Deleted Added
full compact
subr_uio.c (163709) subr_uio.c (164936)
1/*-
2 * Copyright (c) 1982, 1986, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)kern_subr.c 8.3 (Berkeley) 1/21/94
35 */
36
37#include <sys/cdefs.h>
1/*-
2 * Copyright (c) 1982, 1986, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)kern_subr.c 8.3 (Berkeley) 1/21/94
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/kern/kern_subr.c 163709 2006-10-26 21:42:22Z jb $");
38__FBSDID("$FreeBSD: head/sys/kern/kern_subr.c 164936 2006-12-06 06:34:57Z julian $");
39
40#include "opt_zero.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/kernel.h>
45#include <sys/ktr.h>
46#include <sys/limits.h>
47#include <sys/lock.h>
48#include <sys/mutex.h>
49#include <sys/proc.h>
50#include <sys/malloc.h>
51#include <sys/resourcevar.h>
52#include <sys/sched.h>
53#include <sys/sysctl.h>
54#include <sys/vnode.h>
55
56#include <vm/vm.h>
57#include <vm/vm_page.h>
58#include <vm/vm_map.h>
59#ifdef ZERO_COPY_SOCKETS
60#include <vm/vm_param.h>
61#include <vm/vm_object.h>
62#endif
63
64SYSCTL_INT(_kern, KERN_IOV_MAX, iov_max, CTLFLAG_RD, NULL, UIO_MAXIOV,
65 "Maximum number of elements in an I/O vector; sysconf(_SC_IOV_MAX)");
66
67#ifdef ZERO_COPY_SOCKETS
68/* Declared in uipc_socket.c */
69extern int so_zero_copy_receive;
70
71/*
72 * Identify the physical page mapped at the given kernel virtual
73 * address. Insert this physical page into the given address space at
74 * the given virtual address, replacing the physical page, if any,
75 * that already exists there.
76 */
77static int
78vm_pgmoveco(vm_map_t mapa, vm_offset_t kaddr, vm_offset_t uaddr)
79{
80 vm_map_t map = mapa;
81 vm_page_t kern_pg, user_pg;
82 vm_object_t uobject;
83 vm_map_entry_t entry;
84 vm_pindex_t upindex;
85 vm_prot_t prot;
86 boolean_t wired;
87
88 KASSERT((uaddr & PAGE_MASK) == 0,
89 ("vm_pgmoveco: uaddr is not page aligned"));
90
91 /*
92 * Herein the physical page is validated and dirtied. It is
93 * unwired in sf_buf_mext().
94 */
95 kern_pg = PHYS_TO_VM_PAGE(vtophys(kaddr));
96 kern_pg->valid = VM_PAGE_BITS_ALL;
97 KASSERT(kern_pg->queue == PQ_NONE && kern_pg->wire_count == 1,
98 ("vm_pgmoveco: kern_pg is not correctly wired"));
99
100 if ((vm_map_lookup(&map, uaddr,
101 VM_PROT_WRITE, &entry, &uobject,
102 &upindex, &prot, &wired)) != KERN_SUCCESS) {
103 return(EFAULT);
104 }
105 VM_OBJECT_LOCK(uobject);
106retry:
107 if ((user_pg = vm_page_lookup(uobject, upindex)) != NULL) {
108 if (vm_page_sleep_if_busy(user_pg, TRUE, "vm_pgmoveco"))
109 goto retry;
110 vm_page_lock_queues();
111 pmap_remove_all(user_pg);
112 vm_page_free(user_pg);
113 } else {
114 /*
115 * Even if a physical page does not exist in the
116 * object chain's first object, a physical page from a
117 * backing object may be mapped read only.
