Deleted Added
full compact
ixgbe_common.c (302408) ixgbe_common.c (320897)
1/******************************************************************************
2
1/******************************************************************************
2
3 Copyright (c) 2001-2015, Intel Corporation
3 Copyright (c) 2001-2017, Intel Corporation
4 All rights reserved.
4 All rights reserved.
5
6 Redistribution and use in source and binary forms, with or without
5
6 Redistribution and use in source and binary forms, with or without
7 modification, are permitted provided that the following conditions are met:
7 modification, are permitted provided that the following conditions are met:
8
9 1. Redistributions of source code must retain the above copyright notice,
8
9 1. Redistributions of source code must retain the above copyright notice,
10 this list of conditions and the following disclaimer.
10 this list of conditions and the following disclaimer.
11
12 2. Redistributions in binary form must reproduce the above copyright
13 notice, this list of conditions and the following disclaimer in the
11
12 2. Redistributions in binary form must reproduce the above copyright
13 notice, this list of conditions and the following disclaimer in the
14 documentation and/or other materials provided with the distribution.
14 documentation and/or other materials provided with the distribution.
15
16 3. Neither the name of the Intel Corporation nor the names of its
17 contributors may be used to endorse or promote products derived from
15
16 3. Neither the name of the Intel Corporation nor the names of its
17 contributors may be used to endorse or promote products derived from
18 this software without specific prior written permission.
18 this software without specific prior written permission.
19
19
20 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
21 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 POSSIBILITY OF SUCH DAMAGE.
31
32******************************************************************************/
29 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 POSSIBILITY OF SUCH DAMAGE.
31
32******************************************************************************/
33/*$FreeBSD: stable/11/sys/dev/ixgbe/ixgbe_common.c 299200 2016-05-06 22:54:56Z pfg $*/
33/*$FreeBSD: stable/11/sys/dev/ixgbe/ixgbe_common.c 320897 2017-07-11 21:25:07Z erj $*/
34
35#include "ixgbe_common.h"
36#include "ixgbe_phy.h"
37#include "ixgbe_dcb.h"
38#include "ixgbe_dcb_82599.h"
39#include "ixgbe_api.h"
40
41static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
42static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
43static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
44static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
45static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
46static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
47 u16 count);
48static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
49static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
50static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
51static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
52
53static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
54static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
55 u16 *san_mac_offset);
56static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
57 u16 words, u16 *data);
58static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
59 u16 words, u16 *data);
60static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
61 u16 offset);
62
63/**
64 * ixgbe_init_ops_generic - Inits function ptrs
65 * @hw: pointer to the hardware structure
66 *
67 * Initialize the function pointers.
68 **/
69s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
70{
71 struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
72 struct ixgbe_mac_info *mac = &hw->mac;
73 u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
74
75 DEBUGFUNC("ixgbe_init_ops_generic");
76
77 /* EEPROM */
78 eeprom->ops.init_params = ixgbe_init_eeprom_params_generic;
79 /* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
80 if (eec & IXGBE_EEC_PRES) {
81 eeprom->ops.read = ixgbe_read_eerd_generic;
82 eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic;
83 } else {
84 eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic;
85 eeprom->ops.read_buffer =
86 ixgbe_read_eeprom_buffer_bit_bang_generic;
87 }
88 eeprom->ops.write = ixgbe_write_eeprom_generic;
89 eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic;
90 eeprom->ops.validate_checksum =
91 ixgbe_validate_eeprom_checksum_generic;
92 eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic;
93 eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic;
94
95 /* MAC */
96 mac->ops.init_hw = ixgbe_init_hw_generic;
97 mac->ops.reset_hw = NULL;
98 mac->ops.start_hw = ixgbe_start_hw_generic;
99 mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic;
100 mac->ops.get_media_type = NULL;
101 mac->ops.get_supported_physical_layer = NULL;
102 mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic;
103 mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic;
104 mac->ops.stop_adapter = ixgbe_stop_adapter_generic;
105 mac->ops.get_bus_info = ixgbe_get_bus_info_generic;
106 mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie;
107 mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync;
108 mac->ops.release_swfw_sync = ixgbe_release_swfw_sync;
109 mac->ops.prot_autoc_read = prot_autoc_read_generic;
110 mac->ops.prot_autoc_write = prot_autoc_write_generic;
111
112 /* LEDs */
113 mac->ops.led_on = ixgbe_led_on_generic;
114 mac->ops.led_off = ixgbe_led_off_generic;
115 mac->ops.blink_led_start = ixgbe_blink_led_start_generic;
116 mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic;
34
35#include "ixgbe_common.h"
36#include "ixgbe_phy.h"
37#include "ixgbe_dcb.h"
38#include "ixgbe_dcb_82599.h"
39#include "ixgbe_api.h"
40
41static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
42static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
43static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
44static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
45static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
46static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
47 u16 count);
48static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
49static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
50static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
51static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
52
53static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
54static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
55 u16 *san_mac_offset);
56static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
57 u16 words, u16 *data);
58static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
59 u16 words, u16 *data);
60static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
61 u16 offset);
62
63/**
64 * ixgbe_init_ops_generic - Inits function ptrs
65 * @hw: pointer to the hardware structure
66 *
67 * Initialize the function pointers.
68 **/
69s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
70{
71 struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
72 struct ixgbe_mac_info *mac = &hw->mac;
73 u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
74
75 DEBUGFUNC("ixgbe_init_ops_generic");
76
77 /* EEPROM */
78 eeprom->ops.init_params = ixgbe_init_eeprom_params_generic;
79 /* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
80 if (eec & IXGBE_EEC_PRES) {
81 eeprom->ops.read = ixgbe_read_eerd_generic;
82 eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic;
83 } else {
84 eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic;
85 eeprom->ops.read_buffer =
86 ixgbe_read_eeprom_buffer_bit_bang_generic;
87 }
88 eeprom->ops.write = ixgbe_write_eeprom_generic;
89 eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic;
90 eeprom->ops.validate_checksum =
91 ixgbe_validate_eeprom_checksum_generic;
92 eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic;
93 eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic;
94
95 /* MAC */
96 mac->ops.init_hw = ixgbe_init_hw_generic;
97 mac->ops.reset_hw = NULL;
98 mac->ops.start_hw = ixgbe_start_hw_generic;
99 mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic;
100 mac->ops.get_media_type = NULL;
101 mac->ops.get_supported_physical_layer = NULL;
102 mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic;
103 mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic;
104 mac->ops.stop_adapter = ixgbe_stop_adapter_generic;
105 mac->ops.get_bus_info = ixgbe_get_bus_info_generic;
106 mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie;
107 mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync;
108 mac->ops.release_swfw_sync = ixgbe_release_swfw_sync;
109 mac->ops.prot_autoc_read = prot_autoc_read_generic;
110 mac->ops.prot_autoc_write = prot_autoc_write_generic;
111
112 /* LEDs */
113 mac->ops.led_on = ixgbe_led_on_generic;
114 mac->ops.led_off = ixgbe_led_off_generic;
115 mac->ops.blink_led_start = ixgbe_blink_led_start_generic;
116 mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic;
117 mac->ops.init_led_link_act = ixgbe_init_led_link_act_generic;
117
118 /* RAR, Multicast, VLAN */
119 mac->ops.set_rar = ixgbe_set_rar_generic;
120 mac->ops.clear_rar = ixgbe_clear_rar_generic;
121 mac->ops.insert_mac_addr = NULL;
122 mac->ops.set_vmdq = NULL;
123 mac->ops.clear_vmdq = NULL;
124 mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic;
125 mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic;
126 mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic;
127 mac->ops.enable_mc = ixgbe_enable_mc_generic;
128 mac->ops.disable_mc = ixgbe_disable_mc_generic;
129 mac->ops.clear_vfta = NULL;
130 mac->ops.set_vfta = NULL;
131 mac->ops.set_vlvf = NULL;
132 mac->ops.init_uta_tables = NULL;
133 mac->ops.enable_rx = ixgbe_enable_rx_generic;
134 mac->ops.disable_rx = ixgbe_disable_rx_generic;
135
136 /* Flow Control */
137 mac->ops.fc_enable = ixgbe_fc_enable_generic;
138 mac->ops.setup_fc = ixgbe_setup_fc_generic;
118
119 /* RAR, Multicast, VLAN */
120 mac->ops.set_rar = ixgbe_set_rar_generic;
121 mac->ops.clear_rar = ixgbe_clear_rar_generic;
122 mac->ops.insert_mac_addr = NULL;
123 mac->ops.set_vmdq = NULL;
124 mac->ops.clear_vmdq = NULL;
125 mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic;
126 mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic;
127 mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic;
128 mac->ops.enable_mc = ixgbe_enable_mc_generic;
129 mac->ops.disable_mc = ixgbe_disable_mc_generic;
130 mac->ops.clear_vfta = NULL;
131 mac->ops.set_vfta = NULL;
132 mac->ops.set_vlvf = NULL;
133 mac->ops.init_uta_tables = NULL;
134 mac->ops.enable_rx = ixgbe_enable_rx_generic;
135 mac->ops.disable_rx = ixgbe_disable_rx_generic;
136
137 /* Flow Control */
138 mac->ops.fc_enable = ixgbe_fc_enable_generic;
139 mac->ops.setup_fc = ixgbe_setup_fc_generic;
140 mac->ops.fc_autoneg = ixgbe_fc_autoneg;
139
140 /* Link */
141 mac->ops.get_link_capabilities = NULL;
142 mac->ops.setup_link = NULL;
143 mac->ops.check_link = NULL;
144 mac->ops.dmac_config = NULL;
145 mac->ops.dmac_update_tcs = NULL;
146 mac->ops.dmac_config_tcs = NULL;
147
148 return IXGBE_SUCCESS;
149}
150
151/**
152 * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
153 * of flow control
154 * @hw: pointer to hardware structure
155 *
156 * This function returns TRUE if the device supports flow control
157 * autonegotiation, and FALSE if it does not.
158 *
159 **/
160bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
161{
162 bool supported = FALSE;
163 ixgbe_link_speed speed;
164 bool link_up;
165
166 DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
167
168 switch (hw->phy.media_type) {
169 case ixgbe_media_type_fiber_fixed:
170 case ixgbe_media_type_fiber_qsfp:
171 case ixgbe_media_type_fiber:
141
142 /* Link */
143 mac->ops.get_link_capabilities = NULL;
144 mac->ops.setup_link = NULL;
145 mac->ops.check_link = NULL;
146 mac->ops.dmac_config = NULL;
147 mac->ops.dmac_update_tcs = NULL;
148 mac->ops.dmac_config_tcs = NULL;
149
150 return IXGBE_SUCCESS;
151}
152
153/**
154 * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
155 * of flow control
156 * @hw: pointer to hardware structure
157 *
158 * This function returns TRUE if the device supports flow control
159 * autonegotiation, and FALSE if it does not.
160 *
161 **/
162bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
163{
164 bool supported = FALSE;
165 ixgbe_link_speed speed;
166 bool link_up;
167
168 DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
169
170 switch (hw->phy.media_type) {
171 case ixgbe_media_type_fiber_fixed:
172 case ixgbe_media_type_fiber_qsfp:
173 case ixgbe_media_type_fiber:
172 hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
173 /* if link is down, assume supported */
174 if (link_up)
175 supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
174 /* flow control autoneg black list */
175 switch (hw->device_id) {
176 case IXGBE_DEV_ID_X550EM_A_SFP:
177 case IXGBE_DEV_ID_X550EM_A_SFP_N:
178 case IXGBE_DEV_ID_X550EM_A_QSFP:
179 case IXGBE_DEV_ID_X550EM_A_QSFP_N:
180 supported = FALSE;
181 break;
182 default:
183 hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
184 /* if link is down, assume supported */
185 if (link_up)
186 supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
176 TRUE : FALSE;
187 TRUE : FALSE;
188 else
189 supported = TRUE;
190 }
191
192 break;
193 case ixgbe_media_type_backplane:
194 if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
195 supported = FALSE;
177 else
178 supported = TRUE;
179 break;
196 else
197 supported = TRUE;
198 break;
180 case ixgbe_media_type_backplane:
181 supported = TRUE;
182 break;
183 case ixgbe_media_type_copper:
184 /* only some copper devices support flow control autoneg */
185 switch (hw->device_id) {
186 case IXGBE_DEV_ID_82599_T3_LOM:
187 case IXGBE_DEV_ID_X540T:
188 case IXGBE_DEV_ID_X540T1:
189 case IXGBE_DEV_ID_X540_BYPASS:
190 case IXGBE_DEV_ID_X550T:
191 case IXGBE_DEV_ID_X550T1:
192 case IXGBE_DEV_ID_X550EM_X_10G_T:
199 case ixgbe_media_type_copper:
200 /* only some copper devices support flow control autoneg */
201 switch (hw->device_id) {
202 case IXGBE_DEV_ID_82599_T3_LOM:
203 case IXGBE_DEV_ID_X540T:
204 case IXGBE_DEV_ID_X540T1:
205 case IXGBE_DEV_ID_X540_BYPASS:
206 case IXGBE_DEV_ID_X550T:
207 case IXGBE_DEV_ID_X550T1:
208 case IXGBE_DEV_ID_X550EM_X_10G_T:
209 case IXGBE_DEV_ID_X550EM_A_10G_T:
210 case IXGBE_DEV_ID_X550EM_A_1G_T:
211 case IXGBE_DEV_ID_X550EM_A_1G_T_L:
193 supported = TRUE;
194 break;
195 default:
196 supported = FALSE;
197 }
198 default:
199 break;
200 }
201
212 supported = TRUE;
213 break;
214 default:
215 supported = FALSE;
216 }
217 default:
218 break;
219 }
220
202 if (!supported) {
221 if (!supported)
203 ERROR_REPORT2(IXGBE_ERROR_UNSUPPORTED,
222 ERROR_REPORT2(IXGBE_ERROR_UNSUPPORTED,
204 "Device %x does not support flow control autoneg",
205 hw->device_id);
206 }
207
223 "Device %x does not support flow control autoneg",
224 hw->device_id);
208 return supported;
209}
210
211/**
212 * ixgbe_setup_fc_generic - Set up flow control
213 * @hw: pointer to hardware structure
214 *
215 * Called at init time to set up flow control.
216 **/
217s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
218{
219 s32 ret_val = IXGBE_SUCCESS;
220 u32 reg = 0, reg_bp = 0;
221 u16 reg_cu = 0;
222 bool locked = FALSE;
223
224 DEBUGFUNC("ixgbe_setup_fc_generic");
225
226 /* Validate the requested mode */
227 if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
228 ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
229 "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
230 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
231 goto out;
232 }
233
234 /*
235 * 10gig parts do not have a word in the EEPROM to determine the
236 * default flow control setting, so we explicitly set it to full.
237 */
238 if (hw->fc.requested_mode == ixgbe_fc_default)
239 hw->fc.requested_mode = ixgbe_fc_full;
240
241 /*
242 * Set up the 1G and 10G flow control advertisement registers so the
243 * HW will be able to do fc autoneg once the cable is plugged in. If
244 * we link at 10G, the 1G advertisement is harmless and vice versa.
245 */
246 switch (hw->phy.media_type) {
247 case ixgbe_media_type_backplane:
248 /* some MAC's need RMW protection on AUTOC */
249 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
250 if (ret_val != IXGBE_SUCCESS)
251 goto out;
252
225 return supported;
226}
227
228/**
229 * ixgbe_setup_fc_generic - Set up flow control
230 * @hw: pointer to hardware structure
231 *
232 * Called at init time to set up flow control.
233 **/
234s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
235{
236 s32 ret_val = IXGBE_SUCCESS;
237 u32 reg = 0, reg_bp = 0;
238 u16 reg_cu = 0;
239 bool locked = FALSE;
240
241 DEBUGFUNC("ixgbe_setup_fc_generic");
242
243 /* Validate the requested mode */
244 if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
245 ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
246 "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
247 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
248 goto out;
249 }
250
251 /*
252 * 10gig parts do not have a word in the EEPROM to determine the
253 * default flow control setting, so we explicitly set it to full.
254 */
255 if (hw->fc.requested_mode == ixgbe_fc_default)
256 hw->fc.requested_mode = ixgbe_fc_full;
257
258 /*
259 * Set up the 1G and 10G flow control advertisement registers so the
260 * HW will be able to do fc autoneg once the cable is plugged in. If
261 * we link at 10G, the 1G advertisement is harmless and vice versa.
262 */
263 switch (hw->phy.media_type) {
264 case ixgbe_media_type_backplane:
265 /* some MAC's need RMW protection on AUTOC */
266 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
267 if (ret_val != IXGBE_SUCCESS)
268 goto out;
269
253 /* only backplane uses autoc so fall though */
270 /* fall through - only backplane uses autoc */
254 case ixgbe_media_type_fiber_fixed:
255 case ixgbe_media_type_fiber_qsfp:
256 case ixgbe_media_type_fiber:
257 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
258
259 break;
260 case ixgbe_media_type_copper:
261 hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
262 IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &reg_cu);
263 break;
264 default:
265 break;
266 }
267
268 /*
269 * The possible values of fc.requested_mode are:
270 * 0: Flow control is completely disabled
271 * 1: Rx flow control is enabled (we can receive pause frames,
272 * but not send pause frames).
273 * 2: Tx flow control is enabled (we can send pause frames but
274 * we do not support receiving pause frames).
275 * 3: Both Rx and Tx flow control (symmetric) are enabled.
276 * other: Invalid.
277 */
278 switch (hw->fc.requested_mode) {
279 case ixgbe_fc_none:
280 /* Flow control completely disabled by software override. */
281 reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
282 if (hw->phy.media_type == ixgbe_media_type_backplane)
283 reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
284 IXGBE_AUTOC_ASM_PAUSE);
285 else if (hw->phy.media_type == ixgbe_media_type_copper)
286 reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
287 break;
288 case ixgbe_fc_tx_pause:
289 /*
290 * Tx Flow control is enabled, and Rx Flow control is
291 * disabled by software override.
292 */
293 reg |= IXGBE_PCS1GANA_ASM_PAUSE;
294 reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
295 if (hw->phy.media_type == ixgbe_media_type_backplane) {
296 reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
297 reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
298 } else if (hw->phy.media_type == ixgbe_media_type_copper) {
299 reg_cu |= IXGBE_TAF_ASM_PAUSE;
300 reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
301 }
302 break;
303 case ixgbe_fc_rx_pause:
304 /*
305 * Rx Flow control is enabled and Tx Flow control is
306 * disabled by software override. Since there really
307 * isn't a way to advertise that we are capable of RX
308 * Pause ONLY, we will advertise that we support both
309 * symmetric and asymmetric Rx PAUSE, as such we fall
310 * through to the fc_full statement. Later, we will
311 * disable the adapter's ability to send PAUSE frames.
312 */
313 case ixgbe_fc_full:
314 /* Flow control (both Rx and Tx) is enabled by SW override. */
315 reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
316 if (hw->phy.media_type == ixgbe_media_type_backplane)
317 reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
318 IXGBE_AUTOC_ASM_PAUSE;
319 else if (hw->phy.media_type == ixgbe_media_type_copper)
320 reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
321 break;
322 default:
323 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
324 "Flow control param set incorrectly\n");
325 ret_val = IXGBE_ERR_CONFIG;
326 goto out;
327 break;
328 }
329
330 if (hw->mac.type < ixgbe_mac_X540) {
331 /*
332 * Enable auto-negotiation between the MAC & PHY;
333 * the MAC will advertise clause 37 flow control.
334 */
335 IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
336 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
337
338 /* Disable AN timeout */
339 if (hw->fc.strict_ieee)
340 reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
341
342 IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
343 DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
344 }
345
346 /*
347 * AUTOC restart handles negotiation of 1G and 10G on backplane
348 * and copper. There is no need to set the PCS1GCTL register.
349 *
350 */
351 if (hw->phy.media_type == ixgbe_media_type_backplane) {
352 reg_bp |= IXGBE_AUTOC_AN_RESTART;
353 ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
354 if (ret_val)
355 goto out;
356 } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
357 (ixgbe_device_supports_autoneg_fc(hw))) {
358 hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
359 IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
360 }
361
362 DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
363out:
364 return ret_val;
365}
366
367/**
368 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
369 * @hw: pointer to hardware structure
370 *
371 * Starts the hardware by filling the bus info structure and media type, clears
372 * all on chip counters, initializes receive address registers, multicast
373 * table, VLAN filter table, calls routine to set up link and flow control
374 * settings, and leaves transmit and receive units disabled and uninitialized
375 **/
376s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
377{
378 s32 ret_val;
379 u32 ctrl_ext;
271 case ixgbe_media_type_fiber_fixed:
272 case ixgbe_media_type_fiber_qsfp:
273 case ixgbe_media_type_fiber:
274 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
275
276 break;
277 case ixgbe_media_type_copper:
278 hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
279 IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &reg_cu);
280 break;
281 default:
282 break;
283 }
284
285 /*
286 * The possible values of fc.requested_mode are:
287 * 0: Flow control is completely disabled
288 * 1: Rx flow control is enabled (we can receive pause frames,
289 * but not send pause frames).
290 * 2: Tx flow control is enabled (we can send pause frames but
291 * we do not support receiving pause frames).
292 * 3: Both Rx and Tx flow control (symmetric) are enabled.
293 * other: Invalid.
294 */
295 switch (hw->fc.requested_mode) {
296 case ixgbe_fc_none:
297 /* Flow control completely disabled by software override. */
298 reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
299 if (hw->phy.media_type == ixgbe_media_type_backplane)
300 reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
301 IXGBE_AUTOC_ASM_PAUSE);
302 else if (hw->phy.media_type == ixgbe_media_type_copper)
303 reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
304 break;
305 case ixgbe_fc_tx_pause:
306 /*
307 * Tx Flow control is enabled, and Rx Flow control is
308 * disabled by software override.
309 */
310 reg |= IXGBE_PCS1GANA_ASM_PAUSE;
311 reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
312 if (hw->phy.media_type == ixgbe_media_type_backplane) {
313 reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
314 reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
315 } else if (hw->phy.media_type == ixgbe_media_type_copper) {
316 reg_cu |= IXGBE_TAF_ASM_PAUSE;
317 reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
318 }
319 break;
320 case ixgbe_fc_rx_pause:
321 /*
322 * Rx Flow control is enabled and Tx Flow control is
323 * disabled by software override. Since there really
324 * isn't a way to advertise that we are capable of RX
325 * Pause ONLY, we will advertise that we support both
326 * symmetric and asymmetric Rx PAUSE, as such we fall
327 * through to the fc_full statement. Later, we will
328 * disable the adapter's ability to send PAUSE frames.
329 */
330 case ixgbe_fc_full:
331 /* Flow control (both Rx and Tx) is enabled by SW override. */
332 reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
333 if (hw->phy.media_type == ixgbe_media_type_backplane)
334 reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
335 IXGBE_AUTOC_ASM_PAUSE;
336 else if (hw->phy.media_type == ixgbe_media_type_copper)
337 reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
338 break;
339 default:
340 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
341 "Flow control param set incorrectly\n");
342 ret_val = IXGBE_ERR_CONFIG;
343 goto out;
344 break;
345 }
346
347 if (hw->mac.type < ixgbe_mac_X540) {
348 /*
349 * Enable auto-negotiation between the MAC & PHY;
350 * the MAC will advertise clause 37 flow control.
351 */
352 IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
353 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
354
355 /* Disable AN timeout */
356 if (hw->fc.strict_ieee)
357 reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
358
359 IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
360 DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
361 }
362
363 /*
364 * AUTOC restart handles negotiation of 1G and 10G on backplane
365 * and copper. There is no need to set the PCS1GCTL register.
366 *
367 */
368 if (hw->phy.media_type == ixgbe_media_type_backplane) {
369 reg_bp |= IXGBE_AUTOC_AN_RESTART;
370 ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
371 if (ret_val)
372 goto out;
373 } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
374 (ixgbe_device_supports_autoneg_fc(hw))) {
375 hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
376 IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
377 }
378
379 DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
380out:
381 return ret_val;
382}
383
384/**
385 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
386 * @hw: pointer to hardware structure
387 *
388 * Starts the hardware by filling the bus info structure and media type, clears
389 * all on chip counters, initializes receive address registers, multicast
390 * table, VLAN filter table, calls routine to set up link and flow control
391 * settings, and leaves transmit and receive units disabled and uninitialized
392 **/
393s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
394{
395 s32 ret_val;
396 u32 ctrl_ext;
397 u16 device_caps;
380
381 DEBUGFUNC("ixgbe_start_hw_generic");
382
383 /* Set the media type */
384 hw->phy.media_type = hw->mac.ops.get_media_type(hw);
385
386 /* PHY ops initialization must be done in reset_hw() */
387
388 /* Clear the VLAN filter table */
389 hw->mac.ops.clear_vfta(hw);
390
391 /* Clear statistics registers */
392 hw->mac.ops.clear_hw_cntrs(hw);
393
394 /* Set No Snoop Disable */
395 ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
396 ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
397 IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
398 IXGBE_WRITE_FLUSH(hw);
399
400 /* Setup flow control */
401 ret_val = ixgbe_setup_fc(hw);
398
399 DEBUGFUNC("ixgbe_start_hw_generic");
400
401 /* Set the media type */
402 hw->phy.media_type = hw->mac.ops.get_media_type(hw);
403
404 /* PHY ops initialization must be done in reset_hw() */
405
406 /* Clear the VLAN filter table */
407 hw->mac.ops.clear_vfta(hw);
408
409 /* Clear statistics registers */
410 hw->mac.ops.clear_hw_cntrs(hw);
411
412 /* Set No Snoop Disable */
413 ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
414 ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
415 IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
416 IXGBE_WRITE_FLUSH(hw);
417
418 /* Setup flow control */
419 ret_val = ixgbe_setup_fc(hw);
402 if (ret_val != IXGBE_SUCCESS)
403 goto out;
420 if (ret_val != IXGBE_SUCCESS && ret_val != IXGBE_NOT_IMPLEMENTED) {
421 DEBUGOUT1("Flow control setup failed, returning %d\n", ret_val);
422 return ret_val;
423 }
404
424
425 /* Cache bit indicating need for crosstalk fix */
426 switch (hw->mac.type) {
427 case ixgbe_mac_82599EB:
428 case ixgbe_mac_X550EM_x:
429 case ixgbe_mac_X550EM_a:
430 hw->mac.ops.get_device_caps(hw, &device_caps);
431 if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
432 hw->need_crosstalk_fix = FALSE;
433 else
434 hw->need_crosstalk_fix = TRUE;
435 break;
436 default:
437 hw->need_crosstalk_fix = FALSE;
438 break;
439 }
440
405 /* Clear adapter stopped flag */
406 hw->adapter_stopped = FALSE;
407
441 /* Clear adapter stopped flag */
442 hw->adapter_stopped = FALSE;
443
408out:
409 return ret_val;
444 return IXGBE_SUCCESS;
410}
411
412/**
413 * ixgbe_start_hw_gen2 - Init sequence for common device family
414 * @hw: pointer to hw structure
415 *
416 * Performs the init sequence common to the second generation
417 * of 10 GbE devices.
418 * Devices in the second generation:
419 * 82599
420 * X540
421 **/
422s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
423{
424 u32 i;
425 u32 regval;
426
427 /* Clear the rate limiters */
428 for (i = 0; i < hw->mac.max_tx_queues; i++) {
429 IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
430 IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
431 }
432 IXGBE_WRITE_FLUSH(hw);
433
434 /* Disable relaxed ordering */
435 for (i = 0; i < hw->mac.max_tx_queues; i++) {
436 regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
437 regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
438 IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
439 }
440
441 for (i = 0; i < hw->mac.max_rx_queues; i++) {
442 regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
443 regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
444 IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
445 IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
446 }
447
448 return IXGBE_SUCCESS;
449}
450
451/**
452 * ixgbe_init_hw_generic - Generic hardware initialization
453 * @hw: pointer to hardware structure
454 *
455 * Initialize the hardware by resetting the hardware, filling the bus info
456 * structure and media type, clears all on chip counters, initializes receive
457 * address registers, multicast table, VLAN filter table, calls routine to set
458 * up link and flow control settings, and leaves transmit and receive units
459 * disabled and uninitialized
460 **/
461s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
462{
463 s32 status;
464
465 DEBUGFUNC("ixgbe_init_hw_generic");
466
467 /* Reset the hardware */
468 status = hw->mac.ops.reset_hw(hw);
469
445}
446
447/**
448 * ixgbe_start_hw_gen2 - Init sequence for common device family
449 * @hw: pointer to hw structure
450 *
451 * Performs the init sequence common to the second generation
452 * of 10 GbE devices.
453 * Devices in the second generation:
454 * 82599
455 * X540
456 **/
457s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
458{
459 u32 i;
460 u32 regval;
461
462 /* Clear the rate limiters */
463 for (i = 0; i < hw->mac.max_tx_queues; i++) {
464 IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
465 IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
466 }
467 IXGBE_WRITE_FLUSH(hw);
468
469 /* Disable relaxed ordering */
470 for (i = 0; i < hw->mac.max_tx_queues; i++) {
471 regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
472 regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
473 IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
474 }
475
476 for (i = 0; i < hw->mac.max_rx_queues; i++) {
477 regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
478 regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
479 IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
480 IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
481 }
482
483 return IXGBE_SUCCESS;
484}
485
486/**
487 * ixgbe_init_hw_generic - Generic hardware initialization
488 * @hw: pointer to hardware structure
489 *
490 * Initialize the hardware by resetting the hardware, filling the bus info
491 * structure and media type, clears all on chip counters, initializes receive
492 * address registers, multicast table, VLAN filter table, calls routine to set
493 * up link and flow control settings, and leaves transmit and receive units
494 * disabled and uninitialized
495 **/
496s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
497{
498 s32 status;
499
500 DEBUGFUNC("ixgbe_init_hw_generic");
501
502 /* Reset the hardware */
503 status = hw->mac.ops.reset_hw(hw);
504
470 if (status == IXGBE_SUCCESS) {
505 if (status == IXGBE_SUCCESS || status == IXGBE_ERR_SFP_NOT_PRESENT) {
471 /* Start the HW */
472 status = hw->mac.ops.start_hw(hw);
473 }
474
506 /* Start the HW */
507 status = hw->mac.ops.start_hw(hw);
508 }
509
510 /* Initialize the LED link active for LED blink support */
511 if (hw->mac.ops.init_led_link_act)
512 hw->mac.ops.init_led_link_act(hw);
513
514 if (status != IXGBE_SUCCESS)
515 DEBUGOUT1("Failed to initialize HW, STATUS = %d\n", status);
516
475 return status;
476}
477
478/**
479 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
480 * @hw: pointer to hardware structure
481 *
482 * Clears all hardware statistics counters by reading them from the hardware
483 * Statistics counters are clear on read.
484 **/
485s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
486{
487 u16 i = 0;
488
489 DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
490
491 IXGBE_READ_REG(hw, IXGBE_CRCERRS);
492 IXGBE_READ_REG(hw, IXGBE_ILLERRC);
493 IXGBE_READ_REG(hw, IXGBE_ERRBC);
494 IXGBE_READ_REG(hw, IXGBE_MSPDC);
495 for (i = 0; i < 8; i++)
496 IXGBE_READ_REG(hw, IXGBE_MPC(i));
497
498 IXGBE_READ_REG(hw, IXGBE_MLFC);
499 IXGBE_READ_REG(hw, IXGBE_MRFC);
500 IXGBE_READ_REG(hw, IXGBE_RLEC);
501 IXGBE_READ_REG(hw, IXGBE_LXONTXC);
502 IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
503 if (hw->mac.type >= ixgbe_mac_82599EB) {
504 IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
505 IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
506 } else {
507 IXGBE_READ_REG(hw, IXGBE_LXONRXC);
508 IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
509 }
510
511 for (i = 0; i < 8; i++) {
512 IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
513 IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
514 if (hw->mac.type >= ixgbe_mac_82599EB) {
515 IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
516 IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
517 } else {
518 IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
519 IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
520 }
521 }
522 if (hw->mac.type >= ixgbe_mac_82599EB)
523 for (i = 0; i < 8; i++)
524 IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
525 IXGBE_READ_REG(hw, IXGBE_PRC64);
526 IXGBE_READ_REG(hw, IXGBE_PRC127);
527 IXGBE_READ_REG(hw, IXGBE_PRC255);
528 IXGBE_READ_REG(hw, IXGBE_PRC511);
529 IXGBE_READ_REG(hw, IXGBE_PRC1023);
530 IXGBE_READ_REG(hw, IXGBE_PRC1522);
531 IXGBE_READ_REG(hw, IXGBE_GPRC);
532 IXGBE_READ_REG(hw, IXGBE_BPRC);
533 IXGBE_READ_REG(hw, IXGBE_MPRC);
534 IXGBE_READ_REG(hw, IXGBE_GPTC);
535 IXGBE_READ_REG(hw, IXGBE_GORCL);
536 IXGBE_READ_REG(hw, IXGBE_GORCH);
537 IXGBE_READ_REG(hw, IXGBE_GOTCL);
538 IXGBE_READ_REG(hw, IXGBE_GOTCH);
539 if (hw->mac.type == ixgbe_mac_82598EB)
540 for (i = 0; i < 8; i++)
541 IXGBE_READ_REG(hw, IXGBE_RNBC(i));
542 IXGBE_READ_REG(hw, IXGBE_RUC);
543 IXGBE_READ_REG(hw, IXGBE_RFC);
544 IXGBE_READ_REG(hw, IXGBE_ROC);
545 IXGBE_READ_REG(hw, IXGBE_RJC);
546 IXGBE_READ_REG(hw, IXGBE_MNGPRC);
547 IXGBE_READ_REG(hw, IXGBE_MNGPDC);
548 IXGBE_READ_REG(hw, IXGBE_MNGPTC);
549 IXGBE_READ_REG(hw, IXGBE_TORL);
550 IXGBE_READ_REG(hw, IXGBE_TORH);
551 IXGBE_READ_REG(hw, IXGBE_TPR);
552 IXGBE_READ_REG(hw, IXGBE_TPT);
553 IXGBE_READ_REG(hw, IXGBE_PTC64);
554 IXGBE_READ_REG(hw, IXGBE_PTC127);
555 IXGBE_READ_REG(hw, IXGBE_PTC255);
556 IXGBE_READ_REG(hw, IXGBE_PTC511);
557 IXGBE_READ_REG(hw, IXGBE_PTC1023);
558 IXGBE_READ_REG(hw, IXGBE_PTC1522);
559 IXGBE_READ_REG(hw, IXGBE_MPTC);
560 IXGBE_READ_REG(hw, IXGBE_BPTC);
561 for (i = 0; i < 16; i++) {
562 IXGBE_READ_REG(hw, IXGBE_QPRC(i));
563 IXGBE_READ_REG(hw, IXGBE_QPTC(i));
564 if (hw->mac.type >= ixgbe_mac_82599EB) {
565 IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
566 IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
567 IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
568 IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
569 IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
570 } else {
571 IXGBE_READ_REG(hw, IXGBE_QBRC(i));
572 IXGBE_READ_REG(hw, IXGBE_QBTC(i));
573 }
574 }
575
576 if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
577 if (hw->phy.id == 0)
578 ixgbe_identify_phy(hw);
579 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
580 IXGBE_MDIO_PCS_DEV_TYPE, &i);
581 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
582 IXGBE_MDIO_PCS_DEV_TYPE, &i);
583 hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
584 IXGBE_MDIO_PCS_DEV_TYPE, &i);
585 hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
586 IXGBE_MDIO_PCS_DEV_TYPE, &i);
587 }
588
589 return IXGBE_SUCCESS;
590}
591
592/**
593 * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
594 * @hw: pointer to hardware structure
595 * @pba_num: stores the part number string from the EEPROM
596 * @pba_num_size: part number string buffer length
597 *
598 * Reads the part number string from the EEPROM.
599 **/
600s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
601 u32 pba_num_size)
602{
603 s32 ret_val;
604 u16 data;
605 u16 pba_ptr;
606 u16 offset;
607 u16 length;
608
609 DEBUGFUNC("ixgbe_read_pba_string_generic");
610
611 if (pba_num == NULL) {
612 DEBUGOUT("PBA string buffer was null\n");
613 return IXGBE_ERR_INVALID_ARGUMENT;
614 }
615
616 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
617 if (ret_val) {
618 DEBUGOUT("NVM Read Error\n");
619 return ret_val;
620 }
621
622 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
623 if (ret_val) {
624 DEBUGOUT("NVM Read Error\n");
625 return ret_val;
626 }
627
628 /*
629 * if data is not ptr guard the PBA must be in legacy format which
630 * means pba_ptr is actually our second data word for the PBA number
631 * and we can decode it into an ascii string
632 */
633 if (data != IXGBE_PBANUM_PTR_GUARD) {
634 DEBUGOUT("NVM PBA number is not stored as string\n");
635
636 /* we will need 11 characters to store the PBA */
637 if (pba_num_size < 11) {
638 DEBUGOUT("PBA string buffer too small\n");
639 return IXGBE_ERR_NO_SPACE;
640 }
641
642 /* extract hex string from data and pba_ptr */
643 pba_num[0] = (data >> 12) & 0xF;
644 pba_num[1] = (data >> 8) & 0xF;
645 pba_num[2] = (data >> 4) & 0xF;
646 pba_num[3] = data & 0xF;
647 pba_num[4] = (pba_ptr >> 12) & 0xF;
648 pba_num[5] = (pba_ptr >> 8) & 0xF;
649 pba_num[6] = '-';
650 pba_num[7] = 0;
651 pba_num[8] = (pba_ptr >> 4) & 0xF;
652 pba_num[9] = pba_ptr & 0xF;
653
654 /* put a null character on the end of our string */
655 pba_num[10] = '\0';
656
657 /* switch all the data but the '-' to hex char */
658 for (offset = 0; offset < 10; offset++) {
659 if (pba_num[offset] < 0xA)
660 pba_num[offset] += '0';
661 else if (pba_num[offset] < 0x10)
662 pba_num[offset] += 'A' - 0xA;
663 }
664
665 return IXGBE_SUCCESS;
666 }
667
668 ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
669 if (ret_val) {
670 DEBUGOUT("NVM Read Error\n");
671 return ret_val;
672 }
673
674 if (length == 0xFFFF || length == 0) {
675 DEBUGOUT("NVM PBA number section invalid length\n");
676 return IXGBE_ERR_PBA_SECTION;
677 }
678
679 /* check if pba_num buffer is big enough */
680 if (pba_num_size < (((u32)length * 2) - 1)) {
681 DEBUGOUT("PBA string buffer too small\n");
682 return IXGBE_ERR_NO_SPACE;
683 }
684
685 /* trim pba length from start of string */
686 pba_ptr++;
687 length--;
688
689 for (offset = 0; offset < length; offset++) {
690 ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
691 if (ret_val) {
692 DEBUGOUT("NVM Read Error\n");
693 return ret_val;
694 }
695 pba_num[offset * 2] = (u8)(data >> 8);
696 pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
697 }
698 pba_num[offset * 2] = '\0';
699
700 return IXGBE_SUCCESS;
701}
702
703/**
704 * ixgbe_read_pba_num_generic - Reads part number from EEPROM
705 * @hw: pointer to hardware structure
706 * @pba_num: stores the part number from the EEPROM
707 *
708 * Reads the part number from the EEPROM.
