Deleted Added
sdiff udiff text old ( 97919 ) new ( 98542 )
full compact
1/*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice immediately at the beginning of the file, without modification,
10 * this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 * John S. Dyson.
13 *
14 * $FreeBSD: head/sys/kern/vfs_bio.c 97919 2002-06-06 08:56:10Z phk $
15 */
16
17/*
18 * this file contains a new buffer I/O scheme implementing a coherent
19 * VM object and buffer cache scheme. Pains have been taken to make
20 * sure that the performance degradation associated with schemes such
21 * as this is not realized.
22 *
23 * Author: John S. Dyson
24 * Significant help during the development and debugging phases
25 * had been provided by David Greenman, also of the FreeBSD core team.
26 *
27 * see man buf(9) for more info.
28 */
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/bio.h>
33#include <sys/buf.h>
34#include <sys/eventhandler.h>
35#include <sys/lock.h>
36#include <sys/malloc.h>
37#include <sys/mount.h>
38#include <sys/mutex.h>
39#include <sys/kernel.h>
40#include <sys/kthread.h>
41#include <sys/ktr.h>
42#include <sys/proc.h>
43#include <sys/reboot.h>
44#include <sys/resourcevar.h>
45#include <sys/sysctl.h>
46#include <sys/vmmeter.h>
47#include <sys/vnode.h>
48#include <vm/vm.h>
49#include <vm/vm_param.h>
50#include <vm/vm_kern.h>
51#include <vm/vm_pageout.h>
52#include <vm/vm_page.h>
53#include <vm/vm_object.h>
54#include <vm/vm_extern.h>
55#include <vm/vm_map.h>
56
57static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
58
59struct bio_ops bioops; /* I/O operation notification */
60
61struct buf_ops buf_ops_bio = {
62 "buf_ops_bio",
63 bwrite
64};
65
66/*
67 * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
68 * carnal knowledge of buffers. This knowledge should be moved to vfs_bio.c.
69 */
70struct buf *buf; /* buffer header pool */
71struct mtx buftimelock; /* Interlock on setting prio and timo */
72
73static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
74 vm_offset_t to);
75static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
76 vm_offset_t to);
77static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
78 int pageno, vm_page_t m);
79static void vfs_clean_pages(struct buf * bp);
80static void vfs_setdirty(struct buf *bp);
81static void vfs_vmio_release(struct buf *bp);
82static void vfs_backgroundwritedone(struct buf *bp);
83static int flushbufqueues(void);
84static void buf_daemon(void);
85
86int vmiodirenable = TRUE;
87SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
88 "Use the VM system for directory writes");
89int runningbufspace;
90SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
91 "Amount of presently outstanding async buffer io");
92static int bufspace;
93SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
94 "KVA memory used for bufs");
95static int maxbufspace;
96SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
97 "Maximum allowed value of bufspace (including buf_daemon)");
98static int bufmallocspace;
99SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
100 "Amount of malloced memory for buffers");
101static int maxbufmallocspace;
102SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
103 "Maximum amount of malloced memory for buffers");
104static int lobufspace;
105SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
106 "Minimum amount of buffers we want to have");
107static int hibufspace;
108SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
109 "Maximum allowed value of bufspace (excluding buf_daemon)");
110static int bufreusecnt;
111SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
112 "Number of times we have reused a buffer");
113static int buffreekvacnt;
114SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
115 "Number of times we have freed the KVA space from some buffer");
116static int bufdefragcnt;
117SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
118 "Number of times we have had to repeat buffer allocation to defragment");
119static int lorunningspace;
120SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
121 "Minimum preferred space used for in-progress I/O");
122static int hirunningspace;
123SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
124 "Maximum amount of space to use for in-progress I/O");
125static int numdirtybuffers;
126SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
127 "Number of buffers that are dirty (has unwritten changes) at the moment");
128static int lodirtybuffers;
129SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
130 "How many buffers we want to have free before bufdaemon can sleep");
131static int hidirtybuffers;
132SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
133 "When the number of dirty buffers is considered severe");
134static int numfreebuffers;
135SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
136 "Number of free buffers");
137static int lofreebuffers;
138SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
139 "XXX Unused");
140static int hifreebuffers;
141SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
142 "XXX Complicatedly unused");
143static int getnewbufcalls;
144SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
145 "Number of calls to getnewbuf");
146static int getnewbufrestarts;
147SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
148 "Number of times getnewbuf has had to restart a buffer aquisition");
149static int dobkgrdwrite = 1;
150SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0,
151 "Do background writes (honoring the BX_BKGRDWRITE flag)?");
152
153/*
154 * Wakeup point for bufdaemon, as well as indicator of whether it is already
155 * active. Set to 1 when the bufdaemon is already "on" the queue, 0 when it
156 * is idling.
157 */
158static int bd_request;
159
160/*
161 * bogus page -- for I/O to/from partially complete buffers
162 * this is a temporary solution to the problem, but it is not
163 * really that bad. it would be better to split the buffer
164 * for input in the case of buffers partially already in memory,
165 * but the code is intricate enough already.
166 */
167vm_page_t bogus_page;
168
169/*
170 * Offset for bogus_page.
171 * XXX bogus_offset should be local to bufinit
172 */
173static vm_offset_t bogus_offset;
174
175/*
176 * Synchronization (sleep/wakeup) variable for active buffer space requests.
177 * Set when wait starts, cleared prior to wakeup().
178 * Used in runningbufwakeup() and waitrunningbufspace().
179 */
180static int runningbufreq;
181
182/*
183 * Synchronization (sleep/wakeup) variable for buffer requests.
184 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
185 * by and/or.
186 * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
187 * getnewbuf(), and getblk().
188 */
189static int needsbuffer;
190
191/*
192 * Mask for index into the buffer hash table, which needs to be power of 2 in
193 * size. Set in kern_vfs_bio_buffer_alloc.
194 */
195static int bufhashmask;
196
197/*
198 * Hash table for all buffers, with a linked list hanging from each table
199 * entry. Set in kern_vfs_bio_buffer_alloc, initialized in buf_init.
200 */
201static LIST_HEAD(bufhashhdr, buf) *bufhashtbl;
202
203/*
204 * Somewhere to store buffers when they are not in another list, to always
205 * have them in a list (and thus being able to use the same set of operations
206 * on them.)
207 */
208static struct bufhashhdr invalhash;
209
210/*
211 * Definitions for the buffer free lists.
212 */
213#define BUFFER_QUEUES 6 /* number of free buffer queues */
214
215#define QUEUE_NONE 0 /* on no queue */
216#define QUEUE_LOCKED 1 /* locked buffers */
217#define QUEUE_CLEAN 2 /* non-B_DELWRI buffers */
218#define QUEUE_DIRTY 3 /* B_DELWRI buffers */
219#define QUEUE_EMPTYKVA 4 /* empty buffer headers w/KVA assignment */
220#define QUEUE_EMPTY 5 /* empty buffer headers */
221
222/* Queues for free buffers with various properties */
223static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
224/*
225 * Single global constant for BUF_WMESG, to avoid getting multiple references.
226 * buf_wmesg is referred from macros.
227 */
228const char *buf_wmesg = BUF_WMESG;
229
230#define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */
231#define VFS_BIO_NEED_DIRTYFLUSH 0x02 /* waiting for dirty buffer flush */
232#define VFS_BIO_NEED_FREE 0x04 /* wait for free bufs, hi hysteresis */
233#define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */
234
235/*
236 * Buffer hash table code. Note that the logical block scans linearly, which
237 * gives us some L1 cache locality.
238 */
239
240static __inline
241struct bufhashhdr *
242bufhash(struct vnode *vnp, daddr_t bn)
243{
244 return(&bufhashtbl[(((uintptr_t)(vnp) >> 7) + (int)bn) & bufhashmask]);
245}
246
247/*
248 * numdirtywakeup:
249 *
250 * If someone is blocked due to there being too many dirty buffers,
251 * and numdirtybuffers is now reasonable, wake them up.
252 */
253
254static __inline void
255numdirtywakeup(int level)
256{
257 if (numdirtybuffers <= level) {
258 if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
259 needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
260 wakeup(&needsbuffer);
261 }
262 }
263}
264
265/*
266 * bufspacewakeup:
267 *
268 * Called when buffer space is potentially available for recovery.
269 * getnewbuf() will block on this flag when it is unable to free
270 * sufficient buffer space. Buffer space becomes recoverable when
271 * bp's get placed back in the queues.
272 */
273
274static __inline void
275bufspacewakeup(void)
276{
277 /*
278 * If someone is waiting for BUF space, wake them up. Even
279 * though we haven't freed the kva space yet, the waiting
280 * process will be able to now.
281 */
282 if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
283 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
284 wakeup(&needsbuffer);
285 }
286}
287
288/*
289 * runningbufwakeup() - in-progress I/O accounting.
290 *
291 */
292static __inline void
293runningbufwakeup(struct buf *bp)
294{
295 if (bp->b_runningbufspace) {
296 runningbufspace -= bp->b_runningbufspace;
297 bp->b_runningbufspace = 0;
298 if (runningbufreq && runningbufspace <= lorunningspace) {
299 runningbufreq = 0;
300 wakeup(&runningbufreq);
301 }
302 }
303}
304
305/*
306 * bufcountwakeup:
307 *
308 * Called when a buffer has been added to one of the free queues to
309 * account for the buffer and to wakeup anyone waiting for free buffers.
310 * This typically occurs when large amounts of metadata are being handled
311 * by the buffer cache ( else buffer space runs out first, usually ).
312 */
313
314static __inline void
315bufcountwakeup(void)
316{
317 ++numfreebuffers;
318 if (needsbuffer) {
319 needsbuffer &= ~VFS_BIO_NEED_ANY;
320 if (numfreebuffers >= hifreebuffers)
321 needsbuffer &= ~VFS_BIO_NEED_FREE;
322 wakeup(&needsbuffer);
323 }
324}
325
326/*
327 * waitrunningbufspace()
328 *
329 * runningbufspace is a measure of the amount of I/O currently
330 * running. This routine is used in async-write situations to
331 * prevent creating huge backups of pending writes to a device.
332 * Only asynchronous writes are governed by this function.
333 *
334 * Reads will adjust runningbufspace, but will not block based on it.
335 * The read load has a side effect of reducing the allowed write load.
336 *
337 * This does NOT turn an async write into a sync write. It waits
338 * for earlier writes to complete and generally returns before the
339 * caller's write has reached the device.
340 */
341static __inline void
342waitrunningbufspace(void)
343{
344 /*
345 * XXX race against wakeup interrupt, currently
346 * protected by Giant. FIXME!
347 */
348 while (runningbufspace > hirunningspace) {
349 ++runningbufreq;
350 tsleep(&runningbufreq, PVM, "wdrain", 0);
351 }
352}
353
354
355/*
356 * vfs_buf_test_cache:
357 *
358 * Called when a buffer is extended. This function clears the B_CACHE
359 * bit if the newly extended portion of the buffer does not contain
360 * valid data.
361 */
362static __inline__
363void
364vfs_buf_test_cache(struct buf *bp,
365 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
366 vm_page_t m)
367{
368 GIANT_REQUIRED;
369
370 if (bp->b_flags & B_CACHE) {
371 int base = (foff + off) & PAGE_MASK;
372 if (vm_page_is_valid(m, base, size) == 0)
373 bp->b_flags &= ~B_CACHE;
374 }
375}
376
377/* Wake up the buffer deamon if necessary */
378static __inline__
379void
380bd_wakeup(int dirtybuflevel)
381{
382 if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
383 bd_request = 1;
384 wakeup(&bd_request);
385 }
386}
387
388/*
389 * bd_speedup - speedup the buffer cache flushing code
390 */
391
392static __inline__
393void
394bd_speedup(void)
395{
396 bd_wakeup(1);
397}
398
399/*
400 * Calculating buffer cache scaling values and reserve space for buffer
401 * headers. This is called during low level kernel initialization and
402 * may be called more then once. We CANNOT write to the memory area
403 * being reserved at this time.
404 */
405caddr_t
406kern_vfs_bio_buffer_alloc(caddr_t v, int physmem_est)
407{
408 /*
409 * physmem_est is in pages. Convert it to kilobytes (assumes
410 * PAGE_SIZE is >= 1K)
411 */
412 physmem_est = physmem_est * (PAGE_SIZE / 1024);
413
414 /*
415 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
416 * For the first 64MB of ram nominally allocate sufficient buffers to
417 * cover 1/4 of our ram. Beyond the first 64MB allocate additional
418 * buffers to cover 1/20 of our ram over 64MB. When auto-sizing
419 * the buffer cache we limit the eventual kva reservation to
420 * maxbcache bytes.
421 *
422 * factor represents the 1/4 x ram conversion.
423 */
424 if (nbuf == 0) {
425 int factor = 4 * BKVASIZE / 1024;
426
427 nbuf = 50;
428 if (physmem_est > 4096)
429 nbuf += min((physmem_est - 4096) / factor,
430 65536 / factor);
431 if (physmem_est > 65536)
432 nbuf += (physmem_est - 65536) * 2 / (factor * 5);
433
434 if (maxbcache && nbuf > maxbcache / BKVASIZE)
435 nbuf = maxbcache / BKVASIZE;
436 }
437
438#if 0
439 /*
440 * Do not allow the buffer_map to be more then 1/2 the size of the
441 * kernel_map.
442 */
443 if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
444 (BKVASIZE * 2)) {
445 nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
446 (BKVASIZE * 2);
447 printf("Warning: nbufs capped at %d\n", nbuf);
448 }
449#endif
450
451 /*
452 * swbufs are used as temporary holders for I/O, such as paging I/O.
