Deleted Added
sdiff udiff text old ( 246565 ) new ( 246614 )
full compact
1/* $OpenBSD: if_upgt.c,v 1.35 2008/04/16 18:32:15 damien Exp $ */
2/* $FreeBSD: head/sys/dev/usb/wlan/if_upgt.c 246565 2013-02-08 21:15:47Z hselasky $ */
3
4/*
5 * Copyright (c) 2007 Marcus Glocker <mglocker@openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20#include <sys/param.h>
21#include <sys/systm.h>
22#include <sys/kernel.h>
23#include <sys/endian.h>
24#include <sys/firmware.h>
25#include <sys/linker.h>
26#include <sys/mbuf.h>
27#include <sys/malloc.h>
28#include <sys/module.h>
29#include <sys/socket.h>
30#include <sys/sockio.h>
31#include <sys/sysctl.h>
32
33#include <net/if.h>
34#include <net/if_arp.h>
35#include <net/ethernet.h>
36#include <net/if_dl.h>
37#include <net/if_media.h>
38#include <net/if_types.h>
39
40#include <sys/bus.h>
41#include <machine/bus.h>
42
43#include <net80211/ieee80211_var.h>
44#include <net80211/ieee80211_phy.h>
45#include <net80211/ieee80211_radiotap.h>
46#include <net80211/ieee80211_regdomain.h>
47
48#include <net/bpf.h>
49
50#include <dev/usb/usb.h>
51#include <dev/usb/usbdi.h>
52#include "usbdevs.h"
53
54#include <dev/usb/wlan/if_upgtvar.h>
55
56/*
57 * Driver for the USB PrismGT devices.
58 *
59 * For now just USB 2.0 devices with the GW3887 chipset are supported.
60 * The driver has been written based on the firmware version 2.13.1.0_LM87.
61 *
62 * TODO's:
63 * - MONITOR mode test.
64 * - Add HOSTAP mode.
65 * - Add IBSS mode.
66 * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets).
67 *
68 * Parts of this driver has been influenced by reading the p54u driver
69 * written by Jean-Baptiste Note <jean-baptiste.note@m4x.org> and
70 * Sebastien Bourdeauducq <lekernel@prism54.org>.
71 */
72
73static SYSCTL_NODE(_hw, OID_AUTO, upgt, CTLFLAG_RD, 0,
74 "USB PrismGT GW3887 driver parameters");
75
76#ifdef UPGT_DEBUG
77int upgt_debug = 0;
78SYSCTL_INT(_hw_upgt, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_TUN, &upgt_debug,
79 0, "control debugging printfs");
80TUNABLE_INT("hw.upgt.debug", &upgt_debug);
81enum {
82 UPGT_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
83 UPGT_DEBUG_RECV = 0x00000002, /* basic recv operation */
84 UPGT_DEBUG_RESET = 0x00000004, /* reset processing */
85 UPGT_DEBUG_INTR = 0x00000008, /* INTR */
86 UPGT_DEBUG_TX_PROC = 0x00000010, /* tx ISR proc */
87 UPGT_DEBUG_RX_PROC = 0x00000020, /* rx ISR proc */
88 UPGT_DEBUG_STATE = 0x00000040, /* 802.11 state transitions */
89 UPGT_DEBUG_STAT = 0x00000080, /* statistic */
90 UPGT_DEBUG_FW = 0x00000100, /* firmware */
91 UPGT_DEBUG_ANY = 0xffffffff
92};
93#define DPRINTF(sc, m, fmt, ...) do { \
94 if (sc->sc_debug & (m)) \
95 printf(fmt, __VA_ARGS__); \
96} while (0)
97#else
98#define DPRINTF(sc, m, fmt, ...) do { \
99 (void) sc; \
100} while (0)
101#endif
102
103/*
104 * Prototypes.
105 */
106static device_probe_t upgt_match;
107static device_attach_t upgt_attach;
108static device_detach_t upgt_detach;
109static int upgt_alloc_tx(struct upgt_softc *);
110static int upgt_alloc_rx(struct upgt_softc *);
111static int upgt_device_reset(struct upgt_softc *);
112static void upgt_bulk_tx(struct upgt_softc *, struct upgt_data *);
113static int upgt_fw_verify(struct upgt_softc *);
114static int upgt_mem_init(struct upgt_softc *);
115static int upgt_fw_load(struct upgt_softc *);
116static int upgt_fw_copy(const uint8_t *, char *, int);
117static uint32_t upgt_crc32_le(const void *, size_t);
118static struct mbuf *
119 upgt_rxeof(struct usb_xfer *, struct upgt_data *, int *);
120static struct mbuf *
121 upgt_rx(struct upgt_softc *, uint8_t *, int, int *);
122static void upgt_txeof(struct usb_xfer *, struct upgt_data *);
123static int upgt_eeprom_read(struct upgt_softc *);
124static int upgt_eeprom_parse(struct upgt_softc *);
125static void upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *);
126static void upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int);
127static void upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int);
128static void upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int);
129static uint32_t upgt_chksum_le(const uint32_t *, size_t);
130static void upgt_tx_done(struct upgt_softc *, uint8_t *);
131static void upgt_init(void *);
132static void upgt_init_locked(struct upgt_softc *);
133static int upgt_ioctl(struct ifnet *, u_long, caddr_t);
134static void upgt_start(struct ifnet *);
135static int upgt_raw_xmit(struct ieee80211_node *, struct mbuf *,
136 const struct ieee80211_bpf_params *);
137static void upgt_scan_start(struct ieee80211com *);
138static void upgt_scan_end(struct ieee80211com *);
139static void upgt_set_channel(struct ieee80211com *);
140static struct ieee80211vap *upgt_vap_create(struct ieee80211com *,
141 const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
142 const uint8_t [IEEE80211_ADDR_LEN],
143 const uint8_t [IEEE80211_ADDR_LEN]);
144static void upgt_vap_delete(struct ieee80211vap *);
145static void upgt_update_mcast(struct ifnet *);
146static uint8_t upgt_rx_rate(struct upgt_softc *, const int);
147static void upgt_set_multi(void *);
148static void upgt_stop(struct upgt_softc *);
149static void upgt_setup_rates(struct ieee80211vap *, struct ieee80211com *);
150static int upgt_set_macfilter(struct upgt_softc *, uint8_t);
151static int upgt_newstate(struct ieee80211vap *, enum ieee80211_state, int);
152static void upgt_set_chan(struct upgt_softc *, struct ieee80211_channel *);
153static void upgt_set_led(struct upgt_softc *, int);
154static void upgt_set_led_blink(void *);
155static void upgt_get_stats(struct upgt_softc *);
156static void upgt_mem_free(struct upgt_softc *, uint32_t);
157static uint32_t upgt_mem_alloc(struct upgt_softc *);
158static void upgt_free_tx(struct upgt_softc *);
159static void upgt_free_rx(struct upgt_softc *);
160static void upgt_watchdog(void *);
161static void upgt_abort_xfers(struct upgt_softc *);
162static void upgt_abort_xfers_locked(struct upgt_softc *);
163static void upgt_sysctl_node(struct upgt_softc *);
164static struct upgt_data *
165 upgt_getbuf(struct upgt_softc *);
166static struct upgt_data *
167 upgt_gettxbuf(struct upgt_softc *);
168static int upgt_tx_start(struct upgt_softc *, struct mbuf *,
169 struct ieee80211_node *, struct upgt_data *);
170
171static const char *upgt_fwname = "upgt-gw3887";
172
173static const STRUCT_USB_HOST_ID upgt_devs[] = {
174#define UPGT_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
175 /* version 2 devices */
176 UPGT_DEV(ACCTON, PRISM_GT),
177 UPGT_DEV(BELKIN, F5D7050),
178 UPGT_DEV(CISCOLINKSYS, WUSB54AG),
179 UPGT_DEV(CONCEPTRONIC, PRISM_GT),
180 UPGT_DEV(DELL, PRISM_GT_1),
181 UPGT_DEV(DELL, PRISM_GT_2),
182 UPGT_DEV(FSC, E5400),
183 UPGT_DEV(GLOBESPAN, PRISM_GT_1),
184 UPGT_DEV(GLOBESPAN, PRISM_GT_2),
185 UPGT_DEV(NETGEAR, WG111V2_2),
186 UPGT_DEV(INTERSIL, PRISM_GT),
187 UPGT_DEV(SMC, 2862WG),
188 UPGT_DEV(USR, USR5422),
189 UPGT_DEV(WISTRONNEWEB, UR045G),
190 UPGT_DEV(XYRATEX, PRISM_GT_1),
191 UPGT_DEV(XYRATEX, PRISM_GT_2),
192 UPGT_DEV(ZCOM, XG703A),
193 UPGT_DEV(ZCOM, XM142)
194};
195
196static usb_callback_t upgt_bulk_rx_callback;
197static usb_callback_t upgt_bulk_tx_callback;
198
199static const struct usb_config upgt_config[UPGT_N_XFERS] = {
200 [UPGT_BULK_TX] = {
201 .type = UE_BULK,
202 .endpoint = UE_ADDR_ANY,
203 .direction = UE_DIR_OUT,
204 .bufsize = MCLBYTES * UPGT_TX_MAXCOUNT,
205 .flags = {
206 .force_short_xfer = 1,
207 .pipe_bof = 1
208 },
209 .callback = upgt_bulk_tx_callback,
210 .timeout = UPGT_USB_TIMEOUT, /* ms */
211 },
212 [UPGT_BULK_RX] = {
213 .type = UE_BULK,
214 .endpoint = UE_ADDR_ANY,
215 .direction = UE_DIR_IN,
216 .bufsize = MCLBYTES * UPGT_RX_MAXCOUNT,
217 .flags = {
218 .pipe_bof = 1,
219 .short_xfer_ok = 1
220 },
221 .callback = upgt_bulk_rx_callback,
222 },
223};
224
225static int
226upgt_match(device_t dev)
227{
228 struct usb_attach_arg *uaa = device_get_ivars(dev);
229
230 if (uaa->usb_mode != USB_MODE_HOST)
231 return (ENXIO);
232 if (uaa->info.bConfigIndex != UPGT_CONFIG_INDEX)
233 return (ENXIO);
234 if (uaa->info.bIfaceIndex != UPGT_IFACE_INDEX)
235 return (ENXIO);
236
237 return (usbd_lookup_id_by_uaa(upgt_devs, sizeof(upgt_devs), uaa));
238}
