Deleted Added
sdiff udiff text old ( 146906 ) new ( 169699 )
full compact
1/* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
4 Free Software Foundation, Inc.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 2, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING. If not, write to the Free
20Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2102110-1301, USA. */
22
23
24/* Middle-to-low level generation of rtx code and insns.
25
26 This file contains support functions for creating rtl expressions
27 and manipulating them in the doubly-linked chain of insns.
28
29 The patterns of the insns are created by machine-dependent
30 routines in insn-emit.c, which is generated automatically from
31 the machine description. These routines make the individual rtx's
32 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
33 which are automatically generated from rtl.def; what is machine
34 dependent is the kind of rtx's they make and what arguments they
35 use. */
36
37#include "config.h"
38#include "system.h"
39#include "coretypes.h"
40#include "tm.h"
41#include "toplev.h"
42#include "rtl.h"
43#include "tree.h"
44#include "tm_p.h"
45#include "flags.h"
46#include "function.h"
47#include "expr.h"
48#include "regs.h"
49#include "hard-reg-set.h"
50#include "hashtab.h"
51#include "insn-config.h"
52#include "recog.h"
53#include "real.h"
54#include "bitmap.h"
55#include "basic-block.h"
56#include "ggc.h"
57#include "debug.h"
58#include "langhooks.h"
59#include "tree-pass.h"
60
61/* Commonly used modes. */
62
63enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
64enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
65enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
66enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
67
68
69/* This is *not* reset after each function. It gives each CODE_LABEL
70 in the entire compilation a unique label number. */
71
72static GTY(()) int label_num = 1;
73
74/* Nonzero means do not generate NOTEs for source line numbers. */
75
76static int no_line_numbers;
77
78/* Commonly used rtx's, so that we only need space for one copy.
79 These are initialized once for the entire compilation.
80 All of these are unique; no other rtx-object will be equal to any
81 of these. */
82
83rtx global_rtl[GR_MAX];
84
85/* Commonly used RTL for hard registers. These objects are not necessarily
86 unique, so we allocate them separately from global_rtl. They are
87 initialized once per compilation unit, then copied into regno_reg_rtx
88 at the beginning of each function. */
89static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
90
91/* We record floating-point CONST_DOUBLEs in each floating-point mode for
92 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
93 record a copy of const[012]_rtx. */
94
95rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
96
97rtx const_true_rtx;
98
99REAL_VALUE_TYPE dconst0;
100REAL_VALUE_TYPE dconst1;
101REAL_VALUE_TYPE dconst2;
102REAL_VALUE_TYPE dconst3;
103REAL_VALUE_TYPE dconst10;
104REAL_VALUE_TYPE dconstm1;
105REAL_VALUE_TYPE dconstm2;
106REAL_VALUE_TYPE dconsthalf;
107REAL_VALUE_TYPE dconstthird;
108REAL_VALUE_TYPE dconstpi;
109REAL_VALUE_TYPE dconste;
110
111/* All references to the following fixed hard registers go through
112 these unique rtl objects. On machines where the frame-pointer and
113 arg-pointer are the same register, they use the same unique object.
114
115 After register allocation, other rtl objects which used to be pseudo-regs
116 may be clobbered to refer to the frame-pointer register.
117 But references that were originally to the frame-pointer can be
118 distinguished from the others because they contain frame_pointer_rtx.
119
120 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
121 tricky: until register elimination has taken place hard_frame_pointer_rtx
122 should be used if it is being set, and frame_pointer_rtx otherwise. After
123 register elimination hard_frame_pointer_rtx should always be used.
124 On machines where the two registers are same (most) then these are the
125 same.
126
127 In an inline procedure, the stack and frame pointer rtxs may not be
128 used for anything else. */
129rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
130rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
131rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
132
133/* This is used to implement __builtin_return_address for some machines.
134 See for instance the MIPS port. */
135rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
136
137/* We make one copy of (const_int C) where C is in
138 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
139 to save space during the compilation and simplify comparisons of
140 integers. */
141
142rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
143
144/* A hash table storing CONST_INTs whose absolute value is greater
145 than MAX_SAVED_CONST_INT. */
146
147static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
148 htab_t const_int_htab;
149
150/* A hash table storing memory attribute structures. */
151static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
152 htab_t mem_attrs_htab;
153
154/* A hash table storing register attribute structures. */
155static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
156 htab_t reg_attrs_htab;
157
158/* A hash table storing all CONST_DOUBLEs. */
159static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
160 htab_t const_double_htab;
161
162#define first_insn (cfun->emit->x_first_insn)
163#define last_insn (cfun->emit->x_last_insn)
164#define cur_insn_uid (cfun->emit->x_cur_insn_uid)
165#define last_location (cfun->emit->x_last_location)
166#define first_label_num (cfun->emit->x_first_label_num)
167
168static rtx make_call_insn_raw (rtx);
169static rtx find_line_note (rtx);
170static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
171static void unshare_all_decls (tree);
172static void reset_used_decls (tree);
173static void mark_label_nuses (rtx);
174static hashval_t const_int_htab_hash (const void *);
175static int const_int_htab_eq (const void *, const void *);
176static hashval_t const_double_htab_hash (const void *);
177static int const_double_htab_eq (const void *, const void *);
178static rtx lookup_const_double (rtx);
179static hashval_t mem_attrs_htab_hash (const void *);
180static int mem_attrs_htab_eq (const void *, const void *);
181static mem_attrs *get_mem_attrs (HOST_WIDE_INT, tree, rtx, rtx, unsigned int,
182 enum machine_mode);
183static hashval_t reg_attrs_htab_hash (const void *);
184static int reg_attrs_htab_eq (const void *, const void *);
185static reg_attrs *get_reg_attrs (tree, int);
186static tree component_ref_for_mem_expr (tree);
187static rtx gen_const_vector (enum machine_mode, int);
188static void copy_rtx_if_shared_1 (rtx *orig);
189
190/* Probability of the conditional branch currently proceeded by try_split.
191 Set to -1 otherwise. */
192int split_branch_probability = -1;
193
194/* Returns a hash code for X (which is a really a CONST_INT). */
195
196static hashval_t
197const_int_htab_hash (const void *x)
198{
199 return (hashval_t) INTVAL ((rtx) x);
200}
201
202/* Returns nonzero if the value represented by X (which is really a
203 CONST_INT) is the same as that given by Y (which is really a
204 HOST_WIDE_INT *). */
205
206static int
207const_int_htab_eq (const void *x, const void *y)
208{
209 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
210}
211
212/* Returns a hash code for X (which is really a CONST_DOUBLE). */
213static hashval_t
214const_double_htab_hash (const void *x)
215{
216 rtx value = (rtx) x;
217 hashval_t h;
218
219 if (GET_MODE (value) == VOIDmode)
220 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
221 else
222 {
223 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
224 /* MODE is used in the comparison, so it should be in the hash. */
225 h ^= GET_MODE (value);
226 }
227 return h;
228}
229
230/* Returns nonzero if the value represented by X (really a ...)
231 is the same as that represented by Y (really a ...) */
232static int
233const_double_htab_eq (const void *x, const void *y)
234{
235 rtx a = (rtx)x, b = (rtx)y;
236
237 if (GET_MODE (a) != GET_MODE (b))
238 return 0;
239 if (GET_MODE (a) == VOIDmode)
240 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
241 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
242 else
243 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
244 CONST_DOUBLE_REAL_VALUE (b));
245}
246
247/* Returns a hash code for X (which is a really a mem_attrs *). */
248
249static hashval_t
250mem_attrs_htab_hash (const void *x)
251{
252 mem_attrs *p = (mem_attrs *) x;
253
254 return (p->alias ^ (p->align * 1000)
255 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
256 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
257 ^ (size_t) iterative_hash_expr (p->expr, 0));
258}
259
260/* Returns nonzero if the value represented by X (which is really a
261 mem_attrs *) is the same as that given by Y (which is also really a
262 mem_attrs *). */
263
264static int
265mem_attrs_htab_eq (const void *x, const void *y)
266{
267 mem_attrs *p = (mem_attrs *) x;
268 mem_attrs *q = (mem_attrs *) y;
269
270 return (p->alias == q->alias && p->offset == q->offset
271 && p->size == q->size && p->align == q->align
272 && (p->expr == q->expr
273 || (p->expr != NULL_TREE && q->expr != NULL_TREE
274 && operand_equal_p (p->expr, q->expr, 0))));
275}
276
277/* Allocate a new mem_attrs structure and insert it into the hash table if
278 one identical to it is not already in the table. We are doing this for
279 MEM of mode MODE. */
280
281static mem_attrs *
282get_mem_attrs (HOST_WIDE_INT alias, tree expr, rtx offset, rtx size,
283 unsigned int align, enum machine_mode mode)
284{
285 mem_attrs attrs;
286 void **slot;
287
288 /* If everything is the default, we can just return zero.
289 This must match what the corresponding MEM_* macros return when the
290 field is not present. */
291 if (alias == 0 && expr == 0 && offset == 0
292 && (size == 0
293 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
294 && (STRICT_ALIGNMENT && mode != BLKmode
295 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
296 return 0;
297
298 attrs.alias = alias;
299 attrs.expr = expr;
300 attrs.offset = offset;
301 attrs.size = size;
302 attrs.align = align;
303
304 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
305 if (*slot == 0)
306 {
307 *slot = ggc_alloc (sizeof (mem_attrs));
308 memcpy (*slot, &attrs, sizeof (mem_attrs));
309 }
310
311 return *slot;
312}
313
314/* Returns a hash code for X (which is a really a reg_attrs *). */
315
316static hashval_t
317reg_attrs_htab_hash (const void *x)
318{
319 reg_attrs *p = (reg_attrs *) x;
320
321 return ((p->offset * 1000) ^ (long) p->decl);
322}
323
324/* Returns nonzero if the value represented by X (which is really a
325 reg_attrs *) is the same as that given by Y (which is also really a
326 reg_attrs *). */
327
328static int
329reg_attrs_htab_eq (const void *x, const void *y)
330{
331 reg_attrs *p = (reg_attrs *) x;
332 reg_attrs *q = (reg_attrs *) y;
333
334 return (p->decl == q->decl && p->offset == q->offset);
335}
336/* Allocate a new reg_attrs structure and insert it into the hash table if
337 one identical to it is not already in the table. We are doing this for
338 MEM of mode MODE. */
339
340static reg_attrs *
341get_reg_attrs (tree decl, int offset)
342{
343 reg_attrs attrs;
344 void **slot;
345
346 /* If everything is the default, we can just return zero. */
347 if (decl == 0 && offset == 0)
348 return 0;
349
350 attrs.decl = decl;
351 attrs.offset = offset;
352
353 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
354 if (*slot == 0)
355 {
356 *slot = ggc_alloc (sizeof (reg_attrs));
357 memcpy (*slot, &attrs, sizeof (reg_attrs));
358 }
359
360 return *slot;
361}
362
363/* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
364 don't attempt to share with the various global pieces of rtl (such as
365 frame_pointer_rtx). */
366
367rtx
368gen_raw_REG (enum machine_mode mode, int regno)
369{
370 rtx x = gen_rtx_raw_REG (mode, regno);
371 ORIGINAL_REGNO (x) = regno;
372 return x;
373}
374
375/* There are some RTL codes that require special attention; the generation
376 functions do the raw handling. If you add to this list, modify
377 special_rtx in gengenrtl.c as well. */
378
379rtx
380gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
381{
382 void **slot;
383
384 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
385 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
386
387#if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
388 if (const_true_rtx && arg == STORE_FLAG_VALUE)
389 return const_true_rtx;
390#endif
391
392 /* Look up the CONST_INT in the hash table. */
393 slot = htab_find_slot_with_hash (const_int_htab, &arg,
394 (hashval_t) arg, INSERT);
395 if (*slot == 0)
396 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
397
398 return (rtx) *slot;
399}
400
401rtx
402gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
403{
404 return GEN_INT (trunc_int_for_mode (c, mode));
405}
406
407/* CONST_DOUBLEs might be created from pairs of integers, or from
408 REAL_VALUE_TYPEs. Also, their length is known only at run time,
409 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
410
411/* Determine whether REAL, a CONST_DOUBLE, already exists in the
412 hash table. If so, return its counterpart; otherwise add it
413 to the hash table and return it. */
414static rtx
415lookup_const_double (rtx real)
416{
417 void **slot = htab_find_slot (const_double_htab, real, INSERT);
418 if (*slot == 0)
419 *slot = real;
420
421 return (rtx) *slot;
422}
423
424/* Return a CONST_DOUBLE rtx for a floating-point value specified by
425 VALUE in mode MODE. */
426rtx
427const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
428{
429 rtx real = rtx_alloc (CONST_DOUBLE);
430 PUT_MODE (real, mode);
431
432 real->u.rv = value;
433
434 return lookup_const_double (real);
435}
436
437/* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
438 of ints: I0 is the low-order word and I1 is the high-order word.
439 Do not use this routine for non-integer modes; convert to
440 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
441
442rtx
443immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
444{
445 rtx value;
446 unsigned int i;
447
448 /* There are the following cases (note that there are no modes with
449 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
450
451 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
452 gen_int_mode.
453 2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
454 the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
455 from copies of the sign bit, and sign of i0 and i1 are the same), then
456 we return a CONST_INT for i0.
457 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
458 if (mode != VOIDmode)
459 {
460 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
461 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
462 /* We can get a 0 for an error mark. */
463 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
464 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
465
466 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
467 return gen_int_mode (i0, mode);
468
469 gcc_assert (GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT);
470 }
471
472 /* If this integer fits in one word, return a CONST_INT. */
473 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
474 return GEN_INT (i0);
475
476 /* We use VOIDmode for integers. */
477 value = rtx_alloc (CONST_DOUBLE);
478 PUT_MODE (value, VOIDmode);
479
480 CONST_DOUBLE_LOW (value) = i0;
481 CONST_DOUBLE_HIGH (value) = i1;
482
483 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
484 XWINT (value, i) = 0;
485
486 return lookup_const_double (value);
487}
488
489rtx
490gen_rtx_REG (enum machine_mode mode, unsigned int regno)
491{
492 /* In case the MD file explicitly references the frame pointer, have
493 all such references point to the same frame pointer. This is
494 used during frame pointer elimination to distinguish the explicit
495 references to these registers from pseudos that happened to be
496 assigned to them.
497
498 If we have eliminated the frame pointer or arg pointer, we will
499 be using it as a normal register, for example as a spill
500 register. In such cases, we might be accessing it in a mode that
501 is not Pmode and therefore cannot use the pre-allocated rtx.
502
503 Also don't do this when we are making new REGs in reload, since
504 we don't want to get confused with the real pointers. */
505
506 if (mode == Pmode && !reload_in_progress)
507 {
508 if (regno == FRAME_POINTER_REGNUM
509 && (!reload_completed || frame_pointer_needed))
510 return frame_pointer_rtx;
511#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
512 if (regno == HARD_FRAME_POINTER_REGNUM
513 && (!reload_completed || frame_pointer_needed))
514 return hard_frame_pointer_rtx;
515#endif
516#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
517 if (regno == ARG_POINTER_REGNUM)
518 return arg_pointer_rtx;
519#endif
520#ifdef RETURN_ADDRESS_POINTER_REGNUM
521 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
522 return return_address_pointer_rtx;
523#endif
524 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
525 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
526 return pic_offset_table_rtx;
527 if (regno == STACK_POINTER_REGNUM)
528 return stack_pointer_rtx;
529 }
530
531#if 0
532 /* If the per-function register table has been set up, try to re-use
533 an existing entry in that table to avoid useless generation of RTL.
534
535 This code is disabled for now until we can fix the various backends
536 which depend on having non-shared hard registers in some cases. Long
537 term we want to re-enable this code as it can significantly cut down
538 on the amount of useless RTL that gets generated.
539
540 We'll also need to fix some code that runs after reload that wants to
541 set ORIGINAL_REGNO. */
542
543 if (cfun
544 && cfun->emit
545 && regno_reg_rtx
546 && regno < FIRST_PSEUDO_REGISTER
547 && reg_raw_mode[regno] == mode)
548 return regno_reg_rtx[regno];
549#endif
550
551 return gen_raw_REG (mode, regno);
552}
553
554rtx
555gen_rtx_MEM (enum machine_mode mode, rtx addr)
556{
557 rtx rt = gen_rtx_raw_MEM (mode, addr);
558
559 /* This field is not cleared by the mere allocation of the rtx, so
560 we clear it here. */
561 MEM_ATTRS (rt) = 0;
562
563 return rt;
564}
565
566/* Generate a memory referring to non-trapping constant memory. */
567
568rtx
569gen_const_mem (enum machine_mode mode, rtx addr)
570{
571 rtx mem = gen_rtx_MEM (mode, addr);
572 MEM_READONLY_P (mem) = 1;
573 MEM_NOTRAP_P (mem) = 1;
574 return mem;
575}
576
577/* Generate a MEM referring to fixed portions of the frame, e.g., register
578 save areas. */
579
580rtx
581gen_frame_mem (enum machine_mode mode, rtx addr)
582{
583 rtx mem = gen_rtx_MEM (mode, addr);
584 MEM_NOTRAP_P (mem) = 1;
585 set_mem_alias_set (mem, get_frame_alias_set ());
586 return mem;
587}
588
589/* Generate a MEM referring to a temporary use of the stack, not part
590 of the fixed stack frame. For example, something which is pushed
591 by a target splitter. */
592rtx
593gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
594{
595 rtx mem = gen_rtx_MEM (mode, addr);
596 MEM_NOTRAP_P (mem) = 1;
597 if (!current_function_calls_alloca)
598 set_mem_alias_set (mem, get_frame_alias_set ());
599 return mem;
600}
601
602/* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
603 this construct would be valid, and false otherwise. */
604
605bool
606validate_subreg (enum machine_mode omode, enum machine_mode imode,
607 rtx reg, unsigned int offset)
608{
609 unsigned int isize = GET_MODE_SIZE (imode);
610 unsigned int osize = GET_MODE_SIZE (omode);
611
612 /* All subregs must be aligned. */
613 if (offset % osize != 0)
614 return false;
615
616 /* The subreg offset cannot be outside the inner object. */
617 if (offset >= isize)
618 return false;
619
620 /* ??? This should not be here. Temporarily continue to allow word_mode
621 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
622 Generally, backends are doing something sketchy but it'll take time to
623 fix them all. */
624 if (omode == word_mode)
625 ;
626 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
627 is the culprit here, and not the backends. */
628 else if (osize >= UNITS_PER_WORD && isize >= osize)
629 ;
630 /* Allow component subregs of complex and vector. Though given the below
631 extraction rules, it's not always clear what that means. */
632 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
633 && GET_MODE_INNER (imode) == omode)
634 ;
635 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
636 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
637 represent this. It's questionable if this ought to be represented at
638 all -- why can't this all be hidden in post-reload splitters that make
639 arbitrarily mode changes to the registers themselves. */
640 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
641 ;
642 /* Subregs involving floating point modes are not allowed to
643 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
644 (subreg:SI (reg:DF) 0) isn't. */
645 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
646 {
647 if (isize != osize)
648 return false;
649 }
650
651 /* Paradoxical subregs must have offset zero. */
652 if (osize > isize)
653 return offset == 0;
654
655 /* This is a normal subreg. Verify that the offset is representable. */
656
657 /* For hard registers, we already have most of these rules collected in
658 subreg_offset_representable_p. */
659 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
660 {
661 unsigned int regno = REGNO (reg);
662
663#ifdef CANNOT_CHANGE_MODE_CLASS
664 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
665 && GET_MODE_INNER (imode) == omode)
666 ;
667 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
668 return false;
669#endif
670
671 return subreg_offset_representable_p (regno, imode, offset, omode);
672 }
673
674 /* For pseudo registers, we want most of the same checks. Namely:
675 If the register no larger than a word, the subreg must be lowpart.
676 If the register is larger than a word, the subreg must be the lowpart
677 of a subword. A subreg does *not* perform arbitrary bit extraction.
