Deleted Added
full compact
kern_tc.c (36719) kern_tc.c (36741)
1static volatile int print_tci = 1;
2
3/*-
4 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
5 * Copyright (c) 1982, 1986, 1991, 1993
6 * The Regents of the University of California. All rights reserved.
7 * (c) UNIX System Laboratories, Inc.
8 * All or some portions of this file are derived from material licensed
9 * to the University of California by American Telephone and Telegraph
10 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11 * the permission of UNIX System Laboratories, Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 * must display the following acknowledgement:
23 * This product includes software developed by the University of
24 * California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
1static volatile int print_tci = 1;
2
3/*-
4 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
5 * Copyright (c) 1982, 1986, 1991, 1993
6 * The Regents of the University of California. All rights reserved.
7 * (c) UNIX System Laboratories, Inc.
8 * All or some portions of this file are derived from material licensed
9 * to the University of California by American Telephone and Telegraph
10 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11 * the permission of UNIX System Laboratories, Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 * must display the following acknowledgement:
23 * This product includes software developed by the University of
24 * California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
42 * $Id: kern_clock.c,v 1.70 1998/05/28 09:30:16 phk Exp $
42 * $Id: kern_clock.c,v 1.71 1998/06/07 08:40:41 phk Exp $
43 */
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/dkstat.h>
48#include <sys/callout.h>
49#include <sys/kernel.h>
50#include <sys/proc.h>
51#include <sys/resourcevar.h>
52#include <sys/signalvar.h>
53#include <sys/timex.h>
54#include <vm/vm.h>
55#include <sys/lock.h>
56#include <vm/pmap.h>
57#include <vm/vm_map.h>
58#include <sys/sysctl.h>
59
60#include <machine/cpu.h>
61#include <machine/limits.h>
62
63#ifdef GPROF
64#include <sys/gmon.h>
65#endif
66
67#if defined(SMP) && defined(BETTER_CLOCK)
68#include <machine/smp.h>
69#endif
70
71static void initclocks __P((void *dummy));
72SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)
73
74static void tco_forward __P((void));
75static void tco_setscales __P((struct timecounter *tc));
76static __inline unsigned tco_getdelta __P((struct timecounter *tc));
77
78/* Some of these don't belong here, but it's easiest to concentrate them. */
79#if defined(SMP) && defined(BETTER_CLOCK)
80long cp_time[CPUSTATES];
81#else
82static long cp_time[CPUSTATES];
83#endif
84long dk_seek[DK_NDRIVE];
85static long dk_time[DK_NDRIVE]; /* time busy (in statclock ticks) */
86long dk_wds[DK_NDRIVE];
87long dk_wpms[DK_NDRIVE];
88long dk_xfer[DK_NDRIVE];
89
90int dk_busy;
91int dk_ndrive = 0;
92char dk_names[DK_NDRIVE][DK_NAMELEN];
93
94long tk_cancc;
95long tk_nin;
96long tk_nout;
97long tk_rawcc;
98
99struct timecounter *timecounter;
100
101time_t time_second;
102
103/*
104 * Clock handling routines.
105 *
106 * This code is written to operate with two timers that run independently of
107 * each other.
108 *
109 * The main timer, running hz times per second, is used to trigger interval
110 * timers, timeouts and rescheduling as needed.
111 *
112 * The second timer handles kernel and user profiling,
113 * and does resource use estimation. If the second timer is programmable,
114 * it is randomized to avoid aliasing between the two clocks. For example,
115 * the randomization prevents an adversary from always giving up the cpu
116 * just before its quantum expires. Otherwise, it would never accumulate
117 * cpu ticks. The mean frequency of the second timer is stathz.
118 *
119 * If no second timer exists, stathz will be zero; in this case we drive
120 * profiling and statistics off the main clock. This WILL NOT be accurate;
121 * do not do it unless absolutely necessary.
122 *
123 * The statistics clock may (or may not) be run at a higher rate while
124 * profiling. This profile clock runs at profhz. We require that profhz
125 * be an integral multiple of stathz.
126 *
127 * If the statistics clock is running fast, it must be divided by the ratio
128 * profhz/stathz for statistics. (For profiling, every tick counts.)
129 *
130 * Time-of-day is maintained using a "timecounter", which may or may
131 * not be related to the hardware generating the above mentioned
132 * interrupts.
133 */
134
135int stathz;
136int profhz;
137static int profprocs;
138int ticks;
139static int psdiv, pscnt; /* prof => stat divider */
140int psratio; /* ratio: prof / stat */
141
142/*
143 * Initialize clock frequencies and start both clocks running.
144 */
145/* ARGSUSED*/
146static void
147initclocks(dummy)
148 void *dummy;
149{
150 register int i;
151
152 /*
153 * Set divisors to 1 (normal case) and let the machine-specific
154 * code do its bit.
155 */
156 psdiv = pscnt = 1;
157 cpu_initclocks();
158
159 /*
160 * Compute profhz/stathz, and fix profhz if needed.
161 */
162 i = stathz ? stathz : hz;
163 if (profhz == 0)
164 profhz = i;
165 psratio = profhz / i;
166}
167
168/*
169 * The real-time timer, interrupting hz times per second.
170 */
171void
172hardclock(frame)
173 register struct clockframe *frame;
174{
175 register struct proc *p;
176
177 p = curproc;
178 if (p) {
179 register struct pstats *pstats;
180
181 /*
182 * Run current process's virtual and profile time, as needed.
183 */
184 pstats = p->p_stats;
185 if (CLKF_USERMODE(frame) &&
186 timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
187 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
188 psignal(p, SIGVTALRM);
189 if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
190 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
191 psignal(p, SIGPROF);
192 }
193
194#if defined(SMP) && defined(BETTER_CLOCK)
195 forward_hardclock(pscnt);
196#endif
197
198 /*
199 * If no separate statistics clock is available, run it from here.
200 */
201 if (stathz == 0)
202 statclock(frame);
203
204 tco_forward();
205 ticks++;
206
207 /*
208 * Process callouts at a very low cpu priority, so we don't keep the
209 * relatively high clock interrupt priority any longer than necessary.
210 */
211 if (TAILQ_FIRST(&callwheel[ticks & callwheelmask]) != NULL) {
212 if (CLKF_BASEPRI(frame)) {
213 /*
214 * Save the overhead of a software interrupt;
215 * it will happen as soon as we return, so do it now.
216 */
217 (void)splsoftclock();
218 softclock();
219 } else
220 setsoftclock();
221 } else if (softticks + 1 == ticks)
222 ++softticks;
223}
224
225/*
226 * Compute number of ticks in the specified amount of time.
