Deleted Added
full compact
bxe.c (304163) bxe.c (305614)
1/*-
2 * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
15 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
18 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
19 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
20 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
21 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
22 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
23 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
24 * THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
1/*-
2 * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
15 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
18 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
19 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
20 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
21 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
22 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
23 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
24 * THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: stable/11/sys/dev/bxe/bxe.c 304163 2016-08-15 15:23:45Z rstone $");
28__FBSDID("$FreeBSD: stable/11/sys/dev/bxe/bxe.c 305614 2016-09-08 15:05:25Z pfg $");
29
30#define BXE_DRIVER_VERSION "1.78.81"
31
32#include "bxe.h"
33#include "ecore_sp.h"
34#include "ecore_init.h"
35#include "ecore_init_ops.h"
36
37#include "57710_int_offsets.h"
38#include "57711_int_offsets.h"
39#include "57712_int_offsets.h"
40
41/*
42 * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these
43 * explicitly here for older kernels that don't include this changeset.
44 */
45#ifndef CTLTYPE_U64
46#define CTLTYPE_U64 CTLTYPE_QUAD
47#define sysctl_handle_64 sysctl_handle_quad
48#endif
49
50/*
51 * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these
52 * here as zero(0) for older kernels that don't include this changeset
53 * thereby masking the functionality.
54 */
55#ifndef CSUM_TCP_IPV6
56#define CSUM_TCP_IPV6 0
57#define CSUM_UDP_IPV6 0
58#endif
59
60/*
61 * pci_find_cap was added in r219865. Re-define this at pci_find_extcap
62 * for older kernels that don't include this changeset.
63 */
64#if __FreeBSD_version < 900035
65#define pci_find_cap pci_find_extcap
66#endif
67
68#define BXE_DEF_SB_ATT_IDX 0x0001
69#define BXE_DEF_SB_IDX 0x0002
70
71/*
72 * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per
73 * function HW initialization.
74 */
75#define FLR_WAIT_USEC 10000 /* 10 msecs */
76#define FLR_WAIT_INTERVAL 50 /* usecs */
77#define FLR_POLL_CNT (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */
78
79struct pbf_pN_buf_regs {
80 int pN;
81 uint32_t init_crd;
82 uint32_t crd;
83 uint32_t crd_freed;
84};
85
86struct pbf_pN_cmd_regs {
87 int pN;
88 uint32_t lines_occup;
89 uint32_t lines_freed;
90};
91
92/*
93 * PCI Device ID Table used by bxe_probe().
94 */
95#define BXE_DEVDESC_MAX 64
96static struct bxe_device_type bxe_devs[] = {
97 {
98 BRCM_VENDORID,
99 CHIP_NUM_57710,
100 PCI_ANY_ID, PCI_ANY_ID,
101 "QLogic NetXtreme II BCM57710 10GbE"
102 },
103 {
104 BRCM_VENDORID,
105 CHIP_NUM_57711,
106 PCI_ANY_ID, PCI_ANY_ID,
107 "QLogic NetXtreme II BCM57711 10GbE"
108 },
109 {
110 BRCM_VENDORID,
111 CHIP_NUM_57711E,
112 PCI_ANY_ID, PCI_ANY_ID,
113 "QLogic NetXtreme II BCM57711E 10GbE"
114 },
115 {
116 BRCM_VENDORID,
117 CHIP_NUM_57712,
118 PCI_ANY_ID, PCI_ANY_ID,
119 "QLogic NetXtreme II BCM57712 10GbE"
120 },
121 {
122 BRCM_VENDORID,
123 CHIP_NUM_57712_MF,
124 PCI_ANY_ID, PCI_ANY_ID,
125 "QLogic NetXtreme II BCM57712 MF 10GbE"
126 },
127 {
128 BRCM_VENDORID,
129 CHIP_NUM_57800,
130 PCI_ANY_ID, PCI_ANY_ID,
131 "QLogic NetXtreme II BCM57800 10GbE"
132 },
133 {
134 BRCM_VENDORID,
135 CHIP_NUM_57800_MF,
136 PCI_ANY_ID, PCI_ANY_ID,
137 "QLogic NetXtreme II BCM57800 MF 10GbE"
138 },
139 {
140 BRCM_VENDORID,
141 CHIP_NUM_57810,
142 PCI_ANY_ID, PCI_ANY_ID,
143 "QLogic NetXtreme II BCM57810 10GbE"
144 },
145 {
146 BRCM_VENDORID,
147 CHIP_NUM_57810_MF,
148 PCI_ANY_ID, PCI_ANY_ID,
149 "QLogic NetXtreme II BCM57810 MF 10GbE"
150 },
151 {
152 BRCM_VENDORID,
153 CHIP_NUM_57811,
154 PCI_ANY_ID, PCI_ANY_ID,
155 "QLogic NetXtreme II BCM57811 10GbE"
156 },
157 {
158 BRCM_VENDORID,
159 CHIP_NUM_57811_MF,
160 PCI_ANY_ID, PCI_ANY_ID,
161 "QLogic NetXtreme II BCM57811 MF 10GbE"
162 },
163 {
164 BRCM_VENDORID,
165 CHIP_NUM_57840_4_10,
166 PCI_ANY_ID, PCI_ANY_ID,
167 "QLogic NetXtreme II BCM57840 4x10GbE"
168 },
169 {
170 BRCM_VENDORID,
171 CHIP_NUM_57840_MF,
172 PCI_ANY_ID, PCI_ANY_ID,
173 "QLogic NetXtreme II BCM57840 MF 10GbE"
174 },
175 {
176 0, 0, 0, 0, NULL
177 }
178};
179
180MALLOC_DECLARE(M_BXE_ILT);
181MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer");
182
183/*
184 * FreeBSD device entry points.
185 */
186static int bxe_probe(device_t);
187static int bxe_attach(device_t);
188static int bxe_detach(device_t);
189static int bxe_shutdown(device_t);
190
191/*
192 * FreeBSD KLD module/device interface event handler method.
193 */
194static device_method_t bxe_methods[] = {
195 /* Device interface (device_if.h) */
196 DEVMETHOD(device_probe, bxe_probe),
197 DEVMETHOD(device_attach, bxe_attach),
198 DEVMETHOD(device_detach, bxe_detach),
199 DEVMETHOD(device_shutdown, bxe_shutdown),
200 /* Bus interface (bus_if.h) */
201 DEVMETHOD(bus_print_child, bus_generic_print_child),
202 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
203 KOBJMETHOD_END
204};
205
206/*
207 * FreeBSD KLD Module data declaration
208 */
209static driver_t bxe_driver = {
210 "bxe", /* module name */
211 bxe_methods, /* event handler */
212 sizeof(struct bxe_softc) /* extra data */
213};
214
215/*
216 * FreeBSD dev class is needed to manage dev instances and
217 * to associate with a bus type
218 */
219static devclass_t bxe_devclass;
220
221MODULE_DEPEND(bxe, pci, 1, 1, 1);
222MODULE_DEPEND(bxe, ether, 1, 1, 1);
223DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0);
224
225/* resources needed for unloading a previously loaded device */
226
227#define BXE_PREV_WAIT_NEEDED 1
228struct mtx bxe_prev_mtx;
229MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF);
230struct bxe_prev_list_node {
231 LIST_ENTRY(bxe_prev_list_node) node;
232 uint8_t bus;
233 uint8_t slot;
234 uint8_t path;
235 uint8_t aer; /* XXX automatic error recovery */
236 uint8_t undi;
237};
238static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list);
239
240static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
241
242/* Tunable device values... */
243
244SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters");
245
246/* Debug */
247unsigned long bxe_debug = 0;
248SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN,
249 &bxe_debug, 0, "Debug logging mode");
250
251/* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
252static int bxe_interrupt_mode = INTR_MODE_MSIX;
253SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN,
254 &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode");
255
256/* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */
257static int bxe_queue_count = 4;
258SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN,
259 &bxe_queue_count, 0, "Multi-Queue queue count");
260
261/* max number of buffers per queue (default RX_BD_USABLE) */
262static int bxe_max_rx_bufs = 0;
263SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN,
264 &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue");
265
266/* Host interrupt coalescing RX tick timer (usecs) */
267static int bxe_hc_rx_ticks = 25;
268SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN,
269 &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks");
270
271/* Host interrupt coalescing TX tick timer (usecs) */
272static int bxe_hc_tx_ticks = 50;
273SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN,
274 &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks");
275
276/* Maximum number of Rx packets to process at a time */
277static int bxe_rx_budget = 0xffffffff;
278SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN,
279 &bxe_rx_budget, 0, "Rx processing budget");
280
281/* Maximum LRO aggregation size */
282static int bxe_max_aggregation_size = 0;
283SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN,
284 &bxe_max_aggregation_size, 0, "max aggregation size");
285
286/* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */
287static int bxe_mrrs = -1;
288SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN,
289 &bxe_mrrs, 0, "PCIe maximum read request size");
290
291/* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */
292static int bxe_autogreeen = 0;
293SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN,
294 &bxe_autogreeen, 0, "AutoGrEEEn support");
295
296/* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */
297static int bxe_udp_rss = 0;
298SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN,
299 &bxe_udp_rss, 0, "UDP RSS support");
300
301
302#define STAT_NAME_LEN 32 /* no stat names below can be longer than this */
303
304#define STATS_OFFSET32(stat_name) \
305 (offsetof(struct bxe_eth_stats, stat_name) / 4)
306
307#define Q_STATS_OFFSET32(stat_name) \
308 (offsetof(struct bxe_eth_q_stats, stat_name) / 4)
309
310static const struct {
311 uint32_t offset;
312 uint32_t size;
313 uint32_t flags;
314#define STATS_FLAGS_PORT 1
315#define STATS_FLAGS_FUNC 2 /* MF only cares about function stats */
316#define STATS_FLAGS_BOTH (STATS_FLAGS_FUNC | STATS_FLAGS_PORT)
317 char string[STAT_NAME_LEN];
318} bxe_eth_stats_arr[] = {
319 { STATS_OFFSET32(total_bytes_received_hi),
320 8, STATS_FLAGS_BOTH, "rx_bytes" },
321 { STATS_OFFSET32(error_bytes_received_hi),
322 8, STATS_FLAGS_BOTH, "rx_error_bytes" },
323 { STATS_OFFSET32(total_unicast_packets_received_hi),
324 8, STATS_FLAGS_BOTH, "rx_ucast_packets" },
325 { STATS_OFFSET32(total_multicast_packets_received_hi),
326 8, STATS_FLAGS_BOTH, "rx_mcast_packets" },
327 { STATS_OFFSET32(total_broadcast_packets_received_hi),
328 8, STATS_FLAGS_BOTH, "rx_bcast_packets" },
329 { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi),
330 8, STATS_FLAGS_PORT, "rx_crc_errors" },
331 { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi),
332 8, STATS_FLAGS_PORT, "rx_align_errors" },
333 { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi),
334 8, STATS_FLAGS_PORT, "rx_undersize_packets" },
335 { STATS_OFFSET32(etherstatsoverrsizepkts_hi),
336 8, STATS_FLAGS_PORT, "rx_oversize_packets" },
337 { STATS_OFFSET32(rx_stat_etherstatsfragments_hi),
338 8, STATS_FLAGS_PORT, "rx_fragments" },
339 { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi),
340 8, STATS_FLAGS_PORT, "rx_jabbers" },
341 { STATS_OFFSET32(no_buff_discard_hi),
342 8, STATS_FLAGS_BOTH, "rx_discards" },
343 { STATS_OFFSET32(mac_filter_discard),
344 4, STATS_FLAGS_PORT, "rx_filtered_packets" },
345 { STATS_OFFSET32(mf_tag_discard),
346 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" },
347 { STATS_OFFSET32(pfc_frames_received_hi),
348 8, STATS_FLAGS_PORT, "pfc_frames_received" },
349 { STATS_OFFSET32(pfc_frames_sent_hi),
350 8, STATS_FLAGS_PORT, "pfc_frames_sent" },
351 { STATS_OFFSET32(brb_drop_hi),
352 8, STATS_FLAGS_PORT, "rx_brb_discard" },
353 { STATS_OFFSET32(brb_truncate_hi),
354 8, STATS_FLAGS_PORT, "rx_brb_truncate" },
355 { STATS_OFFSET32(pause_frames_received_hi),
356 8, STATS_FLAGS_PORT, "rx_pause_frames" },
357 { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi),
358 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" },
359 { STATS_OFFSET32(nig_timer_max),
360 4, STATS_FLAGS_PORT, "rx_constant_pause_events" },
361 { STATS_OFFSET32(total_bytes_transmitted_hi),
362 8, STATS_FLAGS_BOTH, "tx_bytes" },
363 { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi),
364 8, STATS_FLAGS_PORT, "tx_error_bytes" },
365 { STATS_OFFSET32(total_unicast_packets_transmitted_hi),
366 8, STATS_FLAGS_BOTH, "tx_ucast_packets" },
367 { STATS_OFFSET32(total_multicast_packets_transmitted_hi),
368 8, STATS_FLAGS_BOTH, "tx_mcast_packets" },
369 { STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
370 8, STATS_FLAGS_BOTH, "tx_bcast_packets" },
371 { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi),
372 8, STATS_FLAGS_PORT, "tx_mac_errors" },
373 { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi),
374 8, STATS_FLAGS_PORT, "tx_carrier_errors" },
375 { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi),
376 8, STATS_FLAGS_PORT, "tx_single_collisions" },
377 { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi),
378 8, STATS_FLAGS_PORT, "tx_multi_collisions" },
379 { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi),
380 8, STATS_FLAGS_PORT, "tx_deferred" },
381 { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi),
382 8, STATS_FLAGS_PORT, "tx_excess_collisions" },
383 { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi),
384 8, STATS_FLAGS_PORT, "tx_late_collisions" },
385 { STATS_OFFSET32(tx_stat_etherstatscollisions_hi),
386 8, STATS_FLAGS_PORT, "tx_total_collisions" },
387 { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi),
388 8, STATS_FLAGS_PORT, "tx_64_byte_packets" },
389 { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi),
390 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" },
391 { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi),
392 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" },
393 { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi),
394 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" },
395 { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi),
396 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" },
397 { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi),
398 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" },
399 { STATS_OFFSET32(etherstatspktsover1522octets_hi),
400 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" },
401 { STATS_OFFSET32(pause_frames_sent_hi),
402 8, STATS_FLAGS_PORT, "tx_pause_frames" },
403 { STATS_OFFSET32(total_tpa_aggregations_hi),
404 8, STATS_FLAGS_FUNC, "tpa_aggregations" },
405 { STATS_OFFSET32(total_tpa_aggregated_frames_hi),
406 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"},
407 { STATS_OFFSET32(total_tpa_bytes_hi),
408 8, STATS_FLAGS_FUNC, "tpa_bytes"},
409 { STATS_OFFSET32(eee_tx_lpi),
410 4, STATS_FLAGS_PORT, "eee_tx_lpi"},
411 { STATS_OFFSET32(rx_calls),
412 4, STATS_FLAGS_FUNC, "rx_calls"},
413 { STATS_OFFSET32(rx_pkts),
414 4, STATS_FLAGS_FUNC, "rx_pkts"},
415 { STATS_OFFSET32(rx_tpa_pkts),
416 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"},
417 { STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts),
418 4, STATS_FLAGS_FUNC, "rx_erroneous_jumbo_sge_pkts"},
419 { STATS_OFFSET32(rx_bxe_service_rxsgl),
420 4, STATS_FLAGS_FUNC, "rx_bxe_service_rxsgl"},
421 { STATS_OFFSET32(rx_jumbo_sge_pkts),
422 4, STATS_FLAGS_FUNC, "rx_jumbo_sge_pkts"},
423 { STATS_OFFSET32(rx_soft_errors),
424 4, STATS_FLAGS_FUNC, "rx_soft_errors"},
425 { STATS_OFFSET32(rx_hw_csum_errors),
426 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"},
427 { STATS_OFFSET32(rx_ofld_frames_csum_ip),
428 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"},
429 { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
430 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"},
431 { STATS_OFFSET32(rx_budget_reached),
432 4, STATS_FLAGS_FUNC, "rx_budget_reached"},
433 { STATS_OFFSET32(tx_pkts),
434 4, STATS_FLAGS_FUNC, "tx_pkts"},
435 { STATS_OFFSET32(tx_soft_errors),
436 4, STATS_FLAGS_FUNC, "tx_soft_errors"},
437 { STATS_OFFSET32(tx_ofld_frames_csum_ip),
438 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"},
439 { STATS_OFFSET32(tx_ofld_frames_csum_tcp),
440 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"},
441 { STATS_OFFSET32(tx_ofld_frames_csum_udp),
442 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"},
443 { STATS_OFFSET32(tx_ofld_frames_lso),
444 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"},
445 { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
446 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"},
447 { STATS_OFFSET32(tx_encap_failures),
448 4, STATS_FLAGS_FUNC, "tx_encap_failures"},
449 { STATS_OFFSET32(tx_hw_queue_full),
450 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"},
451 { STATS_OFFSET32(tx_hw_max_queue_depth),
452 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"},
453 { STATS_OFFSET32(tx_dma_mapping_failure),
454 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"},
455 { STATS_OFFSET32(tx_max_drbr_queue_depth),
456 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"},
457 { STATS_OFFSET32(tx_window_violation_std),
458 4, STATS_FLAGS_FUNC, "tx_window_violation_std"},
459 { STATS_OFFSET32(tx_window_violation_tso),
460 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"},
461 { STATS_OFFSET32(tx_chain_lost_mbuf),
462 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"},
463 { STATS_OFFSET32(tx_frames_deferred),
464 4, STATS_FLAGS_FUNC, "tx_frames_deferred"},
465 { STATS_OFFSET32(tx_queue_xoff),
466 4, STATS_FLAGS_FUNC, "tx_queue_xoff"},
467 { STATS_OFFSET32(mbuf_defrag_attempts),
468 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"},
469 { STATS_OFFSET32(mbuf_defrag_failures),
470 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"},
471 { STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
472 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"},
473 { STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
474 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"},
475 { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
476 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"},
477 { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
478 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"},
479 { STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
480 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"},
481 { STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
482 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"},