678 Given that we've already checked mode/offset alignment, we only have
679 to check subword subregs here. */
680 if (osize < UNITS_PER_WORD)
681 {
682 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
683 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
684 if (offset % UNITS_PER_WORD != low_off)
685 return false;
686 }
687 return true;
688}
689
690rtx
691gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
692{
693 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
694 return gen_rtx_raw_SUBREG (mode, reg, offset);
695}
696
697/* Generate a SUBREG representing the least-significant part of REG if MODE
698 is smaller than mode of REG, otherwise paradoxical SUBREG. */
699
700rtx
701gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
702{
703 enum machine_mode inmode;
704
705 inmode = GET_MODE (reg);
706 if (inmode == VOIDmode)
707 inmode = mode;
708 return gen_rtx_SUBREG (mode, reg,
709 subreg_lowpart_offset (mode, inmode));
710}
711
712/* gen_rtvec (n, [rt1, ..., rtn])
713**
714** This routine creates an rtvec and stores within it the
715** pointers to rtx's which are its arguments.
716*/
717
718/*VARARGS1*/
719rtvec
720gen_rtvec (int n, ...)
721{
722 int i, save_n;
723 rtx *vector;
724 va_list p;
725
726 va_start (p, n);
727
728 if (n == 0)
729 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
730
731 vector = alloca (n * sizeof (rtx));
732
733 for (i = 0; i < n; i++)
734 vector[i] = va_arg (p, rtx);
735
736 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
737 save_n = n;
738 va_end (p);
739
740 return gen_rtvec_v (save_n, vector);
741}
742
743rtvec
744gen_rtvec_v (int n, rtx *argp)
745{
746 int i;
747 rtvec rt_val;
748
749 if (n == 0)
750 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
751
752 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
753
754 for (i = 0; i < n; i++)
755 rt_val->elem[i] = *argp++;
756
757 return rt_val;
758}
759
760/* Generate a REG rtx for a new pseudo register of mode MODE.
761 This pseudo is assigned the next sequential register number. */
762
763rtx
764gen_reg_rtx (enum machine_mode mode)
765{
766 struct function *f = cfun;
767 rtx val;
768
769 /* Don't let anything called after initial flow analysis create new
770 registers. */
771 gcc_assert (!no_new_pseudos);
772
773 if (generating_concat_p
774 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
775 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
776 {
777 /* For complex modes, don't make a single pseudo.
778 Instead, make a CONCAT of two pseudos.
779 This allows noncontiguous allocation of the real and imaginary parts,
780 which makes much better code. Besides, allocating DCmode
781 pseudos overstrains reload on some machines like the 386. */
782 rtx realpart, imagpart;
783 enum machine_mode partmode = GET_MODE_INNER (mode);
784
785 realpart = gen_reg_rtx (partmode);
786 imagpart = gen_reg_rtx (partmode);
787 return gen_rtx_CONCAT (mode, realpart, imagpart);
788 }
789
790 /* Make sure regno_pointer_align, and regno_reg_rtx are large
791 enough to have an element for this pseudo reg number. */
792
793 if (reg_rtx_no == f->emit->regno_pointer_align_length)
794 {
795 int old_size = f->emit->regno_pointer_align_length;
796 char *new;
797 rtx *new1;
798
799 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
800 memset (new + old_size, 0, old_size);
801 f->emit->regno_pointer_align = (unsigned char *) new;
802
803 new1 = ggc_realloc (f->emit->x_regno_reg_rtx,
804 old_size * 2 * sizeof (rtx));
805 memset (new1 + old_size, 0, old_size * sizeof (rtx));
806 regno_reg_rtx = new1;
807
808 f->emit->regno_pointer_align_length = old_size * 2;
809 }
810
811 val = gen_raw_REG (mode, reg_rtx_no);
812 regno_reg_rtx[reg_rtx_no++] = val;
813 return val;
814}
815
816/* Generate a register with same attributes as REG, but offsetted by OFFSET.
817 Do the big endian correction if needed. */
818
819rtx
820gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno, int offset)
821{
822 rtx new = gen_rtx_REG (mode, regno);
823 tree decl;
824 HOST_WIDE_INT var_size;
825
826 /* PR middle-end/14084
827 The problem appears when a variable is stored in a larger register
828 and later it is used in the original mode or some mode in between
829 or some part of variable is accessed.
830
831 On little endian machines there is no problem because
832 the REG_OFFSET of the start of the variable is the same when
833 accessed in any mode (it is 0).
834
835 However, this is not true on big endian machines.
836 The offset of the start of the variable is different when accessed
837 in different modes.
838 When we are taking a part of the REG we have to change the OFFSET
839 from offset WRT size of mode of REG to offset WRT size of variable.
840
841 If we would not do the big endian correction the resulting REG_OFFSET
842 would be larger than the size of the DECL.
843
844 Examples of correction, for BYTES_BIG_ENDIAN WORDS_BIG_ENDIAN machine:
845
846 REG.mode MODE DECL size old offset new offset description
847 DI SI 4 4 0 int32 in SImode
848 DI SI 1 4 0 char in SImode
849 DI QI 1 7 0 char in QImode
850 DI QI 4 5 1 1st element in QImode
851 of char[4]
852 DI HI 4 6 2 1st element in HImode
853 of int16[2]
854
855 If the size of DECL is equal or greater than the size of REG
856 we can't do this correction because the register holds the
857 whole variable or a part of the variable and thus the REG_OFFSET
858 is already correct. */
859
860 decl = REG_EXPR (reg);
861 if ((BYTES_BIG_ENDIAN || WORDS_BIG_ENDIAN)
862 && decl != NULL
863 && offset > 0
864 && GET_MODE_SIZE (GET_MODE (reg)) > GET_MODE_SIZE (mode)
865 && ((var_size = int_size_in_bytes (TREE_TYPE (decl))) > 0
866 && var_size < GET_MODE_SIZE (GET_MODE (reg))))
867 {
868 int offset_le;
869
870 /* Convert machine endian to little endian WRT size of mode of REG. */
871 if (WORDS_BIG_ENDIAN)
872 offset_le = ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
873 / UNITS_PER_WORD) * UNITS_PER_WORD;
874 else
875 offset_le = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
876
877 if (BYTES_BIG_ENDIAN)
878 offset_le += ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
879 % UNITS_PER_WORD);
880 else
881 offset_le += offset % UNITS_PER_WORD;
882
883 if (offset_le >= var_size)
884 {
885 /* MODE is wider than the variable so the new reg will cover
886 the whole variable so the resulting OFFSET should be 0. */
887 offset = 0;
888 }
889 else
890 {
891 /* Convert little endian to machine endian WRT size of variable. */
892 if (WORDS_BIG_ENDIAN)
893 offset = ((var_size - 1 - offset_le)
894 / UNITS_PER_WORD) * UNITS_PER_WORD;
895 else
896 offset = (offset_le / UNITS_PER_WORD) * UNITS_PER_WORD;
897
898 if (BYTES_BIG_ENDIAN)
899 offset += ((var_size - 1 - offset_le)
900 % UNITS_PER_WORD);
901 else
902 offset += offset_le % UNITS_PER_WORD;
903 }
904 }
905
906 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
907 REG_OFFSET (reg) + offset);
908 return new;
909}
910
911/* Set the decl for MEM to DECL. */
912
913void
914set_reg_attrs_from_mem (rtx reg, rtx mem)
915{
916 if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
917 REG_ATTRS (reg)
918 = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
919}
920
921/* Set the register attributes for registers contained in PARM_RTX.
922 Use needed values from memory attributes of MEM. */
923
924void
925set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
926{
927 if (REG_P (parm_rtx))
928 set_reg_attrs_from_mem (parm_rtx, mem);
929 else if (GET_CODE (parm_rtx) == PARALLEL)
930 {
931 /* Check for a NULL entry in the first slot, used to indicate that the
932 parameter goes both on the stack and in registers. */
933 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
934 for (; i < XVECLEN (parm_rtx, 0); i++)
935 {
936 rtx x = XVECEXP (parm_rtx, 0, i);
937 if (REG_P (XEXP (x, 0)))
938 REG_ATTRS (XEXP (x, 0))
939 = get_reg_attrs (MEM_EXPR (mem),
940 INTVAL (XEXP (x, 1)));
941 }
942 }
943}
944
945/* Assign the RTX X to declaration T. */
946void
947set_decl_rtl (tree t, rtx x)
948{
949 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
950
951 if (!x)
952 return;
953 /* For register, we maintain the reverse information too. */
954 if (REG_P (x))
955 REG_ATTRS (x) = get_reg_attrs (t, 0);
956 else if (GET_CODE (x) == SUBREG)
957 REG_ATTRS (SUBREG_REG (x))
958 = get_reg_attrs (t, -SUBREG_BYTE (x));
959 if (GET_CODE (x) == CONCAT)
960 {
961 if (REG_P (XEXP (x, 0)))
962 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
963 if (REG_P (XEXP (x, 1)))
964 REG_ATTRS (XEXP (x, 1))
965 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
966 }
967 if (GET_CODE (x) == PARALLEL)
968 {
969 int i;
970 for (i = 0; i < XVECLEN (x, 0); i++)
971 {
972 rtx y = XVECEXP (x, 0, i);
973 if (REG_P (XEXP (y, 0)))
974 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
975 }
976 }
977}
978
979/* Assign the RTX X to parameter declaration T. */
980void
981set_decl_incoming_rtl (tree t, rtx x)
982{
983 DECL_INCOMING_RTL (t) = x;
984
985 if (!x)
986 return;
987 /* For register, we maintain the reverse information too. */
988 if (REG_P (x))
989 REG_ATTRS (x) = get_reg_attrs (t, 0);
990 else if (GET_CODE (x) == SUBREG)
991 REG_ATTRS (SUBREG_REG (x))
992 = get_reg_attrs (t, -SUBREG_BYTE (x));
993 if (GET_CODE (x) == CONCAT)
994 {
995 if (REG_P (XEXP (x, 0)))
996 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
997 if (REG_P (XEXP (x, 1)))
998 REG_ATTRS (XEXP (x, 1))
999 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1000 }
1001 if (GET_CODE (x) == PARALLEL)
1002 {
1003 int i, start;
1004
1005 /* Check for a NULL entry, used to indicate that the parameter goes
1006 both on the stack and in registers. */
1007 if (XEXP (XVECEXP (x, 0, 0), 0))
1008 start = 0;
1009 else
1010 start = 1;
1011
1012 for (i = start; i < XVECLEN (x, 0); i++)
1013 {
1014 rtx y = XVECEXP (x, 0, i);
1015 if (REG_P (XEXP (y, 0)))
1016 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1017 }
1018 }
1019}
1020
1021/* Identify REG (which may be a CONCAT) as a user register. */
1022
1023void
1024mark_user_reg (rtx reg)
1025{
1026 if (GET_CODE (reg) == CONCAT)
1027 {
1028 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1029 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1030 }
1031 else
1032 {
1033 gcc_assert (REG_P (reg));
1034 REG_USERVAR_P (reg) = 1;
1035 }
1036}
1037
1038/* Identify REG as a probable pointer register and show its alignment
1039 as ALIGN, if nonzero. */
1040
1041void
1042mark_reg_pointer (rtx reg, int align)
1043{
1044 if (! REG_POINTER (reg))
1045 {
1046 REG_POINTER (reg) = 1;
1047
1048 if (align)
1049 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1050 }
1051 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1052 /* We can no-longer be sure just how aligned this pointer is. */
1053 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1054}
1055
1056/* Return 1 plus largest pseudo reg number used in the current function. */
1057
1058int
1059max_reg_num (void)
1060{
1061 return reg_rtx_no;
1062}
1063
1064/* Return 1 + the largest label number used so far in the current function. */
1065
1066int
1067max_label_num (void)
1068{
1069 return label_num;
1070}
1071
1072/* Return first label number used in this function (if any were used). */
1073
1074int
1075get_first_label_num (void)
1076{
1077 return first_label_num;
1078}
1079
1080/* If the rtx for label was created during the expansion of a nested
1081 function, then first_label_num won't include this label number.
1082 Fix this now so that array indicies work later. */
1083
1084void
1085maybe_set_first_label_num (rtx x)
1086{
1087 if (CODE_LABEL_NUMBER (x) < first_label_num)
1088 first_label_num = CODE_LABEL_NUMBER (x);
1089}
1090
1091/* Return a value representing some low-order bits of X, where the number
1092 of low-order bits is given by MODE. Note that no conversion is done
1093 between floating-point and fixed-point values, rather, the bit
1094 representation is returned.
1095
1096 This function handles the cases in common between gen_lowpart, below,
1097 and two variants in cse.c and combine.c. These are the cases that can
1098 be safely handled at all points in the compilation.
1099
1100 If this is not a case we can handle, return 0. */
1101
1102rtx
1103gen_lowpart_common (enum machine_mode mode, rtx x)
1104{
1105 int msize = GET_MODE_SIZE (mode);
1106 int xsize;
1107 int offset = 0;
1108 enum machine_mode innermode;
1109
1110 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1111 so we have to make one up. Yuk. */
1112 innermode = GET_MODE (x);
1113 if (GET_CODE (x) == CONST_INT
1114 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1115 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1116 else if (innermode == VOIDmode)
1117 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1118
1119 xsize = GET_MODE_SIZE (innermode);
1120
1121 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1122
1123 if (innermode == mode)
1124 return x;
1125
1126 /* MODE must occupy no more words than the mode of X. */
1127 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1128 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1129 return 0;
1130
1131 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1132 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1133 return 0;
1134
1135 offset = subreg_lowpart_offset (mode, innermode);
1136
1137 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1138 && (GET_MODE_CLASS (mode) == MODE_INT
1139 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1140 {
1141 /* If we are getting the low-order part of something that has been
1142 sign- or zero-extended, we can either just use the object being
1143 extended or make a narrower extension. If we want an even smaller
1144 piece than the size of the object being extended, call ourselves
1145 recursively.
1146
1147 This case is used mostly by combine and cse. */
1148
1149 if (GET_MODE (XEXP (x, 0)) == mode)
1150 return XEXP (x, 0);
1151 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1152 return gen_lowpart_common (mode, XEXP (x, 0));
1153 else if (msize < xsize)
1154 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1155 }
1156 else if (GET_CODE (x) == SUBREG || REG_P (x)
1157 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1158 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1159 return simplify_gen_subreg (mode, x, innermode, offset);
1160
1161 /* Otherwise, we can't do this. */
1162 return 0;
1163}
1164
1165rtx
1166gen_highpart (enum machine_mode mode, rtx x)
1167{
1168 unsigned int msize = GET_MODE_SIZE (mode);
1169 rtx result;
1170
1171 /* This case loses if X is a subreg. To catch bugs early,
1172 complain if an invalid MODE is used even in other cases. */
1173 gcc_assert (msize <= UNITS_PER_WORD
1174 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1175
1176 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1177 subreg_highpart_offset (mode, GET_MODE (x)));
1178 gcc_assert (result);
1179
1180 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1181 the target if we have a MEM. gen_highpart must return a valid operand,
1182 emitting code if necessary to do so. */
1183 if (MEM_P (result))
1184 {
1185 result = validize_mem (result);
1186 gcc_assert (result);
1187 }
1188
1189 return result;
1190}
1191
1192/* Like gen_highpart, but accept mode of EXP operand in case EXP can
1193 be VOIDmode constant. */
1194rtx
1195gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1196{
1197 if (GET_MODE (exp) != VOIDmode)
1198 {
1199 gcc_assert (GET_MODE (exp) == innermode);
1200 return gen_highpart (outermode, exp);
1201 }
1202 return simplify_gen_subreg (outermode, exp, innermode,
1203 subreg_highpart_offset (outermode, innermode));
1204}
1205
1206/* Return offset in bytes to get OUTERMODE low part
1207 of the value in mode INNERMODE stored in memory in target format. */
1208
1209unsigned int
1210subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1211{
1212 unsigned int offset = 0;
1213 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1214
1215 if (difference > 0)
1216 {
1217 if (WORDS_BIG_ENDIAN)
1218 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1219 if (BYTES_BIG_ENDIAN)
1220 offset += difference % UNITS_PER_WORD;
1221 }
1222
1223 return offset;
1224}
1225
1226/* Return offset in bytes to get OUTERMODE high part
1227 of the value in mode INNERMODE stored in memory in target format. */
1228unsigned int
1229subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1230{
1231 unsigned int offset = 0;
1232 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1233
1234 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1235
1236 if (difference > 0)
1237 {
1238 if (! WORDS_BIG_ENDIAN)
1239 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1240 if (! BYTES_BIG_ENDIAN)
1241 offset += difference % UNITS_PER_WORD;
1242 }
1243
1244 return offset;
1245}
1246
1247/* Return 1 iff X, assumed to be a SUBREG,
1248 refers to the least significant part of its containing reg.
1249 If X is not a SUBREG, always return 1 (it is its own low part!). */
1250
1251int
1252subreg_lowpart_p (rtx x)
1253{
1254 if (GET_CODE (x) != SUBREG)
1255 return 1;
1256 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1257 return 0;
1258
1259 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1260 == SUBREG_BYTE (x));
1261}
1262
1263/* Return subword OFFSET of operand OP.
1264 The word number, OFFSET, is interpreted as the word number starting
1265 at the low-order address. OFFSET 0 is the low-order word if not
1266 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1267
1268 If we cannot extract the required word, we return zero. Otherwise,
1269 an rtx corresponding to the requested word will be returned.
1270
1271 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1272 reload has completed, a valid address will always be returned. After
1273 reload, if a valid address cannot be returned, we return zero.
1274
1275 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1276 it is the responsibility of the caller.