227 */
228int
229tvtohz(tv)
230 struct timeval *tv;
231{
232 register unsigned long ticks;
233 register long sec, usec;
234
235 /*
236 * If the number of usecs in the whole seconds part of the time
237 * difference fits in a long, then the total number of usecs will
238 * fit in an unsigned long. Compute the total and convert it to
239 * ticks, rounding up and adding 1 to allow for the current tick
240 * to expire. Rounding also depends on unsigned long arithmetic
241 * to avoid overflow.
242 *
243 * Otherwise, if the number of ticks in the whole seconds part of
244 * the time difference fits in a long, then convert the parts to
245 * ticks separately and add, using similar rounding methods and
246 * overflow avoidance. This method would work in the previous
247 * case but it is slightly slower and assumes that hz is integral.
248 *
249 * Otherwise, round the time difference down to the maximum
250 * representable value.
251 *
252 * If ints have 32 bits, then the maximum value for any timeout in
253 * 10ms ticks is 248 days.
254 */
255 sec = tv->tv_sec;
256 usec = tv->tv_usec;
257 if (usec < 0) {
258 sec--;
259 usec += 1000000;
260 }
261 if (sec < 0) {
262#ifdef DIAGNOSTIC
263 if (usec > 0) {
264 sec++;
265 usec -= 1000000;
266 }
267 printf("tvotohz: negative time difference %ld sec %ld usec\n",
268 sec, usec);
269#endif
270 ticks = 1;
271 } else if (sec <= LONG_MAX / 1000000)
272 ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1))
273 / tick + 1;
274 else if (sec <= LONG_MAX / hz)
275 ticks = sec * hz
276 + ((unsigned long)usec + (tick - 1)) / tick + 1;
277 else
278 ticks = LONG_MAX;
279 if (ticks > INT_MAX)
280 ticks = INT_MAX;
281 return (ticks);
282}
283
284
285/*
286 * Compute number of hz until specified time. Used to
287 * compute third argument to timeout() from an absolute time.
288 */
289int
290hzto(tv)
291 struct timeval *tv;
292{
293 struct timeval t2;
294
295 getmicrotime(&t2);
296 t2.tv_sec = tv->tv_sec - t2.tv_sec;
297 t2.tv_usec = tv->tv_usec - t2.tv_usec;
298 return (tvtohz(&t2));
299}
300
301/*
302 * Start profiling on a process.
303 *
304 * Kernel profiling passes proc0 which never exits and hence
305 * keeps the profile clock running constantly.
306 */
307void
308startprofclock(p)
309 register struct proc *p;
310{
311 int s;
312
313 if ((p->p_flag & P_PROFIL) == 0) {
314 p->p_flag |= P_PROFIL;
315 if (++profprocs == 1 && stathz != 0) {
316 s = splstatclock();
317 psdiv = pscnt = psratio;
318 setstatclockrate(profhz);
319 splx(s);
320 }
321 }
322}
323
324/*
325 * Stop profiling on a process.
326 */
327void
328stopprofclock(p)
329 register struct proc *p;
330{
331 int s;
332
333 if (p->p_flag & P_PROFIL) {
334 p->p_flag &= ~P_PROFIL;
335 if (--profprocs == 0 && stathz != 0) {
336 s = splstatclock();
337 psdiv = pscnt = 1;
338 setstatclockrate(stathz);
339 splx(s);
340 }
341 }
342}
343
344/*
345 * Statistics clock. Grab profile sample, and if divider reaches 0,
346 * do process and kernel statistics.
347 */
348void
349statclock(frame)
350 register struct clockframe *frame;
351{
352#ifdef GPROF
353 register struct gmonparam *g;
354#endif
355 register struct proc *p;
356 register int i;
357 struct pstats *pstats;
358 long rss;
359 struct rusage *ru;
360 struct vmspace *vm;
361
362 if (CLKF_USERMODE(frame)) {
363 p = curproc;
364 if (p->p_flag & P_PROFIL)
365 addupc_intr(p, CLKF_PC(frame), 1);
366#if defined(SMP) && defined(BETTER_CLOCK)
367 if (stathz != 0)
368 forward_statclock(pscnt);
369#endif
370 if (--pscnt > 0)
371 return;
372 /*
373 * Came from user mode; CPU was in user state.
374 * If this process is being profiled record the tick.
375 */
376 p->p_uticks++;
377 if (p->p_nice > NZERO)
378 cp_time[CP_NICE]++;
379 else
380 cp_time[CP_USER]++;
381 } else {
382#ifdef GPROF
383 /*
384 * Kernel statistics are just like addupc_intr, only easier.
385 */
386 g = &_gmonparam;
387 if (g->state == GMON_PROF_ON) {
388 i = CLKF_PC(frame) - g->lowpc;
389 if (i < g->textsize) {
390 i /= HISTFRACTION * sizeof(*g->kcount);
391 g->kcount[i]++;
392 }
393 }
394#endif
395#if defined(SMP) && defined(BETTER_CLOCK)
396 if (stathz != 0)
397 forward_statclock(pscnt);
398#endif
399 if (--pscnt > 0)
400 return;
401 /*
402 * Came from kernel mode, so we were:
403 * - handling an interrupt,
404 * - doing syscall or trap work on behalf of the current
405 * user process, or
406 * - spinning in the idle loop.
407 * Whichever it is, charge the time as appropriate.
408 * Note that we charge interrupts to the current process,
409 * regardless of whether they are ``for'' that process,
410 * so that we know how much of its real time was spent
411 * in ``non-process'' (i.e., interrupt) work.
412 */
413 p = curproc;
414 if (CLKF_INTR(frame)) {
415 if (p != NULL)
416 p->p_iticks++;
417 cp_time[CP_INTR]++;
418 } else if (p != NULL) {
419 p->p_sticks++;
420 cp_time[CP_SYS]++;
421 } else
422 cp_time[CP_IDLE]++;
423 }
424 pscnt = psdiv;
425
426 /*
427 * We maintain statistics shown by user-level statistics
428 * programs: the amount of time in each cpu state, and
429 * the amount of time each of DK_NDRIVE ``drives'' is busy.
430 *
431 * XXX should either run linked list of drives, or (better)
432 * grab timestamps in the start & done code.
