Deleted Added
full compact
ieee80211_output.c (178354) ieee80211_output.c (179394)
1/*-
2 * Copyright (c) 2001 Atsushi Onoe
3 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
1/*-
2 * Copyright (c) 2001 Atsushi Onoe
3 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/net80211/ieee80211_output.c 178354 2008-04-20 20:35:46Z sam $");
28__FBSDID("$FreeBSD: head/sys/net80211/ieee80211_output.c 179394 2008-05-28 23:25:36Z sam $");
29
30#include "opt_inet.h"
31#include "opt_wlan.h"
32
33#include <sys/param.h>
34#include <sys/systm.h>
35#include <sys/mbuf.h>
36#include <sys/kernel.h>
37#include <sys/endian.h>
38
39#include <sys/socket.h>
40
41#include <net/bpf.h>
42#include <net/ethernet.h>
43#include <net/if.h>
44#include <net/if_llc.h>
45#include <net/if_media.h>
46#include <net/if_vlan_var.h>
47
48#include <net80211/ieee80211_var.h>
49#include <net80211/ieee80211_regdomain.h>
50#include <net80211/ieee80211_wds.h>
51
52#ifdef INET
53#include <netinet/in.h>
54#include <netinet/if_ether.h>
55#include <netinet/in_systm.h>
56#include <netinet/ip.h>
57#endif
58
59#define ETHER_HEADER_COPY(dst, src) \
60 memcpy(dst, src, sizeof(struct ether_header))
61
62static struct mbuf *ieee80211_encap_fastframe(struct ieee80211vap *,
63 struct mbuf *m1, const struct ether_header *eh1,
64 struct mbuf *m2, const struct ether_header *eh2);
65static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
66 u_int hdrsize, u_int ciphdrsize, u_int mtu);
67static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
68
69#ifdef IEEE80211_DEBUG
70/*
71 * Decide if an outbound management frame should be
72 * printed when debugging is enabled. This filters some
73 * of the less interesting frames that come frequently
74 * (e.g. beacons).
75 */
76static __inline int
77doprint(struct ieee80211vap *vap, int subtype)
78{
79 switch (subtype) {
80 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
81 return (vap->iv_opmode == IEEE80211_M_IBSS);
82 }
83 return 1;
84}
85#endif
86
87/*
88 * Start method for vap's. All packets from the stack come
89 * through here. We handle common processing of the packets
90 * before dispatching them to the underlying device.
91 */
92void
93ieee80211_start(struct ifnet *ifp)
94{
95#define IS_DWDS(vap) \
96 (vap->iv_opmode == IEEE80211_M_WDS && \
97 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
98 struct ieee80211vap *vap = ifp->if_softc;
99 struct ieee80211com *ic = vap->iv_ic;
100 struct ifnet *parent = ic->ic_ifp;
101 struct ieee80211_node *ni;
102 struct mbuf *m;
103 struct ether_header *eh;
104 int error;
105
106 /* NB: parent must be up and running */
107 if (!IFNET_IS_UP_RUNNING(parent)) {
108 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
109 "%s: ignore queue, parent %s not up+running\n",
110 __func__, parent->if_xname);
111 /* XXX stat */
112 return;
113 }
114 if (vap->iv_state == IEEE80211_S_SLEEP) {
115 /*
116 * In power save, wakeup device for transmit.
117 */
118 ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
119 return;
120 }
121 /*
122 * No data frames go out unless we're running.
123 * Note in particular this covers CAC and CSA
124 * states (though maybe we should check muting
125 * for CSA).
126 */
127 if (vap->iv_state != IEEE80211_S_RUN) {
128 IEEE80211_LOCK(ic);
129 /* re-check under the com lock to avoid races */
130 if (vap->iv_state != IEEE80211_S_RUN) {
131 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
132 "%s: ignore queue, in %s state\n",
133 __func__, ieee80211_state_name[vap->iv_state]);
134 vap->iv_stats.is_tx_badstate++;
135 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
136 IEEE80211_UNLOCK(ic);
137 return;
138 }
139 IEEE80211_UNLOCK(ic);
140 }
141 for (;;) {
142 IFQ_DEQUEUE(&ifp->if_snd, m);
143 if (m == NULL)
144 break;
145 /*
146 * Sanitize mbuf flags for net80211 use. We cannot
147 * clear M_PWR_SAV because this may be set for frames
148 * that are re-submitted from the power save queue.
149 *
150 * NB: This must be done before ieee80211_classify as
151 * it marks EAPOL in frames with M_EAPOL.
152 */
153 m->m_flags &= ~(M_80211_TX - M_PWR_SAV);
154 /*
155 * Cancel any background scan.
156 */
157 if (ic->ic_flags & IEEE80211_F_SCAN)
158 ieee80211_cancel_anyscan(vap);
159 /*
160 * Find the node for the destination so we can do
161 * things like power save and fast frames aggregation.
162 *
163 * NB: past this point various code assumes the first
164 * mbuf has the 802.3 header present (and contiguous).
165 */
166 ni = NULL;
167 if (m->m_len < sizeof(struct ether_header) &&
168 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
169 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
170 "discard frame, %s\n", "m_pullup failed");
171 vap->iv_stats.is_tx_nobuf++; /* XXX */
172 ifp->if_oerrors++;
173 continue;
174 }
175 eh = mtod(m, struct ether_header *);
176 if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
177 if (IS_DWDS(vap)) {
178 /*
179 * Only unicast frames from the above go out
180 * DWDS vaps; multicast frames are handled by
181 * dispatching the frame as it comes through
182 * the AP vap (see below).
183 */
184 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
185 eh->ether_dhost, "mcast", "%s", "on DWDS");
186 vap->iv_stats.is_dwds_mcast++;
187 m_freem(m);
188 continue;
189 }
190 if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
191 /*
192 * Spam DWDS vap's w/ multicast traffic.
193 */
194 /* XXX only if dwds in use? */
195 ieee80211_dwds_mcast(vap, m);
196 }
197 }
198 ni = ieee80211_find_txnode(vap, eh->ether_dhost);
199 if (ni == NULL) {
200 /* NB: ieee80211_find_txnode does stat+msg */
201 ifp->if_oerrors++;
202 m_freem(m);
203 continue;
204 }
205 /* XXX AUTH'd */
206 if (ni->ni_associd == 0) {
207 /*
208 * Destination is not associated; must special
209 * case DWDS where we point iv_bss at the node
210 * for the associated station.
211 * XXX adhoc mode?
212 */
213 if (ni != vap->iv_bss || IS_DWDS(vap)) {
214 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
215 eh->ether_dhost, NULL,
216 "sta not associated (type 0x%04x)",
217 htons(eh->ether_type));
218 vap->iv_stats.is_tx_notassoc++;
219 ifp->if_oerrors++;
220 m_freem(m);
221 ieee80211_free_node(ni);
222 continue;
223 }
224 }
225 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
226 (m->m_flags & M_PWR_SAV) == 0) {
227 /*
228 * Station in power save mode; pass the frame
229 * to the 802.11 layer and continue. We'll get
230 * the frame back when the time is right.
231 * XXX lose WDS vap linkage?
232 */
233 ieee80211_pwrsave(ni, m);
234 ieee80211_free_node(ni);
235 continue;
236 }
237 /* calculate priority so drivers can find the tx queue */
238 if (ieee80211_classify(ni, m)) {
239 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
240 eh->ether_dhost, NULL,
241 "%s", "classification failure");
242 vap->iv_stats.is_tx_classify++;
243 ifp->if_oerrors++;
244 m_freem(m);
245 ieee80211_free_node(ni);
246 continue;
247 }
248
249 BPF_MTAP(ifp, m); /* 802.11 tx path */
250
251 /*
252 * XXX When ni is associated with a WDS link then
253 * the vap will be the WDS vap but ni_vap will point
254 * to the ap vap the station associated to. Once
255 * we handoff the packet to the driver the callback
256 * to ieee80211_encap won't be able to tell if the
257 * packet should be encapsulated for WDS or not (e.g.
258 * multicast frames will not be handled correctly).
259 * We hack this by marking the mbuf so ieee80211_encap
260 * can do the right thing.
261 */
262 if (vap->iv_opmode == IEEE80211_M_WDS)
263 m->m_flags |= M_WDS;
264 else
265 m->m_flags &= ~M_WDS;
266
267 /*
268 * Stash the node pointer and hand the frame off to
269 * the underlying device. Note that we do this after
270 * any call to ieee80211_dwds_mcast because that code
271 * uses any existing value for rcvif.
272 */
273 m->m_pkthdr.rcvif = (void *)ni;
274
275 /* XXX defer if_start calls? */
276 IFQ_HANDOFF(parent, m, error);
277 if (error != 0) {
278 /* NB: IFQ_HANDOFF reclaims mbuf */
279 ieee80211_free_node(ni);
280 } else {
281 ifp->if_opackets++;
282 }
283 ic->ic_lastdata = ticks;
284 }
285#undef IS_DWDS
286}
287
288/*
289 * 802.11 output routine. This is (currently) used only to
290 * connect bpf write calls to the 802.11 layer for injecting
291 * raw 802.11 frames. Note we locate the ieee80211com from
292 * the ifnet using a spare field setup at attach time. This
293 * will go away when the virtual ap support comes in.
294 */
295int
296ieee80211_output(struct ifnet *ifp, struct mbuf *m,
297 struct sockaddr *dst, struct rtentry *rt0)
298{
299#define senderr(e) do { error = (e); goto bad;} while (0)
300 struct ieee80211_node *ni = NULL;
301 struct ieee80211vap *vap;
302 struct ieee80211_frame *wh;
303 int error;
304
305 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
306 /*
307 * Short-circuit requests if the vap is marked OACTIVE
308 * as this is used when tearing down state to indicate
309 * the vap may be gone. This can also happen because a
310 * packet came down through ieee80211_start before the
311 * vap entered RUN state in which case it's also ok to
312 * just drop the frame. This should not be necessary
313 * but callers of if_output don't check OACTIVE.
314 */
315 senderr(ENETDOWN);
316 }
317 vap = ifp->if_softc;
318 /*
319 * Hand to the 802.3 code if not tagged as
320 * a raw 802.11 frame.
321 */
322 if (dst->sa_family != AF_IEEE80211)
323 return vap->iv_output(ifp, m, dst, rt0);
324#ifdef MAC
325 error = mac_check_ifnet_transmit(ifp, m);
326 if (error)
327 senderr(error);
328#endif
329 if (ifp->if_flags & IFF_MONITOR)
330 senderr(ENETDOWN);
331 if (!IFNET_IS_UP_RUNNING(ifp))
332 senderr(ENETDOWN);
333 if (vap->iv_state == IEEE80211_S_CAC) {
334 IEEE80211_DPRINTF(vap,
335 IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
336 "block %s frame in CAC state\n", "raw data");
337 vap->iv_stats.is_tx_badstate++;
338 senderr(EIO); /* XXX */
339 }
340 /* XXX bypass bridge, pfil, carp, etc. */
341
342 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
343 senderr(EIO); /* XXX */
344 wh = mtod(m, struct ieee80211_frame *);
345 if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
346 IEEE80211_FC0_VERSION_0)
347 senderr(EIO); /* XXX */
348
349 /* locate destination node */
350 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
351 case IEEE80211_FC1_DIR_NODS:
352 case IEEE80211_FC1_DIR_FROMDS:
353 ni = ieee80211_find_txnode(vap, wh->i_addr1);
354 break;
355 case IEEE80211_FC1_DIR_TODS:
356 case IEEE80211_FC1_DIR_DSTODS:
357 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame))
358 senderr(EIO); /* XXX */
359 ni = ieee80211_find_txnode(vap, wh->i_addr3);
360 break;
361 default:
362 senderr(EIO); /* XXX */
363 }
364 if (ni == NULL) {
365 /*
366 * Permit packets w/ bpf params through regardless
367 * (see below about sa_len).
368 */
369 if (dst->sa_len == 0)
370 senderr(EHOSTUNREACH);
371 ni = ieee80211_ref_node(vap->iv_bss);
372 }
373
374 /*
375 * Sanitize mbuf for net80211 flags leaked from above.
376 *
377 * NB: This must be done before ieee80211_classify as
378 * it marks EAPOL in frames with M_EAPOL.
379 */
380 m->m_flags &= ~M_80211_TX;
381
382 /* calculate priority so drivers can find the tx queue */
383 /* XXX assumes an 802.3 frame */
384 if (ieee80211_classify(ni, m))
385 senderr(EIO); /* XXX */
386
387 BPF_MTAP(ifp, m);
388
389 /*
390 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
391 * present by setting the sa_len field of the sockaddr (yes,
392 * this is a hack).
393 * NB: we assume sa_data is suitably aligned to cast.
394 */
395 return vap->iv_ic->ic_raw_xmit(ni, m,
396 (const struct ieee80211_bpf_params *)(dst->sa_len ?
397 dst->sa_data : NULL));
398bad:
399 if (m != NULL)
400 m_freem(m);
401 if (ni != NULL)
402 ieee80211_free_node(ni);
403 return error;
404#undef senderr
405}
406
407/*
408 * Set the direction field and address fields of an outgoing
409 * non-QoS frame. Note this should be called early on in
410 * constructing a frame as it sets i_fc[1]; other bits can
411 * then be or'd in.
412 */
413static void
414ieee80211_send_setup(
415 struct ieee80211_node *ni,
416 struct ieee80211_frame *wh,
417 int type,
418 const uint8_t sa[IEEE80211_ADDR_LEN],
419 const uint8_t da[IEEE80211_ADDR_LEN],
420 const uint8_t bssid[IEEE80211_ADDR_LEN])
421{
422#define WH4(wh) ((struct ieee80211_frame_addr4 *)wh)
423
424 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
425 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
426 struct ieee80211vap *vap = ni->ni_vap;
427
428 switch (vap->iv_opmode) {
429 case IEEE80211_M_STA:
430 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
431 IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
432 IEEE80211_ADDR_COPY(wh->i_addr2, sa);
433 IEEE80211_ADDR_COPY(wh->i_addr3, da);
434 break;
435 case IEEE80211_M_IBSS:
436 case IEEE80211_M_AHDEMO:
437 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
438 IEEE80211_ADDR_COPY(wh->i_addr1, da);
439 IEEE80211_ADDR_COPY(wh->i_addr2, sa);
440 IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
441 break;
442 case IEEE80211_M_HOSTAP:
443 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
444 IEEE80211_ADDR_COPY(wh->i_addr1, da);
445 IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
446 IEEE80211_ADDR_COPY(wh->i_addr3, sa);
447 break;
448 case IEEE80211_M_WDS:
449 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
450 IEEE80211_ADDR_COPY(wh->i_addr1, da);
451 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
452 IEEE80211_ADDR_COPY(wh->i_addr3, da);
453 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
454 break;
455 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */
456 break;
457 }
458 } else {
459 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
460 IEEE80211_ADDR_COPY(wh->i_addr1, da);
461 IEEE80211_ADDR_COPY(wh->i_addr2, sa);
462 IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
463 }
464 *(uint16_t *)&wh->i_dur[0] = 0;
465 /* XXX probe response use per-vap seq#? */
466 /* NB: use non-QoS tid */
467 *(uint16_t *)&wh->i_seq[0] =
468 htole16(ni->ni_txseqs[IEEE80211_NONQOS_TID] << IEEE80211_SEQ_SEQ_SHIFT);
469 ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
470#undef WH4
471}
472
473/*
474 * Send a management frame to the specified node. The node pointer
475 * must have a reference as the pointer will be passed to the driver
476 * and potentially held for a long time. If the frame is successfully
477 * dispatched to the driver, then it is responsible for freeing the
478 * reference (and potentially free'ing up any associated storage);
479 * otherwise deal with reclaiming any reference (on error).
480 */
481int
482ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type)
483{
484 struct ieee80211vap *vap = ni->ni_vap;
485 struct ieee80211com *ic = ni->ni_ic;
486 struct ieee80211_frame *wh;
487
488 KASSERT(ni != NULL, ("null node"));
489
490 if (vap->iv_state == IEEE80211_S_CAC) {
491 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
492 ni, "block %s frame in CAC state",
493 ieee80211_mgt_subtype_name[
494 (type & IEEE80211_FC0_SUBTYPE_MASK) >>
495 IEEE80211_FC0_SUBTYPE_SHIFT]);
496 vap->iv_stats.is_tx_badstate++;
497 ieee80211_free_node(ni);
498 m_freem(m);
499 return EIO; /* XXX */
500 }
501
502 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
503 if (m == NULL) {
504 ieee80211_free_node(ni);
505 return ENOMEM;
506 }
507
508 wh = mtod(m, struct ieee80211_frame *);
509 ieee80211_send_setup(ni, wh,
510 IEEE80211_FC0_TYPE_MGT | type,
511 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
512 if ((m->m_flags & M_LINK0) != 0 && ni->ni_challenge != NULL) {
513 m->m_flags &= ~M_LINK0;
514 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
515 "encrypting frame (%s)", __func__);
516 wh->i_fc[1] |= IEEE80211_FC1_WEP;
517 }
518 if (type != IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
519 /* NB: force non-ProbeResp frames to the highest queue */
520 M_WME_SETAC(m, WME_AC_VO);
521 } else
522 M_WME_SETAC(m, WME_AC_BE);
523#ifdef IEEE80211_DEBUG
524 /* avoid printing too many frames */
525 if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
526 ieee80211_msg_dumppkts(vap)) {
527 printf("[%s] send %s on channel %u\n",
528 ether_sprintf(wh->i_addr1),
529 ieee80211_mgt_subtype_name[
530 (type & IEEE80211_FC0_SUBTYPE_MASK) >>
531 IEEE80211_FC0_SUBTYPE_SHIFT],
532 ieee80211_chan2ieee(ic, ic->ic_curchan));
533 }
534#endif
535 IEEE80211_NODE_STAT(ni, tx_mgmt);
536
537 return ic->ic_raw_xmit(ni, m, NULL);
538}
539
540/*
541 * Send a null data frame to the specified node.
542 *
543 * NB: the caller is assumed to have setup a node reference
544 * for use; this is necessary to deal with a race condition
545 * when probing for inactive stations. Like ieee80211_mgmt_output
546 * we must cleanup any node reference on error; however we
547 * can safely just unref it as we know it will never be the
548 * last reference to the node.
549 */
550int
551ieee80211_send_nulldata(struct ieee80211_node *ni)
552{
553 struct ieee80211vap *vap = ni->ni_vap;
554 struct ieee80211com *ic = ni->ni_ic;
555 struct mbuf *m;
556 struct ieee80211_frame *wh;
557
558 if (vap->iv_state == IEEE80211_S_CAC) {
559 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
560 ni, "block %s frame in CAC state", "null data");
561 ieee80211_unref_node(&ni);
562 vap->iv_stats.is_tx_badstate++;
563 return EIO; /* XXX */
564 }
565
566 m = m_gethdr(M_NOWAIT, MT_HEADER);
567 if (m == NULL) {
568 /* XXX debug msg */
569 ieee80211_unref_node(&ni);
570 vap->iv_stats.is_tx_nobuf++;
571 return ENOMEM;
572 }
573 MH_ALIGN(m, sizeof(struct ieee80211_frame));
574
575 wh = mtod(m, struct ieee80211_frame *);
576 ieee80211_send_setup(ni, wh,
577 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
578 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
579 if (vap->iv_opmode != IEEE80211_M_WDS) {
580 /* NB: power management bit is never sent by an AP */
581 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
582 vap->iv_opmode != IEEE80211_M_HOSTAP)
583 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
584 m->m_len = m->m_pkthdr.len = sizeof(struct ieee80211_frame);
585 } else {
586 /* NB: 4-address frame */
587 m->m_len = m->m_pkthdr.len =
588 sizeof(struct ieee80211_frame_addr4);
589 }
590 M_WME_SETAC(m, WME_AC_BE);
591
592 IEEE80211_NODE_STAT(ni, tx_data);
593
594 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
595 "send null data frame on channel %u, pwr mgt %s",
596 ieee80211_chan2ieee(ic, ic->ic_curchan),
597 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
598
599 return ic->ic_raw_xmit(ni, m, NULL);
600}
601
602/*
603 * Assign priority to a frame based on any vlan tag assigned
604 * to the station and/or any Diffserv setting in an IP header.
605 * Finally, if an ACM policy is setup (in station mode) it's
606 * applied.
607 */
608int
609ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
610{
611 const struct ether_header *eh = mtod(m, struct ether_header *);
612 int v_wme_ac, d_wme_ac, ac;
613
614 /*
615 * Always promote PAE/EAPOL frames to high priority.
616 */
617 if (eh->ether_type == htons(ETHERTYPE_PAE)) {
618 /* NB: mark so others don't need to check header */
619 m->m_flags |= M_EAPOL;
620 ac = WME_AC_VO;
621 goto done;
622 }
623 /*
624 * Non-qos traffic goes to BE.
625 */
626 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
627 ac = WME_AC_BE;
628 goto done;
629 }
630
631 /*
632 * If node has a vlan tag then all traffic
633 * to it must have a matching tag.
634 */
635 v_wme_ac = 0;
636 if (ni->ni_vlan != 0) {
637 if ((m->m_flags & M_VLANTAG) == 0) {
638 IEEE80211_NODE_STAT(ni, tx_novlantag);
639 return 1;
640 }
641 if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
642 EVL_VLANOFTAG(ni->ni_vlan)) {
643 IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
644 return 1;
645 }
646 /* map vlan priority to AC */
647 v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
648 }
649
650#ifdef INET
651 if (eh->ether_type == htons(ETHERTYPE_IP)) {
652 uint8_t tos;
653 /*
654 * IP frame, map the DSCP bits from the TOS field.
655 */
656 /* XXX m_copydata may be too slow for fast path */
657 /* NB: ip header may not be in first mbuf */
658 m_copydata(m, sizeof(struct ether_header) +
659 offsetof(struct ip, ip_tos), sizeof(tos), &tos);
660 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */
661 d_wme_ac = TID_TO_WME_AC(tos);
662 } else {
663#endif /* INET */
664 d_wme_ac = WME_AC_BE;
665#ifdef INET
666 }
667#endif
668 /*
669 * Use highest priority AC.
670 */
671 if (v_wme_ac > d_wme_ac)
672 ac = v_wme_ac;
673 else
674 ac = d_wme_ac;
675
676 /*
677 * Apply ACM policy.
678 */
679 if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
680 static const int acmap[4] = {
681 WME_AC_BK, /* WME_AC_BE */
682 WME_AC_BK, /* WME_AC_BK */
683 WME_AC_BE, /* WME_AC_VI */
684 WME_AC_VI, /* WME_AC_VO */
685 };
686 struct ieee80211com *ic = ni->ni_ic;
687
688 while (ac != WME_AC_BK &&
689 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
690 ac = acmap[ac];
691 }
692done:
693 M_WME_SETAC(m, ac);
694 return 0;
695}
696
697/*
698 * Insure there is sufficient contiguous space to encapsulate the
699 * 802.11 data frame. If room isn't already there, arrange for it.
700 * Drivers and cipher modules assume we have done the necessary work
701 * and fail rudely if they don't find the space they need.
702 */
703static struct mbuf *
704ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
705 struct ieee80211_key *key, struct mbuf *m)
706{
707#define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc))
708 int needed_space = vap->iv_ic->ic_headroom + hdrsize;
709
710 if (key != NULL) {
711 /* XXX belongs in crypto code? */
712 needed_space += key->wk_cipher->ic_header;
713 /* XXX frags */
714 /*
715 * When crypto is being done in the host we must insure
716 * the data are writable for the cipher routines; clone
717 * a writable mbuf chain.
718 * XXX handle SWMIC specially
719 */
29
30#include "opt_inet.h"
31#include "opt_wlan.h"
32
33#include <sys/param.h>
34#include <sys/systm.h>
35#include <sys/mbuf.h>
36#include <sys/kernel.h>
37#include <sys/endian.h>
38
39#include <sys/socket.h>
40
41#include <net/bpf.h>
42#include <net/ethernet.h>
43#include <net/if.h>
44#include <net/if_llc.h>
45#include <net/if_media.h>
46#include <net/if_vlan_var.h>
47
48#include <net80211/ieee80211_var.h>
49#include <net80211/ieee80211_regdomain.h>
50#include <net80211/ieee80211_wds.h>
51
52#ifdef INET
53#include <netinet/in.h>
54#include <netinet/if_ether.h>
55#include <netinet/in_systm.h>
56#include <netinet/ip.h>
57#endif
58
59#define ETHER_HEADER_COPY(dst, src) \
60 memcpy(dst, src, sizeof(struct ether_header))
61
62static struct mbuf *ieee80211_encap_fastframe(struct ieee80211vap *,
63 struct mbuf *m1, const struct ether_header *eh1,
64 struct mbuf *m2, const struct ether_header *eh2);
65static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
66 u_int hdrsize, u_int ciphdrsize, u_int mtu);
67static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
68
69#ifdef IEEE80211_DEBUG
70/*
71 * Decide if an outbound management frame should be
72 * printed when debugging is enabled. This filters some
73 * of the less interesting frames that come frequently
74 * (e.g. beacons).
75 */
76static __inline int
77doprint(struct ieee80211vap *vap, int subtype)
78{
79 switch (subtype) {
80 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
81 return (vap->iv_opmode == IEEE80211_M_IBSS);
82 }
83 return 1;
84}
85#endif
86
87/*
88 * Start method for vap's. All packets from the stack come
89 * through here. We handle common processing of the packets
90 * before dispatching them to the underlying device.