1277
1278 MODE is the mode of OP in case it is a CONST_INT.
1279
1280 ??? This is still rather broken for some cases. The problem for the
1281 moment is that all callers of this thing provide no 'goal mode' to
1282 tell us to work with. This exists because all callers were written
1283 in a word based SUBREG world.
1284 Now use of this function can be deprecated by simplify_subreg in most
1285 cases.
1286 */
1287
1288rtx
1289operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1290{
1291 if (mode == VOIDmode)
1292 mode = GET_MODE (op);
1293
1294 gcc_assert (mode != VOIDmode);
1295
1296 /* If OP is narrower than a word, fail. */
1297 if (mode != BLKmode
1298 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1299 return 0;
1300
1301 /* If we want a word outside OP, return zero. */
1302 if (mode != BLKmode
1303 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1304 return const0_rtx;
1305
1306 /* Form a new MEM at the requested address. */
1307 if (MEM_P (op))
1308 {
1309 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1310
1311 if (! validate_address)
1312 return new;
1313
1314 else if (reload_completed)
1315 {
1316 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1317 return 0;
1318 }
1319 else
1320 return replace_equiv_address (new, XEXP (new, 0));
1321 }
1322
1323 /* Rest can be handled by simplify_subreg. */
1324 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1325}
1326
1327/* Similar to `operand_subword', but never return 0. If we can't
1328 extract the required subword, put OP into a register and try again.
1329 The second attempt must succeed. We always validate the address in
1330 this case.
1331
1332 MODE is the mode of OP, in case it is CONST_INT. */
1333
1334rtx
1335operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1336{
1337 rtx result = operand_subword (op, offset, 1, mode);
1338
1339 if (result)
1340 return result;
1341
1342 if (mode != BLKmode && mode != VOIDmode)
1343 {
1344 /* If this is a register which can not be accessed by words, copy it
1345 to a pseudo register. */
1346 if (REG_P (op))
1347 op = copy_to_reg (op);
1348 else
1349 op = force_reg (mode, op);
1350 }
1351
1352 result = operand_subword (op, offset, 1, mode);
1353 gcc_assert (result);
1354
1355 return result;
1356}
1357
1358/* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1359 or (2) a component ref of something variable. Represent the later with
1360 a NULL expression. */
1361
1362static tree
1363component_ref_for_mem_expr (tree ref)
1364{
1365 tree inner = TREE_OPERAND (ref, 0);
1366
1367 if (TREE_CODE (inner) == COMPONENT_REF)
1368 inner = component_ref_for_mem_expr (inner);
1369 else
1370 {
1371 /* Now remove any conversions: they don't change what the underlying
1372 object is. Likewise for SAVE_EXPR. */
1373 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1374 || TREE_CODE (inner) == NON_LVALUE_EXPR
1375 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1376 || TREE_CODE (inner) == SAVE_EXPR)
1377 inner = TREE_OPERAND (inner, 0);
1378
1379 if (! DECL_P (inner))
1380 inner = NULL_TREE;
1381 }
1382
1383 if (inner == TREE_OPERAND (ref, 0))
1384 return ref;
1385 else
1386 return build3 (COMPONENT_REF, TREE_TYPE (ref), inner,
1387 TREE_OPERAND (ref, 1), NULL_TREE);
1388}
1389
1390/* Returns 1 if both MEM_EXPR can be considered equal
1391 and 0 otherwise. */
1392
1393int
1394mem_expr_equal_p (tree expr1, tree expr2)
1395{
1396 if (expr1 == expr2)
1397 return 1;
1398
1399 if (! expr1 || ! expr2)
1400 return 0;
1401
1402 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1403 return 0;
1404
1405 if (TREE_CODE (expr1) == COMPONENT_REF)
1406 return
1407 mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1408 TREE_OPERAND (expr2, 0))
1409 && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1410 TREE_OPERAND (expr2, 1));
1411
1412 if (INDIRECT_REF_P (expr1))
1413 return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1414 TREE_OPERAND (expr2, 0));
1415
1416 /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1417 have been resolved here. */
1418 gcc_assert (DECL_P (expr1));
1419
1420 /* Decls with different pointers can't be equal. */
1421 return 0;
1422}
1423
1424/* Given REF, a MEM, and T, either the type of X or the expression
1425 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1426 if we are making a new object of this type. BITPOS is nonzero if
1427 there is an offset outstanding on T that will be applied later. */
1428
1429void
1430set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1431 HOST_WIDE_INT bitpos)
1432{
1433 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1434 tree expr = MEM_EXPR (ref);
1435 rtx offset = MEM_OFFSET (ref);
1436 rtx size = MEM_SIZE (ref);
1437 unsigned int align = MEM_ALIGN (ref);
1438 HOST_WIDE_INT apply_bitpos = 0;
1439 tree type;
1440
1441 /* It can happen that type_for_mode was given a mode for which there
1442 is no language-level type. In which case it returns NULL, which
1443 we can see here. */
1444 if (t == NULL_TREE)
1445 return;
1446
1447 type = TYPE_P (t) ? t : TREE_TYPE (t);
1448 if (type == error_mark_node)
1449 return;
1450
1451 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1452 wrong answer, as it assumes that DECL_RTL already has the right alias
1453 info. Callers should not set DECL_RTL until after the call to
1454 set_mem_attributes. */
1455 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1456
1457 /* Get the alias set from the expression or type (perhaps using a
1458 front-end routine) and use it. */
1459 alias = get_alias_set (t);
1460
1461 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1462 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1463 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1464
1465 /* If we are making an object of this type, or if this is a DECL, we know
1466 that it is a scalar if the type is not an aggregate. */
1467 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1468 MEM_SCALAR_P (ref) = 1;
1469
1470 /* We can set the alignment from the type if we are making an object,
1471 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1472 if (objectp || TREE_CODE (t) == INDIRECT_REF
1473 || TREE_CODE (t) == ALIGN_INDIRECT_REF
1474 || TYPE_ALIGN_OK (type))
1475 align = MAX (align, TYPE_ALIGN (type));
1476 else
1477 if (TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1478 {
1479 if (integer_zerop (TREE_OPERAND (t, 1)))
1480 /* We don't know anything about the alignment. */
1481 align = BITS_PER_UNIT;
1482 else
1483 align = tree_low_cst (TREE_OPERAND (t, 1), 1);
1484 }
1485
1486 /* If the size is known, we can set that. */
1487 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1488 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1489
1490 /* If T is not a type, we may be able to deduce some more information about
1491 the expression. */
1492 if (! TYPE_P (t))
1493 {
1494 tree base;
1495
1496 if (TREE_THIS_VOLATILE (t))
1497 MEM_VOLATILE_P (ref) = 1;
1498
1499 /* Now remove any conversions: they don't change what the underlying
1500 object is. Likewise for SAVE_EXPR. */
1501 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1502 || TREE_CODE (t) == NON_LVALUE_EXPR
1503 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1504 || TREE_CODE (t) == SAVE_EXPR)
1505 t = TREE_OPERAND (t, 0);
1506
1507 /* We may look through structure-like accesses for the purposes of
1508 examining TREE_THIS_NOTRAP, but not array-like accesses. */
1509 base = t;
1510 while (TREE_CODE (base) == COMPONENT_REF
1511 || TREE_CODE (base) == REALPART_EXPR
1512 || TREE_CODE (base) == IMAGPART_EXPR
1513 || TREE_CODE (base) == BIT_FIELD_REF)
1514 base = TREE_OPERAND (base, 0);
1515
1516 if (DECL_P (base))
1517 {
1518 if (CODE_CONTAINS_STRUCT (TREE_CODE (base), TS_DECL_WITH_VIS))
1519 MEM_NOTRAP_P (ref) = !DECL_WEAK (base);
1520 else
1521 MEM_NOTRAP_P (ref) = 1;
1522 }
1523 else
1524 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (base);
1525
1526 base = get_base_address (base);
1527 if (base && DECL_P (base)
1528 && TREE_READONLY (base)
1529 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1530 {
1531 tree base_type = TREE_TYPE (base);
1532 gcc_assert (!(base_type && TYPE_NEEDS_CONSTRUCTING (base_type))
1533 || DECL_ARTIFICIAL (base));
1534 MEM_READONLY_P (ref) = 1;
1535 }
1536
1537 /* If this expression uses it's parent's alias set, mark it such
1538 that we won't change it. */
1539 if (component_uses_parent_alias_set (t))
1540 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1541
1542 /* If this is a decl, set the attributes of the MEM from it. */
1543 if (DECL_P (t))
1544 {
1545 expr = t;
1546 offset = const0_rtx;
1547 apply_bitpos = bitpos;
1548 size = (DECL_SIZE_UNIT (t)
1549 && host_integerp (DECL_SIZE_UNIT (t), 1)
1550 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1551 align = DECL_ALIGN (t);
1552 }
1553
1554 /* If this is a constant, we know the alignment. */
1555 else if (CONSTANT_CLASS_P (t))
1556 {
1557 align = TYPE_ALIGN (type);
1558#ifdef CONSTANT_ALIGNMENT
1559 align = CONSTANT_ALIGNMENT (t, align);
1560#endif
1561 }
1562
1563 /* If this is a field reference and not a bit-field, record it. */
1564 /* ??? There is some information that can be gleened from bit-fields,
1565 such as the word offset in the structure that might be modified.
1566 But skip it for now. */
1567 else if (TREE_CODE (t) == COMPONENT_REF
1568 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1569 {
1570 expr = component_ref_for_mem_expr (t);
1571 offset = const0_rtx;
1572 apply_bitpos = bitpos;
1573 /* ??? Any reason the field size would be different than
1574 the size we got from the type? */
1575 }
1576
1577 /* If this is an array reference, look for an outer field reference. */
1578 else if (TREE_CODE (t) == ARRAY_REF)
1579 {
1580 tree off_tree = size_zero_node;
1581 /* We can't modify t, because we use it at the end of the
1582 function. */
1583 tree t2 = t;
1584
1585 do
1586 {
1587 tree index = TREE_OPERAND (t2, 1);
1588 tree low_bound = array_ref_low_bound (t2);
1589 tree unit_size = array_ref_element_size (t2);
1590
1591 /* We assume all arrays have sizes that are a multiple of a byte.
1592 First subtract the lower bound, if any, in the type of the
1593 index, then convert to sizetype and multiply by the size of
1594 the array element. */
1595 if (! integer_zerop (low_bound))
1596 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1597 index, low_bound);
1598
1599 off_tree = size_binop (PLUS_EXPR,
1600 size_binop (MULT_EXPR,
1601 fold_convert (sizetype,
1602 index),
1603 unit_size),
1604 off_tree);
1605 t2 = TREE_OPERAND (t2, 0);
1606 }
1607 while (TREE_CODE (t2) == ARRAY_REF);
1608
1609 if (DECL_P (t2))
1610 {
1611 expr = t2;
1612 offset = NULL;
1613 if (host_integerp (off_tree, 1))
1614 {
1615 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1616 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1617 align = DECL_ALIGN (t2);
1618 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1619 align = aoff;
1620 offset = GEN_INT (ioff);
1621 apply_bitpos = bitpos;
1622 }
1623 }
1624 else if (TREE_CODE (t2) == COMPONENT_REF)
1625 {
1626 expr = component_ref_for_mem_expr (t2);
1627 if (host_integerp (off_tree, 1))
1628 {
1629 offset = GEN_INT (tree_low_cst (off_tree, 1));
1630 apply_bitpos = bitpos;
1631 }
1632 /* ??? Any reason the field size would be different than
1633 the size we got from the type? */
1634 }
1635 else if (flag_argument_noalias > 1
1636 && (INDIRECT_REF_P (t2))
1637 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1638 {
1639 expr = t2;
1640 offset = NULL;
1641 }
1642 }
1643
1644 /* If this is a Fortran indirect argument reference, record the
1645 parameter decl. */
1646 else if (flag_argument_noalias > 1
1647 && (INDIRECT_REF_P (t))
1648 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1649 {
1650 expr = t;
1651 offset = NULL;
1652 }
1653 }
1654
1655 /* If we modified OFFSET based on T, then subtract the outstanding
1656 bit position offset. Similarly, increase the size of the accessed
1657 object to contain the negative offset. */
1658 if (apply_bitpos)
1659 {
1660 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1661 if (size)
1662 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1663 }
1664
1665 if (TREE_CODE (t) == ALIGN_INDIRECT_REF)
1666 {
1667 /* Force EXPR and OFFSE to NULL, since we don't know exactly what
1668 we're overlapping. */
1669 offset = NULL;
1670 expr = NULL;
1671 }
1672
1673 /* Now set the attributes we computed above. */
1674 MEM_ATTRS (ref)
1675 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1676
1677 /* If this is already known to be a scalar or aggregate, we are done. */
1678 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1679 return;
1680
1681 /* If it is a reference into an aggregate, this is part of an aggregate.
1682 Otherwise we don't know. */
1683 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1684 || TREE_CODE (t) == ARRAY_RANGE_REF
1685 || TREE_CODE (t) == BIT_FIELD_REF)
1686 MEM_IN_STRUCT_P (ref) = 1;
1687}
1688
1689void
1690set_mem_attributes (rtx ref, tree t, int objectp)
1691{
1692 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1693}
1694
1695/* Set the decl for MEM to DECL. */
1696
1697void
1698set_mem_attrs_from_reg (rtx mem, rtx reg)
1699{
1700 MEM_ATTRS (mem)
1701 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1702 GEN_INT (REG_OFFSET (reg)),
1703 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1704}
1705
1706/* Set the alias set of MEM to SET. */
1707
1708void
1709set_mem_alias_set (rtx mem, HOST_WIDE_INT set)
1710{
1711#ifdef ENABLE_CHECKING
1712 /* If the new and old alias sets don't conflict, something is wrong. */
1713 gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1714#endif
1715
1716 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1717 MEM_SIZE (mem), MEM_ALIGN (mem),
1718 GET_MODE (mem));
1719}
1720
1721/* Set the alignment of MEM to ALIGN bits. */
1722
1723void
1724set_mem_align (rtx mem, unsigned int align)
1725{
1726 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1727 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1728 GET_MODE (mem));
1729}
1730
1731/* Set the expr for MEM to EXPR. */
1732
1733void
1734set_mem_expr (rtx mem, tree expr)
1735{
1736 MEM_ATTRS (mem)
1737 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1738 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1739}
1740
1741/* Set the offset of MEM to OFFSET. */
1742
1743void
1744set_mem_offset (rtx mem, rtx offset)
1745{
1746 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1747 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1748 GET_MODE (mem));
1749}
1750
1751/* Set the size of MEM to SIZE. */
1752
1753void
1754set_mem_size (rtx mem, rtx size)
1755{
1756 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1757 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1758 GET_MODE (mem));
1759}
1760
1761/* Return a memory reference like MEMREF, but with its mode changed to MODE
1762 and its address changed to ADDR. (VOIDmode means don't change the mode.
1763 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1764 returned memory location is required to be valid. The memory
1765 attributes are not changed. */
1766
1767static rtx
1768change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1769{
1770 rtx new;
1771
1772 gcc_assert (MEM_P (memref));
1773 if (mode == VOIDmode)
1774 mode = GET_MODE (memref);
1775 if (addr == 0)
1776 addr = XEXP (memref, 0);
1777 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1778 && (!validate || memory_address_p (mode, addr)))
1779 return memref;
1780
1781 if (validate)
1782 {
1783 if (reload_in_progress || reload_completed)
1784 gcc_assert (memory_address_p (mode, addr));
1785 else
1786 addr = memory_address (mode, addr);
1787 }
1788
1789 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1790 return memref;
1791
1792 new = gen_rtx_MEM (mode, addr);
1793 MEM_COPY_ATTRIBUTES (new, memref);
1794 return new;
1795}
1796
1797/* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1798 way we are changing MEMREF, so we only preserve the alias set. */
1799
1800rtx
1801change_address (rtx memref, enum machine_mode mode, rtx addr)
1802{
1803 rtx new = change_address_1 (memref, mode, addr, 1), size;
1804 enum machine_mode mmode = GET_MODE (new);
1805 unsigned int align;
1806
1807 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1808 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1809
1810 /* If there are no changes, just return the original memory reference. */
1811 if (new == memref)
1812 {
1813 if (MEM_ATTRS (memref) == 0
1814 || (MEM_EXPR (memref) == NULL
1815 && MEM_OFFSET (memref) == NULL
1816 && MEM_SIZE (memref) == size
1817 && MEM_ALIGN (memref) == align))
1818 return new;
1819
1820 new = gen_rtx_MEM (mmode, XEXP (memref, 0));
1821 MEM_COPY_ATTRIBUTES (new, memref);
1822 }
1823
1824 MEM_ATTRS (new)
1825 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1826
1827 return new;
1828}
1829
1830/* Return a memory reference like MEMREF, but with its mode changed
1831 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1832 nonzero, the memory address is forced to be valid.
1833 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1834 and caller is responsible for adjusting MEMREF base register. */
1835
1836rtx
1837adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1838 int validate, int adjust)
1839{
1840 rtx addr = XEXP (memref, 0);
1841 rtx new;
1842 rtx memoffset = MEM_OFFSET (memref);
1843 rtx size = 0;
1844 unsigned int memalign = MEM_ALIGN (memref);
1845
1846 /* If there are no changes, just return the original memory reference. */
1847 if (mode == GET_MODE (memref) && !offset
1848 && (!validate || memory_address_p (mode, addr)))
1849 return memref;
1850
1851 /* ??? Prefer to create garbage instead of creating shared rtl.
1852 This may happen even if offset is nonzero -- consider
1853 (plus (plus reg reg) const_int) -- so do this always. */
1854 addr = copy_rtx (addr);
1855
1856 if (adjust)
1857 {
1858 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1859 object, we can merge it into the LO_SUM. */
1860 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1861 && offset >= 0
1862 && (unsigned HOST_WIDE_INT) offset
1863 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1864 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1865 plus_constant (XEXP (addr, 1), offset));
1866 else
1867 addr = plus_constant (addr, offset);
1868 }
1869
1870 new = change_address_1 (memref, mode, addr, validate);
1871
1872 /* Compute the new values of the memory attributes due to this adjustment.
