Deleted Added
full compact
subr_smp.c (75724) subr_smp.c (76078)
1/*
1/*
2 * Copyright (c) 1996, by Steve Passe
3 * All rights reserved.
2 * Copyright (c) 2001
3 * John Baldwin <jhb@FreeBSD.org>. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. The name of the developer may NOT be used to endorse or promote products
11 * derived from this software without specific prior written permission.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the author nor the names of any co-contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
12 *
16 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * THIS SOFTWARE IS PROVIDED BY JOHN BALDWIN AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
20 * ARE DISCLAIMED. IN NO EVENT SHALL JOHN BALDWIN OR THE VOICES IN HIS HEAD
21 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27 * THE POSSIBILITY OF SUCH DAMAGE.
24 *
28 *
25 * $FreeBSD: head/sys/kern/subr_smp.c 75724 2001-04-20 01:09:05Z jhb $
29 * $FreeBSD: head/sys/kern/subr_smp.c 76078 2001-04-27 19:28:25Z jhb $
26 */
27
30 */
31
28#include "opt_cpu.h"
32/*
33 * This module holds the global variables and machine independent functions
34 * used for the kernel SMP support. It also provides MI support for per-cpu
35 * data.
36 */
29
37
30#ifdef SMP
31#include <machine/smptests.h>
32#else
33#error
34#endif
35
36#include <sys/param.h>
38#include <sys/param.h>
37#include <sys/bus.h>
38#include <sys/systm.h>
39#include <sys/systm.h>
39#include <sys/kernel.h>
40#include <sys/ipl.h>
41#include <sys/ktr.h>
40#include <sys/proc.h>
42#include <sys/proc.h>
41#include <sys/sysctl.h>
43#include <sys/lock.h>
42#include <sys/malloc.h>
44#include <sys/malloc.h>
43#include <sys/memrange.h>
44#include <sys/mutex.h>
45#include <sys/mutex.h>
45#include <sys/dkstat.h>
46#include <sys/cons.h> /* cngetc() */
46#include <sys/kernel.h>
47#include <sys/smp.h>
48#include <sys/sysctl.h>
47
48#include <vm/vm.h>
49
50#include <vm/vm.h>
49#include <vm/vm_param.h>
50#include <vm/pmap.h>
51#include <vm/pmap.h>
51#include <vm/vm_kern.h>
52#include <vm/vm_extern.h>
53#include <sys/lock.h>
54#include <vm/vm_map.h>
55#include <sys/user.h>
52#include <vm/vm_map.h>
53#include <sys/user.h>
56#ifdef GPROF
57#include <sys/gmon.h>
58#endif
54#include <sys/dkstat.h>
59
55
60#include <machine/smp.h>
61#include <machine/apic.h>
62#include <machine/atomic.h>
56#include <machine/atomic.h>
63#include <machine/cpufunc.h>
64#include <machine/ipl.h>
65#include <machine/mpapic.h>
66#include <machine/psl.h>
67#include <machine/segments.h>
68#include <machine/smptests.h> /** TEST_DEFAULT_CONFIG, TEST_TEST1 */
69#include <machine/tss.h>
70#include <machine/specialreg.h>
71#include <machine/globaldata.h>
57#include <machine/globaldata.h>
58#include <machine/pmap.h>
59#include <machine/clock.h>
72
60
73#if defined(APIC_IO)
74#include <machine/md_var.h> /* setidt() */
75#include <i386/isa/icu.h> /* IPIs */
76#include <i386/isa/intr_machdep.h> /* IPIs */
77#endif /* APIC_IO */
61volatile u_int stopped_cpus;
62volatile u_int started_cpus;
78
63
79#if defined(TEST_DEFAULT_CONFIG)
80#define MPFPS_MPFB1 TEST_DEFAULT_CONFIG
81#else
82#define MPFPS_MPFB1 mpfps->mpfb1
83#endif /* TEST_DEFAULT_CONFIG */
64void (*cpustop_restartfunc) __P((void));
65int mp_ncpus;
84
66
85#define WARMBOOT_TARGET 0
86#define WARMBOOT_OFF (KERNBASE + 0x0467)
87#define WARMBOOT_SEG (KERNBASE + 0x0469)
67volatile int smp_started;
68u_int all_cpus;
88
69
89#ifdef PC98
90#define BIOS_BASE (0xe8000)
91#define BIOS_SIZE (0x18000)
92#else
93#define BIOS_BASE (0xf0000)
94#define BIOS_SIZE (0x10000)
95#endif
96#define BIOS_COUNT (BIOS_SIZE/4)
70static struct globaldata *cpuid_to_globaldata[MAXCPU];
71struct cpuhead cpuhead = SLIST_HEAD_INITIALIZER(cpuhead);
97
72
98#define CMOS_REG (0x70)
99#define CMOS_DATA (0x71)
100#define BIOS_RESET (0x0f)
101#define BIOS_WARM (0x0a)
73SYSCTL_NODE(_kern, OID_AUTO, smp, CTLFLAG_RD, NULL, "Kernel SMP");
102
74
103#define PROCENTRY_FLAG_EN 0x01
104#define PROCENTRY_FLAG_BP 0x02
105#define IOAPICENTRY_FLAG_EN 0x01
75int smp_active = 0; /* are the APs allowed to run? */
76SYSCTL_INT(_kern_smp, OID_AUTO, active, CTLFLAG_RW, &smp_active, 0, "");
106
77
78int smp_cpus = 1; /* how many cpu's running */
79SYSCTL_INT(_kern_smp, OID_AUTO, cpus, CTLFLAG_RD, &smp_cpus, 0, "");
107
80
108/* MP Floating Pointer Structure */
109typedef struct MPFPS {
110 char signature[4];
111 void *pap;
112 u_char length;
113 u_char spec_rev;
114 u_char checksum;
115 u_char mpfb1;
116 u_char mpfb2;
117 u_char mpfb3;
118 u_char mpfb4;
119 u_char mpfb5;
120} *mpfps_t;
121
122/* MP Configuration Table Header */
123typedef struct MPCTH {
124 char signature[4];
125 u_short base_table_length;
126 u_char spec_rev;
127 u_char checksum;
128 u_char oem_id[8];
129 u_char product_id[12];
130 void *oem_table_pointer;
131 u_short oem_table_size;
132 u_short entry_count;
133 void *apic_address;
134 u_short extended_table_length;
135 u_char extended_table_checksum;
136 u_char reserved;
137} *mpcth_t;
138
139
140typedef struct PROCENTRY {
141 u_char type;
142 u_char apic_id;
143 u_char apic_version;
144 u_char cpu_flags;
145 u_long cpu_signature;
146 u_long feature_flags;
147 u_long reserved1;
148 u_long reserved2;
149} *proc_entry_ptr;
150
151typedef struct BUSENTRY {
152 u_char type;
153 u_char bus_id;
154 char bus_type[6];
155} *bus_entry_ptr;
156
157typedef struct IOAPICENTRY {
158 u_char type;
159 u_char apic_id;
160 u_char apic_version;
161 u_char apic_flags;
162 void *apic_address;
163} *io_apic_entry_ptr;
164
165typedef struct INTENTRY {
166 u_char type;
167 u_char int_type;
168 u_short int_flags;
169 u_char src_bus_id;
170 u_char src_bus_irq;
171 u_char dst_apic_id;
172 u_char dst_apic_int;
173} *int_entry_ptr;
174
175/* descriptions of MP basetable entries */
176typedef struct BASETABLE_ENTRY {
177 u_char type;
178 u_char length;
179 char name[16];
180} basetable_entry;
181
182/*
183 * this code MUST be enabled here and in mpboot.s.
184 * it follows the very early stages of AP boot by placing values in CMOS ram.
185 * it NORMALLY will never be needed and thus the primitive method for enabling.
186 *
187#define CHECK_POINTS
188 */
189
190#if defined(CHECK_POINTS) && !defined(PC98)
191#define CHECK_READ(A) (outb(CMOS_REG, (A)), inb(CMOS_DATA))
192#define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
193
194#define CHECK_INIT(D); \
195 CHECK_WRITE(0x34, (D)); \
196 CHECK_WRITE(0x35, (D)); \
197 CHECK_WRITE(0x36, (D)); \
198 CHECK_WRITE(0x37, (D)); \
199 CHECK_WRITE(0x38, (D)); \
200 CHECK_WRITE(0x39, (D));
201
202#define CHECK_PRINT(S); \
203 printf("%s: %d, %d, %d, %d, %d, %d\n", \
204 (S), \
205 CHECK_READ(0x34), \
206 CHECK_READ(0x35), \
207 CHECK_READ(0x36), \
208 CHECK_READ(0x37), \
209 CHECK_READ(0x38), \
210 CHECK_READ(0x39));
211
212#else /* CHECK_POINTS */
213
214#define CHECK_INIT(D)
215#define CHECK_PRINT(S)
216
217#endif /* CHECK_POINTS */
218
219/*
220 * Values to send to the POST hardware.
221 */
222#define MP_BOOTADDRESS_POST 0x10
223#define MP_PROBE_POST 0x11
224#define MPTABLE_PASS1_POST 0x12
225
226#define MP_START_POST 0x13
227#define MP_ENABLE_POST 0x14
228#define MPTABLE_PASS2_POST 0x15
229
230#define START_ALL_APS_POST 0x16
231#define INSTALL_AP_TRAMP_POST 0x17
232#define START_AP_POST 0x18
233
234#define MP_ANNOUNCE_POST 0x19
235
236/* used to hold the AP's until we are ready to release them */
237static struct mtx ap_boot_mtx;
238
239/** XXX FIXME: where does this really belong, isa.h/isa.c perhaps? */
240int current_postcode;
241
242/** XXX FIXME: what system files declare these??? */
243extern struct region_descriptor r_gdt, r_idt;
244
245int bsp_apic_ready = 0; /* flags useability of BSP apic */
246int mp_ncpus; /* # of CPUs, including BSP */
247int mp_naps; /* # of Applications processors */
248int mp_nbusses; /* # of busses */
249int mp_napics; /* # of IO APICs */
250int boot_cpu_id; /* designated BSP */
251vm_offset_t cpu_apic_address;
252vm_offset_t io_apic_address[NAPICID]; /* NAPICID is more than enough */
253extern int nkpt;
254
255u_int32_t cpu_apic_versions[MAXCPU];
256u_int32_t *io_apic_versions;
257
258#ifdef APIC_INTR_REORDER
259struct {
260 volatile int *location;
261 int bit;
262} apic_isrbit_location[32];
263#endif
264
265struct apic_intmapinfo int_to_apicintpin[APIC_INTMAPSIZE];
266
267/*
268 * APIC ID logical/physical mapping structures.
269 * We oversize these to simplify boot-time config.
270 */
271int cpu_num_to_apic_id[NAPICID];
272int io_num_to_apic_id[NAPICID];
273int apic_id_to_logical[NAPICID];
274
275
276/* Bitmap of all available CPUs */
277u_int all_cpus;
278
279/* AP uses this during bootstrap. Do not staticize. */
280char *bootSTK;
281static int bootAP;
282
283/* Hotwire a 0->4MB V==P mapping */
284extern pt_entry_t *KPTphys;
285
286/* SMP page table page */
287extern pt_entry_t *SMPpt;
288
289struct pcb stoppcbs[MAXCPU];
290
291int smp_started; /* has the system started? */
292int smp_active = 0; /* are the APs allowed to run? */
293SYSCTL_INT(_machdep, OID_AUTO, smp_active, CTLFLAG_RW, &smp_active, 0, "");
294
295/* XXX maybe should be hw.ncpu */
296static int smp_cpus = 1; /* how many cpu's running */
297SYSCTL_INT(_machdep, OID_AUTO, smp_cpus, CTLFLAG_RD, &smp_cpus, 0, "");
298
299int invltlb_ok = 0; /* throttle smp_invltlb() till safe */
300SYSCTL_INT(_machdep, OID_AUTO, invltlb_ok, CTLFLAG_RW, &invltlb_ok, 0, "");
301
302/* Enable forwarding of a signal to a process running on a different CPU */
303static int forward_signal_enabled = 1;
81/* Enable forwarding of a signal to a process running on a different CPU */
82static int forward_signal_enabled = 1;
304SYSCTL_INT(_machdep, OID_AUTO, forward_signal_enabled, CTLFLAG_RW,
83SYSCTL_INT(_kern_smp, OID_AUTO, forward_signal_enabled, CTLFLAG_RW,
305 &forward_signal_enabled, 0, "");
306
307/* Enable forwarding of roundrobin to all other cpus */
308static int forward_roundrobin_enabled = 1;
84 &forward_signal_enabled, 0, "");
85
86/* Enable forwarding of roundrobin to all other cpus */
87static int forward_roundrobin_enabled = 1;
309SYSCTL_INT(_machdep, OID_AUTO, forward_roundrobin_enabled, CTLFLAG_RW,
88SYSCTL_INT(_kern_smp, OID_AUTO, forward_roundrobin_enabled, CTLFLAG_RW,
310 &forward_roundrobin_enabled, 0, "");
311
89 &forward_roundrobin_enabled, 0, "");
90
91/* Variables needed for SMP rendezvous. */
92static void (*smp_rv_setup_func)(void *arg);
93static void (*smp_rv_action_func)(void *arg);
94static void (*smp_rv_teardown_func)(void *arg);
95static void *smp_rv_func_arg;
96static volatile int smp_rv_waiters[2];
97static struct mtx smp_rv_mtx;
312
313/*
98
99/*
314 * Local data and functions.
100 * Initialize MI SMP variables and call the MD SMP initialization code.