453 * We have no less then 16 and no more then 256.
454 */
455 nswbuf = max(min(nbuf/4, 256), 16);
456
457 /*
458 * Reserve space for the buffer cache buffers
459 */
460 swbuf = (void *)v;
461 v = (caddr_t)(swbuf + nswbuf);
462 buf = (void *)v;
463 v = (caddr_t)(buf + nbuf);
464
465 /*
466 * Calculate the hash table size and reserve space
467 */
468 for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1)
469 ;
470 bufhashtbl = (void *)v;
471 v = (caddr_t)(bufhashtbl + bufhashmask);
472 --bufhashmask;
473
474 return(v);
475}
476
477/* Initialize the buffer subsystem. Called before use of any buffers. */
478void
479bufinit(void)
480{
481 struct buf *bp;
482 int i;
483
484 GIANT_REQUIRED;
485
486 LIST_INIT(&invalhash);
487 mtx_init(&buftimelock, "buftime lock", NULL, MTX_DEF);
488
489 for (i = 0; i <= bufhashmask; i++)
490 LIST_INIT(&bufhashtbl[i]);
491
492 /* next, make a null set of free lists */
493 for (i = 0; i < BUFFER_QUEUES; i++)
494 TAILQ_INIT(&bufqueues[i]);
495
496 /* finally, initialize each buffer header and stick on empty q */
497 for (i = 0; i < nbuf; i++) {
498 bp = &buf[i];
499 bzero(bp, sizeof *bp);
500 bp->b_flags = B_INVAL; /* we're just an empty header */
501 bp->b_dev = NODEV;
502 bp->b_rcred = NOCRED;
503 bp->b_wcred = NOCRED;
504 bp->b_qindex = QUEUE_EMPTY;
505 bp->b_xflags = 0;
506 LIST_INIT(&bp->b_dep);
507 BUF_LOCKINIT(bp);
508 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
509 LIST_INSERT_HEAD(&invalhash, bp, b_hash);
510 }
511
512 /*
513 * maxbufspace is the absolute maximum amount of buffer space we are
514 * allowed to reserve in KVM and in real terms. The absolute maximum
515 * is nominally used by buf_daemon. hibufspace is the nominal maximum
516 * used by most other processes. The differential is required to
517 * ensure that buf_daemon is able to run when other processes might
518 * be blocked waiting for buffer space.
519 *
520 * maxbufspace is based on BKVASIZE. Allocating buffers larger then
521 * this may result in KVM fragmentation which is not handled optimally
522 * by the system.
523 */
524 maxbufspace = nbuf * BKVASIZE;
525 hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
526 lobufspace = hibufspace - MAXBSIZE;
527
528 lorunningspace = 512 * 1024;
529 hirunningspace = 1024 * 1024;
530
531/*
532 * Limit the amount of malloc memory since it is wired permanently into
533 * the kernel space. Even though this is accounted for in the buffer
534 * allocation, we don't want the malloced region to grow uncontrolled.
535 * The malloc scheme improves memory utilization significantly on average
536 * (small) directories.
537 */
538 maxbufmallocspace = hibufspace / 20;
539
540/*
541 * Reduce the chance of a deadlock occuring by limiting the number
542 * of delayed-write dirty buffers we allow to stack up.
543 */
544 hidirtybuffers = nbuf / 4 + 20;
545 numdirtybuffers = 0;
546/*
547 * To support extreme low-memory systems, make sure hidirtybuffers cannot
548 * eat up all available buffer space. This occurs when our minimum cannot
549 * be met. We try to size hidirtybuffers to 3/4 our buffer space assuming
550 * BKVASIZE'd (8K) buffers.
551 */
552 while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
553 hidirtybuffers >>= 1;
554 }
555 lodirtybuffers = hidirtybuffers / 2;
556
557/*
558 * Try to keep the number of free buffers in the specified range,
559 * and give special processes (e.g. like buf_daemon) access to an
560 * emergency reserve.
561 */
562 lofreebuffers = nbuf / 18 + 5;
563 hifreebuffers = 2 * lofreebuffers;
564 numfreebuffers = nbuf;
565
566/*
567 * Maximum number of async ops initiated per buf_daemon loop. This is
568 * somewhat of a hack at the moment, we really need to limit ourselves
569 * based on the number of bytes of I/O in-transit that were initiated
570 * from buf_daemon.
571 */
572
573 bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
574 bogus_page = vm_page_alloc(kernel_object,
575 ((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
576 VM_ALLOC_NORMAL);
577 cnt.v_wire_count++;
578}
579
580/*
581 * bfreekva() - free the kva allocation for a buffer.
582 *
583 * Must be called at splbio() or higher as this is the only locking for
584 * buffer_map.
585 *
586 * Since this call frees up buffer space, we call bufspacewakeup().
587 */
588static void
589bfreekva(struct buf * bp)
590{
591 GIANT_REQUIRED;
592
593 if (bp->b_kvasize) {
594 ++buffreekvacnt;
595 bufspace -= bp->b_kvasize;
596 vm_map_delete(buffer_map,
597 (vm_offset_t) bp->b_kvabase,
598 (vm_offset_t) bp->b_kvabase + bp->b_kvasize
599 );
600 bp->b_kvasize = 0;
601 bufspacewakeup();
602 }
603}
604
605/*
606 * bremfree:
607 *
608 * Remove the buffer from the appropriate free list.
609 */
610void
611bremfree(struct buf * bp)
612{
613 int s = splbio();
614 int old_qindex = bp->b_qindex;
615
616 GIANT_REQUIRED;
617
618 if (bp->b_qindex != QUEUE_NONE) {
619 KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp));
620 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
621 bp->b_qindex = QUEUE_NONE;
622 } else {
623 if (BUF_REFCNT(bp) <= 1)
624 panic("bremfree: removing a buffer not on a queue");
625 }
626
627 /*
628 * Fixup numfreebuffers count. If the buffer is invalid or not
629 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
630 * the buffer was free and we must decrement numfreebuffers.
631 */
632 if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
633 switch(old_qindex) {
634 case QUEUE_DIRTY:
635 case QUEUE_CLEAN:
636 case QUEUE_EMPTY:
637 case QUEUE_EMPTYKVA:
638 --numfreebuffers;
639 break;
640 default:
641 break;
642 }
643 }
644 splx(s);
645}
646
647
648/*
649 * Get a buffer with the specified data. Look in the cache first. We
650 * must clear BIO_ERROR and B_INVAL prior to initiating I/O. If B_CACHE
651 * is set, the buffer is valid and we do not have to do anything ( see
652 * getblk() ). This is really just a special case of breadn().
653 */
654int
655bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
656 struct buf ** bpp)
657{
658
659 return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
660}
661
662/*
663 * Operates like bread, but also starts asynchronous I/O on
664 * read-ahead blocks. We must clear BIO_ERROR and B_INVAL prior
665 * to initiating I/O . If B_CACHE is set, the buffer is valid
666 * and we do not have to do anything.
667 */
668int
669breadn(struct vnode * vp, daddr_t blkno, int size,
670 daddr_t * rablkno, int *rabsize,
671 int cnt, struct ucred * cred, struct buf ** bpp)
672{
673 struct buf *bp, *rabp;
674 int i;
675 int rv = 0, readwait = 0;
676
677 *bpp = bp = getblk(vp, blkno, size, 0, 0);
678
679 /* if not found in cache, do some I/O */
680 if ((bp->b_flags & B_CACHE) == 0) {
681 if (curthread != PCPU_GET(idlethread))
682 curthread->td_proc->p_stats->p_ru.ru_inblock++;
683 bp->b_iocmd = BIO_READ;
684 bp->b_flags &= ~B_INVAL;
685 bp->b_ioflags &= ~BIO_ERROR;
686 if (bp->b_rcred == NOCRED && cred != NOCRED)
687 bp->b_rcred = crhold(cred);
688 vfs_busy_pages(bp, 0);
689 VOP_STRATEGY(vp, bp);
690 ++readwait;
691 }
692
693 for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
694 if (inmem(vp, *rablkno))
695 continue;
696 rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
697
698 if ((rabp->b_flags & B_CACHE) == 0) {
699 if (curthread != PCPU_GET(idlethread))
700 curthread->td_proc->p_stats->p_ru.ru_inblock++;
701 rabp->b_flags |= B_ASYNC;
702 rabp->b_flags &= ~B_INVAL;
703 rabp->b_ioflags &= ~BIO_ERROR;
704 rabp->b_iocmd = BIO_READ;
705 if (rabp->b_rcred == NOCRED && cred != NOCRED)
706 rabp->b_rcred = crhold(cred);
707 vfs_busy_pages(rabp, 0);
708 BUF_KERNPROC(rabp);
709 VOP_STRATEGY(vp, rabp);
710 } else {
711 brelse(rabp);
712 }
713 }
714
715 if (readwait) {
716 rv = bufwait(bp);
717 }
718 return (rv);
719}
720
721/*
722 * Write, release buffer on completion. (Done by iodone
723 * if async). Do not bother writing anything if the buffer
724 * is invalid.
725 *
726 * Note that we set B_CACHE here, indicating that buffer is
727 * fully valid and thus cacheable. This is true even of NFS
728 * now so we set it generally. This could be set either here
729 * or in biodone() since the I/O is synchronous. We put it
730 * here.
731 */
732
733int
734bwrite(struct buf * bp)
735{
736 int oldflags, s;
737 struct buf *newbp;
738
739 if (bp->b_flags & B_INVAL) {
740 brelse(bp);
741 return (0);
742 }
743
744 oldflags = bp->b_flags;
745
746 if (BUF_REFCNT(bp) == 0)
747 panic("bwrite: buffer is not busy???");
748 s = splbio();
749 /*
750 * If a background write is already in progress, delay
751 * writing this block if it is asynchronous. Otherwise
752 * wait for the background write to complete.
753 */
754 if (bp->b_xflags & BX_BKGRDINPROG) {
755 if (bp->b_flags & B_ASYNC) {
756 splx(s);
757 bdwrite(bp);
758 return (0);
759 }
760 bp->b_xflags |= BX_BKGRDWAIT;
761 tsleep(&bp->b_xflags, PRIBIO, "bwrbg", 0);
762 if (bp->b_xflags & BX_BKGRDINPROG)
763 panic("bwrite: still writing");
764 }
765
766 /* Mark the buffer clean */
767 bundirty(bp);
768
769 /*
770 * If this buffer is marked for background writing and we
771 * do not have to wait for it, make a copy and write the
772 * copy so as to leave this buffer ready for further use.
773 *
774 * This optimization eats a lot of memory. If we have a page
775 * or buffer shortfall we can't do it.
776 */
777 if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) &&
778 (bp->b_flags & B_ASYNC) &&
779 !vm_page_count_severe() &&
780 !buf_dirty_count_severe()) {
781 if (bp->b_iodone != NULL) {
782 printf("bp->b_iodone = %p\n", bp->b_iodone);
783 panic("bwrite: need chained iodone");
784 }
785
786 /* get a new block */
787 newbp = geteblk(bp->b_bufsize);
788
789 /* set it to be identical to the old block */
790 memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
791 bgetvp(bp->b_vp, newbp);
792 newbp->b_lblkno = bp->b_lblkno;
793 newbp->b_blkno = bp->b_blkno;
794 newbp->b_offset = bp->b_offset;
795 newbp->b_iodone = vfs_backgroundwritedone;
796 newbp->b_flags |= B_ASYNC;
797 newbp->b_flags &= ~B_INVAL;
798
799 /* move over the dependencies */
800 if (LIST_FIRST(&bp->b_dep) != NULL)
801 buf_movedeps(bp, newbp);
802
803 /*
804 * Initiate write on the copy, release the original to
805 * the B_LOCKED queue so that it cannot go away until
806 * the background write completes. If not locked it could go
807 * away and then be reconstituted while it was being written.
808 * If the reconstituted buffer were written, we could end up
809 * with two background copies being written at the same time.
810 */
811 bp->b_xflags |= BX_BKGRDINPROG;
812 bp->b_flags |= B_LOCKED;
813 bqrelse(bp);
814 bp = newbp;
815 }
816
817 bp->b_flags &= ~B_DONE;
818 bp->b_ioflags &= ~BIO_ERROR;
819 bp->b_flags |= B_WRITEINPROG | B_CACHE;
820 bp->b_iocmd = BIO_WRITE;
821
822 bp->b_vp->v_numoutput++;
823 vfs_busy_pages(bp, 1);
824
825 /*
826 * Normal bwrites pipeline writes
827 */
828 bp->b_runningbufspace = bp->b_bufsize;
829 runningbufspace += bp->b_runningbufspace;
830
831 if (curthread != PCPU_GET(idlethread))
832 curthread->td_proc->p_stats->p_ru.ru_oublock++;
833 splx(s);
834 if (oldflags & B_ASYNC)
835 BUF_KERNPROC(bp);
836 BUF_STRATEGY(bp);
837
838 if ((oldflags & B_ASYNC) == 0) {
839 int rtval = bufwait(bp);
840 brelse(bp);
841 return (rtval);
842 } else if ((oldflags & B_NOWDRAIN) == 0) {
843 /*
844 * don't allow the async write to saturate the I/O
845 * system. Deadlocks can occur only if a device strategy
846 * routine (like in MD) turns around and issues another
847 * high-level write, in which case B_NOWDRAIN is expected
848 * to be set. Otherwise we will not deadlock here because
849 * we are blocking waiting for I/O that is already in-progress
850 * to complete.
851 */
852 waitrunningbufspace();
853 }
854
855 return (0);
856}
857
858/*
859 * Complete a background write started from bwrite.