239
240static int
241upgt_attach(device_t dev)
242{
243 int error;
244 struct ieee80211com *ic;
245 struct ifnet *ifp;
246 struct upgt_softc *sc = device_get_softc(dev);
247 struct usb_attach_arg *uaa = device_get_ivars(dev);
248 uint8_t bands, iface_index = UPGT_IFACE_INDEX;
249
250 sc->sc_dev = dev;
251 sc->sc_udev = uaa->device;
252#ifdef UPGT_DEBUG
253 sc->sc_debug = upgt_debug;
254#endif
255 device_set_usb_desc(dev);
256
257 mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), MTX_NETWORK_LOCK,
258 MTX_DEF);
259 callout_init(&sc->sc_led_ch, 0);
260 callout_init(&sc->sc_watchdog_ch, 0);
261
262 error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer,
263 upgt_config, UPGT_N_XFERS, sc, &sc->sc_mtx);
264 if (error) {
265 device_printf(dev, "could not allocate USB transfers, "
266 "err=%s\n", usbd_errstr(error));
267 goto fail1;
268 }
269
270 sc->sc_rx_dma_buf = usbd_xfer_get_frame_buffer(
271 sc->sc_xfer[UPGT_BULK_RX], 0);
272 sc->sc_tx_dma_buf = usbd_xfer_get_frame_buffer(
273 sc->sc_xfer[UPGT_BULK_TX], 0);
274
275 /* Setup TX and RX buffers */
276 error = upgt_alloc_tx(sc);
277 if (error)
278 goto fail2;
279 error = upgt_alloc_rx(sc);
280 if (error)
281 goto fail3;
282
283 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
284 if (ifp == NULL) {
285 device_printf(dev, "can not if_alloc()\n");
286 goto fail4;
287 }
288
289 /* Initialize the device. */
290 error = upgt_device_reset(sc);
291 if (error)
292 goto fail5;
293 /* Verify the firmware. */
294 error = upgt_fw_verify(sc);
295 if (error)
296 goto fail5;
297 /* Calculate device memory space. */
298 if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) {
299 device_printf(dev,
300 "could not find memory space addresses on FW\n");
301 error = EIO;
302 goto fail5;
303 }
304 sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1;
305 sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1;
306
307 DPRINTF(sc, UPGT_DEBUG_FW, "memory address frame start=0x%08x\n",
308 sc->sc_memaddr_frame_start);
309 DPRINTF(sc, UPGT_DEBUG_FW, "memory address frame end=0x%08x\n",
310 sc->sc_memaddr_frame_end);
311 DPRINTF(sc, UPGT_DEBUG_FW, "memory address rx start=0x%08x\n",
312 sc->sc_memaddr_rx_start);
313
314 upgt_mem_init(sc);
315
316 /* Load the firmware. */
317 error = upgt_fw_load(sc);
318 if (error)
319 goto fail5;
320
321 /* Read the whole EEPROM content and parse it. */
322 error = upgt_eeprom_read(sc);
323 if (error)
324 goto fail5;
325 error = upgt_eeprom_parse(sc);
326 if (error)
327 goto fail5;
328
329 /* all works related with the device have done here. */
330 upgt_abort_xfers(sc);
331
332 /* Setup the 802.11 device. */
333 ifp->if_softc = sc;
334 if_initname(ifp, "upgt", device_get_unit(sc->sc_dev));
335 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
336 ifp->if_init = upgt_init;
337 ifp->if_ioctl = upgt_ioctl;
338 ifp->if_start = upgt_start;
339 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
340 IFQ_SET_READY(&ifp->if_snd);
341
342 ic = ifp->if_l2com;
343 ic->ic_ifp = ifp;
344 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
345 ic->ic_opmode = IEEE80211_M_STA;
346 /* set device capabilities */
347 ic->ic_caps =
348 IEEE80211_C_STA /* station mode */
349 | IEEE80211_C_MONITOR /* monitor mode */
350 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
351 | IEEE80211_C_SHSLOT /* short slot time supported */
352 | IEEE80211_C_BGSCAN /* capable of bg scanning */
353 | IEEE80211_C_WPA /* 802.11i */
354 ;
355
356 bands = 0;
357 setbit(&bands, IEEE80211_MODE_11B);
358 setbit(&bands, IEEE80211_MODE_11G);
359 ieee80211_init_channels(ic, NULL, &bands);
360
361 ieee80211_ifattach(ic, sc->sc_myaddr);
362 ic->ic_raw_xmit = upgt_raw_xmit;
363 ic->ic_scan_start = upgt_scan_start;
364 ic->ic_scan_end = upgt_scan_end;
365 ic->ic_set_channel = upgt_set_channel;
366
367 ic->ic_vap_create = upgt_vap_create;
368 ic->ic_vap_delete = upgt_vap_delete;
369 ic->ic_update_mcast = upgt_update_mcast;
370
371 ieee80211_radiotap_attach(ic,
372 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
373 UPGT_TX_RADIOTAP_PRESENT,
374 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
375 UPGT_RX_RADIOTAP_PRESENT);
376
377 upgt_sysctl_node(sc);
378
379 if (bootverbose)
380 ieee80211_announce(ic);
381
382 return (0);
383
384fail5: if_free(ifp);
385fail4: upgt_free_rx(sc);
386fail3: upgt_free_tx(sc);
387fail2: usbd_transfer_unsetup(sc->sc_xfer, UPGT_N_XFERS);
388fail1: mtx_destroy(&sc->sc_mtx);
389
390 return (error);
391}
392
393static void
394upgt_txeof(struct usb_xfer *xfer, struct upgt_data *data)
395{
396 struct upgt_softc *sc = usbd_xfer_softc(xfer);
397 struct ifnet *ifp = sc->sc_ifp;
398 struct mbuf *m;
399
400 UPGT_ASSERT_LOCKED(sc);
401
402 /*
403 * Do any tx complete callback. Note this must be done before releasing
404 * the node reference.
405 */
406 if (data->m) {
407 m = data->m;
408 if (m->m_flags & M_TXCB) {
409 /* XXX status? */
410 ieee80211_process_callback(data->ni, m, 0);
411 }
412 m_freem(m);
413 data->m = NULL;
414 }
415 if (data->ni) {
416 ieee80211_free_node(data->ni);
417 data->ni = NULL;
418 }
419 ifp->if_opackets++;
420}
421
422static void
423upgt_get_stats(struct upgt_softc *sc)
424{
425 struct upgt_data *data_cmd;
426 struct upgt_lmac_mem *mem;
427 struct upgt_lmac_stats *stats;
428
429 data_cmd = upgt_getbuf(sc);
430 if (data_cmd == NULL) {
431 device_printf(sc->sc_dev, "%s: out of buffer.\n", __func__);
432 return;
433 }
434
435 /*
436 * Transmit the URB containing the CMD data.
437 */
438 memset(data_cmd->buf, 0, MCLBYTES);
439
440 mem = (struct upgt_lmac_mem *)data_cmd->buf;
441 mem->addr = htole32(sc->sc_memaddr_frame_start +
442 UPGT_MEMSIZE_FRAME_HEAD);
443
444 stats = (struct upgt_lmac_stats *)(mem + 1);
445
446 stats->header1.flags = 0;
447 stats->header1.type = UPGT_H1_TYPE_CTRL;
448 stats->header1.len = htole16(
449 sizeof(struct upgt_lmac_stats) - sizeof(struct upgt_lmac_header));
450
451 stats->header2.reqid = htole32(sc->sc_memaddr_frame_start);
452 stats->header2.type = htole16(UPGT_H2_TYPE_STATS);
453 stats->header2.flags = 0;
454
455 data_cmd->buflen = sizeof(*mem) + sizeof(*stats);
456
457 mem->chksum = upgt_chksum_le((uint32_t *)stats,
458 data_cmd->buflen - sizeof(*mem));
459
460 upgt_bulk_tx(sc, data_cmd);
461}
462
463static int
464upgt_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
465{
466 struct upgt_softc *sc = ifp->if_softc;
467 struct ieee80211com *ic = ifp->if_l2com;
468 struct ifreq *ifr = (struct ifreq *) data;
469 int error = 0, startall = 0;
470
471 switch (cmd) {
472 case SIOCSIFFLAGS:
473 if (ifp->if_flags & IFF_UP) {
474 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
475 if ((ifp->if_flags ^ sc->sc_if_flags) &
476 (IFF_ALLMULTI | IFF_PROMISC))
477 upgt_set_multi(sc);
478 } else {
479 upgt_init(sc);
480 startall = 1;
481 }
482 } else {
483 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
484 upgt_stop(sc);
485 }
486 sc->sc_if_flags = ifp->if_flags;
487 if (startall)
488 ieee80211_start_all(ic);
489 break;
490 case SIOCGIFMEDIA:
491 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
492 break;
493 case SIOCGIFADDR:
494 error = ether_ioctl(ifp, cmd, data);
495 break;
496 default:
497 error = EINVAL;
498 break;
499 }
500 return error;
501}
502
503static void
504upgt_stop_locked(struct upgt_softc *sc)
505{
506 struct ifnet *ifp = sc->sc_ifp;
507
508 UPGT_ASSERT_LOCKED(sc);
509
510 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
511 upgt_set_macfilter(sc, IEEE80211_S_INIT);
512 upgt_abort_xfers_locked(sc);
513}
514
515static void
516upgt_stop(struct upgt_softc *sc)
517{
518 struct ifnet *ifp = sc->sc_ifp;
519
520 UPGT_LOCK(sc);
521 upgt_stop_locked(sc);
522 UPGT_UNLOCK(sc);
523
524 /* device down */
525 sc->sc_tx_timer = 0;
526 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
527 sc->sc_flags &= ~UPGT_FLAG_INITDONE;
528}
529
530static void
531upgt_set_led(struct upgt_softc *sc, int action)
532{
533 struct upgt_data *data_cmd;
534 struct upgt_lmac_mem *mem;
535 struct upgt_lmac_led *led;
536
537 data_cmd = upgt_getbuf(sc);
538 if (data_cmd == NULL) {
539 device_printf(sc->sc_dev, "%s: out of buffers.\n", __func__);
540 return;
541 }
542
543 /*
544 * Transmit the URB containing the CMD data.
