Deleted Added
full compact
ieee80211_freebsd.c (243882) ieee80211_freebsd.c (246710)
1/*-
2 * Copyright (c) 2003-2009 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 */
25
26#include <sys/cdefs.h>
1/*-
2 * Copyright (c) 2003-2009 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 */
25
26#include <sys/cdefs.h>
27__FBSDID("$FreeBSD: head/sys/net80211/ieee80211_freebsd.c 243882 2012-12-05 08:04:20Z glebius $");
27__FBSDID("$FreeBSD: head/sys/net80211/ieee80211_freebsd.c 246710 2013-02-12 11:24:37Z glebius $");
28
29/*
30 * IEEE 802.11 support (FreeBSD-specific code)
31 */
32#include "opt_wlan.h"
33
34#include <sys/param.h>
35#include <sys/kernel.h>
36#include <sys/systm.h>
37#include <sys/linker.h>
38#include <sys/mbuf.h>
39#include <sys/module.h>
40#include <sys/proc.h>
41#include <sys/sysctl.h>
42
43#include <sys/socket.h>
44
45#include <net/bpf.h>
46#include <net/if.h>
47#include <net/if_dl.h>
48#include <net/if_clone.h>
49#include <net/if_media.h>
50#include <net/if_types.h>
51#include <net/ethernet.h>
52#include <net/route.h>
53#include <net/vnet.h>
54
55#include <net80211/ieee80211_var.h>
56#include <net80211/ieee80211_input.h>
57
58SYSCTL_NODE(_net, OID_AUTO, wlan, CTLFLAG_RD, 0, "IEEE 80211 parameters");
59
60#ifdef IEEE80211_DEBUG
61int ieee80211_debug = 0;
62SYSCTL_INT(_net_wlan, OID_AUTO, debug, CTLFLAG_RW, &ieee80211_debug,
63 0, "debugging printfs");
64#endif
65
66static MALLOC_DEFINE(M_80211_COM, "80211com", "802.11 com state");
67
68#if __FreeBSD_version >= 1000020
69static const char wlanname[] = "wlan";
70static struct if_clone *wlan_cloner;
71#endif
72
73/*
74 * Allocate/free com structure in conjunction with ifnet;
75 * these routines are registered with if_register_com_alloc
76 * below and are called automatically by the ifnet code
77 * when the ifnet of the parent device is created.
78 */
79static void *
80wlan_alloc(u_char type, struct ifnet *ifp)
81{
82 struct ieee80211com *ic;
83
84 ic = malloc(sizeof(struct ieee80211com), M_80211_COM, M_WAITOK|M_ZERO);
85 ic->ic_ifp = ifp;
86
87 return (ic);
88}
89
90static void
91wlan_free(void *ic, u_char type)
92{
93 free(ic, M_80211_COM);
94}
95
96static int
97wlan_clone_create(struct if_clone *ifc, int unit, caddr_t params)
98{
99 struct ieee80211_clone_params cp;
100 struct ieee80211vap *vap;
101 struct ieee80211com *ic;
102 struct ifnet *ifp;
103 int error;
104
105 error = copyin(params, &cp, sizeof(cp));
106 if (error)
107 return error;
108 ifp = ifunit(cp.icp_parent);
109 if (ifp == NULL)
110 return ENXIO;
111 /* XXX move printfs to DIAGNOSTIC before release */
112 if (ifp->if_type != IFT_IEEE80211) {
113 if_printf(ifp, "%s: reject, not an 802.11 device\n", __func__);
114 return ENXIO;
115 }
116 if (cp.icp_opmode >= IEEE80211_OPMODE_MAX) {
117 if_printf(ifp, "%s: invalid opmode %d\n",
118 __func__, cp.icp_opmode);
119 return EINVAL;
120 }
121 ic = ifp->if_l2com;
122 if ((ic->ic_caps & ieee80211_opcap[cp.icp_opmode]) == 0) {
123 if_printf(ifp, "%s mode not supported\n",
124 ieee80211_opmode_name[cp.icp_opmode]);
125 return EOPNOTSUPP;
126 }
127 if ((cp.icp_flags & IEEE80211_CLONE_TDMA) &&
128#ifdef IEEE80211_SUPPORT_TDMA
129 (ic->ic_caps & IEEE80211_C_TDMA) == 0
130#else
131 (1)
132#endif
133 ) {
134 if_printf(ifp, "TDMA not supported\n");
135 return EOPNOTSUPP;
136 }
137#if __FreeBSD_version >= 1000020
138 vap = ic->ic_vap_create(ic, wlanname, unit,
139 cp.icp_opmode, cp.icp_flags, cp.icp_bssid,
140 cp.icp_flags & IEEE80211_CLONE_MACADDR ?
141 cp.icp_macaddr : (const uint8_t *)IF_LLADDR(ifp));
142#else
143 vap = ic->ic_vap_create(ic, ifc->ifc_name, unit,
144 cp.icp_opmode, cp.icp_flags, cp.icp_bssid,
145 cp.icp_flags & IEEE80211_CLONE_MACADDR ?
146 cp.icp_macaddr : (const uint8_t *)IF_LLADDR(ifp));
147
148#endif
149
150 return (vap == NULL ? EIO : 0);
151}
152
153static void
154wlan_clone_destroy(struct ifnet *ifp)
155{
156 struct ieee80211vap *vap = ifp->if_softc;
157 struct ieee80211com *ic = vap->iv_ic;
158
159 ic->ic_vap_delete(vap);
160}
161
162#if __FreeBSD_version < 1000020
163IFC_SIMPLE_DECLARE(wlan, 0);
164#endif
165
166void
167ieee80211_vap_destroy(struct ieee80211vap *vap)
168{
169 CURVNET_SET(vap->iv_ifp->if_vnet);
170#if __FreeBSD_version >= 1000020
171 if_clone_destroyif(wlan_cloner, vap->iv_ifp);
172#else
173 if_clone_destroyif(&wlan_cloner, vap->iv_ifp);
174#endif
175 CURVNET_RESTORE();
176}
177
178int
179ieee80211_sysctl_msecs_ticks(SYSCTL_HANDLER_ARGS)
180{
181 int msecs = ticks_to_msecs(*(int *)arg1);
182 int error, t;
183
184 error = sysctl_handle_int(oidp, &msecs, 0, req);
185 if (error || !req->newptr)
186 return error;
187 t = msecs_to_ticks(msecs);
188 *(int *)arg1 = (t < 1) ? 1 : t;
189 return 0;
190}
191
192static int
193ieee80211_sysctl_inact(SYSCTL_HANDLER_ARGS)
194{
195 int inact = (*(int *)arg1) * IEEE80211_INACT_WAIT;
196 int error;
197
198 error = sysctl_handle_int(oidp, &inact, 0, req);
199 if (error || !req->newptr)
200 return error;
201 *(int *)arg1 = inact / IEEE80211_INACT_WAIT;
202 return 0;
203}
204
205static int
206ieee80211_sysctl_parent(SYSCTL_HANDLER_ARGS)
207{
208 struct ieee80211com *ic = arg1;
209 const char *name = ic->ic_ifp->if_xname;
210
211 return SYSCTL_OUT(req, name, strlen(name));
212}
213
214static int
215ieee80211_sysctl_radar(SYSCTL_HANDLER_ARGS)
216{
217 struct ieee80211com *ic = arg1;
218 int t = 0, error;
219
220 error = sysctl_handle_int(oidp, &t, 0, req);
221 if (error || !req->newptr)
222 return error;
223 IEEE80211_LOCK(ic);
224 ieee80211_dfs_notify_radar(ic, ic->ic_curchan);
225 IEEE80211_UNLOCK(ic);
226 return 0;
227}
228
229void
230ieee80211_sysctl_attach(struct ieee80211com *ic)
231{
232}
233
234void
235ieee80211_sysctl_detach(struct ieee80211com *ic)
236{
237}
238
239void
240ieee80211_sysctl_vattach(struct ieee80211vap *vap)
241{
242 struct ifnet *ifp = vap->iv_ifp;
243 struct sysctl_ctx_list *ctx;
244 struct sysctl_oid *oid;