315 */
101 */
316
317/* Set to 1 once we're ready to let the APs out of the pen. */
318static volatile int aps_ready = 0;
319
320static int mp_capable;
321static u_int boot_address;
322static u_int base_memory;
323
324static int picmode; /* 0: virtual wire mode, 1: PIC mode */
325static mpfps_t mpfps;
326static int search_for_sig(u_int32_t target, int count);
327static void mp_enable(u_int boot_addr);
328
329static void mptable_pass1(void);
330static int mptable_pass2(void);
331static void default_mp_table(int type);
332static void fix_mp_table(void);
333static void setup_apic_irq_mapping(void);
334static void init_locks(void);
335static int start_all_aps(u_int boot_addr);
336static void install_ap_tramp(u_int boot_addr);
337static int start_ap(int logicalCpu, u_int boot_addr);
338void ap_init(void);
339static int apic_int_is_bus_type(int intr, int bus_type);
340static void release_aps(void *dummy);
341
342/*
343 * initialize all the SMP locks
344 */
345
346/* critical region around IO APIC, apic_imen */
347struct mtx imen_mtx;
348
349/* lock region used by kernel profiling */
350struct mtx mcount_mtx;
351
352#ifdef USE_COMLOCK
353/* locks com (tty) data/hardware accesses: a FASTINTR() */
354struct mtx com_mtx;
355#endif /* USE_COMLOCK */
356
357/* lock around the MP rendezvous */
358static struct mtx smp_rv_mtx;
359
360static void
102static void
361init_locks(void)
103mp_start(void *dummy)
362{
104{
363 /*
364 * XXX The mcount mutex probably needs to be statically initialized,
365 * since it will be used even in the function calls that get us to this
366 * point.
367 */
368 mtx_init(&mcount_mtx, "mcount", MTX_DEF);
369
105
370 mtx_init(&smp_rv_mtx, "smp rendezvous", MTX_SPIN);
106 /* Probe for MP hardware. */
107 if (cpu_mp_probe() == 0)
108 return;
371
109
372#ifdef USE_COMLOCK
373 mtx_init(&com_mtx, "com", MTX_SPIN);
374#endif /* USE_COMLOCK */
375
376 mtx_init(&ap_boot_mtx, "ap boot", MTX_SPIN);
110 mtx_init(&smp_rv_mtx, "smp rendezvous", MTX_SPIN);
111 cpu_mp_start();
112 printf("FreeBSD/SMP: Multiprocessor System Detected: %d CPUs\n",
113 mp_ncpus);
114 cpu_mp_announce();
377}
115}
116SYSINIT(cpu_mp, SI_SUB_CPU, SI_ORDER_SECOND, mp_start, NULL)
378
379/*
117
118/*
380 * Calculate usable address in base memory for AP trampoline code.
119 * Register a struct globaldata.
381 */
120 */
382u_int
383mp_bootaddress(u_int basemem)
384{
385 POSTCODE(MP_BOOTADDRESS_POST);
386
387 base_memory = basemem * 1024; /* convert to bytes */
388
389 boot_address = base_memory & ~0xfff; /* round down to 4k boundary */
390 if ((base_memory - boot_address) < bootMP_size)
391 boot_address -= 4096; /* not enough, lower by 4k */
392
393 return boot_address;
394}
395
396
397/*
398 * Look for an Intel MP spec table (ie, SMP capable hardware).
399 */
400int
401mp_probe(void)
402{
403 int x;
404 u_long segment;
405 u_int32_t target;
406
407 POSTCODE(MP_PROBE_POST);
408
409 /* see if EBDA exists */
410 if ((segment = (u_long) * (u_short *) (KERNBASE + 0x40e)) != 0) {
411 /* search first 1K of EBDA */
412 target = (u_int32_t) (segment << 4);
413 if ((x = search_for_sig(target, 1024 / 4)) >= 0)
414 goto found;
415 } else {
416 /* last 1K of base memory, effective 'top of base' passed in */
417 target = (u_int32_t) (base_memory - 0x400);
418 if ((x = search_for_sig(target, 1024 / 4)) >= 0)
419 goto found;
420 }
421
422 /* search the BIOS */
423 target = (u_int32_t) BIOS_BASE;
424 if ((x = search_for_sig(target, BIOS_COUNT)) >= 0)
425 goto found;
426
427 /* nothing found */
428 mpfps = (mpfps_t)0;
429 mp_capable = 0;
430 return 0;
431
432found:
433 /* calculate needed resources */
434 mpfps = (mpfps_t)x;
435 mptable_pass1();
436
437 /* flag fact that we are running multiple processors */
438 mp_capable = 1;
439 return 1;
440}
441
442
443/*
444 * Initialize the SMP hardware and the APIC and start up the AP's.
445 */
446void
121void
447mp_start(void)
122globaldata_register(struct globaldata *globaldata)
448{
123{
449 POSTCODE(MP_START_POST);
450
124
451 /* look for MP capable motherboard */
452 if (mp_capable)
453 mp_enable(boot_address);
454 else
455 panic("MP hardware not found!");
125 KASSERT(globaldata->gd_cpuid >= 0 && globaldata->gd_cpuid < MAXCPU,
126 ("globaldata_register: invalid cpuid"));
127 cpuid_to_globaldata[globaldata->gd_cpuid] = globaldata;
128 SLIST_INSERT_HEAD(&cpuhead, globaldata, gd_allcpu);
456}
457
129}
130
458
459/*
131/*
460 * Print various information about the SMP system hardware and setup.
132 * Locate a struct globaldata by cpu id.
461 */
133 */
462void
463mp_announce(void)
134struct globaldata *
135globaldata_find(u_int cpuid)
464{
136{
465 int x;
466
137
467 POSTCODE(MP_ANNOUNCE_POST);
468
469 printf("FreeBSD/SMP: Multiprocessor motherboard\n");
470 printf(" cpu0 (BSP): apic id: %2d", CPU_TO_ID(0));
471 printf(", version: 0x%08x", cpu_apic_versions[0]);
472 printf(", at 0x%08x\n", cpu_apic_address);
473 for (x = 1; x <= mp_naps; ++x) {
474 printf(" cpu%d (AP): apic id: %2d", x, CPU_TO_ID(x));
475 printf(", version: 0x%08x", cpu_apic_versions[x]);
476 printf(", at 0x%08x\n", cpu_apic_address);
477 }
478
479#if defined(APIC_IO)
480 for (x = 0; x < mp_napics; ++x) {
481 printf(" io%d (APIC): apic id: %2d", x, IO_TO_ID(x));
482 printf(", version: 0x%08x", io_apic_versions[x]);
483 printf(", at 0x%08x\n", io_apic_address[x]);
484 }
485#else
486 printf(" Warning: APIC I/O disabled\n");
487#endif /* APIC_IO */
138 return (cpuid_to_globaldata[cpuid]);
488}
489
139}
140
490/*
491 * AP cpu's call this to sync up protected mode.
492 */
493void
141void
494init_secondary(void)
142forward_signal(struct proc *p)
495{
143{
496 int gsel_tss;
497 int x, myid = bootAP;
144 int id;
498
145
499 gdt_segs[GPRIV_SEL].ssd_base = (int) &SMP_prvspace[myid];
500 gdt_segs[GPROC0_SEL].ssd_base =
501 (int) &SMP_prvspace[myid].globaldata.gd_common_tss;
502 SMP_prvspace[myid].globaldata.gd_prvspace =
503 &SMP_prvspace[myid].globaldata;
504
505 for (x = 0; x < NGDT; x++) {
506 ssdtosd(&gdt_segs[x], &gdt[myid * NGDT + x].sd);
507 }
508
509 r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
510 r_gdt.rd_base = (int) &gdt[myid * NGDT];
511 lgdt(&r_gdt); /* does magic intra-segment return */
512
513 lidt(&r_idt);
514
515 lldt(_default_ldt);
516 PCPU_SET(currentldt, _default_ldt);
517
518 gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
519 gdt[myid * NGDT + GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;
520 PCPU_SET(common_tss.tss_esp0, 0); /* not used until after switch */
521 PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
522 PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
523 PCPU_SET(tss_gdt, &gdt[myid * NGDT + GPROC0_SEL].sd);
524 PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
525 ltr(gsel_tss);
526
527 pmap_set_opt();
528}
529
530
531#if defined(APIC_IO)
532/*
533 * Final configuration of the BSP's local APIC:
534 * - disable 'pic mode'.
535 * - disable 'virtual wire mode'.
536 * - enable NMI.
537 */
538void
539bsp_apic_configure(void)
540{
541 u_char byte;
542 u_int32_t temp;
543
544 /* leave 'pic mode' if necessary */
545 if (picmode) {
546 outb(0x22, 0x70); /* select IMCR */
547 byte = inb(0x23); /* current contents */
548 byte |= 0x01; /* mask external INTR */
549 outb(0x23, byte); /* disconnect 8259s/NMI */
550 }
551
552 /* mask lint0 (the 8259 'virtual wire' connection) */
553 temp = lapic.lvt_lint0;
554 temp |= APIC_LVT_M; /* set the mask */
555 lapic.lvt_lint0 = temp;
556
557 /* setup lint1 to handle NMI */
558 temp = lapic.lvt_lint1;
559 temp &= ~APIC_LVT_M; /* clear the mask */
560 lapic.lvt_lint1 = temp;
561
562 if (bootverbose)
563 apic_dump("bsp_apic_configure()");
564}
565#endif /* APIC_IO */
566
567
568/*******************************************************************
569 * local functions and data
570 */
571
572/*
573 * start the SMP system
574 */
575static void
576mp_enable(u_int boot_addr)
577{
578 int x;
579#if defined(APIC_IO)
580 int apic;
581 u_int ux;
582#endif /* APIC_IO */
583
584 POSTCODE(MP_ENABLE_POST);
585
586 /* turn on 4MB of V == P addressing so we can get to MP table */
587 *(int *)PTD = PG_V | PG_RW | ((uintptr_t)(void *)KPTphys & PG_FRAME);
588 invltlb();
589
590 /* examine the MP table for needed info, uses physical addresses */
591 x = mptable_pass2();
592
593 *(int *)PTD = 0;
594 invltlb();
595
596 /* can't process default configs till the CPU APIC is pmapped */
597 if (x)
598 default_mp_table(x);
599
600 /* post scan cleanup */
601 fix_mp_table();
602 setup_apic_irq_mapping();
603
604#if defined(APIC_IO)
605
606 /* fill the LOGICAL io_apic_versions table */
607 for (apic = 0; apic < mp_napics; ++apic) {
608 ux = io_apic_read(apic, IOAPIC_VER);
609 io_apic_versions[apic] = ux;
610 io_apic_set_id(apic, IO_TO_ID(apic));
611 }
612
613 /* program each IO APIC in the system */
614 for (apic = 0; apic < mp_napics; ++apic)
615 if (io_apic_setup(apic) < 0)
616 panic("IO APIC setup failure");
617
618 /* install a 'Spurious INTerrupt' vector */
619 setidt(XSPURIOUSINT_OFFSET, Xspuriousint,
620 SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
621
622 /* install an inter-CPU IPI for TLB invalidation */
623 setidt(XINVLTLB_OFFSET, Xinvltlb,
624 SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
625
626 /* install an inter-CPU IPI for reading processor state */
627 setidt(XCPUCHECKSTATE_OFFSET, Xcpucheckstate,
628 SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
629
630 /* install an inter-CPU IPI for all-CPU rendezvous */
631 setidt(XRENDEZVOUS_OFFSET, Xrendezvous,
632 SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
633
634 /* install an inter-CPU IPI for forcing an additional software trap */
635 setidt(XCPUAST_OFFSET, Xcpuast,
636 SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
637
638 /* install an inter-CPU IPI for CPU stop/restart */
639 setidt(XCPUSTOP_OFFSET, Xcpustop,
640 SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
641
642#if defined(TEST_TEST1)
643 /* install a "fake hardware INTerrupt" vector */
644 setidt(XTEST1_OFFSET, Xtest1,
645 SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
646#endif /** TEST_TEST1 */
647
648#endif /* APIC_IO */
649
650 /* initialize all SMP locks */
651 init_locks();
652
653 /* start each Application Processor */
654 start_all_aps(boot_addr);
655}
656
657
658/*
659 * look for the MP spec signature
660 */
661
662/* string defined by the Intel MP Spec as identifying the MP table */
663#define MP_SIG 0x5f504d5f /* _MP_ */
664#define NEXT(X) ((X) += 4)
665static int
666search_for_sig(u_int32_t target, int count)
667{
668 int x;
669 u_int32_t *addr = (u_int32_t *) (KERNBASE + target);
670
671 for (x = 0; x < count; NEXT(x))
672 if (addr[x] == MP_SIG)
673 /* make array index a byte index */
674 return (target + (x * sizeof(u_int32_t)));
675
676 return -1;
677}
678
679
680static basetable_entry basetable_entry_types[] =
681{
682 {0, 20, "Processor"},
683 {1, 8, "Bus"},
684 {2, 8, "I/O APIC"},
685 {3, 8, "I/O INT"},
686 {4, 8, "Local INT"}
687};
688
689typedef struct BUSDATA {
690 u_char bus_id;
691 enum busTypes bus_type;
692} bus_datum;
693
694typedef struct INTDATA {
695 u_char int_type;
696 u_short int_flags;
697 u_char src_bus_id;
698 u_char src_bus_irq;
699 u_char dst_apic_id;
700 u_char dst_apic_int;
701 u_char int_vector;
702} io_int, local_int;
703
704typedef struct BUSTYPENAME {
705 u_char type;
706 char name[7];
707} bus_type_name;
708
709static bus_type_name bus_type_table[] =
710{
711 {CBUS, "CBUS"},
712 {CBUSII, "CBUSII"},
713 {EISA, "EISA"},
714 {MCA, "MCA"},
715 {UNKNOWN_BUSTYPE, "---"},
716 {ISA, "ISA"},
717 {MCA, "MCA"},
718 {UNKNOWN_BUSTYPE, "---"},
719 {UNKNOWN_BUSTYPE, "---"},
720 {UNKNOWN_BUSTYPE, "---"},
721 {UNKNOWN_BUSTYPE, "---"},
722 {UNKNOWN_BUSTYPE, "---"},
723 {PCI, "PCI"},
724 {UNKNOWN_BUSTYPE, "---"},
725 {UNKNOWN_BUSTYPE, "---"},
726 {UNKNOWN_BUSTYPE, "---"},
727 {UNKNOWN_BUSTYPE, "---"},
728 {XPRESS, "XPRESS"},
729 {UNKNOWN_BUSTYPE, "---"}
730};
731/* from MP spec v1.4, table 5-1 */
732static int default_data[7][5] =
733{
734/* nbus, id0, type0, id1, type1 */
735 {1, 0, ISA, 255, 255},
736 {1, 0, EISA, 255, 255},
737 {1, 0, EISA, 255, 255},
738 {1, 0, MCA, 255, 255},
739 {2, 0, ISA, 1, PCI},
740 {2, 0, EISA, 1, PCI},
741 {2, 0, MCA, 1, PCI}
742};
743
744
745/* the bus data */
746static bus_datum *bus_data;
747
748/* the IO INT data, one entry per possible APIC INTerrupt */
749static io_int *io_apic_ints;
750
751static int nintrs;
752
753static int processor_entry __P((proc_entry_ptr entry, int cpu));
754static int bus_entry __P((bus_entry_ptr entry, int bus));
755static int io_apic_entry __P((io_apic_entry_ptr entry, int apic));
756static int int_entry __P((int_entry_ptr entry, int intr));
757static int lookup_bus_type __P((char *name));
758
759
760/*
761 * 1st pass on motherboard's Intel MP specification table.
