JUMP_INSN)
1581 if (optimize && JUMP_P (insn))
1541 {
1542 rtx lab = JUMP_LABEL (insn);
1543 if (lab && LABEL_NUSES (lab) == 1)
1544 {
1545 LABEL_REFS (lab) = insn;
1546 }
1547 }
1548#endif

--- 6 unchanged lines hidden (view full) ---

1555 /* Output the insns. */
1556 for (insn = NEXT_INSN (first); insn;)
1557 {
1558#ifdef HAVE_ATTR_length
1559 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1560 {
1561 /* This can be triggered by bugs elsewhere in the compiler if
1562 new insns are created after init_insn_lengths is called. */
1582 {
1583 rtx lab = JUMP_LABEL (insn);
1584 if (lab && LABEL_NUSES (lab) == 1)
1585 {
1586 LABEL_REFS (lab) = insn;
1587 }
1588 }
1589#endif

--- 6 unchanged lines hidden (view full) ---

1596 /* Output the insns. */
1597 for (insn = NEXT_INSN (first); insn;)
1598 {
1599#ifdef HAVE_ATTR_length
1600 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1601 {
1602 /* This can be triggered by bugs elsewhere in the compiler if
1603 new insns are created after init_insn_lengths is called. */
1563 if (GET_CODE (insn) == NOTE)
1564 insn_current_address = -1;
1565 else
1566 abort ();
1604 gcc_assert (NOTE_P (insn));
1605 insn_current_address = -1;
1567 }
1568 else
1569 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1570#endif /* HAVE_ATTR_length */
1571
1606 }
1607 else
1608 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1609#endif /* HAVE_ATTR_length */
1610
1572 insn = final_scan_insn (insn, file, optimize, prescan, 0, &seen);
1611 insn = final_scan_insn (insn, file, optimize, 0, &seen);
1573 }
1574}
1575
1576const char *
1577get_insn_template (int code, rtx insn)
1578{
1579 switch (insn_data[code].output_format)
1580 {
1581 case INSN_OUTPUT_FORMAT_SINGLE:
1582 return insn_data[code].output.single;
1583 case INSN_OUTPUT_FORMAT_MULTI:
1584 return insn_data[code].output.multi[which_alternative];
1585 case INSN_OUTPUT_FORMAT_FUNCTION:
1612 }
1613}
1614
1615const char *
1616get_insn_template (int code, rtx insn)
1617{
1618 switch (insn_data[code].output_format)
1619 {
1620 case INSN_OUTPUT_FORMAT_SINGLE:
1621 return insn_data[code].output.single;
1622 case INSN_OUTPUT_FORMAT_MULTI:
1623 return insn_data[code].output.multi[which_alternative];
1624 case INSN_OUTPUT_FORMAT_FUNCTION:
1586 if (insn == NULL)
1587 abort ();
1625 gcc_assert (insn);
1588 return (*insn_data[code].output.function) (recog_data.operand, insn);
1589
1590 default:
1626 return (*insn_data[code].output.function) (recog_data.operand, insn);
1627
1628 default:
1591 abort ();
1629 gcc_unreachable ();
1592 }
1593}
1594
1595/* Emit the appropriate declaration for an alternate-entry-point
1596 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1597 LABEL_KIND != LABEL_NORMAL.
1598
1599 The case fall-through in this function is intentional. */

--- 4 unchanged lines hidden (view full) ---

1604
1605 switch (LABEL_KIND (insn))
1606 {
1607 case LABEL_WEAK_ENTRY:
1608#ifdef ASM_WEAKEN_LABEL
1609 ASM_WEAKEN_LABEL (file, name);
1610#endif
1611 case LABEL_GLOBAL_ENTRY:
1630 }
1631}
1632
1633/* Emit the appropriate declaration for an alternate-entry-point
1634 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1635 LABEL_KIND != LABEL_NORMAL.
1636
1637 The case fall-through in this function is intentional. */

--- 4 unchanged lines hidden (view full) ---

1642
1643 switch (LABEL_KIND (insn))
1644 {
1645 case LABEL_WEAK_ENTRY:
1646#ifdef ASM_WEAKEN_LABEL
1647 ASM_WEAKEN_LABEL (file, name);
1648#endif
1649 case LABEL_GLOBAL_ENTRY:
1612 (*targetm.asm_out.globalize_label) (file, name);
1650 targetm.asm_out.globalize_label (file, name);
1613 case LABEL_STATIC_ENTRY:
1614#ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1615 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1616#endif
1617 ASM_OUTPUT_LABEL (file, name);
1618 break;
1619
1620 case LABEL_NORMAL:
1621 default:
1651 case LABEL_STATIC_ENTRY:
1652#ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1653 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1654#endif
1655 ASM_OUTPUT_LABEL (file, name);
1656 break;
1657
1658 case LABEL_NORMAL:
1659 default:
1622 abort ();
1660 gcc_unreachable ();
1623 }
1624}
1625
1626/* The final scan for one insn, INSN.
1627 Args are same as in `final', except that INSN
1628 is the insn being scanned.
1629 Value returned is the next insn to be scanned.
1630
1631 NOPEEPHOLES is the flag to disallow peephole processing (currently
1632 used for within delayed branch sequence output).
1633
1634 SEEN is used to track the end of the prologue, for emitting
1635 debug information. We force the emission of a line note after
1636 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1637 at the beginning of the second basic block, whichever comes
1638 first. */
1639
1640rtx
1641final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED,
1661 }
1662}
1663
1664/* The final scan for one insn, INSN.
1665 Args are same as in `final', except that INSN
1666 is the insn being scanned.
1667 Value returned is the next insn to be scanned.
1668
1669 NOPEEPHOLES is the flag to disallow peephole processing (currently
1670 used for within delayed branch sequence output).
1671
1672 SEEN is used to track the end of the prologue, for emitting
1673 debug information. We force the emission of a line note after
1674 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1675 at the beginning of the second basic block, whichever comes
1676 first. */
1677
1678rtx
1679final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED,
1642 int prescan, int nopeepholes ATTRIBUTE_UNUSED,
1643 int *seen)
1680 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
1644{
1645#ifdef HAVE_cc0
1646 rtx set;
1647#endif
1681{
1682#ifdef HAVE_cc0
1683 rtx set;
1684#endif
1685 rtx next;
1648
1649 insn_counter++;
1650
1651 /* Ignore deleted insns. These can occur when we split insns (due to a
1652 template of "#") while not optimizing. */
1653 if (INSN_DELETED_P (insn))
1654 return NEXT_INSN (insn);
1655
1656 switch (GET_CODE (insn))
1657 {
1658 case NOTE:
1686
1687 insn_counter++;
1688
1689 /* Ignore deleted insns. These can occur when we split insns (due to a
1690 template of "#") while not optimizing. */
1691 if (INSN_DELETED_P (insn))
1692 return NEXT_INSN (insn);
1693
1694 switch (GET_CODE (insn))
1695 {
1696 case NOTE:
1659 if (prescan > 0)
1660 break;
1661
1662 switch (NOTE_LINE_NUMBER (insn))
1663 {
1664 case NOTE_INSN_DELETED:
1697 switch (NOTE_LINE_NUMBER (insn))
1698 {
1699 case NOTE_INSN_DELETED:
1665 case NOTE_INSN_LOOP_BEG:
1666 case NOTE_INSN_LOOP_END:
1667 case NOTE_INSN_LOOP_END_TOP_COND:
1668 case NOTE_INSN_LOOP_CONT:
1669 case NOTE_INSN_LOOP_VTOP:
1670 case NOTE_INSN_FUNCTION_END:
1671 case NOTE_INSN_REPEATED_LINE_NUMBER:
1672 case NOTE_INSN_EXPECTED_VALUE:
1673 break;
1674
1700 case NOTE_INSN_FUNCTION_END:
1701 case NOTE_INSN_REPEATED_LINE_NUMBER:
1702 case NOTE_INSN_EXPECTED_VALUE:
1703 break;
1704
1705 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
1706 in_cold_section_p = !in_cold_section_p;
1707 (*debug_hooks->switch_text_section) ();
1708 switch_to_section (current_function_section ());
1709 break;
1710
1675 case NOTE_INSN_BASIC_BLOCK:
1711 case NOTE_INSN_BASIC_BLOCK:
1676#ifdef IA64_UNWIND_INFO
1677 IA64_UNWIND_EMIT (asm_out_file, insn);
1712#ifdef TARGET_UNWIND_INFO
1713 targetm.asm_out.unwind_emit (asm_out_file, insn);
1678#endif
1714#endif
1715
1679 if (flag_debug_asm)
1680 fprintf (asm_out_file, "\t%s basic block %d\n",
1681 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
1682
1683 if ((*seen & (SEEN_EMITTED | SEEN_BB)) == SEEN_BB)
1684 {
1685 *seen |= SEEN_EMITTED;
1716 if (flag_debug_asm)
1717 fprintf (asm_out_file, "\t%s basic block %d\n",
1718 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
1719
1720 if ((*seen & (SEEN_EMITTED | SEEN_BB)) == SEEN_BB)
1721 {
1722 *seen |= SEEN_EMITTED;
1686 last_filename = NULL;
1723 force_source_line = true;
1687 }
1688 else
1689 *seen |= SEEN_BB;
1690
1691 break;
1692
1693 case NOTE_INSN_EH_REGION_BEG:
1694 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1695 NOTE_EH_HANDLER (insn));
1696 break;
1697
1698 case NOTE_INSN_EH_REGION_END:
1699 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1700 NOTE_EH_HANDLER (insn));
1701 break;
1702
1703 case NOTE_INSN_PROLOGUE_END:
1724 }
1725 else
1726 *seen |= SEEN_BB;
1727
1728 break;
1729
1730 case NOTE_INSN_EH_REGION_BEG:
1731 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1732 NOTE_EH_HANDLER (insn));
1733 break;
1734
1735 case NOTE_INSN_EH_REGION_END:
1736 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1737 NOTE_EH_HANDLER (insn));
1738 break;
1739
1740 case NOTE_INSN_PROLOGUE_END:
1704 (*targetm.asm_out.function_end_prologue) (file);
1741 targetm.asm_out.function_end_prologue (file);
1705 profile_after_prologue (file);
1706
1707 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1708 {
1709 *seen |= SEEN_EMITTED;
1742 profile_after_prologue (file);
1743
1744 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1745 {
1746 *seen |= SEEN_EMITTED;
1710 last_filename = NULL;
1747 force_source_line = true;
1711 }
1712 else
1713 *seen |= SEEN_NOTE;
1714
1715 break;
1716
1717 case NOTE_INSN_EPILOGUE_BEG:
1748 }
1749 else
1750 *seen |= SEEN_NOTE;
1751
1752 break;
1753
1754 case NOTE_INSN_EPILOGUE_BEG:
1718 (*targetm.asm_out.function_begin_epilogue) (file);
1755 targetm.asm_out.function_begin_epilogue (file);
1719 break;
1720
1721 case NOTE_INSN_FUNCTION_BEG:
1722 app_disable ();
1723 (*debug_hooks->end_prologue) (last_linenum, last_filename);
1724
1725 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1726 {
1727 *seen |= SEEN_EMITTED;
1756 break;
1757
1758 case NOTE_INSN_FUNCTION_BEG:
1759 app_disable ();
1760 (*debug_hooks->end_prologue) (last_linenum, last_filename);
1761
1762 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1763 {
1764 *seen |= SEEN_EMITTED;
1728 last_filename = NULL;
1765 force_source_line = true;
1729 }
1730 else
1731 *seen |= SEEN_NOTE;
1732
1733 break;
1734
1735 case NOTE_INSN_BLOCK_BEG:
1736 if (debug_info_level == DINFO_LEVEL_NORMAL
1737 || debug_info_level == DINFO_LEVEL_VERBOSE
1766 }
1767 else
1768 *seen |= SEEN_NOTE;
1769
1770 break;
1771
1772 case NOTE_INSN_BLOCK_BEG:
1773 if (debug_info_level == DINFO_LEVEL_NORMAL
1774 || debug_info_level == DINFO_LEVEL_VERBOSE
1738 || write_symbols == DWARF_DEBUG
1739 || write_symbols == DWARF2_DEBUG
1740 || write_symbols == VMS_AND_DWARF2_DEBUG
1741 || write_symbols == VMS_DEBUG)
1742 {
1743 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1744
1745 app_disable ();
1746 ++block_depth;