1873 We add the offsets and update the alignment. */
1874 if (memoffset)
1875 memoffset = GEN_INT (offset + INTVAL (memoffset));
1876
1877 /* Compute the new alignment by taking the MIN of the alignment and the
1878 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1879 if zero. */
1880 if (offset != 0)
1881 memalign
1882 = MIN (memalign,
1883 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
1884
1885 /* We can compute the size in a number of ways. */
1886 if (GET_MODE (new) != BLKmode)
1887 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1888 else if (MEM_SIZE (memref))
1889 size = plus_constant (MEM_SIZE (memref), -offset);
1890
1891 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
1892 memoffset, size, memalign, GET_MODE (new));
1893
1894 /* At some point, we should validate that this offset is within the object,
1895 if all the appropriate values are known. */
1896 return new;
1897}
1898
1899/* Return a memory reference like MEMREF, but with its mode changed
1900 to MODE and its address changed to ADDR, which is assumed to be
1901 MEMREF offseted by OFFSET bytes. If VALIDATE is
1902 nonzero, the memory address is forced to be valid. */
1903
1904rtx
1905adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
1906 HOST_WIDE_INT offset, int validate)
1907{
1908 memref = change_address_1 (memref, VOIDmode, addr, validate);
1909 return adjust_address_1 (memref, mode, offset, validate, 0);
1910}
1911
1912/* Return a memory reference like MEMREF, but whose address is changed by
1913 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1914 known to be in OFFSET (possibly 1). */
1915
1916rtx
1917offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
1918{
1919 rtx new, addr = XEXP (memref, 0);
1920
1921 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1922
1923 /* At this point we don't know _why_ the address is invalid. It
1924 could have secondary memory references, multiplies or anything.
1925
1926 However, if we did go and rearrange things, we can wind up not
1927 being able to recognize the magic around pic_offset_table_rtx.
1928 This stuff is fragile, and is yet another example of why it is
1929 bad to expose PIC machinery too early. */
1930 if (! memory_address_p (GET_MODE (memref), new)
1931 && GET_CODE (addr) == PLUS
1932 && XEXP (addr, 0) == pic_offset_table_rtx)
1933 {
1934 addr = force_reg (GET_MODE (addr), addr);
1935 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1936 }
1937
1938 update_temp_slot_address (XEXP (memref, 0), new);
1939 new = change_address_1 (memref, VOIDmode, new, 1);
1940
1941 /* If there are no changes, just return the original memory reference. */
1942 if (new == memref)
1943 return new;
1944
1945 /* Update the alignment to reflect the offset. Reset the offset, which
1946 we don't know. */
1947 MEM_ATTRS (new)
1948 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
1949 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
1950 GET_MODE (new));
1951 return new;
1952}
1953
1954/* Return a memory reference like MEMREF, but with its address changed to
1955 ADDR. The caller is asserting that the actual piece of memory pointed
1956 to is the same, just the form of the address is being changed, such as
1957 by putting something into a register. */
1958
1959rtx
1960replace_equiv_address (rtx memref, rtx addr)
1961{
1962 /* change_address_1 copies the memory attribute structure without change
1963 and that's exactly what we want here. */
1964 update_temp_slot_address (XEXP (memref, 0), addr);
1965 return change_address_1 (memref, VOIDmode, addr, 1);
1966}
1967
1968/* Likewise, but the reference is not required to be valid. */
1969
1970rtx
1971replace_equiv_address_nv (rtx memref, rtx addr)
1972{
1973 return change_address_1 (memref, VOIDmode, addr, 0);
1974}
1975
1976/* Return a memory reference like MEMREF, but with its mode widened to
1977 MODE and offset by OFFSET. This would be used by targets that e.g.
1978 cannot issue QImode memory operations and have to use SImode memory
1979 operations plus masking logic. */
1980
1981rtx
1982widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
1983{
1984 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
1985 tree expr = MEM_EXPR (new);
1986 rtx memoffset = MEM_OFFSET (new);
1987 unsigned int size = GET_MODE_SIZE (mode);
1988
1989 /* If there are no changes, just return the original memory reference. */
1990 if (new == memref)
1991 return new;
1992
1993 /* If we don't know what offset we were at within the expression, then
1994 we can't know if we've overstepped the bounds. */
1995 if (! memoffset)
1996 expr = NULL_TREE;
1997
1998 while (expr)
1999 {
2000 if (TREE_CODE (expr) == COMPONENT_REF)
2001 {
2002 tree field = TREE_OPERAND (expr, 1);
2003 tree offset = component_ref_field_offset (expr);
2004
2005 if (! DECL_SIZE_UNIT (field))
2006 {
2007 expr = NULL_TREE;
2008 break;
2009 }
2010
2011 /* Is the field at least as large as the access? If so, ok,
2012 otherwise strip back to the containing structure. */
2013 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2014 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2015 && INTVAL (memoffset) >= 0)
2016 break;
2017
2018 if (! host_integerp (offset, 1))
2019 {
2020 expr = NULL_TREE;
2021 break;
2022 }
2023
2024 expr = TREE_OPERAND (expr, 0);
2025 memoffset
2026 = (GEN_INT (INTVAL (memoffset)
2027 + tree_low_cst (offset, 1)
2028 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2029 / BITS_PER_UNIT)));
2030 }
2031 /* Similarly for the decl. */
2032 else if (DECL_P (expr)
2033 && DECL_SIZE_UNIT (expr)
2034 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2035 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2036 && (! memoffset || INTVAL (memoffset) >= 0))
2037 break;
2038 else
2039 {
2040 /* The widened memory access overflows the expression, which means
2041 that it could alias another expression. Zap it. */
2042 expr = NULL_TREE;
2043 break;
2044 }
2045 }
2046
2047 if (! expr)
2048 memoffset = NULL_RTX;
2049
2050 /* The widened memory may alias other stuff, so zap the alias set. */
2051 /* ??? Maybe use get_alias_set on any remaining expression. */
2052
2053 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2054 MEM_ALIGN (new), mode);
2055
2056 return new;
2057}
2058
2059/* Return a newly created CODE_LABEL rtx with a unique label number. */
2060
2061rtx
2062gen_label_rtx (void)
2063{
2064 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2065 NULL, label_num++, NULL);
2066}
2067
2068/* For procedure integration. */
2069
2070/* Install new pointers to the first and last insns in the chain.
2071 Also, set cur_insn_uid to one higher than the last in use.
2072 Used for an inline-procedure after copying the insn chain. */
2073
2074void
2075set_new_first_and_last_insn (rtx first, rtx last)
2076{
2077 rtx insn;
2078
2079 first_insn = first;
2080 last_insn = last;
2081 cur_insn_uid = 0;
2082
2083 for (insn = first; insn; insn = NEXT_INSN (insn))
2084 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2085
2086 cur_insn_uid++;
2087}
2088
2089/* Go through all the RTL insn bodies and copy any invalid shared
2090 structure. This routine should only be called once. */
2091
2092static void
2093unshare_all_rtl_1 (tree fndecl, rtx insn)
2094{
2095 tree decl;
2096
2097 /* Make sure that virtual parameters are not shared. */
2098 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2099 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2100
2101 /* Make sure that virtual stack slots are not shared. */
2102 unshare_all_decls (DECL_INITIAL (fndecl));
2103
2104 /* Unshare just about everything else. */
2105 unshare_all_rtl_in_chain (insn);
2106
2107 /* Make sure the addresses of stack slots found outside the insn chain
2108 (such as, in DECL_RTL of a variable) are not shared
2109 with the insn chain.
2110
2111 This special care is necessary when the stack slot MEM does not
2112 actually appear in the insn chain. If it does appear, its address
2113 is unshared from all else at that point. */
2114 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2115}
2116
2117/* Go through all the RTL insn bodies and copy any invalid shared
2118 structure, again. This is a fairly expensive thing to do so it
2119 should be done sparingly. */
2120
2121void
2122unshare_all_rtl_again (rtx insn)
2123{
2124 rtx p;
2125 tree decl;
2126
2127 for (p = insn; p; p = NEXT_INSN (p))
2128 if (INSN_P (p))
2129 {
2130 reset_used_flags (PATTERN (p));
2131 reset_used_flags (REG_NOTES (p));
2132 reset_used_flags (LOG_LINKS (p));
2133 }
2134
2135 /* Make sure that virtual stack slots are not shared. */
2136 reset_used_decls (DECL_INITIAL (cfun->decl));
2137
2138 /* Make sure that virtual parameters are not shared. */
2139 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2140 reset_used_flags (DECL_RTL (decl));
2141
2142 reset_used_flags (stack_slot_list);
2143
2144 unshare_all_rtl_1 (cfun->decl, insn);
2145}
2146
2147unsigned int
2148unshare_all_rtl (void)
2149{
2150 unshare_all_rtl_1 (current_function_decl, get_insns ());
2151 return 0;
2152}
2153
2154struct tree_opt_pass pass_unshare_all_rtl =
2155{
2156 "unshare", /* name */
2157 NULL, /* gate */
2158 unshare_all_rtl, /* execute */
2159 NULL, /* sub */
2160 NULL, /* next */
2161 0, /* static_pass_number */
2162 0, /* tv_id */
2163 0, /* properties_required */
2164 0, /* properties_provided */
2165 0, /* properties_destroyed */
2166 0, /* todo_flags_start */
2167 TODO_dump_func, /* todo_flags_finish */
2168 0 /* letter */
2169};
2170
2171
2172/* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2173 Recursively does the same for subexpressions. */
2174
2175static void
2176verify_rtx_sharing (rtx orig, rtx insn)
2177{
2178 rtx x = orig;
2179 int i;
2180 enum rtx_code code;
2181 const char *format_ptr;
2182
2183 if (x == 0)
2184 return;
2185
2186 code = GET_CODE (x);
2187
2188 /* These types may be freely shared. */
2189
2190 switch (code)
2191 {
2192 case REG:
2193 case CONST_INT:
2194 case CONST_DOUBLE:
2195 case CONST_VECTOR:
2196 case SYMBOL_REF:
2197 case LABEL_REF:
2198 case CODE_LABEL:
2199 case PC:
2200 case CC0:
2201 case SCRATCH:
2202 return;
2203 /* SCRATCH must be shared because they represent distinct values. */
2204 case CLOBBER:
2205 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2206 return;
2207 break;
2208
2209 case CONST:
2210 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2211 a LABEL_REF, it isn't sharable. */
2212 if (GET_CODE (XEXP (x, 0)) == PLUS
2213 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2214 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2215 return;
2216 break;
2217
2218 case MEM:
2219 /* A MEM is allowed to be shared if its address is constant. */
2220 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2221 || reload_completed || reload_in_progress)
2222 return;
2223
2224 break;
2225
2226 default:
2227 break;
2228 }
2229
2230 /* This rtx may not be shared. If it has already been seen,
2231 replace it with a copy of itself. */
2232#ifdef ENABLE_CHECKING
2233 if (RTX_FLAG (x, used))
2234 {
2235 error ("invalid rtl sharing found in the insn");
2236 debug_rtx (insn);
2237 error ("shared rtx");
2238 debug_rtx (x);
2239 internal_error ("internal consistency failure");
2240 }
2241#endif
2242 gcc_assert (!RTX_FLAG (x, used));
2243
2244 RTX_FLAG (x, used) = 1;
2245
2246 /* Now scan the subexpressions recursively. */
2247
2248 format_ptr = GET_RTX_FORMAT (code);
2249
2250 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2251 {
2252 switch (*format_ptr++)
2253 {
2254 case 'e':
2255 verify_rtx_sharing (XEXP (x, i), insn);
2256 break;
2257
2258 case 'E':
2259 if (XVEC (x, i) != NULL)
2260 {
2261 int j;
2262 int len = XVECLEN (x, i);
2263
2264 for (j = 0; j < len; j++)
2265 {
2266 /* We allow sharing of ASM_OPERANDS inside single
2267 instruction. */
2268 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2269 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2270 == ASM_OPERANDS))
2271 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2272 else
2273 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2274 }
2275 }
2276 break;
2277 }
2278 }
2279 return;
2280}
2281
2282/* Go through all the RTL insn bodies and check that there is no unexpected
2283 sharing in between the subexpressions. */
2284
2285void
2286verify_rtl_sharing (void)
2287{
2288 rtx p;
2289
2290 for (p = get_insns (); p; p = NEXT_INSN (p))
2291 if (INSN_P (p))
2292 {
2293 reset_used_flags (PATTERN (p));
2294 reset_used_flags (REG_NOTES (p));
2295 reset_used_flags (LOG_LINKS (p));
2296 }
2297
2298 for (p = get_insns (); p; p = NEXT_INSN (p))
2299 if (INSN_P (p))
2300 {
2301 verify_rtx_sharing (PATTERN (p), p);
2302 verify_rtx_sharing (REG_NOTES (p), p);
2303 verify_rtx_sharing (LOG_LINKS (p), p);
2304 }
2305}
2306
2307/* Go through all the RTL insn bodies and copy any invalid shared structure.
2308 Assumes the mark bits are cleared at entry. */
2309
2310void
2311unshare_all_rtl_in_chain (rtx insn)
2312{
2313 for (; insn; insn = NEXT_INSN (insn))
2314 if (INSN_P (insn))
2315 {
2316 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2317 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2318 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2319 }
2320}
2321
2322/* Go through all virtual stack slots of a function and copy any
2323 shared structure. */
2324static void
2325unshare_all_decls (tree blk)
2326{
2327 tree t;
2328
2329 /* Copy shared decls. */
2330 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2331 if (DECL_RTL_SET_P (t))
2332 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2333
2334 /* Now process sub-blocks. */
2335 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2336 unshare_all_decls (t);
2337}
2338
2339/* Go through all virtual stack slots of a function and mark them as
2340 not shared. */
2341static void
2342reset_used_decls (tree blk)
2343{
2344 tree t;
2345
2346 /* Mark decls. */
2347 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2348 if (DECL_RTL_SET_P (t))
2349 reset_used_flags (DECL_RTL (t));
2350
2351 /* Now process sub-blocks. */
2352 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2353 reset_used_decls (t);
2354}
2355
2356/* Mark ORIG as in use, and return a copy of it if it was already in use.
2357 Recursively does the same for subexpressions. Uses
2358 copy_rtx_if_shared_1 to reduce stack space. */
2359
2360rtx
2361copy_rtx_if_shared (rtx orig)
2362{
2363 copy_rtx_if_shared_1 (&orig);
2364 return orig;
2365}
2366
2367/* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2368 use. Recursively does the same for subexpressions. */
2369
2370static void
2371copy_rtx_if_shared_1 (rtx *orig1)
2372{
2373 rtx x;
2374 int i;
2375 enum rtx_code code;
2376 rtx *last_ptr;
2377 const char *format_ptr;
2378 int copied = 0;
2379 int length;
2380
2381 /* Repeat is used to turn tail-recursion into iteration. */
2382repeat:
2383 x = *orig1;
2384
2385 if (x == 0)
2386 return;
2387
2388 code = GET_CODE (x);
2389
2390 /* These types may be freely shared. */
2391
2392 switch (code)
2393 {
2394 case REG:
2395 case CONST_INT:
2396 case CONST_DOUBLE:
2397 case CONST_VECTOR:
2398 case SYMBOL_REF:
2399 case LABEL_REF:
2400 case CODE_LABEL:
2401 case PC:
2402 case CC0:
2403 case SCRATCH:
2404 /* SCRATCH must be shared because they represent distinct values. */
2405 return;
2406 case CLOBBER:
2407 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2408 return;
2409 break;
2410
2411 case CONST:
2412 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2413 a LABEL_REF, it isn't sharable. */
2414 if (GET_CODE (XEXP (x, 0)) == PLUS
2415 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2416 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2417 return;
2418 break;
2419
2420 case INSN:
2421 case JUMP_INSN:
2422 case CALL_INSN:
2423 case NOTE:
2424 case BARRIER:
2425 /* The chain of insns is not being copied. */
2426 return;
2427
2428 default:
2429 break;
2430 }
2431
2432 /* This rtx may not be shared. If it has already been seen,
2433 replace it with a copy of itself. */
2434
2435 if (RTX_FLAG (x, used))
2436 {
2437 x = shallow_copy_rtx (x);
2438 copied = 1;
2439 }
2440 RTX_FLAG (x, used) = 1;
2441
2442 /* Now scan the subexpressions recursively.
2443 We can store any replaced subexpressions directly into X
2444 since we know X is not shared! Any vectors in X
2445 must be copied if X was copied. */
2446
2447 format_ptr = GET_RTX_FORMAT (code);
2448 length = GET_RTX_LENGTH (code);
2449 last_ptr = NULL;
2450
2451 for (i = 0; i < length; i++)
2452 {
2453 switch (*format_ptr++)
2454 {
2455 case 'e':
2456 if (last_ptr)
2457 copy_rtx_if_shared_1 (last_ptr);
2458 last_ptr = &XEXP (x, i);
2459 break;
2460
2461 case 'E':
2462 if (XVEC (x, i) != NULL)
2463 {
2464 int j;
2465 int len = XVECLEN (x, i);
2466
2467 /* Copy the vector iff I copied the rtx and the length
2468 is nonzero. */
2469 if (copied && len > 0)
2470 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2471
2472 /* Call recursively on all inside the vector. */
2473 for (j = 0; j < len; j++)
2474 {
2475 if (last_ptr)
2476 copy_rtx_if_shared_1 (last_ptr);
2477 last_ptr = &XVECEXP (x, i, j);
2478 }
2479 }
2480 break;
2481 }
2482 }
2483 *orig1 = x;
2484 if (last_ptr)
2485 {
2486 orig1 = last_ptr;
2487 goto repeat;
2488 }
2489 return;
2490}
2491
2492/* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2493 to look for shared sub-parts. */
2494
2495void
2496reset_used_flags (rtx x)
2497{
2498 int i, j;
2499 enum rtx_code code;
2500 const char *format_ptr;
2501 int length;
2502
2503 /* Repeat is used to turn tail-recursion into iteration. */
2504repeat:
2505 if (x == 0)
2506 return;
2507
2508 code = GET_CODE (x);
2509
2510 /* These types may be freely shared so we needn't do any resetting
2511 for them. */
2512
2513 switch (code)
2514 {
2515 case REG:
2516 case CONST_INT:
2517 case CONST_DOUBLE:
2518 case CONST_VECTOR:
2519 case SYMBOL_REF:
2520 case CODE_LABEL:
2521 case PC:
2522 case CC0:
2523 return;
2524
2525 case INSN:
2526 case JUMP_INSN:
2527 case CALL_INSN:
2528 case NOTE:
2529 case LABEL_REF:
2530 case BARRIER:
2531 /* The chain of insns is not being copied. */
2532 return;
2533
2534 default:
2535 break;
2536 }
2537
2538 RTX_FLAG (x, used) = 0;
2539
2540 format_ptr = GET_RTX_FORMAT (code);
2541 length = GET_RTX_LENGTH (code);
2542
2543 for (i = 0; i < length; i++)
2544 {
2545 switch (*format_ptr++)
2546 {
2547 case 'e':
2548 if (i == length-1)
2549 {
2550 x = XEXP (x, i);
2551 goto repeat;
2552 }
2553 reset_used_flags (XEXP (x, i));
2554 break;
2555
2556 case 'E':
2557 for (j = 0; j < XVECLEN (x, i); j++)
2558 reset_used_flags (XVECEXP (x, i, j));
2559 break;
2560 }
2561 }
2562}
2563
2564/* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2565 to look for shared sub-parts. */
2566
2567void
2568set_used_flags (rtx x)
2569{
2570 int i, j;
2571 enum rtx_code code;
2572 const char *format_ptr;
2573
2574 if (x == 0)
2575 return;
2576
2577 code = GET_CODE (x);
2578
2579 /* These types may be freely shared so we needn't do any resetting
2580 for them. */
2581
2582 switch (code)
2583 {
2584 case REG:
2585 case CONST_INT:
2586 case CONST_DOUBLE:
2587 case CONST_VECTOR:
2588 case SYMBOL_REF:
2589 case CODE_LABEL:
2590 case PC:
2591 case CC0:
2592 return;
2593
2594 case INSN:
2595 case JUMP_INSN:
2596 case CALL_INSN:
2597 case NOTE:
2598 case LABEL_REF:
2599 case BARRIER:
2600 /* The chain of insns is not being copied. */
2601 return;
2602
2603 default:
2604 break;
2605 }
2606
2607 RTX_FLAG (x, used) = 1;
2608
2609 format_ptr = GET_RTX_FORMAT (code);
2610 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2611 {
2612 switch (*format_ptr++)
2613 {
2614 case 'e':
2615 set_used_flags (XEXP (x, i));
2616 break;
2617
2618 case 'E':
2619 for (j = 0; j < XVECLEN (x, i); j++)
2620 set_used_flags (XVECEXP (x, i, j));
2621 break;
2622 }
2623 }
2624}
2625
2626/* Copy X if necessary so that it won't be altered by changes in OTHER.