245 char num[14]; /* sufficient for 32 bits */
246
247 ctx = (struct sysctl_ctx_list *) malloc(sizeof(struct sysctl_ctx_list),
248 M_DEVBUF, M_NOWAIT | M_ZERO);
249 if (ctx == NULL) {
250 if_printf(ifp, "%s: cannot allocate sysctl context!\n",
251 __func__);
252 return;
253 }
254 sysctl_ctx_init(ctx);
255 snprintf(num, sizeof(num), "%u", ifp->if_dunit);
256 oid = SYSCTL_ADD_NODE(ctx, &SYSCTL_NODE_CHILDREN(_net, wlan),
257 OID_AUTO, num, CTLFLAG_RD, NULL, "");
258 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
259 "%parent", CTLTYPE_STRING | CTLFLAG_RD, vap->iv_ic, 0,
260 ieee80211_sysctl_parent, "A", "parent device");
261 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
262 "driver_caps", CTLFLAG_RW, &vap->iv_caps, 0,
263 "driver capabilities");
264#ifdef IEEE80211_DEBUG
265 vap->iv_debug = ieee80211_debug;
266 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
267 "debug", CTLFLAG_RW, &vap->iv_debug, 0,
268 "control debugging printfs");
269#endif
270 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
271 "bmiss_max", CTLFLAG_RW, &vap->iv_bmiss_max, 0,
272 "consecutive beacon misses before scanning");
273 /* XXX inherit from tunables */
274 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
275 "inact_run", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_run, 0,
276 ieee80211_sysctl_inact, "I",
277 "station inactivity timeout (sec)");
278 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
279 "inact_probe", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_probe, 0,
280 ieee80211_sysctl_inact, "I",
281 "station inactivity probe timeout (sec)");
282 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
283 "inact_auth", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_auth, 0,
284 ieee80211_sysctl_inact, "I",
285 "station authentication timeout (sec)");
286 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
287 "inact_init", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_init, 0,
288 ieee80211_sysctl_inact, "I",
289 "station initial state timeout (sec)");
290 if (vap->iv_htcaps & IEEE80211_HTC_HT) {
291 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
292 "ampdu_mintraffic_bk", CTLFLAG_RW,
293 &vap->iv_ampdu_mintraffic[WME_AC_BK], 0,
294 "BK traffic tx aggr threshold (pps)");
295 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
296 "ampdu_mintraffic_be", CTLFLAG_RW,
297 &vap->iv_ampdu_mintraffic[WME_AC_BE], 0,
298 "BE traffic tx aggr threshold (pps)");
299 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
300 "ampdu_mintraffic_vo", CTLFLAG_RW,
301 &vap->iv_ampdu_mintraffic[WME_AC_VO], 0,
302 "VO traffic tx aggr threshold (pps)");
303 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
304 "ampdu_mintraffic_vi", CTLFLAG_RW,
305 &vap->iv_ampdu_mintraffic[WME_AC_VI], 0,
306 "VI traffic tx aggr threshold (pps)");
307 }
308 if (vap->iv_caps & IEEE80211_C_DFS) {
309 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
310 "radar", CTLTYPE_INT | CTLFLAG_RW, vap->iv_ic, 0,
311 ieee80211_sysctl_radar, "I", "simulate radar event");
312 }
313 vap->iv_sysctl = ctx;
314 vap->iv_oid = oid;
315}
316
317void
318ieee80211_sysctl_vdetach(struct ieee80211vap *vap)
319{
320
321 if (vap->iv_sysctl != NULL) {
322 sysctl_ctx_free(vap->iv_sysctl);
323 free(vap->iv_sysctl, M_DEVBUF);
324 vap->iv_sysctl = NULL;
325 }
326}
327
328int
329ieee80211_node_dectestref(struct ieee80211_node *ni)
330{
331 /* XXX need equivalent of atomic_dec_and_test */
332 atomic_subtract_int(&ni->ni_refcnt, 1);
333 return atomic_cmpset_int(&ni->ni_refcnt, 0, 1);
334}
335
336void
337ieee80211_drain_ifq(struct ifqueue *ifq)
338{
339 struct ieee80211_node *ni;
340 struct mbuf *m;
341
342 for (;;) {
343 IF_DEQUEUE(ifq, m);
344 if (m == NULL)
345 break;
346
347 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
348 KASSERT(ni != NULL, ("frame w/o node"));
349 ieee80211_free_node(ni);
350 m->m_pkthdr.rcvif = NULL;
351
352 m_freem(m);
353 }
354}
355
356void
357ieee80211_flush_ifq(struct ifqueue *ifq, struct ieee80211vap *vap)
358{
359 struct ieee80211_node *ni;
360 struct mbuf *m, **mprev;
361
362 IF_LOCK(ifq);
363 mprev = &ifq->ifq_head;
364 while ((m = *mprev) != NULL) {
365 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
366 if (ni != NULL && ni->ni_vap == vap) {
367 *mprev = m->m_nextpkt; /* remove from list */
368 ifq->ifq_len--;
369
370 m_freem(m);
371 ieee80211_free_node(ni); /* reclaim ref */
372 } else
373 mprev = &m->m_nextpkt;
374 }
375 /* recalculate tail ptr */
376 m = ifq->ifq_head;
377 for (; m != NULL && m->m_nextpkt != NULL; m = m->m_nextpkt)
378 ;
379 ifq->ifq_tail = m;
380 IF_UNLOCK(ifq);
381}
382
383/*
384 * As above, for mbufs allocated with m_gethdr/MGETHDR
385 * or initialized by M_COPY_PKTHDR.
386 */
387#define MC_ALIGN(m, len) \
388do { \
389 (m)->m_data += (MCLBYTES - (len)) &~ (sizeof(long) - 1); \
390} while (/* CONSTCOND */ 0)
391
392/*
393 * Allocate and setup a management frame of the specified
394 * size. We return the mbuf and a pointer to the start
395 * of the contiguous data area that's been reserved based
396 * on the packet length. The data area is forced to 32-bit
397 * alignment and the buffer length to a multiple of 4 bytes.
398 * This is done mainly so beacon frames (that require this)
399 * can use this interface too.
400 */
401struct mbuf *
402ieee80211_getmgtframe(uint8_t **frm, int headroom, int pktlen)
403{
404 struct mbuf *m;
405 u_int len;
406
407 /*
408 * NB: we know the mbuf routines will align the data area
409 * so we don't need to do anything special.
410 */
411 len = roundup2(headroom + pktlen, 4);
412 KASSERT(len <= MCLBYTES, ("802.11 mgt frame too large: %u", len));
413 if (len < MINCLSIZE) {
414 m = m_gethdr(M_NOWAIT, MT_DATA);
415 /*
416 * Align the data in case additional headers are added.
417 * This should only happen when a WEP header is added
418 * which only happens for shared key authentication mgt
419 * frames which all fit in MHLEN.