91 */
92void
93ieee80211_start(struct ifnet *ifp)
94{
95#define IS_DWDS(vap) \
96 (vap->iv_opmode == IEEE80211_M_WDS && \
97 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
98 struct ieee80211vap *vap = ifp->if_softc;
99 struct ieee80211com *ic = vap->iv_ic;
100 struct ifnet *parent = ic->ic_ifp;
101 struct ieee80211_node *ni;
102 struct mbuf *m;
103 struct ether_header *eh;
104 int error;
105
106 /* NB: parent must be up and running */
107 if (!IFNET_IS_UP_RUNNING(parent)) {
108 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
109 "%s: ignore queue, parent %s not up+running\n",
110 __func__, parent->if_xname);
111 /* XXX stat */
112 return;
113 }
114 if (vap->iv_state == IEEE80211_S_SLEEP) {
115 /*
116 * In power save, wakeup device for transmit.
117 */
118 ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
119 return;
120 }
121 /*
122 * No data frames go out unless we're running.
123 * Note in particular this covers CAC and CSA
124 * states (though maybe we should check muting
125 * for CSA).
126 */
127 if (vap->iv_state != IEEE80211_S_RUN) {
128 IEEE80211_LOCK(ic);
129 /* re-check under the com lock to avoid races */
130 if (vap->iv_state != IEEE80211_S_RUN) {
131 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
132 "%s: ignore queue, in %s state\n",
133 __func__, ieee80211_state_name[vap->iv_state]);
134 vap->iv_stats.is_tx_badstate++;
135 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
136 IEEE80211_UNLOCK(ic);
137 return;
138 }
139 IEEE80211_UNLOCK(ic);
140 }
141 for (;;) {
142 IFQ_DEQUEUE(&ifp->if_snd, m);
143 if (m == NULL)
144 break;
145 /*
146 * Sanitize mbuf flags for net80211 use. We cannot
147 * clear M_PWR_SAV because this may be set for frames
148 * that are re-submitted from the power save queue.
149 *
150 * NB: This must be done before ieee80211_classify as
151 * it marks EAPOL in frames with M_EAPOL.
152 */
153 m->m_flags &= ~(M_80211_TX - M_PWR_SAV);
154 /*
155 * Cancel any background scan.
156 */
157 if (ic->ic_flags & IEEE80211_F_SCAN)
158 ieee80211_cancel_anyscan(vap);
159 /*
160 * Find the node for the destination so we can do
161 * things like power save and fast frames aggregation.
162 *
163 * NB: past this point various code assumes the first
164 * mbuf has the 802.3 header present (and contiguous).
165 */
166 ni = NULL;
167 if (m->m_len < sizeof(struct ether_header) &&
168 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
169 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
170 "discard frame, %s\n", "m_pullup failed");
171 vap->iv_stats.is_tx_nobuf++; /* XXX */
172 ifp->if_oerrors++;
173 continue;
174 }
175 eh = mtod(m, struct ether_header *);
176 if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
177 if (IS_DWDS(vap)) {
178 /*
179 * Only unicast frames from the above go out
180 * DWDS vaps; multicast frames are handled by
181 * dispatching the frame as it comes through
182 * the AP vap (see below).
183 */
184 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
185 eh->ether_dhost, "mcast", "%s", "on DWDS");
186 vap->iv_stats.is_dwds_mcast++;
187 m_freem(m);
188 continue;
189 }
190 if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
191 /*
192 * Spam DWDS vap's w/ multicast traffic.
193 */
194 /* XXX only if dwds in use? */
195 ieee80211_dwds_mcast(vap, m);
196 }
197 }
198 ni = ieee80211_find_txnode(vap, eh->ether_dhost);
199 if (ni == NULL) {
200 /* NB: ieee80211_find_txnode does stat+msg */
201 ifp->if_oerrors++;
202 m_freem(m);
203 continue;
204 }
205 /* XXX AUTH'd */
206 if (ni->ni_associd == 0) {
207 /*
208 * Destination is not associated; must special
209 * case DWDS where we point iv_bss at the node
210 * for the associated station.
211 * XXX adhoc mode?
212 */
213 if (ni != vap->iv_bss || IS_DWDS(vap)) {
214 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
215 eh->ether_dhost, NULL,
216 "sta not associated (type 0x%04x)",
217 htons(eh->ether_type));
218 vap->iv_stats.is_tx_notassoc++;
219 ifp->if_oerrors++;
220 m_freem(m);
221 ieee80211_free_node(ni);
222 continue;
223 }
224 }
225 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
226 (m->m_flags & M_PWR_SAV) == 0) {
227 /*
228 * Station in power save mode; pass the frame
229 * to the 802.11 layer and continue. We'll get
230 * the frame back when the time is right.
231 * XXX lose WDS vap linkage?
232 */
233 ieee80211_pwrsave(ni, m);
234 ieee80211_free_node(ni);
235 continue;
236 }
237 /* calculate priority so drivers can find the tx queue */
238 if (ieee80211_classify(ni, m)) {
239 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
240 eh->ether_dhost, NULL,
241 "%s", "classification failure");
242 vap->iv_stats.is_tx_classify++;
243 ifp->if_oerrors++;
244 m_freem(m);
245 ieee80211_free_node(ni);
246 continue;
247 }
248
249 BPF_MTAP(ifp, m); /* 802.11 tx path */
250
251 /*
252 * XXX When ni is associated with a WDS link then
253 * the vap will be the WDS vap but ni_vap will point
254 * to the ap vap the station associated to. Once
255 * we handoff the packet to the driver the callback
256 * to ieee80211_encap won't be able to tell if the
257 * packet should be encapsulated for WDS or not (e.g.
258 * multicast frames will not be handled correctly).
259 * We hack this by marking the mbuf so ieee80211_encap
260 * can do the right thing.
261 */
262 if (vap->iv_opmode == IEEE80211_M_WDS)
263 m->m_flags |= M_WDS;
264 else
265 m->m_flags &= ~M_WDS;
266
267 /*
268 * Stash the node pointer and hand the frame off to
269 * the underlying device. Note that we do this after
270 * any call to ieee80211_dwds_mcast because that code
271 * uses any existing value for rcvif.
272 */
273 m->m_pkthdr.rcvif = (void *)ni;
274
275 /* XXX defer if_start calls? */
276 IFQ_HANDOFF(parent, m, error);
277 if (error != 0) {
278 /* NB: IFQ_HANDOFF reclaims mbuf */
279 ieee80211_free_node(ni);
280 } else {
281 ifp->if_opackets++;
282 }
283 ic->ic_lastdata = ticks;
284 }
285#undef IS_DWDS
286}
287
288/*
289 * 802.11 output routine. This is (currently) used only to
290 * connect bpf write calls to the 802.11 layer for injecting
291 * raw 802.11 frames. Note we locate the ieee80211com from
292 * the ifnet using a spare field setup at attach time. This
293 * will go away when the virtual ap support comes in.
294 */
295int
296ieee80211_output(struct ifnet *ifp, struct mbuf *m,
297 struct sockaddr *dst, struct rtentry *rt0)
298{
299#define senderr(e) do { error = (e); goto bad;} while (0)
300 struct ieee80211_node *ni = NULL;
301 struct ieee80211vap *vap;
302 struct ieee80211_frame *wh;
303 int error;
304
305 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
306 /*
307 * Short-circuit requests if the vap is marked OACTIVE
308 * as this is used when tearing down state to indicate
309 * the vap may be gone. This can also happen because a
310 * packet came down through ieee80211_start before the
311 * vap entered RUN state in which case it's also ok to
312 * just drop the frame. This should not be necessary
313 * but callers of if_output don't check OACTIVE.
314 */
315 senderr(ENETDOWN);
316 }
317 vap = ifp->if_softc;
318 /*
319 * Hand to the 802.3 code if not tagged as
320 * a raw 802.11 frame.
321 */
322 if (dst->sa_family != AF_IEEE80211)
323 return vap->iv_output(ifp, m, dst, rt0);
324#ifdef MAC
325 error = mac_check_ifnet_transmit(ifp, m);
326 if (error)
327 senderr(error);
328#endif
329 if (ifp->if_flags & IFF_MONITOR)
330 senderr(ENETDOWN);
331 if (!IFNET_IS_UP_RUNNING(ifp))
332 senderr(ENETDOWN);
333 if (vap->iv_state == IEEE80211_S_CAC) {
334 IEEE80211_DPRINTF(vap,
335 IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
336 "block %s frame in CAC state\n", "raw data");
337 vap->iv_stats.is_tx_badstate++;
338 senderr(EIO); /* XXX */
339 }
340 /* XXX bypass bridge, pfil, carp, etc. */
341
342 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
343 senderr(EIO); /* XXX */
344 wh = mtod(m, struct ieee80211_frame *);
345 if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
346 IEEE80211_FC0_VERSION_0)
347 senderr(EIO); /* XXX */
348
349 /* locate destination node */
350 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
351 case IEEE80211_FC1_DIR_NODS:
352 case IEEE80211_FC1_DIR_FROMDS:
353 ni = ieee80211_find_txnode(vap, wh->i_addr1);
354 break;
355 case IEEE80211_FC1_DIR_TODS:
356 case IEEE80211_FC1_DIR_DSTODS:
357 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame))
358 senderr(EIO); /* XXX */
359 ni = ieee80211_find_txnode(vap, wh->i_addr3);
360 break;
361 default:
362 senderr(EIO); /* XXX */
363 }
364 if (ni == NULL) {
365 /*
366 * Permit packets w/ bpf params through regardless
367 * (see below about sa_len).
368 */
369 if (dst->sa_len == 0)
370 senderr(EHOSTUNREACH);
371 ni = ieee80211_ref_node(vap->iv_bss);
372 }
373
374 /*
375 * Sanitize mbuf for net80211 flags leaked from above.
376 *
377 * NB: This must be done before ieee80211_classify as
378 * it marks EAPOL in frames with M_EAPOL.
379 */
380 m->m_flags &= ~M_80211_TX;
381
382 /* calculate priority so drivers can find the tx queue */
383 /* XXX assumes an 802.3 frame */
384 if (ieee80211_classify(ni, m))
385 senderr(EIO); /* XXX */
386
387 BPF_MTAP(ifp, m);
388
389 /*
390 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
391 * present by setting the sa_len field of the sockaddr (yes,
392 * this is a hack).
393 * NB: we assume sa_data is suitably aligned to cast.
394 */
395 return vap->iv_ic->ic_raw_xmit(ni, m,
396 (const struct ieee80211_bpf_params *)(dst->sa_len ?
397 dst->sa_data : NULL));
398bad:
399 if (m != NULL)
400 m_freem(m);
401 if (ni != NULL)
402 ieee80211_free_node(ni);
403 return error;
404#undef senderr
405}
406
407/*
408 * Set the direction field and address fields of an outgoing
409 * non-QoS frame. Note this should be called early on in
410 * constructing a frame as it sets i_fc[1]; other bits can
411 * then be or'd in.
412 */
413static void
414ieee80211_send_setup(
415 struct ieee80211_node *ni,
416 struct ieee80211_frame *wh,
417 int type,
418 const uint8_t sa[IEEE80211_ADDR_LEN],
419 const uint8_t da[IEEE80211_ADDR_LEN],
420 const uint8_t bssid[IEEE80211_ADDR_LEN])
421{
422#define WH4(wh) ((struct ieee80211_frame_addr4 *)wh)
423
424 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
425 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
426 struct ieee80211vap *vap = ni->ni_vap;
427
428 switch (vap->iv_opmode) {
429 case IEEE80211_M_STA:
430 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
431 IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
432 IEEE80211_ADDR_COPY(wh->i_addr2, sa);
433 IEEE80211_ADDR_COPY(wh->i_addr3, da);
434 break;
435 case IEEE80211_M_IBSS:
436 case IEEE80211_M_AHDEMO:
437 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
438 IEEE80211_ADDR_COPY(wh->i_addr1, da);
439 IEEE80211_ADDR_COPY(wh->i_addr2, sa);
440 IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
441 break;
442 case IEEE80211_M_HOSTAP:
443 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
444 IEEE80211_ADDR_COPY(wh->i_addr1, da);
445 IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
446 IEEE80211_ADDR_COPY(wh->i_addr3, sa);
447 break;
448 case IEEE80211_M_WDS:
449 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
450 IEEE80211_ADDR_COPY(wh->i_addr1, da);
451 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
452 IEEE80211_ADDR_COPY(wh->i_addr3, da);
453 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
454 break;
455 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */
456 break;
457 }
458 } else {
459 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
460 IEEE80211_ADDR_COPY(wh->i_addr1, da);
461 IEEE80211_ADDR_COPY(wh->i_addr2, sa);
462 IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
463 }
464 *(uint16_t *)&wh->i_dur[0] = 0;
465 /* XXX probe response use per-vap seq#? */
466 /* NB: use non-QoS tid */
467 *(uint16_t *)&wh->i_seq[0] =
468 htole16(ni->ni_txseqs[IEEE80211_NONQOS_TID] << IEEE80211_SEQ_SEQ_SHIFT);
469 ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
470#undef WH4
471}
472
473/*
474 * Send a management frame to the specified node. The node pointer
475 * must have a reference as the pointer will be passed to the driver
476 * and potentially held for a long time. If the frame is successfully
477 * dispatched to the driver, then it is responsible for freeing the
478 * reference (and potentially free'ing up any associated storage);
479 * otherwise deal with reclaiming any reference (on error).
480 */
481int
482ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type)
483{
484 struct ieee80211vap *vap = ni->ni_vap;
485 struct ieee80211com *ic = ni->ni_ic;
486 struct ieee80211_frame *wh;
487
488 KASSERT(ni != NULL, ("null node"));
489
490 if (vap->iv_state == IEEE80211_S_CAC) {
491 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
492 ni, "block %s frame in CAC state",
493 ieee80211_mgt_subtype_name[
494 (type & IEEE80211_FC0_SUBTYPE_MASK) >>
495 IEEE80211_FC0_SUBTYPE_SHIFT]);
496 vap->iv_stats.is_tx_badstate++;
497 ieee80211_free_node(ni);
498 m_freem(m);
499 return EIO; /* XXX */
500 }
501
502 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
503 if (m == NULL) {
504 ieee80211_free_node(ni);
505 return ENOMEM;
506 }
507
508 wh = mtod(m, struct ieee80211_frame *);
509 ieee80211_send_setup(ni, wh,
510 IEEE80211_FC0_TYPE_MGT | type,
511 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
512 if ((m->m_flags & M_LINK0) != 0 && ni->ni_challenge != NULL) {
513 m->m_flags &= ~M_LINK0;
514 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
515 "encrypting frame (%s)", __func__);
516 wh->i_fc[1] |= IEEE80211_FC1_WEP;
517 }
518 if (type != IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
519 /* NB: force non-ProbeResp frames to the highest queue */
520 M_WME_SETAC(m, WME_AC_VO);
521 } else
522 M_WME_SETAC(m, WME_AC_BE);
523#ifdef IEEE80211_DEBUG
524 /* avoid printing too many frames */
525 if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
526 ieee80211_msg_dumppkts(vap)) {
527 printf("[%s] send %s on channel %u\n",
528 ether_sprintf(wh->i_addr1),
529 ieee80211_mgt_subtype_name[
530 (type & IEEE80211_FC0_SUBTYPE_MASK) >>
531 IEEE80211_FC0_SUBTYPE_SHIFT],
532 ieee80211_chan2ieee(ic, ic->ic_curchan));
533 }
534#endif
535 IEEE80211_NODE_STAT(ni, tx_mgmt);
536
537 return ic->ic_raw_xmit(ni, m, NULL);
538}
539
540/*
541 * Send a null data frame to the specified node.
542 *
543 * NB: the caller is assumed to have setup a node reference
544 * for use; this is necessary to deal with a race condition
545 * when probing for inactive stations. Like ieee80211_mgmt_output
546 * we must cleanup any node reference on error; however we
547 * can safely just unref it as we know it will never be the
548 * last reference to the node.
549 */
550int
551ieee80211_send_nulldata(struct ieee80211_node *ni)
552{
553 struct ieee80211vap *vap = ni->ni_vap;
554 struct ieee80211com *ic = ni->ni_ic;
555 struct mbuf *m;
556 struct ieee80211_frame *wh;
557
558 if (vap->iv_state == IEEE80211_S_CAC) {
559 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
560 ni, "block %s frame in CAC state", "null data");
561 ieee80211_unref_node(&ni);
562 vap->iv_stats.is_tx_badstate++;
563 return EIO; /* XXX */
564 }
565
566 m = m_gethdr(M_NOWAIT, MT_HEADER);
567 if (m == NULL) {
568 /* XXX debug msg */
569 ieee80211_unref_node(&ni);
570 vap->iv_stats.is_tx_nobuf++;
571 return ENOMEM;
572 }
573 MH_ALIGN(m, sizeof(struct ieee80211_frame));
574
575 wh = mtod(m, struct ieee80211_frame *);
576 ieee80211_send_setup(ni, wh,
577 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
578 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
579 if (vap->iv_opmode != IEEE80211_M_WDS) {
580 /* NB: power management bit is never sent by an AP */
581 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
582 vap->iv_opmode != IEEE80211_M_HOSTAP)
583 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
584 m->m_len = m->m_pkthdr.len = sizeof(struct ieee80211_frame);
585 } else {
586 /* NB: 4-address frame */
587 m->m_len = m->m_pkthdr.len =
588 sizeof(struct ieee80211_frame_addr4);
589 }
590 M_WME_SETAC(m, WME_AC_BE);
591
592 IEEE80211_NODE_STAT(ni, tx_data);
593
594 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
595 "send null data frame on channel %u, pwr mgt %s",
596 ieee80211_chan2ieee(ic, ic->ic_curchan),
597 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
598
599 return ic->ic_raw_xmit(ni, m, NULL);
600}
601
602/*
603 * Assign priority to a frame based on any vlan tag assigned
604 * to the station and/or any Diffserv setting in an IP header.
605 * Finally, if an ACM policy is setup (in station mode) it's
606 * applied.
607 */
608int
609ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
610{
611 const struct ether_header *eh = mtod(m, struct ether_header *);
612 int v_wme_ac, d_wme_ac, ac;
613
614 /*
615 * Always promote PAE/EAPOL frames to high priority.
616 */
617 if (eh->ether_type == htons(ETHERTYPE_PAE)) {
618 /* NB: mark so others don't need to check header */
619 m->m_flags |= M_EAPOL;
620 ac = WME_AC_VO;
621 goto done;
622 }
623 /*
624 * Non-qos traffic goes to BE.
625 */
626 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
627 ac = WME_AC_BE;
628 goto done;
629 }
630
631 /*
632 * If node has a vlan tag then all traffic
633 * to it must have a matching tag.
634 */
635 v_wme_ac = 0;
636 if (ni->ni_vlan != 0) {
637 if ((m->m_flags & M_VLANTAG) == 0) {
638 IEEE80211_NODE_STAT(ni, tx_novlantag);
639 return 1;
640 }
641 if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
642 EVL_VLANOFTAG(ni->ni_vlan)) {
643 IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
644 return 1;
645 }
646 /* map vlan priority to AC */
647 v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
648 }
649
650#ifdef INET
651 if (eh->ether_type == htons(ETHERTYPE_IP)) {
652 uint8_t tos;
653 /*
654 * IP frame, map the DSCP bits from the TOS field.
655 */
656 /* XXX m_copydata may be too slow for fast path */
657 /* NB: ip header may not be in first mbuf */
658 m_copydata(m, sizeof(struct ether_header) +
659 offsetof(struct ip, ip_tos), sizeof(tos), &tos);
660 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */
661 d_wme_ac = TID_TO_WME_AC(tos);
662 } else {
663#endif /* INET */
664 d_wme_ac = WME_AC_BE;
665#ifdef INET
666 }
667#endif
668 /*
669 * Use highest priority AC.
670 */
671 if (v_wme_ac > d_wme_ac)
672 ac = v_wme_ac;
673 else
674 ac = d_wme_ac;
675
676 /*
677 * Apply ACM policy.
678 */
679 if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
680 static const int acmap[4] = {
681 WME_AC_BK, /* WME_AC_BE */
682 WME_AC_BK, /* WME_AC_BK */
683 WME_AC_BE, /* WME_AC_VI */
684 WME_AC_VI, /* WME_AC_VO */
685 };
686 struct ieee80211com *ic = ni->ni_ic;
687
688 while (ac != WME_AC_BK &&
689 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
690 ac = acmap[ac];
691 }
692done:
693 M_WME_SETAC(m, ac);
694 return 0;
695}
696
697/*
698 * Insure there is sufficient contiguous space to encapsulate the
699 * 802.11 data frame. If room isn't already there, arrange for it.
700 * Drivers and cipher modules assume we have done the necessary work
701 * and fail rudely if they don't find the space they need.
702 */
703static struct mbuf *
704ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
705 struct ieee80211_key *key, struct mbuf *m)
706{
707#define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc))
708 int needed_space = vap->iv_ic->ic_headroom + hdrsize;
709
710 if (key != NULL) {
711 /* XXX belongs in crypto code? */
712 needed_space += key->wk_cipher->ic_header;
713 /* XXX frags */
714 /*
715 * When crypto is being done in the host we must insure
716 * the data are writable for the cipher routines; clone
717 * a writable mbuf chain.
718 * XXX handle SWMIC specially
719 */
720 if (key->wk_flags & (IEEE80211_KEY_SWCRYPT|IEEE80211_KEY_SWMIC)) {
720 if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
721 m = m_unshare(m, M_NOWAIT);
722 if (m == NULL) {
723 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
724 "%s: cannot get writable mbuf\n", __func__);
725 vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
726 return NULL;
727 }
728 }
729 }
730 /*
731 * We know we are called just before stripping an Ethernet
732 * header and prepending an LLC header. This means we know
733 * there will be
734 * sizeof(struct ether_header) - sizeof(struct llc)
735 * bytes recovered to which we need additional space for the
736 * 802.11 header and any crypto header.
737 */
738 /* XXX check trailing space and copy instead? */
739 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
740 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
741 if (n == NULL) {
742 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
743 "%s: cannot expand storage\n", __func__);
744 vap->iv_stats.is_tx_nobuf++;
745 m_freem(m);
746 return NULL;
747 }
748 KASSERT(needed_space <= MHLEN,
749 ("not enough room, need %u got %zu\n", needed_space, MHLEN));
750 /*
751 * Setup new mbuf to have leading space to prepend the
752 * 802.11 header and any crypto header bits that are
753 * required (the latter are added when the driver calls
754 * back to ieee80211_crypto_encap to do crypto encapsulation).
755 */
756 /* NB: must be first 'cuz it clobbers m_data */
757 m_move_pkthdr(n, m);
758 n->m_len = 0; /* NB: m_gethdr does not set */
759 n->m_data += needed_space;
760 /*
761 * Pull up Ethernet header to create the expected layout.
762 * We could use m_pullup but that's overkill (i.e. we don't
763 * need the actual data) and it cannot fail so do it inline
764 * for speed.
765 */
766 /* NB: struct ether_header is known to be contiguous */
767 n->m_len += sizeof(struct ether_header);
768 m->m_len -= sizeof(struct ether_header);
769 m->m_data += sizeof(struct ether_header);
770 /*
771 * Replace the head of the chain.
772 */
773 n->m_next = m;
774 m = n;
775 }
776 return m;
777#undef TO_BE_RECLAIMED
778}
779
780/*
781 * Return the transmit key to use in sending a unicast frame.
782 * If a unicast key is set we use that. When no unicast key is set
783 * we fall back to the default transmit key.
784 */
785static __inline struct ieee80211_key *
786ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
787 struct ieee80211_node *ni)
788{
789 if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
790 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
791 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
792 return NULL;
793 return &vap->iv_nw_keys[vap->iv_def_txkey];
794 } else {
795 return &ni->ni_ucastkey;
796 }
797}
798
799/*
800 * Return the transmit key to use in sending a multicast frame.
801 * Multicast traffic always uses the group key which is installed as
802 * the default tx key.
803 */
804static __inline struct ieee80211_key *
805ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
806 struct ieee80211_node *ni)
807{
808 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
809 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
810 return NULL;
811 return &vap->iv_nw_keys[vap->iv_def_txkey];
812}
813
814/*
815 * Encapsulate an outbound data frame. The mbuf chain is updated.
816 * If an error is encountered NULL is returned. The caller is required
817 * to provide a node reference and pullup the ethernet header in the
818 * first mbuf.
819 *
820 * NB: Packet is assumed to be processed by ieee80211_classify which
821 * marked EAPOL frames w/ M_EAPOL.
822 */
823struct mbuf *
824ieee80211_encap(struct ieee80211_node *ni, struct mbuf *m)
825{
826#define WH4(wh) ((struct ieee80211_frame_addr4 *)(wh))
827 struct ieee80211vap *vap = ni->ni_vap;
828 struct ieee80211com *ic = ni->ni_ic;
829 struct ether_header eh;
830 struct ieee80211_frame *wh;
831 struct ieee80211_key *key;
832 struct llc *llc;
833 int hdrsize, hdrspace, datalen, addqos, txfrag, isff, is4addr;
834
835 /*
836 * Copy existing Ethernet header to a safe place. The
837 * rest of the code assumes it's ok to strip it when
838 * reorganizing state for the final encapsulation.
