Deleted Added
sdiff udiff text old ( 210767 ) new ( 211554 )
full compact
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#include <stdlib.h>
27#include <strings.h>
28#include <errno.h>
29#include <unistd.h>
30#include <limits.h>
31#include <assert.h>
32#include <ctype.h>
33#if defined(sun)
34#include <alloca.h>
35#endif
36#include <dt_impl.h>
37#if !defined(sun)
38#include <libproc_compat.h>
39#endif
40
41#define DT_MASK_LO 0x00000000FFFFFFFFULL
42
43/*
44 * We declare this here because (1) we need it and (2) we want to avoid a
45 * dependency on libm in libdtrace.
46 */
47static long double
48dt_fabsl(long double x)
49{
50 if (x < 0)
51 return (-x);
52
53 return (x);
54}
55
56/*
57 * 128-bit arithmetic functions needed to support the stddev() aggregating
58 * action.
59 */
60static int
61dt_gt_128(uint64_t *a, uint64_t *b)
62{
63 return (a[1] > b[1] || (a[1] == b[1] && a[0] > b[0]));
64}
65
66static int
67dt_ge_128(uint64_t *a, uint64_t *b)
68{
69 return (a[1] > b[1] || (a[1] == b[1] && a[0] >= b[0]));
70}
71
72static int
73dt_le_128(uint64_t *a, uint64_t *b)
74{
75 return (a[1] < b[1] || (a[1] == b[1] && a[0] <= b[0]));
76}
77
78/*
79 * Shift the 128-bit value in a by b. If b is positive, shift left.
80 * If b is negative, shift right.
81 */
82static void
83dt_shift_128(uint64_t *a, int b)
84{
85 uint64_t mask;
86
87 if (b == 0)
88 return;
89
90 if (b < 0) {
91 b = -b;
92 if (b >= 64) {
93 a[0] = a[1] >> (b - 64);
94 a[1] = 0;
95 } else {
96 a[0] >>= b;
97 mask = 1LL << (64 - b);
98 mask -= 1;
99 a[0] |= ((a[1] & mask) << (64 - b));
100 a[1] >>= b;
101 }
102 } else {
103 if (b >= 64) {
104 a[1] = a[0] << (b - 64);
105 a[0] = 0;
106 } else {
107 a[1] <<= b;
108 mask = a[0] >> (64 - b);
109 a[1] |= mask;
110 a[0] <<= b;
111 }
112 }
113}
114
115static int
116dt_nbits_128(uint64_t *a)
117{
118 int nbits = 0;
119 uint64_t tmp[2];
120 uint64_t zero[2] = { 0, 0 };
121
122 tmp[0] = a[0];
123 tmp[1] = a[1];
124
125 dt_shift_128(tmp, -1);
126 while (dt_gt_128(tmp, zero)) {
127 dt_shift_128(tmp, -1);
128 nbits++;
129 }
130
131 return (nbits);
132}
133
134static void
135dt_subtract_128(uint64_t *minuend, uint64_t *subtrahend, uint64_t *difference)
136{
137 uint64_t result[2];
138
139 result[0] = minuend[0] - subtrahend[0];
140 result[1] = minuend[1] - subtrahend[1] -
141 (minuend[0] < subtrahend[0] ? 1 : 0);
142
143 difference[0] = result[0];
144 difference[1] = result[1];
145}
146
147static void
148dt_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
149{
150 uint64_t result[2];
151
152 result[0] = addend1[0] + addend2[0];
153 result[1] = addend1[1] + addend2[1] +
154 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
155
156 sum[0] = result[0];
157 sum[1] = result[1];
158}
159
160/*
161 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
162 * use native multiplication on those, and then re-combine into the
163 * resulting 128-bit value.
164 *
165 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
166 * hi1 * hi2 << 64 +
167 * hi1 * lo2 << 32 +
168 * hi2 * lo1 << 32 +
169 * lo1 * lo2
170 */
171static void
172dt_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
173{
174 uint64_t hi1, hi2, lo1, lo2;
175 uint64_t tmp[2];
176
177 hi1 = factor1 >> 32;
178 hi2 = factor2 >> 32;
179
180 lo1 = factor1 & DT_MASK_LO;
181 lo2 = factor2 & DT_MASK_LO;
182
183 product[0] = lo1 * lo2;
184 product[1] = hi1 * hi2;
185
186 tmp[0] = hi1 * lo2;
187 tmp[1] = 0;
188 dt_shift_128(tmp, 32);
189 dt_add_128(product, tmp, product);
190
191 tmp[0] = hi2 * lo1;
192 tmp[1] = 0;
193 dt_shift_128(tmp, 32);
194 dt_add_128(product, tmp, product);
195}
196
197/*
198 * This is long-hand division.
199 *
200 * We initialize subtrahend by shifting divisor left as far as possible. We
201 * loop, comparing subtrahend to dividend: if subtrahend is smaller, we
202 * subtract and set the appropriate bit in the result. We then shift
203 * subtrahend right by one bit for the next comparison.
204 */
205static void
206dt_divide_128(uint64_t *dividend, uint64_t divisor, uint64_t *quotient)
207{
208 uint64_t result[2] = { 0, 0 };
209 uint64_t remainder[2];
210 uint64_t subtrahend[2];
211 uint64_t divisor_128[2];
212 uint64_t mask[2] = { 1, 0 };
213 int log = 0;
214
215 assert(divisor != 0);
216
217 divisor_128[0] = divisor;
218 divisor_128[1] = 0;
219
220 remainder[0] = dividend[0];
221 remainder[1] = dividend[1];
222
223 subtrahend[0] = divisor;
224 subtrahend[1] = 0;
225
226 while (divisor > 0) {
227 log++;
228 divisor >>= 1;
229 }
230
231 dt_shift_128(subtrahend, 128 - log);
232 dt_shift_128(mask, 128 - log);
233
234 while (dt_ge_128(remainder, divisor_128)) {
235 if (dt_ge_128(remainder, subtrahend)) {
236 dt_subtract_128(remainder, subtrahend, remainder);
237 result[0] |= mask[0];
238 result[1] |= mask[1];
239 }
240
241 dt_shift_128(subtrahend, -1);
242 dt_shift_128(mask, -1);
243 }
244
245 quotient[0] = result[0];
246 quotient[1] = result[1];
247}
248
249/*
250 * This is the long-hand method of calculating a square root.
251 * The algorithm is as follows:
252 *
253 * 1. Group the digits by 2 from the right.
254 * 2. Over the leftmost group, find the largest single-digit number
255 * whose square is less than that group.
256 * 3. Subtract the result of the previous step (2 or 4, depending) and
257 * bring down the next two-digit group.
258 * 4. For the result R we have so far, find the largest single-digit number
259 * x such that 2 * R * 10 * x + x^2 is less than the result from step 3.
260 * (Note that this is doubling R and performing a decimal left-shift by 1
261 * and searching for the appropriate decimal to fill the one's place.)
262 * The value x is the next digit in the square root.
263 * Repeat steps 3 and 4 until the desired precision is reached. (We're
264 * dealing with integers, so the above is sufficient.)
265 *
266 * In decimal, the square root of 582,734 would be calculated as so:
267 *
268 * __7__6__3
269 * | 58 27 34
270 * -49 (7^2 == 49 => 7 is the first digit in the square root)
271 * --
272 * 9 27 (Subtract and bring down the next group.)
273 * 146 8 76 (2 * 7 * 10 * 6 + 6^2 == 876 => 6 is the next digit in
274 * ----- the square root)
275 * 51 34 (Subtract and bring down the next group.)
276 * 1523 45 69 (2 * 76 * 10 * 3 + 3^2 == 4569 => 3 is the next digit in
277 * ----- the square root)
278 * 5 65 (remainder)
279 *
280 * The above algorithm applies similarly in binary, but note that the
281 * only possible non-zero value for x in step 4 is 1, so step 4 becomes a
282 * simple decision: is 2 * R * 2 * 1 + 1^2 (aka R << 2 + 1) less than the
283 * preceding difference?
284 *
285 * In binary, the square root of 11011011 would be calculated as so:
286 *
287 * __1__1__1__0
288 * | 11 01 10 11
289 * 01 (0 << 2 + 1 == 1 < 11 => this bit is 1)
290 * --
291 * 10 01 10 11
292 * 101 1 01 (1 << 2 + 1 == 101 < 1001 => next bit is 1)
293 * -----
294 * 1 00 10 11
295 * 1101 11 01 (11 << 2 + 1 == 1101 < 10010 => next bit is 1)
296 * -------
297 * 1 01 11
298 * 11101 1 11 01 (111 << 2 + 1 == 11101 > 10111 => last bit is 0)
299 *
300 */
301static uint64_t
302dt_sqrt_128(uint64_t *square)
303{
304 uint64_t result[2] = { 0, 0 };
305 uint64_t diff[2] = { 0, 0 };
306 uint64_t one[2] = { 1, 0 };
307 uint64_t next_pair[2];
308 uint64_t next_try[2];
309 uint64_t bit_pairs, pair_shift;
310 int i;
311
312 bit_pairs = dt_nbits_128(square) / 2;
313 pair_shift = bit_pairs * 2;
314
315 for (i = 0; i <= bit_pairs; i++) {
316 /*
317 * Bring down the next pair of bits.
318 */
319 next_pair[0] = square[0];
320 next_pair[1] = square[1];
321 dt_shift_128(next_pair, -pair_shift);
322 next_pair[0] &= 0x3;
323 next_pair[1] = 0;
324
325 dt_shift_128(diff, 2);
326 dt_add_128(diff, next_pair, diff);
327
328 /*
329 * next_try = R << 2 + 1
330 */
331 next_try[0] = result[0];
332 next_try[1] = result[1];
333 dt_shift_128(next_try, 2);
334 dt_add_128(next_try, one, next_try);
335
336 if (dt_le_128(next_try, diff)) {
337 dt_subtract_128(diff, next_try, diff);
338 dt_shift_128(result, 1);
339 dt_add_128(result, one, result);
340 } else {
341 dt_shift_128(result, 1);
342 }
343
344 pair_shift -= 2;
345 }
346
347 assert(result[1] == 0);
348
349 return (result[0]);
350}
351
352uint64_t
353dt_stddev(uint64_t *data, uint64_t normal)
354{
355 uint64_t avg_of_squares[2];
356 uint64_t square_of_avg[2];
357 int64_t norm_avg;
358 uint64_t diff[2];
359
360 /*
361 * The standard approximation for standard deviation is
362 * sqrt(average(x**2) - average(x)**2), i.e. the square root
363 * of the average of the squares minus the square of the average.