709 **/
710s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
711{
712 s32 ret_val;
713 u16 data;
714
715 DEBUGFUNC("ixgbe_read_pba_num_generic");
716
717 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
718 if (ret_val) {
719 DEBUGOUT("NVM Read Error\n");
720 return ret_val;
721 } else if (data == IXGBE_PBANUM_PTR_GUARD) {
722 DEBUGOUT("NVM Not supported\n");
723 return IXGBE_NOT_IMPLEMENTED;
724 }
725 *pba_num = (u32)(data << 16);
726
727 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
728 if (ret_val) {
729 DEBUGOUT("NVM Read Error\n");
730 return ret_val;
731 }
732 *pba_num |= data;
733
734 return IXGBE_SUCCESS;
735}
736
737/**
738 * ixgbe_read_pba_raw
739 * @hw: pointer to the HW structure
740 * @eeprom_buf: optional pointer to EEPROM image
741 * @eeprom_buf_size: size of EEPROM image in words
742 * @max_pba_block_size: PBA block size limit
743 * @pba: pointer to output PBA structure
744 *
745 * Reads PBA from EEPROM image when eeprom_buf is not NULL.
746 * Reads PBA from physical EEPROM device when eeprom_buf is NULL.
747 *
748 **/
749s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
750 u32 eeprom_buf_size, u16 max_pba_block_size,
751 struct ixgbe_pba *pba)
752{
753 s32 ret_val;
754 u16 pba_block_size;
755
756 if (pba == NULL)
757 return IXGBE_ERR_PARAM;
758
759 if (eeprom_buf == NULL) {
760 ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
761 &pba->word[0]);
762 if (ret_val)
763 return ret_val;
764 } else {
765 if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
766 pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
767 pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
768 } else {
769 return IXGBE_ERR_PARAM;
770 }
771 }
772
773 if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
774 if (pba->pba_block == NULL)
775 return IXGBE_ERR_PARAM;
776
777 ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
778 eeprom_buf_size,
779 &pba_block_size);
780 if (ret_val)
781 return ret_val;
782
783 if (pba_block_size > max_pba_block_size)
784 return IXGBE_ERR_PARAM;
785
786 if (eeprom_buf == NULL) {
787 ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
788 pba_block_size,
789 pba->pba_block);
790 if (ret_val)
791 return ret_val;
792 } else {
793 if (eeprom_buf_size > (u32)(pba->word[1] +
794 pba_block_size)) {
795 memcpy(pba->pba_block,
796 &eeprom_buf[pba->word[1]],
797 pba_block_size * sizeof(u16));
798 } else {
799 return IXGBE_ERR_PARAM;
800 }
801 }
802 }
803
804 return IXGBE_SUCCESS;
805}
806
807/**
808 * ixgbe_write_pba_raw
809 * @hw: pointer to the HW structure
810 * @eeprom_buf: optional pointer to EEPROM image
811 * @eeprom_buf_size: size of EEPROM image in words
812 * @pba: pointer to PBA structure
813 *
814 * Writes PBA to EEPROM image when eeprom_buf is not NULL.
815 * Writes PBA to physical EEPROM device when eeprom_buf is NULL.
816 *
817 **/
818s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
819 u32 eeprom_buf_size, struct ixgbe_pba *pba)
820{
821 s32 ret_val;
822
823 if (pba == NULL)
824 return IXGBE_ERR_PARAM;
825
826 if (eeprom_buf == NULL) {
827 ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
828 &pba->word[0]);
829 if (ret_val)
830 return ret_val;
831 } else {
832 if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
833 eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
834 eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
835 } else {
836 return IXGBE_ERR_PARAM;
837 }
838 }
839
840 if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
841 if (pba->pba_block == NULL)
842 return IXGBE_ERR_PARAM;
843
844 if (eeprom_buf == NULL) {
845 ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
846 pba->pba_block[0],
847 pba->pba_block);
848 if (ret_val)
849 return ret_val;
850 } else {
851 if (eeprom_buf_size > (u32)(pba->word[1] +
852 pba->pba_block[0])) {
853 memcpy(&eeprom_buf[pba->word[1]],
854 pba->pba_block,
855 pba->pba_block[0] * sizeof(u16));
856 } else {
857 return IXGBE_ERR_PARAM;
858 }
859 }
860 }
861
862 return IXGBE_SUCCESS;
863}
864
865/**
866 * ixgbe_get_pba_block_size
867 * @hw: pointer to the HW structure
868 * @eeprom_buf: optional pointer to EEPROM image
869 * @eeprom_buf_size: size of EEPROM image in words
870 * @pba_data_size: pointer to output variable
871 *
872 * Returns the size of the PBA block in words. Function operates on EEPROM
873 * image if the eeprom_buf pointer is not NULL otherwise it accesses physical
874 * EEPROM device.
875 *
876 **/
877s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
878 u32 eeprom_buf_size, u16 *pba_block_size)
879{
880 s32 ret_val;
881 u16 pba_word[2];
882 u16 length;
883
884 DEBUGFUNC("ixgbe_get_pba_block_size");
885
886 if (eeprom_buf == NULL) {
887 ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
888 &pba_word[0]);
889 if (ret_val)
890 return ret_val;
891 } else {
892 if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
893 pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
894 pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
895 } else {
896 return IXGBE_ERR_PARAM;
897 }
898 }
899
900 if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
901 if (eeprom_buf == NULL) {
902 ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
903 &length);
904 if (ret_val)
905 return ret_val;
906 } else {
907 if (eeprom_buf_size > pba_word[1])
908 length = eeprom_buf[pba_word[1] + 0];
909 else
910 return IXGBE_ERR_PARAM;
911 }
912
913 if (length == 0xFFFF || length == 0)
914 return IXGBE_ERR_PBA_SECTION;
915 } else {
916 /* PBA number in legacy format, there is no PBA Block. */
917 length = 0;
918 }
919
920 if (pba_block_size != NULL)
921 *pba_block_size = length;
922
923 return IXGBE_SUCCESS;
924}
925
926/**
927 * ixgbe_get_mac_addr_generic - Generic get MAC address
928 * @hw: pointer to hardware structure
929 * @mac_addr: Adapter MAC address
930 *
931 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
932 * A reset of the adapter must be performed prior to calling this function
933 * in order for the MAC address to have been loaded from the EEPROM into RAR0
934 **/
935s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
936{
937 u32 rar_high;
938 u32 rar_low;
939 u16 i;
940
941 DEBUGFUNC("ixgbe_get_mac_addr_generic");
942
943 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
944 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
945
946 for (i = 0; i < 4; i++)
947 mac_addr[i] = (u8)(rar_low >> (i*8));
948
949 for (i = 0; i < 2; i++)
950 mac_addr[i+4] = (u8)(rar_high >> (i*8));
951
952 return IXGBE_SUCCESS;
953}
954
955/**
956 * ixgbe_set_pci_config_data_generic - Generic store PCI bus info
957 * @hw: pointer to hardware structure
958 * @link_status: the link status returned by the PCI config space
959 *
960 * Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
961 **/
962void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
963{
964 struct ixgbe_mac_info *mac = &hw->mac;
965
966 if (hw->bus.type == ixgbe_bus_type_unknown)
967 hw->bus.type = ixgbe_bus_type_pci_express;
968
969 switch (link_status & IXGBE_PCI_LINK_WIDTH) {
970 case IXGBE_PCI_LINK_WIDTH_1:
971 hw->bus.width = ixgbe_bus_width_pcie_x1;
972 break;
973 case IXGBE_PCI_LINK_WIDTH_2:
974 hw->bus.width = ixgbe_bus_width_pcie_x2;
975 break;
976 case IXGBE_PCI_LINK_WIDTH_4:
977 hw->bus.width = ixgbe_bus_width_pcie_x4;
978 break;
979 case IXGBE_PCI_LINK_WIDTH_8:
980 hw->bus.width = ixgbe_bus_width_pcie_x8;
981 break;
982 default:
983 hw->bus.width = ixgbe_bus_width_unknown;
984 break;
985 }
986
987 switch (link_status & IXGBE_PCI_LINK_SPEED) {
988 case IXGBE_PCI_LINK_SPEED_2500:
989 hw->bus.speed = ixgbe_bus_speed_2500;
990 break;
991 case IXGBE_PCI_LINK_SPEED_5000:
992 hw->bus.speed = ixgbe_bus_speed_5000;
993 break;
994 case IXGBE_PCI_LINK_SPEED_8000:
995 hw->bus.speed = ixgbe_bus_speed_8000;
996 break;
997 default:
998 hw->bus.speed = ixgbe_bus_speed_unknown;
999 break;
1000 }
1001
1002 mac->ops.set_lan_id(hw);
1003}
1004
1005/**
1006 * ixgbe_get_bus_info_generic - Generic set PCI bus info
1007 * @hw: pointer to hardware structure
1008 *
1009 * Gets the PCI bus info (speed, width, type) then calls helper function to
1010 * store this data within the ixgbe_hw structure.
1011 **/
1012s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
1013{
1014 u16 link_status;
1015
1016 DEBUGFUNC("ixgbe_get_bus_info_generic");
1017
1018 /* Get the negotiated link width and speed from PCI config space */
1019 link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
1020
1021 ixgbe_set_pci_config_data_generic(hw, link_status);
1022
1023 return IXGBE_SUCCESS;
1024}
1025
1026/**
1027 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
1028 * @hw: pointer to the HW structure
1029 *
517 return status;
518}
519
520/**
521 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
522 * @hw: pointer to hardware structure
523 *
524 * Clears all hardware statistics counters by reading them from the hardware
525 * Statistics counters are clear on read.
526 **/
527s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
528{
529 u16 i = 0;
530
531 DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
532
533 IXGBE_READ_REG(hw, IXGBE_CRCERRS);
534 IXGBE_READ_REG(hw, IXGBE_ILLERRC);
535 IXGBE_READ_REG(hw, IXGBE_ERRBC);
536 IXGBE_READ_REG(hw, IXGBE_MSPDC);
537 for (i = 0; i < 8; i++)
538 IXGBE_READ_REG(hw, IXGBE_MPC(i));
539
540 IXGBE_READ_REG(hw, IXGBE_MLFC);
541 IXGBE_READ_REG(hw, IXGBE_MRFC);
542 IXGBE_READ_REG(hw, IXGBE_RLEC);
543 IXGBE_READ_REG(hw, IXGBE_LXONTXC);
544 IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
545 if (hw->mac.type >= ixgbe_mac_82599EB) {
546 IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
547 IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
548 } else {
549 IXGBE_READ_REG(hw, IXGBE_LXONRXC);
550 IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
551 }
552
553 for (i = 0; i < 8; i++) {
554 IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
555 IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
556 if (hw->mac.type >= ixgbe_mac_82599EB) {
557 IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
558 IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
559 } else {
560 IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
561 IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
562 }
563 }
564 if (hw->mac.type >= ixgbe_mac_82599EB)
565 for (i = 0; i < 8; i++)
566 IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
567 IXGBE_READ_REG(hw, IXGBE_PRC64);
568 IXGBE_READ_REG(hw, IXGBE_PRC127);
569 IXGBE_READ_REG(hw, IXGBE_PRC255);
570 IXGBE_READ_REG(hw, IXGBE_PRC511);
571 IXGBE_READ_REG(hw, IXGBE_PRC1023);
572 IXGBE_READ_REG(hw, IXGBE_PRC1522);
573 IXGBE_READ_REG(hw, IXGBE_GPRC);
574 IXGBE_READ_REG(hw, IXGBE_BPRC);
575 IXGBE_READ_REG(hw, IXGBE_MPRC);
576 IXGBE_READ_REG(hw, IXGBE_GPTC);
577 IXGBE_READ_REG(hw, IXGBE_GORCL);
578 IXGBE_READ_REG(hw, IXGBE_GORCH);
579 IXGBE_READ_REG(hw, IXGBE_GOTCL);
580 IXGBE_READ_REG(hw, IXGBE_GOTCH);
581 if (hw->mac.type == ixgbe_mac_82598EB)
582 for (i = 0; i < 8; i++)
583 IXGBE_READ_REG(hw, IXGBE_RNBC(i));
584 IXGBE_READ_REG(hw, IXGBE_RUC);
585 IXGBE_READ_REG(hw, IXGBE_RFC);
586 IXGBE_READ_REG(hw, IXGBE_ROC);
587 IXGBE_READ_REG(hw, IXGBE_RJC);
588 IXGBE_READ_REG(hw, IXGBE_MNGPRC);
589 IXGBE_READ_REG(hw, IXGBE_MNGPDC);
590 IXGBE_READ_REG(hw, IXGBE_MNGPTC);
591 IXGBE_READ_REG(hw, IXGBE_TORL);
592 IXGBE_READ_REG(hw, IXGBE_TORH);
593 IXGBE_READ_REG(hw, IXGBE_TPR);
594 IXGBE_READ_REG(hw, IXGBE_TPT);
595 IXGBE_READ_REG(hw, IXGBE_PTC64);
596 IXGBE_READ_REG(hw, IXGBE_PTC127);
597 IXGBE_READ_REG(hw, IXGBE_PTC255);
598 IXGBE_READ_REG(hw, IXGBE_PTC511);
599 IXGBE_READ_REG(hw, IXGBE_PTC1023);
600 IXGBE_READ_REG(hw, IXGBE_PTC1522);
601 IXGBE_READ_REG(hw, IXGBE_MPTC);
602 IXGBE_READ_REG(hw, IXGBE_BPTC);
603 for (i = 0; i < 16; i++) {
604 IXGBE_READ_REG(hw, IXGBE_QPRC(i));
605 IXGBE_READ_REG(hw, IXGBE_QPTC(i));
606 if (hw->mac.type >= ixgbe_mac_82599EB) {
607 IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
608 IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
609 IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
610 IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
611 IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
612 } else {
613 IXGBE_READ_REG(hw, IXGBE_QBRC(i));
614 IXGBE_READ_REG(hw, IXGBE_QBTC(i));
615 }
616 }
617
618 if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
619 if (hw->phy.id == 0)
620 ixgbe_identify_phy(hw);
621 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
622 IXGBE_MDIO_PCS_DEV_TYPE, &i);
623 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
624 IXGBE_MDIO_PCS_DEV_TYPE, &i);
625 hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
626 IXGBE_MDIO_PCS_DEV_TYPE, &i);
627 hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
628 IXGBE_MDIO_PCS_DEV_TYPE, &i);
629 }
630
631 return IXGBE_SUCCESS;
632}
633
634/**
635 * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
636 * @hw: pointer to hardware structure
637 * @pba_num: stores the part number string from the EEPROM
638 * @pba_num_size: part number string buffer length
639 *
640 * Reads the part number string from the EEPROM.
641 **/
642s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
643 u32 pba_num_size)
644{
645 s32 ret_val;
646 u16 data;
647 u16 pba_ptr;
648 u16 offset;
649 u16 length;
650
651 DEBUGFUNC("ixgbe_read_pba_string_generic");
652
653 if (pba_num == NULL) {
654 DEBUGOUT("PBA string buffer was null\n");
655 return IXGBE_ERR_INVALID_ARGUMENT;
656 }
657
658 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
659 if (ret_val) {
660 DEBUGOUT("NVM Read Error\n");
661 return ret_val;
662 }
663
664 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
665 if (ret_val) {
666 DEBUGOUT("NVM Read Error\n");
667 return ret_val;
668 }
669
670 /*
671 * if data is not ptr guard the PBA must be in legacy format which
672 * means pba_ptr is actually our second data word for the PBA number
673 * and we can decode it into an ascii string
674 */
675 if (data != IXGBE_PBANUM_PTR_GUARD) {
676 DEBUGOUT("NVM PBA number is not stored as string\n");
677
678 /* we will need 11 characters to store the PBA */
679 if (pba_num_size < 11) {
680 DEBUGOUT("PBA string buffer too small\n");
681 return IXGBE_ERR_NO_SPACE;
682 }
683
684 /* extract hex string from data and pba_ptr */
685 pba_num[0] = (data >> 12) & 0xF;
686 pba_num[1] = (data >> 8) & 0xF;
687 pba_num[2] = (data >> 4) & 0xF;
688 pba_num[3] = data & 0xF;
689 pba_num[4] = (pba_ptr >> 12) & 0xF;
690 pba_num[5] = (pba_ptr >> 8) & 0xF;
691 pba_num[6] = '-';
692 pba_num[7] = 0;
693 pba_num[8] = (pba_ptr >> 4) & 0xF;
694 pba_num[9] = pba_ptr & 0xF;
695
696 /* put a null character on the end of our string */
697 pba_num[10] = '\0';
698
699 /* switch all the data but the '-' to hex char */
700 for (offset = 0; offset < 10; offset++) {
701 if (pba_num[offset] < 0xA)
702 pba_num[offset] += '0';
703 else if (pba_num[offset] < 0x10)
704 pba_num[offset] += 'A' - 0xA;
705 }
706
707 return IXGBE_SUCCESS;
708 }
709
710 ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
711 if (ret_val) {
712 DEBUGOUT("NVM Read Error\n");
713 return ret_val;
714 }
715
716 if (length == 0xFFFF || length == 0) {
717 DEBUGOUT("NVM PBA number section invalid length\n");
718 return IXGBE_ERR_PBA_SECTION;
719 }
720
721 /* check if pba_num buffer is big enough */
722 if (pba_num_size < (((u32)length * 2) - 1)) {
723 DEBUGOUT("PBA string buffer too small\n");
724 return IXGBE_ERR_NO_SPACE;
725 }
726
727 /* trim pba length from start of string */
728 pba_ptr++;
729 length--;
730
731 for (offset = 0; offset < length; offset++) {
732 ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
733 if (ret_val) {
734 DEBUGOUT("NVM Read Error\n");
735 return ret_val;
736 }
737 pba_num[offset * 2] = (u8)(data >> 8);
738 pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
739 }
740 pba_num[offset * 2] = '\0';
741
742 return IXGBE_SUCCESS;
743}
744
745/**
746 * ixgbe_read_pba_num_generic - Reads part number from EEPROM
747 * @hw: pointer to hardware structure
748 * @pba_num: stores the part number from the EEPROM
749 *
750 * Reads the part number from the EEPROM.
751 **/
752s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
753{
754 s32 ret_val;
755 u16 data;
756
757 DEBUGFUNC("ixgbe_read_pba_num_generic");
758
759 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
760 if (ret_val) {
761 DEBUGOUT("NVM Read Error\n");
762 return ret_val;
763 } else if (data == IXGBE_PBANUM_PTR_GUARD) {
764 DEBUGOUT("NVM Not supported\n");
765 return IXGBE_NOT_IMPLEMENTED;
766 }
767 *pba_num = (u32)(data << 16);
768
769 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
770 if (ret_val) {
771 DEBUGOUT("NVM Read Error\n");
772 return ret_val;
773 }
774 *pba_num |= data;
775
776 return IXGBE_SUCCESS;
777}
778
779/**
780 * ixgbe_read_pba_raw
781 * @hw: pointer to the HW structure
782 * @eeprom_buf: optional pointer to EEPROM image
783 * @eeprom_buf_size: size of EEPROM image in words
784 * @max_pba_block_size: PBA block size limit
785 * @pba: pointer to output PBA structure
786 *
787 * Reads PBA from EEPROM image when eeprom_buf is not NULL.
788 * Reads PBA from physical EEPROM device when eeprom_buf is NULL.
789 *
790 **/
791s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
792 u32 eeprom_buf_size, u16 max_pba_block_size,
793 struct ixgbe_pba *pba)
794{
795 s32 ret_val;
796 u16 pba_block_size;
797
798 if (pba == NULL)
799 return IXGBE_ERR_PARAM;
800
801 if (eeprom_buf == NULL) {
802 ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
803 &pba->word[0]);
804 if (ret_val)
805 return ret_val;
806 } else {
807 if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
808 pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
809 pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
810 } else {
811 return IXGBE_ERR_PARAM;
812 }
813 }
814
815 if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
816 if (pba->pba_block == NULL)
817 return IXGBE_ERR_PARAM;
818
819 ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
820 eeprom_buf_size,
821 &pba_block_size);
822 if (ret_val)
823 return ret_val;
824
825 if (pba_block_size > max_pba_block_size)
826 return IXGBE_ERR_PARAM;
827
828 if (eeprom_buf == NULL) {
829 ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
830 pba_block_size,
831 pba->pba_block);
832 if (ret_val)
833 return ret_val;
834 } else {
835 if (eeprom_buf_size > (u32)(pba->word[1] +
836 pba_block_size)) {
837 memcpy(pba->pba_block,
838 &eeprom_buf[pba->word[1]],
839 pba_block_size * sizeof(u16));
840 } else {
841 return IXGBE_ERR_PARAM;
842 }
843 }
844 }
845
846 return IXGBE_SUCCESS;
847}
848
849/**
850 * ixgbe_write_pba_raw
851 * @hw: pointer to the HW structure
852 * @eeprom_buf: optional pointer to EEPROM image
853 * @eeprom_buf_size: size of EEPROM image in words
854 * @pba: pointer to PBA structure
855 *
856 * Writes PBA to EEPROM image when eeprom_buf is not NULL.
857 * Writes PBA to physical EEPROM device when eeprom_buf is NULL.
858 *
859 **/
860s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
861 u32 eeprom_buf_size, struct ixgbe_pba *pba)
862{
863 s32 ret_val;
864
865 if (pba == NULL)
866 return IXGBE_ERR_PARAM;
867
868 if (eeprom_buf == NULL) {
869 ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
870 &pba->word[0]);
871 if (ret_val)
872 return ret_val;
873 } else {
874 if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
875 eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
876 eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
877 } else {
878 return IXGBE_ERR_PARAM;
879 }
880 }
881
882 if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
883 if (pba->pba_block == NULL)
884 return IXGBE_ERR_PARAM;
885
886 if (eeprom_buf == NULL) {
887 ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
888 pba->pba_block[0],
889 pba->pba_block);
890 if (ret_val)
891 return ret_val;
892 } else {
893 if (eeprom_buf_size > (u32)(pba->word[1] +
894 pba->pba_block[0])) {
895 memcpy(&eeprom_buf[pba->word[1]],
896 pba->pba_block,
897 pba->pba_block[0] * sizeof(u16));
898 } else {
899 return IXGBE_ERR_PARAM;
900 }
901 }
902 }
903
904 return IXGBE_SUCCESS;
905}
906
907/**
908 * ixgbe_get_pba_block_size
909 * @hw: pointer to the HW structure
910 * @eeprom_buf: optional pointer to EEPROM image
911 * @eeprom_buf_size: size of EEPROM image in words
912 * @pba_data_size: pointer to output variable
913 *
914 * Returns the size of the PBA block in words. Function operates on EEPROM
915 * image if the eeprom_buf pointer is not NULL otherwise it accesses physical
916 * EEPROM device.
917 *
918 **/
919s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
920 u32 eeprom_buf_size, u16 *pba_block_size)
921{
922 s32 ret_val;
923 u16 pba_word[2];
924 u16 length;
925
926 DEBUGFUNC("ixgbe_get_pba_block_size");
927
928 if (eeprom_buf == NULL) {
929 ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
930 &pba_word[0]);
931 if (ret_val)
932 return ret_val;
933 } else {
934 if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
935 pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
936 pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
937 } else {
938 return IXGBE_ERR_PARAM;
939 }
940 }
941
942 if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
943 if (eeprom_buf == NULL) {
944 ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
945 &length);
946 if (ret_val)
947 return ret_val;
948 } else {
949 if (eeprom_buf_size > pba_word[1])
950 length = eeprom_buf[pba_word[1] + 0];
951 else
952 return IXGBE_ERR_PARAM;
953 }
954
955 if (length == 0xFFFF || length == 0)
956 return IXGBE_ERR_PBA_SECTION;
957 } else {
958 /* PBA number in legacy format, there is no PBA Block. */
959 length = 0;
960 }
961
962 if (pba_block_size != NULL)
963 *pba_block_size = length;
964
965 return IXGBE_SUCCESS;
966}
967
968/**
969 * ixgbe_get_mac_addr_generic - Generic get MAC address
970 * @hw: pointer to hardware structure
971 * @mac_addr: Adapter MAC address
972 *
973 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
974 * A reset of the adapter must be performed prior to calling this function
975 * in order for the MAC address to have been loaded from the EEPROM into RAR0
976 **/
977s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
978{
979 u32 rar_high;
980 u32 rar_low;
981 u16 i;
982
983 DEBUGFUNC("ixgbe_get_mac_addr_generic");
984
985 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
986 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
987
988 for (i = 0; i < 4; i++)
989 mac_addr[i] = (u8)(rar_low >> (i*8));
990
991 for (i = 0; i < 2; i++)
992 mac_addr[i+4] = (u8)(rar_high >> (i*8));
993
994 return IXGBE_SUCCESS;
995}
996
997/**
998 * ixgbe_set_pci_config_data_generic - Generic store PCI bus info
999 * @hw: pointer to hardware structure
1000 * @link_status: the link status returned by the PCI config space
1001 *
1002 * Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
1003 **/
1004void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
1005{
1006 struct ixgbe_mac_info *mac = &hw->mac;
1007
1008 if (hw->bus.type == ixgbe_bus_type_unknown)
1009 hw->bus.type = ixgbe_bus_type_pci_express;
1010
1011 switch (link_status & IXGBE_PCI_LINK_WIDTH) {
1012 case IXGBE_PCI_LINK_WIDTH_1:
1013 hw->bus.width = ixgbe_bus_width_pcie_x1;
1014 break;
1015 case IXGBE_PCI_LINK_WIDTH_2:
1016 hw->bus.width = ixgbe_bus_width_pcie_x2;
1017 break;
1018 case IXGBE_PCI_LINK_WIDTH_4:
1019 hw->bus.width = ixgbe_bus_width_pcie_x4;
1020 break;
1021 case IXGBE_PCI_LINK_WIDTH_8:
1022 hw->bus.width = ixgbe_bus_width_pcie_x8;
1023 break;
1024 default:
1025 hw->bus.width = ixgbe_bus_width_unknown;
1026 break;
1027 }
1028
1029 switch (link_status & IXGBE_PCI_LINK_SPEED) {
1030 case IXGBE_PCI_LINK_SPEED_2500:
1031 hw->bus.speed = ixgbe_bus_speed_2500;
1032 break;
1033 case IXGBE_PCI_LINK_SPEED_5000:
1034 hw->bus.speed = ixgbe_bus_speed_5000;
1035 break;
1036 case IXGBE_PCI_LINK_SPEED_8000:
1037 hw->bus.speed = ixgbe_bus_speed_8000;
1038 break;
1039 default:
1040 hw->bus.speed = ixgbe_bus_speed_unknown;
1041 break;
1042 }
1043
1044 mac->ops.set_lan_id(hw);
1045}
1046
1047/**
1048 * ixgbe_get_bus_info_generic - Generic set PCI bus info
1049 * @hw: pointer to hardware structure
1050 *
1051 * Gets the PCI bus info (speed, width, type) then calls helper function to
1052 * store this data within the ixgbe_hw structure.
1053 **/
1054s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
1055{
1056 u16 link_status;
1057
1058 DEBUGFUNC("ixgbe_get_bus_info_generic");
1059
1060 /* Get the negotiated link width and speed from PCI config space */
1061 link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
1062
1063 ixgbe_set_pci_config_data_generic(hw, link_status);
1064
1065 return IXGBE_SUCCESS;
1066}
1067
1068/**
1069 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
1070 * @hw: pointer to the HW structure
1071 *
1030 * Determines the LAN function id by reading memory-mapped registers
1031 * and swaps the port value if requested.
1072 * Determines the LAN function id by reading memory-mapped registers and swaps
1073 * the port value if requested, and set MAC instance for devices that share
1074 * CS4227.
1032 **/
1033void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
1034{
1035 struct ixgbe_bus_info *bus = &hw->bus;
1036 u32 reg;
1075 **/
1076void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
1077{
1078 struct ixgbe_bus_info *bus = &hw->bus;
1079 u32 reg;
1080 u16 ee_ctrl_4;
1037
1038 DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
1039
1040 reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
1041 bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
1081
1082 DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
1083
1084 reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
1085 bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
1042 bus->lan_id = bus->func;
1086 bus->lan_id = (u8)bus->func;
1043
1044 /* check for a port swap */
1045 reg = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
1046 if (reg & IXGBE_FACTPS_LFS)
1047 bus->func ^= 0x1;
1087
1088 /* check for a port swap */
1089 reg = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
1090 if (reg & IXGBE_FACTPS_LFS)
1091 bus->func ^= 0x1;
1092
1093 /* Get MAC instance from EEPROM for configuring CS4227 */
1094 if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
1095 hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
1096 bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
1097 IXGBE_EE_CTRL_4_INST_ID_SHIFT;
1098 }
1048}
1049
1050/**
1051 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
1052 * @hw: pointer to hardware structure
1053 *
1054 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
1055 * disables transmit and receive units. The adapter_stopped flag is used by
1056 * the shared code and drivers to determine if the adapter is in a stopped
1057 * state and should not touch the hardware.
1058 **/
1059s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
1060{
1061 u32 reg_val;
1062 u16 i;
1063
1064 DEBUGFUNC("ixgbe_stop_adapter_generic");
1065
1066 /*
1067 * Set the adapter_stopped flag so other driver functions stop touching
1068 * the hardware
1069 */
1070 hw->adapter_stopped = TRUE;
1071
1072 /* Disable the receive unit */
1073 ixgbe_disable_rx(hw);
1074
1075 /* Clear interrupt mask to stop interrupts from being generated */
1076 IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
1077
1078 /* Clear any pending interrupts, flush previous writes */
1079 IXGBE_READ_REG(hw, IXGBE_EICR);
1080
1081 /* Disable the transmit unit. Each queue must be disabled. */
1082 for (i = 0; i < hw->mac.max_tx_queues; i++)
1083 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
1084
1085 /* Disable the receive unit by stopping each queue */
1086 for (i = 0; i < hw->mac.max_rx_queues; i++) {
1087 reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
1088 reg_val &= ~IXGBE_RXDCTL_ENABLE;
1089 reg_val |= IXGBE_RXDCTL_SWFLSH;
1090 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
1091 }
1092
1093 /* flush all queues disables */
1094 IXGBE_WRITE_FLUSH(hw);
1095 msec_delay(2);
1096
1097 /*
1098 * Prevent the PCI-E bus from hanging by disabling PCI-E master
1099 * access and verify no pending requests
1100 */
1101 return ixgbe_disable_pcie_master(hw);
1102}
1103
1104/**
1099}
1100
1101/**
1102 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
1103 * @hw: pointer to hardware structure
1104 *
1105 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
1106 * disables transmit and receive units. The adapter_stopped flag is used by
1107 * the shared code and drivers to determine if the adapter is in a stopped
1108 * state and should not touch the hardware.
1109 **/
1110s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
1111{
1112 u32 reg_val;
1113 u16 i;
1114
1115 DEBUGFUNC("ixgbe_stop_adapter_generic");
1116
1117 /*
1118 * Set the adapter_stopped flag so other driver functions stop touching
1119 * the hardware
1120 */
1121 hw->adapter_stopped = TRUE;
1122
1123 /* Disable the receive unit */
1124 ixgbe_disable_rx(hw);
1125
1126 /* Clear interrupt mask to stop interrupts from being generated */
1127 IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
1128
1129 /* Clear any pending interrupts, flush previous writes */
1130 IXGBE_READ_REG(hw, IXGBE_EICR);
1131
1132 /* Disable the transmit unit. Each queue must be disabled. */
1133 for (i = 0; i < hw->mac.max_tx_queues; i++)
1134 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
1135
1136 /* Disable the receive unit by stopping each queue */
1137 for (i = 0; i < hw->mac.max_rx_queues; i++) {
1138 reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
1139 reg_val &= ~IXGBE_RXDCTL_ENABLE;
1140 reg_val |= IXGBE_RXDCTL_SWFLSH;
1141 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
1142 }
1143
1144 /* flush all queues disables */
1145 IXGBE_WRITE_FLUSH(hw);
1146 msec_delay(2);
1147
1148 /*
1149 * Prevent the PCI-E bus from hanging by disabling PCI-E master
1150 * access and verify no pending requests
1151 */
1152 return ixgbe_disable_pcie_master(hw);
1153}
1154
1155/**
1156 * ixgbe_init_led_link_act_generic - Store the LED index link/activity.
1157 * @hw: pointer to hardware structure
1158 *
1159 * Store the index for the link active LED. This will be used to support
1160 * blinking the LED.
1161 **/
1162s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
1163{
1164 struct ixgbe_mac_info *mac = &hw->mac;
1165 u32 led_reg, led_mode;
1166 u8 i;
1167
1168 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1169
1170 /* Get LED link active from the LEDCTL register */
1171 for (i = 0; i < 4; i++) {
1172 led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
1173
1174 if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
1175 IXGBE_LED_LINK_ACTIVE) {
1176 mac->led_link_act = i;
1177 return IXGBE_SUCCESS;
1178 }
1179 }
1180
1181 /*
1182 * If LEDCTL register does not have the LED link active set, then use
1183 * known MAC defaults.
1184 */
1185 switch (hw->mac.type) {
1186 case ixgbe_mac_X550EM_a:
1187 case ixgbe_mac_X550EM_x:
1188 mac->led_link_act = 1;
1189 break;
1190 default:
1191 mac->led_link_act = 2;
1192 }
1193 return IXGBE_SUCCESS;
1194}
1195
1196/**
1105 * ixgbe_led_on_generic - Turns on the software controllable LEDs.
1106 * @hw: pointer to hardware structure
1107 * @index: led number to turn on
1108 **/
1109s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
1110{
1111 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1112
1113 DEBUGFUNC("ixgbe_led_on_generic");
1114
1197 * ixgbe_led_on_generic - Turns on the software controllable LEDs.
1198 * @hw: pointer to hardware structure
1199 * @index: led number to turn on
1200 **/
1201s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
1202{
1203 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1204
1205 DEBUGFUNC("ixgbe_led_on_generic");
1206
1207 if (index > 3)
1208 return IXGBE_ERR_PARAM;
1209
1115 /* To turn on the LED, set mode to ON. */
1116 led_reg &= ~IXGBE_LED_MODE_MASK(index);
1117 led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
1118 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1119 IXGBE_WRITE_FLUSH(hw);
1120
1121 return IXGBE_SUCCESS;
1122}
1123
1124/**
1125 * ixgbe_led_off_generic - Turns off the software controllable LEDs.
1126 * @hw: pointer to hardware structure
1127 * @index: led number to turn off
1128 **/
1129s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
1130{
1131 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1132
1133 DEBUGFUNC("ixgbe_led_off_generic");
1134
1210 /* To turn on the LED, set mode to ON. */
1211 led_reg &= ~IXGBE_LED_MODE_MASK(index);
1212 led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
1213 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1214 IXGBE_WRITE_FLUSH(hw);
1215
1216 return IXGBE_SUCCESS;
1217}
1218
1219/**
1220 * ixgbe_led_off_generic - Turns off the software controllable LEDs.
1221 * @hw: pointer to hardware structure
1222 * @index: led number to turn off
1223 **/
1224s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
1225{
1226 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1227
1228 DEBUGFUNC("ixgbe_led_off_generic");
1229
1230 if (index > 3)
1231 return IXGBE_ERR_PARAM;
1232
1135 /* To turn off the LED, set mode to OFF. */
1136 led_reg &= ~IXGBE_LED_MODE_MASK(index);
1137 led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
1138 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1139 IXGBE_WRITE_FLUSH(hw);
1140
1141 return IXGBE_SUCCESS;
1142}
1143
1144/**
1145 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
1146 * @hw: pointer to hardware structure
1147 *
1148 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
1149 * ixgbe_hw struct in order to set up EEPROM access.
1150 **/
1151s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
1152{
1153 struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
1154 u32 eec;
1155 u16 eeprom_size;
1156
1157 DEBUGFUNC("ixgbe_init_eeprom_params_generic");
1158
1159 if (eeprom->type == ixgbe_eeprom_uninitialized) {
1160 eeprom->type = ixgbe_eeprom_none;
1161 /* Set default semaphore delay to 10ms which is a well
1162 * tested value */
1163 eeprom->semaphore_delay = 10;
1164 /* Clear EEPROM page size, it will be initialized as needed */
1165 eeprom->word_page_size = 0;
1166
1167 /*
1168 * Check for EEPROM present first.
1169 * If not present leave as none
1170 */
1171 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1172 if (eec & IXGBE_EEC_PRES) {
1173 eeprom->type = ixgbe_eeprom_spi;
1174
1175 /*
1176 * SPI EEPROM is assumed here. This code would need to
1177 * change if a future EEPROM is not SPI.
1178 */
1179 eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
1180 IXGBE_EEC_SIZE_SHIFT);
1181 eeprom->word_size = 1 << (eeprom_size +
1182 IXGBE_EEPROM_WORD_SIZE_SHIFT);
1183 }
1184
1185 if (eec & IXGBE_EEC_ADDR_SIZE)
1186 eeprom->address_bits = 16;
1187 else
1188 eeprom->address_bits = 8;
1189 DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
1190 "%d\n", eeprom->type, eeprom->word_size,
1191 eeprom->address_bits);
1192 }
1193
1194 return IXGBE_SUCCESS;
1195}
1196
1197/**
1198 * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
1199 * @hw: pointer to hardware structure
1200 * @offset: offset within the EEPROM to write
1201 * @words: number of word(s)
1202 * @data: 16 bit word(s) to write to EEPROM
1203 *
1204 * Reads 16 bit word(s) from EEPROM through bit-bang method
1205 **/
1206s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1207 u16 words, u16 *data)
1208{
1209 s32 status = IXGBE_SUCCESS;
1210 u16 i, count;
1211
1212 DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
1213
1214 hw->eeprom.ops.init_params(hw);
1215
1216 if (words == 0) {
1217 status = IXGBE_ERR_INVALID_ARGUMENT;
1218 goto out;
1219 }
1220
1221 if (offset + words > hw->eeprom.word_size) {
1222 status = IXGBE_ERR_EEPROM;
1223 goto out;
1224 }
1225
1226 /*
1227 * The EEPROM page size cannot be queried from the chip. We do lazy
1228 * initialization. It is worth to do that when we write large buffer.
