Deleted Added
sdiff udiff text old ( 210767 ) new ( 211554 )
full compact
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#include <stdlib.h>
27#include <strings.h>
28#include <errno.h>
29#include <unistd.h>
30#include <limits.h>
31#include <assert.h>
32#include <ctype.h>
33#if defined(sun)
34#include <alloca.h>
35#endif
36#include <dt_impl.h>
37
38#define DT_MASK_LO 0x00000000FFFFFFFFULL
39
40/*
41 * We declare this here because (1) we need it and (2) we want to avoid a
42 * dependency on libm in libdtrace.
43 */
44static long double
45dt_fabsl(long double x)
46{
47 if (x < 0)
48 return (-x);
49
50 return (x);
51}
52
53/*
54 * 128-bit arithmetic functions needed to support the stddev() aggregating
55 * action.
56 */
57static int
58dt_gt_128(uint64_t *a, uint64_t *b)
59{
60 return (a[1] > b[1] || (a[1] == b[1] && a[0] > b[0]));
61}
62
63static int
64dt_ge_128(uint64_t *a, uint64_t *b)
65{
66 return (a[1] > b[1] || (a[1] == b[1] && a[0] >= b[0]));
67}
68
69static int
70dt_le_128(uint64_t *a, uint64_t *b)
71{
72 return (a[1] < b[1] || (a[1] == b[1] && a[0] <= b[0]));
73}
74
75/*
76 * Shift the 128-bit value in a by b. If b is positive, shift left.
77 * If b is negative, shift right.
78 */
79static void
80dt_shift_128(uint64_t *a, int b)
81{
82 uint64_t mask;
83
84 if (b == 0)
85 return;
86
87 if (b < 0) {
88 b = -b;
89 if (b >= 64) {
90 a[0] = a[1] >> (b - 64);
91 a[1] = 0;
92 } else {
93 a[0] >>= b;
94 mask = 1LL << (64 - b);
95 mask -= 1;
96 a[0] |= ((a[1] & mask) << (64 - b));
97 a[1] >>= b;
98 }
99 } else {
100 if (b >= 64) {
101 a[1] = a[0] << (b - 64);
102 a[0] = 0;
103 } else {
104 a[1] <<= b;
105 mask = a[0] >> (64 - b);
106 a[1] |= mask;
107 a[0] <<= b;
108 }
109 }
110}
111
112static int
113dt_nbits_128(uint64_t *a)
114{
115 int nbits = 0;
116 uint64_t tmp[2];
117 uint64_t zero[2] = { 0, 0 };
118
119 tmp[0] = a[0];
120 tmp[1] = a[1];
121
122 dt_shift_128(tmp, -1);
123 while (dt_gt_128(tmp, zero)) {
124 dt_shift_128(tmp, -1);
125 nbits++;
126 }
127
128 return (nbits);
129}
130
131static void
132dt_subtract_128(uint64_t *minuend, uint64_t *subtrahend, uint64_t *difference)
133{
134 uint64_t result[2];
135
136 result[0] = minuend[0] - subtrahend[0];
137 result[1] = minuend[1] - subtrahend[1] -
138 (minuend[0] < subtrahend[0] ? 1 : 0);
139
140 difference[0] = result[0];
141 difference[1] = result[1];
142}
143
144static void
145dt_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
146{
147 uint64_t result[2];
148
149 result[0] = addend1[0] + addend2[0];
150 result[1] = addend1[1] + addend2[1] +
151 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
152
153 sum[0] = result[0];
154 sum[1] = result[1];
155}
156
157/*
158 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
159 * use native multiplication on those, and then re-combine into the
160 * resulting 128-bit value.
161 *
162 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
163 * hi1 * hi2 << 64 +
164 * hi1 * lo2 << 32 +
165 * hi2 * lo1 << 32 +
166 * lo1 * lo2
167 */
168static void
169dt_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
170{
171 uint64_t hi1, hi2, lo1, lo2;
172 uint64_t tmp[2];
173
174 hi1 = factor1 >> 32;
175 hi2 = factor2 >> 32;
176
177 lo1 = factor1 & DT_MASK_LO;
178 lo2 = factor2 & DT_MASK_LO;
179
180 product[0] = lo1 * lo2;
181 product[1] = hi1 * hi2;
182
183 tmp[0] = hi1 * lo2;
184 tmp[1] = 0;
185 dt_shift_128(tmp, 32);
186 dt_add_128(product, tmp, product);
187
188 tmp[0] = hi2 * lo1;
189 tmp[1] = 0;
190 dt_shift_128(tmp, 32);
191 dt_add_128(product, tmp, product);
192}
193
194/*
195 * This is long-hand division.
196 *
197 * We initialize subtrahend by shifting divisor left as far as possible. We
198 * loop, comparing subtrahend to dividend: if subtrahend is smaller, we
199 * subtract and set the appropriate bit in the result. We then shift
200 * subtrahend right by one bit for the next comparison.
201 */
202static void
203dt_divide_128(uint64_t *dividend, uint64_t divisor, uint64_t *quotient)
204{
205 uint64_t result[2] = { 0, 0 };
206 uint64_t remainder[2];
207 uint64_t subtrahend[2];
208 uint64_t divisor_128[2];
209 uint64_t mask[2] = { 1, 0 };
210 int log = 0;
211
212 assert(divisor != 0);
213
214 divisor_128[0] = divisor;
215 divisor_128[1] = 0;
216
217 remainder[0] = dividend[0];
218 remainder[1] = dividend[1];
219
220 subtrahend[0] = divisor;
221 subtrahend[1] = 0;
222
223 while (divisor > 0) {
224 log++;
225 divisor >>= 1;
226 }
227
228 dt_shift_128(subtrahend, 128 - log);
229 dt_shift_128(mask, 128 - log);
230
231 while (dt_ge_128(remainder, divisor_128)) {
232 if (dt_ge_128(remainder, subtrahend)) {
233 dt_subtract_128(remainder, subtrahend, remainder);
234 result[0] |= mask[0];
235 result[1] |= mask[1];
236 }
237
238 dt_shift_128(subtrahend, -1);
239 dt_shift_128(mask, -1);
240 }
241
242 quotient[0] = result[0];
243 quotient[1] = result[1];
244}
245
246/*
247 * This is the long-hand method of calculating a square root.
248 * The algorithm is as follows:
249 *
250 * 1. Group the digits by 2 from the right.
251 * 2. Over the leftmost group, find the largest single-digit number
252 * whose square is less than that group.
253 * 3. Subtract the result of the previous step (2 or 4, depending) and
254 * bring down the next two-digit group.
255 * 4. For the result R we have so far, find the largest single-digit number
256 * x such that 2 * R * 10 * x + x^2 is less than the result from step 3.
257 * (Note that this is doubling R and performing a decimal left-shift by 1
258 * and searching for the appropriate decimal to fill the one's place.)
259 * The value x is the next digit in the square root.
260 * Repeat steps 3 and 4 until the desired precision is reached. (We're
261 * dealing with integers, so the above is sufficient.)
262 *
263 * In decimal, the square root of 582,734 would be calculated as so:
264 *
265 * __7__6__3
266 * | 58 27 34
267 * -49 (7^2 == 49 => 7 is the first digit in the square root)
268 * --
269 * 9 27 (Subtract and bring down the next group.)
270 * 146 8 76 (2 * 7 * 10 * 6 + 6^2 == 876 => 6 is the next digit in
271 * ----- the square root)
272 * 51 34 (Subtract and bring down the next group.)
273 * 1523 45 69 (2 * 76 * 10 * 3 + 3^2 == 4569 => 3 is the next digit in
274 * ----- the square root)
275 * 5 65 (remainder)
276 *
277 * The above algorithm applies similarly in binary, but note that the
278 * only possible non-zero value for x in step 4 is 1, so step 4 becomes a
279 * simple decision: is 2 * R * 2 * 1 + 1^2 (aka R << 2 + 1) less than the
280 * preceding difference?
281 *
282 * In binary, the square root of 11011011 would be calculated as so:
283 *
284 * __1__1__1__0
285 * | 11 01 10 11
286 * 01 (0 << 2 + 1 == 1 < 11 => this bit is 1)
287 * --
288 * 10 01 10 11
289 * 101 1 01 (1 << 2 + 1 == 101 < 1001 => next bit is 1)
290 * -----
291 * 1 00 10 11
292 * 1101 11 01 (11 << 2 + 1 == 1101 < 10010 => next bit is 1)
293 * -------
294 * 1 01 11
295 * 11101 1 11 01 (111 << 2 + 1 == 11101 > 10111 => last bit is 0)
296 *
297 */
298static uint64_t
299dt_sqrt_128(uint64_t *square)
300{
301 uint64_t result[2] = { 0, 0 };
302 uint64_t diff[2] = { 0, 0 };
303 uint64_t one[2] = { 1, 0 };
304 uint64_t next_pair[2];
305 uint64_t next_try[2];
306 uint64_t bit_pairs, pair_shift;
307 int i;
308
309 bit_pairs = dt_nbits_128(square) / 2;
310 pair_shift = bit_pairs * 2;
311
312 for (i = 0; i <= bit_pairs; i++) {
313 /*
314 * Bring down the next pair of bits.
315 */
316 next_pair[0] = square[0];
317 next_pair[1] = square[1];
318 dt_shift_128(next_pair, -pair_shift);
319 next_pair[0] &= 0x3;
320 next_pair[1] = 0;
321
322 dt_shift_128(diff, 2);
323 dt_add_128(diff, next_pair, diff);
324
325 /*
326 * next_try = R << 2 + 1
327 */
328 next_try[0] = result[0];
329 next_try[1] = result[1];
330 dt_shift_128(next_try, 2);
331 dt_add_128(next_try, one, next_try);
332
333 if (dt_le_128(next_try, diff)) {
334 dt_subtract_128(diff, next_try, diff);
335 dt_shift_128(result, 1);
336 dt_add_128(result, one, result);
337 } else {
338 dt_shift_128(result, 1);
339 }
340
341 pair_shift -= 2;
342 }
343
344 assert(result[1] == 0);
345
346 return (result[0]);
347}
348
349uint64_t
350dt_stddev(uint64_t *data, uint64_t normal)
351{
352 uint64_t avg_of_squares[2];
353 uint64_t square_of_avg[2];
354 int64_t norm_avg;
355 uint64_t diff[2];
356
357 /*
358 * The standard approximation for standard deviation is
359 * sqrt(average(x**2) - average(x)**2), i.e. the square root
360 * of the average of the squares minus the square of the average.