545 */
546 memset(data_cmd->buf, 0, MCLBYTES);
547
548 mem = (struct upgt_lmac_mem *)data_cmd->buf;
549 mem->addr = htole32(sc->sc_memaddr_frame_start +
550 UPGT_MEMSIZE_FRAME_HEAD);
551
552 led = (struct upgt_lmac_led *)(mem + 1);
553
554 led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
555 led->header1.type = UPGT_H1_TYPE_CTRL;
556 led->header1.len = htole16(
557 sizeof(struct upgt_lmac_led) -
558 sizeof(struct upgt_lmac_header));
559
560 led->header2.reqid = htole32(sc->sc_memaddr_frame_start);
561 led->header2.type = htole16(UPGT_H2_TYPE_LED);
562 led->header2.flags = 0;
563
564 switch (action) {
565 case UPGT_LED_OFF:
566 led->mode = htole16(UPGT_LED_MODE_SET);
567 led->action_fix = 0;
568 led->action_tmp = htole16(UPGT_LED_ACTION_OFF);
569 led->action_tmp_dur = 0;
570 break;
571 case UPGT_LED_ON:
572 led->mode = htole16(UPGT_LED_MODE_SET);
573 led->action_fix = 0;
574 led->action_tmp = htole16(UPGT_LED_ACTION_ON);
575 led->action_tmp_dur = 0;
576 break;
577 case UPGT_LED_BLINK:
578 if (sc->sc_state != IEEE80211_S_RUN) {
579 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next);
580 return;
581 }
582 if (sc->sc_led_blink) {
583 /* previous blink was not finished */
584 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next);
585 return;
586 }
587 led->mode = htole16(UPGT_LED_MODE_SET);
588 led->action_fix = htole16(UPGT_LED_ACTION_OFF);
589 led->action_tmp = htole16(UPGT_LED_ACTION_ON);
590 led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR);
591 /* lock blink */
592 sc->sc_led_blink = 1;
593 callout_reset(&sc->sc_led_ch, hz, upgt_set_led_blink, sc);
594 break;
595 default:
596 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next);
597 return;
598 }
599
600 data_cmd->buflen = sizeof(*mem) + sizeof(*led);
601
602 mem->chksum = upgt_chksum_le((uint32_t *)led,
603 data_cmd->buflen - sizeof(*mem));
604
605 upgt_bulk_tx(sc, data_cmd);
606}
607
608static void
609upgt_set_led_blink(void *arg)
610{
611 struct upgt_softc *sc = arg;
612
613 /* blink finished, we are ready for a next one */
614 sc->sc_led_blink = 0;
615}
616
617static void
618upgt_init(void *priv)
619{
620 struct upgt_softc *sc = priv;
621 struct ifnet *ifp = sc->sc_ifp;
622 struct ieee80211com *ic = ifp->if_l2com;
623
624 UPGT_LOCK(sc);
625 upgt_init_locked(sc);
626 UPGT_UNLOCK(sc);
627
628 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
629 ieee80211_start_all(ic); /* start all vap's */
630}
631
632static void
633upgt_init_locked(struct upgt_softc *sc)
634{
635 struct ifnet *ifp = sc->sc_ifp;
636
637 UPGT_ASSERT_LOCKED(sc);
638
639 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
640 upgt_stop_locked(sc);
641
642 usbd_transfer_start(sc->sc_xfer[UPGT_BULK_RX]);
643
644 (void)upgt_set_macfilter(sc, IEEE80211_S_SCAN);
645
646 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
647 ifp->if_drv_flags |= IFF_DRV_RUNNING;
648 sc->sc_flags |= UPGT_FLAG_INITDONE;
649
650 callout_reset(&sc->sc_watchdog_ch, hz, upgt_watchdog, sc);
651}
652
653static int
654upgt_set_macfilter(struct upgt_softc *sc, uint8_t state)
655{
656 struct ifnet *ifp = sc->sc_ifp;
657 struct ieee80211com *ic = ifp->if_l2com;
658 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
659 struct ieee80211_node *ni;
660 struct upgt_data *data_cmd;
661 struct upgt_lmac_mem *mem;
662 struct upgt_lmac_filter *filter;
663 uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
664
665 UPGT_ASSERT_LOCKED(sc);
666
667 data_cmd = upgt_getbuf(sc);
668 if (data_cmd == NULL) {
669 device_printf(sc->sc_dev, "out of TX buffers.\n");
670 return (ENOBUFS);
671 }
672
673 /*
674 * Transmit the URB containing the CMD data.
675 */
676 memset(data_cmd->buf, 0, MCLBYTES);
677
678 mem = (struct upgt_lmac_mem *)data_cmd->buf;
679 mem->addr = htole32(sc->sc_memaddr_frame_start +
680 UPGT_MEMSIZE_FRAME_HEAD);
681
682 filter = (struct upgt_lmac_filter *)(mem + 1);
683
684 filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
685 filter->header1.type = UPGT_H1_TYPE_CTRL;
686 filter->header1.len = htole16(
687 sizeof(struct upgt_lmac_filter) -
688 sizeof(struct upgt_lmac_header));
689
690 filter->header2.reqid = htole32(sc->sc_memaddr_frame_start);
691 filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER);
692 filter->header2.flags = 0;
693
694 switch (state) {
695 case IEEE80211_S_INIT:
696 DPRINTF(sc, UPGT_DEBUG_STATE, "%s: set MAC filter to INIT\n",
697 __func__);
698 filter->type = htole16(UPGT_FILTER_TYPE_RESET);
699 break;
700 case IEEE80211_S_SCAN:
701 DPRINTF(sc, UPGT_DEBUG_STATE,
702 "set MAC filter to SCAN (bssid %s)\n",
703 ether_sprintf(broadcast));
704 filter->type = htole16(UPGT_FILTER_TYPE_NONE);
705 IEEE80211_ADDR_COPY(filter->dst, sc->sc_myaddr);
706 IEEE80211_ADDR_COPY(filter->src, broadcast);
707 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
708 filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
709 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
710 filter->rxhw = htole32(sc->sc_eeprom_hwrx);
711 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
712 break;
713 case IEEE80211_S_RUN:
714 ni = ieee80211_ref_node(vap->iv_bss);
715 /* XXX monitor mode isn't tested yet. */
716 if (vap->iv_opmode == IEEE80211_M_MONITOR) {
717 filter->type = htole16(UPGT_FILTER_TYPE_MONITOR);
718 IEEE80211_ADDR_COPY(filter->dst, sc->sc_myaddr);
719 IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
720 filter->unknown1 = htole16(UPGT_FILTER_MONITOR_UNKNOWN1);
721 filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
722 filter->unknown2 = htole16(UPGT_FILTER_MONITOR_UNKNOWN2);
723 filter->rxhw = htole32(sc->sc_eeprom_hwrx);
724 filter->unknown3 = htole16(UPGT_FILTER_MONITOR_UNKNOWN3);
725 } else {
726 DPRINTF(sc, UPGT_DEBUG_STATE,
727 "set MAC filter to RUN (bssid %s)\n",
728 ether_sprintf(ni->ni_bssid));
729 filter->type = htole16(UPGT_FILTER_TYPE_STA);
730 IEEE80211_ADDR_COPY(filter->dst, sc->sc_myaddr);
731 IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
732 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
733 filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
734 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
735 filter->rxhw = htole32(sc->sc_eeprom_hwrx);
736 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
737 }
738 ieee80211_free_node(ni);
739 break;
740 default:
741 device_printf(sc->sc_dev,
742 "MAC filter does not know that state\n");
743 break;
744 }
745
746 data_cmd->buflen = sizeof(*mem) + sizeof(*filter);
747
748 mem->chksum = upgt_chksum_le((uint32_t *)filter,
749 data_cmd->buflen - sizeof(*mem));
750
751 upgt_bulk_tx(sc, data_cmd);
752
753 return (0);
754}
755
756static void
757upgt_setup_rates(struct ieee80211vap *vap, struct ieee80211com *ic)
758{
759 struct ifnet *ifp = ic->ic_ifp;
760 struct upgt_softc *sc = ifp->if_softc;
761 const struct ieee80211_txparam *tp;
762
763 /*
764 * 0x01 = OFMD6 0x10 = DS1
765 * 0x04 = OFDM9 0x11 = DS2
766 * 0x06 = OFDM12 0x12 = DS5
767 * 0x07 = OFDM18 0x13 = DS11
768 * 0x08 = OFDM24
769 * 0x09 = OFDM36
770 * 0x0a = OFDM48
771 * 0x0b = OFDM54
772 */
773 const uint8_t rateset_auto_11b[] =
774 { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 };
775 const uint8_t rateset_auto_11g[] =
776 { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 };
777 const uint8_t rateset_fix_11bg[] =
778 { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07,
779 0x08, 0x09, 0x0a, 0x0b };
780
781 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
782
783 /* XXX */
784 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) {
785 /*
786 * Automatic rate control is done by the device.
787 * We just pass the rateset from which the device
788 * will pickup a rate.
789 */
790 if (ic->ic_curmode == IEEE80211_MODE_11B)
791 memcpy(sc->sc_cur_rateset, rateset_auto_11b,
792 sizeof(sc->sc_cur_rateset));
793 if (ic->ic_curmode == IEEE80211_MODE_11G ||
794 ic->ic_curmode == IEEE80211_MODE_AUTO)
795 memcpy(sc->sc_cur_rateset, rateset_auto_11g,
796 sizeof(sc->sc_cur_rateset));
797 } else {
798 /* set a fixed rate */
799 memset(sc->sc_cur_rateset, rateset_fix_11bg[tp->ucastrate],
800 sizeof(sc->sc_cur_rateset));
801 }
802}
803
804static void
805upgt_set_multi(void *arg)
806{
807 struct upgt_softc *sc = arg;
808 struct ifnet *ifp = sc->sc_ifp;
809
810 if (!(ifp->if_flags & IFF_UP))
811 return;
812
813 /*
814 * XXX don't know how to set a device. Lack of docs. Just try to set
815 * IFF_ALLMULTI flag here.
816 */
817 ifp->if_flags |= IFF_ALLMULTI;
818}
819
820static void
821upgt_start(struct ifnet *ifp)
822{
823 struct upgt_softc *sc = ifp->if_softc;
824 struct upgt_data *data_tx;
825 struct ieee80211_node *ni;
826 struct mbuf *m;
827
828 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
829 return;
830
831 UPGT_LOCK(sc);
832 for (;;) {
833 IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
834 if (m == NULL)
835 break;
836
837 data_tx = upgt_gettxbuf(sc);
838 if (data_tx == NULL) {
839 IFQ_DRV_PREPEND(&ifp->if_snd, m);
840 break;
841 }
842
843 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
844 m->m_pkthdr.rcvif = NULL;
845
846 if (upgt_tx_start(sc, m, ni, data_tx) != 0) {
847 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, data_tx, next);
848 UPGT_STAT_INC(sc, st_tx_inactive);
849 ieee80211_free_node(ni);
850 ifp->if_oerrors++;
851 continue;
852 }
853 sc->sc_tx_timer = 5;
854 }
855 UPGT_UNLOCK(sc);
856}
857
858static int
859upgt_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
860 const struct ieee80211_bpf_params *params)
861{
862 struct ieee80211com *ic = ni->ni_ic;
863 struct ifnet *ifp = ic->ic_ifp;
864 struct upgt_softc *sc = ifp->if_softc;
865 struct upgt_data *data_tx = NULL;
866
867 /* prevent management frames from being sent if we're not ready */
868 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
869 m_freem(m);
870 ieee80211_free_node(ni);
871 return ENETDOWN;
872 }
873
874 UPGT_LOCK(sc);
875 data_tx = upgt_gettxbuf(sc);
876 if (data_tx == NULL) {
877 ieee80211_free_node(ni);
878 m_freem(m);
879 UPGT_UNLOCK(sc);
880 return (ENOBUFS);
881 }
882
883 if (upgt_tx_start(sc, m, ni, data_tx) != 0) {
884 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, data_tx, next);
885 UPGT_STAT_INC(sc, st_tx_inactive);
886 ieee80211_free_node(ni);
887 ifp->if_oerrors++;
888 UPGT_UNLOCK(sc);
889 return (EIO);
890 }
891 UPGT_UNLOCK(sc);
892
893 sc->sc_tx_timer = 5;
894 return (0);
895}
896
897static void
898upgt_watchdog(void *arg)
899{
900 struct upgt_softc *sc = arg;
901 struct ifnet *ifp = sc->sc_ifp;
902
903 if (sc->sc_tx_timer > 0) {
904 if (--sc->sc_tx_timer == 0) {
905 device_printf(sc->sc_dev, "watchdog timeout\n");
906 /* upgt_init(ifp); XXX needs a process context ? */
907 ifp->if_oerrors++;
908 return;
909 }
910 callout_reset(&sc->sc_watchdog_ch, hz, upgt_watchdog, sc);
911 }
912}
913
914static uint32_t
915upgt_mem_alloc(struct upgt_softc *sc)
916{
917 int i;
918
919 for (i = 0; i < sc->sc_memory.pages; i++) {
920 if (sc->sc_memory.page[i].used == 0) {
921 sc->sc_memory.page[i].used = 1;
922 return (sc->sc_memory.page[i].addr);
923 }
924 }
925
926 return (0);
927}
928
929static void
930upgt_scan_start(struct ieee80211com *ic)
931{
932 /* do nothing. */
933}
934
935static void
936upgt_scan_end(struct ieee80211com *ic)
937{
938 /* do nothing. */
939}
940
941static void
942upgt_set_channel(struct ieee80211com *ic)
943{
944 struct upgt_softc *sc = ic->ic_ifp->if_softc;
945
946 UPGT_LOCK(sc);
947 upgt_set_chan(sc, ic->ic_curchan);
948 UPGT_UNLOCK(sc);
949}
950
951static void
952upgt_set_chan(struct upgt_softc *sc, struct ieee80211_channel *c)
953{
954 struct ifnet *ifp = sc->sc_ifp;
955 struct ieee80211com *ic = ifp->if_l2com;
956 struct upgt_data *data_cmd;
957 struct upgt_lmac_mem *mem;
958 struct upgt_lmac_channel *chan;
959 int channel;
960
961 UPGT_ASSERT_LOCKED(sc);
962
963 channel = ieee80211_chan2ieee(ic, c);
964 if (channel == 0 || channel == IEEE80211_CHAN_ANY) {
965 /* XXX should NEVER happen */
966 device_printf(sc->sc_dev,
967 "%s: invalid channel %x\n", __func__, channel);
968 return;
969 }
970
971 DPRINTF(sc, UPGT_DEBUG_STATE, "%s: channel %d\n", __func__, channel);
972
973 data_cmd = upgt_getbuf(sc);
974 if (data_cmd == NULL) {
975 device_printf(sc->sc_dev, "%s: out of buffers.\n", __func__);
976 return;
977 }
978 /*
979 * Transmit the URB containing the CMD data.