433 */
434 for (i = 0; i < DK_NDRIVE; i++)
435 if (dk_busy & (1 << i))
436 dk_time[i]++;
437
438 /*
439 * We adjust the priority of the current process. The priority of
440 * a process gets worse as it accumulates CPU time. The cpu usage
441 * estimator (p_estcpu) is increased here. The formula for computing
442 * priorities (in kern_synch.c) will compute a different value each
443 * time p_estcpu increases by 4. The cpu usage estimator ramps up
444 * quite quickly when the process is running (linearly), and decays
445 * away exponentially, at a rate which is proportionally slower when
446 * the system is busy. The basic principal is that the system will
447 * 90% forget that the process used a lot of CPU time in 5 * loadav
448 * seconds. This causes the system to favor processes which haven't
449 * run much recently, and to round-robin among other processes.
450 */
451 if (p != NULL) {
452 p->p_cpticks++;
453 if (++p->p_estcpu == 0)
454 p->p_estcpu--;
455 if ((p->p_estcpu & 3) == 0) {
456 resetpriority(p);
457 if (p->p_priority >= PUSER)
458 p->p_priority = p->p_usrpri;
459 }
460
461 /* Update resource usage integrals and maximums. */
462 if ((pstats = p->p_stats) != NULL &&
463 (ru = &pstats->p_ru) != NULL &&
464 (vm = p->p_vmspace) != NULL) {
465 ru->ru_ixrss += vm->vm_tsize * PAGE_SIZE / 1024;
466 ru->ru_idrss += vm->vm_dsize * PAGE_SIZE / 1024;
467 ru->ru_isrss += vm->vm_ssize * PAGE_SIZE / 1024;
468 rss = vm->vm_pmap.pm_stats.resident_count *
469 PAGE_SIZE / 1024;
470 if (ru->ru_maxrss < rss)
471 ru->ru_maxrss = rss;
472 }
473 }
474}
475
476/*
477 * Return information about system clocks.
478 */
479static int
480sysctl_kern_clockrate SYSCTL_HANDLER_ARGS
481{
482 struct clockinfo clkinfo;
483 /*
484 * Construct clockinfo structure.
485 */
486 clkinfo.hz = hz;
487 clkinfo.tick = tick;
488 clkinfo.tickadj = tickadj;
489 clkinfo.profhz = profhz;
490 clkinfo.stathz = stathz ? stathz : hz;
491 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
492}
493
494SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
495 0, 0, sysctl_kern_clockrate, "S,clockinfo","");
496
497static __inline unsigned
498tco_getdelta(struct timecounter *tc)
499{
500
501 return ((tc->get_timecount(tc) - tc->offset_count) & tc->counter_mask);
502}
503
504/*
505 * We have four functions for looking at the clock, two for microseconds
506 * and two for nanoseconds. For each there is fast but less precise
507 * version "get{nano|micro}time" which will return a time which is up
508 * to 1/HZ previous to the call, whereas the raw version "{nano|micro}time"
509 * will return a timestamp which is as precise as possible.
510 */
511
512void
513getmicrotime(struct timeval *tvp)
514{
515 struct timecounter *tc;
516
517 tc = timecounter;
518 *tvp = tc->microtime;
519}
520
521void
522getnanotime(struct timespec *tsp)
523{
524 struct timecounter *tc;
525
526 tc = timecounter;
527 *tsp = tc->nanotime;
528}
529
530void
531microtime(struct timeval *tv)
532{
533 struct timecounter *tc;
534
535 tc = (struct timecounter *)timecounter;
536 tv->tv_sec = tc->offset_sec;
537 tv->tv_usec = tc->offset_micro;
538 tv->tv_usec += ((u_int64_t)tco_getdelta(tc) * tc->scale_micro) >> 32;
539 tv->tv_usec += boottime.tv_usec;
540 tv->tv_sec += boottime.tv_sec;
541 while (tv->tv_usec >= 1000000) {
542 tv->tv_usec -= 1000000;
543 tv->tv_sec++;
544 }
545}
546
547void
43 */
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/dkstat.h>
48#include <sys/callout.h>
49#include <sys/kernel.h>
50#include <sys/proc.h>
51#include <sys/resourcevar.h>
52#include <sys/signalvar.h>
53#include <sys/timex.h>
54#include <vm/vm.h>
55#include <sys/lock.h>
56#include <vm/pmap.h>
57#include <vm/vm_map.h>
58#include <sys/sysctl.h>
59
60#include <machine/cpu.h>
61#include <machine/limits.h>
62
63#ifdef GPROF
64#include <sys/gmon.h>
65#endif
66
67#if defined(SMP) && defined(BETTER_CLOCK)
68#include <machine/smp.h>
69#endif
70
71static void initclocks __P((void *dummy));
72SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)
73
74static void tco_forward __P((void));
75static void tco_setscales __P((struct timecounter *tc));
76static __inline unsigned tco_getdelta __P((struct timecounter *tc));
77
78/* Some of these don't belong here, but it's easiest to concentrate them. */
79#if defined(SMP) && defined(BETTER_CLOCK)
80long cp_time[CPUSTATES];
81#else
82static long cp_time[CPUSTATES];
83#endif
84long dk_seek[DK_NDRIVE];
85static long dk_time[DK_NDRIVE]; /* time busy (in statclock ticks) */
86long dk_wds[DK_NDRIVE];
87long dk_wpms[DK_NDRIVE];
88long dk_xfer[DK_NDRIVE];
89
90int dk_busy;
91int dk_ndrive = 0;
92char dk_names[DK_NDRIVE][DK_NAMELEN];
93
94long tk_cancc;
95long tk_nin;
96long tk_nout;
97long tk_rawcc;
98
99struct timecounter *timecounter;
100
101time_t time_second;
102
103/*
104 * Clock handling routines.
105 *
106 * This code is written to operate with two timers that run independently of
107 * each other.
108 *
109 * The main timer, running hz times per second, is used to trigger interval
110 * timers, timeouts and rescheduling as needed.
111 *
112 * The second timer handles kernel and user profiling,
113 * and does resource use estimation. If the second timer is programmable,
114 * it is randomized to avoid aliasing between the two clocks. For example,
115 * the randomization prevents an adversary from always giving up the cpu
116 * just before its quantum expires. Otherwise, it would never accumulate
117 * cpu ticks. The mean frequency of the second timer is stathz.
118 *
119 * If no second timer exists, stathz will be zero; in this case we drive
120 * profiling and statistics off the main clock. This WILL NOT be accurate;
121 * do not do it unless absolutely necessary.
122 *
123 * The statistics clock may (or may not) be run at a higher rate while
124 * profiling. This profile clock runs at profhz. We require that profhz
125 * be an integral multiple of stathz.
126 *
127 * If the statistics clock is running fast, it must be divided by the ratio
128 * profhz/stathz for statistics. (For profiling, every tick counts.)