762 *
763 * initializes:
764 * mp_ncpus = 1
765 *
766 * determines:
767 * cpu_apic_address (common to all CPUs)
768 * io_apic_address[N]
769 * mp_naps
770 * mp_nbusses
771 * mp_napics
772 * nintrs
773 */
774static void
775mptable_pass1(void)
776{
777 int x;
778 mpcth_t cth;
779 int totalSize;
780 void* position;
781 int count;
782 int type;
783
784 POSTCODE(MPTABLE_PASS1_POST);
785
786 /* clear various tables */
787 for (x = 0; x < NAPICID; ++x) {
788 io_apic_address[x] = ~0; /* IO APIC address table */
789 }
790
791 /* init everything to empty */
792 mp_naps = 0;
793 mp_nbusses = 0;
794 mp_napics = 0;
795 nintrs = 0;
796
797 /* check for use of 'default' configuration */
798 if (MPFPS_MPFB1 != 0) {
799 /* use default addresses */
800 cpu_apic_address = DEFAULT_APIC_BASE;
801 io_apic_address[0] = DEFAULT_IO_APIC_BASE;
802
803 /* fill in with defaults */
804 mp_naps = 2; /* includes BSP */
805 mp_nbusses = default_data[MPFPS_MPFB1 - 1][0];
806#if defined(APIC_IO)
807 mp_napics = 1;
808 nintrs = 16;
809#endif /* APIC_IO */
810 }
811 else {
812 if ((cth = mpfps->pap) == 0)
813 panic("MP Configuration Table Header MISSING!");
814
815 cpu_apic_address = (vm_offset_t) cth->apic_address;
816
817 /* walk the table, recording info of interest */
818 totalSize = cth->base_table_length - sizeof(struct MPCTH);
819 position = (u_char *) cth + sizeof(struct MPCTH);
820 count = cth->entry_count;
821
822 while (count--) {
823 switch (type = *(u_char *) position) {
824 case 0: /* processor_entry */
825 if (((proc_entry_ptr)position)->cpu_flags
826 & PROCENTRY_FLAG_EN)
827 ++mp_naps;
828 break;
829 case 1: /* bus_entry */
830 ++mp_nbusses;
831 break;
832 case 2: /* io_apic_entry */
833 if (((io_apic_entry_ptr)position)->apic_flags
834 & IOAPICENTRY_FLAG_EN)
835 io_apic_address[mp_napics++] =
836 (vm_offset_t)((io_apic_entry_ptr)
837 position)->apic_address;
838 break;
839 case 3: /* int_entry */
840 ++nintrs;
841 break;
842 case 4: /* int_entry */
843 break;
844 default:
845 panic("mpfps Base Table HOSED!");
846 /* NOTREACHED */
847 }
848
849 totalSize -= basetable_entry_types[type].length;
850 (u_char*)position += basetable_entry_types[type].length;
851 }
852 }
853
854 /* qualify the numbers */
855 if (mp_naps > MAXCPU) {
856 printf("Warning: only using %d of %d available CPUs!\n",
857 MAXCPU, mp_naps);
858 mp_naps = MAXCPU;
859 }
860
861 /*
146 /*
862 * Count the BSP.
863 * This is also used as a counter while starting the APs.
147 * signotify() has already set PS_ASTPENDING on this process so all
148 * we need to do is poke it if it is currently executing so that it
149 * executes ast().
864 */
150 */
865 mp_ncpus = 1;
866
867 --mp_naps; /* subtract the BSP */
868}
869
870
871/*
872 * 2nd pass on motherboard's Intel MP specification table.
873 *
874 * sets:
875 * boot_cpu_id
876 * ID_TO_IO(N), phy APIC ID to log CPU/IO table
877 * CPU_TO_ID(N), logical CPU to APIC ID table
878 * IO_TO_ID(N), logical IO to APIC ID table
879 * bus_data[N]
880 * io_apic_ints[N]
881 */
882static int
883mptable_pass2(void)
884{
885 int x;
886 mpcth_t cth;
887 int totalSize;
888 void* position;
889 int count;
890 int type;
891 int apic, bus, cpu, intr;
892 int i, j;
893 int pgeflag;
894
895 POSTCODE(MPTABLE_PASS2_POST);
896
897 pgeflag = 0; /* XXX - Not used under SMP yet. */
898
899 MALLOC(io_apic_versions, u_int32_t *, sizeof(u_int32_t) * mp_napics,
900 M_DEVBUF, M_WAITOK);
901 MALLOC(ioapic, volatile ioapic_t **, sizeof(ioapic_t *) * mp_napics,
902 M_DEVBUF, M_WAITOK);
903 MALLOC(io_apic_ints, io_int *, sizeof(io_int) * (nintrs + 1),
904 M_DEVBUF, M_WAITOK);
905 MALLOC(bus_data, bus_datum *, sizeof(bus_datum) * mp_nbusses,
906 M_DEVBUF, M_WAITOK);
907
908 bzero(ioapic, sizeof(ioapic_t *) * mp_napics);
909
910 for (i = 0; i < mp_napics; i++) {
911 for (j = 0; j < mp_napics; j++) {
912 /* same page frame as a previous IO apic? */
913 if (((vm_offset_t)SMPpt[NPTEPG-2-j] & PG_FRAME) ==
914 (io_apic_address[i] & PG_FRAME)) {
915 ioapic[i] = (ioapic_t *)((u_int)SMP_prvspace
916 + (NPTEPG-2-j) * PAGE_SIZE
917 + (io_apic_address[i] & PAGE_MASK));
918 break;
919 }
920 /* use this slot if available */
921 if (((vm_offset_t)SMPpt[NPTEPG-2-j] & PG_FRAME) == 0) {
922 SMPpt[NPTEPG-2-j] = (pt_entry_t)(PG_V | PG_RW |
923 pgeflag | (io_apic_address[i] & PG_FRAME));
924 ioapic[i] = (ioapic_t *)((u_int)SMP_prvspace
925 + (NPTEPG-2-j) * PAGE_SIZE
926 + (io_apic_address[i] & PAGE_MASK));
927 break;
928 }
929 }
930 }
931
932 /* clear various tables */
933 for (x = 0; x < NAPICID; ++x) {
934 ID_TO_IO(x) = -1; /* phy APIC ID to log CPU/IO table */
935 CPU_TO_ID(x) = -1; /* logical CPU to APIC ID table */
936 IO_TO_ID(x) = -1; /* logical IO to APIC ID table */
937 }
938
939 /* clear bus data table */
940 for (x = 0; x < mp_nbusses; ++x)
941 bus_data[x].bus_id = 0xff;
942
943 /* clear IO APIC INT table */
944 for (x = 0; x < (nintrs + 1); ++x) {
945 io_apic_ints[x].int_type = 0xff;
946 io_apic_ints[x].int_vector = 0xff;
947 }
948
949 /* setup the cpu/apic mapping arrays */
950 boot_cpu_id = -1;
951
952 /* record whether PIC or virtual-wire mode */
953 picmode = (mpfps->mpfb2 & 0x80) ? 1 : 0;
954
955 /* check for use of 'default' configuration */
956 if (MPFPS_MPFB1 != 0)
957 return MPFPS_MPFB1; /* return default configuration type */
958
959 if ((cth = mpfps->pap) == 0)
960 panic("MP Configuration Table Header MISSING!");
961
962 /* walk the table, recording info of interest */
963 totalSize = cth->base_table_length - sizeof(struct MPCTH);
964 position = (u_char *) cth + sizeof(struct MPCTH);
965 count = cth->entry_count;
966 apic = bus = intr = 0;
967 cpu = 1; /* pre-count the BSP */
968
969 while (count--) {
970 switch (type = *(u_char *) position) {
971 case 0:
972 if (processor_entry(position, cpu))
973 ++cpu;
974 break;
975 case 1:
976 if (bus_entry(position, bus))
977 ++bus;
978 break;
979 case 2:
980 if (io_apic_entry(position, apic))
981 ++apic;
982 break;
983 case 3:
984 if (int_entry(position, intr))
985 ++intr;
986 break;
987 case 4:
988 /* int_entry(position); */
989 break;
990 default:
991 panic("mpfps Base Table HOSED!");
992 /* NOTREACHED */
993 }
994
995 totalSize -= basetable_entry_types[type].length;
996 (u_char *) position += basetable_entry_types[type].length;
997 }
998
999 if (boot_cpu_id == -1)
1000 panic("NO BSP found!");
1001
1002 /* report fact that its NOT a default configuration */
1003 return 0;
1004}
1005
1006
1007void
1008assign_apic_irq(int apic, int intpin, int irq)
1009{
1010 int x;
1011
1012 if (int_to_apicintpin[irq].ioapic != -1)
1013 panic("assign_apic_irq: inconsistent table");
1014
1015 int_to_apicintpin[irq].ioapic = apic;
1016 int_to_apicintpin[irq].int_pin = intpin;
1017 int_to_apicintpin[irq].apic_address = ioapic[apic];
1018 int_to_apicintpin[irq].redirindex = IOAPIC_REDTBL + 2 * intpin;
1019
1020 for (x = 0; x < nintrs; x++) {
1021 if ((io_apic_ints[x].int_type == 0 ||
1022 io_apic_ints[x].int_type == 3) &&
1023 io_apic_ints[x].int_vector == 0xff &&
1024 io_apic_ints[x].dst_apic_id == IO_TO_ID(apic) &&
1025 io_apic_ints[x].dst_apic_int == intpin)
1026 io_apic_ints[x].int_vector = irq;
1027 }
1028}
1029
1030void
1031revoke_apic_irq(int irq)
1032{
1033 int x;
1034 int oldapic;
1035 int oldintpin;
1036
1037 if (int_to_apicintpin[irq].ioapic == -1)
1038 panic("assign_apic_irq: inconsistent table");
1039
1040 oldapic = int_to_apicintpin[irq].ioapic;
1041 oldintpin = int_to_apicintpin[irq].int_pin;
1042
1043 int_to_apicintpin[irq].ioapic = -1;
1044 int_to_apicintpin[irq].int_pin = 0;
1045 int_to_apicintpin[irq].apic_address = NULL;
1046 int_to_apicintpin[irq].redirindex = 0;
1047
1048 for (x = 0; x < nintrs; x++) {
1049 if ((io_apic_ints[x].int_type == 0 ||
1050 io_apic_ints[x].int_type == 3) &&
1051 io_apic_ints[x].int_vector == 0xff &&
1052 io_apic_ints[x].dst_apic_id == IO_TO_ID(oldapic) &&
1053 io_apic_ints[x].dst_apic_int == oldintpin)
1054 io_apic_ints[x].int_vector = 0xff;
1055 }
1056}
1057
1058
1059static void
1060allocate_apic_irq(int intr)
1061{
1062 int apic;
1063 int intpin;
1064 int irq;
1065
1066 if (io_apic_ints[intr].int_vector != 0xff)
1067 return; /* Interrupt handler already assigned */
1068
1069 if (io_apic_ints[intr].int_type != 0 &&
1070 (io_apic_ints[intr].int_type != 3 ||
1071 (io_apic_ints[intr].dst_apic_id == IO_TO_ID(0) &&
1072 io_apic_ints[intr].dst_apic_int == 0)))
1073 return; /* Not INT or ExtInt on != (0, 0) */
1074
1075 irq = 0;
1076 while (irq < APIC_INTMAPSIZE &&
1077 int_to_apicintpin[irq].ioapic != -1)
1078 irq++;
1079
1080 if (irq >= APIC_INTMAPSIZE)
1081 return; /* No free interrupt handlers */
1082
1083 apic = ID_TO_IO(io_apic_ints[intr].dst_apic_id);
1084 intpin = io_apic_ints[intr].dst_apic_int;
1085
1086 assign_apic_irq(apic, intpin, irq);
1087 io_apic_setup_intpin(apic, intpin);
1088}
1089
1090
1091static void
1092swap_apic_id(int apic, int oldid, int newid)
1093{
1094 int x;
1095 int oapic;
1096
1097
1098 if (oldid == newid)
1099 return; /* Nothing to do */
1100
1101 printf("Changing APIC ID for IO APIC #%d from %d to %d in MP table\n",
1102 apic, oldid, newid);
1103
1104 /* Swap physical APIC IDs in interrupt entries */
1105 for (x = 0; x < nintrs; x++) {
1106 if (io_apic_ints[x].dst_apic_id == oldid)
1107 io_apic_ints[x].dst_apic_id = newid;
1108 else if (io_apic_ints[x].dst_apic_id == newid)
1109 io_apic_ints[x].dst_apic_id = oldid;
1110 }
1111
1112 /* Swap physical APIC IDs in IO_TO_ID mappings */
1113 for (oapic = 0; oapic < mp_napics; oapic++)
1114 if (IO_TO_ID(oapic) == newid)
1115 break;
1116
1117 if (oapic < mp_napics) {
1118 printf("Changing APIC ID for IO APIC #%d from "
1119 "%d to %d in MP table\n",
1120 oapic, newid, oldid);
1121 IO_TO_ID(oapic) = oldid;
1122 }
1123 IO_TO_ID(apic) = newid;
1124}
1125
1126
1127static void
1128fix_id_to_io_mapping(void)
1129{
1130 int x;
1131
1132 for (x = 0; x < NAPICID; x++)
1133 ID_TO_IO(x) = -1;
1134
1135 for (x = 0; x <= mp_naps; x++)
1136 if (CPU_TO_ID(x) < NAPICID)
1137 ID_TO_IO(CPU_TO_ID(x)) = x;
1138
1139 for (x = 0; x < mp_napics; x++)
1140 if (IO_TO_ID(x) < NAPICID)
1141 ID_TO_IO(IO_TO_ID(x)) = x;
1142}
1143
1144
1145static int
1146first_free_apic_id(void)
1147{
1148 int freeid, x;
1149
1150 for (freeid = 0; freeid < NAPICID; freeid++) {
1151 for (x = 0; x <= mp_naps; x++)
1152 if (CPU_TO_ID(x) == freeid)
1153 break;
1154 if (x <= mp_naps)
1155 continue;
1156 for (x = 0; x < mp_napics; x++)
1157 if (IO_TO_ID(x) == freeid)
1158 break;
1159 if (x < mp_napics)
1160 continue;
1161 return freeid;
1162 }
1163 return freeid;
1164}
1165
1166
1167static int
1168io_apic_id_acceptable(int apic, int id)
1169{
1170 int cpu; /* Logical CPU number */
1171 int oapic; /* Logical IO APIC number for other IO APIC */
1172
1173 if (id >= NAPICID)
1174 return 0; /* Out of range */
1175
1176 for (cpu = 0; cpu <= mp_naps; cpu++)
1177 if (CPU_TO_ID(cpu) == id)
1178 return 0; /* Conflict with CPU */
1179
1180 for (oapic = 0; oapic < mp_napics && oapic < apic; oapic++)
1181 if (IO_TO_ID(oapic) == id)
1182 return 0; /* Conflict with other APIC */
1183
1184 return 1; /* ID is acceptable for IO APIC */
1185}
1186
1187
1188/*
1189 * parse an Intel MP specification table
1190 */
1191static void
1192fix_mp_table(void)
1193{
1194 int x;
1195 int id;
1196 int bus_0 = 0; /* Stop GCC warning */
1197 int bus_pci = 0; /* Stop GCC warning */
1198 int num_pci_bus;
1199 int apic; /* IO APIC unit number */
1200 int freeid; /* Free physical APIC ID */
1201 int physid; /* Current physical IO APIC ID */
1202
1203 /*
1204 * Fix mis-numbering of the PCI bus and its INT entries if the BIOS
1205 * did it wrong. The MP spec says that when more than 1 PCI bus
1206 * exists the BIOS must begin with bus entries for the PCI bus and use
1207 * actual PCI bus numbering. This implies that when only 1 PCI bus
1208 * exists the BIOS can choose to ignore this ordering, and indeed many
1209 * MP motherboards do ignore it. This causes a problem when the PCI
1210 * sub-system makes requests of the MP sub-system based on PCI bus
1211 * numbers. So here we look for the situation and renumber the
1212 * busses and associated INTs in an effort to "make it right".