1229 */
1230 if ((hw->eeprom.word_page_size == 0) &&
1231 (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
1232 ixgbe_detect_eeprom_page_size_generic(hw, offset);
1233
1234 /*
1235 * We cannot hold synchronization semaphores for too long
1236 * to avoid other entity starvation. However it is more efficient
1237 * to read in bursts than synchronizing access for each word.
1238 */
1239 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1240 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1241 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1242 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
1243 count, &data[i]);
1244
1245 if (status != IXGBE_SUCCESS)
1246 break;
1247 }
1248
1249out:
1250 return status;
1251}
1252
1253/**
1254 * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
1255 * @hw: pointer to hardware structure
1256 * @offset: offset within the EEPROM to be written to
1257 * @words: number of word(s)
1258 * @data: 16 bit word(s) to be written to the EEPROM
1259 *
1260 * If ixgbe_eeprom_update_checksum is not called after this function, the
1261 * EEPROM will most likely contain an invalid checksum.
1262 **/
1263static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1264 u16 words, u16 *data)
1265{
1266 s32 status;
1267 u16 word;
1268 u16 page_size;
1269 u16 i;
1270 u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
1271
1272 DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
1273
1274 /* Prepare the EEPROM for writing */
1275 status = ixgbe_acquire_eeprom(hw);
1276
1277 if (status == IXGBE_SUCCESS) {
1278 if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1279 ixgbe_release_eeprom(hw);
1280 status = IXGBE_ERR_EEPROM;
1281 }
1282 }
1283
1284 if (status == IXGBE_SUCCESS) {
1285 for (i = 0; i < words; i++) {
1286 ixgbe_standby_eeprom(hw);
1287
1288 /* Send the WRITE ENABLE command (8 bit opcode ) */
1289 ixgbe_shift_out_eeprom_bits(hw,
1290 IXGBE_EEPROM_WREN_OPCODE_SPI,
1291 IXGBE_EEPROM_OPCODE_BITS);
1292
1293 ixgbe_standby_eeprom(hw);
1294
1295 /*
1296 * Some SPI eeproms use the 8th address bit embedded
1297 * in the opcode
1298 */
1299 if ((hw->eeprom.address_bits == 8) &&
1300 ((offset + i) >= 128))
1301 write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1302
1303 /* Send the Write command (8-bit opcode + addr) */
1304 ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1305 IXGBE_EEPROM_OPCODE_BITS);
1306 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1307 hw->eeprom.address_bits);
1308
1309 page_size = hw->eeprom.word_page_size;
1310
1311 /* Send the data in burst via SPI*/
1312 do {
1313 word = data[i];
1314 word = (word >> 8) | (word << 8);
1315 ixgbe_shift_out_eeprom_bits(hw, word, 16);
1316
1317 if (page_size == 0)
1318 break;
1319
1320 /* do not wrap around page */
1321 if (((offset + i) & (page_size - 1)) ==
1322 (page_size - 1))
1323 break;
1324 } while (++i < words);
1325
1326 ixgbe_standby_eeprom(hw);
1327 msec_delay(10);
1328 }
1329 /* Done with writing - release the EEPROM */
1330 ixgbe_release_eeprom(hw);
1331 }
1332
1333 return status;
1334}
1335
1336/**
1337 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1338 * @hw: pointer to hardware structure
1339 * @offset: offset within the EEPROM to be written to
1340 * @data: 16 bit word to be written to the EEPROM
1341 *
1342 * If ixgbe_eeprom_update_checksum is not called after this function, the
1343 * EEPROM will most likely contain an invalid checksum.
1344 **/
1345s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1346{
1347 s32 status;
1348
1349 DEBUGFUNC("ixgbe_write_eeprom_generic");
1350
1351 hw->eeprom.ops.init_params(hw);
1352
1353 if (offset >= hw->eeprom.word_size) {
1354 status = IXGBE_ERR_EEPROM;
1355 goto out;
1356 }
1357
1358 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1359
1360out:
1361 return status;
1362}
1363
1364/**
1365 * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1366 * @hw: pointer to hardware structure
1367 * @offset: offset within the EEPROM to be read
1368 * @data: read 16 bit words(s) from EEPROM
1369 * @words: number of word(s)
1370 *
1371 * Reads 16 bit word(s) from EEPROM through bit-bang method
1372 **/
1373s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1374 u16 words, u16 *data)
1375{
1376 s32 status = IXGBE_SUCCESS;
1377 u16 i, count;
1378
1379 DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
1380
1381 hw->eeprom.ops.init_params(hw);
1382
1383 if (words == 0) {
1384 status = IXGBE_ERR_INVALID_ARGUMENT;
1385 goto out;
1386 }
1387
1388 if (offset + words > hw->eeprom.word_size) {
1389 status = IXGBE_ERR_EEPROM;
1390 goto out;
1391 }
1392
1393 /*
1394 * We cannot hold synchronization semaphores for too long
1395 * to avoid other entity starvation. However it is more efficient
1396 * to read in bursts than synchronizing access for each word.
1397 */
1398 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1399 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1400 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1401
1402 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1403 count, &data[i]);
1404
1405 if (status != IXGBE_SUCCESS)
1406 break;
1407 }
1408
1409out:
1410 return status;
1411}
1412
1413/**
1414 * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1415 * @hw: pointer to hardware structure
1416 * @offset: offset within the EEPROM to be read
1417 * @words: number of word(s)
1418 * @data: read 16 bit word(s) from EEPROM
1419 *
1420 * Reads 16 bit word(s) from EEPROM through bit-bang method
1421 **/
1422static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1423 u16 words, u16 *data)
1424{
1425 s32 status;
1426 u16 word_in;
1427 u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1428 u16 i;
1429
1430 DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
1431
1432 /* Prepare the EEPROM for reading */
1433 status = ixgbe_acquire_eeprom(hw);
1434
1435 if (status == IXGBE_SUCCESS) {
1436 if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1437 ixgbe_release_eeprom(hw);
1438 status = IXGBE_ERR_EEPROM;
1439 }
1440 }
1441
1442 if (status == IXGBE_SUCCESS) {
1443 for (i = 0; i < words; i++) {
1444 ixgbe_standby_eeprom(hw);
1445 /*
1446 * Some SPI eeproms use the 8th address bit embedded
1447 * in the opcode
1448 */
1449 if ((hw->eeprom.address_bits == 8) &&
1450 ((offset + i) >= 128))
1451 read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1452
1453 /* Send the READ command (opcode + addr) */
1454 ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1455 IXGBE_EEPROM_OPCODE_BITS);
1456 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1457 hw->eeprom.address_bits);
1458
1459 /* Read the data. */
1460 word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1461 data[i] = (word_in >> 8) | (word_in << 8);
1462 }
1463
1464 /* End this read operation */
1465 ixgbe_release_eeprom(hw);
1466 }
1467
1468 return status;
1469}
1470
1471/**
1472 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1473 * @hw: pointer to hardware structure
1474 * @offset: offset within the EEPROM to be read
1475 * @data: read 16 bit value from EEPROM
1476 *
1477 * Reads 16 bit value from EEPROM through bit-bang method
1478 **/
1479s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1480 u16 *data)
1481{
1482 s32 status;
1483
1484 DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
1485
1486 hw->eeprom.ops.init_params(hw);
1487
1488 if (offset >= hw->eeprom.word_size) {
1489 status = IXGBE_ERR_EEPROM;
1490 goto out;
1491 }
1492
1493 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1494
1495out:
1496 return status;
1497}
1498
1499/**
1500 * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1501 * @hw: pointer to hardware structure
1502 * @offset: offset of word in the EEPROM to read
1503 * @words: number of word(s)
1504 * @data: 16 bit word(s) from the EEPROM
1505 *
1506 * Reads a 16 bit word(s) from the EEPROM using the EERD register.
1507 **/
1508s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1509 u16 words, u16 *data)
1510{
1511 u32 eerd;
1512 s32 status = IXGBE_SUCCESS;
1513 u32 i;
1514
1515 DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
1516
1517 hw->eeprom.ops.init_params(hw);
1518
1519 if (words == 0) {
1520 status = IXGBE_ERR_INVALID_ARGUMENT;
1521 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1522 goto out;
1523 }
1524
1525 if (offset >= hw->eeprom.word_size) {
1526 status = IXGBE_ERR_EEPROM;
1527 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1528 goto out;
1529 }
1530
1531 for (i = 0; i < words; i++) {
1532 eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1533 IXGBE_EEPROM_RW_REG_START;
1534
1535 IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1536 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1537
1538 if (status == IXGBE_SUCCESS) {
1539 data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1540 IXGBE_EEPROM_RW_REG_DATA);
1541 } else {
1542 DEBUGOUT("Eeprom read timed out\n");
1543 goto out;
1544 }
1545 }
1546out:
1547 return status;
1548}
1549
1550/**
1551 * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1552 * @hw: pointer to hardware structure
1553 * @offset: offset within the EEPROM to be used as a scratch pad
1554 *
1555 * Discover EEPROM page size by writing marching data at given offset.
1556 * This function is called only when we are writing a new large buffer
1557 * at given offset so the data would be overwritten anyway.
1558 **/
1559static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1560 u16 offset)
1561{
1562 u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1563 s32 status = IXGBE_SUCCESS;
1564 u16 i;
1565
1566 DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
1567
1568 for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1569 data[i] = i;
1570
1571 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1572 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1573 IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1574 hw->eeprom.word_page_size = 0;
1575 if (status != IXGBE_SUCCESS)
1576 goto out;
1577
1578 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1579 if (status != IXGBE_SUCCESS)
1580 goto out;
1581
1582 /*
1583 * When writing in burst more than the actual page size
1584 * EEPROM address wraps around current page.
1585 */
1586 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1587
1588 DEBUGOUT1("Detected EEPROM page size = %d words.",
1589 hw->eeprom.word_page_size);
1590out:
1591 return status;
1592}
1593
1594/**
1595 * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1596 * @hw: pointer to hardware structure
1597 * @offset: offset of word in the EEPROM to read
1598 * @data: word read from the EEPROM
1599 *
1600 * Reads a 16 bit word from the EEPROM using the EERD register.
1601 **/
1602s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1603{
1604 return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1605}
1606
1607/**
1608 * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1609 * @hw: pointer to hardware structure
1610 * @offset: offset of word in the EEPROM to write
1611 * @words: number of word(s)
1612 * @data: word(s) write to the EEPROM
1613 *
1614 * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1615 **/
1616s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1617 u16 words, u16 *data)
1618{
1619 u32 eewr;
1620 s32 status = IXGBE_SUCCESS;
1621 u16 i;
1622
1623 DEBUGFUNC("ixgbe_write_eewr_generic");
1624
1625 hw->eeprom.ops.init_params(hw);
1626
1627 if (words == 0) {
1628 status = IXGBE_ERR_INVALID_ARGUMENT;
1629 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1630 goto out;
1631 }
1632
1633 if (offset >= hw->eeprom.word_size) {
1634 status = IXGBE_ERR_EEPROM;
1635 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1636 goto out;
1637 }
1638
1639 for (i = 0; i < words; i++) {
1640 eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1641 (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1642 IXGBE_EEPROM_RW_REG_START;
1643
1644 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1645 if (status != IXGBE_SUCCESS) {
1646 DEBUGOUT("Eeprom write EEWR timed out\n");
1647 goto out;
1648 }
1649
1650 IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1651
1652 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1653 if (status != IXGBE_SUCCESS) {
1654 DEBUGOUT("Eeprom write EEWR timed out\n");
1655 goto out;
1656 }
1657 }
1658
1659out:
1660 return status;
1661}
1662
1663/**
1664 * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1665 * @hw: pointer to hardware structure
1666 * @offset: offset of word in the EEPROM to write
1667 * @data: word write to the EEPROM
1668 *
1669 * Write a 16 bit word to the EEPROM using the EEWR register.
1670 **/
1671s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1672{
1673 return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1674}
1675
1676/**
1677 * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1678 * @hw: pointer to hardware structure
1679 * @ee_reg: EEPROM flag for polling
1680 *
1681 * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1682 * read or write is done respectively.
1683 **/
1684s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1685{
1686 u32 i;
1687 u32 reg;
1688 s32 status = IXGBE_ERR_EEPROM;
1689
1690 DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
1691
1692 for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1693 if (ee_reg == IXGBE_NVM_POLL_READ)
1694 reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1695 else
1696 reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1697
1698 if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1699 status = IXGBE_SUCCESS;
1700 break;
1701 }
1702 usec_delay(5);
1703 }
1704
1705 if (i == IXGBE_EERD_EEWR_ATTEMPTS)
1706 ERROR_REPORT1(IXGBE_ERROR_POLLING,
1707 "EEPROM read/write done polling timed out");
1708
1709 return status;
1710}
1711
1712/**
1713 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1714 * @hw: pointer to hardware structure
1715 *
1716 * Prepares EEPROM for access using bit-bang method. This function should
1717 * be called before issuing a command to the EEPROM.
1718 **/
1719static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1720{
1721 s32 status = IXGBE_SUCCESS;
1722 u32 eec;
1723 u32 i;
1724
1725 DEBUGFUNC("ixgbe_acquire_eeprom");
1726
1727 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
1728 != IXGBE_SUCCESS)
1729 status = IXGBE_ERR_SWFW_SYNC;
1730
1731 if (status == IXGBE_SUCCESS) {
1732 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1733
1734 /* Request EEPROM Access */
1735 eec |= IXGBE_EEC_REQ;
1736 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1737
1738 for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1739 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1740 if (eec & IXGBE_EEC_GNT)
1741 break;
1742 usec_delay(5);
1743 }
1744
1745 /* Release if grant not acquired */
1746 if (!(eec & IXGBE_EEC_GNT)) {
1747 eec &= ~IXGBE_EEC_REQ;
1748 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1749 DEBUGOUT("Could not acquire EEPROM grant\n");
1750
1751 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1752 status = IXGBE_ERR_EEPROM;
1753 }
1754
1755 /* Setup EEPROM for Read/Write */
1756 if (status == IXGBE_SUCCESS) {
1757 /* Clear CS and SK */
1758 eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1759 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1760 IXGBE_WRITE_FLUSH(hw);
1761 usec_delay(1);
1762 }
1763 }
1764 return status;
1765}
1766
1767/**
1768 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1769 * @hw: pointer to hardware structure
1770 *
1771 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1772 **/
1773static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1774{
1775 s32 status = IXGBE_ERR_EEPROM;
1776 u32 timeout = 2000;
1777 u32 i;
1778 u32 swsm;
1779
1780 DEBUGFUNC("ixgbe_get_eeprom_semaphore");
1781
1782
1783 /* Get SMBI software semaphore between device drivers first */
1784 for (i = 0; i < timeout; i++) {
1785 /*
1786 * If the SMBI bit is 0 when we read it, then the bit will be
1787 * set and we have the semaphore
1788 */
1789 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1790 if (!(swsm & IXGBE_SWSM_SMBI)) {
1791 status = IXGBE_SUCCESS;
1792 break;
1793 }
1794 usec_delay(50);
1795 }
1796
1797 if (i == timeout) {
1798 DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
1799 "not granted.\n");
1800 /*
1801 * this release is particularly important because our attempts
1802 * above to get the semaphore may have succeeded, and if there
1803 * was a timeout, we should unconditionally clear the semaphore
1804 * bits to free the driver to make progress
1805 */
1806 ixgbe_release_eeprom_semaphore(hw);
1807
1808 usec_delay(50);
1809 /*
1810 * one last try
1811 * If the SMBI bit is 0 when we read it, then the bit will be
1812 * set and we have the semaphore
1813 */
1814 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1815 if (!(swsm & IXGBE_SWSM_SMBI))
1816 status = IXGBE_SUCCESS;
1817 }
1818
1819 /* Now get the semaphore between SW/FW through the SWESMBI bit */
1820 if (status == IXGBE_SUCCESS) {
1821 for (i = 0; i < timeout; i++) {
1822 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1823
1824 /* Set the SW EEPROM semaphore bit to request access */
1825 swsm |= IXGBE_SWSM_SWESMBI;
1826 IXGBE_WRITE_REG(hw, IXGBE_SWSM_BY_MAC(hw), swsm);
1827
1828 /*
1829 * If we set the bit successfully then we got the
1830 * semaphore.
1831 */
1832 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1833 if (swsm & IXGBE_SWSM_SWESMBI)
1834 break;
1835
1836 usec_delay(50);
1837 }
1838
1839 /*
1840 * Release semaphores and return error if SW EEPROM semaphore
1841 * was not granted because we don't have access to the EEPROM
1842 */
1843 if (i >= timeout) {
1844 ERROR_REPORT1(IXGBE_ERROR_POLLING,
1845 "SWESMBI Software EEPROM semaphore not granted.\n");
1846 ixgbe_release_eeprom_semaphore(hw);
1847 status = IXGBE_ERR_EEPROM;
1848 }
1849 } else {
1850 ERROR_REPORT1(IXGBE_ERROR_POLLING,
1851 "Software semaphore SMBI between device drivers "
1852 "not granted.\n");
1853 }
1854
1855 return status;
1856}
1857
1858/**
1859 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1860 * @hw: pointer to hardware structure
1861 *
1862 * This function clears hardware semaphore bits.
1863 **/
1864static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1865{
1866 u32 swsm;
1867
1868 DEBUGFUNC("ixgbe_release_eeprom_semaphore");
1869
1870 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1871
1872 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1873 swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1874 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1875 IXGBE_WRITE_FLUSH(hw);
1876}
1877
1878/**
1879 * ixgbe_ready_eeprom - Polls for EEPROM ready
1880 * @hw: pointer to hardware structure
1881 **/
1882static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1883{
1884 s32 status = IXGBE_SUCCESS;
1885 u16 i;
1886 u8 spi_stat_reg;
1887
1888 DEBUGFUNC("ixgbe_ready_eeprom");
1889
1890 /*
1891 * Read "Status Register" repeatedly until the LSB is cleared. The
1892 * EEPROM will signal that the command has been completed by clearing
1893 * bit 0 of the internal status register. If it's not cleared within
1894 * 5 milliseconds, then error out.
1895 */
1896 for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1897 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1898 IXGBE_EEPROM_OPCODE_BITS);
1899 spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1900 if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1901 break;
1902
1903 usec_delay(5);
1904 ixgbe_standby_eeprom(hw);
1233 /* To turn off the LED, set mode to OFF. */
1234 led_reg &= ~IXGBE_LED_MODE_MASK(index);
1235 led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
1236 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1237 IXGBE_WRITE_FLUSH(hw);
1238
1239 return IXGBE_SUCCESS;
1240}
1241
1242/**
1243 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
1244 * @hw: pointer to hardware structure
1245 *
1246 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
1247 * ixgbe_hw struct in order to set up EEPROM access.
1248 **/
1249s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
1250{
1251 struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
1252 u32 eec;
1253 u16 eeprom_size;
1254
1255 DEBUGFUNC("ixgbe_init_eeprom_params_generic");
1256
1257 if (eeprom->type == ixgbe_eeprom_uninitialized) {
1258 eeprom->type = ixgbe_eeprom_none;
1259 /* Set default semaphore delay to 10ms which is a well
1260 * tested value */
1261 eeprom->semaphore_delay = 10;
1262 /* Clear EEPROM page size, it will be initialized as needed */
1263 eeprom->word_page_size = 0;
1264
1265 /*
1266 * Check for EEPROM present first.
1267 * If not present leave as none
1268 */
1269 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1270 if (eec & IXGBE_EEC_PRES) {
1271 eeprom->type = ixgbe_eeprom_spi;
1272
1273 /*
1274 * SPI EEPROM is assumed here. This code would need to
1275 * change if a future EEPROM is not SPI.
1276 */
1277 eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
1278 IXGBE_EEC_SIZE_SHIFT);
1279 eeprom->word_size = 1 << (eeprom_size +
1280 IXGBE_EEPROM_WORD_SIZE_SHIFT);
1281 }
1282
1283 if (eec & IXGBE_EEC_ADDR_SIZE)
1284 eeprom->address_bits = 16;
1285 else
1286 eeprom->address_bits = 8;
1287 DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
1288 "%d\n", eeprom->type, eeprom->word_size,
1289 eeprom->address_bits);
1290 }
1291
1292 return IXGBE_SUCCESS;
1293}
1294
1295/**
1296 * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
1297 * @hw: pointer to hardware structure
1298 * @offset: offset within the EEPROM to write
1299 * @words: number of word(s)
1300 * @data: 16 bit word(s) to write to EEPROM
1301 *
1302 * Reads 16 bit word(s) from EEPROM through bit-bang method
1303 **/
1304s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1305 u16 words, u16 *data)
1306{
1307 s32 status = IXGBE_SUCCESS;
1308 u16 i, count;
1309
1310 DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
1311
1312 hw->eeprom.ops.init_params(hw);
1313
1314 if (words == 0) {
1315 status = IXGBE_ERR_INVALID_ARGUMENT;
1316 goto out;
1317 }
1318
1319 if (offset + words > hw->eeprom.word_size) {
1320 status = IXGBE_ERR_EEPROM;
1321 goto out;
1322 }
1323
1324 /*
1325 * The EEPROM page size cannot be queried from the chip. We do lazy
1326 * initialization. It is worth to do that when we write large buffer.
1327 */
1328 if ((hw->eeprom.word_page_size == 0) &&
1329 (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
1330 ixgbe_detect_eeprom_page_size_generic(hw, offset);
1331
1332 /*
1333 * We cannot hold synchronization semaphores for too long
1334 * to avoid other entity starvation. However it is more efficient
1335 * to read in bursts than synchronizing access for each word.
1336 */
1337 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1338 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1339 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1340 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
1341 count, &data[i]);
1342
1343 if (status != IXGBE_SUCCESS)
1344 break;
1345 }
1346
1347out:
1348 return status;
1349}
1350
1351/**
1352 * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
1353 * @hw: pointer to hardware structure
1354 * @offset: offset within the EEPROM to be written to
1355 * @words: number of word(s)
1356 * @data: 16 bit word(s) to be written to the EEPROM
1357 *
1358 * If ixgbe_eeprom_update_checksum is not called after this function, the
1359 * EEPROM will most likely contain an invalid checksum.
1360 **/
1361static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1362 u16 words, u16 *data)
1363{
1364 s32 status;
1365 u16 word;
1366 u16 page_size;
1367 u16 i;
1368 u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
1369
1370 DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
1371
1372 /* Prepare the EEPROM for writing */
1373 status = ixgbe_acquire_eeprom(hw);
1374
1375 if (status == IXGBE_SUCCESS) {
1376 if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1377 ixgbe_release_eeprom(hw);
1378 status = IXGBE_ERR_EEPROM;
1379 }
1380 }
1381
1382 if (status == IXGBE_SUCCESS) {
1383 for (i = 0; i < words; i++) {
1384 ixgbe_standby_eeprom(hw);
1385
1386 /* Send the WRITE ENABLE command (8 bit opcode ) */
1387 ixgbe_shift_out_eeprom_bits(hw,
1388 IXGBE_EEPROM_WREN_OPCODE_SPI,
1389 IXGBE_EEPROM_OPCODE_BITS);
1390
1391 ixgbe_standby_eeprom(hw);
1392
1393 /*
1394 * Some SPI eeproms use the 8th address bit embedded
1395 * in the opcode
1396 */
1397 if ((hw->eeprom.address_bits == 8) &&
1398 ((offset + i) >= 128))
1399 write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1400
1401 /* Send the Write command (8-bit opcode + addr) */
1402 ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1403 IXGBE_EEPROM_OPCODE_BITS);
1404 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1405 hw->eeprom.address_bits);
1406
1407 page_size = hw->eeprom.word_page_size;
1408
1409 /* Send the data in burst via SPI*/
1410 do {
1411 word = data[i];
1412 word = (word >> 8) | (word << 8);
1413 ixgbe_shift_out_eeprom_bits(hw, word, 16);
1414
1415 if (page_size == 0)
1416 break;
1417
1418 /* do not wrap around page */
1419 if (((offset + i) & (page_size - 1)) ==
1420 (page_size - 1))
1421 break;
1422 } while (++i < words);
1423
1424 ixgbe_standby_eeprom(hw);
1425 msec_delay(10);
1426 }
1427 /* Done with writing - release the EEPROM */
1428 ixgbe_release_eeprom(hw);
1429 }
1430
1431 return status;
1432}
1433
1434/**
1435 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1436 * @hw: pointer to hardware structure
1437 * @offset: offset within the EEPROM to be written to
1438 * @data: 16 bit word to be written to the EEPROM
1439 *
1440 * If ixgbe_eeprom_update_checksum is not called after this function, the
1441 * EEPROM will most likely contain an invalid checksum.
1442 **/
1443s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1444{
1445 s32 status;
1446
1447 DEBUGFUNC("ixgbe_write_eeprom_generic");
1448
1449 hw->eeprom.ops.init_params(hw);
1450
1451 if (offset >= hw->eeprom.word_size) {
1452 status = IXGBE_ERR_EEPROM;
1453 goto out;
1454 }
1455
1456 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1457
1458out:
1459 return status;
1460}
1461
1462/**
1463 * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1464 * @hw: pointer to hardware structure
1465 * @offset: offset within the EEPROM to be read
1466 * @data: read 16 bit words(s) from EEPROM
1467 * @words: number of word(s)
1468 *
1469 * Reads 16 bit word(s) from EEPROM through bit-bang method
1470 **/
1471s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1472 u16 words, u16 *data)
1473{
1474 s32 status = IXGBE_SUCCESS;
1475 u16 i, count;
1476
1477 DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
1478
1479 hw->eeprom.ops.init_params(hw);
1480
1481 if (words == 0) {
1482 status = IXGBE_ERR_INVALID_ARGUMENT;
1483 goto out;
1484 }
1485
1486 if (offset + words > hw->eeprom.word_size) {
1487 status = IXGBE_ERR_EEPROM;
1488 goto out;
1489 }
1490
1491 /*
1492 * We cannot hold synchronization semaphores for too long
1493 * to avoid other entity starvation. However it is more efficient
1494 * to read in bursts than synchronizing access for each word.
1495 */
1496 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1497 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1498 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1499
1500 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1501 count, &data[i]);
1502
1503 if (status != IXGBE_SUCCESS)
1504 break;
1505 }
1506
1507out:
1508 return status;
1509}
1510
1511/**
1512 * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1513 * @hw: pointer to hardware structure
1514 * @offset: offset within the EEPROM to be read
1515 * @words: number of word(s)
1516 * @data: read 16 bit word(s) from EEPROM
1517 *
1518 * Reads 16 bit word(s) from EEPROM through bit-bang method
1519 **/
1520static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1521 u16 words, u16 *data)
1522{
1523 s32 status;
1524 u16 word_in;
1525 u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1526 u16 i;
1527
1528 DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
1529
1530 /* Prepare the EEPROM for reading */
1531 status = ixgbe_acquire_eeprom(hw);
1532
1533 if (status == IXGBE_SUCCESS) {
1534 if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1535 ixgbe_release_eeprom(hw);
1536 status = IXGBE_ERR_EEPROM;
1537 }
1538 }
1539
1540 if (status == IXGBE_SUCCESS) {
1541 for (i = 0; i < words; i++) {
1542 ixgbe_standby_eeprom(hw);
1543 /*
1544 * Some SPI eeproms use the 8th address bit embedded
1545 * in the opcode
1546 */
1547 if ((hw->eeprom.address_bits == 8) &&
1548 ((offset + i) >= 128))
1549 read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1550
1551 /* Send the READ command (opcode + addr) */
1552 ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1553 IXGBE_EEPROM_OPCODE_BITS);
1554 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1555 hw->eeprom.address_bits);
1556
1557 /* Read the data. */
1558 word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1559 data[i] = (word_in >> 8) | (word_in << 8);
1560 }
1561
1562 /* End this read operation */
1563 ixgbe_release_eeprom(hw);
1564 }
1565
1566 return status;
1567}
1568
1569/**
1570 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1571 * @hw: pointer to hardware structure
1572 * @offset: offset within the EEPROM to be read
1573 * @data: read 16 bit value from EEPROM
1574 *
1575 * Reads 16 bit value from EEPROM through bit-bang method
1576 **/
1577s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1578 u16 *data)
1579{
1580 s32 status;
1581
1582 DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
1583
1584 hw->eeprom.ops.init_params(hw);
1585
1586 if (offset >= hw->eeprom.word_size) {
1587 status = IXGBE_ERR_EEPROM;
1588 goto out;
1589 }
1590
1591 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1592
1593out:
1594 return status;
1595}
1596
1597/**
1598 * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1599 * @hw: pointer to hardware structure
1600 * @offset: offset of word in the EEPROM to read
1601 * @words: number of word(s)
1602 * @data: 16 bit word(s) from the EEPROM
1603 *
1604 * Reads a 16 bit word(s) from the EEPROM using the EERD register.
1605 **/
1606s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1607 u16 words, u16 *data)
1608{
1609 u32 eerd;
1610 s32 status = IXGBE_SUCCESS;
1611 u32 i;
1612
1613 DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
1614
1615 hw->eeprom.ops.init_params(hw);
1616
1617 if (words == 0) {
1618 status = IXGBE_ERR_INVALID_ARGUMENT;
1619 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1620 goto out;
1621 }
1622
1623 if (offset >= hw->eeprom.word_size) {
1624 status = IXGBE_ERR_EEPROM;
1625 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1626 goto out;
1627 }
1628
1629 for (i = 0; i < words; i++) {
1630 eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1631 IXGBE_EEPROM_RW_REG_START;
1632
1633 IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1634 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1635
1636 if (status == IXGBE_SUCCESS) {
1637 data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1638 IXGBE_EEPROM_RW_REG_DATA);
1639 } else {
1640 DEBUGOUT("Eeprom read timed out\n");
1641 goto out;
1642 }
1643 }
1644out:
1645 return status;
1646}
1647
1648/**
1649 * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1650 * @hw: pointer to hardware structure
1651 * @offset: offset within the EEPROM to be used as a scratch pad
1652 *
1653 * Discover EEPROM page size by writing marching data at given offset.
1654 * This function is called only when we are writing a new large buffer
1655 * at given offset so the data would be overwritten anyway.
1656 **/
1657static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1658 u16 offset)
1659{
1660 u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1661 s32 status = IXGBE_SUCCESS;
1662 u16 i;
1663
1664 DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
1665
1666 for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1667 data[i] = i;
1668
1669 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1670 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1671 IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1672 hw->eeprom.word_page_size = 0;
1673 if (status != IXGBE_SUCCESS)
1674 goto out;
1675
1676 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1677 if (status != IXGBE_SUCCESS)
1678 goto out;
1679
1680 /*
1681 * When writing in burst more than the actual page size
1682 * EEPROM address wraps around current page.
1683 */
1684 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1685
1686 DEBUGOUT1("Detected EEPROM page size = %d words.",
1687 hw->eeprom.word_page_size);
1688out:
1689 return status;
1690}
1691
1692/**
1693 * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1694 * @hw: pointer to hardware structure
1695 * @offset: offset of word in the EEPROM to read
1696 * @data: word read from the EEPROM
1697 *
1698 * Reads a 16 bit word from the EEPROM using the EERD register.
1699 **/
1700s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1701{
1702 return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1703}
1704
1705/**
1706 * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1707 * @hw: pointer to hardware structure
1708 * @offset: offset of word in the EEPROM to write
1709 * @words: number of word(s)
1710 * @data: word(s) write to the EEPROM
1711 *
1712 * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1713 **/
1714s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1715 u16 words, u16 *data)
1716{
1717 u32 eewr;
1718 s32 status = IXGBE_SUCCESS;
1719 u16 i;
1720
1721 DEBUGFUNC("ixgbe_write_eewr_generic");
1722
1723 hw->eeprom.ops.init_params(hw);
1724
1725 if (words == 0) {
1726 status = IXGBE_ERR_INVALID_ARGUMENT;
1727 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1728 goto out;
1729 }
1730
1731 if (offset >= hw->eeprom.word_size) {
1732 status = IXGBE_ERR_EEPROM;
1733 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1734 goto out;
1735 }
1736
1737 for (i = 0; i < words; i++) {
1738 eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1739 (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1740 IXGBE_EEPROM_RW_REG_START;
1741
1742 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1743 if (status != IXGBE_SUCCESS) {
1744 DEBUGOUT("Eeprom write EEWR timed out\n");
1745 goto out;
1746 }
1747
1748 IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1749
1750 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1751 if (status != IXGBE_SUCCESS) {
1752 DEBUGOUT("Eeprom write EEWR timed out\n");
1753 goto out;
1754 }
1755 }
1756
1757out:
1758 return status;
1759}
1760
1761/**
1762 * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1763 * @hw: pointer to hardware structure
1764 * @offset: offset of word in the EEPROM to write
1765 * @data: word write to the EEPROM
1766 *
1767 * Write a 16 bit word to the EEPROM using the EEWR register.
1768 **/
1769s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1770{
1771 return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1772}
1773
1774/**
1775 * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1776 * @hw: pointer to hardware structure
1777 * @ee_reg: EEPROM flag for polling
1778 *
1779 * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1780 * read or write is done respectively.
1781 **/
1782s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1783{
1784 u32 i;
1785 u32 reg;
1786 s32 status = IXGBE_ERR_EEPROM;
1787
1788 DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
1789
1790 for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1791 if (ee_reg == IXGBE_NVM_POLL_READ)
1792 reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1793 else
1794 reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1795
1796 if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1797 status = IXGBE_SUCCESS;
1798 break;
1799 }
1800 usec_delay(5);
1801 }
1802
1803 if (i == IXGBE_EERD_EEWR_ATTEMPTS)
1804 ERROR_REPORT1(IXGBE_ERROR_POLLING,
1805 "EEPROM read/write done polling timed out");
1806
1807 return status;
1808}
1809
1810/**
1811 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1812 * @hw: pointer to hardware structure
1813 *
1814 * Prepares EEPROM for access using bit-bang method. This function should
1815 * be called before issuing a command to the EEPROM.
1816 **/
1817static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1818{
1819 s32 status = IXGBE_SUCCESS;
1820 u32 eec;
1821 u32 i;
1822
1823 DEBUGFUNC("ixgbe_acquire_eeprom");
1824
1825 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
1826 != IXGBE_SUCCESS)
1827 status = IXGBE_ERR_SWFW_SYNC;
1828
1829 if (status == IXGBE_SUCCESS) {
1830 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1831
1832 /* Request EEPROM Access */
1833 eec |= IXGBE_EEC_REQ;
1834 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1835
1836 for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1837 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1838 if (eec & IXGBE_EEC_GNT)
1839 break;
1840 usec_delay(5);
1841 }
1842
1843 /* Release if grant not acquired */
1844 if (!(eec & IXGBE_EEC_GNT)) {
1845 eec &= ~IXGBE_EEC_REQ;
1846 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1847 DEBUGOUT("Could not acquire EEPROM grant\n");
1848
1849 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1850 status = IXGBE_ERR_EEPROM;
1851 }
1852
1853 /* Setup EEPROM for Read/Write */
1854 if (status == IXGBE_SUCCESS) {
1855 /* Clear CS and SK */
1856 eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1857 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1858 IXGBE_WRITE_FLUSH(hw);
1859 usec_delay(1);
1860 }
1861 }
1862 return status;
1863}
1864
1865/**
1866 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1867 * @hw: pointer to hardware structure
1868 *
1869 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1870 **/
1871static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1872{
1873 s32 status = IXGBE_ERR_EEPROM;
1874 u32 timeout = 2000;
1875 u32 i;
1876 u32 swsm;
1877
1878 DEBUGFUNC("ixgbe_get_eeprom_semaphore");
1879
1880
1881 /* Get SMBI software semaphore between device drivers first */
1882 for (i = 0; i < timeout; i++) {
1883 /*
1884 * If the SMBI bit is 0 when we read it, then the bit will be
1885 * set and we have the semaphore
1886 */
1887 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1888 if (!(swsm & IXGBE_SWSM_SMBI)) {
1889 status = IXGBE_SUCCESS;
1890 break;
1891 }
1892 usec_delay(50);
1893 }
1894
1895 if (i == timeout) {
1896 DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
1897 "not granted.\n");
1898 /*
1899 * this release is particularly important because our attempts
1900 * above to get the semaphore may have succeeded, and if there
1901 * was a timeout, we should unconditionally clear the semaphore
1902 * bits to free the driver to make progress
1903 */
1904 ixgbe_release_eeprom_semaphore(hw);
1905
1906 usec_delay(50);
1907 /*
1908 * one last try
1909 * If the SMBI bit is 0 when we read it, then the bit will be
1910 * set and we have the semaphore
1911 */
1912 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1913 if (!(swsm & IXGBE_SWSM_SMBI))
1914 status = IXGBE_SUCCESS;
1915 }
1916
1917 /* Now get the semaphore between SW/FW through the SWESMBI bit */
1918 if (status == IXGBE_SUCCESS) {
1919 for (i = 0; i < timeout; i++) {
1920 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1921
1922 /* Set the SW EEPROM semaphore bit to request access */
1923 swsm |= IXGBE_SWSM_SWESMBI;
1924 IXGBE_WRITE_REG(hw, IXGBE_SWSM_BY_MAC(hw), swsm);
1925
1926 /*
1927 * If we set the bit successfully then we got the
1928 * semaphore.
1929 */
1930 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1931 if (swsm & IXGBE_SWSM_SWESMBI)
1932 break;
1933
1934 usec_delay(50);
1935 }
1936
1937 /*
1938 * Release semaphores and return error if SW EEPROM semaphore
1939 * was not granted because we don't have access to the EEPROM
1940 */
1941 if (i >= timeout) {
1942 ERROR_REPORT1(IXGBE_ERROR_POLLING,
1943 "SWESMBI Software EEPROM semaphore not granted.\n");
1944 ixgbe_release_eeprom_semaphore(hw);
1945 status = IXGBE_ERR_EEPROM;
1946 }
1947 } else {
1948 ERROR_REPORT1(IXGBE_ERROR_POLLING,
1949 "Software semaphore SMBI between device drivers "
1950 "not granted.\n");
1951 }
1952
1953 return status;
1954}
1955
1956/**
1957 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1958 * @hw: pointer to hardware structure
1959 *
1960 * This function clears hardware semaphore bits.