420 */
421 if (m != NULL)
422 MH_ALIGN(m, len);
423 } else {
424 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
425 if (m != NULL)
426 MC_ALIGN(m, len);
427 }
428 if (m != NULL) {
429 m->m_data += headroom;
430 *frm = m->m_data;
431 }
432 return m;
433}
434
28
29/*
30 * IEEE 802.11 support (FreeBSD-specific code)
31 */
32#include "opt_wlan.h"
33
34#include <sys/param.h>
35#include <sys/kernel.h>
36#include <sys/systm.h>
37#include <sys/linker.h>
38#include <sys/mbuf.h>
39#include <sys/module.h>
40#include <sys/proc.h>
41#include <sys/sysctl.h>
42
43#include <sys/socket.h>
44
45#include <net/bpf.h>
46#include <net/if.h>
47#include <net/if_dl.h>
48#include <net/if_clone.h>
49#include <net/if_media.h>
50#include <net/if_types.h>
51#include <net/ethernet.h>
52#include <net/route.h>
53#include <net/vnet.h>
54
55#include <net80211/ieee80211_var.h>
56#include <net80211/ieee80211_input.h>
57
58SYSCTL_NODE(_net, OID_AUTO, wlan, CTLFLAG_RD, 0, "IEEE 80211 parameters");
59
60#ifdef IEEE80211_DEBUG
61int ieee80211_debug = 0;
62SYSCTL_INT(_net_wlan, OID_AUTO, debug, CTLFLAG_RW, &ieee80211_debug,
63 0, "debugging printfs");
64#endif
65
66static MALLOC_DEFINE(M_80211_COM, "80211com", "802.11 com state");
67
68#if __FreeBSD_version >= 1000020
69static const char wlanname[] = "wlan";
70static struct if_clone *wlan_cloner;
71#endif
72
73/*
74 * Allocate/free com structure in conjunction with ifnet;
75 * these routines are registered with if_register_com_alloc
76 * below and are called automatically by the ifnet code
77 * when the ifnet of the parent device is created.
78 */
79static void *
80wlan_alloc(u_char type, struct ifnet *ifp)
81{
82 struct ieee80211com *ic;
83
84 ic = malloc(sizeof(struct ieee80211com), M_80211_COM, M_WAITOK|M_ZERO);
85 ic->ic_ifp = ifp;
86
87 return (ic);
88}
89
90static void
91wlan_free(void *ic, u_char type)
92{
93 free(ic, M_80211_COM);
94}
95
96static int
97wlan_clone_create(struct if_clone *ifc, int unit, caddr_t params)
98{
99 struct ieee80211_clone_params cp;
100 struct ieee80211vap *vap;
101 struct ieee80211com *ic;
102 struct ifnet *ifp;
103 int error;
104
105 error = copyin(params, &cp, sizeof(cp));
106 if (error)
107 return error;
108 ifp = ifunit(cp.icp_parent);
109 if (ifp == NULL)
110 return ENXIO;
111 /* XXX move printfs to DIAGNOSTIC before release */
112 if (ifp->if_type != IFT_IEEE80211) {
113 if_printf(ifp, "%s: reject, not an 802.11 device\n", __func__);
114 return ENXIO;
115 }
116 if (cp.icp_opmode >= IEEE80211_OPMODE_MAX) {
117 if_printf(ifp, "%s: invalid opmode %d\n",
118 __func__, cp.icp_opmode);
119 return EINVAL;
120 }
121 ic = ifp->if_l2com;
122 if ((ic->ic_caps & ieee80211_opcap[cp.icp_opmode]) == 0) {
123 if_printf(ifp, "%s mode not supported\n",
124 ieee80211_opmode_name[cp.icp_opmode]);
125 return EOPNOTSUPP;
126 }
127 if ((cp.icp_flags & IEEE80211_CLONE_TDMA) &&
128#ifdef IEEE80211_SUPPORT_TDMA
129 (ic->ic_caps & IEEE80211_C_TDMA) == 0
130#else
131 (1)
132#endif
133 ) {
134 if_printf(ifp, "TDMA not supported\n");
135 return EOPNOTSUPP;
136 }
137#if __FreeBSD_version >= 1000020
138 vap = ic->ic_vap_create(ic, wlanname, unit,
139 cp.icp_opmode, cp.icp_flags, cp.icp_bssid,
140 cp.icp_flags & IEEE80211_CLONE_MACADDR ?
141 cp.icp_macaddr : (const uint8_t *)IF_LLADDR(ifp));
142#else
143 vap = ic->ic_vap_create(ic, ifc->ifc_name, unit,
144 cp.icp_opmode, cp.icp_flags, cp.icp_bssid,
145 cp.icp_flags & IEEE80211_CLONE_MACADDR ?
146 cp.icp_macaddr : (const uint8_t *)IF_LLADDR(ifp));
147
148#endif
149
150 return (vap == NULL ? EIO : 0);
151}
152
153static void
154wlan_clone_destroy(struct ifnet *ifp)
155{
156 struct ieee80211vap *vap = ifp->if_softc;
157 struct ieee80211com *ic = vap->iv_ic;
158
159 ic->ic_vap_delete(vap);
160}
161
162#if __FreeBSD_version < 1000020
163IFC_SIMPLE_DECLARE(wlan, 0);
164#endif
165
166void
167ieee80211_vap_destroy(struct ieee80211vap *vap)
168{
169 CURVNET_SET(vap->iv_ifp->if_vnet);
170#if __FreeBSD_version >= 1000020
171 if_clone_destroyif(wlan_cloner, vap->iv_ifp);
172#else
173 if_clone_destroyif(&wlan_cloner, vap->iv_ifp);
174#endif
175 CURVNET_RESTORE();
176}
177
178int
179ieee80211_sysctl_msecs_ticks(SYSCTL_HANDLER_ARGS)
180{
181 int msecs = ticks_to_msecs(*(int *)arg1);
182 int error, t;
183
184 error = sysctl_handle_int(oidp, &msecs, 0, req);
185 if (error || !req->newptr)
186 return error;
187 t = msecs_to_ticks(msecs);
188 *(int *)arg1 = (t < 1) ? 1 : t;
189 return 0;
190}
191
192static int
193ieee80211_sysctl_inact(SYSCTL_HANDLER_ARGS)
194{
195 int inact = (*(int *)arg1) * IEEE80211_INACT_WAIT;
196 int error;
197
198 error = sysctl_handle_int(oidp, &inact, 0, req);
199 if (error || !req->newptr)
200 return error;
201 *(int *)arg1 = inact / IEEE80211_INACT_WAIT;
202 return 0;
203}
204
205static int
206ieee80211_sysctl_parent(SYSCTL_HANDLER_ARGS)
207{
208 struct ieee80211com *ic = arg1;
209 const char *name = ic->ic_ifp->if_xname;
210
211 return SYSCTL_OUT(req, name, strlen(name));
212}
213
214static int
215ieee80211_sysctl_radar(SYSCTL_HANDLER_ARGS)
216{
217 struct ieee80211com *ic = arg1;
218 int t = 0, error;
219
220 error = sysctl_handle_int(oidp, &t, 0, req);
221 if (error || !req->newptr)
222 return error;
223 IEEE80211_LOCK(ic);
224 ieee80211_dfs_notify_radar(ic, ic->ic_curchan);
225 IEEE80211_UNLOCK(ic);
226 return 0;
227}
228
229void
230ieee80211_sysctl_attach(struct ieee80211com *ic)
231{
232}
233
234void
235ieee80211_sysctl_detach(struct ieee80211com *ic)
236{
237}
238
239void
240ieee80211_sysctl_vattach(struct ieee80211vap *vap)
241{
242 struct ifnet *ifp = vap->iv_ifp;
243 struct sysctl_ctx_list *ctx;
244 struct sysctl_oid *oid;
245 char num[14]; /* sufficient for 32 bits */
246
247 ctx = (struct sysctl_ctx_list *) malloc(sizeof(struct sysctl_ctx_list),
248 M_DEVBUF, M_NOWAIT | M_ZERO);
249 if (ctx == NULL) {
250 if_printf(ifp, "%s: cannot allocate sysctl context!\n",
251 __func__);
252 return;
253 }
254 sysctl_ctx_init(ctx);
255 snprintf(num, sizeof(num), "%u", ifp->if_dunit);
256 oid = SYSCTL_ADD_NODE(ctx, &SYSCTL_NODE_CHILDREN(_net, wlan),
257 OID_AUTO, num, CTLFLAG_RD, NULL, "");
258 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
259 "%parent", CTLTYPE_STRING | CTLFLAG_RD, vap->iv_ic, 0,
260 ieee80211_sysctl_parent, "A", "parent device");
261 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
262 "driver_caps", CTLFLAG_RW, &vap->iv_caps, 0,
263 "driver capabilities");
264#ifdef IEEE80211_DEBUG
265 vap->iv_debug = ieee80211_debug;
266 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
267 "debug", CTLFLAG_RW, &vap->iv_debug, 0,