2627 Return X or the rtx for the pseudo reg the value of X was copied into.
2628 OTHER must be valid as a SET_DEST. */
2629
2630rtx
2631make_safe_from (rtx x, rtx other)
2632{
2633 while (1)
2634 switch (GET_CODE (other))
2635 {
2636 case SUBREG:
2637 other = SUBREG_REG (other);
2638 break;
2639 case STRICT_LOW_PART:
2640 case SIGN_EXTEND:
2641 case ZERO_EXTEND:
2642 other = XEXP (other, 0);
2643 break;
2644 default:
2645 goto done;
2646 }
2647 done:
2648 if ((MEM_P (other)
2649 && ! CONSTANT_P (x)
2650 && !REG_P (x)
2651 && GET_CODE (x) != SUBREG)
2652 || (REG_P (other)
2653 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2654 || reg_mentioned_p (other, x))))
2655 {
2656 rtx temp = gen_reg_rtx (GET_MODE (x));
2657 emit_move_insn (temp, x);
2658 return temp;
2659 }
2660 return x;
2661}
2662
2663/* Emission of insns (adding them to the doubly-linked list). */
2664
2665/* Return the first insn of the current sequence or current function. */
2666
2667rtx
2668get_insns (void)
2669{
2670 return first_insn;
2671}
2672
2673/* Specify a new insn as the first in the chain. */
2674
2675void
2676set_first_insn (rtx insn)
2677{
2678 gcc_assert (!PREV_INSN (insn));
2679 first_insn = insn;
2680}
2681
2682/* Return the last insn emitted in current sequence or current function. */
2683
2684rtx
2685get_last_insn (void)
2686{
2687 return last_insn;
2688}
2689
2690/* Specify a new insn as the last in the chain. */
2691
2692void
2693set_last_insn (rtx insn)
2694{
2695 gcc_assert (!NEXT_INSN (insn));
2696 last_insn = insn;
2697}
2698
2699/* Return the last insn emitted, even if it is in a sequence now pushed. */
2700
2701rtx
2702get_last_insn_anywhere (void)
2703{
2704 struct sequence_stack *stack;
2705 if (last_insn)
2706 return last_insn;
2707 for (stack = seq_stack; stack; stack = stack->next)
2708 if (stack->last != 0)
2709 return stack->last;
2710 return 0;
2711}
2712
2713/* Return the first nonnote insn emitted in current sequence or current
2714 function. This routine looks inside SEQUENCEs. */
2715
2716rtx
2717get_first_nonnote_insn (void)
2718{
2719 rtx insn = first_insn;
2720
2721 if (insn)
2722 {
2723 if (NOTE_P (insn))
2724 for (insn = next_insn (insn);
2725 insn && NOTE_P (insn);
2726 insn = next_insn (insn))
2727 continue;
2728 else
2729 {
2730 if (NONJUMP_INSN_P (insn)
2731 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2732 insn = XVECEXP (PATTERN (insn), 0, 0);
2733 }
2734 }
2735
2736 return insn;
2737}
2738
2739/* Return the last nonnote insn emitted in current sequence or current
2740 function. This routine looks inside SEQUENCEs. */
2741
2742rtx
2743get_last_nonnote_insn (void)
2744{
2745 rtx insn = last_insn;
2746
2747 if (insn)
2748 {
2749 if (NOTE_P (insn))
2750 for (insn = previous_insn (insn);
2751 insn && NOTE_P (insn);
2752 insn = previous_insn (insn))
2753 continue;
2754 else
2755 {
2756 if (NONJUMP_INSN_P (insn)
2757 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2758 insn = XVECEXP (PATTERN (insn), 0,
2759 XVECLEN (PATTERN (insn), 0) - 1);
2760 }
2761 }
2762
2763 return insn;
2764}
2765
2766/* Return a number larger than any instruction's uid in this function. */
2767
2768int
2769get_max_uid (void)
2770{
2771 return cur_insn_uid;
2772}
2773
2774/* Renumber instructions so that no instruction UIDs are wasted. */
2775
2776void
2777renumber_insns (void)
2778{
2779 rtx insn;
2780
2781 /* If we're not supposed to renumber instructions, don't. */
2782 if (!flag_renumber_insns)
2783 return;
2784
2785 /* If there aren't that many instructions, then it's not really
2786 worth renumbering them. */
2787 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2788 return;
2789
2790 cur_insn_uid = 1;
2791
2792 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2793 {
2794 if (dump_file)
2795 fprintf (dump_file, "Renumbering insn %d to %d\n",
2796 INSN_UID (insn), cur_insn_uid);
2797 INSN_UID (insn) = cur_insn_uid++;
2798 }
2799}
2800
2801/* Return the next insn. If it is a SEQUENCE, return the first insn
2802 of the sequence. */
2803
2804rtx
2805next_insn (rtx insn)
2806{
2807 if (insn)
2808 {
2809 insn = NEXT_INSN (insn);
2810 if (insn && NONJUMP_INSN_P (insn)
2811 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2812 insn = XVECEXP (PATTERN (insn), 0, 0);
2813 }
2814
2815 return insn;
2816}
2817
2818/* Return the previous insn. If it is a SEQUENCE, return the last insn
2819 of the sequence. */
2820
2821rtx
2822previous_insn (rtx insn)
2823{
2824 if (insn)
2825 {
2826 insn = PREV_INSN (insn);
2827 if (insn && NONJUMP_INSN_P (insn)
2828 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2829 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2830 }
2831
2832 return insn;
2833}
2834
2835/* Return the next insn after INSN that is not a NOTE. This routine does not
2836 look inside SEQUENCEs. */
2837
2838rtx
2839next_nonnote_insn (rtx insn)
2840{
2841 while (insn)
2842 {
2843 insn = NEXT_INSN (insn);
2844 if (insn == 0 || !NOTE_P (insn))
2845 break;
2846 }
2847
2848 return insn;
2849}
2850
2851/* Return the previous insn before INSN that is not a NOTE. This routine does
2852 not look inside SEQUENCEs. */
2853
2854rtx
2855prev_nonnote_insn (rtx insn)
2856{
2857 while (insn)
2858 {
2859 insn = PREV_INSN (insn);
2860 if (insn == 0 || !NOTE_P (insn))
2861 break;
2862 }
2863
2864 return insn;
2865}
2866
2867/* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2868 or 0, if there is none. This routine does not look inside
2869 SEQUENCEs. */
2870
2871rtx
2872next_real_insn (rtx insn)
2873{
2874 while (insn)
2875 {
2876 insn = NEXT_INSN (insn);
2877 if (insn == 0 || INSN_P (insn))
2878 break;
2879 }
2880
2881 return insn;
2882}
2883
2884/* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2885 or 0, if there is none. This routine does not look inside
2886 SEQUENCEs. */
2887
2888rtx
2889prev_real_insn (rtx insn)
2890{
2891 while (insn)
2892 {
2893 insn = PREV_INSN (insn);
2894 if (insn == 0 || INSN_P (insn))
2895 break;
2896 }
2897
2898 return insn;
2899}
2900
2901/* Return the last CALL_INSN in the current list, or 0 if there is none.
2902 This routine does not look inside SEQUENCEs. */
2903
2904rtx
2905last_call_insn (void)
2906{
2907 rtx insn;
2908
2909 for (insn = get_last_insn ();
2910 insn && !CALL_P (insn);
2911 insn = PREV_INSN (insn))
2912 ;
2913
2914 return insn;
2915}
2916
2917/* Find the next insn after INSN that really does something. This routine
2918 does not look inside SEQUENCEs. Until reload has completed, this is the
2919 same as next_real_insn. */
2920
2921int
2922active_insn_p (rtx insn)
2923{
2924 return (CALL_P (insn) || JUMP_P (insn)
2925 || (NONJUMP_INSN_P (insn)
2926 && (! reload_completed
2927 || (GET_CODE (PATTERN (insn)) != USE
2928 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2929}
2930
2931rtx
2932next_active_insn (rtx insn)
2933{
2934 while (insn)
2935 {
2936 insn = NEXT_INSN (insn);
2937 if (insn == 0 || active_insn_p (insn))
2938 break;
2939 }
2940
2941 return insn;
2942}
2943
2944/* Find the last insn before INSN that really does something. This routine
2945 does not look inside SEQUENCEs. Until reload has completed, this is the
2946 same as prev_real_insn. */
2947
2948rtx
2949prev_active_insn (rtx insn)
2950{
2951 while (insn)
2952 {
2953 insn = PREV_INSN (insn);
2954 if (insn == 0 || active_insn_p (insn))
2955 break;
2956 }
2957
2958 return insn;
2959}
2960
2961/* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2962
2963rtx
2964next_label (rtx insn)
2965{
2966 while (insn)
2967 {
2968 insn = NEXT_INSN (insn);
2969 if (insn == 0 || LABEL_P (insn))
2970 break;
2971 }
2972
2973 return insn;
2974}
2975
2976/* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
2977
2978rtx
2979prev_label (rtx insn)
2980{
2981 while (insn)
2982 {
2983 insn = PREV_INSN (insn);
2984 if (insn == 0 || LABEL_P (insn))
2985 break;
2986 }
2987
2988 return insn;
2989}
2990
2991/* Return the last label to mark the same position as LABEL. Return null
2992 if LABEL itself is null. */
2993
2994rtx
2995skip_consecutive_labels (rtx label)
2996{
2997 rtx insn;
2998
2999 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3000 if (LABEL_P (insn))
3001 label = insn;
3002
3003 return label;
3004}
3005
3006#ifdef HAVE_cc0
3007/* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3008 and REG_CC_USER notes so we can find it. */
3009
3010void
3011link_cc0_insns (rtx insn)
3012{
3013 rtx user = next_nonnote_insn (insn);
3014
3015 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3016 user = XVECEXP (PATTERN (user), 0, 0);
3017
3018 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3019 REG_NOTES (user));
3020 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3021}
3022
3023/* Return the next insn that uses CC0 after INSN, which is assumed to
3024 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3025 applied to the result of this function should yield INSN).
3026
3027 Normally, this is simply the next insn. However, if a REG_CC_USER note
3028 is present, it contains the insn that uses CC0.
3029
3030 Return 0 if we can't find the insn. */
3031
3032rtx
3033next_cc0_user (rtx insn)
3034{
3035 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3036
3037 if (note)
3038 return XEXP (note, 0);
3039
3040 insn = next_nonnote_insn (insn);
3041 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3042 insn = XVECEXP (PATTERN (insn), 0, 0);
3043
3044 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3045 return insn;
3046
3047 return 0;
3048}
3049
3050/* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3051 note, it is the previous insn. */
3052
3053rtx
3054prev_cc0_setter (rtx insn)
3055{
3056 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3057
3058 if (note)
3059 return XEXP (note, 0);
3060
3061 insn = prev_nonnote_insn (insn);
3062 gcc_assert (sets_cc0_p (PATTERN (insn)));
3063
3064 return insn;
3065}
3066#endif
3067
3068/* Increment the label uses for all labels present in rtx. */
3069
3070static void
3071mark_label_nuses (rtx x)
3072{
3073 enum rtx_code code;
3074 int i, j;
3075 const char *fmt;
3076
3077 code = GET_CODE (x);
3078 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3079 LABEL_NUSES (XEXP (x, 0))++;
3080
3081 fmt = GET_RTX_FORMAT (code);
3082 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3083 {
3084 if (fmt[i] == 'e')
3085 mark_label_nuses (XEXP (x, i));
3086 else if (fmt[i] == 'E')
3087 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3088 mark_label_nuses (XVECEXP (x, i, j));
3089 }
3090}
3091
3092
3093/* Try splitting insns that can be split for better scheduling.
3094 PAT is the pattern which might split.
3095 TRIAL is the insn providing PAT.
3096 LAST is nonzero if we should return the last insn of the sequence produced.
3097
3098 If this routine succeeds in splitting, it returns the first or last
3099 replacement insn depending on the value of LAST. Otherwise, it
3100 returns TRIAL. If the insn to be returned can be split, it will be. */
3101
3102rtx
3103try_split (rtx pat, rtx trial, int last)
3104{
3105 rtx before = PREV_INSN (trial);
3106 rtx after = NEXT_INSN (trial);
3107 int has_barrier = 0;
3108 rtx tem;
3109 rtx note, seq;
3110 int probability;
3111 rtx insn_last, insn;
3112 int njumps = 0;
3113
3114 if (any_condjump_p (trial)
3115 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3116 split_branch_probability = INTVAL (XEXP (note, 0));
3117 probability = split_branch_probability;
3118
3119 seq = split_insns (pat, trial);
3120
3121 split_branch_probability = -1;
3122
3123 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3124 We may need to handle this specially. */
3125 if (after && BARRIER_P (after))
3126 {
3127 has_barrier = 1;
3128 after = NEXT_INSN (after);
3129 }
3130
3131 if (!seq)
3132 return trial;
3133
3134 /* Avoid infinite loop if any insn of the result matches
3135 the original pattern. */
3136 insn_last = seq;
3137 while (1)
3138 {
3139 if (INSN_P (insn_last)
3140 && rtx_equal_p (PATTERN (insn_last), pat))
3141 return trial;
3142 if (!NEXT_INSN (insn_last))
3143 break;
3144 insn_last = NEXT_INSN (insn_last);
3145 }
3146
3147 /* Mark labels. */
3148 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3149 {
3150 if (JUMP_P (insn))
3151 {
3152 mark_jump_label (PATTERN (insn), insn, 0);
3153 njumps++;
3154 if (probability != -1
3155 && any_condjump_p (insn)
3156 && !find_reg_note (insn, REG_BR_PROB, 0))
3157 {
3158 /* We can preserve the REG_BR_PROB notes only if exactly
3159 one jump is created, otherwise the machine description
3160 is responsible for this step using
3161 split_branch_probability variable. */
3162 gcc_assert (njumps == 1);
3163 REG_NOTES (insn)
3164 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3165 GEN_INT (probability),
3166 REG_NOTES (insn));
3167 }
3168 }
3169 }
3170
3171 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3172 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3173 if (CALL_P (trial))
3174 {
3175 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3176 if (CALL_P (insn))
3177 {
3178 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3179 while (*p)
3180 p = &XEXP (*p, 1);
3181 *p = CALL_INSN_FUNCTION_USAGE (trial);
3182 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3183 }
3184 }
3185
3186 /* Copy notes, particularly those related to the CFG. */
3187 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3188 {
3189 switch (REG_NOTE_KIND (note))
3190 {
3191 case REG_EH_REGION:
3192 insn = insn_last;
3193 while (insn != NULL_RTX)
3194 {
3195 if (CALL_P (insn)
3196 || (flag_non_call_exceptions && INSN_P (insn)
3197 && may_trap_p (PATTERN (insn))))
3198 REG_NOTES (insn)
3199 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3200 XEXP (note, 0),
3201 REG_NOTES (insn));
3202 insn = PREV_INSN (insn);
3203 }
3204 break;
3205
3206 case REG_NORETURN:
3207 case REG_SETJMP:
3208 insn = insn_last;
3209 while (insn != NULL_RTX)
3210 {
3211 if (CALL_P (insn))
3212 REG_NOTES (insn)
3213 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3214 XEXP (note, 0),
3215 REG_NOTES (insn));
3216 insn = PREV_INSN (insn);
3217 }
3218 break;
3219
3220 case REG_NON_LOCAL_GOTO:
3221 insn = insn_last;
3222 while (insn != NULL_RTX)
3223 {
3224 if (JUMP_P (insn))
3225 REG_NOTES (insn)
3226 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3227 XEXP (note, 0),
3228 REG_NOTES (insn));
3229 insn = PREV_INSN (insn);
3230 }
3231 break;
3232
3233 default:
3234 break;
3235 }
3236 }
3237
3238 /* If there are LABELS inside the split insns increment the
3239 usage count so we don't delete the label. */
3240 if (NONJUMP_INSN_P (trial))
3241 {
3242 insn = insn_last;
3243 while (insn != NULL_RTX)
3244 {
3245 if (NONJUMP_INSN_P (insn))
3246 mark_label_nuses (PATTERN (insn));
3247
3248 insn = PREV_INSN (insn);
3249 }
3250 }
3251
3252 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3253
3254 delete_insn (trial);
3255 if (has_barrier)
3256 emit_barrier_after (tem);
3257
3258 /* Recursively call try_split for each new insn created; by the
3259 time control returns here that insn will be fully split, so
3260 set LAST and continue from the insn after the one returned.
3261 We can't use next_active_insn here since AFTER may be a note.
3262 Ignore deleted insns, which can be occur if not optimizing. */
3263 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3264 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3265 tem = try_split (PATTERN (tem), tem, 1);
3266
3267 /* Return either the first or the last insn, depending on which was
3268 requested. */
3269 return last
3270 ? (after ? PREV_INSN (after) : last_insn)
3271 : NEXT_INSN (before);
3272}
3273
3274/* Make and return an INSN rtx, initializing all its slots.