1961 **/
1962static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1963{
1964 u32 swsm;
1965
1966 DEBUGFUNC("ixgbe_release_eeprom_semaphore");
1967
1968 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1969
1970 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1971 swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1972 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1973 IXGBE_WRITE_FLUSH(hw);
1974}
1975
1976/**
1977 * ixgbe_ready_eeprom - Polls for EEPROM ready
1978 * @hw: pointer to hardware structure
1979 **/
1980static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1981{
1982 s32 status = IXGBE_SUCCESS;
1983 u16 i;
1984 u8 spi_stat_reg;
1985
1986 DEBUGFUNC("ixgbe_ready_eeprom");
1987
1988 /*
1989 * Read "Status Register" repeatedly until the LSB is cleared. The
1990 * EEPROM will signal that the command has been completed by clearing
1991 * bit 0 of the internal status register. If it's not cleared within
1992 * 5 milliseconds, then error out.
1993 */
1994 for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1995 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1996 IXGBE_EEPROM_OPCODE_BITS);
1997 spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1998 if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1999 break;
2000
2001 usec_delay(5);
2002 ixgbe_standby_eeprom(hw);
1905 }
2003 };
1906
1907 /*
1908 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1909 * devices (and only 0-5mSec on 5V devices)
1910 */
1911 if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1912 DEBUGOUT("SPI EEPROM Status error\n");
1913 status = IXGBE_ERR_EEPROM;
1914 }
1915
1916 return status;
1917}
1918
1919/**
1920 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1921 * @hw: pointer to hardware structure
1922 **/
1923static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1924{
1925 u32 eec;
1926
1927 DEBUGFUNC("ixgbe_standby_eeprom");
1928
1929 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1930
1931 /* Toggle CS to flush commands */
1932 eec |= IXGBE_EEC_CS;
1933 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1934 IXGBE_WRITE_FLUSH(hw);
1935 usec_delay(1);
1936 eec &= ~IXGBE_EEC_CS;
1937 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1938 IXGBE_WRITE_FLUSH(hw);
1939 usec_delay(1);
1940}
1941
1942/**
1943 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1944 * @hw: pointer to hardware structure
1945 * @data: data to send to the EEPROM
1946 * @count: number of bits to shift out
1947 **/
1948static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1949 u16 count)
1950{
1951 u32 eec;
1952 u32 mask;
1953 u32 i;
1954
1955 DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
1956
1957 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1958
1959 /*
1960 * Mask is used to shift "count" bits of "data" out to the EEPROM
1961 * one bit at a time. Determine the starting bit based on count
1962 */
1963 mask = 0x01 << (count - 1);
1964
1965 for (i = 0; i < count; i++) {
1966 /*
1967 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1968 * "1", and then raising and then lowering the clock (the SK
1969 * bit controls the clock input to the EEPROM). A "0" is
1970 * shifted out to the EEPROM by setting "DI" to "0" and then
1971 * raising and then lowering the clock.
1972 */
1973 if (data & mask)
1974 eec |= IXGBE_EEC_DI;
1975 else
1976 eec &= ~IXGBE_EEC_DI;
1977
1978 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1979 IXGBE_WRITE_FLUSH(hw);
1980
1981 usec_delay(1);
1982
1983 ixgbe_raise_eeprom_clk(hw, &eec);
1984 ixgbe_lower_eeprom_clk(hw, &eec);
1985
1986 /*
1987 * Shift mask to signify next bit of data to shift in to the
1988 * EEPROM
1989 */
1990 mask = mask >> 1;
2004
2005 /*
2006 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
2007 * devices (and only 0-5mSec on 5V devices)
2008 */
2009 if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
2010 DEBUGOUT("SPI EEPROM Status error\n");
2011 status = IXGBE_ERR_EEPROM;
2012 }
2013
2014 return status;
2015}
2016
2017/**
2018 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
2019 * @hw: pointer to hardware structure
2020 **/
2021static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
2022{
2023 u32 eec;
2024
2025 DEBUGFUNC("ixgbe_standby_eeprom");
2026
2027 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2028
2029 /* Toggle CS to flush commands */
2030 eec |= IXGBE_EEC_CS;
2031 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2032 IXGBE_WRITE_FLUSH(hw);
2033 usec_delay(1);
2034 eec &= ~IXGBE_EEC_CS;
2035 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2036 IXGBE_WRITE_FLUSH(hw);
2037 usec_delay(1);
2038}
2039
2040/**
2041 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
2042 * @hw: pointer to hardware structure
2043 * @data: data to send to the EEPROM
2044 * @count: number of bits to shift out
2045 **/
2046static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
2047 u16 count)
2048{
2049 u32 eec;
2050 u32 mask;
2051 u32 i;
2052
2053 DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
2054
2055 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2056
2057 /*
2058 * Mask is used to shift "count" bits of "data" out to the EEPROM
2059 * one bit at a time. Determine the starting bit based on count
2060 */
2061 mask = 0x01 << (count - 1);
2062
2063 for (i = 0; i < count; i++) {
2064 /*
2065 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
2066 * "1", and then raising and then lowering the clock (the SK
2067 * bit controls the clock input to the EEPROM). A "0" is
2068 * shifted out to the EEPROM by setting "DI" to "0" and then
2069 * raising and then lowering the clock.
2070 */
2071 if (data & mask)
2072 eec |= IXGBE_EEC_DI;
2073 else
2074 eec &= ~IXGBE_EEC_DI;
2075
2076 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2077 IXGBE_WRITE_FLUSH(hw);
2078
2079 usec_delay(1);
2080
2081 ixgbe_raise_eeprom_clk(hw, &eec);
2082 ixgbe_lower_eeprom_clk(hw, &eec);
2083
2084 /*
2085 * Shift mask to signify next bit of data to shift in to the
2086 * EEPROM
2087 */
2088 mask = mask >> 1;
1991 }
2089 };
1992
1993 /* We leave the "DI" bit set to "0" when we leave this routine. */
1994 eec &= ~IXGBE_EEC_DI;
1995 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1996 IXGBE_WRITE_FLUSH(hw);
1997}
1998
1999/**
2000 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
2001 * @hw: pointer to hardware structure
2002 **/
2003static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
2004{
2005 u32 eec;
2006 u32 i;
2007 u16 data = 0;
2008
2009 DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
2010
2011 /*
2012 * In order to read a register from the EEPROM, we need to shift
2013 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
2014 * the clock input to the EEPROM (setting the SK bit), and then reading
2015 * the value of the "DO" bit. During this "shifting in" process the
2016 * "DI" bit should always be clear.
2017 */
2018 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2019
2020 eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
2021
2022 for (i = 0; i < count; i++) {
2023 data = data << 1;
2024 ixgbe_raise_eeprom_clk(hw, &eec);
2025
2026 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2027
2028 eec &= ~(IXGBE_EEC_DI);
2029 if (eec & IXGBE_EEC_DO)
2030 data |= 1;
2031
2032 ixgbe_lower_eeprom_clk(hw, &eec);
2033 }
2034
2035 return data;
2036}
2037
2038/**
2039 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
2040 * @hw: pointer to hardware structure
2041 * @eec: EEC register's current value
2042 **/
2043static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2044{
2045 DEBUGFUNC("ixgbe_raise_eeprom_clk");
2046
2047 /*
2048 * Raise the clock input to the EEPROM
2049 * (setting the SK bit), then delay
2050 */
2051 *eec = *eec | IXGBE_EEC_SK;
2052 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2053 IXGBE_WRITE_FLUSH(hw);
2054 usec_delay(1);
2055}
2056
2057/**
2058 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
2059 * @hw: pointer to hardware structure
2060 * @eecd: EECD's current value
2061 **/
2062static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2063{
2064 DEBUGFUNC("ixgbe_lower_eeprom_clk");
2065
2066 /*
2067 * Lower the clock input to the EEPROM (clearing the SK bit), then
2068 * delay
2069 */
2070 *eec = *eec & ~IXGBE_EEC_SK;
2071 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2072 IXGBE_WRITE_FLUSH(hw);
2073 usec_delay(1);
2074}
2075
2076/**
2077 * ixgbe_release_eeprom - Release EEPROM, release semaphores
2078 * @hw: pointer to hardware structure
2079 **/
2080static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
2081{
2082 u32 eec;
2083
2084 DEBUGFUNC("ixgbe_release_eeprom");
2085
2086 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2087
2088 eec |= IXGBE_EEC_CS; /* Pull CS high */
2089 eec &= ~IXGBE_EEC_SK; /* Lower SCK */
2090
2091 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2092 IXGBE_WRITE_FLUSH(hw);
2093
2094 usec_delay(1);
2095
2096 /* Stop requesting EEPROM access */
2097 eec &= ~IXGBE_EEC_REQ;
2098 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2099
2100 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
2101
2102 /* Delay before attempt to obtain semaphore again to allow FW access */
2103 msec_delay(hw->eeprom.semaphore_delay);
2104}
2105
2106/**
2107 * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
2108 * @hw: pointer to hardware structure
2109 *
2110 * Returns a negative error code on error, or the 16-bit checksum
2111 **/
2112s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
2113{
2114 u16 i;
2115 u16 j;
2116 u16 checksum = 0;
2117 u16 length = 0;
2118 u16 pointer = 0;
2119 u16 word = 0;
2120
2121 DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
2122
2123 /* Include 0x0-0x3F in the checksum */
2124 for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
2125 if (hw->eeprom.ops.read(hw, i, &word)) {
2126 DEBUGOUT("EEPROM read failed\n");
2127 return IXGBE_ERR_EEPROM;
2128 }
2129 checksum += word;
2130 }
2131
2132 /* Include all data from pointers except for the fw pointer */
2133 for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
2134 if (hw->eeprom.ops.read(hw, i, &pointer)) {
2135 DEBUGOUT("EEPROM read failed\n");
2136 return IXGBE_ERR_EEPROM;
2137 }
2138
2139 /* If the pointer seems invalid */
2140 if (pointer == 0xFFFF || pointer == 0)
2141 continue;
2142
2143 if (hw->eeprom.ops.read(hw, pointer, &length)) {
2144 DEBUGOUT("EEPROM read failed\n");
2145 return IXGBE_ERR_EEPROM;
2146 }
2147
2148 if (length == 0xFFFF || length == 0)
2149 continue;
2150
2151 for (j = pointer + 1; j <= pointer + length; j++) {
2152 if (hw->eeprom.ops.read(hw, j, &word)) {
2153 DEBUGOUT("EEPROM read failed\n");
2154 return IXGBE_ERR_EEPROM;
2155 }
2156 checksum += word;
2157 }
2158 }
2159
2160 checksum = (u16)IXGBE_EEPROM_SUM - checksum;
2161
2162 return (s32)checksum;
2163}
2164
2165/**
2166 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
2167 * @hw: pointer to hardware structure
2168 * @checksum_val: calculated checksum
2169 *
2170 * Performs checksum calculation and validates the EEPROM checksum. If the
2171 * caller does not need checksum_val, the value can be NULL.
2172 **/
2173s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
2174 u16 *checksum_val)
2175{
2176 s32 status;
2177 u16 checksum;
2178 u16 read_checksum = 0;
2179
2180 DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
2181
2182 /* Read the first word from the EEPROM. If this times out or fails, do
2183 * not continue or we could be in for a very long wait while every
2184 * EEPROM read fails
2185 */
2186 status = hw->eeprom.ops.read(hw, 0, &checksum);
2187 if (status) {
2188 DEBUGOUT("EEPROM read failed\n");
2189 return status;
2190 }
2191
2192 status = hw->eeprom.ops.calc_checksum(hw);
2193 if (status < 0)
2194 return status;
2195
2196 checksum = (u16)(status & 0xffff);
2197
2198 status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
2199 if (status) {
2200 DEBUGOUT("EEPROM read failed\n");
2201 return status;
2202 }
2203
2204 /* Verify read checksum from EEPROM is the same as
2205 * calculated checksum
2206 */
2207 if (read_checksum != checksum)
2208 status = IXGBE_ERR_EEPROM_CHECKSUM;
2209
2210 /* If the user cares, return the calculated checksum */
2211 if (checksum_val)
2212 *checksum_val = checksum;
2213
2214 return status;
2215}
2216
2217/**
2218 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
2219 * @hw: pointer to hardware structure
2220 **/
2221s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
2222{
2223 s32 status;
2224 u16 checksum;
2225
2226 DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
2227
2228 /* Read the first word from the EEPROM. If this times out or fails, do
2229 * not continue or we could be in for a very long wait while every
2230 * EEPROM read fails
2231 */
2232 status = hw->eeprom.ops.read(hw, 0, &checksum);
2233 if (status) {
2234 DEBUGOUT("EEPROM read failed\n");
2235 return status;
2236 }
2237
2238 status = hw->eeprom.ops.calc_checksum(hw);
2239 if (status < 0)
2240 return status;
2241
2242 checksum = (u16)(status & 0xffff);
2243
2244 status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
2245
2246 return status;
2247}
2248
2249/**
2250 * ixgbe_validate_mac_addr - Validate MAC address
2251 * @mac_addr: pointer to MAC address.
2252 *
2090
2091 /* We leave the "DI" bit set to "0" when we leave this routine. */
2092 eec &= ~IXGBE_EEC_DI;
2093 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2094 IXGBE_WRITE_FLUSH(hw);
2095}
2096
2097/**
2098 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
2099 * @hw: pointer to hardware structure
2100 **/
2101static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
2102{
2103 u32 eec;
2104 u32 i;
2105 u16 data = 0;
2106
2107 DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
2108
2109 /*
2110 * In order to read a register from the EEPROM, we need to shift
2111 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
2112 * the clock input to the EEPROM (setting the SK bit), and then reading
2113 * the value of the "DO" bit. During this "shifting in" process the
2114 * "DI" bit should always be clear.
2115 */
2116 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2117
2118 eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
2119
2120 for (i = 0; i < count; i++) {
2121 data = data << 1;
2122 ixgbe_raise_eeprom_clk(hw, &eec);
2123
2124 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2125
2126 eec &= ~(IXGBE_EEC_DI);
2127 if (eec & IXGBE_EEC_DO)
2128 data |= 1;
2129
2130 ixgbe_lower_eeprom_clk(hw, &eec);
2131 }
2132
2133 return data;
2134}
2135
2136/**
2137 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
2138 * @hw: pointer to hardware structure
2139 * @eec: EEC register's current value
2140 **/
2141static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2142{
2143 DEBUGFUNC("ixgbe_raise_eeprom_clk");
2144
2145 /*
2146 * Raise the clock input to the EEPROM
2147 * (setting the SK bit), then delay
2148 */
2149 *eec = *eec | IXGBE_EEC_SK;
2150 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2151 IXGBE_WRITE_FLUSH(hw);
2152 usec_delay(1);
2153}
2154
2155/**
2156 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
2157 * @hw: pointer to hardware structure
2158 * @eecd: EECD's current value
2159 **/
2160static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2161{
2162 DEBUGFUNC("ixgbe_lower_eeprom_clk");
2163
2164 /*
2165 * Lower the clock input to the EEPROM (clearing the SK bit), then
2166 * delay
2167 */
2168 *eec = *eec & ~IXGBE_EEC_SK;
2169 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2170 IXGBE_WRITE_FLUSH(hw);
2171 usec_delay(1);
2172}
2173
2174/**
2175 * ixgbe_release_eeprom - Release EEPROM, release semaphores
2176 * @hw: pointer to hardware structure
2177 **/
2178static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
2179{
2180 u32 eec;
2181
2182 DEBUGFUNC("ixgbe_release_eeprom");
2183
2184 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2185
2186 eec |= IXGBE_EEC_CS; /* Pull CS high */
2187 eec &= ~IXGBE_EEC_SK; /* Lower SCK */
2188
2189 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2190 IXGBE_WRITE_FLUSH(hw);
2191
2192 usec_delay(1);
2193
2194 /* Stop requesting EEPROM access */
2195 eec &= ~IXGBE_EEC_REQ;
2196 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2197
2198 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
2199
2200 /* Delay before attempt to obtain semaphore again to allow FW access */
2201 msec_delay(hw->eeprom.semaphore_delay);
2202}
2203
2204/**
2205 * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
2206 * @hw: pointer to hardware structure
2207 *
2208 * Returns a negative error code on error, or the 16-bit checksum
2209 **/
2210s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
2211{
2212 u16 i;
2213 u16 j;
2214 u16 checksum = 0;
2215 u16 length = 0;
2216 u16 pointer = 0;
2217 u16 word = 0;
2218
2219 DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
2220
2221 /* Include 0x0-0x3F in the checksum */
2222 for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
2223 if (hw->eeprom.ops.read(hw, i, &word)) {
2224 DEBUGOUT("EEPROM read failed\n");
2225 return IXGBE_ERR_EEPROM;
2226 }
2227 checksum += word;
2228 }
2229
2230 /* Include all data from pointers except for the fw pointer */
2231 for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
2232 if (hw->eeprom.ops.read(hw, i, &pointer)) {
2233 DEBUGOUT("EEPROM read failed\n");
2234 return IXGBE_ERR_EEPROM;
2235 }
2236
2237 /* If the pointer seems invalid */
2238 if (pointer == 0xFFFF || pointer == 0)
2239 continue;
2240
2241 if (hw->eeprom.ops.read(hw, pointer, &length)) {
2242 DEBUGOUT("EEPROM read failed\n");
2243 return IXGBE_ERR_EEPROM;
2244 }
2245
2246 if (length == 0xFFFF || length == 0)
2247 continue;
2248
2249 for (j = pointer + 1; j <= pointer + length; j++) {
2250 if (hw->eeprom.ops.read(hw, j, &word)) {
2251 DEBUGOUT("EEPROM read failed\n");
2252 return IXGBE_ERR_EEPROM;
2253 }
2254 checksum += word;
2255 }
2256 }
2257
2258 checksum = (u16)IXGBE_EEPROM_SUM - checksum;
2259
2260 return (s32)checksum;
2261}
2262
2263/**
2264 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
2265 * @hw: pointer to hardware structure
2266 * @checksum_val: calculated checksum
2267 *
2268 * Performs checksum calculation and validates the EEPROM checksum. If the
2269 * caller does not need checksum_val, the value can be NULL.
2270 **/
2271s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
2272 u16 *checksum_val)
2273{
2274 s32 status;
2275 u16 checksum;
2276 u16 read_checksum = 0;
2277
2278 DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
2279
2280 /* Read the first word from the EEPROM. If this times out or fails, do
2281 * not continue or we could be in for a very long wait while every
2282 * EEPROM read fails
2283 */
2284 status = hw->eeprom.ops.read(hw, 0, &checksum);
2285 if (status) {
2286 DEBUGOUT("EEPROM read failed\n");
2287 return status;
2288 }
2289
2290 status = hw->eeprom.ops.calc_checksum(hw);
2291 if (status < 0)
2292 return status;
2293
2294 checksum = (u16)(status & 0xffff);
2295
2296 status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
2297 if (status) {
2298 DEBUGOUT("EEPROM read failed\n");
2299 return status;
2300 }
2301
2302 /* Verify read checksum from EEPROM is the same as
2303 * calculated checksum
2304 */
2305 if (read_checksum != checksum)
2306 status = IXGBE_ERR_EEPROM_CHECKSUM;
2307
2308 /* If the user cares, return the calculated checksum */
2309 if (checksum_val)
2310 *checksum_val = checksum;
2311
2312 return status;
2313}
2314
2315/**
2316 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
2317 * @hw: pointer to hardware structure
2318 **/
2319s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
2320{
2321 s32 status;
2322 u16 checksum;
2323
2324 DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
2325
2326 /* Read the first word from the EEPROM. If this times out or fails, do
2327 * not continue or we could be in for a very long wait while every
2328 * EEPROM read fails
2329 */
2330 status = hw->eeprom.ops.read(hw, 0, &checksum);
2331 if (status) {
2332 DEBUGOUT("EEPROM read failed\n");
2333 return status;
2334 }
2335
2336 status = hw->eeprom.ops.calc_checksum(hw);
2337 if (status < 0)
2338 return status;
2339
2340 checksum = (u16)(status & 0xffff);
2341
2342 status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
2343
2344 return status;
2345}
2346
2347/**
2348 * ixgbe_validate_mac_addr - Validate MAC address
2349 * @mac_addr: pointer to MAC address.
2350 *
2253 * Tests a MAC address to ensure it is a valid Individual Address
2351 * Tests a MAC address to ensure it is a valid Individual Address.
2254 **/
2255s32 ixgbe_validate_mac_addr(u8 *mac_addr)
2256{
2257 s32 status = IXGBE_SUCCESS;
2258
2259 DEBUGFUNC("ixgbe_validate_mac_addr");
2260
2261 /* Make sure it is not a multicast address */
2262 if (IXGBE_IS_MULTICAST(mac_addr)) {
2352 **/
2353s32 ixgbe_validate_mac_addr(u8 *mac_addr)
2354{
2355 s32 status = IXGBE_SUCCESS;
2356
2357 DEBUGFUNC("ixgbe_validate_mac_addr");
2358
2359 /* Make sure it is not a multicast address */
2360 if (IXGBE_IS_MULTICAST(mac_addr)) {
2263 DEBUGOUT("MAC address is multicast\n");
2264 status = IXGBE_ERR_INVALID_MAC_ADDR;
2265 /* Not a broadcast address */
2266 } else if (IXGBE_IS_BROADCAST(mac_addr)) {
2361 status = IXGBE_ERR_INVALID_MAC_ADDR;
2362 /* Not a broadcast address */
2363 } else if (IXGBE_IS_BROADCAST(mac_addr)) {
2267 DEBUGOUT("MAC address is broadcast\n");
2268 status = IXGBE_ERR_INVALID_MAC_ADDR;
2269 /* Reject the zero address */
2270 } else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
2271 mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
2364 status = IXGBE_ERR_INVALID_MAC_ADDR;
2365 /* Reject the zero address */
2366 } else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
2367 mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
2272 DEBUGOUT("MAC address is all zeros\n");
2273 status = IXGBE_ERR_INVALID_MAC_ADDR;
2274 }
2275 return status;
2276}
2277
2278/**
2279 * ixgbe_set_rar_generic - Set Rx address register
2280 * @hw: pointer to hardware structure
2281 * @index: Receive address register to write
2282 * @addr: Address to put into receive address register
2283 * @vmdq: VMDq "set" or "pool" index
2284 * @enable_addr: set flag that address is active
2285 *
2286 * Puts an ethernet address into a receive address register.
2287 **/
2288s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
2289 u32 enable_addr)
2290{
2291 u32 rar_low, rar_high;
2292 u32 rar_entries = hw->mac.num_rar_entries;
2293
2294 DEBUGFUNC("ixgbe_set_rar_generic");
2295
2296 /* Make sure we are using a valid rar index range */
2297 if (index >= rar_entries) {
2298 ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2299 "RAR index %d is out of range.\n", index);
2300 return IXGBE_ERR_INVALID_ARGUMENT;
2301 }
2302
2303 /* setup VMDq pool selection before this RAR gets enabled */
2304 hw->mac.ops.set_vmdq(hw, index, vmdq);
2305
2306 /*
2307 * HW expects these in little endian so we reverse the byte
2308 * order from network order (big endian) to little endian
2309 */
2310 rar_low = ((u32)addr[0] |
2311 ((u32)addr[1] << 8) |
2312 ((u32)addr[2] << 16) |
2313 ((u32)addr[3] << 24));
2314 /*
2315 * Some parts put the VMDq setting in the extra RAH bits,
2316 * so save everything except the lower 16 bits that hold part
2317 * of the address and the address valid bit.
2318 */
2319 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2320 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2321 rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
2322
2323 if (enable_addr != 0)
2324 rar_high |= IXGBE_RAH_AV;
2325
2326 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
2327 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2328
2329 return IXGBE_SUCCESS;
2330}
2331
2332/**
2333 * ixgbe_clear_rar_generic - Remove Rx address register
2334 * @hw: pointer to hardware structure
2335 * @index: Receive address register to write
2336 *
2337 * Clears an ethernet address from a receive address register.
2338 **/
2339s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
2340{
2341 u32 rar_high;
2342 u32 rar_entries = hw->mac.num_rar_entries;
2343
2344 DEBUGFUNC("ixgbe_clear_rar_generic");
2345
2346 /* Make sure we are using a valid rar index range */
2347 if (index >= rar_entries) {
2348 ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2349 "RAR index %d is out of range.\n", index);
2350 return IXGBE_ERR_INVALID_ARGUMENT;
2351 }
2352
2353 /*
2354 * Some parts put the VMDq setting in the extra RAH bits,
2355 * so save everything except the lower 16 bits that hold part
2356 * of the address and the address valid bit.
2357 */
2358 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2359 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2360
2361 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
2362 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2363
2364 /* clear VMDq pool/queue selection for this RAR */
2365 hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
2366
2367 return IXGBE_SUCCESS;
2368}
2369
2370/**
2371 * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
2372 * @hw: pointer to hardware structure
2373 *
2374 * Places the MAC address in receive address register 0 and clears the rest
2375 * of the receive address registers. Clears the multicast table. Assumes
2376 * the receiver is in reset when the routine is called.
2377 **/
2378s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
2379{
2380 u32 i;
2381 u32 rar_entries = hw->mac.num_rar_entries;
2382
2383 DEBUGFUNC("ixgbe_init_rx_addrs_generic");
2384
2385 /*
2386 * If the current mac address is valid, assume it is a software override
2387 * to the permanent address.
2388 * Otherwise, use the permanent address from the eeprom.
2389 */
2390 if (ixgbe_validate_mac_addr(hw->mac.addr) ==
2391 IXGBE_ERR_INVALID_MAC_ADDR) {
2392 /* Get the MAC address from the RAR0 for later reference */
2393 hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2394
2395 DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
2396 hw->mac.addr[0], hw->mac.addr[1],
2397 hw->mac.addr[2]);
2398 DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2399 hw->mac.addr[4], hw->mac.addr[5]);
2400 } else {
2401 /* Setup the receive address. */
2402 DEBUGOUT("Overriding MAC Address in RAR[0]\n");
2403 DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
2404 hw->mac.addr[0], hw->mac.addr[1],
2405 hw->mac.addr[2]);
2406 DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2407 hw->mac.addr[4], hw->mac.addr[5]);
2408
2409 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
2368 status = IXGBE_ERR_INVALID_MAC_ADDR;
2369 }
2370 return status;
2371}
2372
2373/**
2374 * ixgbe_set_rar_generic - Set Rx address register
2375 * @hw: pointer to hardware structure
2376 * @index: Receive address register to write
2377 * @addr: Address to put into receive address register
2378 * @vmdq: VMDq "set" or "pool" index
2379 * @enable_addr: set flag that address is active
2380 *
2381 * Puts an ethernet address into a receive address register.
2382 **/
2383s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
2384 u32 enable_addr)
2385{
2386 u32 rar_low, rar_high;
2387 u32 rar_entries = hw->mac.num_rar_entries;
2388
2389 DEBUGFUNC("ixgbe_set_rar_generic");
2390
2391 /* Make sure we are using a valid rar index range */
2392 if (index >= rar_entries) {
2393 ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2394 "RAR index %d is out of range.\n", index);
2395 return IXGBE_ERR_INVALID_ARGUMENT;
2396 }
2397
2398 /* setup VMDq pool selection before this RAR gets enabled */
2399 hw->mac.ops.set_vmdq(hw, index, vmdq);
2400
2401 /*
2402 * HW expects these in little endian so we reverse the byte
2403 * order from network order (big endian) to little endian
2404 */
2405 rar_low = ((u32)addr[0] |
2406 ((u32)addr[1] << 8) |
2407 ((u32)addr[2] << 16) |
2408 ((u32)addr[3] << 24));
2409 /*
2410 * Some parts put the VMDq setting in the extra RAH bits,
2411 * so save everything except the lower 16 bits that hold part
2412 * of the address and the address valid bit.
2413 */
2414 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2415 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2416 rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
2417
2418 if (enable_addr != 0)
2419 rar_high |= IXGBE_RAH_AV;
2420
2421 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
2422 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2423
2424 return IXGBE_SUCCESS;
2425}
2426
2427/**
2428 * ixgbe_clear_rar_generic - Remove Rx address register
2429 * @hw: pointer to hardware structure
2430 * @index: Receive address register to write
2431 *
2432 * Clears an ethernet address from a receive address register.
2433 **/
2434s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
2435{
2436 u32 rar_high;
2437 u32 rar_entries = hw->mac.num_rar_entries;
2438
2439 DEBUGFUNC("ixgbe_clear_rar_generic");
2440
2441 /* Make sure we are using a valid rar index range */
2442 if (index >= rar_entries) {
2443 ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2444 "RAR index %d is out of range.\n", index);
2445 return IXGBE_ERR_INVALID_ARGUMENT;
2446 }
2447
2448 /*
2449 * Some parts put the VMDq setting in the extra RAH bits,
2450 * so save everything except the lower 16 bits that hold part
2451 * of the address and the address valid bit.
2452 */
2453 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2454 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2455
2456 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
2457 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2458
2459 /* clear VMDq pool/queue selection for this RAR */
2460 hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
2461
2462 return IXGBE_SUCCESS;
2463}
2464
2465/**
2466 * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
2467 * @hw: pointer to hardware structure
2468 *
2469 * Places the MAC address in receive address register 0 and clears the rest
2470 * of the receive address registers. Clears the multicast table. Assumes
2471 * the receiver is in reset when the routine is called.
2472 **/
2473s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
2474{
2475 u32 i;
2476 u32 rar_entries = hw->mac.num_rar_entries;
2477
2478 DEBUGFUNC("ixgbe_init_rx_addrs_generic");
2479
2480 /*
2481 * If the current mac address is valid, assume it is a software override
2482 * to the permanent address.
2483 * Otherwise, use the permanent address from the eeprom.
2484 */
2485 if (ixgbe_validate_mac_addr(hw->mac.addr) ==
2486 IXGBE_ERR_INVALID_MAC_ADDR) {
2487 /* Get the MAC address from the RAR0 for later reference */
2488 hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2489
2490 DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
2491 hw->mac.addr[0], hw->mac.addr[1],
2492 hw->mac.addr[2]);
2493 DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2494 hw->mac.addr[4], hw->mac.addr[5]);
2495 } else {
2496 /* Setup the receive address. */
2497 DEBUGOUT("Overriding MAC Address in RAR[0]\n");
2498 DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
2499 hw->mac.addr[0], hw->mac.addr[1],
2500 hw->mac.addr[2]);
2501 DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2502 hw->mac.addr[4], hw->mac.addr[5]);
2503
2504 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
2410
2411 /* clear VMDq pool/queue selection for RAR 0 */
2412 hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
2413 }
2505 }
2506
2507 /* clear VMDq pool/queue selection for RAR 0 */
2508 hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
2509
2414 hw->addr_ctrl.overflow_promisc = 0;
2415
2416 hw->addr_ctrl.rar_used_count = 1;
2417
2418 /* Zero out the other receive addresses. */
2419 DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
2420 for (i = 1; i < rar_entries; i++) {
2421 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
2422 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
2423 }
2424
2425 /* Clear the MTA */
2426 hw->addr_ctrl.mta_in_use = 0;
2427 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2428
2429 DEBUGOUT(" Clearing MTA\n");
2430 for (i = 0; i < hw->mac.mcft_size; i++)
2431 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
2432
2433 ixgbe_init_uta_tables(hw);
2434
2435 return IXGBE_SUCCESS;
2436}
2437
2438/**
2439 * ixgbe_add_uc_addr - Adds a secondary unicast address.
2440 * @hw: pointer to hardware structure
2441 * @addr: new address
2442 *
2443 * Adds it to unused receive address register or goes into promiscuous mode.
2444 **/
2445void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2446{
2447 u32 rar_entries = hw->mac.num_rar_entries;
2448 u32 rar;
2449
2450 DEBUGFUNC("ixgbe_add_uc_addr");
2451
2452 DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
2453 addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
2454
2455 /*
2456 * Place this address in the RAR if there is room,
2457 * else put the controller into promiscuous mode
2458 */
2459 if (hw->addr_ctrl.rar_used_count < rar_entries) {
2460 rar = hw->addr_ctrl.rar_used_count;
2461 hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
2462 DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
2463 hw->addr_ctrl.rar_used_count++;
2464 } else {
2465 hw->addr_ctrl.overflow_promisc++;
2466 }
2467
2468 DEBUGOUT("ixgbe_add_uc_addr Complete\n");
2469}
2470
2471/**
2472 * ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
2473 * @hw: pointer to hardware structure
2474 * @addr_list: the list of new addresses
2475 * @addr_count: number of addresses
2476 * @next: iterator function to walk the address list
2477 *
2478 * The given list replaces any existing list. Clears the secondary addrs from
2479 * receive address registers. Uses unused receive address registers for the
2480 * first secondary addresses, and falls back to promiscuous mode as needed.
2481 *
2482 * Drivers using secondary unicast addresses must set user_set_promisc when
2483 * manually putting the device into promiscuous mode.
2484 **/
2485s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
2486 u32 addr_count, ixgbe_mc_addr_itr next)
2487{
2488 u8 *addr;
2489 u32 i;
2490 u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
2491 u32 uc_addr_in_use;
2492 u32 fctrl;
2493 u32 vmdq;
2494
2495 DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
2496
2497 /*
2498 * Clear accounting of old secondary address list,
2499 * don't count RAR[0]
2500 */
2501 uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
2502 hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
2503 hw->addr_ctrl.overflow_promisc = 0;
2504
2505 /* Zero out the other receive addresses */
2506 DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
2507 for (i = 0; i < uc_addr_in_use; i++) {
2508 IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
2509 IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
2510 }
2511
2512 /* Add the new addresses */
2513 for (i = 0; i < addr_count; i++) {
2514 DEBUGOUT(" Adding the secondary addresses:\n");
2515 addr = next(hw, &addr_list, &vmdq);
2516 ixgbe_add_uc_addr(hw, addr, vmdq);
2517 }
2518
2519 if (hw->addr_ctrl.overflow_promisc) {
2520 /* enable promisc if not already in overflow or set by user */
2521 if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2522 DEBUGOUT(" Entering address overflow promisc mode\n");
2523 fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2524 fctrl |= IXGBE_FCTRL_UPE;
2525 IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2526 }
2527 } else {
2528 /* only disable if set by overflow, not by user */
2529 if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2530 DEBUGOUT(" Leaving address overflow promisc mode\n");
2531 fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2532 fctrl &= ~IXGBE_FCTRL_UPE;
2533 IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2534 }
2535 }
2536
2537 DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
2538 return IXGBE_SUCCESS;
2539}
2540
2541/**
2542 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
2543 * @hw: pointer to hardware structure
2544 * @mc_addr: the multicast address
2545 *
2546 * Extracts the 12 bits, from a multicast address, to determine which
2547 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
2548 * incoming rx multicast addresses, to determine the bit-vector to check in
2549 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2550 * by the MO field of the MCSTCTRL. The MO field is set during initialization
2551 * to mc_filter_type.
2552 **/
2553static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2554{
2555 u32 vector = 0;
2556
2557 DEBUGFUNC("ixgbe_mta_vector");
2558
2559 switch (hw->mac.mc_filter_type) {
2560 case 0: /* use bits [47:36] of the address */
2561 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2562 break;
2563 case 1: /* use bits [46:35] of the address */
2564 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2565 break;
2566 case 2: /* use bits [45:34] of the address */
2567 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2568 break;
2569 case 3: /* use bits [43:32] of the address */
2570 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2571 break;
2572 default: /* Invalid mc_filter_type */
2573 DEBUGOUT("MC filter type param set incorrectly\n");
2574 ASSERT(0);
2575 break;
2576 }
2577
2578 /* vector can only be 12-bits or boundary will be exceeded */
2579 vector &= 0xFFF;
2580 return vector;
2581}
2582
2583/**
2584 * ixgbe_set_mta - Set bit-vector in multicast table
2585 * @hw: pointer to hardware structure
2586 * @hash_value: Multicast address hash value
2587 *
2588 * Sets the bit-vector in the multicast table.
2589 **/
2590void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2591{
2592 u32 vector;
2593 u32 vector_bit;
2594 u32 vector_reg;
2595
2596 DEBUGFUNC("ixgbe_set_mta");
2597
2598 hw->addr_ctrl.mta_in_use++;
2599
2600 vector = ixgbe_mta_vector(hw, mc_addr);
2601 DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
2602
2603 /*
2604 * The MTA is a register array of 128 32-bit registers. It is treated
2605 * like an array of 4096 bits. We want to set bit
2606 * BitArray[vector_value]. So we figure out what register the bit is
2607 * in, read it, OR in the new bit, then write back the new value. The
2608 * register is determined by the upper 7 bits of the vector value and
2609 * the bit within that register are determined by the lower 5 bits of
2610 * the value.
2611 */
2612 vector_reg = (vector >> 5) & 0x7F;
2613 vector_bit = vector & 0x1F;
2614 hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2615}
2616
2617/**
2618 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2619 * @hw: pointer to hardware structure
2620 * @mc_addr_list: the list of new multicast addresses
2621 * @mc_addr_count: number of addresses
2622 * @next: iterator function to walk the multicast address list
2623 * @clear: flag, when set clears the table beforehand
2624 *
2625 * When the clear flag is set, the given list replaces any existing list.
2626 * Hashes the given addresses into the multicast table.
2627 **/
2628s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
2629 u32 mc_addr_count, ixgbe_mc_addr_itr next,
2630 bool clear)
2631{
2632 u32 i;
2633 u32 vmdq;
2634
2635 DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
2636
2637 /*
2638 * Set the new number of MC addresses that we are being requested to
2639 * use.
2640 */
2641 hw->addr_ctrl.num_mc_addrs = mc_addr_count;
2642 hw->addr_ctrl.mta_in_use = 0;
2643
2644 /* Clear mta_shadow */
2645 if (clear) {
2646 DEBUGOUT(" Clearing MTA\n");
2647 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2648 }
2649
2650 /* Update mta_shadow */
2651 for (i = 0; i < mc_addr_count; i++) {
2652 DEBUGOUT(" Adding the multicast addresses:\n");
2653 ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
2654 }
2655
2656 /* Enable mta */
2657 for (i = 0; i < hw->mac.mcft_size; i++)
2658 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2659 hw->mac.mta_shadow[i]);
2660
2661 if (hw->addr_ctrl.mta_in_use > 0)
2662 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2663 IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2664
2665 DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
2666 return IXGBE_SUCCESS;
2667}
2668
2669/**
2670 * ixgbe_enable_mc_generic - Enable multicast address in RAR
2671 * @hw: pointer to hardware structure
2672 *
2673 * Enables multicast address in RAR and the use of the multicast hash table.