129 *
130 * Time-of-day is maintained using a "timecounter", which may or may
131 * not be related to the hardware generating the above mentioned
132 * interrupts.
133 */
134
135int stathz;
136int profhz;
137static int profprocs;
138int ticks;
139static int psdiv, pscnt; /* prof => stat divider */
140int psratio; /* ratio: prof / stat */
141
142/*
143 * Initialize clock frequencies and start both clocks running.
144 */
145/* ARGSUSED*/
146static void
147initclocks(dummy)
148 void *dummy;
149{
150 register int i;
151
152 /*
153 * Set divisors to 1 (normal case) and let the machine-specific
154 * code do its bit.
155 */
156 psdiv = pscnt = 1;
157 cpu_initclocks();
158
159 /*
160 * Compute profhz/stathz, and fix profhz if needed.
161 */
162 i = stathz ? stathz : hz;
163 if (profhz == 0)
164 profhz = i;
165 psratio = profhz / i;
166}
167
168/*
169 * The real-time timer, interrupting hz times per second.
170 */
171void
172hardclock(frame)
173 register struct clockframe *frame;
174{
175 register struct proc *p;
176
177 p = curproc;
178 if (p) {
179 register struct pstats *pstats;
180
181 /*
182 * Run current process's virtual and profile time, as needed.
183 */
184 pstats = p->p_stats;
185 if (CLKF_USERMODE(frame) &&
186 timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
187 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
188 psignal(p, SIGVTALRM);
189 if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
190 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
191 psignal(p, SIGPROF);
192 }
193
194#if defined(SMP) && defined(BETTER_CLOCK)
195 forward_hardclock(pscnt);
196#endif
197
198 /*
199 * If no separate statistics clock is available, run it from here.
200 */
201 if (stathz == 0)
202 statclock(frame);
203
204 tco_forward();
205 ticks++;
206
207 /*
208 * Process callouts at a very low cpu priority, so we don't keep the
209 * relatively high clock interrupt priority any longer than necessary.
210 */
211 if (TAILQ_FIRST(&callwheel[ticks & callwheelmask]) != NULL) {
212 if (CLKF_BASEPRI(frame)) {
213 /*
214 * Save the overhead of a software interrupt;
215 * it will happen as soon as we return, so do it now.
216 */
217 (void)splsoftclock();
218 softclock();
219 } else
220 setsoftclock();
221 } else if (softticks + 1 == ticks)
222 ++softticks;
223}
224
225/*
226 * Compute number of ticks in the specified amount of time.
227 */
228int
229tvtohz(tv)
230 struct timeval *tv;
231{
232 register unsigned long ticks;
233 register long sec, usec;
234
235 /*
236 * If the number of usecs in the whole seconds part of the time
237 * difference fits in a long, then the total number of usecs will
238 * fit in an unsigned long. Compute the total and convert it to
239 * ticks, rounding up and adding 1 to allow for the current tick
240 * to expire. Rounding also depends on unsigned long arithmetic
241 * to avoid overflow.
242 *
243 * Otherwise, if the number of ticks in the whole seconds part of
244 * the time difference fits in a long, then convert the parts to
245 * ticks separately and add, using similar rounding methods and
246 * overflow avoidance. This method would work in the previous
247 * case but it is slightly slower and assumes that hz is integral.
248 *
249 * Otherwise, round the time difference down to the maximum
250 * representable value.
251 *
252 * If ints have 32 bits, then the maximum value for any timeout in
253 * 10ms ticks is 248 days.
254 */
255 sec = tv->tv_sec;
256 usec = tv->tv_usec;
257 if (usec < 0) {
258 sec--;
259 usec += 1000000;
260 }
261 if (sec < 0) {
262#ifdef DIAGNOSTIC
263 if (usec > 0) {
264 sec++;
265 usec -= 1000000;
266 }
267 printf("tvotohz: negative time difference %ld sec %ld usec\n",
268 sec, usec);
269#endif
270 ticks = 1;
271 } else if (sec <= LONG_MAX / 1000000)
272 ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1))
273 / tick + 1;
274 else if (sec <= LONG_MAX / hz)
275 ticks = sec * hz
276 + ((unsigned long)usec + (tick - 1)) / tick + 1;
277 else
278 ticks = LONG_MAX;
279 if (ticks > INT_MAX)
280 ticks = INT_MAX;
281 return (ticks);
282}
283
284
285/*
286 * Compute number of hz until specified time. Used to
287 * compute third argument to timeout() from an absolute time.
288 */
289int
290hzto(tv)
291 struct timeval *tv;
292{
293 struct timeval t2;
294
295 getmicrotime(&t2);
296 t2.tv_sec = tv->tv_sec - t2.tv_sec;
297 t2.tv_usec = tv->tv_usec - t2.tv_usec;
298 return (tvtohz(&t2));
299}
300
301/*
302 * Start profiling on a process.
303 *
304 * Kernel profiling passes proc0 which never exits and hence
305 * keeps the profile clock running constantly.
306 */
307void
308startprofclock(p)
309 register struct proc *p;
310{
311 int s;
312
313 if ((p->p_flag & P_PROFIL) == 0) {
314 p->p_flag |= P_PROFIL;
315 if (++profprocs == 1 && stathz != 0) {
316 s = splstatclock();
317 psdiv = pscnt = psratio;
318 setstatclockrate(profhz);
319 splx(s);
320 }
321 }
322}
323
324/*
325 * Stop profiling on a process.
326 */
327void
328stopprofclock(p)
329 register struct proc *p;
330{
331 int s;
332
333 if (p->p_flag & P_PROFIL) {
334 p->p_flag &= ~P_PROFIL;
335 if (--profprocs == 0 && stathz != 0) {
336 s = splstatclock();
337 psdiv = pscnt = 1;
338 setstatclockrate(stathz);
339 splx(s);
340 }
341 }
342}
343
344/*
345 * Statistics clock. Grab profile sample, and if divider reaches 0,
346 * do process and kernel statistics.
347 */
348void
349statclock(frame)
350 register struct clockframe *frame;
351{
352#ifdef GPROF
353 register struct gmonparam *g;
354#endif
355 register struct proc *p;
356 register int i;
357 struct pstats *pstats;
358 long rss;
359 struct rusage *ru;
360 struct vmspace *vm;
361
362 if (CLKF_USERMODE(frame)) {
363 p = curproc;
364 if (p->p_flag & P_PROFIL)
365 addupc_intr(p, CLKF_PC(frame), 1);
366#if defined(SMP) && defined(BETTER_CLOCK)
367 if (stathz != 0)
368 forward_statclock(pscnt);
369#endif
370 if (--pscnt > 0)
371 return;
372 /*
373 * Came from user mode; CPU was in user state.