361 */
362 dt_divide_128(data + 2, normal, avg_of_squares);
363 dt_divide_128(avg_of_squares, data[0], avg_of_squares);
364
365 norm_avg = (int64_t)data[1] / (int64_t)normal / (int64_t)data[0];
366
367 if (norm_avg < 0)
368 norm_avg = -norm_avg;
369
370 dt_multiply_128((uint64_t)norm_avg, (uint64_t)norm_avg, square_of_avg);
371
372 dt_subtract_128(avg_of_squares, square_of_avg, diff);
373
374 return (dt_sqrt_128(diff));
375}
376
377static int
378dt_flowindent(dtrace_hdl_t *dtp, dtrace_probedata_t *data, dtrace_epid_t last,
379 dtrace_bufdesc_t *buf, size_t offs)
380{
381 dtrace_probedesc_t *pd = data->dtpda_pdesc, *npd;
382 dtrace_eprobedesc_t *epd = data->dtpda_edesc, *nepd;
383 char *p = pd->dtpd_provider, *n = pd->dtpd_name, *sub;
384 dtrace_flowkind_t flow = DTRACEFLOW_NONE;
385 const char *str = NULL;
386 static const char *e_str[2] = { " -> ", " => " };
387 static const char *r_str[2] = { " <- ", " <= " };
388 static const char *ent = "entry", *ret = "return";
389 static int entlen = 0, retlen = 0;
390 dtrace_epid_t next, id = epd->dtepd_epid;
391 int rval;
392
393 if (entlen == 0) {
394 assert(retlen == 0);
395 entlen = strlen(ent);
396 retlen = strlen(ret);
397 }
398
399 /*
400 * If the name of the probe is "entry" or ends with "-entry", we
401 * treat it as an entry; if it is "return" or ends with "-return",
402 * we treat it as a return. (This allows application-provided probes
403 * like "method-entry" or "function-entry" to participate in flow
404 * indentation -- without accidentally misinterpreting popular probe
405 * names like "carpentry", "gentry" or "Coventry".)
406 */
407 if ((sub = strstr(n, ent)) != NULL && sub[entlen] == '\0' &&
408 (sub == n || sub[-1] == '-')) {
409 flow = DTRACEFLOW_ENTRY;
410 str = e_str[strcmp(p, "syscall") == 0];
411 } else if ((sub = strstr(n, ret)) != NULL && sub[retlen] == '\0' &&
412 (sub == n || sub[-1] == '-')) {
413 flow = DTRACEFLOW_RETURN;
414 str = r_str[strcmp(p, "syscall") == 0];
415 }
416
417 /*
418 * If we're going to indent this, we need to check the ID of our last
419 * call. If we're looking at the same probe ID but a different EPID,
420 * we _don't_ want to indent. (Yes, there are some minor holes in
421 * this scheme -- it's a heuristic.)
422 */
423 if (flow == DTRACEFLOW_ENTRY) {
424 if ((last != DTRACE_EPIDNONE && id != last &&
425 pd->dtpd_id == dtp->dt_pdesc[last]->dtpd_id))
426 flow = DTRACEFLOW_NONE;
427 }
428
429 /*
430 * If we're going to unindent this, it's more difficult to see if
431 * we don't actually want to unindent it -- we need to look at the
432 * _next_ EPID.
433 */
434 if (flow == DTRACEFLOW_RETURN) {
435 offs += epd->dtepd_size;
436
437 do {
438 if (offs >= buf->dtbd_size) {
439 /*
440 * We're at the end -- maybe. If the oldest
441 * record is non-zero, we need to wrap.
442 */
443 if (buf->dtbd_oldest != 0) {
444 offs = 0;
445 } else {
446 goto out;
447 }
448 }
449
450 next = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
451
452 if (next == DTRACE_EPIDNONE)
453 offs += sizeof (id);
454 } while (next == DTRACE_EPIDNONE);
455
456 if ((rval = dt_epid_lookup(dtp, next, &nepd, &npd)) != 0)
457 return (rval);
458
459 if (next != id && npd->dtpd_id == pd->dtpd_id)
460 flow = DTRACEFLOW_NONE;
461 }
462
463out:
464 if (flow == DTRACEFLOW_ENTRY || flow == DTRACEFLOW_RETURN) {
465 data->dtpda_prefix = str;
466 } else {
467 data->dtpda_prefix = "| ";
468 }
469
470 if (flow == DTRACEFLOW_RETURN && data->dtpda_indent > 0)
471 data->dtpda_indent -= 2;
472
473 data->dtpda_flow = flow;
474
475 return (0);
476}
477
478static int
479dt_nullprobe()
480{
481 return (DTRACE_CONSUME_THIS);
482}
483
484static int
485dt_nullrec()
486{
487 return (DTRACE_CONSUME_NEXT);
488}
489
490int
491dt_print_quantline(dtrace_hdl_t *dtp, FILE *fp, int64_t val,
492 uint64_t normal, long double total, char positives, char negatives)
493{
494 long double f;
495 uint_t depth, len = 40;
496
497 const char *ats = "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@";
498 const char *spaces = " ";
499
500 assert(strlen(ats) == len && strlen(spaces) == len);
501 assert(!(total == 0 && (positives || negatives)));
502 assert(!(val < 0 && !negatives));
503 assert(!(val > 0 && !positives));
504 assert(!(val != 0 && total == 0));
505
506 if (!negatives) {
507 if (positives) {
508 f = (dt_fabsl((long double)val) * len) / total;
509 depth = (uint_t)(f + 0.5);
510 } else {
511 depth = 0;
512 }
513
514 return (dt_printf(dtp, fp, "|%s%s %-9lld\n", ats + len - depth,
515 spaces + depth, (long long)val / normal));
516 }
517
518 if (!positives) {
519 f = (dt_fabsl((long double)val) * len) / total;
520 depth = (uint_t)(f + 0.5);
521
522 return (dt_printf(dtp, fp, "%s%s| %-9lld\n", spaces + depth,
523 ats + len - depth, (long long)val / normal));
524 }
525
526 /*
527 * If we're here, we have both positive and negative bucket values.
528 * To express this graphically, we're going to generate both positive
529 * and negative bars separated by a centerline. These bars are half
530 * the size of normal quantize()/lquantize() bars, so we divide the
531 * length in half before calculating the bar length.
532 */
533 len /= 2;
534 ats = &ats[len];
535 spaces = &spaces[len];
536
537 f = (dt_fabsl((long double)val) * len) / total;
538 depth = (uint_t)(f + 0.5);
539
540 if (val <= 0) {
541 return (dt_printf(dtp, fp, "%s%s|%*s %-9lld\n", spaces + depth,
542 ats + len - depth, len, "", (long long)val / normal));
543 } else {
544 return (dt_printf(dtp, fp, "%20s|%s%s %-9lld\n", "",
545 ats + len - depth, spaces + depth,
546 (long long)val / normal));
547 }
548}
549
550int
551dt_print_quantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
552 size_t size, uint64_t normal)
553{
554 const int64_t *data = addr;
555 int i, first_bin = 0, last_bin = DTRACE_QUANTIZE_NBUCKETS - 1;
556 long double total = 0;
557 char positives = 0, negatives = 0;
558
559 if (size != DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t))
560 return (dt_set_errno(dtp, EDT_DMISMATCH));
561
562 while (first_bin < DTRACE_QUANTIZE_NBUCKETS - 1 && data[first_bin] == 0)
563 first_bin++;
564
565 if (first_bin == DTRACE_QUANTIZE_NBUCKETS - 1) {
566 /*
567 * There isn't any data. This is possible if (and only if)
568 * negative increment values have been used. In this case,
569 * we'll print the buckets around 0.
570 */
571 first_bin = DTRACE_QUANTIZE_ZEROBUCKET - 1;
572 last_bin = DTRACE_QUANTIZE_ZEROBUCKET + 1;
573 } else {
574 if (first_bin > 0)
575 first_bin--;
576
577 while (last_bin > 0 && data[last_bin] == 0)
578 last_bin--;
579
580 if (last_bin < DTRACE_QUANTIZE_NBUCKETS - 1)
581 last_bin++;
582 }
583
584 for (i = first_bin; i <= last_bin; i++) {
585 positives |= (data[i] > 0);
586 negatives |= (data[i] < 0);
587 total += dt_fabsl((long double)data[i]);
588 }
589
590 if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
591 "------------- Distribution -------------", "count") < 0)
592 return (-1);
593
594 for (i = first_bin; i <= last_bin; i++) {
595 if (dt_printf(dtp, fp, "%16lld ",
596 (long long)DTRACE_QUANTIZE_BUCKETVAL(i)) < 0)
597 return (-1);
598
599 if (dt_print_quantline(dtp, fp, data[i], normal, total,
600 positives, negatives) < 0)
601 return (-1);
602 }
603
604 return (0);
605}
606
607int
608dt_print_lquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
609 size_t size, uint64_t normal)
610{
611 const int64_t *data = addr;
612 int i, first_bin, last_bin, base;
613 uint64_t arg;
614 long double total = 0;
615 uint16_t step, levels;
616 char positives = 0, negatives = 0;
617
618 if (size < sizeof (uint64_t))
619 return (dt_set_errno(dtp, EDT_DMISMATCH));
620
621 arg = *data++;
622 size -= sizeof (uint64_t);
623
624 base = DTRACE_LQUANTIZE_BASE(arg);
625 step = DTRACE_LQUANTIZE_STEP(arg);
626 levels = DTRACE_LQUANTIZE_LEVELS(arg);
627
628 first_bin = 0;
629 last_bin = levels + 1;
630
631 if (size != sizeof (uint64_t) * (levels + 2))
632 return (dt_set_errno(dtp, EDT_DMISMATCH));
633
634 while (first_bin <= levels + 1 && data[first_bin] == 0)
635 first_bin++;
636
637 if (first_bin > levels + 1) {
638 first_bin = 0;
639 last_bin = 2;
640 } else {
641 if (first_bin > 0)
642 first_bin--;
643
644 while (last_bin > 0 && data[last_bin] == 0)
645 last_bin--;
646
647 if (last_bin < levels + 1)
648 last_bin++;
649 }
650
651 for (i = first_bin; i <= last_bin; i++) {
652 positives |= (data[i] > 0);
653 negatives |= (data[i] < 0);
654 total += dt_fabsl((long double)data[i]);
655 }
656
657 if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
658 "------------- Distribution -------------", "count") < 0)
659 return (-1);
660
661 for (i = first_bin; i <= last_bin; i++) {
662 char c[32];
663 int err;
664
665 if (i == 0) {
666 (void) snprintf(c, sizeof (c), "< %d",
667 base / (uint32_t)normal);
668 err = dt_printf(dtp, fp, "%16s ", c);
669 } else if (i == levels + 1) {
670 (void) snprintf(c, sizeof (c), ">= %d",
671 base + (levels * step));
672 err = dt_printf(dtp, fp, "%16s ", c);
673 } else {
674 err = dt_printf(dtp, fp, "%16d ",
675 base + (i - 1) * step);
676 }
677
678 if (err < 0 || dt_print_quantline(dtp, fp, data[i], normal,
679 total, positives, negatives) < 0)
680 return (-1);
681 }
682
683 return (0);
684}
685
686/*ARGSUSED*/
687static int
688dt_print_average(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
689 size_t size, uint64_t normal)
690{
691 /* LINTED - alignment */
692 int64_t *data = (int64_t *)addr;
693
694 return (dt_printf(dtp, fp, " %16lld", data[0] ?
695 (long long)(data[1] / (int64_t)normal / data[0]) : 0));
696}
697
698/*ARGSUSED*/
699static int
700dt_print_stddev(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
701 size_t size, uint64_t normal)
702{
703 /* LINTED - alignment */
704 uint64_t *data = (uint64_t *)addr;
705
706 return (dt_printf(dtp, fp, " %16llu", data[0] ?