2674 **/
2675s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2676{
2677 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2678
2679 DEBUGFUNC("ixgbe_enable_mc_generic");
2680
2681 if (a->mta_in_use > 0)
2682 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2683 hw->mac.mc_filter_type);
2684
2685 return IXGBE_SUCCESS;
2686}
2687
2688/**
2689 * ixgbe_disable_mc_generic - Disable multicast address in RAR
2690 * @hw: pointer to hardware structure
2691 *
2692 * Disables multicast address in RAR and the use of the multicast hash table.
2693 **/
2694s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2695{
2696 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2697
2698 DEBUGFUNC("ixgbe_disable_mc_generic");
2699
2700 if (a->mta_in_use > 0)
2701 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2702
2703 return IXGBE_SUCCESS;
2704}
2705
2706/**
2707 * ixgbe_fc_enable_generic - Enable flow control
2708 * @hw: pointer to hardware structure
2709 *
2710 * Enable flow control according to the current settings.
2711 **/
2712s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2713{
2714 s32 ret_val = IXGBE_SUCCESS;
2715 u32 mflcn_reg, fccfg_reg;
2716 u32 reg;
2717 u32 fcrtl, fcrth;
2718 int i;
2719
2720 DEBUGFUNC("ixgbe_fc_enable_generic");
2721
2722 /* Validate the water mark configuration */
2723 if (!hw->fc.pause_time) {
2724 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2725 goto out;
2726 }
2727
2728 /* Low water mark of zero causes XOFF floods */
2729 for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2730 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2731 hw->fc.high_water[i]) {
2732 if (!hw->fc.low_water[i] ||
2733 hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2734 DEBUGOUT("Invalid water mark configuration\n");
2735 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2736 goto out;
2737 }
2738 }
2739 }
2740
2741 /* Negotiate the fc mode to use */
2510 hw->addr_ctrl.overflow_promisc = 0;
2511
2512 hw->addr_ctrl.rar_used_count = 1;
2513
2514 /* Zero out the other receive addresses. */
2515 DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
2516 for (i = 1; i < rar_entries; i++) {
2517 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
2518 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
2519 }
2520
2521 /* Clear the MTA */
2522 hw->addr_ctrl.mta_in_use = 0;
2523 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2524
2525 DEBUGOUT(" Clearing MTA\n");
2526 for (i = 0; i < hw->mac.mcft_size; i++)
2527 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
2528
2529 ixgbe_init_uta_tables(hw);
2530
2531 return IXGBE_SUCCESS;
2532}
2533
2534/**
2535 * ixgbe_add_uc_addr - Adds a secondary unicast address.
2536 * @hw: pointer to hardware structure
2537 * @addr: new address
2538 *
2539 * Adds it to unused receive address register or goes into promiscuous mode.
2540 **/
2541void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2542{
2543 u32 rar_entries = hw->mac.num_rar_entries;
2544 u32 rar;
2545
2546 DEBUGFUNC("ixgbe_add_uc_addr");
2547
2548 DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
2549 addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
2550
2551 /*
2552 * Place this address in the RAR if there is room,
2553 * else put the controller into promiscuous mode
2554 */
2555 if (hw->addr_ctrl.rar_used_count < rar_entries) {
2556 rar = hw->addr_ctrl.rar_used_count;
2557 hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
2558 DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
2559 hw->addr_ctrl.rar_used_count++;
2560 } else {
2561 hw->addr_ctrl.overflow_promisc++;
2562 }
2563
2564 DEBUGOUT("ixgbe_add_uc_addr Complete\n");
2565}
2566
2567/**
2568 * ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
2569 * @hw: pointer to hardware structure
2570 * @addr_list: the list of new addresses
2571 * @addr_count: number of addresses
2572 * @next: iterator function to walk the address list
2573 *
2574 * The given list replaces any existing list. Clears the secondary addrs from
2575 * receive address registers. Uses unused receive address registers for the
2576 * first secondary addresses, and falls back to promiscuous mode as needed.
2577 *
2578 * Drivers using secondary unicast addresses must set user_set_promisc when
2579 * manually putting the device into promiscuous mode.
2580 **/
2581s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
2582 u32 addr_count, ixgbe_mc_addr_itr next)
2583{
2584 u8 *addr;
2585 u32 i;
2586 u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
2587 u32 uc_addr_in_use;
2588 u32 fctrl;
2589 u32 vmdq;
2590
2591 DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
2592
2593 /*
2594 * Clear accounting of old secondary address list,
2595 * don't count RAR[0]
2596 */
2597 uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
2598 hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
2599 hw->addr_ctrl.overflow_promisc = 0;
2600
2601 /* Zero out the other receive addresses */
2602 DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
2603 for (i = 0; i < uc_addr_in_use; i++) {
2604 IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
2605 IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
2606 }
2607
2608 /* Add the new addresses */
2609 for (i = 0; i < addr_count; i++) {
2610 DEBUGOUT(" Adding the secondary addresses:\n");
2611 addr = next(hw, &addr_list, &vmdq);
2612 ixgbe_add_uc_addr(hw, addr, vmdq);
2613 }
2614
2615 if (hw->addr_ctrl.overflow_promisc) {
2616 /* enable promisc if not already in overflow or set by user */
2617 if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2618 DEBUGOUT(" Entering address overflow promisc mode\n");
2619 fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2620 fctrl |= IXGBE_FCTRL_UPE;
2621 IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2622 }
2623 } else {
2624 /* only disable if set by overflow, not by user */
2625 if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2626 DEBUGOUT(" Leaving address overflow promisc mode\n");
2627 fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2628 fctrl &= ~IXGBE_FCTRL_UPE;
2629 IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2630 }
2631 }
2632
2633 DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
2634 return IXGBE_SUCCESS;
2635}
2636
2637/**
2638 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
2639 * @hw: pointer to hardware structure
2640 * @mc_addr: the multicast address
2641 *
2642 * Extracts the 12 bits, from a multicast address, to determine which
2643 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
2644 * incoming rx multicast addresses, to determine the bit-vector to check in
2645 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2646 * by the MO field of the MCSTCTRL. The MO field is set during initialization
2647 * to mc_filter_type.
2648 **/
2649static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2650{
2651 u32 vector = 0;
2652
2653 DEBUGFUNC("ixgbe_mta_vector");
2654
2655 switch (hw->mac.mc_filter_type) {
2656 case 0: /* use bits [47:36] of the address */
2657 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2658 break;
2659 case 1: /* use bits [46:35] of the address */
2660 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2661 break;
2662 case 2: /* use bits [45:34] of the address */
2663 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2664 break;
2665 case 3: /* use bits [43:32] of the address */
2666 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2667 break;
2668 default: /* Invalid mc_filter_type */
2669 DEBUGOUT("MC filter type param set incorrectly\n");
2670 ASSERT(0);
2671 break;
2672 }
2673
2674 /* vector can only be 12-bits or boundary will be exceeded */
2675 vector &= 0xFFF;
2676 return vector;
2677}
2678
2679/**
2680 * ixgbe_set_mta - Set bit-vector in multicast table
2681 * @hw: pointer to hardware structure
2682 * @hash_value: Multicast address hash value
2683 *
2684 * Sets the bit-vector in the multicast table.
2685 **/
2686void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2687{
2688 u32 vector;
2689 u32 vector_bit;
2690 u32 vector_reg;
2691
2692 DEBUGFUNC("ixgbe_set_mta");
2693
2694 hw->addr_ctrl.mta_in_use++;
2695
2696 vector = ixgbe_mta_vector(hw, mc_addr);
2697 DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
2698
2699 /*
2700 * The MTA is a register array of 128 32-bit registers. It is treated
2701 * like an array of 4096 bits. We want to set bit
2702 * BitArray[vector_value]. So we figure out what register the bit is
2703 * in, read it, OR in the new bit, then write back the new value. The
2704 * register is determined by the upper 7 bits of the vector value and
2705 * the bit within that register are determined by the lower 5 bits of
2706 * the value.
2707 */
2708 vector_reg = (vector >> 5) & 0x7F;
2709 vector_bit = vector & 0x1F;
2710 hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2711}
2712
2713/**
2714 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2715 * @hw: pointer to hardware structure
2716 * @mc_addr_list: the list of new multicast addresses
2717 * @mc_addr_count: number of addresses
2718 * @next: iterator function to walk the multicast address list
2719 * @clear: flag, when set clears the table beforehand
2720 *
2721 * When the clear flag is set, the given list replaces any existing list.
2722 * Hashes the given addresses into the multicast table.
2723 **/
2724s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
2725 u32 mc_addr_count, ixgbe_mc_addr_itr next,
2726 bool clear)
2727{
2728 u32 i;
2729 u32 vmdq;
2730
2731 DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
2732
2733 /*
2734 * Set the new number of MC addresses that we are being requested to
2735 * use.
2736 */
2737 hw->addr_ctrl.num_mc_addrs = mc_addr_count;
2738 hw->addr_ctrl.mta_in_use = 0;
2739
2740 /* Clear mta_shadow */
2741 if (clear) {
2742 DEBUGOUT(" Clearing MTA\n");
2743 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2744 }
2745
2746 /* Update mta_shadow */
2747 for (i = 0; i < mc_addr_count; i++) {
2748 DEBUGOUT(" Adding the multicast addresses:\n");
2749 ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
2750 }
2751
2752 /* Enable mta */
2753 for (i = 0; i < hw->mac.mcft_size; i++)
2754 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2755 hw->mac.mta_shadow[i]);
2756
2757 if (hw->addr_ctrl.mta_in_use > 0)
2758 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2759 IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2760
2761 DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
2762 return IXGBE_SUCCESS;
2763}
2764
2765/**
2766 * ixgbe_enable_mc_generic - Enable multicast address in RAR
2767 * @hw: pointer to hardware structure
2768 *
2769 * Enables multicast address in RAR and the use of the multicast hash table.
2770 **/
2771s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2772{
2773 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2774
2775 DEBUGFUNC("ixgbe_enable_mc_generic");
2776
2777 if (a->mta_in_use > 0)
2778 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2779 hw->mac.mc_filter_type);
2780
2781 return IXGBE_SUCCESS;
2782}
2783
2784/**
2785 * ixgbe_disable_mc_generic - Disable multicast address in RAR
2786 * @hw: pointer to hardware structure
2787 *
2788 * Disables multicast address in RAR and the use of the multicast hash table.
2789 **/
2790s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2791{
2792 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2793
2794 DEBUGFUNC("ixgbe_disable_mc_generic");
2795
2796 if (a->mta_in_use > 0)
2797 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2798
2799 return IXGBE_SUCCESS;
2800}
2801
2802/**
2803 * ixgbe_fc_enable_generic - Enable flow control
2804 * @hw: pointer to hardware structure
2805 *
2806 * Enable flow control according to the current settings.
2807 **/
2808s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2809{
2810 s32 ret_val = IXGBE_SUCCESS;
2811 u32 mflcn_reg, fccfg_reg;
2812 u32 reg;
2813 u32 fcrtl, fcrth;
2814 int i;
2815
2816 DEBUGFUNC("ixgbe_fc_enable_generic");
2817
2818 /* Validate the water mark configuration */
2819 if (!hw->fc.pause_time) {
2820 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2821 goto out;
2822 }
2823
2824 /* Low water mark of zero causes XOFF floods */
2825 for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2826 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2827 hw->fc.high_water[i]) {
2828 if (!hw->fc.low_water[i] ||
2829 hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2830 DEBUGOUT("Invalid water mark configuration\n");
2831 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2832 goto out;
2833 }
2834 }
2835 }
2836
2837 /* Negotiate the fc mode to use */
2742 ixgbe_fc_autoneg(hw);
2838 hw->mac.ops.fc_autoneg(hw);
2743
2744 /* Disable any previous flow control settings */
2745 mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2746 mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2747
2748 fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2749 fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2750
2751 /*
2752 * The possible values of fc.current_mode are:
2753 * 0: Flow control is completely disabled
2754 * 1: Rx flow control is enabled (we can receive pause frames,
2755 * but not send pause frames).
2756 * 2: Tx flow control is enabled (we can send pause frames but
2757 * we do not support receiving pause frames).
2758 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2759 * other: Invalid.
2760 */
2761 switch (hw->fc.current_mode) {
2762 case ixgbe_fc_none:
2763 /*
2764 * Flow control is disabled by software override or autoneg.
2765 * The code below will actually disable it in the HW.
2766 */
2767 break;
2768 case ixgbe_fc_rx_pause:
2769 /*
2770 * Rx Flow control is enabled and Tx Flow control is
2771 * disabled by software override. Since there really
2772 * isn't a way to advertise that we are capable of RX
2773 * Pause ONLY, we will advertise that we support both
2774 * symmetric and asymmetric Rx PAUSE. Later, we will
2775 * disable the adapter's ability to send PAUSE frames.
2776 */
2777 mflcn_reg |= IXGBE_MFLCN_RFCE;
2778 break;
2779 case ixgbe_fc_tx_pause:
2780 /*
2781 * Tx Flow control is enabled, and Rx Flow control is
2782 * disabled by software override.
2783 */
2784 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2785 break;
2786 case ixgbe_fc_full:
2787 /* Flow control (both Rx and Tx) is enabled by SW override. */
2788 mflcn_reg |= IXGBE_MFLCN_RFCE;
2789 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2790 break;
2791 default:
2792 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
2793 "Flow control param set incorrectly\n");
2794 ret_val = IXGBE_ERR_CONFIG;
2795 goto out;
2796 break;
2797 }
2798
2799 /* Set 802.3x based flow control settings. */
2800 mflcn_reg |= IXGBE_MFLCN_DPF;
2801 IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2802 IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2803
2804
2805 /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2806 for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2807 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2808 hw->fc.high_water[i]) {
2809 fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2810 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2811 fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2812 } else {
2813 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2814 /*
2815 * In order to prevent Tx hangs when the internal Tx
2816 * switch is enabled we must set the high water mark
2817 * to the Rx packet buffer size - 24KB. This allows
2818 * the Tx switch to function even under heavy Rx
2819 * workloads.
2820 */
2821 fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2822 }
2823
2824 IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2825 }
2826
2827 /* Configure pause time (2 TCs per register) */
2828 reg = hw->fc.pause_time * 0x00010001;
2829 for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
2830 IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2831
2832 /* Configure flow control refresh threshold value */
2833 IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2834
2835out:
2836 return ret_val;
2837}
2838
2839/**
2840 * ixgbe_negotiate_fc - Negotiate flow control
2841 * @hw: pointer to hardware structure
2842 * @adv_reg: flow control advertised settings
2843 * @lp_reg: link partner's flow control settings
2844 * @adv_sym: symmetric pause bit in advertisement
2845 * @adv_asm: asymmetric pause bit in advertisement
2846 * @lp_sym: symmetric pause bit in link partner advertisement
2847 * @lp_asm: asymmetric pause bit in link partner advertisement
2848 *
2849 * Find the intersection between advertised settings and link partner's
2850 * advertised settings
2851 **/
2839
2840 /* Disable any previous flow control settings */
2841 mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2842 mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2843
2844 fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2845 fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2846
2847 /*
2848 * The possible values of fc.current_mode are:
2849 * 0: Flow control is completely disabled
2850 * 1: Rx flow control is enabled (we can receive pause frames,
2851 * but not send pause frames).
2852 * 2: Tx flow control is enabled (we can send pause frames but
2853 * we do not support receiving pause frames).
2854 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2855 * other: Invalid.
2856 */
2857 switch (hw->fc.current_mode) {
2858 case ixgbe_fc_none:
2859 /*
2860 * Flow control is disabled by software override or autoneg.
2861 * The code below will actually disable it in the HW.
2862 */
2863 break;
2864 case ixgbe_fc_rx_pause:
2865 /*
2866 * Rx Flow control is enabled and Tx Flow control is
2867 * disabled by software override. Since there really
2868 * isn't a way to advertise that we are capable of RX
2869 * Pause ONLY, we will advertise that we support both
2870 * symmetric and asymmetric Rx PAUSE. Later, we will
2871 * disable the adapter's ability to send PAUSE frames.
2872 */
2873 mflcn_reg |= IXGBE_MFLCN_RFCE;
2874 break;
2875 case ixgbe_fc_tx_pause:
2876 /*
2877 * Tx Flow control is enabled, and Rx Flow control is
2878 * disabled by software override.
2879 */
2880 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2881 break;
2882 case ixgbe_fc_full:
2883 /* Flow control (both Rx and Tx) is enabled by SW override. */
2884 mflcn_reg |= IXGBE_MFLCN_RFCE;
2885 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2886 break;
2887 default:
2888 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
2889 "Flow control param set incorrectly\n");
2890 ret_val = IXGBE_ERR_CONFIG;
2891 goto out;
2892 break;
2893 }
2894
2895 /* Set 802.3x based flow control settings. */
2896 mflcn_reg |= IXGBE_MFLCN_DPF;
2897 IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2898 IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2899
2900
2901 /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2902 for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2903 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2904 hw->fc.high_water[i]) {
2905 fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2906 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2907 fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2908 } else {
2909 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2910 /*
2911 * In order to prevent Tx hangs when the internal Tx
2912 * switch is enabled we must set the high water mark
2913 * to the Rx packet buffer size - 24KB. This allows
2914 * the Tx switch to function even under heavy Rx
2915 * workloads.
2916 */
2917 fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2918 }
2919
2920 IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2921 }
2922
2923 /* Configure pause time (2 TCs per register) */
2924 reg = hw->fc.pause_time * 0x00010001;
2925 for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
2926 IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2927
2928 /* Configure flow control refresh threshold value */
2929 IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2930
2931out:
2932 return ret_val;
2933}
2934
2935/**
2936 * ixgbe_negotiate_fc - Negotiate flow control
2937 * @hw: pointer to hardware structure
2938 * @adv_reg: flow control advertised settings
2939 * @lp_reg: link partner's flow control settings
2940 * @adv_sym: symmetric pause bit in advertisement
2941 * @adv_asm: asymmetric pause bit in advertisement
2942 * @lp_sym: symmetric pause bit in link partner advertisement
2943 * @lp_asm: asymmetric pause bit in link partner advertisement
2944 *
2945 * Find the intersection between advertised settings and link partner's
2946 * advertised settings
2947 **/
2852static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2853 u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2948s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2949 u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2854{
2855 if ((!(adv_reg)) || (!(lp_reg))) {
2856 ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
2857 "Local or link partner's advertised flow control "
2858 "settings are NULL. Local: %x, link partner: %x\n",
2859 adv_reg, lp_reg);
2860 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2861 }
2862
2863 if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2864 /*
2865 * Now we need to check if the user selected Rx ONLY
2866 * of pause frames. In this case, we had to advertise
2867 * FULL flow control because we could not advertise RX
2868 * ONLY. Hence, we must now check to see if we need to
2869 * turn OFF the TRANSMISSION of PAUSE frames.
2870 */
2871 if (hw->fc.requested_mode == ixgbe_fc_full) {
2872 hw->fc.current_mode = ixgbe_fc_full;
2873 DEBUGOUT("Flow Control = FULL.\n");
2874 } else {
2875 hw->fc.current_mode = ixgbe_fc_rx_pause;
2876 DEBUGOUT("Flow Control=RX PAUSE frames only\n");
2877 }
2878 } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2879 (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2880 hw->fc.current_mode = ixgbe_fc_tx_pause;
2881 DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
2882 } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2883 !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2884 hw->fc.current_mode = ixgbe_fc_rx_pause;
2885 DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2886 } else {
2887 hw->fc.current_mode = ixgbe_fc_none;
2888 DEBUGOUT("Flow Control = NONE.\n");
2889 }
2890 return IXGBE_SUCCESS;
2891}
2892
2893/**
2894 * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2895 * @hw: pointer to hardware structure
2896 *
2897 * Enable flow control according on 1 gig fiber.
2898 **/
2899static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2900{
2901 u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2902 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2903
2904 /*
2905 * On multispeed fiber at 1g, bail out if
2906 * - link is up but AN did not complete, or if
2907 * - link is up and AN completed but timed out
2908 */
2909
2910 linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2911 if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2912 (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
2913 DEBUGOUT("Auto-Negotiation did not complete or timed out\n");
2914 goto out;
2915 }
2916
2917 pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2918 pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2919
2920 ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2921 pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2922 IXGBE_PCS1GANA_ASM_PAUSE,
2923 IXGBE_PCS1GANA_SYM_PAUSE,
2924 IXGBE_PCS1GANA_ASM_PAUSE);
2925
2926out:
2927 return ret_val;
2928}
2929
2930/**
2931 * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2932 * @hw: pointer to hardware structure
2933 *
2934 * Enable flow control according to IEEE clause 37.
2935 **/
2936static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2937{
2938 u32 links2, anlp1_reg, autoc_reg, links;
2939 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2940
2941 /*
2942 * On backplane, bail out if
2943 * - backplane autoneg was not completed, or if
2944 * - we are 82599 and link partner is not AN enabled
2945 */
2946 links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2947 if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
2948 DEBUGOUT("Auto-Negotiation did not complete\n");
2949 goto out;
2950 }
2951
2952 if (hw->mac.type == ixgbe_mac_82599EB) {
2953 links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2954 if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
2955 DEBUGOUT("Link partner is not AN enabled\n");
2956 goto out;
2957 }
2958 }
2959 /*
2960 * Read the 10g AN autoc and LP ability registers and resolve
2961 * local flow control settings accordingly
2962 */
2963 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2964 anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2965
2966 ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2967 anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2968 IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2969
2970out:
2971 return ret_val;
2972}
2973
2974/**
2975 * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2976 * @hw: pointer to hardware structure
2977 *
2978 * Enable flow control according to IEEE clause 37.
2979 **/
2980static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2981{
2982 u16 technology_ability_reg = 0;
2983 u16 lp_technology_ability_reg = 0;
2984
2985 hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
2986 IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
2987 &technology_ability_reg);
2988 hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
2989 IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
2990 &lp_technology_ability_reg);
2991
2992 return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2993 (u32)lp_technology_ability_reg,
2994 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2995 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2996}
2997
2998/**
2999 * ixgbe_fc_autoneg - Configure flow control
3000 * @hw: pointer to hardware structure
3001 *
3002 * Compares our advertised flow control capabilities to those advertised by
3003 * our link partner, and determines the proper flow control mode to use.
3004 **/
3005void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
3006{
3007 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3008 ixgbe_link_speed speed;
3009 bool link_up;
3010
3011 DEBUGFUNC("ixgbe_fc_autoneg");
3012
3013 /*
3014 * AN should have completed when the cable was plugged in.
3015 * Look for reasons to bail out. Bail out if:
3016 * - FC autoneg is disabled, or if
3017 * - link is not up.
3018 */
3019 if (hw->fc.disable_fc_autoneg) {
3020 ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
3021 "Flow control autoneg is disabled");
3022 goto out;
3023 }
3024
3025 hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3026 if (!link_up) {
3027 ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
3028 goto out;
3029 }
3030
3031 switch (hw->phy.media_type) {
3032 /* Autoneg flow control on fiber adapters */
3033 case ixgbe_media_type_fiber_fixed:
3034 case ixgbe_media_type_fiber_qsfp:
3035 case ixgbe_media_type_fiber:
3036 if (speed == IXGBE_LINK_SPEED_1GB_FULL)
3037 ret_val = ixgbe_fc_autoneg_fiber(hw);
3038 break;
3039
3040 /* Autoneg flow control on backplane adapters */
3041 case ixgbe_media_type_backplane:
3042 ret_val = ixgbe_fc_autoneg_backplane(hw);
3043 break;
3044
3045 /* Autoneg flow control on copper adapters */
3046 case ixgbe_media_type_copper:
3047 if (ixgbe_device_supports_autoneg_fc(hw))
3048 ret_val = ixgbe_fc_autoneg_copper(hw);
3049 break;
3050
3051 default:
3052 break;
3053 }
3054
3055out:
3056 if (ret_val == IXGBE_SUCCESS) {
3057 hw->fc.fc_was_autonegged = TRUE;
3058 } else {
3059 hw->fc.fc_was_autonegged = FALSE;
3060 hw->fc.current_mode = hw->fc.requested_mode;
3061 }
3062}
3063
3064/*
3065 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
3066 * @hw: pointer to hardware structure
3067 *
3068 * System-wide timeout range is encoded in PCIe Device Control2 register.
3069 *
3070 * Add 10% to specified maximum and return the number of times to poll for
3071 * completion timeout, in units of 100 microsec. Never return less than
3072 * 800 = 80 millisec.
3073 */
3074static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
3075{
3076 s16 devctl2;
3077 u32 pollcnt;
3078
3079 devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
3080 devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
3081
3082 switch (devctl2) {
3083 case IXGBE_PCIDEVCTRL2_65_130ms:
3084 pollcnt = 1300; /* 130 millisec */
3085 break;
3086 case IXGBE_PCIDEVCTRL2_260_520ms:
3087 pollcnt = 5200; /* 520 millisec */
3088 break;
3089 case IXGBE_PCIDEVCTRL2_1_2s:
3090 pollcnt = 20000; /* 2 sec */
3091 break;
3092 case IXGBE_PCIDEVCTRL2_4_8s:
3093 pollcnt = 80000; /* 8 sec */
3094 break;
3095 case IXGBE_PCIDEVCTRL2_17_34s:
3096 pollcnt = 34000; /* 34 sec */
3097 break;
3098 case IXGBE_PCIDEVCTRL2_50_100us: /* 100 microsecs */
3099 case IXGBE_PCIDEVCTRL2_1_2ms: /* 2 millisecs */
3100 case IXGBE_PCIDEVCTRL2_16_32ms: /* 32 millisec */
3101 case IXGBE_PCIDEVCTRL2_16_32ms_def: /* 32 millisec default */
3102 default:
3103 pollcnt = 800; /* 80 millisec minimum */
3104 break;
3105 }
3106
3107 /* add 10% to spec maximum */
3108 return (pollcnt * 11) / 10;
3109}
3110
3111/**
3112 * ixgbe_disable_pcie_master - Disable PCI-express master access
3113 * @hw: pointer to hardware structure
3114 *
3115 * Disables PCI-Express master access and verifies there are no pending
3116 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
3117 * bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
3118 * is returned signifying master requests disabled.
3119 **/
3120s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
3121{
3122 s32 status = IXGBE_SUCCESS;
3123 u32 i, poll;
3124 u16 value;
3125
3126 DEBUGFUNC("ixgbe_disable_pcie_master");
3127
3128 /* Always set this bit to ensure any future transactions are blocked */
3129 IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
3130
3131 /* Exit if master requests are blocked */
3132 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
3133 IXGBE_REMOVED(hw->hw_addr))
3134 goto out;
3135
3136 /* Poll for master request bit to clear */
3137 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
3138 usec_delay(100);
3139 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
3140 goto out;
3141 }
3142
3143 /*
3144 * Two consecutive resets are required via CTRL.RST per datasheet
3145 * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
3146 * of this need. The first reset prevents new master requests from
3147 * being issued by our device. We then must wait 1usec or more for any
3148 * remaining completions from the PCIe bus to trickle in, and then reset
3149 * again to clear out any effects they may have had on our device.
3150 */
3151 DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
3152 hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
3153
3154 if (hw->mac.type >= ixgbe_mac_X550)
3155 goto out;
3156
3157 /*
3158 * Before proceeding, make sure that the PCIe block does not have
3159 * transactions pending.
3160 */
3161 poll = ixgbe_pcie_timeout_poll(hw);
3162 for (i = 0; i < poll; i++) {
3163 usec_delay(100);
3164 value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
3165 if (IXGBE_REMOVED(hw->hw_addr))
3166 goto out;
3167 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3168 goto out;
3169 }
3170
3171 ERROR_REPORT1(IXGBE_ERROR_POLLING,
3172 "PCIe transaction pending bit also did not clear.\n");
3173 status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
3174
3175out:
3176 return status;
3177}
3178
3179/**
3180 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
3181 * @hw: pointer to hardware structure
3182 * @mask: Mask to specify which semaphore to acquire
3183 *
3184 * Acquires the SWFW semaphore through the GSSR register for the specified
3185 * function (CSR, PHY0, PHY1, EEPROM, Flash)
3186 **/
3187s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3188{
3189 u32 gssr = 0;
3190 u32 swmask = mask;
3191 u32 fwmask = mask << 5;
3192 u32 timeout = 200;
3193 u32 i;
3194
3195 DEBUGFUNC("ixgbe_acquire_swfw_sync");
3196
3197 for (i = 0; i < timeout; i++) {
3198 /*
3199 * SW NVM semaphore bit is used for access to all
3200 * SW_FW_SYNC bits (not just NVM)
3201 */
3202 if (ixgbe_get_eeprom_semaphore(hw))
3203 return IXGBE_ERR_SWFW_SYNC;
3204
3205 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3206 if (!(gssr & (fwmask | swmask))) {
3207 gssr |= swmask;
3208 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3209 ixgbe_release_eeprom_semaphore(hw);
3210 return IXGBE_SUCCESS;
3211 } else {
3212 /* Resource is currently in use by FW or SW */
3213 ixgbe_release_eeprom_semaphore(hw);
3214 msec_delay(5);
3215 }
3216 }
3217
3218 /* If time expired clear the bits holding the lock and retry */
3219 if (gssr & (fwmask | swmask))
3220 ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
3221
3222 msec_delay(5);
3223 return IXGBE_ERR_SWFW_SYNC;
3224}
3225
3226/**
3227 * ixgbe_release_swfw_sync - Release SWFW semaphore
3228 * @hw: pointer to hardware structure
3229 * @mask: Mask to specify which semaphore to release
3230 *
3231 * Releases the SWFW semaphore through the GSSR register for the specified
3232 * function (CSR, PHY0, PHY1, EEPROM, Flash)
3233 **/
3234void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3235{
3236 u32 gssr;
3237 u32 swmask = mask;
3238
3239 DEBUGFUNC("ixgbe_release_swfw_sync");
3240
3241 ixgbe_get_eeprom_semaphore(hw);
3242
3243 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3244 gssr &= ~swmask;
3245 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3246
3247 ixgbe_release_eeprom_semaphore(hw);
3248}
3249
3250/**
3251 * ixgbe_disable_sec_rx_path_generic - Stops the receive data path
3252 * @hw: pointer to hardware structure
3253 *
3254 * Stops the receive data path and waits for the HW to internally empty
3255 * the Rx security block
3256 **/
3257s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
3258{
3259#define IXGBE_MAX_SECRX_POLL 40
3260
3261 int i;
3262 int secrxreg;
3263
3264 DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
3265
3266
3267 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3268 secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
3269 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3270 for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
3271 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
3272 if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
3273 break;
3274 else
3275 /* Use interrupt-safe sleep just in case */
3276 usec_delay(1000);
3277 }
3278
3279 /* For informational purposes only */
3280 if (i >= IXGBE_MAX_SECRX_POLL)
3281 DEBUGOUT("Rx unit being enabled before security "
3282 "path fully disabled. Continuing with init.\n");
3283
3284 return IXGBE_SUCCESS;
3285}
3286
3287/**
3288 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
3289 * @hw: pointer to hardware structure
3290 * @reg_val: Value we read from AUTOC
3291 *
3292 * The default case requires no protection so just to the register read.
3293 */
3294s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
3295{
3296 *locked = FALSE;
3297 *reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3298 return IXGBE_SUCCESS;
3299}
3300
3301/**
3302 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
3303 * @hw: pointer to hardware structure
3304 * @reg_val: value to write to AUTOC
3305 * @locked: bool to indicate whether the SW/FW lock was already taken by
3306 * previous read.
3307 *
3308 * The default case requires no protection so just to the register write.
3309 */
3310s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
3311{
3312 UNREFERENCED_1PARAMETER(locked);
3313
3314 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
3315 return IXGBE_SUCCESS;
3316}
3317
3318/**
3319 * ixgbe_enable_sec_rx_path_generic - Enables the receive data path
3320 * @hw: pointer to hardware structure
3321 *
3322 * Enables the receive data path.
3323 **/
3324s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
3325{
2950{
2951 if ((!(adv_reg)) || (!(lp_reg))) {
2952 ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
2953 "Local or link partner's advertised flow control "
2954 "settings are NULL. Local: %x, link partner: %x\n",
2955 adv_reg, lp_reg);
2956 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2957 }
2958
2959 if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2960 /*
2961 * Now we need to check if the user selected Rx ONLY
2962 * of pause frames. In this case, we had to advertise
2963 * FULL flow control because we could not advertise RX
2964 * ONLY. Hence, we must now check to see if we need to
2965 * turn OFF the TRANSMISSION of PAUSE frames.
2966 */
2967 if (hw->fc.requested_mode == ixgbe_fc_full) {
2968 hw->fc.current_mode = ixgbe_fc_full;
2969 DEBUGOUT("Flow Control = FULL.\n");
2970 } else {
2971 hw->fc.current_mode = ixgbe_fc_rx_pause;
2972 DEBUGOUT("Flow Control=RX PAUSE frames only\n");
2973 }
2974 } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2975 (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2976 hw->fc.current_mode = ixgbe_fc_tx_pause;
2977 DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
2978 } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2979 !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2980 hw->fc.current_mode = ixgbe_fc_rx_pause;
2981 DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2982 } else {
2983 hw->fc.current_mode = ixgbe_fc_none;
2984 DEBUGOUT("Flow Control = NONE.\n");
2985 }
2986 return IXGBE_SUCCESS;
2987}
2988
2989/**
2990 * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2991 * @hw: pointer to hardware structure
2992 *
2993 * Enable flow control according on 1 gig fiber.
2994 **/
2995static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2996{
2997 u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2998 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2999
3000 /*
3001 * On multispeed fiber at 1g, bail out if
3002 * - link is up but AN did not complete, or if
3003 * - link is up and AN completed but timed out
3004 */
3005
3006 linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
3007 if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
3008 (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
3009 DEBUGOUT("Auto-Negotiation did not complete or timed out\n");
3010 goto out;
3011 }
3012
3013 pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
3014 pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
3015
3016 ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg,
3017 pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
3018 IXGBE_PCS1GANA_ASM_PAUSE,
3019 IXGBE_PCS1GANA_SYM_PAUSE,
3020 IXGBE_PCS1GANA_ASM_PAUSE);
3021
3022out:
3023 return ret_val;
3024}
3025
3026/**
3027 * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
3028 * @hw: pointer to hardware structure
3029 *
3030 * Enable flow control according to IEEE clause 37.
3031 **/
3032static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
3033{
3034 u32 links2, anlp1_reg, autoc_reg, links;
3035 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3036
3037 /*
3038 * On backplane, bail out if
3039 * - backplane autoneg was not completed, or if
3040 * - we are 82599 and link partner is not AN enabled
3041 */
3042 links = IXGBE_READ_REG(hw, IXGBE_LINKS);
3043 if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
3044 DEBUGOUT("Auto-Negotiation did not complete\n");
3045 goto out;
3046 }
3047
3048 if (hw->mac.type == ixgbe_mac_82599EB) {
3049 links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
3050 if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
3051 DEBUGOUT("Link partner is not AN enabled\n");
3052 goto out;
3053 }
3054 }
3055 /*
3056 * Read the 10g AN autoc and LP ability registers and resolve
3057 * local flow control settings accordingly
3058 */
3059 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3060 anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
3061
3062 ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
3063 anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
3064 IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
3065
3066out:
3067 return ret_val;
3068}
3069
3070/**
3071 * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
3072 * @hw: pointer to hardware structure
3073 *
3074 * Enable flow control according to IEEE clause 37.
3075 **/
3076static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
3077{
3078 u16 technology_ability_reg = 0;
3079 u16 lp_technology_ability_reg = 0;
3080
3081 hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
3082 IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
3083 &technology_ability_reg);
3084 hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
3085 IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
3086 &lp_technology_ability_reg);
3087
3088 return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
3089 (u32)lp_technology_ability_reg,
3090 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
3091 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
3092}
3093
3094/**
3095 * ixgbe_fc_autoneg - Configure flow control
3096 * @hw: pointer to hardware structure
3097 *
3098 * Compares our advertised flow control capabilities to those advertised by
3099 * our link partner, and determines the proper flow control mode to use.
3100 **/
3101void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
3102{
3103 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3104 ixgbe_link_speed speed;
3105 bool link_up;
3106
3107 DEBUGFUNC("ixgbe_fc_autoneg");
3108
3109 /*
3110 * AN should have completed when the cable was plugged in.
3111 * Look for reasons to bail out. Bail out if:
3112 * - FC autoneg is disabled, or if
3113 * - link is not up.
3114 */
3115 if (hw->fc.disable_fc_autoneg) {
3116 ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
3117 "Flow control autoneg is disabled");
3118 goto out;
3119 }
3120
3121 hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3122 if (!link_up) {
3123 ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
3124 goto out;
3125 }
3126
3127 switch (hw->phy.media_type) {
3128 /* Autoneg flow control on fiber adapters */
3129 case ixgbe_media_type_fiber_fixed:
3130 case ixgbe_media_type_fiber_qsfp:
3131 case ixgbe_media_type_fiber:
3132 if (speed == IXGBE_LINK_SPEED_1GB_FULL)
3133 ret_val = ixgbe_fc_autoneg_fiber(hw);
3134 break;
3135
3136 /* Autoneg flow control on backplane adapters */
3137 case ixgbe_media_type_backplane:
3138 ret_val = ixgbe_fc_autoneg_backplane(hw);
3139 break;
3140
3141 /* Autoneg flow control on copper adapters */
3142 case ixgbe_media_type_copper:
3143 if (ixgbe_device_supports_autoneg_fc(hw))
3144 ret_val = ixgbe_fc_autoneg_copper(hw);
3145 break;
3146
3147 default:
3148 break;
3149 }
3150
3151out:
3152 if (ret_val == IXGBE_SUCCESS) {
3153 hw->fc.fc_was_autonegged = TRUE;
3154 } else {
3155 hw->fc.fc_was_autonegged = FALSE;
3156 hw->fc.current_mode = hw->fc.requested_mode;
3157 }
3158}
3159
3160/*
3161 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
3162 * @hw: pointer to hardware structure
3163 *
3164 * System-wide timeout range is encoded in PCIe Device Control2 register.
3165 *
3166 * Add 10% to specified maximum and return the number of times to poll for
3167 * completion timeout, in units of 100 microsec. Never return less than
3168 * 800 = 80 millisec.
