Deleted Added
full compact
sys_pipe.c (250159) sys_pipe.c (254356)
1/*-
2 * Copyright (c) 1996 John S. Dyson
3 * Copyright (c) 2012 Giovanni Trematerra
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice immediately at the beginning of the file, without modification,
11 * this list of conditions, and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Absolutely no warranty of function or purpose is made by the author
16 * John S. Dyson.
17 * 4. Modifications may be freely made to this file if the above conditions
18 * are met.
19 */
20
21/*
22 * This file contains a high-performance replacement for the socket-based
23 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
24 * all features of sockets, but does do everything that pipes normally
25 * do.
26 */
27
28/*
29 * This code has two modes of operation, a small write mode and a large
30 * write mode. The small write mode acts like conventional pipes with
31 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
32 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
33 * and PIPE_SIZE in size, the sending process pins the underlying pages in
34 * memory, and the receiving process copies directly from these pinned pages
35 * in the sending process.
36 *
37 * If the sending process receives a signal, it is possible that it will
38 * go away, and certainly its address space can change, because control
39 * is returned back to the user-mode side. In that case, the pipe code
40 * arranges to copy the buffer supplied by the user process, to a pageable
41 * kernel buffer, and the receiving process will grab the data from the
42 * pageable kernel buffer. Since signals don't happen all that often,
43 * the copy operation is normally eliminated.
44 *
45 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
46 * happen for small transfers so that the system will not spend all of
47 * its time context switching.
48 *
49 * In order to limit the resource use of pipes, two sysctls exist:
50 *
51 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
52 * address space available to us in pipe_map. This value is normally
53 * autotuned, but may also be loader tuned.
54 *
55 * kern.ipc.pipekva - This read-only sysctl tracks the current amount of
56 * memory in use by pipes.
57 *
58 * Based on how large pipekva is relative to maxpipekva, the following
59 * will happen:
60 *
61 * 0% - 50%:
62 * New pipes are given 16K of memory backing, pipes may dynamically
63 * grow to as large as 64K where needed.
64 * 50% - 75%:
65 * New pipes are given 4K (or PAGE_SIZE) of memory backing,
66 * existing pipes may NOT grow.
67 * 75% - 100%:
68 * New pipes are given 4K (or PAGE_SIZE) of memory backing,
69 * existing pipes will be shrunk down to 4K whenever possible.
70 *
71 * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0. If
72 * that is set, the only resize that will occur is the 0 -> SMALL_PIPE_SIZE
73 * resize which MUST occur for reverse-direction pipes when they are
74 * first used.
75 *
76 * Additional information about the current state of pipes may be obtained
77 * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail,
78 * and kern.ipc.piperesizefail.
79 *
80 * Locking rules: There are two locks present here: A mutex, used via
81 * PIPE_LOCK, and a flag, used via pipelock(). All locking is done via
82 * the flag, as mutexes can not persist over uiomove. The mutex
83 * exists only to guard access to the flag, and is not in itself a
84 * locking mechanism. Also note that there is only a single mutex for
85 * both directions of a pipe.
86 *
87 * As pipelock() may have to sleep before it can acquire the flag, it
88 * is important to reread all data after a call to pipelock(); everything
89 * in the structure may have changed.
90 */
91
92#include <sys/cdefs.h>
1/*-
2 * Copyright (c) 1996 John S. Dyson
3 * Copyright (c) 2012 Giovanni Trematerra
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice immediately at the beginning of the file, without modification,
11 * this list of conditions, and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Absolutely no warranty of function or purpose is made by the author
16 * John S. Dyson.
17 * 4. Modifications may be freely made to this file if the above conditions
18 * are met.
19 */
20
21/*
22 * This file contains a high-performance replacement for the socket-based
23 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
24 * all features of sockets, but does do everything that pipes normally
25 * do.
26 */
27
28/*
29 * This code has two modes of operation, a small write mode and a large
30 * write mode. The small write mode acts like conventional pipes with
31 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
32 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
33 * and PIPE_SIZE in size, the sending process pins the underlying pages in
34 * memory, and the receiving process copies directly from these pinned pages
35 * in the sending process.
36 *
37 * If the sending process receives a signal, it is possible that it will
38 * go away, and certainly its address space can change, because control
39 * is returned back to the user-mode side. In that case, the pipe code
40 * arranges to copy the buffer supplied by the user process, to a pageable
41 * kernel buffer, and the receiving process will grab the data from the
42 * pageable kernel buffer. Since signals don't happen all that often,
43 * the copy operation is normally eliminated.
44 *
45 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
46 * happen for small transfers so that the system will not spend all of
47 * its time context switching.
48 *
49 * In order to limit the resource use of pipes, two sysctls exist:
50 *
51 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
52 * address space available to us in pipe_map. This value is normally
53 * autotuned, but may also be loader tuned.
54 *
55 * kern.ipc.pipekva - This read-only sysctl tracks the current amount of
56 * memory in use by pipes.
57 *
58 * Based on how large pipekva is relative to maxpipekva, the following
59 * will happen:
60 *
61 * 0% - 50%:
62 * New pipes are given 16K of memory backing, pipes may dynamically
63 * grow to as large as 64K where needed.
64 * 50% - 75%:
65 * New pipes are given 4K (or PAGE_SIZE) of memory backing,
66 * existing pipes may NOT grow.
67 * 75% - 100%:
68 * New pipes are given 4K (or PAGE_SIZE) of memory backing,
69 * existing pipes will be shrunk down to 4K whenever possible.
70 *
71 * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0. If
72 * that is set, the only resize that will occur is the 0 -> SMALL_PIPE_SIZE
73 * resize which MUST occur for reverse-direction pipes when they are
74 * first used.
75 *
76 * Additional information about the current state of pipes may be obtained
77 * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail,
78 * and kern.ipc.piperesizefail.
79 *
80 * Locking rules: There are two locks present here: A mutex, used via
81 * PIPE_LOCK, and a flag, used via pipelock(). All locking is done via
82 * the flag, as mutexes can not persist over uiomove. The mutex
83 * exists only to guard access to the flag, and is not in itself a
84 * locking mechanism. Also note that there is only a single mutex for
85 * both directions of a pipe.
86 *
87 * As pipelock() may have to sleep before it can acquire the flag, it
88 * is important to reread all data after a call to pipelock(); everything
89 * in the structure may have changed.
90 */
91
92#include <sys/cdefs.h>
93__FBSDID("$FreeBSD: head/sys/kern/sys_pipe.c 250159 2013-05-01 22:42:42Z jilles $");
93__FBSDID("$FreeBSD: head/sys/kern/sys_pipe.c 254356 2013-08-15 07:54:31Z glebius $");
94
95#include <sys/param.h>
96#include <sys/systm.h>
97#include <sys/conf.h>
98#include <sys/fcntl.h>
99#include <sys/file.h>
100#include <sys/filedesc.h>
101#include <sys/filio.h>
102#include <sys/kernel.h>
103#include <sys/lock.h>
104#include <sys/mutex.h>
105#include <sys/ttycom.h>
106#include <sys/stat.h>
107#include <sys/malloc.h>
108#include <sys/poll.h>
109#include <sys/selinfo.h>
110#include <sys/signalvar.h>
111#include <sys/syscallsubr.h>
112#include <sys/sysctl.h>
113#include <sys/sysproto.h>
114#include <sys/pipe.h>
115#include <sys/proc.h>
116#include <sys/vnode.h>
117#include <sys/uio.h>
118#include <sys/event.h>
119
120#include <security/mac/mac_framework.h>
121
122#include <vm/vm.h>
123#include <vm/vm_param.h>
124#include <vm/vm_object.h>
125#include <vm/vm_kern.h>
126#include <vm/vm_extern.h>
127#include <vm/pmap.h>
128#include <vm/vm_map.h>
129#include <vm/vm_page.h>
130#include <vm/uma.h>
131
132/*
133 * Use this define if you want to disable *fancy* VM things. Expect an
134 * approx 30% decrease in transfer rate. This could be useful for
135 * NetBSD or OpenBSD.
136 */
137/* #define PIPE_NODIRECT */
138
139#define PIPE_PEER(pipe) \
140 (((pipe)->pipe_state & PIPE_NAMED) ? (pipe) : ((pipe)->pipe_peer))
141
142/*
143 * interfaces to the outside world
144 */
145static fo_rdwr_t pipe_read;
146static fo_rdwr_t pipe_write;
147static fo_truncate_t pipe_truncate;
148static fo_ioctl_t pipe_ioctl;
149static fo_poll_t pipe_poll;
150static fo_kqfilter_t pipe_kqfilter;
151static fo_stat_t pipe_stat;
152static fo_close_t pipe_close;
153static fo_chmod_t pipe_chmod;
154static fo_chown_t pipe_chown;
155
156struct fileops pipeops = {
157 .fo_read = pipe_read,
158 .fo_write = pipe_write,
159 .fo_truncate = pipe_truncate,
160 .fo_ioctl = pipe_ioctl,
161 .fo_poll = pipe_poll,
162 .fo_kqfilter = pipe_kqfilter,
163 .fo_stat = pipe_stat,
164 .fo_close = pipe_close,
165 .fo_chmod = pipe_chmod,
166 .fo_chown = pipe_chown,
94
95#include <sys/param.h>
96#include <sys/systm.h>
97#include <sys/conf.h>
98#include <sys/fcntl.h>
99#include <sys/file.h>
100#include <sys/filedesc.h>
101#include <sys/filio.h>
102#include <sys/kernel.h>
103#include <sys/lock.h>
104#include <sys/mutex.h>
105#include <sys/ttycom.h>
106#include <sys/stat.h>
107#include <sys/malloc.h>
108#include <sys/poll.h>
109#include <sys/selinfo.h>
110#include <sys/signalvar.h>
111#include <sys/syscallsubr.h>
112#include <sys/sysctl.h>
113#include <sys/sysproto.h>
114#include <sys/pipe.h>
115#include <sys/proc.h>
116#include <sys/vnode.h>
117#include <sys/uio.h>
118#include <sys/event.h>
119
120#include <security/mac/mac_framework.h>
121
122#include <vm/vm.h>
123#include <vm/vm_param.h>
124#include <vm/vm_object.h>
125#include <vm/vm_kern.h>
126#include <vm/vm_extern.h>
127#include <vm/pmap.h>
128#include <vm/vm_map.h>
129#include <vm/vm_page.h>
130#include <vm/uma.h>
131
132/*
133 * Use this define if you want to disable *fancy* VM things. Expect an
134 * approx 30% decrease in transfer rate. This could be useful for
135 * NetBSD or OpenBSD.
136 */
137/* #define PIPE_NODIRECT */
138
139#define PIPE_PEER(pipe) \
140 (((pipe)->pipe_state & PIPE_NAMED) ? (pipe) : ((pipe)->pipe_peer))
141
142/*
143 * interfaces to the outside world
144 */
145static fo_rdwr_t pipe_read;
146static fo_rdwr_t pipe_write;
147static fo_truncate_t pipe_truncate;
148static fo_ioctl_t pipe_ioctl;
149static fo_poll_t pipe_poll;
150static fo_kqfilter_t pipe_kqfilter;
151static fo_stat_t pipe_stat;
152static fo_close_t pipe_close;
153static fo_chmod_t pipe_chmod;
154static fo_chown_t pipe_chown;
155
156struct fileops pipeops = {
157 .fo_read = pipe_read,
158 .fo_write = pipe_write,
159 .fo_truncate = pipe_truncate,
160 .fo_ioctl = pipe_ioctl,
161 .fo_poll = pipe_poll,
162 .fo_kqfilter = pipe_kqfilter,
163 .fo_stat = pipe_stat,
164 .fo_close = pipe_close,
165 .fo_chmod = pipe_chmod,
166 .fo_chown = pipe_chown,
167 .fo_sendfile = invfo_sendfile,
167 .fo_flags = DFLAG_PASSABLE
168};
169
170static void filt_pipedetach(struct knote *kn);
171static void filt_pipedetach_notsup(struct knote *kn);
172static int filt_pipenotsup(struct knote *kn, long hint);
173static int filt_piperead(struct knote *kn, long hint);
174static int filt_pipewrite(struct knote *kn, long hint);
175
176static struct filterops pipe_nfiltops = {
177 .f_isfd = 1,
178 .f_detach = filt_pipedetach_notsup,
179 .f_event = filt_pipenotsup
180};
181static struct filterops pipe_rfiltops = {
182 .f_isfd = 1,
183 .f_detach = filt_pipedetach,
184 .f_event = filt_piperead
185};
186static struct filterops pipe_wfiltops = {
187 .f_isfd = 1,
188 .f_detach = filt_pipedetach,
189 .f_event = filt_pipewrite
190};
191
192/*
193 * Default pipe buffer size(s), this can be kind-of large now because pipe
194 * space is pageable. The pipe code will try to maintain locality of
195 * reference for performance reasons, so small amounts of outstanding I/O
196 * will not wipe the cache.
197 */
198#define MINPIPESIZE (PIPE_SIZE/3)
199#define MAXPIPESIZE (2*PIPE_SIZE/3)
200
201static long amountpipekva;
202static int pipefragretry;
203static int pipeallocfail;
204static int piperesizefail;
205static int piperesizeallowed = 1;
206
207SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN,
208 &maxpipekva, 0, "Pipe KVA limit");
209SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
210 &amountpipekva, 0, "Pipe KVA usage");
211SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD,
212 &pipefragretry, 0, "Pipe allocation retries due to fragmentation");
213SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD,
214 &pipeallocfail, 0, "Pipe allocation failures");
215SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD,
216 &piperesizefail, 0, "Pipe resize failures");
217SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW,
218 &piperesizeallowed, 0, "Pipe resizing allowed");
219
220static void pipeinit(void *dummy __unused);
221static void pipeclose(struct pipe *cpipe);
222static void pipe_free_kmem(struct pipe *cpipe);
223static int pipe_create(struct pipe *pipe, int backing);
224static int pipe_paircreate(struct thread *td, struct pipepair **p_pp);
225static __inline int pipelock(struct pipe *cpipe, int catch);
226static __inline void pipeunlock(struct pipe *cpipe);
227#ifndef PIPE_NODIRECT
228static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
229static void pipe_destroy_write_buffer(struct pipe *wpipe);
230static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
231static void pipe_clone_write_buffer(struct pipe *wpipe);
232#endif
233static int pipespace(struct pipe *cpipe, int size);
234static int pipespace_new(struct pipe *cpipe, int size);
235
236static int pipe_zone_ctor(void *mem, int size, void *arg, int flags);
237static int pipe_zone_init(void *mem, int size, int flags);
238static void pipe_zone_fini(void *mem, int size);
239
240static uma_zone_t pipe_zone;
241static struct unrhdr *pipeino_unr;
242static dev_t pipedev_ino;
243
244SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
245
246static void
247pipeinit(void *dummy __unused)
248{
249
250 pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair),
251 pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini,
252 UMA_ALIGN_PTR, 0);
253 KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
254 pipeino_unr = new_unrhdr(1, INT32_MAX, NULL);
255 KASSERT(pipeino_unr != NULL, ("pipe fake inodes not initialized"));
256 pipedev_ino = devfs_alloc_cdp_inode();
257 KASSERT(pipedev_ino > 0, ("pipe dev inode not initialized"));
258}
259
260static int
261pipe_zone_ctor(void *mem, int size, void *arg, int flags)
262{
263 struct pipepair *pp;
264 struct pipe *rpipe, *wpipe;
265
266 KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
267
268 pp = (struct pipepair *)mem;
269
270 /*
271 * We zero both pipe endpoints to make sure all the kmem pointers
272 * are NULL, flag fields are zero'd, etc. We timestamp both
273 * endpoints with the same time.