483 { STATS_OFFSET32(mbuf_alloc_tx),
484 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"},
485 { STATS_OFFSET32(mbuf_alloc_rx),
486 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"},
487 { STATS_OFFSET32(mbuf_alloc_sge),
488 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"},
489 { STATS_OFFSET32(mbuf_alloc_tpa),
490 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"},
491 { STATS_OFFSET32(tx_queue_full_return),
492 4, STATS_FLAGS_FUNC, "tx_queue_full_return"}
493};
494
495static const struct {
496 uint32_t offset;
497 uint32_t size;
498 char string[STAT_NAME_LEN];
499} bxe_eth_q_stats_arr[] = {
500 { Q_STATS_OFFSET32(total_bytes_received_hi),
501 8, "rx_bytes" },
502 { Q_STATS_OFFSET32(total_unicast_packets_received_hi),
503 8, "rx_ucast_packets" },
504 { Q_STATS_OFFSET32(total_multicast_packets_received_hi),
505 8, "rx_mcast_packets" },
506 { Q_STATS_OFFSET32(total_broadcast_packets_received_hi),
507 8, "rx_bcast_packets" },
508 { Q_STATS_OFFSET32(no_buff_discard_hi),
509 8, "rx_discards" },
510 { Q_STATS_OFFSET32(total_bytes_transmitted_hi),
511 8, "tx_bytes" },
512 { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi),
513 8, "tx_ucast_packets" },
514 { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi),
515 8, "tx_mcast_packets" },
516 { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
517 8, "tx_bcast_packets" },
518 { Q_STATS_OFFSET32(total_tpa_aggregations_hi),
519 8, "tpa_aggregations" },
520 { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi),
521 8, "tpa_aggregated_frames"},
522 { Q_STATS_OFFSET32(total_tpa_bytes_hi),
523 8, "tpa_bytes"},
524 { Q_STATS_OFFSET32(rx_calls),
525 4, "rx_calls"},
526 { Q_STATS_OFFSET32(rx_pkts),
527 4, "rx_pkts"},
528 { Q_STATS_OFFSET32(rx_tpa_pkts),
529 4, "rx_tpa_pkts"},
530 { Q_STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts),
531 4, "rx_erroneous_jumbo_sge_pkts"},
532 { Q_STATS_OFFSET32(rx_bxe_service_rxsgl),
533 4, "rx_bxe_service_rxsgl"},
534 { Q_STATS_OFFSET32(rx_jumbo_sge_pkts),
535 4, "rx_jumbo_sge_pkts"},
536 { Q_STATS_OFFSET32(rx_soft_errors),
537 4, "rx_soft_errors"},
538 { Q_STATS_OFFSET32(rx_hw_csum_errors),
539 4, "rx_hw_csum_errors"},
540 { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip),
541 4, "rx_ofld_frames_csum_ip"},
542 { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
543 4, "rx_ofld_frames_csum_tcp_udp"},
544 { Q_STATS_OFFSET32(rx_budget_reached),
545 4, "rx_budget_reached"},
546 { Q_STATS_OFFSET32(tx_pkts),
547 4, "tx_pkts"},
548 { Q_STATS_OFFSET32(tx_soft_errors),
549 4, "tx_soft_errors"},
550 { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip),
551 4, "tx_ofld_frames_csum_ip"},
552 { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp),
553 4, "tx_ofld_frames_csum_tcp"},
554 { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp),
555 4, "tx_ofld_frames_csum_udp"},
556 { Q_STATS_OFFSET32(tx_ofld_frames_lso),
557 4, "tx_ofld_frames_lso"},
558 { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
559 4, "tx_ofld_frames_lso_hdr_splits"},
560 { Q_STATS_OFFSET32(tx_encap_failures),
561 4, "tx_encap_failures"},
562 { Q_STATS_OFFSET32(tx_hw_queue_full),
563 4, "tx_hw_queue_full"},
564 { Q_STATS_OFFSET32(tx_hw_max_queue_depth),
565 4, "tx_hw_max_queue_depth"},
566 { Q_STATS_OFFSET32(tx_dma_mapping_failure),
567 4, "tx_dma_mapping_failure"},
568 { Q_STATS_OFFSET32(tx_max_drbr_queue_depth),
569 4, "tx_max_drbr_queue_depth"},
570 { Q_STATS_OFFSET32(tx_window_violation_std),
571 4, "tx_window_violation_std"},
572 { Q_STATS_OFFSET32(tx_window_violation_tso),
573 4, "tx_window_violation_tso"},
574 { Q_STATS_OFFSET32(tx_chain_lost_mbuf),
575 4, "tx_chain_lost_mbuf"},
576 { Q_STATS_OFFSET32(tx_frames_deferred),
577 4, "tx_frames_deferred"},
578 { Q_STATS_OFFSET32(tx_queue_xoff),
579 4, "tx_queue_xoff"},
580 { Q_STATS_OFFSET32(mbuf_defrag_attempts),
581 4, "mbuf_defrag_attempts"},
582 { Q_STATS_OFFSET32(mbuf_defrag_failures),
583 4, "mbuf_defrag_failures"},
584 { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
585 4, "mbuf_rx_bd_alloc_failed"},
586 { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
587 4, "mbuf_rx_bd_mapping_failed"},
588 { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
589 4, "mbuf_rx_tpa_alloc_failed"},
590 { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
591 4, "mbuf_rx_tpa_mapping_failed"},
592 { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
593 4, "mbuf_rx_sge_alloc_failed"},
594 { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
595 4, "mbuf_rx_sge_mapping_failed"},
596 { Q_STATS_OFFSET32(mbuf_alloc_tx),
597 4, "mbuf_alloc_tx"},
598 { Q_STATS_OFFSET32(mbuf_alloc_rx),
599 4, "mbuf_alloc_rx"},
600 { Q_STATS_OFFSET32(mbuf_alloc_sge),
601 4, "mbuf_alloc_sge"},
602 { Q_STATS_OFFSET32(mbuf_alloc_tpa),
603 4, "mbuf_alloc_tpa"},
604 { Q_STATS_OFFSET32(tx_queue_full_return),
605 4, "tx_queue_full_return"}
606};
607
608#define BXE_NUM_ETH_STATS ARRAY_SIZE(bxe_eth_stats_arr)
609#define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr)
610
611
612static void bxe_cmng_fns_init(struct bxe_softc *sc,
613 uint8_t read_cfg,
614 uint8_t cmng_type);
615static int bxe_get_cmng_fns_mode(struct bxe_softc *sc);
616static void storm_memset_cmng(struct bxe_softc *sc,
617 struct cmng_init *cmng,
618 uint8_t port);
619static void bxe_set_reset_global(struct bxe_softc *sc);
620static void bxe_set_reset_in_progress(struct bxe_softc *sc);
621static uint8_t bxe_reset_is_done(struct bxe_softc *sc,
622 int engine);
623static uint8_t bxe_clear_pf_load(struct bxe_softc *sc);
624static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc,
625 uint8_t *global,
626 uint8_t print);
627static void bxe_int_disable(struct bxe_softc *sc);
628static int bxe_release_leader_lock(struct bxe_softc *sc);
629static void bxe_pf_disable(struct bxe_softc *sc);
630static void bxe_free_fp_buffers(struct bxe_softc *sc);
631static inline void bxe_update_rx_prod(struct bxe_softc *sc,
632 struct bxe_fastpath *fp,
633 uint16_t rx_bd_prod,
634 uint16_t rx_cq_prod,
635 uint16_t rx_sge_prod);
636static void bxe_link_report_locked(struct bxe_softc *sc);
637static void bxe_link_report(struct bxe_softc *sc);
638static void bxe_link_status_update(struct bxe_softc *sc);
639static void bxe_periodic_callout_func(void *xsc);
640static void bxe_periodic_start(struct bxe_softc *sc);
641static void bxe_periodic_stop(struct bxe_softc *sc);
642static int bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
643 uint16_t prev_index,
644 uint16_t index);
645static int bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
646 int queue);
647static int bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
648 uint16_t index);
649static uint8_t bxe_txeof(struct bxe_softc *sc,
650 struct bxe_fastpath *fp);
651static void bxe_task_fp(struct bxe_fastpath *fp);
652static __noinline void bxe_dump_mbuf(struct bxe_softc *sc,
653 struct mbuf *m,
654 uint8_t contents);
655static int bxe_alloc_mem(struct bxe_softc *sc);
656static void bxe_free_mem(struct bxe_softc *sc);
657static int bxe_alloc_fw_stats_mem(struct bxe_softc *sc);
658static void bxe_free_fw_stats_mem(struct bxe_softc *sc);
659static int bxe_interrupt_attach(struct bxe_softc *sc);
660static void bxe_interrupt_detach(struct bxe_softc *sc);
661static void bxe_set_rx_mode(struct bxe_softc *sc);
662static int bxe_init_locked(struct bxe_softc *sc);
663static int bxe_stop_locked(struct bxe_softc *sc);
664static __noinline int bxe_nic_load(struct bxe_softc *sc,
665 int load_mode);
666static __noinline int bxe_nic_unload(struct bxe_softc *sc,
667 uint32_t unload_mode,
668 uint8_t keep_link);
669
670static void bxe_handle_sp_tq(void *context, int pending);
671static void bxe_handle_fp_tq(void *context, int pending);
672
673static int bxe_add_cdev(struct bxe_softc *sc);
674static void bxe_del_cdev(struct bxe_softc *sc);
675static int bxe_alloc_buf_rings(struct bxe_softc *sc);
676static void bxe_free_buf_rings(struct bxe_softc *sc);
677
678/* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */
679uint32_t
680calc_crc32(uint8_t *crc32_packet,
681 uint32_t crc32_length,
682 uint32_t crc32_seed,
683 uint8_t complement)
684{
685 uint32_t byte = 0;
686 uint32_t bit = 0;
687 uint8_t msb = 0;
688 uint32_t temp = 0;
689 uint32_t shft = 0;
690 uint8_t current_byte = 0;
691 uint32_t crc32_result = crc32_seed;
692 const uint32_t CRC32_POLY = 0x1edc6f41;
693
694 if ((crc32_packet == NULL) ||
695 (crc32_length == 0) ||
696 ((crc32_length % 8) != 0))
697 {
698 return (crc32_result);
699 }
700
701 for (byte = 0; byte < crc32_length; byte = byte + 1)
702 {
703 current_byte = crc32_packet[byte];
704 for (bit = 0; bit < 8; bit = bit + 1)
705 {
706 /* msb = crc32_result[31]; */
707 msb = (uint8_t)(crc32_result >> 31);
708
709 crc32_result = crc32_result << 1;
710
711 /* it (msb != current_byte[bit]) */
712 if (msb != (0x1 & (current_byte >> bit)))
713 {
714 crc32_result = crc32_result ^ CRC32_POLY;
715 /* crc32_result[0] = 1 */
716 crc32_result |= 1;
717 }
718 }
719 }
720
721 /* Last step is to:
722 * 1. "mirror" every bit
723 * 2. swap the 4 bytes
724 * 3. complement each bit
725 */
726
727 /* Mirror */
728 temp = crc32_result;
729 shft = sizeof(crc32_result) * 8 - 1;
730
731 for (crc32_result >>= 1; crc32_result; crc32_result >>= 1)
732 {
733 temp <<= 1;
734 temp |= crc32_result & 1;
735 shft-- ;
736 }
737
738 /* temp[31-bit] = crc32_result[bit] */
739 temp <<= shft;
740
741 /* Swap */
742 /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */
743 {
744 uint32_t t0, t1, t2, t3;
745 t0 = (0x000000ff & (temp >> 24));
746 t1 = (0x0000ff00 & (temp >> 8));
747 t2 = (0x00ff0000 & (temp << 8));
748 t3 = (0xff000000 & (temp << 24));
749 crc32_result = t0 | t1 | t2 | t3;
750 }
751
752 /* Complement */
753 if (complement)
754 {
755 crc32_result = ~crc32_result;
756 }
757
758 return (crc32_result);
759}
760
761int
762bxe_test_bit(int nr,
763 volatile unsigned long *addr)
764{
765 return ((atomic_load_acq_long(addr) & (1 << nr)) != 0);
766}
767
768void
769bxe_set_bit(unsigned int nr,
770 volatile unsigned long *addr)
771{
772 atomic_set_acq_long(addr, (1 << nr));
773}
774
775void
776bxe_clear_bit(int nr,
777 volatile unsigned long *addr)
778{
779 atomic_clear_acq_long(addr, (1 << nr));
780}
781
782int
783bxe_test_and_set_bit(int nr,
784 volatile unsigned long *addr)
785{
786 unsigned long x;
787 nr = (1 << nr);
788 do {
789 x = *addr;
790 } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0);
791 // if (x & nr) bit_was_set; else bit_was_not_set;
792 return (x & nr);
793}
794
795int
796bxe_test_and_clear_bit(int nr,
797 volatile unsigned long *addr)
798{
799 unsigned long x;
800 nr = (1 << nr);
801 do {
802 x = *addr;
803 } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0);
804 // if (x & nr) bit_was_set; else bit_was_not_set;
805 return (x & nr);
806}
807
808int
809bxe_cmpxchg(volatile int *addr,
810 int old,
811 int new)
812{
813 int x;
814 do {
815 x = *addr;
816 } while (atomic_cmpset_acq_int(addr, old, new) == 0);
817 return (x);
818}
819
820/*
821 * Get DMA memory from the OS.
822 *
823 * Validates that the OS has provided DMA buffers in response to a
824 * bus_dmamap_load call and saves the physical address of those buffers.
825 * When the callback is used the OS will return 0 for the mapping function
826 * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any
827 * failures back to the caller.
828 *
829 * Returns:
830 * Nothing.
831 */
832static void
833bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
834{
835 struct bxe_dma *dma = arg;
836
837 if (error) {
838 dma->paddr = 0;
839 dma->nseg = 0;
840 BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error);
841 } else {
842 dma->paddr = segs->ds_addr;
843 dma->nseg = nseg;
844 }
845}
846
847/*
848 * Allocate a block of memory and map it for DMA. No partial completions
849 * allowed and release any resources acquired if we can't acquire all
850 * resources.
851 *
852 * Returns:
853 * 0 = Success, !0 = Failure
854 */
855int
856bxe_dma_alloc(struct bxe_softc *sc,
857 bus_size_t size,
858 struct bxe_dma *dma,
859 const char *msg)
860{
861 int rc;
862
863 if (dma->size > 0) {
864 BLOGE(sc, "dma block '%s' already has size %lu\n", msg,
865 (unsigned long)dma->size);
866 return (1);
867 }
868
869 memset(dma, 0, sizeof(*dma)); /* sanity */
870 dma->sc = sc;
871 dma->size = size;
872 snprintf(dma->msg, sizeof(dma->msg), "%s", msg);
873
874 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
875 BCM_PAGE_SIZE, /* alignment */
876 0, /* boundary limit */
877 BUS_SPACE_MAXADDR, /* restricted low */
878 BUS_SPACE_MAXADDR, /* restricted hi */
879 NULL, /* addr filter() */
880 NULL, /* addr filter() arg */
881 size, /* max map size */
882 1, /* num discontinuous */
883 size, /* max seg size */
884 BUS_DMA_ALLOCNOW, /* flags */
885 NULL, /* lock() */
886 NULL, /* lock() arg */
887 &dma->tag); /* returned dma tag */
888 if (rc != 0) {
889 BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc);
890 memset(dma, 0, sizeof(*dma));
891 return (1);
892 }
893
894 rc = bus_dmamem_alloc(dma->tag,
895 (void **)&dma->vaddr,
896 (BUS_DMA_NOWAIT | BUS_DMA_ZERO),
897 &dma->map);
898 if (rc != 0) {
899 BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc);
900 bus_dma_tag_destroy(dma->tag);
901 memset(dma, 0, sizeof(*dma));
902 return (1);
903 }
904
905 rc = bus_dmamap_load(dma->tag,
906 dma->map,
907 dma->vaddr,
908 size,
909 bxe_dma_map_addr, /* BLOGD in here */
910 dma,
911 BUS_DMA_NOWAIT);
912 if (rc != 0) {
913 BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc);
914 bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
915 bus_dma_tag_destroy(dma->tag);
916 memset(dma, 0, sizeof(*dma));
917 return (1);
918 }
919
920 return (0);
921}
922
923void
924bxe_dma_free(struct bxe_softc *sc,
925 struct bxe_dma *dma)
926{
927 if (dma->size > 0) {
928 DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL"));
929
930 bus_dmamap_sync(dma->tag, dma->map,
931 (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE));
932 bus_dmamap_unload(dma->tag, dma->map);
933 bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
934 bus_dma_tag_destroy(dma->tag);
935 }
936
937 memset(dma, 0, sizeof(*dma));
938}
939
940/*
941 * These indirect read and write routines are only during init.
942 * The locking is handled by the MCP.
943 */
944
945void
946bxe_reg_wr_ind(struct bxe_softc *sc,
947 uint32_t addr,
948 uint32_t val)
949{
950 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
951 pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4);
952 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
953}
954
955uint32_t
956bxe_reg_rd_ind(struct bxe_softc *sc,
957 uint32_t addr)
958{
959 uint32_t val;
960
961 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
962 val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4);
963 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
964
965 return (val);
966}
967
968static int
969bxe_acquire_hw_lock(struct bxe_softc *sc,
970 uint32_t resource)
971{
972 uint32_t lock_status;
973 uint32_t resource_bit = (1 << resource);
974 int func = SC_FUNC(sc);
975 uint32_t hw_lock_control_reg;
976 int cnt;
977
978 /* validate the resource is within range */
979 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
980 BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)"
981 " resource_bit 0x%x\n", resource, resource_bit);
982 return (-1);
983 }
984
985 if (func <= 5) {
986 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
987 } else {
988 hw_lock_control_reg =
989 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
990 }
991
992 /* validate the resource is not already taken */
993 lock_status = REG_RD(sc, hw_lock_control_reg);
994 if (lock_status & resource_bit) {
995 BLOGE(sc, "resource (0x%x) in use (status 0x%x bit 0x%x)\n",
996 resource, lock_status, resource_bit);
997 return (-1);
998 }
999
1000 /* try every 5ms for 5 seconds */
1001 for (cnt = 0; cnt < 1000; cnt++) {
1002 REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
1003 lock_status = REG_RD(sc, hw_lock_control_reg);
1004 if (lock_status & resource_bit) {
1005 return (0);
1006 }
1007 DELAY(5000);
1008 }
1009
1010 BLOGE(sc, "Resource 0x%x resource_bit 0x%x lock timeout!\n",
1011 resource, resource_bit);
1012 return (-1);
1013}
1014
1015static int
1016bxe_release_hw_lock(struct bxe_softc *sc,
1017 uint32_t resource)
1018{
1019 uint32_t lock_status;
1020 uint32_t resource_bit = (1 << resource);
1021 int func = SC_FUNC(sc);
1022 uint32_t hw_lock_control_reg;
1023
1024 /* validate the resource is within range */
1025 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1026 BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)"
1027 " resource_bit 0x%x\n", resource, resource_bit);
1028 return (-1);
1029 }
1030
1031 if (func <= 5) {
1032 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1033 } else {
1034 hw_lock_control_reg =
1035 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1036 }
1037
1038 /* validate the resource is currently taken */
1039 lock_status = REG_RD(sc, hw_lock_control_reg);
1040 if (!(lock_status & resource_bit)) {
1041 BLOGE(sc, "resource (0x%x) not in use (status 0x%x bit 0x%x)\n",
1042 resource, lock_status, resource_bit);
1043 return (-1);
1044 }
1045
1046 REG_WR(sc, hw_lock_control_reg, resource_bit);
1047 return (0);
1048}
1049static void bxe_acquire_phy_lock(struct bxe_softc *sc)
1050{
1051 BXE_PHY_LOCK(sc);
1052 bxe_acquire_hw_lock(sc,HW_LOCK_RESOURCE_MDIO);
1053}
1054
1055static void bxe_release_phy_lock(struct bxe_softc *sc)
1056{
1057 bxe_release_hw_lock(sc,HW_LOCK_RESOURCE_MDIO);
1058 BXE_PHY_UNLOCK(sc);
1059}
1060/*
1061 * Per pf misc lock must be acquired before the per port mcp lock. Otherwise,
1062 * had we done things the other way around, if two pfs from the same port
1063 * would attempt to access nvram at the same time, we could run into a
1064 * scenario such as:
1065 * pf A takes the port lock.