860 */
861static void
862vfs_backgroundwritedone(bp)
863 struct buf *bp;
864{
865 struct buf *origbp;
866
867 /*
868 * Find the original buffer that we are writing.
869 */
870 if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL)
871 panic("backgroundwritedone: lost buffer");
872 /*
873 * Process dependencies then return any unfinished ones.
874 */
875 if (LIST_FIRST(&bp->b_dep) != NULL)
876 buf_complete(bp);
877 if (LIST_FIRST(&bp->b_dep) != NULL)
878 buf_movedeps(bp, origbp);
879 /*
880 * Clear the BX_BKGRDINPROG flag in the original buffer
881 * and awaken it if it is waiting for the write to complete.
882 * If BX_BKGRDINPROG is not set in the original buffer it must
883 * have been released and re-instantiated - which is not legal.
884 */
885 KASSERT((origbp->b_xflags & BX_BKGRDINPROG),
886 ("backgroundwritedone: lost buffer2"));
887 origbp->b_xflags &= ~BX_BKGRDINPROG;
888 if (origbp->b_xflags & BX_BKGRDWAIT) {
889 origbp->b_xflags &= ~BX_BKGRDWAIT;
890 wakeup(&origbp->b_xflags);
891 }
892 /*
893 * Clear the B_LOCKED flag and remove it from the locked
894 * queue if it currently resides there.
895 */
896 origbp->b_flags &= ~B_LOCKED;
897 if (BUF_LOCK(origbp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
898 bremfree(origbp);
899 bqrelse(origbp);
900 }
901 /*
902 * This buffer is marked B_NOCACHE, so when it is released
903 * by biodone, it will be tossed. We mark it with BIO_READ
904 * to avoid biodone doing a second vwakeup.
905 */
906 bp->b_flags |= B_NOCACHE;
907 bp->b_iocmd = BIO_READ;
908 bp->b_flags &= ~(B_CACHE | B_DONE);
909 bp->b_iodone = 0;
910 bufdone(bp);
911}
912
913/*
914 * Delayed write. (Buffer is marked dirty). Do not bother writing
915 * anything if the buffer is marked invalid.
916 *
917 * Note that since the buffer must be completely valid, we can safely
918 * set B_CACHE. In fact, we have to set B_CACHE here rather then in
919 * biodone() in order to prevent getblk from writing the buffer
920 * out synchronously.
921 */
922void
923bdwrite(struct buf * bp)
924{
925 GIANT_REQUIRED;
926
927 if (BUF_REFCNT(bp) == 0)
928 panic("bdwrite: buffer is not busy");
929
930 if (bp->b_flags & B_INVAL) {
931 brelse(bp);
932 return;
933 }
934 bdirty(bp);
935
936 /*
937 * Set B_CACHE, indicating that the buffer is fully valid. This is
938 * true even of NFS now.
939 */
940 bp->b_flags |= B_CACHE;
941
942 /*
943 * This bmap keeps the system from needing to do the bmap later,
944 * perhaps when the system is attempting to do a sync. Since it
945 * is likely that the indirect block -- or whatever other datastructure
946 * that the filesystem needs is still in memory now, it is a good
947 * thing to do this. Note also, that if the pageout daemon is
948 * requesting a sync -- there might not be enough memory to do
949 * the bmap then... So, this is important to do.
950 */
951 if (bp->b_lblkno == bp->b_blkno) {
952 VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
953 }
954
955 /*
956 * Set the *dirty* buffer range based upon the VM system dirty pages.
957 */
958 vfs_setdirty(bp);
959
960 /*
961 * We need to do this here to satisfy the vnode_pager and the
962 * pageout daemon, so that it thinks that the pages have been
963 * "cleaned". Note that since the pages are in a delayed write
964 * buffer -- the VFS layer "will" see that the pages get written
965 * out on the next sync, or perhaps the cluster will be completed.
966 */
967 vfs_clean_pages(bp);
968 bqrelse(bp);
969
970 /*
971 * Wakeup the buffer flushing daemon if we have a lot of dirty
972 * buffers (midpoint between our recovery point and our stall
973 * point).
974 */
975 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
976
977 /*
978 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
979 * due to the softdep code.
980 */
981}
982
983/*
984 * bdirty:
985 *
986 * Turn buffer into delayed write request. We must clear BIO_READ and
987 * B_RELBUF, and we must set B_DELWRI. We reassign the buffer to
988 * itself to properly update it in the dirty/clean lists. We mark it
989 * B_DONE to ensure that any asynchronization of the buffer properly
990 * clears B_DONE ( else a panic will occur later ).
991 *
992 * bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
993 * might have been set pre-getblk(). Unlike bwrite/bdwrite, bdirty()
994 * should only be called if the buffer is known-good.
995 *
996 * Since the buffer is not on a queue, we do not update the numfreebuffers
997 * count.
998 *
999 * Must be called at splbio().
1000 * The buffer must be on QUEUE_NONE.
1001 */
1002void
1003bdirty(bp)
1004 struct buf *bp;
1005{
1006 KASSERT(bp->b_qindex == QUEUE_NONE,
1007 ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1008 bp->b_flags &= ~(B_RELBUF);
1009 bp->b_iocmd = BIO_WRITE;
1010
1011 if ((bp->b_flags & B_DELWRI) == 0) {
1012 bp->b_flags |= B_DONE | B_DELWRI;
1013 reassignbuf(bp, bp->b_vp);
1014 ++numdirtybuffers;
1015 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1016 }
1017}
1018
1019/*
1020 * bundirty:
1021 *
1022 * Clear B_DELWRI for buffer.
1023 *
1024 * Since the buffer is not on a queue, we do not update the numfreebuffers
1025 * count.
1026 *
1027 * Must be called at splbio().
1028 * The buffer must be on QUEUE_NONE.
1029 */
1030
1031void
1032bundirty(bp)
1033 struct buf *bp;
1034{
1035 KASSERT(bp->b_qindex == QUEUE_NONE,
1036 ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1037
1038 if (bp->b_flags & B_DELWRI) {
1039 bp->b_flags &= ~B_DELWRI;
1040 reassignbuf(bp, bp->b_vp);
1041 --numdirtybuffers;
1042 numdirtywakeup(lodirtybuffers);
1043 }
1044 /*
1045 * Since it is now being written, we can clear its deferred write flag.
1046 */
1047 bp->b_flags &= ~B_DEFERRED;
1048}
1049
1050/*
1051 * bawrite:
1052 *
1053 * Asynchronous write. Start output on a buffer, but do not wait for
1054 * it to complete. The buffer is released when the output completes.
1055 *
1056 * bwrite() ( or the VOP routine anyway ) is responsible for handling
1057 * B_INVAL buffers. Not us.
1058 */
1059void
1060bawrite(struct buf * bp)
1061{
1062 bp->b_flags |= B_ASYNC;
1063 (void) BUF_WRITE(bp);
1064}
1065
1066/*
1067 * bwillwrite:
1068 *
1069 * Called prior to the locking of any vnodes when we are expecting to
1070 * write. We do not want to starve the buffer cache with too many
1071 * dirty buffers so we block here. By blocking prior to the locking
1072 * of any vnodes we attempt to avoid the situation where a locked vnode
1073 * prevents the various system daemons from flushing related buffers.
1074 */
1075
1076void
1077bwillwrite(void)
1078{
1079 if (numdirtybuffers >= hidirtybuffers) {
1080 int s;
1081
1082 mtx_lock(&Giant);
1083 s = splbio();
1084 while (numdirtybuffers >= hidirtybuffers) {
1085 bd_wakeup(1);
1086 needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1087 tsleep(&needsbuffer, (PRIBIO + 4), "flswai", 0);
1088 }
1089 splx(s);
1090 mtx_unlock(&Giant);
1091 }
1092}
1093
1094/*
1095 * Return true if we have too many dirty buffers.
1096 */
1097int
1098buf_dirty_count_severe(void)
1099{
1100 return(numdirtybuffers >= hidirtybuffers);
1101}
1102
1103/*
1104 * brelse:
1105 *
1106 * Release a busy buffer and, if requested, free its resources. The
1107 * buffer will be stashed in the appropriate bufqueue[] allowing it
1108 * to be accessed later as a cache entity or reused for other purposes.
1109 */
1110void
1111brelse(struct buf * bp)
1112{
1113 int s;
1114
1115 GIANT_REQUIRED;
1116
1117 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1118 ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1119
1120 s = splbio();
1121
1122 if (bp->b_flags & B_LOCKED)
1123 bp->b_ioflags &= ~BIO_ERROR;
1124
1125 if (bp->b_iocmd == BIO_WRITE &&
1126 (bp->b_ioflags & BIO_ERROR) &&
1127 !(bp->b_flags & B_INVAL)) {
1128 /*
1129 * Failed write, redirty. Must clear BIO_ERROR to prevent
1130 * pages from being scrapped. If B_INVAL is set then
1131 * this case is not run and the next case is run to
1132 * destroy the buffer. B_INVAL can occur if the buffer
1133 * is outside the range supported by the underlying device.
1134 */
1135 bp->b_ioflags &= ~BIO_ERROR;
1136 bdirty(bp);
1137 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1138 (bp->b_ioflags & BIO_ERROR) ||
1139 bp->b_iocmd == BIO_DELETE || (bp->b_bufsize <= 0)) {
1140 /*
1141 * Either a failed I/O or we were asked to free or not
1142 * cache the buffer.
1143 */
1144 bp->b_flags |= B_INVAL;
1145 if (LIST_FIRST(&bp->b_dep) != NULL)
1146 buf_deallocate(bp);
1147 if (bp->b_flags & B_DELWRI) {
1148 --numdirtybuffers;
1149 numdirtywakeup(lodirtybuffers);
1150 }
1151 bp->b_flags &= ~(B_DELWRI | B_CACHE);
1152 if ((bp->b_flags & B_VMIO) == 0) {
1153 if (bp->b_bufsize)
1154 allocbuf(bp, 0);
1155 if (bp->b_vp)
1156 brelvp(bp);
1157 }
1158 }
1159
1160 /*
1161 * We must clear B_RELBUF if B_DELWRI is set. If vfs_vmio_release()
1162 * is called with B_DELWRI set, the underlying pages may wind up
1163 * getting freed causing a previous write (bdwrite()) to get 'lost'
1164 * because pages associated with a B_DELWRI bp are marked clean.
1165 *
1166 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1167 * if B_DELWRI is set.
1168 *
1169 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1170 * on pages to return pages to the VM page queues.
1171 */
1172 if (bp->b_flags & B_DELWRI)
1173 bp->b_flags &= ~B_RELBUF;
1174 else if (vm_page_count_severe() && !(bp->b_xflags & BX_BKGRDINPROG))
1175 bp->b_flags |= B_RELBUF;
1176
1177 /*
1178 * VMIO buffer rundown. It is not very necessary to keep a VMIO buffer
1179 * constituted, not even NFS buffers now. Two flags effect this. If
1180 * B_INVAL, the struct buf is invalidated but the VM object is kept
1181 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1182 *
1183 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1184 * invalidated. BIO_ERROR cannot be set for a failed write unless the
1185 * buffer is also B_INVAL because it hits the re-dirtying code above.
1186 *
1187 * Normally we can do this whether a buffer is B_DELWRI or not. If
1188 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1189 * the commit state and we cannot afford to lose the buffer. If the
1190 * buffer has a background write in progress, we need to keep it
1191 * around to prevent it from being reconstituted and starting a second
1192 * background write.
1193 */
1194 if ((bp->b_flags & B_VMIO)
1195 && !(bp->b_vp->v_tag == VT_NFS &&
1196 !vn_isdisk(bp->b_vp, NULL) &&
1197 (bp->b_flags & B_DELWRI))
1198 ) {
1199
1200 int i, j, resid;
1201 vm_page_t m;
1202 off_t foff;
1203 vm_pindex_t poff;
1204 vm_object_t obj;
1205 struct vnode *vp;
1206
1207 vp = bp->b_vp;
1208
1209 /*
1210 * Get the base offset and length of the buffer. Note that
1211 * in the VMIO case if the buffer block size is not
1212 * page-aligned then b_data pointer may not be page-aligned.
1213 * But our b_pages[] array *IS* page aligned.
1214 *
1215 * block sizes less then DEV_BSIZE (usually 512) are not
1216 * supported due to the page granularity bits (m->valid,
1217 * m->dirty, etc...).
1218 *
1219 * See man buf(9) for more information
1220 */
1221 resid = bp->b_bufsize;
1222 foff = bp->b_offset;
1223
1224 for (i = 0; i < bp->b_npages; i++) {
1225 int had_bogus = 0;
1226
1227 m = bp->b_pages[i];
1228 vm_page_flag_clear(m, PG_ZERO);
1229
1230 /*
1231 * If we hit a bogus page, fixup *all* the bogus pages
1232 * now.
1233 */
1234 if (m == bogus_page) {
1235 VOP_GETVOBJECT(vp, &obj);
1236 poff = OFF_TO_IDX(bp->b_offset);
1237 had_bogus = 1;
1238
1239 for (j = i; j < bp->b_npages; j++) {
1240 vm_page_t mtmp;
1241 mtmp = bp->b_pages[j];
1242 if (mtmp == bogus_page) {
1243 mtmp = vm_page_lookup(obj, poff + j);
1244 if (!mtmp) {
1245 panic("brelse: page missing\n");
1246 }
1247 bp->b_pages[j] = mtmp;
1248 }
1249 }
1250
1251 if ((bp->b_flags & B_INVAL) == 0) {
1252 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
1253 }
1254 m = bp->b_pages[i];
1255 }
1256 if ((bp->b_flags & B_NOCACHE) || (bp->b_ioflags & BIO_ERROR)) {
1257 int poffset = foff & PAGE_MASK;
1258 int presid = resid > (PAGE_SIZE - poffset) ?