839 */
840 KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
841 ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
842
843 /*
844 * Insure space for additional headers. First identify
845 * transmit key to use in calculating any buffer adjustments
846 * required. This is also used below to do privacy
847 * encapsulation work. Then calculate the 802.11 header
848 * size and any padding required by the driver.
849 *
850 * Note key may be NULL if we fall back to the default
851 * transmit key and that is not set. In that case the
852 * buffer may not be expanded as needed by the cipher
853 * routines, but they will/should discard it.
854 */
855 if (vap->iv_flags & IEEE80211_F_PRIVACY) {
856 if (vap->iv_opmode == IEEE80211_M_STA ||
857 !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
858 (vap->iv_opmode == IEEE80211_M_WDS &&
859 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
860 key = ieee80211_crypto_getucastkey(vap, ni);
861 else
862 key = ieee80211_crypto_getmcastkey(vap, ni);
863 if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
864 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
865 eh.ether_dhost,
866 "no default transmit key (%s) deftxkey %u",
867 __func__, vap->iv_def_txkey);
868 vap->iv_stats.is_tx_nodefkey++;
869 goto bad;
870 }
871 } else
872 key = NULL;
873 /*
874 * XXX Some ap's don't handle QoS-encapsulated EAPOL
875 * frames so suppress use. This may be an issue if other
876 * ap's require all data frames to be QoS-encapsulated
877 * once negotiated in which case we'll need to make this
878 * configurable.
879 */
880 addqos = (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) &&
881 (m->m_flags & M_EAPOL) == 0;
882 if (addqos)
883 hdrsize = sizeof(struct ieee80211_qosframe);
884 else
885 hdrsize = sizeof(struct ieee80211_frame);
886 /*
887 * 4-address frames need to be generated for:
888 * o packets sent through a WDS vap (M_WDS || IEEE80211_M_WDS)
889 * o packets relayed by a station operating with dynamic WDS
890 * (IEEE80211_M_STA+IEEE80211_F_DWDS and src address)
891 */
892 is4addr = (m->m_flags & M_WDS) ||
893 vap->iv_opmode == IEEE80211_M_WDS || /* XXX redundant? */
894 (vap->iv_opmode == IEEE80211_M_STA &&
895 (vap->iv_flags & IEEE80211_F_DWDS) &&
896 !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
897 if (is4addr)
898 hdrsize += IEEE80211_ADDR_LEN;
899 /*
900 * Honor driver DATAPAD requirement.
901 */
902 if (ic->ic_flags & IEEE80211_F_DATAPAD)
903 hdrspace = roundup(hdrsize, sizeof(uint32_t));
904 else
905 hdrspace = hdrsize;
906
907 if ((isff = m->m_flags & M_FF) != 0) {
908 struct mbuf *m2;
909 struct ether_header eh2;
910
911 /*
912 * Fast frame encapsulation. There must be two packets
913 * chained with m_nextpkt. We do header adjustment for
914 * each, add the tunnel encapsulation, and then concatenate
915 * the mbuf chains to form a single frame for transmission.
916 */
917 m2 = m->m_nextpkt;
918 if (m2 == NULL) {
919 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
920 "%s: only one frame\n", __func__);
921 goto bad;
922 }
923 m->m_nextpkt = NULL;
924 /*
925 * Include fast frame headers in adjusting header
926 * layout; this allocates space according to what
927 * ieee80211_encap_fastframe will do.
928 */
929 m = ieee80211_mbuf_adjust(vap,
930 hdrspace + sizeof(struct llc) + sizeof(uint32_t) + 2 +
931 sizeof(struct ether_header),
932 key, m);
933 if (m == NULL) {
934 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */
935 m_freem(m2);
936 goto bad;
937 }
938 /*
939 * Copy second frame's Ethernet header out of line
940 * and adjust for encapsulation headers. Note that
941 * we make room for padding in case there isn't room
942 * at the end of first frame.
943 */
944 KASSERT(m2->m_len >= sizeof(eh2), ("no ethernet header!"));
945 ETHER_HEADER_COPY(&eh2, mtod(m2, caddr_t));
946 m2 = ieee80211_mbuf_adjust(vap,
947 ATH_FF_MAX_HDR_PAD + sizeof(struct ether_header),
948 NULL, m2);
949 if (m2 == NULL) {
950 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */
951 goto bad;
952 }
953 m = ieee80211_encap_fastframe(vap, m, &eh, m2, &eh2);
954 if (m == NULL)
955 goto bad;
956 } else {
957 /*
958 * Normal frame.
959 */
960 m = ieee80211_mbuf_adjust(vap, hdrspace, key, m);
961 if (m == NULL) {
962 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */
963 goto bad;
964 }
965 /* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
966 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
967 llc = mtod(m, struct llc *);
968 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
969 llc->llc_control = LLC_UI;
970 llc->llc_snap.org_code[0] = 0;
971 llc->llc_snap.org_code[1] = 0;
972 llc->llc_snap.org_code[2] = 0;
973 llc->llc_snap.ether_type = eh.ether_type;
974 }
975 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */
976
977 M_PREPEND(m, hdrspace, M_DONTWAIT);
978 if (m == NULL) {
979 vap->iv_stats.is_tx_nobuf++;
980 goto bad;
981 }
982 wh = mtod(m, struct ieee80211_frame *);
983 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
984 *(uint16_t *)wh->i_dur = 0;
985 if (is4addr) {
986 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
987 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
988 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
989 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
990 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
991 } else switch (vap->iv_opmode) {
992 case IEEE80211_M_STA:
993 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
994 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
995 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
996 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
997 break;
998 case IEEE80211_M_IBSS:
999 case IEEE80211_M_AHDEMO:
1000 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1001 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1002 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1003 /*
1004 * NB: always use the bssid from iv_bss as the
1005 * neighbor's may be stale after an ibss merge
1006 */
1007 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1008 break;
1009 case IEEE80211_M_HOSTAP:
1010 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1011 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1012 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1013 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1014 break;
1015 case IEEE80211_M_MONITOR:
1016 case IEEE80211_M_WDS: /* NB: is4addr should always be true */
1017 goto bad;
1018 }
1019 if (m->m_flags & M_MORE_DATA)
1020 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1021 if (addqos) {
1022 uint8_t *qos;
1023 int ac, tid;
1024
1025 if (is4addr) {
1026 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1027 } else
1028 qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1029 ac = M_WME_GETAC(m);
1030 /* map from access class/queue to 11e header priorty value */
1031 tid = WME_AC_TO_TID(ac);
1032 qos[0] = tid & IEEE80211_QOS_TID;
1033 /*
1034 * Check if A-MPDU tx aggregation is setup or if we
1035 * should try to enable it. The sta must be associated
1036 * with HT and A-MPDU enabled for use. When the policy
1037 * routine decides we should enable A-MPDU we issue an
1038 * ADDBA request and wait for a reply. The frame being
1039 * encapsulated will go out w/o using A-MPDU, or possibly
1040 * it might be collected by the driver and held/retransmit.
1041 * The default ic_ampdu_enable routine handles staggering
1042 * ADDBA requests in case the receiver NAK's us or we are
1043 * otherwise unable to establish a BA stream.
1044 */
1045 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
1046 (vap->iv_flags_ext & IEEE80211_FEXT_AMPDU_TX)) {
1047 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
1048
1049 ieee80211_txampdu_count_packet(tap);
1050 if (IEEE80211_AMPDU_RUNNING(tap)) {
1051 /*
1052 * Operational, mark frame for aggregation.
1053 */
1054 qos[0] |= IEEE80211_QOS_ACKPOLICY_BA;
1055 } else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
1056 ic->ic_ampdu_enable(ni, tap)) {
1057 /*
1058 * Not negotiated yet, request service.
1059 */
1060 ieee80211_ampdu_request(ni, tap);
1061 }
1062 }
1063 /* XXX works even when BA marked above */
1064 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1065 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1066 qos[1] = 0;
1067 wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1068
1069 *(uint16_t *)wh->i_seq =
1070 htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT);
1071 ni->ni_txseqs[tid]++;
1072 } else {
1073 *(uint16_t *)wh->i_seq =
1074 htole16(ni->ni_txseqs[IEEE80211_NONQOS_TID] << IEEE80211_SEQ_SEQ_SHIFT);
1075 ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1076 }
1077 /* check if xmit fragmentation is required */
1078 txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1079 !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1080 (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1081 !isff); /* NB: don't fragment ff's */
1082 if (key != NULL) {
1083 /*
1084 * IEEE 802.1X: send EAPOL frames always in the clear.
1085 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1086 */
1087 if ((m->m_flags & M_EAPOL) == 0 ||
1088 ((vap->iv_flags & IEEE80211_F_WPA) &&
1089 (vap->iv_opmode == IEEE80211_M_STA ?
1090 !IEEE80211_KEY_UNDEFINED(key) :
1091 !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1092 wh->i_fc[1] |= IEEE80211_FC1_WEP;
1093 if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1094 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1095 eh.ether_dhost,
1096 "%s", "enmic failed, discard frame");
1097 vap->iv_stats.is_crypto_enmicfail++;
1098 goto bad;
1099 }
1100 }
1101 }
1102 if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1103 key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1104 goto bad;
1105
1106 IEEE80211_NODE_STAT(ni, tx_data);
1107 if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1108 IEEE80211_NODE_STAT(ni, tx_mcast);
1109 else
1110 IEEE80211_NODE_STAT(ni, tx_ucast);
1111 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1112
1113 /* XXX fragmented frames not handled */
1114 if (bpf_peers_present(vap->iv_rawbpf))
1115 bpf_mtap(vap->iv_rawbpf, m);
1116
1117 return m;
1118bad:
1119 if (m != NULL)
1120 m_freem(m);
1121 return NULL;
1122#undef WH4
1123}
1124
1125/*
1126 * Do Ethernet-LLC encapsulation for each payload in a fast frame
1127 * tunnel encapsulation. The frame is assumed to have an Ethernet
1128 * header at the front that must be stripped before prepending the
1129 * LLC followed by the Ethernet header passed in (with an Ethernet
1130 * type that specifies the payload size).
1131 */
1132static struct mbuf *
1133ieee80211_encap1(struct ieee80211vap *vap, struct mbuf *m,
1134 const struct ether_header *eh)
1135{
1136 struct llc *llc;
1137 uint16_t payload;
1138
1139 /* XXX optimize by combining m_adj+M_PREPEND */
1140 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1141 llc = mtod(m, struct llc *);
1142 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1143 llc->llc_control = LLC_UI;
1144 llc->llc_snap.org_code[0] = 0;
1145 llc->llc_snap.org_code[1] = 0;
1146 llc->llc_snap.org_code[2] = 0;
1147 llc->llc_snap.ether_type = eh->ether_type;
1148 payload = m->m_pkthdr.len; /* NB: w/o Ethernet header */
1149
1150 M_PREPEND(m, sizeof(struct ether_header), M_DONTWAIT);
1151 if (m == NULL) { /* XXX cannot happen */
1152 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
1153 "%s: no space for ether_header\n", __func__);
1154 vap->iv_stats.is_tx_nobuf++;
1155 return NULL;
1156 }
1157 ETHER_HEADER_COPY(mtod(m, void *), eh);
1158 mtod(m, struct ether_header *)->ether_type = htons(payload);
1159 return m;
1160}
1161
1162/*
1163 * Do fast frame tunnel encapsulation. The two frames and
1164 * Ethernet headers are supplied. The caller is assumed to
1165 * have arrange for space in the mbuf chains for encapsulating
1166 * headers (to avoid major mbuf fragmentation).
1167 *
1168 * The encapsulated frame is returned or NULL if there is a
1169 * problem (should not happen).
1170 */
1171static struct mbuf *
1172ieee80211_encap_fastframe(struct ieee80211vap *vap,
1173 struct mbuf *m1, const struct ether_header *eh1,
1174 struct mbuf *m2, const struct ether_header *eh2)
1175{
1176 struct llc *llc;
1177 struct mbuf *m;
1178 int pad;
1179
1180 /*
1181 * First, each frame gets a standard encapsulation.
1182 */
1183 m1 = ieee80211_encap1(vap, m1, eh1);
1184 if (m1 == NULL) {
1185 m_freem(m2);
1186 return NULL;
1187 }
1188 m2 = ieee80211_encap1(vap, m2, eh2);
1189 if (m2 == NULL) {
1190 m_freem(m1);
1191 return NULL;
1192 }
1193
1194 /*
1195 * Pad leading frame to a 4-byte boundary. If there
1196 * is space at the end of the first frame, put it
1197 * there; otherwise prepend to the front of the second
1198 * frame. We know doing the second will always work
1199 * because we reserve space above. We prefer appending
1200 * as this typically has better DMA alignment properties.
1201 */
1202 for (m = m1; m->m_next != NULL; m = m->m_next)
1203 ;
1204 pad = roundup2(m1->m_pkthdr.len, 4) - m1->m_pkthdr.len;
1205 if (pad) {
1206 if (M_TRAILINGSPACE(m) < pad) { /* prepend to second */
1207 m2->m_data -= pad;
1208 m2->m_len += pad;
1209 m2->m_pkthdr.len += pad;
1210 } else { /* append to first */
1211 m->m_len += pad;
1212 m1->m_pkthdr.len += pad;
1213 }
1214 }
1215
1216 /*
1217 * Now, stick 'em together and prepend the tunnel headers;
1218 * first the Atheros tunnel header (all zero for now) and
1219 * then a special fast frame LLC.
1220 *
1221 * XXX optimize by prepending together
1222 */
1223 m->m_next = m2; /* NB: last mbuf from above */
1224 m1->m_pkthdr.len += m2->m_pkthdr.len;
1225 M_PREPEND(m1, sizeof(uint32_t)+2, M_DONTWAIT);
1226 if (m1 == NULL) { /* XXX cannot happen */
1227 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
1228 "%s: no space for tunnel header\n", __func__);
1229 vap->iv_stats.is_tx_nobuf++;
1230 return NULL;
1231 }
1232 memset(mtod(m1, void *), 0, sizeof(uint32_t)+2);
1233
1234 M_PREPEND(m1, sizeof(struct llc), M_DONTWAIT);
1235 if (m1 == NULL) { /* XXX cannot happen */
1236 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
1237 "%s: no space for llc header\n", __func__);
1238 vap->iv_stats.is_tx_nobuf++;
1239 return NULL;
1240 }
1241 llc = mtod(m1, struct llc *);
1242 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1243 llc->llc_control = LLC_UI;
1244 llc->llc_snap.org_code[0] = ATH_FF_SNAP_ORGCODE_0;
1245 llc->llc_snap.org_code[1] = ATH_FF_SNAP_ORGCODE_1;
1246 llc->llc_snap.org_code[2] = ATH_FF_SNAP_ORGCODE_2;
1247 llc->llc_snap.ether_type = htons(ATH_FF_ETH_TYPE);
1248
1249 vap->iv_stats.is_ff_encap++;
1250
1251 return m1;
1252}
1253
1254/*
1255 * Fragment the frame according to the specified mtu.
1256 * The size of the 802.11 header (w/o padding) is provided
1257 * so we don't need to recalculate it. We create a new
1258 * mbuf for each fragment and chain it through m_nextpkt;
1259 * we might be able to optimize this by reusing the original
1260 * packet's mbufs but that is significantly more complicated.
1261 */
1262static int
1263ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1264 u_int hdrsize, u_int ciphdrsize, u_int mtu)
1265{
1266 struct ieee80211_frame *wh, *whf;
1267 struct mbuf *m, *prev, *next;
1268 u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1269
1270 KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1271 KASSERT(m0->m_pkthdr.len > mtu,
1272 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1273
1274 wh = mtod(m0, struct ieee80211_frame *);
1275 /* NB: mark the first frag; it will be propagated below */
1276 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1277 totalhdrsize = hdrsize + ciphdrsize;
1278 fragno = 1;
1279 off = mtu - ciphdrsize;
1280 remainder = m0->m_pkthdr.len - off;
1281 prev = m0;
1282 do {
1283 fragsize = totalhdrsize + remainder;
1284 if (fragsize > mtu)
1285 fragsize = mtu;
1286 /* XXX fragsize can be >2048! */
1287 KASSERT(fragsize < MCLBYTES,
1288 ("fragment size %u too big!", fragsize));
1289 if (fragsize > MHLEN)
1290 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1291 else
1292 m = m_gethdr(M_DONTWAIT, MT_DATA);
1293 if (m == NULL)
1294 goto bad;
1295 /* leave room to prepend any cipher header */
1296 m_align(m, fragsize - ciphdrsize);
1297
1298 /*
1299 * Form the header in the fragment. Note that since
1300 * we mark the first fragment with the MORE_FRAG bit
1301 * it automatically is propagated to each fragment; we
1302 * need only clear it on the last fragment (done below).
1303 */
1304 whf = mtod(m, struct ieee80211_frame *);
1305 memcpy(whf, wh, hdrsize);
1306 *(uint16_t *)&whf->i_seq[0] |= htole16(
1307 (fragno & IEEE80211_SEQ_FRAG_MASK) <<
1308 IEEE80211_SEQ_FRAG_SHIFT);
1309 fragno++;
1310
1311 payload = fragsize - totalhdrsize;
1312 /* NB: destination is known to be contiguous */
1313 m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrsize);
1314 m->m_len = hdrsize + payload;
1315 m->m_pkthdr.len = hdrsize + payload;
1316 m->m_flags |= M_FRAG;
1317
1318 /* chain up the fragment */
1319 prev->m_nextpkt = m;
1320 prev = m;
1321
1322 /* deduct fragment just formed */
1323 remainder -= payload;
1324 off += payload;
1325 } while (remainder != 0);
1326 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1327
1328 /* strip first mbuf now that everything has been copied */
1329 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1330 m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1331
1332 vap->iv_stats.is_tx_fragframes++;
1333 vap->iv_stats.is_tx_frags += fragno-1;
1334
1335 return 1;
1336bad:
1337 /* reclaim fragments but leave original frame for caller to free */
1338 for (m = m0->m_nextpkt; m != NULL; m = next) {
1339 next = m->m_nextpkt;
1340 m->m_nextpkt = NULL; /* XXX paranoid */
1341 m_freem(m);
1342 }
1343 m0->m_nextpkt = NULL;
1344 return 0;
1345}
1346
1347/*
1348 * Add a supported rates element id to a frame.
1349 */
1350static uint8_t *
1351ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1352{
1353 int nrates;
1354
1355 *frm++ = IEEE80211_ELEMID_RATES;
1356 nrates = rs->rs_nrates;
1357 if (nrates > IEEE80211_RATE_SIZE)
1358 nrates = IEEE80211_RATE_SIZE;
1359 *frm++ = nrates;
1360 memcpy(frm, rs->rs_rates, nrates);
1361 return frm + nrates;
1362}
1363
1364/*
1365 * Add an extended supported rates element id to a frame.
1366 */
1367static uint8_t *
1368ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1369{
1370 /*
1371 * Add an extended supported rates element if operating in 11g mode.
1372 */
1373 if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1374 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1375 *frm++ = IEEE80211_ELEMID_XRATES;
1376 *frm++ = nrates;
1377 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1378 frm += nrates;
1379 }
1380 return frm;
1381}
1382
1383/*
1384 * Add an ssid element to a frame.
1385 */
1386static uint8_t *
1387ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
1388{
1389 *frm++ = IEEE80211_ELEMID_SSID;
1390 *frm++ = len;
1391 memcpy(frm, ssid, len);
1392 return frm + len;
1393}
1394
1395/*
1396 * Add an erp element to a frame.
1397 */
1398static uint8_t *
1399ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
1400{
1401 uint8_t erp;
1402
1403 *frm++ = IEEE80211_ELEMID_ERP;
1404 *frm++ = 1;
1405 erp = 0;
1406 if (ic->ic_nonerpsta != 0)
1407 erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1408 if (ic->ic_flags & IEEE80211_F_USEPROT)
1409 erp |= IEEE80211_ERP_USE_PROTECTION;
1410 if (ic->ic_flags & IEEE80211_F_USEBARKER)
1411 erp |= IEEE80211_ERP_LONG_PREAMBLE;
1412 *frm++ = erp;
1413 return frm;
1414}
1415
1416/*
1417 * Add a CFParams element to a frame.
1418 */
1419static uint8_t *
1420ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
1421{
1422#define ADDSHORT(frm, v) do { \
1423 frm[0] = (v) & 0xff; \
1424 frm[1] = (v) >> 8; \
1425 frm += 2; \
1426} while (0)
1427 *frm++ = IEEE80211_ELEMID_CFPARMS;
1428 *frm++ = 6;
1429 *frm++ = 0; /* CFP count */
1430 *frm++ = 2; /* CFP period */
1431 ADDSHORT(frm, 0); /* CFP MaxDuration (TU) */
1432 ADDSHORT(frm, 0); /* CFP CurRemaining (TU) */
1433 return frm;
1434#undef ADDSHORT
1435}
1436
1437static __inline uint8_t *
1438add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
1439{
1440 memcpy(frm, ie->ie_data, ie->ie_len);
1441 return frm + ie->ie_len;
1442}
1443
1444static __inline uint8_t *
1445add_ie(uint8_t *frm, const uint8_t *ie)
1446{
1447 memcpy(frm, ie, 2 + ie[1]);
1448 return frm + 2 + ie[1];
1449}
1450
1451#define WME_OUI_BYTES 0x00, 0x50, 0xf2
1452/*
1453 * Add a WME information element to a frame.
1454 */
1455static uint8_t *
1456ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
1457{
1458 static const struct ieee80211_wme_info info = {
1459 .wme_id = IEEE80211_ELEMID_VENDOR,
1460 .wme_len = sizeof(struct ieee80211_wme_info) - 2,
1461 .wme_oui = { WME_OUI_BYTES },
1462 .wme_type = WME_OUI_TYPE,
1463 .wme_subtype = WME_INFO_OUI_SUBTYPE,
1464 .wme_version = WME_VERSION,
1465 .wme_info = 0,
1466 };
1467 memcpy(frm, &info, sizeof(info));
1468 return frm + sizeof(info);
1469}
1470
1471/*
1472 * Add a WME parameters element to a frame.
1473 */
1474static uint8_t *
1475ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
1476{
1477#define SM(_v, _f) (((_v) << _f##_S) & _f)
1478#define ADDSHORT(frm, v) do { \
1479 frm[0] = (v) & 0xff; \
1480 frm[1] = (v) >> 8; \
1481 frm += 2; \
1482} while (0)
1483 /* NB: this works 'cuz a param has an info at the front */
1484 static const struct ieee80211_wme_info param = {
1485 .wme_id = IEEE80211_ELEMID_VENDOR,
1486 .wme_len = sizeof(struct ieee80211_wme_param) - 2,
1487 .wme_oui = { WME_OUI_BYTES },
1488 .wme_type = WME_OUI_TYPE,
1489 .wme_subtype = WME_PARAM_OUI_SUBTYPE,
1490 .wme_version = WME_VERSION,
1491 };
1492 int i;
1493
1494 memcpy(frm, &param, sizeof(param));
1495 frm += __offsetof(struct ieee80211_wme_info, wme_info);
1496 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */
1497 *frm++ = 0; /* reserved field */
1498 for (i = 0; i < WME_NUM_AC; i++) {
1499 const struct wmeParams *ac =
1500 &wme->wme_bssChanParams.cap_wmeParams[i];
1501 *frm++ = SM(i, WME_PARAM_ACI)
1502 | SM(ac->wmep_acm, WME_PARAM_ACM)
1503 | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1504 ;
1505 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1506 | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1507 ;
1508 ADDSHORT(frm, ac->wmep_txopLimit);
1509 }
1510 return frm;
1511#undef SM
1512#undef ADDSHORT
1513}
1514#undef WME_OUI_BYTES
1515
1516#define ATH_OUI_BYTES 0x00, 0x03, 0x7f
1517/*
1518 * Add a WME information element to a frame.
1519 */
1520static uint8_t *
1521ieee80211_add_ath(uint8_t *frm, uint8_t caps, uint16_t defkeyix)
1522{
1523 static const struct ieee80211_ath_ie info = {
1524 .ath_id = IEEE80211_ELEMID_VENDOR,
1525 .ath_len = sizeof(struct ieee80211_ath_ie) - 2,
1526 .ath_oui = { ATH_OUI_BYTES },
1527 .ath_oui_type = ATH_OUI_TYPE,
1528 .ath_oui_subtype= ATH_OUI_SUBTYPE,
1529 .ath_version = ATH_OUI_VERSION,
1530 };
1531 struct ieee80211_ath_ie *ath = (struct ieee80211_ath_ie *) frm;
1532
1533 memcpy(frm, &info, sizeof(info));
1534 ath->ath_capability = caps;
1535 ath->ath_defkeyix[0] = (defkeyix & 0xff);
1536 ath->ath_defkeyix[1] = ((defkeyix >> 8) & 0xff);
1537 return frm + sizeof(info);
1538}
1539#undef ATH_OUI_BYTES
1540
1541/*
1542 * Add an 11h Power Constraint element to a frame.
1543 */
1544static uint8_t *
1545ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
1546{
1547 const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
1548 /* XXX per-vap tx power limit? */
1549 int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
1550
1551 frm[0] = IEEE80211_ELEMID_PWRCNSTR;
1552 frm[1] = 1;
1553 frm[2] = c->ic_maxregpower > limit ? c->ic_maxregpower - limit : 0;
1554 return frm + 3;
1555}
1556
1557/*
1558 * Add an 11h Power Capability element to a frame.