374 * If this process is being profiled record the tick.
375 */
376 p->p_uticks++;
377 if (p->p_nice > NZERO)
378 cp_time[CP_NICE]++;
379 else
380 cp_time[CP_USER]++;
381 } else {
382#ifdef GPROF
383 /*
384 * Kernel statistics are just like addupc_intr, only easier.
385 */
386 g = &_gmonparam;
387 if (g->state == GMON_PROF_ON) {
388 i = CLKF_PC(frame) - g->lowpc;
389 if (i < g->textsize) {
390 i /= HISTFRACTION * sizeof(*g->kcount);
391 g->kcount[i]++;
392 }
393 }
394#endif
395#if defined(SMP) && defined(BETTER_CLOCK)
396 if (stathz != 0)
397 forward_statclock(pscnt);
398#endif
399 if (--pscnt > 0)
400 return;
401 /*
402 * Came from kernel mode, so we were:
403 * - handling an interrupt,
404 * - doing syscall or trap work on behalf of the current
405 * user process, or
406 * - spinning in the idle loop.
407 * Whichever it is, charge the time as appropriate.
408 * Note that we charge interrupts to the current process,
409 * regardless of whether they are ``for'' that process,
410 * so that we know how much of its real time was spent
411 * in ``non-process'' (i.e., interrupt) work.
412 */
413 p = curproc;
414 if (CLKF_INTR(frame)) {
415 if (p != NULL)
416 p->p_iticks++;
417 cp_time[CP_INTR]++;
418 } else if (p != NULL) {
419 p->p_sticks++;
420 cp_time[CP_SYS]++;
421 } else
422 cp_time[CP_IDLE]++;
423 }
424 pscnt = psdiv;
425
426 /*
427 * We maintain statistics shown by user-level statistics
428 * programs: the amount of time in each cpu state, and
429 * the amount of time each of DK_NDRIVE ``drives'' is busy.
430 *
431 * XXX should either run linked list of drives, or (better)
432 * grab timestamps in the start & done code.
433 */
434 for (i = 0; i < DK_NDRIVE; i++)
435 if (dk_busy & (1 << i))
436 dk_time[i]++;
437
438 /*
439 * We adjust the priority of the current process. The priority of
440 * a process gets worse as it accumulates CPU time. The cpu usage
441 * estimator (p_estcpu) is increased here. The formula for computing
442 * priorities (in kern_synch.c) will compute a different value each
443 * time p_estcpu increases by 4. The cpu usage estimator ramps up
444 * quite quickly when the process is running (linearly), and decays
445 * away exponentially, at a rate which is proportionally slower when
446 * the system is busy. The basic principal is that the system will
447 * 90% forget that the process used a lot of CPU time in 5 * loadav
448 * seconds. This causes the system to favor processes which haven't
449 * run much recently, and to round-robin among other processes.
450 */
451 if (p != NULL) {
452 p->p_cpticks++;
453 if (++p->p_estcpu == 0)
454 p->p_estcpu--;
455 if ((p->p_estcpu & 3) == 0) {
456 resetpriority(p);
457 if (p->p_priority >= PUSER)
458 p->p_priority = p->p_usrpri;
459 }
460
461 /* Update resource usage integrals and maximums. */
462 if ((pstats = p->p_stats) != NULL &&
463 (ru = &pstats->p_ru) != NULL &&
464 (vm = p->p_vmspace) != NULL) {
465 ru->ru_ixrss += vm->vm_tsize * PAGE_SIZE / 1024;
466 ru->ru_idrss += vm->vm_dsize * PAGE_SIZE / 1024;
467 ru->ru_isrss += vm->vm_ssize * PAGE_SIZE / 1024;
468 rss = vm->vm_pmap.pm_stats.resident_count *
469 PAGE_SIZE / 1024;
470 if (ru->ru_maxrss < rss)
471 ru->ru_maxrss = rss;
472 }
473 }
474}
475
476/*
477 * Return information about system clocks.
478 */
479static int
480sysctl_kern_clockrate SYSCTL_HANDLER_ARGS
481{
482 struct clockinfo clkinfo;
483 /*
484 * Construct clockinfo structure.
485 */
486 clkinfo.hz = hz;
487 clkinfo.tick = tick;
488 clkinfo.tickadj = tickadj;
489 clkinfo.profhz = profhz;
490 clkinfo.stathz = stathz ? stathz : hz;
491 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
492}
493
494SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
495 0, 0, sysctl_kern_clockrate, "S,clockinfo","");
496
497static __inline unsigned
498tco_getdelta(struct timecounter *tc)
499{
500
501 return ((tc->get_timecount(tc) - tc->offset_count) & tc->counter_mask);
502}
503
504/*
505 * We have four functions for looking at the clock, two for microseconds
506 * and two for nanoseconds. For each there is fast but less precise
507 * version "get{nano|micro}time" which will return a time which is up
508 * to 1/HZ previous to the call, whereas the raw version "{nano|micro}time"
509 * will return a timestamp which is as precise as possible.