274 */
275 rpipe = &pp->pp_rpipe;
276 bzero(rpipe, sizeof(*rpipe));
277 vfs_timestamp(&rpipe->pipe_ctime);
278 rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
279
280 wpipe = &pp->pp_wpipe;
281 bzero(wpipe, sizeof(*wpipe));
282 wpipe->pipe_ctime = rpipe->pipe_ctime;
283 wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
284
285 rpipe->pipe_peer = wpipe;
286 rpipe->pipe_pair = pp;
287 wpipe->pipe_peer = rpipe;
288 wpipe->pipe_pair = pp;
289
290 /*
291 * Mark both endpoints as present; they will later get free'd
292 * one at a time. When both are free'd, then the whole pair
293 * is released.
294 */
295 rpipe->pipe_present = PIPE_ACTIVE;
296 wpipe->pipe_present = PIPE_ACTIVE;
297
298 /*
299 * Eventually, the MAC Framework may initialize the label
300 * in ctor or init, but for now we do it elswhere to avoid
301 * blocking in ctor or init.
302 */
303 pp->pp_label = NULL;
304
305 return (0);
306}
307
308static int
309pipe_zone_init(void *mem, int size, int flags)
310{
311 struct pipepair *pp;
312
313 KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
314
315 pp = (struct pipepair *)mem;
316
317 mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE);
318 return (0);
319}
320
321static void
322pipe_zone_fini(void *mem, int size)
323{
324 struct pipepair *pp;
325
326 KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
327
328 pp = (struct pipepair *)mem;
329
330 mtx_destroy(&pp->pp_mtx);
331}
332
333static int
334pipe_paircreate(struct thread *td, struct pipepair **p_pp)
335{
336 struct pipepair *pp;
337 struct pipe *rpipe, *wpipe;
338 int error;
339
340 *p_pp = pp = uma_zalloc(pipe_zone, M_WAITOK);
341#ifdef MAC
342 /*
343 * The MAC label is shared between the connected endpoints. As a
344 * result mac_pipe_init() and mac_pipe_create() are called once
345 * for the pair, and not on the endpoints.
346 */
347 mac_pipe_init(pp);
348 mac_pipe_create(td->td_ucred, pp);
349#endif
350 rpipe = &pp->pp_rpipe;
351 wpipe = &pp->pp_wpipe;
352
353 knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe));
354 knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe));
355
356 /* Only the forward direction pipe is backed by default */
357 if ((error = pipe_create(rpipe, 1)) != 0 ||
358 (error = pipe_create(wpipe, 0)) != 0) {
359 pipeclose(rpipe);
360 pipeclose(wpipe);
361 return (error);
362 }
363
364 rpipe->pipe_state |= PIPE_DIRECTOK;
365 wpipe->pipe_state |= PIPE_DIRECTOK;
366 return (0);
367}
368
369int
370pipe_named_ctor(struct pipe **ppipe, struct thread *td)
371{
372 struct pipepair *pp;
373 int error;
374
375 error = pipe_paircreate(td, &pp);
376 if (error != 0)
377 return (error);
378 pp->pp_rpipe.pipe_state |= PIPE_NAMED;
379 *ppipe = &pp->pp_rpipe;
380 return (0);
381}
382
383void
384pipe_dtor(struct pipe *dpipe)
385{
386 ino_t ino;
387
388 ino = dpipe->pipe_ino;
389 funsetown(&dpipe->pipe_sigio);
390 pipeclose(dpipe);
391 if (dpipe->pipe_state & PIPE_NAMED) {
392 dpipe = dpipe->pipe_peer;
393 funsetown(&dpipe->pipe_sigio);
394 pipeclose(dpipe);
395 }
396 if (ino != 0 && ino != (ino_t)-1)
397 free_unr(pipeino_unr, ino);
398}
399
400/*
401 * The pipe system call for the DTYPE_PIPE type of pipes. If we fail, let
402 * the zone pick up the pieces via pipeclose().
403 */
404int
405kern_pipe(struct thread *td, int fildes[2])
406{
407
408 return (kern_pipe2(td, fildes, 0));
409}
410
411int
412kern_pipe2(struct thread *td, int fildes[2], int flags)
413{
414 struct filedesc *fdp;
415 struct file *rf, *wf;
416 struct pipe *rpipe, *wpipe;
417 struct pipepair *pp;
418 int fd, fflags, error;
419
420 fdp = td->td_proc->p_fd;
421 error = pipe_paircreate(td, &pp);
422 if (error != 0)
423 return (error);
424 rpipe = &pp->pp_rpipe;
425 wpipe = &pp->pp_wpipe;
426 error = falloc(td, &rf, &fd, flags);
427 if (error) {
428 pipeclose(rpipe);
429 pipeclose(wpipe);
430 return (error);
431 }
432 /* An extra reference on `rf' has been held for us by falloc(). */
433 fildes[0] = fd;
434
435 fflags = FREAD | FWRITE;
436 if ((flags & O_NONBLOCK) != 0)
437 fflags |= FNONBLOCK;
438
439 /*
440 * Warning: once we've gotten past allocation of the fd for the
441 * read-side, we can only drop the read side via fdrop() in order
442 * to avoid races against processes which manage to dup() the read
443 * side while we are blocked trying to allocate the write side.
444 */
445 finit(rf, fflags, DTYPE_PIPE, rpipe, &pipeops);
446 error = falloc(td, &wf, &fd, flags);
447 if (error) {
448 fdclose(fdp, rf, fildes[0], td);
449 fdrop(rf, td);
450 /* rpipe has been closed by fdrop(). */
451 pipeclose(wpipe);
452 return (error);
453 }
454 /* An extra reference on `wf' has been held for us by falloc(). */
455 finit(wf, fflags, DTYPE_PIPE, wpipe, &pipeops);
456 fdrop(wf, td);
457 fildes[1] = fd;
458 fdrop(rf, td);
459
460 return (0);
461}
462
463/* ARGSUSED */
464int
465sys_pipe(struct thread *td, struct pipe_args *uap)
466{
467 int error;
468 int fildes[2];
469
470 error = kern_pipe(td, fildes);
471 if (error)
472 return (error);
473
474 td->td_retval[0] = fildes[0];
475 td->td_retval[1] = fildes[1];
476
477 return (0);
478}
479
480int
481sys_pipe2(struct thread *td, struct pipe2_args *uap)
482{
483 int error, fildes[2];
484
485 if (uap->flags & ~(O_CLOEXEC | O_NONBLOCK))
486 return (EINVAL);
487 error = kern_pipe2(td, fildes, uap->flags);
488 if (error)
489 return (error);
490 error = copyout(fildes, uap->fildes, 2 * sizeof(int));
491 if (error) {
492 (void)kern_close(td, fildes[0]);
493 (void)kern_close(td, fildes[1]);
494 }
495 return (error);
496}
497
498/*
499 * Allocate kva for pipe circular buffer, the space is pageable
500 * This routine will 'realloc' the size of a pipe safely, if it fails
501 * it will retain the old buffer.
502 * If it fails it will return ENOMEM.
503 */
504static int
505pipespace_new(cpipe, size)
506 struct pipe *cpipe;
507 int size;
508{
509 caddr_t buffer;
510 int error, cnt, firstseg;
511 static int curfail = 0;
512 static struct timeval lastfail;
513
514 KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
515 KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW),
516 ("pipespace: resize of direct writes not allowed"));
517retry:
518 cnt = cpipe->pipe_buffer.cnt;
519 if (cnt > size)
520 size = cnt;
521
522 size = round_page(size);
523 buffer = (caddr_t) vm_map_min(pipe_map);
524
525 error = vm_map_find(pipe_map, NULL, 0,
526 (vm_offset_t *) &buffer, size, 1,
527 VM_PROT_ALL, VM_PROT_ALL, 0);
528 if (error != KERN_SUCCESS) {
529 if ((cpipe->pipe_buffer.buffer == NULL) &&
530 (size > SMALL_PIPE_SIZE)) {
531 size = SMALL_PIPE_SIZE;
532 pipefragretry++;
533 goto retry;
534 }
535 if (cpipe->pipe_buffer.buffer == NULL) {
536 pipeallocfail++;
537 if (ppsratecheck(&lastfail, &curfail, 1))
538 printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
539 } else {
540 piperesizefail++;
541 }
542 return (ENOMEM);
543 }
544
545 /* copy data, then free old resources if we're resizing */
546 if (cnt > 0) {
547 if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) {
548 firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out;
549 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
550 buffer, firstseg);
551 if ((cnt - firstseg) > 0)
552 bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg],
553 cpipe->pipe_buffer.in);
554 } else {
555 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
556 buffer, cnt);
557 }
558 }
559 pipe_free_kmem(cpipe);
560 cpipe->pipe_buffer.buffer = buffer;
561 cpipe->pipe_buffer.size = size;
562 cpipe->pipe_buffer.in = cnt;
563 cpipe->pipe_buffer.out = 0;
564 cpipe->pipe_buffer.cnt = cnt;
565 atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size);
566 return (0);
567}
568
569/*
570 * Wrapper for pipespace_new() that performs locking assertions.
571 */
572static int
573pipespace(cpipe, size)
574 struct pipe *cpipe;
575 int size;
576{
577
578 KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
579 ("Unlocked pipe passed to pipespace"));
580 return (pipespace_new(cpipe, size));
581}
582
583/*
584 * lock a pipe for I/O, blocking other access
585 */
586static __inline int
587pipelock(cpipe, catch)
588 struct pipe *cpipe;
589 int catch;
590{
591 int error;
592
593 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
594 while (cpipe->pipe_state & PIPE_LOCKFL) {
595 cpipe->pipe_state |= PIPE_LWANT;
596 error = msleep(cpipe, PIPE_MTX(cpipe),
597 catch ? (PRIBIO | PCATCH) : PRIBIO,
598 "pipelk", 0);
599 if (error != 0)
600 return (error);
601 }
602 cpipe->pipe_state |= PIPE_LOCKFL;
603 return (0);
604}
605
606/*
607 * unlock a pipe I/O lock
608 */
609static __inline void
610pipeunlock(cpipe)
611 struct pipe *cpipe;
612{
613
614 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
615 KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
616 ("Unlocked pipe passed to pipeunlock"));
617 cpipe->pipe_state &= ~PIPE_LOCKFL;
618 if (cpipe->pipe_state & PIPE_LWANT) {
619 cpipe->pipe_state &= ~PIPE_LWANT;
620 wakeup(cpipe);
621 }
622}
623
624void
625pipeselwakeup(cpipe)
626 struct pipe *cpipe;
627{
628
629 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
630 if (cpipe->pipe_state & PIPE_SEL) {
631 selwakeuppri(&cpipe->pipe_sel, PSOCK);
632 if (!SEL_WAITING(&cpipe->pipe_sel))
633 cpipe->pipe_state &= ~PIPE_SEL;
634 }
635 if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
636 pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
637 KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0);
638}
639
640/*
641 * Initialize and allocate VM and memory for pipe. The structure
642 * will start out zero'd from the ctor, so we just manage the kmem.
643 */
644static int
645pipe_create(pipe, backing)
646 struct pipe *pipe;
647 int backing;
648{
649 int error;
650
651 if (backing) {
652 if (amountpipekva > maxpipekva / 2)
653 error = pipespace_new(pipe, SMALL_PIPE_SIZE);
654 else
655 error = pipespace_new(pipe, PIPE_SIZE);
656 } else {
657 /* If we're not backing this pipe, no need to do anything. */
658 error = 0;
659 }
660 pipe->pipe_ino = -1;
661 return (error);
662}
663
664/* ARGSUSED */
665static int
666pipe_read(fp, uio, active_cred, flags, td)
667 struct file *fp;
668 struct uio *uio;
669 struct ucred *active_cred;
670 struct thread *td;
671 int flags;
672{
673 struct pipe *rpipe;
674 int error;
675 int nread = 0;
676 int size;
677
678 rpipe = fp->f_data;
679 PIPE_LOCK(rpipe);
680 ++rpipe->pipe_busy;
681 error = pipelock(rpipe, 1);
682 if (error)
683 goto unlocked_error;
684
685#ifdef MAC
686 error = mac_pipe_check_read(active_cred, rpipe->pipe_pair);
687 if (error)
688 goto locked_error;
689#endif
690 if (amountpipekva > (3 * maxpipekva) / 4) {
691 if (!(rpipe->pipe_state & PIPE_DIRECTW) &&
692 (rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
693 (rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
694 (piperesizeallowed == 1)) {
695 PIPE_UNLOCK(rpipe);
696 pipespace(rpipe, SMALL_PIPE_SIZE);
697 PIPE_LOCK(rpipe);
698 }
699 }
700
701 while (uio->uio_resid) {
702 /*
703 * normal pipe buffer receive
704 */
705 if (rpipe->pipe_buffer.cnt > 0) {
706 size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
707 if (size > rpipe->pipe_buffer.cnt)
708 size = rpipe->pipe_buffer.cnt;
709 if (size > uio->uio_resid)
710 size = uio->uio_resid;
711
712 PIPE_UNLOCK(rpipe);
713 error = uiomove(
714 &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
715 size, uio);
716 PIPE_LOCK(rpipe);
717 if (error)
718 break;
719
720 rpipe->pipe_buffer.out += size;
721 if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
722 rpipe->pipe_buffer.out = 0;
723
724 rpipe->pipe_buffer.cnt -= size;
725
726 /*
727 * If there is no more to read in the pipe, reset
728 * its pointers to the beginning. This improves
729 * cache hit stats.
730 */
731 if (rpipe->pipe_buffer.cnt == 0) {
732 rpipe->pipe_buffer.in = 0;
733 rpipe->pipe_buffer.out = 0;
734 }
735 nread += size;
736#ifndef PIPE_NODIRECT
737 /*
738 * Direct copy, bypassing a kernel buffer.