118 */
119 if (uobject->backing_object != NULL)
120 pmap_remove(map->pmap, uaddr, uaddr + PAGE_SIZE);
121 vm_page_lock_queues();
122 }
123 vm_page_insert(kern_pg, uobject, upindex);
124 vm_page_dirty(kern_pg);
125 vm_page_unlock_queues();
126 VM_OBJECT_UNLOCK(uobject);
127 vm_map_lookup_done(map, entry);
128 return(KERN_SUCCESS);
129}
130#endif /* ZERO_COPY_SOCKETS */
131
132int
133uiomove(void *cp, int n, struct uio *uio)
134{
135 struct thread *td = curthread;
136 struct iovec *iov;
137 u_int cnt;
138 int error = 0;
139 int save = 0;
140
141 KASSERT(uio->uio_rw == UIO_READ || uio->uio_rw == UIO_WRITE,
142 ("uiomove: mode"));
143 KASSERT(uio->uio_segflg != UIO_USERSPACE || uio->uio_td == curthread,
144 ("uiomove proc"));
145 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
146 "Calling uiomove()");
147
148 save = td->td_pflags & TDP_DEADLKTREAT;
149 td->td_pflags |= TDP_DEADLKTREAT;
150
151 while (n > 0 && uio->uio_resid) {
152 iov = uio->uio_iov;
153 cnt = iov->iov_len;
154 if (cnt == 0) {
155 uio->uio_iov++;
156 uio->uio_iovcnt--;
157 continue;
158 }
159 if (cnt > n)
160 cnt = n;
161
162 switch (uio->uio_segflg) {
163
164 case UIO_USERSPACE:
165 if (ticks - PCPU_GET(switchticks) >= hogticks)
166 uio_yield();
167 if (uio->uio_rw == UIO_READ)
168 error = copyout(cp, iov->iov_base, cnt);
169 else
170 error = copyin(iov->iov_base, cp, cnt);
171 if (error)
172 goto out;
173 break;
174
175 case UIO_SYSSPACE:
176 if (uio->uio_rw == UIO_READ)
177 bcopy(cp, iov->iov_base, cnt);
178 else
179 bcopy(iov->iov_base, cp, cnt);
180 break;
181 case UIO_NOCOPY:
182 break;
183 }
184 iov->iov_base = (char *)iov->iov_base + cnt;
185 iov->iov_len -= cnt;
186 uio->uio_resid -= cnt;
187 uio->uio_offset += cnt;
188 cp = (char *)cp + cnt;
189 n -= cnt;
190 }
191out:
192 if (save == 0)
193 td->td_pflags &= ~TDP_DEADLKTREAT;
194 return (error);
195}
196
197/*
198 * Wrapper for uiomove() that validates the arguments against a known-good
199 * kernel buffer. Currently, uiomove accepts a signed (n) argument, which
200 * is almost definitely a bad thing, so we catch that here as well. We
201 * return a runtime failure, but it might be desirable to generate a runtime
202 * assertion failure instead.
203 */
204int
205uiomove_frombuf(void *buf, int buflen, struct uio *uio)
206{
207 unsigned int offset, n;
208
209 if (uio->uio_offset < 0 || uio->uio_resid < 0 ||
210 (offset = uio->uio_offset) != uio->uio_offset)
211 return (EINVAL);
212 if (buflen <= 0 || offset >= buflen)
213 return (0);
214 if ((n = buflen - offset) > INT_MAX)
215 return (EINVAL);
216 return (uiomove((char *)buf + offset, n, uio));
217}
218
219#ifdef ZERO_COPY_SOCKETS
220/*
221 * Experimental support for zero-copy I/O
222 */
223static int
224userspaceco(void *cp, u_int cnt, struct uio *uio, int disposable)
225{
226 struct iovec *iov;
227 int error;
228
229 iov = uio->uio_iov;
230 if (uio->uio_rw == UIO_READ) {
231 if ((so_zero_copy_receive != 0)
232 && ((cnt & PAGE_MASK) == 0)
233 && ((((intptr_t) iov->iov_base) & PAGE_MASK) == 0)
234 && ((uio->uio_offset & PAGE_MASK) == 0)
235 && ((((intptr_t) cp) & PAGE_MASK) == 0)
236 && (disposable != 0)) {
237 /* SOCKET: use page-trading */
238 /*
239 * We only want to call vm_pgmoveco() on
240 * disposeable pages, since it gives the
241 * kernel page to the userland process.
242 */
243 error = vm_pgmoveco(&curproc->p_vmspace->vm_map,
244 (vm_offset_t)cp, (vm_offset_t)iov->iov_base);
245
246 /*
247 * If we get an error back, attempt
248 * to use copyout() instead. The
249 * disposable page should be freed
250 * automatically if we weren't able to move
251 * it into userland.