1259 (PAGE_SIZE - poffset) : resid;
1260
1261 KASSERT(presid >= 0, ("brelse: extra page"));
1262 vm_page_set_invalid(m, poffset, presid);
1263 if (had_bogus)
1264 printf("avoided corruption bug in bogus_page/brelse code\n");
1265 }
1266 resid -= PAGE_SIZE - (foff & PAGE_MASK);
1267 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1268 }
1269
1270 if (bp->b_flags & (B_INVAL | B_RELBUF))
1271 vfs_vmio_release(bp);
1272
1273 } else if (bp->b_flags & B_VMIO) {
1274
1275 if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1276 vfs_vmio_release(bp);
1277 }
1278
1279 }
1280
1281 if (bp->b_qindex != QUEUE_NONE)
1282 panic("brelse: free buffer onto another queue???");
1283 if (BUF_REFCNT(bp) > 1) {
1284 /* do not release to free list */
1285 BUF_UNLOCK(bp);
1286 splx(s);
1287 return;
1288 }
1289
1290 /* enqueue */
1291
1292 /* buffers with no memory */
1293 if (bp->b_bufsize == 0) {
1294 bp->b_flags |= B_INVAL;
1295 bp->b_xflags &= ~BX_BKGRDWRITE;
1296 if (bp->b_xflags & BX_BKGRDINPROG)
1297 panic("losing buffer 1");
1298 if (bp->b_kvasize) {
1299 bp->b_qindex = QUEUE_EMPTYKVA;
1300 } else {
1301 bp->b_qindex = QUEUE_EMPTY;
1302 }
1303 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1304 LIST_REMOVE(bp, b_hash);
1305 LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1306 bp->b_dev = NODEV;
1307 /* buffers with junk contents */
1308 } else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1309 (bp->b_ioflags & BIO_ERROR)) {
1310 bp->b_flags |= B_INVAL;
1311 bp->b_xflags &= ~BX_BKGRDWRITE;
1312 if (bp->b_xflags & BX_BKGRDINPROG)
1313 panic("losing buffer 2");
1314 bp->b_qindex = QUEUE_CLEAN;
1315 TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1316 LIST_REMOVE(bp, b_hash);
1317 LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1318 bp->b_dev = NODEV;
1319
1320 /* buffers that are locked */
1321 } else if (bp->b_flags & B_LOCKED) {
1322 bp->b_qindex = QUEUE_LOCKED;
1323 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1324
1325 /* remaining buffers */
1326 } else {
1327 if (bp->b_flags & B_DELWRI)
1328 bp->b_qindex = QUEUE_DIRTY;
1329 else
1330 bp->b_qindex = QUEUE_CLEAN;
1331 if (bp->b_flags & B_AGE)
1332 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1333 else
1334 TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1335 }
1336
1337 /*
1338 * If B_INVAL, clear B_DELWRI. We've already placed the buffer
1339 * on the correct queue.
1340 */
1341 if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1342 bundirty(bp);
1343
1344 /*
1345 * Fixup numfreebuffers count. The bp is on an appropriate queue
1346 * unless locked. We then bump numfreebuffers if it is not B_DELWRI.
1347 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1348 * if B_INVAL is set ).
1349 */
1350
1351 if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI))
1352 bufcountwakeup();
1353
1354 /*
1355 * Something we can maybe free or reuse
1356 */
1357 if (bp->b_bufsize || bp->b_kvasize)
1358 bufspacewakeup();
1359
1360 /* unlock */
1361 BUF_UNLOCK(bp);
1362 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF |
1363 B_DIRECT | B_NOWDRAIN);
1364 if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1365 panic("brelse: not dirty");
1366 splx(s);
1367}
1368
1369/*
1370 * Release a buffer back to the appropriate queue but do not try to free
1371 * it. The buffer is expected to be used again soon.
1372 *
1373 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1374 * biodone() to requeue an async I/O on completion. It is also used when
1375 * known good buffers need to be requeued but we think we may need the data
1376 * again soon.
1377 *
1378 * XXX we should be able to leave the B_RELBUF hint set on completion.
1379 */
1380void
1381bqrelse(struct buf * bp)
1382{
1383 int s;
1384
1385 s = splbio();
1386
1387 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1388
1389 if (bp->b_qindex != QUEUE_NONE)
1390 panic("bqrelse: free buffer onto another queue???");
1391 if (BUF_REFCNT(bp) > 1) {
1392 /* do not release to free list */
1393 BUF_UNLOCK(bp);
1394 splx(s);
1395 return;
1396 }
1397 if (bp->b_flags & B_LOCKED) {
1398 bp->b_ioflags &= ~BIO_ERROR;
1399 bp->b_qindex = QUEUE_LOCKED;
1400 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1401 /* buffers with stale but valid contents */
1402 } else if (bp->b_flags & B_DELWRI) {
1403 bp->b_qindex = QUEUE_DIRTY;
1404 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1405 } else if (vm_page_count_severe()) {
1406 /*
1407 * We are too low on memory, we have to try to free the
1408 * buffer (most importantly: the wired pages making up its
1409 * backing store) *now*.
1410 */
1411 splx(s);
1412 brelse(bp);
1413 return;
1414 } else {
1415 bp->b_qindex = QUEUE_CLEAN;
1416 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1417 }
1418
1419 if ((bp->b_flags & B_LOCKED) == 0 &&
1420 ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) {
1421 bufcountwakeup();
1422 }
1423
1424 /*
1425 * Something we can maybe free or reuse.
1426 */
1427 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1428 bufspacewakeup();
1429
1430 /* unlock */
1431 BUF_UNLOCK(bp);
1432 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1433 if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1434 panic("bqrelse: not dirty");
1435 splx(s);
1436}
1437
1438/* Give pages used by the bp back to the VM system (where possible) */
1439static void
1440vfs_vmio_release(bp)
1441 struct buf *bp;
1442{
1443 int i;
1444 vm_page_t m;
1445
1446 GIANT_REQUIRED;
1447
1448 for (i = 0; i < bp->b_npages; i++) {
1449 m = bp->b_pages[i];
1450 bp->b_pages[i] = NULL;
1451 /*
1452 * In order to keep page LRU ordering consistent, put
1453 * everything on the inactive queue.
1454 */
1455 vm_page_unwire(m, 0);
1456 /*
1457 * We don't mess with busy pages, it is
1458 * the responsibility of the process that
1459 * busied the pages to deal with them.
1460 */
1461 if ((m->flags & PG_BUSY) || (m->busy != 0))
1462 continue;
1463
1464 if (m->wire_count == 0) {
1465 vm_page_flag_clear(m, PG_ZERO);
1466 /*
1467 * Might as well free the page if we can and it has
1468 * no valid data. We also free the page if the
1469 * buffer was used for direct I/O
1470 */
1471 if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1472 m->hold_count == 0) {
1473 vm_page_busy(m);
1474 vm_page_protect(m, VM_PROT_NONE);
1475 vm_page_free(m);
1476 } else if (bp->b_flags & B_DIRECT) {
1477 vm_page_try_to_free(m);
1478 } else if (vm_page_count_severe()) {
1479 vm_page_try_to_cache(m);
1480 }
1481 }
1482 }
1483 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1484
1485 if (bp->b_bufsize) {
1486 bufspacewakeup();
1487 bp->b_bufsize = 0;
1488 }
1489 bp->b_npages = 0;
1490 bp->b_flags &= ~B_VMIO;
1491 if (bp->b_vp)
1492 brelvp(bp);
1493}
1494
1495/*
1496 * Check to see if a block is currently memory resident.
1497 */
1498struct buf *
1499gbincore(struct vnode * vp, daddr_t blkno)
1500{
1501 struct buf *bp;
1502 struct bufhashhdr *bh;
1503
1504 bh = bufhash(vp, blkno);
1505
1506 /* Search hash chain */
1507 LIST_FOREACH(bp, bh, b_hash) {
1508 /* hit */
1509 if (bp->b_vp == vp && bp->b_lblkno == blkno &&
1510 (bp->b_flags & B_INVAL) == 0) {
1511 break;
1512 }
1513 }
1514 return (bp);
1515}
1516
1517/*
1518 * vfs_bio_awrite:
1519 *
1520 * Implement clustered async writes for clearing out B_DELWRI buffers.
1521 * This is much better then the old way of writing only one buffer at
1522 * a time. Note that we may not be presented with the buffers in the
1523 * correct order, so we search for the cluster in both directions.
1524 */
1525int
1526vfs_bio_awrite(struct buf * bp)
1527{
1528 int i;
1529 int j;
1530 daddr_t lblkno = bp->b_lblkno;
1531 struct vnode *vp = bp->b_vp;
1532 int s;
1533 int ncl;
1534 struct buf *bpa;
1535 int nwritten;
1536 int size;
1537 int maxcl;
1538
1539 s = splbio();
1540 /*
1541 * right now we support clustered writing only to regular files. If
1542 * we find a clusterable block we could be in the middle of a cluster
1543 * rather then at the beginning.
1544 */
1545 if ((vp->v_type == VREG) &&
1546 (vp->v_mount != 0) && /* Only on nodes that have the size info */
1547 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1548
1549 size = vp->v_mount->mnt_stat.f_iosize;
1550 maxcl = MAXPHYS / size;
1551
1552 for (i = 1; i < maxcl; i++) {
1553 if ((bpa = gbincore(vp, lblkno + i)) &&
1554 BUF_REFCNT(bpa) == 0 &&
1555 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1556 (B_DELWRI | B_CLUSTEROK)) &&
1557 (bpa->b_bufsize == size)) {
1558 if ((bpa->b_blkno == bpa->b_lblkno) ||
1559 (bpa->b_blkno !=
1560 bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
1561 break;
1562 } else {
1563 break;
1564 }
1565 }
1566 for (j = 1; i + j <= maxcl && j <= lblkno; j++) {
1567 if ((bpa = gbincore(vp, lblkno - j)) &&
1568 BUF_REFCNT(bpa) == 0 &&
1569 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1570 (B_DELWRI | B_CLUSTEROK)) &&
1571 (bpa->b_bufsize == size)) {
1572 if ((bpa->b_blkno == bpa->b_lblkno) ||
1573 (bpa->b_blkno !=
1574 bp->b_blkno - ((j * size) >> DEV_BSHIFT)))
1575 break;
1576 } else {
1577 break;
1578 }
1579 }
1580 --j;
1581 ncl = i + j;
1582 /*
1583 * this is a possible cluster write
1584 */
1585 if (ncl != 1) {
1586 nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1587 splx(s);
1588 return nwritten;
1589 }
1590 }
1591
1592 BUF_LOCK(bp, LK_EXCLUSIVE);
1593 bremfree(bp);
1594 bp->b_flags |= B_ASYNC;
1595
1596 splx(s);
1597 /*
1598 * default (old) behavior, writing out only one block
1599 *
1600 * XXX returns b_bufsize instead of b_bcount for nwritten?
1601 */
1602 nwritten = bp->b_bufsize;
1603 (void) BUF_WRITE(bp);
1604
1605 return nwritten;
1606}
1607
1608/*
1609 * getnewbuf:
1610 *
1611 * Find and initialize a new buffer header, freeing up existing buffers
1612 * in the bufqueues as necessary. The new buffer is returned locked.
1613 *
1614 * Important: B_INVAL is not set. If the caller wishes to throw the
1615 * buffer away, the caller must set B_INVAL prior to calling brelse().
1616 *
1617 * We block if:
1618 * We have insufficient buffer headers
1619 * We have insufficient buffer space
1620 * buffer_map is too fragmented ( space reservation fails )
1621 * If we have to flush dirty buffers ( but we try to avoid this )
1622 *
1623 * To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1624 * Instead we ask the buf daemon to do it for us. We attempt to
1625 * avoid piecemeal wakeups of the pageout daemon.
1626 */
1627
1628static struct buf *
1629getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1630{
1631 struct buf *bp;
1632 struct buf *nbp;
1633 int defrag = 0;
1634 int nqindex;
1635 static int flushingbufs;
1636
1637 GIANT_REQUIRED;
1638
1639 /*
1640 * We can't afford to block since we might be holding a vnode lock,
1641 * which may prevent system daemons from running. We deal with
1642 * low-memory situations by proactively returning memory and running
1643 * async I/O rather then sync I/O.
1644 */
1645
1646 ++getnewbufcalls;
1647 --getnewbufrestarts;
1648restart:
1649 ++getnewbufrestarts;
1650
1651 /*
1652 * Setup for scan. If we do not have enough free buffers,
1653 * we setup a degenerate case that immediately fails. Note
1654 * that if we are specially marked process, we are allowed to
1655 * dip into our reserves.
1656 *
1657 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN
1658 *
1659 * We start with EMPTYKVA. If the list is empty we backup to EMPTY.
1660 * However, there are a number of cases (defragging, reusing, ...)
1661 * where we cannot backup.
1662 */
1663 nqindex = QUEUE_EMPTYKVA;
1664 nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1665
1666 if (nbp == NULL) {
1667 /*
1668 * If no EMPTYKVA buffers and we are either
1669 * defragging or reusing, locate a CLEAN buffer
1670 * to free or reuse. If bufspace useage is low
1671 * skip this step so we can allocate a new buffer.
1672 */
1673 if (defrag || bufspace >= lobufspace) {
1674 nqindex = QUEUE_CLEAN;
1675 nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1676 }
1677
1678 /*
1679 * If we could not find or were not allowed to reuse a
1680 * CLEAN buffer, check to see if it is ok to use an EMPTY
1681 * buffer. We can only use an EMPTY buffer if allocating
1682 * its KVA would not otherwise run us out of buffer space.