1066 * pf B succeeds in taking the same lock since they are from the same port.
1067 * pf A takes the per pf misc lock. Performs eeprom access.
1068 * pf A finishes. Unlocks the per pf misc lock.
1069 * Pf B takes the lock and proceeds to perform it's own access.
1070 * pf A unlocks the per port lock, while pf B is still working (!).
1071 * mcp takes the per port lock and corrupts pf B's access (and/or has it's own
1072 * access corrupted by pf B).*
1073 */
1074static int
1075bxe_acquire_nvram_lock(struct bxe_softc *sc)
1076{
1077 int port = SC_PORT(sc);
1078 int count, i;
1079 uint32_t val = 0;
1080
1081 /* acquire HW lock: protect against other PFs in PF Direct Assignment */
1082 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1083
1084 /* adjust timeout for emulation/FPGA */
1085 count = NVRAM_TIMEOUT_COUNT;
1086 if (CHIP_REV_IS_SLOW(sc)) {
1087 count *= 100;
1088 }
1089
1090 /* request access to nvram interface */
1091 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1092 (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port));
1093
1094 for (i = 0; i < count*10; i++) {
1095 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1096 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1097 break;
1098 }
1099
1100 DELAY(5);
1101 }
1102
1103 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1104 BLOGE(sc, "Cannot get access to nvram interface "
1105 "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n",
1106 port, val);
1107 return (-1);
1108 }
1109
1110 return (0);
1111}
1112
1113static int
1114bxe_release_nvram_lock(struct bxe_softc *sc)
1115{
1116 int port = SC_PORT(sc);
1117 int count, i;
1118 uint32_t val = 0;
1119
1120 /* adjust timeout for emulation/FPGA */
1121 count = NVRAM_TIMEOUT_COUNT;
1122 if (CHIP_REV_IS_SLOW(sc)) {
1123 count *= 100;
1124 }
1125
1126 /* relinquish nvram interface */
1127 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1128 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port));
1129
1130 for (i = 0; i < count*10; i++) {
1131 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1132 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1133 break;
1134 }
1135
1136 DELAY(5);
1137 }
1138
1139 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1140 BLOGE(sc, "Cannot free access to nvram interface "
1141 "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n",
1142 port, val);
1143 return (-1);
1144 }
1145
1146 /* release HW lock: protect against other PFs in PF Direct Assignment */
1147 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1148
1149 return (0);
1150}
1151
1152static void
1153bxe_enable_nvram_access(struct bxe_softc *sc)
1154{
1155 uint32_t val;
1156
1157 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1158
1159 /* enable both bits, even on read */
1160 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1161 (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN));
1162}
1163
1164static void
1165bxe_disable_nvram_access(struct bxe_softc *sc)
1166{
1167 uint32_t val;
1168
1169 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1170
1171 /* disable both bits, even after read */
1172 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1173 (val & ~(MCPR_NVM_ACCESS_ENABLE_EN |
1174 MCPR_NVM_ACCESS_ENABLE_WR_EN)));
1175}
1176
1177static int
1178bxe_nvram_read_dword(struct bxe_softc *sc,
1179 uint32_t offset,
1180 uint32_t *ret_val,
1181 uint32_t cmd_flags)
1182{
1183 int count, i, rc;
1184 uint32_t val;
1185
1186 /* build the command word */
1187 cmd_flags |= MCPR_NVM_COMMAND_DOIT;
1188
1189 /* need to clear DONE bit separately */
1190 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1191
1192 /* address of the NVRAM to read from */
1193 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1194 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1195
1196 /* issue a read command */
1197 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1198
1199 /* adjust timeout for emulation/FPGA */
1200 count = NVRAM_TIMEOUT_COUNT;
1201 if (CHIP_REV_IS_SLOW(sc)) {
1202 count *= 100;
1203 }
1204
1205 /* wait for completion */
1206 *ret_val = 0;
1207 rc = -1;
1208 for (i = 0; i < count; i++) {
1209 DELAY(5);
1210 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1211
1212 if (val & MCPR_NVM_COMMAND_DONE) {
1213 val = REG_RD(sc, MCP_REG_MCPR_NVM_READ);
1214 /* we read nvram data in cpu order
1215 * but ethtool sees it as an array of bytes
1216 * converting to big-endian will do the work
1217 */
1218 *ret_val = htobe32(val);
1219 rc = 0;
1220 break;
1221 }
1222 }
1223
1224 if (rc == -1) {
1225 BLOGE(sc, "nvram read timeout expired "
1226 "(offset 0x%x cmd_flags 0x%x val 0x%x)\n",
1227 offset, cmd_flags, val);
1228 }
1229
1230 return (rc);
1231}
1232
1233static int
1234bxe_nvram_read(struct bxe_softc *sc,
1235 uint32_t offset,
1236 uint8_t *ret_buf,
1237 int buf_size)
1238{
1239 uint32_t cmd_flags;
1240 uint32_t val;
1241 int rc;
1242
1243 if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) {
1244 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1245 offset, buf_size);
1246 return (-1);
1247 }
1248
1249 if ((offset + buf_size) > sc->devinfo.flash_size) {
1250 BLOGE(sc, "Invalid parameter, "
1251 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1252 offset, buf_size, sc->devinfo.flash_size);
1253 return (-1);
1254 }
1255
1256 /* request access to nvram interface */
1257 rc = bxe_acquire_nvram_lock(sc);
1258 if (rc) {
1259 return (rc);
1260 }
1261
1262 /* enable access to nvram interface */
1263 bxe_enable_nvram_access(sc);
1264
1265 /* read the first word(s) */
1266 cmd_flags = MCPR_NVM_COMMAND_FIRST;
1267 while ((buf_size > sizeof(uint32_t)) && (rc == 0)) {
1268 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1269 memcpy(ret_buf, &val, 4);
1270
1271 /* advance to the next dword */
1272 offset += sizeof(uint32_t);
1273 ret_buf += sizeof(uint32_t);
1274 buf_size -= sizeof(uint32_t);
1275 cmd_flags = 0;
1276 }
1277
1278 if (rc == 0) {
1279 cmd_flags |= MCPR_NVM_COMMAND_LAST;
1280 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1281 memcpy(ret_buf, &val, 4);
1282 }
1283
1284 /* disable access to nvram interface */
1285 bxe_disable_nvram_access(sc);
1286 bxe_release_nvram_lock(sc);
1287
1288 return (rc);
1289}
1290
1291static int
1292bxe_nvram_write_dword(struct bxe_softc *sc,
1293 uint32_t offset,
1294 uint32_t val,
1295 uint32_t cmd_flags)
1296{
1297 int count, i, rc;
1298
1299 /* build the command word */
1300 cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR);
1301
1302 /* need to clear DONE bit separately */
1303 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1304
1305 /* write the data */
1306 REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val);
1307
1308 /* address of the NVRAM to write to */
1309 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1310 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1311
1312 /* issue the write command */
1313 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1314
1315 /* adjust timeout for emulation/FPGA */
1316 count = NVRAM_TIMEOUT_COUNT;
1317 if (CHIP_REV_IS_SLOW(sc)) {
1318 count *= 100;
1319 }
1320
1321 /* wait for completion */
1322 rc = -1;
1323 for (i = 0; i < count; i++) {
1324 DELAY(5);
1325 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1326 if (val & MCPR_NVM_COMMAND_DONE) {
1327 rc = 0;
1328 break;
1329 }
1330 }
1331
1332 if (rc == -1) {
1333 BLOGE(sc, "nvram write timeout expired "
1334 "(offset 0x%x cmd_flags 0x%x val 0x%x)\n",
1335 offset, cmd_flags, val);
1336 }
1337
1338 return (rc);
1339}
1340
1341#define BYTE_OFFSET(offset) (8 * (offset & 0x03))
1342
1343static int
1344bxe_nvram_write1(struct bxe_softc *sc,
1345 uint32_t offset,
1346 uint8_t *data_buf,
1347 int buf_size)
1348{
1349 uint32_t cmd_flags;
1350 uint32_t align_offset;
1351 uint32_t val;
1352 int rc;
1353
1354 if ((offset + buf_size) > sc->devinfo.flash_size) {
1355 BLOGE(sc, "Invalid parameter, "
1356 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1357 offset, buf_size, sc->devinfo.flash_size);
1358 return (-1);
1359 }
1360
1361 /* request access to nvram interface */
1362 rc = bxe_acquire_nvram_lock(sc);
1363 if (rc) {
1364 return (rc);
1365 }
1366
1367 /* enable access to nvram interface */
1368 bxe_enable_nvram_access(sc);
1369
1370 cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST);
1371 align_offset = (offset & ~0x03);
1372 rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags);
1373
1374 if (rc == 0) {
1375 val &= ~(0xff << BYTE_OFFSET(offset));
1376 val |= (*data_buf << BYTE_OFFSET(offset));
1377
1378 /* nvram data is returned as an array of bytes
1379 * convert it back to cpu order
1380 */
1381 val = be32toh(val);
1382
1383 rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags);
1384 }
1385
1386 /* disable access to nvram interface */
1387 bxe_disable_nvram_access(sc);
1388 bxe_release_nvram_lock(sc);
1389
1390 return (rc);
1391}
1392
1393static int
1394bxe_nvram_write(struct bxe_softc *sc,
1395 uint32_t offset,
1396 uint8_t *data_buf,
1397 int buf_size)
1398{
1399 uint32_t cmd_flags;
1400 uint32_t val;
1401 uint32_t written_so_far;
1402 int rc;
1403
1404 if (buf_size == 1) {
1405 return (bxe_nvram_write1(sc, offset, data_buf, buf_size));
1406 }
1407
1408 if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) {
1409 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1410 offset, buf_size);
1411 return (-1);
1412 }
1413
1414 if (buf_size == 0) {
1415 return (0); /* nothing to do */
1416 }
1417
1418 if ((offset + buf_size) > sc->devinfo.flash_size) {
1419 BLOGE(sc, "Invalid parameter, "
1420 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1421 offset, buf_size, sc->devinfo.flash_size);
1422 return (-1);
1423 }
1424
1425 /* request access to nvram interface */
1426 rc = bxe_acquire_nvram_lock(sc);
1427 if (rc) {
1428 return (rc);
1429 }
1430
1431 /* enable access to nvram interface */
1432 bxe_enable_nvram_access(sc);
1433
1434 written_so_far = 0;
1435 cmd_flags = MCPR_NVM_COMMAND_FIRST;
1436 while ((written_so_far < buf_size) && (rc == 0)) {
1437 if (written_so_far == (buf_size - sizeof(uint32_t))) {
1438 cmd_flags |= MCPR_NVM_COMMAND_LAST;
1439 } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) {
1440 cmd_flags |= MCPR_NVM_COMMAND_LAST;
1441 } else if ((offset % NVRAM_PAGE_SIZE) == 0) {
1442 cmd_flags |= MCPR_NVM_COMMAND_FIRST;
1443 }
1444
1445 memcpy(&val, data_buf, 4);
1446
1447 rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags);
1448
1449 /* advance to the next dword */
1450 offset += sizeof(uint32_t);
1451 data_buf += sizeof(uint32_t);
1452 written_so_far += sizeof(uint32_t);
1453 cmd_flags = 0;
1454 }
1455
1456 /* disable access to nvram interface */
1457 bxe_disable_nvram_access(sc);
1458 bxe_release_nvram_lock(sc);
1459
1460 return (rc);
1461}
1462
1463/* copy command into DMAE command memory and set DMAE command Go */
1464void
1465bxe_post_dmae(struct bxe_softc *sc,
1466 struct dmae_cmd *dmae,
1467 int idx)
1468{
1469 uint32_t cmd_offset;
1470 int i;
1471
1472 cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_cmd) * idx));
1473 for (i = 0; i < ((sizeof(struct dmae_cmd) / 4)); i++) {
1474 REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i));
1475 }
1476
1477 REG_WR(sc, dmae_reg_go_c[idx], 1);
1478}
1479
1480uint32_t
1481bxe_dmae_opcode_add_comp(uint32_t opcode,
1482 uint8_t comp_type)
1483{
1484 return (opcode | ((comp_type << DMAE_CMD_C_DST_SHIFT) |
1485 DMAE_CMD_C_TYPE_ENABLE));
1486}
1487
1488uint32_t
1489bxe_dmae_opcode_clr_src_reset(uint32_t opcode)
1490{
1491 return (opcode & ~DMAE_CMD_SRC_RESET);
1492}
1493
1494uint32_t
1495bxe_dmae_opcode(struct bxe_softc *sc,
1496 uint8_t src_type,
1497 uint8_t dst_type,
1498 uint8_t with_comp,
1499 uint8_t comp_type)
1500{
1501 uint32_t opcode = 0;
1502
1503 opcode |= ((src_type << DMAE_CMD_SRC_SHIFT) |
1504 (dst_type << DMAE_CMD_DST_SHIFT));
1505
1506 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
1507
1508 opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
1509
1510 opcode |= ((SC_VN(sc) << DMAE_CMD_E1HVN_SHIFT) |
1511 (SC_VN(sc) << DMAE_CMD_DST_VN_SHIFT));
1512
1513 opcode |= (DMAE_COM_SET_ERR << DMAE_CMD_ERR_POLICY_SHIFT);
1514
1515#ifdef __BIG_ENDIAN
1516 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
1517#else
1518 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
1519#endif
1520
1521 if (with_comp) {
1522 opcode = bxe_dmae_opcode_add_comp(opcode, comp_type);
1523 }
1524
1525 return (opcode);
1526}
1527
1528static void
1529bxe_prep_dmae_with_comp(struct bxe_softc *sc,
1530 struct dmae_cmd *dmae,
1531 uint8_t src_type,
1532 uint8_t dst_type)
1533{
1534 memset(dmae, 0, sizeof(struct dmae_cmd));
1535
1536 /* set the opcode */
1537 dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type,
1538 TRUE, DMAE_COMP_PCI);
1539
1540 /* fill in the completion parameters */
1541 dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp));
1542 dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp));
1543 dmae->comp_val = DMAE_COMP_VAL;
1544}
1545
1546/* issue a DMAE command over the init channel and wait for completion */
1547static int
1548bxe_issue_dmae_with_comp(struct bxe_softc *sc,
1549 struct dmae_cmd *dmae)
1550{
1551 uint32_t *wb_comp = BXE_SP(sc, wb_comp);
1552 int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
1553
1554 BXE_DMAE_LOCK(sc);
1555
1556 /* reset completion */
1557 *wb_comp = 0;
1558
1559 /* post the command on the channel used for initializations */
1560 bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc));
1561
1562 /* wait for completion */
1563 DELAY(5);
1564
1565 while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
1566 if (!timeout ||
1567 (sc->recovery_state != BXE_RECOVERY_DONE &&
1568 sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) {
1569 BLOGE(sc, "DMAE timeout! *wb_comp 0x%x recovery_state 0x%x\n",
1570 *wb_comp, sc->recovery_state);
1571 BXE_DMAE_UNLOCK(sc);
1572 return (DMAE_TIMEOUT);
1573 }
1574
1575 timeout--;
1576 DELAY(50);
1577 }
1578
1579 if (*wb_comp & DMAE_PCI_ERR_FLAG) {
1580 BLOGE(sc, "DMAE PCI error! *wb_comp 0x%x recovery_state 0x%x\n",
1581 *wb_comp, sc->recovery_state);
1582 BXE_DMAE_UNLOCK(sc);
1583 return (DMAE_PCI_ERROR);
1584 }
1585
1586 BXE_DMAE_UNLOCK(sc);
1587 return (0);
1588}
1589
1590void
1591bxe_read_dmae(struct bxe_softc *sc,
1592 uint32_t src_addr,
1593 uint32_t len32)
1594{
1595 struct dmae_cmd dmae;
1596 uint32_t *data;
1597 int i, rc;
1598
1599 DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32));
1600
1601 if (!sc->dmae_ready) {
1602 data = BXE_SP(sc, wb_data[0]);
1603
1604 for (i = 0; i < len32; i++) {
1605 data[i] = (CHIP_IS_E1(sc)) ?
1606 bxe_reg_rd_ind(sc, (src_addr + (i * 4))) :
1607 REG_RD(sc, (src_addr + (i * 4)));
1608 }
1609
1610 return;
1611 }
1612
1613 /* set opcode and fixed command fields */
1614 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
1615
1616 /* fill in addresses and len */
1617 dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */
1618 dmae.src_addr_hi = 0;
1619 dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data));
1620 dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data));
1621 dmae.len = len32;
1622
1623 /* issue the command and wait for completion */
1624 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1625 bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1626 }
1627}
1628
1629void
1630bxe_write_dmae(struct bxe_softc *sc,
1631 bus_addr_t dma_addr,
1632 uint32_t dst_addr,
1633 uint32_t len32)
1634{
1635 struct dmae_cmd dmae;
1636 int rc;
1637
1638 if (!sc->dmae_ready) {
1639 DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32));
1640
1641 if (CHIP_IS_E1(sc)) {
1642 ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1643 } else {
1644 ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1645 }
1646
1647 return;
1648 }
1649
1650 /* set opcode and fixed command fields */
1651 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
1652
1653 /* fill in addresses and len */
1654 dmae.src_addr_lo = U64_LO(dma_addr);
1655 dmae.src_addr_hi = U64_HI(dma_addr);
1656 dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */
1657 dmae.dst_addr_hi = 0;
1658 dmae.len = len32;
1659
1660 /* issue the command and wait for completion */
1661 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1662 bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1663 }
1664}
1665
1666void
1667bxe_write_dmae_phys_len(struct bxe_softc *sc,
1668 bus_addr_t phys_addr,
1669 uint32_t addr,
1670 uint32_t len)
1671{
1672 int dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
1673 int offset = 0;
1674
1675 while (len > dmae_wr_max) {
1676 bxe_write_dmae(sc,
1677 (phys_addr + offset), /* src DMA address */
1678 (addr + offset), /* dst GRC address */
1679 dmae_wr_max);
1680 offset += (dmae_wr_max * 4);
1681 len -= dmae_wr_max;
1682 }
1683
1684 bxe_write_dmae(sc,
1685 (phys_addr + offset), /* src DMA address */
1686 (addr + offset), /* dst GRC address */
1687 len);
1688}
1689
1690void
1691bxe_set_ctx_validation(struct bxe_softc *sc,
1692 struct eth_context *cxt,
1693 uint32_t cid)
1694{
1695 /* ustorm cxt validation */
1696 cxt->ustorm_ag_context.cdu_usage =
1697 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1698 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
1699 /* xcontext validation */
1700 cxt->xstorm_ag_context.cdu_reserved =
1701 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1702 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
1703}
1704
1705static void
1706bxe_storm_memset_hc_timeout(struct bxe_softc *sc,
1707 uint8_t port,
1708 uint8_t fw_sb_id,
1709 uint8_t sb_index,
1710 uint8_t ticks)
1711{
1712 uint32_t addr =
1713 (BAR_CSTRORM_INTMEM +
1714 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
1715
1716 REG_WR8(sc, addr, ticks);
1717
1718 BLOGD(sc, DBG_LOAD,
1719 "port %d fw_sb_id %d sb_index %d ticks %d\n",
1720 port, fw_sb_id, sb_index, ticks);
1721}
1722
1723static void
1724bxe_storm_memset_hc_disable(struct bxe_softc *sc,
1725 uint8_t port,
1726 uint16_t fw_sb_id,
1727 uint8_t sb_index,
1728 uint8_t disable)
1729{
1730 uint32_t enable_flag =
1731 (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
1732 uint32_t addr =
1733 (BAR_CSTRORM_INTMEM +
1734 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
1735 uint8_t flags;
1736
1737 /* clear and set */
1738 flags = REG_RD8(sc, addr);
1739 flags &= ~HC_INDEX_DATA_HC_ENABLED;
1740 flags |= enable_flag;
1741 REG_WR8(sc, addr, flags);
1742
1743 BLOGD(sc, DBG_LOAD,
1744 "port %d fw_sb_id %d sb_index %d disable %d\n",
1745 port, fw_sb_id, sb_index, disable);
1746}
1747
1748void
1749bxe_update_coalesce_sb_index(struct bxe_softc *sc,
1750 uint8_t fw_sb_id,
1751 uint8_t sb_index,
1752 uint8_t disable,
1753 uint16_t usec)
1754{
1755 int port = SC_PORT(sc);
1756 uint8_t ticks = (usec / 4); /* XXX ??? */
1757
1758 bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks);
1759
1760 disable = (disable) ? 1 : ((usec) ? 0 : 1);
1761 bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable);
1762}
1763
1764void
1765elink_cb_udelay(struct bxe_softc *sc,
1766 uint32_t usecs)
1767{
1768 DELAY(usecs);
1769}
1770
1771uint32_t
1772elink_cb_reg_read(struct bxe_softc *sc,
1773 uint32_t reg_addr)
1774{
1775 return (REG_RD(sc, reg_addr));
1776}
1777
1778void
1779elink_cb_reg_write(struct bxe_softc *sc,
1780 uint32_t reg_addr,
1781 uint32_t val)
1782{
1783 REG_WR(sc, reg_addr, val);
1784}
1785
1786void
1787elink_cb_reg_wb_write(struct bxe_softc *sc,
1788 uint32_t offset,
1789 uint32_t *wb_write,
1790 uint16_t len)
1791{
1792 REG_WR_DMAE(sc, offset, wb_write, len);
1793}
1794
1795void
1796elink_cb_reg_wb_read(struct bxe_softc *sc,
1797 uint32_t offset,
1798 uint32_t *wb_write,
1799 uint16_t len)
1800{
1801 REG_RD_DMAE(sc, offset, wb_write, len);
1802}
1803
1804uint8_t
1805elink_cb_path_id(struct bxe_softc *sc)
1806{
1807 return (SC_PATH(sc));
1808}
1809
1810void
1811elink_cb_event_log(struct bxe_softc *sc,
1812 const elink_log_id_t elink_log_id,
1813 ...)