3275 Store PATTERN in the pattern slots. */
3276
3277rtx
3278make_insn_raw (rtx pattern)
3279{
3280 rtx insn;
3281
3282 insn = rtx_alloc (INSN);
3283
3284 INSN_UID (insn) = cur_insn_uid++;
3285 PATTERN (insn) = pattern;
3286 INSN_CODE (insn) = -1;
3287 LOG_LINKS (insn) = NULL;
3288 REG_NOTES (insn) = NULL;
3289 INSN_LOCATOR (insn) = 0;
3290 BLOCK_FOR_INSN (insn) = NULL;
3291
3292#ifdef ENABLE_RTL_CHECKING
3293 if (insn
3294 && INSN_P (insn)
3295 && (returnjump_p (insn)
3296 || (GET_CODE (insn) == SET
3297 && SET_DEST (insn) == pc_rtx)))
3298 {
3299 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3300 debug_rtx (insn);
3301 }
3302#endif
3303
3304 return insn;
3305}
3306
3307/* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3308
3309rtx
3310make_jump_insn_raw (rtx pattern)
3311{
3312 rtx insn;
3313
3314 insn = rtx_alloc (JUMP_INSN);
3315 INSN_UID (insn) = cur_insn_uid++;
3316
3317 PATTERN (insn) = pattern;
3318 INSN_CODE (insn) = -1;
3319 LOG_LINKS (insn) = NULL;
3320 REG_NOTES (insn) = NULL;
3321 JUMP_LABEL (insn) = NULL;
3322 INSN_LOCATOR (insn) = 0;
3323 BLOCK_FOR_INSN (insn) = NULL;
3324
3325 return insn;
3326}
3327
3328/* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3329
3330static rtx
3331make_call_insn_raw (rtx pattern)
3332{
3333 rtx insn;
3334
3335 insn = rtx_alloc (CALL_INSN);
3336 INSN_UID (insn) = cur_insn_uid++;
3337
3338 PATTERN (insn) = pattern;
3339 INSN_CODE (insn) = -1;
3340 LOG_LINKS (insn) = NULL;
3341 REG_NOTES (insn) = NULL;
3342 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3343 INSN_LOCATOR (insn) = 0;
3344 BLOCK_FOR_INSN (insn) = NULL;
3345
3346 return insn;
3347}
3348
3349/* Add INSN to the end of the doubly-linked list.
3350 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3351
3352void
3353add_insn (rtx insn)
3354{
3355 PREV_INSN (insn) = last_insn;
3356 NEXT_INSN (insn) = 0;
3357
3358 if (NULL != last_insn)
3359 NEXT_INSN (last_insn) = insn;
3360
3361 if (NULL == first_insn)
3362 first_insn = insn;
3363
3364 last_insn = insn;
3365}
3366
3367/* Add INSN into the doubly-linked list after insn AFTER. This and
3368 the next should be the only functions called to insert an insn once
3369 delay slots have been filled since only they know how to update a
3370 SEQUENCE. */
3371
3372void
3373add_insn_after (rtx insn, rtx after)
3374{
3375 rtx next = NEXT_INSN (after);
3376 basic_block bb;
3377
3378 gcc_assert (!optimize || !INSN_DELETED_P (after));
3379
3380 NEXT_INSN (insn) = next;
3381 PREV_INSN (insn) = after;
3382
3383 if (next)
3384 {
3385 PREV_INSN (next) = insn;
3386 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3387 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3388 }
3389 else if (last_insn == after)
3390 last_insn = insn;
3391 else
3392 {
3393 struct sequence_stack *stack = seq_stack;
3394 /* Scan all pending sequences too. */
3395 for (; stack; stack = stack->next)
3396 if (after == stack->last)
3397 {
3398 stack->last = insn;
3399 break;
3400 }
3401
3402 gcc_assert (stack);
3403 }
3404
3405 if (!BARRIER_P (after)
3406 && !BARRIER_P (insn)
3407 && (bb = BLOCK_FOR_INSN (after)))
3408 {
3409 set_block_for_insn (insn, bb);
3410 if (INSN_P (insn))
3411 bb->flags |= BB_DIRTY;
3412 /* Should not happen as first in the BB is always
3413 either NOTE or LABEL. */
3414 if (BB_END (bb) == after
3415 /* Avoid clobbering of structure when creating new BB. */
3416 && !BARRIER_P (insn)
3417 && (!NOTE_P (insn)
3418 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3419 BB_END (bb) = insn;
3420 }
3421
3422 NEXT_INSN (after) = insn;
3423 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3424 {
3425 rtx sequence = PATTERN (after);
3426 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3427 }
3428}
3429
3430/* Add INSN into the doubly-linked list before insn BEFORE. This and
3431 the previous should be the only functions called to insert an insn once
3432 delay slots have been filled since only they know how to update a
3433 SEQUENCE. */
3434
3435void
3436add_insn_before (rtx insn, rtx before)
3437{
3438 rtx prev = PREV_INSN (before);
3439 basic_block bb;
3440
3441 gcc_assert (!optimize || !INSN_DELETED_P (before));
3442
3443 PREV_INSN (insn) = prev;
3444 NEXT_INSN (insn) = before;
3445
3446 if (prev)
3447 {
3448 NEXT_INSN (prev) = insn;
3449 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3450 {
3451 rtx sequence = PATTERN (prev);
3452 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3453 }
3454 }
3455 else if (first_insn == before)
3456 first_insn = insn;
3457 else
3458 {
3459 struct sequence_stack *stack = seq_stack;
3460 /* Scan all pending sequences too. */
3461 for (; stack; stack = stack->next)
3462 if (before == stack->first)
3463 {
3464 stack->first = insn;
3465 break;
3466 }
3467
3468 gcc_assert (stack);
3469 }
3470
3471 if (!BARRIER_P (before)
3472 && !BARRIER_P (insn)
3473 && (bb = BLOCK_FOR_INSN (before)))
3474 {
3475 set_block_for_insn (insn, bb);
3476 if (INSN_P (insn))
3477 bb->flags |= BB_DIRTY;
3478 /* Should not happen as first in the BB is always either NOTE or
3479 LABEL. */
3480 gcc_assert (BB_HEAD (bb) != insn
3481 /* Avoid clobbering of structure when creating new BB. */
3482 || BARRIER_P (insn)
3483 || (NOTE_P (insn)
3484 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_BASIC_BLOCK));
3485 }
3486
3487 PREV_INSN (before) = insn;
3488 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3489 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3490}
3491
3492/* Remove an insn from its doubly-linked list. This function knows how
3493 to handle sequences. */
3494void
3495remove_insn (rtx insn)
3496{
3497 rtx next = NEXT_INSN (insn);
3498 rtx prev = PREV_INSN (insn);
3499 basic_block bb;
3500
3501 if (prev)
3502 {
3503 NEXT_INSN (prev) = next;
3504 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3505 {
3506 rtx sequence = PATTERN (prev);
3507 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3508 }
3509 }
3510 else if (first_insn == insn)
3511 first_insn = next;
3512 else
3513 {
3514 struct sequence_stack *stack = seq_stack;
3515 /* Scan all pending sequences too. */
3516 for (; stack; stack = stack->next)
3517 if (insn == stack->first)
3518 {
3519 stack->first = next;
3520 break;
3521 }
3522
3523 gcc_assert (stack);
3524 }
3525
3526 if (next)
3527 {
3528 PREV_INSN (next) = prev;
3529 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3530 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3531 }
3532 else if (last_insn == insn)
3533 last_insn = prev;
3534 else
3535 {
3536 struct sequence_stack *stack = seq_stack;
3537 /* Scan all pending sequences too. */
3538 for (; stack; stack = stack->next)
3539 if (insn == stack->last)
3540 {
3541 stack->last = prev;
3542 break;
3543 }
3544
3545 gcc_assert (stack);
3546 }
3547 if (!BARRIER_P (insn)
3548 && (bb = BLOCK_FOR_INSN (insn)))
3549 {
3550 if (INSN_P (insn))
3551 bb->flags |= BB_DIRTY;
3552 if (BB_HEAD (bb) == insn)
3553 {
3554 /* Never ever delete the basic block note without deleting whole
3555 basic block. */
3556 gcc_assert (!NOTE_P (insn));
3557 BB_HEAD (bb) = next;
3558 }
3559 if (BB_END (bb) == insn)
3560 BB_END (bb) = prev;
3561 }
3562}
3563
3564/* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3565
3566void
3567add_function_usage_to (rtx call_insn, rtx call_fusage)
3568{
3569 gcc_assert (call_insn && CALL_P (call_insn));
3570
3571 /* Put the register usage information on the CALL. If there is already
3572 some usage information, put ours at the end. */
3573 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3574 {
3575 rtx link;
3576
3577 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3578 link = XEXP (link, 1))
3579 ;
3580
3581 XEXP (link, 1) = call_fusage;
3582 }
3583 else
3584 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3585}
3586
3587/* Delete all insns made since FROM.
3588 FROM becomes the new last instruction. */
3589
3590void
3591delete_insns_since (rtx from)
3592{
3593 if (from == 0)
3594 first_insn = 0;
3595 else
3596 NEXT_INSN (from) = 0;
3597 last_insn = from;
3598}
3599
3600/* This function is deprecated, please use sequences instead.
3601
3602 Move a consecutive bunch of insns to a different place in the chain.
3603 The insns to be moved are those between FROM and TO.
3604 They are moved to a new position after the insn AFTER.
3605 AFTER must not be FROM or TO or any insn in between.
3606
3607 This function does not know about SEQUENCEs and hence should not be
3608 called after delay-slot filling has been done. */
3609
3610void
3611reorder_insns_nobb (rtx from, rtx to, rtx after)
3612{
3613 /* Splice this bunch out of where it is now. */
3614 if (PREV_INSN (from))
3615 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3616 if (NEXT_INSN (to))
3617 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3618 if (last_insn == to)
3619 last_insn = PREV_INSN (from);
3620 if (first_insn == from)
3621 first_insn = NEXT_INSN (to);
3622
3623 /* Make the new neighbors point to it and it to them. */
3624 if (NEXT_INSN (after))
3625 PREV_INSN (NEXT_INSN (after)) = to;
3626
3627 NEXT_INSN (to) = NEXT_INSN (after);
3628 PREV_INSN (from) = after;
3629 NEXT_INSN (after) = from;
3630 if (after == last_insn)
3631 last_insn = to;
3632}
3633
3634/* Same as function above, but take care to update BB boundaries. */
3635void
3636reorder_insns (rtx from, rtx to, rtx after)
3637{
3638 rtx prev = PREV_INSN (from);
3639 basic_block bb, bb2;
3640
3641 reorder_insns_nobb (from, to, after);
3642
3643 if (!BARRIER_P (after)
3644 && (bb = BLOCK_FOR_INSN (after)))
3645 {
3646 rtx x;
3647 bb->flags |= BB_DIRTY;
3648
3649 if (!BARRIER_P (from)
3650 && (bb2 = BLOCK_FOR_INSN (from)))
3651 {
3652 if (BB_END (bb2) == to)
3653 BB_END (bb2) = prev;
3654 bb2->flags |= BB_DIRTY;
3655 }
3656
3657 if (BB_END (bb) == after)
3658 BB_END (bb) = to;
3659
3660 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3661 if (!BARRIER_P (x))
3662 set_block_for_insn (x, bb);
3663 }
3664}
3665
3666/* Return the line note insn preceding INSN. */
3667
3668static rtx
3669find_line_note (rtx insn)
3670{
3671 if (no_line_numbers)
3672 return 0;
3673
3674 for (; insn; insn = PREV_INSN (insn))
3675 if (NOTE_P (insn)
3676 && NOTE_LINE_NUMBER (insn) >= 0)
3677 break;
3678
3679 return insn;
3680}
3681
3682
3683/* Emit insn(s) of given code and pattern
3684 at a specified place within the doubly-linked list.
3685
3686 All of the emit_foo global entry points accept an object
3687 X which is either an insn list or a PATTERN of a single
3688 instruction.
3689
3690 There are thus a few canonical ways to generate code and
3691 emit it at a specific place in the instruction stream. For
3692 example, consider the instruction named SPOT and the fact that
3693 we would like to emit some instructions before SPOT. We might
3694 do it like this:
3695
3696 start_sequence ();
3697 ... emit the new instructions ...
3698 insns_head = get_insns ();
3699 end_sequence ();
3700
3701 emit_insn_before (insns_head, SPOT);
3702
3703 It used to be common to generate SEQUENCE rtl instead, but that
3704 is a relic of the past which no longer occurs. The reason is that
3705 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3706 generated would almost certainly die right after it was created. */
3707
3708/* Make X be output before the instruction BEFORE. */
3709
3710rtx
3711emit_insn_before_noloc (rtx x, rtx before)
3712{
3713 rtx last = before;
3714 rtx insn;
3715
3716 gcc_assert (before);
3717
3718 if (x == NULL_RTX)
3719 return last;
3720
3721 switch (GET_CODE (x))
3722 {
3723 case INSN:
3724 case JUMP_INSN:
3725 case CALL_INSN:
3726 case CODE_LABEL:
3727 case BARRIER:
3728 case NOTE:
3729 insn = x;
3730 while (insn)
3731 {
3732 rtx next = NEXT_INSN (insn);
3733 add_insn_before (insn, before);
3734 last = insn;
3735 insn = next;
3736 }
3737 break;
3738
3739#ifdef ENABLE_RTL_CHECKING
3740 case SEQUENCE:
3741 gcc_unreachable ();
3742 break;
3743#endif
3744
3745 default:
3746 last = make_insn_raw (x);
3747 add_insn_before (last, before);
3748 break;
3749 }
3750
3751 return last;
3752}
3753
3754/* Make an instruction with body X and code JUMP_INSN
3755 and output it before the instruction BEFORE. */
3756
3757rtx
3758emit_jump_insn_before_noloc (rtx x, rtx before)
3759{
3760 rtx insn, last = NULL_RTX;
3761
3762 gcc_assert (before);
3763
3764 switch (GET_CODE (x))
3765 {
3766 case INSN:
3767 case JUMP_INSN:
3768 case CALL_INSN:
3769 case CODE_LABEL:
3770 case BARRIER:
3771 case NOTE:
3772 insn = x;
3773 while (insn)
3774 {
3775 rtx next = NEXT_INSN (insn);
3776 add_insn_before (insn, before);
3777 last = insn;
3778 insn = next;
3779 }
3780 break;
3781
3782#ifdef ENABLE_RTL_CHECKING
3783 case SEQUENCE:
3784 gcc_unreachable ();
3785 break;
3786#endif
3787
3788 default:
3789 last = make_jump_insn_raw (x);
3790 add_insn_before (last, before);
3791 break;
3792 }
3793
3794 return last;
3795}
3796
3797/* Make an instruction with body X and code CALL_INSN
3798 and output it before the instruction BEFORE. */
3799
3800rtx
3801emit_call_insn_before_noloc (rtx x, rtx before)
3802{
3803 rtx last = NULL_RTX, insn;
3804
3805 gcc_assert (before);
3806
3807 switch (GET_CODE (x))
3808 {
3809 case INSN:
3810 case JUMP_INSN:
3811 case CALL_INSN:
3812 case CODE_LABEL:
3813 case BARRIER:
3814 case NOTE:
3815 insn = x;
3816 while (insn)
3817 {
3818 rtx next = NEXT_INSN (insn);
3819 add_insn_before (insn, before);
3820 last = insn;
3821 insn = next;
3822 }
3823 break;
3824
3825#ifdef ENABLE_RTL_CHECKING
3826 case SEQUENCE:
3827 gcc_unreachable ();
3828 break;
3829#endif
3830
3831 default:
3832 last = make_call_insn_raw (x);
3833 add_insn_before (last, before);
3834 break;
3835 }
3836
3837 return last;
3838}
3839
3840/* Make an insn of code BARRIER
3841 and output it before the insn BEFORE. */
3842
3843rtx
3844emit_barrier_before (rtx before)
3845{
3846 rtx insn = rtx_alloc (BARRIER);
3847
3848 INSN_UID (insn) = cur_insn_uid++;
3849
3850 add_insn_before (insn, before);
3851 return insn;
3852}
3853
3854/* Emit the label LABEL before the insn BEFORE. */
3855
3856rtx
3857emit_label_before (rtx label, rtx before)
3858{
3859 /* This can be called twice for the same label as a result of the
3860 confusion that follows a syntax error! So make it harmless. */
3861 if (INSN_UID (label) == 0)
3862 {
3863 INSN_UID (label) = cur_insn_uid++;
3864 add_insn_before (label, before);
3865 }
3866
3867 return label;
3868}
3869
3870/* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3871
3872rtx
3873emit_note_before (int subtype, rtx before)
3874{
3875 rtx note = rtx_alloc (NOTE);
3876 INSN_UID (note) = cur_insn_uid++;
3877#ifndef USE_MAPPED_LOCATION
3878 NOTE_SOURCE_FILE (note) = 0;
3879#endif
3880 NOTE_LINE_NUMBER (note) = subtype;
3881 BLOCK_FOR_INSN (note) = NULL;
3882
3883 add_insn_before (note, before);
3884 return note;
3885}
3886
3887/* Helper for emit_insn_after, handles lists of instructions
3888 efficiently. */
3889
3890static rtx emit_insn_after_1 (rtx, rtx);
3891
3892static rtx
3893emit_insn_after_1 (rtx first, rtx after)
3894{
3895 rtx last;
3896 rtx after_after;
3897 basic_block bb;
3898
3899 if (!BARRIER_P (after)
3900 && (bb = BLOCK_FOR_INSN (after)))
3901 {
3902 bb->flags |= BB_DIRTY;
3903 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3904 if (!BARRIER_P (last))
3905 set_block_for_insn (last, bb);
3906 if (!BARRIER_P (last))
3907 set_block_for_insn (last, bb);
3908 if (BB_END (bb) == after)
3909 BB_END (bb) = last;
3910 }
3911 else
3912 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3913 continue;
3914
3915 after_after = NEXT_INSN (after);
3916
3917 NEXT_INSN (after) = first;
3918 PREV_INSN (first) = after;
3919 NEXT_INSN (last) = after_after;
3920 if (after_after)
3921 PREV_INSN (after_after) = last;
3922
3923 if (after == last_insn)
3924 last_insn = last;
3925 return last;
3926}
3927
3928/* Make X be output after the insn AFTER. */
3929
3930rtx
3931emit_insn_after_noloc (rtx x, rtx after)
3932{
3933 rtx last = after;
3934
3935 gcc_assert (after);
3936
3937 if (x == NULL_RTX)
3938 return last;
3939
3940 switch (GET_CODE (x))
3941 {
3942 case INSN:
3943 case JUMP_INSN:
3944 case CALL_INSN:
3945 case CODE_LABEL:
3946 case BARRIER:
3947 case NOTE:
3948 last = emit_insn_after_1 (x, after);
3949 break;
3950
3951#ifdef ENABLE_RTL_CHECKING
3952 case SEQUENCE:
3953 gcc_unreachable ();
3954 break;
3955#endif
3956
3957 default:
3958 last = make_insn_raw (x);
3959 add_insn_after (last, after);
3960 break;
3961 }
3962
3963 return last;
3964}
3965
3966/* Similar to emit_insn_after, except that line notes are to be inserted so
3967 as to act as if this insn were at FROM. */
3968
3969void
3970emit_insn_after_with_line_notes (rtx x, rtx after, rtx from)
3971{
3972 rtx from_line = find_line_note (from);
3973 rtx after_line = find_line_note (after);
3974 rtx insn = emit_insn_after (x, after);
3975
3976 if (from_line)
3977 emit_note_copy_after (from_line, after);
3978
3979 if (after_line)
3980 emit_note_copy_after (after_line, insn);
3981}
3982
3983/* Make an insn of code JUMP_INSN with body X
3984 and output it after the insn AFTER. */
3985
3986rtx
3987emit_jump_insn_after_noloc (rtx x, rtx after)
3988{
3989 rtx last;
3990
3991 gcc_assert (after);
3992
3993 switch (GET_CODE (x))
3994 {
3995 case INSN:
3996 case JUMP_INSN:
3997 case CALL_INSN:
3998 case CODE_LABEL:
3999 case BARRIER:
4000 case NOTE:
4001 last = emit_insn_after_1 (x, after);
4002 break;
4003
4004#ifdef ENABLE_RTL_CHECKING
4005 case SEQUENCE:
4006 gcc_unreachable ();
4007 break;
4008#endif
4009
4010 default:
4011 last = make_jump_insn_raw (x);
4012 add_insn_after (last, after);
4013 break;
4014 }
4015
4016 return last;
4017}
4018
4019/* Make an instruction with body X and code CALL_INSN
4020 and output it after the instruction AFTER. */
4021
4022rtx
4023emit_call_insn_after_noloc (rtx x, rtx after)
4024{
4025 rtx last;
4026
4027 gcc_assert (after);
4028
4029 switch (GET_CODE (x))
4030 {
4031 case INSN:
4032 case JUMP_INSN:
4033 case CALL_INSN:
4034 case CODE_LABEL:
4035 case BARRIER:
4036 case NOTE:
4037 last = emit_insn_after_1 (x, after);
4038 break;
4039
4040#ifdef ENABLE_RTL_CHECKING
4041 case SEQUENCE:
4042 gcc_unreachable ();
4043 break;
4044#endif
4045
4046 default:
4047 last = make_call_insn_raw (x);
4048 add_insn_after (last, after);
4049 break;
4050 }
4051
4052 return last;
4053}
4054
4055/* Make an insn of code BARRIER
4056 and output it after the insn AFTER. */
4057
4058rtx
4059emit_barrier_after (rtx after)
4060{
4061 rtx insn = rtx_alloc (BARRIER);
4062
4063 INSN_UID (insn) = cur_insn_uid++;
4064
4065 add_insn_after (insn, after);
4066 return insn;
4067}
4068
4069/* Emit the label LABEL after the insn AFTER. */
4070
4071rtx
4072emit_label_after (rtx label, rtx after)
4073{
4074 /* This can be called twice for the same label
4075 as a result of the confusion that follows a syntax error!