980 */
981 memset(data_cmd->buf, 0, MCLBYTES);
982
983 mem = (struct upgt_lmac_mem *)data_cmd->buf;
984 mem->addr = htole32(sc->sc_memaddr_frame_start +
985 UPGT_MEMSIZE_FRAME_HEAD);
986
987 chan = (struct upgt_lmac_channel *)(mem + 1);
988
989 chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
990 chan->header1.type = UPGT_H1_TYPE_CTRL;
991 chan->header1.len = htole16(
992 sizeof(struct upgt_lmac_channel) - sizeof(struct upgt_lmac_header));
993
994 chan->header2.reqid = htole32(sc->sc_memaddr_frame_start);
995 chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL);
996 chan->header2.flags = 0;
997
998 chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1);
999 chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2);
1000 chan->freq6 = sc->sc_eeprom_freq6[channel];
1001 chan->settings = sc->sc_eeprom_freq6_settings;
1002 chan->unknown3 = UPGT_CHANNEL_UNKNOWN3;
1003
1004 memcpy(chan->freq3_1, &sc->sc_eeprom_freq3[channel].data,
1005 sizeof(chan->freq3_1));
1006 memcpy(chan->freq4, &sc->sc_eeprom_freq4[channel],
1007 sizeof(sc->sc_eeprom_freq4[channel]));
1008 memcpy(chan->freq3_2, &sc->sc_eeprom_freq3[channel].data,
1009 sizeof(chan->freq3_2));
1010
1011 data_cmd->buflen = sizeof(*mem) + sizeof(*chan);
1012
1013 mem->chksum = upgt_chksum_le((uint32_t *)chan,
1014 data_cmd->buflen - sizeof(*mem));
1015
1016 upgt_bulk_tx(sc, data_cmd);
1017}
1018
1019static struct ieee80211vap *
1020upgt_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1021 enum ieee80211_opmode opmode, int flags,
1022 const uint8_t bssid[IEEE80211_ADDR_LEN],
1023 const uint8_t mac[IEEE80211_ADDR_LEN])
1024{
1025 struct upgt_vap *uvp;
1026 struct ieee80211vap *vap;
1027
1028 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */
1029 return NULL;
1030 uvp = (struct upgt_vap *) malloc(sizeof(struct upgt_vap),
1031 M_80211_VAP, M_NOWAIT | M_ZERO);
1032 if (uvp == NULL)
1033 return NULL;
1034 vap = &uvp->vap;
1035 /* enable s/w bmiss handling for sta mode */
1036 ieee80211_vap_setup(ic, vap, name, unit, opmode,
1037 flags | IEEE80211_CLONE_NOBEACONS, bssid, mac);
1038
1039 /* override state transition machine */
1040 uvp->newstate = vap->iv_newstate;
1041 vap->iv_newstate = upgt_newstate;
1042
1043 /* setup device rates */
1044 upgt_setup_rates(vap, ic);
1045
1046 /* complete setup */
1047 ieee80211_vap_attach(vap, ieee80211_media_change,
1048 ieee80211_media_status);
1049 ic->ic_opmode = opmode;
1050 return vap;
1051}
1052
1053static int
1054upgt_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1055{
1056 struct upgt_vap *uvp = UPGT_VAP(vap);
1057 struct ieee80211com *ic = vap->iv_ic;
1058 struct upgt_softc *sc = ic->ic_ifp->if_softc;
1059
1060 /* do it in a process context */
1061 sc->sc_state = nstate;
1062
1063 IEEE80211_UNLOCK(ic);
1064 UPGT_LOCK(sc);
1065 callout_stop(&sc->sc_led_ch);
1066 callout_stop(&sc->sc_watchdog_ch);
1067
1068 switch (nstate) {
1069 case IEEE80211_S_INIT:
1070 /* do not accept any frames if the device is down */
1071 (void)upgt_set_macfilter(sc, sc->sc_state);
1072 upgt_set_led(sc, UPGT_LED_OFF);
1073 break;
1074 case IEEE80211_S_SCAN:
1075 upgt_set_chan(sc, ic->ic_curchan);
1076 break;
1077 case IEEE80211_S_AUTH:
1078 upgt_set_chan(sc, ic->ic_curchan);
1079 break;
1080 case IEEE80211_S_ASSOC:
1081 break;
1082 case IEEE80211_S_RUN:
1083 upgt_set_macfilter(sc, sc->sc_state);
1084 upgt_set_led(sc, UPGT_LED_ON);
1085 break;
1086 default:
1087 break;
1088 }
1089 UPGT_UNLOCK(sc);
1090 IEEE80211_LOCK(ic);
1091 return (uvp->newstate(vap, nstate, arg));
1092}
1093
1094static void
1095upgt_vap_delete(struct ieee80211vap *vap)
1096{
1097 struct upgt_vap *uvp = UPGT_VAP(vap);
1098
1099 ieee80211_vap_detach(vap);
1100 free(uvp, M_80211_VAP);
1101}
1102
1103static void
1104upgt_update_mcast(struct ifnet *ifp)
1105{
1106 struct upgt_softc *sc = ifp->if_softc;
1107
1108 upgt_set_multi(sc);
1109}
1110
1111static int
1112upgt_eeprom_parse(struct upgt_softc *sc)
1113{
1114 struct upgt_eeprom_header *eeprom_header;
1115 struct upgt_eeprom_option *eeprom_option;
1116 uint16_t option_len;
1117 uint16_t option_type;
1118 uint16_t preamble_len;
1119 int option_end = 0;
1120
1121 /* calculate eeprom options start offset */
1122 eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom;
1123 preamble_len = le16toh(eeprom_header->preamble_len);
1124 eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom +
1125 (sizeof(struct upgt_eeprom_header) + preamble_len));
1126
1127 while (!option_end) {
1128 /* the eeprom option length is stored in words */
1129 option_len =
1130 (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t);
1131 option_type =
1132 le16toh(eeprom_option->type);
1133
1134 switch (option_type) {
1135 case UPGT_EEPROM_TYPE_NAME:
1136 DPRINTF(sc, UPGT_DEBUG_FW,
1137 "EEPROM name len=%d\n", option_len);
1138 break;
1139 case UPGT_EEPROM_TYPE_SERIAL:
1140 DPRINTF(sc, UPGT_DEBUG_FW,
1141 "EEPROM serial len=%d\n", option_len);
1142 break;
1143 case UPGT_EEPROM_TYPE_MAC:
1144 DPRINTF(sc, UPGT_DEBUG_FW,
1145 "EEPROM mac len=%d\n", option_len);
1146
1147 IEEE80211_ADDR_COPY(sc->sc_myaddr, eeprom_option->data);
1148 break;
1149 case UPGT_EEPROM_TYPE_HWRX:
1150 DPRINTF(sc, UPGT_DEBUG_FW,
1151 "EEPROM hwrx len=%d\n", option_len);
1152
1153 upgt_eeprom_parse_hwrx(sc, eeprom_option->data);
1154 break;
1155 case UPGT_EEPROM_TYPE_CHIP:
1156 DPRINTF(sc, UPGT_DEBUG_FW,
1157 "EEPROM chip len=%d\n", option_len);
1158 break;
1159 case UPGT_EEPROM_TYPE_FREQ3:
1160 DPRINTF(sc, UPGT_DEBUG_FW,
1161 "EEPROM freq3 len=%d\n", option_len);
1162
1163 upgt_eeprom_parse_freq3(sc, eeprom_option->data,
1164 option_len);
1165 break;
1166 case UPGT_EEPROM_TYPE_FREQ4:
1167 DPRINTF(sc, UPGT_DEBUG_FW,
1168 "EEPROM freq4 len=%d\n", option_len);
1169
1170 upgt_eeprom_parse_freq4(sc, eeprom_option->data,
1171 option_len);
1172 break;
1173 case UPGT_EEPROM_TYPE_FREQ5:
1174 DPRINTF(sc, UPGT_DEBUG_FW,
1175 "EEPROM freq5 len=%d\n", option_len);
1176 break;
1177 case UPGT_EEPROM_TYPE_FREQ6:
1178 DPRINTF(sc, UPGT_DEBUG_FW,
1179 "EEPROM freq6 len=%d\n", option_len);
1180
1181 upgt_eeprom_parse_freq6(sc, eeprom_option->data,
1182 option_len);
1183 break;
1184 case UPGT_EEPROM_TYPE_END:
1185 DPRINTF(sc, UPGT_DEBUG_FW,
1186 "EEPROM end len=%d\n", option_len);
1187 option_end = 1;
1188 break;
1189 case UPGT_EEPROM_TYPE_OFF:
1190 DPRINTF(sc, UPGT_DEBUG_FW,
1191 "%s: EEPROM off without end option\n", __func__);
1192 return (EIO);
1193 default:
1194 DPRINTF(sc, UPGT_DEBUG_FW,
1195 "EEPROM unknown type 0x%04x len=%d\n",
1196 option_type, option_len);
1197 break;
1198 }
1199
1200 /* jump to next EEPROM option */
1201 eeprom_option = (struct upgt_eeprom_option *)
1202 (eeprom_option->data + option_len);
1203 }
1204
1205 return (0);
1206}
1207
1208static void
1209upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len)
1210{
1211 struct upgt_eeprom_freq3_header *freq3_header;
1212 struct upgt_lmac_freq3 *freq3;
1213 int i, elements, flags;
1214 unsigned channel;
1215
1216 freq3_header = (struct upgt_eeprom_freq3_header *)data;
1217 freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1);
1218
1219 flags = freq3_header->flags;
1220 elements = freq3_header->elements;
1221
1222 DPRINTF(sc, UPGT_DEBUG_FW, "flags=0x%02x elements=%d\n",
1223 flags, elements);
1224
1225 for (i = 0; i < elements; i++) {
1226 channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0);
1227 if (channel >= IEEE80211_CHAN_MAX)
1228 continue;
1229
1230 sc->sc_eeprom_freq3[channel] = freq3[i];
1231
1232 DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n",
1233 le16toh(sc->sc_eeprom_freq3[channel].freq), channel);
1234 }
1235}
1236
1237void