252 */
253 if (error != 0)
254 error = copyout(cp, iov->iov_base, cnt);
255 } else {
256 error = copyout(cp, iov->iov_base, cnt);
257 }
258 } else {
259 error = copyin(iov->iov_base, cp, cnt);
260 }
261 return (error);
262}
263
264int
265uiomoveco(void *cp, int n, struct uio *uio, int disposable)
266{
267 struct iovec *iov;
268 u_int cnt;
269 int error;
270
271 KASSERT(uio->uio_rw == UIO_READ || uio->uio_rw == UIO_WRITE,
272 ("uiomoveco: mode"));
273 KASSERT(uio->uio_segflg != UIO_USERSPACE || uio->uio_td == curthread,
274 ("uiomoveco proc"));
275
276 while (n > 0 && uio->uio_resid) {
277 iov = uio->uio_iov;
278 cnt = iov->iov_len;
279 if (cnt == 0) {
280 uio->uio_iov++;
281 uio->uio_iovcnt--;
282 continue;
283 }
284 if (cnt > n)
285 cnt = n;
286
287 switch (uio->uio_segflg) {
288
289 case UIO_USERSPACE:
290 if (ticks - PCPU_GET(switchticks) >= hogticks)
291 uio_yield();
292
293 error = userspaceco(cp, cnt, uio, disposable);
294
295 if (error)
296 return (error);
297 break;
298
299 case UIO_SYSSPACE:
300 if (uio->uio_rw == UIO_READ)
301 bcopy(cp, iov->iov_base, cnt);
302 else
303 bcopy(iov->iov_base, cp, cnt);
304 break;
305 case UIO_NOCOPY:
306 break;
307 }
308 iov->iov_base = (char *)iov->iov_base + cnt;
309 iov->iov_len -= cnt;
310 uio->uio_resid -= cnt;
311 uio->uio_offset += cnt;
312 cp = (char *)cp + cnt;
313 n -= cnt;
314 }
315 return (0);
316}
317#endif /* ZERO_COPY_SOCKETS */
318
319/*
320 * Give next character to user as result of read.
321 */
322int
323ureadc(int c, struct uio *uio)
324{
325 struct iovec *iov;
326 char *iov_base;
327
328again:
329 if (uio->uio_iovcnt == 0 || uio->uio_resid == 0)
330 panic("ureadc");
331 iov = uio->uio_iov;
332 if (iov->iov_len == 0) {
333 uio->uio_iovcnt--;
334 uio->uio_iov++;
335 goto again;
336 }
337 switch (uio->uio_segflg) {
338
339 case UIO_USERSPACE:
340 if (subyte(iov->iov_base, c) < 0)
341 return (EFAULT);
342 break;
343
344 case UIO_SYSSPACE:
345 iov_base = iov->iov_base;
346 *iov_base = c;
347 iov->iov_base = iov_base;
348 break;
349
350 case UIO_NOCOPY:
351 break;
352 }
353 iov->iov_base = (char *)iov->iov_base + 1;
354 iov->iov_len--;
355 uio->uio_resid--;
356 uio->uio_offset++;
357 return (0);
358}
359
360/*
361 * General routine to allocate a hash table.
362 */
363void *
364hashinit(int elements, struct malloc_type *type, u_long *hashmask)
365{
366 long hashsize;
367 LIST_HEAD(generic, generic) *hashtbl;
368 int i;
369
370 if (elements <= 0)
371 panic("hashinit: bad elements");
372 for (hashsize = 1; hashsize <= elements; hashsize <<= 1)
373 continue;
374 hashsize >>= 1;
375 hashtbl = malloc((u_long)hashsize * sizeof(*hashtbl), type, M_WAITOK);
376 for (i = 0; i < hashsize; i++)
377 LIST_INIT(&hashtbl[i]);
378 *hashmask = hashsize - 1;
379 return (hashtbl);
380}
381
382void
383hashdestroy(void *vhashtbl, struct malloc_type *type, u_long hashmask)
384{
385 LIST_HEAD(generic, generic) *hashtbl, *hp;
386
387 hashtbl = vhashtbl;
388 for (hp = hashtbl; hp <= &hashtbl[hashmask]; hp++)
389 if (!LIST_EMPTY(hp))
390 panic("hashdestroy: hash not empty");
391 free(hashtbl, type);
392}
393
394static int primes[] = { 1, 13, 31, 61, 127, 251, 509, 761, 1021, 1531, 2039,
395 2557, 3067, 3583, 4093, 4603, 5119, 5623, 6143, 6653,
396 7159, 7673, 8191, 12281, 16381, 24571, 32749 };
397#define NPRIMES (sizeof(primes) / sizeof(primes[0]))
398
399/*
400 * General routine to allocate a prime number sized hash table.