--- 5 unchanged lines hidden (view full) ---

1752 /* Mark this block as output. */
1753 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1754 }
1755 break;
1756
1757 case NOTE_INSN_BLOCK_END:
1758 if (debug_info_level == DINFO_LEVEL_NORMAL
1759 || debug_info_level == DINFO_LEVEL_VERBOSE
1775 || write_symbols == DWARF2_DEBUG
1776 || write_symbols == VMS_AND_DWARF2_DEBUG
1777 || write_symbols == VMS_DEBUG)
1778 {
1779 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1780
1781 app_disable ();
1782 ++block_depth;

--- 5 unchanged lines hidden (view full) ---

1788 /* Mark this block as output. */
1789 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1790 }
1791 break;
1792
1793 case NOTE_INSN_BLOCK_END:
1794 if (debug_info_level == DINFO_LEVEL_NORMAL
1795 || debug_info_level == DINFO_LEVEL_VERBOSE
1760 || write_symbols == DWARF_DEBUG
1761 || write_symbols == DWARF2_DEBUG
1762 || write_symbols == VMS_AND_DWARF2_DEBUG
1763 || write_symbols == VMS_DEBUG)
1764 {
1765 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1766
1767 app_disable ();
1768
1769 /* End of a symbol-block. */
1770 --block_depth;
1796 || write_symbols == DWARF2_DEBUG
1797 || write_symbols == VMS_AND_DWARF2_DEBUG
1798 || write_symbols == VMS_DEBUG)
1799 {
1800 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1801
1802 app_disable ();
1803
1804 /* End of a symbol-block. */
1805 --block_depth;
1771 if (block_depth < 0)
1772 abort ();
1806 gcc_assert (block_depth >= 0);
1773
1774 (*debug_hooks->end_block) (high_block_linenum, n);
1775 }
1776 break;
1777
1778 case NOTE_INSN_DELETED_LABEL:
1779 /* Emit the label. We may have deleted the CODE_LABEL because
1780 the label could be proved to be unreachable, though still
1781 referenced (in the form of having its address taken. */
1782 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
1783 break;
1784
1807
1808 (*debug_hooks->end_block) (high_block_linenum, n);
1809 }
1810 break;
1811
1812 case NOTE_INSN_DELETED_LABEL:
1813 /* Emit the label. We may have deleted the CODE_LABEL because
1814 the label could be proved to be unreachable, though still
1815 referenced (in the form of having its address taken. */
1816 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
1817 break;
1818
1819 case NOTE_INSN_VAR_LOCATION:
1820 (*debug_hooks->var_location) (insn);
1821 break;
1822
1785 case 0:
1786 break;
1787
1788 default:
1823 case 0:
1824 break;
1825
1826 default:
1789 if (NOTE_LINE_NUMBER (insn) <= 0)
1790 abort ();
1827 gcc_assert (NOTE_LINE_NUMBER (insn) > 0);
1791 break;
1792 }
1793 break;
1794
1795 case BARRIER:
1796#if defined (DWARF2_UNWIND_INFO)
1797 if (dwarf2out_do_frame ())
1828 break;
1829 }
1830 break;
1831
1832 case BARRIER:
1833#if defined (DWARF2_UNWIND_INFO)
1834 if (dwarf2out_do_frame ())
1798 dwarf2out_frame_debug (insn);
1835 dwarf2out_frame_debug (insn, false);
1799#endif
1800 break;
1801
1802 case CODE_LABEL:
1803 /* The target port might emit labels in the output function for
1804 some insn, e.g. sh.c output_branchy_insn. */
1805 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1806 {

--- 27 unchanged lines hidden (view full) ---

1834 rtx jump = LABEL_REFS (insn);
1835 rtx barrier = prev_nonnote_insn (insn);
1836 rtx prev;
1837 /* If the LABEL_REFS field of this label has been set to point
1838 at a branch, the predecessor of the branch is a regular
1839 insn, and that branch is the only way to reach this label,
1840 set the condition codes based on the branch and its
1841 predecessor. */
1836#endif
1837 break;
1838
1839 case CODE_LABEL:
1840 /* The target port might emit labels in the output function for
1841 some insn, e.g. sh.c output_branchy_insn. */
1842 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1843 {