1238upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len)
1239{
1240 struct upgt_eeprom_freq4_header *freq4_header;
1241 struct upgt_eeprom_freq4_1 *freq4_1;
1242 struct upgt_eeprom_freq4_2 *freq4_2;
1243 int i, j, elements, settings, flags;
1244 unsigned channel;
1245
1246 freq4_header = (struct upgt_eeprom_freq4_header *)data;
1247 freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1);
1248 flags = freq4_header->flags;
1249 elements = freq4_header->elements;
1250 settings = freq4_header->settings;
1251
1252 /* we need this value later */
1253 sc->sc_eeprom_freq6_settings = freq4_header->settings;
1254
1255 DPRINTF(sc, UPGT_DEBUG_FW, "flags=0x%02x elements=%d settings=%d\n",
1256 flags, elements, settings);
1257
1258 for (i = 0; i < elements; i++) {
1259 channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0);
1260 if (channel >= IEEE80211_CHAN_MAX)
1261 continue;
1262
1263 freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data;
1264 for (j = 0; j < settings; j++) {
1265 sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j];
1266 sc->sc_eeprom_freq4[channel][j].pad = 0;
1267 }
1268
1269 DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n",
1270 le16toh(freq4_1[i].freq), channel);
1271 }
1272}
1273
1274void
1275upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len)
1276{
1277 struct upgt_lmac_freq6 *freq6;
1278 int i, elements;
1279 unsigned channel;
1280
1281 freq6 = (struct upgt_lmac_freq6 *)data;
1282 elements = len / sizeof(struct upgt_lmac_freq6);
1283
1284 DPRINTF(sc, UPGT_DEBUG_FW, "elements=%d\n", elements);
1285
1286 for (i = 0; i < elements; i++) {
1287 channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0);
1288 if (channel >= IEEE80211_CHAN_MAX)
1289 continue;
1290
1291 sc->sc_eeprom_freq6[channel] = freq6[i];
1292
1293 DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n",
1294 le16toh(sc->sc_eeprom_freq6[channel].freq), channel);
1295 }
1296}
1297
1298static void
1299upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data)
1300{
1301 struct upgt_eeprom_option_hwrx *option_hwrx;
1302
1303 option_hwrx = (struct upgt_eeprom_option_hwrx *)data;
1304
1305 sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST;
1306
1307 DPRINTF(sc, UPGT_DEBUG_FW, "hwrx option value=0x%04x\n",
1308 sc->sc_eeprom_hwrx);
1309}
1310
1311static int
1312upgt_eeprom_read(struct upgt_softc *sc)
1313{
1314 struct upgt_data *data_cmd;
1315 struct upgt_lmac_mem *mem;
1316 struct upgt_lmac_eeprom *eeprom;
1317 int block, error, offset;
1318
1319 UPGT_LOCK(sc);
1320 usb_pause_mtx(&sc->sc_mtx, 100);
1321
1322 offset = 0;
1323 block = UPGT_EEPROM_BLOCK_SIZE;
1324 while (offset < UPGT_EEPROM_SIZE) {
1325 DPRINTF(sc, UPGT_DEBUG_FW,
1326 "request EEPROM block (offset=%d, len=%d)\n", offset, block);
1327
1328 data_cmd = upgt_getbuf(sc);
1329 if (data_cmd == NULL) {
1330 UPGT_UNLOCK(sc);
1331 return (ENOBUFS);
1332 }
1333
1334 /*
1335 * Transmit the URB containing the CMD data.
1336 */
1337 memset(data_cmd->buf, 0, MCLBYTES);
1338
1339 mem = (struct upgt_lmac_mem *)data_cmd->buf;
1340 mem->addr = htole32(sc->sc_memaddr_frame_start +
1341 UPGT_MEMSIZE_FRAME_HEAD);
1342
1343 eeprom = (struct upgt_lmac_eeprom *)(mem + 1);
1344 eeprom->header1.flags = 0;
1345 eeprom->header1.type = UPGT_H1_TYPE_CTRL;
1346 eeprom->header1.len = htole16((
1347 sizeof(struct upgt_lmac_eeprom) -
1348 sizeof(struct upgt_lmac_header)) + block);
1349
1350 eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start);
1351 eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM);
1352 eeprom->header2.flags = 0;
1353
1354 eeprom->offset = htole16(offset);
1355 eeprom->len = htole16(block);
1356
1357 data_cmd->buflen = sizeof(*mem) + sizeof(*eeprom) + block;
1358
1359 mem->chksum = upgt_chksum_le((uint32_t *)eeprom,
1360 data_cmd->buflen - sizeof(*mem));
1361 upgt_bulk_tx(sc, data_cmd);
1362
1363 error = mtx_sleep(sc, &sc->sc_mtx, 0, "eeprom_request", hz);
1364 if (error != 0) {
1365 device_printf(sc->sc_dev,
1366 "timeout while waiting for EEPROM data\n");
1367 UPGT_UNLOCK(sc);
1368 return (EIO);
1369 }
1370
1371 offset += block;
1372 if (UPGT_EEPROM_SIZE - offset < block)
1373 block = UPGT_EEPROM_SIZE - offset;
1374 }
1375
1376 UPGT_UNLOCK(sc);
1377 return (0);
1378}
1379
1380/*
1381 * When a rx data came in the function returns a mbuf and a rssi values.
1382 */
1383static struct mbuf *
1384upgt_rxeof(struct usb_xfer *xfer, struct upgt_data *data, int *rssi)
1385{
1386 struct mbuf *m = NULL;
1387 struct upgt_softc *sc = usbd_xfer_softc(xfer);
1388 struct upgt_lmac_header *header;
1389 struct upgt_lmac_eeprom *eeprom;
1390 uint8_t h1_type;
1391 uint16_t h2_type;
1392 int actlen, sumlen;
1393
1394 usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL);
1395
1396 UPGT_ASSERT_LOCKED(sc);
1397
1398 if (actlen < 1)
1399 return (NULL);
1400
1401 /* Check only at the very beginning. */
1402 if (!(sc->sc_flags & UPGT_FLAG_FWLOADED) &&
1403 (memcmp(data->buf, "OK", 2) == 0)) {
1404 sc->sc_flags |= UPGT_FLAG_FWLOADED;
1405 wakeup_one(sc);
1406 return (NULL);
1407 }
1408
1409 if (actlen < (int)UPGT_RX_MINSZ)
1410 return (NULL);
1411
1412 /*
1413 * Check what type of frame came in.
1414 */
1415 header = (struct upgt_lmac_header *)(data->buf + 4);
1416
1417 h1_type = header->header1.type;
1418 h2_type = le16toh(header->header2.type);
1419
1420 if (h1_type == UPGT_H1_TYPE_CTRL && h2_type == UPGT_H2_TYPE_EEPROM) {
1421 eeprom = (struct upgt_lmac_eeprom *)(data->buf + 4);
1422 uint16_t eeprom_offset = le16toh(eeprom->offset);
1423 uint16_t eeprom_len = le16toh(eeprom->len);
1424
1425 DPRINTF(sc, UPGT_DEBUG_FW,
1426 "received EEPROM block (offset=%d, len=%d)\n",
1427 eeprom_offset, eeprom_len);
1428
1429 memcpy(sc->sc_eeprom + eeprom_offset,
1430 data->buf + sizeof(struct upgt_lmac_eeprom) + 4,
1431 eeprom_len);
1432
1433 /* EEPROM data has arrived in time, wakeup. */
1434 wakeup(sc);
1435 } else if (h1_type == UPGT_H1_TYPE_CTRL &&
1436 h2_type == UPGT_H2_TYPE_TX_DONE) {
1437 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: received 802.11 TX done\n",
1438 __func__);
1439 upgt_tx_done(sc, data->buf + 4);
1440 } else if (h1_type == UPGT_H1_TYPE_RX_DATA ||
1441 h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) {
1442 DPRINTF(sc, UPGT_DEBUG_RECV, "%s: received 802.11 RX data\n",
1443 __func__);
1444 m = upgt_rx(sc, data->buf + 4, le16toh(header->header1.len),
1445 rssi);
1446 } else if (h1_type == UPGT_H1_TYPE_CTRL &&
1447 h2_type == UPGT_H2_TYPE_STATS) {
1448 DPRINTF(sc, UPGT_DEBUG_STAT, "%s: received statistic data\n",
1449 __func__);
1450 /* TODO: what could we do with the statistic data? */
1451 } else {
1452 /* ignore unknown frame types */
1453 DPRINTF(sc, UPGT_DEBUG_INTR,
1454 "received unknown frame type 0x%02x\n",
1455 header->header1.type);
1456 }
1457 return (m);
1458}
1459
1460/*
1461 * The firmware awaits a checksum for each frame we send to it.
1462 * The algorithm used therefor is uncommon but somehow similar to CRC32.
1463 */
1464static uint32_t
1465upgt_chksum_le(const uint32_t *buf, size_t size)
1466{
1467 size_t i;
1468 uint32_t crc = 0;
1469
1470 for (i = 0; i < size; i += sizeof(uint32_t)) {
1471 crc = htole32(crc ^ *buf++);
1472 crc = htole32((crc >> 5) ^ (crc << 3));
1473 }
1474
1475 return (crc);
1476}
1477
1478static struct mbuf *
1479upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen, int *rssi)
1480{
1481 struct ifnet *ifp = sc->sc_ifp;
1482 struct ieee80211com *ic = ifp->if_l2com;
1483 struct upgt_lmac_rx_desc *rxdesc;
1484 struct mbuf *m;
1485
1486 /*
1487 * don't pass packets to the ieee80211 framework if the driver isn't
1488 * RUNNING.