401 */
402void *
403phashinit(int elements, struct malloc_type *type, u_long *nentries)
404{
405 long hashsize;
406 LIST_HEAD(generic, generic) *hashtbl;
407 int i;
408
409 if (elements <= 0)
410 panic("phashinit: bad elements");
411 for (i = 1, hashsize = primes[1]; hashsize <= elements;) {
412 i++;
413 if (i == NPRIMES)
414 break;
415 hashsize = primes[i];
416 }
417 hashsize = primes[i - 1];
418 hashtbl = malloc((u_long)hashsize * sizeof(*hashtbl), type, M_WAITOK);
419 for (i = 0; i < hashsize; i++)
420 LIST_INIT(&hashtbl[i]);
421 *nentries = hashsize;
422 return (hashtbl);
423}
424
425void
426uio_yield(void)
427{
428 struct thread *td;
429
430 td = curthread;
431 mtx_lock_spin(&sched_lock);
432 DROP_GIANT();
39
40#include "opt_zero.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/kernel.h>
45#include <sys/ktr.h>
46#include <sys/limits.h>
47#include <sys/lock.h>
48#include <sys/mutex.h>
49#include <sys/proc.h>
50#include <sys/malloc.h>
51#include <sys/resourcevar.h>
52#include <sys/sched.h>
53#include <sys/sysctl.h>
54#include <sys/vnode.h>
55
56#include <vm/vm.h>
57#include <vm/vm_page.h>
58#include <vm/vm_map.h>
59#ifdef ZERO_COPY_SOCKETS
60#include <vm/vm_param.h>
61#include <vm/vm_object.h>
62#endif
63
64SYSCTL_INT(_kern, KERN_IOV_MAX, iov_max, CTLFLAG_RD, NULL, UIO_MAXIOV,
65 "Maximum number of elements in an I/O vector; sysconf(_SC_IOV_MAX)");
66
67#ifdef ZERO_COPY_SOCKETS
68/* Declared in uipc_socket.c */
69extern int so_zero_copy_receive;
70
71/*
72 * Identify the physical page mapped at the given kernel virtual
73 * address. Insert this physical page into the given address space at
74 * the given virtual address, replacing the physical page, if any,
75 * that already exists there.
76 */
77static int
78vm_pgmoveco(vm_map_t mapa, vm_offset_t kaddr, vm_offset_t uaddr)
79{
80 vm_map_t map = mapa;
81 vm_page_t kern_pg, user_pg;
82 vm_object_t uobject;
83 vm_map_entry_t entry;
84 vm_pindex_t upindex;
85 vm_prot_t prot;
86 boolean_t wired;
87
88 KASSERT((uaddr & PAGE_MASK) == 0,
89 ("vm_pgmoveco: uaddr is not page aligned"));
90
91 /*
92 * Herein the physical page is validated and dirtied. It is
93 * unwired in sf_buf_mext().
94 */
95 kern_pg = PHYS_TO_VM_PAGE(vtophys(kaddr));
96 kern_pg->valid = VM_PAGE_BITS_ALL;
97 KASSERT(kern_pg->queue == PQ_NONE && kern_pg->wire_count == 1,
98 ("vm_pgmoveco: kern_pg is not correctly wired"));
99
100 if ((vm_map_lookup(&map, uaddr,
101 VM_PROT_WRITE, &entry, &uobject,
102 &upindex, &prot, &wired)) != KERN_SUCCESS) {
103 return(EFAULT);
104 }
105 VM_OBJECT_LOCK(uobject);
106retry:
107 if ((user_pg = vm_page_lookup(uobject, upindex)) != NULL) {
108 if (vm_page_sleep_if_busy(user_pg, TRUE, "vm_pgmoveco"))
109 goto retry;
110 vm_page_lock_queues();
111 pmap_remove_all(user_pg);
112 vm_page_free(user_pg);
113 } else {
114 /*
115 * Even if a physical page does not exist in the
116 * object chain's first object, a physical page from a
117 * backing object may be mapped read only.