--- 27 unchanged lines hidden (view full) ---

1871 rtx jump = LABEL_REFS (insn);
1872 rtx barrier = prev_nonnote_insn (insn);
1873 rtx prev;
1874 /* If the LABEL_REFS field of this label has been set to point
1875 at a branch, the predecessor of the branch is a regular
1876 insn, and that branch is the only way to reach this label,
1877 set the condition codes based on the branch and its
1878 predecessor. */
1842 if (barrier && GET_CODE (barrier) == BARRIER
1843 && jump && GET_CODE (jump) == JUMP_INSN
1879 if (barrier && BARRIER_P (barrier)
1880 && jump && JUMP_P (jump)
1844 && (prev = prev_nonnote_insn (jump))
1881 && (prev = prev_nonnote_insn (jump))
1845 && GET_CODE (prev) == INSN)
1882 && NONJUMP_INSN_P (prev))
1846 {
1847 NOTICE_UPDATE_CC (PATTERN (prev), prev);
1848 NOTICE_UPDATE_CC (PATTERN (jump), jump);
1849 }
1850 }
1851#endif
1883 {
1884 NOTICE_UPDATE_CC (PATTERN (prev), prev);
1885 NOTICE_UPDATE_CC (PATTERN (jump), jump);
1886 }
1887 }
1888#endif
1852 if (prescan > 0)
1853 break;
1854
1855 if (LABEL_NAME (insn))
1856 (*debug_hooks->label) (insn);
1857
1858 if (app_on)
1859 {
1860 fputs (ASM_APP_OFF, file);
1861 app_on = 0;
1862 }
1889
1890 if (LABEL_NAME (insn))
1891 (*debug_hooks->label) (insn);
1892
1893 if (app_on)
1894 {
1895 fputs (ASM_APP_OFF, file);
1896 app_on = 0;
1897 }
1863 if (NEXT_INSN (insn) != 0
1864 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN)
1898
1899 next = next_nonnote_insn (insn);
1900 if (next != 0 && JUMP_P (next))
1865 {
1901 {
1866 rtx nextbody = PATTERN (NEXT_INSN (insn));
1902 rtx nextbody = PATTERN (next);
1867
1868 /* If this label is followed by a jump-table,
1869 make sure we put the label in the read-only section. Also
1870 possibly write the label and jump table together. */
1871
1872 if (GET_CODE (nextbody) == ADDR_VEC
1873 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1874 {
1875#if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1876 /* In this case, the case vector is being moved by the
1877 target, so don't output the label at all. Leave that
1878 to the back end macros. */
1879#else
1880 if (! JUMP_TABLES_IN_TEXT_SECTION)
1881 {
1882 int log_align;
1883
1903
1904 /* If this label is followed by a jump-table,
1905 make sure we put the label in the read-only section. Also
1906 possibly write the label and jump table together. */
1907
1908 if (GET_CODE (nextbody) == ADDR_VEC
1909 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1910 {
1911#if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1912 /* In this case, the case vector is being moved by the
1913 target, so don't output the label at all. Leave that
1914 to the back end macros. */
1915#else
1916 if (! JUMP_TABLES_IN_TEXT_SECTION)
1917 {
1918 int log_align;
1919
1884 readonly_data_section ();
1920 switch_to_section (targetm.asm_out.function_rodata_section
1921 (current_function_decl));
1885
1886#ifdef ADDR_VEC_ALIGN
1922
1923#ifdef ADDR_VEC_ALIGN
1887 log_align = ADDR_VEC_ALIGN (NEXT_INSN (insn));
1924 log_align = ADDR_VEC_ALIGN (next);
1888#else
1889 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
1890#endif
1891 ASM_OUTPUT_ALIGN (file, log_align);
1892 }
1893 else
1925#else
1926 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
1927#endif
1928 ASM_OUTPUT_ALIGN (file, log_align);
1929 }
1930 else
1894 function_section (current_function_decl);
1931 switch_to_section (current_function_section ());
1895
1896#ifdef ASM_OUTPUT_CASE_LABEL
1897 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
1932
1933#ifdef ASM_OUTPUT_CASE_LABEL
1934 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
1898 NEXT_INSN (insn));
1935 next);
1899#else
1936#else
1900 (*targetm.asm_out.internal_label) (file, "L", CODE_LABEL_NUMBER (insn));
1937 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1901#endif
1902#endif
1903 break;
1904 }
1905 }
1906 if (LABEL_ALT_ENTRY_P (insn))
1907 output_alternate_entry_point (file, insn);
1908 else
1938#endif
1939#endif
1940 break;
1941 }
1942 }
1943 if (LABEL_ALT_ENTRY_P (insn))
1944 output_alternate_entry_point (file, insn);
1945 else
1909 (*targetm.asm_out.internal_label) (file, "L", CODE_LABEL_NUMBER (insn));
1946 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1910 break;
1911
1912 default:
1913 {
1914 rtx body = PATTERN (insn);
1915 int insn_code_number;
1916 const char *template;
1947 break;
1948
1949 default:
1950 {
1951 rtx body = PATTERN (insn);
1952 int insn_code_number;
1953 const char *template;
1917 rtx note;
1918
1954
1955#ifdef HAVE_conditional_execution
1956 /* Reset this early so it is correct for ASM statements. */
1957 current_insn_predicate = NULL_RTX;
1958#endif
1919 /* An INSN, JUMP_INSN or CALL_INSN.
1920 First check for special kinds that recog doesn't recognize. */
1921
1922 if (GET_CODE (body) == USE /* These are just declarations. */
1923 || GET_CODE (body) == CLOBBER)
1924 break;
1925
1926#ifdef HAVE_cc0
1959 /* An INSN, JUMP_INSN or CALL_INSN.
1960 First check for special kinds that recog doesn't recognize. */
1961
1962 if (GET_CODE (body) == USE /* These are just declarations. */
1963 || GET_CODE (body) == CLOBBER)
1964 break;
1965
1966#ifdef HAVE_cc0
1927 /* If there is a REG_CC_SETTER note on this insn, it means that
1928 the setting of the condition code was done in the delay slot
1929 of the insn that branched here. So recover the cc status
1930 from the insn that set it. */
1967 {
1968 /* If there is a REG_CC_SETTER note on this insn, it means that
1969 the setting of the condition code was done in the delay slot
1970 of the insn that branched here. So recover the cc status
1971 from the insn that set it. */
1931
1972
1932 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
1933 if (note)
1934 {
1935 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
1936 cc_prev_status = cc_status;
1937 }
1973 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
1974 if (note)
1975 {
1976 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
1977 cc_prev_status = cc_status;
1978 }
1979 }
1938#endif
1939
1940 /* Detect insns that are really jump-tables
1941 and output them as such. */
1942
1943 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1944 {
1945#if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
1946 int vlen, idx;
1947#endif
1948
1980#endif
1981
1982 /* Detect insns that are really jump-tables
1983 and output them as such. */
1984
1985 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1986 {
1987#if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
1988 int vlen, idx;
1989#endif
1990
1949 if (prescan > 0)
1950 break;
1991 if (! JUMP_TABLES_IN_TEXT_SECTION)
1992 switch_to_section (targetm.asm_out.function_rodata_section
1993 (current_function_decl));
1994 else
1995 switch_to_section (current_function_section ());
1951
1952 if (app_on)
1953 {
1954 fputs (ASM_APP_OFF, file);
1955 app_on = 0;
1956 }
1957
1958#if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1959 if (GET_CODE (body) == ADDR_VEC)
1960 {
1961#ifdef ASM_OUTPUT_ADDR_VEC
1962 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
1963#else
1996
1997 if (app_on)
1998 {
1999 fputs (ASM_APP_OFF, file);
2000 app_on = 0;
2001 }
2002
2003#if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2004 if (GET_CODE (body) == ADDR_VEC)
2005 {
2006#ifdef ASM_OUTPUT_ADDR_VEC
2007 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2008#else
1964 abort ();
2009 gcc_unreachable ();
1965#endif
1966 }
1967 else
1968 {
1969#ifdef ASM_OUTPUT_ADDR_DIFF_VEC
1970 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
1971#else
2010#endif
2011 }
2012 else
2013 {
2014#ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2015 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2016#else
1972 abort ();
2017 gcc_unreachable ();
1973#endif
1974 }
1975#else
1976 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
1977 for (idx = 0; idx < vlen; idx++)
1978 {
1979 if (GET_CODE (body) == ADDR_VEC)
1980 {
1981#ifdef ASM_OUTPUT_ADDR_VEC_ELT
1982 ASM_OUTPUT_ADDR_VEC_ELT
1983 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
1984#else
2018#endif
2019 }
2020#else
2021 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2022 for (idx = 0; idx < vlen; idx++)
2023 {
2024 if (GET_CODE (body) == ADDR_VEC)
2025 {
2026#ifdef ASM_OUTPUT_ADDR_VEC_ELT
2027 ASM_OUTPUT_ADDR_VEC_ELT
2028 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2029#else
1985 abort ();
2030 gcc_unreachable ();
1986#endif
1987 }
1988 else
1989 {
1990#ifdef ASM_OUTPUT_ADDR_DIFF_ELT
1991 ASM_OUTPUT_ADDR_DIFF_ELT
1992 (file,
1993 body,
1994 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
1995 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
1996#else
2031#endif
2032 }
2033 else
2034 {
2035#ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2036 ASM_OUTPUT_ADDR_DIFF_ELT
2037 (file,
2038 body,
2039 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2040 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2041#else
1997 abort ();
2042 gcc_unreachable ();
1998#endif
1999 }
2000 }
2001#ifdef ASM_OUTPUT_CASE_END
2002 ASM_OUTPUT_CASE_END (file,
2003 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2004 insn);
2005#endif
2006#endif
2007
2043#endif
2044 }
2045 }
2046#ifdef ASM_OUTPUT_CASE_END
2047 ASM_OUTPUT_CASE_END (file,
2048 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2049 insn);
2050#endif
2051#endif
2052
2008 function_section (current_function_decl);
2053 switch_to_section (current_function_section ());
2009
2010 break;
2011 }
2012 /* Output this line note if it is the first or the last line
2013 note in a row. */
2014 if (notice_source_line (insn))
2015 {
2016 (*debug_hooks->source_line) (last_linenum, last_filename);
2017 }
2018
2019 if (GET_CODE (body) == ASM_INPUT)
2020 {
2021 const char *string = XSTR (body, 0);
2022
2023 /* There's no telling what that did to the condition codes. */
2024 CC_STATUS_INIT;
2054
2055 break;
2056 }
2057 /* Output this line note if it is the first or the last line
2058 note in a row. */
2059 if (notice_source_line (insn))
2060 {
2061 (*debug_hooks->source_line) (last_linenum, last_filename);
2062 }
2063
2064 if (GET_CODE (body) == ASM_INPUT)
2065 {
2066 const char *string = XSTR (body, 0);
2067
2068 /* There's no telling what that did to the condition codes. */
2069 CC_STATUS_INIT;
2025 if (prescan > 0)
2026 break;
2027
2028 if (string[0])
2029 {
2030 if (! app_on)
2031 {
2032 fputs (ASM_APP_ON, file);
2033 app_on = 1;
2034 }

--- 6 unchanged lines hidden (view full) ---

2041 if (asm_noperands (body) >= 0)
2042 {
2043 unsigned int noperands = asm_noperands (body);
2044 rtx *ops = alloca (noperands * sizeof (rtx));
2045 const char *string;
2046
2047 /* There's no telling what that did to the condition codes. */
2048 CC_STATUS_INIT;
2070
2071 if (string[0])
2072 {
2073 if (! app_on)
2074 {
2075 fputs (ASM_APP_ON, file);
2076 app_on = 1;
2077 }

--- 6 unchanged lines hidden (view full) ---

2084 if (asm_noperands (body) >= 0)
2085 {
2086 unsigned int noperands = asm_noperands (body);
2087 rtx *ops = alloca (noperands * sizeof (rtx));
2088 const char *string;
2089
2090 /* There's no telling what that did to the condition codes. */
2091 CC_STATUS_INIT;
2049 if (prescan > 0)
2050 break;
2051
2052 /* Get out the operand values. */
2053 string = decode_asm_operands (body, ops, NULL, NULL, NULL);
2092
2093 /* Get out the operand values. */
2094 string = decode_asm_operands (body, ops, NULL, NULL, NULL);
2054 /* Inhibit aborts on what would otherwise be compiler bugs. */
2095 /* Inhibit dieing on what would otherwise be compiler bugs. */
2055 insn_noperands = noperands;
2056 this_is_asm_operands = insn;
2057
2058#ifdef FINAL_PRESCAN_INSN
2059 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2060#endif
2061
2062 /* Output the insn using them. */

--- 6 unchanged lines hidden (view full) ---

2069 }
2070 output_asm_insn (string, ops);
2071 }
2072
2073 this_is_asm_operands = 0;
2074 break;
2075 }
2076
2096 insn_noperands = noperands;
2097 this_is_asm_operands = insn;
2098
2099#ifdef FINAL_PRESCAN_INSN
2100 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2101#endif
2102
2103 /* Output the insn using them. */

--- 6 unchanged lines hidden (view full) ---

2110 }
2111 output_asm_insn (string, ops);
2112 }
2113
2114 this_is_asm_operands = 0;
2115 break;
2116 }
2117
2077 if (prescan <= 0 && app_on)
2118 if (app_on)
2078 {
2079 fputs (ASM_APP_OFF, file);
2080 app_on = 0;
2081 }
2082
2083 if (GET_CODE (body) == SEQUENCE)
2084 {
2085 /* A delayed-branch sequence */
2086 int i;
2119 {
2120 fputs (ASM_APP_OFF, file);
2121 app_on = 0;
2122 }
2123
2124 if (GET_CODE (body) == SEQUENCE)
2125 {
2126 /* A delayed-branch sequence */
2127 int i;
2087 rtx next;
2088
2128
2089 if (prescan > 0)
2090 break;
2091 final_sequence = body;
2092
2093 /* Record the delay slots' frame information before the branch.
2094 This is needed for delayed calls: see execute_cfa_program(). */
2095#if defined (DWARF2_UNWIND_INFO)
2096 if (dwarf2out_do_frame ())
2097 for (i = 1; i < XVECLEN (body, 0); i++)
2129 final_sequence = body;
2130
2131 /* Record the delay slots' frame information before the branch.
2132 This is needed for delayed calls: see execute_cfa_program(). */
2133#if defined (DWARF2_UNWIND_INFO)
2134 if (dwarf2out_do_frame ())
2135 for (i = 1; i < XVECLEN (body, 0); i++)
2098 dwarf2out_frame_debug (XVECEXP (body, 0, i));
2136 dwarf2out_frame_debug (XVECEXP (body, 0, i), false);
2099#endif
2100
2101 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2102 force the restoration of a comparison that was previously
2103 thought unnecessary. If that happens, cancel this sequence
2104 and cause that insn to be restored. */
2105
2137#endif
2138
2139 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2140 force the restoration of a comparison that was previously
2141 thought unnecessary. If that happens, cancel this sequence
2142 and cause that insn to be restored. */
2143
2106 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1, seen);
2144 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, 1, seen);
2107 if (next != XVECEXP (body, 0, 1))
2108 {
2109 final_sequence = 0;
2110 return next;
2111 }
2112
2113 for (i = 1; i < XVECLEN (body, 0); i++)
2114 {
2115 rtx insn = XVECEXP (body, 0, i);
2116 rtx next = NEXT_INSN (insn);
2117 /* We loop in case any instruction in a delay slot gets
2118 split. */
2119 do
2145 if (next != XVECEXP (body, 0, 1))
2146 {
2147 final_sequence = 0;
2148 return next;
2149 }
2150
2151 for (i = 1; i < XVECLEN (body, 0); i++)
2152 {
2153 rtx insn = XVECEXP (body, 0, i);
2154 rtx next = NEXT_INSN (insn);
2155 /* We loop in case any instruction in a delay slot gets
2156 split. */
2157 do
2120 insn = final_scan_insn (insn, file, 0, prescan, 1, seen);
2158 insn = final_scan_insn (insn, file, 0, 1, seen);
2121 while (insn != next);
2122 }
2123#ifdef DBR_OUTPUT_SEQEND
2124 DBR_OUTPUT_SEQEND (file);
2125#endif
2126 final_sequence = 0;
2127
2128 /* If the insn requiring the delay slot was a CALL_INSN, the
2129 insns in the delay slot are actually executed before the
2130 called function. Hence we don't preserve any CC-setting
2131 actions in these insns and the CC must be marked as being
2132 clobbered by the function. */
2159 while (insn != next);
2160 }
2161#ifdef DBR_OUTPUT_SEQEND
2162 DBR_OUTPUT_SEQEND (file);
2163#endif
2164 final_sequence = 0;
2165
2166 /* If the insn requiring the delay slot was a CALL_INSN, the
2167 insns in the delay slot are actually executed before the
2168 called function. Hence we don't preserve any CC-setting
2169 actions in these insns and the CC must be marked as being
2170 clobbered by the function. */
2133 if (GET_CODE (XVECEXP (body, 0, 0)) == CALL_INSN)
2171 if (CALL_P (XVECEXP (body, 0, 0)))
2134 {
2135 CC_STATUS_INIT;
2136 }
2137 break;
2138 }
2139
2140 /* We have a real machine instruction as rtl. */
2141