707 (unsigned long long) dt_stddev(data, normal) : 0));
708}
709
710/*ARGSUSED*/
711int
712dt_print_bytes(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
713 size_t nbytes, int width, int quiet, int raw)
714{
715 /*
716 * If the byte stream is a series of printable characters, followed by
717 * a terminating byte, we print it out as a string. Otherwise, we
718 * assume that it's something else and just print the bytes.
719 */
720 int i, j, margin = 5;
721 char *c = (char *)addr;
722
723 if (nbytes == 0)
724 return (0);
725
726 if (raw || dtp->dt_options[DTRACEOPT_RAWBYTES] != DTRACEOPT_UNSET)
727 goto raw;
728
729 for (i = 0; i < nbytes; i++) {
730 /*
731 * We define a "printable character" to be one for which
732 * isprint(3C) returns non-zero, isspace(3C) returns non-zero,
733 * or a character which is either backspace or the bell.
734 * Backspace and the bell are regrettably special because
735 * they fail the first two tests -- and yet they are entirely
736 * printable. These are the only two control characters that
737 * have meaning for the terminal and for which isprint(3C) and
738 * isspace(3C) return 0.
739 */
740 if (isprint(c[i]) || isspace(c[i]) ||
741 c[i] == '\b' || c[i] == '\a')
742 continue;
743
744 if (c[i] == '\0' && i > 0) {
745 /*
746 * This looks like it might be a string. Before we
747 * assume that it is indeed a string, check the
748 * remainder of the byte range; if it contains
749 * additional non-nul characters, we'll assume that
750 * it's a binary stream that just happens to look like
751 * a string, and we'll print out the individual bytes.
752 */
753 for (j = i + 1; j < nbytes; j++) {
754 if (c[j] != '\0')
755 break;
756 }
757
758 if (j != nbytes)
759 break;
760
761 if (quiet)
762 return (dt_printf(dtp, fp, "%s", c));
763 else
764 return (dt_printf(dtp, fp, " %-*s", width, c));
765 }
766
767 break;
768 }
769
770 if (i == nbytes) {
771 /*
772 * The byte range is all printable characters, but there is
773 * no trailing nul byte. We'll assume that it's a string and
774 * print it as such.
775 */
776 char *s = alloca(nbytes + 1);
777 bcopy(c, s, nbytes);
778 s[nbytes] = '\0';
779 return (dt_printf(dtp, fp, " %-*s", width, s));
780 }
781
782raw:
783 if (dt_printf(dtp, fp, "\n%*s ", margin, "") < 0)
784 return (-1);
785
786 for (i = 0; i < 16; i++)
787 if (dt_printf(dtp, fp, " %c", "0123456789abcdef"[i]) < 0)
788 return (-1);
789
790 if (dt_printf(dtp, fp, " 0123456789abcdef\n") < 0)
791 return (-1);
792
793
794 for (i = 0; i < nbytes; i += 16) {
795 if (dt_printf(dtp, fp, "%*s%5x:", margin, "", i) < 0)
796 return (-1);
797
798 for (j = i; j < i + 16 && j < nbytes; j++) {
799 if (dt_printf(dtp, fp, " %02x", (uchar_t)c[j]) < 0)
800 return (-1);
801 }
802
803 while (j++ % 16) {
804 if (dt_printf(dtp, fp, " ") < 0)
805 return (-1);
806 }
807
808 if (dt_printf(dtp, fp, " ") < 0)
809 return (-1);
810
811 for (j = i; j < i + 16 && j < nbytes; j++) {
812 if (dt_printf(dtp, fp, "%c",
813 c[j] < ' ' || c[j] > '~' ? '.' : c[j]) < 0)
814 return (-1);
815 }
816
817 if (dt_printf(dtp, fp, "\n") < 0)
818 return (-1);
819 }
820
821 return (0);
822}
823
824int
825dt_print_stack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
826 caddr_t addr, int depth, int size)
827{
828 dtrace_syminfo_t dts;
829 GElf_Sym sym;
830 int i, indent;
831 char c[PATH_MAX * 2];
832 uint64_t pc;
833
834 if (dt_printf(dtp, fp, "\n") < 0)
835 return (-1);
836
837 if (format == NULL)
838 format = "%s";
839
840 if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
841 indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
842 else
843 indent = _dtrace_stkindent;
844
845 for (i = 0; i < depth; i++) {
846 switch (size) {
847 case sizeof (uint32_t):
848 /* LINTED - alignment */
849 pc = *((uint32_t *)addr);
850 break;
851
852 case sizeof (uint64_t):
853 /* LINTED - alignment */
854 pc = *((uint64_t *)addr);
855 break;
856
857 default:
858 return (dt_set_errno(dtp, EDT_BADSTACKPC));
859 }
860
861 if (pc == 0)
862 break;
863
864 addr += size;
865
866 if (dt_printf(dtp, fp, "%*s", indent, "") < 0)
867 return (-1);
868
869 if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
870 if (pc > sym.st_value) {
871 (void) snprintf(c, sizeof (c), "%s`%s+0x%llx",
872 dts.dts_object, dts.dts_name,
873 pc - sym.st_value);
874 } else {
875 (void) snprintf(c, sizeof (c), "%s`%s",
876 dts.dts_object, dts.dts_name);
877 }
878 } else {
879 /*
880 * We'll repeat the lookup, but this time we'll specify
881 * a NULL GElf_Sym -- indicating that we're only
882 * interested in the containing module.
883 */
884 if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
885 (void) snprintf(c, sizeof (c), "%s`0x%llx",
886 dts.dts_object, pc);
887 } else {
888 (void) snprintf(c, sizeof (c), "0x%llx", pc);
889 }
890 }
891
892 if (dt_printf(dtp, fp, format, c) < 0)
893 return (-1);
894
895 if (dt_printf(dtp, fp, "\n") < 0)
896 return (-1);
897 }
898
899 return (0);
900}
901
902int
903dt_print_ustack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
904 caddr_t addr, uint64_t arg)
905{
906 /* LINTED - alignment */
907 uint64_t *pc = (uint64_t *)addr;
908 uint32_t depth = DTRACE_USTACK_NFRAMES(arg);
909 uint32_t strsize = DTRACE_USTACK_STRSIZE(arg);
910 const char *strbase = addr + (depth + 1) * sizeof (uint64_t);
911 const char *str = strsize ? strbase : NULL;
912 int err = 0;
913
914 char name[PATH_MAX], objname[PATH_MAX], c[PATH_MAX * 2];
915 struct ps_prochandle *P;
916 GElf_Sym sym;
917 int i, indent;
918 pid_t pid;
919
920 if (depth == 0)
921 return (0);
922
923 pid = (pid_t)*pc++;
924
925 if (dt_printf(dtp, fp, "\n") < 0)
926 return (-1);
927
928 if (format == NULL)
929 format = "%s";
930
931 if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
932 indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
933 else
934 indent = _dtrace_stkindent;
935
936 /*
937 * Ultimately, we need to add an entry point in the library vector for
938 * determining <symbol, offset> from <pid, address>. For now, if
939 * this is a vector open, we just print the raw address or string.
940 */
941 if (dtp->dt_vector == NULL)
942 P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
943 else
944 P = NULL;
945
946 if (P != NULL)
947 dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
948
949 for (i = 0; i < depth && pc[i] != 0; i++) {
950 const prmap_t *map;
951
952 if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
953 break;
954
955#if defined(sun)
956 if (P != NULL && Plookup_by_addr(P, pc[i],
957#else
958 if (P != NULL && proc_addr2sym(P, pc[i],
959#endif
960 name, sizeof (name), &sym) == 0) {
961#if defined(sun)
962 (void) Pobjname(P, pc[i], objname, sizeof (objname));
963#else
964 (void) proc_objname(P, pc[i], objname, sizeof (objname));
965#endif
966
967 if (pc[i] > sym.st_value) {
968 (void) snprintf(c, sizeof (c),
969 "%s`%s+0x%llx", dt_basename(objname), name,
970 (u_longlong_t)(pc[i] - sym.st_value));
971 } else {
972 (void) snprintf(c, sizeof (c),
973 "%s`%s", dt_basename(objname), name);
974 }
975 } else if (str != NULL && str[0] != '\0' && str[0] != '@' &&
976#if defined(sun)
977 (P != NULL && ((map = Paddr_to_map(P, pc[i])) == NULL ||
978 (map->pr_mflags & MA_WRITE)))) {
979#else
980 (P != NULL && ((map = proc_addr2map(P, pc[i])) == NULL))) {
981#endif
982 /*
983 * If the current string pointer in the string table
984 * does not point to an empty string _and_ the program
985 * counter falls in a writable region, we'll use the
986 * string from the string table instead of the raw
987 * address. This last condition is necessary because
988 * some (broken) ustack helpers will return a string
989 * even for a program counter that they can't
990 * identify. If we have a string for a program
991 * counter that falls in a segment that isn't
992 * writable, we assume that we have fallen into this
993 * case and we refuse to use the string.
994 */
995 (void) snprintf(c, sizeof (c), "%s", str);
996 } else {
997#if defined(sun)
998 if (P != NULL && Pobjname(P, pc[i], objname,
999#else
1000 if (P != NULL && proc_objname(P, pc[i], objname,
1001#endif
1002 sizeof (objname)) != 0) {
1003 (void) snprintf(c, sizeof (c), "%s`0x%llx",
1004 dt_basename(objname), (u_longlong_t)pc[i]);
1005 } else {
1006 (void) snprintf(c, sizeof (c), "0x%llx",
1007 (u_longlong_t)pc[i]);
1008 }
1009 }
1010
1011 if ((err = dt_printf(dtp, fp, format, c)) < 0)
1012 break;
1013
1014 if ((err = dt_printf(dtp, fp, "\n")) < 0)
1015 break;
1016
1017 if (str != NULL && str[0] == '@') {
1018 /*
1019 * If the first character of the string is an "at" sign,
1020 * then the string is inferred to be an annotation --
1021 * and it is printed out beneath the frame and offset
1022 * with brackets.
1023 */
1024 if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
1025 break;
1026
1027 (void) snprintf(c, sizeof (c), " [ %s ]", &str[1]);
1028
1029 if ((err = dt_printf(dtp, fp, format, c)) < 0)
1030 break;
1031
1032 if ((err = dt_printf(dtp, fp, "\n")) < 0)
1033 break;
1034 }
1035
1036 if (str != NULL) {
1037 str += strlen(str) + 1;
1038 if (str - strbase >= strsize)
1039 str = NULL;
1040 }
1041 }
1042
1043 if (P != NULL) {
1044 dt_proc_unlock(dtp, P);
1045 dt_proc_release(dtp, P);
1046 }
1047
1048 return (err);
1049}
1050
1051static int
1052dt_print_usym(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr, dtrace_actkind_t act)
1053{
1054 /* LINTED - alignment */
1055 uint64_t pid = ((uint64_t *)addr)[0];
1056 /* LINTED - alignment */
1057 uint64_t pc = ((uint64_t *)addr)[1];
1058 const char *format = " %-50s";
1059 char *s;
1060 int n, len = 256;
1061
1062 if (act == DTRACEACT_USYM && dtp->dt_vector == NULL) {
1063 struct ps_prochandle *P;
1064
1065 if ((P = dt_proc_grab(dtp, pid,
1066 PGRAB_RDONLY | PGRAB_FORCE, 0)) != NULL) {
1067 GElf_Sym sym;
1068
1069 dt_proc_lock(dtp, P);
1070
1071#if defined(sun)
1072 if (Plookup_by_addr(P, pc, NULL, 0, &sym) == 0)
1073#else
1074 if (proc_addr2sym(P, pc, NULL, 0, &sym) == 0)
1075#endif
1076 pc = sym.st_value;
1077
1078 dt_proc_unlock(dtp, P);
1079 dt_proc_release(dtp, P);
1080 }
1081 }
1082
1083 do {
1084 n = len;
1085 s = alloca(n);
1086 } while ((len = dtrace_uaddr2str(dtp, pid, pc, s, n)) > n);
1087
1088 return (dt_printf(dtp, fp, format, s));
1089}
1090
1091int
1092dt_print_umod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1093{
1094 /* LINTED - alignment */
1095 uint64_t pid = ((uint64_t *)addr)[0];
1096 /* LINTED - alignment */
1097 uint64_t pc = ((uint64_t *)addr)[1];
1098 int err = 0;
1099
1100 char objname[PATH_MAX], c[PATH_MAX * 2];
1101 struct ps_prochandle *P;
1102
1103 if (format == NULL)
1104 format = " %-50s";
1105
1106 /*
1107 * See the comment in dt_print_ustack() for the rationale for
1108 * printing raw addresses in the vectored case.