364 */
365 dt_divide_128(data + 2, normal, avg_of_squares);
366 dt_divide_128(avg_of_squares, data[0], avg_of_squares);
367
368 norm_avg = (int64_t)data[1] / (int64_t)normal / (int64_t)data[0];
369
370 if (norm_avg < 0)
371 norm_avg = -norm_avg;
372
373 dt_multiply_128((uint64_t)norm_avg, (uint64_t)norm_avg, square_of_avg);
374
375 dt_subtract_128(avg_of_squares, square_of_avg, diff);
376
377 return (dt_sqrt_128(diff));
378}
379
380static int
381dt_flowindent(dtrace_hdl_t *dtp, dtrace_probedata_t *data, dtrace_epid_t last,
382 dtrace_bufdesc_t *buf, size_t offs)
383{
384 dtrace_probedesc_t *pd = data->dtpda_pdesc, *npd;
385 dtrace_eprobedesc_t *epd = data->dtpda_edesc, *nepd;
386 char *p = pd->dtpd_provider, *n = pd->dtpd_name, *sub;
387 dtrace_flowkind_t flow = DTRACEFLOW_NONE;
388 const char *str = NULL;
389 static const char *e_str[2] = { " -> ", " => " };
390 static const char *r_str[2] = { " <- ", " <= " };
391 static const char *ent = "entry", *ret = "return";
392 static int entlen = 0, retlen = 0;
393 dtrace_epid_t next, id = epd->dtepd_epid;
394 int rval;
395
396 if (entlen == 0) {
397 assert(retlen == 0);
398 entlen = strlen(ent);
399 retlen = strlen(ret);
400 }
401
402 /*
403 * If the name of the probe is "entry" or ends with "-entry", we
404 * treat it as an entry; if it is "return" or ends with "-return",
405 * we treat it as a return. (This allows application-provided probes
406 * like "method-entry" or "function-entry" to participate in flow
407 * indentation -- without accidentally misinterpreting popular probe
408 * names like "carpentry", "gentry" or "Coventry".)
409 */
410 if ((sub = strstr(n, ent)) != NULL && sub[entlen] == '\0' &&
411 (sub == n || sub[-1] == '-')) {
412 flow = DTRACEFLOW_ENTRY;
413 str = e_str[strcmp(p, "syscall") == 0];
414 } else if ((sub = strstr(n, ret)) != NULL && sub[retlen] == '\0' &&
415 (sub == n || sub[-1] == '-')) {
416 flow = DTRACEFLOW_RETURN;
417 str = r_str[strcmp(p, "syscall") == 0];
418 }
419
420 /*
421 * If we're going to indent this, we need to check the ID of our last
422 * call. If we're looking at the same probe ID but a different EPID,
423 * we _don't_ want to indent. (Yes, there are some minor holes in
424 * this scheme -- it's a heuristic.)
425 */
426 if (flow == DTRACEFLOW_ENTRY) {
427 if ((last != DTRACE_EPIDNONE && id != last &&
428 pd->dtpd_id == dtp->dt_pdesc[last]->dtpd_id))
429 flow = DTRACEFLOW_NONE;
430 }
431
432 /*
433 * If we're going to unindent this, it's more difficult to see if
434 * we don't actually want to unindent it -- we need to look at the
435 * _next_ EPID.
436 */
437 if (flow == DTRACEFLOW_RETURN) {
438 offs += epd->dtepd_size;
439
440 do {
441 if (offs >= buf->dtbd_size) {
442 /*
443 * We're at the end -- maybe. If the oldest
444 * record is non-zero, we need to wrap.
445 */
446 if (buf->dtbd_oldest != 0) {
447 offs = 0;
448 } else {
449 goto out;
450 }
451 }
452
453 next = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
454
455 if (next == DTRACE_EPIDNONE)
456 offs += sizeof (id);
457 } while (next == DTRACE_EPIDNONE);
458
459 if ((rval = dt_epid_lookup(dtp, next, &nepd, &npd)) != 0)
460 return (rval);
461
462 if (next != id && npd->dtpd_id == pd->dtpd_id)
463 flow = DTRACEFLOW_NONE;
464 }
465
466out:
467 if (flow == DTRACEFLOW_ENTRY || flow == DTRACEFLOW_RETURN) {
468 data->dtpda_prefix = str;
469 } else {
470 data->dtpda_prefix = "| ";
471 }
472
473 if (flow == DTRACEFLOW_RETURN && data->dtpda_indent > 0)
474 data->dtpda_indent -= 2;
475
476 data->dtpda_flow = flow;
477
478 return (0);
479}
480
481static int
482dt_nullprobe()
483{
484 return (DTRACE_CONSUME_THIS);
485}
486
487static int
488dt_nullrec()
489{
490 return (DTRACE_CONSUME_NEXT);
491}
492
493int
494dt_print_quantline(dtrace_hdl_t *dtp, FILE *fp, int64_t val,
495 uint64_t normal, long double total, char positives, char negatives)
496{
497 long double f;
498 uint_t depth, len = 40;
499
500 const char *ats = "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@";
501 const char *spaces = " ";
502
503 assert(strlen(ats) == len && strlen(spaces) == len);
504 assert(!(total == 0 && (positives || negatives)));
505 assert(!(val < 0 && !negatives));
506 assert(!(val > 0 && !positives));
507 assert(!(val != 0 && total == 0));
508
509 if (!negatives) {
510 if (positives) {
511 f = (dt_fabsl((long double)val) * len) / total;
512 depth = (uint_t)(f + 0.5);
513 } else {
514 depth = 0;
515 }
516
517 return (dt_printf(dtp, fp, "|%s%s %-9lld\n", ats + len - depth,
518 spaces + depth, (long long)val / normal));
519 }
520
521 if (!positives) {
522 f = (dt_fabsl((long double)val) * len) / total;
523 depth = (uint_t)(f + 0.5);
524
525 return (dt_printf(dtp, fp, "%s%s| %-9lld\n", spaces + depth,
526 ats + len - depth, (long long)val / normal));
527 }
528
529 /*
530 * If we're here, we have both positive and negative bucket values.
531 * To express this graphically, we're going to generate both positive
532 * and negative bars separated by a centerline. These bars are half
533 * the size of normal quantize()/lquantize() bars, so we divide the
534 * length in half before calculating the bar length.
535 */
536 len /= 2;
537 ats = &ats[len];
538 spaces = &spaces[len];
539
540 f = (dt_fabsl((long double)val) * len) / total;
541 depth = (uint_t)(f + 0.5);
542
543 if (val <= 0) {
544 return (dt_printf(dtp, fp, "%s%s|%*s %-9lld\n", spaces + depth,
545 ats + len - depth, len, "", (long long)val / normal));
546 } else {
547 return (dt_printf(dtp, fp, "%20s|%s%s %-9lld\n", "",
548 ats + len - depth, spaces + depth,
549 (long long)val / normal));
550 }
551}
552
553int
554dt_print_quantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
555 size_t size, uint64_t normal)
556{
557 const int64_t *data = addr;
558 int i, first_bin = 0, last_bin = DTRACE_QUANTIZE_NBUCKETS - 1;
559 long double total = 0;
560 char positives = 0, negatives = 0;
561
562 if (size != DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t))
563 return (dt_set_errno(dtp, EDT_DMISMATCH));
564
565 while (first_bin < DTRACE_QUANTIZE_NBUCKETS - 1 && data[first_bin] == 0)
566 first_bin++;
567
568 if (first_bin == DTRACE_QUANTIZE_NBUCKETS - 1) {
569 /*
570 * There isn't any data. This is possible if (and only if)
571 * negative increment values have been used. In this case,
572 * we'll print the buckets around 0.
573 */
574 first_bin = DTRACE_QUANTIZE_ZEROBUCKET - 1;
575 last_bin = DTRACE_QUANTIZE_ZEROBUCKET + 1;
576 } else {
577 if (first_bin > 0)
578 first_bin--;
579
580 while (last_bin > 0 && data[last_bin] == 0)
581 last_bin--;
582
583 if (last_bin < DTRACE_QUANTIZE_NBUCKETS - 1)
584 last_bin++;
585 }
586
587 for (i = first_bin; i <= last_bin; i++) {
588 positives |= (data[i] > 0);
589 negatives |= (data[i] < 0);
590 total += dt_fabsl((long double)data[i]);
591 }
592
593 if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
594 "------------- Distribution -------------", "count") < 0)
595 return (-1);
596
597 for (i = first_bin; i <= last_bin; i++) {
598 if (dt_printf(dtp, fp, "%16lld ",
599 (long long)DTRACE_QUANTIZE_BUCKETVAL(i)) < 0)
600 return (-1);
601
602 if (dt_print_quantline(dtp, fp, data[i], normal, total,
603 positives, negatives) < 0)
604 return (-1);
605 }
606
607 return (0);
608}
609
610int
611dt_print_lquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
612 size_t size, uint64_t normal)
613{
614 const int64_t *data = addr;
615 int i, first_bin, last_bin, base;
616 uint64_t arg;
617 long double total = 0;
618 uint16_t step, levels;
619 char positives = 0, negatives = 0;
620
621 if (size < sizeof (uint64_t))
622 return (dt_set_errno(dtp, EDT_DMISMATCH));
623
624 arg = *data++;
625 size -= sizeof (uint64_t);
626
627 base = DTRACE_LQUANTIZE_BASE(arg);
628 step = DTRACE_LQUANTIZE_STEP(arg);
629 levels = DTRACE_LQUANTIZE_LEVELS(arg);
630
631 first_bin = 0;
632 last_bin = levels + 1;
633
634 if (size != sizeof (uint64_t) * (levels + 2))
635 return (dt_set_errno(dtp, EDT_DMISMATCH));
636
637 while (first_bin <= levels + 1 && data[first_bin] == 0)
638 first_bin++;
639
640 if (first_bin > levels + 1) {
641 first_bin = 0;
642 last_bin = 2;
643 } else {
644 if (first_bin > 0)
645 first_bin--;
646
647 while (last_bin > 0 && data[last_bin] == 0)
648 last_bin--;
649
650 if (last_bin < levels + 1)
651 last_bin++;
652 }
653
654 for (i = first_bin; i <= last_bin; i++) {
655 positives |= (data[i] > 0);
656 negatives |= (data[i] < 0);
657 total += dt_fabsl((long double)data[i]);
658 }
659
660 if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
661 "------------- Distribution -------------", "count") < 0)
662 return (-1);
663
664 for (i = first_bin; i <= last_bin; i++) {
665 char c[32];
666 int err;
667
668 if (i == 0) {
669 (void) snprintf(c, sizeof (c), "< %d",
670 base / (uint32_t)normal);
671 err = dt_printf(dtp, fp, "%16s ", c);
672 } else if (i == levels + 1) {
673 (void) snprintf(c, sizeof (c), ">= %d",
674 base + (levels * step));
675 err = dt_printf(dtp, fp, "%16s ", c);
676 } else {
677 err = dt_printf(dtp, fp, "%16d ",
678 base + (i - 1) * step);
679 }
680
681 if (err < 0 || dt_print_quantline(dtp, fp, data[i], normal,
682 total, positives, negatives) < 0)
683 return (-1);
684 }
685
686 return (0);
687}
688
689/*ARGSUSED*/
690static int
691dt_print_average(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
692 size_t size, uint64_t normal)
693{
694 /* LINTED - alignment */
695 int64_t *data = (int64_t *)addr;
696
697 return (dt_printf(dtp, fp, " %16lld", data[0] ?
698 (long long)(data[1] / (int64_t)normal / data[0]) : 0));
699}
700
701/*ARGSUSED*/
702static int
703dt_print_stddev(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
704 size_t size, uint64_t normal)
705{
706 /* LINTED - alignment */
707 uint64_t *data = (uint64_t *)addr;
708
709 return (dt_printf(dtp, fp, " %16llu", data[0] ?