--- 41 unchanged lines hidden (view full) ---

2183 last_ignored_compare = insn;
2184 break;
2185 }
2186 }
2187 }
2188 }
2189#endif
2190
2172 {
2173 CC_STATUS_INIT;
2174 }
2175 break;
2176 }
2177
2178 /* We have a real machine instruction as rtl. */
2179

--- 41 unchanged lines hidden (view full) ---

2221 last_ignored_compare = insn;
2222 break;
2223 }
2224 }
2225 }
2226 }
2227#endif
2228
2191#ifndef STACK_REGS
2192 /* Don't bother outputting obvious no-ops, even without -O.
2193 This optimization is fast and doesn't interfere with debugging.
2194 Don't do this if the insn is in a delay slot, since this
2195 will cause an improper number of delay insns to be written. */
2196 if (final_sequence == 0
2197 && prescan >= 0
2198 && GET_CODE (insn) == INSN && GET_CODE (body) == SET
2199 && GET_CODE (SET_SRC (body)) == REG
2200 && GET_CODE (SET_DEST (body)) == REG
2201 && REGNO (SET_SRC (body)) == REGNO (SET_DEST (body)))
2202 break;
2203#endif
2204
2205#ifdef HAVE_cc0
2206 /* If this is a conditional branch, maybe modify it
2207 if the cc's are in a nonstandard state
2208 so that it accomplishes the same thing that it would
2209 do straightforwardly if the cc's were set up normally. */
2210
2211 if (cc_status.flags != 0
2229#ifdef HAVE_cc0
2230 /* If this is a conditional branch, maybe modify it
2231 if the cc's are in a nonstandard state
2232 so that it accomplishes the same thing that it would
2233 do straightforwardly if the cc's were set up normally. */
2234
2235 if (cc_status.flags != 0
2212 && GET_CODE (insn) == JUMP_INSN
2236 && JUMP_P (insn)
2213 && GET_CODE (body) == SET
2214 && SET_DEST (body) == pc_rtx
2215 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2237 && GET_CODE (body) == SET
2238 && SET_DEST (body) == pc_rtx
2239 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2216 && GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (body), 0))) == '<'
2217 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
2218 /* This is done during prescan; it is not done again
2219 in final scan when prescan has been done. */
2220 && prescan >= 0)
2240 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2241 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2221 {
2222 /* This function may alter the contents of its argument
2223 and clear some of the cc_status.flags bits.
2224 It may also return 1 meaning condition now always true
2225 or -1 meaning condition now always false
2226 or 2 meaning condition nontrivial but altered. */
2227 int result = alter_cond (XEXP (SET_SRC (body), 0));
2228 /* If condition now has fixed value, replace the IF_THEN_ELSE

--- 24 unchanged lines hidden (view full) ---

2253 condition codes without jumping and instructions that
2254 handle conditional moves (if this machine has either one). */
2255
2256 if (cc_status.flags != 0
2257 && set != 0)
2258 {
2259 rtx cond_rtx, then_rtx, else_rtx;
2260
2242 {
2243 /* This function may alter the contents of its argument
2244 and clear some of the cc_status.flags bits.
2245 It may also return 1 meaning condition now always true
2246 or -1 meaning condition now always false
2247 or 2 meaning condition nontrivial but altered. */
2248 int result = alter_cond (XEXP (SET_SRC (body), 0));
2249 /* If condition now has fixed value, replace the IF_THEN_ELSE

--- 24 unchanged lines hidden (view full) ---

2274 condition codes without jumping and instructions that
2275 handle conditional moves (if this machine has either one). */
2276
2277 if (cc_status.flags != 0
2278 && set != 0)
2279 {
2280 rtx cond_rtx, then_rtx, else_rtx;
2281
2261 if (GET_CODE (insn) != JUMP_INSN
2282 if (!JUMP_P (insn)
2262 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2263 {
2264 cond_rtx = XEXP (SET_SRC (set), 0);
2265 then_rtx = XEXP (SET_SRC (set), 1);
2266 else_rtx = XEXP (SET_SRC (set), 2);
2267 }
2268 else
2269 {

--- 42 unchanged lines hidden (view full) ---

2312
2313 if (optimize && !flag_no_peephole && !nopeepholes)
2314 {
2315 rtx next = peephole (insn);
2316 /* When peepholing, if there were notes within the peephole,
2317 emit them before the peephole. */
2318 if (next != 0 && next != NEXT_INSN (insn))
2319 {
2283 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2284 {
2285 cond_rtx = XEXP (SET_SRC (set), 0);
2286 then_rtx = XEXP (SET_SRC (set), 1);
2287 else_rtx = XEXP (SET_SRC (set), 2);
2288 }
2289 else
2290 {

--- 42 unchanged lines hidden (view full) ---

2333
2334 if (optimize && !flag_no_peephole && !nopeepholes)
2335 {
2336 rtx next = peephole (insn);
2337 /* When peepholing, if there were notes within the peephole,
2338 emit them before the peephole. */
2339 if (next != 0 && next != NEXT_INSN (insn))
2340 {
2320 rtx prev = PREV_INSN (insn);
2341 rtx note, prev = PREV_INSN (insn);
2321
2322 for (note = NEXT_INSN (insn); note != next;
2323 note = NEXT_INSN (note))
2342
2343 for (note = NEXT_INSN (insn); note != next;
2344 note = NEXT_INSN (note))
2324 final_scan_insn (note, file, optimize, prescan, nopeepholes, seen);
2345 final_scan_insn (note, file, optimize, nopeepholes, seen);
2325
2346
2326 /* In case this is prescan, put the notes
2327 in proper position for later rescan. */
2347 /* Put the notes in the proper position for a later
2348 rescan. For example, the SH target can do this
2349 when generating a far jump in a delayed branch
2350 sequence. */
2328 note = NEXT_INSN (insn);
2329 PREV_INSN (note) = prev;
2330 NEXT_INSN (prev) = note;
2331 NEXT_INSN (PREV_INSN (next)) = insn;
2332 PREV_INSN (insn) = PREV_INSN (next);
2333 NEXT_INSN (insn) = next;
2334 PREV_INSN (next) = insn;
2335 }

--- 27 unchanged lines hidden (view full) ---

2363
2364#ifdef FINAL_PRESCAN_INSN
2365 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2366#endif
2367
2368#ifdef HAVE_conditional_execution
2369 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2370 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2351 note = NEXT_INSN (insn);
2352 PREV_INSN (note) = prev;
2353 NEXT_INSN (prev) = note;
2354 NEXT_INSN (PREV_INSN (next)) = insn;
2355 PREV_INSN (insn) = PREV_INSN (next);
2356 NEXT_INSN (insn) = next;
2357 PREV_INSN (next) = insn;
2358 }

--- 27 unchanged lines hidden (view full) ---

2386
2387#ifdef FINAL_PRESCAN_INSN
2388 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2389#endif
2390
2391#ifdef HAVE_conditional_execution
2392 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2393 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2371 else
2372 current_insn_predicate = NULL_RTX;
2373#endif
2374
2375#ifdef HAVE_cc0
2376 cc_prev_status = cc_status;
2377
2378 /* Update `cc_status' for this instruction.
2379 The instruction's output routine may change it further.
2380 If the output routine for a jump insn needs to depend
2381 on the cc status, it should look at cc_prev_status. */
2382
2383 NOTICE_UPDATE_CC (body, insn);
2384#endif
2385
2386 current_output_insn = debug_insn = insn;
2387
2388#if defined (DWARF2_UNWIND_INFO)
2394#endif
2395
2396#ifdef HAVE_cc0
2397 cc_prev_status = cc_status;
2398
2399 /* Update `cc_status' for this instruction.
2400 The instruction's output routine may change it further.
2401 If the output routine for a jump insn needs to depend
2402 on the cc status, it should look at cc_prev_status. */
2403
2404 NOTICE_UPDATE_CC (body, insn);
2405#endif
2406
2407 current_output_insn = debug_insn = insn;
2408
2409#if defined (DWARF2_UNWIND_INFO)
2389 if (GET_CODE (insn) == CALL_INSN && dwarf2out_do_frame ())
2390 dwarf2out_frame_debug (insn);
2410 if (CALL_P (insn) && dwarf2out_do_frame ())
2411 dwarf2out_frame_debug (insn, false);
2391#endif
2392
2393 /* Find the proper template for this insn. */
2394 template = get_insn_template (insn_code_number, insn);
2395
2396 /* If the C code returns 0, it means that it is a jump insn
2397 which follows a deleted test insn, and that test insn
2398 needs to be reinserted. */
2399 if (template == 0)
2400 {
2401 rtx prev;
2402
2412#endif
2413
2414 /* Find the proper template for this insn. */
2415 template = get_insn_template (insn_code_number, insn);
2416
2417 /* If the C code returns 0, it means that it is a jump insn
2418 which follows a deleted test insn, and that test insn
2419 needs to be reinserted. */
2420 if (template == 0)
2421 {
2422 rtx prev;
2423
2403 if (prev_nonnote_insn (insn) != last_ignored_compare)
2404 abort ();
2424 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
2405
2406 /* We have already processed the notes between the setter and
2407 the user. Make sure we don't process them again, this is
2408 particularly important if one of the notes is a block
2409 scope note or an EH note. */
2410 for (prev = insn;
2411 prev != last_ignored_compare;
2412 prev = PREV_INSN (prev))
2413 {
2425
2426 /* We have already processed the notes between the setter and
2427 the user. Make sure we don't process them again, this is
2428 particularly important if one of the notes is a block
2429 scope note or an EH note. */
2430 for (prev = insn;
2431 prev != last_ignored_compare;
2432 prev = PREV_INSN (prev))
2433 {
2414 if (GET_CODE (prev) == NOTE)
2434 if (NOTE_P (prev))
2415 delete_insn (prev); /* Use delete_note. */
2416 }
2417
2418 return prev;
2419 }
2420
2421 /* If the template is the string "#", it means that this insn must
2422 be split. */