1683 */
1684 if (nbp == NULL && defrag == 0 &&
1685 bufspace + maxsize < hibufspace) {
1686 nqindex = QUEUE_EMPTY;
1687 nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1688 }
1689 }
1690
1691 /*
1692 * Run scan, possibly freeing data and/or kva mappings on the fly
1693 * depending.
1694 */
1695
1696 while ((bp = nbp) != NULL) {
1697 int qindex = nqindex;
1698
1699 /*
1700 * Calculate next bp ( we can only use it if we do not block
1701 * or do other fancy things ).
1702 */
1703 if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1704 switch(qindex) {
1705 case QUEUE_EMPTY:
1706 nqindex = QUEUE_EMPTYKVA;
1707 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1708 break;
1709 /* fall through */
1710 case QUEUE_EMPTYKVA:
1711 nqindex = QUEUE_CLEAN;
1712 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1713 break;
1714 /* fall through */
1715 case QUEUE_CLEAN:
1716 /*
1717 * nbp is NULL.
1718 */
1719 break;
1720 }
1721 }
1722
1723 /*
1724 * Sanity Checks
1725 */
1726 KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1727
1728 /*
1729 * Note: we no longer distinguish between VMIO and non-VMIO
1730 * buffers.
1731 */
1732
1733 KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1734
1735 /*
1736 * If we are defragging then we need a buffer with
1737 * b_kvasize != 0. XXX this situation should no longer
1738 * occur, if defrag is non-zero the buffer's b_kvasize
1739 * should also be non-zero at this point. XXX
1740 */
1741 if (defrag && bp->b_kvasize == 0) {
1742 printf("Warning: defrag empty buffer %p\n", bp);
1743 continue;
1744 }
1745
1746 /*
1747 * Start freeing the bp. This is somewhat involved. nbp
1748 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1749 */
1750
1751 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1752 panic("getnewbuf: locked buf");
1753 bremfree(bp);
1754
1755 if (qindex == QUEUE_CLEAN) {
1756 if (bp->b_flags & B_VMIO) {
1757 bp->b_flags &= ~B_ASYNC;
1758 vfs_vmio_release(bp);
1759 }
1760 if (bp->b_vp)
1761 brelvp(bp);
1762 }
1763
1764 /*
1765 * NOTE: nbp is now entirely invalid. We can only restart
1766 * the scan from this point on.
1767 *
1768 * Get the rest of the buffer freed up. b_kva* is still
1769 * valid after this operation.
1770 */
1771
1772 if (bp->b_rcred != NOCRED) {
1773 crfree(bp->b_rcred);
1774 bp->b_rcred = NOCRED;
1775 }
1776 if (bp->b_wcred != NOCRED) {
1777 crfree(bp->b_wcred);
1778 bp->b_wcred = NOCRED;
1779 }
1780 if (LIST_FIRST(&bp->b_dep) != NULL)
1781 buf_deallocate(bp);
1782 if (bp->b_xflags & BX_BKGRDINPROG)
1783 panic("losing buffer 3");
1784 LIST_REMOVE(bp, b_hash);
1785 LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1786
1787 if (bp->b_bufsize)
1788 allocbuf(bp, 0);
1789
1790 bp->b_flags = 0;
1791 bp->b_ioflags = 0;
1792 bp->b_xflags = 0;
1793 bp->b_dev = NODEV;
1794 bp->b_vp = NULL;
1795 bp->b_blkno = bp->b_lblkno = 0;
1796 bp->b_offset = NOOFFSET;
1797 bp->b_iodone = 0;
1798 bp->b_error = 0;
1799 bp->b_resid = 0;
1800 bp->b_bcount = 0;
1801 bp->b_npages = 0;
1802 bp->b_dirtyoff = bp->b_dirtyend = 0;
1803 bp->b_magic = B_MAGIC_BIO;
1804 bp->b_op = &buf_ops_bio;
1805
1806 LIST_INIT(&bp->b_dep);
1807
1808 /*
1809 * If we are defragging then free the buffer.
1810 */
1811 if (defrag) {
1812 bp->b_flags |= B_INVAL;
1813 bfreekva(bp);
1814 brelse(bp);
1815 defrag = 0;
1816 goto restart;
1817 }
1818
1819 /*
1820 * If we are overcomitted then recover the buffer and its
1821 * KVM space. This occurs in rare situations when multiple
1822 * processes are blocked in getnewbuf() or allocbuf().
1823 */
1824 if (bufspace >= hibufspace)
1825 flushingbufs = 1;
1826 if (flushingbufs && bp->b_kvasize != 0) {
1827 bp->b_flags |= B_INVAL;
1828 bfreekva(bp);
1829 brelse(bp);
1830 goto restart;
1831 }
1832 if (bufspace < lobufspace)
1833 flushingbufs = 0;
1834 break;
1835 }
1836
1837 /*
1838 * If we exhausted our list, sleep as appropriate. We may have to
1839 * wakeup various daemons and write out some dirty buffers.
1840 *
1841 * Generally we are sleeping due to insufficient buffer space.
1842 */
1843
1844 if (bp == NULL) {
1845 int flags;
1846 char *waitmsg;
1847
1848 if (defrag) {
1849 flags = VFS_BIO_NEED_BUFSPACE;
1850 waitmsg = "nbufkv";
1851 } else if (bufspace >= hibufspace) {
1852 waitmsg = "nbufbs";
1853 flags = VFS_BIO_NEED_BUFSPACE;
1854 } else {
1855 waitmsg = "newbuf";
1856 flags = VFS_BIO_NEED_ANY;
1857 }
1858
1859 bd_speedup(); /* heeeelp */
1860
1861 needsbuffer |= flags;
1862 while (needsbuffer & flags) {
1863 if (tsleep(&needsbuffer, (PRIBIO + 4) | slpflag,
1864 waitmsg, slptimeo))
1865 return (NULL);
1866 }
1867 } else {
1868 /*
1869 * We finally have a valid bp. We aren't quite out of the
1870 * woods, we still have to reserve kva space. In order
1871 * to keep fragmentation sane we only allocate kva in
1872 * BKVASIZE chunks.
1873 */
1874 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1875
1876 if (maxsize != bp->b_kvasize) {
1877 vm_offset_t addr = 0;
1878
1879 bfreekva(bp);
1880
1881 if (vm_map_findspace(buffer_map,
1882 vm_map_min(buffer_map), maxsize, &addr)) {
1883 /*
1884 * Uh oh. Buffer map is to fragmented. We
1885 * must defragment the map.
1886 */
1887 ++bufdefragcnt;
1888 defrag = 1;
1889 bp->b_flags |= B_INVAL;
1890 brelse(bp);
1891 goto restart;
1892 }
1893 if (addr) {
1894 vm_map_insert(buffer_map, NULL, 0,
1895 addr, addr + maxsize,
1896 VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1897
1898 bp->b_kvabase = (caddr_t) addr;
1899 bp->b_kvasize = maxsize;
1900 bufspace += bp->b_kvasize;
1901 ++bufreusecnt;
1902 }
1903 }
1904 bp->b_data = bp->b_kvabase;
1905 }
1906 return(bp);
1907}
1908
1909/*
1910 * buf_daemon:
1911 *
1912 * buffer flushing daemon. Buffers are normally flushed by the
1913 * update daemon but if it cannot keep up this process starts to
1914 * take the load in an attempt to prevent getnewbuf() from blocking.
1915 */
1916
1917static struct proc *bufdaemonproc;
1918
1919static struct kproc_desc buf_kp = {
1920 "bufdaemon",
1921 buf_daemon,
1922 &bufdaemonproc
1923};
1924SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
1925
1926static void
1927buf_daemon()
1928{
1929 int s;
1930
1931 mtx_lock(&Giant);
1932
1933 /*
1934 * This process needs to be suspended prior to shutdown sync.
1935 */
1936 EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
1937 SHUTDOWN_PRI_LAST);
1938
1939 /*
1940 * This process is allowed to take the buffer cache to the limit
1941 */
1942 s = splbio();
1943
1944 for (;;) {
1945 kthread_suspend_check(bufdaemonproc);
1946
1947 bd_request = 0;
1948
1949 /*
1950 * Do the flush. Limit the amount of in-transit I/O we
1951 * allow to build up, otherwise we would completely saturate
1952 * the I/O system. Wakeup any waiting processes before we
1953 * normally would so they can run in parallel with our drain.
1954 */
1955 while (numdirtybuffers > lodirtybuffers) {
1956 if (flushbufqueues() == 0)
1957 break;
1958 waitrunningbufspace();
1959 numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
1960 }
1961
1962 /*
1963 * Only clear bd_request if we have reached our low water
1964 * mark. The buf_daemon normally waits 1 second and
1965 * then incrementally flushes any dirty buffers that have
1966 * built up, within reason.
1967 *
1968 * If we were unable to hit our low water mark and couldn't
1969 * find any flushable buffers, we sleep half a second.
1970 * Otherwise we loop immediately.
1971 */
1972 if (numdirtybuffers <= lodirtybuffers) {
1973 /*
1974 * We reached our low water mark, reset the
1975 * request and sleep until we are needed again.
1976 * The sleep is just so the suspend code works.
1977 */
1978 bd_request = 0;
1979 tsleep(&bd_request, PVM, "psleep", hz);
1980 } else {
1981 /*
1982 * We couldn't find any flushable dirty buffers but
1983 * still have too many dirty buffers, we
1984 * have to sleep and try again. (rare)
1985 */
1986 tsleep(&bd_request, PVM, "qsleep", hz / 2);
1987 }
1988 }
1989}
1990
1991/*
1992 * flushbufqueues:
1993 *
1994 * Try to flush a buffer in the dirty queue. We must be careful to
1995 * free up B_INVAL buffers instead of write them, which NFS is
1996 * particularly sensitive to.
1997 */
1998
1999static int
2000flushbufqueues(void)
2001{
2002 struct buf *bp;
2003 int r = 0;
2004
2005 bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
2006
2007 while (bp) {
2008 KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp));
2009 if ((bp->b_flags & B_DELWRI) != 0 &&
2010 (bp->b_xflags & BX_BKGRDINPROG) == 0) {
2011 if (bp->b_flags & B_INVAL) {
2012 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
2013 panic("flushbufqueues: locked buf");
2014 bremfree(bp);
2015 brelse(bp);
2016 ++r;
2017 break;
2018 }
2019 if (LIST_FIRST(&bp->b_dep) != NULL &&
2020 (bp->b_flags & B_DEFERRED) == 0 &&
2021 buf_countdeps(bp, 0)) {
2022 TAILQ_REMOVE(&bufqueues[QUEUE_DIRTY],
2023 bp, b_freelist);
2024 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY],
2025 bp, b_freelist);
2026 bp->b_flags |= B_DEFERRED;
2027 bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
2028 continue;
2029 }
2030 vfs_bio_awrite(bp);
2031 ++r;
2032 break;
2033 }
2034 bp = TAILQ_NEXT(bp, b_freelist);
2035 }
2036 return (r);
2037}
2038
2039/*
2040 * Check to see if a block is currently memory resident.
2041 */
2042struct buf *
2043incore(struct vnode * vp, daddr_t blkno)
2044{
2045 struct buf *bp;
2046
2047 int s = splbio();
2048 bp = gbincore(vp, blkno);
2049 splx(s);
2050 return (bp);
2051}
2052
2053/*
2054 * Returns true if no I/O is needed to access the
2055 * associated VM object. This is like incore except
2056 * it also hunts around in the VM system for the data.
2057 */
2058
2059int
2060inmem(struct vnode * vp, daddr_t blkno)
2061{
2062 vm_object_t obj;
2063 vm_offset_t toff, tinc, size;
2064 vm_page_t m;
2065 vm_ooffset_t off;
2066
2067 GIANT_REQUIRED;
2068
2069 if (incore(vp, blkno))
2070 return 1;
2071 if (vp->v_mount == NULL)
2072 return 0;
2073 if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_flag & VOBJBUF) == 0)
2074 return 0;
2075
2076 size = PAGE_SIZE;
2077 if (size > vp->v_mount->mnt_stat.f_iosize)
2078 size = vp->v_mount->mnt_stat.f_iosize;
2079 off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2080
2081 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2082 m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2083 if (!m)
2084 goto notinmem;
2085 tinc = size;
2086 if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2087 tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2088 if (vm_page_is_valid(m,
2089 (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2090 goto notinmem;
2091 }
2092 return 1;
2093
2094notinmem:
2095 return (0);
2096}
2097
2098/*
2099 * vfs_setdirty:
2100 *
2101 * Sets the dirty range for a buffer based on the status of the dirty
2102 * bits in the pages comprising the buffer.
2103 *
2104 * The range is limited to the size of the buffer.
2105 *
2106 * This routine is primarily used by NFS, but is generalized for the
2107 * B_VMIO case.
2108 */
2109static void
2110vfs_setdirty(struct buf *bp)
2111{
2112 int i;
2113 vm_object_t object;
2114
2115 GIANT_REQUIRED;
2116 /*
2117 * Degenerate case - empty buffer
2118 */
2119
2120 if (bp->b_bufsize == 0)
2121 return;
2122
2123 /*
2124 * We qualify the scan for modified pages on whether the
2125 * object has been flushed yet. The OBJ_WRITEABLE flag
2126 * is not cleared simply by protecting pages off.
2127 */
2128
2129 if ((bp->b_flags & B_VMIO) == 0)
2130 return;
2131
2132 object = bp->b_pages[0]->object;
2133
2134 if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2135 printf("Warning: object %p writeable but not mightbedirty\n", object);
2136 if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2137 printf("Warning: object %p mightbedirty but not writeable\n", object);
2138
2139 if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2140 vm_offset_t boffset;
2141 vm_offset_t eoffset;
2142
2143 /*
2144 * test the pages to see if they have been modified directly
2145 * by users through the VM system.