118 */
119 if (uobject->backing_object != NULL)
120 pmap_remove(map->pmap, uaddr, uaddr + PAGE_SIZE);
121 vm_page_lock_queues();
122 }
123 vm_page_insert(kern_pg, uobject, upindex);
124 vm_page_dirty(kern_pg);
125 vm_page_unlock_queues();
126 VM_OBJECT_UNLOCK(uobject);
127 vm_map_lookup_done(map, entry);
128 return(KERN_SUCCESS);
129}
130#endif /* ZERO_COPY_SOCKETS */
131
132int
133uiomove(void *cp, int n, struct uio *uio)
134{
135 struct thread *td = curthread;
136 struct iovec *iov;
137 u_int cnt;
138 int error = 0;
139 int save = 0;
140
141 KASSERT(uio->uio_rw == UIO_READ || uio->uio_rw == UIO_WRITE,
142 ("uiomove: mode"));
143 KASSERT(uio->uio_segflg != UIO_USERSPACE || uio->uio_td == curthread,
144 ("uiomove proc"));
145 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
146 "Calling uiomove()");
147
148 save = td->td_pflags & TDP_DEADLKTREAT;
149 td->td_pflags |= TDP_DEADLKTREAT;
150
151 while (n > 0 && uio->uio_resid) {
152 iov = uio->uio_iov;
153 cnt = iov->iov_len;
154 if (cnt == 0) {
155 uio->uio_iov++;
156 uio->uio_iovcnt--;
157 continue;
158 }
159 if (cnt > n)
160 cnt = n;
161
162 switch (uio->uio_segflg) {
163
164 case UIO_USERSPACE:
165 if (ticks - PCPU_GET(switchticks) >= hogticks)
166 uio_yield();
167 if (uio->uio_rw == UIO_READ)
168 error = copyout(cp, iov->iov_base, cnt);
169 else
170 error = copyin(iov->iov_base, cp, cnt);
171 if (error)
172 goto out;
173 break;
174
175 case UIO_SYSSPACE:
176 if (uio->uio_rw == UIO_READ)
177 bcopy(cp, iov->iov_base, cnt);
178 else
179 bcopy(iov->iov_base, cp, cnt);
180 break;
181 case UIO_NOCOPY:
182 break;
183 }
184 iov->iov_base = (char *)iov->iov_base + cnt;
185 iov->iov_len -= cnt;
186 uio->uio_resid -= cnt;
187 uio->uio_offset += cnt;
188 cp = (char *)cp + cnt;
189 n -= cnt;
190 }
191out:
192 if (save == 0)
193 td->td_pflags &= ~TDP_DEADLKTREAT;
194 return (error);
195}
196
197/*
198 * Wrapper for uiomove() that validates the arguments against a known-good
199 * kernel buffer. Currently, uiomove accepts a signed (n) argument, which
200 * is almost definitely a bad thing, so we catch that here as well. We
201 * return a runtime failure, but it might be desirable to generate a runtime
202 * assertion failure instead.
203 */
204int
205uiomove_frombuf(void *buf, int buflen, struct uio *uio)
206{
207 unsigned int offset, n;
208
209 if (uio->uio_offset < 0 || uio->uio_resid < 0 ||
210 (offset = uio->uio_offset) != uio->uio_offset)
211 return (EINVAL);
212 if (buflen <= 0 || offset >= buflen)
213 return (0);
214 if ((n = buflen - offset) > INT_MAX)
215 return (EINVAL);
216 return (uiomove((char *)buf + offset, n, uio));
217}
218
219#ifdef ZERO_COPY_SOCKETS
220/*
221 * Experimental support for zero-copy I/O
222 */
223static int
224userspaceco(void *cp, u_int cnt, struct uio *uio, int disposable)
225{
226 struct iovec *iov;
227 int error;
228
229 iov = uio->uio_iov;
230 if (uio->uio_rw == UIO_READ) {
231 if ((so_zero_copy_receive != 0)
232 && ((cnt & PAGE_MASK) == 0)
233 && ((((intptr_t) iov->iov_base) & PAGE_MASK) == 0)
234 && ((uio->uio_offset & PAGE_MASK) == 0)
235 && ((((intptr_t) cp) & PAGE_MASK) == 0)
236 && (disposable != 0)) {
237 /* SOCKET: use page-trading */
238 /*
239 * We only want to call vm_pgmoveco() on
240 * disposeable pages, since it gives the
241 * kernel page to the userland process.