510 */
511
512void
513getmicrotime(struct timeval *tvp)
514{
515 struct timecounter *tc;
516
517 tc = timecounter;
518 *tvp = tc->microtime;
519}
520
521void
522getnanotime(struct timespec *tsp)
523{
524 struct timecounter *tc;
525
526 tc = timecounter;
527 *tsp = tc->nanotime;
528}
529
530void
531microtime(struct timeval *tv)
532{
533 struct timecounter *tc;
534
535 tc = (struct timecounter *)timecounter;
536 tv->tv_sec = tc->offset_sec;
537 tv->tv_usec = tc->offset_micro;
538 tv->tv_usec += ((u_int64_t)tco_getdelta(tc) * tc->scale_micro) >> 32;
539 tv->tv_usec += boottime.tv_usec;
540 tv->tv_sec += boottime.tv_sec;
541 while (tv->tv_usec >= 1000000) {
542 tv->tv_usec -= 1000000;
543 tv->tv_sec++;
544 }
545}
546
547void
548nanotime(struct timespec *tv)
548nanotime(struct timespec *ts)
549{
550 unsigned count;
551 u_int64_t delta;
552 struct timecounter *tc;
553
554 tc = (struct timecounter *)timecounter;
549{
550 unsigned count;
551 u_int64_t delta;
552 struct timecounter *tc;
553
554 tc = (struct timecounter *)timecounter;
555 tv->tv_sec = tc->offset_sec;
555 ts->tv_sec = tc->offset_sec;
556 count = tco_getdelta(tc);
557 delta = tc->offset_nano;
558 delta += ((u_int64_t)count * tc->scale_nano_f);
559 delta >>= 32;
560 delta += ((u_int64_t)count * tc->scale_nano_i);
561 delta += boottime.tv_usec * 1000;
556 count = tco_getdelta(tc);
557 delta = tc->offset_nano;
558 delta += ((u_int64_t)count * tc->scale_nano_f);
559 delta >>= 32;
560 delta += ((u_int64_t)count * tc->scale_nano_i);
561 delta += boottime.tv_usec * 1000;
562 tv->tv_sec += boottime.tv_sec;
562 ts->tv_sec += boottime.tv_sec;
563 while (delta >= 1000000000) {
564 delta -= 1000000000;
563 while (delta >= 1000000000) {
564 delta -= 1000000000;
565 tv->tv_sec++;
565 ts->tv_sec++;
566 }
566 }
567 tv->tv_nsec = delta;
567 ts->tv_nsec = delta;
568}
569
570void
568}
569
570void
571timecounter_timespec(unsigned count, struct timespec *ts)
572{
573 u_int64_t delta;
574 struct timecounter *tc;
575
576 tc = (struct timecounter *)timecounter;
577 ts->tv_sec = tc->offset_sec;
578 count -= tc->offset_count;
579 count &= tc->counter_mask;
580 delta = tc->offset_nano;
581 delta += ((u_int64_t)count * tc->scale_nano_f);
582 delta >>= 32;
583 delta += ((u_int64_t)count * tc->scale_nano_i);
584 delta += boottime.tv_usec * 1000;
585 ts->tv_sec += boottime.tv_sec;
586 while (delta >= 1000000000) {
587 delta -= 1000000000;
588 ts->tv_sec++;
589 }
590 ts->tv_nsec = delta;
591}
592
593void
571getmicrouptime(struct timeval *tvp)
572{
573 struct timecounter *tc;
574
575 tc = timecounter;
576 tvp->tv_sec = tc->offset_sec;
577 tvp->tv_usec = tc->offset_micro;
578}
579
580void
581getnanouptime(struct timespec *tsp)
582{
583 struct timecounter *tc;
584
585 tc = timecounter;
586 tsp->tv_sec = tc->offset_sec;
587 tsp->tv_nsec = tc->offset_nano >> 32;
588}
589
590void
591microuptime(struct timeval *tv)
592{
593 struct timecounter *tc;
594
595 tc = (struct timecounter *)timecounter;
596 tv->tv_sec = tc->offset_sec;
597 tv->tv_usec = tc->offset_micro;
598 tv->tv_usec += ((u_int64_t)tco_getdelta(tc) * tc->scale_micro) >> 32;
599 if (tv->tv_usec >= 1000000) {
600 tv->tv_usec -= 1000000;
601 tv->tv_sec++;
602 }
603}
604
605void
606nanouptime(struct timespec *tv)
607{
608 unsigned count;
609 u_int64_t delta;
610 struct timecounter *tc;
611
612 tc = (struct timecounter *)timecounter;
613 tv->tv_sec = tc->offset_sec;
614 count = tco_getdelta(tc);
615 delta = tc->offset_nano;
616 delta += ((u_int64_t)count * tc->scale_nano_f);
617 delta >>= 32;
618 delta += ((u_int64_t)count * tc->scale_nano_i);
619 if (delta >= 1000000000) {
620 delta -= 1000000000;
621 tv->tv_sec++;
622 }
623 tv->tv_nsec = delta;
624}
625
626static void
627tco_setscales(struct timecounter *tc)
628{
629 u_int64_t scale;
630
631 scale = 1000000000LL << 32;
632 if (tc->adjustment > 0)
633 scale += (tc->adjustment * 1000LL) << 10;
634 else
635 scale -= (-tc->adjustment * 1000LL) << 10;
636 scale /= tc->frequency;
637 tc->scale_micro = scale / 1000;
638 tc->scale_nano_f = scale & 0xffffffff;
639 tc->scale_nano_i = scale >> 32;
640}
641
642void
643init_timecounter(struct timecounter *tc)
644{
645 struct timespec ts0, ts1;
646 int i;
647
648 tc->adjustment = 0;
649 tco_setscales(tc);
650 tc->offset_count = tc->get_timecount(tc);
651 tc[0].tweak = &tc[0];
652 tc[2] = tc[1] = tc[0];
653 tc[1].other = &tc[2];
654 tc[2].other = &tc[1];
655 if (!timecounter || !strcmp(timecounter->name, "dummy"))
656 timecounter = &tc[2];
657 tc = &tc[1];
658
659 /*
660 * Figure out the cost of calling this timecounter.