1559 */
1560static uint8_t *
1561ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
1562{
1563 frm[0] = IEEE80211_ELEMID_PWRCAP;
1564 frm[1] = 2;
1565 frm[2] = c->ic_minpower;
1566 frm[3] = c->ic_maxpower;
1567 return frm + 4;
1568}
1569
1570/*
1571 * Add an 11h Supported Channels element to a frame.
1572 */
1573static uint8_t *
1574ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
1575{
1576 static const int ielen = 26;
1577
1578 frm[0] = IEEE80211_ELEMID_SUPPCHAN;
1579 frm[1] = ielen;
1580 /* XXX not correct */
1581 memcpy(frm+2, ic->ic_chan_avail, ielen);
1582 return frm + 2 + ielen;
1583}
1584
1585/*
1586 * Add an 11h Channel Switch Announcement element to a frame.
1587 * Note that we use the per-vap CSA count to adjust the global
1588 * counter so we can use this routine to form probe response
1589 * frames and get the current count.
1590 */
1591static uint8_t *
1592ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
1593{
1594 struct ieee80211com *ic = vap->iv_ic;
1595 struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
1596
1597 csa->csa_ie = IEEE80211_ELEMID_CHANSWITCHANN;
1598 csa->csa_len = 3;
1599 csa->csa_mode = 1; /* XXX force quiet on channel */
1600 csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
1601 csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
1602 return frm + sizeof(*csa);
1603}
1604
1605/*
1606 * Add an 11h country information element to a frame.
1607 */
1608static uint8_t *
1609ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
1610{
1611
1612 if (ic->ic_countryie == NULL ||
1613 ic->ic_countryie_chan != ic->ic_bsschan) {
1614 /*
1615 * Handle lazy construction of ie. This is done on
1616 * first use and after a channel change that requires
1617 * re-calculation.
1618 */
1619 if (ic->ic_countryie != NULL)
1620 free(ic->ic_countryie, M_80211_NODE_IE);
1621 ic->ic_countryie = ieee80211_alloc_countryie(ic);
1622 if (ic->ic_countryie == NULL)
1623 return frm;
1624 ic->ic_countryie_chan = ic->ic_bsschan;
1625 }
1626 return add_appie(frm, ic->ic_countryie);
1627}
1628
1629/*
1630 * Send a probe request frame with the specified ssid
1631 * and any optional information element data.
1632 */
1633int
1634ieee80211_send_probereq(struct ieee80211_node *ni,
1635 const uint8_t sa[IEEE80211_ADDR_LEN],
1636 const uint8_t da[IEEE80211_ADDR_LEN],
1637 const uint8_t bssid[IEEE80211_ADDR_LEN],
1638 const uint8_t *ssid, size_t ssidlen)
1639{
1640 struct ieee80211vap *vap = ni->ni_vap;
1641 struct ieee80211com *ic = ni->ni_ic;
1642 struct ieee80211_frame *wh;
1643 const struct ieee80211_rateset *rs;
1644 struct mbuf *m;
1645 uint8_t *frm;
1646
1647 if (vap->iv_state == IEEE80211_S_CAC) {
1648 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
1649 "block %s frame in CAC state", "probe request");
1650 vap->iv_stats.is_tx_badstate++;
1651 return EIO; /* XXX */
1652 }
1653
1654 /*
1655 * Hold a reference on the node so it doesn't go away until after
1656 * the xmit is complete all the way in the driver. On error we
1657 * will remove our reference.
1658 */
1659 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
1660 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1661 __func__, __LINE__,
1662 ni, ether_sprintf(ni->ni_macaddr),
1663 ieee80211_node_refcnt(ni)+1);
1664 ieee80211_ref_node(ni);
1665
1666 /*
1667 * prreq frame format
1668 * [tlv] ssid
1669 * [tlv] supported rates
1670 * [tlv] RSN (optional)
1671 * [tlv] extended supported rates
1672 * [tlv] WPA (optional)
1673 * [tlv] user-specified ie's
1674 */
1675 m = ieee80211_getmgtframe(&frm,
1676 ic->ic_headroom + sizeof(struct ieee80211_frame),
1677 2 + IEEE80211_NWID_LEN
1678 + 2 + IEEE80211_RATE_SIZE
1679 + sizeof(struct ieee80211_ie_wpa)
1680 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1681 + sizeof(struct ieee80211_ie_wpa)
1682 + (vap->iv_appie_probereq != NULL ?
1683 vap->iv_appie_probereq->ie_len : 0)
1684 );
1685 if (m == NULL) {
1686 vap->iv_stats.is_tx_nobuf++;
1687 ieee80211_free_node(ni);
1688 return ENOMEM;
1689 }
1690
1691 frm = ieee80211_add_ssid(frm, ssid, ssidlen);
1692 rs = ieee80211_get_suprates(ic, ic->ic_curchan);
1693 frm = ieee80211_add_rates(frm, rs);
1694 if (vap->iv_flags & IEEE80211_F_WPA2) {
1695 if (vap->iv_rsn_ie != NULL)
1696 frm = add_ie(frm, vap->iv_rsn_ie);
1697 /* XXX else complain? */
1698 }
1699 frm = ieee80211_add_xrates(frm, rs);
1700 if (vap->iv_flags & IEEE80211_F_WPA1) {
1701 if (vap->iv_wpa_ie != NULL)
1702 frm = add_ie(frm, vap->iv_wpa_ie);
1703 /* XXX else complain? */
1704 }
1705 if (vap->iv_appie_probereq != NULL)
1706 frm = add_appie(frm, vap->iv_appie_probereq);
1707 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
1708
1709 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
1710 if (m == NULL)
1711 return ENOMEM;
1712
1713 wh = mtod(m, struct ieee80211_frame *);
1714 ieee80211_send_setup(ni, wh,
1715 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
1716 sa, da, bssid);
1717 /* XXX power management? */
1718
1719 M_WME_SETAC(m, WME_AC_BE);
1720
1721 IEEE80211_NODE_STAT(ni, tx_probereq);
1722 IEEE80211_NODE_STAT(ni, tx_mgmt);
1723
1724 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
1725 "send probe req on channel %u bssid %s ssid \"%.*s\"\n",
1726 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid),
1727 ssidlen, ssid);
1728
1729 return ic->ic_raw_xmit(ni, m, NULL);
1730}
1731
1732/*
1733 * Calculate capability information for mgt frames.
1734 */
1735static uint16_t
1736getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
1737{
1738 struct ieee80211com *ic = vap->iv_ic;
1739 uint16_t capinfo;
1740
1741 KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
1742
1743 if (vap->iv_opmode == IEEE80211_M_HOSTAP)
1744 capinfo = IEEE80211_CAPINFO_ESS;
1745 else if (vap->iv_opmode == IEEE80211_M_IBSS)
1746 capinfo = IEEE80211_CAPINFO_IBSS;
1747 else
1748 capinfo = 0;
1749 if (vap->iv_flags & IEEE80211_F_PRIVACY)
1750 capinfo |= IEEE80211_CAPINFO_PRIVACY;
1751 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1752 IEEE80211_IS_CHAN_2GHZ(chan))
1753 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1754 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1755 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1756 if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
1757 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
1758 return capinfo;
1759}
1760
1761/*
1762 * Send a management frame. The node is for the destination (or ic_bss
1763 * when in station mode). Nodes other than ic_bss have their reference
1764 * count bumped to reflect our use for an indeterminant time.
1765 */
1766int
1767ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
1768{
1769#define HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
1770#define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
1771 struct ieee80211vap *vap = ni->ni_vap;
1772 struct ieee80211com *ic = ni->ni_ic;
1773 struct ieee80211_node *bss = vap->iv_bss;
1774 struct mbuf *m;
1775 uint8_t *frm;
1776 uint16_t capinfo;
1777 int has_challenge, is_shared_key, ret, status;
1778
1779 KASSERT(ni != NULL, ("null node"));
1780
1781 /*
1782 * Hold a reference on the node so it doesn't go away until after
1783 * the xmit is complete all the way in the driver. On error we
1784 * will remove our reference.
1785 */
1786 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
1787 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1788 __func__, __LINE__,
1789 ni, ether_sprintf(ni->ni_macaddr),
1790 ieee80211_node_refcnt(ni)+1);
1791 ieee80211_ref_node(ni);
1792
1793 switch (type) {
1794
1795 case IEEE80211_FC0_SUBTYPE_AUTH:
1796 status = arg >> 16;
1797 arg &= 0xffff;
1798 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
1799 arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
1800 ni->ni_challenge != NULL);
1801
1802 /*
1803 * Deduce whether we're doing open authentication or
1804 * shared key authentication. We do the latter if
1805 * we're in the middle of a shared key authentication
1806 * handshake or if we're initiating an authentication
1807 * request and configured to use shared key.
1808 */
1809 is_shared_key = has_challenge ||
1810 arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
1811 (arg == IEEE80211_AUTH_SHARED_REQUEST &&
1812 bss->ni_authmode == IEEE80211_AUTH_SHARED);
1813
1814 m = ieee80211_getmgtframe(&frm,
1815 ic->ic_headroom + sizeof(struct ieee80211_frame),
1816 3 * sizeof(uint16_t)
1817 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
1818 sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
1819 );
1820 if (m == NULL)
1821 senderr(ENOMEM, is_tx_nobuf);
1822
1823 ((uint16_t *)frm)[0] =
1824 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
1825 : htole16(IEEE80211_AUTH_ALG_OPEN);
1826 ((uint16_t *)frm)[1] = htole16(arg); /* sequence number */
1827 ((uint16_t *)frm)[2] = htole16(status);/* status */
1828
1829 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
1830 ((uint16_t *)frm)[3] =
1831 htole16((IEEE80211_CHALLENGE_LEN << 8) |
1832 IEEE80211_ELEMID_CHALLENGE);
1833 memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
1834 IEEE80211_CHALLENGE_LEN);
1835 m->m_pkthdr.len = m->m_len =
1836 4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
1837 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
1838 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
1839 "request encrypt frame (%s)", __func__);
1840 m->m_flags |= M_LINK0; /* WEP-encrypt, please */
1841 }
1842 } else
1843 m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
1844
1845 /* XXX not right for shared key */
1846 if (status == IEEE80211_STATUS_SUCCESS)
1847 IEEE80211_NODE_STAT(ni, tx_auth);
1848 else
1849 IEEE80211_NODE_STAT(ni, tx_auth_fail);
1850
1851 if (vap->iv_opmode == IEEE80211_M_STA)
1852 ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
1853 (void *) vap->iv_state);
1854 break;
1855
1856 case IEEE80211_FC0_SUBTYPE_DEAUTH:
1857 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
1858 "send station deauthenticate (reason %d)", arg);
1859 m = ieee80211_getmgtframe(&frm,
1860 ic->ic_headroom + sizeof(struct ieee80211_frame),
1861 sizeof(uint16_t));
1862 if (m == NULL)
1863 senderr(ENOMEM, is_tx_nobuf);
1864 *(uint16_t *)frm = htole16(arg); /* reason */
1865 m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
1866
1867 IEEE80211_NODE_STAT(ni, tx_deauth);
1868 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
1869
1870 ieee80211_node_unauthorize(ni); /* port closed */
1871 break;
1872
1873 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
1874 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
1875 /*
1876 * asreq frame format
1877 * [2] capability information
1878 * [2] listen interval
1879 * [6*] current AP address (reassoc only)
1880 * [tlv] ssid
1881 * [tlv] supported rates
1882 * [tlv] extended supported rates
1883 * [4] power capability (optional)
1884 * [28] supported channels (optional)
1885 * [tlv] HT capabilities
1886 * [tlv] WME (optional)
1887 * [tlv] Vendor OUI HT capabilities (optional)
1888 * [tlv] Atheros capabilities (if negotiated)
1889 * [tlv] AppIE's (optional)
1890 */
1891 m = ieee80211_getmgtframe(&frm,
1892 ic->ic_headroom + sizeof(struct ieee80211_frame),
1893 sizeof(uint16_t)
1894 + sizeof(uint16_t)
1895 + IEEE80211_ADDR_LEN
1896 + 2 + IEEE80211_NWID_LEN
1897 + 2 + IEEE80211_RATE_SIZE
1898 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1899 + 4
1900 + 2 + 26
1901 + sizeof(struct ieee80211_wme_info)
1902 + sizeof(struct ieee80211_ie_htcap)
1903 + 4 + sizeof(struct ieee80211_ie_htcap)
1904 + sizeof(struct ieee80211_ath_ie)
1905 + (vap->iv_appie_wpa != NULL ?
1906 vap->iv_appie_wpa->ie_len : 0)
1907 + (vap->iv_appie_assocreq != NULL ?
1908 vap->iv_appie_assocreq->ie_len : 0)
1909 );
1910 if (m == NULL)
1911 senderr(ENOMEM, is_tx_nobuf);
1912
1913 KASSERT(vap->iv_opmode == IEEE80211_M_STA,
1914 ("wrong mode %u", vap->iv_opmode));
1915 capinfo = IEEE80211_CAPINFO_ESS;
1916 if (vap->iv_flags & IEEE80211_F_PRIVACY)
1917 capinfo |= IEEE80211_CAPINFO_PRIVACY;
1918 /*
1919 * NB: Some 11a AP's reject the request when
1920 * short premable is set.
1921 */
1922 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1923 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
1924 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1925 if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
1926 (ic->ic_caps & IEEE80211_C_SHSLOT))
1927 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1928 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
1929 (vap->iv_flags & IEEE80211_F_DOTH))
1930 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
1931 *(uint16_t *)frm = htole16(capinfo);
1932 frm += 2;
1933
1934 KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
1935 *(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
1936 bss->ni_intval));
1937 frm += 2;
1938
1939 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
1940 IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
1941 frm += IEEE80211_ADDR_LEN;
1942 }
1943
1944 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
1945 frm = ieee80211_add_rates(frm, &ni->ni_rates);
1946 if (vap->iv_flags & IEEE80211_F_WPA2) {
1947 if (vap->iv_rsn_ie != NULL)
1948 frm = add_ie(frm, vap->iv_rsn_ie);
1949 /* XXX else complain? */
1950 }
1951 frm = ieee80211_add_xrates(frm, &ni->ni_rates);
1952 if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
1953 frm = ieee80211_add_powercapability(frm,
1954 ic->ic_curchan);
1955 frm = ieee80211_add_supportedchannels(frm, ic);
1956 }
1957 if ((vap->iv_flags_ext & IEEE80211_FEXT_HT) &&
1958 ni->ni_ies.htcap_ie != NULL &&
1959 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP)
1960 frm = ieee80211_add_htcap(frm, ni);
1961 if (vap->iv_flags & IEEE80211_F_WPA1) {
1962 if (vap->iv_wpa_ie != NULL)
1963 frm = add_ie(frm, vap->iv_wpa_ie);
1964 /* XXX else complain */
1965 }
1966 if ((ic->ic_flags & IEEE80211_F_WME) &&
1967 ni->ni_ies.wme_ie != NULL)
1968 frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
1969 if ((vap->iv_flags_ext & IEEE80211_FEXT_HT) &&
1970 ni->ni_ies.htcap_ie != NULL &&
1971 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR)
1972 frm = ieee80211_add_htcap_vendor(frm, ni);
1973 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
1974 frm = ieee80211_add_ath(frm,
1975 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
1976 (vap->iv_flags & IEEE80211_F_WPA) == 0 &&
1977 ni->ni_authmode != IEEE80211_AUTH_8021X &&
1978 vap->iv_def_txkey != IEEE80211_KEYIX_NONE ?
1979 vap->iv_def_txkey : 0x7fff);
1980 if (vap->iv_appie_assocreq != NULL)
1981 frm = add_appie(frm, vap->iv_appie_assocreq);
1982 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
1983
1984 ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
1985 (void *) vap->iv_state);
1986 break;
1987
1988 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
1989 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
1990 /*
1991 * asresp frame format
1992 * [2] capability information
1993 * [2] status
1994 * [2] association ID
1995 * [tlv] supported rates
1996 * [tlv] extended supported rates
1997 * [tlv] HT capabilities (standard, if STA enabled)
1998 * [tlv] HT information (standard, if STA enabled)
1999 * [tlv] WME (if configured and STA enabled)
2000 * [tlv] HT capabilities (vendor OUI, if STA enabled)
2001 * [tlv] HT information (vendor OUI, if STA enabled)
2002 * [tlv] Atheros capabilities (if STA enabled)
2003 * [tlv] AppIE's (optional)
2004 */
2005 m = ieee80211_getmgtframe(&frm,
2006 ic->ic_headroom + sizeof(struct ieee80211_frame),
2007 sizeof(uint16_t)
2008 + sizeof(uint16_t)
2009 + sizeof(uint16_t)
2010 + 2 + IEEE80211_RATE_SIZE
2011 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2012 + sizeof(struct ieee80211_ie_htcap) + 4
2013 + sizeof(struct ieee80211_ie_htinfo) + 4
2014 + sizeof(struct ieee80211_wme_param)
2015 + sizeof(struct ieee80211_ath_ie)
2016 + (vap->iv_appie_assocresp != NULL ?
2017 vap->iv_appie_assocresp->ie_len : 0)
2018 );
2019 if (m == NULL)
2020 senderr(ENOMEM, is_tx_nobuf);
2021
2022 capinfo = getcapinfo(vap, bss->ni_chan);
2023 *(uint16_t *)frm = htole16(capinfo);
2024 frm += 2;
2025
2026 *(uint16_t *)frm = htole16(arg); /* status */
2027 frm += 2;
2028
2029 if (arg == IEEE80211_STATUS_SUCCESS) {
2030 *(uint16_t *)frm = htole16(ni->ni_associd);
2031 IEEE80211_NODE_STAT(ni, tx_assoc);
2032 } else
2033 IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2034 frm += 2;
2035
2036 frm = ieee80211_add_rates(frm, &ni->ni_rates);
2037 frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2038 /* NB: respond according to what we received */
2039 if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2040 frm = ieee80211_add_htcap(frm, ni);
2041 frm = ieee80211_add_htinfo(frm, ni);
2042 }
2043 if ((vap->iv_flags & IEEE80211_F_WME) &&
2044 ni->ni_ies.wme_ie != NULL)
2045 frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2046 if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2047 frm = ieee80211_add_htcap_vendor(frm, ni);
2048 frm = ieee80211_add_htinfo_vendor(frm, ni);
2049 }
2050 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2051 frm = ieee80211_add_ath(frm,
2052 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2053 ni->ni_ath_defkeyix);
2054 if (vap->iv_appie_assocresp != NULL)
2055 frm = add_appie(frm, vap->iv_appie_assocresp);
2056 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2057 break;
2058
2059 case IEEE80211_FC0_SUBTYPE_DISASSOC:
2060 IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2061 "send station disassociate (reason %d)", arg);
2062 m = ieee80211_getmgtframe(&frm,
2063 ic->ic_headroom + sizeof(struct ieee80211_frame),
2064 sizeof(uint16_t));
2065 if (m == NULL)
2066 senderr(ENOMEM, is_tx_nobuf);
2067 *(uint16_t *)frm = htole16(arg); /* reason */
2068 m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2069
2070 IEEE80211_NODE_STAT(ni, tx_disassoc);
2071 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2072 break;
2073
2074 default:
2075 IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2076 "invalid mgmt frame type %u", type);
2077 senderr(EINVAL, is_tx_unknownmgt);
2078 /* NOTREACHED */
2079 }
2080
2081 return ieee80211_mgmt_output(ni, m, type);
2082bad:
2083 ieee80211_free_node(ni);
2084 return ret;
2085#undef senderr
2086#undef HTFLAGS
2087}
2088
2089/*
2090 * Return an mbuf with a probe response frame in it.
2091 * Space is left to prepend and 802.11 header at the
2092 * front but it's left to the caller to fill in.
2093 */
2094struct mbuf *
2095ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2096{
2097 struct ieee80211vap *vap = bss->ni_vap;
2098 struct ieee80211com *ic = bss->ni_ic;
2099 const struct ieee80211_rateset *rs;
2100 struct mbuf *m;
2101 uint16_t capinfo;
2102 uint8_t *frm;
2103
2104 /*
2105 * probe response frame format
2106 * [8] time stamp
2107 * [2] beacon interval
2108 * [2] cabability information
2109 * [tlv] ssid
2110 * [tlv] supported rates
2111 * [tlv] parameter set (FH/DS)
2112 * [tlv] parameter set (IBSS)
2113 * [tlv] country (optional)
2114 * [tlv] RSN (optional)
2115 * [3] power control (optional)
2116 * [5] channel switch announcement (CSA) (optional)
2117 * [tlv] extended rate phy (ERP)
2118 * [tlv] extended supported rates
2119 * [tlv] HT capabilities
2120 * [tlv] HT information
2121 * [tlv] WPA (optional)
2122 * [tlv] WME (optional)
2123 * [tlv] Vendor OUI HT capabilities (optional)
2124 * [tlv] Vendor OUI HT information (optional)
2125 * [tlv] Atheros capabilities
2126 * [tlv] AppIE's (optional)
2127 */
2128 m = ieee80211_getmgtframe(&frm,
2129 ic->ic_headroom + sizeof(struct ieee80211_frame),
2130 8
2131 + sizeof(uint16_t)
2132 + sizeof(uint16_t)
2133 + 2 + IEEE80211_NWID_LEN
2134 + 2 + IEEE80211_RATE_SIZE
2135 + 7 /* max(7,3) */
2136 + IEEE80211_COUNTRY_MAX_SIZE
2137 + sizeof(struct ieee80211_ie_wpa)
2138 + 3
2139 + sizeof(struct ieee80211_csa_ie)
2140 + 3
2141 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2142 + sizeof(struct ieee80211_ie_htcap)
2143 + sizeof(struct ieee80211_ie_htinfo)
2144 + sizeof(struct ieee80211_ie_wpa)
2145 + sizeof(struct ieee80211_wme_param)
2146 + 4 + sizeof(struct ieee80211_ie_htcap)
2147 + 4 + sizeof(struct ieee80211_ie_htinfo)
2148 + sizeof(struct ieee80211_ath_ie)
2149 + (vap->iv_appie_proberesp != NULL ?
2150 vap->iv_appie_proberesp->ie_len : 0)
2151 );
2152 if (m == NULL) {
2153 vap->iv_stats.is_tx_nobuf++;
2154 return NULL;
2155 }
2156
2157 memset(frm, 0, 8); /* timestamp should be filled later */
2158 frm += 8;
2159 *(uint16_t *)frm = htole16(bss->ni_intval);
2160 frm += 2;
2161 capinfo = getcapinfo(vap, bss->ni_chan);
2162 *(uint16_t *)frm = htole16(capinfo);
2163 frm += 2;
2164
2165 frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2166 rs = ieee80211_get_suprates(ic, bss->ni_chan);
2167 frm = ieee80211_add_rates(frm, rs);
2168
2169 if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2170 *frm++ = IEEE80211_ELEMID_FHPARMS;
2171 *frm++ = 5;
2172 *frm++ = bss->ni_fhdwell & 0x00ff;
2173 *frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2174 *frm++ = IEEE80211_FH_CHANSET(
2175 ieee80211_chan2ieee(ic, bss->ni_chan));
2176 *frm++ = IEEE80211_FH_CHANPAT(
2177 ieee80211_chan2ieee(ic, bss->ni_chan));
2178 *frm++ = bss->ni_fhindex;
2179 } else {
2180 *frm++ = IEEE80211_ELEMID_DSPARMS;
2181 *frm++ = 1;
2182 *frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2183 }
2184
2185 if (vap->iv_opmode == IEEE80211_M_IBSS) {
2186 *frm++ = IEEE80211_ELEMID_IBSSPARMS;
2187 *frm++ = 2;
2188 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
2189 }
2190 if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2191 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2192 frm = ieee80211_add_countryie(frm, ic);
2193 if (vap->iv_flags & IEEE80211_F_WPA2) {
2194 if (vap->iv_rsn_ie != NULL)
2195 frm = add_ie(frm, vap->iv_rsn_ie);
2196 /* XXX else complain? */
2197 }
2198 if (vap->iv_flags & IEEE80211_F_DOTH) {
2199 if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2200 frm = ieee80211_add_powerconstraint(frm, vap);
2201 if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2202 frm = ieee80211_add_csa(frm, vap);
2203 }
2204 if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2205 frm = ieee80211_add_erp(frm, ic);
2206 frm = ieee80211_add_xrates(frm, rs);
2207 /*
2208 * NB: legacy 11b clients do not get certain ie's.
2209 * The caller identifies such clients by passing
2210 * a token in legacy to us. Could expand this to be
2211 * any legacy client for stuff like HT ie's.