1109 */
1110 if (dtp->dt_vector == NULL)
1111 P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
1112 else
1113 P = NULL;
1114
1115 if (P != NULL)
1116 dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
1117
1118#if defined(sun)
1119 if (P != NULL && Pobjname(P, pc, objname, sizeof (objname)) != 0) {
1120#else
1121 if (P != NULL && proc_objname(P, pc, objname, sizeof (objname)) != 0) {
1122#endif
1123 (void) snprintf(c, sizeof (c), "%s", dt_basename(objname));
1124 } else {
1125 (void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1126 }
1127
1128 err = dt_printf(dtp, fp, format, c);
1129
1130 if (P != NULL) {
1131 dt_proc_unlock(dtp, P);
1132 dt_proc_release(dtp, P);
1133 }
1134
1135 return (err);
1136}
1137
1138int
1139dt_print_memory(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr)
1140{
1141 int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
1142 size_t nbytes = *((uintptr_t *) addr);
1143
1144 return (dt_print_bytes(dtp, fp, addr + sizeof(uintptr_t),
1145 nbytes, 50, quiet, 1));
1146}
1147
1148typedef struct dt_type_cbdata {
1149 dtrace_hdl_t *dtp;
1150 dtrace_typeinfo_t dtt;
1151 caddr_t addr;
1152 caddr_t addrend;
1153 const char *name;
1154 int f_type;
1155 int indent;
1156 int type_width;
1157 int name_width;
1158 FILE *fp;
1159} dt_type_cbdata_t;
1160
1161static int dt_print_type_data(dt_type_cbdata_t *, ctf_id_t);
1162
1163static int
1164dt_print_type_member(const char *name, ctf_id_t type, ulong_t off, void *arg)
1165{
1166 dt_type_cbdata_t cbdata;
1167 dt_type_cbdata_t *cbdatap = arg;
1168 ssize_t ssz;
1169
1170 if ((ssz = ctf_type_size(cbdatap->dtt.dtt_ctfp, type)) <= 0)
1171 return (0);
1172
1173 off /= 8;
1174
1175 cbdata = *cbdatap;
1176 cbdata.name = name;
1177 cbdata.addr += off;
1178 cbdata.addrend = cbdata.addr + ssz;
1179
1180 return (dt_print_type_data(&cbdata, type));
1181}
1182
1183static int
1184dt_print_type_width(const char *name, ctf_id_t type, ulong_t off, void *arg)
1185{
1186 char buf[DT_TYPE_NAMELEN];
1187 char *p;
1188 dt_type_cbdata_t *cbdatap = arg;
1189 size_t sz = strlen(name);
1190
1191 ctf_type_name(cbdatap->dtt.dtt_ctfp, type, buf, sizeof (buf));
1192
1193 if ((p = strchr(buf, '[')) != NULL)
1194 p[-1] = '\0';
1195 else
1196 p = "";
1197
1198 sz += strlen(p);
1199
1200 if (sz > cbdatap->name_width)
1201 cbdatap->name_width = sz;
1202
1203 sz = strlen(buf);
1204
1205 if (sz > cbdatap->type_width)
1206 cbdatap->type_width = sz;
1207
1208 return (0);
1209}
1210
1211static int
1212dt_print_type_data(dt_type_cbdata_t *cbdatap, ctf_id_t type)
1213{
1214 caddr_t addr = cbdatap->addr;
1215 caddr_t addrend = cbdatap->addrend;
1216 char buf[DT_TYPE_NAMELEN];
1217 char *p;
1218 int cnt = 0;
1219 uint_t kind = ctf_type_kind(cbdatap->dtt.dtt_ctfp, type);
1220 ssize_t ssz = ctf_type_size(cbdatap->dtt.dtt_ctfp, type);
1221
1222 ctf_type_name(cbdatap->dtt.dtt_ctfp, type, buf, sizeof (buf));
1223
1224 if ((p = strchr(buf, '[')) != NULL)
1225 p[-1] = '\0';
1226 else
1227 p = "";
1228
1229 if (cbdatap->f_type) {
1230 int type_width = roundup(cbdatap->type_width + 1, 4);
1231 int name_width = roundup(cbdatap->name_width + 1, 4);
1232
1233 name_width -= strlen(cbdatap->name);
1234
1235 dt_printf(cbdatap->dtp, cbdatap->fp, "%*s%-*s%s%-*s = ",cbdatap->indent * 4,"",type_width,buf,cbdatap->name,name_width,p);
1236 }
1237
1238 while (addr < addrend) {
1239 dt_type_cbdata_t cbdata;
1240 ctf_arinfo_t arinfo;
1241 ctf_encoding_t cte;
1242 uintptr_t *up;
1243 void *vp = addr;
1244 cbdata = *cbdatap;
1245 cbdata.name = "";
1246 cbdata.addr = addr;
1247 cbdata.addrend = addr + ssz;
1248 cbdata.f_type = 0;
1249 cbdata.indent++;
1250 cbdata.type_width = 0;
1251 cbdata.name_width = 0;
1252
1253 if (cnt > 0)
1254 dt_printf(cbdatap->dtp, cbdatap->fp, "%*s", cbdatap->indent * 4,"");
1255
1256 switch (kind) {
1257 case CTF_K_INTEGER:
1258 if (ctf_type_encoding(cbdatap->dtt.dtt_ctfp, type, &cte) != 0)
1259 return (-1);
1260 if ((cte.cte_format & CTF_INT_SIGNED) != 0)
1261 switch (cte.cte_bits) {
1262 case 8:
1263 if (isprint(*((char *) vp)))
1264 dt_printf(cbdatap->dtp, cbdatap->fp, "'%c', ", *((char *) vp));
1265 dt_printf(cbdatap->dtp, cbdatap->fp, "%d (0x%x);\n", *((char *) vp), *((char *) vp));
1266 break;
1267 case 16:
1268 dt_printf(cbdatap->dtp, cbdatap->fp, "%hd (0x%hx);\n", *((short *) vp), *((u_short *) vp));
1269 break;
1270 case 32:
1271 dt_printf(cbdatap->dtp, cbdatap->fp, "%d (0x%x);\n", *((int *) vp), *((u_int *) vp));
1272 break;
1273 case 64:
1274 dt_printf(cbdatap->dtp, cbdatap->fp, "%jd (0x%jx);\n", *((long long *) vp), *((unsigned long long *) vp));
1275 break;
1276 default:
1277 dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_INTEGER: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1278 break;
1279 }
1280 else
1281 switch (cte.cte_bits) {
1282 case 8:
1283 dt_printf(cbdatap->dtp, cbdatap->fp, "%u (0x%x);\n", *((uint8_t *) vp) & 0xff, *((uint8_t *) vp) & 0xff);
1284 break;
1285 case 16:
1286 dt_printf(cbdatap->dtp, cbdatap->fp, "%hu (0x%hx);\n", *((u_short *) vp), *((u_short *) vp));
1287 break;
1288 case 32:
1289 dt_printf(cbdatap->dtp, cbdatap->fp, "%u (0x%x);\n", *((u_int *) vp), *((u_int *) vp));
1290 break;
1291 case 64:
1292 dt_printf(cbdatap->dtp, cbdatap->fp, "%ju (0x%jx);\n", *((unsigned long long *) vp), *((unsigned long long *) vp));
1293 break;
1294 default:
1295 dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_INTEGER: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1296 break;
1297 }
1298 break;
1299 case CTF_K_FLOAT:
1300 dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_FLOAT: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1301 break;
1302 case CTF_K_POINTER:
1303 dt_printf(cbdatap->dtp, cbdatap->fp, "%p;\n", *((void **) addr));
1304 break;
1305 case CTF_K_ARRAY:
1306 if (ctf_array_info(cbdatap->dtt.dtt_ctfp, type, &arinfo) != 0)
1307 return (-1);
1308 dt_printf(cbdatap->dtp, cbdatap->fp, "{\n%*s",cbdata.indent * 4,"");
1309 dt_print_type_data(&cbdata, arinfo.ctr_contents);
1310 dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1311 break;
1312 case CTF_K_FUNCTION:
1313 dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_FUNCTION:\n");
1314 break;
1315 case CTF_K_STRUCT:
1316 cbdata.f_type = 1;
1317 if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1318 dt_print_type_width, &cbdata) != 0)
1319 return (-1);
1320 dt_printf(cbdatap->dtp, cbdatap->fp, "{\n");
1321 if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1322 dt_print_type_member, &cbdata) != 0)
1323 return (-1);
1324 dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1325 break;
1326 case CTF_K_UNION:
1327 cbdata.f_type = 1;
1328 if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1329 dt_print_type_width, &cbdata) != 0)
1330 return (-1);
1331 dt_printf(cbdatap->dtp, cbdatap->fp, "{\n");
1332 if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1333 dt_print_type_member, &cbdata) != 0)
1334 return (-1);
1335 dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1336 break;
1337 case CTF_K_ENUM:
1338 dt_printf(cbdatap->dtp, cbdatap->fp, "%s;\n", ctf_enum_name(cbdatap->dtt.dtt_ctfp, type, *((int *) vp)));
1339 break;
1340 case CTF_K_TYPEDEF:
1341 dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1342 break;
1343 case CTF_K_VOLATILE:
1344 if (cbdatap->f_type)
1345 dt_printf(cbdatap->dtp, cbdatap->fp, "volatile ");
1346 dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1347 break;
1348 case CTF_K_CONST:
1349 if (cbdatap->f_type)
1350 dt_printf(cbdatap->dtp, cbdatap->fp, "const ");
1351 dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1352 break;
1353 case CTF_K_RESTRICT:
1354 if (cbdatap->f_type)
1355 dt_printf(cbdatap->dtp, cbdatap->fp, "restrict ");
1356 dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1357 break;
1358 default:
1359 break;
1360 }
1361
1362 addr += ssz;
1363 cnt++;
1364 }
1365
1366 return (0);
1367}
1368
1369static int
1370dt_print_type(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr)
1371{
1372 caddr_t addrend;
1373 char *p;
1374 dtrace_typeinfo_t dtt;
1375 dt_type_cbdata_t cbdata;
1376 int num = 0;
1377 int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
1378 ssize_t ssz;
1379
1380 if (!quiet)
1381 dt_printf(dtp, fp, "\n");
1382
1383 /* Get the total number of bytes of data buffered. */
1384 size_t nbytes = *((uintptr_t *) addr);
1385 addr += sizeof(uintptr_t);
1386
1387 /*
1388 * Get the size of the type so that we can check that it matches
1389 * the CTF data we look up and so that we can figure out how many
1390 * type elements are buffered.