1489 */
1490 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1491 return (NULL);
1492
1493 /* access RX packet descriptor */
1494 rxdesc = (struct upgt_lmac_rx_desc *)data;
1495
1496 /* create mbuf which is suitable for strict alignment archs */
1497 KASSERT((pkglen + ETHER_ALIGN) < MCLBYTES,
1498 ("A current mbuf storage is small (%d)", pkglen + ETHER_ALIGN));
1499 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1500 if (m == NULL) {
1501 device_printf(sc->sc_dev, "could not create RX mbuf\n");
1502 return (NULL);
1503 }
1504 m_adj(m, ETHER_ALIGN);
1505 memcpy(mtod(m, char *), rxdesc->data, pkglen);
1506 /* trim FCS */
1507 m->m_len = m->m_pkthdr.len = pkglen - IEEE80211_CRC_LEN;
1508 m->m_pkthdr.rcvif = ifp;
1509
1510 if (ieee80211_radiotap_active(ic)) {
1511 struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap;
1512
1513 tap->wr_flags = 0;
1514 tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate);
1515 tap->wr_antsignal = rxdesc->rssi;
1516 }
1517 ifp->if_ipackets++;
1518
1519 DPRINTF(sc, UPGT_DEBUG_RX_PROC, "%s: RX done\n", __func__);
1520 *rssi = rxdesc->rssi;
1521 return (m);
1522}
1523
1524static uint8_t
1525upgt_rx_rate(struct upgt_softc *sc, const int rate)
1526{
1527 struct ifnet *ifp = sc->sc_ifp;
1528 struct ieee80211com *ic = ifp->if_l2com;
1529 static const uint8_t cck_upgt2rate[4] = { 2, 4, 11, 22 };
1530 static const uint8_t ofdm_upgt2rate[12] =
1531 { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 };
1532
1533 if (ic->ic_curmode == IEEE80211_MODE_11B &&
1534 !(rate < 0 || rate > 3))
1535 return cck_upgt2rate[rate & 0xf];
1536
1537 if (ic->ic_curmode == IEEE80211_MODE_11G &&
1538 !(rate < 0 || rate > 11))
1539 return ofdm_upgt2rate[rate & 0xf];
1540
1541 return (0);
1542}
1543
1544static void
1545upgt_tx_done(struct upgt_softc *sc, uint8_t *data)
1546{
1547 struct ifnet *ifp = sc->sc_ifp;
1548 struct upgt_lmac_tx_done_desc *desc;
1549 int i, freed = 0;
1550
1551 UPGT_ASSERT_LOCKED(sc);
1552
1553 desc = (struct upgt_lmac_tx_done_desc *)data;
1554
1555 for (i = 0; i < UPGT_TX_MAXCOUNT; i++) {
1556 struct upgt_data *data_tx = &sc->sc_tx_data[i];
1557
1558 if (data_tx->addr == le32toh(desc->header2.reqid)) {
1559 upgt_mem_free(sc, data_tx->addr);
1560 data_tx->ni = NULL;
1561 data_tx->addr = 0;
1562 data_tx->m = NULL;
1563 data_tx->use = 0;
1564
1565 DPRINTF(sc, UPGT_DEBUG_TX_PROC,
1566 "TX done: memaddr=0x%08x, status=0x%04x, rssi=%d, ",
1567 le32toh(desc->header2.reqid),
1568 le16toh(desc->status), le16toh(desc->rssi));
1569 DPRINTF(sc, UPGT_DEBUG_TX_PROC, "seq=%d\n",
1570 le16toh(desc->seq));
1571
1572 freed++;
1573 }
1574 }
1575
1576 if (freed != 0) {
1577 sc->sc_tx_timer = 0;
1578 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1579 UPGT_UNLOCK(sc);
1580 upgt_start(ifp);
1581 UPGT_LOCK(sc);
1582 }
1583}
1584
1585static void
1586upgt_mem_free(struct upgt_softc *sc, uint32_t addr)
1587{
1588 int i;
1589
1590 for (i = 0; i < sc->sc_memory.pages; i++) {
1591 if (sc->sc_memory.page[i].addr == addr) {
1592 sc->sc_memory.page[i].used = 0;
1593 return;
1594 }
1595 }
1596
1597 device_printf(sc->sc_dev,
1598 "could not free memory address 0x%08x\n", addr);
1599}
1600
1601static int
1602upgt_fw_load(struct upgt_softc *sc)
1603{
1604 const struct firmware *fw;
1605 struct upgt_data *data_cmd;
1606 struct upgt_fw_x2_header *x2;
1607 char start_fwload_cmd[] = { 0x3c, 0x0d };
1608 int error = 0;
1609 size_t offset;
1610 int bsize;
1611 int n;
1612 uint32_t crc32;
1613
1614 fw = firmware_get(upgt_fwname);
1615 if (fw == NULL) {
1616 device_printf(sc->sc_dev, "could not read microcode %s\n",
1617 upgt_fwname);
1618 return (EIO);
1619 }
1620
1621 UPGT_LOCK(sc);
1622
1623 /* send firmware start load command */
1624 data_cmd = upgt_getbuf(sc);
1625 if (data_cmd == NULL) {
1626 error = ENOBUFS;
1627 goto fail;
1628 }
1629 data_cmd->buflen = sizeof(start_fwload_cmd);
1630 memcpy(data_cmd->buf, start_fwload_cmd, data_cmd->buflen);
1631 upgt_bulk_tx(sc, data_cmd);
1632
1633 /* send X2 header */
1634 data_cmd = upgt_getbuf(sc);
1635 if (data_cmd == NULL) {
1636 error = ENOBUFS;
1637 goto fail;
1638 }
1639 data_cmd->buflen = sizeof(struct upgt_fw_x2_header);
1640 x2 = (struct upgt_fw_x2_header *)data_cmd->buf;
1641 memcpy(x2->signature, UPGT_X2_SIGNATURE, UPGT_X2_SIGNATURE_SIZE);
1642 x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START);
1643 x2->len = htole32(fw->datasize);
1644 x2->crc = upgt_crc32_le((uint8_t *)data_cmd->buf +
1645 UPGT_X2_SIGNATURE_SIZE,
1646 sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE -
1647 sizeof(uint32_t));
1648 upgt_bulk_tx(sc, data_cmd);
1649
1650 /* download firmware */
1651 for (offset = 0; offset < fw->datasize; offset += bsize) {
1652 if (fw->datasize - offset > UPGT_FW_BLOCK_SIZE)
1653 bsize = UPGT_FW_BLOCK_SIZE;
1654 else
1655 bsize = fw->datasize - offset;
1656
1657 data_cmd = upgt_getbuf(sc);
1658 if (data_cmd == NULL) {
1659 error = ENOBUFS;
1660 goto fail;
1661 }
1662 n = upgt_fw_copy((const uint8_t *)fw->data + offset,
1663 data_cmd->buf, bsize);
1664 data_cmd->buflen = bsize;
1665 upgt_bulk_tx(sc, data_cmd);
1666
1667 DPRINTF(sc, UPGT_DEBUG_FW, "FW offset=%d, read=%d, sent=%d\n",
1668 offset, n, bsize);
1669 bsize = n;
1670 }
1671 DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware downloaded\n", __func__);
1672
1673 /* load firmware */
1674 data_cmd = upgt_getbuf(sc);
1675 if (data_cmd == NULL) {
1676 error = ENOBUFS;
1677 goto fail;
1678 }
1679 crc32 = upgt_crc32_le(fw->data, fw->datasize);
1680 *((uint32_t *)(data_cmd->buf) ) = crc32;
1681 *((uint8_t *)(data_cmd->buf) + 4) = 'g';
1682 *((uint8_t *)(data_cmd->buf) + 5) = '\r';
1683 data_cmd->buflen = 6;
1684 upgt_bulk_tx(sc, data_cmd);
1685
1686 /* waiting 'OK' response. */
1687 usbd_transfer_start(sc->sc_xfer[UPGT_BULK_RX]);
1688 error = mtx_sleep(sc, &sc->sc_mtx, 0, "upgtfw", 2 * hz);
1689 if (error != 0) {
1690 device_printf(sc->sc_dev, "firmware load failed\n");
1691 error = EIO;
1692 }
1693
1694 DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware loaded\n", __func__);
1695fail:
1696 UPGT_UNLOCK(sc);
1697 firmware_put(fw, FIRMWARE_UNLOAD);
1698 return (error);
1699}
1700
1701static uint32_t
1702upgt_crc32_le(const void *buf, size_t size)
1703{
1704 uint32_t crc;
1705
1706 crc = ether_crc32_le(buf, size);
1707
1708 /* apply final XOR value as common for CRC-32 */
1709 crc = htole32(crc ^ 0xffffffffU);
1710
1711 return (crc);
1712}
1713
1714/*
1715 * While copying the version 2 firmware, we need to replace two characters:
1716 *
1717 * 0x7e -> 0x7d 0x5e
1718 * 0x7d -> 0x7d 0x5d
1719 */
1720static int
1721upgt_fw_copy(const uint8_t *src, char *dst, int size)
1722{
1723 int i, j;
1724
1725 for (i = 0, j = 0; i < size && j < size; i++) {
1726 switch (src[i]) {
1727 case 0x7e:
1728 dst[j] = 0x7d;
1729 j++;
1730 dst[j] = 0x5e;
1731 j++;
1732 break;
1733 case 0x7d:
1734 dst[j] = 0x7d;
1735 j++;
1736 dst[j] = 0x5d;
1737 j++;
1738 break;
1739 default:
1740 dst[j] = src[i];
1741 j++;
1742 break;
1743 }
1744 }
1745
1746 return (i);
1747}
1748
1749static int
1750upgt_mem_init(struct upgt_softc *sc)
1751{
1752 int i;
1753
1754 for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) {
1755 sc->sc_memory.page[i].used = 0;
1756
1757 if (i == 0) {
1758 /*
1759 * The first memory page is always reserved for
1760 * command data.
1761 */
1762 sc->sc_memory.page[i].addr =
1763 sc->sc_memaddr_frame_start + MCLBYTES;
1764 } else {
1765 sc->sc_memory.page[i].addr =
1766 sc->sc_memory.page[i - 1].addr + MCLBYTES;
1767 }
1768
1769 if (sc->sc_memory.page[i].addr + MCLBYTES >=
1770 sc->sc_memaddr_frame_end)
1771 break;
1772
1773 DPRINTF(sc, UPGT_DEBUG_FW, "memory address page %d=0x%08x\n",
1774 i, sc->sc_memory.page[i].addr);
1775 }
1776
1777 sc->sc_memory.pages = i;
1778
1779 DPRINTF(sc, UPGT_DEBUG_FW, "memory pages=%d\n", sc->sc_memory.pages);
1780 return (0);
1781}
1782
1783static int
1784upgt_fw_verify(struct upgt_softc *sc)
1785{
1786 const struct firmware *fw;
1787 const struct upgt_fw_bra_option *bra_opt;
1788 const struct upgt_fw_bra_descr *descr;
1789 const uint8_t *p;
1790 const uint32_t *uc;
1791 uint32_t bra_option_type, bra_option_len;
1792 size_t offset;
1793 int bra_end = 0;
1794 int error = 0;
1795
1796 fw = firmware_get(upgt_fwname);
1797 if (fw == NULL) {
1798 device_printf(sc->sc_dev, "could not read microcode %s\n",
1799 upgt_fwname);
1800 return EIO;
1801 }
1802
1803 /*
1804 * Seek to beginning of Boot Record Area (BRA).