1814{
1815 /* XXX */
1816 BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id);
1817}
1818
1819static int
1820bxe_set_spio(struct bxe_softc *sc,
1821 int spio,
1822 uint32_t mode)
1823{
1824 uint32_t spio_reg;
1825
1826 /* Only 2 SPIOs are configurable */
1827 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
1828 BLOGE(sc, "Invalid SPIO 0x%x mode 0x%x\n", spio, mode);
1829 return (-1);
1830 }
1831
1832 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1833
1834 /* read SPIO and mask except the float bits */
1835 spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
1836
1837 switch (mode) {
1838 case MISC_SPIO_OUTPUT_LOW:
1839 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio);
1840 /* clear FLOAT and set CLR */
1841 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1842 spio_reg |= (spio << MISC_SPIO_CLR_POS);
1843 break;
1844
1845 case MISC_SPIO_OUTPUT_HIGH:
1846 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio);
1847 /* clear FLOAT and set SET */
1848 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1849 spio_reg |= (spio << MISC_SPIO_SET_POS);
1850 break;
1851
1852 case MISC_SPIO_INPUT_HI_Z:
1853 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio);
1854 /* set FLOAT */
1855 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
1856 break;
1857
1858 default:
1859 break;
1860 }
1861
1862 REG_WR(sc, MISC_REG_SPIO, spio_reg);
1863 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1864
1865 return (0);
1866}
1867
1868static int
1869bxe_gpio_read(struct bxe_softc *sc,
1870 int gpio_num,
1871 uint8_t port)
1872{
1873 /* The GPIO should be swapped if swap register is set and active */
1874 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
1875 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
1876 int gpio_shift = (gpio_num +
1877 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
1878 uint32_t gpio_mask = (1 << gpio_shift);
1879 uint32_t gpio_reg;
1880
1881 if (gpio_num > MISC_REGISTERS_GPIO_3) {
1882 BLOGE(sc, "Invalid GPIO %d port 0x%x gpio_port %d gpio_shift %d"
1883 " gpio_mask 0x%x\n", gpio_num, port, gpio_port, gpio_shift,
1884 gpio_mask);
1885 return (-1);
1886 }
1887
1888 /* read GPIO value */
1889 gpio_reg = REG_RD(sc, MISC_REG_GPIO);
1890
1891 /* get the requested pin value */
1892 return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
1893}
1894
1895static int
1896bxe_gpio_write(struct bxe_softc *sc,
1897 int gpio_num,
1898 uint32_t mode,
1899 uint8_t port)
1900{
1901 /* The GPIO should be swapped if swap register is set and active */
1902 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
1903 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
1904 int gpio_shift = (gpio_num +
1905 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
1906 uint32_t gpio_mask = (1 << gpio_shift);
1907 uint32_t gpio_reg;
1908
1909 if (gpio_num > MISC_REGISTERS_GPIO_3) {
1910 BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d"
1911 " gpio_shift %d gpio_mask 0x%x\n",
1912 gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask);
1913 return (-1);
1914 }
1915
1916 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
1917
1918 /* read GPIO and mask except the float bits */
1919 gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
1920
1921 switch (mode) {
1922 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1923 BLOGD(sc, DBG_PHY,
1924 "Set GPIO %d (shift %d) -> output low\n",
1925 gpio_num, gpio_shift);
1926 /* clear FLOAT and set CLR */
1927 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1928 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1929 break;
1930
1931 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1932 BLOGD(sc, DBG_PHY,
1933 "Set GPIO %d (shift %d) -> output high\n",
1934 gpio_num, gpio_shift);
1935 /* clear FLOAT and set SET */
1936 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1937 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1938 break;
1939
1940 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1941 BLOGD(sc, DBG_PHY,
1942 "Set GPIO %d (shift %d) -> input\n",
1943 gpio_num, gpio_shift);
1944 /* set FLOAT */
1945 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1946 break;
1947
1948 default:
1949 break;
1950 }
1951
1952 REG_WR(sc, MISC_REG_GPIO, gpio_reg);
1953 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
1954
1955 return (0);
1956}
1957
1958static int
1959bxe_gpio_mult_write(struct bxe_softc *sc,
1960 uint8_t pins,
1961 uint32_t mode)
1962{
1963 uint32_t gpio_reg;
1964
1965 /* any port swapping should be handled by caller */
1966
1967 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
1968
1969 /* read GPIO and mask except the float bits */
1970 gpio_reg = REG_RD(sc, MISC_REG_GPIO);
1971 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1972 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
1973 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
1974
1975 switch (mode) {
1976 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1977 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins);
1978 /* set CLR */
1979 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
1980 break;
1981
1982 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1983 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins);
1984 /* set SET */
1985 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
1986 break;
1987
1988 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1989 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins);
1990 /* set FLOAT */
1991 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1992 break;
1993
1994 default:
1995 BLOGE(sc, "Invalid GPIO mode assignment pins 0x%x mode 0x%x"
1996 " gpio_reg 0x%x\n", pins, mode, gpio_reg);
1997 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
1998 return (-1);
1999 }
2000
2001 REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2002 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2003
2004 return (0);
2005}
2006
2007static int
2008bxe_gpio_int_write(struct bxe_softc *sc,
2009 int gpio_num,
2010 uint32_t mode,
2011 uint8_t port)
2012{
2013 /* The GPIO should be swapped if swap register is set and active */
2014 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2015 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2016 int gpio_shift = (gpio_num +
2017 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2018 uint32_t gpio_mask = (1 << gpio_shift);
2019 uint32_t gpio_reg;
2020
2021 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2022 BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d"
2023 " gpio_shift %d gpio_mask 0x%x\n",
2024 gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask);
2025 return (-1);
2026 }
2027
2028 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2029
2030 /* read GPIO int */
2031 gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
2032
2033 switch (mode) {
2034 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2035 BLOGD(sc, DBG_PHY,
2036 "Clear GPIO INT %d (shift %d) -> output low\n",
2037 gpio_num, gpio_shift);
2038 /* clear SET and set CLR */
2039 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2040 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2041 break;
2042
2043 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2044 BLOGD(sc, DBG_PHY,
2045 "Set GPIO INT %d (shift %d) -> output high\n",
2046 gpio_num, gpio_shift);
2047 /* clear CLR and set SET */
2048 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2049 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2050 break;
2051
2052 default:
2053 break;
2054 }
2055
2056 REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
2057 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2058
2059 return (0);
2060}
2061
2062uint32_t
2063elink_cb_gpio_read(struct bxe_softc *sc,
2064 uint16_t gpio_num,
2065 uint8_t port)
2066{
2067 return (bxe_gpio_read(sc, gpio_num, port));
2068}
2069
2070uint8_t
2071elink_cb_gpio_write(struct bxe_softc *sc,
2072 uint16_t gpio_num,
2073 uint8_t mode, /* 0=low 1=high */
2074 uint8_t port)
2075{
2076 return (bxe_gpio_write(sc, gpio_num, mode, port));
2077}
2078
2079uint8_t
2080elink_cb_gpio_mult_write(struct bxe_softc *sc,
2081 uint8_t pins,
2082 uint8_t mode) /* 0=low 1=high */
2083{
2084 return (bxe_gpio_mult_write(sc, pins, mode));
2085}
2086
2087uint8_t
2088elink_cb_gpio_int_write(struct bxe_softc *sc,
2089 uint16_t gpio_num,
2090 uint8_t mode, /* 0=low 1=high */
2091 uint8_t port)
2092{
2093 return (bxe_gpio_int_write(sc, gpio_num, mode, port));
2094}
2095
2096void
2097elink_cb_notify_link_changed(struct bxe_softc *sc)
2098{
2099 REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
2100 (SC_FUNC(sc) * sizeof(uint32_t))), 1);
2101}
2102
2103/* send the MCP a request, block until there is a reply */
2104uint32_t
2105elink_cb_fw_command(struct bxe_softc *sc,
2106 uint32_t command,
2107 uint32_t param)
2108{
2109 int mb_idx = SC_FW_MB_IDX(sc);
2110 uint32_t seq;
2111 uint32_t rc = 0;
2112 uint32_t cnt = 1;
2113 uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
2114
2115 BXE_FWMB_LOCK(sc);
2116
2117 seq = ++sc->fw_seq;
2118 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
2119 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
2120
2121 BLOGD(sc, DBG_PHY,
2122 "wrote command 0x%08x to FW MB param 0x%08x\n",
2123 (command | seq), param);
2124
2125 /* Let the FW do it's magic. GIve it up to 5 seconds... */
2126 do {
2127 DELAY(delay * 1000);
2128 rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
2129 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2130
2131 BLOGD(sc, DBG_PHY,
2132 "[after %d ms] read 0x%x seq 0x%x from FW MB\n",
2133 cnt*delay, rc, seq);
2134
2135 /* is this a reply to our command? */
2136 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
2137 rc &= FW_MSG_CODE_MASK;
2138 } else {
2139 /* Ruh-roh! */
2140 BLOGE(sc, "FW failed to respond!\n");
2141 // XXX bxe_fw_dump(sc);
2142 rc = 0;
2143 }
2144
2145 BXE_FWMB_UNLOCK(sc);
2146 return (rc);
2147}
2148
2149static uint32_t
2150bxe_fw_command(struct bxe_softc *sc,
2151 uint32_t command,
2152 uint32_t param)
2153{
2154 return (elink_cb_fw_command(sc, command, param));
2155}
2156
2157static void
2158__storm_memset_dma_mapping(struct bxe_softc *sc,
2159 uint32_t addr,
2160 bus_addr_t mapping)
2161{
2162 REG_WR(sc, addr, U64_LO(mapping));
2163 REG_WR(sc, (addr + 4), U64_HI(mapping));
2164}
2165
2166static void
2167storm_memset_spq_addr(struct bxe_softc *sc,
2168 bus_addr_t mapping,
2169 uint16_t abs_fid)
2170{
2171 uint32_t addr = (XSEM_REG_FAST_MEMORY +
2172 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
2173 __storm_memset_dma_mapping(sc, addr, mapping);
2174}
2175
2176static void
2177storm_memset_vf_to_pf(struct bxe_softc *sc,
2178 uint16_t abs_fid,
2179 uint16_t pf_id)
2180{
2181 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2182 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2183 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2184 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2185}
2186
2187static void
2188storm_memset_func_en(struct bxe_softc *sc,
2189 uint16_t abs_fid,
2190 uint8_t enable)
2191{
2192 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2193 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2194 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2195 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2196}
2197
2198static void
2199storm_memset_eq_data(struct bxe_softc *sc,
2200 struct event_ring_data *eq_data,
2201 uint16_t pfid)
2202{
2203 uint32_t addr;
2204 size_t size;
2205
2206 addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
2207 size = sizeof(struct event_ring_data);
2208 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data);
2209}
2210
2211static void
2212storm_memset_eq_prod(struct bxe_softc *sc,
2213 uint16_t eq_prod,
2214 uint16_t pfid)
2215{
2216 uint32_t addr = (BAR_CSTRORM_INTMEM +
2217 CSTORM_EVENT_RING_PROD_OFFSET(pfid));
2218 REG_WR16(sc, addr, eq_prod);
2219}
2220
2221/*
2222 * Post a slowpath command.
2223 *
2224 * A slowpath command is used to propagate a configuration change through
2225 * the controller in a controlled manner, allowing each STORM processor and
2226 * other H/W blocks to phase in the change. The commands sent on the
2227 * slowpath are referred to as ramrods. Depending on the ramrod used the
2228 * completion of the ramrod will occur in different ways. Here's a
2229 * breakdown of ramrods and how they complete:
2230 *
2231 * RAMROD_CMD_ID_ETH_PORT_SETUP
2232 * Used to setup the leading connection on a port. Completes on the
2233 * Receive Completion Queue (RCQ) of that port (typically fp[0]).
2234 *
2235 * RAMROD_CMD_ID_ETH_CLIENT_SETUP
2236 * Used to setup an additional connection on a port. Completes on the
2237 * RCQ of the multi-queue/RSS connection being initialized.
2238 *
2239 * RAMROD_CMD_ID_ETH_STAT_QUERY
2240 * Used to force the storm processors to update the statistics database
2241 * in host memory. This ramrod is send on the leading connection CID and
2242 * completes as an index increment of the CSTORM on the default status
2243 * block.
2244 *
2245 * RAMROD_CMD_ID_ETH_UPDATE
2246 * Used to update the state of the leading connection, usually to udpate
2247 * the RSS indirection table. Completes on the RCQ of the leading
2248 * connection. (Not currently used under FreeBSD until OS support becomes
2249 * available.)
2250 *
2251 * RAMROD_CMD_ID_ETH_HALT
2252 * Used when tearing down a connection prior to driver unload. Completes
2253 * on the RCQ of the multi-queue/RSS connection being torn down. Don't
2254 * use this on the leading connection.
2255 *
2256 * RAMROD_CMD_ID_ETH_SET_MAC
2257 * Sets the Unicast/Broadcast/Multicast used by the port. Completes on
2258 * the RCQ of the leading connection.
2259 *
2260 * RAMROD_CMD_ID_ETH_CFC_DEL
2261 * Used when tearing down a conneciton prior to driver unload. Completes
2262 * on the RCQ of the leading connection (since the current connection
2263 * has been completely removed from controller memory).
2264 *
2265 * RAMROD_CMD_ID_ETH_PORT_DEL
2266 * Used to tear down the leading connection prior to driver unload,
2267 * typically fp[0]. Completes as an index increment of the CSTORM on the
2268 * default status block.
2269 *
2270 * RAMROD_CMD_ID_ETH_FORWARD_SETUP
2271 * Used for connection offload. Completes on the RCQ of the multi-queue
2272 * RSS connection that is being offloaded. (Not currently used under
2273 * FreeBSD.)
2274 *
2275 * There can only be one command pending per function.
2276 *
2277 * Returns:
2278 * 0 = Success, !0 = Failure.
2279 */
2280
2281/* must be called under the spq lock */
2282static inline
2283struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc)
2284{
2285 struct eth_spe *next_spe = sc->spq_prod_bd;
2286
2287 if (sc->spq_prod_bd == sc->spq_last_bd) {
2288 /* wrap back to the first eth_spq */
2289 sc->spq_prod_bd = sc->spq;
2290 sc->spq_prod_idx = 0;
2291 } else {
2292 sc->spq_prod_bd++;
2293 sc->spq_prod_idx++;
2294 }
2295
2296 return (next_spe);
2297}
2298
2299/* must be called under the spq lock */
2300static inline
2301void bxe_sp_prod_update(struct bxe_softc *sc)
2302{
2303 int func = SC_FUNC(sc);
2304
2305 /*
2306 * Make sure that BD data is updated before writing the producer.
2307 * BD data is written to the memory, the producer is read from the
2308 * memory, thus we need a full memory barrier to ensure the ordering.
2309 */
2310 mb();
2311
2312 REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
2313 sc->spq_prod_idx);
2314
2315 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
2316 BUS_SPACE_BARRIER_WRITE);
2317}
2318
2319/**
2320 * bxe_is_contextless_ramrod - check if the current command ends on EQ
2321 *
2322 * @cmd: command to check
2323 * @cmd_type: command type
2324 */
2325static inline
2326int bxe_is_contextless_ramrod(int cmd,
2327 int cmd_type)
2328{
2329 if ((cmd_type == NONE_CONNECTION_TYPE) ||
2330 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
2331 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
2332 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
2333 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
2334 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
2335 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
2336 return (TRUE);
2337 } else {
2338 return (FALSE);
2339 }
2340}
2341
2342/**
2343 * bxe_sp_post - place a single command on an SP ring
2344 *
2345 * @sc: driver handle
2346 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.)
2347 * @cid: SW CID the command is related to
2348 * @data_hi: command private data address (high 32 bits)
2349 * @data_lo: command private data address (low 32 bits)
2350 * @cmd_type: command type (e.g. NONE, ETH)
2351 *
2352 * SP data is handled as if it's always an address pair, thus data fields are
2353 * not swapped to little endian in upper functions. Instead this function swaps
2354 * data as if it's two uint32 fields.