1391 */
1392 size_t typs = *((uintptr_t *) addr);
1393 addr += sizeof(uintptr_t);
1394
1395 /*
1396 * Point to the type string in the buffer. Get it's string
1397 * length and round it up to become the offset to the start
1398 * of the buffered type data which we would like to be aligned
1399 * for easy access.
1400 */
1401 char *strp = (char *) addr;
1402 int offset = roundup(strlen(strp) + 1, sizeof(uintptr_t));
1403
1404 /*
1405 * The type string might have a format such as 'int [20]'.
1406 * Check if there is an array dimension present.
1407 */
1408 if ((p = strchr(strp, '[')) != NULL) {
1409 /* Strip off the array dimension. */
1410 *p++ = '\0';
1411
1412 for (; *p != '\0' && *p != ']'; p++)
1413 num = num * 10 + *p - '0';
1414 } else
1415 /* No array dimension, so default. */
1416 num = 1;
1417
1418 /* Lookup the CTF type from the type string. */
1419 if (dtrace_lookup_by_type(dtp, DTRACE_OBJ_EVERY, strp, &dtt) < 0)
1420 return (-1);
1421
1422 /* Offset the buffer address to the start of the data... */
1423 addr += offset;
1424
1425 ssz = ctf_type_size(dtt.dtt_ctfp, dtt.dtt_type);
1426
1427 if (typs != ssz) {
1428 printf("Expected type size from buffer (%lu) to match type size looked up now (%ld)\n", (u_long) typs, (long) ssz);
1429 return (-1);
1430 }
1431
1432 cbdata.dtp = dtp;
1433 cbdata.dtt = dtt;
1434 cbdata.name = "";
1435 cbdata.addr = addr;
1436 cbdata.addrend = addr + nbytes;
1437 cbdata.indent = 1;
1438 cbdata.f_type = 1;
1439 cbdata.type_width = 0;
1440 cbdata.name_width = 0;
1441 cbdata.fp = fp;
1442
1443 return (dt_print_type_data(&cbdata, dtt.dtt_type));
1444}
1445
1446static int
1447dt_print_sym(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1448{
1449 /* LINTED - alignment */
1450 uint64_t pc = *((uint64_t *)addr);
1451 dtrace_syminfo_t dts;
1452 GElf_Sym sym;
1453 char c[PATH_MAX * 2];
1454
1455 if (format == NULL)
1456 format = " %-50s";
1457
1458 if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
1459 (void) snprintf(c, sizeof (c), "%s`%s",
1460 dts.dts_object, dts.dts_name);
1461 } else {
1462 /*
1463 * We'll repeat the lookup, but this time we'll specify a
1464 * NULL GElf_Sym -- indicating that we're only interested in
1465 * the containing module.
1466 */
1467 if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1468 (void) snprintf(c, sizeof (c), "%s`0x%llx",
1469 dts.dts_object, (u_longlong_t)pc);
1470 } else {
1471 (void) snprintf(c, sizeof (c), "0x%llx",
1472 (u_longlong_t)pc);
1473 }
1474 }
1475
1476 if (dt_printf(dtp, fp, format, c) < 0)
1477 return (-1);
1478
1479 return (0);
1480}
1481
1482int
1483dt_print_mod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1484{
1485 /* LINTED - alignment */
1486 uint64_t pc = *((uint64_t *)addr);
1487 dtrace_syminfo_t dts;
1488 char c[PATH_MAX * 2];
1489
1490 if (format == NULL)
1491 format = " %-50s";
1492
1493 if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1494 (void) snprintf(c, sizeof (c), "%s", dts.dts_object);
1495 } else {
1496 (void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1497 }
1498
1499 if (dt_printf(dtp, fp, format, c) < 0)
1500 return (-1);
1501
1502 return (0);
1503}
1504
1505typedef struct dt_normal {
1506 dtrace_aggvarid_t dtnd_id;
1507 uint64_t dtnd_normal;
1508} dt_normal_t;
1509
1510static int
1511dt_normalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1512{
1513 dt_normal_t *normal = arg;
1514 dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1515 dtrace_aggvarid_t id = normal->dtnd_id;
1516
1517 if (agg->dtagd_nrecs == 0)
1518 return (DTRACE_AGGWALK_NEXT);
1519
1520 if (agg->dtagd_varid != id)
1521 return (DTRACE_AGGWALK_NEXT);
1522
1523 ((dtrace_aggdata_t *)aggdata)->dtada_normal = normal->dtnd_normal;
1524 return (DTRACE_AGGWALK_NORMALIZE);
1525}
1526
1527static int
1528dt_normalize(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
1529{
1530 dt_normal_t normal;
1531 caddr_t addr;
1532
1533 /*
1534 * We (should) have two records: the aggregation ID followed by the
1535 * normalization value.
1536 */
1537 addr = base + rec->dtrd_offset;
1538
1539 if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
1540 return (dt_set_errno(dtp, EDT_BADNORMAL));
1541
1542 /* LINTED - alignment */
1543 normal.dtnd_id = *((dtrace_aggvarid_t *)addr);
1544 rec++;
1545
1546 if (rec->dtrd_action != DTRACEACT_LIBACT)
1547 return (dt_set_errno(dtp, EDT_BADNORMAL));
1548
1549 if (rec->dtrd_arg != DT_ACT_NORMALIZE)
1550 return (dt_set_errno(dtp, EDT_BADNORMAL));
1551
1552 addr = base + rec->dtrd_offset;
1553
1554 switch (rec->dtrd_size) {
1555 case sizeof (uint64_t):
1556 /* LINTED - alignment */
1557 normal.dtnd_normal = *((uint64_t *)addr);
1558 break;
1559 case sizeof (uint32_t):
1560 /* LINTED - alignment */
1561 normal.dtnd_normal = *((uint32_t *)addr);
1562 break;
1563 case sizeof (uint16_t):
1564 /* LINTED - alignment */
1565 normal.dtnd_normal = *((uint16_t *)addr);
1566 break;
1567 case sizeof (uint8_t):
1568 normal.dtnd_normal = *((uint8_t *)addr);
1569 break;
1570 default:
1571 return (dt_set_errno(dtp, EDT_BADNORMAL));
1572 }
1573
1574 (void) dtrace_aggregate_walk(dtp, dt_normalize_agg, &normal);
1575
1576 return (0);
1577}
1578
1579static int
1580dt_denormalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1581{
1582 dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1583 dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1584
1585 if (agg->dtagd_nrecs == 0)
1586 return (DTRACE_AGGWALK_NEXT);
1587
1588 if (agg->dtagd_varid != id)
1589 return (DTRACE_AGGWALK_NEXT);
1590
1591 return (DTRACE_AGGWALK_DENORMALIZE);
1592}
1593
1594static int
1595dt_clear_agg(const dtrace_aggdata_t *aggdata, void *arg)
1596{
1597 dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1598 dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1599
1600 if (agg->dtagd_nrecs == 0)
1601 return (DTRACE_AGGWALK_NEXT);
1602
1603 if (agg->dtagd_varid != id)
1604 return (DTRACE_AGGWALK_NEXT);
1605
1606 return (DTRACE_AGGWALK_CLEAR);
1607}
1608
1609typedef struct dt_trunc {
1610 dtrace_aggvarid_t dttd_id;
1611 uint64_t dttd_remaining;
1612} dt_trunc_t;
1613
1614static int
1615dt_trunc_agg(const dtrace_aggdata_t *aggdata, void *arg)
1616{
1617 dt_trunc_t *trunc = arg;
1618 dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1619 dtrace_aggvarid_t id = trunc->dttd_id;
1620
1621 if (agg->dtagd_nrecs == 0)
1622 return (DTRACE_AGGWALK_NEXT);
1623
1624 if (agg->dtagd_varid != id)
1625 return (DTRACE_AGGWALK_NEXT);
1626
1627 if (trunc->dttd_remaining == 0)
1628 return (DTRACE_AGGWALK_REMOVE);
1629
1630 trunc->dttd_remaining--;
1631 return (DTRACE_AGGWALK_NEXT);
1632}
1633
1634static int
1635dt_trunc(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
1636{
1637 dt_trunc_t trunc;
1638 caddr_t addr;
1639 int64_t remaining;
1640 int (*func)(dtrace_hdl_t *, dtrace_aggregate_f *, void *);
1641
1642 /*
1643 * We (should) have two records: the aggregation ID followed by the
1644 * number of aggregation entries after which the aggregation is to be
1645 * truncated.