661 */
662 nanotime(&ts0);
663 for (i = 0; i < 256; i ++)
664 tc->get_timecount(tc);
665 nanotime(&ts1);
666 ts1.tv_sec -= ts0.tv_sec;
667 tc->cost = ts1.tv_sec * 1000000000 + ts1.tv_nsec - ts0.tv_nsec;
668 tc->cost >>= 8;
669 if (print_tci && strcmp(tc->name, "dummy"))
670 printf("Timecounter \"%s\" frequency %lu Hz cost %u ns\n",
671 tc->name, tc->frequency, tc->cost);
672
673 /* XXX: For now always start using the counter. */
674 tc->offset_count = tc->get_timecount(tc);
675 nanotime(&ts1);
676 tc->offset_nano = (u_int64_t)ts1.tv_nsec << 32;
677 tc->offset_micro = ts1.tv_nsec / 1000;
678 tc->offset_sec = ts1.tv_sec;
679 timecounter = tc;
680}
681
682void
683set_timecounter(struct timespec *ts)
684{
685 struct timespec ts2;
686
687 nanouptime(&ts2);
688 boottime.tv_sec = ts->tv_sec - ts2.tv_sec;
689 boottime.tv_usec = (ts->tv_nsec - ts2.tv_nsec) / 1000;
690 if (boottime.tv_usec < 0) {
691 boottime.tv_usec += 1000000;
692 boottime.tv_sec--;
693 }
694 /* fiddle all the little crinkly bits around the fiords... */
695 tco_forward();
696}
697
698
699#if 0 /* Currently unused */
700void
701switch_timecounter(struct timecounter *newtc)
702{
703 int s;
704 struct timecounter *tc;
705 struct timespec ts;
706
707 s = splclock();
708 tc = timecounter;
709 if (newtc == tc || newtc == tc->other) {
710 splx(s);
711 return;
712 }
713 nanotime(&ts);
714 newtc->offset_sec = ts.tv_sec;
715 newtc->offset_nano = (u_int64_t)ts.tv_nsec << 32;
716 newtc->offset_micro = ts.tv_nsec / 1000;
717 newtc->offset_count = newtc->get_timecount(newtc);
718 timecounter = newtc;
719 splx(s);
720}
721#endif
722
723static struct timecounter *
724sync_other_counter(void)
725{
726 struct timecounter *tc, *tco;
727 unsigned delta;
728
594getmicrouptime(struct timeval *tvp)
595{
596 struct timecounter *tc;
597
598 tc = timecounter;
599 tvp->tv_sec = tc->offset_sec;
600 tvp->tv_usec = tc->offset_micro;
601}
602
603void
604getnanouptime(struct timespec *tsp)
605{
606 struct timecounter *tc;
607
608 tc = timecounter;
609 tsp->tv_sec = tc->offset_sec;
610 tsp->tv_nsec = tc->offset_nano >> 32;
611}
612
613void
614microuptime(struct timeval *tv)
615{
616 struct timecounter *tc;
617
618 tc = (struct timecounter *)timecounter;
619 tv->tv_sec = tc->offset_sec;
620 tv->tv_usec = tc->offset_micro;
621 tv->tv_usec += ((u_int64_t)tco_getdelta(tc) * tc->scale_micro) >> 32;
622 if (tv->tv_usec >= 1000000) {
623 tv->tv_usec -= 1000000;
624 tv->tv_sec++;
625 }
626}
627
628void
629nanouptime(struct timespec *tv)
630{
631 unsigned count;
632 u_int64_t delta;
633 struct timecounter *tc;
634
635 tc = (struct timecounter *)timecounter;
636 tv->tv_sec = tc->offset_sec;
637 count = tco_getdelta(tc);
638 delta = tc->offset_nano;
639 delta += ((u_int64_t)count * tc->scale_nano_f);
640 delta >>= 32;
641 delta += ((u_int64_t)count * tc->scale_nano_i);
642 if (delta >= 1000000000) {
643 delta -= 1000000000;
644 tv->tv_sec++;
645 }
646 tv->tv_nsec = delta;
647}
648
649static void
650tco_setscales(struct timecounter *tc)
651{
652 u_int64_t scale;
653
654 scale = 1000000000LL << 32;
655 if (tc->adjustment > 0)
656 scale += (tc->adjustment * 1000LL) << 10;
657 else
658 scale -= (-tc->adjustment * 1000LL) << 10;
659 scale /= tc->frequency;
660 tc->scale_micro = scale / 1000;
661 tc->scale_nano_f = scale & 0xffffffff;
662 tc->scale_nano_i = scale >> 32;
663}
664
665void
666init_timecounter(struct timecounter *tc)
667{
668 struct timespec ts0, ts1;
669 int i;
670
671 tc->adjustment = 0;
672 tco_setscales(tc);
673 tc->offset_count = tc->get_timecount(tc);
674 tc[0].tweak = &tc[0];
675 tc[2] = tc[1] = tc[0];
676 tc[1].other = &tc[2];
677 tc[2].other = &tc[1];
678 if (!timecounter || !strcmp(timecounter->name, "dummy"))
679 timecounter = &tc[2];
680 tc = &tc[1];
681
682 /*
683 * Figure out the cost of calling this timecounter.
684 */
685 nanotime(&ts0);
686 for (i = 0; i < 256; i ++)
687 tc->get_timecount(tc);
688 nanotime(&ts1);
689 ts1.tv_sec -= ts0.tv_sec;
690 tc->cost = ts1.tv_sec * 1000000000 + ts1.tv_nsec - ts0.tv_nsec;
691 tc->cost >>= 8;
692 if (print_tci && strcmp(tc->name, "dummy"))
693 printf("Timecounter \"%s\" frequency %lu Hz cost %u ns\n",
694 tc->name, tc->frequency, tc->cost);
695
696 /* XXX: For now always start using the counter. */
697 tc->offset_count = tc->get_timecount(tc);
698 nanotime(&ts1);
699 tc->offset_nano = (u_int64_t)ts1.tv_nsec << 32;
700 tc->offset_micro = ts1.tv_nsec / 1000;
701 tc->offset_sec = ts1.tv_sec;
702 timecounter = tc;
703}
704
705void
706set_timecounter(struct timespec *ts)
707{
708 struct timespec ts2;
709
710 nanouptime(&ts2);
711 boottime.tv_sec = ts->tv_sec - ts2.tv_sec;
712 boottime.tv_usec = (ts->tv_nsec - ts2.tv_nsec) / 1000;
713 if (boottime.tv_usec < 0) {
714 boottime.tv_usec += 1000000;
715 boottime.tv_sec--;
716 }
717 /* fiddle all the little crinkly bits around the fiords... */
718 tco_forward();
719}
720
721
722#if 0 /* Currently unused */
723void
724switch_timecounter(struct timecounter *newtc)
725{
726 int s;
727 struct timecounter *tc;
728 struct timespec ts;
729
730 s = splclock();
731 tc = timecounter;
732 if (newtc == tc || newtc == tc->other) {
733 splx(s);
734 return;
735 }
736 nanotime(&ts);
737 newtc->offset_sec = ts.tv_sec;
738 newtc->offset_nano = (u_int64_t)ts.tv_nsec << 32;
739 newtc->offset_micro = ts.tv_nsec / 1000;
740 newtc->offset_count = newtc->get_timecount(newtc);
741 timecounter = newtc;
742 splx(s);
743}
744#endif
745
746static struct timecounter *
747sync_other_counter(void)
748{
749 struct timecounter *tc, *tco;
750 unsigned delta;
751
752 if (timecounter->poll_pps)
753 timecounter->poll_pps(timecounter);
729 tc = timecounter->other;