710 (unsigned long long) dt_stddev(data, normal) : 0));
711}
712
713/*ARGSUSED*/
714int
715dt_print_bytes(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
716 size_t nbytes, int width, int quiet, int raw)
717{
718 /*
719 * If the byte stream is a series of printable characters, followed by
720 * a terminating byte, we print it out as a string. Otherwise, we
721 * assume that it's something else and just print the bytes.
722 */
723 int i, j, margin = 5;
724 char *c = (char *)addr;
725
726 if (nbytes == 0)
727 return (0);
728
729 if (raw || dtp->dt_options[DTRACEOPT_RAWBYTES] != DTRACEOPT_UNSET)
730 goto raw;
731
732 for (i = 0; i < nbytes; i++) {
733 /*
734 * We define a "printable character" to be one for which
735 * isprint(3C) returns non-zero, isspace(3C) returns non-zero,
736 * or a character which is either backspace or the bell.
737 * Backspace and the bell are regrettably special because
738 * they fail the first two tests -- and yet they are entirely
739 * printable. These are the only two control characters that
740 * have meaning for the terminal and for which isprint(3C) and
741 * isspace(3C) return 0.
742 */
743 if (isprint(c[i]) || isspace(c[i]) ||
744 c[i] == '\b' || c[i] == '\a')
745 continue;
746
747 if (c[i] == '\0' && i > 0) {
748 /*
749 * This looks like it might be a string. Before we
750 * assume that it is indeed a string, check the
751 * remainder of the byte range; if it contains
752 * additional non-nul characters, we'll assume that
753 * it's a binary stream that just happens to look like
754 * a string, and we'll print out the individual bytes.
755 */
756 for (j = i + 1; j < nbytes; j++) {
757 if (c[j] != '\0')
758 break;
759 }
760
761 if (j != nbytes)
762 break;
763
764 if (quiet)
765 return (dt_printf(dtp, fp, "%s", c));
766 else
767 return (dt_printf(dtp, fp, " %-*s", width, c));
768 }
769
770 break;
771 }
772
773 if (i == nbytes) {
774 /*
775 * The byte range is all printable characters, but there is
776 * no trailing nul byte. We'll assume that it's a string and
777 * print it as such.
778 */
779 char *s = alloca(nbytes + 1);
780 bcopy(c, s, nbytes);
781 s[nbytes] = '\0';
782 return (dt_printf(dtp, fp, " %-*s", width, s));
783 }
784
785raw:
786 if (dt_printf(dtp, fp, "\n%*s ", margin, "") < 0)
787 return (-1);
788
789 for (i = 0; i < 16; i++)
790 if (dt_printf(dtp, fp, " %c", "0123456789abcdef"[i]) < 0)
791 return (-1);
792
793 if (dt_printf(dtp, fp, " 0123456789abcdef\n") < 0)
794 return (-1);
795
796
797 for (i = 0; i < nbytes; i += 16) {
798 if (dt_printf(dtp, fp, "%*s%5x:", margin, "", i) < 0)
799 return (-1);
800
801 for (j = i; j < i + 16 && j < nbytes; j++) {
802 if (dt_printf(dtp, fp, " %02x", (uchar_t)c[j]) < 0)
803 return (-1);
804 }
805
806 while (j++ % 16) {
807 if (dt_printf(dtp, fp, " ") < 0)
808 return (-1);
809 }
810
811 if (dt_printf(dtp, fp, " ") < 0)
812 return (-1);
813
814 for (j = i; j < i + 16 && j < nbytes; j++) {
815 if (dt_printf(dtp, fp, "%c",
816 c[j] < ' ' || c[j] > '~' ? '.' : c[j]) < 0)
817 return (-1);
818 }
819
820 if (dt_printf(dtp, fp, "\n") < 0)
821 return (-1);
822 }
823
824 return (0);
825}
826
827int
828dt_print_stack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
829 caddr_t addr, int depth, int size)
830{
831 dtrace_syminfo_t dts;
832 GElf_Sym sym;
833 int i, indent;
834 char c[PATH_MAX * 2];
835 uint64_t pc;
836
837 if (dt_printf(dtp, fp, "\n") < 0)
838 return (-1);
839
840 if (format == NULL)
841 format = "%s";
842
843 if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
844 indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
845 else
846 indent = _dtrace_stkindent;
847
848 for (i = 0; i < depth; i++) {
849 switch (size) {
850 case sizeof (uint32_t):
851 /* LINTED - alignment */
852 pc = *((uint32_t *)addr);
853 break;
854
855 case sizeof (uint64_t):
856 /* LINTED - alignment */
857 pc = *((uint64_t *)addr);
858 break;
859
860 default:
861 return (dt_set_errno(dtp, EDT_BADSTACKPC));
862 }
863
864 if (pc == 0)
865 break;
866
867 addr += size;
868
869 if (dt_printf(dtp, fp, "%*s", indent, "") < 0)
870 return (-1);
871
872 if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
873 if (pc > sym.st_value) {
874 (void) snprintf(c, sizeof (c), "%s`%s+0x%llx",
875 dts.dts_object, dts.dts_name,
876 pc - sym.st_value);
877 } else {
878 (void) snprintf(c, sizeof (c), "%s`%s",
879 dts.dts_object, dts.dts_name);
880 }
881 } else {
882 /*
883 * We'll repeat the lookup, but this time we'll specify
884 * a NULL GElf_Sym -- indicating that we're only
885 * interested in the containing module.
886 */
887 if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
888 (void) snprintf(c, sizeof (c), "%s`0x%llx",
889 dts.dts_object, pc);
890 } else {
891 (void) snprintf(c, sizeof (c), "0x%llx", pc);
892 }
893 }
894
895 if (dt_printf(dtp, fp, format, c) < 0)
896 return (-1);
897
898 if (dt_printf(dtp, fp, "\n") < 0)
899 return (-1);
900 }
901
902 return (0);
903}
904
905int
906dt_print_ustack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
907 caddr_t addr, uint64_t arg)
908{
909 /* LINTED - alignment */
910 uint64_t *pc = (uint64_t *)addr;
911 uint32_t depth = DTRACE_USTACK_NFRAMES(arg);
912 uint32_t strsize = DTRACE_USTACK_STRSIZE(arg);
913 const char *strbase = addr + (depth + 1) * sizeof (uint64_t);
914 const char *str = strsize ? strbase : NULL;
915 int err = 0;
916
917 char name[PATH_MAX], objname[PATH_MAX], c[PATH_MAX * 2];
918 struct ps_prochandle *P;
919 GElf_Sym sym;
920 int i, indent;
921 pid_t pid;
922
923 if (depth == 0)
924 return (0);
925
926 pid = (pid_t)*pc++;
927
928 if (dt_printf(dtp, fp, "\n") < 0)
929 return (-1);
930
931 if (format == NULL)
932 format = "%s";
933
934 if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
935 indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
936 else
937 indent = _dtrace_stkindent;
938
939 /*
940 * Ultimately, we need to add an entry point in the library vector for
941 * determining <symbol, offset> from <pid, address>. For now, if
942 * this is a vector open, we just print the raw address or string.
943 */
944 if (dtp->dt_vector == NULL)
945 P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
946 else
947 P = NULL;
948
949 if (P != NULL)
950 dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
951
952 for (i = 0; i < depth && pc[i] != 0; i++) {
953 const prmap_t *map;
954
955 if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
956 break;
957
958 if (P != NULL && Plookup_by_addr(P, pc[i],
959 name, sizeof (name), &sym) == 0) {
960 (void) Pobjname(P, pc[i], objname, sizeof (objname));
961
962 if (pc[i] > sym.st_value) {
963 (void) snprintf(c, sizeof (c),
964 "%s`%s+0x%llx", dt_basename(objname), name,
965 (u_longlong_t)(pc[i] - sym.st_value));
966 } else {
967 (void) snprintf(c, sizeof (c),
968 "%s`%s", dt_basename(objname), name);
969 }
970 } else if (str != NULL && str[0] != '\0' && str[0] != '@' &&
971 (P != NULL && ((map = Paddr_to_map(P, pc[i])) == NULL ||
972 (map->pr_mflags & MA_WRITE)))) {
973 /*
974 * If the current string pointer in the string table
975 * does not point to an empty string _and_ the program
976 * counter falls in a writable region, we'll use the
977 * string from the string table instead of the raw
978 * address. This last condition is necessary because
979 * some (broken) ustack helpers will return a string
980 * even for a program counter that they can't
981 * identify. If we have a string for a program
982 * counter that falls in a segment that isn't
983 * writable, we assume that we have fallen into this
984 * case and we refuse to use the string.
985 */
986 (void) snprintf(c, sizeof (c), "%s", str);
987 } else {
988 if (P != NULL && Pobjname(P, pc[i], objname,
989 sizeof (objname)) != 0) {
990 (void) snprintf(c, sizeof (c), "%s`0x%llx",
991 dt_basename(objname), (u_longlong_t)pc[i]);
992 } else {
993 (void) snprintf(c, sizeof (c), "0x%llx",
994 (u_longlong_t)pc[i]);
995 }
996 }
997
998 if ((err = dt_printf(dtp, fp, format, c)) < 0)
999 break;
1000
1001 if ((err = dt_printf(dtp, fp, "\n")) < 0)
1002 break;
1003
1004 if (str != NULL && str[0] == '@') {
1005 /*
1006 * If the first character of the string is an "at" sign,
1007 * then the string is inferred to be an annotation --
1008 * and it is printed out beneath the frame and offset
1009 * with brackets.
1010 */
1011 if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
1012 break;
1013
1014 (void) snprintf(c, sizeof (c), " [ %s ]", &str[1]);
1015
1016 if ((err = dt_printf(dtp, fp, format, c)) < 0)
1017 break;
1018
1019 if ((err = dt_printf(dtp, fp, "\n")) < 0)
1020 break;
1021 }
1022
1023 if (str != NULL) {
1024 str += strlen(str) + 1;
1025 if (str - strbase >= strsize)
1026 str = NULL;
1027 }
1028 }
1029
1030 if (P != NULL) {
1031 dt_proc_unlock(dtp, P);
1032 dt_proc_release(dtp, P);
1033 }
1034
1035 return (err);
1036}
1037
1038static int
1039dt_print_usym(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr, dtrace_actkind_t act)
1040{
1041 /* LINTED - alignment */
1042 uint64_t pid = ((uint64_t *)addr)[0];
1043 /* LINTED - alignment */
1044 uint64_t pc = ((uint64_t *)addr)[1];
1045 const char *format = " %-50s";
1046 char *s;
1047 int n, len = 256;
1048
1049 if (act == DTRACEACT_USYM && dtp->dt_vector == NULL) {
1050 struct ps_prochandle *P;
1051
1052 if ((P = dt_proc_grab(dtp, pid,
1053 PGRAB_RDONLY | PGRAB_FORCE, 0)) != NULL) {
1054 GElf_Sym sym;
1055
1056 dt_proc_lock(dtp, P);
1057
1058 if (Plookup_by_addr(P, pc, NULL, 0, &sym) == 0)
1059 pc = sym.st_value;
1060
1061 dt_proc_unlock(dtp, P);
1062 dt_proc_release(dtp, P);
1063 }
1064 }
1065
1066 do {
1067 n = len;
1068 s = alloca(n);
1069 } while ((len = dtrace_uaddr2str(dtp, pid, pc, s, n)) > n);
1070
1071 return (dt_printf(dtp, fp, format, s));
1072}
1073
1074int
1075dt_print_umod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1076{
1077 /* LINTED - alignment */
1078 uint64_t pid = ((uint64_t *)addr)[0];
1079 /* LINTED - alignment */
1080 uint64_t pc = ((uint64_t *)addr)[1];
1081 int err = 0;
1082
1083 char objname[PATH_MAX], c[PATH_MAX * 2];
1084 struct ps_prochandle *P;
1085
1086 if (format == NULL)
1087 format = " %-50s";
1088
1089 /*
1090 * See the comment in dt_print_ustack() for the rationale for
1091 * printing raw addresses in the vectored case.