1646 */
1647 addr = base + rec->dtrd_offset;
1648
1649 if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
1650 return (dt_set_errno(dtp, EDT_BADTRUNC));
1651
1652 /* LINTED - alignment */
1653 trunc.dttd_id = *((dtrace_aggvarid_t *)addr);
1654 rec++;
1655
1656 if (rec->dtrd_action != DTRACEACT_LIBACT)
1657 return (dt_set_errno(dtp, EDT_BADTRUNC));
1658
1659 if (rec->dtrd_arg != DT_ACT_TRUNC)
1660 return (dt_set_errno(dtp, EDT_BADTRUNC));
1661
1662 addr = base + rec->dtrd_offset;
1663
1664 switch (rec->dtrd_size) {
1665 case sizeof (uint64_t):
1666 /* LINTED - alignment */
1667 remaining = *((int64_t *)addr);
1668 break;
1669 case sizeof (uint32_t):
1670 /* LINTED - alignment */
1671 remaining = *((int32_t *)addr);
1672 break;
1673 case sizeof (uint16_t):
1674 /* LINTED - alignment */
1675 remaining = *((int16_t *)addr);
1676 break;
1677 case sizeof (uint8_t):
1678 remaining = *((int8_t *)addr);
1679 break;
1680 default:
1681 return (dt_set_errno(dtp, EDT_BADNORMAL));
1682 }
1683
1684 if (remaining < 0) {
1685 func = dtrace_aggregate_walk_valsorted;
1686 remaining = -remaining;
1687 } else {
1688 func = dtrace_aggregate_walk_valrevsorted;
1689 }
1690
1691 assert(remaining >= 0);
1692 trunc.dttd_remaining = remaining;
1693
1694 (void) func(dtp, dt_trunc_agg, &trunc);
1695
1696 return (0);
1697}
1698
1699static int
1700dt_print_datum(dtrace_hdl_t *dtp, FILE *fp, dtrace_recdesc_t *rec,
1701 caddr_t addr, size_t size, uint64_t normal)
1702{
1703 int err;
1704 dtrace_actkind_t act = rec->dtrd_action;
1705
1706 switch (act) {
1707 case DTRACEACT_STACK:
1708 return (dt_print_stack(dtp, fp, NULL, addr,
1709 rec->dtrd_arg, rec->dtrd_size / rec->dtrd_arg));
1710
1711 case DTRACEACT_USTACK:
1712 case DTRACEACT_JSTACK:
1713 return (dt_print_ustack(dtp, fp, NULL, addr, rec->dtrd_arg));
1714
1715 case DTRACEACT_USYM:
1716 case DTRACEACT_UADDR:
1717 return (dt_print_usym(dtp, fp, addr, act));
1718
1719 case DTRACEACT_UMOD:
1720 return (dt_print_umod(dtp, fp, NULL, addr));
1721
1722 case DTRACEACT_SYM:
1723 return (dt_print_sym(dtp, fp, NULL, addr));
1724
1725 case DTRACEACT_MOD:
1726 return (dt_print_mod(dtp, fp, NULL, addr));
1727
1728 case DTRACEAGG_QUANTIZE:
1729 return (dt_print_quantize(dtp, fp, addr, size, normal));
1730
1731 case DTRACEAGG_LQUANTIZE:
1732 return (dt_print_lquantize(dtp, fp, addr, size, normal));
1733
1734 case DTRACEAGG_AVG:
1735 return (dt_print_average(dtp, fp, addr, size, normal));
1736
1737 case DTRACEAGG_STDDEV:
1738 return (dt_print_stddev(dtp, fp, addr, size, normal));
1739
1740 default:
1741 break;
1742 }
1743
1744 switch (size) {
1745 case sizeof (uint64_t):
1746 err = dt_printf(dtp, fp, " %16lld",
1747 /* LINTED - alignment */
1748 (long long)*((uint64_t *)addr) / normal);
1749 break;
1750 case sizeof (uint32_t):
1751 /* LINTED - alignment */
1752 err = dt_printf(dtp, fp, " %8d", *((uint32_t *)addr) /
1753 (uint32_t)normal);
1754 break;
1755 case sizeof (uint16_t):
1756 /* LINTED - alignment */
1757 err = dt_printf(dtp, fp, " %5d", *((uint16_t *)addr) /
1758 (uint32_t)normal);
1759 break;
1760 case sizeof (uint8_t):
1761 err = dt_printf(dtp, fp, " %3d", *((uint8_t *)addr) /
1762 (uint32_t)normal);
1763 break;
1764 default:
1765 err = dt_print_bytes(dtp, fp, addr, size, 50, 0, 0);
1766 break;
1767 }
1768
1769 return (err);
1770}
1771
1772int
1773dt_print_aggs(const dtrace_aggdata_t **aggsdata, int naggvars, void *arg)
1774{
1775 int i, aggact = 0;
1776 dt_print_aggdata_t *pd = arg;
1777 const dtrace_aggdata_t *aggdata = aggsdata[0];
1778 dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1779 FILE *fp = pd->dtpa_fp;
1780 dtrace_hdl_t *dtp = pd->dtpa_dtp;
1781 dtrace_recdesc_t *rec;
1782 dtrace_actkind_t act;
1783 caddr_t addr;
1784 size_t size;
1785
1786 /*
1787 * Iterate over each record description in the key, printing the traced
1788 * data, skipping the first datum (the tuple member created by the
1789 * compiler).
1790 */
1791 for (i = 1; i < agg->dtagd_nrecs; i++) {
1792 rec = &agg->dtagd_rec[i];
1793 act = rec->dtrd_action;
1794 addr = aggdata->dtada_data + rec->dtrd_offset;
1795 size = rec->dtrd_size;
1796
1797 if (DTRACEACT_ISAGG(act)) {
1798 aggact = i;
1799 break;
1800 }
1801
1802 if (dt_print_datum(dtp, fp, rec, addr, size, 1) < 0)
1803 return (-1);
1804
1805 if (dt_buffered_flush(dtp, NULL, rec, aggdata,
1806 DTRACE_BUFDATA_AGGKEY) < 0)
1807 return (-1);
1808 }
1809
1810 assert(aggact != 0);
1811
1812 for (i = (naggvars == 1 ? 0 : 1); i < naggvars; i++) {
1813 uint64_t normal;
1814
1815 aggdata = aggsdata[i];
1816 agg = aggdata->dtada_desc;
1817 rec = &agg->dtagd_rec[aggact];
1818 act = rec->dtrd_action;
1819 addr = aggdata->dtada_data + rec->dtrd_offset;
1820 size = rec->dtrd_size;
1821
1822 assert(DTRACEACT_ISAGG(act));
1823 normal = aggdata->dtada_normal;
1824
1825 if (dt_print_datum(dtp, fp, rec, addr, size, normal) < 0)
1826 return (-1);
1827
1828 if (dt_buffered_flush(dtp, NULL, rec, aggdata,
1829 DTRACE_BUFDATA_AGGVAL) < 0)
1830 return (-1);
1831
1832 if (!pd->dtpa_allunprint)
1833 agg->dtagd_flags |= DTRACE_AGD_PRINTED;
1834 }
1835
1836 if (dt_printf(dtp, fp, "\n") < 0)
1837 return (-1);
1838
1839 if (dt_buffered_flush(dtp, NULL, NULL, aggdata,
1840 DTRACE_BUFDATA_AGGFORMAT | DTRACE_BUFDATA_AGGLAST) < 0)
1841 return (-1);
1842
1843 return (0);
1844}
1845
1846int
1847dt_print_agg(const dtrace_aggdata_t *aggdata, void *arg)
1848{
1849 dt_print_aggdata_t *pd = arg;
1850 dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1851 dtrace_aggvarid_t aggvarid = pd->dtpa_id;
1852
1853 if (pd->dtpa_allunprint) {
1854 if (agg->dtagd_flags & DTRACE_AGD_PRINTED)
1855 return (0);
1856 } else {
1857 /*
1858 * If we're not printing all unprinted aggregations, then the
1859 * aggregation variable ID denotes a specific aggregation
1860 * variable that we should print -- skip any other aggregations
1861 * that we encounter.
1862 */
1863 if (agg->dtagd_nrecs == 0)
1864 return (0);
1865
1866 if (aggvarid != agg->dtagd_varid)
1867 return (0);
1868 }
1869
1870 return (dt_print_aggs(&aggdata, 1, arg));
1871}
1872
1873int
1874dt_setopt(dtrace_hdl_t *dtp, const dtrace_probedata_t *data,
1875 const char *option, const char *value)
1876{
1877 int len, rval;
1878 char *msg;
1879 const char *errstr;
1880 dtrace_setoptdata_t optdata;
1881
1882 bzero(&optdata, sizeof (optdata));
1883 (void) dtrace_getopt(dtp, option, &optdata.dtsda_oldval);
1884
1885 if (dtrace_setopt(dtp, option, value) == 0) {
1886 (void) dtrace_getopt(dtp, option, &optdata.dtsda_newval);
1887 optdata.dtsda_probe = data;
1888 optdata.dtsda_option = option;
1889 optdata.dtsda_handle = dtp;
1890
1891 if ((rval = dt_handle_setopt(dtp, &optdata)) != 0)
1892 return (rval);
1893
1894 return (0);
1895 }
1896
1897 errstr = dtrace_errmsg(dtp, dtrace_errno(dtp));
1898 len = strlen(option) + strlen(value) + strlen(errstr) + 80;
1899 msg = alloca(len);
1900
1901 (void) snprintf(msg, len, "couldn't set option \"%s\" to \"%s\": %s\n",
1902 option, value, errstr);
1903
1904 if ((rval = dt_handle_liberr(dtp, data, msg)) == 0)
1905 return (0);
1906
1907 return (rval);
1908}
1909
1910static int
1911dt_consume_cpu(dtrace_hdl_t *dtp, FILE *fp, int cpu, dtrace_bufdesc_t *buf,
1912 dtrace_consume_probe_f *efunc, dtrace_consume_rec_f *rfunc, void *arg)
1913{
1914 dtrace_epid_t id;
1915 size_t offs, start = buf->dtbd_oldest, end = buf->dtbd_size;
1916 int flow = (dtp->dt_options[DTRACEOPT_FLOWINDENT] != DTRACEOPT_UNSET);
1917 int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
1918 int rval, i, n;
1919 dtrace_epid_t last = DTRACE_EPIDNONE;
1920 dtrace_probedata_t data;
1921 uint64_t drops;
1922 caddr_t addr;
1923
1924 bzero(&data, sizeof (data));
1925 data.dtpda_handle = dtp;
1926 data.dtpda_cpu = cpu;
1927
1928again:
1929 for (offs = start; offs < end; ) {
1930 dtrace_eprobedesc_t *epd;
1931
1932 /*
1933 * We're guaranteed to have an ID.
1934 */
1935 id = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
1936
1937 if (id == DTRACE_EPIDNONE) {
1938 /*
1939 * This is filler to assure proper alignment of the
1940 * next record; we simply ignore it.