2212 */
2213 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2214 legacy != IEEE80211_SEND_LEGACY_11B) {
2215 frm = ieee80211_add_htcap(frm, bss);
2216 frm = ieee80211_add_htinfo(frm, bss);
2217 }
2218 if (vap->iv_flags & IEEE80211_F_WPA1) {
2219 if (vap->iv_wpa_ie != NULL)
2220 frm = add_ie(frm, vap->iv_wpa_ie);
2221 /* XXX else complain? */
2222 }
2223 if (vap->iv_flags & IEEE80211_F_WME)
2224 frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2225 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2226 (vap->iv_flags_ext & IEEE80211_FEXT_HTCOMPAT) &&
2227 legacy != IEEE80211_SEND_LEGACY_11B) {
2228 frm = ieee80211_add_htcap_vendor(frm, bss);
2229 frm = ieee80211_add_htinfo_vendor(frm, bss);
2230 }
2231 if (bss->ni_ies.ath_ie != NULL && legacy != IEEE80211_SEND_LEGACY_11B)
2232 frm = ieee80211_add_ath(frm, bss->ni_ath_flags,
2233 bss->ni_ath_defkeyix);
2234 if (vap->iv_appie_proberesp != NULL)
2235 frm = add_appie(frm, vap->iv_appie_proberesp);
2236 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2237
2238 return m;
2239}
2240
2241/*
2242 * Send a probe response frame to the specified mac address.
2243 * This does not go through the normal mgt frame api so we
2244 * can specify the destination address and re-use the bss node
2245 * for the sta reference.
2246 */
2247int
2248ieee80211_send_proberesp(struct ieee80211vap *vap,
2249 const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
2250{
2251 struct ieee80211_node *bss = vap->iv_bss;
2252 struct ieee80211com *ic = vap->iv_ic;
2253 struct ieee80211_frame *wh;
2254 struct mbuf *m;
2255
2256 if (vap->iv_state == IEEE80211_S_CAC) {
2257 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
2258 "block %s frame in CAC state", "probe response");
2259 vap->iv_stats.is_tx_badstate++;
2260 return EIO; /* XXX */
2261 }
2262
2263 /*
2264 * Hold a reference on the node so it doesn't go away until after
2265 * the xmit is complete all the way in the driver. On error we
2266 * will remove our reference.
2267 */
2268 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2269 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2270 __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
2271 ieee80211_node_refcnt(bss)+1);
2272 ieee80211_ref_node(bss);
2273
2274 m = ieee80211_alloc_proberesp(bss, legacy);
2275 if (m == NULL) {
2276 ieee80211_free_node(bss);
2277 return ENOMEM;
2278 }
2279
2280 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
2281 KASSERT(m != NULL, ("no room for header"));
2282
2283 wh = mtod(m, struct ieee80211_frame *);
2284 ieee80211_send_setup(bss, wh,
2285 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
2286 vap->iv_myaddr, da, bss->ni_bssid);
2287 /* XXX power management? */
2288
2289 M_WME_SETAC(m, WME_AC_BE);
2290
2291 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2292 "send probe resp on channel %u to %s%s\n",
2293 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
2294 legacy ? " <legacy>" : "");
2295 IEEE80211_NODE_STAT(bss, tx_mgmt);
2296
2297 return ic->ic_raw_xmit(bss, m, NULL);
2298}
2299
2300/*
2301 * Allocate and build a RTS (Request To Send) control frame.
2302 */
2303struct mbuf *
2304ieee80211_alloc_rts(struct ieee80211com *ic,
2305 const uint8_t ra[IEEE80211_ADDR_LEN],
2306 const uint8_t ta[IEEE80211_ADDR_LEN],
2307 uint16_t dur)
2308{
2309 struct ieee80211_frame_rts *rts;
2310 struct mbuf *m;
2311
2312 /* XXX honor ic_headroom */
2313 m = m_gethdr(M_DONTWAIT, MT_DATA);
2314 if (m != NULL) {
2315 rts = mtod(m, struct ieee80211_frame_rts *);
2316 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2317 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
2318 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2319 *(u_int16_t *)rts->i_dur = htole16(dur);
2320 IEEE80211_ADDR_COPY(rts->i_ra, ra);
2321 IEEE80211_ADDR_COPY(rts->i_ta, ta);
2322
2323 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
2324 }
2325 return m;
2326}
2327
2328/*
2329 * Allocate and build a CTS (Clear To Send) control frame.
2330 */
2331struct mbuf *
2332ieee80211_alloc_cts(struct ieee80211com *ic,
2333 const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
2334{
2335 struct ieee80211_frame_cts *cts;
2336 struct mbuf *m;
2337
2338 /* XXX honor ic_headroom */
2339 m = m_gethdr(M_DONTWAIT, MT_DATA);
2340 if (m != NULL) {
2341 cts = mtod(m, struct ieee80211_frame_cts *);
2342 cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2343 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
2344 cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2345 *(u_int16_t *)cts->i_dur = htole16(dur);
2346 IEEE80211_ADDR_COPY(cts->i_ra, ra);
2347
2348 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
2349 }
2350 return m;
2351}
2352
2353static void
2354ieee80211_tx_mgt_timeout(void *arg)
2355{
2356 struct ieee80211_node *ni = arg;
2357 struct ieee80211vap *vap = ni->ni_vap;
2358
2359 if (vap->iv_state != IEEE80211_S_INIT &&
2360 (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2361 /*
2362 * NB: it's safe to specify a timeout as the reason here;
2363 * it'll only be used in the right state.
2364 */
2365 ieee80211_new_state(vap, IEEE80211_S_SCAN,
2366 IEEE80211_SCAN_FAIL_TIMEOUT);
2367 }
2368}
2369
2370static void
2371ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
2372{
2373 struct ieee80211vap *vap = ni->ni_vap;
2374 enum ieee80211_state ostate = (enum ieee80211_state) arg;
2375
2376 /*
2377 * Frame transmit completed; arrange timer callback. If
2378 * transmit was successfuly we wait for response. Otherwise
2379 * we arrange an immediate callback instead of doing the
2380 * callback directly since we don't know what state the driver
2381 * is in (e.g. what locks it is holding). This work should
2382 * not be too time-critical and not happen too often so the
2383 * added overhead is acceptable.
2384 *
2385 * XXX what happens if !acked but response shows up before callback?
2386 */
2387 if (vap->iv_state == ostate)
2388 callout_reset(&vap->iv_mgtsend,
2389 status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
2390 ieee80211_tx_mgt_timeout, ni);
2391}
2392
2393static void
2394ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
2395 struct ieee80211_beacon_offsets *bo, struct ieee80211_node *ni)
2396{
2397 struct ieee80211vap *vap = ni->ni_vap;
2398 struct ieee80211com *ic = ni->ni_ic;
2399 struct ieee80211_rateset *rs = &ni->ni_rates;
2400 uint16_t capinfo;
2401
2402 /*
2403 * beacon frame format
2404 * [8] time stamp
2405 * [2] beacon interval
2406 * [2] cabability information
2407 * [tlv] ssid
2408 * [tlv] supported rates
2409 * [3] parameter set (DS)
2410 * [8] CF parameter set (optional)
2411 * [tlv] parameter set (IBSS/TIM)
2412 * [tlv] country (optional)
2413 * [tlv] RSN parameters
2414 * [3] power control (optional)
2415 * [5] channel switch announcement (CSA) (optional)
2416 * [tlv] extended rate phy (ERP)
2417 * [tlv] extended supported rates
2418 * [tlv] HT capabilities
2419 * [tlv] HT information
2420 * XXX Vendor-specific OIDs (e.g. Atheros)
2421 * [tlv] WPA parameters
2422 * [tlv] WME parameters
2423 * [tlv] Vendor OUI HT capabilities (optional)
2424 * [tlv] Vendor OUI HT information (optional)
2425 * [tlv] application data (optional)
2426 */
2427
2428 memset(bo, 0, sizeof(*bo));
2429
2430 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */
2431 frm += 8;
2432 *(uint16_t *)frm = htole16(ni->ni_intval);
2433 frm += 2;
2434 capinfo = getcapinfo(vap, ni->ni_chan);
2435 bo->bo_caps = (uint16_t *)frm;
2436 *(uint16_t *)frm = htole16(capinfo);
2437 frm += 2;
2438 *frm++ = IEEE80211_ELEMID_SSID;
2439 if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
2440 *frm++ = ni->ni_esslen;
2441 memcpy(frm, ni->ni_essid, ni->ni_esslen);
2442 frm += ni->ni_esslen;
2443 } else
2444 *frm++ = 0;
2445 frm = ieee80211_add_rates(frm, rs);
2446 if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
2447 *frm++ = IEEE80211_ELEMID_DSPARMS;
2448 *frm++ = 1;
2449 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
2450 }
2451 if (ic->ic_flags & IEEE80211_F_PCF) {
2452 bo->bo_cfp = frm;
2453 frm = ieee80211_add_cfparms(frm, ic);
2454 }
2455 bo->bo_tim = frm;
2456 if (vap->iv_opmode == IEEE80211_M_IBSS) {
2457 *frm++ = IEEE80211_ELEMID_IBSSPARMS;
2458 *frm++ = 2;
2459 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
2460 bo->bo_tim_len = 0;
2461 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
2462 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
2463
2464 tie->tim_ie = IEEE80211_ELEMID_TIM;
2465 tie->tim_len = 4; /* length */
2466 tie->tim_count = 0; /* DTIM count */
2467 tie->tim_period = vap->iv_dtim_period; /* DTIM period */
2468 tie->tim_bitctl = 0; /* bitmap control */
2469 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */
2470 frm += sizeof(struct ieee80211_tim_ie);
2471 bo->bo_tim_len = 1;
2472 }
2473 bo->bo_tim_trailer = frm;
2474 if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2475 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2476 frm = ieee80211_add_countryie(frm, ic);
2477 if (vap->iv_flags & IEEE80211_F_WPA2) {
2478 if (vap->iv_rsn_ie != NULL)
2479 frm = add_ie(frm, vap->iv_rsn_ie);
2480 /* XXX else complain */
2481 }
2482 if (vap->iv_flags & IEEE80211_F_DOTH) {
2483 if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
2484 frm = ieee80211_add_powerconstraint(frm, vap);
2485 bo->bo_csa = frm;
2486 if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2487 frm = ieee80211_add_csa(frm, vap);
2488 } else
2489 bo->bo_csa = frm;
2490 if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
2491 bo->bo_erp = frm;
2492 frm = ieee80211_add_erp(frm, ic);
2493 }
2494 frm = ieee80211_add_xrates(frm, rs);
2495 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
2496 frm = ieee80211_add_htcap(frm, ni);
2497 bo->bo_htinfo = frm;
2498 frm = ieee80211_add_htinfo(frm, ni);
2499 }
2500 if (vap->iv_flags & IEEE80211_F_WPA1) {
2501 if (vap->iv_wpa_ie != NULL)
2502 frm = add_ie(frm, vap->iv_wpa_ie);
2503 /* XXX else complain */
2504 }
2505 if (vap->iv_flags & IEEE80211_F_WME) {
2506 bo->bo_wme = frm;
2507 frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2508 }
2509 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2510 (vap->iv_flags_ext & IEEE80211_FEXT_HTCOMPAT)) {
2511 frm = ieee80211_add_htcap_vendor(frm, ni);
2512 frm = ieee80211_add_htinfo_vendor(frm, ni);
2513 }
2514 if (vap->iv_appie_beacon != NULL) {
2515 bo->bo_appie = frm;
2516 bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
2517 frm = add_appie(frm, vap->iv_appie_beacon);
2518 }
2519 bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
2520 bo->bo_csa_trailer_len = frm - bo->bo_csa;
2521 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2522}
2523
2524/*
2525 * Allocate a beacon frame and fillin the appropriate bits.
2526 */
2527struct mbuf *
2528ieee80211_beacon_alloc(struct ieee80211_node *ni,
2529 struct ieee80211_beacon_offsets *bo)
2530{
2531 struct ieee80211vap *vap = ni->ni_vap;
2532 struct ieee80211com *ic = ni->ni_ic;
2533 struct ifnet *ifp = vap->iv_ifp;
2534 struct ieee80211_frame *wh;
2535 struct mbuf *m;
2536 int pktlen;
2537 uint8_t *frm;
2538
2539 /*
2540 * beacon frame format
2541 * [8] time stamp
2542 * [2] beacon interval
2543 * [2] cabability information
2544 * [tlv] ssid
2545 * [tlv] supported rates
2546 * [3] parameter set (DS)
2547 * [8] CF parameter set (optional)
2548 * [tlv] parameter set (IBSS/TIM)
2549 * [tlv] country (optional)
2550 * [3] power control (optional)
2551 * [5] channel switch announcement (CSA) (optional)
2552 * [tlv] extended rate phy (ERP)
2553 * [tlv] extended supported rates
2554 * [tlv] RSN parameters
2555 * [tlv] HT capabilities
2556 * [tlv] HT information
2557 * [tlv] Vendor OUI HT capabilities (optional)
2558 * [tlv] Vendor OUI HT information (optional)
2559 * XXX Vendor-specific OIDs (e.g. Atheros)
2560 * [tlv] WPA parameters
2561 * [tlv] WME parameters
2562 * [tlv] application data (optional)
2563 * NB: we allocate the max space required for the TIM bitmap.
2564 * XXX how big is this?
2565 */
2566 pktlen = 8 /* time stamp */
2567 + sizeof(uint16_t) /* beacon interval */
2568 + sizeof(uint16_t) /* capabilities */
2569 + 2 + ni->ni_esslen /* ssid */
2570 + 2 + IEEE80211_RATE_SIZE /* supported rates */
2571 + 2 + 1 /* DS parameters */
2572 + 2 + 6 /* CF parameters */
2573 + 2 + 4 + vap->iv_tim_len /* DTIM/IBSSPARMS */
2574 + IEEE80211_COUNTRY_MAX_SIZE /* country */
2575 + 2 + 1 /* power control */
2576 + sizeof(struct ieee80211_csa_ie) /* CSA */
2577 + 2 + 1 /* ERP */
2578 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2579 + (vap->iv_caps & IEEE80211_C_WPA ? /* WPA 1+2 */
2580 2*sizeof(struct ieee80211_ie_wpa) : 0)
2581 /* XXX conditional? */
2582 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
2583 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
2584 + (vap->iv_caps & IEEE80211_C_WME ? /* WME */
2585 sizeof(struct ieee80211_wme_param) : 0)
2586 + IEEE80211_MAX_APPIE
2587 ;
2588 m = ieee80211_getmgtframe(&frm,
2589 ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
2590 if (m == NULL) {
2591 IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
2592 "%s: cannot get buf; size %u\n", __func__, pktlen);
2593 vap->iv_stats.is_tx_nobuf++;
2594 return NULL;
2595 }
2596 ieee80211_beacon_construct(m, frm, bo, ni);
2597
2598 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
2599 KASSERT(m != NULL, ("no space for 802.11 header?"));
2600 wh = mtod(m, struct ieee80211_frame *);
2601 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2602 IEEE80211_FC0_SUBTYPE_BEACON;
2603 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2604 *(uint16_t *)wh->i_dur = 0;
2605 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2606 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
2607 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
2608 *(uint16_t *)wh->i_seq = 0;
2609
2610 return m;
2611}
2612
2613/*
2614 * Update the dynamic parts of a beacon frame based on the current state.
2615 */
2616int
2617ieee80211_beacon_update(struct ieee80211_node *ni,
2618 struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast)
2619{
2620 struct ieee80211vap *vap = ni->ni_vap;
2621 struct ieee80211com *ic = ni->ni_ic;
2622 int len_changed = 0;
2623 uint16_t capinfo;
2624
2625 IEEE80211_LOCK(ic);
2626 /*
2627 * Handle 11h channel change when we've reached the count.
2628 * We must recalculate the beacon frame contents to account
2629 * for the new channel. Note we do this only for the first
2630 * vap that reaches this point; subsequent vaps just update
2631 * their beacon state to reflect the recalculated channel.
2632 */
2633 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
2634 vap->iv_csa_count == ic->ic_csa_count) {
2635 vap->iv_csa_count = 0;
2636 /*
2637 * Effect channel change before reconstructing the beacon
2638 * frame contents as many places reference ni_chan.
2639 */
2640 if (ic->ic_csa_newchan != NULL)
2641 ieee80211_csa_completeswitch(ic);
2642 /*
2643 * NB: ieee80211_beacon_construct clears all pending
2644 * updates in bo_flags so we don't need to explicitly
2645 * clear IEEE80211_BEACON_CSA.
2646 */
2647 ieee80211_beacon_construct(m,
2648 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), bo, ni);
2649
2650 /* XXX do WME aggressive mode processing? */
2651 IEEE80211_UNLOCK(ic);
2652 return 1; /* just assume length changed */
2653 }
2654
2655 /* XXX faster to recalculate entirely or just changes? */
2656 capinfo = getcapinfo(vap, ni->ni_chan);
2657 *bo->bo_caps = htole16(capinfo);
2658
2659 if (vap->iv_flags & IEEE80211_F_WME) {
2660 struct ieee80211_wme_state *wme = &ic->ic_wme;
2661
2662 /*
2663 * Check for agressive mode change. When there is
2664 * significant high priority traffic in the BSS
2665 * throttle back BE traffic by using conservative
2666 * parameters. Otherwise BE uses agressive params
2667 * to optimize performance of legacy/non-QoS traffic.
2668 */
2669 if (wme->wme_flags & WME_F_AGGRMODE) {
2670 if (wme->wme_hipri_traffic >
2671 wme->wme_hipri_switch_thresh) {
2672 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
2673 "%s: traffic %u, disable aggressive mode\n",
2674 __func__, wme->wme_hipri_traffic);
2675 wme->wme_flags &= ~WME_F_AGGRMODE;
2676 ieee80211_wme_updateparams_locked(vap);
2677 wme->wme_hipri_traffic =
2678 wme->wme_hipri_switch_hysteresis;
2679 } else
2680 wme->wme_hipri_traffic = 0;
2681 } else {
2682 if (wme->wme_hipri_traffic <=
2683 wme->wme_hipri_switch_thresh) {
2684 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
2685 "%s: traffic %u, enable aggressive mode\n",
2686 __func__, wme->wme_hipri_traffic);
2687 wme->wme_flags |= WME_F_AGGRMODE;
2688 ieee80211_wme_updateparams_locked(vap);
2689 wme->wme_hipri_traffic = 0;
2690 } else
2691 wme->wme_hipri_traffic =
2692 wme->wme_hipri_switch_hysteresis;
2693 }
2694 if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
2695 (void) ieee80211_add_wme_param(bo->bo_wme, wme);
2696 clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
2697 }
2698 }
2699
2700 if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) {
2701 ieee80211_ht_update_beacon(vap, bo);
2702 clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
2703 }
2704
2705 if (vap->iv_opmode == IEEE80211_M_HOSTAP) { /* NB: no IBSS support*/
2706 struct ieee80211_tim_ie *tie =
2707 (struct ieee80211_tim_ie *) bo->bo_tim;
2708 if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
2709 u_int timlen, timoff, i;
2710 /*
2711 * ATIM/DTIM needs updating. If it fits in the
2712 * current space allocated then just copy in the
2713 * new bits. Otherwise we need to move any trailing
2714 * data to make room. Note that we know there is
2715 * contiguous space because ieee80211_beacon_allocate
2716 * insures there is space in the mbuf to write a
2717 * maximal-size virtual bitmap (based on iv_max_aid).
2718 */
2719 /*
2720 * Calculate the bitmap size and offset, copy any
2721 * trailer out of the way, and then copy in the
2722 * new bitmap and update the information element.
2723 * Note that the tim bitmap must contain at least
2724 * one byte and any offset must be even.
2725 */
2726 if (vap->iv_ps_pending != 0) {
2727 timoff = 128; /* impossibly large */
2728 for (i = 0; i < vap->iv_tim_len; i++)
2729 if (vap->iv_tim_bitmap[i]) {
2730 timoff = i &~ 1;
2731 break;
2732 }
2733 KASSERT(timoff != 128, ("tim bitmap empty!"));
2734 for (i = vap->iv_tim_len-1; i >= timoff; i--)
2735 if (vap->iv_tim_bitmap[i])
2736 break;
2737 timlen = 1 + (i - timoff);
2738 } else {
2739 timoff = 0;
2740 timlen = 1;
2741 }
2742 if (timlen != bo->bo_tim_len) {
2743 /* copy up/down trailer */
2744 int adjust = tie->tim_bitmap+timlen
2745 - bo->bo_tim_trailer;
2746 ovbcopy(bo->bo_tim_trailer,
2747 bo->bo_tim_trailer+adjust,
2748 bo->bo_tim_trailer_len);
2749 bo->bo_tim_trailer += adjust;
2750 bo->bo_erp += adjust;
2751 bo->bo_htinfo += adjust;
2752 bo->bo_appie += adjust;
2753 bo->bo_wme += adjust;
2754 bo->bo_csa += adjust;
2755 bo->bo_tim_len = timlen;
2756
2757 /* update information element */
2758 tie->tim_len = 3 + timlen;
2759 tie->tim_bitctl = timoff;
2760 len_changed = 1;
2761 }
2762 memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
2763 bo->bo_tim_len);
2764
2765 clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
2766
2767 IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
2768 "%s: TIM updated, pending %u, off %u, len %u\n",
2769 __func__, vap->iv_ps_pending, timoff, timlen);
2770 }
2771 /* count down DTIM period */
2772 if (tie->tim_count == 0)
2773 tie->tim_count = tie->tim_period - 1;
2774 else
2775 tie->tim_count--;
2776 /* update state for buffered multicast frames on DTIM */
2777 if (mcast && tie->tim_count == 0)
2778 tie->tim_bitctl |= 1;
2779 else
2780 tie->tim_bitctl &= ~1;
2781 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
2782 struct ieee80211_csa_ie *csa =
2783 (struct ieee80211_csa_ie *) bo->bo_csa;
2784
2785 /*
2786 * Insert or update CSA ie. If we're just starting
2787 * to count down to the channel switch then we need
2788 * to insert the CSA ie. Otherwise we just need to
2789 * drop the count. The actual change happens above
2790 * when the vap's count reaches the target count.
2791 */
2792 if (vap->iv_csa_count == 0) {
2793 memmove(&csa[1], csa, bo->bo_csa_trailer_len);
2794 bo->bo_erp += sizeof(*csa);
2795 bo->bo_wme += sizeof(*csa);
2796 bo->bo_appie += sizeof(*csa);
2797 bo->bo_csa_trailer_len += sizeof(*csa);
2798 bo->bo_tim_trailer_len += sizeof(*csa);
2799 m->m_len += sizeof(*csa);
2800 m->m_pkthdr.len += sizeof(*csa);
2801
2802 ieee80211_add_csa(bo->bo_csa, vap);
2803 } else
2804 csa->csa_count--;
2805 vap->iv_csa_count++;
2806 /* NB: don't clear IEEE80211_BEACON_CSA */
2807 }
2808 if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
2809 /*
2810 * ERP element needs updating.
2811 */
2812 (void) ieee80211_add_erp(bo->bo_erp, ic);
2813 clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
2814 }
2815 }
2816 if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
2817 const struct ieee80211_appie *aie = vap->iv_appie_beacon;
2818 int aielen;
2819 uint8_t *frm;
2820
2821 aielen = 0;
2822 if (aie != NULL)
2823 aielen += aie->ie_len;
2824 if (aielen != bo->bo_appie_len) {
2825 /* copy up/down trailer */
2826 int adjust = aielen - bo->bo_appie_len;
2827 ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
2828 bo->bo_tim_trailer_len);
2829 bo->bo_tim_trailer += adjust;
2830 bo->bo_appie += adjust;
2831 bo->bo_appie_len = aielen;
2832
2833 len_changed = 1;
2834 }
2835 frm = bo->bo_appie;
2836 if (aie != NULL)
2837 frm = add_appie(frm, aie);
2838 clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
2839 }
2840 IEEE80211_UNLOCK(ic);
2841
2842 return len_changed;
2843}
721 m = m_unshare(m, M_NOWAIT);
722 if (m == NULL) {
723 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
724 "%s: cannot get writable mbuf\n", __func__);
725 vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
726 return NULL;
727 }
728 }
729 }
730 /*
731 * We know we are called just before stripping an Ethernet
732 * header and prepending an LLC header. This means we know
733 * there will be
734 * sizeof(struct ether_header) - sizeof(struct llc)
735 * bytes recovered to which we need additional space for the
736 * 802.11 header and any crypto header.
737 */
738 /* XXX check trailing space and copy instead? */
739 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
740 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
741 if (n == NULL) {
742 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
743 "%s: cannot expand storage\n", __func__);
744 vap->iv_stats.is_tx_nobuf++;
745 m_freem(m);
746 return NULL;
747 }
748 KASSERT(needed_space <= MHLEN,
749 ("not enough room, need %u got %zu\n", needed_space, MHLEN));
750 /*
751 * Setup new mbuf to have leading space to prepend the
752 * 802.11 header and any crypto header bits that are
753 * required (the latter are added when the driver calls
754 * back to ieee80211_crypto_encap to do crypto encapsulation).
755 */
756 /* NB: must be first 'cuz it clobbers m_data */
757 m_move_pkthdr(n, m);
758 n->m_len = 0; /* NB: m_gethdr does not set */
759 n->m_data += needed_space;
760 /*
761 * Pull up Ethernet header to create the expected layout.
762 * We could use m_pullup but that's overkill (i.e. we don't
763 * need the actual data) and it cannot fail so do it inline
764 * for speed.
765 */
766 /* NB: struct ether_header is known to be contiguous */
767 n->m_len += sizeof(struct ether_header);
768 m->m_len -= sizeof(struct ether_header);
769 m->m_data += sizeof(struct ether_header);
770 /*
771 * Replace the head of the chain.