--- 4 unchanged lines hidden (view full) ---

2427 /* If we didn't split the insn, go away. */
2428 if (new == insn && PATTERN (new) == body)
2429 fatal_insn ("could not split insn", insn);
2430
2431#ifdef HAVE_ATTR_length
2432 /* This instruction should have been split in shorten_branches,
2433 to ensure that we would have valid length info for the
2434 splitees. */
2435 delete_insn (prev); /* Use delete_note. */
2436 }
2437
2438 return prev;
2439 }
2440
2441 /* If the template is the string "#", it means that this insn must
2442 be split. */

--- 4 unchanged lines hidden (view full) ---

2447 /* If we didn't split the insn, go away. */
2448 if (new == insn && PATTERN (new) == body)
2449 fatal_insn ("could not split insn", insn);
2450
2451#ifdef HAVE_ATTR_length
2452 /* This instruction should have been split in shorten_branches,
2453 to ensure that we would have valid length info for the
2454 splitees. */
2435 abort ();
2455 gcc_unreachable ();
2436#endif
2437
2438 return new;
2439 }
2440
2456#endif
2457
2458 return new;
2459 }
2460
2441 if (prescan > 0)
2442 break;
2443
2444#ifdef IA64_UNWIND_INFO
2445 IA64_UNWIND_EMIT (asm_out_file, insn);
2461#ifdef TARGET_UNWIND_INFO
2462 /* ??? This will put the directives in the wrong place if
2463 get_insn_template outputs assembly directly. However calling it
2464 before get_insn_template breaks if the insns is split. */
2465 targetm.asm_out.unwind_emit (asm_out_file, insn);
2446#endif
2466#endif
2447 /* Output assembler code from the template. */
2448
2467
2468 /* Output assembler code from the template. */
2449 output_asm_insn (template, recog_data.operand);
2450
2451 /* If necessary, report the effect that the instruction has on
2452 the unwind info. We've already done this for delay slots
2453 and call instructions. */
2454#if defined (DWARF2_UNWIND_INFO)
2469 output_asm_insn (template, recog_data.operand);
2470
2471 /* If necessary, report the effect that the instruction has on
2472 the unwind info. We've already done this for delay slots
2473 and call instructions. */
2474#if defined (DWARF2_UNWIND_INFO)
2455 if (GET_CODE (insn) == INSN
2475 if (final_sequence == 0
2456#if !defined (HAVE_prologue)
2457 && !ACCUMULATE_OUTGOING_ARGS
2458#endif
2476#if !defined (HAVE_prologue)
2477 && !ACCUMULATE_OUTGOING_ARGS
2478#endif
2459 && final_sequence == 0
2460 && dwarf2out_do_frame ())
2479 && dwarf2out_do_frame ())
2461 dwarf2out_frame_debug (insn);
2480 dwarf2out_frame_debug (insn, true);
2462#endif
2463
2481#endif
2482
2464#if 0
2465 /* It's not at all clear why we did this and doing so used to
2466 interfere with tests that used REG_WAS_0 notes, which are
2467 now gone, so let's try with this out. */
2468
2469 /* Mark this insn as having been output. */
2470 INSN_DELETED_P (insn) = 1;
2471#endif
2472
2473 /* Emit information for vtable gc. */
2474 note = find_reg_note (insn, REG_VTABLE_REF, NULL_RTX);
2475
2476 current_output_insn = debug_insn = 0;
2477 }
2478 }
2479 return NEXT_INSN (insn);
2480}
2481
2483 current_output_insn = debug_insn = 0;
2484 }
2485 }
2486 return NEXT_INSN (insn);
2487}
2488
2482/* Output debugging info to the assembler file FILE
2483 based on the NOTE-insn INSN, assumed to be a line number. */
2489/* Return whether a source line note needs to be emitted before INSN. */
2484
2485static bool
2486notice_source_line (rtx insn)
2487{
2488 const char *filename = insn_file (insn);
2489 int linenum = insn_line (insn);
2490
2490
2491static bool
2492notice_source_line (rtx insn)
2493{
2494 const char *filename = insn_file (insn);
2495 int linenum = insn_line (insn);
2496
2491 if (filename && (filename != last_filename || last_linenum != linenum))
2497 if (filename
2498 && (force_source_line
2499 || filename != last_filename
2500 || last_linenum != linenum))
2492 {
2501 {
2502 force_source_line = false;
2493 last_filename = filename;
2494 last_linenum = linenum;
2495 high_block_linenum = MAX (last_linenum, high_block_linenum);
2496 high_function_linenum = MAX (last_linenum, high_function_linenum);
2497 return true;
2498 }
2499 return false;
2500}

--- 12 unchanged lines hidden (view full) ---

2513 for a SUBREG: the underlying object might have been changed
2514 already if we are inside a match_operator expression that
2515 matches the else clause. Instead we test the underlying
2516 expression directly. */
2517 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2518 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2519 else if (GET_CODE (recog_data.operand[i]) == PLUS
2520 || GET_CODE (recog_data.operand[i]) == MULT
2503 last_filename = filename;
2504 last_linenum = linenum;
2505 high_block_linenum = MAX (last_linenum, high_block_linenum);
2506 high_function_linenum = MAX (last_linenum, high_function_linenum);
2507 return true;
2508 }
2509 return false;
2510}

--- 12 unchanged lines hidden (view full) ---

2523 for a SUBREG: the underlying object might have been changed
2524 already if we are inside a match_operator expression that
2525 matches the else clause. Instead we test the underlying
2526 expression directly. */
2527 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2528 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2529 else if (GET_CODE (recog_data.operand[i]) == PLUS
2530 || GET_CODE (recog_data.operand[i]) == MULT
2521 || GET_CODE (recog_data.operand[i]) == MEM)
2531 || MEM_P (recog_data.operand[i]))
2522 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
2523 }
2524
2525 for (i = 0; i < recog_data.n_dups; i++)
2526 {
2527 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2528 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2529 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2530 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2532 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
2533 }
2534
2535 for (i = 0; i < recog_data.n_dups; i++)
2536 {
2537 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2538 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2539 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2540 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2531 || GET_CODE (*recog_data.dup_loc[i]) == MEM)
2541 || MEM_P (*recog_data.dup_loc[i]))
2532 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
2533 }
2534}
2535
2536/* If X is a SUBREG, replace it with a REG or a MEM,
2537 based on the thing it is a subreg of. */
2538
2539rtx
2540alter_subreg (rtx *xp)
2541{
2542 rtx x = *xp;
2543 rtx y = SUBREG_REG (x);
2544
2545 /* simplify_subreg does not remove subreg from volatile references.
2546 We are required to. */
2542 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
2543 }
2544}
2545
2546/* If X is a SUBREG, replace it with a REG or a MEM,
2547 based on the thing it is a subreg of. */
2548
2549rtx
2550alter_subreg (rtx *xp)
2551{
2552 rtx x = *xp;
2553 rtx y = SUBREG_REG (x);
2554
2555 /* simplify_subreg does not remove subreg from volatile references.
2556 We are required to. */
2547 if (GET_CODE (y) == MEM)
2548 *xp = adjust_address (y, GET_MODE (x), SUBREG_BYTE (x));
2557 if (MEM_P (y))
2558 {
2559 int offset = SUBREG_BYTE (x);
2560
2561 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
2562 contains 0 instead of the proper offset. See simplify_subreg. */
2563 if (offset == 0
2564 && GET_MODE_SIZE (GET_MODE (y)) < GET_MODE_SIZE (GET_MODE (x)))
2565 {
2566 int difference = GET_MODE_SIZE (GET_MODE (y))
2567 - GET_MODE_SIZE (GET_MODE (x));
2568 if (WORDS_BIG_ENDIAN)
2569 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
2570 if (BYTES_BIG_ENDIAN)
2571 offset += difference % UNITS_PER_WORD;
2572 }
2573
2574 *xp = adjust_address (y, GET_MODE (x), offset);
2575 }
2549 else
2550 {
2551 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2552 SUBREG_BYTE (x));
2553
2554 if (new != 0)
2555 *xp = new;
2576 else
2577 {
2578 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2579 SUBREG_BYTE (x));
2580
2581 if (new != 0)
2582 *xp = new;
2556 /* Simplify_subreg can't handle some REG cases, but we have to. */
2557 else if (GET_CODE (y) == REG)
2583 else if (REG_P (y))
2558 {
2584 {
2559 unsigned int regno = subreg_hard_regno (x, 1);
2585 /* Simplify_subreg can't handle some REG cases, but we have to. */
2586 unsigned int regno = subreg_regno (x);
2560 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, SUBREG_BYTE (x));
2561 }
2587 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, SUBREG_BYTE (x));
2588 }
2562 else
2563 abort ();
2564 }
2565
2566 return *xp;
2567}
2568
2569/* Do alter_subreg on all the SUBREGs contained in X. */
2570
2571static rtx
2572walk_alter_subreg (rtx *xp)
2573{
2574 rtx x = *xp;
2575 switch (GET_CODE (x))
2576 {
2577 case PLUS:
2578 case MULT:
2589 }
2590
2591 return *xp;
2592}
2593
2594/* Do alter_subreg on all the SUBREGs contained in X. */
2595
2596static rtx
2597walk_alter_subreg (rtx *xp)
2598{
2599 rtx x = *xp;
2600 switch (GET_CODE (x))
2601 {
2602 case PLUS:
2603 case MULT:
2604 case AND:
2579 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2580 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
2581 break;
2582
2583 case MEM:
2605 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2606 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
2607 break;
2608
2609 case MEM:
2610 case ZERO_EXTEND:
2584 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2585 break;
2586
2587 case SUBREG:
2588 return alter_subreg (xp);
2589
2590 default:
2591 break;