739 */
740 } else if ((size = rpipe->pipe_map.cnt) &&
741 (rpipe->pipe_state & PIPE_DIRECTW)) {
742 if (size > uio->uio_resid)
743 size = (u_int) uio->uio_resid;
744
745 PIPE_UNLOCK(rpipe);
746 error = uiomove_fromphys(rpipe->pipe_map.ms,
747 rpipe->pipe_map.pos, size, uio);
748 PIPE_LOCK(rpipe);
749 if (error)
750 break;
751 nread += size;
752 rpipe->pipe_map.pos += size;
753 rpipe->pipe_map.cnt -= size;
754 if (rpipe->pipe_map.cnt == 0) {
755 rpipe->pipe_state &= ~(PIPE_DIRECTW|PIPE_WANTW);
756 wakeup(rpipe);
757 }
758#endif
759 } else {
760 /*
761 * detect EOF condition
762 * read returns 0 on EOF, no need to set error
763 */
764 if (rpipe->pipe_state & PIPE_EOF)
765 break;
766
767 /*
768 * If the "write-side" has been blocked, wake it up now.
769 */
770 if (rpipe->pipe_state & PIPE_WANTW) {
771 rpipe->pipe_state &= ~PIPE_WANTW;
772 wakeup(rpipe);
773 }
774
775 /*
776 * Break if some data was read.
777 */
778 if (nread > 0)
779 break;
780
781 /*
782 * Unlock the pipe buffer for our remaining processing.
783 * We will either break out with an error or we will
784 * sleep and relock to loop.
785 */
786 pipeunlock(rpipe);
787
788 /*
789 * Handle non-blocking mode operation or
790 * wait for more data.
791 */
792 if (fp->f_flag & FNONBLOCK) {
793 error = EAGAIN;
794 } else {
795 rpipe->pipe_state |= PIPE_WANTR;
796 if ((error = msleep(rpipe, PIPE_MTX(rpipe),
797 PRIBIO | PCATCH,
798 "piperd", 0)) == 0)
799 error = pipelock(rpipe, 1);
800 }
801 if (error)
802 goto unlocked_error;
803 }
804 }
805#ifdef MAC
806locked_error:
807#endif
808 pipeunlock(rpipe);
809
810 /* XXX: should probably do this before getting any locks. */
811 if (error == 0)
812 vfs_timestamp(&rpipe->pipe_atime);
813unlocked_error:
814 --rpipe->pipe_busy;
815
816 /*
817 * PIPE_WANT processing only makes sense if pipe_busy is 0.
818 */
819 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
820 rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
821 wakeup(rpipe);
822 } else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
823 /*
824 * Handle write blocking hysteresis.
825 */
826 if (rpipe->pipe_state & PIPE_WANTW) {
827 rpipe->pipe_state &= ~PIPE_WANTW;
828 wakeup(rpipe);
829 }
830 }
831
832 if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
833 pipeselwakeup(rpipe);
834
835 PIPE_UNLOCK(rpipe);
836 return (error);
837}
838
839#ifndef PIPE_NODIRECT
840/*
841 * Map the sending processes' buffer into kernel space and wire it.
842 * This is similar to a physical write operation.
843 */
844static int
845pipe_build_write_buffer(wpipe, uio)
846 struct pipe *wpipe;
847 struct uio *uio;
848{
849 u_int size;
850 int i;
851
852 PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
853 KASSERT(wpipe->pipe_state & PIPE_DIRECTW,
854 ("Clone attempt on non-direct write pipe!"));
855
856 if (uio->uio_iov->iov_len > wpipe->pipe_buffer.size)
857 size = wpipe->pipe_buffer.size;
858 else
859 size = uio->uio_iov->iov_len;
860
861 if ((i = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
862 (vm_offset_t)uio->uio_iov->iov_base, size, VM_PROT_READ,
863 wpipe->pipe_map.ms, PIPENPAGES)) < 0)
864 return (EFAULT);
865
866/*
867 * set up the control block
868 */
869 wpipe->pipe_map.npages = i;
870 wpipe->pipe_map.pos =
871 ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
872 wpipe->pipe_map.cnt = size;
873
874/*
875 * and update the uio data
876 */
877
878 uio->uio_iov->iov_len -= size;
879 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
880 if (uio->uio_iov->iov_len == 0)
881 uio->uio_iov++;
882 uio->uio_resid -= size;
883 uio->uio_offset += size;
884 return (0);
885}
886
887/*
888 * unmap and unwire the process buffer
889 */
890static void
891pipe_destroy_write_buffer(wpipe)
892 struct pipe *wpipe;
893{
894
895 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
896 vm_page_unhold_pages(wpipe->pipe_map.ms, wpipe->pipe_map.npages);
897 wpipe->pipe_map.npages = 0;
898}
899
900/*
901 * In the case of a signal, the writing process might go away. This
902 * code copies the data into the circular buffer so that the source
903 * pages can be freed without loss of data.
904 */
905static void
906pipe_clone_write_buffer(wpipe)
907 struct pipe *wpipe;
908{
909 struct uio uio;
910 struct iovec iov;
911 int size;
912 int pos;
913
914 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
915 size = wpipe->pipe_map.cnt;
916 pos = wpipe->pipe_map.pos;
917
918 wpipe->pipe_buffer.in = size;
919 wpipe->pipe_buffer.out = 0;
920 wpipe->pipe_buffer.cnt = size;
921 wpipe->pipe_state &= ~PIPE_DIRECTW;
922
923 PIPE_UNLOCK(wpipe);
924 iov.iov_base = wpipe->pipe_buffer.buffer;
925 iov.iov_len = size;
926 uio.uio_iov = &iov;
927 uio.uio_iovcnt = 1;
928 uio.uio_offset = 0;
929 uio.uio_resid = size;
930 uio.uio_segflg = UIO_SYSSPACE;
931 uio.uio_rw = UIO_READ;
932 uio.uio_td = curthread;
933 uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio);
934 PIPE_LOCK(wpipe);
935 pipe_destroy_write_buffer(wpipe);
936}
937
938/*
939 * This implements the pipe buffer write mechanism. Note that only
940 * a direct write OR a normal pipe write can be pending at any given time.
941 * If there are any characters in the pipe buffer, the direct write will
942 * be deferred until the receiving process grabs all of the bytes from
943 * the pipe buffer. Then the direct mapping write is set-up.
944 */
945static int
946pipe_direct_write(wpipe, uio)
947 struct pipe *wpipe;
948 struct uio *uio;
949{
950 int error;
951
952retry:
953 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
954 error = pipelock(wpipe, 1);
955 if (wpipe->pipe_state & PIPE_EOF)
956 error = EPIPE;
957 if (error) {
958 pipeunlock(wpipe);
959 goto error1;
960 }
961 while (wpipe->pipe_state & PIPE_DIRECTW) {
962 if (wpipe->pipe_state & PIPE_WANTR) {
963 wpipe->pipe_state &= ~PIPE_WANTR;
964 wakeup(wpipe);
965 }
966 pipeselwakeup(wpipe);
967 wpipe->pipe_state |= PIPE_WANTW;
968 pipeunlock(wpipe);
969 error = msleep(wpipe, PIPE_MTX(wpipe),
970 PRIBIO | PCATCH, "pipdww", 0);
971 if (error)
972 goto error1;
973 else
974 goto retry;
975 }
976 wpipe->pipe_map.cnt = 0; /* transfer not ready yet */
977 if (wpipe->pipe_buffer.cnt > 0) {
978 if (wpipe->pipe_state & PIPE_WANTR) {
979 wpipe->pipe_state &= ~PIPE_WANTR;
980 wakeup(wpipe);
981 }
982 pipeselwakeup(wpipe);
983 wpipe->pipe_state |= PIPE_WANTW;
984 pipeunlock(wpipe);
985 error = msleep(wpipe, PIPE_MTX(wpipe),
986 PRIBIO | PCATCH, "pipdwc", 0);
987 if (error)
988 goto error1;
989 else
990 goto retry;
991 }
992
993 wpipe->pipe_state |= PIPE_DIRECTW;
994
995 PIPE_UNLOCK(wpipe);
996 error = pipe_build_write_buffer(wpipe, uio);
997 PIPE_LOCK(wpipe);
998 if (error) {
999 wpipe->pipe_state &= ~PIPE_DIRECTW;
1000 pipeunlock(wpipe);
1001 goto error1;
1002 }
1003
1004 error = 0;
1005 while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
1006 if (wpipe->pipe_state & PIPE_EOF) {
1007 pipe_destroy_write_buffer(wpipe);
1008 pipeselwakeup(wpipe);
1009 pipeunlock(wpipe);
1010 error = EPIPE;
1011 goto error1;
1012 }
1013 if (wpipe->pipe_state & PIPE_WANTR) {
1014 wpipe->pipe_state &= ~PIPE_WANTR;
1015 wakeup(wpipe);
1016 }
1017 pipeselwakeup(wpipe);
1018 wpipe->pipe_state |= PIPE_WANTW;
1019 pipeunlock(wpipe);
1020 error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
1021 "pipdwt", 0);
1022 pipelock(wpipe, 0);
1023 }
1024
1025 if (wpipe->pipe_state & PIPE_EOF)
1026 error = EPIPE;
1027 if (wpipe->pipe_state & PIPE_DIRECTW) {
1028 /*
1029 * this bit of trickery substitutes a kernel buffer for
1030 * the process that might be going away.
1031 */
1032 pipe_clone_write_buffer(wpipe);
1033 } else {
1034 pipe_destroy_write_buffer(wpipe);
1035 }
1036 pipeunlock(wpipe);
1037 return (error);
1038
1039error1:
1040 wakeup(wpipe);
1041 return (error);
1042}
1043#endif
1044
1045static int
1046pipe_write(fp, uio, active_cred, flags, td)
1047 struct file *fp;
1048 struct uio *uio;
1049 struct ucred *active_cred;
1050 struct thread *td;
1051 int flags;
1052{
1053 int error = 0;
1054 int desiredsize;
1055 ssize_t orig_resid;
1056 struct pipe *wpipe, *rpipe;
1057
1058 rpipe = fp->f_data;
1059 wpipe = PIPE_PEER(rpipe);
1060 PIPE_LOCK(rpipe);
1061 error = pipelock(wpipe, 1);
1062 if (error) {
1063 PIPE_UNLOCK(rpipe);
1064 return (error);
1065 }
1066 /*
1067 * detect loss of pipe read side, issue SIGPIPE if lost.
1068 */
1069 if (wpipe->pipe_present != PIPE_ACTIVE ||
1070 (wpipe->pipe_state & PIPE_EOF)) {
1071 pipeunlock(wpipe);
1072 PIPE_UNLOCK(rpipe);
1073 return (EPIPE);
1074 }
1075#ifdef MAC
1076 error = mac_pipe_check_write(active_cred, wpipe->pipe_pair);
1077 if (error) {
1078 pipeunlock(wpipe);
1079 PIPE_UNLOCK(rpipe);
1080 return (error);
1081 }
1082#endif
1083 ++wpipe->pipe_busy;
1084
1085 /* Choose a larger size if it's advantageous */
1086 desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size);
1087 while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) {
1088 if (piperesizeallowed != 1)
1089 break;
1090 if (amountpipekva > maxpipekva / 2)
1091 break;
1092 if (desiredsize == BIG_PIPE_SIZE)
1093 break;
1094 desiredsize = desiredsize * 2;
1095 }
1096
1097 /* Choose a smaller size if we're in a OOM situation */
1098 if ((amountpipekva > (3 * maxpipekva) / 4) &&
1099 (wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
1100 (wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
1101 (piperesizeallowed == 1))
1102 desiredsize = SMALL_PIPE_SIZE;
1103
1104 /* Resize if the above determined that a new size was necessary */
1105 if ((desiredsize != wpipe->pipe_buffer.size) &&
1106 ((wpipe->pipe_state & PIPE_DIRECTW) == 0)) {
1107 PIPE_UNLOCK(wpipe);
1108 pipespace(wpipe, desiredsize);
1109 PIPE_LOCK(wpipe);
1110 }
1111 if (wpipe->pipe_buffer.size == 0) {
1112 /*
1113 * This can only happen for reverse direction use of pipes
1114 * in a complete OOM situation.
1115 */
1116 error = ENOMEM;
1117 --wpipe->pipe_busy;
1118 pipeunlock(wpipe);
1119 PIPE_UNLOCK(wpipe);
1120 return (error);
1121 }
1122
1123 pipeunlock(wpipe);
1124
1125 orig_resid = uio->uio_resid;
1126
1127 while (uio->uio_resid) {
1128 int space;
1129
1130 pipelock(wpipe, 0);
1131 if (wpipe->pipe_state & PIPE_EOF) {
1132 pipeunlock(wpipe);
1133 error = EPIPE;
1134 break;
1135 }
1136#ifndef PIPE_NODIRECT
1137 /*
1138 * If the transfer is large, we can gain performance if
1139 * we do process-to-process copies directly.
1140 * If the write is non-blocking, we don't use the
1141 * direct write mechanism.
1142 *
1143 * The direct write mechanism will detect the reader going
1144 * away on us.
1145 */
1146 if (uio->uio_segflg == UIO_USERSPACE &&
1147 uio->uio_iov->iov_len >= PIPE_MINDIRECT &&
1148 wpipe->pipe_buffer.size >= PIPE_MINDIRECT &&
1149 (fp->f_flag & FNONBLOCK) == 0) {
1150 pipeunlock(wpipe);
1151 error = pipe_direct_write(wpipe, uio);
1152 if (error)
1153 break;
1154 continue;
1155 }
1156#endif
1157
1158 /*
1159 * Pipe buffered writes cannot be coincidental with
1160 * direct writes. We wait until the currently executing
1161 * direct write is completed before we start filling the
1162 * pipe buffer. We break out if a signal occurs or the
1163 * reader goes away.
1164 */
1165 if (wpipe->pipe_state & PIPE_DIRECTW) {
1166 if (wpipe->pipe_state & PIPE_WANTR) {
1167 wpipe->pipe_state &= ~PIPE_WANTR;
1168 wakeup(wpipe);
1169 }
1170 pipeselwakeup(wpipe);
1171 wpipe->pipe_state |= PIPE_WANTW;
1172 pipeunlock(wpipe);
1173 error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1174 "pipbww", 0);
1175 if (error)
1176 break;
1177 else
1178 continue;
1179 }
1180
1181 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1182
1183 /* Writes of size <= PIPE_BUF must be atomic. */
1184 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1185 space = 0;
1186
1187 if (space > 0) {
1188 int size; /* Transfer size */
1189 int segsize; /* first segment to transfer */
1190
1191 /*
1192 * Transfer size is minimum of uio transfer
1193 * and free space in pipe buffer.
1194 */
1195 if (space > uio->uio_resid)
1196 size = uio->uio_resid;
1197 else
1198 size = space;
1199 /*
1200 * First segment to transfer is minimum of
1201 * transfer size and contiguous space in
1202 * pipe buffer. If first segment to transfer
1203 * is less than the transfer size, we've got
1204 * a wraparound in the buffer.