1092 */
1093 if (dtp->dt_vector == NULL)
1094 P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
1095 else
1096 P = NULL;
1097
1098 if (P != NULL)
1099 dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
1100
1101 if (P != NULL && Pobjname(P, pc, objname, sizeof (objname)) != 0) {
1102 (void) snprintf(c, sizeof (c), "%s", dt_basename(objname));
1103 } else {
1104 (void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1105 }
1106
1107 err = dt_printf(dtp, fp, format, c);
1108
1109 if (P != NULL) {
1110 dt_proc_unlock(dtp, P);
1111 dt_proc_release(dtp, P);
1112 }
1113
1114 return (err);
1115}
1116
1117int
1118dt_print_memory(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr)
1119{
1120 int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
1121 size_t nbytes = *((uintptr_t *) addr);
1122
1123 return (dt_print_bytes(dtp, fp, addr + sizeof(uintptr_t),
1124 nbytes, 50, quiet, 1));
1125}
1126
1127typedef struct dt_type_cbdata {
1128 dtrace_hdl_t *dtp;
1129 dtrace_typeinfo_t dtt;
1130 caddr_t addr;
1131 caddr_t addrend;
1132 const char *name;
1133 int f_type;
1134 int indent;
1135 int type_width;
1136 int name_width;
1137 FILE *fp;
1138} dt_type_cbdata_t;
1139
1140static int dt_print_type_data(dt_type_cbdata_t *, ctf_id_t);
1141
1142static int
1143dt_print_type_member(const char *name, ctf_id_t type, ulong_t off, void *arg)
1144{
1145 dt_type_cbdata_t cbdata;
1146 dt_type_cbdata_t *cbdatap = arg;
1147 ssize_t ssz;
1148
1149 if ((ssz = ctf_type_size(cbdatap->dtt.dtt_ctfp, type)) <= 0)
1150 return (0);
1151
1152 off /= 8;
1153
1154 cbdata = *cbdatap;
1155 cbdata.name = name;
1156 cbdata.addr += off;
1157 cbdata.addrend = cbdata.addr + ssz;
1158
1159 return (dt_print_type_data(&cbdata, type));
1160}
1161
1162static int
1163dt_print_type_width(const char *name, ctf_id_t type, ulong_t off, void *arg)
1164{
1165 char buf[DT_TYPE_NAMELEN];
1166 char *p;
1167 dt_type_cbdata_t *cbdatap = arg;
1168 size_t sz = strlen(name);
1169
1170 ctf_type_name(cbdatap->dtt.dtt_ctfp, type, buf, sizeof (buf));
1171
1172 if ((p = strchr(buf, '[')) != NULL)
1173 p[-1] = '\0';
1174 else
1175 p = "";
1176
1177 sz += strlen(p);
1178
1179 if (sz > cbdatap->name_width)
1180 cbdatap->name_width = sz;
1181
1182 sz = strlen(buf);
1183
1184 if (sz > cbdatap->type_width)
1185 cbdatap->type_width = sz;
1186
1187 return (0);
1188}
1189
1190static int
1191dt_print_type_data(dt_type_cbdata_t *cbdatap, ctf_id_t type)
1192{
1193 caddr_t addr = cbdatap->addr;
1194 caddr_t addrend = cbdatap->addrend;
1195 char buf[DT_TYPE_NAMELEN];
1196 char *p;
1197 int cnt = 0;
1198 uint_t kind = ctf_type_kind(cbdatap->dtt.dtt_ctfp, type);
1199 ssize_t ssz = ctf_type_size(cbdatap->dtt.dtt_ctfp, type);
1200
1201 ctf_type_name(cbdatap->dtt.dtt_ctfp, type, buf, sizeof (buf));
1202
1203 if ((p = strchr(buf, '[')) != NULL)
1204 p[-1] = '\0';
1205 else
1206 p = "";
1207
1208 if (cbdatap->f_type) {
1209 int type_width = roundup(cbdatap->type_width + 1, 4);
1210 int name_width = roundup(cbdatap->name_width + 1, 4);
1211
1212 name_width -= strlen(cbdatap->name);
1213
1214 dt_printf(cbdatap->dtp, cbdatap->fp, "%*s%-*s%s%-*s = ",cbdatap->indent * 4,"",type_width,buf,cbdatap->name,name_width,p);
1215 }
1216
1217 while (addr < addrend) {
1218 dt_type_cbdata_t cbdata;
1219 ctf_arinfo_t arinfo;
1220 ctf_encoding_t cte;
1221 uintptr_t *up;
1222 void *vp = addr;
1223 cbdata = *cbdatap;
1224 cbdata.name = "";
1225 cbdata.addr = addr;
1226 cbdata.addrend = addr + ssz;
1227 cbdata.f_type = 0;
1228 cbdata.indent++;
1229 cbdata.type_width = 0;
1230 cbdata.name_width = 0;
1231
1232 if (cnt > 0)
1233 dt_printf(cbdatap->dtp, cbdatap->fp, "%*s", cbdatap->indent * 4,"");
1234
1235 switch (kind) {
1236 case CTF_K_INTEGER:
1237 if (ctf_type_encoding(cbdatap->dtt.dtt_ctfp, type, &cte) != 0)
1238 return (-1);
1239 if ((cte.cte_format & CTF_INT_SIGNED) != 0)
1240 switch (cte.cte_bits) {
1241 case 8:
1242 if (isprint(*((char *) vp)))
1243 dt_printf(cbdatap->dtp, cbdatap->fp, "'%c', ", *((char *) vp));
1244 dt_printf(cbdatap->dtp, cbdatap->fp, "%d (0x%x);\n", *((char *) vp), *((char *) vp));
1245 break;
1246 case 16:
1247 dt_printf(cbdatap->dtp, cbdatap->fp, "%hd (0x%hx);\n", *((short *) vp), *((u_short *) vp));
1248 break;
1249 case 32:
1250 dt_printf(cbdatap->dtp, cbdatap->fp, "%d (0x%x);\n", *((int *) vp), *((u_int *) vp));
1251 break;
1252 case 64:
1253 dt_printf(cbdatap->dtp, cbdatap->fp, "%jd (0x%jx);\n", *((long long *) vp), *((unsigned long long *) vp));
1254 break;
1255 default:
1256 dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_INTEGER: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1257 break;
1258 }
1259 else
1260 switch (cte.cte_bits) {
1261 case 8:
1262 dt_printf(cbdatap->dtp, cbdatap->fp, "%u (0x%x);\n", *((uint8_t *) vp) & 0xff, *((uint8_t *) vp) & 0xff);
1263 break;
1264 case 16:
1265 dt_printf(cbdatap->dtp, cbdatap->fp, "%hu (0x%hx);\n", *((u_short *) vp), *((u_short *) vp));
1266 break;
1267 case 32:
1268 dt_printf(cbdatap->dtp, cbdatap->fp, "%u (0x%x);\n", *((u_int *) vp), *((u_int *) vp));
1269 break;
1270 case 64:
1271 dt_printf(cbdatap->dtp, cbdatap->fp, "%ju (0x%jx);\n", *((unsigned long long *) vp), *((unsigned long long *) vp));
1272 break;
1273 default:
1274 dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_INTEGER: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1275 break;
1276 }
1277 break;
1278 case CTF_K_FLOAT:
1279 dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_FLOAT: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1280 break;
1281 case CTF_K_POINTER:
1282 dt_printf(cbdatap->dtp, cbdatap->fp, "%p;\n", *((void **) addr));
1283 break;
1284 case CTF_K_ARRAY:
1285 if (ctf_array_info(cbdatap->dtt.dtt_ctfp, type, &arinfo) != 0)
1286 return (-1);
1287 dt_printf(cbdatap->dtp, cbdatap->fp, "{\n%*s",cbdata.indent * 4,"");
1288 dt_print_type_data(&cbdata, arinfo.ctr_contents);
1289 dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1290 break;
1291 case CTF_K_FUNCTION:
1292 dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_FUNCTION:\n");
1293 break;
1294 case CTF_K_STRUCT:
1295 cbdata.f_type = 1;
1296 if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1297 dt_print_type_width, &cbdata) != 0)
1298 return (-1);
1299 dt_printf(cbdatap->dtp, cbdatap->fp, "{\n");
1300 if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1301 dt_print_type_member, &cbdata) != 0)
1302 return (-1);
1303 dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1304 break;
1305 case CTF_K_UNION:
1306 cbdata.f_type = 1;
1307 if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1308 dt_print_type_width, &cbdata) != 0)
1309 return (-1);
1310 dt_printf(cbdatap->dtp, cbdatap->fp, "{\n");
1311 if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1312 dt_print_type_member, &cbdata) != 0)
1313 return (-1);
1314 dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1315 break;
1316 case CTF_K_ENUM:
1317 dt_printf(cbdatap->dtp, cbdatap->fp, "%s;\n", ctf_enum_name(cbdatap->dtt.dtt_ctfp, type, *((int *) vp)));
1318 break;
1319 case CTF_K_TYPEDEF:
1320 dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1321 break;
1322 case CTF_K_VOLATILE:
1323 if (cbdatap->f_type)
1324 dt_printf(cbdatap->dtp, cbdatap->fp, "volatile ");
1325 dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1326 break;
1327 case CTF_K_CONST:
1328 if (cbdatap->f_type)
1329 dt_printf(cbdatap->dtp, cbdatap->fp, "const ");
1330 dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1331 break;
1332 case CTF_K_RESTRICT:
1333 if (cbdatap->f_type)
1334 dt_printf(cbdatap->dtp, cbdatap->fp, "restrict ");
1335 dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1336 break;
1337 default:
1338 break;
1339 }
1340
1341 addr += ssz;
1342 cnt++;
1343 }
1344
1345 return (0);
1346}
1347
1348static int
1349dt_print_type(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr)
1350{
1351 caddr_t addrend;
1352 char *p;
1353 dtrace_typeinfo_t dtt;
1354 dt_type_cbdata_t cbdata;
1355 int num = 0;
1356 int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
1357 ssize_t ssz;
1358
1359 if (!quiet)
1360 dt_printf(dtp, fp, "\n");
1361
1362 /* Get the total number of bytes of data buffered. */
1363 size_t nbytes = *((uintptr_t *) addr);
1364 addr += sizeof(uintptr_t);
1365
1366 /*
1367 * Get the size of the type so that we can check that it matches
1368 * the CTF data we look up and so that we can figure out how many
1369 * type elements are buffered.