1213 */
1214
1215 /* find bus 0, PCI bus, count the number of PCI busses */
1216 for (num_pci_bus = 0, x = 0; x < mp_nbusses; ++x) {
1217 if (bus_data[x].bus_id == 0) {
1218 bus_0 = x;
1219 }
1220 if (bus_data[x].bus_type == PCI) {
1221 ++num_pci_bus;
1222 bus_pci = x;
1223 }
1224 }
1225 /*
1226 * bus_0 == slot of bus with ID of 0
1227 * bus_pci == slot of last PCI bus encountered
1228 */
1229
1230 /* check the 1 PCI bus case for sanity */
1231 /* if it is number 0 all is well */
1232 if (num_pci_bus == 1 &&
1233 bus_data[bus_pci].bus_id != 0) {
1234
1235 /* mis-numbered, swap with whichever bus uses slot 0 */
1236
1237 /* swap the bus entry types */
1238 bus_data[bus_pci].bus_type = bus_data[bus_0].bus_type;
1239 bus_data[bus_0].bus_type = PCI;
1240
1241 /* swap each relavant INTerrupt entry */
1242 id = bus_data[bus_pci].bus_id;
1243 for (x = 0; x < nintrs; ++x) {
1244 if (io_apic_ints[x].src_bus_id == id) {
1245 io_apic_ints[x].src_bus_id = 0;
1246 }
1247 else if (io_apic_ints[x].src_bus_id == 0) {
1248 io_apic_ints[x].src_bus_id = id;
1249 }
1250 }
1251 }
1252
1253 /* Assign IO APIC IDs.
1254 *
1255 * First try the existing ID. If a conflict is detected, try
1256 * the ID in the MP table. If a conflict is still detected, find
1257 * a free id.
1258 *
1259 * We cannot use the ID_TO_IO table before all conflicts has been
1260 * resolved and the table has been corrected.
1261 */
1262 for (apic = 0; apic < mp_napics; ++apic) { /* For all IO APICs */
1263
1264 /* First try to use the value set by the BIOS */
1265 physid = io_apic_get_id(apic);
1266 if (io_apic_id_acceptable(apic, physid)) {
1267 if (IO_TO_ID(apic) != physid)
1268 swap_apic_id(apic, IO_TO_ID(apic), physid);
1269 continue;
1270 }
1271
1272 /* Then check if the value in the MP table is acceptable */
1273 if (io_apic_id_acceptable(apic, IO_TO_ID(apic)))
1274 continue;
1275
1276 /* Last resort, find a free APIC ID and use it */
1277 freeid = first_free_apic_id();
1278 if (freeid >= NAPICID)
1279 panic("No free physical APIC IDs found");
1280
1281 if (io_apic_id_acceptable(apic, freeid)) {
1282 swap_apic_id(apic, IO_TO_ID(apic), freeid);
1283 continue;
1284 }
1285 panic("Free physical APIC ID not usable");
1286 }
1287 fix_id_to_io_mapping();
1288
1289 /* detect and fix broken Compaq MP table */
1290 if (apic_int_type(0, 0) == -1) {
1291 printf("APIC_IO: MP table broken: 8259->APIC entry missing!\n");
1292 io_apic_ints[nintrs].int_type = 3; /* ExtInt */
1293 io_apic_ints[nintrs].int_vector = 0xff; /* Unassigned */
1294 /* XXX fixme, set src bus id etc, but it doesn't seem to hurt */
1295 io_apic_ints[nintrs].dst_apic_id = IO_TO_ID(0);
1296 io_apic_ints[nintrs].dst_apic_int = 0; /* Pin 0 */
1297 nintrs++;
1298 }
1299}
1300
1301
1302/* Assign low level interrupt handlers */
1303static void
1304setup_apic_irq_mapping(void)
1305{
1306 int x;
1307 int int_vector;
1308
1309 /* Clear array */
1310 for (x = 0; x < APIC_INTMAPSIZE; x++) {
1311 int_to_apicintpin[x].ioapic = -1;
1312 int_to_apicintpin[x].int_pin = 0;
1313 int_to_apicintpin[x].apic_address = NULL;
1314 int_to_apicintpin[x].redirindex = 0;
1315 }
1316
1317 /* First assign ISA/EISA interrupts */
1318 for (x = 0; x < nintrs; x++) {
1319 int_vector = io_apic_ints[x].src_bus_irq;
1320 if (int_vector < APIC_INTMAPSIZE &&
1321 io_apic_ints[x].int_vector == 0xff &&
1322 int_to_apicintpin[int_vector].ioapic == -1 &&
1323 (apic_int_is_bus_type(x, ISA) ||
1324 apic_int_is_bus_type(x, EISA)) &&
1325 io_apic_ints[x].int_type == 0) {
1326 assign_apic_irq(ID_TO_IO(io_apic_ints[x].dst_apic_id),
1327 io_apic_ints[x].dst_apic_int,
1328 int_vector);
1329 }
1330 }
1331
1332 /* Assign ExtInt entry if no ISA/EISA interrupt 0 entry */
1333 for (x = 0; x < nintrs; x++) {
1334 if (io_apic_ints[x].dst_apic_int == 0 &&
1335 io_apic_ints[x].dst_apic_id == IO_TO_ID(0) &&
1336 io_apic_ints[x].int_vector == 0xff &&
1337 int_to_apicintpin[0].ioapic == -1 &&
1338 io_apic_ints[x].int_type == 3) {
1339 assign_apic_irq(0, 0, 0);
1340 break;
1341 }
1342 }
1343 /* PCI interrupt assignment is deferred */
1344}
1345
1346
1347static int
1348processor_entry(proc_entry_ptr entry, int cpu)
1349{
1350 /* check for usability */
1351 if (!(entry->cpu_flags & PROCENTRY_FLAG_EN))
1352 return 0;
1353
1354 if(entry->apic_id >= NAPICID)
1355 panic("CPU APIC ID out of range (0..%d)", NAPICID - 1);
1356 /* check for BSP flag */
1357 if (entry->cpu_flags & PROCENTRY_FLAG_BP) {
1358 boot_cpu_id = entry->apic_id;
1359 CPU_TO_ID(0) = entry->apic_id;
1360 ID_TO_CPU(entry->apic_id) = 0;
1361 return 0; /* its already been counted */
1362 }
1363
1364 /* add another AP to list, if less than max number of CPUs */
1365 else if (cpu < MAXCPU) {
1366 CPU_TO_ID(cpu) = entry->apic_id;
1367 ID_TO_CPU(entry->apic_id) = cpu;
1368 return 1;
1369 }
1370
1371 return 0;
1372}
1373
1374
1375static int
1376bus_entry(bus_entry_ptr entry, int bus)
1377{
1378 int x;
1379 char c, name[8];
1380
1381 /* encode the name into an index */
1382 for (x = 0; x < 6; ++x) {
1383 if ((c = entry->bus_type[x]) == ' ')
1384 break;
1385 name[x] = c;
1386 }
1387 name[x] = '\0';
1388
1389 if ((x = lookup_bus_type(name)) == UNKNOWN_BUSTYPE)
1390 panic("unknown bus type: '%s'", name);
1391
1392 bus_data[bus].bus_id = entry->bus_id;
1393 bus_data[bus].bus_type = x;
1394
1395 return 1;
1396}
1397
1398
1399static int
1400io_apic_entry(io_apic_entry_ptr entry, int apic)
1401{
1402 if (!(entry->apic_flags & IOAPICENTRY_FLAG_EN))
1403 return 0;
1404
1405 IO_TO_ID(apic) = entry->apic_id;
1406 if (entry->apic_id < NAPICID)
1407 ID_TO_IO(entry->apic_id) = apic;
1408
1409 return 1;
1410}
1411
1412
1413static int
1414lookup_bus_type(char *name)
1415{
1416 int x;
1417
1418 for (x = 0; x < MAX_BUSTYPE; ++x)
1419 if (strcmp(bus_type_table[x].name, name) == 0)
1420 return bus_type_table[x].type;
1421
1422 return UNKNOWN_BUSTYPE;
1423}
1424
1425
1426static int
1427int_entry(int_entry_ptr entry, int intr)
1428{
1429 int apic;
1430
1431 io_apic_ints[intr].int_type = entry->int_type;
1432 io_apic_ints[intr].int_flags = entry->int_flags;
1433 io_apic_ints[intr].src_bus_id = entry->src_bus_id;
1434 io_apic_ints[intr].src_bus_irq = entry->src_bus_irq;
1435 if (entry->dst_apic_id == 255) {
1436 /* This signal goes to all IO APICS. Select an IO APIC
1437 with sufficient number of interrupt pins */
1438 for (apic = 0; apic < mp_napics; apic++)
1439 if (((io_apic_read(apic, IOAPIC_VER) &
1440 IOART_VER_MAXREDIR) >> MAXREDIRSHIFT) >=
1441 entry->dst_apic_int)
1442 break;
1443 if (apic < mp_napics)
1444 io_apic_ints[intr].dst_apic_id = IO_TO_ID(apic);
1445 else
1446 io_apic_ints[intr].dst_apic_id = entry->dst_apic_id;
1447 } else
1448 io_apic_ints[intr].dst_apic_id = entry->dst_apic_id;
1449 io_apic_ints[intr].dst_apic_int = entry->dst_apic_int;
1450
1451 return 1;
1452}
1453
1454
1455static int
1456apic_int_is_bus_type(int intr, int bus_type)
1457{
1458 int bus;
1459
1460 for (bus = 0; bus < mp_nbusses; ++bus)
1461 if ((bus_data[bus].bus_id == io_apic_ints[intr].src_bus_id)
1462 && ((int) bus_data[bus].bus_type == bus_type))
1463 return 1;
1464
1465 return 0;
1466}
1467
1468
1469/*
1470 * Given a traditional ISA INT mask, return an APIC mask.