268 "control debugging printfs");
269#endif
270 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
271 "bmiss_max", CTLFLAG_RW, &vap->iv_bmiss_max, 0,
272 "consecutive beacon misses before scanning");
273 /* XXX inherit from tunables */
274 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
275 "inact_run", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_run, 0,
276 ieee80211_sysctl_inact, "I",
277 "station inactivity timeout (sec)");
278 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
279 "inact_probe", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_probe, 0,
280 ieee80211_sysctl_inact, "I",
281 "station inactivity probe timeout (sec)");
282 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
283 "inact_auth", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_auth, 0,
284 ieee80211_sysctl_inact, "I",
285 "station authentication timeout (sec)");
286 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
287 "inact_init", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_init, 0,
288 ieee80211_sysctl_inact, "I",
289 "station initial state timeout (sec)");
290 if (vap->iv_htcaps & IEEE80211_HTC_HT) {
291 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
292 "ampdu_mintraffic_bk", CTLFLAG_RW,
293 &vap->iv_ampdu_mintraffic[WME_AC_BK], 0,
294 "BK traffic tx aggr threshold (pps)");
295 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
296 "ampdu_mintraffic_be", CTLFLAG_RW,
297 &vap->iv_ampdu_mintraffic[WME_AC_BE], 0,
298 "BE traffic tx aggr threshold (pps)");
299 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
300 "ampdu_mintraffic_vo", CTLFLAG_RW,
301 &vap->iv_ampdu_mintraffic[WME_AC_VO], 0,
302 "VO traffic tx aggr threshold (pps)");
303 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
304 "ampdu_mintraffic_vi", CTLFLAG_RW,
305 &vap->iv_ampdu_mintraffic[WME_AC_VI], 0,
306 "VI traffic tx aggr threshold (pps)");
307 }
308 if (vap->iv_caps & IEEE80211_C_DFS) {
309 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
310 "radar", CTLTYPE_INT | CTLFLAG_RW, vap->iv_ic, 0,
311 ieee80211_sysctl_radar, "I", "simulate radar event");
312 }
313 vap->iv_sysctl = ctx;
314 vap->iv_oid = oid;
315}
316
317void
318ieee80211_sysctl_vdetach(struct ieee80211vap *vap)
319{
320
321 if (vap->iv_sysctl != NULL) {
322 sysctl_ctx_free(vap->iv_sysctl);
323 free(vap->iv_sysctl, M_DEVBUF);
324 vap->iv_sysctl = NULL;
325 }
326}
327
328int
329ieee80211_node_dectestref(struct ieee80211_node *ni)
330{
331 /* XXX need equivalent of atomic_dec_and_test */
332 atomic_subtract_int(&ni->ni_refcnt, 1);
333 return atomic_cmpset_int(&ni->ni_refcnt, 0, 1);
334}
335
336void
337ieee80211_drain_ifq(struct ifqueue *ifq)
338{
339 struct ieee80211_node *ni;
340 struct mbuf *m;
341
342 for (;;) {
343 IF_DEQUEUE(ifq, m);
344 if (m == NULL)
345 break;
346
347 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
348 KASSERT(ni != NULL, ("frame w/o node"));
349 ieee80211_free_node(ni);
350 m->m_pkthdr.rcvif = NULL;
351
352 m_freem(m);
353 }
354}
355
356void
357ieee80211_flush_ifq(struct ifqueue *ifq, struct ieee80211vap *vap)
358{
359 struct ieee80211_node *ni;
360 struct mbuf *m, **mprev;
361
362 IF_LOCK(ifq);
363 mprev = &ifq->ifq_head;
364 while ((m = *mprev) != NULL) {
365 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
366 if (ni != NULL && ni->ni_vap == vap) {
367 *mprev = m->m_nextpkt; /* remove from list */
368 ifq->ifq_len--;
369
370 m_freem(m);
371 ieee80211_free_node(ni); /* reclaim ref */
372 } else
373 mprev = &m->m_nextpkt;
374 }
375 /* recalculate tail ptr */
376 m = ifq->ifq_head;
377 for (; m != NULL && m->m_nextpkt != NULL; m = m->m_nextpkt)
378 ;
379 ifq->ifq_tail = m;
380 IF_UNLOCK(ifq);
381}
382
383/*
384 * As above, for mbufs allocated with m_gethdr/MGETHDR
385 * or initialized by M_COPY_PKTHDR.
386 */
387#define MC_ALIGN(m, len) \
388do { \
389 (m)->m_data += (MCLBYTES - (len)) &~ (sizeof(long) - 1); \
390} while (/* CONSTCOND */ 0)
391
392/*
393 * Allocate and setup a management frame of the specified
394 * size. We return the mbuf and a pointer to the start
395 * of the contiguous data area that's been reserved based
396 * on the packet length. The data area is forced to 32-bit
397 * alignment and the buffer length to a multiple of 4 bytes.
398 * This is done mainly so beacon frames (that require this)
399 * can use this interface too.
400 */
401struct mbuf *
402ieee80211_getmgtframe(uint8_t **frm, int headroom, int pktlen)
403{
404 struct mbuf *m;
405 u_int len;
406
407 /*
408 * NB: we know the mbuf routines will align the data area
409 * so we don't need to do anything special.
410 */
411 len = roundup2(headroom + pktlen, 4);
412 KASSERT(len <= MCLBYTES, ("802.11 mgt frame too large: %u", len));
413 if (len < MINCLSIZE) {
414 m = m_gethdr(M_NOWAIT, MT_DATA);
415 /*
416 * Align the data in case additional headers are added.
417 * This should only happen when a WEP header is added
418 * which only happens for shared key authentication mgt
419 * frames which all fit in MHLEN.
420 */
421 if (m != NULL)
422 MH_ALIGN(m, len);
423 } else {
424 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
425 if (m != NULL)
426 MC_ALIGN(m, len);
427 }
428 if (m != NULL) {
429 m->m_data += headroom;
430 *frm = m->m_data;
431 }
432 return m;
433}
434
435#ifndef __NO_STRICT_ALIGNMENT
435/*
436 * Re-align the payload in the mbuf. This is mainly used (right now)
437 * to handle IP header alignment requirements on certain architectures.
438 */
439struct mbuf *
440ieee80211_realign(struct ieee80211vap *vap, struct mbuf *m, size_t align)
441{
442 int pktlen, space;
443 struct mbuf *n;
444
445 pktlen = m->m_pkthdr.len;
446 space = pktlen + align;
447 if (space < MINCLSIZE)
448 n = m_gethdr(M_NOWAIT, MT_DATA);
449 else {
450 n = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
451 space <= MCLBYTES ? MCLBYTES :
452#if MJUMPAGESIZE != MCLBYTES
453 space <= MJUMPAGESIZE ? MJUMPAGESIZE :
454#endif
455 space <= MJUM9BYTES ? MJUM9BYTES : MJUM16BYTES);
456 }
457 if (__predict_true(n != NULL)) {
458 m_move_pkthdr(n, m);
459 n->m_data = (caddr_t)(ALIGN(n->m_data + align) - align);
460 m_copydata(m, 0, pktlen, mtod(n, caddr_t));
461 n->m_len = pktlen;
462 } else {
463 IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
464 mtod(m, const struct ieee80211_frame *), NULL,
465 "%s", "no mbuf to realign");
466 vap->iv_stats.is_rx_badalign++;
467 }
468 m_freem(m);
469 return n;
470}
436/*
437 * Re-align the payload in the mbuf. This is mainly used (right now)
438 * to handle IP header alignment requirements on certain architectures.