772 */
773 n->m_next = m;
774 m = n;
775 }
776 return m;
777#undef TO_BE_RECLAIMED
778}
779
780/*
781 * Return the transmit key to use in sending a unicast frame.
782 * If a unicast key is set we use that. When no unicast key is set
783 * we fall back to the default transmit key.
784 */
785static __inline struct ieee80211_key *
786ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
787 struct ieee80211_node *ni)
788{
789 if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
790 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
791 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
792 return NULL;
793 return &vap->iv_nw_keys[vap->iv_def_txkey];
794 } else {
795 return &ni->ni_ucastkey;
796 }
797}
798
799/*
800 * Return the transmit key to use in sending a multicast frame.
801 * Multicast traffic always uses the group key which is installed as
802 * the default tx key.
803 */
804static __inline struct ieee80211_key *
805ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
806 struct ieee80211_node *ni)
807{
808 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
809 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
810 return NULL;
811 return &vap->iv_nw_keys[vap->iv_def_txkey];
812}
813
814/*
815 * Encapsulate an outbound data frame. The mbuf chain is updated.
816 * If an error is encountered NULL is returned. The caller is required
817 * to provide a node reference and pullup the ethernet header in the
818 * first mbuf.
819 *
820 * NB: Packet is assumed to be processed by ieee80211_classify which
821 * marked EAPOL frames w/ M_EAPOL.
822 */
823struct mbuf *
824ieee80211_encap(struct ieee80211_node *ni, struct mbuf *m)
825{
826#define WH4(wh) ((struct ieee80211_frame_addr4 *)(wh))
827 struct ieee80211vap *vap = ni->ni_vap;
828 struct ieee80211com *ic = ni->ni_ic;
829 struct ether_header eh;
830 struct ieee80211_frame *wh;
831 struct ieee80211_key *key;
832 struct llc *llc;
833 int hdrsize, hdrspace, datalen, addqos, txfrag, isff, is4addr;
834
835 /*
836 * Copy existing Ethernet header to a safe place. The
837 * rest of the code assumes it's ok to strip it when
838 * reorganizing state for the final encapsulation.
839 */
840 KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
841 ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
842
843 /*
844 * Insure space for additional headers. First identify
845 * transmit key to use in calculating any buffer adjustments
846 * required. This is also used below to do privacy
847 * encapsulation work. Then calculate the 802.11 header
848 * size and any padding required by the driver.
849 *
850 * Note key may be NULL if we fall back to the default
851 * transmit key and that is not set. In that case the
852 * buffer may not be expanded as needed by the cipher
853 * routines, but they will/should discard it.
854 */
855 if (vap->iv_flags & IEEE80211_F_PRIVACY) {
856 if (vap->iv_opmode == IEEE80211_M_STA ||
857 !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
858 (vap->iv_opmode == IEEE80211_M_WDS &&
859 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
860 key = ieee80211_crypto_getucastkey(vap, ni);
861 else
862 key = ieee80211_crypto_getmcastkey(vap, ni);
863 if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
864 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
865 eh.ether_dhost,
866 "no default transmit key (%s) deftxkey %u",
867 __func__, vap->iv_def_txkey);
868 vap->iv_stats.is_tx_nodefkey++;
869 goto bad;
870 }
871 } else
872 key = NULL;
873 /*
874 * XXX Some ap's don't handle QoS-encapsulated EAPOL
875 * frames so suppress use. This may be an issue if other
876 * ap's require all data frames to be QoS-encapsulated
877 * once negotiated in which case we'll need to make this
878 * configurable.
879 */
880 addqos = (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) &&
881 (m->m_flags & M_EAPOL) == 0;
882 if (addqos)
883 hdrsize = sizeof(struct ieee80211_qosframe);
884 else
885 hdrsize = sizeof(struct ieee80211_frame);
886 /*
887 * 4-address frames need to be generated for:
888 * o packets sent through a WDS vap (M_WDS || IEEE80211_M_WDS)
889 * o packets relayed by a station operating with dynamic WDS
890 * (IEEE80211_M_STA+IEEE80211_F_DWDS and src address)
891 */
892 is4addr = (m->m_flags & M_WDS) ||
893 vap->iv_opmode == IEEE80211_M_WDS || /* XXX redundant? */
894 (vap->iv_opmode == IEEE80211_M_STA &&
895 (vap->iv_flags & IEEE80211_F_DWDS) &&
896 !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
897 if (is4addr)
898 hdrsize += IEEE80211_ADDR_LEN;
899 /*
900 * Honor driver DATAPAD requirement.
901 */
902 if (ic->ic_flags & IEEE80211_F_DATAPAD)
903 hdrspace = roundup(hdrsize, sizeof(uint32_t));
904 else
905 hdrspace = hdrsize;
906
907 if ((isff = m->m_flags & M_FF) != 0) {
908 struct mbuf *m2;
909 struct ether_header eh2;
910
911 /*
912 * Fast frame encapsulation. There must be two packets
913 * chained with m_nextpkt. We do header adjustment for
914 * each, add the tunnel encapsulation, and then concatenate
915 * the mbuf chains to form a single frame for transmission.
916 */
917 m2 = m->m_nextpkt;
918 if (m2 == NULL) {
919 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
920 "%s: only one frame\n", __func__);
921 goto bad;
922 }
923 m->m_nextpkt = NULL;
924 /*
925 * Include fast frame headers in adjusting header
926 * layout; this allocates space according to what
927 * ieee80211_encap_fastframe will do.
928 */
929 m = ieee80211_mbuf_adjust(vap,
930 hdrspace + sizeof(struct llc) + sizeof(uint32_t) + 2 +
931 sizeof(struct ether_header),
932 key, m);
933 if (m == NULL) {
934 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */
935 m_freem(m2);
936 goto bad;
937 }
938 /*
939 * Copy second frame's Ethernet header out of line
940 * and adjust for encapsulation headers. Note that
941 * we make room for padding in case there isn't room
942 * at the end of first frame.
943 */
944 KASSERT(m2->m_len >= sizeof(eh2), ("no ethernet header!"));
945 ETHER_HEADER_COPY(&eh2, mtod(m2, caddr_t));
946 m2 = ieee80211_mbuf_adjust(vap,
947 ATH_FF_MAX_HDR_PAD + sizeof(struct ether_header),
948 NULL, m2);
949 if (m2 == NULL) {
950 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */
951 goto bad;
952 }
953 m = ieee80211_encap_fastframe(vap, m, &eh, m2, &eh2);
954 if (m == NULL)
955 goto bad;
956 } else {
957 /*
958 * Normal frame.
959 */
960 m = ieee80211_mbuf_adjust(vap, hdrspace, key, m);
961 if (m == NULL) {
962 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */
963 goto bad;
964 }
965 /* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
966 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
967 llc = mtod(m, struct llc *);
968 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
969 llc->llc_control = LLC_UI;
970 llc->llc_snap.org_code[0] = 0;
971 llc->llc_snap.org_code[1] = 0;
972 llc->llc_snap.org_code[2] = 0;
973 llc->llc_snap.ether_type = eh.ether_type;
974 }
975 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */
976
977 M_PREPEND(m, hdrspace, M_DONTWAIT);
978 if (m == NULL) {
979 vap->iv_stats.is_tx_nobuf++;
980 goto bad;
981 }
982 wh = mtod(m, struct ieee80211_frame *);
983 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
984 *(uint16_t *)wh->i_dur = 0;
985 if (is4addr) {
986 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
987 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
988 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
989 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
990 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
991 } else switch (vap->iv_opmode) {
992 case IEEE80211_M_STA:
993 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
994 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
995 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
996 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
997 break;
998 case IEEE80211_M_IBSS:
999 case IEEE80211_M_AHDEMO:
1000 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1001 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1002 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1003 /*
1004 * NB: always use the bssid from iv_bss as the
1005 * neighbor's may be stale after an ibss merge
1006 */
1007 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1008 break;
1009 case IEEE80211_M_HOSTAP:
1010 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1011 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1012 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1013 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1014 break;
1015 case IEEE80211_M_MONITOR:
1016 case IEEE80211_M_WDS: /* NB: is4addr should always be true */
1017 goto bad;
1018 }
1019 if (m->m_flags & M_MORE_DATA)
1020 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1021 if (addqos) {
1022 uint8_t *qos;
1023 int ac, tid;
1024
1025 if (is4addr) {
1026 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1027 } else
1028 qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1029 ac = M_WME_GETAC(m);
1030 /* map from access class/queue to 11e header priorty value */
1031 tid = WME_AC_TO_TID(ac);
1032 qos[0] = tid & IEEE80211_QOS_TID;
1033 /*
1034 * Check if A-MPDU tx aggregation is setup or if we
1035 * should try to enable it. The sta must be associated
1036 * with HT and A-MPDU enabled for use. When the policy
1037 * routine decides we should enable A-MPDU we issue an
1038 * ADDBA request and wait for a reply. The frame being
1039 * encapsulated will go out w/o using A-MPDU, or possibly
1040 * it might be collected by the driver and held/retransmit.
1041 * The default ic_ampdu_enable routine handles staggering
1042 * ADDBA requests in case the receiver NAK's us or we are
1043 * otherwise unable to establish a BA stream.
1044 */
1045 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
1046 (vap->iv_flags_ext & IEEE80211_FEXT_AMPDU_TX)) {
1047 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
1048
1049 ieee80211_txampdu_count_packet(tap);
1050 if (IEEE80211_AMPDU_RUNNING(tap)) {
1051 /*
1052 * Operational, mark frame for aggregation.
1053 */
1054 qos[0] |= IEEE80211_QOS_ACKPOLICY_BA;
1055 } else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
1056 ic->ic_ampdu_enable(ni, tap)) {
1057 /*
1058 * Not negotiated yet, request service.
1059 */
1060 ieee80211_ampdu_request(ni, tap);
1061 }
1062 }
1063 /* XXX works even when BA marked above */
1064 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1065 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1066 qos[1] = 0;
1067 wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1068
1069 *(uint16_t *)wh->i_seq =
1070 htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT);
1071 ni->ni_txseqs[tid]++;
1072 } else {
1073 *(uint16_t *)wh->i_seq =
1074 htole16(ni->ni_txseqs[IEEE80211_NONQOS_TID] << IEEE80211_SEQ_SEQ_SHIFT);
1075 ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1076 }
1077 /* check if xmit fragmentation is required */
1078 txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1079 !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1080 (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1081 !isff); /* NB: don't fragment ff's */
1082 if (key != NULL) {
1083 /*
1084 * IEEE 802.1X: send EAPOL frames always in the clear.
1085 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1086 */
1087 if ((m->m_flags & M_EAPOL) == 0 ||
1088 ((vap->iv_flags & IEEE80211_F_WPA) &&
1089 (vap->iv_opmode == IEEE80211_M_STA ?
1090 !IEEE80211_KEY_UNDEFINED(key) :
1091 !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1092 wh->i_fc[1] |= IEEE80211_FC1_WEP;
1093 if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1094 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1095 eh.ether_dhost,
1096 "%s", "enmic failed, discard frame");
1097 vap->iv_stats.is_crypto_enmicfail++;
1098 goto bad;
1099 }
1100 }
1101 }
1102 if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1103 key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1104 goto bad;
1105
1106 IEEE80211_NODE_STAT(ni, tx_data);
1107 if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1108 IEEE80211_NODE_STAT(ni, tx_mcast);
1109 else
1110 IEEE80211_NODE_STAT(ni, tx_ucast);
1111 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1112
1113 /* XXX fragmented frames not handled */
1114 if (bpf_peers_present(vap->iv_rawbpf))
1115 bpf_mtap(vap->iv_rawbpf, m);
1116
1117 return m;
1118bad:
1119 if (m != NULL)
1120 m_freem(m);
1121 return NULL;
1122#undef WH4
1123}
1124
1125/*
1126 * Do Ethernet-LLC encapsulation for each payload in a fast frame
1127 * tunnel encapsulation. The frame is assumed to have an Ethernet
1128 * header at the front that must be stripped before prepending the
1129 * LLC followed by the Ethernet header passed in (with an Ethernet
1130 * type that specifies the payload size).
1131 */
1132static struct mbuf *
1133ieee80211_encap1(struct ieee80211vap *vap, struct mbuf *m,
1134 const struct ether_header *eh)
1135{
1136 struct llc *llc;
1137 uint16_t payload;
1138
1139 /* XXX optimize by combining m_adj+M_PREPEND */
1140 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1141 llc = mtod(m, struct llc *);
1142 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1143 llc->llc_control = LLC_UI;
1144 llc->llc_snap.org_code[0] = 0;
1145 llc->llc_snap.org_code[1] = 0;
1146 llc->llc_snap.org_code[2] = 0;
1147 llc->llc_snap.ether_type = eh->ether_type;
1148 payload = m->m_pkthdr.len; /* NB: w/o Ethernet header */
1149
1150 M_PREPEND(m, sizeof(struct ether_header), M_DONTWAIT);
1151 if (m == NULL) { /* XXX cannot happen */
1152 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
1153 "%s: no space for ether_header\n", __func__);
1154 vap->iv_stats.is_tx_nobuf++;
1155 return NULL;
1156 }
1157 ETHER_HEADER_COPY(mtod(m, void *), eh);
1158 mtod(m, struct ether_header *)->ether_type = htons(payload);
1159 return m;
1160}
1161
1162/*
1163 * Do fast frame tunnel encapsulation. The two frames and
1164 * Ethernet headers are supplied. The caller is assumed to
1165 * have arrange for space in the mbuf chains for encapsulating
1166 * headers (to avoid major mbuf fragmentation).
1167 *
1168 * The encapsulated frame is returned or NULL if there is a
1169 * problem (should not happen).
1170 */
1171static struct mbuf *
1172ieee80211_encap_fastframe(struct ieee80211vap *vap,
1173 struct mbuf *m1, const struct ether_header *eh1,
1174 struct mbuf *m2, const struct ether_header *eh2)
1175{
1176 struct llc *llc;
1177 struct mbuf *m;
1178 int pad;
1179
1180 /*
1181 * First, each frame gets a standard encapsulation.
1182 */
1183 m1 = ieee80211_encap1(vap, m1, eh1);
1184 if (m1 == NULL) {
1185 m_freem(m2);
1186 return NULL;
1187 }
1188 m2 = ieee80211_encap1(vap, m2, eh2);
1189 if (m2 == NULL) {
1190 m_freem(m1);
1191 return NULL;
1192 }
1193
1194 /*
1195 * Pad leading frame to a 4-byte boundary. If there
1196 * is space at the end of the first frame, put it
1197 * there; otherwise prepend to the front of the second
1198 * frame. We know doing the second will always work
1199 * because we reserve space above. We prefer appending
1200 * as this typically has better DMA alignment properties.
1201 */
1202 for (m = m1; m->m_next != NULL; m = m->m_next)
1203 ;
1204 pad = roundup2(m1->m_pkthdr.len, 4) - m1->m_pkthdr.len;
1205 if (pad) {
1206 if (M_TRAILINGSPACE(m) < pad) { /* prepend to second */
1207 m2->m_data -= pad;
1208 m2->m_len += pad;
1209 m2->m_pkthdr.len += pad;
1210 } else { /* append to first */
1211 m->m_len += pad;
1212 m1->m_pkthdr.len += pad;
1213 }
1214 }
1215
1216 /*
1217 * Now, stick 'em together and prepend the tunnel headers;
1218 * first the Atheros tunnel header (all zero for now) and
1219 * then a special fast frame LLC.
1220 *
1221 * XXX optimize by prepending together
1222 */
1223 m->m_next = m2; /* NB: last mbuf from above */
1224 m1->m_pkthdr.len += m2->m_pkthdr.len;
1225 M_PREPEND(m1, sizeof(uint32_t)+2, M_DONTWAIT);
1226 if (m1 == NULL) { /* XXX cannot happen */
1227 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
1228 "%s: no space for tunnel header\n", __func__);
1229 vap->iv_stats.is_tx_nobuf++;
1230 return NULL;
1231 }
1232 memset(mtod(m1, void *), 0, sizeof(uint32_t)+2);
1233
1234 M_PREPEND(m1, sizeof(struct llc), M_DONTWAIT);
1235 if (m1 == NULL) { /* XXX cannot happen */
1236 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
1237 "%s: no space for llc header\n", __func__);
1238 vap->iv_stats.is_tx_nobuf++;
1239 return NULL;
1240 }
1241 llc = mtod(m1, struct llc *);
1242 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1243 llc->llc_control = LLC_UI;
1244 llc->llc_snap.org_code[0] = ATH_FF_SNAP_ORGCODE_0;
1245 llc->llc_snap.org_code[1] = ATH_FF_SNAP_ORGCODE_1;
1246 llc->llc_snap.org_code[2] = ATH_FF_SNAP_ORGCODE_2;
1247 llc->llc_snap.ether_type = htons(ATH_FF_ETH_TYPE);
1248
1249 vap->iv_stats.is_ff_encap++;
1250
1251 return m1;
1252}
1253
1254/*
1255 * Fragment the frame according to the specified mtu.
1256 * The size of the 802.11 header (w/o padding) is provided
1257 * so we don't need to recalculate it. We create a new
1258 * mbuf for each fragment and chain it through m_nextpkt;
1259 * we might be able to optimize this by reusing the original
1260 * packet's mbufs but that is significantly more complicated.
1261 */
1262static int
1263ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1264 u_int hdrsize, u_int ciphdrsize, u_int mtu)
1265{
1266 struct ieee80211_frame *wh, *whf;
1267 struct mbuf *m, *prev, *next;
1268 u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1269
1270 KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1271 KASSERT(m0->m_pkthdr.len > mtu,
1272 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1273
1274 wh = mtod(m0, struct ieee80211_frame *);
1275 /* NB: mark the first frag; it will be propagated below */
1276 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1277 totalhdrsize = hdrsize + ciphdrsize;
1278 fragno = 1;
1279 off = mtu - ciphdrsize;
1280 remainder = m0->m_pkthdr.len - off;
1281 prev = m0;
1282 do {
1283 fragsize = totalhdrsize + remainder;
1284 if (fragsize > mtu)
1285 fragsize = mtu;
1286 /* XXX fragsize can be >2048! */
1287 KASSERT(fragsize < MCLBYTES,
1288 ("fragment size %u too big!", fragsize));
1289 if (fragsize > MHLEN)
1290 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1291 else
1292 m = m_gethdr(M_DONTWAIT, MT_DATA);
1293 if (m == NULL)
1294 goto bad;
1295 /* leave room to prepend any cipher header */
1296 m_align(m, fragsize - ciphdrsize);
1297
1298 /*
1299 * Form the header in the fragment. Note that since
1300 * we mark the first fragment with the MORE_FRAG bit
1301 * it automatically is propagated to each fragment; we
1302 * need only clear it on the last fragment (done below).
1303 */
1304 whf = mtod(m, struct ieee80211_frame *);
1305 memcpy(whf, wh, hdrsize);
1306 *(uint16_t *)&whf->i_seq[0] |= htole16(
1307 (fragno & IEEE80211_SEQ_FRAG_MASK) <<
1308 IEEE80211_SEQ_FRAG_SHIFT);
1309 fragno++;
1310
1311 payload = fragsize - totalhdrsize;
1312 /* NB: destination is known to be contiguous */
1313 m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrsize);
1314 m->m_len = hdrsize + payload;
1315 m->m_pkthdr.len = hdrsize + payload;
1316 m->m_flags |= M_FRAG;
1317
1318 /* chain up the fragment */
1319 prev->m_nextpkt = m;
1320 prev = m;
1321
1322 /* deduct fragment just formed */
1323 remainder -= payload;
1324 off += payload;
1325 } while (remainder != 0);
1326 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1327
1328 /* strip first mbuf now that everything has been copied */
1329 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1330 m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1331
1332 vap->iv_stats.is_tx_fragframes++;
1333 vap->iv_stats.is_tx_frags += fragno-1;
1334
1335 return 1;
1336bad:
1337 /* reclaim fragments but leave original frame for caller to free */
1338 for (m = m0->m_nextpkt; m != NULL; m = next) {
1339 next = m->m_nextpkt;
1340 m->m_nextpkt = NULL; /* XXX paranoid */
1341 m_freem(m);
1342 }
1343 m0->m_nextpkt = NULL;
1344 return 0;
1345}
1346
1347/*
1348 * Add a supported rates element id to a frame.
1349 */
1350static uint8_t *
1351ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1352{
1353 int nrates;
1354
1355 *frm++ = IEEE80211_ELEMID_RATES;
1356 nrates = rs->rs_nrates;
1357 if (nrates > IEEE80211_RATE_SIZE)
1358 nrates = IEEE80211_RATE_SIZE;
1359 *frm++ = nrates;
1360 memcpy(frm, rs->rs_rates, nrates);
1361 return frm + nrates;
1362}
1363
1364/*
1365 * Add an extended supported rates element id to a frame.
1366 */
1367static uint8_t *
1368ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1369{
1370 /*
1371 * Add an extended supported rates element if operating in 11g mode.
1372 */
1373 if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1374 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1375 *frm++ = IEEE80211_ELEMID_XRATES;
1376 *frm++ = nrates;
1377 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1378 frm += nrates;
1379 }
1380 return frm;
1381}
1382
1383/*
1384 * Add an ssid element to a frame.
1385 */
1386static uint8_t *
1387ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
1388{
1389 *frm++ = IEEE80211_ELEMID_SSID;
1390 *frm++ = len;
1391 memcpy(frm, ssid, len);
1392 return frm + len;
1393}
1394
1395/*
1396 * Add an erp element to a frame.
1397 */
1398static uint8_t *
1399ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
1400{
1401 uint8_t erp;
1402
1403 *frm++ = IEEE80211_ELEMID_ERP;
1404 *frm++ = 1;
1405 erp = 0;
1406 if (ic->ic_nonerpsta != 0)
1407 erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1408 if (ic->ic_flags & IEEE80211_F_USEPROT)
1409 erp |= IEEE80211_ERP_USE_PROTECTION;
1410 if (ic->ic_flags & IEEE80211_F_USEBARKER)
1411 erp |= IEEE80211_ERP_LONG_PREAMBLE;
1412 *frm++ = erp;
1413 return frm;
1414}
1415
1416/*
1417 * Add a CFParams element to a frame.
1418 */
1419static uint8_t *
1420ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
1421{
1422#define ADDSHORT(frm, v) do { \
1423 frm[0] = (v) & 0xff; \
1424 frm[1] = (v) >> 8; \
1425 frm += 2; \
1426} while (0)
1427 *frm++ = IEEE80211_ELEMID_CFPARMS;
1428 *frm++ = 6;
1429 *frm++ = 0; /* CFP count */
1430 *frm++ = 2; /* CFP period */
1431 ADDSHORT(frm, 0); /* CFP MaxDuration (TU) */
1432 ADDSHORT(frm, 0); /* CFP CurRemaining (TU) */
1433 return frm;
1434#undef ADDSHORT
1435}
1436
1437static __inline uint8_t *
1438add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
1439{
1440 memcpy(frm, ie->ie_data, ie->ie_len);
1441 return frm + ie->ie_len;
1442}
1443
1444static __inline uint8_t *
1445add_ie(uint8_t *frm, const uint8_t *ie)
1446{
1447 memcpy(frm, ie, 2 + ie[1]);
1448 return frm + 2 + ie[1];
1449}
1450
1451#define WME_OUI_BYTES 0x00, 0x50, 0xf2
1452/*
1453 * Add a WME information element to a frame.
1454 */
1455static uint8_t *
1456ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
1457{
1458 static const struct ieee80211_wme_info info = {
1459 .wme_id = IEEE80211_ELEMID_VENDOR,
1460 .wme_len = sizeof(struct ieee80211_wme_info) - 2,
1461 .wme_oui = { WME_OUI_BYTES },
1462 .wme_type = WME_OUI_TYPE,
1463 .wme_subtype = WME_INFO_OUI_SUBTYPE,
1464 .wme_version = WME_VERSION,
1465 .wme_info = 0,
1466 };
1467 memcpy(frm, &info, sizeof(info));
1468 return frm + sizeof(info);
1469}
1470
1471/*
1472 * Add a WME parameters element to a frame.
1473 */
1474static uint8_t *
1475ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
1476{
1477#define SM(_v, _f) (((_v) << _f##_S) & _f)
1478#define ADDSHORT(frm, v) do { \
1479 frm[0] = (v) & 0xff; \
1480 frm[1] = (v) >> 8; \
1481 frm += 2; \
1482} while (0)
1483 /* NB: this works 'cuz a param has an info at the front */
1484 static const struct ieee80211_wme_info param = {
1485 .wme_id = IEEE80211_ELEMID_VENDOR,
1486 .wme_len = sizeof(struct ieee80211_wme_param) - 2,
1487 .wme_oui = { WME_OUI_BYTES },
1488 .wme_type = WME_OUI_TYPE,
1489 .wme_subtype = WME_PARAM_OUI_SUBTYPE,
1490 .wme_version = WME_VERSION,
1491 };
1492 int i;
1493
1494 memcpy(frm, &param, sizeof(param));
1495 frm += __offsetof(struct ieee80211_wme_info, wme_info);
1496 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */
1497 *frm++ = 0; /* reserved field */
1498 for (i = 0; i < WME_NUM_AC; i++) {
1499 const struct wmeParams *ac =
1500 &wme->wme_bssChanParams.cap_wmeParams[i];
1501 *frm++ = SM(i, WME_PARAM_ACI)
1502 | SM(ac->wmep_acm, WME_PARAM_ACM)
1503 | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1504 ;
1505 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1506 | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1507 ;
1508 ADDSHORT(frm, ac->wmep_txopLimit);
1509 }
1510 return frm;
1511#undef SM
1512#undef ADDSHORT
1513}
1514#undef WME_OUI_BYTES
1515
1516#define ATH_OUI_BYTES 0x00, 0x03, 0x7f
1517/*
1518 * Add a WME information element to a frame.