1471 */
1472u_int
1473isa_apic_mask(u_int isa_mask)
1474{
1475 int isa_irq;
1476 int apic_pin;
1477
1478#if defined(SKIP_IRQ15_REDIRECT)
1479 if (isa_mask == (1 << 15)) {
1480 printf("skipping ISA IRQ15 redirect\n");
1481 return isa_mask;
1482 }
1483#endif /* SKIP_IRQ15_REDIRECT */
1484
1485 isa_irq = ffs(isa_mask); /* find its bit position */
1486 if (isa_irq == 0) /* doesn't exist */
1487 return 0;
1488 --isa_irq; /* make it zero based */
1489
1490 apic_pin = isa_apic_irq(isa_irq); /* look for APIC connection */
1491 if (apic_pin == -1)
1492 return 0;
1493
1494 return (1 << apic_pin); /* convert pin# to a mask */
1495}
1496
1497
1498/*
1499 * Determine which APIC pin an ISA/EISA INT is attached to.
1500 */
1501#define INTTYPE(I) (io_apic_ints[(I)].int_type)
1502#define INTPIN(I) (io_apic_ints[(I)].dst_apic_int)
1503#define INTIRQ(I) (io_apic_ints[(I)].int_vector)
1504#define INTAPIC(I) (ID_TO_IO(io_apic_ints[(I)].dst_apic_id))
1505
1506#define SRCBUSIRQ(I) (io_apic_ints[(I)].src_bus_irq)
1507int
1508isa_apic_irq(int isa_irq)
1509{
1510 int intr;
1511
1512 for (intr = 0; intr < nintrs; ++intr) { /* check each record */
1513 if (INTTYPE(intr) == 0) { /* standard INT */
1514 if (SRCBUSIRQ(intr) == isa_irq) {
1515 if (apic_int_is_bus_type(intr, ISA) ||
1516 apic_int_is_bus_type(intr, EISA)) {
1517 if (INTIRQ(intr) == 0xff)
1518 return -1; /* unassigned */
1519 return INTIRQ(intr); /* found */
1520 }
1521 }
1522 }
1523 }
1524 return -1; /* NOT found */
1525}
1526
1527
1528/*
1529 * Determine which APIC pin a PCI INT is attached to.
1530 */
1531#define SRCBUSID(I) (io_apic_ints[(I)].src_bus_id)
1532#define SRCBUSDEVICE(I) ((io_apic_ints[(I)].src_bus_irq >> 2) & 0x1f)
1533#define SRCBUSLINE(I) (io_apic_ints[(I)].src_bus_irq & 0x03)
1534int
1535pci_apic_irq(int pciBus, int pciDevice, int pciInt)
1536{
1537 int intr;
1538
1539 --pciInt; /* zero based */
1540
1541 for (intr = 0; intr < nintrs; ++intr) /* check each record */
1542 if ((INTTYPE(intr) == 0) /* standard INT */
1543 && (SRCBUSID(intr) == pciBus)
1544 && (SRCBUSDEVICE(intr) == pciDevice)
1545 && (SRCBUSLINE(intr) == pciInt)) /* a candidate IRQ */
1546 if (apic_int_is_bus_type(intr, PCI)) {
1547 if (INTIRQ(intr) == 0xff)
1548 allocate_apic_irq(intr);
1549 if (INTIRQ(intr) == 0xff)
1550 return -1; /* unassigned */
1551 return INTIRQ(intr); /* exact match */
1552 }
1553
1554 return -1; /* NOT found */
1555}
1556
1557int
1558next_apic_irq(int irq)
1559{
1560 int intr, ointr;
1561 int bus, bustype;
1562
1563 bus = 0;
1564 bustype = 0;
1565 for (intr = 0; intr < nintrs; intr++) {
1566 if (INTIRQ(intr) != irq || INTTYPE(intr) != 0)
1567 continue;
1568 bus = SRCBUSID(intr);
1569 bustype = apic_bus_type(bus);
1570 if (bustype != ISA &&
1571 bustype != EISA &&
1572 bustype != PCI)
1573 continue;
1574 break;
1575 }
1576 if (intr >= nintrs) {
1577 return -1;
1578 }
1579 for (ointr = intr + 1; ointr < nintrs; ointr++) {
1580 if (INTTYPE(ointr) != 0)
1581 continue;
1582 if (bus != SRCBUSID(ointr))
1583 continue;
1584 if (bustype == PCI) {
1585 if (SRCBUSDEVICE(intr) != SRCBUSDEVICE(ointr))
1586 continue;
1587 if (SRCBUSLINE(intr) != SRCBUSLINE(ointr))
1588 continue;
1589 }
1590 if (bustype == ISA || bustype == EISA) {
1591 if (SRCBUSIRQ(intr) != SRCBUSIRQ(ointr))
1592 continue;
1593 }
1594 if (INTPIN(intr) == INTPIN(ointr))
1595 continue;
1596 break;
1597 }
1598 if (ointr >= nintrs) {
1599 return -1;
1600 }
1601 return INTIRQ(ointr);
1602}
1603#undef SRCBUSLINE
1604#undef SRCBUSDEVICE
1605#undef SRCBUSID
1606#undef SRCBUSIRQ
1607
1608#undef INTPIN
1609#undef INTIRQ
1610#undef INTAPIC
1611#undef INTTYPE
1612
1613
1614/*
1615 * Reprogram the MB chipset to NOT redirect an ISA INTerrupt.
1616 *
1617 * XXX FIXME:
1618 * Exactly what this means is unclear at this point. It is a solution
1619 * for motherboards that redirect the MBIRQ0 pin. Generically a motherboard
1620 * could route any of the ISA INTs to upper (>15) IRQ values. But most would
1621 * NOT be redirected via MBIRQ0, thus "undirect()ing" them would NOT be an
1622 * option.
1623 */
1624int
1625undirect_isa_irq(int rirq)
1626{
1627#if defined(READY)
1628 if (bootverbose)
1629 printf("Freeing redirected ISA irq %d.\n", rirq);
1630 /** FIXME: tickle the MB redirector chip */
1631 return -1;
1632#else
1633 if (bootverbose)
1634 printf("Freeing (NOT implemented) redirected ISA irq %d.\n", rirq);
1635 return 0;
1636#endif /* READY */
1637}
1638
1639
1640/*
1641 * Reprogram the MB chipset to NOT redirect a PCI INTerrupt
1642 */
1643int
1644undirect_pci_irq(int rirq)
1645{
1646#if defined(READY)
1647 if (bootverbose)
1648 printf("Freeing redirected PCI irq %d.\n", rirq);
1649
1650 /** FIXME: tickle the MB redirector chip */
1651 return -1;
1652#else
1653 if (bootverbose)
1654 printf("Freeing (NOT implemented) redirected PCI irq %d.\n",
1655 rirq);
1656 return 0;
1657#endif /* READY */
1658}
1659
1660
1661/*
1662 * given a bus ID, return:
1663 * the bus type if found
1664 * -1 if NOT found
1665 */
1666int
1667apic_bus_type(int id)
1668{
1669 int x;
1670
1671 for (x = 0; x < mp_nbusses; ++x)
1672 if (bus_data[x].bus_id == id)
1673 return bus_data[x].bus_type;
1674
1675 return -1;
1676}
1677
1678
1679/*
1680 * given a LOGICAL APIC# and pin#, return:
1681 * the associated src bus ID if found
1682 * -1 if NOT found
1683 */
1684int
1685apic_src_bus_id(int apic, int pin)
1686{
1687 int x;
1688
1689 /* search each of the possible INTerrupt sources */
1690 for (x = 0; x < nintrs; ++x)
1691 if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1692 (pin == io_apic_ints[x].dst_apic_int))
1693 return (io_apic_ints[x].src_bus_id);
1694
1695 return -1; /* NOT found */
1696}
1697
1698
1699/*
1700 * given a LOGICAL APIC# and pin#, return:
1701 * the associated src bus IRQ if found
1702 * -1 if NOT found
1703 */
1704int
1705apic_src_bus_irq(int apic, int pin)
1706{
1707 int x;
1708
1709 for (x = 0; x < nintrs; x++)
1710 if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1711 (pin == io_apic_ints[x].dst_apic_int))
1712 return (io_apic_ints[x].src_bus_irq);
1713
1714 return -1; /* NOT found */
1715}
1716
1717
1718/*
1719 * given a LOGICAL APIC# and pin#, return:
1720 * the associated INTerrupt type if found
1721 * -1 if NOT found
1722 */
1723int
1724apic_int_type(int apic, int pin)
1725{
1726 int x;
1727
1728 /* search each of the possible INTerrupt sources */
1729 for (x = 0; x < nintrs; ++x)
1730 if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1731 (pin == io_apic_ints[x].dst_apic_int))
1732 return (io_apic_ints[x].int_type);
1733
1734 return -1; /* NOT found */
1735}
1736
1737int
1738apic_irq(int apic, int pin)
1739{
1740 int x;
1741 int res;
1742
1743 for (x = 0; x < nintrs; ++x)
1744 if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1745 (pin == io_apic_ints[x].dst_apic_int)) {
1746 res = io_apic_ints[x].int_vector;
1747 if (res == 0xff)
1748 return -1;
1749 if (apic != int_to_apicintpin[res].ioapic)
1750 panic("apic_irq: inconsistent table");
1751 if (pin != int_to_apicintpin[res].int_pin)
1752 panic("apic_irq inconsistent table (2)");
1753 return res;
1754 }
1755 return -1;
1756}
1757
1758
1759/*
1760 * given a LOGICAL APIC# and pin#, return:
1761 * the associated trigger mode if found
1762 * -1 if NOT found
1763 */
1764int
1765apic_trigger(int apic, int pin)
1766{
1767 int x;
1768
1769 /* search each of the possible INTerrupt sources */
1770 for (x = 0; x < nintrs; ++x)
1771 if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1772 (pin == io_apic_ints[x].dst_apic_int))
1773 return ((io_apic_ints[x].int_flags >> 2) & 0x03);
1774
1775 return -1; /* NOT found */
1776}
1777
1778
1779/*
1780 * given a LOGICAL APIC# and pin#, return:
1781 * the associated 'active' level if found
1782 * -1 if NOT found
1783 */
1784int
1785apic_polarity(int apic, int pin)
1786{
1787 int x;
1788
1789 /* search each of the possible INTerrupt sources */
1790 for (x = 0; x < nintrs; ++x)
1791 if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1792 (pin == io_apic_ints[x].dst_apic_int))
1793 return (io_apic_ints[x].int_flags & 0x03);
1794
1795 return -1; /* NOT found */
1796}
1797
1798
1799/*
1800 * set data according to MP defaults
1801 * FIXME: probably not complete yet...