439 */
440struct mbuf *
441ieee80211_realign(struct ieee80211vap *vap, struct mbuf *m, size_t align)
442{
443 int pktlen, space;
444 struct mbuf *n;
445
446 pktlen = m->m_pkthdr.len;
447 space = pktlen + align;
448 if (space < MINCLSIZE)
449 n = m_gethdr(M_NOWAIT, MT_DATA);
450 else {
451 n = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
452 space <= MCLBYTES ? MCLBYTES :
453#if MJUMPAGESIZE != MCLBYTES
454 space <= MJUMPAGESIZE ? MJUMPAGESIZE :
455#endif
456 space <= MJUM9BYTES ? MJUM9BYTES : MJUM16BYTES);
457 }
458 if (__predict_true(n != NULL)) {
459 m_move_pkthdr(n, m);
460 n->m_data = (caddr_t)(ALIGN(n->m_data + align) - align);
461 m_copydata(m, 0, pktlen, mtod(n, caddr_t));
462 n->m_len = pktlen;
463 } else {
464 IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
465 mtod(m, const struct ieee80211_frame *), NULL,
466 "%s", "no mbuf to realign");
467 vap->iv_stats.is_rx_badalign++;
468 }
469 m_freem(m);
470 return n;
471}
472#endif /* !__NO_STRICT_ALIGNMENT */
471
472int
473ieee80211_add_callback(struct mbuf *m,
474 void (*func)(struct ieee80211_node *, void *, int), void *arg)
475{
476 struct m_tag *mtag;
477 struct ieee80211_cb *cb;
478
479 mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_CALLBACK,
480 sizeof(struct ieee80211_cb), M_NOWAIT);
481 if (mtag == NULL)
482 return 0;
483
484 cb = (struct ieee80211_cb *)(mtag+1);
485 cb->func = func;
486 cb->arg = arg;
487 m_tag_prepend(m, mtag);
488 m->m_flags |= M_TXCB;
489 return 1;
490}
491
492void
493ieee80211_process_callback(struct ieee80211_node *ni,
494 struct mbuf *m, int status)
495{
496 struct m_tag *mtag;
497
498 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, NULL);
499 if (mtag != NULL) {
500 struct ieee80211_cb *cb = (struct ieee80211_cb *)(mtag+1);
501 cb->func(ni, cb->arg, status);
502 }
503}
504
505#include <sys/libkern.h>
506
507void
508get_random_bytes(void *p, size_t n)
509{
510 uint8_t *dp = p;
511
512 while (n > 0) {
513 uint32_t v = arc4random();
514 size_t nb = n > sizeof(uint32_t) ? sizeof(uint32_t) : n;
515 bcopy(&v, dp, n > sizeof(uint32_t) ? sizeof(uint32_t) : n);
516 dp += sizeof(uint32_t), n -= nb;
517 }
518}
519
520/*
521 * Helper function for events that pass just a single mac address.
522 */
523static void
524notify_macaddr(struct ifnet *ifp, int op, const uint8_t mac[IEEE80211_ADDR_LEN])
525{
526 struct ieee80211_join_event iev;
527
528 CURVNET_SET(ifp->if_vnet);
529 memset(&iev, 0, sizeof(iev));
530 IEEE80211_ADDR_COPY(iev.iev_addr, mac);
531 rt_ieee80211msg(ifp, op, &iev, sizeof(iev));
532 CURVNET_RESTORE();
533}
534
535void
536ieee80211_notify_node_join(struct ieee80211_node *ni, int newassoc)
537{
538 struct ieee80211vap *vap = ni->ni_vap;
539 struct ifnet *ifp = vap->iv_ifp;
540
541 CURVNET_SET_QUIET(ifp->if_vnet);
542 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode join",
543 (ni == vap->iv_bss) ? "bss " : "");
544
545 if (ni == vap->iv_bss) {
546 notify_macaddr(ifp, newassoc ?
547 RTM_IEEE80211_ASSOC : RTM_IEEE80211_REASSOC, ni->ni_bssid);
548 if_link_state_change(ifp, LINK_STATE_UP);
549 } else {
550 notify_macaddr(ifp, newassoc ?
551 RTM_IEEE80211_JOIN : RTM_IEEE80211_REJOIN, ni->ni_macaddr);
552 }
553 CURVNET_RESTORE();
554}
555
556void
557ieee80211_notify_node_leave(struct ieee80211_node *ni)
558{
559 struct ieee80211vap *vap = ni->ni_vap;
560 struct ifnet *ifp = vap->iv_ifp;
561
562 CURVNET_SET_QUIET(ifp->if_vnet);
563 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode leave",
564 (ni == vap->iv_bss) ? "bss " : "");
565
566 if (ni == vap->iv_bss) {
567 rt_ieee80211msg(ifp, RTM_IEEE80211_DISASSOC, NULL, 0);
568 if_link_state_change(ifp, LINK_STATE_DOWN);
569 } else {
570 /* fire off wireless event station leaving */
571 notify_macaddr(ifp, RTM_IEEE80211_LEAVE, ni->ni_macaddr);
572 }
573 CURVNET_RESTORE();
574}
575
576void
577ieee80211_notify_scan_done(struct ieee80211vap *vap)
578{
579 struct ifnet *ifp = vap->iv_ifp;
580
581 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s\n", "notify scan done");
582
583 /* dispatch wireless event indicating scan completed */
584 CURVNET_SET(ifp->if_vnet);
585 rt_ieee80211msg(ifp, RTM_IEEE80211_SCAN, NULL, 0);
586 CURVNET_RESTORE();
587}
588
589void
590ieee80211_notify_replay_failure(struct ieee80211vap *vap,
591 const struct ieee80211_frame *wh, const struct ieee80211_key *k,
592 u_int64_t rsc, int tid)
593{
594 struct ifnet *ifp = vap->iv_ifp;
595
596 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
597 "%s replay detected tid %d <rsc %ju, csc %ju, keyix %u rxkeyix %u>",
598 k->wk_cipher->ic_name, tid, (intmax_t) rsc,
599 (intmax_t) k->wk_keyrsc[tid],
600 k->wk_keyix, k->wk_rxkeyix);
601
602 if (ifp != NULL) { /* NB: for cipher test modules */
603 struct ieee80211_replay_event iev;
604
605 IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
606 IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
607 iev.iev_cipher = k->wk_cipher->ic_cipher;
608 if (k->wk_rxkeyix != IEEE80211_KEYIX_NONE)
609 iev.iev_keyix = k->wk_rxkeyix;
610 else
611 iev.iev_keyix = k->wk_keyix;
612 iev.iev_keyrsc = k->wk_keyrsc[tid];
613 iev.iev_rsc = rsc;
614 CURVNET_SET(ifp->if_vnet);
615 rt_ieee80211msg(ifp, RTM_IEEE80211_REPLAY, &iev, sizeof(iev));
616 CURVNET_RESTORE();
617 }
618}
619
620void
621ieee80211_notify_michael_failure(struct ieee80211vap *vap,
622 const struct ieee80211_frame *wh, u_int keyix)
623{
624 struct ifnet *ifp = vap->iv_ifp;
625
626 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