2355 */
2356int
2357bxe_sp_post(struct bxe_softc *sc,
2358 int command,
2359 int cid,
2360 uint32_t data_hi,
2361 uint32_t data_lo,
2362 int cmd_type)
2363{
2364 struct eth_spe *spe;
2365 uint16_t type;
2366 int common;
2367
2368 common = bxe_is_contextless_ramrod(command, cmd_type);
2369
2370 BXE_SP_LOCK(sc);
2371
2372 if (common) {
2373 if (!atomic_load_acq_long(&sc->eq_spq_left)) {
2374 BLOGE(sc, "EQ ring is full!\n");
2375 BXE_SP_UNLOCK(sc);
2376 return (-1);
2377 }
2378 } else {
2379 if (!atomic_load_acq_long(&sc->cq_spq_left)) {
2380 BLOGE(sc, "SPQ ring is full!\n");
2381 BXE_SP_UNLOCK(sc);
2382 return (-1);
2383 }
2384 }
2385
2386 spe = bxe_sp_get_next(sc);
2387
2388 /* CID needs port number to be encoded int it */
2389 spe->hdr.conn_and_cmd_data =
2390 htole32((command << SPE_HDR_T_CMD_ID_SHIFT) | HW_CID(sc, cid));
2391
2392 type = (cmd_type << SPE_HDR_T_CONN_TYPE_SHIFT) & SPE_HDR_T_CONN_TYPE;
2393
2394 /* TBD: Check if it works for VFs */
2395 type |= ((SC_FUNC(sc) << SPE_HDR_T_FUNCTION_ID_SHIFT) &
2396 SPE_HDR_T_FUNCTION_ID);
2397
2398 spe->hdr.type = htole16(type);
2399
2400 spe->data.update_data_addr.hi = htole32(data_hi);
2401 spe->data.update_data_addr.lo = htole32(data_lo);
2402
2403 /*
2404 * It's ok if the actual decrement is issued towards the memory
2405 * somewhere between the lock and unlock. Thus no more explict
2406 * memory barrier is needed.
2407 */
2408 if (common) {
2409 atomic_subtract_acq_long(&sc->eq_spq_left, 1);
2410 } else {
2411 atomic_subtract_acq_long(&sc->cq_spq_left, 1);
2412 }
2413
2414 BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr);
2415 BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n",
2416 BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata));
2417 BLOGD(sc, DBG_SP,
2418 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n",
2419 sc->spq_prod_idx,
2420 (uint32_t)U64_HI(sc->spq_dma.paddr),
2421 (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq),
2422 command,
2423 common,
2424 HW_CID(sc, cid),
2425 data_hi,
2426 data_lo,
2427 type,
2428 atomic_load_acq_long(&sc->cq_spq_left),
2429 atomic_load_acq_long(&sc->eq_spq_left));
2430
2431 bxe_sp_prod_update(sc);
2432
2433 BXE_SP_UNLOCK(sc);
2434 return (0);
2435}
2436
2437/**
2438 * bxe_debug_print_ind_table - prints the indirection table configuration.
2439 *
2440 * @sc: driver hanlde
2441 * @p: pointer to rss configuration
2442 */
2443
2444/*
2445 * FreeBSD Device probe function.
2446 *
2447 * Compares the device found to the driver's list of supported devices and
2448 * reports back to the bsd loader whether this is the right driver for the device.
2449 * This is the driver entry function called from the "kldload" command.
2450 *
2451 * Returns:
2452 * BUS_PROBE_DEFAULT on success, positive value on failure.
2453 */
2454static int
2455bxe_probe(device_t dev)
2456{
2457 struct bxe_device_type *t;
2458 char *descbuf;
2459 uint16_t did, sdid, svid, vid;
2460
2461 /* Find our device structure */
2462 t = bxe_devs;
2463
2464 /* Get the data for the device to be probed. */
2465 vid = pci_get_vendor(dev);
2466 did = pci_get_device(dev);
2467 svid = pci_get_subvendor(dev);
2468 sdid = pci_get_subdevice(dev);
2469
2470 /* Look through the list of known devices for a match. */
2471 while (t->bxe_name != NULL) {
2472 if ((vid == t->bxe_vid) && (did == t->bxe_did) &&
2473 ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) &&
2474 ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) {
2475 descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
2476 if (descbuf == NULL)
2477 return (ENOMEM);
2478
2479 /* Print out the device identity. */
2480 snprintf(descbuf, BXE_DEVDESC_MAX,
2481 "%s (%c%d) BXE v:%s\n", t->bxe_name,
2482 (((pci_read_config(dev, PCIR_REVID, 4) &
2483 0xf0) >> 4) + 'A'),
2484 (pci_read_config(dev, PCIR_REVID, 4) & 0xf),
2485 BXE_DRIVER_VERSION);
2486
2487 device_set_desc_copy(dev, descbuf);
2488 free(descbuf, M_TEMP);
2489 return (BUS_PROBE_DEFAULT);
2490 }
2491 t++;
2492 }
2493
2494 return (ENXIO);
2495}
2496
2497static void
2498bxe_init_mutexes(struct bxe_softc *sc)
2499{
2500#ifdef BXE_CORE_LOCK_SX
2501 snprintf(sc->core_sx_name, sizeof(sc->core_sx_name),
2502 "bxe%d_core_lock", sc->unit);
2503 sx_init(&sc->core_sx, sc->core_sx_name);
2504#else
2505 snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name),
2506 "bxe%d_core_lock", sc->unit);
2507 mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF);
2508#endif
2509
2510 snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name),
2511 "bxe%d_sp_lock", sc->unit);
2512 mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF);
2513
2514 snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name),
2515 "bxe%d_dmae_lock", sc->unit);
2516 mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF);
2517
2518 snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name),
2519 "bxe%d_phy_lock", sc->unit);
2520 mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF);
2521
2522 snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name),
2523 "bxe%d_fwmb_lock", sc->unit);
2524 mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF);
2525
2526 snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name),
2527 "bxe%d_print_lock", sc->unit);
2528 mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF);
2529
2530 snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name),
2531 "bxe%d_stats_lock", sc->unit);
2532 mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF);
2533
2534 snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name),
2535 "bxe%d_mcast_lock", sc->unit);
2536 mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF);
2537}
2538
2539static void
2540bxe_release_mutexes(struct bxe_softc *sc)
2541{
2542#ifdef BXE_CORE_LOCK_SX
2543 sx_destroy(&sc->core_sx);
2544#else
2545 if (mtx_initialized(&sc->core_mtx)) {
2546 mtx_destroy(&sc->core_mtx);
2547 }
2548#endif
2549
2550 if (mtx_initialized(&sc->sp_mtx)) {
2551 mtx_destroy(&sc->sp_mtx);
2552 }
2553
2554 if (mtx_initialized(&sc->dmae_mtx)) {
2555 mtx_destroy(&sc->dmae_mtx);
2556 }
2557
2558 if (mtx_initialized(&sc->port.phy_mtx)) {
2559 mtx_destroy(&sc->port.phy_mtx);
2560 }
2561
2562 if (mtx_initialized(&sc->fwmb_mtx)) {
2563 mtx_destroy(&sc->fwmb_mtx);
2564 }
2565
2566 if (mtx_initialized(&sc->print_mtx)) {
2567 mtx_destroy(&sc->print_mtx);
2568 }
2569
2570 if (mtx_initialized(&sc->stats_mtx)) {
2571 mtx_destroy(&sc->stats_mtx);
2572 }
2573
2574 if (mtx_initialized(&sc->mcast_mtx)) {
2575 mtx_destroy(&sc->mcast_mtx);
2576 }
2577}
2578
2579static void
2580bxe_tx_disable(struct bxe_softc* sc)
2581{
2582 if_t ifp = sc->ifp;
2583
2584 /* tell the stack the driver is stopped and TX queue is full */
2585 if (ifp != NULL) {
2586 if_setdrvflags(ifp, 0);
2587 }
2588}
2589
2590static void
2591bxe_drv_pulse(struct bxe_softc *sc)
2592{
2593 SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
2594 sc->fw_drv_pulse_wr_seq);
2595}
2596
2597static inline uint16_t
2598bxe_tx_avail(struct bxe_softc *sc,
2599 struct bxe_fastpath *fp)
2600{
2601 int16_t used;
2602 uint16_t prod;
2603 uint16_t cons;
2604
2605 prod = fp->tx_bd_prod;
2606 cons = fp->tx_bd_cons;
2607
2608 used = SUB_S16(prod, cons);
2609
2610 return (int16_t)(sc->tx_ring_size) - used;
2611}
2612
2613static inline int
2614bxe_tx_queue_has_work(struct bxe_fastpath *fp)
2615{
2616 uint16_t hw_cons;
2617
2618 mb(); /* status block fields can change */
2619 hw_cons = le16toh(*fp->tx_cons_sb);
2620 return (hw_cons != fp->tx_pkt_cons);
2621}
2622
2623static inline uint8_t
2624bxe_has_tx_work(struct bxe_fastpath *fp)
2625{
2626 /* expand this for multi-cos if ever supported */
2627 return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE;
2628}
2629
2630static inline int
2631bxe_has_rx_work(struct bxe_fastpath *fp)
2632{
2633 uint16_t rx_cq_cons_sb;
2634
2635 mb(); /* status block fields can change */
2636 rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
2637 if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX)
2638 rx_cq_cons_sb++;
2639 return (fp->rx_cq_cons != rx_cq_cons_sb);
2640}
2641
2642static void
2643bxe_sp_event(struct bxe_softc *sc,
2644 struct bxe_fastpath *fp,
2645 union eth_rx_cqe *rr_cqe)
2646{
2647 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2648 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2649 enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
2650 struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
2651
2652 BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n",
2653 fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type);
2654
2655 switch (command) {
2656 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
2657 BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid);
2658 drv_cmd = ECORE_Q_CMD_UPDATE;
2659 break;
2660
2661 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
2662 BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid);
2663 drv_cmd = ECORE_Q_CMD_SETUP;
2664 break;
2665
2666 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
2667 BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
2668 drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
2669 break;
2670
2671 case (RAMROD_CMD_ID_ETH_HALT):
2672 BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid);
2673 drv_cmd = ECORE_Q_CMD_HALT;
2674 break;
2675
2676 case (RAMROD_CMD_ID_ETH_TERMINATE):
2677 BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid);
2678 drv_cmd = ECORE_Q_CMD_TERMINATE;
2679 break;
2680
2681 case (RAMROD_CMD_ID_ETH_EMPTY):
2682 BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid);
2683 drv_cmd = ECORE_Q_CMD_EMPTY;
2684 break;
2685
2686 default:
2687 BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n",
2688 command, fp->index);
2689 return;
2690 }
2691
2692 if ((drv_cmd != ECORE_Q_CMD_MAX) &&
2693 q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
2694 /*
2695 * q_obj->complete_cmd() failure means that this was
2696 * an unexpected completion.
2697 *
2698 * In this case we don't want to increase the sc->spq_left
2699 * because apparently we haven't sent this command the first
2700 * place.
2701 */
2702 // bxe_panic(sc, ("Unexpected SP completion\n"));
2703 return;
2704 }
2705
2706 atomic_add_acq_long(&sc->cq_spq_left, 1);
2707
2708 BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n",
2709 atomic_load_acq_long(&sc->cq_spq_left));
2710}
2711
2712/*
2713 * The current mbuf is part of an aggregation. Move the mbuf into the TPA
2714 * aggregation queue, put an empty mbuf back onto the receive chain, and mark
2715 * the current aggregation queue as in-progress.
2716 */
2717static void
2718bxe_tpa_start(struct bxe_softc *sc,
2719 struct bxe_fastpath *fp,
2720 uint16_t queue,
2721 uint16_t cons,
2722 uint16_t prod,
2723 struct eth_fast_path_rx_cqe *cqe)
2724{
2725 struct bxe_sw_rx_bd tmp_bd;
2726 struct bxe_sw_rx_bd *rx_buf;
2727 struct eth_rx_bd *rx_bd;
2728 int max_agg_queues;
2729 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
2730 uint16_t index;
2731
2732 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START "
2733 "cons=%d prod=%d\n",
2734 fp->index, queue, cons, prod);
2735
2736 max_agg_queues = MAX_AGG_QS(sc);
2737
2738 KASSERT((queue < max_agg_queues),
2739 ("fp[%02d] invalid aggr queue (%d >= %d)!",
2740 fp->index, queue, max_agg_queues));
2741
2742 KASSERT((tpa_info->state == BXE_TPA_STATE_STOP),
2743 ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!",
2744 fp->index, queue));
2745
2746 /* copy the existing mbuf and mapping from the TPA pool */
2747 tmp_bd = tpa_info->bd;
2748
2749 if (tmp_bd.m == NULL) {
2750 uint32_t *tmp;
2751
2752 tmp = (uint32_t *)cqe;
2753
2754 BLOGE(sc, "fp[%02d].tpa[%02d] cons[%d] prod[%d]mbuf not allocated!\n",
2755 fp->index, queue, cons, prod);
2756 BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n",
2757 *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7));
2758
2759 /* XXX Error handling? */
2760 return;
2761 }
2762
2763 /* change the TPA queue to the start state */
2764 tpa_info->state = BXE_TPA_STATE_START;
2765 tpa_info->placement_offset = cqe->placement_offset;
2766 tpa_info->parsing_flags = le16toh(cqe->pars_flags.flags);
2767 tpa_info->vlan_tag = le16toh(cqe->vlan_tag);
2768 tpa_info->len_on_bd = le16toh(cqe->len_on_bd);
2769
2770 fp->rx_tpa_queue_used |= (1 << queue);
2771
2772 /*
2773 * If all the buffer descriptors are filled with mbufs then fill in
2774 * the current consumer index with a new BD. Else if a maximum Rx
2775 * buffer limit is imposed then fill in the next producer index.
2776 */
2777 index = (sc->max_rx_bufs != RX_BD_USABLE) ?
2778 prod : cons;
2779
2780 /* move the received mbuf and mapping to TPA pool */
2781 tpa_info->bd = fp->rx_mbuf_chain[cons];
2782
2783 /* release any existing RX BD mbuf mappings */
2784 if (cons != index) {
2785 rx_buf = &fp->rx_mbuf_chain[cons];
2786
2787 if (rx_buf->m_map != NULL) {
2788 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
2789 BUS_DMASYNC_POSTREAD);
2790 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
2791 }
2792
2793 /*
2794 * We get here when the maximum number of rx buffers is less than
2795 * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL
2796 * it out here without concern of a memory leak.
2797 */
2798 fp->rx_mbuf_chain[cons].m = NULL;
2799 }
2800
2801 /* update the Rx SW BD with the mbuf info from the TPA pool */
2802 fp->rx_mbuf_chain[index] = tmp_bd;
2803
2804 /* update the Rx BD with the empty mbuf phys address from the TPA pool */
2805 rx_bd = &fp->rx_chain[index];
2806 rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr));
2807 rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr));
2808}
2809
2810/*
2811 * When a TPA aggregation is completed, loop through the individual mbufs
2812 * of the aggregation, combining them into a single mbuf which will be sent
2813 * up the stack. Refill all freed SGEs with mbufs as we go along.
2814 */
2815static int
2816bxe_fill_frag_mbuf(struct bxe_softc *sc,
2817 struct bxe_fastpath *fp,
2818 struct bxe_sw_tpa_info *tpa_info,
2819 uint16_t queue,
2820 uint16_t pages,
2821 struct mbuf *m,
2822 struct eth_end_agg_rx_cqe *cqe,
2823 uint16_t cqe_idx)
2824{
2825 struct mbuf *m_frag;
2826 uint32_t frag_len, frag_size, i;
2827 uint16_t sge_idx;
2828 int rc = 0;
2829 int j;
2830
2831 frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd;
2832
2833 BLOGD(sc, DBG_LRO,
2834 "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n",
2835 fp->index, queue, tpa_info->len_on_bd, frag_size, pages);
2836
2837 /* make sure the aggregated frame is not too big to handle */
2838 if (pages > 8 * PAGES_PER_SGE) {
2839
2840 uint32_t *tmp = (uint32_t *)cqe;
2841
2842 BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! "
2843 "pkt_len=%d len_on_bd=%d frag_size=%d\n",
2844 fp->index, cqe_idx, pages, le16toh(cqe->pkt_len),
2845 tpa_info->len_on_bd, frag_size);
2846
2847 BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n",
2848 *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7));
2849
2850 bxe_panic(sc, ("sge page count error\n"));
2851 return (EINVAL);
2852 }
2853
2854 /*
2855 * Scan through the scatter gather list pulling individual mbufs into a
2856 * single mbuf for the host stack.
2857 */
2858 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
2859 sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j]));
2860
2861 /*
2862 * Firmware gives the indices of the SGE as if the ring is an array
2863 * (meaning that the "next" element will consume 2 indices).
2864 */
2865 frag_len = min(frag_size, (uint32_t)(SGE_PAGES));
2866
2867 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d "
2868 "sge_idx=%d frag_size=%d frag_len=%d\n",
2869 fp->index, queue, i, j, sge_idx, frag_size, frag_len);
2870
2871 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
2872
2873 /* allocate a new mbuf for the SGE */
2874 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
2875 if (rc) {
2876 /* Leave all remaining SGEs in the ring! */
2877 return (rc);
2878 }
2879
2880 /* update the fragment length */
2881 m_frag->m_len = frag_len;
2882
2883 /* concatenate the fragment to the head mbuf */
2884 m_cat(m, m_frag);
2885 fp->eth_q_stats.mbuf_alloc_sge--;
2886
2887 /* update the TPA mbuf size and remaining fragment size */
2888 m->m_pkthdr.len += frag_len;
2889 frag_size -= frag_len;
2890 }
2891
2892 BLOGD(sc, DBG_LRO,
2893 "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n",
2894 fp->index, queue, frag_size);
2895
2896 return (rc);
2897}
2898
2899static inline void
2900bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp)
2901{
2902 int i, j;
2903
2904 for (i = 1; i <= RX_SGE_NUM_PAGES; i++) {
2905 int idx = RX_SGE_TOTAL_PER_PAGE * i - 1;
2906
2907 for (j = 0; j < 2; j++) {
2908 BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx);
2909 idx--;
2910 }
2911 }
2912}
2913
2914static inline void
2915bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp)
2916{
2917 /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */
2918 memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask));
2919
2920 /*
2921 * Clear the two last indices in the page to 1. These are the indices that
2922 * correspond to the "next" element, hence will never be indicated and
2923 * should be removed from the calculations.
2924 */
2925 bxe_clear_sge_mask_next_elems(fp);
2926}
2927
2928static inline void
2929bxe_update_last_max_sge(struct bxe_fastpath *fp,
2930 uint16_t idx)
2931{
2932 uint16_t last_max = fp->last_max_sge;
2933
2934 if (SUB_S16(idx, last_max) > 0) {
2935 fp->last_max_sge = idx;
2936 }
2937}
2938
2939static inline void
2940bxe_update_sge_prod(struct bxe_softc *sc,
2941 struct bxe_fastpath *fp,
2942 uint16_t sge_len,
2943 union eth_sgl_or_raw_data *cqe)
2944{
2945 uint16_t last_max, last_elem, first_elem;
2946 uint16_t delta = 0;
2947 uint16_t i;
2948
2949 if (!sge_len) {
2950 return;
2951 }
2952
2953 /* first mark all used pages */
2954 for (i = 0; i < sge_len; i++) {
2955 BIT_VEC64_CLEAR_BIT(fp->sge_mask,
2956 RX_SGE(le16toh(cqe->sgl[i])));
2957 }
2958
2959 BLOGD(sc, DBG_LRO,
2960 "fp[%02d] fp_cqe->sgl[%d] = %d\n",
2961 fp->index, sge_len - 1,
2962 le16toh(cqe->sgl[sge_len - 1]));
2963
2964 /* assume that the last SGE index is the biggest */
2965 bxe_update_last_max_sge(fp,
2966 le16toh(cqe->sgl[sge_len - 1]));
2967
2968 last_max = RX_SGE(fp->last_max_sge);
2969 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
2970 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
2971
2972 /* if ring is not full */
2973 if (last_elem + 1 != first_elem) {
2974 last_elem++;
2975 }
2976
2977 /* now update the prod */
2978 for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) {
2979 if (__predict_true(fp->sge_mask[i])) {
2980 break;
2981 }
2982
2983 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
2984 delta += BIT_VEC64_ELEM_SZ;
2985 }
2986
2987 if (delta > 0) {
2988 fp->rx_sge_prod += delta;
2989 /* clear page-end entries */
2990 bxe_clear_sge_mask_next_elems(fp);
2991 }
2992
2993 BLOGD(sc, DBG_LRO,
2994 "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n",
2995 fp->index, fp->last_max_sge, fp->rx_sge_prod);
2996}
2997
2998/*
2999 * The aggregation on the current TPA queue has completed. Pull the individual
3000 * mbuf fragments together into a single mbuf, perform all necessary checksum
3001 * calculations, and send the resuting mbuf to the stack.