1370 */
1371 size_t typs = *((uintptr_t *) addr);
1372 addr += sizeof(uintptr_t);
1373
1374 /*
1375 * Point to the type string in the buffer. Get it's string
1376 * length and round it up to become the offset to the start
1377 * of the buffered type data which we would like to be aligned
1378 * for easy access.
1379 */
1380 char *strp = (char *) addr;
1381 int offset = roundup(strlen(strp) + 1, sizeof(uintptr_t));
1382
1383 /*
1384 * The type string might have a format such as 'int [20]'.
1385 * Check if there is an array dimension present.
1386 */
1387 if ((p = strchr(strp, '[')) != NULL) {
1388 /* Strip off the array dimension. */
1389 *p++ = '\0';
1390
1391 for (; *p != '\0' && *p != ']'; p++)
1392 num = num * 10 + *p - '0';
1393 } else
1394 /* No array dimension, so default. */
1395 num = 1;
1396
1397 /* Lookup the CTF type from the type string. */
1398 if (dtrace_lookup_by_type(dtp, DTRACE_OBJ_EVERY, strp, &dtt) < 0)
1399 return (-1);
1400
1401 /* Offset the buffer address to the start of the data... */
1402 addr += offset;
1403
1404 ssz = ctf_type_size(dtt.dtt_ctfp, dtt.dtt_type);
1405
1406 if (typs != ssz) {
1407 printf("Expected type size from buffer (%lu) to match type size looked up now (%ld)\n", (u_long) typs, (long) ssz);
1408 return (-1);
1409 }
1410
1411 cbdata.dtp = dtp;
1412 cbdata.dtt = dtt;
1413 cbdata.name = "";
1414 cbdata.addr = addr;
1415 cbdata.addrend = addr + nbytes;
1416 cbdata.indent = 1;
1417 cbdata.f_type = 1;
1418 cbdata.type_width = 0;
1419 cbdata.name_width = 0;
1420 cbdata.fp = fp;
1421
1422 return (dt_print_type_data(&cbdata, dtt.dtt_type));
1423}
1424
1425static int
1426dt_print_sym(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1427{
1428 /* LINTED - alignment */
1429 uint64_t pc = *((uint64_t *)addr);
1430 dtrace_syminfo_t dts;
1431 GElf_Sym sym;
1432 char c[PATH_MAX * 2];
1433
1434 if (format == NULL)
1435 format = " %-50s";
1436
1437 if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
1438 (void) snprintf(c, sizeof (c), "%s`%s",
1439 dts.dts_object, dts.dts_name);
1440 } else {
1441 /*
1442 * We'll repeat the lookup, but this time we'll specify a
1443 * NULL GElf_Sym -- indicating that we're only interested in
1444 * the containing module.
1445 */
1446 if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1447 (void) snprintf(c, sizeof (c), "%s`0x%llx",
1448 dts.dts_object, (u_longlong_t)pc);
1449 } else {
1450 (void) snprintf(c, sizeof (c), "0x%llx",
1451 (u_longlong_t)pc);
1452 }
1453 }
1454
1455 if (dt_printf(dtp, fp, format, c) < 0)
1456 return (-1);
1457
1458 return (0);
1459}
1460
1461int
1462dt_print_mod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1463{
1464 /* LINTED - alignment */
1465 uint64_t pc = *((uint64_t *)addr);
1466 dtrace_syminfo_t dts;
1467 char c[PATH_MAX * 2];
1468
1469 if (format == NULL)
1470 format = " %-50s";
1471
1472 if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1473 (void) snprintf(c, sizeof (c), "%s", dts.dts_object);
1474 } else {
1475 (void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1476 }
1477
1478 if (dt_printf(dtp, fp, format, c) < 0)
1479 return (-1);
1480
1481 return (0);
1482}
1483
1484typedef struct dt_normal {
1485 dtrace_aggvarid_t dtnd_id;
1486 uint64_t dtnd_normal;
1487} dt_normal_t;
1488
1489static int
1490dt_normalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1491{
1492 dt_normal_t *normal = arg;
1493 dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1494 dtrace_aggvarid_t id = normal->dtnd_id;
1495
1496 if (agg->dtagd_nrecs == 0)
1497 return (DTRACE_AGGWALK_NEXT);
1498
1499 if (agg->dtagd_varid != id)
1500 return (DTRACE_AGGWALK_NEXT);
1501
1502 ((dtrace_aggdata_t *)aggdata)->dtada_normal = normal->dtnd_normal;
1503 return (DTRACE_AGGWALK_NORMALIZE);
1504}
1505
1506static int
1507dt_normalize(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
1508{
1509 dt_normal_t normal;
1510 caddr_t addr;
1511
1512 /*
1513 * We (should) have two records: the aggregation ID followed by the
1514 * normalization value.
1515 */
1516 addr = base + rec->dtrd_offset;
1517
1518 if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
1519 return (dt_set_errno(dtp, EDT_BADNORMAL));
1520
1521 /* LINTED - alignment */
1522 normal.dtnd_id = *((dtrace_aggvarid_t *)addr);
1523 rec++;
1524
1525 if (rec->dtrd_action != DTRACEACT_LIBACT)
1526 return (dt_set_errno(dtp, EDT_BADNORMAL));
1527
1528 if (rec->dtrd_arg != DT_ACT_NORMALIZE)
1529 return (dt_set_errno(dtp, EDT_BADNORMAL));
1530
1531 addr = base + rec->dtrd_offset;
1532
1533 switch (rec->dtrd_size) {
1534 case sizeof (uint64_t):
1535 /* LINTED - alignment */
1536 normal.dtnd_normal = *((uint64_t *)addr);
1537 break;
1538 case sizeof (uint32_t):
1539 /* LINTED - alignment */
1540 normal.dtnd_normal = *((uint32_t *)addr);
1541 break;
1542 case sizeof (uint16_t):
1543 /* LINTED - alignment */
1544 normal.dtnd_normal = *((uint16_t *)addr);
1545 break;
1546 case sizeof (uint8_t):
1547 normal.dtnd_normal = *((uint8_t *)addr);
1548 break;
1549 default:
1550 return (dt_set_errno(dtp, EDT_BADNORMAL));
1551 }
1552
1553 (void) dtrace_aggregate_walk(dtp, dt_normalize_agg, &normal);
1554
1555 return (0);
1556}
1557
1558static int
1559dt_denormalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1560{
1561 dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1562 dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1563
1564 if (agg->dtagd_nrecs == 0)
1565 return (DTRACE_AGGWALK_NEXT);
1566
1567 if (agg->dtagd_varid != id)
1568 return (DTRACE_AGGWALK_NEXT);
1569
1570 return (DTRACE_AGGWALK_DENORMALIZE);
1571}
1572
1573static int
1574dt_clear_agg(const dtrace_aggdata_t *aggdata, void *arg)
1575{
1576 dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1577 dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1578
1579 if (agg->dtagd_nrecs == 0)
1580 return (DTRACE_AGGWALK_NEXT);
1581
1582 if (agg->dtagd_varid != id)
1583 return (DTRACE_AGGWALK_NEXT);
1584
1585 return (DTRACE_AGGWALK_CLEAR);
1586}
1587
1588typedef struct dt_trunc {
1589 dtrace_aggvarid_t dttd_id;
1590 uint64_t dttd_remaining;
1591} dt_trunc_t;
1592
1593static int
1594dt_trunc_agg(const dtrace_aggdata_t *aggdata, void *arg)
1595{
1596 dt_trunc_t *trunc = arg;
1597 dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1598 dtrace_aggvarid_t id = trunc->dttd_id;
1599
1600 if (agg->dtagd_nrecs == 0)
1601 return (DTRACE_AGGWALK_NEXT);
1602
1603 if (agg->dtagd_varid != id)
1604 return (DTRACE_AGGWALK_NEXT);
1605
1606 if (trunc->dttd_remaining == 0)
1607 return (DTRACE_AGGWALK_REMOVE);
1608
1609 trunc->dttd_remaining--;
1610 return (DTRACE_AGGWALK_NEXT);
1611}
1612
1613static int
1614dt_trunc(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
1615{
1616 dt_trunc_t trunc;
1617 caddr_t addr;
1618 int64_t remaining;
1619 int (*func)(dtrace_hdl_t *, dtrace_aggregate_f *, void *);
1620
1621 /*
1622 * We (should) have two records: the aggregation ID followed by the
1623 * number of aggregation entries after which the aggregation is to be
1624 * truncated.