--- 112 unchanged lines hidden (view full) ---

2704 default:
2705 break;
2706 }
2707
2708 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2709 switch (GET_CODE (cond))
2710 {
2711 default:
2611 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2612 break;
2613
2614 case SUBREG:
2615 return alter_subreg (xp);
2616
2617 default:
2618 break;

--- 112 unchanged lines hidden (view full) ---

2731 default:
2732 break;
2733 }
2734
2735 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2736 switch (GET_CODE (cond))
2737 {
2738 default:
2712 abort ();
2739 gcc_unreachable ();
2713
2714 case NE:
2715 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2716 value = 2;
2717 break;
2718
2719 case EQ:
2720 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);

--- 33 unchanged lines hidden (view full) ---

2754 return value;
2755}
2756#endif
2757
2758/* Report inconsistency between the assembler template and the operands.
2759 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2760
2761void
2740
2741 case NE:
2742 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2743 value = 2;
2744 break;
2745
2746 case EQ:
2747 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);

--- 33 unchanged lines hidden (view full) ---

2781 return value;
2782}
2783#endif
2784
2785/* Report inconsistency between the assembler template and the operands.
2786 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2787
2788void
2762output_operand_lossage (const char *msgid, ...)
2789output_operand_lossage (const char *cmsgid, ...)
2763{
2764 char *fmt_string;
2765 char *new_message;
2766 const char *pfx_str;
2767 va_list ap;
2768
2790{
2791 char *fmt_string;
2792 char *new_message;
2793 const char *pfx_str;
2794 va_list ap;
2795
2769 va_start (ap, msgid);
2796 va_start (ap, cmsgid);
2770
2797
2771 pfx_str = this_is_asm_operands ? _("invalid `asm': ") : "output_operand: ";
2772 asprintf (&fmt_string, "%s%s", pfx_str, _(msgid));
2798 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
2799 asprintf (&fmt_string, "%s%s", pfx_str, _(cmsgid));
2773 vasprintf (&new_message, fmt_string, ap);
2774
2775 if (this_is_asm_operands)
2776 error_for_asm (this_is_asm_operands, "%s", new_message);
2777 else
2778 internal_error ("%s", new_message);
2779
2780 free (fmt_string);

--- 34 unchanged lines hidden (view full) ---

2815static tree
2816get_mem_expr_from_op (rtx op, int *paddressp)
2817{
2818 tree expr;
2819 int inner_addressp;
2820
2821 *paddressp = 0;
2822
2800 vasprintf (&new_message, fmt_string, ap);
2801
2802 if (this_is_asm_operands)
2803 error_for_asm (this_is_asm_operands, "%s", new_message);
2804 else
2805 internal_error ("%s", new_message);
2806
2807 free (fmt_string);

--- 34 unchanged lines hidden (view full) ---

2842static tree
2843get_mem_expr_from_op (rtx op, int *paddressp)
2844{
2845 tree expr;
2846 int inner_addressp;
2847
2848 *paddressp = 0;
2849
2823 if (GET_CODE (op) == REG)
2850 if (REG_P (op))
2824 return REG_EXPR (op);
2851 return REG_EXPR (op);
2825 else if (GET_CODE (op) != MEM)
2852 else if (!MEM_P (op))
2826 return 0;
2827
2828 if (MEM_EXPR (op) != 0)
2829 return MEM_EXPR (op);
2830
2831 /* Otherwise we have an address, so indicate it and look at the address. */
2832 *paddressp = 1;
2833 op = XEXP (op, 0);
2834
2835 /* First check if we have a decl for the address, then look at the right side
2836 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2837 But don't allow the address to itself be indirect. */
2838 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
2839 return expr;
2840 else if (GET_CODE (op) == PLUS
2841 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
2842 return expr;
2843
2853 return 0;
2854
2855 if (MEM_EXPR (op) != 0)
2856 return MEM_EXPR (op);
2857
2858 /* Otherwise we have an address, so indicate it and look at the address. */
2859 *paddressp = 1;
2860 op = XEXP (op, 0);
2861
2862 /* First check if we have a decl for the address, then look at the right side
2863 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2864 But don't allow the address to itself be indirect. */
2865 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
2866 return expr;
2867 else if (GET_CODE (op) == PLUS
2868 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
2869 return expr;
2870
2844 while (GET_RTX_CLASS (GET_CODE (op)) == '1'
2845 || GET_RTX_CLASS (GET_CODE (op)) == '2')
2871 while (GET_RTX_CLASS (GET_CODE (op)) == RTX_UNARY
2872 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
2846 op = XEXP (op, 0);
2847
2848 expr = get_mem_expr_from_op (op, &inner_addressp);
2849 return inner_addressp ? 0 : expr;
2850}
2851
2852/* Output operand names for assembler instructions. OPERANDS is the
2853 operand vector, OPORDER is the order to write the operands, and NOPS

--- 162 unchanged lines hidden (view full) ---

3016 /* % followed by a letter and some digits
3017 outputs an operand in a special way depending on the letter.
3018 Letters `acln' are implemented directly.
3019 Other letters are passed to `output_operand' so that
3020 the PRINT_OPERAND macro can define them. */
3021 else if (ISALPHA (*p))
3022 {
3023 int letter = *p++;
2873 op = XEXP (op, 0);
2874
2875 expr = get_mem_expr_from_op (op, &inner_addressp);
2876 return inner_addressp ? 0 : expr;
2877}
2878
2879/* Output operand names for assembler instructions. OPERANDS is the
2880 operand vector, OPORDER is the order to write the operands, and NOPS

--- 162 unchanged lines hidden (view full) ---

3043 /* % followed by a letter and some digits
3044 outputs an operand in a special way depending on the letter.
3045 Letters `acln' are implemented directly.
3046 Other letters are passed to `output_operand' so that
3047 the PRINT_OPERAND macro can define them. */
3048 else if (ISALPHA (*p))
3049 {
3050 int letter = *p++;
3024 c = atoi (p);
3051 unsigned long opnum;
3052 char *endptr;
3025
3053
3026 if (! ISDIGIT (*p))
3027 output_operand_lossage ("operand number missing after %%-letter");
3028 else if (this_is_asm_operands
3029 && (c < 0 || (unsigned int) c >= insn_noperands))
3054 opnum = strtoul (p, &endptr, 10);
3055
3056 if (endptr == p)
3057 output_operand_lossage ("operand number missing "
3058 "after %%-letter");
3059 else if (this_is_asm_operands && opnum >= insn_noperands)
3030 output_operand_lossage ("operand number out of range");
3031 else if (letter == 'l')
3060 output_operand_lossage ("operand number out of range");
3061 else if (letter == 'l')
3032 output_asm_label (operands[c]);
3062 output_asm_label (operands[opnum]);
3033 else if (letter == 'a')
3063 else if (letter == 'a')
3034 output_address (operands[c]);
3064 output_address (operands[opnum]);
3035 else if (letter == 'c')
3036 {
3065 else if (letter == 'c')
3066 {
3037 if (CONSTANT_ADDRESS_P (operands[c]))
3038 output_addr_const (asm_out_file, operands[c]);
3067 if (CONSTANT_ADDRESS_P (operands[opnum]))
3068 output_addr_const (asm_out_file, operands[opnum]);
3039 else
3069 else
3040 output_operand (operands[c], 'c');
3070 output_operand (operands[opnum], 'c');
3041 }
3042 else if (letter == 'n')
3043 {
3071 }
3072 else if (letter == 'n')
3073 {
3044 if (GET_CODE (operands[c]) == CONST_INT)
3074 if (GET_CODE (operands[opnum]) == CONST_INT)
3045 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3075 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3046 - INTVAL (operands[c]));
3076 - INTVAL (operands[opnum]));
3047 else
3048 {
3049 putc ('-', asm_out_file);
3077 else
3078 {
3079 putc ('-', asm_out_file);
3050 output_addr_const (asm_out_file, operands[c]);
3080 output_addr_const (asm_out_file, operands[opnum]);
3051 }
3052 }
3053 else
3081 }
3082 }
3083 else
3054 output_operand (operands[c], letter);
3084 output_operand (operands[opnum], letter);
3055
3085
3056 if (!opoutput[c])
3057 oporder[ops++] = c;
3058 opoutput[c] = 1;
3086 if (!opoutput[opnum])
3087 oporder[ops++] = opnum;
3088 opoutput[opnum] = 1;
3059
3089
3060 while (ISDIGIT (c = *p))
3061 p++;
3090 p = endptr;
3091 c = *p;
3062 }
3063 /* % followed by a digit outputs an operand the default way. */
3064 else if (ISDIGIT (*p))
3065 {
3092 }
3093 /* % followed by a digit outputs an operand the default way. */
3094 else if (ISDIGIT (*p))
3095 {
3066 c = atoi (p);
3067 if (this_is_asm_operands
3068 && (c < 0 || (unsigned int) c >= insn_noperands))
3096 unsigned long opnum;
3097 char *endptr;
3098
3099 opnum = strtoul (p, &endptr, 10);
3100 if (this_is_asm_operands && opnum >= insn_noperands)
3069 output_operand_lossage ("operand number out of range");
3070 else
3101 output_operand_lossage ("operand number out of range");
3102 else
3071 output_operand (operands[c], 0);
3103 output_operand (operands[opnum], 0);
3072
3104
3073 if (!opoutput[c])
3074 oporder[ops++] = c;
3075 opoutput[c] = 1;
3105 if (!opoutput[opnum])
3106 oporder[ops++] = opnum;
3107 opoutput[opnum] = 1;
3076
3108
3077 while (ISDIGIT (c = *p))
3078 p++;
3109 p = endptr;
3110 c = *p;
3079 }
3080 /* % followed by punctuation: output something for that
3081 punctuation character alone, with no operand.
3082 The PRINT_OPERAND macro decides what is actually done. */
3083#ifdef PRINT_OPERAND_PUNCT_VALID_P
3084 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3085 output_operand (NULL_RTX, *p++);
3086#endif

--- 18 unchanged lines hidden (view full) ---

3105
3106void
3107output_asm_label (rtx x)
3108{
3109 char buf[256];
3110
3111 if (GET_CODE (x) == LABEL_REF)
3112 x = XEXP (x, 0);
3111 }
3112 /* % followed by punctuation: output something for that
3113 punctuation character alone, with no operand.
3114 The PRINT_OPERAND macro decides what is actually done. */
3115#ifdef PRINT_OPERAND_PUNCT_VALID_P
3116 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3117 output_operand (NULL_RTX, *p++);
3118#endif