2146 */
2147 for (i = 0; i < bp->b_npages; i++) {
2148 vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
2149 vm_page_test_dirty(bp->b_pages[i]);
2150 }
2151
2152 /*
2153 * Calculate the encompassing dirty range, boffset and eoffset,
2154 * (eoffset - boffset) bytes.
2155 */
2156
2157 for (i = 0; i < bp->b_npages; i++) {
2158 if (bp->b_pages[i]->dirty)
2159 break;
2160 }
2161 boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2162
2163 for (i = bp->b_npages - 1; i >= 0; --i) {
2164 if (bp->b_pages[i]->dirty) {
2165 break;
2166 }
2167 }
2168 eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2169
2170 /*
2171 * Fit it to the buffer.
2172 */
2173
2174 if (eoffset > bp->b_bcount)
2175 eoffset = bp->b_bcount;
2176
2177 /*
2178 * If we have a good dirty range, merge with the existing
2179 * dirty range.
2180 */
2181
2182 if (boffset < eoffset) {
2183 if (bp->b_dirtyoff > boffset)
2184 bp->b_dirtyoff = boffset;
2185 if (bp->b_dirtyend < eoffset)
2186 bp->b_dirtyend = eoffset;
2187 }
2188 }
2189}
2190
2191/*
2192 * getblk:
2193 *
2194 * Get a block given a specified block and offset into a file/device.
2195 * The buffers B_DONE bit will be cleared on return, making it almost
2196 * ready for an I/O initiation. B_INVAL may or may not be set on
2197 * return. The caller should clear B_INVAL prior to initiating a
2198 * READ.
2199 *
2200 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2201 * an existing buffer.
2202 *
2203 * For a VMIO buffer, B_CACHE is modified according to the backing VM.
2204 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2205 * and then cleared based on the backing VM. If the previous buffer is
2206 * non-0-sized but invalid, B_CACHE will be cleared.
2207 *
2208 * If getblk() must create a new buffer, the new buffer is returned with
2209 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2210 * case it is returned with B_INVAL clear and B_CACHE set based on the
2211 * backing VM.
2212 *
2213 * getblk() also forces a BUF_WRITE() for any B_DELWRI buffer whos
2214 * B_CACHE bit is clear.
2215 *
2216 * What this means, basically, is that the caller should use B_CACHE to
2217 * determine whether the buffer is fully valid or not and should clear
2218 * B_INVAL prior to issuing a read. If the caller intends to validate
2219 * the buffer by loading its data area with something, the caller needs
2220 * to clear B_INVAL. If the caller does this without issuing an I/O,
2221 * the caller should set B_CACHE ( as an optimization ), else the caller
2222 * should issue the I/O and biodone() will set B_CACHE if the I/O was
2223 * a write attempt or if it was a successfull read. If the caller
2224 * intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2225 * prior to issuing the READ. biodone() will *not* clear B_INVAL.
2226 */
2227struct buf *
2228getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
2229{
2230 struct buf *bp;
2231 int s;
2232 struct bufhashhdr *bh;
2233
2234 if (size > MAXBSIZE)
2235 panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2236
2237 s = splbio();
2238loop:
2239 /*
2240 * Block if we are low on buffers. Certain processes are allowed
2241 * to completely exhaust the buffer cache.
2242 *
2243 * If this check ever becomes a bottleneck it may be better to
2244 * move it into the else, when gbincore() fails. At the moment
2245 * it isn't a problem.
2246 *
2247 * XXX remove if 0 sections (clean this up after its proven)
2248 */
2249 if (numfreebuffers == 0) {
2250 if (curthread == PCPU_GET(idlethread))
2251 return NULL;
2252 needsbuffer |= VFS_BIO_NEED_ANY;
2253 }
2254
2255 if ((bp = gbincore(vp, blkno))) {
2256 /*
2257 * Buffer is in-core. If the buffer is not busy, it must
2258 * be on a queue.
2259 */
2260
2261 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2262 if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL,
2263 "getblk", slpflag, slptimeo) == ENOLCK)
2264 goto loop;
2265 splx(s);
2266 return (struct buf *) NULL;
2267 }
2268
2269 /*
2270 * The buffer is locked. B_CACHE is cleared if the buffer is
2271 * invalid. Otherwise, for a non-VMIO buffer, B_CACHE is set
2272 * and for a VMIO buffer B_CACHE is adjusted according to the
2273 * backing VM cache.
2274 */
2275 if (bp->b_flags & B_INVAL)
2276 bp->b_flags &= ~B_CACHE;
2277 else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2278 bp->b_flags |= B_CACHE;
2279 bremfree(bp);
2280
2281 /*
2282 * check for size inconsistancies for non-VMIO case.
2283 */
2284
2285 if (bp->b_bcount != size) {
2286 if ((bp->b_flags & B_VMIO) == 0 ||
2287 (size > bp->b_kvasize)) {
2288 if (bp->b_flags & B_DELWRI) {
2289 bp->b_flags |= B_NOCACHE;
2290 BUF_WRITE(bp);
2291 } else {
2292 if ((bp->b_flags & B_VMIO) &&
2293 (LIST_FIRST(&bp->b_dep) == NULL)) {
2294 bp->b_flags |= B_RELBUF;
2295 brelse(bp);
2296 } else {
2297 bp->b_flags |= B_NOCACHE;
2298 BUF_WRITE(bp);
2299 }
2300 }
2301 goto loop;
2302 }
2303 }
2304
2305 /*
2306 * If the size is inconsistant in the VMIO case, we can resize
2307 * the buffer. This might lead to B_CACHE getting set or
2308 * cleared. If the size has not changed, B_CACHE remains
2309 * unchanged from its previous state.
2310 */
2311
2312 if (bp->b_bcount != size)
2313 allocbuf(bp, size);
2314
2315 KASSERT(bp->b_offset != NOOFFSET,
2316 ("getblk: no buffer offset"));
2317
2318 /*
2319 * A buffer with B_DELWRI set and B_CACHE clear must
2320 * be committed before we can return the buffer in
2321 * order to prevent the caller from issuing a read
2322 * ( due to B_CACHE not being set ) and overwriting
2323 * it.
2324 *
2325 * Most callers, including NFS and FFS, need this to
2326 * operate properly either because they assume they
2327 * can issue a read if B_CACHE is not set, or because
2328 * ( for example ) an uncached B_DELWRI might loop due
2329 * to softupdates re-dirtying the buffer. In the latter
2330 * case, B_CACHE is set after the first write completes,
2331 * preventing further loops.
2332 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE
2333 * above while extending the buffer, we cannot allow the
2334 * buffer to remain with B_CACHE set after the write
2335 * completes or it will represent a corrupt state. To
2336 * deal with this we set B_NOCACHE to scrap the buffer
2337 * after the write.
2338 *
2339 * We might be able to do something fancy, like setting
2340 * B_CACHE in bwrite() except if B_DELWRI is already set,
2341 * so the below call doesn't set B_CACHE, but that gets real
2342 * confusing. This is much easier.
2343 */
2344
2345 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2346 bp->b_flags |= B_NOCACHE;
2347 BUF_WRITE(bp);
2348 goto loop;
2349 }
2350
2351 splx(s);
2352 bp->b_flags &= ~B_DONE;
2353 } else {
2354 /*
2355 * Buffer is not in-core, create new buffer. The buffer
2356 * returned by getnewbuf() is locked. Note that the returned
2357 * buffer is also considered valid (not marked B_INVAL).
2358 */
2359 int bsize, maxsize, vmio;
2360 off_t offset;
2361
2362 if (vn_isdisk(vp, NULL))
2363 bsize = DEV_BSIZE;
2364 else if (vp->v_mountedhere)
2365 bsize = vp->v_mountedhere->mnt_stat.f_iosize;
2366 else if (vp->v_mount)
2367 bsize = vp->v_mount->mnt_stat.f_iosize;
2368 else
2369 bsize = size;
2370
2371 offset = (off_t)blkno * bsize;
2372 vmio = (VOP_GETVOBJECT(vp, NULL) == 0) && (vp->v_flag & VOBJBUF);
2373 maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2374 maxsize = imax(maxsize, bsize);
2375
2376 if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2377 if (slpflag || slptimeo) {
2378 splx(s);
2379 return NULL;
2380 }
2381 goto loop;
2382 }
2383
2384 /*
2385 * This code is used to make sure that a buffer is not
2386 * created while the getnewbuf routine is blocked.
2387 * This can be a problem whether the vnode is locked or not.
2388 * If the buffer is created out from under us, we have to
2389 * throw away the one we just created. There is now window
2390 * race because we are safely running at splbio() from the
2391 * point of the duplicate buffer creation through to here,
2392 * and we've locked the buffer.
2393 */
2394 if (gbincore(vp, blkno)) {
2395 bp->b_flags |= B_INVAL;
2396 brelse(bp);
2397 goto loop;
2398 }
2399
2400 /*
2401 * Insert the buffer into the hash, so that it can
2402 * be found by incore.
2403 */
2404 bp->b_blkno = bp->b_lblkno = blkno;
2405 bp->b_offset = offset;
2406
2407 bgetvp(vp, bp);
2408 LIST_REMOVE(bp, b_hash);
2409 bh = bufhash(vp, blkno);
2410 LIST_INSERT_HEAD(bh, bp, b_hash);
2411
2412 /*
2413 * set B_VMIO bit. allocbuf() the buffer bigger. Since the
2414 * buffer size starts out as 0, B_CACHE will be set by
2415 * allocbuf() for the VMIO case prior to it testing the
2416 * backing store for validity.
2417 */
2418
2419 if (vmio) {
2420 bp->b_flags |= B_VMIO;
2421#if defined(VFS_BIO_DEBUG)
2422 if (vp->v_type != VREG)
2423 printf("getblk: vmioing file type %d???\n", vp->v_type);
2424#endif
2425 } else {
2426 bp->b_flags &= ~B_VMIO;
2427 }
2428
2429 allocbuf(bp, size);
2430
2431 splx(s);
2432 bp->b_flags &= ~B_DONE;
2433 }
2434 return (bp);
2435}
2436
2437/*
2438 * Get an empty, disassociated buffer of given size. The buffer is initially
2439 * set to B_INVAL.
2440 */
2441struct buf *
2442geteblk(int size)
2443{
2444 struct buf *bp;
2445 int s;
2446 int maxsize;
2447
2448 maxsize = (size + BKVAMASK) & ~BKVAMASK;
2449
2450 s = splbio();
2451 while ((bp = getnewbuf(0, 0, size, maxsize)) == 0);
2452 splx(s);
2453 allocbuf(bp, size);
2454 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */
2455 return (bp);
2456}
2457
2458
2459/*
2460 * This code constitutes the buffer memory from either anonymous system
2461 * memory (in the case of non-VMIO operations) or from an associated
2462 * VM object (in the case of VMIO operations). This code is able to
2463 * resize a buffer up or down.
2464 *
2465 * Note that this code is tricky, and has many complications to resolve
2466 * deadlock or inconsistant data situations. Tread lightly!!!
2467 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2468 * the caller. Calling this code willy nilly can result in the loss of data.
2469 *
2470 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with
2471 * B_CACHE for the non-VMIO case.
2472 */
2473
2474int
2475allocbuf(struct buf *bp, int size)
2476{
2477 int newbsize, mbsize;
2478 int i;
2479
2480 GIANT_REQUIRED;
2481
2482 if (BUF_REFCNT(bp) == 0)
2483 panic("allocbuf: buffer not busy");
2484
2485 if (bp->b_kvasize < size)
2486 panic("allocbuf: buffer too small");
2487
2488 if ((bp->b_flags & B_VMIO) == 0) {
2489 caddr_t origbuf;
2490 int origbufsize;
2491 /*
2492 * Just get anonymous memory from the kernel. Don't
2493 * mess with B_CACHE.
2494 */
2495 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2496 if (bp->b_flags & B_MALLOC)
2497 newbsize = mbsize;
2498 else
2499 newbsize = round_page(size);
2500
2501 if (newbsize < bp->b_bufsize) {
2502 /*
2503 * malloced buffers are not shrunk
2504 */
2505 if (bp->b_flags & B_MALLOC) {
2506 if (newbsize) {
2507 bp->b_bcount = size;
2508 } else {
2509 free(bp->b_data, M_BIOBUF);
2510 if (bp->b_bufsize) {
2511 bufmallocspace -= bp->b_bufsize;
2512 bufspacewakeup();
2513 bp->b_bufsize = 0;
2514 }
2515 bp->b_data = bp->b_kvabase;
2516 bp->b_bcount = 0;
2517 bp->b_flags &= ~B_MALLOC;
2518 }
2519 return 1;
2520 }
2521 vm_hold_free_pages(
2522 bp,
2523 (vm_offset_t) bp->b_data + newbsize,
2524 (vm_offset_t) bp->b_data + bp->b_bufsize);
2525 } else if (newbsize > bp->b_bufsize) {
2526 /*
2527 * We only use malloced memory on the first allocation.
2528 * and revert to page-allocated memory when the buffer
2529 * grows.
2530 */
2531 if ( (bufmallocspace < maxbufmallocspace) &&
2532 (bp->b_bufsize == 0) &&
2533 (mbsize <= PAGE_SIZE/2)) {
2534
2535 bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2536 bp->b_bufsize = mbsize;
2537 bp->b_bcount = size;
2538 bp->b_flags |= B_MALLOC;
2539 bufmallocspace += mbsize;
2540 return 1;
2541 }
2542 origbuf = NULL;
2543 origbufsize = 0;
2544 /*
2545 * If the buffer is growing on its other-than-first allocation,
2546 * then we revert to the page-allocation scheme.