3169 */
3170static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
3171{
3172 s16 devctl2;
3173 u32 pollcnt;
3174
3175 devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
3176 devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
3177
3178 switch (devctl2) {
3179 case IXGBE_PCIDEVCTRL2_65_130ms:
3180 pollcnt = 1300; /* 130 millisec */
3181 break;
3182 case IXGBE_PCIDEVCTRL2_260_520ms:
3183 pollcnt = 5200; /* 520 millisec */
3184 break;
3185 case IXGBE_PCIDEVCTRL2_1_2s:
3186 pollcnt = 20000; /* 2 sec */
3187 break;
3188 case IXGBE_PCIDEVCTRL2_4_8s:
3189 pollcnt = 80000; /* 8 sec */
3190 break;
3191 case IXGBE_PCIDEVCTRL2_17_34s:
3192 pollcnt = 34000; /* 34 sec */
3193 break;
3194 case IXGBE_PCIDEVCTRL2_50_100us: /* 100 microsecs */
3195 case IXGBE_PCIDEVCTRL2_1_2ms: /* 2 millisecs */
3196 case IXGBE_PCIDEVCTRL2_16_32ms: /* 32 millisec */
3197 case IXGBE_PCIDEVCTRL2_16_32ms_def: /* 32 millisec default */
3198 default:
3199 pollcnt = 800; /* 80 millisec minimum */
3200 break;
3201 }
3202
3203 /* add 10% to spec maximum */
3204 return (pollcnt * 11) / 10;
3205}
3206
3207/**
3208 * ixgbe_disable_pcie_master - Disable PCI-express master access
3209 * @hw: pointer to hardware structure
3210 *
3211 * Disables PCI-Express master access and verifies there are no pending
3212 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
3213 * bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
3214 * is returned signifying master requests disabled.
3215 **/
3216s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
3217{
3218 s32 status = IXGBE_SUCCESS;
3219 u32 i, poll;
3220 u16 value;
3221
3222 DEBUGFUNC("ixgbe_disable_pcie_master");
3223
3224 /* Always set this bit to ensure any future transactions are blocked */
3225 IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
3226
3227 /* Exit if master requests are blocked */
3228 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
3229 IXGBE_REMOVED(hw->hw_addr))
3230 goto out;
3231
3232 /* Poll for master request bit to clear */
3233 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
3234 usec_delay(100);
3235 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
3236 goto out;
3237 }
3238
3239 /*
3240 * Two consecutive resets are required via CTRL.RST per datasheet
3241 * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
3242 * of this need. The first reset prevents new master requests from
3243 * being issued by our device. We then must wait 1usec or more for any
3244 * remaining completions from the PCIe bus to trickle in, and then reset
3245 * again to clear out any effects they may have had on our device.
3246 */
3247 DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
3248 hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
3249
3250 if (hw->mac.type >= ixgbe_mac_X550)
3251 goto out;
3252
3253 /*
3254 * Before proceeding, make sure that the PCIe block does not have
3255 * transactions pending.
3256 */
3257 poll = ixgbe_pcie_timeout_poll(hw);
3258 for (i = 0; i < poll; i++) {
3259 usec_delay(100);
3260 value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
3261 if (IXGBE_REMOVED(hw->hw_addr))
3262 goto out;
3263 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3264 goto out;
3265 }
3266
3267 ERROR_REPORT1(IXGBE_ERROR_POLLING,
3268 "PCIe transaction pending bit also did not clear.\n");
3269 status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
3270
3271out:
3272 return status;
3273}
3274
3275/**
3276 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
3277 * @hw: pointer to hardware structure
3278 * @mask: Mask to specify which semaphore to acquire
3279 *
3280 * Acquires the SWFW semaphore through the GSSR register for the specified
3281 * function (CSR, PHY0, PHY1, EEPROM, Flash)
3282 **/
3283s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3284{
3285 u32 gssr = 0;
3286 u32 swmask = mask;
3287 u32 fwmask = mask << 5;
3288 u32 timeout = 200;
3289 u32 i;
3290
3291 DEBUGFUNC("ixgbe_acquire_swfw_sync");
3292
3293 for (i = 0; i < timeout; i++) {
3294 /*
3295 * SW NVM semaphore bit is used for access to all
3296 * SW_FW_SYNC bits (not just NVM)
3297 */
3298 if (ixgbe_get_eeprom_semaphore(hw))
3299 return IXGBE_ERR_SWFW_SYNC;
3300
3301 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3302 if (!(gssr & (fwmask | swmask))) {
3303 gssr |= swmask;
3304 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3305 ixgbe_release_eeprom_semaphore(hw);
3306 return IXGBE_SUCCESS;
3307 } else {
3308 /* Resource is currently in use by FW or SW */
3309 ixgbe_release_eeprom_semaphore(hw);
3310 msec_delay(5);
3311 }
3312 }
3313
3314 /* If time expired clear the bits holding the lock and retry */
3315 if (gssr & (fwmask | swmask))
3316 ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
3317
3318 msec_delay(5);
3319 return IXGBE_ERR_SWFW_SYNC;
3320}
3321
3322/**
3323 * ixgbe_release_swfw_sync - Release SWFW semaphore
3324 * @hw: pointer to hardware structure
3325 * @mask: Mask to specify which semaphore to release
3326 *
3327 * Releases the SWFW semaphore through the GSSR register for the specified
3328 * function (CSR, PHY0, PHY1, EEPROM, Flash)
3329 **/
3330void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3331{
3332 u32 gssr;
3333 u32 swmask = mask;
3334
3335 DEBUGFUNC("ixgbe_release_swfw_sync");
3336
3337 ixgbe_get_eeprom_semaphore(hw);
3338
3339 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3340 gssr &= ~swmask;
3341 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3342
3343 ixgbe_release_eeprom_semaphore(hw);
3344}
3345
3346/**
3347 * ixgbe_disable_sec_rx_path_generic - Stops the receive data path
3348 * @hw: pointer to hardware structure
3349 *
3350 * Stops the receive data path and waits for the HW to internally empty
3351 * the Rx security block
3352 **/
3353s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
3354{
3355#define IXGBE_MAX_SECRX_POLL 40
3356
3357 int i;
3358 int secrxreg;
3359
3360 DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
3361
3362
3363 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3364 secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
3365 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3366 for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
3367 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
3368 if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
3369 break;
3370 else
3371 /* Use interrupt-safe sleep just in case */
3372 usec_delay(1000);
3373 }
3374
3375 /* For informational purposes only */
3376 if (i >= IXGBE_MAX_SECRX_POLL)
3377 DEBUGOUT("Rx unit being enabled before security "
3378 "path fully disabled. Continuing with init.\n");
3379
3380 return IXGBE_SUCCESS;
3381}
3382
3383/**
3384 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
3385 * @hw: pointer to hardware structure
3386 * @reg_val: Value we read from AUTOC
3387 *
3388 * The default case requires no protection so just to the register read.
3389 */
3390s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
3391{
3392 *locked = FALSE;
3393 *reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3394 return IXGBE_SUCCESS;
3395}
3396
3397/**
3398 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
3399 * @hw: pointer to hardware structure
3400 * @reg_val: value to write to AUTOC
3401 * @locked: bool to indicate whether the SW/FW lock was already taken by
3402 * previous read.
3403 *
3404 * The default case requires no protection so just to the register write.
3405 */
3406s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
3407{
3408 UNREFERENCED_1PARAMETER(locked);
3409
3410 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
3411 return IXGBE_SUCCESS;
3412}
3413
3414/**
3415 * ixgbe_enable_sec_rx_path_generic - Enables the receive data path
3416 * @hw: pointer to hardware structure
3417 *
3418 * Enables the receive data path.
3419 **/
3420s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
3421{
3326 int secrxreg;
3422 u32 secrxreg;
3327
3328 DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
3329
3330 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3331 secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
3332 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3333 IXGBE_WRITE_FLUSH(hw);
3334
3335 return IXGBE_SUCCESS;
3336}
3337
3338/**
3339 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
3340 * @hw: pointer to hardware structure
3341 * @regval: register value to write to RXCTRL
3342 *
3343 * Enables the Rx DMA unit
3344 **/
3345s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
3346{
3347 DEBUGFUNC("ixgbe_enable_rx_dma_generic");
3348
3349 if (regval & IXGBE_RXCTRL_RXEN)
3350 ixgbe_enable_rx(hw);
3351 else
3352 ixgbe_disable_rx(hw);
3353
3354 return IXGBE_SUCCESS;
3355}
3356
3357/**
3358 * ixgbe_blink_led_start_generic - Blink LED based on index.
3359 * @hw: pointer to hardware structure
3360 * @index: led number to blink
3361 **/
3362s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
3363{
3364 ixgbe_link_speed speed = 0;
3365 bool link_up = 0;
3366 u32 autoc_reg = 0;
3367 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3368 s32 ret_val = IXGBE_SUCCESS;
3369 bool locked = FALSE;
3370
3371 DEBUGFUNC("ixgbe_blink_led_start_generic");
3372
3423
3424 DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
3425
3426 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3427 secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
3428 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3429 IXGBE_WRITE_FLUSH(hw);
3430
3431 return IXGBE_SUCCESS;
3432}
3433
3434/**
3435 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
3436 * @hw: pointer to hardware structure
3437 * @regval: register value to write to RXCTRL
3438 *
3439 * Enables the Rx DMA unit
3440 **/
3441s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
3442{
3443 DEBUGFUNC("ixgbe_enable_rx_dma_generic");
3444
3445 if (regval & IXGBE_RXCTRL_RXEN)
3446 ixgbe_enable_rx(hw);
3447 else
3448 ixgbe_disable_rx(hw);
3449
3450 return IXGBE_SUCCESS;
3451}
3452
3453/**
3454 * ixgbe_blink_led_start_generic - Blink LED based on index.
3455 * @hw: pointer to hardware structure
3456 * @index: led number to blink
3457 **/
3458s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
3459{
3460 ixgbe_link_speed speed = 0;
3461 bool link_up = 0;
3462 u32 autoc_reg = 0;
3463 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3464 s32 ret_val = IXGBE_SUCCESS;
3465 bool locked = FALSE;
3466
3467 DEBUGFUNC("ixgbe_blink_led_start_generic");
3468
3469 if (index > 3)
3470 return IXGBE_ERR_PARAM;
3471
3373 /*
3374 * Link must be up to auto-blink the LEDs;
3375 * Force it if link is down.
3376 */
3377 hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3378
3379 if (!link_up) {
3380 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3381 if (ret_val != IXGBE_SUCCESS)
3382 goto out;
3383
3384 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3385 autoc_reg |= IXGBE_AUTOC_FLU;
3386
3387 ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3388 if (ret_val != IXGBE_SUCCESS)
3389 goto out;
3390
3391 IXGBE_WRITE_FLUSH(hw);
3392 msec_delay(10);
3393 }
3394
3395 led_reg &= ~IXGBE_LED_MODE_MASK(index);
3396 led_reg |= IXGBE_LED_BLINK(index);
3397 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3398 IXGBE_WRITE_FLUSH(hw);
3399
3400out:
3401 return ret_val;
3402}
3403
3404/**
3405 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
3406 * @hw: pointer to hardware structure
3407 * @index: led number to stop blinking
3408 **/
3409s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
3410{
3411 u32 autoc_reg = 0;
3412 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3413 s32 ret_val = IXGBE_SUCCESS;
3414 bool locked = FALSE;
3415
3416 DEBUGFUNC("ixgbe_blink_led_stop_generic");
3417
3472 /*
3473 * Link must be up to auto-blink the LEDs;
3474 * Force it if link is down.
3475 */
3476 hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3477
3478 if (!link_up) {
3479 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3480 if (ret_val != IXGBE_SUCCESS)
3481 goto out;
3482
3483 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3484 autoc_reg |= IXGBE_AUTOC_FLU;
3485
3486 ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3487 if (ret_val != IXGBE_SUCCESS)
3488 goto out;
3489
3490 IXGBE_WRITE_FLUSH(hw);
3491 msec_delay(10);
3492 }
3493
3494 led_reg &= ~IXGBE_LED_MODE_MASK(index);
3495 led_reg |= IXGBE_LED_BLINK(index);
3496 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3497 IXGBE_WRITE_FLUSH(hw);
3498
3499out:
3500 return ret_val;
3501}
3502
3503/**
3504 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
3505 * @hw: pointer to hardware structure
3506 * @index: led number to stop blinking
3507 **/
3508s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
3509{
3510 u32 autoc_reg = 0;
3511 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3512 s32 ret_val = IXGBE_SUCCESS;
3513 bool locked = FALSE;
3514
3515 DEBUGFUNC("ixgbe_blink_led_stop_generic");
3516
3517 if (index > 3)
3518 return IXGBE_ERR_PARAM;
3519
3520
3418 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3419 if (ret_val != IXGBE_SUCCESS)
3420 goto out;
3421
3422 autoc_reg &= ~IXGBE_AUTOC_FLU;
3423 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3424
3425 ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3426 if (ret_val != IXGBE_SUCCESS)
3427 goto out;
3428
3429 led_reg &= ~IXGBE_LED_MODE_MASK(index);
3430 led_reg &= ~IXGBE_LED_BLINK(index);
3431 led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
3432 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3433 IXGBE_WRITE_FLUSH(hw);
3434
3435out:
3436 return ret_val;
3437}
3438
3439/**
3440 * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
3441 * @hw: pointer to hardware structure
3442 * @san_mac_offset: SAN MAC address offset
3443 *
3444 * This function will read the EEPROM location for the SAN MAC address
3445 * pointer, and returns the value at that location. This is used in both
3446 * get and set mac_addr routines.
3447 **/
3448static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
3449 u16 *san_mac_offset)
3450{
3451 s32 ret_val;
3452
3453 DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
3454
3455 /*
3456 * First read the EEPROM pointer to see if the MAC addresses are
3457 * available.
3458 */
3459 ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
3460 san_mac_offset);
3461 if (ret_val) {
3462 ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3463 "eeprom at offset %d failed",
3464 IXGBE_SAN_MAC_ADDR_PTR);
3465 }
3466
3467 return ret_val;
3468}
3469
3470/**
3471 * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
3472 * @hw: pointer to hardware structure
3473 * @san_mac_addr: SAN MAC address
3474 *
3475 * Reads the SAN MAC address from the EEPROM, if it's available. This is
3476 * per-port, so set_lan_id() must be called before reading the addresses.
3477 * set_lan_id() is called by identify_sfp(), but this cannot be relied
3478 * upon for non-SFP connections, so we must call it here.
3479 **/
3480s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3481{
3482 u16 san_mac_data, san_mac_offset;
3483 u8 i;
3484 s32 ret_val;
3485
3486 DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
3487
3488 /*
3489 * First read the EEPROM pointer to see if the MAC addresses are
3490 * available. If they're not, no point in calling set_lan_id() here.
3491 */
3492 ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3493 if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3494 goto san_mac_addr_out;
3495
3496 /* make sure we know which port we need to program */
3497 hw->mac.ops.set_lan_id(hw);
3498 /* apply the port offset to the address offset */
3499 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3500 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3501 for (i = 0; i < 3; i++) {
3502 ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
3503 &san_mac_data);
3504 if (ret_val) {
3505 ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3506 "eeprom read at offset %d failed",
3507 san_mac_offset);
3508 goto san_mac_addr_out;
3509 }
3510 san_mac_addr[i * 2] = (u8)(san_mac_data);
3511 san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
3512 san_mac_offset++;
3513 }
3514 return IXGBE_SUCCESS;
3515
3516san_mac_addr_out:
3517 /*
3518 * No addresses available in this EEPROM. It's not an
3519 * error though, so just wipe the local address and return.
3520 */
3521 for (i = 0; i < 6; i++)
3522 san_mac_addr[i] = 0xFF;
3523 return IXGBE_SUCCESS;
3524}
3525
3526/**
3527 * ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
3528 * @hw: pointer to hardware structure
3529 * @san_mac_addr: SAN MAC address
3530 *
3531 * Write a SAN MAC address to the EEPROM.
3532 **/
3533s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3534{
3535 s32 ret_val;
3536 u16 san_mac_data, san_mac_offset;
3537 u8 i;
3538
3539 DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
3540
3541 /* Look for SAN mac address pointer. If not defined, return */
3542 ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3543 if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3544 return IXGBE_ERR_NO_SAN_ADDR_PTR;
3545
3546 /* Make sure we know which port we need to write */
3547 hw->mac.ops.set_lan_id(hw);
3548 /* Apply the port offset to the address offset */
3549 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3550 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3551
3552 for (i = 0; i < 3; i++) {
3553 san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
3554 san_mac_data |= (u16)(san_mac_addr[i * 2]);
3555 hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
3556 san_mac_offset++;
3557 }
3558
3559 return IXGBE_SUCCESS;
3560}
3561
3562/**
3563 * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
3564 * @hw: pointer to hardware structure
3565 *
3566 * Read PCIe configuration space, and get the MSI-X vector count from
3567 * the capabilities table.
3568 **/
3569u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
3570{
3571 u16 msix_count = 1;
3572 u16 max_msix_count;
3573 u16 pcie_offset;
3574
3575 switch (hw->mac.type) {
3576 case ixgbe_mac_82598EB:
3577 pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
3578 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
3579 break;
3580 case ixgbe_mac_82599EB:
3581 case ixgbe_mac_X540:
3582 case ixgbe_mac_X550:
3583 case ixgbe_mac_X550EM_x:
3521 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3522 if (ret_val != IXGBE_SUCCESS)
3523 goto out;
3524
3525 autoc_reg &= ~IXGBE_AUTOC_FLU;
3526 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3527
3528 ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3529 if (ret_val != IXGBE_SUCCESS)
3530 goto out;
3531
3532 led_reg &= ~IXGBE_LED_MODE_MASK(index);
3533 led_reg &= ~IXGBE_LED_BLINK(index);
3534 led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
3535 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3536 IXGBE_WRITE_FLUSH(hw);
3537
3538out:
3539 return ret_val;
3540}
3541
3542/**
3543 * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
3544 * @hw: pointer to hardware structure
3545 * @san_mac_offset: SAN MAC address offset
3546 *
3547 * This function will read the EEPROM location for the SAN MAC address
3548 * pointer, and returns the value at that location. This is used in both
3549 * get and set mac_addr routines.
3550 **/
3551static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
3552 u16 *san_mac_offset)
3553{
3554 s32 ret_val;
3555
3556 DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
3557
3558 /*
3559 * First read the EEPROM pointer to see if the MAC addresses are
3560 * available.
3561 */
3562 ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
3563 san_mac_offset);
3564 if (ret_val) {
3565 ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3566 "eeprom at offset %d failed",
3567 IXGBE_SAN_MAC_ADDR_PTR);
3568 }
3569
3570 return ret_val;
3571}
3572
3573/**
3574 * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
3575 * @hw: pointer to hardware structure
3576 * @san_mac_addr: SAN MAC address
3577 *
3578 * Reads the SAN MAC address from the EEPROM, if it's available. This is
3579 * per-port, so set_lan_id() must be called before reading the addresses.
3580 * set_lan_id() is called by identify_sfp(), but this cannot be relied
3581 * upon for non-SFP connections, so we must call it here.
3582 **/
3583s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3584{
3585 u16 san_mac_data, san_mac_offset;
3586 u8 i;
3587 s32 ret_val;
3588
3589 DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
3590
3591 /*
3592 * First read the EEPROM pointer to see if the MAC addresses are
3593 * available. If they're not, no point in calling set_lan_id() here.
3594 */
3595 ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3596 if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3597 goto san_mac_addr_out;
3598
3599 /* make sure we know which port we need to program */
3600 hw->mac.ops.set_lan_id(hw);
3601 /* apply the port offset to the address offset */
3602 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3603 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3604 for (i = 0; i < 3; i++) {
3605 ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
3606 &san_mac_data);
3607 if (ret_val) {
3608 ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3609 "eeprom read at offset %d failed",
3610 san_mac_offset);
3611 goto san_mac_addr_out;
3612 }
3613 san_mac_addr[i * 2] = (u8)(san_mac_data);
3614 san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
3615 san_mac_offset++;
3616 }
3617 return IXGBE_SUCCESS;
3618
3619san_mac_addr_out:
3620 /*
3621 * No addresses available in this EEPROM. It's not an
3622 * error though, so just wipe the local address and return.
3623 */
3624 for (i = 0; i < 6; i++)
3625 san_mac_addr[i] = 0xFF;
3626 return IXGBE_SUCCESS;
3627}
3628
3629/**
3630 * ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
3631 * @hw: pointer to hardware structure
3632 * @san_mac_addr: SAN MAC address
3633 *
3634 * Write a SAN MAC address to the EEPROM.
3635 **/
3636s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3637{
3638 s32 ret_val;
3639 u16 san_mac_data, san_mac_offset;
3640 u8 i;
3641
3642 DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
3643
3644 /* Look for SAN mac address pointer. If not defined, return */
3645 ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3646 if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3647 return IXGBE_ERR_NO_SAN_ADDR_PTR;
3648
3649 /* Make sure we know which port we need to write */
3650 hw->mac.ops.set_lan_id(hw);
3651 /* Apply the port offset to the address offset */
3652 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3653 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3654
3655 for (i = 0; i < 3; i++) {
3656 san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
3657 san_mac_data |= (u16)(san_mac_addr[i * 2]);
3658 hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
3659 san_mac_offset++;
3660 }
3661
3662 return IXGBE_SUCCESS;
3663}
3664
3665/**
3666 * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
3667 * @hw: pointer to hardware structure
3668 *
3669 * Read PCIe configuration space, and get the MSI-X vector count from
3670 * the capabilities table.
3671 **/
3672u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
3673{
3674 u16 msix_count = 1;
3675 u16 max_msix_count;
3676 u16 pcie_offset;
3677
3678 switch (hw->mac.type) {
3679 case ixgbe_mac_82598EB:
3680 pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
3681 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
3682 break;
3683 case ixgbe_mac_82599EB:
3684 case ixgbe_mac_X540:
3685 case ixgbe_mac_X550:
3686 case ixgbe_mac_X550EM_x:
3687 case ixgbe_mac_X550EM_a:
3584 pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
3585 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
3586 break;
3587 default:
3588 return msix_count;
3589 }
3590
3591 DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
3592 msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
3593 if (IXGBE_REMOVED(hw->hw_addr))
3594 msix_count = 0;
3595 msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
3596
3597 /* MSI-X count is zero-based in HW */
3598 msix_count++;
3599
3600 if (msix_count > max_msix_count)
3601 msix_count = max_msix_count;
3602
3603 return msix_count;
3604}
3605
3606/**
3607 * ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
3608 * @hw: pointer to hardware structure
3609 * @addr: Address to put into receive address register
3610 * @vmdq: VMDq pool to assign
3611 *
3612 * Puts an ethernet address into a receive address register, or
3688 pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
3689 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
3690 break;
3691 default:
3692 return msix_count;
3693 }
3694
3695 DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
3696 msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
3697 if (IXGBE_REMOVED(hw->hw_addr))
3698 msix_count = 0;
3699 msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
3700
3701 /* MSI-X count is zero-based in HW */
3702 msix_count++;
3703
3704 if (msix_count > max_msix_count)
3705 msix_count = max_msix_count;
3706
3707 return msix_count;
3708}
3709
3710/**
3711 * ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
3712 * @hw: pointer to hardware structure
3713 * @addr: Address to put into receive address register
3714 * @vmdq: VMDq pool to assign
3715 *
3716 * Puts an ethernet address into a receive address register, or
3613 * finds the rar that it is already in; adds to the pool list
3717 * finds the rar that it is aleady in; adds to the pool list
3614 **/
3615s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
3616{
3617 static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
3618 u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
3619 u32 rar;
3620 u32 rar_low, rar_high;
3621 u32 addr_low, addr_high;
3622
3623 DEBUGFUNC("ixgbe_insert_mac_addr_generic");
3624
3625 /* swap bytes for HW little endian */
3626 addr_low = addr[0] | (addr[1] << 8)
3627 | (addr[2] << 16)
3628 | (addr[3] << 24);
3629 addr_high = addr[4] | (addr[5] << 8);
3630
3631 /*
3632 * Either find the mac_id in rar or find the first empty space.
3633 * rar_highwater points to just after the highest currently used
3634 * rar in order to shorten the search. It grows when we add a new
3635 * rar to the top.
3636 */
3637 for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
3638 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
3639
3640 if (((IXGBE_RAH_AV & rar_high) == 0)
3641 && first_empty_rar == NO_EMPTY_RAR_FOUND) {
3642 first_empty_rar = rar;
3643 } else if ((rar_high & 0xFFFF) == addr_high) {
3644 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
3645 if (rar_low == addr_low)
3646 break; /* found it already in the rars */
3647 }
3648 }
3649
3650 if (rar < hw->mac.rar_highwater) {
3651 /* already there so just add to the pool bits */
3652 ixgbe_set_vmdq(hw, rar, vmdq);
3653 } else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
3654 /* stick it into first empty RAR slot we found */
3655 rar = first_empty_rar;
3656 ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3657 } else if (rar == hw->mac.rar_highwater) {
3658 /* add it to the top of the list and inc the highwater mark */
3659 ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3660 hw->mac.rar_highwater++;
3661 } else if (rar >= hw->mac.num_rar_entries) {
3662 return IXGBE_ERR_INVALID_MAC_ADDR;
3663 }
3664
3665 /*
3666 * If we found rar[0], make sure the default pool bit (we use pool 0)
3667 * remains cleared to be sure default pool packets will get delivered
3668 */
3669 if (rar == 0)
3670 ixgbe_clear_vmdq(hw, rar, 0);
3671
3672 return rar;
3673}
3674
3675/**
3676 * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
3677 * @hw: pointer to hardware struct
3678 * @rar: receive address register index to disassociate
3679 * @vmdq: VMDq pool index to remove from the rar
3680 **/
3681s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3682{
3683 u32 mpsar_lo, mpsar_hi;
3684 u32 rar_entries = hw->mac.num_rar_entries;
3685
3686 DEBUGFUNC("ixgbe_clear_vmdq_generic");
3687
3688 /* Make sure we are using a valid rar index range */
3689 if (rar >= rar_entries) {
3690 ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3691 "RAR index %d is out of range.\n", rar);
3692 return IXGBE_ERR_INVALID_ARGUMENT;
3693 }
3694
3695 mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3696 mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3697
3698 if (IXGBE_REMOVED(hw->hw_addr))
3699 goto done;
3700
3701 if (!mpsar_lo && !mpsar_hi)
3702 goto done;
3703
3704 if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
3705 if (mpsar_lo) {
3706 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3707 mpsar_lo = 0;
3708 }
3709 if (mpsar_hi) {
3710 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3711 mpsar_hi = 0;
3712 }
3713 } else if (vmdq < 32) {
3714 mpsar_lo &= ~(1 << vmdq);
3715 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3716 } else {
3717 mpsar_hi &= ~(1 << (vmdq - 32));
3718 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3719 }
3720
3721 /* was that the last pool using this rar? */
3718 **/
3719s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
3720{
3721 static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
3722 u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
3723 u32 rar;
3724 u32 rar_low, rar_high;
3725 u32 addr_low, addr_high;
3726
3727 DEBUGFUNC("ixgbe_insert_mac_addr_generic");
3728
3729 /* swap bytes for HW little endian */
3730 addr_low = addr[0] | (addr[1] << 8)
3731 | (addr[2] << 16)
3732 | (addr[3] << 24);
3733 addr_high = addr[4] | (addr[5] << 8);
3734
3735 /*
3736 * Either find the mac_id in rar or find the first empty space.
3737 * rar_highwater points to just after the highest currently used
3738 * rar in order to shorten the search. It grows when we add a new
3739 * rar to the top.
3740 */
3741 for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
3742 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
3743
3744 if (((IXGBE_RAH_AV & rar_high) == 0)
3745 && first_empty_rar == NO_EMPTY_RAR_FOUND) {
3746 first_empty_rar = rar;
3747 } else if ((rar_high & 0xFFFF) == addr_high) {
3748 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
3749 if (rar_low == addr_low)
3750 break; /* found it already in the rars */
3751 }
3752 }
3753
3754 if (rar < hw->mac.rar_highwater) {
3755 /* already there so just add to the pool bits */
3756 ixgbe_set_vmdq(hw, rar, vmdq);
3757 } else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
3758 /* stick it into first empty RAR slot we found */
3759 rar = first_empty_rar;
3760 ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3761 } else if (rar == hw->mac.rar_highwater) {
3762 /* add it to the top of the list and inc the highwater mark */
3763 ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3764 hw->mac.rar_highwater++;
3765 } else if (rar >= hw->mac.num_rar_entries) {
3766 return IXGBE_ERR_INVALID_MAC_ADDR;
3767 }
3768
3769 /*
3770 * If we found rar[0], make sure the default pool bit (we use pool 0)
3771 * remains cleared to be sure default pool packets will get delivered
3772 */
3773 if (rar == 0)
3774 ixgbe_clear_vmdq(hw, rar, 0);
3775
3776 return rar;
3777}
3778
3779/**
3780 * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
3781 * @hw: pointer to hardware struct
3782 * @rar: receive address register index to disassociate
3783 * @vmdq: VMDq pool index to remove from the rar
3784 **/
3785s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3786{
3787 u32 mpsar_lo, mpsar_hi;
3788 u32 rar_entries = hw->mac.num_rar_entries;
3789
3790 DEBUGFUNC("ixgbe_clear_vmdq_generic");
3791
3792 /* Make sure we are using a valid rar index range */
3793 if (rar >= rar_entries) {
3794 ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3795 "RAR index %d is out of range.\n", rar);
3796 return IXGBE_ERR_INVALID_ARGUMENT;
3797 }
3798
3799 mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3800 mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3801
3802 if (IXGBE_REMOVED(hw->hw_addr))
3803 goto done;
3804
3805 if (!mpsar_lo && !mpsar_hi)
3806 goto done;
3807
3808 if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
3809 if (mpsar_lo) {
3810 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3811 mpsar_lo = 0;
3812 }
3813 if (mpsar_hi) {
3814 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3815 mpsar_hi = 0;
3816 }
3817 } else if (vmdq < 32) {
3818 mpsar_lo &= ~(1 << vmdq);
3819 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3820 } else {
3821 mpsar_hi &= ~(1 << (vmdq - 32));
3822 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3823 }
3824
3825 /* was that the last pool using this rar? */
3722 if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
3826 if (mpsar_lo == 0 && mpsar_hi == 0 &&
3827 rar != 0 && rar != hw->mac.san_mac_rar_index)
3723 hw->mac.ops.clear_rar(hw, rar);
3724done:
3725 return IXGBE_SUCCESS;
3726}
3727
3728/**
3729 * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3730 * @hw: pointer to hardware struct
3731 * @rar: receive address register index to associate with a VMDq index
3732 * @vmdq: VMDq pool index
3733 **/
3734s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3735{
3736 u32 mpsar;
3737 u32 rar_entries = hw->mac.num_rar_entries;
3738
3739 DEBUGFUNC("ixgbe_set_vmdq_generic");
3740
3741 /* Make sure we are using a valid rar index range */
3742 if (rar >= rar_entries) {
3743 ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3744 "RAR index %d is out of range.\n", rar);
3745 return IXGBE_ERR_INVALID_ARGUMENT;
3746 }
3747
3748 if (vmdq < 32) {
3749 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3750 mpsar |= 1 << vmdq;
3751 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3752 } else {
3753 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3754 mpsar |= 1 << (vmdq - 32);
3755 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3756 }
3757 return IXGBE_SUCCESS;
3758}
3759
3760/**
3761 * This function should only be involved in the IOV mode.
3762 * In IOV mode, Default pool is next pool after the number of
3763 * VFs advertized and not 0.
3764 * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3765 *
3766 * ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3767 * @hw: pointer to hardware struct
3768 * @vmdq: VMDq pool index
3769 **/
3770s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3771{
3772 u32 rar = hw->mac.san_mac_rar_index;
3773
3774 DEBUGFUNC("ixgbe_set_vmdq_san_mac");
3775
3776 if (vmdq < 32) {
3777 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
3778 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3779 } else {
3780 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3781 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
3782 }
3783
3784 return IXGBE_SUCCESS;
3785}
3786
3787/**
3788 * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3789 * @hw: pointer to hardware structure
3790 **/
3791s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3792{
3793 int i;
3794
3795 DEBUGFUNC("ixgbe_init_uta_tables_generic");
3796 DEBUGOUT(" Clearing UTA\n");
3797
3798 for (i = 0; i < 128; i++)
3799 IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3800
3801 return IXGBE_SUCCESS;
3802}
3803
3804/**
3805 * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3806 * @hw: pointer to hardware structure
3807 * @vlan: VLAN id to write to VLAN filter
3808 *
3809 * return the VLVF index where this VLAN id should be placed
3810 *
3811 **/
3828 hw->mac.ops.clear_rar(hw, rar);
3829done:
3830 return IXGBE_SUCCESS;
3831}
3832
3833/**
3834 * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3835 * @hw: pointer to hardware struct
3836 * @rar: receive address register index to associate with a VMDq index
3837 * @vmdq: VMDq pool index
3838 **/
3839s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3840{
3841 u32 mpsar;
3842 u32 rar_entries = hw->mac.num_rar_entries;
3843
3844 DEBUGFUNC("ixgbe_set_vmdq_generic");
3845
3846 /* Make sure we are using a valid rar index range */
3847 if (rar >= rar_entries) {
3848 ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3849 "RAR index %d is out of range.\n", rar);
3850 return IXGBE_ERR_INVALID_ARGUMENT;
3851 }
3852
3853 if (vmdq < 32) {
3854 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3855 mpsar |= 1 << vmdq;
3856 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3857 } else {
3858 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3859 mpsar |= 1 << (vmdq - 32);
3860 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3861 }
3862 return IXGBE_SUCCESS;
3863}
3864
3865/**
3866 * This function should only be involved in the IOV mode.
3867 * In IOV mode, Default pool is next pool after the number of
3868 * VFs advertized and not 0.
3869 * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3870 *
3871 * ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3872 * @hw: pointer to hardware struct
3873 * @vmdq: VMDq pool index
3874 **/
3875s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3876{
3877 u32 rar = hw->mac.san_mac_rar_index;
3878
3879 DEBUGFUNC("ixgbe_set_vmdq_san_mac");
3880
3881 if (vmdq < 32) {
3882 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
3883 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3884 } else {
3885 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3886 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
3887 }
3888
3889 return IXGBE_SUCCESS;
3890}
3891
3892/**
3893 * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3894 * @hw: pointer to hardware structure
3895 **/
3896s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3897{
3898 int i;
3899
3900 DEBUGFUNC("ixgbe_init_uta_tables_generic");
3901 DEBUGOUT(" Clearing UTA\n");
3902
3903 for (i = 0; i < 128; i++)
3904 IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3905
3906 return IXGBE_SUCCESS;
3907}
3908
3909/**
3910 * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3911 * @hw: pointer to hardware structure
3912 * @vlan: VLAN id to write to VLAN filter
3913 *
3914 * return the VLVF index where this VLAN id should be placed
3915 *
3916 **/
3812s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
3917s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3813{
3918{
3814 u32 bits = 0;
3815 u32 first_empty_slot = 0;
3816 s32 regindex;
3919 s32 regindex, first_empty_slot;
3920 u32 bits;
3817
3818 /* short cut the special case */
3819 if (vlan == 0)
3820 return 0;
3821
3921
3922 /* short cut the special case */
3923 if (vlan == 0)
3924 return 0;
3925
3822 /*
3823 * Search for the vlan id in the VLVF entries. Save off the first empty
3824 * slot found along the way
3825 */
3826 for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
3926 /* if vlvf_bypass is set we don't want to use an empty slot, we
3927 * will simply bypass the VLVF if there are no entries present in the
3928 * VLVF that contain our VLAN
3929 */
3930 first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3931
3932 /* add VLAN enable bit for comparison */
3933 vlan |= IXGBE_VLVF_VIEN;
3934
3935 /* Search for the vlan id in the VLVF entries. Save off the first empty
3936 * slot found along the way.
3937 *
3938 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3939 */
3940 for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3827 bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3941 bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3828 if (!bits && !(first_empty_slot))
3942 if (bits == vlan)
3943 return regindex;
3944 if (!first_empty_slot && !bits)
3829 first_empty_slot = regindex;
3945 first_empty_slot = regindex;
3830 else if ((bits & 0x0FFF) == vlan)
3831 break;
3832 }
3833
3946 }
3947
3834 /*
3835 * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
3836 * in the VLVF. Else use the first empty VLVF register for this
3837 * vlan id.
3838 */
3839 if (regindex >= IXGBE_VLVF_ENTRIES) {
3840 if (first_empty_slot)
3841 regindex = first_empty_slot;
3842 else {
3843 ERROR_REPORT1(IXGBE_ERROR_SOFTWARE,
3844 "No space in VLVF.\n");
3845 regindex = IXGBE_ERR_NO_SPACE;
3846 }
3847 }
3948 /* If we are here then we didn't find the VLAN. Return first empty
3949 * slot we found during our search, else error.
3950 */
3951 if (!first_empty_slot)
3952 ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "No space in VLVF.\n");
3848
3953
3849 return regindex;
3954 return first_empty_slot ? first_empty_slot : IXGBE_ERR_NO_SPACE;
3850}
3851
3852/**
3853 * ixgbe_set_vfta_generic - Set VLAN filter table
3854 * @hw: pointer to hardware structure
3855 * @vlan: VLAN id to write to VLAN filter
3955}
3956
3957/**
3958 * ixgbe_set_vfta_generic - Set VLAN filter table
3959 * @hw: pointer to hardware structure
3960 * @vlan: VLAN id to write to VLAN filter
3856 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
3857 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
3961 * @vind: VMDq output index that maps queue to VLAN id in VLVFB
3962 * @vlan_on: boolean flag to turn on/off VLAN
3963 * @vlvf_bypass: boolean flag indicating updating default pool is okay
3858 *
3859 * Turn on/off specified VLAN in the VLAN filter table.
3860 **/
3861s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3964 *
3965 * Turn on/off specified VLAN in the VLAN filter table.
3966 **/
3967s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3862 bool vlan_on)
3968 bool vlan_on, bool vlvf_bypass)
3863{
3969{
3864 s32 regindex;
3865 u32 bitindex;
3866 u32 vfta;
3867 u32 targetbit;
3868 s32 ret_val = IXGBE_SUCCESS;
3869 bool vfta_changed = FALSE;
3970 u32 regidx, vfta_delta, vfta;
3971 s32 ret_val;
3870
3871 DEBUGFUNC("ixgbe_set_vfta_generic");
3872
3972
3973 DEBUGFUNC("ixgbe_set_vfta_generic");
3974
3873 if (vlan > 4095)
3975 if (vlan > 4095 || vind > 63)
3874 return IXGBE_ERR_PARAM;
3875
3876 /*
3877 * this is a 2 part operation - first the VFTA, then the
3878 * VLVF and VLVFB if VT Mode is set
3879 * We don't write the VFTA until we know the VLVF part succeeded.