1205 */
1206 segsize = wpipe->pipe_buffer.size -
1207 wpipe->pipe_buffer.in;
1208 if (segsize > size)
1209 segsize = size;
1210
1211 /* Transfer first segment */
1212
1213 PIPE_UNLOCK(rpipe);
1214 error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1215 segsize, uio);
1216 PIPE_LOCK(rpipe);
1217
1218 if (error == 0 && segsize < size) {
1219 KASSERT(wpipe->pipe_buffer.in + segsize ==
1220 wpipe->pipe_buffer.size,
1221 ("Pipe buffer wraparound disappeared"));
1222 /*
1223 * Transfer remaining part now, to
1224 * support atomic writes. Wraparound
1225 * happened.
1226 */
1227
1228 PIPE_UNLOCK(rpipe);
1229 error = uiomove(
1230 &wpipe->pipe_buffer.buffer[0],
1231 size - segsize, uio);
1232 PIPE_LOCK(rpipe);
1233 }
1234 if (error == 0) {
1235 wpipe->pipe_buffer.in += size;
1236 if (wpipe->pipe_buffer.in >=
1237 wpipe->pipe_buffer.size) {
1238 KASSERT(wpipe->pipe_buffer.in ==
1239 size - segsize +
1240 wpipe->pipe_buffer.size,
1241 ("Expected wraparound bad"));
1242 wpipe->pipe_buffer.in = size - segsize;
1243 }
1244
1245 wpipe->pipe_buffer.cnt += size;
1246 KASSERT(wpipe->pipe_buffer.cnt <=
1247 wpipe->pipe_buffer.size,
1248 ("Pipe buffer overflow"));
1249 }
1250 pipeunlock(wpipe);
1251 if (error != 0)
1252 break;
1253 } else {
1254 /*
1255 * If the "read-side" has been blocked, wake it up now.
1256 */
1257 if (wpipe->pipe_state & PIPE_WANTR) {
1258 wpipe->pipe_state &= ~PIPE_WANTR;
1259 wakeup(wpipe);
1260 }
1261
1262 /*
1263 * don't block on non-blocking I/O
1264 */
1265 if (fp->f_flag & FNONBLOCK) {
1266 error = EAGAIN;
1267 pipeunlock(wpipe);
1268 break;
1269 }
1270
1271 /*
1272 * We have no more space and have something to offer,
1273 * wake up select/poll.
1274 */
1275 pipeselwakeup(wpipe);
1276
1277 wpipe->pipe_state |= PIPE_WANTW;
1278 pipeunlock(wpipe);
1279 error = msleep(wpipe, PIPE_MTX(rpipe),
1280 PRIBIO | PCATCH, "pipewr", 0);
1281 if (error != 0)
1282 break;
1283 }
1284 }
1285
1286 pipelock(wpipe, 0);
1287 --wpipe->pipe_busy;
1288
1289 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1290 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1291 wakeup(wpipe);
1292 } else if (wpipe->pipe_buffer.cnt > 0) {
1293 /*
1294 * If we have put any characters in the buffer, we wake up
1295 * the reader.
1296 */
1297 if (wpipe->pipe_state & PIPE_WANTR) {
1298 wpipe->pipe_state &= ~PIPE_WANTR;
1299 wakeup(wpipe);
1300 }
1301 }
1302
1303 /*
1304 * Don't return EPIPE if I/O was successful
1305 */
1306 if ((wpipe->pipe_buffer.cnt == 0) &&
1307 (uio->uio_resid == 0) &&
1308 (error == EPIPE)) {
1309 error = 0;
1310 }
1311
1312 if (error == 0)
1313 vfs_timestamp(&wpipe->pipe_mtime);
1314
1315 /*
1316 * We have something to offer,
1317 * wake up select/poll.
1318 */
1319 if (wpipe->pipe_buffer.cnt)
1320 pipeselwakeup(wpipe);
1321
1322 pipeunlock(wpipe);
1323 PIPE_UNLOCK(rpipe);
1324 return (error);
1325}
1326
1327/* ARGSUSED */
1328static int
1329pipe_truncate(fp, length, active_cred, td)
1330 struct file *fp;
1331 off_t length;
1332 struct ucred *active_cred;
1333 struct thread *td;
1334{
1335
1336 /* For named pipes call the vnode operation. */
1337 if (fp->f_vnode != NULL)
1338 return (vnops.fo_truncate(fp, length, active_cred, td));
1339 return (EINVAL);
1340}
1341
1342/*
1343 * we implement a very minimal set of ioctls for compatibility with sockets.
1344 */
1345static int
1346pipe_ioctl(fp, cmd, data, active_cred, td)
1347 struct file *fp;
1348 u_long cmd;
1349 void *data;
1350 struct ucred *active_cred;
1351 struct thread *td;
1352{
1353 struct pipe *mpipe = fp->f_data;
1354 int error;
1355
1356 PIPE_LOCK(mpipe);
1357
1358#ifdef MAC
1359 error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
1360 if (error) {
1361 PIPE_UNLOCK(mpipe);
1362 return (error);
1363 }
1364#endif
1365
1366 error = 0;
1367 switch (cmd) {
1368
1369 case FIONBIO:
1370 break;
1371
1372 case FIOASYNC:
1373 if (*(int *)data) {
1374 mpipe->pipe_state |= PIPE_ASYNC;
1375 } else {
1376 mpipe->pipe_state &= ~PIPE_ASYNC;
1377 }
1378 break;
1379
1380 case FIONREAD:
1381 if (!(fp->f_flag & FREAD)) {
1382 *(int *)data = 0;
1383 PIPE_UNLOCK(mpipe);
1384 return (0);
1385 }
1386 if (mpipe->pipe_state & PIPE_DIRECTW)
1387 *(int *)data = mpipe->pipe_map.cnt;
1388 else
1389 *(int *)data = mpipe->pipe_buffer.cnt;
1390 break;
1391
1392 case FIOSETOWN:
1393 PIPE_UNLOCK(mpipe);
1394 error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1395 goto out_unlocked;
1396
1397 case FIOGETOWN:
1398 *(int *)data = fgetown(&mpipe->pipe_sigio);
1399 break;
1400
1401 /* This is deprecated, FIOSETOWN should be used instead. */
1402 case TIOCSPGRP:
1403 PIPE_UNLOCK(mpipe);
1404 error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1405 goto out_unlocked;
1406
1407 /* This is deprecated, FIOGETOWN should be used instead. */
1408 case TIOCGPGRP:
1409 *(int *)data = -fgetown(&mpipe->pipe_sigio);
1410 break;
1411
1412 default:
1413 error = ENOTTY;
1414 break;
1415 }
1416 PIPE_UNLOCK(mpipe);
1417out_unlocked:
1418 return (error);
1419}
1420
1421static int
1422pipe_poll(fp, events, active_cred, td)
1423 struct file *fp;
1424 int events;
1425 struct ucred *active_cred;
1426 struct thread *td;
1427{
1428 struct pipe *rpipe;
1429 struct pipe *wpipe;
1430 int levents, revents;
1431#ifdef MAC
1432 int error;
1433#endif
1434
1435 revents = 0;
1436 rpipe = fp->f_data;
1437 wpipe = PIPE_PEER(rpipe);
1438 PIPE_LOCK(rpipe);
1439#ifdef MAC
1440 error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair);
1441 if (error)
1442 goto locked_error;
1443#endif
1444 if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM))
1445 if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1446 (rpipe->pipe_buffer.cnt > 0))
1447 revents |= events & (POLLIN | POLLRDNORM);
1448
1449 if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM))
1450 if (wpipe->pipe_present != PIPE_ACTIVE ||
1451 (wpipe->pipe_state & PIPE_EOF) ||
1452 (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1453 ((wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF ||
1454 wpipe->pipe_buffer.size == 0)))
1455 revents |= events & (POLLOUT | POLLWRNORM);
1456
1457 levents = events &
1458 (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | POLLRDBAND);
1459 if (rpipe->pipe_state & PIPE_NAMED && fp->f_flag & FREAD && levents &&
1460 fp->f_seqcount == rpipe->pipe_wgen)
1461 events |= POLLINIGNEOF;
1462
1463 if ((events & POLLINIGNEOF) == 0) {
1464 if (rpipe->pipe_state & PIPE_EOF) {
1465 revents |= (events & (POLLIN | POLLRDNORM));
1466 if (wpipe->pipe_present != PIPE_ACTIVE ||
1467 (wpipe->pipe_state & PIPE_EOF))
1468 revents |= POLLHUP;
1469 }
1470 }
1471
1472 if (revents == 0) {
1473 if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM)) {
1474 selrecord(td, &rpipe->pipe_sel);
1475 if (SEL_WAITING(&rpipe->pipe_sel))
1476 rpipe->pipe_state |= PIPE_SEL;
1477 }
1478
1479 if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM)) {
1480 selrecord(td, &wpipe->pipe_sel);
1481 if (SEL_WAITING(&wpipe->pipe_sel))
1482 wpipe->pipe_state |= PIPE_SEL;
1483 }
1484 }
1485#ifdef MAC
1486locked_error:
1487#endif
1488 PIPE_UNLOCK(rpipe);
1489
1490 return (revents);
1491}
1492
1493/*
1494 * We shouldn't need locks here as we're doing a read and this should
1495 * be a natural race.
1496 */
1497static int
1498pipe_stat(fp, ub, active_cred, td)
1499 struct file *fp;
1500 struct stat *ub;
1501 struct ucred *active_cred;
1502 struct thread *td;
1503{
1504 struct pipe *pipe;
1505 int new_unr;
1506#ifdef MAC
1507 int error;
1508#endif
1509
1510 pipe = fp->f_data;
1511 PIPE_LOCK(pipe);
1512#ifdef MAC
1513 error = mac_pipe_check_stat(active_cred, pipe->pipe_pair);
1514 if (error) {
1515 PIPE_UNLOCK(pipe);
1516 return (error);
1517 }
1518#endif
1519
1520 /* For named pipes ask the underlying filesystem. */
1521 if (pipe->pipe_state & PIPE_NAMED) {
1522 PIPE_UNLOCK(pipe);
1523 return (vnops.fo_stat(fp, ub, active_cred, td));
1524 }
1525
1526 /*
1527 * Lazily allocate an inode number for the pipe. Most pipe
1528 * users do not call fstat(2) on the pipe, which means that
1529 * postponing the inode allocation until it is must be
1530 * returned to userland is useful. If alloc_unr failed,
1531 * assign st_ino zero instead of returning an error.
1532 * Special pipe_ino values:
1533 * -1 - not yet initialized;
1534 * 0 - alloc_unr failed, return 0 as st_ino forever.
1535 */
1536 if (pipe->pipe_ino == (ino_t)-1) {
1537 new_unr = alloc_unr(pipeino_unr);
1538 if (new_unr != -1)
1539 pipe->pipe_ino = new_unr;
1540 else
1541 pipe->pipe_ino = 0;
1542 }
1543 PIPE_UNLOCK(pipe);
1544
1545 bzero(ub, sizeof(*ub));
1546 ub->st_mode = S_IFIFO;
1547 ub->st_blksize = PAGE_SIZE;
1548 if (pipe->pipe_state & PIPE_DIRECTW)
1549 ub->st_size = pipe->pipe_map.cnt;
1550 else
1551 ub->st_size = pipe->pipe_buffer.cnt;
1552 ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1553 ub->st_atim = pipe->pipe_atime;
1554 ub->st_mtim = pipe->pipe_mtime;
1555 ub->st_ctim = pipe->pipe_ctime;
1556 ub->st_uid = fp->f_cred->cr_uid;
1557 ub->st_gid = fp->f_cred->cr_gid;
1558 ub->st_dev = pipedev_ino;
1559 ub->st_ino = pipe->pipe_ino;
1560 /*
1561 * Left as 0: st_nlink, st_rdev, st_flags, st_gen.
1562 */
1563 return (0);
1564}
1565
1566/* ARGSUSED */
1567static int
1568pipe_close(fp, td)
1569 struct file *fp;
1570 struct thread *td;
1571{
1572
1573 if (fp->f_vnode != NULL)
1574 return vnops.fo_close(fp, td);
1575 fp->f_ops = &badfileops;
1576 pipe_dtor(fp->f_data);
1577 fp->f_data = NULL;
1578 return (0);
1579}
1580
1581static int
1582pipe_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, struct thread *td)
1583{
1584 struct pipe *cpipe;
1585 int error;
1586
1587 cpipe = fp->f_data;
1588 if (cpipe->pipe_state & PIPE_NAMED)
1589 error = vn_chmod(fp, mode, active_cred, td);
1590 else
1591 error = invfo_chmod(fp, mode, active_cred, td);
1592 return (error);
1593}
1594
1595static int
1596pipe_chown(fp, uid, gid, active_cred, td)
1597 struct file *fp;
1598 uid_t uid;
1599 gid_t gid;
1600 struct ucred *active_cred;
1601 struct thread *td;
1602{
1603 struct pipe *cpipe;
1604 int error;
1605
1606 cpipe = fp->f_data;
1607 if (cpipe->pipe_state & PIPE_NAMED)
1608 error = vn_chown(fp, uid, gid, active_cred, td);
1609 else
1610 error = invfo_chown(fp, uid, gid, active_cred, td);
1611 return (error);
1612}
1613
1614static void
1615pipe_free_kmem(cpipe)
1616 struct pipe *cpipe;
1617{
1618
1619 KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
1620 ("pipe_free_kmem: pipe mutex locked"));
1621
1622 if (cpipe->pipe_buffer.buffer != NULL) {
1623 atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size);
1624 vm_map_remove(pipe_map,
1625 (vm_offset_t)cpipe->pipe_buffer.buffer,
1626 (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1627 cpipe->pipe_buffer.buffer = NULL;
1628 }
1629#ifndef PIPE_NODIRECT
1630 {
1631 cpipe->pipe_map.cnt = 0;
1632 cpipe->pipe_map.pos = 0;
1633 cpipe->pipe_map.npages = 0;
1634 }
1635#endif
1636}
1637
1638/*
1639 * shutdown the pipe
1640 */
1641static void
1642pipeclose(cpipe)
1643 struct pipe *cpipe;
1644{
1645 struct pipepair *pp;
1646 struct pipe *ppipe;
1647
1648 KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
1649
1650 PIPE_LOCK(cpipe);
1651 pipelock(cpipe, 0);
1652 pp = cpipe->pipe_pair;
1653
1654 pipeselwakeup(cpipe);
1655
1656 /*
1657 * If the other side is blocked, wake it up saying that
1658 * we want to close it down.
1659 */
1660 cpipe->pipe_state |= PIPE_EOF;
1661 while (cpipe->pipe_busy) {
1662 wakeup(cpipe);
1663 cpipe->pipe_state |= PIPE_WANT;
1664 pipeunlock(cpipe);
1665 msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1666 pipelock(cpipe, 0);
1667 }
1668
1669
1670 /*
1671 * Disconnect from peer, if any.