1625 */
1626 addr = base + rec->dtrd_offset;
1627
1628 if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
1629 return (dt_set_errno(dtp, EDT_BADTRUNC));
1630
1631 /* LINTED - alignment */
1632 trunc.dttd_id = *((dtrace_aggvarid_t *)addr);
1633 rec++;
1634
1635 if (rec->dtrd_action != DTRACEACT_LIBACT)
1636 return (dt_set_errno(dtp, EDT_BADTRUNC));
1637
1638 if (rec->dtrd_arg != DT_ACT_TRUNC)
1639 return (dt_set_errno(dtp, EDT_BADTRUNC));
1640
1641 addr = base + rec->dtrd_offset;
1642
1643 switch (rec->dtrd_size) {
1644 case sizeof (uint64_t):
1645 /* LINTED - alignment */
1646 remaining = *((int64_t *)addr);
1647 break;
1648 case sizeof (uint32_t):
1649 /* LINTED - alignment */
1650 remaining = *((int32_t *)addr);
1651 break;
1652 case sizeof (uint16_t):
1653 /* LINTED - alignment */
1654 remaining = *((int16_t *)addr);
1655 break;
1656 case sizeof (uint8_t):
1657 remaining = *((int8_t *)addr);
1658 break;
1659 default:
1660 return (dt_set_errno(dtp, EDT_BADNORMAL));
1661 }
1662
1663 if (remaining < 0) {
1664 func = dtrace_aggregate_walk_valsorted;
1665 remaining = -remaining;
1666 } else {
1667 func = dtrace_aggregate_walk_valrevsorted;
1668 }
1669
1670 assert(remaining >= 0);
1671 trunc.dttd_remaining = remaining;
1672
1673 (void) func(dtp, dt_trunc_agg, &trunc);
1674
1675 return (0);
1676}
1677
1678static int
1679dt_print_datum(dtrace_hdl_t *dtp, FILE *fp, dtrace_recdesc_t *rec,
1680 caddr_t addr, size_t size, uint64_t normal)
1681{
1682 int err;
1683 dtrace_actkind_t act = rec->dtrd_action;
1684
1685 switch (act) {
1686 case DTRACEACT_STACK:
1687 return (dt_print_stack(dtp, fp, NULL, addr,
1688 rec->dtrd_arg, rec->dtrd_size / rec->dtrd_arg));
1689
1690 case DTRACEACT_USTACK:
1691 case DTRACEACT_JSTACK:
1692 return (dt_print_ustack(dtp, fp, NULL, addr, rec->dtrd_arg));
1693
1694 case DTRACEACT_USYM:
1695 case DTRACEACT_UADDR:
1696 return (dt_print_usym(dtp, fp, addr, act));
1697
1698 case DTRACEACT_UMOD:
1699 return (dt_print_umod(dtp, fp, NULL, addr));
1700
1701 case DTRACEACT_SYM:
1702 return (dt_print_sym(dtp, fp, NULL, addr));
1703
1704 case DTRACEACT_MOD:
1705 return (dt_print_mod(dtp, fp, NULL, addr));
1706
1707 case DTRACEAGG_QUANTIZE:
1708 return (dt_print_quantize(dtp, fp, addr, size, normal));
1709
1710 case DTRACEAGG_LQUANTIZE:
1711 return (dt_print_lquantize(dtp, fp, addr, size, normal));
1712
1713 case DTRACEAGG_AVG:
1714 return (dt_print_average(dtp, fp, addr, size, normal));
1715
1716 case DTRACEAGG_STDDEV:
1717 return (dt_print_stddev(dtp, fp, addr, size, normal));
1718
1719 default:
1720 break;
1721 }
1722
1723 switch (size) {
1724 case sizeof (uint64_t):
1725 err = dt_printf(dtp, fp, " %16lld",
1726 /* LINTED - alignment */
1727 (long long)*((uint64_t *)addr) / normal);
1728 break;
1729 case sizeof (uint32_t):
1730 /* LINTED - alignment */
1731 err = dt_printf(dtp, fp, " %8d", *((uint32_t *)addr) /
1732 (uint32_t)normal);
1733 break;
1734 case sizeof (uint16_t):
1735 /* LINTED - alignment */
1736 err = dt_printf(dtp, fp, " %5d", *((uint16_t *)addr) /
1737 (uint32_t)normal);
1738 break;
1739 case sizeof (uint8_t):
1740 err = dt_printf(dtp, fp, " %3d", *((uint8_t *)addr) /
1741 (uint32_t)normal);
1742 break;
1743 default:
1744 err = dt_print_bytes(dtp, fp, addr, size, 50, 0, 0);
1745 break;
1746 }
1747
1748 return (err);
1749}
1750
1751int
1752dt_print_aggs(const dtrace_aggdata_t **aggsdata, int naggvars, void *arg)
1753{
1754 int i, aggact = 0;
1755 dt_print_aggdata_t *pd = arg;
1756 const dtrace_aggdata_t *aggdata = aggsdata[0];
1757 dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1758 FILE *fp = pd->dtpa_fp;
1759 dtrace_hdl_t *dtp = pd->dtpa_dtp;
1760 dtrace_recdesc_t *rec;
1761 dtrace_actkind_t act;
1762 caddr_t addr;
1763 size_t size;
1764
1765 /*
1766 * Iterate over each record description in the key, printing the traced
1767 * data, skipping the first datum (the tuple member created by the
1768 * compiler).
1769 */
1770 for (i = 1; i < agg->dtagd_nrecs; i++) {
1771 rec = &agg->dtagd_rec[i];
1772 act = rec->dtrd_action;
1773 addr = aggdata->dtada_data + rec->dtrd_offset;
1774 size = rec->dtrd_size;
1775
1776 if (DTRACEACT_ISAGG(act)) {
1777 aggact = i;
1778 break;
1779 }
1780
1781 if (dt_print_datum(dtp, fp, rec, addr, size, 1) < 0)
1782 return (-1);
1783
1784 if (dt_buffered_flush(dtp, NULL, rec, aggdata,
1785 DTRACE_BUFDATA_AGGKEY) < 0)
1786 return (-1);
1787 }
1788
1789 assert(aggact != 0);
1790
1791 for (i = (naggvars == 1 ? 0 : 1); i < naggvars; i++) {
1792 uint64_t normal;
1793
1794 aggdata = aggsdata[i];
1795 agg = aggdata->dtada_desc;
1796 rec = &agg->dtagd_rec[aggact];
1797 act = rec->dtrd_action;
1798 addr = aggdata->dtada_data + rec->dtrd_offset;
1799 size = rec->dtrd_size;
1800
1801 assert(DTRACEACT_ISAGG(act));
1802 normal = aggdata->dtada_normal;
1803
1804 if (dt_print_datum(dtp, fp, rec, addr, size, normal) < 0)
1805 return (-1);
1806
1807 if (dt_buffered_flush(dtp, NULL, rec, aggdata,
1808 DTRACE_BUFDATA_AGGVAL) < 0)
1809 return (-1);
1810
1811 if (!pd->dtpa_allunprint)
1812 agg->dtagd_flags |= DTRACE_AGD_PRINTED;
1813 }
1814
1815 if (dt_printf(dtp, fp, "\n") < 0)
1816 return (-1);
1817
1818 if (dt_buffered_flush(dtp, NULL, NULL, aggdata,
1819 DTRACE_BUFDATA_AGGFORMAT | DTRACE_BUFDATA_AGGLAST) < 0)
1820 return (-1);
1821
1822 return (0);
1823}
1824
1825int
1826dt_print_agg(const dtrace_aggdata_t *aggdata, void *arg)
1827{
1828 dt_print_aggdata_t *pd = arg;
1829 dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1830 dtrace_aggvarid_t aggvarid = pd->dtpa_id;
1831
1832 if (pd->dtpa_allunprint) {
1833 if (agg->dtagd_flags & DTRACE_AGD_PRINTED)
1834 return (0);
1835 } else {
1836 /*
1837 * If we're not printing all unprinted aggregations, then the
1838 * aggregation variable ID denotes a specific aggregation
1839 * variable that we should print -- skip any other aggregations
1840 * that we encounter.
1841 */
1842 if (agg->dtagd_nrecs == 0)
1843 return (0);
1844
1845 if (aggvarid != agg->dtagd_varid)
1846 return (0);
1847 }
1848
1849 return (dt_print_aggs(&aggdata, 1, arg));
1850}
1851
1852int
1853dt_setopt(dtrace_hdl_t *dtp, const dtrace_probedata_t *data,
1854 const char *option, const char *value)
1855{
1856 int len, rval;
1857 char *msg;
1858 const char *errstr;
1859 dtrace_setoptdata_t optdata;
1860
1861 bzero(&optdata, sizeof (optdata));
1862 (void) dtrace_getopt(dtp, option, &optdata.dtsda_oldval);
1863
1864 if (dtrace_setopt(dtp, option, value) == 0) {
1865 (void) dtrace_getopt(dtp, option, &optdata.dtsda_newval);
1866 optdata.dtsda_probe = data;
1867 optdata.dtsda_option = option;
1868 optdata.dtsda_handle = dtp;
1869
1870 if ((rval = dt_handle_setopt(dtp, &optdata)) != 0)
1871 return (rval);
1872
1873 return (0);
1874 }
1875
1876 errstr = dtrace_errmsg(dtp, dtrace_errno(dtp));
1877 len = strlen(option) + strlen(value) + strlen(errstr) + 80;
1878 msg = alloca(len);
1879
1880 (void) snprintf(msg, len, "couldn't set option \"%s\" to \"%s\": %s\n",
1881 option, value, errstr);
1882
1883 if ((rval = dt_handle_liberr(dtp, data, msg)) == 0)
1884 return (0);
1885
1886 return (rval);
1887}
1888
1889static int
1890dt_consume_cpu(dtrace_hdl_t *dtp, FILE *fp, int cpu, dtrace_bufdesc_t *buf,
1891 dtrace_consume_probe_f *efunc, dtrace_consume_rec_f *rfunc, void *arg)
1892{
1893 dtrace_epid_t id;
1894 size_t offs, start = buf->dtbd_oldest, end = buf->dtbd_size;
1895 int flow = (dtp->dt_options[DTRACEOPT_FLOWINDENT] != DTRACEOPT_UNSET);
1896 int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
1897 int rval, i, n;
1898 dtrace_epid_t last = DTRACE_EPIDNONE;
1899 dtrace_probedata_t data;
1900 uint64_t drops;
1901 caddr_t addr;
1902
1903 bzero(&data, sizeof (data));
1904 data.dtpda_handle = dtp;
1905 data.dtpda_cpu = cpu;
1906
1907again:
1908 for (offs = start; offs < end; ) {
1909 dtrace_eprobedesc_t *epd;
1910
1911 /*
1912 * We're guaranteed to have an ID.
1913 */
1914 id = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
1915
1916 if (id == DTRACE_EPIDNONE) {
1917 /*
1918 * This is filler to assure proper alignment of the
1919 * next record; we simply ignore it.