1519 */
1520static uint8_t *
1521ieee80211_add_ath(uint8_t *frm, uint8_t caps, uint16_t defkeyix)
1522{
1523 static const struct ieee80211_ath_ie info = {
1524 .ath_id = IEEE80211_ELEMID_VENDOR,
1525 .ath_len = sizeof(struct ieee80211_ath_ie) - 2,
1526 .ath_oui = { ATH_OUI_BYTES },
1527 .ath_oui_type = ATH_OUI_TYPE,
1528 .ath_oui_subtype= ATH_OUI_SUBTYPE,
1529 .ath_version = ATH_OUI_VERSION,
1530 };
1531 struct ieee80211_ath_ie *ath = (struct ieee80211_ath_ie *) frm;
1532
1533 memcpy(frm, &info, sizeof(info));
1534 ath->ath_capability = caps;
1535 ath->ath_defkeyix[0] = (defkeyix & 0xff);
1536 ath->ath_defkeyix[1] = ((defkeyix >> 8) & 0xff);
1537 return frm + sizeof(info);
1538}
1539#undef ATH_OUI_BYTES
1540
1541/*
1542 * Add an 11h Power Constraint element to a frame.
1543 */
1544static uint8_t *
1545ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
1546{
1547 const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
1548 /* XXX per-vap tx power limit? */
1549 int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
1550
1551 frm[0] = IEEE80211_ELEMID_PWRCNSTR;
1552 frm[1] = 1;
1553 frm[2] = c->ic_maxregpower > limit ? c->ic_maxregpower - limit : 0;
1554 return frm + 3;
1555}
1556
1557/*
1558 * Add an 11h Power Capability element to a frame.
1559 */
1560static uint8_t *
1561ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
1562{
1563 frm[0] = IEEE80211_ELEMID_PWRCAP;
1564 frm[1] = 2;
1565 frm[2] = c->ic_minpower;
1566 frm[3] = c->ic_maxpower;
1567 return frm + 4;
1568}
1569
1570/*
1571 * Add an 11h Supported Channels element to a frame.
1572 */
1573static uint8_t *
1574ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
1575{
1576 static const int ielen = 26;
1577
1578 frm[0] = IEEE80211_ELEMID_SUPPCHAN;
1579 frm[1] = ielen;
1580 /* XXX not correct */
1581 memcpy(frm+2, ic->ic_chan_avail, ielen);
1582 return frm + 2 + ielen;
1583}
1584
1585/*
1586 * Add an 11h Channel Switch Announcement element to a frame.
1587 * Note that we use the per-vap CSA count to adjust the global
1588 * counter so we can use this routine to form probe response
1589 * frames and get the current count.
1590 */
1591static uint8_t *
1592ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
1593{
1594 struct ieee80211com *ic = vap->iv_ic;
1595 struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
1596
1597 csa->csa_ie = IEEE80211_ELEMID_CHANSWITCHANN;
1598 csa->csa_len = 3;
1599 csa->csa_mode = 1; /* XXX force quiet on channel */
1600 csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
1601 csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
1602 return frm + sizeof(*csa);
1603}
1604
1605/*
1606 * Add an 11h country information element to a frame.
1607 */
1608static uint8_t *
1609ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
1610{
1611
1612 if (ic->ic_countryie == NULL ||
1613 ic->ic_countryie_chan != ic->ic_bsschan) {
1614 /*
1615 * Handle lazy construction of ie. This is done on
1616 * first use and after a channel change that requires
1617 * re-calculation.
1618 */
1619 if (ic->ic_countryie != NULL)
1620 free(ic->ic_countryie, M_80211_NODE_IE);
1621 ic->ic_countryie = ieee80211_alloc_countryie(ic);
1622 if (ic->ic_countryie == NULL)
1623 return frm;
1624 ic->ic_countryie_chan = ic->ic_bsschan;
1625 }
1626 return add_appie(frm, ic->ic_countryie);
1627}
1628
1629/*
1630 * Send a probe request frame with the specified ssid
1631 * and any optional information element data.
1632 */
1633int
1634ieee80211_send_probereq(struct ieee80211_node *ni,
1635 const uint8_t sa[IEEE80211_ADDR_LEN],
1636 const uint8_t da[IEEE80211_ADDR_LEN],
1637 const uint8_t bssid[IEEE80211_ADDR_LEN],
1638 const uint8_t *ssid, size_t ssidlen)
1639{
1640 struct ieee80211vap *vap = ni->ni_vap;
1641 struct ieee80211com *ic = ni->ni_ic;
1642 struct ieee80211_frame *wh;
1643 const struct ieee80211_rateset *rs;
1644 struct mbuf *m;
1645 uint8_t *frm;
1646
1647 if (vap->iv_state == IEEE80211_S_CAC) {
1648 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
1649 "block %s frame in CAC state", "probe request");
1650 vap->iv_stats.is_tx_badstate++;
1651 return EIO; /* XXX */
1652 }
1653
1654 /*
1655 * Hold a reference on the node so it doesn't go away until after
1656 * the xmit is complete all the way in the driver. On error we
1657 * will remove our reference.
1658 */
1659 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
1660 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1661 __func__, __LINE__,
1662 ni, ether_sprintf(ni->ni_macaddr),
1663 ieee80211_node_refcnt(ni)+1);
1664 ieee80211_ref_node(ni);
1665
1666 /*
1667 * prreq frame format
1668 * [tlv] ssid
1669 * [tlv] supported rates
1670 * [tlv] RSN (optional)
1671 * [tlv] extended supported rates
1672 * [tlv] WPA (optional)
1673 * [tlv] user-specified ie's
1674 */
1675 m = ieee80211_getmgtframe(&frm,
1676 ic->ic_headroom + sizeof(struct ieee80211_frame),
1677 2 + IEEE80211_NWID_LEN
1678 + 2 + IEEE80211_RATE_SIZE
1679 + sizeof(struct ieee80211_ie_wpa)
1680 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1681 + sizeof(struct ieee80211_ie_wpa)
1682 + (vap->iv_appie_probereq != NULL ?
1683 vap->iv_appie_probereq->ie_len : 0)
1684 );
1685 if (m == NULL) {
1686 vap->iv_stats.is_tx_nobuf++;
1687 ieee80211_free_node(ni);
1688 return ENOMEM;
1689 }
1690
1691 frm = ieee80211_add_ssid(frm, ssid, ssidlen);
1692 rs = ieee80211_get_suprates(ic, ic->ic_curchan);
1693 frm = ieee80211_add_rates(frm, rs);
1694 if (vap->iv_flags & IEEE80211_F_WPA2) {
1695 if (vap->iv_rsn_ie != NULL)
1696 frm = add_ie(frm, vap->iv_rsn_ie);
1697 /* XXX else complain? */
1698 }
1699 frm = ieee80211_add_xrates(frm, rs);
1700 if (vap->iv_flags & IEEE80211_F_WPA1) {
1701 if (vap->iv_wpa_ie != NULL)
1702 frm = add_ie(frm, vap->iv_wpa_ie);
1703 /* XXX else complain? */
1704 }
1705 if (vap->iv_appie_probereq != NULL)
1706 frm = add_appie(frm, vap->iv_appie_probereq);
1707 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
1708
1709 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
1710 if (m == NULL)
1711 return ENOMEM;
1712
1713 wh = mtod(m, struct ieee80211_frame *);
1714 ieee80211_send_setup(ni, wh,
1715 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
1716 sa, da, bssid);
1717 /* XXX power management? */
1718
1719 M_WME_SETAC(m, WME_AC_BE);
1720
1721 IEEE80211_NODE_STAT(ni, tx_probereq);
1722 IEEE80211_NODE_STAT(ni, tx_mgmt);
1723
1724 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
1725 "send probe req on channel %u bssid %s ssid \"%.*s\"\n",
1726 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid),
1727 ssidlen, ssid);
1728
1729 return ic->ic_raw_xmit(ni, m, NULL);
1730}
1731
1732/*
1733 * Calculate capability information for mgt frames.
1734 */
1735static uint16_t
1736getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
1737{
1738 struct ieee80211com *ic = vap->iv_ic;
1739 uint16_t capinfo;
1740
1741 KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
1742
1743 if (vap->iv_opmode == IEEE80211_M_HOSTAP)
1744 capinfo = IEEE80211_CAPINFO_ESS;
1745 else if (vap->iv_opmode == IEEE80211_M_IBSS)
1746 capinfo = IEEE80211_CAPINFO_IBSS;
1747 else
1748 capinfo = 0;
1749 if (vap->iv_flags & IEEE80211_F_PRIVACY)
1750 capinfo |= IEEE80211_CAPINFO_PRIVACY;
1751 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1752 IEEE80211_IS_CHAN_2GHZ(chan))
1753 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1754 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1755 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1756 if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
1757 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
1758 return capinfo;
1759}
1760
1761/*
1762 * Send a management frame. The node is for the destination (or ic_bss
1763 * when in station mode). Nodes other than ic_bss have their reference
1764 * count bumped to reflect our use for an indeterminant time.
1765 */
1766int
1767ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
1768{
1769#define HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
1770#define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
1771 struct ieee80211vap *vap = ni->ni_vap;
1772 struct ieee80211com *ic = ni->ni_ic;
1773 struct ieee80211_node *bss = vap->iv_bss;
1774 struct mbuf *m;
1775 uint8_t *frm;
1776 uint16_t capinfo;
1777 int has_challenge, is_shared_key, ret, status;
1778
1779 KASSERT(ni != NULL, ("null node"));
1780
1781 /*
1782 * Hold a reference on the node so it doesn't go away until after
1783 * the xmit is complete all the way in the driver. On error we
1784 * will remove our reference.
1785 */
1786 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
1787 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1788 __func__, __LINE__,
1789 ni, ether_sprintf(ni->ni_macaddr),
1790 ieee80211_node_refcnt(ni)+1);
1791 ieee80211_ref_node(ni);
1792
1793 switch (type) {
1794
1795 case IEEE80211_FC0_SUBTYPE_AUTH:
1796 status = arg >> 16;
1797 arg &= 0xffff;
1798 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
1799 arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
1800 ni->ni_challenge != NULL);
1801
1802 /*
1803 * Deduce whether we're doing open authentication or
1804 * shared key authentication. We do the latter if
1805 * we're in the middle of a shared key authentication
1806 * handshake or if we're initiating an authentication
1807 * request and configured to use shared key.
1808 */
1809 is_shared_key = has_challenge ||
1810 arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
1811 (arg == IEEE80211_AUTH_SHARED_REQUEST &&
1812 bss->ni_authmode == IEEE80211_AUTH_SHARED);
1813
1814 m = ieee80211_getmgtframe(&frm,
1815 ic->ic_headroom + sizeof(struct ieee80211_frame),
1816 3 * sizeof(uint16_t)
1817 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
1818 sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
1819 );
1820 if (m == NULL)
1821 senderr(ENOMEM, is_tx_nobuf);
1822
1823 ((uint16_t *)frm)[0] =
1824 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
1825 : htole16(IEEE80211_AUTH_ALG_OPEN);
1826 ((uint16_t *)frm)[1] = htole16(arg); /* sequence number */
1827 ((uint16_t *)frm)[2] = htole16(status);/* status */
1828
1829 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
1830 ((uint16_t *)frm)[3] =
1831 htole16((IEEE80211_CHALLENGE_LEN << 8) |
1832 IEEE80211_ELEMID_CHALLENGE);
1833 memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
1834 IEEE80211_CHALLENGE_LEN);
1835 m->m_pkthdr.len = m->m_len =
1836 4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
1837 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
1838 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
1839 "request encrypt frame (%s)", __func__);
1840 m->m_flags |= M_LINK0; /* WEP-encrypt, please */
1841 }
1842 } else
1843 m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
1844
1845 /* XXX not right for shared key */
1846 if (status == IEEE80211_STATUS_SUCCESS)
1847 IEEE80211_NODE_STAT(ni, tx_auth);
1848 else
1849 IEEE80211_NODE_STAT(ni, tx_auth_fail);
1850
1851 if (vap->iv_opmode == IEEE80211_M_STA)
1852 ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
1853 (void *) vap->iv_state);
1854 break;
1855
1856 case IEEE80211_FC0_SUBTYPE_DEAUTH:
1857 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
1858 "send station deauthenticate (reason %d)", arg);
1859 m = ieee80211_getmgtframe(&frm,
1860 ic->ic_headroom + sizeof(struct ieee80211_frame),
1861 sizeof(uint16_t));
1862 if (m == NULL)
1863 senderr(ENOMEM, is_tx_nobuf);
1864 *(uint16_t *)frm = htole16(arg); /* reason */
1865 m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
1866
1867 IEEE80211_NODE_STAT(ni, tx_deauth);
1868 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
1869
1870 ieee80211_node_unauthorize(ni); /* port closed */
1871 break;
1872
1873 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
1874 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
1875 /*
1876 * asreq frame format
1877 * [2] capability information
1878 * [2] listen interval
1879 * [6*] current AP address (reassoc only)
1880 * [tlv] ssid
1881 * [tlv] supported rates
1882 * [tlv] extended supported rates
1883 * [4] power capability (optional)
1884 * [28] supported channels (optional)
1885 * [tlv] HT capabilities
1886 * [tlv] WME (optional)
1887 * [tlv] Vendor OUI HT capabilities (optional)
1888 * [tlv] Atheros capabilities (if negotiated)
1889 * [tlv] AppIE's (optional)
1890 */
1891 m = ieee80211_getmgtframe(&frm,
1892 ic->ic_headroom + sizeof(struct ieee80211_frame),
1893 sizeof(uint16_t)
1894 + sizeof(uint16_t)
1895 + IEEE80211_ADDR_LEN
1896 + 2 + IEEE80211_NWID_LEN
1897 + 2 + IEEE80211_RATE_SIZE
1898 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1899 + 4
1900 + 2 + 26
1901 + sizeof(struct ieee80211_wme_info)
1902 + sizeof(struct ieee80211_ie_htcap)
1903 + 4 + sizeof(struct ieee80211_ie_htcap)
1904 + sizeof(struct ieee80211_ath_ie)
1905 + (vap->iv_appie_wpa != NULL ?
1906 vap->iv_appie_wpa->ie_len : 0)
1907 + (vap->iv_appie_assocreq != NULL ?
1908 vap->iv_appie_assocreq->ie_len : 0)
1909 );
1910 if (m == NULL)
1911 senderr(ENOMEM, is_tx_nobuf);
1912
1913 KASSERT(vap->iv_opmode == IEEE80211_M_STA,
1914 ("wrong mode %u", vap->iv_opmode));
1915 capinfo = IEEE80211_CAPINFO_ESS;
1916 if (vap->iv_flags & IEEE80211_F_PRIVACY)
1917 capinfo |= IEEE80211_CAPINFO_PRIVACY;
1918 /*
1919 * NB: Some 11a AP's reject the request when
1920 * short premable is set.
1921 */
1922 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1923 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
1924 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1925 if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
1926 (ic->ic_caps & IEEE80211_C_SHSLOT))
1927 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1928 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
1929 (vap->iv_flags & IEEE80211_F_DOTH))
1930 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
1931 *(uint16_t *)frm = htole16(capinfo);
1932 frm += 2;
1933
1934 KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
1935 *(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
1936 bss->ni_intval));
1937 frm += 2;
1938
1939 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
1940 IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
1941 frm += IEEE80211_ADDR_LEN;
1942 }
1943
1944 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
1945 frm = ieee80211_add_rates(frm, &ni->ni_rates);
1946 if (vap->iv_flags & IEEE80211_F_WPA2) {
1947 if (vap->iv_rsn_ie != NULL)
1948 frm = add_ie(frm, vap->iv_rsn_ie);
1949 /* XXX else complain? */
1950 }
1951 frm = ieee80211_add_xrates(frm, &ni->ni_rates);
1952 if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
1953 frm = ieee80211_add_powercapability(frm,
1954 ic->ic_curchan);
1955 frm = ieee80211_add_supportedchannels(frm, ic);
1956 }
1957 if ((vap->iv_flags_ext & IEEE80211_FEXT_HT) &&
1958 ni->ni_ies.htcap_ie != NULL &&
1959 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP)
1960 frm = ieee80211_add_htcap(frm, ni);
1961 if (vap->iv_flags & IEEE80211_F_WPA1) {
1962 if (vap->iv_wpa_ie != NULL)
1963 frm = add_ie(frm, vap->iv_wpa_ie);
1964 /* XXX else complain */
1965 }
1966 if ((ic->ic_flags & IEEE80211_F_WME) &&
1967 ni->ni_ies.wme_ie != NULL)
1968 frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
1969 if ((vap->iv_flags_ext & IEEE80211_FEXT_HT) &&
1970 ni->ni_ies.htcap_ie != NULL &&
1971 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR)
1972 frm = ieee80211_add_htcap_vendor(frm, ni);
1973 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
1974 frm = ieee80211_add_ath(frm,
1975 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
1976 (vap->iv_flags & IEEE80211_F_WPA) == 0 &&
1977 ni->ni_authmode != IEEE80211_AUTH_8021X &&
1978 vap->iv_def_txkey != IEEE80211_KEYIX_NONE ?
1979 vap->iv_def_txkey : 0x7fff);
1980 if (vap->iv_appie_assocreq != NULL)
1981 frm = add_appie(frm, vap->iv_appie_assocreq);
1982 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
1983
1984 ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
1985 (void *) vap->iv_state);
1986 break;
1987
1988 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
1989 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
1990 /*
1991 * asresp frame format
1992 * [2] capability information
1993 * [2] status
1994 * [2] association ID
1995 * [tlv] supported rates
1996 * [tlv] extended supported rates
1997 * [tlv] HT capabilities (standard, if STA enabled)
1998 * [tlv] HT information (standard, if STA enabled)
1999 * [tlv] WME (if configured and STA enabled)
2000 * [tlv] HT capabilities (vendor OUI, if STA enabled)
2001 * [tlv] HT information (vendor OUI, if STA enabled)
2002 * [tlv] Atheros capabilities (if STA enabled)
2003 * [tlv] AppIE's (optional)
2004 */
2005 m = ieee80211_getmgtframe(&frm,
2006 ic->ic_headroom + sizeof(struct ieee80211_frame),
2007 sizeof(uint16_t)
2008 + sizeof(uint16_t)
2009 + sizeof(uint16_t)
2010 + 2 + IEEE80211_RATE_SIZE
2011 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2012 + sizeof(struct ieee80211_ie_htcap) + 4
2013 + sizeof(struct ieee80211_ie_htinfo) + 4
2014 + sizeof(struct ieee80211_wme_param)
2015 + sizeof(struct ieee80211_ath_ie)
2016 + (vap->iv_appie_assocresp != NULL ?
2017 vap->iv_appie_assocresp->ie_len : 0)
2018 );
2019 if (m == NULL)
2020 senderr(ENOMEM, is_tx_nobuf);
2021
2022 capinfo = getcapinfo(vap, bss->ni_chan);
2023 *(uint16_t *)frm = htole16(capinfo);
2024 frm += 2;
2025
2026 *(uint16_t *)frm = htole16(arg); /* status */
2027 frm += 2;
2028
2029 if (arg == IEEE80211_STATUS_SUCCESS) {
2030 *(uint16_t *)frm = htole16(ni->ni_associd);
2031 IEEE80211_NODE_STAT(ni, tx_assoc);
2032 } else
2033 IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2034 frm += 2;
2035
2036 frm = ieee80211_add_rates(frm, &ni->ni_rates);
2037 frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2038 /* NB: respond according to what we received */
2039 if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2040 frm = ieee80211_add_htcap(frm, ni);
2041 frm = ieee80211_add_htinfo(frm, ni);
2042 }
2043 if ((vap->iv_flags & IEEE80211_F_WME) &&
2044 ni->ni_ies.wme_ie != NULL)
2045 frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2046 if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2047 frm = ieee80211_add_htcap_vendor(frm, ni);
2048 frm = ieee80211_add_htinfo_vendor(frm, ni);
2049 }
2050 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2051 frm = ieee80211_add_ath(frm,
2052 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2053 ni->ni_ath_defkeyix);
2054 if (vap->iv_appie_assocresp != NULL)
2055 frm = add_appie(frm, vap->iv_appie_assocresp);
2056 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2057 break;
2058
2059 case IEEE80211_FC0_SUBTYPE_DISASSOC:
2060 IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2061 "send station disassociate (reason %d)", arg);
2062 m = ieee80211_getmgtframe(&frm,
2063 ic->ic_headroom + sizeof(struct ieee80211_frame),
2064 sizeof(uint16_t));
2065 if (m == NULL)
2066 senderr(ENOMEM, is_tx_nobuf);
2067 *(uint16_t *)frm = htole16(arg); /* reason */
2068 m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2069
2070 IEEE80211_NODE_STAT(ni, tx_disassoc);
2071 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2072 break;
2073
2074 default:
2075 IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2076 "invalid mgmt frame type %u", type);
2077 senderr(EINVAL, is_tx_unknownmgt);
2078 /* NOTREACHED */
2079 }
2080
2081 return ieee80211_mgmt_output(ni, m, type);
2082bad:
2083 ieee80211_free_node(ni);
2084 return ret;
2085#undef senderr
2086#undef HTFLAGS
2087}
2088
2089/*
2090 * Return an mbuf with a probe response frame in it.
2091 * Space is left to prepend and 802.11 header at the
2092 * front but it's left to the caller to fill in.
2093 */
2094struct mbuf *
2095ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2096{
2097 struct ieee80211vap *vap = bss->ni_vap;
2098 struct ieee80211com *ic = bss->ni_ic;
2099 const struct ieee80211_rateset *rs;
2100 struct mbuf *m;
2101 uint16_t capinfo;
2102 uint8_t *frm;
2103
2104 /*
2105 * probe response frame format
2106 * [8] time stamp
2107 * [2] beacon interval
2108 * [2] cabability information
2109 * [tlv] ssid
2110 * [tlv] supported rates
2111 * [tlv] parameter set (FH/DS)
2112 * [tlv] parameter set (IBSS)
2113 * [tlv] country (optional)
2114 * [tlv] RSN (optional)
2115 * [3] power control (optional)
2116 * [5] channel switch announcement (CSA) (optional)
2117 * [tlv] extended rate phy (ERP)
2118 * [tlv] extended supported rates
2119 * [tlv] HT capabilities
2120 * [tlv] HT information
2121 * [tlv] WPA (optional)
2122 * [tlv] WME (optional)
2123 * [tlv] Vendor OUI HT capabilities (optional)
2124 * [tlv] Vendor OUI HT information (optional)
2125 * [tlv] Atheros capabilities
2126 * [tlv] AppIE's (optional)
2127 */
2128 m = ieee80211_getmgtframe(&frm,
2129 ic->ic_headroom + sizeof(struct ieee80211_frame),
2130 8
2131 + sizeof(uint16_t)
2132 + sizeof(uint16_t)
2133 + 2 + IEEE80211_NWID_LEN
2134 + 2 + IEEE80211_RATE_SIZE
2135 + 7 /* max(7,3) */
2136 + IEEE80211_COUNTRY_MAX_SIZE
2137 + sizeof(struct ieee80211_ie_wpa)
2138 + 3
2139 + sizeof(struct ieee80211_csa_ie)
2140 + 3
2141 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2142 + sizeof(struct ieee80211_ie_htcap)
2143 + sizeof(struct ieee80211_ie_htinfo)
2144 + sizeof(struct ieee80211_ie_wpa)
2145 + sizeof(struct ieee80211_wme_param)
2146 + 4 + sizeof(struct ieee80211_ie_htcap)
2147 + 4 + sizeof(struct ieee80211_ie_htinfo)
2148 + sizeof(struct ieee80211_ath_ie)
2149 + (vap->iv_appie_proberesp != NULL ?
2150 vap->iv_appie_proberesp->ie_len : 0)
2151 );
2152 if (m == NULL) {
2153 vap->iv_stats.is_tx_nobuf++;
2154 return NULL;
2155 }
2156
2157 memset(frm, 0, 8); /* timestamp should be filled later */
2158 frm += 8;
2159 *(uint16_t *)frm = htole16(bss->ni_intval);
2160 frm += 2;
2161 capinfo = getcapinfo(vap, bss->ni_chan);
2162 *(uint16_t *)frm = htole16(capinfo);
2163 frm += 2;
2164
2165 frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2166 rs = ieee80211_get_suprates(ic, bss->ni_chan);
2167 frm = ieee80211_add_rates(frm, rs);
2168
2169 if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2170 *frm++ = IEEE80211_ELEMID_FHPARMS;
2171 *frm++ = 5;
2172 *frm++ = bss->ni_fhdwell & 0x00ff;
2173 *frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2174 *frm++ = IEEE80211_FH_CHANSET(
2175 ieee80211_chan2ieee(ic, bss->ni_chan));
2176 *frm++ = IEEE80211_FH_CHANPAT(
2177 ieee80211_chan2ieee(ic, bss->ni_chan));
2178 *frm++ = bss->ni_fhindex;
2179 } else {
2180 *frm++ = IEEE80211_ELEMID_DSPARMS;
2181 *frm++ = 1;
2182 *frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2183 }
2184
2185 if (vap->iv_opmode == IEEE80211_M_IBSS) {
2186 *frm++ = IEEE80211_ELEMID_IBSSPARMS;
2187 *frm++ = 2;
2188 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
2189 }
2190 if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2191 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2192 frm = ieee80211_add_countryie(frm, ic);
2193 if (vap->iv_flags & IEEE80211_F_WPA2) {
2194 if (vap->iv_rsn_ie != NULL)
2195 frm = add_ie(frm, vap->iv_rsn_ie);
2196 /* XXX else complain? */
2197 }
2198 if (vap->iv_flags & IEEE80211_F_DOTH) {
2199 if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2200 frm = ieee80211_add_powerconstraint(frm, vap);
2201 if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2202 frm = ieee80211_add_csa(frm, vap);
2203 }
2204 if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2205 frm = ieee80211_add_erp(frm, ic);
2206 frm = ieee80211_add_xrates(frm, rs);
2207 /*
2208 * NB: legacy 11b clients do not get certain ie's.