--- 18 unchanged lines hidden (view full) ---

3137
3138void
3139output_asm_label (rtx x)
3140{
3141 char buf[256];
3142
3143 if (GET_CODE (x) == LABEL_REF)
3144 x = XEXP (x, 0);
3113 if (GET_CODE (x) == CODE_LABEL
3114 || (GET_CODE (x) == NOTE
3145 if (LABEL_P (x)
3146 || (NOTE_P (x)
3115 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3116 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3117 else
3147 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3148 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3149 else
3118 output_operand_lossage ("`%%l' operand isn't a label");
3150 output_operand_lossage ("'%%l' operand isn't a label");
3119
3120 assemble_name (asm_out_file, buf);
3121}
3122
3123/* Print operand X using machine-dependent assembler syntax.
3124 The macro PRINT_OPERAND is defined just to control this function.
3125 CODE is a non-digit that preceded the operand-number in the % spec,
3126 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char

--- 4 unchanged lines hidden (view full) ---

3131 by PRINT_OPERAND. */
3132
3133static void
3134output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3135{
3136 if (x && GET_CODE (x) == SUBREG)
3137 x = alter_subreg (&x);
3138
3151
3152 assemble_name (asm_out_file, buf);
3153}
3154
3155/* Print operand X using machine-dependent assembler syntax.
3156 The macro PRINT_OPERAND is defined just to control this function.
3157 CODE is a non-digit that preceded the operand-number in the % spec,
3158 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char

--- 4 unchanged lines hidden (view full) ---

3163 by PRINT_OPERAND. */
3164
3165static void
3166output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3167{
3168 if (x && GET_CODE (x) == SUBREG)
3169 x = alter_subreg (&x);
3170
3139 /* If X is a pseudo-register, abort now rather than writing trash to the
3140 assembler file. */
3171 /* X must not be a pseudo reg. */
3172 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
3141
3173
3142 if (x && GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER)
3143 abort ();
3144
3145 PRINT_OPERAND (asm_out_file, x, code);
3146}
3147
3148/* Print a memory reference operand for address X
3149 using machine-dependent assembler syntax.
3150 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3151
3152void

--- 15 unchanged lines hidden (view full) ---

3168 restart:
3169 switch (GET_CODE (x))
3170 {
3171 case PC:
3172 putc ('.', file);
3173 break;
3174
3175 case SYMBOL_REF:
3174 PRINT_OPERAND (asm_out_file, x, code);
3175}
3176
3177/* Print a memory reference operand for address X
3178 using machine-dependent assembler syntax.
3179 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3180
3181void

--- 15 unchanged lines hidden (view full) ---

3197 restart:
3198 switch (GET_CODE (x))
3199 {
3200 case PC:
3201 putc ('.', file);
3202 break;
3203
3204 case SYMBOL_REF:
3205 if (SYMBOL_REF_DECL (x))
3206 mark_decl_referenced (SYMBOL_REF_DECL (x));
3176#ifdef ASM_OUTPUT_SYMBOL_REF
3177 ASM_OUTPUT_SYMBOL_REF (file, x);
3178#else
3179 assemble_name (file, XSTR (x, 0));
3180#endif
3181 break;
3182
3183 case LABEL_REF:

--- 248 unchanged lines hidden (view full) ---

3432 case 'F': case 'G': case 'H': case 'J': case 'K':
3433 case 'M': case 'N': case 'P': case 'Q': case 'S':
3434 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3435 break;
3436
3437 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3438#endif
3439 default:
3207#ifdef ASM_OUTPUT_SYMBOL_REF
3208 ASM_OUTPUT_SYMBOL_REF (file, x);
3209#else
3210 assemble_name (file, XSTR (x, 0));
3211#endif
3212 break;
3213
3214 case LABEL_REF:

--- 248 unchanged lines hidden (view full) ---

3463 case 'F': case 'G': case 'H': case 'J': case 'K':
3464 case 'M': case 'N': case 'P': case 'Q': case 'S':
3465 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3466 break;
3467
3468 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3469#endif
3470 default:
3440 abort ();
3471 gcc_unreachable ();
3441 }
3442 break;
3443
3444 default:
3445 putc (c, file);
3446 }
3447 va_end (argptr);
3448}

--- 130 unchanged lines hidden (view full) ---

3579 {
3580 if (l[0] & ((long) 1 << 31))
3581 l[0] |= ((long) (-1) << 32);
3582 if (l[1] & ((long) 1 << 31))
3583 l[1] |= ((long) (-1) << 32);
3584 }
3585#endif
3586
3472 }
3473 break;
3474
3475 default:
3476 putc (c, file);
3477 }
3478 va_end (argptr);
3479}

--- 130 unchanged lines hidden (view full) ---

3610 {
3611 if (l[0] & ((long) 1 << 31))
3612 l[0] |= ((long) (-1) << 32);
3613 if (l[1] & ((long) 1 << 31))
3614 l[1] |= ((long) (-1) << 32);
3615 }
3616#endif
3617
3587 *first = GEN_INT ((HOST_WIDE_INT) l[0]);
3588 *second = GEN_INT ((HOST_WIDE_INT) l[1]);
3618 *first = GEN_INT (l[0]);
3619 *second = GEN_INT (l[1]);
3589 }
3590}
3591
3592/* Return nonzero if this function has no function calls. */
3593
3594int
3595leaf_function_p (void)
3596{
3597 rtx insn;
3598 rtx link;
3599
3600 if (current_function_profile || profile_arc_flag)
3601 return 0;
3602
3603 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3604 {
3620 }
3621}
3622
3623/* Return nonzero if this function has no function calls. */
3624
3625int
3626leaf_function_p (void)
3627{
3628 rtx insn;
3629 rtx link;
3630
3631 if (current_function_profile || profile_arc_flag)
3632 return 0;
3633
3634 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3635 {
3605 if (GET_CODE (insn) == CALL_INSN
3636 if (CALL_P (insn)
3606 && ! SIBLING_CALL_P (insn))
3607 return 0;
3637 && ! SIBLING_CALL_P (insn))
3638 return 0;
3608 if (GET_CODE (insn) == INSN
3639 if (NONJUMP_INSN_P (insn)
3609 && GET_CODE (PATTERN (insn)) == SEQUENCE
3640 && GET_CODE (PATTERN (insn)) == SEQUENCE
3610 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
3641 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3611 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3612 return 0;
3613 }
3614 for (link = current_function_epilogue_delay_list;
3615 link;
3616 link = XEXP (link, 1))
3617 {
3618 insn = XEXP (link, 0);
3619
3642 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3643 return 0;
3644 }
3645 for (link = current_function_epilogue_delay_list;
3646 link;
3647 link = XEXP (link, 1))
3648 {
3649 insn = XEXP (link, 0);
3650
3620 if (GET_CODE (insn) == CALL_INSN
3651 if (CALL_P (insn)
3621 && ! SIBLING_CALL_P (insn))
3622 return 0;
3652 && ! SIBLING_CALL_P (insn))
3653 return 0;
3623 if (GET_CODE (insn) == INSN
3654 if (NONJUMP_INSN_P (insn)
3624 && GET_CODE (PATTERN (insn)) == SEQUENCE
3655 && GET_CODE (PATTERN (insn)) == SEQUENCE
3625 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
3656 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3626 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3627 return 0;
3628 }
3629
3630 return 1;
3631}
3632
3633/* Return 1 if branch is a forward branch.
3634 Uses insn_shuid array, so it works only in the final pass. May be used by
3635 output templates to customary add branch prediction hints.
3636 */
3637int
3638final_forward_branch_p (rtx insn)
3639{
3640 int insn_id, label_id;
3657 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3658 return 0;
3659 }
3660
3661 return 1;
3662}
3663
3664/* Return 1 if branch is a forward branch.
3665 Uses insn_shuid array, so it works only in the final pass. May be used by
3666 output templates to customary add branch prediction hints.
3667 */
3668int
3669final_forward_branch_p (rtx insn)
3670{
3671 int insn_id, label_id;
3641 if (!uid_shuid)
3642 abort ();
3672
3673 gcc_assert (uid_shuid);
3643 insn_id = INSN_SHUID (insn);
3644 label_id = INSN_SHUID (JUMP_LABEL (insn));
3645 /* We've hit some insns that does not have id information available. */
3674 insn_id = INSN_SHUID (insn);
3675 label_id = INSN_SHUID (JUMP_LABEL (insn));
3676 /* We've hit some insns that does not have id information available. */
3646 if (!insn_id || !label_id)
3647 abort ();
3677 gcc_assert (insn_id && label_id);
3648 return insn_id < label_id;
3649}
3650
3651/* On some machines, a function with no call insns
3652 can run faster if it doesn't create its own register window.
3653 When output, the leaf function should use only the "output"
3654 registers. Ordinarily, the function would be compiled to use
3655 the "input" registers to find its arguments; it is a candidate

--- 14 unchanged lines hidden (view full) ---

3670
3671 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3672 if ((regs_ever_live[i] || global_regs[i])
3673 && ! permitted_reg_in_leaf_functions[i])
3674 return 0;
3675
3676 if (current_function_uses_pic_offset_table
3677 && pic_offset_table_rtx != 0
3678 return insn_id < label_id;
3679}
3680
3681/* On some machines, a function with no call insns
3682 can run faster if it doesn't create its own register window.
3683 When output, the leaf function should use only the "output"
3684 registers. Ordinarily, the function would be compiled to use
3685 the "input" registers to find its arguments; it is a candidate

--- 14 unchanged lines hidden (view full) ---

3700
3701 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3702 if ((regs_ever_live[i] || global_regs[i])
3703 && ! permitted_reg_in_leaf_functions[i])
3704 return 0;
3705
3706 if (current_function_uses_pic_offset_table
3707 && pic_offset_table_rtx != 0
3678 && GET_CODE (pic_offset_table_rtx) == REG
3708 && REG_P (pic_offset_table_rtx)
3679 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3680 return 0;
3681
3682 return 1;
3683}
3684
3685/* Scan all instructions and renumber all registers into those
3686 available in leaf functions. */

--- 27 unchanged lines hidden (view full) ---

3714
3715 if (in_rtx == 0)
3716 return;
3717
3718 /* Renumber all input-registers into output-registers.
3719 renumbered_regs would be 1 for an output-register;
3720 they */
3721
3709 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3710 return 0;
3711
3712 return 1;
3713}
3714
3715/* Scan all instructions and renumber all registers into those
3716 available in leaf functions. */