1920 */
1921 offs += sizeof (id);
1922 continue;
1923 }
1924
1925 if ((rval = dt_epid_lookup(dtp, id, &data.dtpda_edesc,
1926 &data.dtpda_pdesc)) != 0)
1927 return (rval);
1928
1929 epd = data.dtpda_edesc;
1930 data.dtpda_data = buf->dtbd_data + offs;
1931
1932 if (data.dtpda_edesc->dtepd_uarg != DT_ECB_DEFAULT) {
1933 rval = dt_handle(dtp, &data);
1934
1935 if (rval == DTRACE_CONSUME_NEXT)
1936 goto nextepid;
1937
1938 if (rval == DTRACE_CONSUME_ERROR)
1939 return (-1);
1940 }
1941
1942 if (flow)
1943 (void) dt_flowindent(dtp, &data, last, buf, offs);
1944
1945 rval = (*efunc)(&data, arg);
1946
1947 if (flow) {
1948 if (data.dtpda_flow == DTRACEFLOW_ENTRY)
1949 data.dtpda_indent += 2;
1950 }
1951
1952 if (rval == DTRACE_CONSUME_NEXT)
1953 goto nextepid;
1954
1955 if (rval == DTRACE_CONSUME_ABORT)
1956 return (dt_set_errno(dtp, EDT_DIRABORT));
1957
1958 if (rval != DTRACE_CONSUME_THIS)
1959 return (dt_set_errno(dtp, EDT_BADRVAL));
1960
1961 for (i = 0; i < epd->dtepd_nrecs; i++) {
1962 dtrace_recdesc_t *rec = &epd->dtepd_rec[i];
1963 dtrace_actkind_t act = rec->dtrd_action;
1964
1965 data.dtpda_data = buf->dtbd_data + offs +
1966 rec->dtrd_offset;
1967 addr = data.dtpda_data;
1968
1969 if (act == DTRACEACT_LIBACT) {
1970 uint64_t arg = rec->dtrd_arg;
1971 dtrace_aggvarid_t id;
1972
1973 switch (arg) {
1974 case DT_ACT_CLEAR:
1975 /* LINTED - alignment */
1976 id = *((dtrace_aggvarid_t *)addr);
1977 (void) dtrace_aggregate_walk(dtp,
1978 dt_clear_agg, &id);
1979 continue;
1980
1981 case DT_ACT_DENORMALIZE:
1982 /* LINTED - alignment */
1983 id = *((dtrace_aggvarid_t *)addr);
1984 (void) dtrace_aggregate_walk(dtp,
1985 dt_denormalize_agg, &id);
1986 continue;
1987
1988 case DT_ACT_FTRUNCATE:
1989 if (fp == NULL)
1990 continue;
1991
1992 (void) fflush(fp);
1993 (void) ftruncate(fileno(fp), 0);
1994 (void) fseeko(fp, 0, SEEK_SET);
1995 continue;
1996
1997 case DT_ACT_NORMALIZE:
1998 if (i == epd->dtepd_nrecs - 1)
1999 return (dt_set_errno(dtp,
2000 EDT_BADNORMAL));
2001
2002 if (dt_normalize(dtp,
2003 buf->dtbd_data + offs, rec) != 0)
2004 return (-1);
2005
2006 i++;
2007 continue;
2008
2009 case DT_ACT_SETOPT: {
2010 uint64_t *opts = dtp->dt_options;
2011 dtrace_recdesc_t *valrec;
2012 uint32_t valsize;
2013 caddr_t val;
2014 int rv;
2015
2016 if (i == epd->dtepd_nrecs - 1) {
2017 return (dt_set_errno(dtp,
2018 EDT_BADSETOPT));
2019 }
2020
2021 valrec = &epd->dtepd_rec[++i];
2022 valsize = valrec->dtrd_size;
2023
2024 if (valrec->dtrd_action != act ||
2025 valrec->dtrd_arg != arg) {
2026 return (dt_set_errno(dtp,
2027 EDT_BADSETOPT));
2028 }
2029
2030 if (valsize > sizeof (uint64_t)) {
2031 val = buf->dtbd_data + offs +
2032 valrec->dtrd_offset;
2033 } else {
2034 val = "1";
2035 }
2036
2037 rv = dt_setopt(dtp, &data, addr, val);
2038
2039 if (rv != 0)
2040 return (-1);
2041
2042 flow = (opts[DTRACEOPT_FLOWINDENT] !=
2043 DTRACEOPT_UNSET);
2044 quiet = (opts[DTRACEOPT_QUIET] !=
2045 DTRACEOPT_UNSET);
2046
2047 continue;
2048 }
2049
2050 case DT_ACT_TRUNC:
2051 if (i == epd->dtepd_nrecs - 1)
2052 return (dt_set_errno(dtp,
2053 EDT_BADTRUNC));
2054
2055 if (dt_trunc(dtp,
2056 buf->dtbd_data + offs, rec) != 0)
2057 return (-1);
2058
2059 i++;
2060 continue;
2061
2062 default:
2063 continue;
2064 }
2065 }
2066
2067 rval = (*rfunc)(&data, rec, arg);
2068
2069 if (rval == DTRACE_CONSUME_NEXT)
2070 continue;
2071
2072 if (rval == DTRACE_CONSUME_ABORT)
2073 return (dt_set_errno(dtp, EDT_DIRABORT));
2074
2075 if (rval != DTRACE_CONSUME_THIS)
2076 return (dt_set_errno(dtp, EDT_BADRVAL));
2077
2078 if (act == DTRACEACT_STACK) {
2079 int depth = rec->dtrd_arg;
2080
2081 if (dt_print_stack(dtp, fp, NULL, addr, depth,
2082 rec->dtrd_size / depth) < 0)
2083 return (-1);
2084 goto nextrec;
2085 }
2086
2087 if (act == DTRACEACT_USTACK ||
2088 act == DTRACEACT_JSTACK) {
2089 if (dt_print_ustack(dtp, fp, NULL,
2090 addr, rec->dtrd_arg) < 0)
2091 return (-1);
2092 goto nextrec;
2093 }
2094
2095 if (act == DTRACEACT_SYM) {
2096 if (dt_print_sym(dtp, fp, NULL, addr) < 0)
2097 return (-1);
2098 goto nextrec;
2099 }
2100
2101 if (act == DTRACEACT_MOD) {
2102 if (dt_print_mod(dtp, fp, NULL, addr) < 0)
2103 return (-1);
2104 goto nextrec;
2105 }
2106
2107 if (act == DTRACEACT_USYM || act == DTRACEACT_UADDR) {
2108 if (dt_print_usym(dtp, fp, addr, act) < 0)
2109 return (-1);
2110 goto nextrec;
2111 }
2112
2113 if (act == DTRACEACT_UMOD) {
2114 if (dt_print_umod(dtp, fp, NULL, addr) < 0)
2115 return (-1);
2116 goto nextrec;
2117 }
2118
2119 if (act == DTRACEACT_PRINTM) {
2120 if (dt_print_memory(dtp, fp, addr) < 0)
2121 return (-1);
2122 goto nextrec;
2123 }
2124
2125 if (act == DTRACEACT_PRINTT) {
2126 if (dt_print_type(dtp, fp, addr) < 0)
2127 return (-1);
2128 goto nextrec;
2129 }
2130
2131 if (DTRACEACT_ISPRINTFLIKE(act)) {
2132 void *fmtdata;
2133 int (*func)(dtrace_hdl_t *, FILE *, void *,
2134 const dtrace_probedata_t *,
2135 const dtrace_recdesc_t *, uint_t,
2136 const void *buf, size_t);
2137
2138 if ((fmtdata = dt_format_lookup(dtp,
2139 rec->dtrd_format)) == NULL)
2140 goto nofmt;
2141
2142 switch (act) {
2143 case DTRACEACT_PRINTF:
2144 func = dtrace_fprintf;
2145 break;
2146 case DTRACEACT_PRINTA:
2147 func = dtrace_fprinta;
2148 break;
2149 case DTRACEACT_SYSTEM:
2150 func = dtrace_system;
2151 break;
2152 case DTRACEACT_FREOPEN:
2153 func = dtrace_freopen;
2154 break;
2155 }
2156
2157 n = (*func)(dtp, fp, fmtdata, &data,
2158 rec, epd->dtepd_nrecs - i,
2159 (uchar_t *)buf->dtbd_data + offs,
2160 buf->dtbd_size - offs);
2161
2162 if (n < 0)
2163 return (-1); /* errno is set for us */
2164
2165 if (n > 0)
2166 i += n - 1;
2167 goto nextrec;
2168 }
2169
2170nofmt:
2171 if (act == DTRACEACT_PRINTA) {
2172 dt_print_aggdata_t pd;
2173 dtrace_aggvarid_t *aggvars;
2174 int j, naggvars = 0;
2175 size_t size = ((epd->dtepd_nrecs - i) *
2176 sizeof (dtrace_aggvarid_t));
2177
2178 if ((aggvars = dt_alloc(dtp, size)) == NULL)
2179 return (-1);
2180
2181 /*
2182 * This might be a printa() with multiple
2183 * aggregation variables. We need to scan
2184 * forward through the records until we find
2185 * a record from a different statement.
2186 */
2187 for (j = i; j < epd->dtepd_nrecs; j++) {
2188 dtrace_recdesc_t *nrec;
2189 caddr_t naddr;
2190
2191 nrec = &epd->dtepd_rec[j];
2192
2193 if (nrec->dtrd_uarg != rec->dtrd_uarg)
2194 break;
2195
2196 if (nrec->dtrd_action != act) {
2197 return (dt_set_errno(dtp,
2198 EDT_BADAGG));
2199 }
2200
2201 naddr = buf->dtbd_data + offs +
2202 nrec->dtrd_offset;
2203
2204 aggvars[naggvars++] =
2205 /* LINTED - alignment */
2206 *((dtrace_aggvarid_t *)naddr);
2207 }
2208
2209 i = j - 1;
2210 bzero(&pd, sizeof (pd));
2211 pd.dtpa_dtp = dtp;
2212 pd.dtpa_fp = fp;
2213
2214 assert(naggvars >= 1);
2215
2216 if (naggvars == 1) {
2217 pd.dtpa_id = aggvars[0];
2218 dt_free(dtp, aggvars);
2219
2220 if (dt_printf(dtp, fp, "\n") < 0 ||
2221 dtrace_aggregate_walk_sorted(dtp,
2222 dt_print_agg, &pd) < 0)
2223 return (-1);
2224 goto nextrec;
2225 }
2226
2227 if (dt_printf(dtp, fp, "\n") < 0 ||
2228 dtrace_aggregate_walk_joined(dtp, aggvars,
2229 naggvars, dt_print_aggs, &pd) < 0) {
2230 dt_free(dtp, aggvars);
2231 return (-1);
2232 }
2233
2234 dt_free(dtp, aggvars);
2235 goto nextrec;
2236 }
2237
2238 switch (rec->dtrd_size) {
2239 case sizeof (uint64_t):
2240 n = dt_printf(dtp, fp,
2241 quiet ? "%lld" : " %16lld",
2242 /* LINTED - alignment */
2243 *((unsigned long long *)addr));
2244 break;
2245 case sizeof (uint32_t):
2246 n = dt_printf(dtp, fp, quiet ? "%d" : " %8d",
2247 /* LINTED - alignment */
2248 *((uint32_t *)addr));
2249 break;
2250 case sizeof (uint16_t):
2251 n = dt_printf(dtp, fp, quiet ? "%d" : " %5d",
2252 /* LINTED - alignment */
2253 *((uint16_t *)addr));
2254 break;
2255 case sizeof (uint8_t):
2256 n = dt_printf(dtp, fp, quiet ? "%d" : " %3d",
2257 *((uint8_t *)addr));
2258 break;
2259 default:
2260 n = dt_print_bytes(dtp, fp, addr,
2261 rec->dtrd_size, 33, quiet, 0);
2262 break;
2263 }
2264
2265 if (n < 0)
2266 return (-1); /* errno is set for us */
2267
2268nextrec:
2269 if (dt_buffered_flush(dtp, &data, rec, NULL, 0) < 0)
2270 return (-1); /* errno is set for us */
2271 }
2272
2273 /*
2274 * Call the record callback with a NULL record to indicate
2275 * that we're done processing this EPID.
2276 */
2277 rval = (*rfunc)(&data, NULL, arg);
2278nextepid:
2279 offs += epd->dtepd_size;
2280 last = id;
2281 }
2282
2283 if (buf->dtbd_oldest != 0 && start == buf->dtbd_oldest) {
2284 end = buf->dtbd_oldest;
2285 start = 0;
2286 goto again;
2287 }
2288
2289 if ((drops = buf->dtbd_drops) == 0)
2290 return (0);
2291
2292 /*
2293 * Explicitly zero the drops to prevent us from processing them again.
2294 */
2295 buf->dtbd_drops = 0;
2296
2297 return (dt_handle_cpudrop(dtp, cpu, DTRACEDROP_PRINCIPAL, drops));
2298}
2299
2300typedef struct dt_begin {
2301 dtrace_consume_probe_f *dtbgn_probefunc;
2302 dtrace_consume_rec_f *dtbgn_recfunc;
2303 void *dtbgn_arg;
2304 dtrace_handle_err_f *dtbgn_errhdlr;
2305 void *dtbgn_errarg;
2306 int dtbgn_beginonly;
2307} dt_begin_t;
2308
2309static int
2310dt_consume_begin_probe(const dtrace_probedata_t *data, void *arg)
2311{
2312 dt_begin_t *begin = (dt_begin_t *)arg;
2313 dtrace_probedesc_t *pd = data->dtpda_pdesc;
2314
2315 int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
2316 int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
2317
2318 if (begin->dtbgn_beginonly) {
2319 if (!(r1 && r2))
2320 return (DTRACE_CONSUME_NEXT);
2321 } else {
2322 if (r1 && r2)
2323 return (DTRACE_CONSUME_NEXT);
2324 }
2325
2326 /*
2327 * We have a record that we're interested in. Now call the underlying
2328 * probe function...