1672 */
1673 ppipe = cpipe->pipe_peer;
1674 if (ppipe->pipe_present == PIPE_ACTIVE) {
1675 pipeselwakeup(ppipe);
1676
1677 ppipe->pipe_state |= PIPE_EOF;
1678 wakeup(ppipe);
1679 KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0);
1680 }
1681
1682 /*
1683 * Mark this endpoint as free. Release kmem resources. We
1684 * don't mark this endpoint as unused until we've finished
1685 * doing that, or the pipe might disappear out from under
1686 * us.
1687 */
1688 PIPE_UNLOCK(cpipe);
1689 pipe_free_kmem(cpipe);
1690 PIPE_LOCK(cpipe);
1691 cpipe->pipe_present = PIPE_CLOSING;
1692 pipeunlock(cpipe);
1693
1694 /*
1695 * knlist_clear() may sleep dropping the PIPE_MTX. Set the
1696 * PIPE_FINALIZED, that allows other end to free the
1697 * pipe_pair, only after the knotes are completely dismantled.
1698 */
1699 knlist_clear(&cpipe->pipe_sel.si_note, 1);
1700 cpipe->pipe_present = PIPE_FINALIZED;
1701 seldrain(&cpipe->pipe_sel);
1702 knlist_destroy(&cpipe->pipe_sel.si_note);
1703
1704 /*
1705 * If both endpoints are now closed, release the memory for the
1706 * pipe pair. If not, unlock.
1707 */
1708 if (ppipe->pipe_present == PIPE_FINALIZED) {
1709 PIPE_UNLOCK(cpipe);
1710#ifdef MAC
1711 mac_pipe_destroy(pp);
1712#endif
1713 uma_zfree(pipe_zone, cpipe->pipe_pair);
1714 } else
1715 PIPE_UNLOCK(cpipe);
1716}
1717
1718/*ARGSUSED*/
1719static int
1720pipe_kqfilter(struct file *fp, struct knote *kn)
1721{
1722 struct pipe *cpipe;
1723
1724 /*
1725 * If a filter is requested that is not supported by this file
1726 * descriptor, don't return an error, but also don't ever generate an
1727 * event.
1728 */
1729 if ((kn->kn_filter == EVFILT_READ) && !(fp->f_flag & FREAD)) {
1730 kn->kn_fop = &pipe_nfiltops;
1731 return (0);
1732 }
1733 if ((kn->kn_filter == EVFILT_WRITE) && !(fp->f_flag & FWRITE)) {
1734 kn->kn_fop = &pipe_nfiltops;
1735 return (0);
1736 }
1737 cpipe = fp->f_data;
1738 PIPE_LOCK(cpipe);
1739 switch (kn->kn_filter) {
1740 case EVFILT_READ:
1741 kn->kn_fop = &pipe_rfiltops;
1742 break;
1743 case EVFILT_WRITE:
1744 kn->kn_fop = &pipe_wfiltops;
1745 if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) {
1746 /* other end of pipe has been closed */
1747 PIPE_UNLOCK(cpipe);
1748 return (EPIPE);
1749 }
1750 cpipe = PIPE_PEER(cpipe);
1751 break;
1752 default:
1753 PIPE_UNLOCK(cpipe);
1754 return (EINVAL);
1755 }
1756
1757 kn->kn_hook = cpipe;
1758 knlist_add(&cpipe->pipe_sel.si_note, kn, 1);
1759 PIPE_UNLOCK(cpipe);
1760 return (0);
1761}
1762
1763static void
1764filt_pipedetach(struct knote *kn)
1765{
1766 struct pipe *cpipe = kn->kn_hook;
1767
1768 PIPE_LOCK(cpipe);
1769 knlist_remove(&cpipe->pipe_sel.si_note, kn, 1);
1770 PIPE_UNLOCK(cpipe);
1771}
1772
1773/*ARGSUSED*/
1774static int
1775filt_piperead(struct knote *kn, long hint)
1776{
1777 struct pipe *rpipe = kn->kn_hook;
1778 struct pipe *wpipe = rpipe->pipe_peer;
1779 int ret;
1780
1781 PIPE_LOCK(rpipe);
1782 kn->kn_data = rpipe->pipe_buffer.cnt;
1783 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1784 kn->kn_data = rpipe->pipe_map.cnt;
1785
1786 if ((rpipe->pipe_state & PIPE_EOF) ||
1787 wpipe->pipe_present != PIPE_ACTIVE ||
1788 (wpipe->pipe_state & PIPE_EOF)) {
1789 kn->kn_flags |= EV_EOF;
1790 PIPE_UNLOCK(rpipe);
1791 return (1);
1792 }
1793 ret = kn->kn_data > 0;
1794 PIPE_UNLOCK(rpipe);
1795 return ret;
1796}
1797
1798/*ARGSUSED*/
1799static int
1800filt_pipewrite(struct knote *kn, long hint)
1801{
1802 struct pipe *wpipe;
1803
1804 wpipe = kn->kn_hook;
1805 PIPE_LOCK(wpipe);
1806 if (wpipe->pipe_present != PIPE_ACTIVE ||
1807 (wpipe->pipe_state & PIPE_EOF)) {
1808 kn->kn_data = 0;
1809 kn->kn_flags |= EV_EOF;
1810 PIPE_UNLOCK(wpipe);
1811 return (1);
1812 }
1813 kn->kn_data = (wpipe->pipe_buffer.size > 0) ?
1814 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) : PIPE_BUF;
1815 if (wpipe->pipe_state & PIPE_DIRECTW)
1816 kn->kn_data = 0;
1817
1818 PIPE_UNLOCK(wpipe);
1819 return (kn->kn_data >= PIPE_BUF);
1820}
1821
1822static void
1823filt_pipedetach_notsup(struct knote *kn)
1824{
1825
1826}
1827
1828static int
1829filt_pipenotsup(struct knote *kn, long hint)
1830{
1831
1832 return (0);
1833}
168 .fo_flags = DFLAG_PASSABLE
169};
170
171static void filt_pipedetach(struct knote *kn);
172static void filt_pipedetach_notsup(struct knote *kn);
173static int filt_pipenotsup(struct knote *kn, long hint);
174static int filt_piperead(struct knote *kn, long hint);
175static int filt_pipewrite(struct knote *kn, long hint);
176
177static struct filterops pipe_nfiltops = {
178 .f_isfd = 1,
179 .f_detach = filt_pipedetach_notsup,
180 .f_event = filt_pipenotsup
181};
182static struct filterops pipe_rfiltops = {
183 .f_isfd = 1,
184 .f_detach = filt_pipedetach,
185 .f_event = filt_piperead
186};
187static struct filterops pipe_wfiltops = {
188 .f_isfd = 1,
189 .f_detach = filt_pipedetach,
190 .f_event = filt_pipewrite
191};
192
193/*
194 * Default pipe buffer size(s), this can be kind-of large now because pipe
195 * space is pageable. The pipe code will try to maintain locality of
196 * reference for performance reasons, so small amounts of outstanding I/O
197 * will not wipe the cache.
198 */
199#define MINPIPESIZE (PIPE_SIZE/3)
200#define MAXPIPESIZE (2*PIPE_SIZE/3)
201
202static long amountpipekva;
203static int pipefragretry;
204static int pipeallocfail;
205static int piperesizefail;
206static int piperesizeallowed = 1;
207
208SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN,
209 &maxpipekva, 0, "Pipe KVA limit");
210SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
211 &amountpipekva, 0, "Pipe KVA usage");
212SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD,
213 &pipefragretry, 0, "Pipe allocation retries due to fragmentation");
214SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD,
215 &pipeallocfail, 0, "Pipe allocation failures");
216SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD,
217 &piperesizefail, 0, "Pipe resize failures");
218SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW,
219 &piperesizeallowed, 0, "Pipe resizing allowed");
220
221static void pipeinit(void *dummy __unused);
222static void pipeclose(struct pipe *cpipe);
223static void pipe_free_kmem(struct pipe *cpipe);
224static int pipe_create(struct pipe *pipe, int backing);
225static int pipe_paircreate(struct thread *td, struct pipepair **p_pp);
226static __inline int pipelock(struct pipe *cpipe, int catch);
227static __inline void pipeunlock(struct pipe *cpipe);
228#ifndef PIPE_NODIRECT
229static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
230static void pipe_destroy_write_buffer(struct pipe *wpipe);
231static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
232static void pipe_clone_write_buffer(struct pipe *wpipe);
233#endif
234static int pipespace(struct pipe *cpipe, int size);
235static int pipespace_new(struct pipe *cpipe, int size);
236
237static int pipe_zone_ctor(void *mem, int size, void *arg, int flags);
238static int pipe_zone_init(void *mem, int size, int flags);
239static void pipe_zone_fini(void *mem, int size);
240
241static uma_zone_t pipe_zone;
242static struct unrhdr *pipeino_unr;
243static dev_t pipedev_ino;
244
245SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
246
247static void
248pipeinit(void *dummy __unused)
249{
250
251 pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair),
252 pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini,
253 UMA_ALIGN_PTR, 0);
254 KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
255 pipeino_unr = new_unrhdr(1, INT32_MAX, NULL);
256 KASSERT(pipeino_unr != NULL, ("pipe fake inodes not initialized"));
257 pipedev_ino = devfs_alloc_cdp_inode();
258 KASSERT(pipedev_ino > 0, ("pipe dev inode not initialized"));
259}
260
261static int
262pipe_zone_ctor(void *mem, int size, void *arg, int flags)
263{
264 struct pipepair *pp;
265 struct pipe *rpipe, *wpipe;
266
267 KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
268
269 pp = (struct pipepair *)mem;
270
271 /*
272 * We zero both pipe endpoints to make sure all the kmem pointers
273 * are NULL, flag fields are zero'd, etc. We timestamp both
274 * endpoints with the same time.
275 */
276 rpipe = &pp->pp_rpipe;
277 bzero(rpipe, sizeof(*rpipe));
278 vfs_timestamp(&rpipe->pipe_ctime);
279 rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
280
281 wpipe = &pp->pp_wpipe;
282 bzero(wpipe, sizeof(*wpipe));
283 wpipe->pipe_ctime = rpipe->pipe_ctime;
284 wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
285
286 rpipe->pipe_peer = wpipe;
287 rpipe->pipe_pair = pp;
288 wpipe->pipe_peer = rpipe;
289 wpipe->pipe_pair = pp;
290
291 /*
292 * Mark both endpoints as present; they will later get free'd
293 * one at a time. When both are free'd, then the whole pair
294 * is released.
295 */
296 rpipe->pipe_present = PIPE_ACTIVE;
297 wpipe->pipe_present = PIPE_ACTIVE;
298
299 /*
300 * Eventually, the MAC Framework may initialize the label
301 * in ctor or init, but for now we do it elswhere to avoid
302 * blocking in ctor or init.
303 */
304 pp->pp_label = NULL;
305
306 return (0);
307}
308
309static int
310pipe_zone_init(void *mem, int size, int flags)
311{
312 struct pipepair *pp;
313
314 KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
315
316 pp = (struct pipepair *)mem;
317
318 mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE);
319 return (0);
320}
321
322static void
323pipe_zone_fini(void *mem, int size)
324{
325 struct pipepair *pp;
326
327 KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
328
329 pp = (struct pipepair *)mem;
330
331 mtx_destroy(&pp->pp_mtx);
332}
333
334static int
335pipe_paircreate(struct thread *td, struct pipepair **p_pp)
336{
337 struct pipepair *pp;
338 struct pipe *rpipe, *wpipe;
339 int error;
340
341 *p_pp = pp = uma_zalloc(pipe_zone, M_WAITOK);
342#ifdef MAC
343 /*
344 * The MAC label is shared between the connected endpoints. As a
345 * result mac_pipe_init() and mac_pipe_create() are called once
346 * for the pair, and not on the endpoints.
347 */
348 mac_pipe_init(pp);
349 mac_pipe_create(td->td_ucred, pp);
350#endif
351 rpipe = &pp->pp_rpipe;
352 wpipe = &pp->pp_wpipe;
353
354 knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe));
355 knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe));
356
357 /* Only the forward direction pipe is backed by default */
358 if ((error = pipe_create(rpipe, 1)) != 0 ||
359 (error = pipe_create(wpipe, 0)) != 0) {
360 pipeclose(rpipe);
361 pipeclose(wpipe);
362 return (error);
363 }
364
365 rpipe->pipe_state |= PIPE_DIRECTOK;
366 wpipe->pipe_state |= PIPE_DIRECTOK;
367 return (0);
368}
369
370int
371pipe_named_ctor(struct pipe **ppipe, struct thread *td)
372{
373 struct pipepair *pp;
374 int error;
375
376 error = pipe_paircreate(td, &pp);
377 if (error != 0)
378 return (error);
379 pp->pp_rpipe.pipe_state |= PIPE_NAMED;
380 *ppipe = &pp->pp_rpipe;
381 return (0);
382}
383
384void
385pipe_dtor(struct pipe *dpipe)
386{
387 ino_t ino;
388
389 ino = dpipe->pipe_ino;
390 funsetown(&dpipe->pipe_sigio);
391 pipeclose(dpipe);
392 if (dpipe->pipe_state & PIPE_NAMED) {
393 dpipe = dpipe->pipe_peer;
394 funsetown(&dpipe->pipe_sigio);
395 pipeclose(dpipe);
396 }
397 if (ino != 0 && ino != (ino_t)-1)
398 free_unr(pipeino_unr, ino);
399}
400
401/*
402 * The pipe system call for the DTYPE_PIPE type of pipes. If we fail, let
403 * the zone pick up the pieces via pipeclose().
404 */
405int
406kern_pipe(struct thread *td, int fildes[2])
407{
408
409 return (kern_pipe2(td, fildes, 0));
410}
411
412int
413kern_pipe2(struct thread *td, int fildes[2], int flags)
414{
415 struct filedesc *fdp;
416 struct file *rf, *wf;
417 struct pipe *rpipe, *wpipe;
418 struct pipepair *pp;
419 int fd, fflags, error;
420
421 fdp = td->td_proc->p_fd;
422 error = pipe_paircreate(td, &pp);
423 if (error != 0)
424 return (error);
425 rpipe = &pp->pp_rpipe;
426 wpipe = &pp->pp_wpipe;
427 error = falloc(td, &rf, &fd, flags);
428 if (error) {
429 pipeclose(rpipe);
430 pipeclose(wpipe);
431 return (error);
432 }
433 /* An extra reference on `rf' has been held for us by falloc(). */
434 fildes[0] = fd;
435
436 fflags = FREAD | FWRITE;
437 if ((flags & O_NONBLOCK) != 0)
438 fflags |= FNONBLOCK;
439
440 /*
441 * Warning: once we've gotten past allocation of the fd for the
442 * read-side, we can only drop the read side via fdrop() in order
443 * to avoid races against processes which manage to dup() the read
444 * side while we are blocked trying to allocate the write side.