627 "michael MIC verification failed <keyix %u>", keyix);
628 vap->iv_stats.is_rx_tkipmic++;
629
630 if (ifp != NULL) { /* NB: for cipher test modules */
631 struct ieee80211_michael_event iev;
632
633 IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
634 IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
635 iev.iev_cipher = IEEE80211_CIPHER_TKIP;
636 iev.iev_keyix = keyix;
637 CURVNET_SET(ifp->if_vnet);
638 rt_ieee80211msg(ifp, RTM_IEEE80211_MICHAEL, &iev, sizeof(iev));
639 CURVNET_RESTORE();
640 }
641}
642
643void
644ieee80211_notify_wds_discover(struct ieee80211_node *ni)
645{
646 struct ieee80211vap *vap = ni->ni_vap;
647 struct ifnet *ifp = vap->iv_ifp;
648
649 notify_macaddr(ifp, RTM_IEEE80211_WDS, ni->ni_macaddr);
650}
651
652void
653ieee80211_notify_csa(struct ieee80211com *ic,
654 const struct ieee80211_channel *c, int mode, int count)
655{
656 struct ifnet *ifp = ic->ic_ifp;
657 struct ieee80211_csa_event iev;
658
659 memset(&iev, 0, sizeof(iev));
660 iev.iev_flags = c->ic_flags;
661 iev.iev_freq = c->ic_freq;
662 iev.iev_ieee = c->ic_ieee;
663 iev.iev_mode = mode;
664 iev.iev_count = count;
665 rt_ieee80211msg(ifp, RTM_IEEE80211_CSA, &iev, sizeof(iev));
666}
667
668void
669ieee80211_notify_radar(struct ieee80211com *ic,
670 const struct ieee80211_channel *c)
671{
672 struct ifnet *ifp = ic->ic_ifp;
673 struct ieee80211_radar_event iev;
674
675 memset(&iev, 0, sizeof(iev));
676 iev.iev_flags = c->ic_flags;
677 iev.iev_freq = c->ic_freq;
678 iev.iev_ieee = c->ic_ieee;
679 rt_ieee80211msg(ifp, RTM_IEEE80211_RADAR, &iev, sizeof(iev));
680}
681
682void
683ieee80211_notify_cac(struct ieee80211com *ic,
684 const struct ieee80211_channel *c, enum ieee80211_notify_cac_event type)
685{
686 struct ifnet *ifp = ic->ic_ifp;
687 struct ieee80211_cac_event iev;
688
689 memset(&iev, 0, sizeof(iev));
690 iev.iev_flags = c->ic_flags;
691 iev.iev_freq = c->ic_freq;
692 iev.iev_ieee = c->ic_ieee;
693 iev.iev_type = type;
694 rt_ieee80211msg(ifp, RTM_IEEE80211_CAC, &iev, sizeof(iev));
695}
696
697void
698ieee80211_notify_node_deauth(struct ieee80211_node *ni)
699{
700 struct ieee80211vap *vap = ni->ni_vap;
701 struct ifnet *ifp = vap->iv_ifp;
702
703 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node deauth");
704
705 notify_macaddr(ifp, RTM_IEEE80211_DEAUTH, ni->ni_macaddr);
706}
707
708void
709ieee80211_notify_node_auth(struct ieee80211_node *ni)
710{
711 struct ieee80211vap *vap = ni->ni_vap;
712 struct ifnet *ifp = vap->iv_ifp;
713
714 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node auth");
715
716 notify_macaddr(ifp, RTM_IEEE80211_AUTH, ni->ni_macaddr);
717}
718
719void
720ieee80211_notify_country(struct ieee80211vap *vap,
721 const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t cc[2])
722{
723 struct ifnet *ifp = vap->iv_ifp;
724 struct ieee80211_country_event iev;
725
726 memset(&iev, 0, sizeof(iev));
727 IEEE80211_ADDR_COPY(iev.iev_addr, bssid);
728 iev.iev_cc[0] = cc[0];
729 iev.iev_cc[1] = cc[1];
730 rt_ieee80211msg(ifp, RTM_IEEE80211_COUNTRY, &iev, sizeof(iev));
731}
732
733void
734ieee80211_notify_radio(struct ieee80211com *ic, int state)
735{
736 struct ifnet *ifp = ic->ic_ifp;
737 struct ieee80211_radio_event iev;
738
739 memset(&iev, 0, sizeof(iev));
740 iev.iev_state = state;
741 rt_ieee80211msg(ifp, RTM_IEEE80211_RADIO, &iev, sizeof(iev));
742}
743
744void
745ieee80211_load_module(const char *modname)
746{
747
748#ifdef notyet
749 (void)kern_kldload(curthread, modname, NULL);
750#else
751 printf("%s: load the %s module by hand for now.\n", __func__, modname);
752#endif
753}
754
755static eventhandler_tag wlan_bpfevent;
756static eventhandler_tag wlan_ifllevent;
757
758static void
759bpf_track(void *arg, struct ifnet *ifp, int dlt, int attach)
760{
761 /* NB: identify vap's by if_start */
762 if (dlt == DLT_IEEE802_11_RADIO && ifp->if_start == ieee80211_start) {
763 struct ieee80211vap *vap = ifp->if_softc;
764 /*
765 * Track bpf radiotap listener state. We mark the vap
766 * to indicate if any listener is present and the com
767 * to indicate if any listener exists on any associated
768 * vap. This flag is used by drivers to prepare radiotap
769 * state only when needed.
770 */
771 if (attach) {
772 ieee80211_syncflag_ext(vap, IEEE80211_FEXT_BPF);
773 if (vap->iv_opmode == IEEE80211_M_MONITOR)
774 atomic_add_int(&vap->iv_ic->ic_montaps, 1);
775 } else if (!bpf_peers_present(vap->iv_rawbpf)) {
776 ieee80211_syncflag_ext(vap, -IEEE80211_FEXT_BPF);
777 if (vap->iv_opmode == IEEE80211_M_MONITOR)
778 atomic_subtract_int(&vap->iv_ic->ic_montaps, 1);
779 }
780 }
781}
782
783static void
784wlan_iflladdr(void *arg __unused, struct ifnet *ifp)
785{
786 struct ieee80211com *ic = ifp->if_l2com;
787 struct ieee80211vap *vap, *next;
788
789 if (ifp->if_type != IFT_IEEE80211 || ic == NULL)
790 return;
791
792 IEEE80211_LOCK(ic);
793 TAILQ_FOREACH_SAFE(vap, &ic->ic_vaps, iv_next, next) {
794 /*
795 * If the MAC address has changed on the parent and it was
796 * copied to the vap on creation then re-sync.
797 */
798 if (vap->iv_ic == ic &&
799 (vap->iv_flags_ext & IEEE80211_FEXT_UNIQMAC) == 0) {
800 IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
801 IEEE80211_UNLOCK(ic);
802 if_setlladdr(vap->iv_ifp, IF_LLADDR(ifp),
803 IEEE80211_ADDR_LEN);
804 IEEE80211_LOCK(ic);
805 }
806 }
807 IEEE80211_UNLOCK(ic);
808}
809
810/*
811 * Module glue.
812 *
813 * NB: the module name is "wlan" for compatibility with NetBSD.