3002 */
3003static void
3004bxe_tpa_stop(struct bxe_softc *sc,
3005 struct bxe_fastpath *fp,
3006 struct bxe_sw_tpa_info *tpa_info,
3007 uint16_t queue,
3008 uint16_t pages,
3009 struct eth_end_agg_rx_cqe *cqe,
3010 uint16_t cqe_idx)
3011{
3012 if_t ifp = sc->ifp;
3013 struct mbuf *m;
3014 int rc = 0;
3015
3016 BLOGD(sc, DBG_LRO,
3017 "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n",
3018 fp->index, queue, tpa_info->placement_offset,
3019 le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag);
3020
3021 m = tpa_info->bd.m;
3022
3023 /* allocate a replacement before modifying existing mbuf */
3024 rc = bxe_alloc_rx_tpa_mbuf(fp, queue);
3025 if (rc) {
3026 /* drop the frame and log an error */
3027 fp->eth_q_stats.rx_soft_errors++;
3028 goto bxe_tpa_stop_exit;
3029 }
3030
3031 /* we have a replacement, fixup the current mbuf */
3032 m_adj(m, tpa_info->placement_offset);
3033 m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd;
3034
3035 /* mark the checksums valid (taken care of by the firmware) */
3036 fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3037 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3038 m->m_pkthdr.csum_data = 0xffff;
3039 m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED |
3040 CSUM_IP_VALID |
3041 CSUM_DATA_VALID |
3042 CSUM_PSEUDO_HDR);
3043
3044 /* aggregate all of the SGEs into a single mbuf */
3045 rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx);
3046 if (rc) {
3047 /* drop the packet and log an error */
3048 fp->eth_q_stats.rx_soft_errors++;
3049 m_freem(m);
3050 } else {
3051 if (tpa_info->parsing_flags & PARSING_FLAGS_INNER_VLAN_EXIST) {
3052 m->m_pkthdr.ether_vtag = tpa_info->vlan_tag;
3053 m->m_flags |= M_VLANTAG;
3054 }
3055
3056 /* assign packet to this interface interface */
3057 if_setrcvif(m, ifp);
3058
3059#if __FreeBSD_version >= 800000
3060 /* specify what RSS queue was used for this flow */
3061 m->m_pkthdr.flowid = fp->index;
3062 BXE_SET_FLOWID(m);
3063#endif
3064
3065 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3066 fp->eth_q_stats.rx_tpa_pkts++;
3067
3068 /* pass the frame to the stack */
3069 if_input(ifp, m);
3070 }
3071
3072 /* we passed an mbuf up the stack or dropped the frame */
3073 fp->eth_q_stats.mbuf_alloc_tpa--;
3074
3075bxe_tpa_stop_exit:
3076
3077 fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP;
3078 fp->rx_tpa_queue_used &= ~(1 << queue);
3079}
3080
3081static uint8_t
3082bxe_service_rxsgl(
3083 struct bxe_fastpath *fp,
3084 uint16_t len,
3085 uint16_t lenonbd,
3086 struct mbuf *m,
3087 struct eth_fast_path_rx_cqe *cqe_fp)
3088{
3089 struct mbuf *m_frag;
3090 uint16_t frags, frag_len;
3091 uint16_t sge_idx = 0;
3092 uint16_t j;
3093 uint8_t i, rc = 0;
3094 uint32_t frag_size;
3095
3096 /* adjust the mbuf */
3097 m->m_len = lenonbd;
3098
3099 frag_size = len - lenonbd;
3100 frags = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3101
3102 for (i = 0, j = 0; i < frags; i += PAGES_PER_SGE, j++) {
3103 sge_idx = RX_SGE(le16toh(cqe_fp->sgl_or_raw_data.sgl[j]));
3104
3105 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
3106 frag_len = min(frag_size, (uint32_t)(SGE_PAGE_SIZE));
3107 m_frag->m_len = frag_len;
3108
3109 /* allocate a new mbuf for the SGE */
3110 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
3111 if (rc) {
3112 /* Leave all remaining SGEs in the ring! */
3113 return (rc);
3114 }
3115 fp->eth_q_stats.mbuf_alloc_sge--;
3116
3117 /* concatenate the fragment to the head mbuf */
3118 m_cat(m, m_frag);
3119
3120 frag_size -= frag_len;
3121 }
3122
3123 bxe_update_sge_prod(fp->sc, fp, frags, &cqe_fp->sgl_or_raw_data);
3124
3125 return rc;
3126}
3127
3128static uint8_t
3129bxe_rxeof(struct bxe_softc *sc,
3130 struct bxe_fastpath *fp)
3131{
3132 if_t ifp = sc->ifp;
3133 uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
3134 uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
3135 int rx_pkts = 0;
3136 int rc = 0;
3137
3138 BXE_FP_RX_LOCK(fp);
3139
3140 /* CQ "next element" is of the size of the regular element */
3141 hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
3142 if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) {
3143 hw_cq_cons++;
3144 }
3145
3146 bd_cons = fp->rx_bd_cons;
3147 bd_prod = fp->rx_bd_prod;
3148 bd_prod_fw = bd_prod;
3149 sw_cq_cons = fp->rx_cq_cons;
3150 sw_cq_prod = fp->rx_cq_prod;
3151
3152 /*
3153 * Memory barrier necessary as speculative reads of the rx
3154 * buffer can be ahead of the index in the status block
3155 */
3156 rmb();
3157
3158 BLOGD(sc, DBG_RX,
3159 "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n",
3160 fp->index, hw_cq_cons, sw_cq_cons);
3161
3162 while (sw_cq_cons != hw_cq_cons) {
3163 struct bxe_sw_rx_bd *rx_buf = NULL;
3164 union eth_rx_cqe *cqe;
3165 struct eth_fast_path_rx_cqe *cqe_fp;
3166 uint8_t cqe_fp_flags;
3167 enum eth_rx_cqe_type cqe_fp_type;
3168 uint16_t len, lenonbd, pad;
3169 struct mbuf *m = NULL;
3170
3171 comp_ring_cons = RCQ(sw_cq_cons);
3172 bd_prod = RX_BD(bd_prod);
3173 bd_cons = RX_BD(bd_cons);
3174
3175 cqe = &fp->rcq_chain[comp_ring_cons];
3176 cqe_fp = &cqe->fast_path_cqe;
3177 cqe_fp_flags = cqe_fp->type_error_flags;
3178 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
3179
3180 BLOGD(sc, DBG_RX,
3181 "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d "
3182 "BD prod=%d cons=%d CQE type=0x%x err=0x%x "
3183 "status=0x%x rss_hash=0x%x vlan=0x%x len=%u lenonbd=%u\n",
3184 fp->index,
3185 hw_cq_cons,
3186 sw_cq_cons,
3187 bd_prod,
3188 bd_cons,
3189 CQE_TYPE(cqe_fp_flags),
3190 cqe_fp_flags,
3191 cqe_fp->status_flags,
3192 le32toh(cqe_fp->rss_hash_result),
3193 le16toh(cqe_fp->vlan_tag),
3194 le16toh(cqe_fp->pkt_len_or_gro_seg_len),
3195 le16toh(cqe_fp->len_on_bd));
3196
3197 /* is this a slowpath msg? */
3198 if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) {
3199 bxe_sp_event(sc, fp, cqe);
3200 goto next_cqe;
3201 }
3202
3203 rx_buf = &fp->rx_mbuf_chain[bd_cons];
3204
3205 if (!CQE_TYPE_FAST(cqe_fp_type)) {
3206 struct bxe_sw_tpa_info *tpa_info;
3207 uint16_t frag_size, pages;
3208 uint8_t queue;
3209
3210 if (CQE_TYPE_START(cqe_fp_type)) {
3211 bxe_tpa_start(sc, fp, cqe_fp->queue_index,
3212 bd_cons, bd_prod, cqe_fp);
3213 m = NULL; /* packet not ready yet */
3214 goto next_rx;
3215 }
3216
3217 KASSERT(CQE_TYPE_STOP(cqe_fp_type),
3218 ("CQE type is not STOP! (0x%x)\n", cqe_fp_type));
3219
3220 queue = cqe->end_agg_cqe.queue_index;
3221 tpa_info = &fp->rx_tpa_info[queue];
3222
3223 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n",
3224 fp->index, queue);
3225
3226 frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) -
3227 tpa_info->len_on_bd);
3228 pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3229
3230 bxe_tpa_stop(sc, fp, tpa_info, queue, pages,
3231 &cqe->end_agg_cqe, comp_ring_cons);
3232
3233 bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe.sgl_or_raw_data);
3234
3235 goto next_cqe;
3236 }
3237
3238 /* non TPA */
3239
3240 /* is this an error packet? */
3241 if (__predict_false(cqe_fp_flags &
3242 ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
3243 BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons);
3244 fp->eth_q_stats.rx_soft_errors++;
3245 goto next_rx;
3246 }
3247
3248 len = le16toh(cqe_fp->pkt_len_or_gro_seg_len);
3249 lenonbd = le16toh(cqe_fp->len_on_bd);
3250 pad = cqe_fp->placement_offset;
3251
3252 m = rx_buf->m;
3253
3254 if (__predict_false(m == NULL)) {
3255 BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n",
3256 bd_cons, fp->index);
3257 goto next_rx;
3258 }
3259
3260 /* XXX double copy if packet length under a threshold */
3261
3262 /*
3263 * If all the buffer descriptors are filled with mbufs then fill in
3264 * the current consumer index with a new BD. Else if a maximum Rx
3265 * buffer limit is imposed then fill in the next producer index.
3266 */
3267 rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons,
3268 (sc->max_rx_bufs != RX_BD_USABLE) ?
3269 bd_prod : bd_cons);
3270 if (rc != 0) {
3271
3272 /* we simply reuse the received mbuf and don't post it to the stack */
3273 m = NULL;
3274
3275 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
3276 fp->index, rc);
3277 fp->eth_q_stats.rx_soft_errors++;
3278
3279 if (sc->max_rx_bufs != RX_BD_USABLE) {
3280 /* copy this consumer index to the producer index */
3281 memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf,
3282 sizeof(struct bxe_sw_rx_bd));
3283 memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd));
3284 }
3285
3286 goto next_rx;
3287 }
3288
3289 /* current mbuf was detached from the bd */
3290 fp->eth_q_stats.mbuf_alloc_rx--;
3291
3292 /* we allocated a replacement mbuf, fixup the current one */
3293 m_adj(m, pad);
3294 m->m_pkthdr.len = m->m_len = len;
3295
3296 if ((len > 60) && (len > lenonbd)) {
3297 fp->eth_q_stats.rx_bxe_service_rxsgl++;
3298 rc = bxe_service_rxsgl(fp, len, lenonbd, m, cqe_fp);
3299 if (rc)
3300 break;
3301 fp->eth_q_stats.rx_jumbo_sge_pkts++;
3302 } else if (lenonbd < len) {
3303 fp->eth_q_stats.rx_erroneous_jumbo_sge_pkts++;
3304 }
3305
3306 /* assign packet to this interface interface */
3307 if_setrcvif(m, ifp);
3308
3309 /* assume no hardware checksum has complated */
3310 m->m_pkthdr.csum_flags = 0;
3311
3312 /* validate checksum if offload enabled */
3313 if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
3314 /* check for a valid IP frame */
3315 if (!(cqe->fast_path_cqe.status_flags &
3316 ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) {
3317 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3318 if (__predict_false(cqe_fp_flags &
3319 ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) {
3320 fp->eth_q_stats.rx_hw_csum_errors++;
3321 } else {
3322 fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3323 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3324 }
3325 }
3326
3327 /* check for a valid TCP/UDP frame */
3328 if (!(cqe->fast_path_cqe.status_flags &
3329 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) {
3330 if (__predict_false(cqe_fp_flags &
3331 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) {
3332 fp->eth_q_stats.rx_hw_csum_errors++;
3333 } else {
3334 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3335 m->m_pkthdr.csum_data = 0xFFFF;
3336 m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID |
3337 CSUM_PSEUDO_HDR);
3338 }
3339 }
3340 }
3341
3342 /* if there is a VLAN tag then flag that info */
3343 if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_INNER_VLAN_EXIST) {
3344 m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag;
3345 m->m_flags |= M_VLANTAG;
3346 }
3347
3348#if __FreeBSD_version >= 800000
3349 /* specify what RSS queue was used for this flow */
3350 m->m_pkthdr.flowid = fp->index;
3351 BXE_SET_FLOWID(m);
3352#endif
3353
3354next_rx:
3355
3356 bd_cons = RX_BD_NEXT(bd_cons);
3357 bd_prod = RX_BD_NEXT(bd_prod);
3358 bd_prod_fw = RX_BD_NEXT(bd_prod_fw);
3359
3360 /* pass the frame to the stack */
3361 if (__predict_true(m != NULL)) {
3362 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3363 rx_pkts++;
3364 if_input(ifp, m);
3365 }
3366
3367next_cqe:
3368
3369 sw_cq_prod = RCQ_NEXT(sw_cq_prod);
3370 sw_cq_cons = RCQ_NEXT(sw_cq_cons);
3371
3372 /* limit spinning on the queue */
3373 if (rc != 0)
3374 break;
3375
3376 if (rx_pkts == sc->rx_budget) {
3377 fp->eth_q_stats.rx_budget_reached++;
3378 break;
3379 }
3380 } /* while work to do */
3381
3382 fp->rx_bd_cons = bd_cons;
3383 fp->rx_bd_prod = bd_prod_fw;
3384 fp->rx_cq_cons = sw_cq_cons;
3385 fp->rx_cq_prod = sw_cq_prod;
3386
3387 /* Update producers */
3388 bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod);
3389
3390 fp->eth_q_stats.rx_pkts += rx_pkts;
3391 fp->eth_q_stats.rx_calls++;
3392
3393 BXE_FP_RX_UNLOCK(fp);
3394
3395 return (sw_cq_cons != hw_cq_cons);
3396}
3397
3398static uint16_t
3399bxe_free_tx_pkt(struct bxe_softc *sc,
3400 struct bxe_fastpath *fp,
3401 uint16_t idx)
3402{
3403 struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx];
3404 struct eth_tx_start_bd *tx_start_bd;
3405 uint16_t bd_idx = TX_BD(tx_buf->first_bd);
3406 uint16_t new_cons;
3407 int nbd;
3408
3409 /* unmap the mbuf from non-paged memory */
3410 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
3411
3412 tx_start_bd = &fp->tx_chain[bd_idx].start_bd;
3413 nbd = le16toh(tx_start_bd->nbd) - 1;
3414
3415 new_cons = (tx_buf->first_bd + nbd);
3416
3417 /* free the mbuf */
3418 if (__predict_true(tx_buf->m != NULL)) {
3419 m_freem(tx_buf->m);
3420 fp->eth_q_stats.mbuf_alloc_tx--;
3421 } else {
3422 fp->eth_q_stats.tx_chain_lost_mbuf++;
3423 }
3424
3425 tx_buf->m = NULL;
3426 tx_buf->first_bd = 0;
3427
3428 return (new_cons);
3429}
3430
3431/* transmit timeout watchdog */
3432static int
3433bxe_watchdog(struct bxe_softc *sc,
3434 struct bxe_fastpath *fp)
3435{
3436 BXE_FP_TX_LOCK(fp);
3437
3438 if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) {
3439 BXE_FP_TX_UNLOCK(fp);
3440 return (0);
3441 }
3442
3443 BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index);
3444 if(sc->trigger_grcdump) {
3445 /* taking grcdump */
3446 bxe_grc_dump(sc);
3447 }
3448
3449 BXE_FP_TX_UNLOCK(fp);
3450
3451 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT);
3452 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
3453
3454 return (-1);
3455}
3456
3457/* processes transmit completions */
3458static uint8_t
3459bxe_txeof(struct bxe_softc *sc,
3460 struct bxe_fastpath *fp)
3461{
3462 if_t ifp = sc->ifp;
3463 uint16_t bd_cons, hw_cons, sw_cons, pkt_cons;
3464 uint16_t tx_bd_avail;
3465
3466 BXE_FP_TX_LOCK_ASSERT(fp);
3467
3468 bd_cons = fp->tx_bd_cons;
3469 hw_cons = le16toh(*fp->tx_cons_sb);
3470 sw_cons = fp->tx_pkt_cons;
3471
3472 while (sw_cons != hw_cons) {
3473 pkt_cons = TX_BD(sw_cons);
3474
3475 BLOGD(sc, DBG_TX,
3476 "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n",
3477 fp->index, hw_cons, sw_cons, pkt_cons);
3478
3479 bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons);
3480
3481 sw_cons++;
3482 }
3483
3484 fp->tx_pkt_cons = sw_cons;
3485 fp->tx_bd_cons = bd_cons;
3486
3487 BLOGD(sc, DBG_TX,
3488 "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n",
3489 fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod);
3490
3491 mb();
3492
3493 tx_bd_avail = bxe_tx_avail(sc, fp);
3494
3495 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
3496 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
3497 } else {
3498 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
3499 }
3500
3501 if (fp->tx_pkt_prod != fp->tx_pkt_cons) {
3502 /* reset the watchdog timer if there are pending transmits */
3503 fp->watchdog_timer = BXE_TX_TIMEOUT;
3504 return (TRUE);
3505 } else {
3506 /* clear watchdog when there are no pending transmits */
3507 fp->watchdog_timer = 0;
3508 return (FALSE);
3509 }
3510}
3511
3512static void
3513bxe_drain_tx_queues(struct bxe_softc *sc)
3514{
3515 struct bxe_fastpath *fp;
3516 int i, count;
3517
3518 /* wait until all TX fastpath tasks have completed */
3519 for (i = 0; i < sc->num_queues; i++) {
3520 fp = &sc->fp[i];
3521
3522 count = 1000;
3523
3524 while (bxe_has_tx_work(fp)) {
3525
3526 BXE_FP_TX_LOCK(fp);
3527 bxe_txeof(sc, fp);
3528 BXE_FP_TX_UNLOCK(fp);
3529
3530 if (count == 0) {
3531 BLOGE(sc, "Timeout waiting for fp[%d] "
3532 "transmits to complete!\n", i);
3533 bxe_panic(sc, ("tx drain failure\n"));
3534 return;
3535 }
3536
3537 count--;
3538 DELAY(1000);
3539 rmb();
3540 }
3541 }
3542
3543 return;
3544}
3545
3546static int
3547bxe_del_all_macs(struct bxe_softc *sc,
3548 struct ecore_vlan_mac_obj *mac_obj,
3549 int mac_type,
3550 uint8_t wait_for_comp)
3551{
3552 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
3553 int rc;
3554
3555 /* wait for completion of requested */
3556 if (wait_for_comp) {
3557 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
3558 }
3559
3560 /* Set the mac type of addresses we want to clear */
3561 bxe_set_bit(mac_type, &vlan_mac_flags);
3562
3563 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
3564 if (rc < 0) {
3565 BLOGE(sc, "Failed to delete MACs (%d) mac_type %d wait_for_comp 0x%x\n",
3566 rc, mac_type, wait_for_comp);
3567 }
3568
3569 return (rc);
3570}
3571
3572static int
3573bxe_fill_accept_flags(struct bxe_softc *sc,
3574 uint32_t rx_mode,
3575 unsigned long *rx_accept_flags,
3576 unsigned long *tx_accept_flags)
3577{
3578 /* Clear the flags first */
3579 *rx_accept_flags = 0;
3580 *tx_accept_flags = 0;
3581
3582 switch (rx_mode) {
3583 case BXE_RX_MODE_NONE:
3584 /*
3585 * 'drop all' supersedes any accept flags that may have been
3586 * passed to the function.