445 */
446 finit(rf, fflags, DTYPE_PIPE, rpipe, &pipeops);
447 error = falloc(td, &wf, &fd, flags);
448 if (error) {
449 fdclose(fdp, rf, fildes[0], td);
450 fdrop(rf, td);
451 /* rpipe has been closed by fdrop(). */
452 pipeclose(wpipe);
453 return (error);
454 }
455 /* An extra reference on `wf' has been held for us by falloc(). */
456 finit(wf, fflags, DTYPE_PIPE, wpipe, &pipeops);
457 fdrop(wf, td);
458 fildes[1] = fd;
459 fdrop(rf, td);
460
461 return (0);
462}
463
464/* ARGSUSED */
465int
466sys_pipe(struct thread *td, struct pipe_args *uap)
467{
468 int error;
469 int fildes[2];
470
471 error = kern_pipe(td, fildes);
472 if (error)
473 return (error);
474
475 td->td_retval[0] = fildes[0];
476 td->td_retval[1] = fildes[1];
477
478 return (0);
479}
480
481int
482sys_pipe2(struct thread *td, struct pipe2_args *uap)
483{
484 int error, fildes[2];
485
486 if (uap->flags & ~(O_CLOEXEC | O_NONBLOCK))
487 return (EINVAL);
488 error = kern_pipe2(td, fildes, uap->flags);
489 if (error)
490 return (error);
491 error = copyout(fildes, uap->fildes, 2 * sizeof(int));
492 if (error) {
493 (void)kern_close(td, fildes[0]);
494 (void)kern_close(td, fildes[1]);
495 }
496 return (error);
497}
498
499/*
500 * Allocate kva for pipe circular buffer, the space is pageable
501 * This routine will 'realloc' the size of a pipe safely, if it fails
502 * it will retain the old buffer.
503 * If it fails it will return ENOMEM.
504 */
505static int
506pipespace_new(cpipe, size)
507 struct pipe *cpipe;
508 int size;
509{
510 caddr_t buffer;
511 int error, cnt, firstseg;
512 static int curfail = 0;
513 static struct timeval lastfail;
514
515 KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
516 KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW),
517 ("pipespace: resize of direct writes not allowed"));
518retry:
519 cnt = cpipe->pipe_buffer.cnt;
520 if (cnt > size)
521 size = cnt;
522
523 size = round_page(size);
524 buffer = (caddr_t) vm_map_min(pipe_map);
525
526 error = vm_map_find(pipe_map, NULL, 0,
527 (vm_offset_t *) &buffer, size, 1,
528 VM_PROT_ALL, VM_PROT_ALL, 0);
529 if (error != KERN_SUCCESS) {
530 if ((cpipe->pipe_buffer.buffer == NULL) &&
531 (size > SMALL_PIPE_SIZE)) {
532 size = SMALL_PIPE_SIZE;
533 pipefragretry++;
534 goto retry;
535 }
536 if (cpipe->pipe_buffer.buffer == NULL) {
537 pipeallocfail++;
538 if (ppsratecheck(&lastfail, &curfail, 1))
539 printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
540 } else {
541 piperesizefail++;
542 }
543 return (ENOMEM);
544 }
545
546 /* copy data, then free old resources if we're resizing */
547 if (cnt > 0) {
548 if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) {
549 firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out;
550 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
551 buffer, firstseg);
552 if ((cnt - firstseg) > 0)
553 bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg],
554 cpipe->pipe_buffer.in);
555 } else {
556 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
557 buffer, cnt);
558 }
559 }
560 pipe_free_kmem(cpipe);
561 cpipe->pipe_buffer.buffer = buffer;
562 cpipe->pipe_buffer.size = size;
563 cpipe->pipe_buffer.in = cnt;
564 cpipe->pipe_buffer.out = 0;
565 cpipe->pipe_buffer.cnt = cnt;
566 atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size);
567 return (0);
568}
569
570/*
571 * Wrapper for pipespace_new() that performs locking assertions.
572 */
573static int
574pipespace(cpipe, size)
575 struct pipe *cpipe;
576 int size;
577{
578
579 KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
580 ("Unlocked pipe passed to pipespace"));
581 return (pipespace_new(cpipe, size));
582}
583
584/*
585 * lock a pipe for I/O, blocking other access
586 */
587static __inline int
588pipelock(cpipe, catch)
589 struct pipe *cpipe;
590 int catch;
591{
592 int error;
593
594 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
595 while (cpipe->pipe_state & PIPE_LOCKFL) {
596 cpipe->pipe_state |= PIPE_LWANT;
597 error = msleep(cpipe, PIPE_MTX(cpipe),
598 catch ? (PRIBIO | PCATCH) : PRIBIO,
599 "pipelk", 0);
600 if (error != 0)
601 return (error);
602 }
603 cpipe->pipe_state |= PIPE_LOCKFL;
604 return (0);
605}
606
607/*
608 * unlock a pipe I/O lock
609 */
610static __inline void
611pipeunlock(cpipe)
612 struct pipe *cpipe;
613{
614
615 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
616 KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
617 ("Unlocked pipe passed to pipeunlock"));
618 cpipe->pipe_state &= ~PIPE_LOCKFL;
619 if (cpipe->pipe_state & PIPE_LWANT) {
620 cpipe->pipe_state &= ~PIPE_LWANT;
621 wakeup(cpipe);
622 }
623}
624
625void
626pipeselwakeup(cpipe)
627 struct pipe *cpipe;
628{
629
630 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
631 if (cpipe->pipe_state & PIPE_SEL) {
632 selwakeuppri(&cpipe->pipe_sel, PSOCK);
633 if (!SEL_WAITING(&cpipe->pipe_sel))
634 cpipe->pipe_state &= ~PIPE_SEL;
635 }
636 if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
637 pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
638 KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0);
639}
640
641/*
642 * Initialize and allocate VM and memory for pipe. The structure
643 * will start out zero'd from the ctor, so we just manage the kmem.
644 */
645static int
646pipe_create(pipe, backing)
647 struct pipe *pipe;
648 int backing;
649{
650 int error;
651
652 if (backing) {
653 if (amountpipekva > maxpipekva / 2)
654 error = pipespace_new(pipe, SMALL_PIPE_SIZE);
655 else
656 error = pipespace_new(pipe, PIPE_SIZE);
657 } else {
658 /* If we're not backing this pipe, no need to do anything. */
659 error = 0;
660 }
661 pipe->pipe_ino = -1;
662 return (error);
663}
664
665/* ARGSUSED */
666static int
667pipe_read(fp, uio, active_cred, flags, td)
668 struct file *fp;
669 struct uio *uio;
670 struct ucred *active_cred;
671 struct thread *td;
672 int flags;
673{
674 struct pipe *rpipe;
675 int error;
676 int nread = 0;
677 int size;
678
679 rpipe = fp->f_data;
680 PIPE_LOCK(rpipe);
681 ++rpipe->pipe_busy;
682 error = pipelock(rpipe, 1);
683 if (error)
684 goto unlocked_error;
685
686#ifdef MAC
687 error = mac_pipe_check_read(active_cred, rpipe->pipe_pair);
688 if (error)
689 goto locked_error;
690#endif
691 if (amountpipekva > (3 * maxpipekva) / 4) {
692 if (!(rpipe->pipe_state & PIPE_DIRECTW) &&
693 (rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
694 (rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
695 (piperesizeallowed == 1)) {
696 PIPE_UNLOCK(rpipe);
697 pipespace(rpipe, SMALL_PIPE_SIZE);
698 PIPE_LOCK(rpipe);
699 }
700 }
701
702 while (uio->uio_resid) {
703 /*
704 * normal pipe buffer receive
705 */
706 if (rpipe->pipe_buffer.cnt > 0) {
707 size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
708 if (size > rpipe->pipe_buffer.cnt)
709 size = rpipe->pipe_buffer.cnt;
710 if (size > uio->uio_resid)
711 size = uio->uio_resid;
712
713 PIPE_UNLOCK(rpipe);
714 error = uiomove(
715 &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
716 size, uio);
717 PIPE_LOCK(rpipe);
718 if (error)
719 break;
720
721 rpipe->pipe_buffer.out += size;
722 if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
723 rpipe->pipe_buffer.out = 0;
724
725 rpipe->pipe_buffer.cnt -= size;
726
727 /*
728 * If there is no more to read in the pipe, reset
729 * its pointers to the beginning. This improves
730 * cache hit stats.
731 */
732 if (rpipe->pipe_buffer.cnt == 0) {
733 rpipe->pipe_buffer.in = 0;
734 rpipe->pipe_buffer.out = 0;
735 }
736 nread += size;
737#ifndef PIPE_NODIRECT
738 /*
739 * Direct copy, bypassing a kernel buffer.
740 */
741 } else if ((size = rpipe->pipe_map.cnt) &&
742 (rpipe->pipe_state & PIPE_DIRECTW)) {
743 if (size > uio->uio_resid)
744 size = (u_int) uio->uio_resid;
745
746 PIPE_UNLOCK(rpipe);
747 error = uiomove_fromphys(rpipe->pipe_map.ms,
748 rpipe->pipe_map.pos, size, uio);
749 PIPE_LOCK(rpipe);
750 if (error)
751 break;
752 nread += size;
753 rpipe->pipe_map.pos += size;
754 rpipe->pipe_map.cnt -= size;
755 if (rpipe->pipe_map.cnt == 0) {
756 rpipe->pipe_state &= ~(PIPE_DIRECTW|PIPE_WANTW);
757 wakeup(rpipe);
758 }
759#endif
760 } else {
761 /*
762 * detect EOF condition
763 * read returns 0 on EOF, no need to set error
764 */
765 if (rpipe->pipe_state & PIPE_EOF)
766 break;
767
768 /*
769 * If the "write-side" has been blocked, wake it up now.
770 */
771 if (rpipe->pipe_state & PIPE_WANTW) {
772 rpipe->pipe_state &= ~PIPE_WANTW;
773 wakeup(rpipe);
774 }
775
776 /*
777 * Break if some data was read.
778 */
779 if (nread > 0)
780 break;
781
782 /*
783 * Unlock the pipe buffer for our remaining processing.
784 * We will either break out with an error or we will
785 * sleep and relock to loop.
786 */
787 pipeunlock(rpipe);
788
789 /*
790 * Handle non-blocking mode operation or
791 * wait for more data.
792 */
793 if (fp->f_flag & FNONBLOCK) {
794 error = EAGAIN;
795 } else {
796 rpipe->pipe_state |= PIPE_WANTR;
797 if ((error = msleep(rpipe, PIPE_MTX(rpipe),
798 PRIBIO | PCATCH,
799 "piperd", 0)) == 0)
800 error = pipelock(rpipe, 1);
801 }
802 if (error)
803 goto unlocked_error;
804 }
805 }
806#ifdef MAC
807locked_error:
808#endif
809 pipeunlock(rpipe);
810
811 /* XXX: should probably do this before getting any locks. */
812 if (error == 0)
813 vfs_timestamp(&rpipe->pipe_atime);
814unlocked_error:
815 --rpipe->pipe_busy;
816
817 /*
818 * PIPE_WANT processing only makes sense if pipe_busy is 0.
819 */
820 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
821 rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
822 wakeup(rpipe);
823 } else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
824 /*
825 * Handle write blocking hysteresis.
826 */
827 if (rpipe->pipe_state & PIPE_WANTW) {
828 rpipe->pipe_state &= ~PIPE_WANTW;
829 wakeup(rpipe);
830 }
831 }
832
833 if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
834 pipeselwakeup(rpipe);
835
836 PIPE_UNLOCK(rpipe);
837 return (error);
838}
839
840#ifndef PIPE_NODIRECT
841/*
842 * Map the sending processes' buffer into kernel space and wire it.
843 * This is similar to a physical write operation.
844 */
845static int
846pipe_build_write_buffer(wpipe, uio)
847 struct pipe *wpipe;
848 struct uio *uio;
849{
850 u_int size;
851 int i;
852
853 PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
854 KASSERT(wpipe->pipe_state & PIPE_DIRECTW,
855 ("Clone attempt on non-direct write pipe!"));
856
857 if (uio->uio_iov->iov_len > wpipe->pipe_buffer.size)
858 size = wpipe->pipe_buffer.size;
859 else
860 size = uio->uio_iov->iov_len;
861
862 if ((i = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
863 (vm_offset_t)uio->uio_iov->iov_base, size, VM_PROT_READ,
864 wpipe->pipe_map.ms, PIPENPAGES)) < 0)
865 return (EFAULT);
866
867/*
868 * set up the control block
869 */
870 wpipe->pipe_map.npages = i;
871 wpipe->pipe_map.pos =
872 ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
873 wpipe->pipe_map.cnt = size;
874
875/*
876 * and update the uio data
877 */
878
879 uio->uio_iov->iov_len -= size;
880 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
881 if (uio->uio_iov->iov_len == 0)
882 uio->uio_iov++;
883 uio->uio_resid -= size;
884 uio->uio_offset += size;
885 return (0);
886}
887
888/*
889 * unmap and unwire the process buffer
890 */
891static void
892pipe_destroy_write_buffer(wpipe)
893 struct pipe *wpipe;
894{
895
896 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
897 vm_page_unhold_pages(wpipe->pipe_map.ms, wpipe->pipe_map.npages);
898 wpipe->pipe_map.npages = 0;
899}
900
901/*
902 * In the case of a signal, the writing process might go away. This
903 * code copies the data into the circular buffer so that the source
904 * pages can be freed without loss of data.
905 */
906static void
907pipe_clone_write_buffer(wpipe)
908 struct pipe *wpipe;
909{
910 struct uio uio;
911 struct iovec iov;
912 int size;
913 int pos;
914
915 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
916 size = wpipe->pipe_map.cnt;
917 pos = wpipe->pipe_map.pos;
918
919 wpipe->pipe_buffer.in = size;
920 wpipe->pipe_buffer.out = 0;
921 wpipe->pipe_buffer.cnt = size;
922 wpipe->pipe_state &= ~PIPE_DIRECTW;
923
924 PIPE_UNLOCK(wpipe);
925 iov.iov_base = wpipe->pipe_buffer.buffer;
926 iov.iov_len = size;
927 uio.uio_iov = &iov;
928 uio.uio_iovcnt = 1;
929 uio.uio_offset = 0;
930 uio.uio_resid = size;
931 uio.uio_segflg = UIO_SYSSPACE;
932 uio.uio_rw = UIO_READ;
933 uio.uio_td = curthread;
934 uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio);
935 PIPE_LOCK(wpipe);
936 pipe_destroy_write_buffer(wpipe);
937}
938
939/*
940 * This implements the pipe buffer write mechanism. Note that only
941 * a direct write OR a normal pipe write can be pending at any given time.