730 tco = tc->other;
731 *tc = *timecounter;
732 tc->other = tco;
733 delta = tco_getdelta(tc);
734 tc->offset_count += delta;
735 tc->offset_count &= tc->counter_mask;
736 tc->offset_nano += (u_int64_t)delta * tc->scale_nano_f;
737 tc->offset_nano += (u_int64_t)delta * tc->scale_nano_i << 32;
738 return (tc);
739}
740
741static void
742tco_forward(void)
743{
744 struct timecounter *tc;
745
746 tc = sync_other_counter();
747 if (timedelta != 0) {
748 tc->offset_nano += (u_int64_t)(tickdelta * 1000) << 32;
749 timedelta -= tickdelta;
750 }
751
752 while (tc->offset_nano >= 1000000000ULL << 32) {
753 tc->offset_nano -= 1000000000ULL << 32;
754 tc->offset_sec++;
755 tc->frequency = tc->tweak->frequency;
756 tc->adjustment = tc->tweak->adjustment;
757 ntp_update_second(tc); /* XXX only needed if xntpd runs */
758 tco_setscales(tc);
759 }
760
761 tc->offset_micro = (tc->offset_nano / 1000) >> 32;
762
763 /* Figure out the wall-clock time */
764 tc->nanotime.tv_sec = tc->offset_sec + boottime.tv_sec;
765 tc->nanotime.tv_nsec = (tc->offset_nano >> 32) + boottime.tv_usec * 1000;
766 tc->microtime.tv_usec = tc->offset_micro + boottime.tv_usec;
767 if (tc->nanotime.tv_nsec >= 1000000000) {
768 tc->nanotime.tv_nsec -= 1000000000;
769 tc->microtime.tv_usec -= 1000000;
770 tc->nanotime.tv_sec++;
771 }
772 time_second = tc->microtime.tv_sec = tc->nanotime.tv_sec;
773
774 timecounter = tc;
775}
776
777static int
778sysctl_kern_timecounter_frequency SYSCTL_HANDLER_ARGS
779{
780
781 return (sysctl_handle_opaque(oidp, &timecounter->tweak->frequency,
782 sizeof(timecounter->tweak->frequency), req));
783}
784
785static int
786sysctl_kern_timecounter_adjustment SYSCTL_HANDLER_ARGS
787{
788
789 return (sysctl_handle_opaque(oidp, &timecounter->tweak->adjustment,
790 sizeof(timecounter->tweak->adjustment), req));
791}
792
793SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
794
795SYSCTL_PROC(_kern_timecounter, OID_AUTO, frequency, CTLTYPE_INT | CTLFLAG_RW,
796 0, sizeof(u_int), sysctl_kern_timecounter_frequency, "I", "");
797
798SYSCTL_PROC(_kern_timecounter, OID_AUTO, adjustment, CTLTYPE_INT | CTLFLAG_RW,
799 0, sizeof(int), sysctl_kern_timecounter_adjustment, "I", "");
800
801/*
802 * Implement a dummy timecounter which we can use until we get a real one
803 * in the air. This allows the console and other early stuff to use
804 * timeservices.
805 */
806
807static unsigned
808dummy_get_timecount(void *tc)
809{
810 static unsigned now;
811 return (++now);
812}
813
814static struct timecounter dummy_timecounter[3] = {
815 {
816 dummy_get_timecount,
754 tc = timecounter->other;
755 tco = tc->other;
756 *tc = *timecounter;
757 tc->other = tco;
758 delta = tco_getdelta(tc);
759 tc->offset_count += delta;
760 tc->offset_count &= tc->counter_mask;
761 tc->offset_nano += (u_int64_t)delta * tc->scale_nano_f;
762 tc->offset_nano += (u_int64_t)delta * tc->scale_nano_i << 32;
763 return (tc);
764}
765
766static void
767tco_forward(void)
768{
769 struct timecounter *tc;
770
771 tc = sync_other_counter();
772 if (timedelta != 0) {
773 tc->offset_nano += (u_int64_t)(tickdelta * 1000) << 32;
774 timedelta -= tickdelta;
775 }
776
777 while (tc->offset_nano >= 1000000000ULL << 32) {
778 tc->offset_nano -= 1000000000ULL << 32;
779 tc->offset_sec++;
780 tc->frequency = tc->tweak->frequency;
781 tc->adjustment = tc->tweak->adjustment;
782 ntp_update_second(tc); /* XXX only needed if xntpd runs */
783 tco_setscales(tc);
784 }
785
786 tc->offset_micro = (tc->offset_nano / 1000) >> 32;
787
788 /* Figure out the wall-clock time */
789 tc->nanotime.tv_sec = tc->offset_sec + boottime.tv_sec;
790 tc->nanotime.tv_nsec = (tc->offset_nano >> 32) + boottime.tv_usec * 1000;
791 tc->microtime.tv_usec = tc->offset_micro + boottime.tv_usec;
792 if (tc->nanotime.tv_nsec >= 1000000000) {
793 tc->nanotime.tv_nsec -= 1000000000;
794 tc->microtime.tv_usec -= 1000000;
795 tc->nanotime.tv_sec++;
796 }
797 time_second = tc->microtime.tv_sec = tc->nanotime.tv_sec;
798
799 timecounter = tc;
800}
801
802static int
803sysctl_kern_timecounter_frequency SYSCTL_HANDLER_ARGS
804{
805
806 return (sysctl_handle_opaque(oidp, &timecounter->tweak->frequency,
807 sizeof(timecounter->tweak->frequency), req));
808}
809
810static int
811sysctl_kern_timecounter_adjustment SYSCTL_HANDLER_ARGS
812{
813
814 return (sysctl_handle_opaque(oidp, &timecounter->tweak->adjustment,
815 sizeof(timecounter->tweak->adjustment), req));
816}
817
818SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
819
820SYSCTL_PROC(_kern_timecounter, OID_AUTO, frequency, CTLTYPE_INT | CTLFLAG_RW,
821 0, sizeof(u_int), sysctl_kern_timecounter_frequency, "I", "");
822
823SYSCTL_PROC(_kern_timecounter, OID_AUTO, adjustment, CTLTYPE_INT | CTLFLAG_RW,
824 0, sizeof(int), sysctl_kern_timecounter_adjustment, "I", "");
825
826/*
827 * Implement a dummy timecounter which we can use until we get a real one
828 * in the air. This allows the console and other early stuff to use
829 * timeservices.
830 */
831
832static unsigned
833dummy_get_timecount(void *tc)
834{
835 static unsigned now;
836 return (++now);
837}
838
839static struct timecounter dummy_timecounter[3] = {
840 {
841 dummy_get_timecount,
842 0,
817 ~0u,
818 1000000,
819 "dummy"
820 }
821};
822
823static void
824initdummytimecounter(void *dummy)
825{
826 init_timecounter(dummy_timecounter);
827}
828
829SYSINIT(dummytc, SI_SUB_CONSOLE, SI_ORDER_FIRST, initdummytimecounter, NULL)
843 ~0u,
844 1000000,
845 "dummy"
846 }
847};
848
849static void
850initdummytimecounter(void *dummy)
851{
852 init_timecounter(dummy_timecounter);
853}
854
855SYSINIT(dummytc, SI_SUB_CONSOLE, SI_ORDER_FIRST, initdummytimecounter, NULL)