3587 */
3588 break;
3589
3590 case BXE_RX_MODE_NORMAL:
3591 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3592 bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
3593 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3594
3595 /* internal switching mode */
3596 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3597 bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
3598 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3599
3600 break;
3601
3602 case BXE_RX_MODE_ALLMULTI:
3603 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3604 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3605 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3606
3607 /* internal switching mode */
3608 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3609 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3610 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3611
3612 break;
3613
3614 case BXE_RX_MODE_PROMISC:
3615 /*
3616 * According to deffinition of SI mode, iface in promisc mode
3617 * should receive matched and unmatched (in resolution of port)
3618 * unicast packets.
3619 */
3620 bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
3621 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3622 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3623 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3624
3625 /* internal switching mode */
3626 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3627 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3628
3629 if (IS_MF_SI(sc)) {
3630 bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
3631 } else {
3632 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3633 }
3634
3635 break;
3636
3637 default:
3638 BLOGE(sc, "Unknown rx_mode (0x%x)\n", rx_mode);
3639 return (-1);
3640 }
3641
3642 /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
3643 if (rx_mode != BXE_RX_MODE_NONE) {
3644 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
3645 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
3646 }
3647
3648 return (0);
3649}
3650
3651static int
3652bxe_set_q_rx_mode(struct bxe_softc *sc,
3653 uint8_t cl_id,
3654 unsigned long rx_mode_flags,
3655 unsigned long rx_accept_flags,
3656 unsigned long tx_accept_flags,
3657 unsigned long ramrod_flags)
3658{
3659 struct ecore_rx_mode_ramrod_params ramrod_param;
3660 int rc;
3661
3662 memset(&ramrod_param, 0, sizeof(ramrod_param));
3663
3664 /* Prepare ramrod parameters */
3665 ramrod_param.cid = 0;
3666 ramrod_param.cl_id = cl_id;
3667 ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
3668 ramrod_param.func_id = SC_FUNC(sc);
3669
3670 ramrod_param.pstate = &sc->sp_state;
3671 ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
3672
3673 ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata);
3674 ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata);
3675
3676 bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
3677
3678 ramrod_param.ramrod_flags = ramrod_flags;
3679 ramrod_param.rx_mode_flags = rx_mode_flags;
3680
3681 ramrod_param.rx_accept_flags = rx_accept_flags;
3682 ramrod_param.tx_accept_flags = tx_accept_flags;
3683
3684 rc = ecore_config_rx_mode(sc, &ramrod_param);
3685 if (rc < 0) {
3686 BLOGE(sc, "Set rx_mode %d cli_id 0x%x rx_mode_flags 0x%x "
3687 "rx_accept_flags 0x%x tx_accept_flags 0x%x "
3688 "ramrod_flags 0x%x rc %d failed\n", sc->rx_mode, cl_id,
3689 (uint32_t)rx_mode_flags, (uint32_t)rx_accept_flags,
3690 (uint32_t)tx_accept_flags, (uint32_t)ramrod_flags, rc);
3691 return (rc);
3692 }
3693
3694 return (0);
3695}
3696
3697static int
3698bxe_set_storm_rx_mode(struct bxe_softc *sc)
3699{
3700 unsigned long rx_mode_flags = 0, ramrod_flags = 0;
3701 unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
3702 int rc;
3703
3704 rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
3705 &tx_accept_flags);
3706 if (rc) {
3707 return (rc);
3708 }
3709
3710 bxe_set_bit(RAMROD_RX, &ramrod_flags);
3711 bxe_set_bit(RAMROD_TX, &ramrod_flags);
3712
3713 /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */
3714 return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
3715 rx_accept_flags, tx_accept_flags,
3716 ramrod_flags));
3717}
3718
3719/* returns the "mcp load_code" according to global load_count array */
3720static int
3721bxe_nic_load_no_mcp(struct bxe_softc *sc)
3722{
3723 int path = SC_PATH(sc);
3724 int port = SC_PORT(sc);
3725
3726 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n",
3727 path, load_count[path][0], load_count[path][1],
3728 load_count[path][2]);
3729 load_count[path][0]++;
3730 load_count[path][1 + port]++;
3731 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n",
3732 path, load_count[path][0], load_count[path][1],
3733 load_count[path][2]);
3734 if (load_count[path][0] == 1) {
3735 return (FW_MSG_CODE_DRV_LOAD_COMMON);
3736 } else if (load_count[path][1 + port] == 1) {
3737 return (FW_MSG_CODE_DRV_LOAD_PORT);
3738 } else {
3739 return (FW_MSG_CODE_DRV_LOAD_FUNCTION);
3740 }
3741}
3742
3743/* returns the "mcp load_code" according to global load_count array */
3744static int
3745bxe_nic_unload_no_mcp(struct bxe_softc *sc)
3746{
3747 int port = SC_PORT(sc);
3748 int path = SC_PATH(sc);
3749
3750 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n",
3751 path, load_count[path][0], load_count[path][1],
3752 load_count[path][2]);
3753 load_count[path][0]--;
3754 load_count[path][1 + port]--;
3755 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n",
3756 path, load_count[path][0], load_count[path][1],
3757 load_count[path][2]);
3758 if (load_count[path][0] == 0) {
3759 return (FW_MSG_CODE_DRV_UNLOAD_COMMON);
3760 } else if (load_count[path][1 + port] == 0) {
3761 return (FW_MSG_CODE_DRV_UNLOAD_PORT);
3762 } else {
3763 return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION);
3764 }
3765}
3766
3767/* request unload mode from the MCP: COMMON, PORT or FUNCTION */
3768static uint32_t
3769bxe_send_unload_req(struct bxe_softc *sc,
3770 int unload_mode)
3771{
3772 uint32_t reset_code = 0;
3773
3774 /* Select the UNLOAD request mode */
3775 if (unload_mode == UNLOAD_NORMAL) {
3776 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3777 } else {
3778 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3779 }
3780
3781 /* Send the request to the MCP */
3782 if (!BXE_NOMCP(sc)) {
3783 reset_code = bxe_fw_command(sc, reset_code, 0);
3784 } else {
3785 reset_code = bxe_nic_unload_no_mcp(sc);
3786 }
3787
3788 return (reset_code);
3789}
3790
3791/* send UNLOAD_DONE command to the MCP */
3792static void
3793bxe_send_unload_done(struct bxe_softc *sc,
3794 uint8_t keep_link)
3795{
3796 uint32_t reset_param =
3797 keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
3798
3799 /* Report UNLOAD_DONE to MCP */
3800 if (!BXE_NOMCP(sc)) {
3801 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
3802 }
3803}
3804
3805static int
3806bxe_func_wait_started(struct bxe_softc *sc)
3807{
3808 int tout = 50;
3809
3810 if (!sc->port.pmf) {
3811 return (0);
3812 }
3813
3814 /*
3815 * (assumption: No Attention from MCP at this stage)
3816 * PMF probably in the middle of TX disable/enable transaction
3817 * 1. Sync IRS for default SB
3818 * 2. Sync SP queue - this guarantees us that attention handling started
3819 * 3. Wait, that TX disable/enable transaction completes
3820 *
3821 * 1+2 guarantee that if DCBX attention was scheduled it already changed
3822 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
3823 * received completion for the transaction the state is TX_STOPPED.
3824 * State will return to STARTED after completion of TX_STOPPED-->STARTED
3825 * transaction.
3826 */
3827
3828 /* XXX make sure default SB ISR is done */
3829 /* need a way to synchronize an irq (intr_mtx?) */
3830
3831 /* XXX flush any work queues */
3832
3833 while (ecore_func_get_state(sc, &sc->func_obj) !=
3834 ECORE_F_STATE_STARTED && tout--) {
3835 DELAY(20000);
3836 }
3837
3838 if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
3839 /*
3840 * Failed to complete the transaction in a "good way"
3841 * Force both transactions with CLR bit.
3842 */
3843 struct ecore_func_state_params func_params = { NULL };
3844
3845 BLOGE(sc, "Unexpected function state! "
3846 "Forcing STARTED-->TX_STOPPED-->STARTED\n");
3847
3848 func_params.f_obj = &sc->func_obj;
3849 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
3850
3851 /* STARTED-->TX_STOPPED */
3852 func_params.cmd = ECORE_F_CMD_TX_STOP;
3853 ecore_func_state_change(sc, &func_params);
3854
3855 /* TX_STOPPED-->STARTED */
3856 func_params.cmd = ECORE_F_CMD_TX_START;
3857 return (ecore_func_state_change(sc, &func_params));
3858 }
3859
3860 return (0);
3861}
3862
3863static int
3864bxe_stop_queue(struct bxe_softc *sc,
3865 int index)
3866{
3867 struct bxe_fastpath *fp = &sc->fp[index];
3868 struct ecore_queue_state_params q_params = { NULL };
3869 int rc;
3870
3871 BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index);
3872
3873 q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
3874 /* We want to wait for completion in this context */
3875 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
3876
3877 /* Stop the primary connection: */
3878
3879 /* ...halt the connection */
3880 q_params.cmd = ECORE_Q_CMD_HALT;
3881 rc = ecore_queue_state_change(sc, &q_params);
3882 if (rc) {
3883 return (rc);
3884 }
3885
3886 /* ...terminate the connection */
3887 q_params.cmd = ECORE_Q_CMD_TERMINATE;
3888 memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate));
3889 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
3890 rc = ecore_queue_state_change(sc, &q_params);
3891 if (rc) {
3892 return (rc);
3893 }
3894
3895 /* ...delete cfc entry */
3896 q_params.cmd = ECORE_Q_CMD_CFC_DEL;
3897 memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
3898 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
3899 return (ecore_queue_state_change(sc, &q_params));
3900}
3901
3902/* wait for the outstanding SP commands */
3903static inline uint8_t
3904bxe_wait_sp_comp(struct bxe_softc *sc,
3905 unsigned long mask)
3906{
3907 unsigned long tmp;
3908 int tout = 5000; /* wait for 5 secs tops */
3909
3910 while (tout--) {
3911 mb();
3912 if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
3913 return (TRUE);
3914 }
3915
3916 DELAY(1000);
3917 }
3918
3919 mb();
3920
3921 tmp = atomic_load_acq_long(&sc->sp_state);
3922 if (tmp & mask) {
3923 BLOGE(sc, "Filtering completion timed out: "
3924 "sp_state 0x%lx, mask 0x%lx\n",
3925 tmp, mask);
3926 return (FALSE);
3927 }
3928
3929 return (FALSE);
3930}
3931
3932static int
3933bxe_func_stop(struct bxe_softc *sc)
3934{
3935 struct ecore_func_state_params func_params = { NULL };
3936 int rc;
3937
3938 /* prepare parameters for function state transitions */
3939 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
3940 func_params.f_obj = &sc->func_obj;
3941 func_params.cmd = ECORE_F_CMD_STOP;
3942
3943 /*
3944 * Try to stop the function the 'good way'. If it fails (in case
3945 * of a parity error during bxe_chip_cleanup()) and we are
3946 * not in a debug mode, perform a state transaction in order to
3947 * enable further HW_RESET transaction.
3948 */
3949 rc = ecore_func_state_change(sc, &func_params);
3950 if (rc) {
3951 BLOGE(sc, "FUNC_STOP ramrod failed. "
3952 "Running a dry transaction (%d)\n", rc);
3953 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
3954 return (ecore_func_state_change(sc, &func_params));
3955 }
3956
3957 return (0);
3958}
3959
3960static int
3961bxe_reset_hw(struct bxe_softc *sc,
3962 uint32_t load_code)
3963{
3964 struct ecore_func_state_params func_params = { NULL };
3965
3966 /* Prepare parameters for function state transitions */
3967 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
3968
3969 func_params.f_obj = &sc->func_obj;
3970 func_params.cmd = ECORE_F_CMD_HW_RESET;
3971
3972 func_params.params.hw_init.load_phase = load_code;
3973
3974 return (ecore_func_state_change(sc, &func_params));
3975}
3976
3977static void
3978bxe_int_disable_sync(struct bxe_softc *sc,
3979 int disable_hw)
3980{
3981 if (disable_hw) {
3982 /* prevent the HW from sending interrupts */
3983 bxe_int_disable(sc);
3984 }
3985
3986 /* XXX need a way to synchronize ALL irqs (intr_mtx?) */
3987 /* make sure all ISRs are done */
3988
3989 /* XXX make sure sp_task is not running */
3990 /* cancel and flush work queues */
3991}
3992
3993static void
3994bxe_chip_cleanup(struct bxe_softc *sc,
3995 uint32_t unload_mode,
3996 uint8_t keep_link)
3997{
3998 int port = SC_PORT(sc);
3999 struct ecore_mcast_ramrod_params rparam = { NULL };
4000 uint32_t reset_code;
4001 int i, rc = 0;
4002
4003 bxe_drain_tx_queues(sc);
4004
4005 /* give HW time to discard old tx messages */
4006 DELAY(1000);
4007
4008 /* Clean all ETH MACs */
4009 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE);
4010 if (rc < 0) {
4011 BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc);
4012 }
4013
4014 /* Clean up UC list */
4015 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE);
4016 if (rc < 0) {
4017 BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc);
4018 }
4019
4020 /* Disable LLH */
4021 if (!CHIP_IS_E1(sc)) {
4022 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
4023 }
4024
4025 /* Set "drop all" to stop Rx */
4026
4027 /*
4028 * We need to take the BXE_MCAST_LOCK() here in order to prevent
4029 * a race between the completion code and this code.
4030 */
4031 BXE_MCAST_LOCK(sc);
4032
4033 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
4034 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
4035 } else {
4036 bxe_set_storm_rx_mode(sc);
4037 }
4038
4039 /* Clean up multicast configuration */
4040 rparam.mcast_obj = &sc->mcast_obj;
4041 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4042 if (rc < 0) {
4043 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4044 }
4045
4046 BXE_MCAST_UNLOCK(sc);
4047
4048 // XXX bxe_iov_chip_cleanup(sc);
4049
4050 /*
4051 * Send the UNLOAD_REQUEST to the MCP. This will return if
4052 * this function should perform FUNCTION, PORT, or COMMON HW
4053 * reset.
4054 */
4055 reset_code = bxe_send_unload_req(sc, unload_mode);
4056
4057 /*
4058 * (assumption: No Attention from MCP at this stage)
4059 * PMF probably in the middle of TX disable/enable transaction
4060 */
4061 rc = bxe_func_wait_started(sc);
4062 if (rc) {
4063 BLOGE(sc, "bxe_func_wait_started failed (%d)\n", rc);
4064 }
4065
4066 /*
4067 * Close multi and leading connections
4068 * Completions for ramrods are collected in a synchronous way
4069 */
4070 for (i = 0; i < sc->num_queues; i++) {
4071 if (bxe_stop_queue(sc, i)) {
4072 goto unload_error;
4073 }
4074 }
4075
4076 /*
4077 * If SP settings didn't get completed so far - something
4078 * very wrong has happen.
4079 */
4080 if (!bxe_wait_sp_comp(sc, ~0x0UL)) {
4081 BLOGE(sc, "Common slow path ramrods got stuck!(%d)\n", rc);
4082 }
4083
4084unload_error:
4085
4086 rc = bxe_func_stop(sc);
4087 if (rc) {
4088 BLOGE(sc, "Function stop failed!(%d)\n", rc);
4089 }
4090
4091 /* disable HW interrupts */
4092 bxe_int_disable_sync(sc, TRUE);
4093
4094 /* detach interrupts */
4095 bxe_interrupt_detach(sc);
4096
4097 /* Reset the chip */
4098 rc = bxe_reset_hw(sc, reset_code);
4099 if (rc) {
4100 BLOGE(sc, "Hardware reset failed(%d)\n", rc);
4101 }
4102
4103 /* Report UNLOAD_DONE to MCP */
4104 bxe_send_unload_done(sc, keep_link);
4105}
4106
4107static void
4108bxe_disable_close_the_gate(struct bxe_softc *sc)
4109{
4110 uint32_t val;
4111 int port = SC_PORT(sc);
4112
4113 BLOGD(sc, DBG_LOAD,
4114 "Disabling 'close the gates'\n");
4115
4116 if (CHIP_IS_E1(sc)) {
4117 uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4118 MISC_REG_AEU_MASK_ATTN_FUNC_0;
4119 val = REG_RD(sc, addr);
4120 val &= ~(0x300);
4121 REG_WR(sc, addr, val);
4122 } else {
4123 val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
4124 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
4125 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
4126 REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
4127 }
4128}
4129
4130/*
4131 * Cleans the object that have internal lists without sending
4132 * ramrods. Should be run when interrutps are disabled.
4133 */
4134static void
4135bxe_squeeze_objects(struct bxe_softc *sc)
4136{
4137 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
4138 struct ecore_mcast_ramrod_params rparam = { NULL };
4139 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
4140 int rc;
4141
4142 /* Cleanup MACs' object first... */
4143
4144 /* Wait for completion of requested */
4145 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
4146 /* Perform a dry cleanup */
4147 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
4148
4149 /* Clean ETH primary MAC */
4150 bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
4151 rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
4152 &ramrod_flags);
4153 if (rc != 0) {
4154 BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc);
4155 }
4156
4157 /* Cleanup UC list */
4158 vlan_mac_flags = 0;
4159 bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
4160 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags,
4161 &ramrod_flags);
4162 if (rc != 0) {
4163 BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc);
4164 }
4165
4166 /* Now clean mcast object... */
4167
4168 rparam.mcast_obj = &sc->mcast_obj;
4169 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
4170
4171 /* Add a DEL command... */
4172 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4173 if (rc < 0) {
4174 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4175 }
4176
4177 /* now wait until all pending commands are cleared */
4178
4179 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4180 while (rc != 0) {
4181 if (rc < 0) {
4182 BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc);
4183 return;
4184 }
4185
4186 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4187 }
4188}
4189
4190/* stop the controller */
4191static __noinline int
4192bxe_nic_unload(struct bxe_softc *sc,
4193 uint32_t unload_mode,
4194 uint8_t keep_link)
4195{
4196 uint8_t global = FALSE;
4197 uint32_t val;
4198 int i;
4199
4200 BXE_CORE_LOCK_ASSERT(sc);
4201
4202 if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING);
4203
4204 for (i = 0; i < sc->num_queues; i++) {
4205 struct bxe_fastpath *fp;
4206
4207 fp = &sc->fp[i];
4208 BXE_FP_TX_LOCK(fp);
4209 BXE_FP_TX_UNLOCK(fp);
4210 }
4211
4212 BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n");
4213
4214 /* mark driver as unloaded in shmem2 */
4215 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
4216 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
4217 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
4218 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
4219 }
4220
4221 if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE &&
4222 (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) {
4223 /*
4224 * We can get here if the driver has been unloaded
4225 * during parity error recovery and is either waiting for a
4226 * leader to complete or for other functions to unload and
4227 * then ifconfig down has been issued. In this case we want to
4228 * unload and let other functions to complete a recovery
4229 * process.