1802 */
1803static void
1804default_mp_table(int type)
1805{
1806 int ap_cpu_id;
1807#if defined(APIC_IO)
1808 int io_apic_id;
1809 int pin;
1810#endif /* APIC_IO */
1811
1812#if 0
1813 printf(" MP default config type: %d\n", type);
1814 switch (type) {
1815 case 1:
1816 printf(" bus: ISA, APIC: 82489DX\n");
1817 break;
1818 case 2:
1819 printf(" bus: EISA, APIC: 82489DX\n");
1820 break;
1821 case 3:
1822 printf(" bus: EISA, APIC: 82489DX\n");
1823 break;
1824 case 4:
1825 printf(" bus: MCA, APIC: 82489DX\n");
1826 break;
1827 case 5:
1828 printf(" bus: ISA+PCI, APIC: Integrated\n");
1829 break;
1830 case 6:
1831 printf(" bus: EISA+PCI, APIC: Integrated\n");
1832 break;
1833 case 7:
1834 printf(" bus: MCA+PCI, APIC: Integrated\n");
1835 break;
1836 default:
1837 printf(" future type\n");
1838 break;
1839 /* NOTREACHED */
1840 }
1841#endif /* 0 */
1842
1843 boot_cpu_id = (lapic.id & APIC_ID_MASK) >> 24;
1844 ap_cpu_id = (boot_cpu_id == 0) ? 1 : 0;
1845
1846 /* BSP */
1847 CPU_TO_ID(0) = boot_cpu_id;
1848 ID_TO_CPU(boot_cpu_id) = 0;
1849
1850 /* one and only AP */
1851 CPU_TO_ID(1) = ap_cpu_id;
1852 ID_TO_CPU(ap_cpu_id) = 1;
1853
1854#if defined(APIC_IO)
1855 /* one and only IO APIC */
1856 io_apic_id = (io_apic_read(0, IOAPIC_ID) & APIC_ID_MASK) >> 24;
1857
1858 /*
1859 * sanity check, refer to MP spec section 3.6.6, last paragraph
1860 * necessary as some hardware isn't properly setting up the IO APIC
1861 */
1862#if defined(REALLY_ANAL_IOAPICID_VALUE)
1863 if (io_apic_id != 2) {
1864#else
1865 if ((io_apic_id == 0) || (io_apic_id == 1) || (io_apic_id == 15)) {
1866#endif /* REALLY_ANAL_IOAPICID_VALUE */
1867 io_apic_set_id(0, 2);
1868 io_apic_id = 2;
1869 }
1870 IO_TO_ID(0) = io_apic_id;
1871 ID_TO_IO(io_apic_id) = 0;
1872#endif /* APIC_IO */
1873
1874 /* fill out bus entries */
1875 switch (type) {
1876 case 1:
1877 case 2:
1878 case 3:
1879 case 4:
1880 case 5:
1881 case 6:
1882 case 7:
1883 bus_data[0].bus_id = default_data[type - 1][1];
1884 bus_data[0].bus_type = default_data[type - 1][2];
1885 bus_data[1].bus_id = default_data[type - 1][3];
1886 bus_data[1].bus_type = default_data[type - 1][4];
1887 break;
1888
1889 /* case 4: case 7: MCA NOT supported */
1890 default: /* illegal/reserved */
1891 panic("BAD default MP config: %d", type);
1892 /* NOTREACHED */
1893 }
1894
1895#if defined(APIC_IO)
1896 /* general cases from MP v1.4, table 5-2 */
1897 for (pin = 0; pin < 16; ++pin) {
1898 io_apic_ints[pin].int_type = 0;
1899 io_apic_ints[pin].int_flags = 0x05; /* edge/active-hi */
1900 io_apic_ints[pin].src_bus_id = 0;
1901 io_apic_ints[pin].src_bus_irq = pin; /* IRQ2 caught below */
1902 io_apic_ints[pin].dst_apic_id = io_apic_id;
1903 io_apic_ints[pin].dst_apic_int = pin; /* 1-to-1 */
1904 }
1905
1906 /* special cases from MP v1.4, table 5-2 */
1907 if (type == 2) {
1908 io_apic_ints[2].int_type = 0xff; /* N/C */
1909 io_apic_ints[13].int_type = 0xff; /* N/C */
1910#if !defined(APIC_MIXED_MODE)
1911 /** FIXME: ??? */
1912 panic("sorry, can't support type 2 default yet");
1913#endif /* APIC_MIXED_MODE */
1914 }
1915 else
1916 io_apic_ints[2].src_bus_irq = 0; /* ISA IRQ0 is on APIC INT 2 */
1917
1918 if (type == 7)
1919 io_apic_ints[0].int_type = 0xff; /* N/C */
1920 else
1921 io_apic_ints[0].int_type = 3; /* vectored 8259 */
1922#endif /* APIC_IO */
1923}
1924
1925
1926/*
1927 * start each AP in our list
1928 */
1929static int
1930start_all_aps(u_int boot_addr)
1931{
1932 int x, i, pg;
1933 u_char mpbiosreason;
1934 u_long mpbioswarmvec;
1935 struct globaldata *gd;
1936 char *stack;
1937 uintptr_t kptbase;
1938
1939 POSTCODE(START_ALL_APS_POST);
1940
1941 /* initialize BSP's local APIC */
1942 apic_initialize();
1943 bsp_apic_ready = 1;
1944
1945 /* install the AP 1st level boot code */
1946 install_ap_tramp(boot_addr);
1947
1948
1949 /* save the current value of the warm-start vector */
1950 mpbioswarmvec = *((u_long *) WARMBOOT_OFF);
1951#ifndef PC98
1952 outb(CMOS_REG, BIOS_RESET);
1953 mpbiosreason = inb(CMOS_DATA);
1954#endif
1955
1956 /* record BSP in CPU map */
1957 all_cpus = 1;
1958
1959 /* set up temporary P==V mapping for AP boot */
1960 /* XXX this is a hack, we should boot the AP on its own stack/PTD */
1961 kptbase = (uintptr_t)(void *)KPTphys;
1962 for (x = 0; x < NKPT; x++)
1963 PTD[x] = (pd_entry_t)(PG_V | PG_RW |
1964 ((kptbase + x * PAGE_SIZE) & PG_FRAME));
1965 invltlb();
1966
1967 /* start each AP */
1968 for (x = 1; x <= mp_naps; ++x) {
1969
1970 /* This is a bit verbose, it will go away soon. */
1971
1972 /* first page of AP's private space */
1973 pg = x * i386_btop(sizeof(struct privatespace));
1974
1975 /* allocate a new private data page */
1976 gd = (struct globaldata *)kmem_alloc(kernel_map, PAGE_SIZE);
1977
1978 /* wire it into the private page table page */
1979 SMPpt[pg] = (pt_entry_t)(PG_V | PG_RW | vtophys(gd));
1980
1981 /* allocate and set up an idle stack data page */
1982 stack = (char *)kmem_alloc(kernel_map, UPAGES*PAGE_SIZE);
1983 for (i = 0; i < UPAGES; i++)
1984 SMPpt[pg + 1 + i] = (pt_entry_t)
1985 (PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
1986
1987 /* prime data page for it to use */
1988 SLIST_INSERT_HEAD(&cpuhead, gd, gd_allcpu);
1989 gd->gd_cpuid = x;
1990
1991 /* setup a vector to our boot code */
1992 *((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
1993 *((volatile u_short *) WARMBOOT_SEG) = (boot_addr >> 4);
1994#ifndef PC98
1995 outb(CMOS_REG, BIOS_RESET);
1996 outb(CMOS_DATA, BIOS_WARM); /* 'warm-start' */
1997#endif
1998
1999 bootSTK = &SMP_prvspace[x].idlestack[UPAGES*PAGE_SIZE];
2000 bootAP = x;
2001
2002 /* attempt to start the Application Processor */
2003 CHECK_INIT(99); /* setup checkpoints */
2004 if (!start_ap(x, boot_addr)) {
2005 printf("AP #%d (PHY# %d) failed!\n", x, CPU_TO_ID(x));
2006 CHECK_PRINT("trace"); /* show checkpoints */
2007 /* better panic as the AP may be running loose */
2008 printf("panic y/n? [y] ");
2009 if (cngetc() != 'n')
2010 panic("bye-bye");
2011 }
2012 CHECK_PRINT("trace"); /* show checkpoints */
2013
2014 /* record its version info */
2015 cpu_apic_versions[x] = cpu_apic_versions[0];
2016
2017 all_cpus |= (1 << x); /* record AP in CPU map */
2018 }
2019
2020 /* build our map of 'other' CPUs */
2021 PCPU_SET(other_cpus, all_cpus & ~(1 << PCPU_GET(cpuid)));
2022
2023 /* fill in our (BSP) APIC version */
2024 cpu_apic_versions[0] = lapic.version;
2025
2026 /* restore the warmstart vector */
2027 *(u_long *) WARMBOOT_OFF = mpbioswarmvec;
2028#ifndef PC98
2029 outb(CMOS_REG, BIOS_RESET);
2030 outb(CMOS_DATA, mpbiosreason);
2031#endif
2032
2033 /*
2034 * Set up the idle context for the BSP. Similar to above except
2035 * that some was done by locore, some by pmap.c and some is implicit
2036 * because the BSP is cpu#0 and the page is initially zero, and also
2037 * because we can refer to variables by name on the BSP..
2038 */
2039
2040 /* Allocate and setup BSP idle stack */
2041 stack = (char *)kmem_alloc(kernel_map, UPAGES * PAGE_SIZE);
2042 for (i = 0; i < UPAGES; i++)
2043 SMPpt[1 + i] = (pt_entry_t)
2044 (PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
2045
2046 for (x = 0; x < NKPT; x++)
2047 PTD[x] = 0;
2048 pmap_set_opt();
2049
2050 /* number of APs actually started */
2051 return mp_ncpus - 1;
2052}
2053
2054
2055/*
2056 * load the 1st level AP boot code into base memory.
2057 */
2058
2059/* targets for relocation */
2060extern void bigJump(void);
2061extern void bootCodeSeg(void);
2062extern void bootDataSeg(void);
2063extern void MPentry(void);
2064extern u_int MP_GDT;
2065extern u_int mp_gdtbase;
2066
2067static void
2068install_ap_tramp(u_int boot_addr)
2069{
2070 int x;
2071 int size = *(int *) ((u_long) & bootMP_size);
2072 u_char *src = (u_char *) ((u_long) bootMP);
2073 u_char *dst = (u_char *) boot_addr + KERNBASE;
2074 u_int boot_base = (u_int) bootMP;
2075 u_int8_t *dst8;
2076 u_int16_t *dst16;
2077 u_int32_t *dst32;
2078
2079 POSTCODE(INSTALL_AP_TRAMP_POST);
2080
2081 for (x = 0; x < size; ++x)
2082 *dst++ = *src++;
2083
2084 /*
2085 * modify addresses in code we just moved to basemem. unfortunately we
2086 * need fairly detailed info about mpboot.s for this to work. changes
2087 * to mpboot.s might require changes here.
2088 */
2089
2090 /* boot code is located in KERNEL space */
2091 dst = (u_char *) boot_addr + KERNBASE;
2092
2093 /* modify the lgdt arg */
2094 dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
2095 *dst32 = boot_addr + ((u_int) & MP_GDT - boot_base);
2096
2097 /* modify the ljmp target for MPentry() */
2098 dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
2099 *dst32 = ((u_int) MPentry - KERNBASE);
2100
2101 /* modify the target for boot code segment */
2102 dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
2103 dst8 = (u_int8_t *) (dst16 + 1);
2104 *dst16 = (u_int) boot_addr & 0xffff;
2105 *dst8 = ((u_int) boot_addr >> 16) & 0xff;
2106
2107 /* modify the target for boot data segment */
2108 dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
2109 dst8 = (u_int8_t *) (dst16 + 1);
2110 *dst16 = (u_int) boot_addr & 0xffff;
2111 *dst8 = ((u_int) boot_addr >> 16) & 0xff;
2112}
2113
2114
2115/*
2116 * this function starts the AP (application processor) identified
2117 * by the APIC ID 'physicalCpu'. It does quite a "song and dance"
2118 * to accomplish this. This is necessary because of the nuances
2119 * of the different hardware we might encounter. It ain't pretty,
2120 * but it seems to work.
2121 */
2122static int
2123start_ap(int logical_cpu, u_int boot_addr)
2124{
2125 int physical_cpu;
2126 int vector;
2127 int cpus;
2128 u_long icr_lo, icr_hi;
2129
2130 POSTCODE(START_AP_POST);
2131
2132 /* get the PHYSICAL APIC ID# */
2133 physical_cpu = CPU_TO_ID(logical_cpu);
2134
2135 /* calculate the vector */
2136 vector = (boot_addr >> 12) & 0xff;
2137
2138 /* used as a watchpoint to signal AP startup */
2139 cpus = mp_ncpus;
2140
2141 /*
2142 * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
2143 * and running the target CPU. OR this INIT IPI might be latched (P5
2144 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
2145 * ignored.
2146 */
2147
2148 /* setup the address for the target AP */
2149 icr_hi = lapic.icr_hi & ~APIC_ID_MASK;
2150 icr_hi |= (physical_cpu << 24);
2151 lapic.icr_hi = icr_hi;
2152
2153 /* do an INIT IPI: assert RESET */
2154 icr_lo = lapic.icr_lo & 0xfff00000;
2155 lapic.icr_lo = icr_lo | 0x0000c500;
2156
2157 /* wait for pending status end */
2158 while (lapic.icr_lo & APIC_DELSTAT_MASK)
2159 /* spin */ ;
2160
2161 /* do an INIT IPI: deassert RESET */
2162 lapic.icr_lo = icr_lo | 0x00008500;
2163
2164 /* wait for pending status end */
2165 u_sleep(10000); /* wait ~10mS */
2166 while (lapic.icr_lo & APIC_DELSTAT_MASK)
2167 /* spin */ ;
2168
2169 /*
2170 * next we do a STARTUP IPI: the previous INIT IPI might still be
2171 * latched, (P5 bug) this 1st STARTUP would then terminate
2172 * immediately, and the previously started INIT IPI would continue. OR
2173 * the previous INIT IPI has already run. and this STARTUP IPI will
2174 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
2175 * will run.
2176 */
2177
2178 /* do a STARTUP IPI */
2179 lapic.icr_lo = icr_lo | 0x00000600 | vector;
2180 while (lapic.icr_lo & APIC_DELSTAT_MASK)
2181 /* spin */ ;
2182 u_sleep(200); /* wait ~200uS */
2183
2184 /*
2185 * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
2186 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
2187 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
2188 * recognized after hardware RESET or INIT IPI.
2189 */
2190
2191 lapic.icr_lo = icr_lo | 0x00000600 | vector;
2192 while (lapic.icr_lo & APIC_DELSTAT_MASK)
2193 /* spin */ ;
2194 u_sleep(200); /* wait ~200uS */
2195
2196 /* wait for it to start */
2197 set_apic_timer(5000000);/* == 5 seconds */
2198 while (read_apic_timer())
2199 if (mp_ncpus > cpus)
2200 return 1; /* return SUCCESS */
2201
2202 return 0; /* return FAILURE */
2203}
2204
2205/*
2206 * Flush the TLB on all other CPU's
2207 *
2208 * XXX: Needs to handshake and wait for completion before proceding.
2209 */
2210void
2211smp_invltlb(void)
2212{
2213#if defined(APIC_IO)
2214 if (smp_started && invltlb_ok)
2215 ipi_all_but_self(IPI_INVLTLB);
2216#endif /* APIC_IO */
2217}
2218
2219void
2220invlpg(u_int addr)
2221{
2222 __asm __volatile("invlpg (%0)"::"r"(addr):"memory");
2223
2224 /* send a message to the other CPUs */
2225 smp_invltlb();
2226}
2227
2228void
2229invltlb(void)
2230{
2231 u_long temp;
2232
2233 /*
2234 * This should be implemented as load_cr3(rcr3()) when load_cr3() is
2235 * inlined.
2236 */
2237 __asm __volatile("movl %%cr3, %0; movl %0, %%cr3":"=r"(temp) :: "memory");
2238
2239 /* send a message to the other CPUs */
2240 smp_invltlb();
2241}
2242
2243
2244/*
2245 * This is called once the rest of the system is up and running and we're
2246 * ready to let the AP's out of the pen.
2247 */
2248void
2249ap_init(void)
2250{
2251 u_int apic_id;
2252
2253 /* spin until all the AP's are ready */
2254 while (!aps_ready)
2255 /* spin */ ;
2256
2257 /*
2258 * Set curproc to our per-cpu idleproc so that mutexes have
2259 * something unique to lock with.