1805 */
1806 for (offset = 0; offset < fw->datasize; offset += sizeof(*uc)) {
1807 uc = (const uint32_t *)((const uint8_t *)fw->data + offset);
1808 if (*uc == 0)
1809 break;
1810 }
1811 for (; offset < fw->datasize; offset += sizeof(*uc)) {
1812 uc = (const uint32_t *)((const uint8_t *)fw->data + offset);
1813 if (*uc != 0)
1814 break;
1815 }
1816 if (offset == fw->datasize) {
1817 device_printf(sc->sc_dev,
1818 "firmware Boot Record Area not found\n");
1819 error = EIO;
1820 goto fail;
1821 }
1822
1823 DPRINTF(sc, UPGT_DEBUG_FW,
1824 "firmware Boot Record Area found at offset %d\n", offset);
1825
1826 /*
1827 * Parse Boot Record Area (BRA) options.
1828 */
1829 while (offset < fw->datasize && bra_end == 0) {
1830 /* get current BRA option */
1831 p = (const uint8_t *)fw->data + offset;
1832 bra_opt = (const struct upgt_fw_bra_option *)p;
1833 bra_option_type = le32toh(bra_opt->type);
1834 bra_option_len = le32toh(bra_opt->len) * sizeof(*uc);
1835
1836 switch (bra_option_type) {
1837 case UPGT_BRA_TYPE_FW:
1838 DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_FW len=%d\n",
1839 bra_option_len);
1840
1841 if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) {
1842 device_printf(sc->sc_dev,
1843 "wrong UPGT_BRA_TYPE_FW len\n");
1844 error = EIO;
1845 goto fail;
1846 }
1847 if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_opt->data,
1848 bra_option_len) == 0) {
1849 sc->sc_fw_type = UPGT_FWTYPE_LM86;
1850 break;
1851 }
1852 if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_opt->data,
1853 bra_option_len) == 0) {
1854 sc->sc_fw_type = UPGT_FWTYPE_LM87;
1855 break;
1856 }
1857 device_printf(sc->sc_dev,
1858 "unsupported firmware type\n");
1859 error = EIO;
1860 goto fail;
1861 case UPGT_BRA_TYPE_VERSION:
1862 DPRINTF(sc, UPGT_DEBUG_FW,
1863 "UPGT_BRA_TYPE_VERSION len=%d\n", bra_option_len);
1864 break;
1865 case UPGT_BRA_TYPE_DEPIF:
1866 DPRINTF(sc, UPGT_DEBUG_FW,
1867 "UPGT_BRA_TYPE_DEPIF len=%d\n", bra_option_len);
1868 break;
1869 case UPGT_BRA_TYPE_EXPIF:
1870 DPRINTF(sc, UPGT_DEBUG_FW,
1871 "UPGT_BRA_TYPE_EXPIF len=%d\n", bra_option_len);
1872 break;
1873 case UPGT_BRA_TYPE_DESCR:
1874 DPRINTF(sc, UPGT_DEBUG_FW,
1875 "UPGT_BRA_TYPE_DESCR len=%d\n", bra_option_len);
1876
1877 descr = (const struct upgt_fw_bra_descr *)bra_opt->data;
1878
1879 sc->sc_memaddr_frame_start =
1880 le32toh(descr->memaddr_space_start);
1881 sc->sc_memaddr_frame_end =
1882 le32toh(descr->memaddr_space_end);
1883
1884 DPRINTF(sc, UPGT_DEBUG_FW,
1885 "memory address space start=0x%08x\n",
1886 sc->sc_memaddr_frame_start);
1887 DPRINTF(sc, UPGT_DEBUG_FW,
1888 "memory address space end=0x%08x\n",
1889 sc->sc_memaddr_frame_end);
1890 break;
1891 case UPGT_BRA_TYPE_END:
1892 DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_END len=%d\n",
1893 bra_option_len);
1894 bra_end = 1;
1895 break;
1896 default:
1897 DPRINTF(sc, UPGT_DEBUG_FW, "unknown BRA option len=%d\n",
1898 bra_option_len);
1899 error = EIO;
1900 goto fail;
1901 }
1902
1903 /* jump to next BRA option */
1904 offset += sizeof(struct upgt_fw_bra_option) + bra_option_len;
1905 }
1906
1907 DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware verified", __func__);
1908fail:
1909 firmware_put(fw, FIRMWARE_UNLOAD);
1910 return (error);
1911}
1912
1913static void
1914upgt_bulk_tx(struct upgt_softc *sc, struct upgt_data *data)
1915{
1916
1917 UPGT_ASSERT_LOCKED(sc);
1918
1919 STAILQ_INSERT_TAIL(&sc->sc_tx_pending, data, next);
1920 UPGT_STAT_INC(sc, st_tx_pending);
1921 usbd_transfer_start(sc->sc_xfer[UPGT_BULK_TX]);
1922}
1923
1924static int
1925upgt_device_reset(struct upgt_softc *sc)
1926{
1927 struct upgt_data *data;
1928 char init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e };
1929
1930 UPGT_LOCK(sc);
1931
1932 data = upgt_getbuf(sc);
1933 if (data == NULL) {
1934 UPGT_UNLOCK(sc);
1935 return (ENOBUFS);
1936 }
1937 memcpy(data->buf, init_cmd, sizeof(init_cmd));
1938 data->buflen = sizeof(init_cmd);
1939 upgt_bulk_tx(sc, data);
1940 usb_pause_mtx(&sc->sc_mtx, 100);
1941
1942 UPGT_UNLOCK(sc);
1943 DPRINTF(sc, UPGT_DEBUG_FW, "%s: device initialized\n", __func__);
1944 return (0);
1945}
1946
1947static int
1948upgt_alloc_tx(struct upgt_softc *sc)
1949{
1950 int i;
1951
1952 STAILQ_INIT(&sc->sc_tx_active);
1953 STAILQ_INIT(&sc->sc_tx_inactive);
1954 STAILQ_INIT(&sc->sc_tx_pending);
1955
1956 for (i = 0; i < UPGT_TX_MAXCOUNT; i++) {
1957 struct upgt_data *data = &sc->sc_tx_data[i];
1958 data->buf = ((uint8_t *)sc->sc_tx_dma_buf) + (i * MCLBYTES);
1959 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next);
1960 UPGT_STAT_INC(sc, st_tx_inactive);
1961 }
1962
1963 return (0);
1964}
1965
1966static int
1967upgt_alloc_rx(struct upgt_softc *sc)
1968{
1969 int i;
1970
1971 STAILQ_INIT(&sc->sc_rx_active);
1972 STAILQ_INIT(&sc->sc_rx_inactive);
1973
1974 for (i = 0; i < UPGT_RX_MAXCOUNT; i++) {
1975 struct upgt_data *data = &sc->sc_rx_data[i];
1976 data->buf = ((uint8_t *)sc->sc_rx_dma_buf) + (i * MCLBYTES);
1977 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
1978 }
1979
1980 return (0);
1981}
1982
1983static int
1984upgt_detach(device_t dev)
1985{
1986 struct upgt_softc *sc = device_get_softc(dev);
1987 struct ifnet *ifp = sc->sc_ifp;
1988 struct ieee80211com *ic = ifp->if_l2com;
1989
1990 if (!device_is_attached(dev))
1991 return 0;
1992
1993 upgt_stop(sc);
1994
1995 callout_drain(&sc->sc_led_ch);
1996 callout_drain(&sc->sc_watchdog_ch);
1997
1998 ieee80211_ifdetach(ic);
1999
2000 usbd_transfer_unsetup(sc->sc_xfer, UPGT_N_XFERS);
2001
2002 upgt_free_rx(sc);
2003 upgt_free_tx(sc);
2004
2005 if_free(ifp);
2006 mtx_destroy(&sc->sc_mtx);
2007
2008 return (0);
2009}
2010
2011static void
2012upgt_free_rx(struct upgt_softc *sc)
2013{
2014 int i;
2015
2016 for (i = 0; i < UPGT_RX_MAXCOUNT; i++) {
2017 struct upgt_data *data = &sc->sc_rx_data[i];
2018
2019 data->buf = NULL;
2020 data->ni = NULL;
2021 }
2022}
2023
2024static void
2025upgt_free_tx(struct upgt_softc *sc)
2026{
2027 int i;
2028
2029 for (i = 0; i < UPGT_TX_MAXCOUNT; i++) {
2030 struct upgt_data *data = &sc->sc_tx_data[i];
2031
2032 data->buf = NULL;
2033 data->ni = NULL;
2034 }
2035}
2036
2037static void
2038upgt_abort_xfers_locked(struct upgt_softc *sc)
2039{
2040 int i;
2041
2042 UPGT_ASSERT_LOCKED(sc);
2043 /* abort any pending transfers */
2044 for (i = 0; i < UPGT_N_XFERS; i++)
2045 usbd_transfer_stop(sc->sc_xfer[i]);
2046}
2047
2048static void
2049upgt_abort_xfers(struct upgt_softc *sc)
2050{
2051
2052 UPGT_LOCK(sc);
2053 upgt_abort_xfers_locked(sc);
2054 UPGT_UNLOCK(sc);
2055}
2056
2057#define UPGT_SYSCTL_STAT_ADD32(c, h, n, p, d) \
2058 SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2059
2060static void
2061upgt_sysctl_node(struct upgt_softc *sc)
2062{
2063 struct sysctl_ctx_list *ctx;
2064 struct sysctl_oid_list *child;
2065 struct sysctl_oid *tree;
2066 struct upgt_stat *stats;
2067
2068 stats = &sc->sc_stat;
2069 ctx = device_get_sysctl_ctx(sc->sc_dev);
2070 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->sc_dev));
2071
2072 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2073 NULL, "UPGT statistics");
2074 child = SYSCTL_CHILDREN(tree);
2075 UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_active",
2076 &stats->st_tx_active, "Active numbers in TX queue");
2077 UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_inactive",
2078 &stats->st_tx_inactive, "Inactive numbers in TX queue");
2079 UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_pending",
2080 &stats->st_tx_pending, "Pending numbers in TX queue");
2081}
2082
2083#undef UPGT_SYSCTL_STAT_ADD32
2084
2085static struct upgt_data *
2086_upgt_getbuf(struct upgt_softc *sc)
2087{
2088 struct upgt_data *bf;
2089
2090 bf = STAILQ_FIRST(&sc->sc_tx_inactive);
2091 if (bf != NULL) {
2092 STAILQ_REMOVE_HEAD(&sc->sc_tx_inactive, next);
2093 UPGT_STAT_DEC(sc, st_tx_inactive);
2094 } else
2095 bf = NULL;
2096 if (bf == NULL)
2097 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: %s\n", __func__,
2098 "out of xmit buffers");
2099 return (bf);
2100}
2101
2102static struct upgt_data *
2103upgt_getbuf(struct upgt_softc *sc)
2104{
2105 struct upgt_data *bf;
2106
2107 UPGT_ASSERT_LOCKED(sc);
2108
2109 bf = _upgt_getbuf(sc);
2110 if (bf == NULL) {
2111 struct ifnet *ifp = sc->sc_ifp;
2112
2113 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: stop queue\n", __func__);
2114 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2115 }
2116
2117 return (bf);
2118}
2119
2120static struct upgt_data *
2121upgt_gettxbuf(struct upgt_softc *sc)
2122{
2123 struct upgt_data *bf;
2124
2125 UPGT_ASSERT_LOCKED(sc);
2126
2127 bf = upgt_getbuf(sc);
2128 if (bf == NULL)
2129 return (NULL);
2130
2131 bf->addr = upgt_mem_alloc(sc);
2132 if (bf->addr == 0) {
2133 struct ifnet *ifp = sc->sc_ifp;
2134
2135 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: no free prism memory!\n",
2136 __func__);
2137 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next);
2138 UPGT_STAT_INC(sc, st_tx_inactive);
2139 if (!(ifp->if_drv_flags & IFF_DRV_OACTIVE))
2140 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2141 return (NULL);
2142 }
2143 return (bf);
2144}
2145
2146static int
2147upgt_tx_start(struct upgt_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
2148 struct upgt_data *data)
2149{
2150 struct ieee80211vap *vap = ni->ni_vap;
2151 int error = 0, len;
2152 struct ieee80211_frame *wh;
2153 struct ieee80211_key *k;
2154 struct ifnet *ifp = sc->sc_ifp;
2155 struct upgt_lmac_mem *mem;
2156 struct upgt_lmac_tx_desc *txdesc;
2157
2158 UPGT_ASSERT_LOCKED(sc);
2159
2160 upgt_set_led(sc, UPGT_LED_BLINK);
2161
2162 /*
2163 * Software crypto.