814 */
815static int
816wlan_modevent(module_t mod, int type, void *unused)
817{
818 switch (type) {
819 case MOD_LOAD:
820 if (bootverbose)
821 printf("wlan: <802.11 Link Layer>\n");
822 wlan_bpfevent = EVENTHANDLER_REGISTER(bpf_track,
823 bpf_track, 0, EVENTHANDLER_PRI_ANY);
824 if (wlan_bpfevent == NULL)
825 return ENOMEM;
826 wlan_ifllevent = EVENTHANDLER_REGISTER(iflladdr_event,
827 wlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
828 if (wlan_ifllevent == NULL) {
829 EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent);
830 return ENOMEM;
831 }
832#if __FreeBSD_version >= 1000020
833 wlan_cloner = if_clone_simple(wlanname, wlan_clone_create,
834 wlan_clone_destroy, 0);
835#else
836 if_clone_attach(&wlan_cloner);
837#endif
838 if_register_com_alloc(IFT_IEEE80211, wlan_alloc, wlan_free);
839 return 0;
840 case MOD_UNLOAD:
841 if_deregister_com_alloc(IFT_IEEE80211);
842#if __FreeBSD_version >= 1000020
843 if_clone_detach(wlan_cloner);
844#else
845 if_clone_detach(&wlan_cloner);
846#endif
847 EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent);
848 EVENTHANDLER_DEREGISTER(iflladdr_event, wlan_ifllevent);
849 return 0;
850 }
851 return EINVAL;
852}
853
854static moduledata_t wlan_mod = {
855#if __FreeBSD_version >= 1000020
856 wlanname,
857#else
858 "wlan",
859#endif
860 wlan_modevent,
861 0
862};
863DECLARE_MODULE(wlan, wlan_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
864MODULE_VERSION(wlan, 1);
865MODULE_DEPEND(wlan, ether, 1, 1, 1);
866#ifdef IEEE80211_ALQ
867MODULE_DEPEND(wlan, alq, 1, 1, 1);
868#endif /* IEEE80211_ALQ */
869
473
474int
475ieee80211_add_callback(struct mbuf *m,
476 void (*func)(struct ieee80211_node *, void *, int), void *arg)
477{
478 struct m_tag *mtag;
479 struct ieee80211_cb *cb;
480
481 mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_CALLBACK,
482 sizeof(struct ieee80211_cb), M_NOWAIT);
483 if (mtag == NULL)
484 return 0;
485
486 cb = (struct ieee80211_cb *)(mtag+1);
487 cb->func = func;
488 cb->arg = arg;
489 m_tag_prepend(m, mtag);
490 m->m_flags |= M_TXCB;
491 return 1;
492}
493
494void
495ieee80211_process_callback(struct ieee80211_node *ni,
496 struct mbuf *m, int status)
497{
498 struct m_tag *mtag;
499
500 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, NULL);
501 if (mtag != NULL) {
502 struct ieee80211_cb *cb = (struct ieee80211_cb *)(mtag+1);
503 cb->func(ni, cb->arg, status);
504 }
505}
506
507#include <sys/libkern.h>
508
509void
510get_random_bytes(void *p, size_t n)
511{
512 uint8_t *dp = p;
513
514 while (n > 0) {
515 uint32_t v = arc4random();
516 size_t nb = n > sizeof(uint32_t) ? sizeof(uint32_t) : n;
517 bcopy(&v, dp, n > sizeof(uint32_t) ? sizeof(uint32_t) : n);
518 dp += sizeof(uint32_t), n -= nb;
519 }
520}
521
522/*
523 * Helper function for events that pass just a single mac address.
524 */
525static void
526notify_macaddr(struct ifnet *ifp, int op, const uint8_t mac[IEEE80211_ADDR_LEN])
527{
528 struct ieee80211_join_event iev;
529
530 CURVNET_SET(ifp->if_vnet);
531 memset(&iev, 0, sizeof(iev));
532 IEEE80211_ADDR_COPY(iev.iev_addr, mac);
533 rt_ieee80211msg(ifp, op, &iev, sizeof(iev));
534 CURVNET_RESTORE();
535}
536
537void
538ieee80211_notify_node_join(struct ieee80211_node *ni, int newassoc)
539{
540 struct ieee80211vap *vap = ni->ni_vap;
541 struct ifnet *ifp = vap->iv_ifp;
542
543 CURVNET_SET_QUIET(ifp->if_vnet);
544 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode join",
545 (ni == vap->iv_bss) ? "bss " : "");
546
547 if (ni == vap->iv_bss) {
548 notify_macaddr(ifp, newassoc ?
549 RTM_IEEE80211_ASSOC : RTM_IEEE80211_REASSOC, ni->ni_bssid);
550 if_link_state_change(ifp, LINK_STATE_UP);
551 } else {
552 notify_macaddr(ifp, newassoc ?
553 RTM_IEEE80211_JOIN : RTM_IEEE80211_REJOIN, ni->ni_macaddr);
554 }
555 CURVNET_RESTORE();
556}
557
558void
559ieee80211_notify_node_leave(struct ieee80211_node *ni)
560{
561 struct ieee80211vap *vap = ni->ni_vap;
562 struct ifnet *ifp = vap->iv_ifp;
563
564 CURVNET_SET_QUIET(ifp->if_vnet);
565 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode leave",
566 (ni == vap->iv_bss) ? "bss " : "");
567
568 if (ni == vap->iv_bss) {
569 rt_ieee80211msg(ifp, RTM_IEEE80211_DISASSOC, NULL, 0);
570 if_link_state_change(ifp, LINK_STATE_DOWN);
571 } else {
572 /* fire off wireless event station leaving */
573 notify_macaddr(ifp, RTM_IEEE80211_LEAVE, ni->ni_macaddr);
574 }
575 CURVNET_RESTORE();
576}
577
578void
579ieee80211_notify_scan_done(struct ieee80211vap *vap)
580{
581 struct ifnet *ifp = vap->iv_ifp;
582
583 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s\n", "notify scan done");
584
585 /* dispatch wireless event indicating scan completed */
586 CURVNET_SET(ifp->if_vnet);
587 rt_ieee80211msg(ifp, RTM_IEEE80211_SCAN, NULL, 0);
588 CURVNET_RESTORE();
589}
590
591void
592ieee80211_notify_replay_failure(struct ieee80211vap *vap,
593 const struct ieee80211_frame *wh, const struct ieee80211_key *k,
594 u_int64_t rsc, int tid)
595{
596 struct ifnet *ifp = vap->iv_ifp;
597
598 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
599 "%s replay detected tid %d <rsc %ju, csc %ju, keyix %u rxkeyix %u>",
600 k->wk_cipher->ic_name, tid, (intmax_t) rsc,
601 (intmax_t) k->wk_keyrsc[tid],
602 k->wk_keyix, k->wk_rxkeyix);
603
604 if (ifp != NULL) { /* NB: for cipher test modules */
605 struct ieee80211_replay_event iev;
606
607 IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
608 IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
609 iev.iev_cipher = k->wk_cipher->ic_cipher;
610 if (k->wk_rxkeyix != IEEE80211_KEYIX_NONE)
611 iev.iev_keyix = k->wk_rxkeyix;
612 else
613 iev.iev_keyix = k->wk_keyix;
614 iev.iev_keyrsc = k->wk_keyrsc[tid];
615 iev.iev_rsc = rsc;
616 CURVNET_SET(ifp->if_vnet);
617 rt_ieee80211msg(ifp, RTM_IEEE80211_REPLAY, &iev, sizeof(iev));
618 CURVNET_RESTORE();
619 }
620}
621
622void
623ieee80211_notify_michael_failure(struct ieee80211vap *vap,
624 const struct ieee80211_frame *wh, u_int keyix)
625{
626 struct ifnet *ifp = vap->iv_ifp;
627
628 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
629 "michael MIC verification failed <keyix %u>", keyix);
630 vap->iv_stats.is_rx_tkipmic++;
631
632 if (ifp != NULL) { /* NB: for cipher test modules */
633 struct ieee80211_michael_event iev;
634
635 IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
636 IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
637 iev.iev_cipher = IEEE80211_CIPHER_TKIP;
638 iev.iev_keyix = keyix;
639 CURVNET_SET(ifp->if_vnet);
640 rt_ieee80211msg(ifp, RTM_IEEE80211_MICHAEL, &iev, sizeof(iev));