4076 So make it harmless. */
4077 if (INSN_UID (label) == 0)
4078 {
4079 INSN_UID (label) = cur_insn_uid++;
4080 add_insn_after (label, after);
4081 }
4082
4083 return label;
4084}
4085
4086/* Emit a note of subtype SUBTYPE after the insn AFTER. */
4087
4088rtx
4089emit_note_after (int subtype, rtx after)
4090{
4091 rtx note = rtx_alloc (NOTE);
4092 INSN_UID (note) = cur_insn_uid++;
4093#ifndef USE_MAPPED_LOCATION
4094 NOTE_SOURCE_FILE (note) = 0;
4095#endif
4096 NOTE_LINE_NUMBER (note) = subtype;
4097 BLOCK_FOR_INSN (note) = NULL;
4098 add_insn_after (note, after);
4099 return note;
4100}
4101
4102/* Emit a copy of note ORIG after the insn AFTER. */
4103
4104rtx
4105emit_note_copy_after (rtx orig, rtx after)
4106{
4107 rtx note;
4108
4109 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4110 {
4111 cur_insn_uid++;
4112 return 0;
4113 }
4114
4115 note = rtx_alloc (NOTE);
4116 INSN_UID (note) = cur_insn_uid++;
4117 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4118 NOTE_DATA (note) = NOTE_DATA (orig);
4119 BLOCK_FOR_INSN (note) = NULL;
4120 add_insn_after (note, after);
4121 return note;
4122}
4123
4124/* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4125rtx
4126emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4127{
4128 rtx last = emit_insn_after_noloc (pattern, after);
4129
4130 if (pattern == NULL_RTX || !loc)
4131 return last;
4132
4133 after = NEXT_INSN (after);
4134 while (1)
4135 {
4136 if (active_insn_p (after) && !INSN_LOCATOR (after))
4137 INSN_LOCATOR (after) = loc;
4138 if (after == last)
4139 break;
4140 after = NEXT_INSN (after);
4141 }
4142 return last;
4143}
4144
4145/* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4146rtx
4147emit_insn_after (rtx pattern, rtx after)
4148{
4149 if (INSN_P (after))
4150 return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4151 else
4152 return emit_insn_after_noloc (pattern, after);
4153}
4154
4155/* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4156rtx
4157emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4158{
4159 rtx last = emit_jump_insn_after_noloc (pattern, after);
4160
4161 if (pattern == NULL_RTX || !loc)
4162 return last;
4163
4164 after = NEXT_INSN (after);
4165 while (1)
4166 {
4167 if (active_insn_p (after) && !INSN_LOCATOR (after))
4168 INSN_LOCATOR (after) = loc;
4169 if (after == last)
4170 break;
4171 after = NEXT_INSN (after);
4172 }
4173 return last;
4174}
4175
4176/* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4177rtx
4178emit_jump_insn_after (rtx pattern, rtx after)
4179{
4180 if (INSN_P (after))
4181 return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4182 else
4183 return emit_jump_insn_after_noloc (pattern, after);
4184}
4185
4186/* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4187rtx
4188emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4189{
4190 rtx last = emit_call_insn_after_noloc (pattern, after);
4191
4192 if (pattern == NULL_RTX || !loc)
4193 return last;
4194
4195 after = NEXT_INSN (after);
4196 while (1)
4197 {
4198 if (active_insn_p (after) && !INSN_LOCATOR (after))
4199 INSN_LOCATOR (after) = loc;
4200 if (after == last)
4201 break;
4202 after = NEXT_INSN (after);
4203 }
4204 return last;
4205}
4206
4207/* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4208rtx
4209emit_call_insn_after (rtx pattern, rtx after)
4210{
4211 if (INSN_P (after))
4212 return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4213 else
4214 return emit_call_insn_after_noloc (pattern, after);
4215}
4216
4217/* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4218rtx
4219emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4220{
4221 rtx first = PREV_INSN (before);
4222 rtx last = emit_insn_before_noloc (pattern, before);
4223
4224 if (pattern == NULL_RTX || !loc)
4225 return last;
4226
4227 first = NEXT_INSN (first);
4228 while (1)
4229 {
4230 if (active_insn_p (first) && !INSN_LOCATOR (first))
4231 INSN_LOCATOR (first) = loc;
4232 if (first == last)
4233 break;
4234 first = NEXT_INSN (first);
4235 }
4236 return last;
4237}
4238
4239/* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4240rtx
4241emit_insn_before (rtx pattern, rtx before)
4242{
4243 if (INSN_P (before))
4244 return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4245 else
4246 return emit_insn_before_noloc (pattern, before);
4247}
4248
4249/* like emit_insn_before_noloc, but set insn_locator according to scope. */
4250rtx
4251emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4252{
4253 rtx first = PREV_INSN (before);
4254 rtx last = emit_jump_insn_before_noloc (pattern, before);
4255
4256 if (pattern == NULL_RTX)
4257 return last;
4258
4259 first = NEXT_INSN (first);
4260 while (1)
4261 {
4262 if (active_insn_p (first) && !INSN_LOCATOR (first))
4263 INSN_LOCATOR (first) = loc;
4264 if (first == last)
4265 break;
4266 first = NEXT_INSN (first);
4267 }
4268 return last;
4269}
4270
4271/* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4272rtx
4273emit_jump_insn_before (rtx pattern, rtx before)
4274{
4275 if (INSN_P (before))
4276 return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4277 else
4278 return emit_jump_insn_before_noloc (pattern, before);
4279}
4280
4281/* like emit_insn_before_noloc, but set insn_locator according to scope. */
4282rtx
4283emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4284{
4285 rtx first = PREV_INSN (before);
4286 rtx last = emit_call_insn_before_noloc (pattern, before);
4287
4288 if (pattern == NULL_RTX)
4289 return last;
4290
4291 first = NEXT_INSN (first);
4292 while (1)
4293 {
4294 if (active_insn_p (first) && !INSN_LOCATOR (first))
4295 INSN_LOCATOR (first) = loc;
4296 if (first == last)
4297 break;
4298 first = NEXT_INSN (first);
4299 }
4300 return last;
4301}
4302
4303/* like emit_call_insn_before_noloc,
4304 but set insn_locator according to before. */
4305rtx
4306emit_call_insn_before (rtx pattern, rtx before)
4307{
4308 if (INSN_P (before))
4309 return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4310 else
4311 return emit_call_insn_before_noloc (pattern, before);
4312}
4313
4314/* Take X and emit it at the end of the doubly-linked
4315 INSN list.
4316
4317 Returns the last insn emitted. */
4318
4319rtx
4320emit_insn (rtx x)
4321{
4322 rtx last = last_insn;
4323 rtx insn;
4324
4325 if (x == NULL_RTX)
4326 return last;
4327
4328 switch (GET_CODE (x))
4329 {
4330 case INSN:
4331 case JUMP_INSN:
4332 case CALL_INSN:
4333 case CODE_LABEL:
4334 case BARRIER:
4335 case NOTE:
4336 insn = x;
4337 while (insn)
4338 {
4339 rtx next = NEXT_INSN (insn);
4340 add_insn (insn);
4341 last = insn;
4342 insn = next;
4343 }
4344 break;
4345
4346#ifdef ENABLE_RTL_CHECKING
4347 case SEQUENCE:
4348 gcc_unreachable ();
4349 break;
4350#endif
4351
4352 default:
4353 last = make_insn_raw (x);
4354 add_insn (last);
4355 break;
4356 }
4357
4358 return last;
4359}
4360
4361/* Make an insn of code JUMP_INSN with pattern X
4362 and add it to the end of the doubly-linked list. */
4363
4364rtx
4365emit_jump_insn (rtx x)
4366{
4367 rtx last = NULL_RTX, insn;
4368
4369 switch (GET_CODE (x))
4370 {
4371 case INSN:
4372 case JUMP_INSN:
4373 case CALL_INSN:
4374 case CODE_LABEL:
4375 case BARRIER:
4376 case NOTE:
4377 insn = x;
4378 while (insn)
4379 {
4380 rtx next = NEXT_INSN (insn);
4381 add_insn (insn);
4382 last = insn;
4383 insn = next;
4384 }
4385 break;
4386
4387#ifdef ENABLE_RTL_CHECKING
4388 case SEQUENCE:
4389 gcc_unreachable ();
4390 break;
4391#endif
4392
4393 default:
4394 last = make_jump_insn_raw (x);
4395 add_insn (last);
4396 break;
4397 }
4398
4399 return last;
4400}
4401
4402/* Make an insn of code CALL_INSN with pattern X
4403 and add it to the end of the doubly-linked list. */
4404
4405rtx
4406emit_call_insn (rtx x)
4407{
4408 rtx insn;
4409
4410 switch (GET_CODE (x))
4411 {
4412 case INSN:
4413 case JUMP_INSN:
4414 case CALL_INSN:
4415 case CODE_LABEL:
4416 case BARRIER:
4417 case NOTE:
4418 insn = emit_insn (x);
4419 break;
4420
4421#ifdef ENABLE_RTL_CHECKING
4422 case SEQUENCE:
4423 gcc_unreachable ();
4424 break;
4425#endif
4426
4427 default:
4428 insn = make_call_insn_raw (x);
4429 add_insn (insn);
4430 break;
4431 }
4432
4433 return insn;
4434}
4435
4436/* Add the label LABEL to the end of the doubly-linked list. */
4437
4438rtx
4439emit_label (rtx label)
4440{
4441 /* This can be called twice for the same label
4442 as a result of the confusion that follows a syntax error!
4443 So make it harmless. */
4444 if (INSN_UID (label) == 0)
4445 {
4446 INSN_UID (label) = cur_insn_uid++;
4447 add_insn (label);
4448 }
4449 return label;
4450}
4451
4452/* Make an insn of code BARRIER
4453 and add it to the end of the doubly-linked list. */
4454
4455rtx
4456emit_barrier (void)
4457{
4458 rtx barrier = rtx_alloc (BARRIER);
4459 INSN_UID (barrier) = cur_insn_uid++;
4460 add_insn (barrier);
4461 return barrier;
4462}
4463
4464/* Make line numbering NOTE insn for LOCATION add it to the end
4465 of the doubly-linked list, but only if line-numbers are desired for
4466 debugging info and it doesn't match the previous one. */
4467
4468rtx
4469emit_line_note (location_t location)
4470{
4471 rtx note;
4472
4473#ifdef USE_MAPPED_LOCATION
4474 if (location == last_location)
4475 return NULL_RTX;
4476#else
4477 if (location.file && last_location.file
4478 && !strcmp (location.file, last_location.file)
4479 && location.line == last_location.line)
4480 return NULL_RTX;
4481#endif
4482 last_location = location;
4483
4484 if (no_line_numbers)
4485 {
4486 cur_insn_uid++;
4487 return NULL_RTX;
4488 }
4489
4490#ifdef USE_MAPPED_LOCATION
4491 note = emit_note ((int) location);
4492#else
4493 note = emit_note (location.line);
4494 NOTE_SOURCE_FILE (note) = location.file;
4495#endif
4496
4497 return note;
4498}
4499
4500/* Emit a copy of note ORIG. */
4501
4502rtx
4503emit_note_copy (rtx orig)
4504{
4505 rtx note;
4506
4507 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4508 {
4509 cur_insn_uid++;
4510 return NULL_RTX;
4511 }
4512
4513 note = rtx_alloc (NOTE);
4514
4515 INSN_UID (note) = cur_insn_uid++;
4516 NOTE_DATA (note) = NOTE_DATA (orig);
4517 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4518 BLOCK_FOR_INSN (note) = NULL;
4519 add_insn (note);
4520
4521 return note;
4522}
4523
4524/* Make an insn of code NOTE or type NOTE_NO
4525 and add it to the end of the doubly-linked list. */
4526
4527rtx
4528emit_note (int note_no)
4529{
4530 rtx note;
4531
4532 note = rtx_alloc (NOTE);
4533 INSN_UID (note) = cur_insn_uid++;
4534 NOTE_LINE_NUMBER (note) = note_no;
4535 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4536 BLOCK_FOR_INSN (note) = NULL;
4537 add_insn (note);
4538 return note;
4539}
4540
4541/* Cause next statement to emit a line note even if the line number
4542 has not changed. */
4543
4544void
4545force_next_line_note (void)
4546{
4547#ifdef USE_MAPPED_LOCATION
4548 last_location = -1;
4549#else
4550 last_location.line = -1;
4551#endif
4552}
4553
4554/* Place a note of KIND on insn INSN with DATUM as the datum. If a
4555 note of this type already exists, remove it first. */
4556
4557rtx
4558set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4559{
4560 rtx note = find_reg_note (insn, kind, NULL_RTX);
4561
4562 switch (kind)
4563 {
4564 case REG_EQUAL:
4565 case REG_EQUIV:
4566 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4567 has multiple sets (some callers assume single_set
4568 means the insn only has one set, when in fact it
4569 means the insn only has one * useful * set). */
4570 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4571 {
4572 gcc_assert (!note);
4573 return NULL_RTX;
4574 }
4575
4576 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4577 It serves no useful purpose and breaks eliminate_regs. */
4578 if (GET_CODE (datum) == ASM_OPERANDS)
4579 return NULL_RTX;
4580 break;
4581
4582 default:
4583 break;
4584 }
4585
4586 if (note)
4587 {
4588 XEXP (note, 0) = datum;
4589 return note;
4590 }
4591
4592 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4593 return REG_NOTES (insn);
4594}
4595
4596/* Return an indication of which type of insn should have X as a body.
4597 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4598
4599static enum rtx_code
4600classify_insn (rtx x)
4601{
4602 if (LABEL_P (x))
4603 return CODE_LABEL;
4604 if (GET_CODE (x) == CALL)
4605 return CALL_INSN;
4606 if (GET_CODE (x) == RETURN)
4607 return JUMP_INSN;
4608 if (GET_CODE (x) == SET)
4609 {
4610 if (SET_DEST (x) == pc_rtx)
4611 return JUMP_INSN;
4612 else if (GET_CODE (SET_SRC (x)) == CALL)
4613 return CALL_INSN;
4614 else
4615 return INSN;
4616 }
4617 if (GET_CODE (x) == PARALLEL)
4618 {
4619 int j;
4620 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4621 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4622 return CALL_INSN;
4623 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4624 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4625 return JUMP_INSN;
4626 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4627 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4628 return CALL_INSN;
4629 }
4630 return INSN;
4631}
4632
4633/* Emit the rtl pattern X as an appropriate kind of insn.
4634 If X is a label, it is simply added into the insn chain. */
4635
4636rtx
4637emit (rtx x)
4638{
4639 enum rtx_code code = classify_insn (x);
4640
4641 switch (code)
4642 {
4643 case CODE_LABEL:
4644 return emit_label (x);
4645 case INSN:
4646 return emit_insn (x);
4647 case JUMP_INSN:
4648 {
4649 rtx insn = emit_jump_insn (x);
4650 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4651 return emit_barrier ();
4652 return insn;
4653 }
4654 case CALL_INSN:
4655 return emit_call_insn (x);
4656 default:
4657 gcc_unreachable ();
4658 }
4659}
4660
4661/* Space for free sequence stack entries. */
4662static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
4663
4664/* Begin emitting insns to a sequence. If this sequence will contain
4665 something that might cause the compiler to pop arguments to function
4666 calls (because those pops have previously been deferred; see
4667 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4668 before calling this function. That will ensure that the deferred
4669 pops are not accidentally emitted in the middle of this sequence. */
4670
4671void
4672start_sequence (void)
4673{
4674 struct sequence_stack *tem;
4675
4676 if (free_sequence_stack != NULL)
4677 {
4678 tem = free_sequence_stack;
4679 free_sequence_stack = tem->next;
4680 }
4681 else
4682 tem = ggc_alloc (sizeof (struct sequence_stack));
4683
4684 tem->next = seq_stack;
4685 tem->first = first_insn;
4686 tem->last = last_insn;
4687
4688 seq_stack = tem;
4689
4690 first_insn = 0;
4691 last_insn = 0;
4692}
4693
4694/* Set up the insn chain starting with FIRST as the current sequence,
4695 saving the previously current one. See the documentation for
4696 start_sequence for more information about how to use this function. */
4697
4698void
4699push_to_sequence (rtx first)
4700{
4701 rtx last;
4702
4703 start_sequence ();
4704
4705 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4706
4707 first_insn = first;
4708 last_insn = last;
4709}
4710
4711/* Set up the outer-level insn chain
4712 as the current sequence, saving the previously current one. */
4713
4714void
4715push_topmost_sequence (void)
4716{
4717 struct sequence_stack *stack, *top = NULL;
4718
4719 start_sequence ();
4720
4721 for (stack = seq_stack; stack; stack = stack->next)
4722 top = stack;
4723
4724 first_insn = top->first;
4725 last_insn = top->last;
4726}
4727
4728/* After emitting to the outer-level insn chain, update the outer-level
4729 insn chain, and restore the previous saved state. */
4730
4731void
4732pop_topmost_sequence (void)
4733{
4734 struct sequence_stack *stack, *top = NULL;
4735
4736 for (stack = seq_stack; stack; stack = stack->next)
4737 top = stack;
4738
4739 top->first = first_insn;
4740 top->last = last_insn;
4741
4742 end_sequence ();
4743}
4744
4745/* After emitting to a sequence, restore previous saved state.