3880 */
3881
3882 /* Part 1
3883 * The VFTA is a bitstring made up of 128 32-bit registers
3884 * that enable the particular VLAN id, much like the MTA:
3885 * bits[11-5]: which register
3886 * bits[4-0]: which bit in the register
3887 */
3976 return IXGBE_ERR_PARAM;
3977
3978 /*
3979 * this is a 2 part operation - first the VFTA, then the
3980 * VLVF and VLVFB if VT Mode is set
3981 * We don't write the VFTA until we know the VLVF part succeeded.
3982 */
3983
3984 /* Part 1
3985 * The VFTA is a bitstring made up of 128 32-bit registers
3986 * that enable the particular VLAN id, much like the MTA:
3987 * bits[11-5]: which register
3988 * bits[4-0]: which bit in the register
3989 */
3888 regindex = (vlan >> 5) & 0x7F;
3889 bitindex = vlan & 0x1F;
3890 targetbit = (1 << bitindex);
3891 vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
3990 regidx = vlan / 32;
3991 vfta_delta = 1 << (vlan % 32);
3992 vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
3892
3993
3893 if (vlan_on) {
3894 if (!(vfta & targetbit)) {
3895 vfta |= targetbit;
3896 vfta_changed = TRUE;
3897 }
3898 } else {
3899 if ((vfta & targetbit)) {
3900 vfta &= ~targetbit;
3901 vfta_changed = TRUE;
3902 }
3903 }
3994 /*
3995 * vfta_delta represents the difference between the current value
3996 * of vfta and the value we want in the register. Since the diff
3997 * is an XOR mask we can just update the vfta using an XOR
3998 */
3999 vfta_delta &= vlan_on ? ~vfta : vfta;
4000 vfta ^= vfta_delta;
3904
3905 /* Part 2
3906 * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
3907 */
4001
4002 /* Part 2
4003 * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
4004 */
3908 ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on,
3909 &vfta_changed);
3910 if (ret_val != IXGBE_SUCCESS)
4005 ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on, &vfta_delta,
4006 vfta, vlvf_bypass);
4007 if (ret_val != IXGBE_SUCCESS) {
4008 if (vlvf_bypass)
4009 goto vfta_update;
3911 return ret_val;
4010 return ret_val;
4011 }
3912
4012
3913 if (vfta_changed)
3914 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
4013vfta_update:
4014 /* Update VFTA now that we are ready for traffic */
4015 if (vfta_delta)
4016 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3915
3916 return IXGBE_SUCCESS;
3917}
3918
3919/**
3920 * ixgbe_set_vlvf_generic - Set VLAN Pool Filter
3921 * @hw: pointer to hardware structure
3922 * @vlan: VLAN id to write to VLAN filter
4017
4018 return IXGBE_SUCCESS;
4019}
4020
4021/**
4022 * ixgbe_set_vlvf_generic - Set VLAN Pool Filter
4023 * @hw: pointer to hardware structure
4024 * @vlan: VLAN id to write to VLAN filter
3923 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
3924 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
3925 * @vfta_changed: pointer to boolean flag which indicates whether VFTA
3926 * should be changed
4025 * @vind: VMDq output index that maps queue to VLAN id in VLVFB
4026 * @vlan_on: boolean flag to turn on/off VLAN in VLVF
4027 * @vfta_delta: pointer to the difference between the current value of VFTA
4028 * and the desired value
4029 * @vfta: the desired value of the VFTA
4030 * @vlvf_bypass: boolean flag indicating updating default pool is okay
3927 *
3928 * Turn on/off specified bit in VLVF table.
3929 **/
3930s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
4031 *
4032 * Turn on/off specified bit in VLVF table.
4033 **/
4034s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3931 bool vlan_on, bool *vfta_changed)
4035 bool vlan_on, u32 *vfta_delta, u32 vfta,
4036 bool vlvf_bypass)
3932{
4037{
3933 u32 vt;
4038 u32 bits;
4039 s32 vlvf_index;
3934
3935 DEBUGFUNC("ixgbe_set_vlvf_generic");
3936
4040
4041 DEBUGFUNC("ixgbe_set_vlvf_generic");
4042
3937 if (vlan > 4095)
4043 if (vlan > 4095 || vind > 63)
3938 return IXGBE_ERR_PARAM;
3939
3940 /* If VT Mode is set
3941 * Either vlan_on
3942 * make sure the vlan is in VLVF
3943 * set the vind bit in the matching VLVFB
3944 * Or !vlan_on
3945 * clear the pool bit and possibly the vind
3946 */
4044 return IXGBE_ERR_PARAM;
4045
4046 /* If VT Mode is set
4047 * Either vlan_on
4048 * make sure the vlan is in VLVF
4049 * set the vind bit in the matching VLVFB
4050 * Or !vlan_on
4051 * clear the pool bit and possibly the vind
4052 */
3947 vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
3948 if (vt & IXGBE_VT_CTL_VT_ENABLE) {
3949 s32 vlvf_index;
3950 u32 bits;
4053 if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
4054 return IXGBE_SUCCESS;
3951
4055
3952 vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
3953 if (vlvf_index < 0)
3954 return vlvf_index;
4056 vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
4057 if (vlvf_index < 0)
4058 return vlvf_index;
3955
4059
3956 if (vlan_on) {
3957 /* set the pool bit */
3958 if (vind < 32) {
3959 bits = IXGBE_READ_REG(hw,
3960 IXGBE_VLVFB(vlvf_index * 2));
3961 bits |= (1 << vind);
3962 IXGBE_WRITE_REG(hw,
3963 IXGBE_VLVFB(vlvf_index * 2),
3964 bits);
3965 } else {
3966 bits = IXGBE_READ_REG(hw,
3967 IXGBE_VLVFB((vlvf_index * 2) + 1));
3968 bits |= (1 << (vind - 32));
3969 IXGBE_WRITE_REG(hw,
3970 IXGBE_VLVFB((vlvf_index * 2) + 1),
3971 bits);
3972 }
3973 } else {
3974 /* clear the pool bit */
3975 if (vind < 32) {
3976 bits = IXGBE_READ_REG(hw,
3977 IXGBE_VLVFB(vlvf_index * 2));
3978 bits &= ~(1 << vind);
3979 IXGBE_WRITE_REG(hw,
3980 IXGBE_VLVFB(vlvf_index * 2),
3981 bits);
3982 bits |= IXGBE_READ_REG(hw,
3983 IXGBE_VLVFB((vlvf_index * 2) + 1));
3984 } else {
3985 bits = IXGBE_READ_REG(hw,
3986 IXGBE_VLVFB((vlvf_index * 2) + 1));
3987 bits &= ~(1 << (vind - 32));
3988 IXGBE_WRITE_REG(hw,
3989 IXGBE_VLVFB((vlvf_index * 2) + 1),
3990 bits);
3991 bits |= IXGBE_READ_REG(hw,
3992 IXGBE_VLVFB(vlvf_index * 2));
3993 }
3994 }
4060 bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
3995
4061
3996 /*
3997 * If there are still bits set in the VLVFB registers
3998 * for the VLAN ID indicated we need to see if the
3999 * caller is requesting that we clear the VFTA entry bit.
4000 * If the caller has requested that we clear the VFTA
4001 * entry bit but there are still pools/VFs using this VLAN
4002 * ID entry then ignore the request. We're not worried
4003 * about the case where we're turning the VFTA VLAN ID
4004 * entry bit on, only when requested to turn it off as
4005 * there may be multiple pools and/or VFs using the
4006 * VLAN ID entry. In that case we cannot clear the
4007 * VFTA bit until all pools/VFs using that VLAN ID have also
4008 * been cleared. This will be indicated by "bits" being
4009 * zero.
4062 /* set the pool bit */
4063 bits |= 1 << (vind % 32);
4064 if (vlan_on)
4065 goto vlvf_update;
4066
4067 /* clear the pool bit */
4068 bits ^= 1 << (vind % 32);
4069
4070 if (!bits &&
4071 !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
4072 /* Clear VFTA first, then disable VLVF. Otherwise
4073 * we run the risk of stray packets leaking into
4074 * the PF via the default pool
4010 */
4075 */
4011 if (bits) {
4012 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
4013 (IXGBE_VLVF_VIEN | vlan));
4014 if ((!vlan_on) && (vfta_changed != NULL)) {
4015 /* someone wants to clear the vfta entry
4016 * but some pools/VFs are still using it.
4017 * Ignore it. */
4018 *vfta_changed = FALSE;
4019 }
4020 } else
4021 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
4076 if (*vfta_delta)
4077 IXGBE_WRITE_REG(hw, IXGBE_VFTA(vlan / 32), vfta);
4078
4079 /* disable VLVF and clear remaining bit from pool */
4080 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
4081 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
4082
4083 return IXGBE_SUCCESS;
4022 }
4023
4084 }
4085
4086 /* If there are still bits set in the VLVFB registers
4087 * for the VLAN ID indicated we need to see if the
4088 * caller is requesting that we clear the VFTA entry bit.
4089 * If the caller has requested that we clear the VFTA
4090 * entry bit but there are still pools/VFs using this VLAN
4091 * ID entry then ignore the request. We're not worried
4092 * about the case where we're turning the VFTA VLAN ID
4093 * entry bit on, only when requested to turn it off as
4094 * there may be multiple pools and/or VFs using the
4095 * VLAN ID entry. In that case we cannot clear the
4096 * VFTA bit until all pools/VFs using that VLAN ID have also
4097 * been cleared. This will be indicated by "bits" being
4098 * zero.
4099 */
4100 *vfta_delta = 0;
4101
4102vlvf_update:
4103 /* record pool change and enable VLAN ID if not already enabled */
4104 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
4105 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
4106
4024 return IXGBE_SUCCESS;
4025}
4026
4027/**
4028 * ixgbe_clear_vfta_generic - Clear VLAN filter table
4029 * @hw: pointer to hardware structure
4030 *
4031 * Clears the VLAN filer table, and the VMDq index associated with the filter
4032 **/
4033s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
4034{
4035 u32 offset;
4036
4037 DEBUGFUNC("ixgbe_clear_vfta_generic");
4038
4039 for (offset = 0; offset < hw->mac.vft_size; offset++)
4040 IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
4041
4042 for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
4043 IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
4044 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
4107 return IXGBE_SUCCESS;
4108}
4109
4110/**
4111 * ixgbe_clear_vfta_generic - Clear VLAN filter table
4112 * @hw: pointer to hardware structure
4113 *
4114 * Clears the VLAN filer table, and the VMDq index associated with the filter
4115 **/
4116s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
4117{
4118 u32 offset;
4119
4120 DEBUGFUNC("ixgbe_clear_vfta_generic");
4121
4122 for (offset = 0; offset < hw->mac.vft_size; offset++)
4123 IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
4124
4125 for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
4126 IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
4127 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
4045 IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
4128 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
4046 }
4047
4048 return IXGBE_SUCCESS;
4049}
4050
4051/**
4129 }
4130
4131 return IXGBE_SUCCESS;
4132}
4133
4134/**
4135 * ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
4136 * @hw: pointer to hardware structure
4137 *
4138 * Contains the logic to identify if we need to verify link for the
4139 * crosstalk fix
4140 **/
4141static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
4142{
4143
4144 /* Does FW say we need the fix */
4145 if (!hw->need_crosstalk_fix)
4146 return FALSE;
4147
4148 /* Only consider SFP+ PHYs i.e. media type fiber */
4149 switch (hw->mac.ops.get_media_type(hw)) {
4150 case ixgbe_media_type_fiber:
4151 case ixgbe_media_type_fiber_qsfp:
4152 break;
4153 default:
4154 return FALSE;
4155 }
4156
4157 return TRUE;
4158}
4159
4160/**
4052 * ixgbe_check_mac_link_generic - Determine link and speed status
4053 * @hw: pointer to hardware structure
4054 * @speed: pointer to link speed
4055 * @link_up: TRUE when link is up
4056 * @link_up_wait_to_complete: bool used to wait for link up or not
4057 *
4058 * Reads the links register to determine if link is up and the current speed
4059 **/
4060s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
4061 bool *link_up, bool link_up_wait_to_complete)
4062{
4063 u32 links_reg, links_orig;
4064 u32 i;
4065
4066 DEBUGFUNC("ixgbe_check_mac_link_generic");
4067
4161 * ixgbe_check_mac_link_generic - Determine link and speed status
4162 * @hw: pointer to hardware structure
4163 * @speed: pointer to link speed
4164 * @link_up: TRUE when link is up
4165 * @link_up_wait_to_complete: bool used to wait for link up or not
4166 *
4167 * Reads the links register to determine if link is up and the current speed
4168 **/
4169s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
4170 bool *link_up, bool link_up_wait_to_complete)
4171{
4172 u32 links_reg, links_orig;
4173 u32 i;
4174
4175 DEBUGFUNC("ixgbe_check_mac_link_generic");
4176
4177 /* If Crosstalk fix enabled do the sanity check of making sure
4178 * the SFP+ cage is full.
4179 */
4180 if (ixgbe_need_crosstalk_fix(hw)) {
4181 u32 sfp_cage_full;
4182
4183 switch (hw->mac.type) {
4184 case ixgbe_mac_82599EB:
4185 sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
4186 IXGBE_ESDP_SDP2;
4187 break;
4188 case ixgbe_mac_X550EM_x:
4189 case ixgbe_mac_X550EM_a:
4190 sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
4191 IXGBE_ESDP_SDP0;
4192 break;
4193 default:
4194 /* sanity check - No SFP+ devices here */
4195 sfp_cage_full = FALSE;
4196 break;
4197 }
4198
4199 if (!sfp_cage_full) {
4200 *link_up = FALSE;
4201 *speed = IXGBE_LINK_SPEED_UNKNOWN;
4202 return IXGBE_SUCCESS;
4203 }
4204 }
4205
4068 /* clear the old state */
4069 links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
4070
4071 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4072
4073 if (links_orig != links_reg) {
4074 DEBUGOUT2("LINKS changed from %08X to %08X\n",
4075 links_orig, links_reg);
4076 }
4077
4078 if (link_up_wait_to_complete) {
4079 for (i = 0; i < hw->mac.max_link_up_time; i++) {
4080 if (links_reg & IXGBE_LINKS_UP) {
4081 *link_up = TRUE;
4082 break;
4083 } else {
4084 *link_up = FALSE;
4085 }
4086 msec_delay(100);
4087 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4088 }
4089 } else {
4090 if (links_reg & IXGBE_LINKS_UP)
4091 *link_up = TRUE;
4092 else
4093 *link_up = FALSE;
4094 }
4095
4096 switch (links_reg & IXGBE_LINKS_SPEED_82599) {
4097 case IXGBE_LINKS_SPEED_10G_82599:
4098 *speed = IXGBE_LINK_SPEED_10GB_FULL;
4099 if (hw->mac.type >= ixgbe_mac_X550) {
4100 if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4101 *speed = IXGBE_LINK_SPEED_2_5GB_FULL;
4102 }
4103 break;
4104 case IXGBE_LINKS_SPEED_1G_82599:
4105 *speed = IXGBE_LINK_SPEED_1GB_FULL;
4106 break;
4107 case IXGBE_LINKS_SPEED_100_82599:
4108 *speed = IXGBE_LINK_SPEED_100_FULL;
4206 /* clear the old state */
4207 links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
4208
4209 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4210
4211 if (links_orig != links_reg) {
4212 DEBUGOUT2("LINKS changed from %08X to %08X\n",
4213 links_orig, links_reg);
4214 }
4215
4216 if (link_up_wait_to_complete) {
4217 for (i = 0; i < hw->mac.max_link_up_time; i++) {
4218 if (links_reg & IXGBE_LINKS_UP) {
4219 *link_up = TRUE;
4220 break;
4221 } else {
4222 *link_up = FALSE;
4223 }
4224 msec_delay(100);
4225 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4226 }
4227 } else {
4228 if (links_reg & IXGBE_LINKS_UP)
4229 *link_up = TRUE;
4230 else
4231 *link_up = FALSE;
4232 }
4233
4234 switch (links_reg & IXGBE_LINKS_SPEED_82599) {
4235 case IXGBE_LINKS_SPEED_10G_82599:
4236 *speed = IXGBE_LINK_SPEED_10GB_FULL;
4237 if (hw->mac.type >= ixgbe_mac_X550) {
4238 if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4239 *speed = IXGBE_LINK_SPEED_2_5GB_FULL;
4240 }
4241 break;
4242 case IXGBE_LINKS_SPEED_1G_82599:
4243 *speed = IXGBE_LINK_SPEED_1GB_FULL;
4244 break;
4245 case IXGBE_LINKS_SPEED_100_82599:
4246 *speed = IXGBE_LINK_SPEED_100_FULL;
4109 if (hw->mac.type >= ixgbe_mac_X550) {
4247 if (hw->mac.type == ixgbe_mac_X550) {
4110 if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4111 *speed = IXGBE_LINK_SPEED_5GB_FULL;
4112 }
4113 break;
4248 if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4249 *speed = IXGBE_LINK_SPEED_5GB_FULL;
4250 }
4251 break;
4252 case IXGBE_LINKS_SPEED_10_X550EM_A:
4253 *speed = IXGBE_LINK_SPEED_UNKNOWN;
4254 if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
4255 hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L) {
4256 *speed = IXGBE_LINK_SPEED_10_FULL;
4257 }
4258 break;
4114 default:
4115 *speed = IXGBE_LINK_SPEED_UNKNOWN;
4116 }
4117
4118 return IXGBE_SUCCESS;
4119}
4120
4121/**
4122 * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
4123 * the EEPROM
4124 * @hw: pointer to hardware structure
4125 * @wwnn_prefix: the alternative WWNN prefix
4126 * @wwpn_prefix: the alternative WWPN prefix
4127 *
4128 * This function will read the EEPROM from the alternative SAN MAC address
4129 * block to check the support for the alternative WWNN/WWPN prefix support.
4130 **/
4131s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
4132 u16 *wwpn_prefix)
4133{
4134 u16 offset, caps;
4135 u16 alt_san_mac_blk_offset;
4136
4137 DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
4138
4139 /* clear output first */
4140 *wwnn_prefix = 0xFFFF;
4141 *wwpn_prefix = 0xFFFF;
4142
4143 /* check if alternative SAN MAC is supported */
4144 offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
4145 if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
4146 goto wwn_prefix_err;
4147
4148 if ((alt_san_mac_blk_offset == 0) ||
4149 (alt_san_mac_blk_offset == 0xFFFF))
4150 goto wwn_prefix_out;
4151
4152 /* check capability in alternative san mac address block */
4153 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
4154 if (hw->eeprom.ops.read(hw, offset, &caps))
4155 goto wwn_prefix_err;
4156 if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
4157 goto wwn_prefix_out;
4158
4159 /* get the corresponding prefix for WWNN/WWPN */
4160 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
4161 if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
4162 ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4163 "eeprom read at offset %d failed", offset);
4164 }
4165
4166 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
4167 if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
4168 goto wwn_prefix_err;
4169
4170wwn_prefix_out:
4171 return IXGBE_SUCCESS;
4172
4173wwn_prefix_err:
4174 ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4175 "eeprom read at offset %d failed", offset);
4176 return IXGBE_SUCCESS;
4177}
4178
4179/**
4180 * ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
4181 * @hw: pointer to hardware structure
4182 * @bs: the fcoe boot status
4183 *
4184 * This function will read the FCOE boot status from the iSCSI FCOE block
4185 **/
4186s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
4187{
4188 u16 offset, caps, flags;
4189 s32 status;
4190
4191 DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
4192
4193 /* clear output first */
4194 *bs = ixgbe_fcoe_bootstatus_unavailable;
4195
4196 /* check if FCOE IBA block is present */
4197 offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
4198 status = hw->eeprom.ops.read(hw, offset, &caps);
4199 if (status != IXGBE_SUCCESS)
4200 goto out;
4201
4202 if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
4203 goto out;
4204
4205 /* check if iSCSI FCOE block is populated */
4206 status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
4207 if (status != IXGBE_SUCCESS)
4208 goto out;
4209
4210 if ((offset == 0) || (offset == 0xFFFF))
4211 goto out;
4212
4213 /* read fcoe flags in iSCSI FCOE block */
4214 offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
4215 status = hw->eeprom.ops.read(hw, offset, &flags);
4216 if (status != IXGBE_SUCCESS)
4217 goto out;
4218
4219 if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
4220 *bs = ixgbe_fcoe_bootstatus_enabled;
4221 else
4222 *bs = ixgbe_fcoe_bootstatus_disabled;
4223
4224out:
4225 return status;
4226}
4227
4228/**
4229 * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
4230 * @hw: pointer to hardware structure
4259 default:
4260 *speed = IXGBE_LINK_SPEED_UNKNOWN;
4261 }
4262
4263 return IXGBE_SUCCESS;
4264}
4265
4266/**
4267 * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
4268 * the EEPROM
4269 * @hw: pointer to hardware structure
4270 * @wwnn_prefix: the alternative WWNN prefix
4271 * @wwpn_prefix: the alternative WWPN prefix
4272 *
4273 * This function will read the EEPROM from the alternative SAN MAC address
4274 * block to check the support for the alternative WWNN/WWPN prefix support.
4275 **/
4276s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
4277 u16 *wwpn_prefix)
4278{
4279 u16 offset, caps;
4280 u16 alt_san_mac_blk_offset;
4281
4282 DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
4283
4284 /* clear output first */
4285 *wwnn_prefix = 0xFFFF;
4286 *wwpn_prefix = 0xFFFF;
4287
4288 /* check if alternative SAN MAC is supported */
4289 offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
4290 if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
4291 goto wwn_prefix_err;
4292
4293 if ((alt_san_mac_blk_offset == 0) ||
4294 (alt_san_mac_blk_offset == 0xFFFF))
4295 goto wwn_prefix_out;
4296
4297 /* check capability in alternative san mac address block */
4298 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
4299 if (hw->eeprom.ops.read(hw, offset, &caps))
4300 goto wwn_prefix_err;
4301 if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
4302 goto wwn_prefix_out;
4303
4304 /* get the corresponding prefix for WWNN/WWPN */
4305 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
4306 if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
4307 ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4308 "eeprom read at offset %d failed", offset);
4309 }
4310
4311 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
4312 if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
4313 goto wwn_prefix_err;
4314
4315wwn_prefix_out:
4316 return IXGBE_SUCCESS;
4317
4318wwn_prefix_err:
4319 ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4320 "eeprom read at offset %d failed", offset);
4321 return IXGBE_SUCCESS;
4322}
4323
4324/**
4325 * ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
4326 * @hw: pointer to hardware structure
4327 * @bs: the fcoe boot status
4328 *
4329 * This function will read the FCOE boot status from the iSCSI FCOE block
4330 **/
4331s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
4332{
4333 u16 offset, caps, flags;
4334 s32 status;
4335
4336 DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
4337
4338 /* clear output first */
4339 *bs = ixgbe_fcoe_bootstatus_unavailable;
4340
4341 /* check if FCOE IBA block is present */
4342 offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
4343 status = hw->eeprom.ops.read(hw, offset, &caps);
4344 if (status != IXGBE_SUCCESS)
4345 goto out;
4346
4347 if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
4348 goto out;
4349
4350 /* check if iSCSI FCOE block is populated */
4351 status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
4352 if (status != IXGBE_SUCCESS)
4353 goto out;
4354
4355 if ((offset == 0) || (offset == 0xFFFF))
4356 goto out;
4357
4358 /* read fcoe flags in iSCSI FCOE block */
4359 offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
4360 status = hw->eeprom.ops.read(hw, offset, &flags);
4361 if (status != IXGBE_SUCCESS)
4362 goto out;
4363
4364 if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
4365 *bs = ixgbe_fcoe_bootstatus_enabled;
4366 else
4367 *bs = ixgbe_fcoe_bootstatus_disabled;
4368
4369out:
4370 return status;
4371}
4372
4373/**
4374 * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
4375 * @hw: pointer to hardware structure
4231 * @enable: enable or disable switch for anti-spoofing
4232 * @pf: Physical Function pool - do not enable anti-spoofing for the PF
4376 * @enable: enable or disable switch for MAC anti-spoofing
4377 * @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
4233 *
4234 **/
4378 *
4379 **/
4235void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
4380void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4236{
4381{
4237 int j;
4238 int pf_target_reg = pf >> 3;
4239 int pf_target_shift = pf % 8;
4240 u32 pfvfspoof = 0;
4382 int vf_target_reg = vf >> 3;
4383 int vf_target_shift = vf % 8;
4384 u32 pfvfspoof;
4241
4242 if (hw->mac.type == ixgbe_mac_82598EB)
4243 return;
4244
4385
4386 if (hw->mac.type == ixgbe_mac_82598EB)
4387 return;
4388
4389 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4245 if (enable)
4390 if (enable)
4246 pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
4247
4248 /*
4249 * PFVFSPOOF register array is size 8 with 8 bits assigned to
4250 * MAC anti-spoof enables in each register array element.
4251 */
4252 for (j = 0; j < pf_target_reg; j++)
4253 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
4254
4255 /*
4256 * The PF should be allowed to spoof so that it can support
4257 * emulation mode NICs. Do not set the bits assigned to the PF
4258 */
4259 pfvfspoof &= (1 << pf_target_shift) - 1;
4260 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
4261
4262 /*
4263 * Remaining pools belong to the PF so they do not need to have
4264 * anti-spoofing enabled.
4265 */
4266 for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
4267 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
4391 pfvfspoof |= (1 << vf_target_shift);
4392 else
4393 pfvfspoof &= ~(1 << vf_target_shift);
4394 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4268}
4269
4270/**
4271 * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
4272 * @hw: pointer to hardware structure
4273 * @enable: enable or disable switch for VLAN anti-spoofing
4274 * @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
4275 *
4276 **/
4277void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4278{
4279 int vf_target_reg = vf >> 3;
4280 int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
4281 u32 pfvfspoof;
4282
4283 if (hw->mac.type == ixgbe_mac_82598EB)
4284 return;
4285
4286 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4287 if (enable)
4288 pfvfspoof |= (1 << vf_target_shift);
4289 else
4290 pfvfspoof &= ~(1 << vf_target_shift);
4291 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4292}
4293
4294/**
4295 * ixgbe_get_device_caps_generic - Get additional device capabilities
4296 * @hw: pointer to hardware structure
4297 * @device_caps: the EEPROM word with the extra device capabilities
4298 *
4299 * This function will read the EEPROM location for the device capabilities,
4300 * and return the word through device_caps.
4301 **/
4302s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
4303{
4304 DEBUGFUNC("ixgbe_get_device_caps_generic");
4305
4306 hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
4307
4308 return IXGBE_SUCCESS;
4309}
4310
4311/**
4312 * ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
4313 * @hw: pointer to hardware structure
4314 *
4315 **/
4316void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
4317{
4318 u32 regval;
4319 u32 i;
4320
4321 DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
4322
4323 /* Enable relaxed ordering */
4324 for (i = 0; i < hw->mac.max_tx_queues; i++) {
4325 regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
4326 regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
4327 IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
4328 }
4329
4330 for (i = 0; i < hw->mac.max_rx_queues; i++) {
4331 regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
4332 regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
4333 IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
4334 IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
4335 }
4336
4337}
4338
4339/**
4340 * ixgbe_calculate_checksum - Calculate checksum for buffer
4341 * @buffer: pointer to EEPROM
4342 * @length: size of EEPROM to calculate a checksum for
4343 * Calculates the checksum for some buffer on a specified length. The
4344 * checksum calculated is returned.
4345 **/
4346u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
4347{
4348 u32 i;
4349 u8 sum = 0;
4350
4351 DEBUGFUNC("ixgbe_calculate_checksum");
4352
4353 if (!buffer)
4354 return 0;
4355
4356 for (i = 0; i < length; i++)
4357 sum += buffer[i];
4358
4359 return (u8) (0 - sum);
4360}
4361
4362/**
4395}
4396
4397/**
4398 * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
4399 * @hw: pointer to hardware structure
4400 * @enable: enable or disable switch for VLAN anti-spoofing
4401 * @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
4402 *
4403 **/
4404void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4405{
4406 int vf_target_reg = vf >> 3;
4407 int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
4408 u32 pfvfspoof;
4409
4410 if (hw->mac.type == ixgbe_mac_82598EB)
4411 return;
4412
4413 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4414 if (enable)
4415 pfvfspoof |= (1 << vf_target_shift);
4416 else
4417 pfvfspoof &= ~(1 << vf_target_shift);
4418 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4419}
4420
4421/**
4422 * ixgbe_get_device_caps_generic - Get additional device capabilities
4423 * @hw: pointer to hardware structure
4424 * @device_caps: the EEPROM word with the extra device capabilities
4425 *
4426 * This function will read the EEPROM location for the device capabilities,
4427 * and return the word through device_caps.
4428 **/
4429s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
4430{
4431 DEBUGFUNC("ixgbe_get_device_caps_generic");
4432
4433 hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
4434
4435 return IXGBE_SUCCESS;
4436}
4437
4438/**
4439 * ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
4440 * @hw: pointer to hardware structure
4441 *
4442 **/
4443void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
4444{
4445 u32 regval;
4446 u32 i;
4447
4448 DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
4449
4450 /* Enable relaxed ordering */
4451 for (i = 0; i < hw->mac.max_tx_queues; i++) {
4452 regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
4453 regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
4454 IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
4455 }
4456
4457 for (i = 0; i < hw->mac.max_rx_queues; i++) {
4458 regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
4459 regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
4460 IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
4461 IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
4462 }
4463
4464}
4465
4466/**
4467 * ixgbe_calculate_checksum - Calculate checksum for buffer
4468 * @buffer: pointer to EEPROM
4469 * @length: size of EEPROM to calculate a checksum for
4470 * Calculates the checksum for some buffer on a specified length. The
4471 * checksum calculated is returned.
4472 **/
4473u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
4474{
4475 u32 i;
4476 u8 sum = 0;
4477
4478 DEBUGFUNC("ixgbe_calculate_checksum");
4479
4480 if (!buffer)
4481 return 0;
4482
4483 for (i = 0; i < length; i++)
4484 sum += buffer[i];
4485
4486 return (u8) (0 - sum);
4487}
4488
4489/**
4363 * ixgbe_host_interface_command - Issue command to manageability block
4490 * ixgbe_hic_unlocked - Issue command to manageability block unlocked
4364 * @hw: pointer to the HW structure
4491 * @hw: pointer to the HW structure
4365 * @buffer: contains the command to write and where the return status will
4366 * be placed
4492 * @buffer: command to write and where the return status will be placed
4367 * @length: length of buffer, must be multiple of 4 bytes
4368 * @timeout: time in ms to wait for command completion
4493 * @length: length of buffer, must be multiple of 4 bytes
4494 * @timeout: time in ms to wait for command completion
4369 * @return_data: read and return data from the buffer (TRUE) or not (FALSE)
4370 * Needed because FW structures are big endian and decoding of
4371 * these fields can be 8 bit or 16 bit based on command. Decoding
4372 * is not easily understood without making a table of commands.
4373 * So we will leave this up to the caller to read back the data
4374 * in these cases.
4375 *
4495 *
4376 * Communicates with the manageability block. On success return IXGBE_SUCCESS
4377 * else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
4496 * Communicates with the manageability block. On success return IXGBE_SUCCESS
4497 * else returns semaphore error when encountering an error acquiring
4498 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4499 *
4500 * This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
4501 * by the caller.
4378 **/
4502 **/
4379s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
4380 u32 length, u32 timeout, bool return_data)
4503s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
4504 u32 timeout)
4381{
4505{
4382 u32 hicr, i, bi, fwsts;
4383 u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
4384 u16 buf_len;
4506 u32 hicr, i, fwsts;
4385 u16 dword_len;
4386
4507 u16 dword_len;
4508
4387 DEBUGFUNC("ixgbe_host_interface_command");
4509 DEBUGFUNC("ixgbe_hic_unlocked");
4388
4510
4389 if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4511 if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4390 DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4391 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4392 }
4512 DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4513 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4514 }
4515
4393 /* Set bit 9 of FWSTS clearing FW reset indication */
4394 fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
4395 IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
4396
4397 /* Check that the host interface is enabled. */
4398 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4516 /* Set bit 9 of FWSTS clearing FW reset indication */
4517 fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
4518 IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
4519
4520 /* Check that the host interface is enabled. */
4521 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4399 if ((hicr & IXGBE_HICR_EN) == 0) {
4522 if (!(hicr & IXGBE_HICR_EN)) {
4400 DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
4401 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4402 }
4403
4404 /* Calculate length in DWORDs. We must be DWORD aligned */
4523 DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
4524 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4525 }
4526
4527 /* Calculate length in DWORDs. We must be DWORD aligned */
4405 if ((length % (sizeof(u32))) != 0) {
4528 if (length % sizeof(u32)) {
4406 DEBUGOUT("Buffer length failure, not aligned to dword");
4407 return IXGBE_ERR_INVALID_ARGUMENT;
4408 }
4409
4410 dword_len = length >> 2;
4411
4412 /* The device driver writes the relevant command block
4413 * into the ram area.
4414 */
4415 for (i = 0; i < dword_len; i++)
4416 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4417 i, IXGBE_CPU_TO_LE32(buffer[i]));
4418
4419 /* Setting this bit tells the ARC that a new command is pending. */
4420 IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
4421
4422 for (i = 0; i < timeout; i++) {
4423 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4424 if (!(hicr & IXGBE_HICR_C))
4425 break;
4426 msec_delay(1);
4427 }
4428
4429 /* Check command completion */
4529 DEBUGOUT("Buffer length failure, not aligned to dword");
4530 return IXGBE_ERR_INVALID_ARGUMENT;
4531 }
4532
4533 dword_len = length >> 2;
4534
4535 /* The device driver writes the relevant command block
4536 * into the ram area.
4537 */
4538 for (i = 0; i < dword_len; i++)
4539 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4540 i, IXGBE_CPU_TO_LE32(buffer[i]));
4541
4542 /* Setting this bit tells the ARC that a new command is pending. */
4543 IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
4544
4545 for (i = 0; i < timeout; i++) {
4546 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4547 if (!(hicr & IXGBE_HICR_C))
4548 break;
4549 msec_delay(1);
4550 }
4551
4552 /* Check command completion */
4430 if ((timeout != 0 && i == timeout) ||
4553 if ((timeout && i == timeout) ||
4431 !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
4432 ERROR_REPORT1(IXGBE_ERROR_CAUTION,
4433 "Command has failed with no status valid.\n");
4434 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4435 }
4436
4554 !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
4555 ERROR_REPORT1(IXGBE_ERROR_CAUTION,
4556 "Command has failed with no status valid.\n");
4557 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4558 }
4559
4560 return IXGBE_SUCCESS;
4561}
4562
4563/**
4564 * ixgbe_host_interface_command - Issue command to manageability block
4565 * @hw: pointer to the HW structure
4566 * @buffer: contains the command to write and where the return status will
4567 * be placed
4568 * @length: length of buffer, must be multiple of 4 bytes
4569 * @timeout: time in ms to wait for command completion
4570 * @return_data: read and return data from the buffer (TRUE) or not (FALSE)
4571 * Needed because FW structures are big endian and decoding of
4572 * these fields can be 8 bit or 16 bit based on command. Decoding
4573 * is not easily understood without making a table of commands.
4574 * So we will leave this up to the caller to read back the data
4575 * in these cases.