641 CURVNET_RESTORE();
642 }
643}
644
645void
646ieee80211_notify_wds_discover(struct ieee80211_node *ni)
647{
648 struct ieee80211vap *vap = ni->ni_vap;
649 struct ifnet *ifp = vap->iv_ifp;
650
651 notify_macaddr(ifp, RTM_IEEE80211_WDS, ni->ni_macaddr);
652}
653
654void
655ieee80211_notify_csa(struct ieee80211com *ic,
656 const struct ieee80211_channel *c, int mode, int count)
657{
658 struct ifnet *ifp = ic->ic_ifp;
659 struct ieee80211_csa_event iev;
660
661 memset(&iev, 0, sizeof(iev));
662 iev.iev_flags = c->ic_flags;
663 iev.iev_freq = c->ic_freq;
664 iev.iev_ieee = c->ic_ieee;
665 iev.iev_mode = mode;
666 iev.iev_count = count;
667 rt_ieee80211msg(ifp, RTM_IEEE80211_CSA, &iev, sizeof(iev));
668}
669
670void
671ieee80211_notify_radar(struct ieee80211com *ic,
672 const struct ieee80211_channel *c)
673{
674 struct ifnet *ifp = ic->ic_ifp;
675 struct ieee80211_radar_event iev;
676
677 memset(&iev, 0, sizeof(iev));
678 iev.iev_flags = c->ic_flags;
679 iev.iev_freq = c->ic_freq;
680 iev.iev_ieee = c->ic_ieee;
681 rt_ieee80211msg(ifp, RTM_IEEE80211_RADAR, &iev, sizeof(iev));
682}
683
684void
685ieee80211_notify_cac(struct ieee80211com *ic,
686 const struct ieee80211_channel *c, enum ieee80211_notify_cac_event type)
687{
688 struct ifnet *ifp = ic->ic_ifp;
689 struct ieee80211_cac_event iev;
690
691 memset(&iev, 0, sizeof(iev));
692 iev.iev_flags = c->ic_flags;
693 iev.iev_freq = c->ic_freq;
694 iev.iev_ieee = c->ic_ieee;
695 iev.iev_type = type;
696 rt_ieee80211msg(ifp, RTM_IEEE80211_CAC, &iev, sizeof(iev));
697}
698
699void
700ieee80211_notify_node_deauth(struct ieee80211_node *ni)
701{
702 struct ieee80211vap *vap = ni->ni_vap;
703 struct ifnet *ifp = vap->iv_ifp;
704
705 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node deauth");
706
707 notify_macaddr(ifp, RTM_IEEE80211_DEAUTH, ni->ni_macaddr);
708}
709
710void
711ieee80211_notify_node_auth(struct ieee80211_node *ni)
712{
713 struct ieee80211vap *vap = ni->ni_vap;
714 struct ifnet *ifp = vap->iv_ifp;
715
716 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node auth");
717
718 notify_macaddr(ifp, RTM_IEEE80211_AUTH, ni->ni_macaddr);
719}
720
721void
722ieee80211_notify_country(struct ieee80211vap *vap,
723 const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t cc[2])
724{
725 struct ifnet *ifp = vap->iv_ifp;
726 struct ieee80211_country_event iev;
727
728 memset(&iev, 0, sizeof(iev));
729 IEEE80211_ADDR_COPY(iev.iev_addr, bssid);
730 iev.iev_cc[0] = cc[0];
731 iev.iev_cc[1] = cc[1];
732 rt_ieee80211msg(ifp, RTM_IEEE80211_COUNTRY, &iev, sizeof(iev));
733}
734
735void
736ieee80211_notify_radio(struct ieee80211com *ic, int state)
737{
738 struct ifnet *ifp = ic->ic_ifp;
739 struct ieee80211_radio_event iev;
740
741 memset(&iev, 0, sizeof(iev));
742 iev.iev_state = state;
743 rt_ieee80211msg(ifp, RTM_IEEE80211_RADIO, &iev, sizeof(iev));
744}
745
746void
747ieee80211_load_module(const char *modname)
748{
749
750#ifdef notyet
751 (void)kern_kldload(curthread, modname, NULL);
752#else
753 printf("%s: load the %s module by hand for now.\n", __func__, modname);
754#endif
755}
756
757static eventhandler_tag wlan_bpfevent;
758static eventhandler_tag wlan_ifllevent;
759
760static void
761bpf_track(void *arg, struct ifnet *ifp, int dlt, int attach)
762{
763 /* NB: identify vap's by if_start */
764 if (dlt == DLT_IEEE802_11_RADIO && ifp->if_start == ieee80211_start) {
765 struct ieee80211vap *vap = ifp->if_softc;
766 /*
767 * Track bpf radiotap listener state. We mark the vap
768 * to indicate if any listener is present and the com
769 * to indicate if any listener exists on any associated
770 * vap. This flag is used by drivers to prepare radiotap
771 * state only when needed.
772 */
773 if (attach) {
774 ieee80211_syncflag_ext(vap, IEEE80211_FEXT_BPF);
775 if (vap->iv_opmode == IEEE80211_M_MONITOR)
776 atomic_add_int(&vap->iv_ic->ic_montaps, 1);
777 } else if (!bpf_peers_present(vap->iv_rawbpf)) {
778 ieee80211_syncflag_ext(vap, -IEEE80211_FEXT_BPF);
779 if (vap->iv_opmode == IEEE80211_M_MONITOR)
780 atomic_subtract_int(&vap->iv_ic->ic_montaps, 1);
781 }
782 }
783}
784
785static void
786wlan_iflladdr(void *arg __unused, struct ifnet *ifp)
787{
788 struct ieee80211com *ic = ifp->if_l2com;
789 struct ieee80211vap *vap, *next;
790
791 if (ifp->if_type != IFT_IEEE80211 || ic == NULL)
792 return;
793
794 IEEE80211_LOCK(ic);
795 TAILQ_FOREACH_SAFE(vap, &ic->ic_vaps, iv_next, next) {
796 /*
797 * If the MAC address has changed on the parent and it was
798 * copied to the vap on creation then re-sync.
799 */
800 if (vap->iv_ic == ic &&
801 (vap->iv_flags_ext & IEEE80211_FEXT_UNIQMAC) == 0) {
802 IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
803 IEEE80211_UNLOCK(ic);
804 if_setlladdr(vap->iv_ifp, IF_LLADDR(ifp),
805 IEEE80211_ADDR_LEN);
806 IEEE80211_LOCK(ic);
807 }
808 }
809 IEEE80211_UNLOCK(ic);
810}
811
812/*
813 * Module glue.
814 *
815 * NB: the module name is "wlan" for compatibility with NetBSD.
816 */
817static int
818wlan_modevent(module_t mod, int type, void *unused)
819{
820 switch (type) {
821 case MOD_LOAD:
822 if (bootverbose)
823 printf("wlan: <802.11 Link Layer>\n");
824 wlan_bpfevent = EVENTHANDLER_REGISTER(bpf_track,
825 bpf_track, 0, EVENTHANDLER_PRI_ANY);
826 if (wlan_bpfevent == NULL)
827 return ENOMEM;
828 wlan_ifllevent = EVENTHANDLER_REGISTER(iflladdr_event,
829 wlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
830 if (wlan_ifllevent == NULL) {
831 EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent);
832 return ENOMEM;
833 }
834#if __FreeBSD_version >= 1000020
835 wlan_cloner = if_clone_simple(wlanname, wlan_clone_create,
836 wlan_clone_destroy, 0);
837#else
838 if_clone_attach(&wlan_cloner);
839#endif
840 if_register_com_alloc(IFT_IEEE80211, wlan_alloc, wlan_free);
841 return 0;
842 case MOD_UNLOAD:
843 if_deregister_com_alloc(IFT_IEEE80211);
844#if __FreeBSD_version >= 1000020
845 if_clone_detach(wlan_cloner);
846#else
847 if_clone_detach(&wlan_cloner);
848#endif
849 EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent);
850 EVENTHANDLER_DEREGISTER(iflladdr_event, wlan_ifllevent);
851 return 0;
852 }
853 return EINVAL;
854}
855
856static moduledata_t wlan_mod = {
857#if __FreeBSD_version >= 1000020
858 wlanname,
859#else
860 "wlan",
861#endif
862 wlan_modevent,
863 0
864};
865DECLARE_MODULE(wlan, wlan_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
866MODULE_VERSION(wlan, 1);
867MODULE_DEPEND(wlan, ether, 1, 1, 1);
868#ifdef IEEE80211_ALQ
869MODULE_DEPEND(wlan, alq, 1, 1, 1);
870#endif /* IEEE80211_ALQ */
871