242 */
243 error = vm_pgmoveco(&curproc->p_vmspace->vm_map,
244 (vm_offset_t)cp, (vm_offset_t)iov->iov_base);
245
246 /*
247 * If we get an error back, attempt
248 * to use copyout() instead. The
249 * disposable page should be freed
250 * automatically if we weren't able to move
251 * it into userland.
252 */
253 if (error != 0)
254 error = copyout(cp, iov->iov_base, cnt);
255 } else {
256 error = copyout(cp, iov->iov_base, cnt);
257 }
258 } else {
259 error = copyin(iov->iov_base, cp, cnt);
260 }
261 return (error);
262}
263
264int
265uiomoveco(void *cp, int n, struct uio *uio, int disposable)
266{
267 struct iovec *iov;
268 u_int cnt;
269 int error;
270
271 KASSERT(uio->uio_rw == UIO_READ || uio->uio_rw == UIO_WRITE,
272 ("uiomoveco: mode"));
273 KASSERT(uio->uio_segflg != UIO_USERSPACE || uio->uio_td == curthread,
274 ("uiomoveco proc"));
275
276 while (n > 0 && uio->uio_resid) {
277 iov = uio->uio_iov;
278 cnt = iov->iov_len;
279 if (cnt == 0) {
280 uio->uio_iov++;
281 uio->uio_iovcnt--;
282 continue;
283 }
284 if (cnt > n)
285 cnt = n;
286
287 switch (uio->uio_segflg) {
288
289 case UIO_USERSPACE:
290 if (ticks - PCPU_GET(switchticks) >= hogticks)
291 uio_yield();
292
293 error = userspaceco(cp, cnt, uio, disposable);
294
295 if (error)
296 return (error);
297 break;
298
299 case UIO_SYSSPACE:
300 if (uio->uio_rw == UIO_READ)
301 bcopy(cp, iov->iov_base, cnt);
302 else
303 bcopy(iov->iov_base, cp, cnt);
304 break;
305 case UIO_NOCOPY:
306 break;
307 }
308 iov->iov_base = (char *)iov->iov_base + cnt;
309 iov->iov_len -= cnt;
310 uio->uio_resid -= cnt;
311 uio->uio_offset += cnt;
312 cp = (char *)cp + cnt;
313 n -= cnt;
314 }
315 return (0);
316}
317#endif /* ZERO_COPY_SOCKETS */
318
319/*
320 * Give next character to user as result of read.
321 */
322int
323ureadc(int c, struct uio *uio)
324{
325 struct iovec *iov;
326 char *iov_base;
327
328again:
329 if (uio->uio_iovcnt == 0 || uio->uio_resid == 0)
330 panic("ureadc");
331 iov = uio->uio_iov;
332 if (iov->iov_len == 0) {
333 uio->uio_iovcnt--;
334 uio->uio_iov++;
335 goto again;
336 }
337 switch (uio->uio_segflg) {
338
339 case UIO_USERSPACE:
340 if (subyte(iov->iov_base, c) < 0)
341 return (EFAULT);
342 break;
343
344 case UIO_SYSSPACE:
345 iov_base = iov->iov_base;
346 *iov_base = c;
347 iov->iov_base = iov_base;
348 break;
349
350 case UIO_NOCOPY:
351 break;
352 }
353 iov->iov_base = (char *)iov->iov_base + 1;
354 iov->iov_len--;
355 uio->uio_resid--;
356 uio->uio_offset++;
357 return (0);
358}
359
360/*
361 * General routine to allocate a hash table.