2260 */
2261 PCPU_SET(curproc, PCPU_GET(idleproc));
2262 PCPU_SET(spinlocks, NULL);
2263
2264 /* lock against other AP's that are waking up */
2265 mtx_lock_spin(&ap_boot_mtx);
2266
2267 /* BSP may have changed PTD while we're waiting for the lock */
2268 cpu_invltlb();
2269
2270 smp_cpus++;
2271
2272#if defined(I586_CPU) && !defined(NO_F00F_HACK)
2273 lidt(&r_idt);
2274#endif
2275
2276 /* Build our map of 'other' CPUs. */
2277 PCPU_SET(other_cpus, all_cpus & ~(1 << PCPU_GET(cpuid)));
2278
2279 printf("SMP: AP CPU #%d Launched!\n", PCPU_GET(cpuid));
2280
2281 /* set up CPU registers and state */
2282 cpu_setregs();
2283
2284 /* set up FPU state on the AP */
2285 npxinit(__INITIAL_NPXCW__);
2286
2287 /* A quick check from sanity claus */
2288 apic_id = (apic_id_to_logical[(lapic.id & 0x0f000000) >> 24]);
2289 if (PCPU_GET(cpuid) != apic_id) {
2290 printf("SMP: cpuid = %d\n", PCPU_GET(cpuid));
2291 printf("SMP: apic_id = %d\n", apic_id);
2292 printf("PTD[MPPTDI] = %p\n", (void *)PTD[MPPTDI]);
2293 panic("cpuid mismatch! boom!!");
2294 }
2295
2296 /* Init local apic for irq's */
2297 apic_initialize();
2298
2299 /* Set memory range attributes for this CPU to match the BSP */
2300 mem_range_AP_init();
2301
2302 /*
2303 * Activate smp_invltlb, although strictly speaking, this isn't
2304 * quite correct yet. We should have a bitfield for cpus willing
2305 * to accept TLB flush IPI's or something and sync them.
2306 */
2307 if (smp_cpus == mp_ncpus) {
2308 invltlb_ok = 1;
2309 smp_started = 1; /* enable IPI's, tlb shootdown, freezes etc */
2310 smp_active = 1; /* historic */
2311 }
2312
2313 /* let other AP's wake up now */
2314 mtx_unlock_spin(&ap_boot_mtx);
2315
2316 /* wait until all the AP's are up */
2317 while (smp_started == 0)
2318 ; /* nothing */
2319
2320 microuptime(PCPU_PTR(switchtime));
2321 PCPU_SET(switchticks, ticks);
2322
2323 /* ok, now grab sched_lock and enter the scheduler */
2324 enable_intr();
2325 mtx_lock_spin(&sched_lock);
2326 cpu_throw(); /* doesn't return */
2327
2328 panic("scheduler returned us to ap_init");
2329}
2330
2331#define CHECKSTATE_USER 0
2332#define CHECKSTATE_SYS 1
2333#define CHECKSTATE_INTR 2
2334
2335/* Do not staticize. Used from apic_vector.s */
2336struct proc* checkstate_curproc[MAXCPU];
2337int checkstate_cpustate[MAXCPU];
2338u_long checkstate_pc[MAXCPU];
2339
2340#define PC_TO_INDEX(pc, prof) \
2341 ((int)(((u_quad_t)((pc) - (prof)->pr_off) * \
2342 (u_quad_t)((prof)->pr_scale)) >> 16) & ~1)
2343
2344static void
2345addupc_intr_forwarded(struct proc *p, int id, int *astmap)
2346{
2347 int i;
2348 struct uprof *prof;
2349 u_long pc;
2350
2351 pc = checkstate_pc[id];
2352 prof = &p->p_stats->p_prof;
2353 if (pc >= prof->pr_off &&
2354 (i = PC_TO_INDEX(pc, prof)) < prof->pr_size) {
2355 mtx_assert(&sched_lock, MA_OWNED);
2356 if ((p->p_sflag & PS_OWEUPC) == 0) {
2357 prof->pr_addr = pc;
2358 prof->pr_ticks = 1;
2359 p->p_sflag |= PS_OWEUPC;
2360 }
2361 *astmap |= (1 << id);
2362 }
2363}
2364
2365static void
2366forwarded_statclock(int id, int pscnt, int *astmap)
2367{
2368 struct pstats *pstats;
2369 long rss;
2370 struct rusage *ru;
2371 struct vmspace *vm;
2372 int cpustate;
2373 struct proc *p;
2374#ifdef GPROF
2375 register struct gmonparam *g;
2376 int i;
2377#endif
2378
2379 mtx_assert(&sched_lock, MA_OWNED);
151 mtx_assert(&sched_lock, MA_OWNED);
2380 p = checkstate_curproc[id];
2381 cpustate = checkstate_cpustate[id];
152 KASSERT(p->p_stat == SRUN, ("forward_signal: process is not SRUN"));
2382
153
2383 /* XXX */
2384 if (p->p_ithd)
2385 cpustate = CHECKSTATE_INTR;
2386 else if (p == SMP_prvspace[id].globaldata.gd_idleproc)
2387 cpustate = CHECKSTATE_SYS;
154 CTR1(KTR_SMP, "forward_signal(%p)", p);
2388
155
2389 switch (cpustate) {
2390 case CHECKSTATE_USER:
2391 if (p->p_sflag & PS_PROFIL)
2392 addupc_intr_forwarded(p, id, astmap);
2393 if (pscnt > 1)
2394 return;
2395 p->p_uticks++;
2396 if (p->p_nice > NZERO)
2397 cp_time[CP_NICE]++;
2398 else
2399 cp_time[CP_USER]++;
2400 break;
2401 case CHECKSTATE_SYS:
2402#ifdef GPROF
2403 /*
2404 * Kernel statistics are just like addupc_intr, only easier.
2405 */
2406 g = &_gmonparam;
2407 if (g->state == GMON_PROF_ON) {
2408 i = checkstate_pc[id] - g->lowpc;
2409 if (i < g->textsize) {
2410 i /= HISTFRACTION * sizeof(*g->kcount);
2411 g->kcount[i]++;
2412 }
2413 }
2414#endif
2415 if (pscnt > 1)
2416 return;
2417
2418 p->p_sticks++;
2419 if (p == SMP_prvspace[id].globaldata.gd_idleproc)
2420 cp_time[CP_IDLE]++;
2421 else
2422 cp_time[CP_SYS]++;
2423 break;
2424 case CHECKSTATE_INTR:
2425 default:
2426#ifdef GPROF
2427 /*
2428 * Kernel statistics are just like addupc_intr, only easier.
2429 */
2430 g = &_gmonparam;
2431 if (g->state == GMON_PROF_ON) {
2432 i = checkstate_pc[id] - g->lowpc;
2433 if (i < g->textsize) {
2434 i /= HISTFRACTION * sizeof(*g->kcount);
2435 g->kcount[i]++;
2436 }
2437 }
2438#endif
2439 if (pscnt > 1)
2440 return;
2441 KASSERT(p != NULL, ("NULL process in interrupt state"));
2442 p->p_iticks++;
2443 cp_time[CP_INTR]++;
2444 }
2445
2446 schedclock(p);
2447
2448 /* Update resource usage integrals and maximums. */
2449 if ((pstats = p->p_stats) != NULL &&
2450 (ru = &pstats->p_ru) != NULL &&
2451 (vm = p->p_vmspace) != NULL) {
2452 ru->ru_ixrss += pgtok(vm->vm_tsize);
2453 ru->ru_idrss += pgtok(vm->vm_dsize);
2454 ru->ru_isrss += pgtok(vm->vm_ssize);
2455 rss = pgtok(vmspace_resident_count(vm));
2456 if (ru->ru_maxrss < rss)
2457 ru->ru_maxrss = rss;
2458 }
2459}
2460
2461void
2462forward_statclock(int pscnt)
2463{
2464 int map;
2465 int id;
2466 int i;
2467
2468 /* Kludge. We don't yet have separate locks for the interrupts
2469 * and the kernel. This means that we cannot let the other processors
2470 * handle complex interrupts while inhibiting them from entering
2471 * the kernel in a non-interrupt context.
2472 *
2473 * What we can do, without changing the locking mechanisms yet,
2474 * is letting the other processors handle a very simple interrupt
2475 * (wich determines the processor states), and do the main
2476 * work ourself.
2477 */
2478
2479 CTR1(KTR_SMP, "forward_statclock(%d)", pscnt);
2480
2481 if (!smp_started || !invltlb_ok || cold || panicstr)
156 if (!smp_started || cold || panicstr)
2482 return;
157 return;
158 if (!forward_signal_enabled)
159 return;
2483
160
2484 /* Step 1: Probe state (user, cpu, interrupt, spinlock, idle ) */
2485
2486 map = PCPU_GET(other_cpus) & ~stopped_cpus ;
2487 checkstate_probed_cpus = 0;
2488 if (map != 0)
2489 ipi_selected(map, IPI_CHECKSTATE);
2490
2491 i = 0;
2492 while (checkstate_probed_cpus != map) {
2493 /* spin */
2494 i++;
2495 if (i == 100000) {
2496#ifdef DIAGNOSTIC
2497 printf("forward_statclock: checkstate %x\n",
2498 checkstate_probed_cpus);
2499#endif
2500 break;
2501 }
2502 }
2503
2504 /*
2505 * Step 2: walk through other processors processes, update ticks and
2506 * profiling info.
2507 */
2508
2509 map = 0;
2510 for (id = 0; id < mp_ncpus; id++) {
2511 if (id == PCPU_GET(cpuid))
2512 continue;
2513 if (((1 << id) & checkstate_probed_cpus) == 0)
2514 continue;
2515 forwarded_statclock(id, pscnt, &map);
2516 }
2517 if (map != 0) {
2518 checkstate_need_ast |= map;
2519 ipi_selected(map, IPI_AST);
2520 i = 0;
2521 while ((checkstate_need_ast & map) != 0) {
2522 /* spin */
2523 i++;
2524 if (i > 100000) {
2525#ifdef DIAGNOSTIC
2526 printf("forward_statclock: dropped ast 0x%x\n",
2527 checkstate_need_ast & map);
2528#endif
2529 break;
2530 }
2531 }
2532 }
2533}
2534
2535void
2536forward_hardclock(int pscnt)
2537{
2538 int map;
2539 int id;
2540 struct proc *p;
2541 struct pstats *pstats;
2542 int i;
2543
2544 /* Kludge. We don't yet have separate locks for the interrupts
2545 * and the kernel. This means that we cannot let the other processors
2546 * handle complex interrupts while inhibiting them from entering
2547 * the kernel in a non-interrupt context.
2548 *
2549 * What we can do, without changing the locking mechanisms yet,
2550 * is letting the other processors handle a very simple interrupt
2551 * (wich determines the processor states), and do the main
2552 * work ourself.
2553 */
2554
2555 CTR1(KTR_SMP, "forward_hardclock(%d)", pscnt);
2556
2557 if (!smp_started || !invltlb_ok || cold || panicstr)
161 /* No need to IPI ourself. */
162 if (p == curproc)
2558 return;
2559
163 return;
164
2560 /* Step 1: Probe state (user, cpu, interrupt, spinlock, idle) */
2561
2562 map = PCPU_GET(other_cpus) & ~stopped_cpus ;
2563 checkstate_probed_cpus = 0;
2564 if (map != 0)
2565 ipi_selected(map, IPI_CHECKSTATE);
2566
2567 i = 0;
2568 while (checkstate_probed_cpus != map) {
2569 /* spin */
2570 i++;
2571 if (i == 100000) {
2572#ifdef DIAGNOSTIC
2573 printf("forward_hardclock: checkstate %x\n",
2574 checkstate_probed_cpus);
2575#endif
2576 break;
2577 }
2578 }
2579
2580 /*
2581 * Step 2: walk through other processors processes, update virtual
2582 * timer and profiling timer. If stathz == 0, also update ticks and
2583 * profiling info.
2584 */
2585
2586 map = 0;
2587 for (id = 0; id < mp_ncpus; id++) {
2588 if (id == PCPU_GET(cpuid))
2589 continue;
2590 if (((1 << id) & checkstate_probed_cpus) == 0)
2591 continue;
2592 p = checkstate_curproc[id];
2593 if (p) {
2594 pstats = p->p_stats;
2595 if (checkstate_cpustate[id] == CHECKSTATE_USER &&
2596 timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
2597 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) {
2598 p->p_sflag |= PS_ALRMPEND;
2599 map |= (1 << id);
2600 }
2601 if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
2602 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) {
2603 p->p_sflag |= PS_PROFPEND;
2604 map |= (1 << id);
2605 }
2606 }
2607 if (stathz == 0) {
2608 forwarded_statclock( id, pscnt, &map);
2609 }
2610 }
2611 if (map != 0) {
2612 checkstate_need_ast |= map;
2613 ipi_selected(map, IPI_AST);
2614 i = 0;
2615 while ((checkstate_need_ast & map) != 0) {
2616 /* spin */
2617 i++;
2618 if (i > 100000) {
2619#ifdef DIAGNOSTIC
2620 printf("forward_hardclock: dropped ast 0x%x\n",
2621 checkstate_need_ast & map);
2622#endif
2623 break;
2624 }
2625 }
2626 }
2627}
2628
2629void
2630forward_signal(struct proc *p)
2631{
2632 int map;
2633 int id;
2634 int i;
2635
2636 /* Kludge. We don't yet have separate locks for the interrupts
2637 * and the kernel. This means that we cannot let the other processors
2638 * handle complex interrupts while inhibiting them from entering
2639 * the kernel in a non-interrupt context.
2640 *
2641 * What we can do, without changing the locking mechanisms yet,
2642 * is letting the other processors handle a very simple interrupt
2643 * (wich determines the processor states), and do the main
2644 * work ourself.