2547 */
2548 if (bp->b_flags & B_MALLOC) {
2549 origbuf = bp->b_data;
2550 origbufsize = bp->b_bufsize;
2551 bp->b_data = bp->b_kvabase;
2552 if (bp->b_bufsize) {
2553 bufmallocspace -= bp->b_bufsize;
2554 bufspacewakeup();
2555 bp->b_bufsize = 0;
2556 }
2557 bp->b_flags &= ~B_MALLOC;
2558 newbsize = round_page(newbsize);
2559 }
2560 vm_hold_load_pages(
2561 bp,
2562 (vm_offset_t) bp->b_data + bp->b_bufsize,
2563 (vm_offset_t) bp->b_data + newbsize);
2564 if (origbuf) {
2565 bcopy(origbuf, bp->b_data, origbufsize);
2566 free(origbuf, M_BIOBUF);
2567 }
2568 }
2569 } else {
2570 vm_page_t m;
2571 int desiredpages;
2572
2573 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2574 desiredpages = (size == 0) ? 0 :
2575 num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2576
2577 if (bp->b_flags & B_MALLOC)
2578 panic("allocbuf: VMIO buffer can't be malloced");
2579 /*
2580 * Set B_CACHE initially if buffer is 0 length or will become
2581 * 0-length.
2582 */
2583 if (size == 0 || bp->b_bufsize == 0)
2584 bp->b_flags |= B_CACHE;
2585
2586 if (newbsize < bp->b_bufsize) {
2587 /*
2588 * DEV_BSIZE aligned new buffer size is less then the
2589 * DEV_BSIZE aligned existing buffer size. Figure out
2590 * if we have to remove any pages.
2591 */
2592 if (desiredpages < bp->b_npages) {
2593 for (i = desiredpages; i < bp->b_npages; i++) {
2594 /*
2595 * the page is not freed here -- it
2596 * is the responsibility of
2597 * vnode_pager_setsize
2598 */
2599 m = bp->b_pages[i];
2600 KASSERT(m != bogus_page,
2601 ("allocbuf: bogus page found"));
2602 while (vm_page_sleep_busy(m, TRUE, "biodep"))
2603 ;
2604
2605 bp->b_pages[i] = NULL;
2606 vm_page_unwire(m, 0);
2607 }
2608 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2609 (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2610 bp->b_npages = desiredpages;
2611 }
2612 } else if (size > bp->b_bcount) {
2613 /*
2614 * We are growing the buffer, possibly in a
2615 * byte-granular fashion.
2616 */
2617 struct vnode *vp;
2618 vm_object_t obj;
2619 vm_offset_t toff;
2620 vm_offset_t tinc;
2621
2622 /*
2623 * Step 1, bring in the VM pages from the object,
2624 * allocating them if necessary. We must clear
2625 * B_CACHE if these pages are not valid for the
2626 * range covered by the buffer.
2627 */
2628
2629 vp = bp->b_vp;
2630 VOP_GETVOBJECT(vp, &obj);
2631
2632 while (bp->b_npages < desiredpages) {
2633 vm_page_t m;
2634 vm_pindex_t pi;
2635
2636 pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2637 if ((m = vm_page_lookup(obj, pi)) == NULL) {
2638 /*
2639 * note: must allocate system pages
2640 * since blocking here could intefere
2641 * with paging I/O, no matter which
2642 * process we are.
2643 */
2644 m = vm_page_alloc(obj, pi, VM_ALLOC_SYSTEM);
2645 if (m == NULL) {
2646 VM_WAIT;
2647 vm_pageout_deficit += desiredpages - bp->b_npages;
2648 } else {
2649 vm_page_wire(m);
2650 vm_page_wakeup(m);
2651 bp->b_flags &= ~B_CACHE;
2652 bp->b_pages[bp->b_npages] = m;
2653 ++bp->b_npages;
2654 }
2655 continue;
2656 }
2657
2658 /*
2659 * We found a page. If we have to sleep on it,
2660 * retry because it might have gotten freed out
2661 * from under us.
2662 *
2663 * We can only test PG_BUSY here. Blocking on
2664 * m->busy might lead to a deadlock:
2665 *
2666 * vm_fault->getpages->cluster_read->allocbuf
2667 *
2668 */
2669
2670 if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
2671 continue;
2672
2673 /*
2674 * We have a good page. Should we wakeup the
2675 * page daemon?
2676 */
2677 if ((curproc != pageproc) &&
2678 ((m->queue - m->pc) == PQ_CACHE) &&
2679 ((cnt.v_free_count + cnt.v_cache_count) <
2680 (cnt.v_free_min + cnt.v_cache_min))) {
2681 pagedaemon_wakeup();
2682 }
2683 vm_page_flag_clear(m, PG_ZERO);
2684 vm_page_wire(m);
2685 bp->b_pages[bp->b_npages] = m;
2686 ++bp->b_npages;
2687 }
2688
2689 /*
2690 * Step 2. We've loaded the pages into the buffer,
2691 * we have to figure out if we can still have B_CACHE
2692 * set. Note that B_CACHE is set according to the
2693 * byte-granular range ( bcount and size ), new the
2694 * aligned range ( newbsize ).
2695 *
2696 * The VM test is against m->valid, which is DEV_BSIZE
2697 * aligned. Needless to say, the validity of the data
2698 * needs to also be DEV_BSIZE aligned. Note that this
2699 * fails with NFS if the server or some other client
2700 * extends the file's EOF. If our buffer is resized,
2701 * B_CACHE may remain set! XXX
2702 */
2703
2704 toff = bp->b_bcount;
2705 tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2706
2707 while ((bp->b_flags & B_CACHE) && toff < size) {
2708 vm_pindex_t pi;
2709
2710 if (tinc > (size - toff))
2711 tinc = size - toff;
2712
2713 pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2714 PAGE_SHIFT;
2715
2716 vfs_buf_test_cache(
2717 bp,
2718 bp->b_offset,
2719 toff,
2720 tinc,
2721 bp->b_pages[pi]
2722 );
2723 toff += tinc;
2724 tinc = PAGE_SIZE;
2725 }
2726
2727 /*
2728 * Step 3, fixup the KVM pmap. Remember that
2729 * bp->b_data is relative to bp->b_offset, but
2730 * bp->b_offset may be offset into the first page.
2731 */
2732
2733 bp->b_data = (caddr_t)
2734 trunc_page((vm_offset_t)bp->b_data);
2735 pmap_qenter(
2736 (vm_offset_t)bp->b_data,
2737 bp->b_pages,
2738 bp->b_npages
2739 );
2740
2741 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2742 (vm_offset_t)(bp->b_offset & PAGE_MASK));
2743 }
2744 }
2745 if (newbsize < bp->b_bufsize)
2746 bufspacewakeup();
2747 bp->b_bufsize = newbsize; /* actual buffer allocation */
2748 bp->b_bcount = size; /* requested buffer size */
2749 return 1;
2750}
2751
2752/*
2753 * bufwait:
2754 *
2755 * Wait for buffer I/O completion, returning error status. The buffer
2756 * is left locked and B_DONE on return. B_EINTR is converted into a EINTR
2757 * error and cleared.
2758 */
2759int
2760bufwait(register struct buf * bp)
2761{
2762 int s;
2763
2764 s = splbio();
2765 while ((bp->b_flags & B_DONE) == 0) {
2766 if (bp->b_iocmd == BIO_READ)
2767 tsleep(bp, PRIBIO, "biord", 0);
2768 else
2769 tsleep(bp, PRIBIO, "biowr", 0);
2770 }
2771 splx(s);
2772 if (bp->b_flags & B_EINTR) {
2773 bp->b_flags &= ~B_EINTR;
2774 return (EINTR);
2775 }
2776 if (bp->b_ioflags & BIO_ERROR) {
2777 return (bp->b_error ? bp->b_error : EIO);
2778 } else {
2779 return (0);
2780 }
2781}
2782
2783 /*
2784 * Call back function from struct bio back up to struct buf.
2785 * The corresponding initialization lives in sys/conf.h:DEV_STRATEGY().
2786 */
2787void
2788bufdonebio(struct bio *bp)
2789{
2790 bufdone(bp->bio_caller2);
2791}
2792
2793/*
2794 * bufdone:
2795 *
2796 * Finish I/O on a buffer, optionally calling a completion function.
2797 * This is usually called from an interrupt so process blocking is
2798 * not allowed.
2799 *
2800 * biodone is also responsible for setting B_CACHE in a B_VMIO bp.
2801 * In a non-VMIO bp, B_CACHE will be set on the next getblk()
2802 * assuming B_INVAL is clear.
2803 *
2804 * For the VMIO case, we set B_CACHE if the op was a read and no
2805 * read error occured, or if the op was a write. B_CACHE is never
2806 * set if the buffer is invalid or otherwise uncacheable.
2807 *
2808 * biodone does not mess with B_INVAL, allowing the I/O routine or the
2809 * initiator to leave B_INVAL set to brelse the buffer out of existance
2810 * in the biodone routine.
2811 */
2812void
2813bufdone(struct buf *bp)
2814{
2815 int s, error;
2816 void (*biodone)(struct buf *);
2817
2818 GIANT_REQUIRED;
2819
2820 s = splbio();
2821
2822 KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
2823 KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
2824
2825 bp->b_flags |= B_DONE;
2826 runningbufwakeup(bp);
2827
2828 if (bp->b_iocmd == BIO_DELETE) {
2829 brelse(bp);
2830 splx(s);
2831 return;
2832 }
2833
2834 if (bp->b_iocmd == BIO_WRITE) {
2835 vwakeup(bp);
2836 }
2837
2838 /* call optional completion function if requested */
2839 if (bp->b_iodone != NULL) {
2840 biodone = bp->b_iodone;
2841 bp->b_iodone = NULL;
2842 (*biodone) (bp);
2843 splx(s);
2844 return;
2845 }
2846 if (LIST_FIRST(&bp->b_dep) != NULL)
2847 buf_complete(bp);
2848
2849 if (bp->b_flags & B_VMIO) {
2850 int i;
2851 vm_ooffset_t foff;
2852 vm_page_t m;
2853 vm_object_t obj;
2854 int iosize;
2855 struct vnode *vp = bp->b_vp;
2856
2857 error = VOP_GETVOBJECT(vp, &obj);
2858
2859#if defined(VFS_BIO_DEBUG)
2860 if (vp->v_usecount == 0) {
2861 panic("biodone: zero vnode ref count");
2862 }
2863
2864 if (error) {
2865 panic("biodone: missing VM object");
2866 }
2867
2868 if ((vp->v_flag & VOBJBUF) == 0) {
2869 panic("biodone: vnode is not setup for merged cache");
2870 }
2871#endif
2872
2873 foff = bp->b_offset;
2874 KASSERT(bp->b_offset != NOOFFSET,
2875 ("biodone: no buffer offset"));
2876
2877 if (error) {
2878 panic("biodone: no object");
2879 }
2880#if defined(VFS_BIO_DEBUG)
2881 if (obj->paging_in_progress < bp->b_npages) {
2882 printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
2883 obj->paging_in_progress, bp->b_npages);
2884 }
2885#endif
2886
2887 /*
2888 * Set B_CACHE if the op was a normal read and no error
2889 * occured. B_CACHE is set for writes in the b*write()
2890 * routines.
2891 */
2892 iosize = bp->b_bcount - bp->b_resid;
2893 if (bp->b_iocmd == BIO_READ &&
2894 !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
2895 !(bp->b_ioflags & BIO_ERROR)) {
2896 bp->b_flags |= B_CACHE;
2897 }
2898
2899 for (i = 0; i < bp->b_npages; i++) {
2900 int bogusflag = 0;
2901 int resid;
2902
2903 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
2904 if (resid > iosize)
2905 resid = iosize;
2906
2907 /*
2908 * cleanup bogus pages, restoring the originals
2909 */
2910 m = bp->b_pages[i];
2911 if (m == bogus_page) {
2912 bogusflag = 1;
2913 m = vm_page_lookup(obj, OFF_TO_IDX(foff));
2914 if (m == NULL)
2915 panic("biodone: page disappeared!");
2916 bp->b_pages[i] = m;
2917 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2918 }
2919#if defined(VFS_BIO_DEBUG)
2920 if (OFF_TO_IDX(foff) != m->pindex) {
2921 printf(
2922"biodone: foff(%lu)/m->pindex(%d) mismatch\n",
2923 (unsigned long)foff, m->pindex);
2924 }
2925#endif
2926
2927 /*
2928 * In the write case, the valid and clean bits are
2929 * already changed correctly ( see bdwrite() ), so we
2930 * only need to do this here in the read case.
2931 */
2932 if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
2933 vfs_page_set_valid(bp, foff, i, m);
2934 }
2935 vm_page_flag_clear(m, PG_ZERO);
2936
2937 /*
2938 * when debugging new filesystems or buffer I/O methods, this
2939 * is the most common error that pops up. if you see this, you
2940 * have not set the page busy flag correctly!!!