942 * If there are any characters in the pipe buffer, the direct write will
943 * be deferred until the receiving process grabs all of the bytes from
944 * the pipe buffer. Then the direct mapping write is set-up.
945 */
946static int
947pipe_direct_write(wpipe, uio)
948 struct pipe *wpipe;
949 struct uio *uio;
950{
951 int error;
952
953retry:
954 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
955 error = pipelock(wpipe, 1);
956 if (wpipe->pipe_state & PIPE_EOF)
957 error = EPIPE;
958 if (error) {
959 pipeunlock(wpipe);
960 goto error1;
961 }
962 while (wpipe->pipe_state & PIPE_DIRECTW) {
963 if (wpipe->pipe_state & PIPE_WANTR) {
964 wpipe->pipe_state &= ~PIPE_WANTR;
965 wakeup(wpipe);
966 }
967 pipeselwakeup(wpipe);
968 wpipe->pipe_state |= PIPE_WANTW;
969 pipeunlock(wpipe);
970 error = msleep(wpipe, PIPE_MTX(wpipe),
971 PRIBIO | PCATCH, "pipdww", 0);
972 if (error)
973 goto error1;
974 else
975 goto retry;
976 }
977 wpipe->pipe_map.cnt = 0; /* transfer not ready yet */
978 if (wpipe->pipe_buffer.cnt > 0) {
979 if (wpipe->pipe_state & PIPE_WANTR) {
980 wpipe->pipe_state &= ~PIPE_WANTR;
981 wakeup(wpipe);
982 }
983 pipeselwakeup(wpipe);
984 wpipe->pipe_state |= PIPE_WANTW;
985 pipeunlock(wpipe);
986 error = msleep(wpipe, PIPE_MTX(wpipe),
987 PRIBIO | PCATCH, "pipdwc", 0);
988 if (error)
989 goto error1;
990 else
991 goto retry;
992 }
993
994 wpipe->pipe_state |= PIPE_DIRECTW;
995
996 PIPE_UNLOCK(wpipe);
997 error = pipe_build_write_buffer(wpipe, uio);
998 PIPE_LOCK(wpipe);
999 if (error) {
1000 wpipe->pipe_state &= ~PIPE_DIRECTW;
1001 pipeunlock(wpipe);
1002 goto error1;
1003 }
1004
1005 error = 0;
1006 while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
1007 if (wpipe->pipe_state & PIPE_EOF) {
1008 pipe_destroy_write_buffer(wpipe);
1009 pipeselwakeup(wpipe);
1010 pipeunlock(wpipe);
1011 error = EPIPE;
1012 goto error1;
1013 }
1014 if (wpipe->pipe_state & PIPE_WANTR) {
1015 wpipe->pipe_state &= ~PIPE_WANTR;
1016 wakeup(wpipe);
1017 }
1018 pipeselwakeup(wpipe);
1019 wpipe->pipe_state |= PIPE_WANTW;
1020 pipeunlock(wpipe);
1021 error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
1022 "pipdwt", 0);
1023 pipelock(wpipe, 0);
1024 }
1025
1026 if (wpipe->pipe_state & PIPE_EOF)
1027 error = EPIPE;
1028 if (wpipe->pipe_state & PIPE_DIRECTW) {
1029 /*
1030 * this bit of trickery substitutes a kernel buffer for
1031 * the process that might be going away.
1032 */
1033 pipe_clone_write_buffer(wpipe);
1034 } else {
1035 pipe_destroy_write_buffer(wpipe);
1036 }
1037 pipeunlock(wpipe);
1038 return (error);
1039
1040error1:
1041 wakeup(wpipe);
1042 return (error);
1043}
1044#endif
1045
1046static int
1047pipe_write(fp, uio, active_cred, flags, td)
1048 struct file *fp;
1049 struct uio *uio;
1050 struct ucred *active_cred;
1051 struct thread *td;
1052 int flags;
1053{
1054 int error = 0;
1055 int desiredsize;
1056 ssize_t orig_resid;
1057 struct pipe *wpipe, *rpipe;
1058
1059 rpipe = fp->f_data;
1060 wpipe = PIPE_PEER(rpipe);
1061 PIPE_LOCK(rpipe);
1062 error = pipelock(wpipe, 1);
1063 if (error) {
1064 PIPE_UNLOCK(rpipe);
1065 return (error);
1066 }
1067 /*
1068 * detect loss of pipe read side, issue SIGPIPE if lost.
1069 */
1070 if (wpipe->pipe_present != PIPE_ACTIVE ||
1071 (wpipe->pipe_state & PIPE_EOF)) {
1072 pipeunlock(wpipe);
1073 PIPE_UNLOCK(rpipe);
1074 return (EPIPE);
1075 }
1076#ifdef MAC
1077 error = mac_pipe_check_write(active_cred, wpipe->pipe_pair);
1078 if (error) {
1079 pipeunlock(wpipe);
1080 PIPE_UNLOCK(rpipe);
1081 return (error);
1082 }
1083#endif
1084 ++wpipe->pipe_busy;
1085
1086 /* Choose a larger size if it's advantageous */
1087 desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size);
1088 while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) {
1089 if (piperesizeallowed != 1)
1090 break;
1091 if (amountpipekva > maxpipekva / 2)
1092 break;
1093 if (desiredsize == BIG_PIPE_SIZE)
1094 break;
1095 desiredsize = desiredsize * 2;
1096 }
1097
1098 /* Choose a smaller size if we're in a OOM situation */
1099 if ((amountpipekva > (3 * maxpipekva) / 4) &&
1100 (wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
1101 (wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
1102 (piperesizeallowed == 1))
1103 desiredsize = SMALL_PIPE_SIZE;
1104
1105 /* Resize if the above determined that a new size was necessary */
1106 if ((desiredsize != wpipe->pipe_buffer.size) &&
1107 ((wpipe->pipe_state & PIPE_DIRECTW) == 0)) {
1108 PIPE_UNLOCK(wpipe);
1109 pipespace(wpipe, desiredsize);
1110 PIPE_LOCK(wpipe);
1111 }
1112 if (wpipe->pipe_buffer.size == 0) {
1113 /*
1114 * This can only happen for reverse direction use of pipes
1115 * in a complete OOM situation.
1116 */
1117 error = ENOMEM;
1118 --wpipe->pipe_busy;
1119 pipeunlock(wpipe);
1120 PIPE_UNLOCK(wpipe);
1121 return (error);
1122 }
1123
1124 pipeunlock(wpipe);
1125
1126 orig_resid = uio->uio_resid;
1127
1128 while (uio->uio_resid) {
1129 int space;
1130
1131 pipelock(wpipe, 0);
1132 if (wpipe->pipe_state & PIPE_EOF) {
1133 pipeunlock(wpipe);
1134 error = EPIPE;
1135 break;
1136 }
1137#ifndef PIPE_NODIRECT
1138 /*
1139 * If the transfer is large, we can gain performance if
1140 * we do process-to-process copies directly.
1141 * If the write is non-blocking, we don't use the
1142 * direct write mechanism.
1143 *
1144 * The direct write mechanism will detect the reader going
1145 * away on us.
1146 */
1147 if (uio->uio_segflg == UIO_USERSPACE &&
1148 uio->uio_iov->iov_len >= PIPE_MINDIRECT &&
1149 wpipe->pipe_buffer.size >= PIPE_MINDIRECT &&
1150 (fp->f_flag & FNONBLOCK) == 0) {
1151 pipeunlock(wpipe);
1152 error = pipe_direct_write(wpipe, uio);
1153 if (error)
1154 break;
1155 continue;
1156 }
1157#endif
1158
1159 /*
1160 * Pipe buffered writes cannot be coincidental with
1161 * direct writes. We wait until the currently executing
1162 * direct write is completed before we start filling the
1163 * pipe buffer. We break out if a signal occurs or the
1164 * reader goes away.
1165 */
1166 if (wpipe->pipe_state & PIPE_DIRECTW) {
1167 if (wpipe->pipe_state & PIPE_WANTR) {
1168 wpipe->pipe_state &= ~PIPE_WANTR;
1169 wakeup(wpipe);
1170 }
1171 pipeselwakeup(wpipe);
1172 wpipe->pipe_state |= PIPE_WANTW;
1173 pipeunlock(wpipe);
1174 error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1175 "pipbww", 0);
1176 if (error)
1177 break;
1178 else
1179 continue;
1180 }
1181
1182 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1183
1184 /* Writes of size <= PIPE_BUF must be atomic. */
1185 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1186 space = 0;
1187
1188 if (space > 0) {
1189 int size; /* Transfer size */
1190 int segsize; /* first segment to transfer */
1191
1192 /*
1193 * Transfer size is minimum of uio transfer
1194 * and free space in pipe buffer.
1195 */
1196 if (space > uio->uio_resid)
1197 size = uio->uio_resid;
1198 else
1199 size = space;
1200 /*
1201 * First segment to transfer is minimum of
1202 * transfer size and contiguous space in
1203 * pipe buffer. If first segment to transfer
1204 * is less than the transfer size, we've got
1205 * a wraparound in the buffer.
1206 */
1207 segsize = wpipe->pipe_buffer.size -
1208 wpipe->pipe_buffer.in;
1209 if (segsize > size)
1210 segsize = size;
1211
1212 /* Transfer first segment */
1213
1214 PIPE_UNLOCK(rpipe);
1215 error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1216 segsize, uio);
1217 PIPE_LOCK(rpipe);
1218
1219 if (error == 0 && segsize < size) {
1220 KASSERT(wpipe->pipe_buffer.in + segsize ==
1221 wpipe->pipe_buffer.size,
1222 ("Pipe buffer wraparound disappeared"));
1223 /*
1224 * Transfer remaining part now, to
1225 * support atomic writes. Wraparound
1226 * happened.
1227 */
1228
1229 PIPE_UNLOCK(rpipe);
1230 error = uiomove(
1231 &wpipe->pipe_buffer.buffer[0],
1232 size - segsize, uio);
1233 PIPE_LOCK(rpipe);
1234 }
1235 if (error == 0) {
1236 wpipe->pipe_buffer.in += size;
1237 if (wpipe->pipe_buffer.in >=
1238 wpipe->pipe_buffer.size) {
1239 KASSERT(wpipe->pipe_buffer.in ==
1240 size - segsize +
1241 wpipe->pipe_buffer.size,
1242 ("Expected wraparound bad"));
1243 wpipe->pipe_buffer.in = size - segsize;
1244 }
1245
1246 wpipe->pipe_buffer.cnt += size;
1247 KASSERT(wpipe->pipe_buffer.cnt <=
1248 wpipe->pipe_buffer.size,
1249 ("Pipe buffer overflow"));
1250 }
1251 pipeunlock(wpipe);
1252 if (error != 0)
1253 break;
1254 } else {
1255 /*
1256 * If the "read-side" has been blocked, wake it up now.
1257 */
1258 if (wpipe->pipe_state & PIPE_WANTR) {
1259 wpipe->pipe_state &= ~PIPE_WANTR;
1260 wakeup(wpipe);
1261 }
1262
1263 /*
1264 * don't block on non-blocking I/O
1265 */
1266 if (fp->f_flag & FNONBLOCK) {
1267 error = EAGAIN;
1268 pipeunlock(wpipe);
1269 break;
1270 }
1271
1272 /*
1273 * We have no more space and have something to offer,
1274 * wake up select/poll.
1275 */
1276 pipeselwakeup(wpipe);
1277
1278 wpipe->pipe_state |= PIPE_WANTW;
1279 pipeunlock(wpipe);
1280 error = msleep(wpipe, PIPE_MTX(rpipe),
1281 PRIBIO | PCATCH, "pipewr", 0);
1282 if (error != 0)
1283 break;
1284 }
1285 }
1286
1287 pipelock(wpipe, 0);
1288 --wpipe->pipe_busy;
1289
1290 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1291 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1292 wakeup(wpipe);
1293 } else if (wpipe->pipe_buffer.cnt > 0) {
1294 /*
1295 * If we have put any characters in the buffer, we wake up
1296 * the reader.
1297 */
1298 if (wpipe->pipe_state & PIPE_WANTR) {
1299 wpipe->pipe_state &= ~PIPE_WANTR;
1300 wakeup(wpipe);
1301 }
1302 }
1303
1304 /*
1305 * Don't return EPIPE if I/O was successful
1306 */
1307 if ((wpipe->pipe_buffer.cnt == 0) &&
1308 (uio->uio_resid == 0) &&
1309 (error == EPIPE)) {
1310 error = 0;
1311 }
1312
1313 if (error == 0)
1314 vfs_timestamp(&wpipe->pipe_mtime);
1315
1316 /*
1317 * We have something to offer,
1318 * wake up select/poll.
1319 */
1320 if (wpipe->pipe_buffer.cnt)
1321 pipeselwakeup(wpipe);
1322
1323 pipeunlock(wpipe);
1324 PIPE_UNLOCK(rpipe);
1325 return (error);
1326}
1327
1328/* ARGSUSED */
1329static int
1330pipe_truncate(fp, length, active_cred, td)
1331 struct file *fp;
1332 off_t length;
1333 struct ucred *active_cred;
1334 struct thread *td;
1335{
1336
1337 /* For named pipes call the vnode operation. */
1338 if (fp->f_vnode != NULL)
1339 return (vnops.fo_truncate(fp, length, active_cred, td));
1340 return (EINVAL);
1341}
1342
1343/*
1344 * we implement a very minimal set of ioctls for compatibility with sockets.