1941 */
1942 offs += sizeof (id);
1943 continue;
1944 }
1945
1946 if ((rval = dt_epid_lookup(dtp, id, &data.dtpda_edesc,
1947 &data.dtpda_pdesc)) != 0)
1948 return (rval);
1949
1950 epd = data.dtpda_edesc;
1951 data.dtpda_data = buf->dtbd_data + offs;
1952
1953 if (data.dtpda_edesc->dtepd_uarg != DT_ECB_DEFAULT) {
1954 rval = dt_handle(dtp, &data);
1955
1956 if (rval == DTRACE_CONSUME_NEXT)
1957 goto nextepid;
1958
1959 if (rval == DTRACE_CONSUME_ERROR)
1960 return (-1);
1961 }
1962
1963 if (flow)
1964 (void) dt_flowindent(dtp, &data, last, buf, offs);
1965
1966 rval = (*efunc)(&data, arg);
1967
1968 if (flow) {
1969 if (data.dtpda_flow == DTRACEFLOW_ENTRY)
1970 data.dtpda_indent += 2;
1971 }
1972
1973 if (rval == DTRACE_CONSUME_NEXT)
1974 goto nextepid;
1975
1976 if (rval == DTRACE_CONSUME_ABORT)
1977 return (dt_set_errno(dtp, EDT_DIRABORT));
1978
1979 if (rval != DTRACE_CONSUME_THIS)
1980 return (dt_set_errno(dtp, EDT_BADRVAL));
1981
1982 for (i = 0; i < epd->dtepd_nrecs; i++) {
1983 dtrace_recdesc_t *rec = &epd->dtepd_rec[i];
1984 dtrace_actkind_t act = rec->dtrd_action;
1985
1986 data.dtpda_data = buf->dtbd_data + offs +
1987 rec->dtrd_offset;
1988 addr = data.dtpda_data;
1989
1990 if (act == DTRACEACT_LIBACT) {
1991 uint64_t arg = rec->dtrd_arg;
1992 dtrace_aggvarid_t id;
1993
1994 switch (arg) {
1995 case DT_ACT_CLEAR:
1996 /* LINTED - alignment */
1997 id = *((dtrace_aggvarid_t *)addr);
1998 (void) dtrace_aggregate_walk(dtp,
1999 dt_clear_agg, &id);
2000 continue;
2001
2002 case DT_ACT_DENORMALIZE:
2003 /* LINTED - alignment */
2004 id = *((dtrace_aggvarid_t *)addr);
2005 (void) dtrace_aggregate_walk(dtp,
2006 dt_denormalize_agg, &id);
2007 continue;
2008
2009 case DT_ACT_FTRUNCATE:
2010 if (fp == NULL)
2011 continue;
2012
2013 (void) fflush(fp);
2014 (void) ftruncate(fileno(fp), 0);
2015 (void) fseeko(fp, 0, SEEK_SET);
2016 continue;
2017
2018 case DT_ACT_NORMALIZE:
2019 if (i == epd->dtepd_nrecs - 1)
2020 return (dt_set_errno(dtp,
2021 EDT_BADNORMAL));
2022
2023 if (dt_normalize(dtp,
2024 buf->dtbd_data + offs, rec) != 0)
2025 return (-1);
2026
2027 i++;
2028 continue;
2029
2030 case DT_ACT_SETOPT: {
2031 uint64_t *opts = dtp->dt_options;
2032 dtrace_recdesc_t *valrec;
2033 uint32_t valsize;
2034 caddr_t val;
2035 int rv;
2036
2037 if (i == epd->dtepd_nrecs - 1) {
2038 return (dt_set_errno(dtp,
2039 EDT_BADSETOPT));
2040 }
2041
2042 valrec = &epd->dtepd_rec[++i];
2043 valsize = valrec->dtrd_size;
2044
2045 if (valrec->dtrd_action != act ||
2046 valrec->dtrd_arg != arg) {
2047 return (dt_set_errno(dtp,
2048 EDT_BADSETOPT));
2049 }
2050
2051 if (valsize > sizeof (uint64_t)) {
2052 val = buf->dtbd_data + offs +
2053 valrec->dtrd_offset;
2054 } else {
2055 val = "1";
2056 }
2057
2058 rv = dt_setopt(dtp, &data, addr, val);
2059
2060 if (rv != 0)
2061 return (-1);
2062
2063 flow = (opts[DTRACEOPT_FLOWINDENT] !=
2064 DTRACEOPT_UNSET);
2065 quiet = (opts[DTRACEOPT_QUIET] !=
2066 DTRACEOPT_UNSET);
2067
2068 continue;
2069 }
2070
2071 case DT_ACT_TRUNC:
2072 if (i == epd->dtepd_nrecs - 1)
2073 return (dt_set_errno(dtp,
2074 EDT_BADTRUNC));
2075
2076 if (dt_trunc(dtp,
2077 buf->dtbd_data + offs, rec) != 0)
2078 return (-1);
2079
2080 i++;
2081 continue;
2082
2083 default:
2084 continue;
2085 }
2086 }
2087
2088 rval = (*rfunc)(&data, rec, arg);
2089
2090 if (rval == DTRACE_CONSUME_NEXT)
2091 continue;
2092
2093 if (rval == DTRACE_CONSUME_ABORT)
2094 return (dt_set_errno(dtp, EDT_DIRABORT));
2095
2096 if (rval != DTRACE_CONSUME_THIS)
2097 return (dt_set_errno(dtp, EDT_BADRVAL));
2098
2099 if (act == DTRACEACT_STACK) {
2100 int depth = rec->dtrd_arg;
2101
2102 if (dt_print_stack(dtp, fp, NULL, addr, depth,
2103 rec->dtrd_size / depth) < 0)
2104 return (-1);
2105 goto nextrec;
2106 }
2107
2108 if (act == DTRACEACT_USTACK ||
2109 act == DTRACEACT_JSTACK) {
2110 if (dt_print_ustack(dtp, fp, NULL,
2111 addr, rec->dtrd_arg) < 0)
2112 return (-1);
2113 goto nextrec;
2114 }
2115
2116 if (act == DTRACEACT_SYM) {
2117 if (dt_print_sym(dtp, fp, NULL, addr) < 0)
2118 return (-1);
2119 goto nextrec;
2120 }
2121
2122 if (act == DTRACEACT_MOD) {
2123 if (dt_print_mod(dtp, fp, NULL, addr) < 0)
2124 return (-1);
2125 goto nextrec;
2126 }
2127
2128 if (act == DTRACEACT_USYM || act == DTRACEACT_UADDR) {
2129 if (dt_print_usym(dtp, fp, addr, act) < 0)
2130 return (-1);
2131 goto nextrec;
2132 }
2133
2134 if (act == DTRACEACT_UMOD) {
2135 if (dt_print_umod(dtp, fp, NULL, addr) < 0)
2136 return (-1);
2137 goto nextrec;
2138 }
2139
2140 if (act == DTRACEACT_PRINTM) {
2141 if (dt_print_memory(dtp, fp, addr) < 0)
2142 return (-1);
2143 goto nextrec;
2144 }
2145
2146 if (act == DTRACEACT_PRINTT) {
2147 if (dt_print_type(dtp, fp, addr) < 0)
2148 return (-1);
2149 goto nextrec;
2150 }
2151
2152 if (DTRACEACT_ISPRINTFLIKE(act)) {
2153 void *fmtdata;
2154 int (*func)(dtrace_hdl_t *, FILE *, void *,
2155 const dtrace_probedata_t *,
2156 const dtrace_recdesc_t *, uint_t,
2157 const void *buf, size_t);
2158
2159 if ((fmtdata = dt_format_lookup(dtp,
2160 rec->dtrd_format)) == NULL)
2161 goto nofmt;
2162
2163 switch (act) {
2164 case DTRACEACT_PRINTF:
2165 func = dtrace_fprintf;
2166 break;
2167 case DTRACEACT_PRINTA:
2168 func = dtrace_fprinta;
2169 break;
2170 case DTRACEACT_SYSTEM:
2171 func = dtrace_system;
2172 break;
2173 case DTRACEACT_FREOPEN:
2174 func = dtrace_freopen;
2175 break;
2176 }
2177
2178 n = (*func)(dtp, fp, fmtdata, &data,
2179 rec, epd->dtepd_nrecs - i,
2180 (uchar_t *)buf->dtbd_data + offs,
2181 buf->dtbd_size - offs);
2182
2183 if (n < 0)
2184 return (-1); /* errno is set for us */
2185
2186 if (n > 0)
2187 i += n - 1;
2188 goto nextrec;
2189 }
2190
2191nofmt:
2192 if (act == DTRACEACT_PRINTA) {
2193 dt_print_aggdata_t pd;
2194 dtrace_aggvarid_t *aggvars;
2195 int j, naggvars = 0;
2196 size_t size = ((epd->dtepd_nrecs - i) *
2197 sizeof (dtrace_aggvarid_t));
2198
2199 if ((aggvars = dt_alloc(dtp, size)) == NULL)
2200 return (-1);
2201
2202 /*
2203 * This might be a printa() with multiple
2204 * aggregation variables. We need to scan
2205 * forward through the records until we find
2206 * a record from a different statement.
2207 */
2208 for (j = i; j < epd->dtepd_nrecs; j++) {
2209 dtrace_recdesc_t *nrec;
2210 caddr_t naddr;
2211
2212 nrec = &epd->dtepd_rec[j];
2213
2214 if (nrec->dtrd_uarg != rec->dtrd_uarg)
2215 break;
2216
2217 if (nrec->dtrd_action != act) {
2218 return (dt_set_errno(dtp,
2219 EDT_BADAGG));
2220 }
2221
2222 naddr = buf->dtbd_data + offs +
2223 nrec->dtrd_offset;
2224
2225 aggvars[naggvars++] =
2226 /* LINTED - alignment */
2227 *((dtrace_aggvarid_t *)naddr);
2228 }
2229
2230 i = j - 1;
2231 bzero(&pd, sizeof (pd));
2232 pd.dtpa_dtp = dtp;
2233 pd.dtpa_fp = fp;
2234
2235 assert(naggvars >= 1);
2236
2237 if (naggvars == 1) {
2238 pd.dtpa_id = aggvars[0];
2239 dt_free(dtp, aggvars);
2240
2241 if (dt_printf(dtp, fp, "\n") < 0 ||
2242 dtrace_aggregate_walk_sorted(dtp,
2243 dt_print_agg, &pd) < 0)
2244 return (-1);
2245 goto nextrec;
2246 }
2247
2248 if (dt_printf(dtp, fp, "\n") < 0 ||
2249 dtrace_aggregate_walk_joined(dtp, aggvars,
2250 naggvars, dt_print_aggs, &pd) < 0) {
2251 dt_free(dtp, aggvars);
2252 return (-1);
2253 }
2254
2255 dt_free(dtp, aggvars);
2256 goto nextrec;
2257 }
2258
2259 switch (rec->dtrd_size) {
2260 case sizeof (uint64_t):
2261 n = dt_printf(dtp, fp,
2262 quiet ? "%lld" : " %16lld",
2263 /* LINTED - alignment */
2264 *((unsigned long long *)addr));
2265 break;
2266 case sizeof (uint32_t):
2267 n = dt_printf(dtp, fp, quiet ? "%d" : " %8d",
2268 /* LINTED - alignment */
2269 *((uint32_t *)addr));
2270 break;
2271 case sizeof (uint16_t):
2272 n = dt_printf(dtp, fp, quiet ? "%d" : " %5d",
2273 /* LINTED - alignment */
2274 *((uint16_t *)addr));
2275 break;
2276 case sizeof (uint8_t):
2277 n = dt_printf(dtp, fp, quiet ? "%d" : " %3d",
2278 *((uint8_t *)addr));
2279 break;
2280 default:
2281 n = dt_print_bytes(dtp, fp, addr,
2282 rec->dtrd_size, 33, quiet, 0);
2283 break;
2284 }
2285
2286 if (n < 0)
2287 return (-1); /* errno is set for us */
2288
2289nextrec:
2290 if (dt_buffered_flush(dtp, &data, rec, NULL, 0) < 0)
2291 return (-1); /* errno is set for us */
2292 }
2293
2294 /*
2295 * Call the record callback with a NULL record to indicate
2296 * that we're done processing this EPID.
2297 */
2298 rval = (*rfunc)(&data, NULL, arg);
2299nextepid:
2300 offs += epd->dtepd_size;
2301 last = id;
2302 }
2303
2304 if (buf->dtbd_oldest != 0 && start == buf->dtbd_oldest) {
2305 end = buf->dtbd_oldest;
2306 start = 0;
2307 goto again;
2308 }
2309
2310 if ((drops = buf->dtbd_drops) == 0)
2311 return (0);
2312
2313 /*
2314 * Explicitly zero the drops to prevent us from processing them again.
2315 */
2316 buf->dtbd_drops = 0;
2317
2318 return (dt_handle_cpudrop(dtp, cpu, DTRACEDROP_PRINCIPAL, drops));
2319}
2320
2321typedef struct dt_begin {
2322 dtrace_consume_probe_f *dtbgn_probefunc;
2323 dtrace_consume_rec_f *dtbgn_recfunc;
2324 void *dtbgn_arg;
2325 dtrace_handle_err_f *dtbgn_errhdlr;
2326 void *dtbgn_errarg;
2327 int dtbgn_beginonly;
2328} dt_begin_t;
2329
2330static int
2331dt_consume_begin_probe(const dtrace_probedata_t *data, void *arg)
2332{
2333 dt_begin_t *begin = (dt_begin_t *)arg;
2334 dtrace_probedesc_t *pd = data->dtpda_pdesc;
2335
2336 int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
2337 int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
2338
2339 if (begin->dtbgn_beginonly) {
2340 if (!(r1 && r2))
2341 return (DTRACE_CONSUME_NEXT);
2342 } else {
2343 if (r1 && r2)
2344 return (DTRACE_CONSUME_NEXT);
2345 }
2346
2347 /*
2348 * We have a record that we're interested in. Now call the underlying
2349 * probe function...