2941 */
2942 if (m->busy == 0) {
2943 printf("biodone: page busy < 0, "
2944 "pindex: %d, foff: 0x(%x,%x), "
2945 "resid: %d, index: %d\n",
2946 (int) m->pindex, (int)(foff >> 32),
2947 (int) foff & 0xffffffff, resid, i);
2948 if (!vn_isdisk(vp, NULL))
2949 printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
2950 bp->b_vp->v_mount->mnt_stat.f_iosize,
2951 (int) bp->b_lblkno,
2952 bp->b_flags, bp->b_npages);
2953 else
2954 printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
2955 (int) bp->b_lblkno,
2956 bp->b_flags, bp->b_npages);
2957 printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
2958 m->valid, m->dirty, m->wire_count);
2959 panic("biodone: page busy < 0\n");
2960 }
2961 vm_page_io_finish(m);
2962 vm_object_pip_subtract(obj, 1);
2963 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2964 iosize -= resid;
2965 }
2966 if (obj)
2967 vm_object_pip_wakeupn(obj, 0);
2968 }
2969
2970 /*
2971 * For asynchronous completions, release the buffer now. The brelse
2972 * will do a wakeup there if necessary - so no need to do a wakeup
2973 * here in the async case. The sync case always needs to do a wakeup.
2974 */
2975
2976 if (bp->b_flags & B_ASYNC) {
2977 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
2978 brelse(bp);
2979 else
2980 bqrelse(bp);
2981 } else {
2982 wakeup(bp);
2983 }
2984 splx(s);
2985}
2986
2987/*
2988 * This routine is called in lieu of iodone in the case of
2989 * incomplete I/O. This keeps the busy status for pages
2990 * consistant.
2991 */
2992void
2993vfs_unbusy_pages(struct buf * bp)
2994{
2995 int i;
2996
2997 GIANT_REQUIRED;
2998
2999 runningbufwakeup(bp);
3000 if (bp->b_flags & B_VMIO) {
3001 struct vnode *vp = bp->b_vp;
3002 vm_object_t obj;
3003
3004 VOP_GETVOBJECT(vp, &obj);
3005
3006 for (i = 0; i < bp->b_npages; i++) {
3007 vm_page_t m = bp->b_pages[i];
3008
3009 if (m == bogus_page) {
3010 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3011 if (!m) {
3012 panic("vfs_unbusy_pages: page missing\n");
3013 }
3014 bp->b_pages[i] = m;
3015 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3016 }
3017 vm_object_pip_subtract(obj, 1);
3018 vm_page_flag_clear(m, PG_ZERO);
3019 vm_page_io_finish(m);
3020 }
3021 vm_object_pip_wakeupn(obj, 0);
3022 }
3023}
3024
3025/*
3026 * vfs_page_set_valid:
3027 *
3028 * Set the valid bits in a page based on the supplied offset. The
3029 * range is restricted to the buffer's size.
3030 *
3031 * This routine is typically called after a read completes.
3032 */
3033static void
3034vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3035{
3036 vm_ooffset_t soff, eoff;
3037
3038 GIANT_REQUIRED;
3039 /*
3040 * Start and end offsets in buffer. eoff - soff may not cross a
3041 * page boundry or cross the end of the buffer. The end of the
3042 * buffer, in this case, is our file EOF, not the allocation size
3043 * of the buffer.
3044 */
3045 soff = off;
3046 eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3047 if (eoff > bp->b_offset + bp->b_bcount)
3048 eoff = bp->b_offset + bp->b_bcount;
3049
3050 /*
3051 * Set valid range. This is typically the entire buffer and thus the
3052 * entire page.
3053 */
3054 if (eoff > soff) {
3055 vm_page_set_validclean(
3056 m,
3057 (vm_offset_t) (soff & PAGE_MASK),
3058 (vm_offset_t) (eoff - soff)
3059 );
3060 }
3061}
3062
3063/*
3064 * This routine is called before a device strategy routine.
3065 * It is used to tell the VM system that paging I/O is in
3066 * progress, and treat the pages associated with the buffer
3067 * almost as being PG_BUSY. Also the object paging_in_progress
3068 * flag is handled to make sure that the object doesn't become
3069 * inconsistant.
3070 *
3071 * Since I/O has not been initiated yet, certain buffer flags
3072 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3073 * and should be ignored.
3074 */
3075void
3076vfs_busy_pages(struct buf * bp, int clear_modify)
3077{
3078 int i, bogus;
3079
3080 GIANT_REQUIRED;
3081
3082 if (bp->b_flags & B_VMIO) {
3083 struct vnode *vp = bp->b_vp;
3084 vm_object_t obj;
3085 vm_ooffset_t foff;
3086
3087 VOP_GETVOBJECT(vp, &obj);
3088 foff = bp->b_offset;
3089 KASSERT(bp->b_offset != NOOFFSET,
3090 ("vfs_busy_pages: no buffer offset"));
3091 vfs_setdirty(bp);
3092
3093retry:
3094 for (i = 0; i < bp->b_npages; i++) {
3095 vm_page_t m = bp->b_pages[i];
3096 if (vm_page_sleep_busy(m, FALSE, "vbpage"))
3097 goto retry;
3098 }
3099
3100 bogus = 0;
3101 for (i = 0; i < bp->b_npages; i++) {
3102 vm_page_t m = bp->b_pages[i];
3103
3104 vm_page_flag_clear(m, PG_ZERO);
3105 if ((bp->b_flags & B_CLUSTER) == 0) {
3106 vm_object_pip_add(obj, 1);
3107 vm_page_io_start(m);
3108 }
3109
3110 /*
3111 * When readying a buffer for a read ( i.e
3112 * clear_modify == 0 ), it is important to do
3113 * bogus_page replacement for valid pages in
3114 * partially instantiated buffers. Partially
3115 * instantiated buffers can, in turn, occur when
3116 * reconstituting a buffer from its VM backing store
3117 * base. We only have to do this if B_CACHE is
3118 * clear ( which causes the I/O to occur in the
3119 * first place ). The replacement prevents the read
3120 * I/O from overwriting potentially dirty VM-backed
3121 * pages. XXX bogus page replacement is, uh, bogus.
3122 * It may not work properly with small-block devices.
3123 * We need to find a better way.
3124 */
3125
3126 vm_page_protect(m, VM_PROT_NONE);
3127 if (clear_modify)
3128 vfs_page_set_valid(bp, foff, i, m);
3129 else if (m->valid == VM_PAGE_BITS_ALL &&
3130 (bp->b_flags & B_CACHE) == 0) {
3131 bp->b_pages[i] = bogus_page;
3132 bogus++;
3133 }
3134 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3135 }
3136 if (bogus)
3137 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3138 }
3139}
3140
3141/*
3142 * Tell the VM system that the pages associated with this buffer
3143 * are clean. This is used for delayed writes where the data is
3144 * going to go to disk eventually without additional VM intevention.
3145 *
3146 * Note that while we only really need to clean through to b_bcount, we
3147 * just go ahead and clean through to b_bufsize.
3148 */
3149static void
3150vfs_clean_pages(struct buf * bp)
3151{
3152 int i;
3153
3154 GIANT_REQUIRED;
3155
3156 if (bp->b_flags & B_VMIO) {
3157 vm_ooffset_t foff;
3158
3159 foff = bp->b_offset;
3160 KASSERT(bp->b_offset != NOOFFSET,
3161 ("vfs_clean_pages: no buffer offset"));
3162 for (i = 0; i < bp->b_npages; i++) {
3163 vm_page_t m = bp->b_pages[i];
3164 vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3165 vm_ooffset_t eoff = noff;
3166
3167 if (eoff > bp->b_offset + bp->b_bufsize)
3168 eoff = bp->b_offset + bp->b_bufsize;
3169 vfs_page_set_valid(bp, foff, i, m);
3170 /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3171 foff = noff;
3172 }
3173 }
3174}
3175
3176/*
3177 * vfs_bio_set_validclean:
3178 *
3179 * Set the range within the buffer to valid and clean. The range is
3180 * relative to the beginning of the buffer, b_offset. Note that b_offset
3181 * itself may be offset from the beginning of the first page.
3182 *
3183 */
3184
3185void
3186vfs_bio_set_validclean(struct buf *bp, int base, int size)
3187{
3188 if (bp->b_flags & B_VMIO) {
3189 int i;
3190 int n;
3191
3192 /*
3193 * Fixup base to be relative to beginning of first page.
3194 * Set initial n to be the maximum number of bytes in the
3195 * first page that can be validated.
3196 */
3197
3198 base += (bp->b_offset & PAGE_MASK);
3199 n = PAGE_SIZE - (base & PAGE_MASK);
3200
3201 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3202 vm_page_t m = bp->b_pages[i];
3203
3204 if (n > size)
3205 n = size;
3206
3207 vm_page_set_validclean(m, base & PAGE_MASK, n);
3208 base += n;
3209 size -= n;
3210 n = PAGE_SIZE;
3211 }
3212 }
3213}
3214
3215/*
3216 * vfs_bio_clrbuf:
3217 *
3218 * clear a buffer. This routine essentially fakes an I/O, so we need
3219 * to clear BIO_ERROR and B_INVAL.
3220 *
3221 * Note that while we only theoretically need to clear through b_bcount,
3222 * we go ahead and clear through b_bufsize.
3223 */
3224
3225void
3226vfs_bio_clrbuf(struct buf *bp) {
3227 int i, mask = 0;
3228 caddr_t sa, ea;
3229
3230 GIANT_REQUIRED;
3231
3232 if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3233 bp->b_flags &= ~B_INVAL;
3234 bp->b_ioflags &= ~BIO_ERROR;
3235 if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3236 (bp->b_offset & PAGE_MASK) == 0) {
3237 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3238 if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3239 ((bp->b_pages[0]->valid & mask) != mask)) {
3240 bzero(bp->b_data, bp->b_bufsize);
3241 }
3242 bp->b_pages[0]->valid |= mask;
3243 bp->b_resid = 0;
3244 return;
3245 }
3246 ea = sa = bp->b_data;
3247 for(i=0;i<bp->b_npages;i++,sa=ea) {
3248 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3249 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3250 ea = (caddr_t)(vm_offset_t)ulmin(
3251 (u_long)(vm_offset_t)ea,
3252 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3253 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3254 if ((bp->b_pages[i]->valid & mask) == mask)
3255 continue;
3256 if ((bp->b_pages[i]->valid & mask) == 0) {
3257 if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
3258 bzero(sa, ea - sa);
3259 }
3260 } else {
3261 for (; sa < ea; sa += DEV_BSIZE, j++) {
3262 if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3263 (bp->b_pages[i]->valid & (1<<j)) == 0)
3264 bzero(sa, DEV_BSIZE);
3265 }
3266 }
3267 bp->b_pages[i]->valid |= mask;
3268 vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
3269 }
3270 bp->b_resid = 0;
3271 } else {
3272 clrbuf(bp);
3273 }
3274}
3275
3276/*
3277 * vm_hold_load_pages and vm_hold_free_pages get pages into
3278 * a buffers address space. The pages are anonymous and are
3279 * not associated with a file object.
3280 */
3281static void
3282vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3283{
3284 vm_offset_t pg;
3285 vm_page_t p;
3286 int index;
3287
3288 GIANT_REQUIRED;
3289
3290 to = round_page(to);
3291 from = round_page(from);
3292 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3293
3294 for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3295tryagain:
3296 /*
3297 * note: must allocate system pages since blocking here
3298 * could intefere with paging I/O, no matter which
3299 * process we are.
3300 */
3301 p = vm_page_alloc(kernel_object,
3302 ((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3303 VM_ALLOC_SYSTEM);
3304 if (!p) {
3305 vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
3306 VM_WAIT;
3307 goto tryagain;
3308 }
3309 vm_page_wire(p);
3310 p->valid = VM_PAGE_BITS_ALL;
3311 vm_page_flag_clear(p, PG_ZERO);
3312 pmap_qenter(pg, &p, 1);
3313 bp->b_pages[index] = p;
3314 vm_page_wakeup(p);
3315 }
3316 bp->b_npages = index;
3317}
3318
3319/* Return pages associated with this buf to the vm system */
3320void
3321vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3322{
3323 vm_offset_t pg;
3324 vm_page_t p;
3325 int index, newnpages;
3326
3327 GIANT_REQUIRED;
3328
3329 from = round_page(from);
3330 to = round_page(to);
3331 newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3332
3333 for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3334 p = bp->b_pages[index];
3335 if (p && (index < bp->b_npages)) {
3336 if (p->busy) {
3337 printf(
3338 "vm_hold_free_pages: blkno: %lld, lblkno: %lld\n",
3339 (long long)bp->b_blkno,
3340 (long long)bp->b_lblkno);
3341 }
3342 bp->b_pages[index] = NULL;
3343 pmap_qremove(pg, 1);
3344 vm_page_busy(p);
3345 vm_page_unwire(p, 0);
3346 vm_page_free(p);
3347 }
3348 }
3349 bp->b_npages = newnpages;
3350}
3351
3352
3353#include "opt_ddb.h"
3354#ifdef DDB
3355#include <ddb/ddb.h>
3356
3357/* DDB command to show buffer data */
3358DB_SHOW_COMMAND(buffer, db_show_buffer)
3359{
3360 /* get args */
3361 struct buf *bp = (struct buf *)addr;
3362
3363 if (!have_addr) {
3364 db_printf("usage: show buffer <addr>\n");
3365 return;
3366 }
3367
3368 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3369 db_printf(
3370 "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
3371 "b_dev = (%d,%d), b_data = %p, b_blkno = %lld, b_pblkno = %lld\n",
3372 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3373 major(bp->b_dev), minor(bp->b_dev), bp->b_data,
3374 (long long)bp->b_blkno, (long long)bp->b_pblkno);
3375 if (bp->b_npages) {
3376 int i;
3377 db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3378 for (i = 0; i < bp->b_npages; i++) {
3379 vm_page_t m;
3380 m = bp->b_pages[i];
3381 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3382 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3383 if ((i + 1) < bp->b_npages)
3384 db_printf(",");
3385 }
3386 db_printf("\n");
3387 }
3388}
3389#endif /* DDB */