2209 * The caller identifies such clients by passing
2210 * a token in legacy to us. Could expand this to be
2211 * any legacy client for stuff like HT ie's.
2212 */
2213 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2214 legacy != IEEE80211_SEND_LEGACY_11B) {
2215 frm = ieee80211_add_htcap(frm, bss);
2216 frm = ieee80211_add_htinfo(frm, bss);
2217 }
2218 if (vap->iv_flags & IEEE80211_F_WPA1) {
2219 if (vap->iv_wpa_ie != NULL)
2220 frm = add_ie(frm, vap->iv_wpa_ie);
2221 /* XXX else complain? */
2222 }
2223 if (vap->iv_flags & IEEE80211_F_WME)
2224 frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2225 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2226 (vap->iv_flags_ext & IEEE80211_FEXT_HTCOMPAT) &&
2227 legacy != IEEE80211_SEND_LEGACY_11B) {
2228 frm = ieee80211_add_htcap_vendor(frm, bss);
2229 frm = ieee80211_add_htinfo_vendor(frm, bss);
2230 }
2231 if (bss->ni_ies.ath_ie != NULL && legacy != IEEE80211_SEND_LEGACY_11B)
2232 frm = ieee80211_add_ath(frm, bss->ni_ath_flags,
2233 bss->ni_ath_defkeyix);
2234 if (vap->iv_appie_proberesp != NULL)
2235 frm = add_appie(frm, vap->iv_appie_proberesp);
2236 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2237
2238 return m;
2239}
2240
2241/*
2242 * Send a probe response frame to the specified mac address.
2243 * This does not go through the normal mgt frame api so we
2244 * can specify the destination address and re-use the bss node
2245 * for the sta reference.
2246 */
2247int
2248ieee80211_send_proberesp(struct ieee80211vap *vap,
2249 const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
2250{
2251 struct ieee80211_node *bss = vap->iv_bss;
2252 struct ieee80211com *ic = vap->iv_ic;
2253 struct ieee80211_frame *wh;
2254 struct mbuf *m;
2255
2256 if (vap->iv_state == IEEE80211_S_CAC) {
2257 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
2258 "block %s frame in CAC state", "probe response");
2259 vap->iv_stats.is_tx_badstate++;
2260 return EIO; /* XXX */
2261 }
2262
2263 /*
2264 * Hold a reference on the node so it doesn't go away until after
2265 * the xmit is complete all the way in the driver. On error we
2266 * will remove our reference.
2267 */
2268 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2269 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2270 __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
2271 ieee80211_node_refcnt(bss)+1);
2272 ieee80211_ref_node(bss);
2273
2274 m = ieee80211_alloc_proberesp(bss, legacy);
2275 if (m == NULL) {
2276 ieee80211_free_node(bss);
2277 return ENOMEM;
2278 }
2279
2280 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
2281 KASSERT(m != NULL, ("no room for header"));
2282
2283 wh = mtod(m, struct ieee80211_frame *);
2284 ieee80211_send_setup(bss, wh,
2285 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
2286 vap->iv_myaddr, da, bss->ni_bssid);
2287 /* XXX power management? */
2288
2289 M_WME_SETAC(m, WME_AC_BE);
2290
2291 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2292 "send probe resp on channel %u to %s%s\n",
2293 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
2294 legacy ? " <legacy>" : "");
2295 IEEE80211_NODE_STAT(bss, tx_mgmt);
2296
2297 return ic->ic_raw_xmit(bss, m, NULL);
2298}
2299
2300/*
2301 * Allocate and build a RTS (Request To Send) control frame.
2302 */
2303struct mbuf *
2304ieee80211_alloc_rts(struct ieee80211com *ic,
2305 const uint8_t ra[IEEE80211_ADDR_LEN],
2306 const uint8_t ta[IEEE80211_ADDR_LEN],
2307 uint16_t dur)
2308{
2309 struct ieee80211_frame_rts *rts;
2310 struct mbuf *m;
2311
2312 /* XXX honor ic_headroom */
2313 m = m_gethdr(M_DONTWAIT, MT_DATA);
2314 if (m != NULL) {
2315 rts = mtod(m, struct ieee80211_frame_rts *);
2316 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2317 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
2318 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2319 *(u_int16_t *)rts->i_dur = htole16(dur);
2320 IEEE80211_ADDR_COPY(rts->i_ra, ra);
2321 IEEE80211_ADDR_COPY(rts->i_ta, ta);
2322
2323 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
2324 }
2325 return m;
2326}
2327
2328/*
2329 * Allocate and build a CTS (Clear To Send) control frame.
2330 */
2331struct mbuf *
2332ieee80211_alloc_cts(struct ieee80211com *ic,
2333 const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
2334{
2335 struct ieee80211_frame_cts *cts;
2336 struct mbuf *m;
2337
2338 /* XXX honor ic_headroom */
2339 m = m_gethdr(M_DONTWAIT, MT_DATA);
2340 if (m != NULL) {
2341 cts = mtod(m, struct ieee80211_frame_cts *);
2342 cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2343 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
2344 cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2345 *(u_int16_t *)cts->i_dur = htole16(dur);
2346 IEEE80211_ADDR_COPY(cts->i_ra, ra);
2347
2348 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
2349 }
2350 return m;
2351}
2352
2353static void
2354ieee80211_tx_mgt_timeout(void *arg)
2355{
2356 struct ieee80211_node *ni = arg;
2357 struct ieee80211vap *vap = ni->ni_vap;
2358
2359 if (vap->iv_state != IEEE80211_S_INIT &&
2360 (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2361 /*
2362 * NB: it's safe to specify a timeout as the reason here;
2363 * it'll only be used in the right state.
2364 */
2365 ieee80211_new_state(vap, IEEE80211_S_SCAN,
2366 IEEE80211_SCAN_FAIL_TIMEOUT);
2367 }
2368}
2369
2370static void
2371ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
2372{
2373 struct ieee80211vap *vap = ni->ni_vap;
2374 enum ieee80211_state ostate = (enum ieee80211_state) arg;
2375
2376 /*
2377 * Frame transmit completed; arrange timer callback. If
2378 * transmit was successfuly we wait for response. Otherwise
2379 * we arrange an immediate callback instead of doing the
2380 * callback directly since we don't know what state the driver
2381 * is in (e.g. what locks it is holding). This work should
2382 * not be too time-critical and not happen too often so the
2383 * added overhead is acceptable.
2384 *
2385 * XXX what happens if !acked but response shows up before callback?
2386 */
2387 if (vap->iv_state == ostate)
2388 callout_reset(&vap->iv_mgtsend,
2389 status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
2390 ieee80211_tx_mgt_timeout, ni);
2391}
2392
2393static void
2394ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
2395 struct ieee80211_beacon_offsets *bo, struct ieee80211_node *ni)
2396{
2397 struct ieee80211vap *vap = ni->ni_vap;
2398 struct ieee80211com *ic = ni->ni_ic;
2399 struct ieee80211_rateset *rs = &ni->ni_rates;
2400 uint16_t capinfo;
2401
2402 /*
2403 * beacon frame format
2404 * [8] time stamp
2405 * [2] beacon interval
2406 * [2] cabability information
2407 * [tlv] ssid
2408 * [tlv] supported rates
2409 * [3] parameter set (DS)
2410 * [8] CF parameter set (optional)
2411 * [tlv] parameter set (IBSS/TIM)
2412 * [tlv] country (optional)
2413 * [tlv] RSN parameters
2414 * [3] power control (optional)
2415 * [5] channel switch announcement (CSA) (optional)
2416 * [tlv] extended rate phy (ERP)
2417 * [tlv] extended supported rates
2418 * [tlv] HT capabilities
2419 * [tlv] HT information
2420 * XXX Vendor-specific OIDs (e.g. Atheros)
2421 * [tlv] WPA parameters
2422 * [tlv] WME parameters
2423 * [tlv] Vendor OUI HT capabilities (optional)
2424 * [tlv] Vendor OUI HT information (optional)
2425 * [tlv] application data (optional)
2426 */
2427
2428 memset(bo, 0, sizeof(*bo));
2429
2430 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */
2431 frm += 8;
2432 *(uint16_t *)frm = htole16(ni->ni_intval);
2433 frm += 2;
2434 capinfo = getcapinfo(vap, ni->ni_chan);
2435 bo->bo_caps = (uint16_t *)frm;
2436 *(uint16_t *)frm = htole16(capinfo);
2437 frm += 2;
2438 *frm++ = IEEE80211_ELEMID_SSID;
2439 if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
2440 *frm++ = ni->ni_esslen;
2441 memcpy(frm, ni->ni_essid, ni->ni_esslen);
2442 frm += ni->ni_esslen;
2443 } else
2444 *frm++ = 0;
2445 frm = ieee80211_add_rates(frm, rs);
2446 if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
2447 *frm++ = IEEE80211_ELEMID_DSPARMS;
2448 *frm++ = 1;
2449 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
2450 }
2451 if (ic->ic_flags & IEEE80211_F_PCF) {
2452 bo->bo_cfp = frm;
2453 frm = ieee80211_add_cfparms(frm, ic);
2454 }
2455 bo->bo_tim = frm;
2456 if (vap->iv_opmode == IEEE80211_M_IBSS) {
2457 *frm++ = IEEE80211_ELEMID_IBSSPARMS;
2458 *frm++ = 2;
2459 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
2460 bo->bo_tim_len = 0;
2461 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
2462 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
2463
2464 tie->tim_ie = IEEE80211_ELEMID_TIM;
2465 tie->tim_len = 4; /* length */
2466 tie->tim_count = 0; /* DTIM count */
2467 tie->tim_period = vap->iv_dtim_period; /* DTIM period */
2468 tie->tim_bitctl = 0; /* bitmap control */
2469 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */
2470 frm += sizeof(struct ieee80211_tim_ie);
2471 bo->bo_tim_len = 1;
2472 }
2473 bo->bo_tim_trailer = frm;
2474 if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2475 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2476 frm = ieee80211_add_countryie(frm, ic);
2477 if (vap->iv_flags & IEEE80211_F_WPA2) {
2478 if (vap->iv_rsn_ie != NULL)
2479 frm = add_ie(frm, vap->iv_rsn_ie);
2480 /* XXX else complain */
2481 }
2482 if (vap->iv_flags & IEEE80211_F_DOTH) {
2483 if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
2484 frm = ieee80211_add_powerconstraint(frm, vap);
2485 bo->bo_csa = frm;
2486 if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2487 frm = ieee80211_add_csa(frm, vap);
2488 } else
2489 bo->bo_csa = frm;
2490 if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
2491 bo->bo_erp = frm;
2492 frm = ieee80211_add_erp(frm, ic);
2493 }
2494 frm = ieee80211_add_xrates(frm, rs);
2495 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
2496 frm = ieee80211_add_htcap(frm, ni);
2497 bo->bo_htinfo = frm;
2498 frm = ieee80211_add_htinfo(frm, ni);
2499 }
2500 if (vap->iv_flags & IEEE80211_F_WPA1) {
2501 if (vap->iv_wpa_ie != NULL)
2502 frm = add_ie(frm, vap->iv_wpa_ie);
2503 /* XXX else complain */
2504 }
2505 if (vap->iv_flags & IEEE80211_F_WME) {
2506 bo->bo_wme = frm;
2507 frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2508 }
2509 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2510 (vap->iv_flags_ext & IEEE80211_FEXT_HTCOMPAT)) {
2511 frm = ieee80211_add_htcap_vendor(frm, ni);
2512 frm = ieee80211_add_htinfo_vendor(frm, ni);
2513 }
2514 if (vap->iv_appie_beacon != NULL) {
2515 bo->bo_appie = frm;
2516 bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
2517 frm = add_appie(frm, vap->iv_appie_beacon);
2518 }
2519 bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
2520 bo->bo_csa_trailer_len = frm - bo->bo_csa;
2521 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2522}
2523
2524/*
2525 * Allocate a beacon frame and fillin the appropriate bits.
2526 */
2527struct mbuf *
2528ieee80211_beacon_alloc(struct ieee80211_node *ni,
2529 struct ieee80211_beacon_offsets *bo)
2530{
2531 struct ieee80211vap *vap = ni->ni_vap;
2532 struct ieee80211com *ic = ni->ni_ic;
2533 struct ifnet *ifp = vap->iv_ifp;
2534 struct ieee80211_frame *wh;
2535 struct mbuf *m;
2536 int pktlen;
2537 uint8_t *frm;
2538
2539 /*
2540 * beacon frame format
2541 * [8] time stamp
2542 * [2] beacon interval
2543 * [2] cabability information
2544 * [tlv] ssid
2545 * [tlv] supported rates
2546 * [3] parameter set (DS)
2547 * [8] CF parameter set (optional)
2548 * [tlv] parameter set (IBSS/TIM)
2549 * [tlv] country (optional)
2550 * [3] power control (optional)
2551 * [5] channel switch announcement (CSA) (optional)
2552 * [tlv] extended rate phy (ERP)
2553 * [tlv] extended supported rates
2554 * [tlv] RSN parameters
2555 * [tlv] HT capabilities
2556 * [tlv] HT information
2557 * [tlv] Vendor OUI HT capabilities (optional)
2558 * [tlv] Vendor OUI HT information (optional)
2559 * XXX Vendor-specific OIDs (e.g. Atheros)
2560 * [tlv] WPA parameters
2561 * [tlv] WME parameters
2562 * [tlv] application data (optional)
2563 * NB: we allocate the max space required for the TIM bitmap.
2564 * XXX how big is this?
2565 */
2566 pktlen = 8 /* time stamp */
2567 + sizeof(uint16_t) /* beacon interval */
2568 + sizeof(uint16_t) /* capabilities */
2569 + 2 + ni->ni_esslen /* ssid */
2570 + 2 + IEEE80211_RATE_SIZE /* supported rates */
2571 + 2 + 1 /* DS parameters */
2572 + 2 + 6 /* CF parameters */
2573 + 2 + 4 + vap->iv_tim_len /* DTIM/IBSSPARMS */
2574 + IEEE80211_COUNTRY_MAX_SIZE /* country */
2575 + 2 + 1 /* power control */
2576 + sizeof(struct ieee80211_csa_ie) /* CSA */
2577 + 2 + 1 /* ERP */
2578 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2579 + (vap->iv_caps & IEEE80211_C_WPA ? /* WPA 1+2 */
2580 2*sizeof(struct ieee80211_ie_wpa) : 0)
2581 /* XXX conditional? */
2582 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
2583 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
2584 + (vap->iv_caps & IEEE80211_C_WME ? /* WME */
2585 sizeof(struct ieee80211_wme_param) : 0)
2586 + IEEE80211_MAX_APPIE
2587 ;
2588 m = ieee80211_getmgtframe(&frm,
2589 ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
2590 if (m == NULL) {
2591 IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
2592 "%s: cannot get buf; size %u\n", __func__, pktlen);
2593 vap->iv_stats.is_tx_nobuf++;
2594 return NULL;
2595 }
2596 ieee80211_beacon_construct(m, frm, bo, ni);
2597
2598 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
2599 KASSERT(m != NULL, ("no space for 802.11 header?"));
2600 wh = mtod(m, struct ieee80211_frame *);
2601 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2602 IEEE80211_FC0_SUBTYPE_BEACON;
2603 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2604 *(uint16_t *)wh->i_dur = 0;
2605 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2606 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
2607 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
2608 *(uint16_t *)wh->i_seq = 0;
2609
2610 return m;
2611}
2612
2613/*
2614 * Update the dynamic parts of a beacon frame based on the current state.
2615 */
2616int
2617ieee80211_beacon_update(struct ieee80211_node *ni,
2618 struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast)
2619{
2620 struct ieee80211vap *vap = ni->ni_vap;
2621 struct ieee80211com *ic = ni->ni_ic;
2622 int len_changed = 0;
2623 uint16_t capinfo;
2624
2625 IEEE80211_LOCK(ic);
2626 /*
2627 * Handle 11h channel change when we've reached the count.
2628 * We must recalculate the beacon frame contents to account
2629 * for the new channel. Note we do this only for the first
2630 * vap that reaches this point; subsequent vaps just update
2631 * their beacon state to reflect the recalculated channel.
2632 */
2633 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
2634 vap->iv_csa_count == ic->ic_csa_count) {
2635 vap->iv_csa_count = 0;
2636 /*
2637 * Effect channel change before reconstructing the beacon
2638 * frame contents as many places reference ni_chan.
2639 */
2640 if (ic->ic_csa_newchan != NULL)
2641 ieee80211_csa_completeswitch(ic);
2642 /*
2643 * NB: ieee80211_beacon_construct clears all pending
2644 * updates in bo_flags so we don't need to explicitly
2645 * clear IEEE80211_BEACON_CSA.
2646 */
2647 ieee80211_beacon_construct(m,
2648 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), bo, ni);
2649
2650 /* XXX do WME aggressive mode processing? */
2651 IEEE80211_UNLOCK(ic);
2652 return 1; /* just assume length changed */
2653 }
2654
2655 /* XXX faster to recalculate entirely or just changes? */
2656 capinfo = getcapinfo(vap, ni->ni_chan);
2657 *bo->bo_caps = htole16(capinfo);
2658
2659 if (vap->iv_flags & IEEE80211_F_WME) {
2660 struct ieee80211_wme_state *wme = &ic->ic_wme;
2661
2662 /*
2663 * Check for agressive mode change. When there is
2664 * significant high priority traffic in the BSS
2665 * throttle back BE traffic by using conservative
2666 * parameters. Otherwise BE uses agressive params
2667 * to optimize performance of legacy/non-QoS traffic.
2668 */
2669 if (wme->wme_flags & WME_F_AGGRMODE) {
2670 if (wme->wme_hipri_traffic >
2671 wme->wme_hipri_switch_thresh) {
2672 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
2673 "%s: traffic %u, disable aggressive mode\n",
2674 __func__, wme->wme_hipri_traffic);
2675 wme->wme_flags &= ~WME_F_AGGRMODE;
2676 ieee80211_wme_updateparams_locked(vap);
2677 wme->wme_hipri_traffic =
2678 wme->wme_hipri_switch_hysteresis;
2679 } else
2680 wme->wme_hipri_traffic = 0;
2681 } else {
2682 if (wme->wme_hipri_traffic <=
2683 wme->wme_hipri_switch_thresh) {
2684 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
2685 "%s: traffic %u, enable aggressive mode\n",
2686 __func__, wme->wme_hipri_traffic);
2687 wme->wme_flags |= WME_F_AGGRMODE;
2688 ieee80211_wme_updateparams_locked(vap);
2689 wme->wme_hipri_traffic = 0;
2690 } else
2691 wme->wme_hipri_traffic =
2692 wme->wme_hipri_switch_hysteresis;
2693 }
2694 if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
2695 (void) ieee80211_add_wme_param(bo->bo_wme, wme);
2696 clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
2697 }
2698 }
2699
2700 if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) {
2701 ieee80211_ht_update_beacon(vap, bo);
2702 clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
2703 }
2704
2705 if (vap->iv_opmode == IEEE80211_M_HOSTAP) { /* NB: no IBSS support*/
2706 struct ieee80211_tim_ie *tie =
2707 (struct ieee80211_tim_ie *) bo->bo_tim;
2708 if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
2709 u_int timlen, timoff, i;
2710 /*
2711 * ATIM/DTIM needs updating. If it fits in the
2712 * current space allocated then just copy in the
2713 * new bits. Otherwise we need to move any trailing
2714 * data to make room. Note that we know there is
2715 * contiguous space because ieee80211_beacon_allocate
2716 * insures there is space in the mbuf to write a
2717 * maximal-size virtual bitmap (based on iv_max_aid).
2718 */
2719 /*
2720 * Calculate the bitmap size and offset, copy any
2721 * trailer out of the way, and then copy in the
2722 * new bitmap and update the information element.
2723 * Note that the tim bitmap must contain at least
2724 * one byte and any offset must be even.
2725 */
2726 if (vap->iv_ps_pending != 0) {
2727 timoff = 128; /* impossibly large */
2728 for (i = 0; i < vap->iv_tim_len; i++)
2729 if (vap->iv_tim_bitmap[i]) {
2730 timoff = i &~ 1;
2731 break;
2732 }
2733 KASSERT(timoff != 128, ("tim bitmap empty!"));
2734 for (i = vap->iv_tim_len-1; i >= timoff; i--)
2735 if (vap->iv_tim_bitmap[i])
2736 break;
2737 timlen = 1 + (i - timoff);
2738 } else {
2739 timoff = 0;
2740 timlen = 1;
2741 }
2742 if (timlen != bo->bo_tim_len) {
2743 /* copy up/down trailer */
2744 int adjust = tie->tim_bitmap+timlen
2745 - bo->bo_tim_trailer;
2746 ovbcopy(bo->bo_tim_trailer,
2747 bo->bo_tim_trailer+adjust,
2748 bo->bo_tim_trailer_len);
2749 bo->bo_tim_trailer += adjust;
2750 bo->bo_erp += adjust;
2751 bo->bo_htinfo += adjust;
2752 bo->bo_appie += adjust;
2753 bo->bo_wme += adjust;
2754 bo->bo_csa += adjust;
2755 bo->bo_tim_len = timlen;
2756
2757 /* update information element */
2758 tie->tim_len = 3 + timlen;
2759 tie->tim_bitctl = timoff;
2760 len_changed = 1;
2761 }
2762 memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
2763 bo->bo_tim_len);
2764
2765 clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
2766
2767 IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
2768 "%s: TIM updated, pending %u, off %u, len %u\n",
2769 __func__, vap->iv_ps_pending, timoff, timlen);
2770 }
2771 /* count down DTIM period */
2772 if (tie->tim_count == 0)
2773 tie->tim_count = tie->tim_period - 1;
2774 else
2775 tie->tim_count--;
2776 /* update state for buffered multicast frames on DTIM */
2777 if (mcast && tie->tim_count == 0)
2778 tie->tim_bitctl |= 1;
2779 else
2780 tie->tim_bitctl &= ~1;
2781 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
2782 struct ieee80211_csa_ie *csa =
2783 (struct ieee80211_csa_ie *) bo->bo_csa;
2784
2785 /*
2786 * Insert or update CSA ie. If we're just starting
2787 * to count down to the channel switch then we need
2788 * to insert the CSA ie. Otherwise we just need to
2789 * drop the count. The actual change happens above
2790 * when the vap's count reaches the target count.
2791 */
2792 if (vap->iv_csa_count == 0) {
2793 memmove(&csa[1], csa, bo->bo_csa_trailer_len);
2794 bo->bo_erp += sizeof(*csa);
2795 bo->bo_wme += sizeof(*csa);
2796 bo->bo_appie += sizeof(*csa);
2797 bo->bo_csa_trailer_len += sizeof(*csa);
2798 bo->bo_tim_trailer_len += sizeof(*csa);
2799 m->m_len += sizeof(*csa);
2800 m->m_pkthdr.len += sizeof(*csa);
2801
2802 ieee80211_add_csa(bo->bo_csa, vap);
2803 } else
2804 csa->csa_count--;
2805 vap->iv_csa_count++;
2806 /* NB: don't clear IEEE80211_BEACON_CSA */
2807 }
2808 if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
2809 /*
2810 * ERP element needs updating.
2811 */
2812 (void) ieee80211_add_erp(bo->bo_erp, ic);
2813 clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
2814 }
2815 }
2816 if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
2817 const struct ieee80211_appie *aie = vap->iv_appie_beacon;
2818 int aielen;
2819 uint8_t *frm;
2820
2821 aielen = 0;
2822 if (aie != NULL)
2823 aielen += aie->ie_len;
2824 if (aielen != bo->bo_appie_len) {
2825 /* copy up/down trailer */
2826 int adjust = aielen - bo->bo_appie_len;
2827 ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
2828 bo->bo_tim_trailer_len);
2829 bo->bo_tim_trailer += adjust;
2830 bo->bo_appie += adjust;
2831 bo->bo_appie_len = aielen;
2832
2833 len_changed = 1;
2834 }
2835 frm = bo->bo_appie;
2836 if (aie != NULL)
2837 frm = add_appie(frm, aie);
2838 clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
2839 }
2840 IEEE80211_UNLOCK(ic);
2841
2842 return len_changed;
2843}