362 */
363void *
364hashinit(int elements, struct malloc_type *type, u_long *hashmask)
365{
366 long hashsize;
367 LIST_HEAD(generic, generic) *hashtbl;
368 int i;
369
370 if (elements <= 0)
371 panic("hashinit: bad elements");
372 for (hashsize = 1; hashsize <= elements; hashsize <<= 1)
373 continue;
374 hashsize >>= 1;
375 hashtbl = malloc((u_long)hashsize * sizeof(*hashtbl), type, M_WAITOK);
376 for (i = 0; i < hashsize; i++)
377 LIST_INIT(&hashtbl[i]);
378 *hashmask = hashsize - 1;
379 return (hashtbl);
380}
381
382void
383hashdestroy(void *vhashtbl, struct malloc_type *type, u_long hashmask)
384{
385 LIST_HEAD(generic, generic) *hashtbl, *hp;
386
387 hashtbl = vhashtbl;
388 for (hp = hashtbl; hp <= &hashtbl[hashmask]; hp++)
389 if (!LIST_EMPTY(hp))
390 panic("hashdestroy: hash not empty");
391 free(hashtbl, type);
392}
393
394static int primes[] = { 1, 13, 31, 61, 127, 251, 509, 761, 1021, 1531, 2039,
395 2557, 3067, 3583, 4093, 4603, 5119, 5623, 6143, 6653,
396 7159, 7673, 8191, 12281, 16381, 24571, 32749 };
397#define NPRIMES (sizeof(primes) / sizeof(primes[0]))
398
399/*
400 * General routine to allocate a prime number sized hash table.
401 */
402void *
403phashinit(int elements, struct malloc_type *type, u_long *nentries)
404{
405 long hashsize;
406 LIST_HEAD(generic, generic) *hashtbl;
407 int i;
408
409 if (elements <= 0)
410 panic("phashinit: bad elements");
411 for (i = 1, hashsize = primes[1]; hashsize <= elements;) {
412 i++;
413 if (i == NPRIMES)
414 break;
415 hashsize = primes[i];
416 }
417 hashsize = primes[i - 1];
418 hashtbl = malloc((u_long)hashsize * sizeof(*hashtbl), type, M_WAITOK);
419 for (i = 0; i < hashsize; i++)
420 LIST_INIT(&hashtbl[i]);
421 *nentries = hashsize;
422 return (hashtbl);
423}
424
425void
426uio_yield(void)
427{
428 struct thread *td;
429
430 td = curthread;
431 mtx_lock_spin(&sched_lock);
432 DROP_GIANT();
433#ifdef KSE
434 sched_prio(td, td->td_ksegrp->kg_user_pri); /* XXXKSE */
435#else
436 sched_prio(td, td->td_user_pri);
433 sched_prio(td, td->td_user_pri);
437#endif
438 mi_switch(SW_INVOL, NULL);
439 mtx_unlock_spin(&sched_lock);
440 PICKUP_GIANT();
441}
442
443int
444copyinfrom(const void * __restrict src, void * __restrict dst, size_t len,
445 int seg)
446{
447 int error = 0;
448
449 switch (seg) {
450 case UIO_USERSPACE:
451 error = copyin(src, dst, len);
452 break;
453 case UIO_SYSSPACE:
454 bcopy(src, dst, len);
455 break;
456 default:
457 panic("copyinfrom: bad seg %d\n", seg);
458 }
459 return (error);
460}
461
462int
463copyinstrfrom(const void * __restrict src, void * __restrict dst, size_t len,
464 size_t * __restrict copied, int seg)
465{
466 int error = 0;
467
468 switch (seg) {
469 case UIO_USERSPACE:
470 error = copyinstr(src, dst, len, copied);
471 break;
472 case UIO_SYSSPACE:
473 error = copystr(src, dst, len, copied);
474 break;
475 default:
476 panic("copyinstrfrom: bad seg %d\n", seg);
477 }
478 return (error);
479}
480
481int
482copyiniov(struct iovec *iovp, u_int iovcnt, struct iovec **iov, int error)
483{
484 u_int iovlen;
485
486 *iov = NULL;
487 if (iovcnt > UIO_MAXIOV)
488 return (error);
489 iovlen = iovcnt * sizeof (struct iovec);
490 *iov = malloc(iovlen, M_IOV, M_WAITOK);
491 error = copyin(iovp, *iov, iovlen);
492 if (error) {
493 free(*iov, M_IOV);
494 *iov = NULL;
495 }
496 return (error);
497}
498
499int
500copyinuio(struct iovec *iovp, u_int iovcnt, struct uio **uiop)
501{
502 struct iovec *iov;
503 struct uio *uio;
504 u_int iovlen;
505 int error, i;
506