2350 */
2351 return (begin->dtbgn_probefunc(data, begin->dtbgn_arg));
2352}
2353
2354static int
2355dt_consume_begin_record(const dtrace_probedata_t *data,
2356 const dtrace_recdesc_t *rec, void *arg)
2357{
2358 dt_begin_t *begin = (dt_begin_t *)arg;
2359
2360 return (begin->dtbgn_recfunc(data, rec, begin->dtbgn_arg));
2361}
2362
2363static int
2364dt_consume_begin_error(const dtrace_errdata_t *data, void *arg)
2365{
2366 dt_begin_t *begin = (dt_begin_t *)arg;
2367 dtrace_probedesc_t *pd = data->dteda_pdesc;
2368
2369 int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
2370 int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
2371
2372 if (begin->dtbgn_beginonly) {
2373 if (!(r1 && r2))
2374 return (DTRACE_HANDLE_OK);
2375 } else {
2376 if (r1 && r2)
2377 return (DTRACE_HANDLE_OK);
2378 }
2379
2380 return (begin->dtbgn_errhdlr(data, begin->dtbgn_errarg));
2381}
2382
2383static int
2384dt_consume_begin(dtrace_hdl_t *dtp, FILE *fp, dtrace_bufdesc_t *buf,
2385 dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
2386{
2387 /*
2388 * There's this idea that the BEGIN probe should be processed before
2389 * everything else, and that the END probe should be processed after
2390 * anything else. In the common case, this is pretty easy to deal
2391 * with. However, a situation may arise where the BEGIN enabling and
2392 * END enabling are on the same CPU, and some enabling in the middle
2393 * occurred on a different CPU. To deal with this (blech!) we need to
2394 * consume the BEGIN buffer up until the end of the BEGIN probe, and
2395 * then set it aside. We will then process every other CPU, and then
2396 * we'll return to the BEGIN CPU and process the rest of the data
2397 * (which will inevitably include the END probe, if any). Making this
2398 * even more complicated (!) is the library's ERROR enabling. Because
2399 * this enabling is processed before we even get into the consume call
2400 * back, any ERROR firing would result in the library's ERROR enabling
2401 * being processed twice -- once in our first pass (for BEGIN probes),
2402 * and again in our second pass (for everything but BEGIN probes). To
2403 * deal with this, we interpose on the ERROR handler to assure that we
2404 * only process ERROR enablings induced by BEGIN enablings in the
2405 * first pass, and that we only process ERROR enablings _not_ induced
2406 * by BEGIN enablings in the second pass.
2407 */
2408 dt_begin_t begin;
2409 processorid_t cpu = dtp->dt_beganon;
2410 dtrace_bufdesc_t nbuf;
2411#if !defined(sun)
2412 dtrace_bufdesc_t *pbuf;
2413#endif
2414 int rval, i;
2415 static int max_ncpus;
2416 dtrace_optval_t size;
2417
2418 dtp->dt_beganon = -1;
2419
2420#if defined(sun)
2421 if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2422#else
2423 if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &buf) == -1) {
2424#endif
2425 /*
2426 * We really don't expect this to fail, but it is at least
2427 * technically possible for this to fail with ENOENT. In this
2428 * case, we just drive on...
2429 */
2430 if (errno == ENOENT)
2431 return (0);
2432
2433 return (dt_set_errno(dtp, errno));
2434 }
2435
2436 if (!dtp->dt_stopped || buf->dtbd_cpu != dtp->dt_endedon) {
2437 /*
2438 * This is the simple case. We're either not stopped, or if
2439 * we are, we actually processed any END probes on another
2440 * CPU. We can simply consume this buffer and return.
2441 */
2442 return (dt_consume_cpu(dtp, fp, cpu, buf, pf, rf, arg));
2443 }
2444
2445 begin.dtbgn_probefunc = pf;
2446 begin.dtbgn_recfunc = rf;
2447 begin.dtbgn_arg = arg;
2448 begin.dtbgn_beginonly = 1;
2449
2450 /*
2451 * We need to interpose on the ERROR handler to be sure that we
2452 * only process ERRORs induced by BEGIN.
2453 */
2454 begin.dtbgn_errhdlr = dtp->dt_errhdlr;
2455 begin.dtbgn_errarg = dtp->dt_errarg;
2456 dtp->dt_errhdlr = dt_consume_begin_error;
2457 dtp->dt_errarg = &begin;
2458
2459 rval = dt_consume_cpu(dtp, fp, cpu, buf, dt_consume_begin_probe,
2460 dt_consume_begin_record, &begin);
2461
2462 dtp->dt_errhdlr = begin.dtbgn_errhdlr;
2463 dtp->dt_errarg = begin.dtbgn_errarg;
2464
2465 if (rval != 0)
2466 return (rval);
2467
2468 /*
2469 * Now allocate a new buffer. We'll use this to deal with every other
2470 * CPU.
2471 */
2472 bzero(&nbuf, sizeof (dtrace_bufdesc_t));
2473 (void) dtrace_getopt(dtp, "bufsize", &size);
2474 if ((nbuf.dtbd_data = malloc(size)) == NULL)
2475 return (dt_set_errno(dtp, EDT_NOMEM));
2476
2477 if (max_ncpus == 0)
2478 max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
2479
2480 for (i = 0; i < max_ncpus; i++) {
2481 nbuf.dtbd_cpu = i;
2482
2483 if (i == cpu)
2484 continue;
2485
2486#if defined(sun)
2487 if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &nbuf) == -1) {
2488#else
2489 pbuf = &nbuf;
2490 if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &pbuf) == -1) {
2491#endif
2492 /*
2493 * If we failed with ENOENT, it may be because the
2494 * CPU was unconfigured -- this is okay. Any other
2495 * error, however, is unexpected.
2496 */
2497 if (errno == ENOENT)
2498 continue;
2499
2500 free(nbuf.dtbd_data);
2501
2502 return (dt_set_errno(dtp, errno));
2503 }
2504
2505 if ((rval = dt_consume_cpu(dtp, fp,
2506 i, &nbuf, pf, rf, arg)) != 0) {
2507 free(nbuf.dtbd_data);
2508 return (rval);
2509 }
2510 }
2511
2512 free(nbuf.dtbd_data);
2513
2514 /*
2515 * Okay -- we're done with the other buffers. Now we want to
2516 * reconsume the first buffer -- but this time we're looking for
2517 * everything _but_ BEGIN. And of course, in order to only consume
2518 * those ERRORs _not_ associated with BEGIN, we need to reinstall our
2519 * ERROR interposition function...
2520 */
2521 begin.dtbgn_beginonly = 0;
2522
2523 assert(begin.dtbgn_errhdlr == dtp->dt_errhdlr);
2524 assert(begin.dtbgn_errarg == dtp->dt_errarg);
2525 dtp->dt_errhdlr = dt_consume_begin_error;
2526 dtp->dt_errarg = &begin;
2527
2528 rval = dt_consume_cpu(dtp, fp, cpu, buf, dt_consume_begin_probe,
2529 dt_consume_begin_record, &begin);
2530
2531 dtp->dt_errhdlr = begin.dtbgn_errhdlr;
2532 dtp->dt_errarg = begin.dtbgn_errarg;
2533
2534 return (rval);
2535}
2536
2537int
2538dtrace_consume(dtrace_hdl_t *dtp, FILE *fp,
2539 dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
2540{
2541 dtrace_bufdesc_t *buf = &dtp->dt_buf;
2542 dtrace_optval_t size;
2543 static int max_ncpus;
2544 int i, rval;
2545 dtrace_optval_t interval = dtp->dt_options[DTRACEOPT_SWITCHRATE];
2546 hrtime_t now = gethrtime();
2547
2548 if (dtp->dt_lastswitch != 0) {
2549 if (now - dtp->dt_lastswitch < interval)
2550 return (0);
2551
2552 dtp->dt_lastswitch += interval;
2553 } else {
2554 dtp->dt_lastswitch = now;
2555 }
2556
2557 if (!dtp->dt_active)
2558 return (dt_set_errno(dtp, EINVAL));
2559
2560 if (max_ncpus == 0)
2561 max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
2562
2563 if (pf == NULL)
2564 pf = (dtrace_consume_probe_f *)dt_nullprobe;
2565
2566 if (rf == NULL)
2567 rf = (dtrace_consume_rec_f *)dt_nullrec;
2568
2569 if (buf->dtbd_data == NULL) {
2570 (void) dtrace_getopt(dtp, "bufsize", &size);
2571 if ((buf->dtbd_data = malloc(size)) == NULL)
2572 return (dt_set_errno(dtp, EDT_NOMEM));
2573
2574 buf->dtbd_size = size;
2575 }
2576
2577 /*
2578 * If we have just begun, we want to first process the CPU that
2579 * executed the BEGIN probe (if any).
2580 */
2581 if (dtp->dt_active && dtp->dt_beganon != -1) {
2582 buf->dtbd_cpu = dtp->dt_beganon;
2583 if ((rval = dt_consume_begin(dtp, fp, buf, pf, rf, arg)) != 0)
2584 return (rval);
2585 }
2586
2587 for (i = 0; i < max_ncpus; i++) {
2588 buf->dtbd_cpu = i;
2589
2590 /*
2591 * If we have stopped, we want to process the CPU on which the
2592 * END probe was processed only _after_ we have processed
2593 * everything else.
2594 */
2595 if (dtp->dt_stopped && (i == dtp->dt_endedon))
2596 continue;
2597
2598#if defined(sun)
2599 if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2600#else
2601 if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &buf) == -1) {
2602#endif
2603 /*
2604 * If we failed with ENOENT, it may be because the
2605 * CPU was unconfigured -- this is okay. Any other
2606 * error, however, is unexpected.
2607 */
2608 if (errno == ENOENT)
2609 continue;
2610
2611 return (dt_set_errno(dtp, errno));
2612 }
2613
2614 if ((rval = dt_consume_cpu(dtp, fp, i, buf, pf, rf, arg)) != 0)
2615 return (rval);
2616 }
2617
2618 if (!dtp->dt_stopped)
2619 return (0);
2620
2621 buf->dtbd_cpu = dtp->dt_endedon;
2622
2623#if defined(sun)
2624 if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2625#else
2626 if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &buf) == -1) {
2627#endif
2628 /*
2629 * This _really_ shouldn't fail, but it is strictly speaking
2630 * possible for this to return ENOENT if the CPU that called
2631 * the END enabling somehow managed to become unconfigured.
2632 * It's unclear how the user can possibly expect anything
2633 * rational to happen in this case -- the state has been thrown
2634 * out along with the unconfigured CPU -- so we'll just drive
2635 * on...
2636 */
2637 if (errno == ENOENT)
2638 return (0);
2639
2640 return (dt_set_errno(dtp, errno));
2641 }
2642
2643 return (dt_consume_cpu(dtp, fp, dtp->dt_endedon, buf, pf, rf, arg));
2644}