--- 27 unchanged lines hidden (view full) ---

3744
3745 if (in_rtx == 0)
3746 return;
3747
3748 /* Renumber all input-registers into output-registers.
3749 renumbered_regs would be 1 for an output-register;
3750 they */
3751
3722 if (GET_CODE (in_rtx) == REG)
3752 if (REG_P (in_rtx))
3723 {
3724 int newreg;
3725
3726 /* Don't renumber the same reg twice. */
3727 if (in_rtx->used)
3728 return;
3729
3730 newreg = REGNO (in_rtx);
3731 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3732 to reach here as part of a REG_NOTE. */
3733 if (newreg >= FIRST_PSEUDO_REGISTER)
3734 {
3735 in_rtx->used = 1;
3736 return;
3737 }
3738 newreg = LEAF_REG_REMAP (newreg);
3753 {
3754 int newreg;
3755
3756 /* Don't renumber the same reg twice. */
3757 if (in_rtx->used)
3758 return;
3759
3760 newreg = REGNO (in_rtx);
3761 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3762 to reach here as part of a REG_NOTE. */
3763 if (newreg >= FIRST_PSEUDO_REGISTER)
3764 {
3765 in_rtx->used = 1;
3766 return;
3767 }
3768 newreg = LEAF_REG_REMAP (newreg);
3739 if (newreg < 0)
3740 abort ();
3769 gcc_assert (newreg >= 0);
3741 regs_ever_live[REGNO (in_rtx)] = 0;
3742 regs_ever_live[newreg] = 1;
3743 REGNO (in_rtx) = newreg;
3744 in_rtx->used = 1;
3745 }
3746
3747 if (INSN_P (in_rtx))
3748 {

--- 26 unchanged lines hidden (view full) ---

3775 case '0':
3776 case 'i':
3777 case 'w':
3778 case 'n':
3779 case 'u':
3780 break;
3781
3782 default:
3770 regs_ever_live[REGNO (in_rtx)] = 0;
3771 regs_ever_live[newreg] = 1;
3772 REGNO (in_rtx) = newreg;
3773 in_rtx->used = 1;
3774 }
3775
3776 if (INSN_P (in_rtx))
3777 {

--- 26 unchanged lines hidden (view full) ---

3804 case '0':
3805 case 'i':
3806 case 'w':
3807 case 'n':
3808 case 'u':
3809 break;
3810
3811 default:
3783 abort ();
3812 gcc_unreachable ();
3784 }
3785}
3786#endif
3787
3788
3789/* When -gused is used, emit debug info for only used symbols. But in
3790 addition to the standard intercepted debug_hooks there are some direct
3791 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.

--- 19 unchanged lines hidden (view full) ---

3811
3812 /* Make sure that additionally queued items are not flushed
3813 prematurely. */
3814
3815 ++debug_nesting;
3816
3817 for (i = 0; i < symbol_queue_index; ++i)
3818 {
3813 }
3814}
3815#endif
3816
3817
3818/* When -gused is used, emit debug info for only used symbols. But in
3819 addition to the standard intercepted debug_hooks there are some direct
3820 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.

--- 19 unchanged lines hidden (view full) ---

3840
3841 /* Make sure that additionally queued items are not flushed
3842 prematurely. */
3843
3844 ++debug_nesting;
3845
3846 for (i = 0; i < symbol_queue_index; ++i)
3847 {
3819 /* If we pushed queued symbols then such symbols are must be
3848 /* If we pushed queued symbols then such symbols must be
3820 output no matter what anyone else says. Specifically,
3821 we need to make sure dbxout_symbol() thinks the symbol was
3822 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
3823 which may be set for outside reasons. */
3824 int saved_tree_used = TREE_USED (symbol_queue[i]);
3825 int saved_suppress_debug = TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]);
3826 TREE_USED (symbol_queue[i]) = 1;
3827 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = 0;

--- 33 unchanged lines hidden (view full) ---

3861{
3862 if (symbol_queue)
3863 {
3864 free (symbol_queue);
3865 symbol_queue = NULL;
3866 symbol_queue_size = 0;
3867 }
3868}
3849 output no matter what anyone else says. Specifically,
3850 we need to make sure dbxout_symbol() thinks the symbol was
3851 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
3852 which may be set for outside reasons. */
3853 int saved_tree_used = TREE_USED (symbol_queue[i]);
3854 int saved_suppress_debug = TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]);
3855 TREE_USED (symbol_queue[i]) = 1;
3856 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = 0;

--- 33 unchanged lines hidden (view full) ---

3890{
3891 if (symbol_queue)
3892 {
3893 free (symbol_queue);
3894 symbol_queue = NULL;
3895 symbol_queue_size = 0;
3896 }
3897}
3898
3899/* Turn the RTL into assembly. */
3900static unsigned int
3901rest_of_handle_final (void)
3902{
3903 rtx x;
3904 const char *fnname;
3905
3906 /* Get the function's name, as described by its RTL. This may be
3907 different from the DECL_NAME name used in the source file. */
3908
3909 x = DECL_RTL (current_function_decl);
3910 gcc_assert (MEM_P (x));
3911 x = XEXP (x, 0);
3912 gcc_assert (GET_CODE (x) == SYMBOL_REF);
3913 fnname = XSTR (x, 0);
3914
3915 assemble_start_function (current_function_decl, fnname);
3916 final_start_function (get_insns (), asm_out_file, optimize);
3917 final (get_insns (), asm_out_file, optimize);
3918 final_end_function ();
3919
3920#ifdef TARGET_UNWIND_INFO
3921 /* ??? The IA-64 ".handlerdata" directive must be issued before
3922 the ".endp" directive that closes the procedure descriptor. */
3923 output_function_exception_table ();
3924#endif
3925
3926 assemble_end_function (current_function_decl, fnname);
3927
3928#ifndef TARGET_UNWIND_INFO
3929 /* Otherwise, it feels unclean to switch sections in the middle. */
3930 output_function_exception_table ();
3931#endif
3932
3933 user_defined_section_attribute = false;
3934
3935 if (! quiet_flag)
3936 fflush (asm_out_file);
3937
3938 /* Release all memory allocated by flow. */
3939 free_basic_block_vars ();
3940
3941 /* Write DBX symbols if requested. */
3942
3943 /* Note that for those inline functions where we don't initially
3944 know for certain that we will be generating an out-of-line copy,
3945 the first invocation of this routine (rest_of_compilation) will
3946 skip over this code by doing a `goto exit_rest_of_compilation;'.
3947 Later on, wrapup_global_declarations will (indirectly) call
3948 rest_of_compilation again for those inline functions that need
3949 to have out-of-line copies generated. During that call, we
3950 *will* be routed past here. */
3951
3952 timevar_push (TV_SYMOUT);
3953 (*debug_hooks->function_decl) (current_function_decl);
3954 timevar_pop (TV_SYMOUT);
3955 return 0;
3956}
3957
3958struct tree_opt_pass pass_final =
3959{
3960 NULL, /* name */
3961 NULL, /* gate */
3962 rest_of_handle_final, /* execute */
3963 NULL, /* sub */
3964 NULL, /* next */
3965 0, /* static_pass_number */
3966 TV_FINAL, /* tv_id */
3967 0, /* properties_required */
3968 0, /* properties_provided */
3969 0, /* properties_destroyed */
3970 0, /* todo_flags_start */
3971 TODO_ggc_collect, /* todo_flags_finish */
3972 0 /* letter */
3973};
3974
3975
3976static unsigned int
3977rest_of_handle_shorten_branches (void)
3978{
3979 /* Shorten branches. */
3980 shorten_branches (get_insns ());
3981 return 0;
3982}
3983
3984struct tree_opt_pass pass_shorten_branches =
3985{
3986 "shorten", /* name */
3987 NULL, /* gate */
3988 rest_of_handle_shorten_branches, /* execute */
3989 NULL, /* sub */
3990 NULL, /* next */
3991 0, /* static_pass_number */
3992 TV_FINAL, /* tv_id */
3993 0, /* properties_required */
3994 0, /* properties_provided */
3995 0, /* properties_destroyed */
3996 0, /* todo_flags_start */
3997 TODO_dump_func, /* todo_flags_finish */
3998 0 /* letter */
3999};
4000
4001
4002static unsigned int
4003rest_of_clean_state (void)
4004{
4005 rtx insn, next;
4006
4007 /* It is very important to decompose the RTL instruction chain here:
4008 debug information keeps pointing into CODE_LABEL insns inside the function
4009 body. If these remain pointing to the other insns, we end up preserving
4010 whole RTL chain and attached detailed debug info in memory. */
4011 for (insn = get_insns (); insn; insn = next)
4012 {
4013 next = NEXT_INSN (insn);
4014 NEXT_INSN (insn) = NULL;
4015 PREV_INSN (insn) = NULL;
4016 }
4017
4018 /* In case the function was not output,
4019 don't leave any temporary anonymous types
4020 queued up for sdb output. */
4021#ifdef SDB_DEBUGGING_INFO
4022 if (write_symbols == SDB_DEBUG)
4023 sdbout_types (NULL_TREE);
4024#endif
4025
4026 reload_completed = 0;
4027 epilogue_completed = 0;
4028 flow2_completed = 0;
4029 no_new_pseudos = 0;
4030#ifdef STACK_REGS
4031 regstack_completed = 0;
4032#endif
4033
4034 /* Clear out the insn_length contents now that they are no
4035 longer valid. */
4036 init_insn_lengths ();
4037
4038 /* Show no temporary slots allocated. */
4039 init_temp_slots ();
4040
4041 free_basic_block_vars ();
4042 free_bb_for_insn ();
4043
4044
4045 if (targetm.binds_local_p (current_function_decl))
4046 {
4047 int pref = cfun->preferred_stack_boundary;
4048 if (cfun->stack_alignment_needed > cfun->preferred_stack_boundary)
4049 pref = cfun->stack_alignment_needed;
4050 cgraph_rtl_info (current_function_decl)->preferred_incoming_stack_boundary
4051 = pref;
4052 }
4053
4054 /* Make sure volatile mem refs aren't considered valid operands for
4055 arithmetic insns. We must call this here if this is a nested inline
4056 function, since the above code leaves us in the init_recog state,
4057 and the function context push/pop code does not save/restore volatile_ok.
4058
4059 ??? Maybe it isn't necessary for expand_start_function to call this
4060 anymore if we do it here? */
4061
4062 init_recog_no_volatile ();
4063
4064 /* We're done with this function. Free up memory if we can. */
4065 free_after_parsing (cfun);
4066 free_after_compilation (cfun);
4067 return 0;
4068}
4069
4070struct tree_opt_pass pass_clean_state =
4071{
4072 NULL, /* name */
4073 NULL, /* gate */
4074 rest_of_clean_state, /* execute */
4075 NULL, /* sub */
4076 NULL, /* next */
4077 0, /* static_pass_number */
4078 TV_FINAL, /* tv_id */
4079 0, /* properties_required */
4080 0, /* properties_provided */
4081 PROP_rtl, /* properties_destroyed */
4082 0, /* todo_flags_start */
4083 0, /* todo_flags_finish */
4084 0 /* letter */
4085};
4086