507 *uiop = NULL;
508 if (iovcnt > UIO_MAXIOV)
509 return (EINVAL);
510 iovlen = iovcnt * sizeof (struct iovec);
511 uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK);
512 iov = (struct iovec *)(uio + 1);
513 error = copyin(iovp, iov, iovlen);
514 if (error) {
515 free(uio, M_IOV);
516 return (error);
517 }
518 uio->uio_iov = iov;
519 uio->uio_iovcnt = iovcnt;
520 uio->uio_segflg = UIO_USERSPACE;
521 uio->uio_offset = -1;
522 uio->uio_resid = 0;
523 for (i = 0; i < iovcnt; i++) {
524 if (iov->iov_len > INT_MAX - uio->uio_resid) {
525 free(uio, M_IOV);
526 return (EINVAL);
527 }
528 uio->uio_resid += iov->iov_len;
529 iov++;
530 }
531 *uiop = uio;
532 return (0);
533}
534
535struct uio *
536cloneuio(struct uio *uiop)
537{
538 struct uio *uio;
539 int iovlen;
540
541 iovlen = uiop->uio_iovcnt * sizeof (struct iovec);
542 uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK);
543 *uio = *uiop;
544 uio->uio_iov = (struct iovec *)(uio + 1);
545 bcopy(uiop->uio_iov, uio->uio_iov, iovlen);
546 return (uio);
547}
434 mi_switch(SW_INVOL, NULL);
435 mtx_unlock_spin(&sched_lock);
436 PICKUP_GIANT();
437}
438
439int
440copyinfrom(const void * __restrict src, void * __restrict dst, size_t len,
441 int seg)
442{
443 int error = 0;
444
445 switch (seg) {
446 case UIO_USERSPACE:
447 error = copyin(src, dst, len);
448 break;
449 case UIO_SYSSPACE:
450 bcopy(src, dst, len);
451 break;
452 default:
453 panic("copyinfrom: bad seg %d\n", seg);
454 }
455 return (error);
456}
457
458int
459copyinstrfrom(const void * __restrict src, void * __restrict dst, size_t len,
460 size_t * __restrict copied, int seg)
461{
462 int error = 0;
463
464 switch (seg) {
465 case UIO_USERSPACE:
466 error = copyinstr(src, dst, len, copied);
467 break;
468 case UIO_SYSSPACE:
469 error = copystr(src, dst, len, copied);
470 break;
471 default:
472 panic("copyinstrfrom: bad seg %d\n", seg);
473 }
474 return (error);
475}
476
477int
478copyiniov(struct iovec *iovp, u_int iovcnt, struct iovec **iov, int error)
479{
480 u_int iovlen;
481
482 *iov = NULL;
483 if (iovcnt > UIO_MAXIOV)
484 return (error);
485 iovlen = iovcnt * sizeof (struct iovec);
486 *iov = malloc(iovlen, M_IOV, M_WAITOK);
487 error = copyin(iovp, *iov, iovlen);
488 if (error) {
489 free(*iov, M_IOV);
490 *iov = NULL;
491 }
492 return (error);
493}
494
495int
496copyinuio(struct iovec *iovp, u_int iovcnt, struct uio **uiop)
497{
498 struct iovec *iov;
499 struct uio *uio;
500 u_int iovlen;
501 int error, i;
502
503 *uiop = NULL;
504 if (iovcnt > UIO_MAXIOV)
505 return (EINVAL);
506 iovlen = iovcnt * sizeof (struct iovec);
507 uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK);
508 iov = (struct iovec *)(uio + 1);
509 error = copyin(iovp, iov, iovlen);
510 if (error) {
511 free(uio, M_IOV);
512 return (error);
513 }
514 uio->uio_iov = iov;
515 uio->uio_iovcnt = iovcnt;
516 uio->uio_segflg = UIO_USERSPACE;
517 uio->uio_offset = -1;
518 uio->uio_resid = 0;
519 for (i = 0; i < iovcnt; i++) {
520 if (iov->iov_len > INT_MAX - uio->uio_resid) {
521 free(uio, M_IOV);
522 return (EINVAL);
523 }
524 uio->uio_resid += iov->iov_len;
525 iov++;
526 }
527 *uiop = uio;
528 return (0);
529}
530
531struct uio *
532cloneuio(struct uio *uiop)
533{
534 struct uio *uio;
535 int iovlen;
536
537 iovlen = uiop->uio_iovcnt * sizeof (struct iovec);
538 uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK);
539 *uio = *uiop;
540 uio->uio_iov = (struct iovec *)(uio + 1);
541 bcopy(uiop->uio_iov, uio->uio_iov, iovlen);
542 return (uio);
543}