1345 */
1346static int
1347pipe_ioctl(fp, cmd, data, active_cred, td)
1348 struct file *fp;
1349 u_long cmd;
1350 void *data;
1351 struct ucred *active_cred;
1352 struct thread *td;
1353{
1354 struct pipe *mpipe = fp->f_data;
1355 int error;
1356
1357 PIPE_LOCK(mpipe);
1358
1359#ifdef MAC
1360 error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
1361 if (error) {
1362 PIPE_UNLOCK(mpipe);
1363 return (error);
1364 }
1365#endif
1366
1367 error = 0;
1368 switch (cmd) {
1369
1370 case FIONBIO:
1371 break;
1372
1373 case FIOASYNC:
1374 if (*(int *)data) {
1375 mpipe->pipe_state |= PIPE_ASYNC;
1376 } else {
1377 mpipe->pipe_state &= ~PIPE_ASYNC;
1378 }
1379 break;
1380
1381 case FIONREAD:
1382 if (!(fp->f_flag & FREAD)) {
1383 *(int *)data = 0;
1384 PIPE_UNLOCK(mpipe);
1385 return (0);
1386 }
1387 if (mpipe->pipe_state & PIPE_DIRECTW)
1388 *(int *)data = mpipe->pipe_map.cnt;
1389 else
1390 *(int *)data = mpipe->pipe_buffer.cnt;
1391 break;
1392
1393 case FIOSETOWN:
1394 PIPE_UNLOCK(mpipe);
1395 error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1396 goto out_unlocked;
1397
1398 case FIOGETOWN:
1399 *(int *)data = fgetown(&mpipe->pipe_sigio);
1400 break;
1401
1402 /* This is deprecated, FIOSETOWN should be used instead. */
1403 case TIOCSPGRP:
1404 PIPE_UNLOCK(mpipe);
1405 error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1406 goto out_unlocked;
1407
1408 /* This is deprecated, FIOGETOWN should be used instead. */
1409 case TIOCGPGRP:
1410 *(int *)data = -fgetown(&mpipe->pipe_sigio);
1411 break;
1412
1413 default:
1414 error = ENOTTY;
1415 break;
1416 }
1417 PIPE_UNLOCK(mpipe);
1418out_unlocked:
1419 return (error);
1420}
1421
1422static int
1423pipe_poll(fp, events, active_cred, td)
1424 struct file *fp;
1425 int events;
1426 struct ucred *active_cred;
1427 struct thread *td;
1428{
1429 struct pipe *rpipe;
1430 struct pipe *wpipe;
1431 int levents, revents;
1432#ifdef MAC
1433 int error;
1434#endif
1435
1436 revents = 0;
1437 rpipe = fp->f_data;
1438 wpipe = PIPE_PEER(rpipe);
1439 PIPE_LOCK(rpipe);
1440#ifdef MAC
1441 error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair);
1442 if (error)
1443 goto locked_error;
1444#endif
1445 if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM))
1446 if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1447 (rpipe->pipe_buffer.cnt > 0))
1448 revents |= events & (POLLIN | POLLRDNORM);
1449
1450 if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM))
1451 if (wpipe->pipe_present != PIPE_ACTIVE ||
1452 (wpipe->pipe_state & PIPE_EOF) ||
1453 (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1454 ((wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF ||
1455 wpipe->pipe_buffer.size == 0)))
1456 revents |= events & (POLLOUT | POLLWRNORM);
1457
1458 levents = events &
1459 (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | POLLRDBAND);
1460 if (rpipe->pipe_state & PIPE_NAMED && fp->f_flag & FREAD && levents &&
1461 fp->f_seqcount == rpipe->pipe_wgen)
1462 events |= POLLINIGNEOF;
1463
1464 if ((events & POLLINIGNEOF) == 0) {
1465 if (rpipe->pipe_state & PIPE_EOF) {
1466 revents |= (events & (POLLIN | POLLRDNORM));
1467 if (wpipe->pipe_present != PIPE_ACTIVE ||
1468 (wpipe->pipe_state & PIPE_EOF))
1469 revents |= POLLHUP;
1470 }
1471 }
1472
1473 if (revents == 0) {
1474 if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM)) {
1475 selrecord(td, &rpipe->pipe_sel);
1476 if (SEL_WAITING(&rpipe->pipe_sel))
1477 rpipe->pipe_state |= PIPE_SEL;
1478 }
1479
1480 if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM)) {
1481 selrecord(td, &wpipe->pipe_sel);
1482 if (SEL_WAITING(&wpipe->pipe_sel))
1483 wpipe->pipe_state |= PIPE_SEL;
1484 }
1485 }
1486#ifdef MAC
1487locked_error:
1488#endif
1489 PIPE_UNLOCK(rpipe);
1490
1491 return (revents);
1492}
1493
1494/*
1495 * We shouldn't need locks here as we're doing a read and this should
1496 * be a natural race.
1497 */
1498static int
1499pipe_stat(fp, ub, active_cred, td)
1500 struct file *fp;
1501 struct stat *ub;
1502 struct ucred *active_cred;
1503 struct thread *td;
1504{
1505 struct pipe *pipe;
1506 int new_unr;
1507#ifdef MAC
1508 int error;
1509#endif
1510
1511 pipe = fp->f_data;
1512 PIPE_LOCK(pipe);
1513#ifdef MAC
1514 error = mac_pipe_check_stat(active_cred, pipe->pipe_pair);
1515 if (error) {
1516 PIPE_UNLOCK(pipe);
1517 return (error);
1518 }
1519#endif
1520
1521 /* For named pipes ask the underlying filesystem. */
1522 if (pipe->pipe_state & PIPE_NAMED) {
1523 PIPE_UNLOCK(pipe);
1524 return (vnops.fo_stat(fp, ub, active_cred, td));
1525 }
1526
1527 /*
1528 * Lazily allocate an inode number for the pipe. Most pipe
1529 * users do not call fstat(2) on the pipe, which means that
1530 * postponing the inode allocation until it is must be
1531 * returned to userland is useful. If alloc_unr failed,
1532 * assign st_ino zero instead of returning an error.
1533 * Special pipe_ino values:
1534 * -1 - not yet initialized;
1535 * 0 - alloc_unr failed, return 0 as st_ino forever.
1536 */
1537 if (pipe->pipe_ino == (ino_t)-1) {
1538 new_unr = alloc_unr(pipeino_unr);
1539 if (new_unr != -1)
1540 pipe->pipe_ino = new_unr;
1541 else
1542 pipe->pipe_ino = 0;
1543 }
1544 PIPE_UNLOCK(pipe);
1545
1546 bzero(ub, sizeof(*ub));
1547 ub->st_mode = S_IFIFO;
1548 ub->st_blksize = PAGE_SIZE;
1549 if (pipe->pipe_state & PIPE_DIRECTW)
1550 ub->st_size = pipe->pipe_map.cnt;
1551 else
1552 ub->st_size = pipe->pipe_buffer.cnt;
1553 ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1554 ub->st_atim = pipe->pipe_atime;
1555 ub->st_mtim = pipe->pipe_mtime;
1556 ub->st_ctim = pipe->pipe_ctime;
1557 ub->st_uid = fp->f_cred->cr_uid;
1558 ub->st_gid = fp->f_cred->cr_gid;
1559 ub->st_dev = pipedev_ino;
1560 ub->st_ino = pipe->pipe_ino;
1561 /*
1562 * Left as 0: st_nlink, st_rdev, st_flags, st_gen.
1563 */
1564 return (0);
1565}
1566
1567/* ARGSUSED */
1568static int
1569pipe_close(fp, td)
1570 struct file *fp;
1571 struct thread *td;
1572{
1573
1574 if (fp->f_vnode != NULL)
1575 return vnops.fo_close(fp, td);
1576 fp->f_ops = &badfileops;
1577 pipe_dtor(fp->f_data);
1578 fp->f_data = NULL;
1579 return (0);
1580}
1581
1582static int
1583pipe_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, struct thread *td)
1584{
1585 struct pipe *cpipe;
1586 int error;
1587
1588 cpipe = fp->f_data;
1589 if (cpipe->pipe_state & PIPE_NAMED)
1590 error = vn_chmod(fp, mode, active_cred, td);
1591 else
1592 error = invfo_chmod(fp, mode, active_cred, td);
1593 return (error);
1594}
1595
1596static int
1597pipe_chown(fp, uid, gid, active_cred, td)
1598 struct file *fp;
1599 uid_t uid;
1600 gid_t gid;
1601 struct ucred *active_cred;
1602 struct thread *td;
1603{
1604 struct pipe *cpipe;
1605 int error;
1606
1607 cpipe = fp->f_data;
1608 if (cpipe->pipe_state & PIPE_NAMED)
1609 error = vn_chown(fp, uid, gid, active_cred, td);
1610 else
1611 error = invfo_chown(fp, uid, gid, active_cred, td);
1612 return (error);
1613}
1614
1615static void
1616pipe_free_kmem(cpipe)
1617 struct pipe *cpipe;
1618{
1619
1620 KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
1621 ("pipe_free_kmem: pipe mutex locked"));
1622
1623 if (cpipe->pipe_buffer.buffer != NULL) {
1624 atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size);
1625 vm_map_remove(pipe_map,
1626 (vm_offset_t)cpipe->pipe_buffer.buffer,
1627 (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1628 cpipe->pipe_buffer.buffer = NULL;
1629 }
1630#ifndef PIPE_NODIRECT
1631 {
1632 cpipe->pipe_map.cnt = 0;
1633 cpipe->pipe_map.pos = 0;
1634 cpipe->pipe_map.npages = 0;
1635 }
1636#endif
1637}
1638
1639/*
1640 * shutdown the pipe
1641 */
1642static void
1643pipeclose(cpipe)
1644 struct pipe *cpipe;
1645{
1646 struct pipepair *pp;
1647 struct pipe *ppipe;
1648
1649 KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
1650
1651 PIPE_LOCK(cpipe);
1652 pipelock(cpipe, 0);
1653 pp = cpipe->pipe_pair;
1654
1655 pipeselwakeup(cpipe);
1656
1657 /*
1658 * If the other side is blocked, wake it up saying that
1659 * we want to close it down.
1660 */
1661 cpipe->pipe_state |= PIPE_EOF;
1662 while (cpipe->pipe_busy) {
1663 wakeup(cpipe);
1664 cpipe->pipe_state |= PIPE_WANT;
1665 pipeunlock(cpipe);
1666 msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1667 pipelock(cpipe, 0);
1668 }
1669
1670
1671 /*
1672 * Disconnect from peer, if any.
1673 */
1674 ppipe = cpipe->pipe_peer;
1675 if (ppipe->pipe_present == PIPE_ACTIVE) {
1676 pipeselwakeup(ppipe);
1677
1678 ppipe->pipe_state |= PIPE_EOF;
1679 wakeup(ppipe);
1680 KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0);
1681 }
1682
1683 /*
1684 * Mark this endpoint as free. Release kmem resources. We
1685 * don't mark this endpoint as unused until we've finished
1686 * doing that, or the pipe might disappear out from under
1687 * us.
1688 */
1689 PIPE_UNLOCK(cpipe);
1690 pipe_free_kmem(cpipe);
1691 PIPE_LOCK(cpipe);
1692 cpipe->pipe_present = PIPE_CLOSING;
1693 pipeunlock(cpipe);
1694
1695 /*
1696 * knlist_clear() may sleep dropping the PIPE_MTX. Set the
1697 * PIPE_FINALIZED, that allows other end to free the
1698 * pipe_pair, only after the knotes are completely dismantled.
1699 */
1700 knlist_clear(&cpipe->pipe_sel.si_note, 1);
1701 cpipe->pipe_present = PIPE_FINALIZED;
1702 seldrain(&cpipe->pipe_sel);
1703 knlist_destroy(&cpipe->pipe_sel.si_note);
1704
1705 /*
1706 * If both endpoints are now closed, release the memory for the
1707 * pipe pair. If not, unlock.
1708 */
1709 if (ppipe->pipe_present == PIPE_FINALIZED) {
1710 PIPE_UNLOCK(cpipe);
1711#ifdef MAC
1712 mac_pipe_destroy(pp);
1713#endif
1714 uma_zfree(pipe_zone, cpipe->pipe_pair);
1715 } else
1716 PIPE_UNLOCK(cpipe);
1717}
1718
1719/*ARGSUSED*/
1720static int
1721pipe_kqfilter(struct file *fp, struct knote *kn)
1722{
1723 struct pipe *cpipe;
1724
1725 /*
1726 * If a filter is requested that is not supported by this file
1727 * descriptor, don't return an error, but also don't ever generate an
1728 * event.
1729 */
1730 if ((kn->kn_filter == EVFILT_READ) && !(fp->f_flag & FREAD)) {
1731 kn->kn_fop = &pipe_nfiltops;
1732 return (0);
1733 }
1734 if ((kn->kn_filter == EVFILT_WRITE) && !(fp->f_flag & FWRITE)) {
1735 kn->kn_fop = &pipe_nfiltops;
1736 return (0);
1737 }
1738 cpipe = fp->f_data;
1739 PIPE_LOCK(cpipe);
1740 switch (kn->kn_filter) {
1741 case EVFILT_READ:
1742 kn->kn_fop = &pipe_rfiltops;
1743 break;
1744 case EVFILT_WRITE:
1745 kn->kn_fop = &pipe_wfiltops;
1746 if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) {
1747 /* other end of pipe has been closed */
1748 PIPE_UNLOCK(cpipe);
1749 return (EPIPE);
1750 }
1751 cpipe = PIPE_PEER(cpipe);
1752 break;
1753 default:
1754 PIPE_UNLOCK(cpipe);
1755 return (EINVAL);
1756 }
1757
1758 kn->kn_hook = cpipe;
1759 knlist_add(&cpipe->pipe_sel.si_note, kn, 1);
1760 PIPE_UNLOCK(cpipe);
1761 return (0);
1762}
1763
1764static void
1765filt_pipedetach(struct knote *kn)
1766{
1767 struct pipe *cpipe = kn->kn_hook;
1768
1769 PIPE_LOCK(cpipe);
1770 knlist_remove(&cpipe->pipe_sel.si_note, kn, 1);
1771 PIPE_UNLOCK(cpipe);
1772}
1773
1774/*ARGSUSED*/
1775static int
1776filt_piperead(struct knote *kn, long hint)
1777{
1778 struct pipe *rpipe = kn->kn_hook;
1779 struct pipe *wpipe = rpipe->pipe_peer;
1780 int ret;
1781
1782 PIPE_LOCK(rpipe);
1783 kn->kn_data = rpipe->pipe_buffer.cnt;
1784 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1785 kn->kn_data = rpipe->pipe_map.cnt;
1786
1787 if ((rpipe->pipe_state & PIPE_EOF) ||
1788 wpipe->pipe_present != PIPE_ACTIVE ||
1789 (wpipe->pipe_state & PIPE_EOF)) {
1790 kn->kn_flags |= EV_EOF;
1791 PIPE_UNLOCK(rpipe);
1792 return (1);
1793 }
1794 ret = kn->kn_data > 0;
1795 PIPE_UNLOCK(rpipe);
1796 return ret;
1797}
1798
1799/*ARGSUSED*/
1800static int
1801filt_pipewrite(struct knote *kn, long hint)
1802{
1803 struct pipe *wpipe;
1804
1805 wpipe = kn->kn_hook;
1806 PIPE_LOCK(wpipe);
1807 if (wpipe->pipe_present != PIPE_ACTIVE ||
1808 (wpipe->pipe_state & PIPE_EOF)) {
1809 kn->kn_data = 0;
1810 kn->kn_flags |= EV_EOF;
1811 PIPE_UNLOCK(wpipe);
1812 return (1);
1813 }
1814 kn->kn_data = (wpipe->pipe_buffer.size > 0) ?
1815 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) : PIPE_BUF;
1816 if (wpipe->pipe_state & PIPE_DIRECTW)
1817 kn->kn_data = 0;
1818
1819 PIPE_UNLOCK(wpipe);
1820 return (kn->kn_data >= PIPE_BUF);
1821}
1822
1823static void
1824filt_pipedetach_notsup(struct knote *kn)
1825{
1826
1827}
1828
1829static int
1830filt_pipenotsup(struct knote *kn, long hint)
1831{
1832
1833 return (0);
1834}