4746
4747 To get the contents of the sequence just made, you must call
4748 `get_insns' *before* calling here.
4749
4750 If the compiler might have deferred popping arguments while
4751 generating this sequence, and this sequence will not be immediately
4752 inserted into the instruction stream, use do_pending_stack_adjust
4753 before calling get_insns. That will ensure that the deferred
4754 pops are inserted into this sequence, and not into some random
4755 location in the instruction stream. See INHIBIT_DEFER_POP for more
4756 information about deferred popping of arguments. */
4757
4758void
4759end_sequence (void)
4760{
4761 struct sequence_stack *tem = seq_stack;
4762
4763 first_insn = tem->first;
4764 last_insn = tem->last;
4765 seq_stack = tem->next;
4766
4767 memset (tem, 0, sizeof (*tem));
4768 tem->next = free_sequence_stack;
4769 free_sequence_stack = tem;
4770}
4771
4772/* Return 1 if currently emitting into a sequence. */
4773
4774int
4775in_sequence_p (void)
4776{
4777 return seq_stack != 0;
4778}
4779
4780/* Put the various virtual registers into REGNO_REG_RTX. */
4781
4782static void
4783init_virtual_regs (struct emit_status *es)
4784{
4785 rtx *ptr = es->x_regno_reg_rtx;
4786 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4787 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4788 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4789 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4790 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4791}
4792
4793
4794/* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4795static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4796static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4797static int copy_insn_n_scratches;
4798
4799/* When an insn is being copied by copy_insn_1, this is nonzero if we have
4800 copied an ASM_OPERANDS.
4801 In that case, it is the original input-operand vector. */
4802static rtvec orig_asm_operands_vector;
4803
4804/* When an insn is being copied by copy_insn_1, this is nonzero if we have
4805 copied an ASM_OPERANDS.
4806 In that case, it is the copied input-operand vector. */
4807static rtvec copy_asm_operands_vector;
4808
4809/* Likewise for the constraints vector. */
4810static rtvec orig_asm_constraints_vector;
4811static rtvec copy_asm_constraints_vector;
4812
4813/* Recursively create a new copy of an rtx for copy_insn.
4814 This function differs from copy_rtx in that it handles SCRATCHes and
4815 ASM_OPERANDs properly.
4816 Normally, this function is not used directly; use copy_insn as front end.
4817 However, you could first copy an insn pattern with copy_insn and then use
4818 this function afterwards to properly copy any REG_NOTEs containing
4819 SCRATCHes. */
4820
4821rtx
4822copy_insn_1 (rtx orig)
4823{
4824 rtx copy;
4825 int i, j;
4826 RTX_CODE code;
4827 const char *format_ptr;
4828
4829 code = GET_CODE (orig);
4830
4831 switch (code)
4832 {
4833 case REG:
4834 case CONST_INT:
4835 case CONST_DOUBLE:
4836 case CONST_VECTOR:
4837 case SYMBOL_REF:
4838 case CODE_LABEL:
4839 case PC:
4840 case CC0:
4841 return orig;
4842 case CLOBBER:
4843 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
4844 return orig;
4845 break;
4846
4847 case SCRATCH:
4848 for (i = 0; i < copy_insn_n_scratches; i++)
4849 if (copy_insn_scratch_in[i] == orig)
4850 return copy_insn_scratch_out[i];
4851 break;
4852
4853 case CONST:
4854 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
4855 a LABEL_REF, it isn't sharable. */
4856 if (GET_CODE (XEXP (orig, 0)) == PLUS
4857 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
4858 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
4859 return orig;
4860 break;
4861
4862 /* A MEM with a constant address is not sharable. The problem is that
4863 the constant address may need to be reloaded. If the mem is shared,
4864 then reloading one copy of this mem will cause all copies to appear
4865 to have been reloaded. */
4866
4867 default:
4868 break;
4869 }
4870
4871 /* Copy the various flags, fields, and other information. We assume
4872 that all fields need copying, and then clear the fields that should
4873 not be copied. That is the sensible default behavior, and forces
4874 us to explicitly document why we are *not* copying a flag. */
4875 copy = shallow_copy_rtx (orig);
4876
4877 /* We do not copy the USED flag, which is used as a mark bit during
4878 walks over the RTL. */
4879 RTX_FLAG (copy, used) = 0;
4880
4881 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
4882 if (INSN_P (orig))
4883 {
4884 RTX_FLAG (copy, jump) = 0;
4885 RTX_FLAG (copy, call) = 0;
4886 RTX_FLAG (copy, frame_related) = 0;
4887 }
4888
4889 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
4890
4891 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
4892 switch (*format_ptr++)
4893 {
4894 case 'e':
4895 if (XEXP (orig, i) != NULL)
4896 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
4897 break;
4898
4899 case 'E':
4900 case 'V':
4901 if (XVEC (orig, i) == orig_asm_constraints_vector)
4902 XVEC (copy, i) = copy_asm_constraints_vector;
4903 else if (XVEC (orig, i) == orig_asm_operands_vector)
4904 XVEC (copy, i) = copy_asm_operands_vector;
4905 else if (XVEC (orig, i) != NULL)
4906 {
4907 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
4908 for (j = 0; j < XVECLEN (copy, i); j++)
4909 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
4910 }
4911 break;
4912
4913 case 't':
4914 case 'w':
4915 case 'i':
4916 case 's':
4917 case 'S':
4918 case 'u':
4919 case '0':
4920 /* These are left unchanged. */
4921 break;
4922
4923 default:
4924 gcc_unreachable ();
4925 }
4926
4927 if (code == SCRATCH)
4928 {
4929 i = copy_insn_n_scratches++;
4930 gcc_assert (i < MAX_RECOG_OPERANDS);
4931 copy_insn_scratch_in[i] = orig;
4932 copy_insn_scratch_out[i] = copy;
4933 }
4934 else if (code == ASM_OPERANDS)
4935 {
4936 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
4937 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
4938 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
4939 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
4940 }
4941
4942 return copy;
4943}
4944
4945/* Create a new copy of an rtx.
4946 This function differs from copy_rtx in that it handles SCRATCHes and
4947 ASM_OPERANDs properly.
4948 INSN doesn't really have to be a full INSN; it could be just the
4949 pattern. */
4950rtx
4951copy_insn (rtx insn)
4952{
4953 copy_insn_n_scratches = 0;
4954 orig_asm_operands_vector = 0;
4955 orig_asm_constraints_vector = 0;
4956 copy_asm_operands_vector = 0;
4957 copy_asm_constraints_vector = 0;
4958 return copy_insn_1 (insn);
4959}
4960
4961/* Initialize data structures and variables in this file
4962 before generating rtl for each function. */
4963
4964void
4965init_emit (void)
4966{
4967 struct function *f = cfun;
4968
4969 f->emit = ggc_alloc (sizeof (struct emit_status));
4970 first_insn = NULL;
4971 last_insn = NULL;
4972 cur_insn_uid = 1;
4973 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
4974 last_location = UNKNOWN_LOCATION;
4975 first_label_num = label_num;
4976 seq_stack = NULL;
4977
4978 /* Init the tables that describe all the pseudo regs. */
4979
4980 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
4981
4982 f->emit->regno_pointer_align
4983 = ggc_alloc_cleared (f->emit->regno_pointer_align_length
4984 * sizeof (unsigned char));
4985
4986 regno_reg_rtx
4987 = ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
4988
4989 /* Put copies of all the hard registers into regno_reg_rtx. */
4990 memcpy (regno_reg_rtx,
4991 static_regno_reg_rtx,
4992 FIRST_PSEUDO_REGISTER * sizeof (rtx));
4993
4994 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
4995 init_virtual_regs (f->emit);
4996
4997 /* Indicate that the virtual registers and stack locations are
4998 all pointers. */
4999 REG_POINTER (stack_pointer_rtx) = 1;
5000 REG_POINTER (frame_pointer_rtx) = 1;
5001 REG_POINTER (hard_frame_pointer_rtx) = 1;
5002 REG_POINTER (arg_pointer_rtx) = 1;
5003
5004 REG_POINTER (virtual_incoming_args_rtx) = 1;
5005 REG_POINTER (virtual_stack_vars_rtx) = 1;
5006 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5007 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5008 REG_POINTER (virtual_cfa_rtx) = 1;
5009
5010#ifdef STACK_BOUNDARY
5011 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5012 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5013 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5014 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5015
5016 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5017 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5018 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5019 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5020 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5021#endif
5022
5023#ifdef INIT_EXPANDERS
5024 INIT_EXPANDERS;
5025#endif
5026}
5027
5028/* Generate a vector constant for mode MODE and constant value CONSTANT. */
5029
5030static rtx
5031gen_const_vector (enum machine_mode mode, int constant)
5032{
5033 rtx tem;
5034 rtvec v;
5035 int units, i;
5036 enum machine_mode inner;
5037
5038 units = GET_MODE_NUNITS (mode);
5039 inner = GET_MODE_INNER (mode);
5040
5041 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5042
5043 v = rtvec_alloc (units);
5044
5045 /* We need to call this function after we set the scalar const_tiny_rtx
5046 entries. */
5047 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5048
5049 for (i = 0; i < units; ++i)
5050 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5051
5052 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5053 return tem;
5054}
5055
5056/* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5057 all elements are zero, and the one vector when all elements are one. */
5058rtx
5059gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5060{
5061 enum machine_mode inner = GET_MODE_INNER (mode);
5062 int nunits = GET_MODE_NUNITS (mode);
5063 rtx x;
5064 int i;
5065
5066 /* Check to see if all of the elements have the same value. */
5067 x = RTVEC_ELT (v, nunits - 1);
5068 for (i = nunits - 2; i >= 0; i--)
5069 if (RTVEC_ELT (v, i) != x)
5070 break;
5071
5072 /* If the values are all the same, check to see if we can use one of the
5073 standard constant vectors. */
5074 if (i == -1)
5075 {
5076 if (x == CONST0_RTX (inner))
5077 return CONST0_RTX (mode);
5078 else if (x == CONST1_RTX (inner))
5079 return CONST1_RTX (mode);
5080 }
5081
5082 return gen_rtx_raw_CONST_VECTOR (mode, v);
5083}
5084
5085/* Create some permanent unique rtl objects shared between all functions.
5086 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5087
5088void
5089init_emit_once (int line_numbers)
5090{
5091 int i;
5092 enum machine_mode mode;
5093 enum machine_mode double_mode;
5094
5095 /* We need reg_raw_mode, so initialize the modes now. */
5096 init_reg_modes_once ();
5097
5098 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5099 tables. */
5100 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5101 const_int_htab_eq, NULL);
5102
5103 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5104 const_double_htab_eq, NULL);
5105
5106 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5107 mem_attrs_htab_eq, NULL);
5108 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5109 reg_attrs_htab_eq, NULL);
5110
5111 no_line_numbers = ! line_numbers;
5112
5113 /* Compute the word and byte modes. */
5114
5115 byte_mode = VOIDmode;
5116 word_mode = VOIDmode;
5117 double_mode = VOIDmode;
5118
5119 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5120 mode != VOIDmode;
5121 mode = GET_MODE_WIDER_MODE (mode))
5122 {
5123 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5124 && byte_mode == VOIDmode)
5125 byte_mode = mode;
5126
5127 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5128 && word_mode == VOIDmode)
5129 word_mode = mode;
5130 }
5131
5132 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5133 mode != VOIDmode;
5134 mode = GET_MODE_WIDER_MODE (mode))
5135 {
5136 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5137 && double_mode == VOIDmode)
5138 double_mode = mode;
5139 }
5140
5141 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5142
5143 /* Assign register numbers to the globally defined register rtx.
5144 This must be done at runtime because the register number field
5145 is in a union and some compilers can't initialize unions. */
5146
5147 pc_rtx = gen_rtx_PC (VOIDmode);
5148 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5149 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5150 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5151 if (hard_frame_pointer_rtx == 0)
5152 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5153 HARD_FRAME_POINTER_REGNUM);
5154 if (arg_pointer_rtx == 0)
5155 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5156 virtual_incoming_args_rtx =
5157 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5158 virtual_stack_vars_rtx =
5159 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5160 virtual_stack_dynamic_rtx =
5161 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5162 virtual_outgoing_args_rtx =
5163 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5164 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5165
5166 /* Initialize RTL for commonly used hard registers. These are
5167 copied into regno_reg_rtx as we begin to compile each function. */
5168 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5169 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5170
5171#ifdef INIT_EXPANDERS
5172 /* This is to initialize {init|mark|free}_machine_status before the first
5173 call to push_function_context_to. This is needed by the Chill front
5174 end which calls push_function_context_to before the first call to
5175 init_function_start. */
5176 INIT_EXPANDERS;
5177#endif
5178
5179 /* Create the unique rtx's for certain rtx codes and operand values. */
5180
5181 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5182 tries to use these variables. */
5183 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5184 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5185 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5186
5187 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5188 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5189 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5190 else
5191 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5192
5193 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5194 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5195 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5196 REAL_VALUE_FROM_INT (dconst3, 3, 0, double_mode);
5197 REAL_VALUE_FROM_INT (dconst10, 10, 0, double_mode);
5198 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5199 REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5200
5201 dconsthalf = dconst1;
5202 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5203
5204 real_arithmetic (&dconstthird, RDIV_EXPR, &dconst1, &dconst3);
5205
5206 /* Initialize mathematical constants for constant folding builtins.
5207 These constants need to be given to at least 160 bits precision. */
5208 real_from_string (&dconstpi,
5209 "3.1415926535897932384626433832795028841971693993751058209749445923078");
5210 real_from_string (&dconste,
5211 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5212
5213 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5214 {
5215 REAL_VALUE_TYPE *r =
5216 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5217
5218 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5219 mode != VOIDmode;
5220 mode = GET_MODE_WIDER_MODE (mode))
5221 const_tiny_rtx[i][(int) mode] =
5222 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5223
5224 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5225 mode != VOIDmode;
5226 mode = GET_MODE_WIDER_MODE (mode))
5227 const_tiny_rtx[i][(int) mode] =
5228 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5229
5230 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5231
5232 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5233 mode != VOIDmode;
5234 mode = GET_MODE_WIDER_MODE (mode))
5235 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5236
5237 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5238 mode != VOIDmode;
5239 mode = GET_MODE_WIDER_MODE (mode))
5240 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5241 }
5242
5243 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5244 mode != VOIDmode;
5245 mode = GET_MODE_WIDER_MODE (mode))
5246 {
5247 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5248 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5249 }
5250
5251 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5252 mode != VOIDmode;
5253 mode = GET_MODE_WIDER_MODE (mode))
5254 {
5255 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5256 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5257 }
5258
5259 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5260 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5261 const_tiny_rtx[0][i] = const0_rtx;
5262
5263 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5264 if (STORE_FLAG_VALUE == 1)
5265 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5266
5267#ifdef RETURN_ADDRESS_POINTER_REGNUM
5268 return_address_pointer_rtx
5269 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5270#endif
5271
5272#ifdef STATIC_CHAIN_REGNUM
5273 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5274
5275#ifdef STATIC_CHAIN_INCOMING_REGNUM
5276 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5277 static_chain_incoming_rtx
5278 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5279 else
5280#endif
5281 static_chain_incoming_rtx = static_chain_rtx;
5282#endif
5283
5284#ifdef STATIC_CHAIN
5285 static_chain_rtx = STATIC_CHAIN;
5286
5287#ifdef STATIC_CHAIN_INCOMING
5288 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5289#else
5290 static_chain_incoming_rtx = static_chain_rtx;
5291#endif
5292#endif
5293
5294 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5295 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5296}
5297
5298/* Produce exact duplicate of insn INSN after AFTER.
5299 Care updating of libcall regions if present. */
5300
5301rtx
5302emit_copy_of_insn_after (rtx insn, rtx after)
5303{
5304 rtx new;
5305 rtx note1, note2, link;
5306
5307 switch (GET_CODE (insn))
5308 {
5309 case INSN:
5310 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5311 break;
5312
5313 case JUMP_INSN:
5314 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5315 break;
5316
5317 case CALL_INSN:
5318 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5319 if (CALL_INSN_FUNCTION_USAGE (insn))
5320 CALL_INSN_FUNCTION_USAGE (new)
5321 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5322 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5323 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5324 break;
5325
5326 default:
5327 gcc_unreachable ();
5328 }
5329
5330 /* Update LABEL_NUSES. */
5331 mark_jump_label (PATTERN (new), new, 0);
5332
5333 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5334
5335 /* If the old insn is frame related, then so is the new one. This is
5336 primarily needed for IA-64 unwind info which marks epilogue insns,
5337 which may be duplicated by the basic block reordering code. */
5338 RTX_FRAME_RELATED_P (new) = RTX_FRAME_RELATED_P (insn);
5339
5340 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5341 make them. */
5342 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5343 if (REG_NOTE_KIND (link) != REG_LABEL)
5344 {
5345 if (GET_CODE (link) == EXPR_LIST)
5346 REG_NOTES (new)
5347 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5348 XEXP (link, 0),
5349 REG_NOTES (new)));
5350 else
5351 REG_NOTES (new)
5352 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5353 XEXP (link, 0),
5354 REG_NOTES (new)));
5355 }
5356
5357 /* Fix the libcall sequences. */
5358 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5359 {
5360 rtx p = new;
5361 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5362 p = PREV_INSN (p);
5363 XEXP (note1, 0) = p;
5364 XEXP (note2, 0) = new;
5365 }
5366 INSN_CODE (new) = INSN_CODE (insn);
5367 return new;
5368}
5369
5370static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5371rtx
5372gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5373{
5374 if (hard_reg_clobbers[mode][regno])
5375 return hard_reg_clobbers[mode][regno];
5376 else
5377 return (hard_reg_clobbers[mode][regno] =
5378 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5379}
5380
5381#include "gt-emit-rtl.h"