4576 *
4577 * Communicates with the manageability block. On success return IXGBE_SUCCESS
4578 * else returns semaphore error when encountering an error acquiring
4579 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4580 **/
4581s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
4582 u32 length, u32 timeout, bool return_data)
4583{
4584 u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
4585 u16 dword_len;
4586 u16 buf_len;
4587 s32 status;
4588 u32 bi;
4589
4590 DEBUGFUNC("ixgbe_host_interface_command");
4591
4592 if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4593 DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4594 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4595 }
4596
4597 /* Take management host interface semaphore */
4598 status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4599 if (status)
4600 return status;
4601
4602 status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
4603 if (status)
4604 goto rel_out;
4605
4437 if (!return_data)
4606 if (!return_data)
4438 return 0;
4607 goto rel_out;
4439
4440 /* Calculate length in DWORDs */
4441 dword_len = hdr_size >> 2;
4442
4443 /* first pull in the header so we know the buffer length */
4444 for (bi = 0; bi < dword_len; bi++) {
4445 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4446 IXGBE_LE32_TO_CPUS(&buffer[bi]);
4447 }
4448
4449 /* If there is any thing in data position pull it in */
4450 buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
4608
4609 /* Calculate length in DWORDs */
4610 dword_len = hdr_size >> 2;
4611
4612 /* first pull in the header so we know the buffer length */
4613 for (bi = 0; bi < dword_len; bi++) {
4614 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4615 IXGBE_LE32_TO_CPUS(&buffer[bi]);
4616 }
4617
4618 /* If there is any thing in data position pull it in */
4619 buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
4451 if (buf_len == 0)
4452 return 0;
4620 if (!buf_len)
4621 goto rel_out;
4453
4454 if (length < buf_len + hdr_size) {
4455 DEBUGOUT("Buffer not large enough for reply message.\n");
4622
4623 if (length < buf_len + hdr_size) {
4624 DEBUGOUT("Buffer not large enough for reply message.\n");
4456 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4625 status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4626 goto rel_out;
4457 }
4458
4459 /* Calculate length in DWORDs, add 3 for odd lengths */
4460 dword_len = (buf_len + 3) >> 2;
4461
4462 /* Pull in the rest of the buffer (bi is where we left off) */
4463 for (; bi <= dword_len; bi++) {
4464 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4465 IXGBE_LE32_TO_CPUS(&buffer[bi]);
4466 }
4467
4627 }
4628
4629 /* Calculate length in DWORDs, add 3 for odd lengths */
4630 dword_len = (buf_len + 3) >> 2;
4631
4632 /* Pull in the rest of the buffer (bi is where we left off) */
4633 for (; bi <= dword_len; bi++) {
4634 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4635 IXGBE_LE32_TO_CPUS(&buffer[bi]);
4636 }
4637
4468 return 0;
4638rel_out:
4639 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4640
4641 return status;
4469}
4470
4471/**
4472 * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
4473 * @hw: pointer to the HW structure
4474 * @maj: driver version major number
4475 * @min: driver version minor number
4476 * @build: driver version build number
4477 * @sub: driver version sub build number
4478 *
4479 * Sends driver version number to firmware through the manageability
4480 * block. On success return IXGBE_SUCCESS
4481 * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
4482 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4483 **/
4484s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
4642}
4643
4644/**
4645 * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
4646 * @hw: pointer to the HW structure
4647 * @maj: driver version major number
4648 * @min: driver version minor number
4649 * @build: driver version build number
4650 * @sub: driver version sub build number
4651 *
4652 * Sends driver version number to firmware through the manageability
4653 * block. On success return IXGBE_SUCCESS
4654 * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
4655 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4656 **/
4657s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
4485 u8 build, u8 sub)
4658 u8 build, u8 sub, u16 len,
4659 const char *driver_ver)
4486{
4487 struct ixgbe_hic_drv_info fw_cmd;
4488 int i;
4489 s32 ret_val = IXGBE_SUCCESS;
4490
4491 DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
4660{
4661 struct ixgbe_hic_drv_info fw_cmd;
4662 int i;
4663 s32 ret_val = IXGBE_SUCCESS;
4664
4665 DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
4666 UNREFERENCED_2PARAMETER(len, driver_ver);
4492
4667
4493 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM)
4494 != IXGBE_SUCCESS) {
4495 ret_val = IXGBE_ERR_SWFW_SYNC;
4496 goto out;
4497 }
4498
4499 fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
4500 fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
4501 fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
4502 fw_cmd.port_num = (u8)hw->bus.func;
4503 fw_cmd.ver_maj = maj;
4504 fw_cmd.ver_min = min;
4505 fw_cmd.ver_build = build;
4506 fw_cmd.ver_sub = sub;
4507 fw_cmd.hdr.checksum = 0;
4508 fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
4509 (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
4510 fw_cmd.pad = 0;
4511 fw_cmd.pad2 = 0;
4512
4513 for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
4514 ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
4515 sizeof(fw_cmd),
4516 IXGBE_HI_COMMAND_TIMEOUT,
4517 TRUE);
4518 if (ret_val != IXGBE_SUCCESS)
4519 continue;
4520
4521 if (fw_cmd.hdr.cmd_or_resp.ret_status ==
4522 FW_CEM_RESP_STATUS_SUCCESS)
4523 ret_val = IXGBE_SUCCESS;
4524 else
4525 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4526
4527 break;
4528 }
4529
4668 fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
4669 fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
4670 fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
4671 fw_cmd.port_num = (u8)hw->bus.func;
4672 fw_cmd.ver_maj = maj;
4673 fw_cmd.ver_min = min;
4674 fw_cmd.ver_build = build;
4675 fw_cmd.ver_sub = sub;
4676 fw_cmd.hdr.checksum = 0;
4677 fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
4678 (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
4679 fw_cmd.pad = 0;
4680 fw_cmd.pad2 = 0;
4681
4682 for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
4683 ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
4684 sizeof(fw_cmd),
4685 IXGBE_HI_COMMAND_TIMEOUT,
4686 TRUE);
4687 if (ret_val != IXGBE_SUCCESS)
4688 continue;
4689
4690 if (fw_cmd.hdr.cmd_or_resp.ret_status ==
4691 FW_CEM_RESP_STATUS_SUCCESS)
4692 ret_val = IXGBE_SUCCESS;
4693 else
4694 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4695
4696 break;
4697 }
4698
4530 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4531out:
4532 return ret_val;
4533}
4534
4535/**
4536 * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
4537 * @hw: pointer to hardware structure
4538 * @num_pb: number of packet buffers to allocate
4539 * @headroom: reserve n KB of headroom
4540 * @strategy: packet buffer allocation strategy
4541 **/
4542void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
4543 int strategy)
4544{
4545 u32 pbsize = hw->mac.rx_pb_size;
4546 int i = 0;
4547 u32 rxpktsize, txpktsize, txpbthresh;
4548
4549 /* Reserve headroom */
4550 pbsize -= headroom;
4551
4552 if (!num_pb)
4553 num_pb = 1;
4554
4555 /* Divide remaining packet buffer space amongst the number of packet
4556 * buffers requested using supplied strategy.
4557 */
4558 switch (strategy) {
4559 case PBA_STRATEGY_WEIGHTED:
4560 /* ixgbe_dcb_pba_80_48 strategy weight first half of packet
4561 * buffer with 5/8 of the packet buffer space.
4562 */
4563 rxpktsize = (pbsize * 5) / (num_pb * 4);
4564 pbsize -= rxpktsize * (num_pb / 2);
4565 rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
4566 for (; i < (num_pb / 2); i++)
4567 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4699 return ret_val;
4700}
4701
4702/**
4703 * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
4704 * @hw: pointer to hardware structure
4705 * @num_pb: number of packet buffers to allocate
4706 * @headroom: reserve n KB of headroom
4707 * @strategy: packet buffer allocation strategy
4708 **/
4709void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
4710 int strategy)
4711{
4712 u32 pbsize = hw->mac.rx_pb_size;
4713 int i = 0;
4714 u32 rxpktsize, txpktsize, txpbthresh;
4715
4716 /* Reserve headroom */
4717 pbsize -= headroom;
4718
4719 if (!num_pb)
4720 num_pb = 1;
4721
4722 /* Divide remaining packet buffer space amongst the number of packet
4723 * buffers requested using supplied strategy.
4724 */
4725 switch (strategy) {
4726 case PBA_STRATEGY_WEIGHTED:
4727 /* ixgbe_dcb_pba_80_48 strategy weight first half of packet
4728 * buffer with 5/8 of the packet buffer space.
4729 */
4730 rxpktsize = (pbsize * 5) / (num_pb * 4);
4731 pbsize -= rxpktsize * (num_pb / 2);
4732 rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
4733 for (; i < (num_pb / 2); i++)
4734 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4568 /* Fall through to configure remaining packet buffers */
4735 /* fall through - configure remaining packet buffers */
4569 case PBA_STRATEGY_EQUAL:
4570 rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
4571 for (; i < num_pb; i++)
4572 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4573 break;
4574 default:
4575 break;
4576 }
4577
4578 /* Only support an equally distributed Tx packet buffer strategy. */
4579 txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
4580 txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
4581 for (i = 0; i < num_pb; i++) {
4582 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4583 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4584 }
4585
4586 /* Clear unused TCs, if any, to zero buffer size*/
4587 for (; i < IXGBE_MAX_PB; i++) {
4588 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4589 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4590 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4591 }
4592}
4593
4594/**
4595 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
4596 * @hw: pointer to the hardware structure
4597 *
4598 * The 82599 and x540 MACs can experience issues if TX work is still pending
4599 * when a reset occurs. This function prevents this by flushing the PCIe
4600 * buffers on the system.
4601 **/
4602void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
4603{
4604 u32 gcr_ext, hlreg0, i, poll;
4605 u16 value;
4606
4607 /*
4608 * If double reset is not requested then all transactions should
4609 * already be clear and as such there is no work to do
4610 */
4611 if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
4612 return;
4613
4614 /*
4615 * Set loopback enable to prevent any transmits from being sent
4616 * should the link come up. This assumes that the RXCTRL.RXEN bit
4617 * has already been cleared.
4618 */
4619 hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4620 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
4621
4622 /* Wait for a last completion before clearing buffers */
4623 IXGBE_WRITE_FLUSH(hw);
4624 msec_delay(3);
4625
4626 /*
4627 * Before proceeding, make sure that the PCIe block does not have
4628 * transactions pending.
4629 */
4630 poll = ixgbe_pcie_timeout_poll(hw);
4631 for (i = 0; i < poll; i++) {
4632 usec_delay(100);
4633 value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
4634 if (IXGBE_REMOVED(hw->hw_addr))
4635 goto out;
4636 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
4637 goto out;
4638 }
4639
4640out:
4641 /* initiate cleaning flow for buffers in the PCIe transaction layer */
4642 gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4643 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
4644 gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
4645
4646 /* Flush all writes and allow 20usec for all transactions to clear */
4647 IXGBE_WRITE_FLUSH(hw);
4648 usec_delay(20);
4649
4650 /* restore previous register values */
4651 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
4652 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4653}
4654
4736 case PBA_STRATEGY_EQUAL:
4737 rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
4738 for (; i < num_pb; i++)
4739 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4740 break;
4741 default:
4742 break;
4743 }
4744
4745 /* Only support an equally distributed Tx packet buffer strategy. */
4746 txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
4747 txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
4748 for (i = 0; i < num_pb; i++) {
4749 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4750 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4751 }
4752
4753 /* Clear unused TCs, if any, to zero buffer size*/
4754 for (; i < IXGBE_MAX_PB; i++) {
4755 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4756 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4757 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4758 }
4759}
4760
4761/**
4762 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
4763 * @hw: pointer to the hardware structure
4764 *
4765 * The 82599 and x540 MACs can experience issues if TX work is still pending
4766 * when a reset occurs. This function prevents this by flushing the PCIe
4767 * buffers on the system.
4768 **/
4769void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
4770{
4771 u32 gcr_ext, hlreg0, i, poll;
4772 u16 value;
4773
4774 /*
4775 * If double reset is not requested then all transactions should
4776 * already be clear and as such there is no work to do
4777 */
4778 if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
4779 return;
4780
4781 /*
4782 * Set loopback enable to prevent any transmits from being sent
4783 * should the link come up. This assumes that the RXCTRL.RXEN bit
4784 * has already been cleared.
4785 */
4786 hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4787 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
4788
4789 /* Wait for a last completion before clearing buffers */
4790 IXGBE_WRITE_FLUSH(hw);
4791 msec_delay(3);
4792
4793 /*
4794 * Before proceeding, make sure that the PCIe block does not have
4795 * transactions pending.
4796 */
4797 poll = ixgbe_pcie_timeout_poll(hw);
4798 for (i = 0; i < poll; i++) {
4799 usec_delay(100);
4800 value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
4801 if (IXGBE_REMOVED(hw->hw_addr))
4802 goto out;
4803 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
4804 goto out;
4805 }
4806
4807out:
4808 /* initiate cleaning flow for buffers in the PCIe transaction layer */
4809 gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4810 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
4811 gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
4812
4813 /* Flush all writes and allow 20usec for all transactions to clear */
4814 IXGBE_WRITE_FLUSH(hw);
4815 usec_delay(20);
4816
4817 /* restore previous register values */
4818 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
4819 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4820}
4821
4822/**
4823 * ixgbe_bypass_rw_generic - Bit bang data into by_pass FW
4824 *
4825 * @hw: pointer to hardware structure
4826 * @cmd: Command we send to the FW
4827 * @status: The reply from the FW
4828 *
4829 * Bit-bangs the cmd to the by_pass FW status points to what is returned.
4830 **/
4831#define IXGBE_BYPASS_BB_WAIT 1
4832s32 ixgbe_bypass_rw_generic(struct ixgbe_hw *hw, u32 cmd, u32 *status)
4833{
4834 int i;
4835 u32 sck, sdi, sdo, dir_sck, dir_sdi, dir_sdo;
4836 u32 esdp;
4655
4837
4838 if (!status)
4839 return IXGBE_ERR_PARAM;
4840
4841 *status = 0;
4842
4843 /* SDP vary by MAC type */
4844 switch (hw->mac.type) {
4845 case ixgbe_mac_82599EB:
4846 sck = IXGBE_ESDP_SDP7;
4847 sdi = IXGBE_ESDP_SDP0;
4848 sdo = IXGBE_ESDP_SDP6;
4849 dir_sck = IXGBE_ESDP_SDP7_DIR;
4850 dir_sdi = IXGBE_ESDP_SDP0_DIR;
4851 dir_sdo = IXGBE_ESDP_SDP6_DIR;
4852 break;
4853 case ixgbe_mac_X540:
4854 sck = IXGBE_ESDP_SDP2;
4855 sdi = IXGBE_ESDP_SDP0;
4856 sdo = IXGBE_ESDP_SDP1;
4857 dir_sck = IXGBE_ESDP_SDP2_DIR;
4858 dir_sdi = IXGBE_ESDP_SDP0_DIR;
4859 dir_sdo = IXGBE_ESDP_SDP1_DIR;
4860 break;
4861 default:
4862 return IXGBE_ERR_DEVICE_NOT_SUPPORTED;
4863 }
4864
4865 /* Set SDP pins direction */
4866 esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
4867 esdp |= dir_sck; /* SCK as output */
4868 esdp |= dir_sdi; /* SDI as output */
4869 esdp &= ~dir_sdo; /* SDO as input */
4870 esdp |= sck;
4871 esdp |= sdi;
4872 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4873 IXGBE_WRITE_FLUSH(hw);
4874 msec_delay(IXGBE_BYPASS_BB_WAIT);
4875
4876 /* Generate start condition */
4877 esdp &= ~sdi;
4878 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4879 IXGBE_WRITE_FLUSH(hw);
4880 msec_delay(IXGBE_BYPASS_BB_WAIT);
4881
4882 esdp &= ~sck;
4883 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4884 IXGBE_WRITE_FLUSH(hw);
4885 msec_delay(IXGBE_BYPASS_BB_WAIT);
4886
4887 /* Clock out the new control word and clock in the status */
4888 for (i = 0; i < 32; i++) {
4889 if ((cmd >> (31 - i)) & 0x01) {
4890 esdp |= sdi;
4891 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4892 } else {
4893 esdp &= ~sdi;
4894 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4895 }
4896 IXGBE_WRITE_FLUSH(hw);
4897 msec_delay(IXGBE_BYPASS_BB_WAIT);
4898
4899 esdp |= sck;
4900 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4901 IXGBE_WRITE_FLUSH(hw);
4902 msec_delay(IXGBE_BYPASS_BB_WAIT);
4903
4904 esdp &= ~sck;
4905 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4906 IXGBE_WRITE_FLUSH(hw);
4907 msec_delay(IXGBE_BYPASS_BB_WAIT);
4908
4909 esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
4910 if (esdp & sdo)
4911 *status = (*status << 1) | 0x01;
4912 else
4913 *status = (*status << 1) | 0x00;
4914 msec_delay(IXGBE_BYPASS_BB_WAIT);
4915 }
4916
4917 /* stop condition */
4918 esdp |= sck;
4919 esdp &= ~sdi;
4920 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4921 IXGBE_WRITE_FLUSH(hw);
4922 msec_delay(IXGBE_BYPASS_BB_WAIT);
4923
4924 esdp |= sdi;
4925 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4926 IXGBE_WRITE_FLUSH(hw);
4927
4928 /* set the page bits to match the cmd that the status it belongs to */
4929 *status = (*status & 0x3fffffff) | (cmd & 0xc0000000);
4930
4931 return IXGBE_SUCCESS;
4932}
4933
4656/**
4934/**
4935 * ixgbe_bypass_valid_rd_generic - Verify valid return from bit-bang.
4936 *
4937 * If we send a write we can't be sure it took until we can read back
4938 * that same register. It can be a problem as some of the feilds may
4939 * for valid reasons change inbetween the time wrote the register and
4940 * we read it again to verify. So this function check everything we
4941 * can check and then assumes it worked.
4942 *
4943 * @u32 in_reg - The register cmd for the bit-bang read.
4944 * @u32 out_reg - The register returned from a bit-bang read.
4945 **/
4946bool ixgbe_bypass_valid_rd_generic(u32 in_reg, u32 out_reg)
4947{
4948 u32 mask;
4949
4950 /* Page must match for all control pages */
4951 if ((in_reg & BYPASS_PAGE_M) != (out_reg & BYPASS_PAGE_M))
4952 return FALSE;
4953
4954 switch (in_reg & BYPASS_PAGE_M) {
4955 case BYPASS_PAGE_CTL0:
4956 /* All the following can't change since the last write
4957 * - All the event actions
4958 * - The timeout value
4959 */
4960 mask = BYPASS_AUX_ON_M | BYPASS_MAIN_ON_M |
4961 BYPASS_MAIN_OFF_M | BYPASS_AUX_OFF_M |
4962 BYPASS_WDTIMEOUT_M |
4963 BYPASS_WDT_VALUE_M;
4964 if ((out_reg & mask) != (in_reg & mask))
4965 return FALSE;
4966
4967 /* 0x0 is never a valid value for bypass status */
4968 if (!(out_reg & BYPASS_STATUS_OFF_M))
4969 return FALSE;
4970 break;
4971 case BYPASS_PAGE_CTL1:
4972 /* All the following can't change since the last write
4973 * - time valid bit
4974 * - time we last sent
4975 */
4976 mask = BYPASS_CTL1_VALID_M | BYPASS_CTL1_TIME_M;
4977 if ((out_reg & mask) != (in_reg & mask))
4978 return FALSE;
4979 break;
4980 case BYPASS_PAGE_CTL2:
4981 /* All we can check in this page is control number
4982 * which is already done above.
4983 */
4984 break;
4985 }
4986
4987 /* We are as sure as we can be return TRUE */
4988 return TRUE;
4989}
4990
4991/**
4992 * ixgbe_bypass_set_generic - Set a bypass field in the FW CTRL Regiter.
4993 *
4994 * @hw: pointer to hardware structure
4995 * @cmd: The control word we are setting.
4996 * @event: The event we are setting in the FW. This also happens to
4997 * be the mask for the event we are setting (handy)
4998 * @action: The action we set the event to in the FW. This is in a
4999 * bit field that happens to be what we want to put in
5000 * the event spot (also handy)
5001 **/
5002s32 ixgbe_bypass_set_generic(struct ixgbe_hw *hw, u32 ctrl, u32 event,
5003 u32 action)
5004{
5005 u32 by_ctl = 0;
5006 u32 cmd, verify;
5007 u32 count = 0;
5008
5009 /* Get current values */
5010 cmd = ctrl; /* just reading only need control number */
5011 if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
5012 return IXGBE_ERR_INVALID_ARGUMENT;
5013
5014 /* Set to new action */
5015 cmd = (by_ctl & ~event) | BYPASS_WE | action;
5016 if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
5017 return IXGBE_ERR_INVALID_ARGUMENT;
5018
5019 /* Page 0 force a FW eeprom write which is slow so verify */
5020 if ((cmd & BYPASS_PAGE_M) == BYPASS_PAGE_CTL0) {
5021 verify = BYPASS_PAGE_CTL0;
5022 do {
5023 if (count++ > 5)
5024 return IXGBE_BYPASS_FW_WRITE_FAILURE;
5025
5026 if (ixgbe_bypass_rw_generic(hw, verify, &by_ctl))
5027 return IXGBE_ERR_INVALID_ARGUMENT;
5028 } while (!ixgbe_bypass_valid_rd_generic(cmd, by_ctl));
5029 } else {
5030 /* We have give the FW time for the write to stick */
5031 msec_delay(100);
5032 }
5033
5034 return IXGBE_SUCCESS;
5035}
5036
5037/**
5038 * ixgbe_bypass_rd_eep_generic - Read the bypass FW eeprom addres.
5039 *
5040 * @hw: pointer to hardware structure
5041 * @addr: The bypass eeprom address to read.
5042 * @value: The 8b of data at the address above.
5043 **/
5044s32 ixgbe_bypass_rd_eep_generic(struct ixgbe_hw *hw, u32 addr, u8 *value)
5045{
5046 u32 cmd;
5047 u32 status;
5048
5049
5050 /* send the request */
5051 cmd = BYPASS_PAGE_CTL2 | BYPASS_WE;
5052 cmd |= (addr << BYPASS_CTL2_OFFSET_SHIFT) & BYPASS_CTL2_OFFSET_M;
5053 if (ixgbe_bypass_rw_generic(hw, cmd, &status))
5054 return IXGBE_ERR_INVALID_ARGUMENT;
5055
5056 /* We have give the FW time for the write to stick */
5057 msec_delay(100);
5058
5059 /* now read the results */
5060 cmd &= ~BYPASS_WE;
5061 if (ixgbe_bypass_rw_generic(hw, cmd, &status))
5062 return IXGBE_ERR_INVALID_ARGUMENT;
5063
5064 *value = status & BYPASS_CTL2_DATA_M;
5065
5066 return IXGBE_SUCCESS;
5067}
5068
5069
5070/**
4657 * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
4658 * @hw: pointer to hardware structure
4659 * @map: pointer to u8 arr for returning map
4660 *
4661 * Read the rtrup2tc HW register and resolve its content into map
4662 **/
4663void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
4664{
4665 u32 reg, i;
4666
4667 reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
4668 for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
4669 map[i] = IXGBE_RTRUP2TC_UP_MASK &
4670 (reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
4671 return;
4672}
4673
4674void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
4675{
4676 u32 pfdtxgswc;
4677 u32 rxctrl;
4678
4679 rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4680 if (rxctrl & IXGBE_RXCTRL_RXEN) {
4681 if (hw->mac.type != ixgbe_mac_82598EB) {
4682 pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4683 if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
4684 pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
4685 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4686 hw->mac.set_lben = TRUE;
4687 } else {
4688 hw->mac.set_lben = FALSE;
4689 }
4690 }
4691 rxctrl &= ~IXGBE_RXCTRL_RXEN;
4692 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
4693 }
4694}
4695
4696void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
4697{
4698 u32 pfdtxgswc;
4699 u32 rxctrl;
4700
4701 rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4702 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
4703
4704 if (hw->mac.type != ixgbe_mac_82598EB) {
4705 if (hw->mac.set_lben) {
4706 pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4707 pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
4708 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4709 hw->mac.set_lben = FALSE;
4710 }
4711 }
4712}
4713
4714/**
4715 * ixgbe_mng_present - returns TRUE when management capability is present
4716 * @hw: pointer to hardware structure
4717 */
4718bool ixgbe_mng_present(struct ixgbe_hw *hw)
4719{
4720 u32 fwsm;
4721
4722 if (hw->mac.type < ixgbe_mac_82599EB)
4723 return FALSE;
4724
4725 fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
4726 fwsm &= IXGBE_FWSM_MODE_MASK;
4727 return fwsm == IXGBE_FWSM_FW_MODE_PT;
4728}
4729
4730/**
4731 * ixgbe_mng_enabled - Is the manageability engine enabled?
4732 * @hw: pointer to hardware structure
4733 *
4734 * Returns TRUE if the manageability engine is enabled.
4735 **/
4736bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
4737{
4738 u32 fwsm, manc, factps;
4739
4740 fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
4741 if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
4742 return FALSE;
4743
4744 manc = IXGBE_READ_REG(hw, IXGBE_MANC);
4745 if (!(manc & IXGBE_MANC_RCV_TCO_EN))
4746 return FALSE;
4747
4748 if (hw->mac.type <= ixgbe_mac_X540) {
4749 factps = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
4750 if (factps & IXGBE_FACTPS_MNGCG)
4751 return FALSE;
4752 }
4753
4754 return TRUE;
4755}
4756
4757/**
4758 * ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4759 * @hw: pointer to hardware structure
4760 * @speed: new link speed
4761 * @autoneg_wait_to_complete: TRUE when waiting for completion is needed
4762 *
4763 * Set the link speed in the MAC and/or PHY register and restarts link.
4764 **/
4765s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
4766 ixgbe_link_speed speed,
4767 bool autoneg_wait_to_complete)
4768{
4769 ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4770 ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4771 s32 status = IXGBE_SUCCESS;
4772 u32 speedcnt = 0;
4773 u32 i = 0;
4774 bool autoneg, link_up = FALSE;
4775
4776 DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber");
4777
4778 /* Mask off requested but non-supported speeds */
4779 status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg);
4780 if (status != IXGBE_SUCCESS)
4781 return status;
4782
4783 speed &= link_speed;
4784
4785 /* Try each speed one by one, highest priority first. We do this in
4786 * software because 10Gb fiber doesn't support speed autonegotiation.
4787 */
4788 if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
4789 speedcnt++;
4790 highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
4791
5071 * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
5072 * @hw: pointer to hardware structure
5073 * @map: pointer to u8 arr for returning map
5074 *
5075 * Read the rtrup2tc HW register and resolve its content into map
5076 **/
5077void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
5078{
5079 u32 reg, i;
5080
5081 reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
5082 for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
5083 map[i] = IXGBE_RTRUP2TC_UP_MASK &
5084 (reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
5085 return;
5086}
5087
5088void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
5089{
5090 u32 pfdtxgswc;
5091 u32 rxctrl;
5092
5093 rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5094 if (rxctrl & IXGBE_RXCTRL_RXEN) {
5095 if (hw->mac.type != ixgbe_mac_82598EB) {
5096 pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
5097 if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
5098 pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
5099 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
5100 hw->mac.set_lben = TRUE;
5101 } else {
5102 hw->mac.set_lben = FALSE;
5103 }
5104 }
5105 rxctrl &= ~IXGBE_RXCTRL_RXEN;
5106 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
5107 }
5108}
5109
5110void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
5111{
5112 u32 pfdtxgswc;
5113 u32 rxctrl;
5114
5115 rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5116 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
5117
5118 if (hw->mac.type != ixgbe_mac_82598EB) {
5119 if (hw->mac.set_lben) {
5120 pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
5121 pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
5122 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
5123 hw->mac.set_lben = FALSE;
5124 }
5125 }
5126}
5127
5128/**
5129 * ixgbe_mng_present - returns TRUE when management capability is present
5130 * @hw: pointer to hardware structure
5131 */
5132bool ixgbe_mng_present(struct ixgbe_hw *hw)
5133{
5134 u32 fwsm;
5135
5136 if (hw->mac.type < ixgbe_mac_82599EB)
5137 return FALSE;
5138
5139 fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
5140 fwsm &= IXGBE_FWSM_MODE_MASK;
5141 return fwsm == IXGBE_FWSM_FW_MODE_PT;
5142}
5143
5144/**
5145 * ixgbe_mng_enabled - Is the manageability engine enabled?
5146 * @hw: pointer to hardware structure
5147 *
5148 * Returns TRUE if the manageability engine is enabled.
5149 **/
5150bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
5151{
5152 u32 fwsm, manc, factps;
5153
5154 fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
5155 if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
5156 return FALSE;
5157
5158 manc = IXGBE_READ_REG(hw, IXGBE_MANC);
5159 if (!(manc & IXGBE_MANC_RCV_TCO_EN))
5160 return FALSE;
5161
5162 if (hw->mac.type <= ixgbe_mac_X540) {
5163 factps = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
5164 if (factps & IXGBE_FACTPS_MNGCG)
5165 return FALSE;
5166 }
5167
5168 return TRUE;
5169}
5170
5171/**
5172 * ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
5173 * @hw: pointer to hardware structure
5174 * @speed: new link speed
5175 * @autoneg_wait_to_complete: TRUE when waiting for completion is needed
5176 *
5177 * Set the link speed in the MAC and/or PHY register and restarts link.
5178 **/
5179s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
5180 ixgbe_link_speed speed,
5181 bool autoneg_wait_to_complete)
5182{
5183 ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
5184 ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
5185 s32 status = IXGBE_SUCCESS;
5186 u32 speedcnt = 0;
5187 u32 i = 0;
5188 bool autoneg, link_up = FALSE;
5189
5190 DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber");
5191
5192 /* Mask off requested but non-supported speeds */
5193 status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg);
5194 if (status != IXGBE_SUCCESS)
5195 return status;
5196
5197 speed &= link_speed;
5198
5199 /* Try each speed one by one, highest priority first. We do this in
5200 * software because 10Gb fiber doesn't support speed autonegotiation.
5201 */
5202 if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
5203 speedcnt++;
5204 highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
5205
4792 /* If we already have link at this speed, just jump out */
4793 status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
4794 if (status != IXGBE_SUCCESS)
4795 return status;
4796
4797 if ((link_speed == IXGBE_LINK_SPEED_10GB_FULL) && link_up)
4798 goto out;
4799
4800 /* Set the module link speed */
4801 switch (hw->phy.media_type) {
4802 case ixgbe_media_type_fiber_fixed:
4803 case ixgbe_media_type_fiber:
4804 ixgbe_set_rate_select_speed(hw,
4805 IXGBE_LINK_SPEED_10GB_FULL);
4806 break;
4807 case ixgbe_media_type_fiber_qsfp:
4808 /* QSFP module automatically detects MAC link speed */
4809 break;
4810 default:
4811 DEBUGOUT("Unexpected media type.\n");
4812 break;
4813 }
4814
4815 /* Allow module to change analog characteristics (1G->10G) */
4816 msec_delay(40);
4817
4818 status = ixgbe_setup_mac_link(hw,
4819 IXGBE_LINK_SPEED_10GB_FULL,
4820 autoneg_wait_to_complete);
4821 if (status != IXGBE_SUCCESS)
4822 return status;
4823
4824 /* Flap the Tx laser if it has not already been done */
4825 ixgbe_flap_tx_laser(hw);
4826
4827 /* Wait for the controller to acquire link. Per IEEE 802.3ap,
4828 * Section 73.10.2, we may have to wait up to 500ms if KR is
4829 * attempted. 82599 uses the same timing for 10g SFI.
4830 */
4831 for (i = 0; i < 5; i++) {
4832 /* Wait for the link partner to also set speed */
4833 msec_delay(100);
4834
4835 /* If we have link, just jump out */
4836 status = ixgbe_check_link(hw, &link_speed,
4837 &link_up, FALSE);
4838 if (status != IXGBE_SUCCESS)
4839 return status;
4840
4841 if (link_up)
4842 goto out;
4843 }
4844 }
4845
4846 if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4847 speedcnt++;
4848 if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4849 highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4850
5206 /* Set the module link speed */
5207 switch (hw->phy.media_type) {
5208 case ixgbe_media_type_fiber_fixed:
5209 case ixgbe_media_type_fiber:
5210 ixgbe_set_rate_select_speed(hw,
5211 IXGBE_LINK_SPEED_10GB_FULL);
5212 break;
5213 case ixgbe_media_type_fiber_qsfp:
5214 /* QSFP module automatically detects MAC link speed */
5215 break;
5216 default:
5217 DEBUGOUT("Unexpected media type.\n");
5218 break;
5219 }
5220
5221 /* Allow module to change analog characteristics (1G->10G) */
5222 msec_delay(40);
5223
5224 status = ixgbe_setup_mac_link(hw,
5225 IXGBE_LINK_SPEED_10GB_FULL,
5226 autoneg_wait_to_complete);
5227 if (status != IXGBE_SUCCESS)
5228 return status;
5229
5230 /* Flap the Tx laser if it has not already been done */
5231 ixgbe_flap_tx_laser(hw);
5232
5233 /* Wait for the controller to acquire link. Per IEEE 802.3ap,
5234 * Section 73.10.2, we may have to wait up to 500ms if KR is
5235 * attempted. 82599 uses the same timing for 10g SFI.
5236 */
5237 for (i = 0; i < 5; i++) {
5238 /* Wait for the link partner to also set speed */
5239 msec_delay(100);
5240
5241 /* If we have link, just jump out */
5242 status = ixgbe_check_link(hw, &link_speed,
5243 &link_up, FALSE);
5244 if (status != IXGBE_SUCCESS)
5245 return status;
5246
5247 if (link_up)
5248 goto out;
5249 }
5250 }
5251
5252 if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
5253 speedcnt++;
5254 if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
5255 highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
5256
4851 /* If we already have link at this speed, just jump out */
4852 status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
4853 if (status != IXGBE_SUCCESS)
4854 return status;
4855
4856 if ((link_speed == IXGBE_LINK_SPEED_1GB_FULL) && link_up)
4857 goto out;
4858
4859 /* Set the module link speed */
4860 switch (hw->phy.media_type) {
4861 case ixgbe_media_type_fiber_fixed:
4862 case ixgbe_media_type_fiber:
4863 ixgbe_set_rate_select_speed(hw,
4864 IXGBE_LINK_SPEED_1GB_FULL);
4865 break;
4866 case ixgbe_media_type_fiber_qsfp:
4867 /* QSFP module automatically detects link speed */
4868 break;
4869 default:
4870 DEBUGOUT("Unexpected media type.\n");
4871 break;
4872 }
4873
4874 /* Allow module to change analog characteristics (10G->1G) */
4875 msec_delay(40);
4876
4877 status = ixgbe_setup_mac_link(hw,
4878 IXGBE_LINK_SPEED_1GB_FULL,
4879 autoneg_wait_to_complete);
4880 if (status != IXGBE_SUCCESS)
4881 return status;
4882
4883 /* Flap the Tx laser if it has not already been done */
4884 ixgbe_flap_tx_laser(hw);
4885
4886 /* Wait for the link partner to also set speed */
4887 msec_delay(100);
4888
4889 /* If we have link, just jump out */
4890 status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
4891 if (status != IXGBE_SUCCESS)
4892 return status;
4893
4894 if (link_up)
4895 goto out;
4896 }
4897
4898 /* We didn't get link. Configure back to the highest speed we tried,
4899 * (if there was more than one). We call ourselves back with just the
4900 * single highest speed that the user requested.
4901 */
4902 if (speedcnt > 1)
4903 status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4904 highest_link_speed,
4905 autoneg_wait_to_complete);
4906
4907out:
4908 /* Set autoneg_advertised value based on input link speed */
4909 hw->phy.autoneg_advertised = 0;
4910
4911 if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4912 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4913
4914 if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4915 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4916
4917 return status;
4918}
4919
4920/**
4921 * ixgbe_set_soft_rate_select_speed - Set module link speed
4922 * @hw: pointer to hardware structure
4923 * @speed: link speed to set
4924 *
4925 * Set module link speed via the soft rate select.
4926 */
4927void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4928 ixgbe_link_speed speed)
4929{
4930 s32 status;
4931 u8 rs, eeprom_data;
4932
4933 switch (speed) {
4934 case IXGBE_LINK_SPEED_10GB_FULL:
4935 /* one bit mask same as setting on */
4936 rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4937 break;
4938 case IXGBE_LINK_SPEED_1GB_FULL:
4939 rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4940 break;
4941 default:
4942 DEBUGOUT("Invalid fixed module speed\n");
4943 return;
4944 }
4945
4946 /* Set RS0 */
4947 status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4948 IXGBE_I2C_EEPROM_DEV_ADDR2,
4949 &eeprom_data);
4950 if (status) {
4951 DEBUGOUT("Failed to read Rx Rate Select RS0\n");
4952 goto out;
4953 }
4954
4955 eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4956
4957 status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4958 IXGBE_I2C_EEPROM_DEV_ADDR2,
4959 eeprom_data);
4960 if (status) {
4961 DEBUGOUT("Failed to write Rx Rate Select RS0\n");
4962 goto out;
4963 }
4964
4965 /* Set RS1 */
4966 status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4967 IXGBE_I2C_EEPROM_DEV_ADDR2,
4968 &eeprom_data);
4969 if (status) {
4970 DEBUGOUT("Failed to read Rx Rate Select RS1\n");
4971 goto out;
4972 }
4973
4974 eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4975
4976 status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4977 IXGBE_I2C_EEPROM_DEV_ADDR2,
4978 eeprom_data);
4979 if (status) {
4980 DEBUGOUT("Failed to write Rx Rate Select RS1\n");
4981 goto out;
4982 }
4983out:
4984 return;
4985}
5257 /* Set the module link speed */
5258 switch (hw->phy.media_type) {
5259 case ixgbe_media_type_fiber_fixed:
5260 case ixgbe_media_type_fiber:
5261 ixgbe_set_rate_select_speed(hw,
5262 IXGBE_LINK_SPEED_1GB_FULL);
5263 break;
5264 case ixgbe_media_type_fiber_qsfp:
5265 /* QSFP module automatically detects link speed */
5266 break;
5267 default:
5268 DEBUGOUT("Unexpected media type.\n");
5269 break;
5270 }
5271
5272 /* Allow module to change analog characteristics (10G->1G) */
5273 msec_delay(40);
5274
5275 status = ixgbe_setup_mac_link(hw,
5276 IXGBE_LINK_SPEED_1GB_FULL,
5277 autoneg_wait_to_complete);
5278 if (status != IXGBE_SUCCESS)
5279 return status;
5280
5281 /* Flap the Tx laser if it has not already been done */
5282 ixgbe_flap_tx_laser(hw);
5283
5284 /* Wait for the link partner to also set speed */
5285 msec_delay(100);
5286
5287 /* If we have link, just jump out */
5288 status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
5289 if (status != IXGBE_SUCCESS)
5290 return status;
5291
5292 if (link_up)
5293 goto out;
5294 }
5295
5296 /* We didn't get link. Configure back to the highest speed we tried,
5297 * (if there was more than one). We call ourselves back with just the
5298 * single highest speed that the user requested.
5299 */
5300 if (speedcnt > 1)
5301 status = ixgbe_setup_mac_link_multispeed_fiber(hw,
5302 highest_link_speed,
5303 autoneg_wait_to_complete);
5304
5305out:
5306 /* Set autoneg_advertised value based on input link speed */
5307 hw->phy.autoneg_advertised = 0;
5308
5309 if (speed & IXGBE_LINK_SPEED_10GB_FULL)
5310 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
5311
5312 if (speed & IXGBE_LINK_SPEED_1GB_FULL)
5313 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
5314
5315 return status;
5316}
5317
5318/**
5319 * ixgbe_set_soft_rate_select_speed - Set module link speed
5320 * @hw: pointer to hardware structure
5321 * @speed: link speed to set
5322 *
5323 * Set module link speed via the soft rate select.
5324 */
5325void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
5326 ixgbe_link_speed speed)
5327{
5328 s32 status;
5329 u8 rs, eeprom_data;
5330
5331 switch (speed) {
5332 case IXGBE_LINK_SPEED_10GB_FULL:
5333 /* one bit mask same as setting on */
5334 rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
5335 break;
5336 case IXGBE_LINK_SPEED_1GB_FULL:
5337 rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
5338 break;
5339 default:
5340 DEBUGOUT("Invalid fixed module speed\n");
5341 return;
5342 }
5343
5344 /* Set RS0 */
5345 status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
5346 IXGBE_I2C_EEPROM_DEV_ADDR2,
5347 &eeprom_data);
5348 if (status) {
5349 DEBUGOUT("Failed to read Rx Rate Select RS0\n");
5350 goto out;
5351 }
5352
5353 eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
5354
5355 status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
5356 IXGBE_I2C_EEPROM_DEV_ADDR2,
5357 eeprom_data);
5358 if (status) {
5359 DEBUGOUT("Failed to write Rx Rate Select RS0\n");
5360 goto out;
5361 }
5362
5363 /* Set RS1 */
5364 status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
5365 IXGBE_I2C_EEPROM_DEV_ADDR2,
5366 &eeprom_data);
5367 if (status) {
5368 DEBUGOUT("Failed to read Rx Rate Select RS1\n");
5369 goto out;
5370 }
5371
5372 eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
5373
5374 status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
5375 IXGBE_I2C_EEPROM_DEV_ADDR2,
5376 eeprom_data);
5377 if (status) {
5378 DEBUGOUT("Failed to write Rx Rate Select RS1\n");
5379 goto out;
5380 }
5381out:
5382 return;
5383}