2645 */
2646
2647 CTR1(KTR_SMP, "forward_signal(%p)", p);
2648
2649 if (!smp_started || !invltlb_ok || cold || panicstr)
165 id = p->p_oncpu;
166 if (id == NOCPU)
2650 return;
167 return;
2651 if (!forward_signal_enabled)
2652 return;
2653 mtx_lock_spin(&sched_lock);
2654 while (1) {
2655 if (p->p_stat != SRUN) {
2656 mtx_unlock_spin(&sched_lock);
2657 return;
2658 }
2659 id = p->p_oncpu;
2660 mtx_unlock_spin(&sched_lock);
2661 if (id == 0xff)
2662 return;
2663 map = (1<<id);
2664 checkstate_need_ast |= map;
2665 ipi_selected(map, IPI_AST);
2666 i = 0;
2667 while ((checkstate_need_ast & map) != 0) {
2668 /* spin */
2669 i++;
2670 if (i > 100000) {
2671#if 0
2672 printf("forward_signal: dropped ast 0x%x\n",
2673 checkstate_need_ast & map);
2674#endif
2675 break;
2676 }
2677 }
2678 mtx_lock_spin(&sched_lock);
2679 if (id == p->p_oncpu) {
2680 mtx_unlock_spin(&sched_lock);
2681 return;
2682 }
2683 }
168 ipi_selected(1 << id, IPI_AST);
2684}
2685
2686void
2687forward_roundrobin(void)
2688{
169}
170
171void
172forward_roundrobin(void)
173{
2689 u_int map;
2690 int i;
174 struct globaldata *gd;
175 struct proc *p;
176 u_int id, map;
2691
177
178 mtx_assert(&sched_lock, MA_OWNED);
179
2692 CTR0(KTR_SMP, "forward_roundrobin()");
2693
180 CTR0(KTR_SMP, "forward_roundrobin()");
181
2694 if (!smp_started || !invltlb_ok || cold || panicstr)
182 if (!smp_started || cold || panicstr)
2695 return;
2696 if (!forward_roundrobin_enabled)
2697 return;
183 return;
184 if (!forward_roundrobin_enabled)
185 return;
2698 resched_cpus |= PCPU_GET(other_cpus);
2699 map = PCPU_GET(other_cpus) & ~stopped_cpus ;
2700#if 1
2701 ipi_selected(map, IPI_AST);
2702#else
2703 ipi_all_but_self(IPI_AST);
2704#endif
2705 i = 0;
2706 while ((checkstate_need_ast & map) != 0) {
2707 /* spin */
2708 i++;
2709 if (i > 100000) {
2710#if 0
2711 printf("forward_roundrobin: dropped ast 0x%x\n",
2712 checkstate_need_ast & map);
2713#endif
2714 break;
186 map = 0;
187 SLIST_FOREACH(gd, &cpuhead, gd_allcpu) {
188 p = gd->gd_curproc;
189 id = gd->gd_cpuid;
190 if (id != PCPU_GET(cpuid) && (id & stopped_cpus) == 0 &&
191 p != gd->gd_idleproc) {
192 need_resched(p);
193 map |= id;
2715 }
2716 }
194 }
195 }
196 ipi_selected(map, IPI_AST);
2717}
2718
2719/*
2720 * When called the executing CPU will send an IPI to all other CPUs
2721 * requesting that they halt execution.
2722 *
2723 * Usually (but not necessarily) called with 'other_cpus' as its arg.
2724 *

--- 6 unchanged lines hidden (view full) ---

2731 * 1: ok
2732 *
2733 * XXX FIXME: this is not MP-safe, needs a lock to prevent multiple CPUs
2734 * from executing at same time.
2735 */
2736int
2737stop_cpus(u_int map)
2738{
197}
198
199/*
200 * When called the executing CPU will send an IPI to all other CPUs
201 * requesting that they halt execution.
202 *
203 * Usually (but not necessarily) called with 'other_cpus' as its arg.
204 *

--- 6 unchanged lines hidden (view full) ---

211 * 1: ok
212 *
213 * XXX FIXME: this is not MP-safe, needs a lock to prevent multiple CPUs
214 * from executing at same time.
215 */
216int
217stop_cpus(u_int map)
218{
2739 int count = 0;
219 int i;
2740
2741 if (!smp_started)
2742 return 0;
2743
220
221 if (!smp_started)
222 return 0;
223
2744 /* send the Xcpustop IPI to all CPUs in map */
224 CTR1(KTR_SMP, "stop_cpus(%x)", map);
225
226 /* send the stop IPI to all CPUs in map */
2745 ipi_selected(map, IPI_STOP);
2746
227 ipi_selected(map, IPI_STOP);
228
2747 while (count++ < 100000 && (stopped_cpus & map) != map)
2748 /* spin */ ;
2749
229 i = 0;
230 while ((atomic_load_acq_int(&stopped_cpus) & map) != map) {
231 /* spin */
232 i++;
2750#ifdef DIAGNOSTIC
233#ifdef DIAGNOSTIC
2751 if ((stopped_cpus & map) != map)
2752 printf("Warning: CPUs 0x%x did not stop!\n",
2753 (~(stopped_cpus & map)) & map);
234 if (i == 100000) {
235 printf("timeout stopping cpus\n");
236 break;
237 }
2754#endif
238#endif
239 }
2755
2756 return 1;
2757}
2758
2759
2760/*
2761 * Called by a CPU to restart stopped CPUs.
2762 *

--- 5 unchanged lines hidden (view full) ---

2768 * Returns:
2769 * -1: error
2770 * 0: NA
2771 * 1: ok
2772 */
2773int
2774restart_cpus(u_int map)
2775{
240
241 return 1;
242}
243
244
245/*
246 * Called by a CPU to restart stopped CPUs.
247 *

--- 5 unchanged lines hidden (view full) ---

253 * Returns:
254 * -1: error
255 * 0: NA
256 * 1: ok
257 */
258int
259restart_cpus(u_int map)
260{
2776 int count = 0;
2777
2778 if (!smp_started)
2779 return 0;
2780
261
262 if (!smp_started)
263 return 0;
264
2781 started_cpus = map; /* signal other cpus to restart */
265 CTR1(KTR_SMP, "restart_cpus(%x)", map);
2782
266
267 /* signal other cpus to restart */
268 atomic_store_rel_int(&started_cpus, map);
269
2783 /* wait for each to clear its bit */
270 /* wait for each to clear its bit */
2784 while (count++ < 100000 && (stopped_cpus & map) != 0)
2785 /* spin */ ;
271 while ((atomic_load_acq_int(&stopped_cpus) & map) != 0)
272 ; /* nothing */
2786
273
2787#ifdef DIAGNOSTIC
2788 if ((stopped_cpus & map) != 0)
2789 printf("Warning: CPUs 0x%x did not restart!\n",
2790 (~(stopped_cpus & map)) & map);
2791#endif
2792
2793 return 1;
2794}
2795
274 return 1;
275}
276
2796
2797#ifdef APIC_INTR_REORDER
2798/*
277/*
2799 * Maintain mapping from softintr vector to isr bit in local apic.
2800 */
2801void
2802set_lapic_isrloc(int intr, int vector)
2803{
2804 if (intr < 0 || intr > 32)
2805 panic("set_apic_isrloc: bad intr argument: %d",intr);
2806 if (vector < ICU_OFFSET || vector > 255)
2807 panic("set_apic_isrloc: bad vector argument: %d",vector);
2808 apic_isrbit_location[intr].location = &lapic.isr0 + ((vector>>5)<<2);
2809 apic_isrbit_location[intr].bit = (1<<(vector & 31));
2810}
2811#endif
2812
2813/*
2814 * All-CPU rendezvous. CPUs are signalled, all execute the setup function
2815 * (if specified), rendezvous, execute the action function (if specified),
2816 * rendezvous again, execute the teardown function (if specified), and then
2817 * resume.
2818 *
2819 * Note that the supplied external functions _must_ be reentrant and aware
2820 * that they are running in parallel and in an unknown lock context.
2821 */
278 * All-CPU rendezvous. CPUs are signalled, all execute the setup function
279 * (if specified), rendezvous, execute the action function (if specified),
280 * rendezvous again, execute the teardown function (if specified), and then
281 * resume.
282 *
283 * Note that the supplied external functions _must_ be reentrant and aware
284 * that they are running in parallel and in an unknown lock context.
285 */
2822static void (*smp_rv_setup_func)(void *arg);
2823static void (*smp_rv_action_func)(void *arg);
2824static void (*smp_rv_teardown_func)(void *arg);
2825static void *smp_rv_func_arg;
2826static volatile int smp_rv_waiters[2];
2827
2828void
2829smp_rendezvous_action(void)
2830{
286void
287smp_rendezvous_action(void)
288{
289
2831 /* setup function */
2832 if (smp_rv_setup_func != NULL)
2833 smp_rv_setup_func(smp_rv_func_arg);
2834 /* spin on entry rendezvous */
2835 atomic_add_int(&smp_rv_waiters[0], 1);
290 /* setup function */
291 if (smp_rv_setup_func != NULL)
292 smp_rv_setup_func(smp_rv_func_arg);
293 /* spin on entry rendezvous */
294 atomic_add_int(&smp_rv_waiters[0], 1);
2836 while (smp_rv_waiters[0] < mp_ncpus)
2837 ;
295 while (atomic_load_acq_int(&smp_rv_waiters[0]) < mp_ncpus)
296 ; /* nothing */
2838 /* action function */
2839 if (smp_rv_action_func != NULL)
2840 smp_rv_action_func(smp_rv_func_arg);
2841 /* spin on exit rendezvous */
2842 atomic_add_int(&smp_rv_waiters[1], 1);
297 /* action function */
298 if (smp_rv_action_func != NULL)
299 smp_rv_action_func(smp_rv_func_arg);
300 /* spin on exit rendezvous */
301 atomic_add_int(&smp_rv_waiters[1], 1);
2843 while (smp_rv_waiters[1] < mp_ncpus)
2844 ;
302 while (atomic_load_acq_int(&smp_rv_waiters[1]) < mp_ncpus)
303 ; /* nothing */
2845 /* teardown function */
2846 if (smp_rv_teardown_func != NULL)
2847 smp_rv_teardown_func(smp_rv_func_arg);
2848}
2849
2850void
2851smp_rendezvous(void (* setup_func)(void *),
2852 void (* action_func)(void *),
2853 void (* teardown_func)(void *),
2854 void *arg)
2855{
2856
304 /* teardown function */
305 if (smp_rv_teardown_func != NULL)
306 smp_rv_teardown_func(smp_rv_func_arg);
307}
308
309void
310smp_rendezvous(void (* setup_func)(void *),
311 void (* action_func)(void *),
312 void (* teardown_func)(void *),
313 void *arg)
314{
315
316 if (!smp_started) {
317 if (setup_func != NULL)
318 setup_func(arg);
319 if (action_func != NULL)
320 action_func(arg);
321 if (teardown_func != NULL)
322 teardown_func(arg);
323 return;
324 }
325
2857 /* obtain rendezvous lock */
2858 mtx_lock_spin(&smp_rv_mtx);
2859
2860 /* set static function pointers */
2861 smp_rv_setup_func = setup_func;
2862 smp_rv_action_func = action_func;
2863 smp_rv_teardown_func = teardown_func;
2864 smp_rv_func_arg = arg;
2865 smp_rv_waiters[0] = 0;
2866 smp_rv_waiters[1] = 0;
2867
326 /* obtain rendezvous lock */
327 mtx_lock_spin(&smp_rv_mtx);
328
329 /* set static function pointers */
330 smp_rv_setup_func = setup_func;
331 smp_rv_action_func = action_func;
332 smp_rv_teardown_func = teardown_func;
333 smp_rv_func_arg = arg;
334 smp_rv_waiters[0] = 0;
335 smp_rv_waiters[1] = 0;
336
2868 /*
2869 * signal other processors, which will enter the IPI with interrupts off
2870 */
337 /* signal other processors, which will enter the IPI with interrupts off */
2871 ipi_all_but_self(IPI_RENDEZVOUS);
2872
2873 /* call executor function */
2874 smp_rendezvous_action();
2875
2876 /* release lock */
2877 mtx_unlock_spin(&smp_rv_mtx);
2878}
338 ipi_all_but_self(IPI_RENDEZVOUS);
339
340 /* call executor function */
341 smp_rendezvous_action();
342
343 /* release lock */
344 mtx_unlock_spin(&smp_rv_mtx);
345}
2879
2880/*
2881 * send an IPI to a set of cpus.
2882 */
2883void
2884ipi_selected(u_int32_t cpus, u_int ipi)
2885{
2886
2887 CTR2(KTR_SMP, __func__ ": cpus: %x ipi: %x", cpus, ipi);
2888 selected_apic_ipi(cpus, ipi, APIC_DELMODE_FIXED);
2889}
2890
2891/*
2892 * send an IPI INTerrupt containing 'vector' to all CPUs, including myself
2893 */
2894void
2895ipi_all(u_int ipi)
2896{
2897
2898 CTR1(KTR_SMP, __func__ ": ipi: %x", ipi);
2899 apic_ipi(APIC_DEST_ALLISELF, ipi, APIC_DELMODE_FIXED);
2900}
2901
2902/*
2903 * send an IPI to all CPUs EXCEPT myself
2904 */
2905void
2906ipi_all_but_self(u_int ipi)
2907{
2908
2909 CTR1(KTR_SMP, __func__ ": ipi: %x", ipi);
2910 apic_ipi(APIC_DEST_ALLESELF, ipi, APIC_DELMODE_FIXED);
2911}
2912
2913/*
2914 * send an IPI to myself
2915 */
2916void
2917ipi_self(u_int ipi)
2918{
2919
2920 CTR1(KTR_SMP, __func__ ": ipi: %x", ipi);
2921 apic_ipi(APIC_DEST_SELF, ipi, APIC_DELMODE_FIXED);
2922}
2923
2924void
2925release_aps(void *dummy __unused)
2926{
2927 atomic_store_rel_int(&aps_ready, 1);
2928}
2929
2930SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);