2329 */
2330 return (begin->dtbgn_probefunc(data, begin->dtbgn_arg));
2331}
2332
2333static int
2334dt_consume_begin_record(const dtrace_probedata_t *data,
2335 const dtrace_recdesc_t *rec, void *arg)
2336{
2337 dt_begin_t *begin = (dt_begin_t *)arg;
2338
2339 return (begin->dtbgn_recfunc(data, rec, begin->dtbgn_arg));
2340}
2341
2342static int
2343dt_consume_begin_error(const dtrace_errdata_t *data, void *arg)
2344{
2345 dt_begin_t *begin = (dt_begin_t *)arg;
2346 dtrace_probedesc_t *pd = data->dteda_pdesc;
2347
2348 int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
2349 int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
2350
2351 if (begin->dtbgn_beginonly) {
2352 if (!(r1 && r2))
2353 return (DTRACE_HANDLE_OK);
2354 } else {
2355 if (r1 && r2)
2356 return (DTRACE_HANDLE_OK);
2357 }
2358
2359 return (begin->dtbgn_errhdlr(data, begin->dtbgn_errarg));
2360}
2361
2362static int
2363dt_consume_begin(dtrace_hdl_t *dtp, FILE *fp, dtrace_bufdesc_t *buf,
2364 dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
2365{
2366 /*
2367 * There's this idea that the BEGIN probe should be processed before
2368 * everything else, and that the END probe should be processed after
2369 * anything else. In the common case, this is pretty easy to deal
2370 * with. However, a situation may arise where the BEGIN enabling and
2371 * END enabling are on the same CPU, and some enabling in the middle
2372 * occurred on a different CPU. To deal with this (blech!) we need to
2373 * consume the BEGIN buffer up until the end of the BEGIN probe, and
2374 * then set it aside. We will then process every other CPU, and then
2375 * we'll return to the BEGIN CPU and process the rest of the data
2376 * (which will inevitably include the END probe, if any). Making this
2377 * even more complicated (!) is the library's ERROR enabling. Because
2378 * this enabling is processed before we even get into the consume call
2379 * back, any ERROR firing would result in the library's ERROR enabling
2380 * being processed twice -- once in our first pass (for BEGIN probes),
2381 * and again in our second pass (for everything but BEGIN probes). To
2382 * deal with this, we interpose on the ERROR handler to assure that we
2383 * only process ERROR enablings induced by BEGIN enablings in the
2384 * first pass, and that we only process ERROR enablings _not_ induced
2385 * by BEGIN enablings in the second pass.
2386 */
2387 dt_begin_t begin;
2388 processorid_t cpu = dtp->dt_beganon;
2389 dtrace_bufdesc_t nbuf;
2390#if !defined(sun)
2391 dtrace_bufdesc_t *pbuf;
2392#endif
2393 int rval, i;
2394 static int max_ncpus;
2395 dtrace_optval_t size;
2396
2397 dtp->dt_beganon = -1;
2398
2399#if defined(sun)
2400 if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2401#else
2402 if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &buf) == -1) {
2403#endif
2404 /*
2405 * We really don't expect this to fail, but it is at least
2406 * technically possible for this to fail with ENOENT. In this
2407 * case, we just drive on...
2408 */
2409 if (errno == ENOENT)
2410 return (0);
2411
2412 return (dt_set_errno(dtp, errno));
2413 }
2414
2415 if (!dtp->dt_stopped || buf->dtbd_cpu != dtp->dt_endedon) {
2416 /*
2417 * This is the simple case. We're either not stopped, or if
2418 * we are, we actually processed any END probes on another
2419 * CPU. We can simply consume this buffer and return.
2420 */
2421 return (dt_consume_cpu(dtp, fp, cpu, buf, pf, rf, arg));
2422 }
2423
2424 begin.dtbgn_probefunc = pf;
2425 begin.dtbgn_recfunc = rf;
2426 begin.dtbgn_arg = arg;
2427 begin.dtbgn_beginonly = 1;
2428
2429 /*
2430 * We need to interpose on the ERROR handler to be sure that we
2431 * only process ERRORs induced by BEGIN.
2432 */
2433 begin.dtbgn_errhdlr = dtp->dt_errhdlr;
2434 begin.dtbgn_errarg = dtp->dt_errarg;
2435 dtp->dt_errhdlr = dt_consume_begin_error;
2436 dtp->dt_errarg = &begin;
2437
2438 rval = dt_consume_cpu(dtp, fp, cpu, buf, dt_consume_begin_probe,
2439 dt_consume_begin_record, &begin);
2440
2441 dtp->dt_errhdlr = begin.dtbgn_errhdlr;
2442 dtp->dt_errarg = begin.dtbgn_errarg;
2443
2444 if (rval != 0)
2445 return (rval);
2446
2447 /*
2448 * Now allocate a new buffer. We'll use this to deal with every other
2449 * CPU.
2450 */
2451 bzero(&nbuf, sizeof (dtrace_bufdesc_t));
2452 (void) dtrace_getopt(dtp, "bufsize", &size);
2453 if ((nbuf.dtbd_data = malloc(size)) == NULL)
2454 return (dt_set_errno(dtp, EDT_NOMEM));
2455
2456 if (max_ncpus == 0)
2457 max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
2458
2459 for (i = 0; i < max_ncpus; i++) {
2460 nbuf.dtbd_cpu = i;
2461
2462 if (i == cpu)
2463 continue;
2464
2465#if defined(sun)
2466 if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &nbuf) == -1) {
2467#else
2468 pbuf = &nbuf;
2469 if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &pbuf) == -1) {
2470#endif
2471 /*
2472 * If we failed with ENOENT, it may be because the
2473 * CPU was unconfigured -- this is okay. Any other
2474 * error, however, is unexpected.
2475 */
2476 if (errno == ENOENT)
2477 continue;
2478
2479 free(nbuf.dtbd_data);
2480
2481 return (dt_set_errno(dtp, errno));
2482 }
2483
2484 if ((rval = dt_consume_cpu(dtp, fp,
2485 i, &nbuf, pf, rf, arg)) != 0) {
2486 free(nbuf.dtbd_data);
2487 return (rval);
2488 }
2489 }
2490
2491 free(nbuf.dtbd_data);
2492
2493 /*
2494 * Okay -- we're done with the other buffers. Now we want to
2495 * reconsume the first buffer -- but this time we're looking for
2496 * everything _but_ BEGIN. And of course, in order to only consume
2497 * those ERRORs _not_ associated with BEGIN, we need to reinstall our
2498 * ERROR interposition function...
2499 */
2500 begin.dtbgn_beginonly = 0;
2501
2502 assert(begin.dtbgn_errhdlr == dtp->dt_errhdlr);
2503 assert(begin.dtbgn_errarg == dtp->dt_errarg);
2504 dtp->dt_errhdlr = dt_consume_begin_error;
2505 dtp->dt_errarg = &begin;
2506
2507 rval = dt_consume_cpu(dtp, fp, cpu, buf, dt_consume_begin_probe,
2508 dt_consume_begin_record, &begin);
2509
2510 dtp->dt_errhdlr = begin.dtbgn_errhdlr;
2511 dtp->dt_errarg = begin.dtbgn_errarg;
2512
2513 return (rval);
2514}
2515
2516int
2517dtrace_consume(dtrace_hdl_t *dtp, FILE *fp,
2518 dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
2519{
2520 dtrace_bufdesc_t *buf = &dtp->dt_buf;
2521 dtrace_optval_t size;
2522 static int max_ncpus;
2523 int i, rval;
2524 dtrace_optval_t interval = dtp->dt_options[DTRACEOPT_SWITCHRATE];
2525 hrtime_t now = gethrtime();
2526
2527 if (dtp->dt_lastswitch != 0) {
2528 if (now - dtp->dt_lastswitch < interval)
2529 return (0);
2530
2531 dtp->dt_lastswitch += interval;
2532 } else {
2533 dtp->dt_lastswitch = now;
2534 }
2535
2536 if (!dtp->dt_active)
2537 return (dt_set_errno(dtp, EINVAL));
2538
2539 if (max_ncpus == 0)
2540 max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
2541
2542 if (pf == NULL)
2543 pf = (dtrace_consume_probe_f *)dt_nullprobe;
2544
2545 if (rf == NULL)
2546 rf = (dtrace_consume_rec_f *)dt_nullrec;
2547
2548 if (buf->dtbd_data == NULL) {
2549 (void) dtrace_getopt(dtp, "bufsize", &size);
2550 if ((buf->dtbd_data = malloc(size)) == NULL)
2551 return (dt_set_errno(dtp, EDT_NOMEM));
2552
2553 buf->dtbd_size = size;
2554 }
2555
2556 /*
2557 * If we have just begun, we want to first process the CPU that
2558 * executed the BEGIN probe (if any).
2559 */
2560 if (dtp->dt_active && dtp->dt_beganon != -1) {
2561 buf->dtbd_cpu = dtp->dt_beganon;
2562 if ((rval = dt_consume_begin(dtp, fp, buf, pf, rf, arg)) != 0)
2563 return (rval);
2564 }
2565
2566 for (i = 0; i < max_ncpus; i++) {
2567 buf->dtbd_cpu = i;
2568
2569 /*
2570 * If we have stopped, we want to process the CPU on which the
2571 * END probe was processed only _after_ we have processed
2572 * everything else.
2573 */
2574 if (dtp->dt_stopped && (i == dtp->dt_endedon))
2575 continue;
2576
2577#if defined(sun)
2578 if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2579#else
2580 if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &buf) == -1) {
2581#endif
2582 /*
2583 * If we failed with ENOENT, it may be because the
2584 * CPU was unconfigured -- this is okay. Any other
2585 * error, however, is unexpected.
2586 */
2587 if (errno == ENOENT)
2588 continue;
2589
2590 return (dt_set_errno(dtp, errno));
2591 }
2592
2593 if ((rval = dt_consume_cpu(dtp, fp, i, buf, pf, rf, arg)) != 0)
2594 return (rval);
2595 }
2596
2597 if (!dtp->dt_stopped)
2598 return (0);
2599
2600 buf->dtbd_cpu = dtp->dt_endedon;
2601
2602#if defined(sun)
2603 if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2604#else
2605 if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &buf) == -1) {
2606#endif
2607 /*
2608 * This _really_ shouldn't fail, but it is strictly speaking
2609 * possible for this to return ENOENT if the CPU that called
2610 * the END enabling somehow managed to become unconfigured.
2611 * It's unclear how the user can possibly expect anything
2612 * rational to happen in this case -- the state has been thrown
2613 * out along with the unconfigured CPU -- so we'll just drive
2614 * on...
2615 */
2616 if (errno == ENOENT)
2617 return (0);
2618
2619 return (dt_set_errno(dtp, errno));
2620 }
2621
2622 return (dt_consume_cpu(dtp, fp, dtp->dt_endedon, buf, pf, rf, arg));
2623}