2164 */
2165 wh = mtod(m, struct ieee80211_frame *);
2166 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2167 k = ieee80211_crypto_encap(ni, m);
2168 if (k == NULL) {
2169 device_printf(sc->sc_dev,
2170 "ieee80211_crypto_encap returns NULL.\n");
2171 error = EIO;
2172 goto done;
2173 }
2174
2175 /* in case packet header moved, reset pointer */
2176 wh = mtod(m, struct ieee80211_frame *);
2177 }
2178
2179 /* Transmit the URB containing the TX data. */
2180 memset(data->buf, 0, MCLBYTES);
2181 mem = (struct upgt_lmac_mem *)data->buf;
2182 mem->addr = htole32(data->addr);
2183 txdesc = (struct upgt_lmac_tx_desc *)(mem + 1);
2184
2185 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
2186 IEEE80211_FC0_TYPE_MGT) {
2187 /* mgmt frames */
2188 txdesc->header1.flags = UPGT_H1_FLAGS_TX_MGMT;
2189 /* always send mgmt frames at lowest rate (DS1) */
2190 memset(txdesc->rates, 0x10, sizeof(txdesc->rates));
2191 } else {
2192 /* data frames */
2193 txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA;
2194 memcpy(txdesc->rates, sc->sc_cur_rateset, sizeof(txdesc->rates));
2195 }
2196 txdesc->header1.type = UPGT_H1_TYPE_TX_DATA;
2197 txdesc->header1.len = htole16(m->m_pkthdr.len);
2198 txdesc->header2.reqid = htole32(data->addr);
2199 txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES);
2200 txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES);
2201 txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA);
2202 txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE;
2203
2204 if (ieee80211_radiotap_active_vap(vap)) {
2205 struct upgt_tx_radiotap_header *tap = &sc->sc_txtap;
2206
2207 tap->wt_flags = 0;
2208 tap->wt_rate = 0; /* XXX where to get from? */
2209
2210 ieee80211_radiotap_tx(vap, m);
2211 }
2212
2213 /* copy frame below our TX descriptor header */
2214 m_copydata(m, 0, m->m_pkthdr.len,
2215 data->buf + (sizeof(*mem) + sizeof(*txdesc)));
2216 /* calculate frame size */
2217 len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len;
2218 /* we need to align the frame to a 4 byte boundary */
2219 len = (len + 3) & ~3;
2220 /* calculate frame checksum */
2221 mem->chksum = upgt_chksum_le((uint32_t *)txdesc, len - sizeof(*mem));
2222 data->ni = ni;
2223 data->m = m;
2224 data->buflen = len;
2225
2226 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: TX start data sending (%d bytes)\n",
2227 __func__, len);
2228 KASSERT(len <= MCLBYTES, ("mbuf is small for saving data"));
2229
2230 upgt_bulk_tx(sc, data);
2231done:
2232 /*
2233 * If we don't regulary read the device statistics, the RX queue
2234 * will stall. It's strange, but it works, so we keep reading
2235 * the statistics here. *shrug*
2236 */
2237 if (!(ifp->if_opackets % UPGT_TX_STAT_INTERVAL))
2238 upgt_get_stats(sc);
2239
2240 return (error);
2241}
2242
2243static void
2244upgt_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error)
2245{
2246 struct upgt_softc *sc = usbd_xfer_softc(xfer);
2247 struct ifnet *ifp = sc->sc_ifp;
2248 struct ieee80211com *ic = ifp->if_l2com;
2249 struct ieee80211_frame *wh;
2250 struct ieee80211_node *ni;
2251 struct mbuf *m = NULL;
2252 struct upgt_data *data;
2253 int8_t nf;
2254 int rssi = -1;
2255
2256 UPGT_ASSERT_LOCKED(sc);
2257
2258 switch (USB_GET_STATE(xfer)) {
2259 case USB_ST_TRANSFERRED:
2260 data = STAILQ_FIRST(&sc->sc_rx_active);
2261 if (data == NULL)
2262 goto setup;
2263 STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next);
2264 m = upgt_rxeof(xfer, data, &rssi);
2265 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
2266 /* FALLTHROUGH */
2267 case USB_ST_SETUP:
2268setup:
2269 data = STAILQ_FIRST(&sc->sc_rx_inactive);
2270 if (data == NULL)
2271 return;
2272 STAILQ_REMOVE_HEAD(&sc->sc_rx_inactive, next);
2273 STAILQ_INSERT_TAIL(&sc->sc_rx_active, data, next);
2274 usbd_xfer_set_frame_data(xfer, 0, data->buf, MCLBYTES);
2275 usbd_transfer_submit(xfer);
2276
2277 /*
2278 * To avoid LOR we should unlock our private mutex here to call
2279 * ieee80211_input() because here is at the end of a USB
2280 * callback and safe to unlock.
2281 */
2282 UPGT_UNLOCK(sc);
2283 if (m != NULL) {
2284 wh = mtod(m, struct ieee80211_frame *);
2285 ni = ieee80211_find_rxnode(ic,
2286 (struct ieee80211_frame_min *)wh);
2287 nf = -95; /* XXX */
2288 if (ni != NULL) {
2289 (void) ieee80211_input(ni, m, rssi, nf);
2290 /* node is no longer needed */
2291 ieee80211_free_node(ni);
2292 } else
2293 (void) ieee80211_input_all(ic, m, rssi, nf);
2294 m = NULL;
2295 }
2296 if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 &&
2297 !IFQ_IS_EMPTY(&ifp->if_snd))
2298 upgt_start(ifp);
2299 UPGT_LOCK(sc);
2300 break;
2301 default:
2302 /* needs it to the inactive queue due to a error. */
2303 data = STAILQ_FIRST(&sc->sc_rx_active);
2304 if (data != NULL) {
2305 STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next);
2306 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
2307 }
2308 if (error != USB_ERR_CANCELLED) {
2309 usbd_xfer_set_stall(xfer);
2310 ifp->if_ierrors++;
2311 goto setup;
2312 }
2313 break;
2314 }
2315}
2316
2317static void
2318upgt_bulk_tx_callback(struct usb_xfer *xfer, usb_error_t error)
2319{
2320 struct upgt_softc *sc = usbd_xfer_softc(xfer);
2321 struct ifnet *ifp = sc->sc_ifp;
2322 struct upgt_data *data;
2323
2324 UPGT_ASSERT_LOCKED(sc);
2325 switch (USB_GET_STATE(xfer)) {
2326 case USB_ST_TRANSFERRED:
2327 data = STAILQ_FIRST(&sc->sc_tx_active);
2328 if (data == NULL)
2329 goto setup;
2330 STAILQ_REMOVE_HEAD(&sc->sc_tx_active, next);
2331 UPGT_STAT_DEC(sc, st_tx_active);
2332 upgt_txeof(xfer, data);
2333 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next);
2334 UPGT_STAT_INC(sc, st_tx_inactive);
2335 /* FALLTHROUGH */
2336 case USB_ST_SETUP:
2337setup:
2338 data = STAILQ_FIRST(&sc->sc_tx_pending);
2339 if (data == NULL) {
2340 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: empty pending queue\n",
2341 __func__);
2342 return;
2343 }
2344 STAILQ_REMOVE_HEAD(&sc->sc_tx_pending, next);
2345 UPGT_STAT_DEC(sc, st_tx_pending);
2346 STAILQ_INSERT_TAIL(&sc->sc_tx_active, data, next);
2347 UPGT_STAT_INC(sc, st_tx_active);
2348
2349 usbd_xfer_set_frame_data(xfer, 0, data->buf, data->buflen);
2350 usbd_transfer_submit(xfer);
2351 UPGT_UNLOCK(sc);
2352 upgt_start(ifp);
2353 UPGT_LOCK(sc);
2354 break;
2355 default:
2356 data = STAILQ_FIRST(&sc->sc_tx_active);
2357 if (data == NULL)
2358 goto setup;
2359 if (data->ni != NULL) {
2360 ieee80211_free_node(data->ni);
2361 data->ni = NULL;
2362 ifp->if_oerrors++;
2363 }
2364 if (error != USB_ERR_CANCELLED) {
2365 usbd_xfer_set_stall(xfer);
2366 goto setup;
2367 }
2368 break;
2369 }
2370}
2371
2372static device_method_t upgt_methods[] = {
2373 /* Device interface */
2374 DEVMETHOD(device_probe, upgt_match),
2375 DEVMETHOD(device_attach, upgt_attach),
2376 DEVMETHOD(device_detach, upgt_detach),
2377 DEVMETHOD_END
2378};
2379
2380static driver_t upgt_driver = {
2381 .name = "upgt",
2382 .methods = upgt_methods,
2383 .size = sizeof(struct upgt_softc)
2384};
2385
2386static devclass_t upgt_devclass;
2387
2388DRIVER_MODULE(if_upgt, uhub, upgt_driver, upgt_devclass, NULL, 0);
2389MODULE_VERSION(if_upgt, 1);
2390MODULE_DEPEND(if_upgt, usb, 1, 1, 1);
2391MODULE_DEPEND(if_upgt, wlan, 1, 1, 1);
2392MODULE_DEPEND(if_upgt, upgtfw_fw, 1, 1, 1);