4230 */
4231 sc->recovery_state = BXE_RECOVERY_DONE;
4232 sc->is_leader = 0;
4233 bxe_release_leader_lock(sc);
4234 mb();
4235
4236 BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n");
4237 BLOGE(sc, "Can't unload in closed or error state recover_state 0x%x"
4238 " state = 0x%x\n", sc->recovery_state, sc->state);
4239 return (-1);
4240 }
4241
4242 /*
4243 * Nothing to do during unload if previous bxe_nic_load()
4244 * did not completed successfully - all resourses are released.
4245 */
4246 if ((sc->state == BXE_STATE_CLOSED) ||
4247 (sc->state == BXE_STATE_ERROR)) {
4248 return (0);
4249 }
4250
4251 sc->state = BXE_STATE_CLOSING_WAITING_HALT;
4252 mb();
4253
4254 /* stop tx */
4255 bxe_tx_disable(sc);
4256
4257 sc->rx_mode = BXE_RX_MODE_NONE;
4258 /* XXX set rx mode ??? */
4259
4260 if (IS_PF(sc) && !sc->grcdump_done) {
4261 /* set ALWAYS_ALIVE bit in shmem */
4262 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
4263
4264 bxe_drv_pulse(sc);
4265
4266 bxe_stats_handle(sc, STATS_EVENT_STOP);
4267 bxe_save_statistics(sc);
4268 }
4269
4270 /* wait till consumers catch up with producers in all queues */
4271 bxe_drain_tx_queues(sc);
4272
4273 /* if VF indicate to PF this function is going down (PF will delete sp
4274 * elements and clear initializations
4275 */
4276 if (IS_VF(sc)) {
4277 ; /* bxe_vfpf_close_vf(sc); */
4278 } else if (unload_mode != UNLOAD_RECOVERY) {
4279 /* if this is a normal/close unload need to clean up chip */
4280 if (!sc->grcdump_done)
4281 bxe_chip_cleanup(sc, unload_mode, keep_link);
4282 } else {
4283 /* Send the UNLOAD_REQUEST to the MCP */
4284 bxe_send_unload_req(sc, unload_mode);
4285
4286 /*
4287 * Prevent transactions to host from the functions on the
4288 * engine that doesn't reset global blocks in case of global
4289 * attention once gloabl blocks are reset and gates are opened
4290 * (the engine which leader will perform the recovery
4291 * last).
4292 */
4293 if (!CHIP_IS_E1x(sc)) {
4294 bxe_pf_disable(sc);
4295 }
4296
4297 /* disable HW interrupts */
4298 bxe_int_disable_sync(sc, TRUE);
4299
4300 /* detach interrupts */
4301 bxe_interrupt_detach(sc);
4302
4303 /* Report UNLOAD_DONE to MCP */
4304 bxe_send_unload_done(sc, FALSE);
4305 }
4306
4307 /*
4308 * At this stage no more interrupts will arrive so we may safely clean
4309 * the queue'able objects here in case they failed to get cleaned so far.
4310 */
4311 if (IS_PF(sc)) {
4312 bxe_squeeze_objects(sc);
4313 }
4314
4315 /* There should be no more pending SP commands at this stage */
4316 sc->sp_state = 0;
4317
4318 sc->port.pmf = 0;
4319
4320 bxe_free_fp_buffers(sc);
4321
4322 if (IS_PF(sc)) {
4323 bxe_free_mem(sc);
4324 }
4325
4326 bxe_free_fw_stats_mem(sc);
4327
4328 sc->state = BXE_STATE_CLOSED;
4329
4330 /*
4331 * Check if there are pending parity attentions. If there are - set
4332 * RECOVERY_IN_PROGRESS.
4333 */
4334 if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) {
4335 bxe_set_reset_in_progress(sc);
4336
4337 /* Set RESET_IS_GLOBAL if needed */
4338 if (global) {
4339 bxe_set_reset_global(sc);
4340 }
4341 }
4342
4343 /*
4344 * The last driver must disable a "close the gate" if there is no
4345 * parity attention or "process kill" pending.
4346 */
4347 if (IS_PF(sc) && !bxe_clear_pf_load(sc) &&
4348 bxe_reset_is_done(sc, SC_PATH(sc))) {
4349 bxe_disable_close_the_gate(sc);
4350 }
4351
4352 BLOGD(sc, DBG_LOAD, "Ended NIC unload\n");
4353
4354 return (0);
4355}
4356
4357/*
4358 * Called by the OS to set various media options (i.e. link, speed, etc.) when
4359 * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...".
4360 */
4361static int
4362bxe_ifmedia_update(struct ifnet *ifp)
4363{
4364 struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp);
4365 struct ifmedia *ifm;
4366
4367 ifm = &sc->ifmedia;
4368
4369 /* We only support Ethernet media type. */
4370 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
4371 return (EINVAL);
4372 }
4373
4374 switch (IFM_SUBTYPE(ifm->ifm_media)) {
4375 case IFM_AUTO:
4376 break;
4377 case IFM_10G_CX4:
4378 case IFM_10G_SR:
4379 case IFM_10G_T:
4380 case IFM_10G_TWINAX:
4381 default:
4382 /* We don't support changing the media type. */
4383 BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n",
4384 IFM_SUBTYPE(ifm->ifm_media));
4385 return (EINVAL);
4386 }
4387
4388 return (0);
4389}
4390
4391/*
4392 * Called by the OS to get the current media status (i.e. link, speed, etc.).
4393 */
4394static void
4395bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
4396{
4397 struct bxe_softc *sc = if_getsoftc(ifp);
4398
4399 /* Report link down if the driver isn't running. */
4400 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
4401 ifmr->ifm_active |= IFM_NONE;
4402 return;
4403 }
4404
4405 /* Setup the default interface info. */
4406 ifmr->ifm_status = IFM_AVALID;
4407 ifmr->ifm_active = IFM_ETHER;
4408
4409 if (sc->link_vars.link_up) {
4410 ifmr->ifm_status |= IFM_ACTIVE;
4411 } else {
4412 ifmr->ifm_active |= IFM_NONE;
4413 return;
4414 }
4415
4416 ifmr->ifm_active |= sc->media;
4417
4418 if (sc->link_vars.duplex == DUPLEX_FULL) {
4419 ifmr->ifm_active |= IFM_FDX;
4420 } else {
4421 ifmr->ifm_active |= IFM_HDX;
4422 }
4423}
4424
4425static void
4426bxe_handle_chip_tq(void *context,
4427 int pending)
4428{
4429 struct bxe_softc *sc = (struct bxe_softc *)context;
4430 long work = atomic_load_acq_long(&sc->chip_tq_flags);
4431
4432 switch (work)
4433 {
4434
4435 case CHIP_TQ_REINIT:
4436 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
4437 /* restart the interface */
4438 BLOGD(sc, DBG_LOAD, "Restarting the interface...\n");
4439 bxe_periodic_stop(sc);
4440 BXE_CORE_LOCK(sc);
4441 bxe_stop_locked(sc);
4442 bxe_init_locked(sc);
4443 BXE_CORE_UNLOCK(sc);
4444 }
4445 break;
4446
4447 default:
4448 break;
4449 }
4450}
4451
4452/*
4453 * Handles any IOCTL calls from the operating system.
4454 *
4455 * Returns:
4456 * 0 = Success, >0 Failure
4457 */
4458static int
4459bxe_ioctl(if_t ifp,
4460 u_long command,
4461 caddr_t data)
4462{
4463 struct bxe_softc *sc = if_getsoftc(ifp);
4464 struct ifreq *ifr = (struct ifreq *)data;
4465 int mask = 0;
4466 int reinit = 0;
4467 int error = 0;
4468
4469 int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN);
4470 int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING);
4471
4472 switch (command)
4473 {
4474 case SIOCSIFMTU:
4475 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n",
4476 ifr->ifr_mtu);
4477
4478 if (sc->mtu == ifr->ifr_mtu) {
4479 /* nothing to change */
4480 break;
4481 }
4482
4483 if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) {
4484 BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n",
4485 ifr->ifr_mtu, mtu_min, mtu_max);
4486 error = EINVAL;
4487 break;
4488 }
4489
4490 atomic_store_rel_int((volatile unsigned int *)&sc->mtu,
4491 (unsigned long)ifr->ifr_mtu);
4492 /*
4493 atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp),
4494 (unsigned long)ifr->ifr_mtu);
4495 XXX - Not sure why it needs to be atomic
4496 */
4497 if_setmtu(ifp, ifr->ifr_mtu);
4498 reinit = 1;
4499 break;
4500
4501 case SIOCSIFFLAGS:
4502 /* toggle the interface state up or down */
4503 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n");
4504
4505 BXE_CORE_LOCK(sc);
4506 /* check if the interface is up */
4507 if (if_getflags(ifp) & IFF_UP) {
4508 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4509 /* set the receive mode flags */
4510 bxe_set_rx_mode(sc);
4511 } else if(sc->state != BXE_STATE_DISABLED) {
4512 bxe_init_locked(sc);
4513 }
4514 } else {
4515 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4516 bxe_periodic_stop(sc);
4517 bxe_stop_locked(sc);
4518 }
4519 }
4520 BXE_CORE_UNLOCK(sc);
4521
4522 break;
4523
4524 case SIOCADDMULTI:
4525 case SIOCDELMULTI:
4526 /* add/delete multicast addresses */
4527 BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n");
4528
4529 /* check if the interface is up */
4530 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4531 /* set the receive mode flags */
4532 BXE_CORE_LOCK(sc);
4533 bxe_set_rx_mode(sc);
4534 BXE_CORE_UNLOCK(sc);
4535 }
4536
4537 break;
4538
4539 case SIOCSIFCAP:
4540 /* find out which capabilities have changed */
4541 mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp));
4542
4543 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n",
4544 mask);
4545
4546 /* toggle the LRO capabilites enable flag */
4547 if (mask & IFCAP_LRO) {
4548 if_togglecapenable(ifp, IFCAP_LRO);
4549 BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n",
4550 (if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF");
4551 reinit = 1;
4552 }
4553
4554 /* toggle the TXCSUM checksum capabilites enable flag */
4555 if (mask & IFCAP_TXCSUM) {
4556 if_togglecapenable(ifp, IFCAP_TXCSUM);
4557 BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n",
4558 (if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF");
4559 if (if_getcapenable(ifp) & IFCAP_TXCSUM) {
4560 if_sethwassistbits(ifp, (CSUM_IP |
4561 CSUM_TCP |
4562 CSUM_UDP |
4563 CSUM_TSO |
4564 CSUM_TCP_IPV6 |
4565 CSUM_UDP_IPV6), 0);
4566 } else {
4567 if_clearhwassist(ifp); /* XXX */
4568 }
4569 }
4570
4571 /* toggle the RXCSUM checksum capabilities enable flag */
4572 if (mask & IFCAP_RXCSUM) {
4573 if_togglecapenable(ifp, IFCAP_RXCSUM);
4574 BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n",
4575 (if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF");
4576 if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
4577 if_sethwassistbits(ifp, (CSUM_IP |
4578 CSUM_TCP |
4579 CSUM_UDP |
4580 CSUM_TSO |
4581 CSUM_TCP_IPV6 |
4582 CSUM_UDP_IPV6), 0);
4583 } else {
4584 if_clearhwassist(ifp); /* XXX */
4585 }
4586 }
4587
4588 /* toggle TSO4 capabilities enabled flag */
4589 if (mask & IFCAP_TSO4) {
4590 if_togglecapenable(ifp, IFCAP_TSO4);
4591 BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n",
4592 (if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF");
4593 }
4594
4595 /* toggle TSO6 capabilities enabled flag */
4596 if (mask & IFCAP_TSO6) {
4597 if_togglecapenable(ifp, IFCAP_TSO6);
4598 BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n",
4599 (if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF");
4600 }
4601
4602 /* toggle VLAN_HWTSO capabilities enabled flag */
4603 if (mask & IFCAP_VLAN_HWTSO) {
4604
4605 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
4606 BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n",
4607 (if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF");
4608 }
4609
4610 /* toggle VLAN_HWCSUM capabilities enabled flag */
4611 if (mask & IFCAP_VLAN_HWCSUM) {
4612 /* XXX investigate this... */
4613 BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n");
4614 error = EINVAL;
4615 }
4616
4617 /* toggle VLAN_MTU capabilities enable flag */
4618 if (mask & IFCAP_VLAN_MTU) {
4619 /* XXX investigate this... */
4620 BLOGE(sc, "Changing VLAN_MTU is not supported!\n");
4621 error = EINVAL;
4622 }
4623
4624 /* toggle VLAN_HWTAGGING capabilities enabled flag */
4625 if (mask & IFCAP_VLAN_HWTAGGING) {
4626 /* XXX investigate this... */
4627 BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n");
4628 error = EINVAL;
4629 }
4630
4631 /* toggle VLAN_HWFILTER capabilities enabled flag */
4632 if (mask & IFCAP_VLAN_HWFILTER) {
4633 /* XXX investigate this... */
4634 BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n");
4635 error = EINVAL;
4636 }
4637
4638 /* XXX not yet...
4639 * IFCAP_WOL_MAGIC
4640 */
4641
4642 break;
4643
4644 case SIOCSIFMEDIA:
4645 case SIOCGIFMEDIA:
4646 /* set/get interface media */
4647 BLOGD(sc, DBG_IOCTL,
4648 "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n",
4649 (command & 0xff));
4650 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
4651 break;
4652
4653 default:
4654 BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n",
4655 (command & 0xff));
4656 error = ether_ioctl(ifp, command, data);
4657 break;
4658 }
4659
4660 if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
4661 BLOGD(sc, DBG_LOAD | DBG_IOCTL,
4662 "Re-initializing hardware from IOCTL change\n");
4663 bxe_periodic_stop(sc);
4664 BXE_CORE_LOCK(sc);
4665 bxe_stop_locked(sc);
4666 bxe_init_locked(sc);
4667 BXE_CORE_UNLOCK(sc);
4668 }
4669
4670 return (error);
4671}
4672
4673static __noinline void
4674bxe_dump_mbuf(struct bxe_softc *sc,
4675 struct mbuf *m,
4676 uint8_t contents)
4677{
4678 char * type;
4679 int i = 0;
4680
4681 if (!(sc->debug & DBG_MBUF)) {
4682 return;
4683 }
4684
4685 if (m == NULL) {
4686 BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n");
4687 return;
4688 }
4689
4690 while (m) {
4691
4692#if __FreeBSD_version >= 1000000
4693 BLOGD(sc, DBG_MBUF,
4694 "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
4695 i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data);
4696
4697 if (m->m_flags & M_PKTHDR) {
4698 BLOGD(sc, DBG_MBUF,
4699 "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n",
4700 i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS,
4701 (int)m->m_pkthdr.csum_flags, CSUM_BITS);
4702 }
4703#else
4704 BLOGD(sc, DBG_MBUF,
4705 "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
4706 i, m, m->m_len, m->m_flags,
4707 "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", m->m_data);
4708
4709 if (m->m_flags & M_PKTHDR) {
4710 BLOGD(sc, DBG_MBUF,
4711 "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n",
4712 i, m->m_pkthdr.len, m->m_flags,
4713 "\20\12M_BCAST\13M_MCAST\14M_FRAG"
4714 "\15M_FIRSTFRAG\16M_LASTFRAG\21M_VLANTAG"
4715 "\22M_PROMISC\23M_NOFREE",
4716 (int)m->m_pkthdr.csum_flags,
4717 "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP\4CSUM_IP_FRAGS"
4718 "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED"
4719 "\12CSUM_IP_VALID\13CSUM_DATA_VALID"
4720 "\14CSUM_PSEUDO_HDR");
4721 }
4722#endif /* #if __FreeBSD_version >= 1000000 */
4723
4724 if (m->m_flags & M_EXT) {
4725 switch (m->m_ext.ext_type) {
4726 case EXT_CLUSTER: type = "EXT_CLUSTER"; break;
4727 case EXT_SFBUF: type = "EXT_SFBUF"; break;
4728 case EXT_JUMBOP: type = "EXT_JUMBOP"; break;
4729 case EXT_JUMBO9: type = "EXT_JUMBO9"; break;
4730 case EXT_JUMBO16: type = "EXT_JUMBO16"; break;
4731 case EXT_PACKET: type = "EXT_PACKET"; break;
4732 case EXT_MBUF: type = "EXT_MBUF"; break;
4733 case EXT_NET_DRV: type = "EXT_NET_DRV"; break;
4734 case EXT_MOD_TYPE: type = "EXT_MOD_TYPE"; break;
4735 case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break;
4736 case EXT_EXTREF: type = "EXT_EXTREF"; break;
4737 default: type = "UNKNOWN"; break;
4738 }
4739
4740 BLOGD(sc, DBG_MBUF,
4741 "%02d: - m_ext: %p ext_size=%d type=%s\n",
4742 i, m->m_ext.ext_buf, m->m_ext.ext_size, type);
4743 }
4744
4745 if (contents) {
4746 bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE);
4747 }
4748
4749 m = m->m_next;
4750 i++;
4751 }
4752}
4753
4754/*
4755 * Checks to ensure the 13 bd sliding window is >= MSS for TSO.
4756 * Check that (13 total bds - 3 bds) = 10 bd window >= MSS.
4757 * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD
4758 * The headers comes in a separate bd in FreeBSD so 13-3=10.
4759 * Returns: 0 if OK to send, 1 if packet needs further defragmentation
4760 */
4761static int
4762bxe_chktso_window(struct bxe_softc *sc,
4763 int nsegs,
4764 bus_dma_segment_t *segs,
4765 struct mbuf *m)
4766{
4767 uint32_t num_wnds, wnd_size, wnd_sum;
4768 int32_t frag_idx, wnd_idx;
4769 unsigned short lso_mss;
4770 int defrag;
4771
4772 defrag = 0;
4773 wnd_sum = 0;
4774 wnd_size = 10;
4775 num_wnds = nsegs - wnd_size;
4776 lso_mss = htole16(m->m_pkthdr.tso_segsz);
4777
4778 /*
4779 * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the
4780 * first window sum of data while skipping the first assuming it is the
4781 * header in FreeBSD.
4782 */
4783 for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) {
4784 wnd_sum += htole16(segs[frag_idx].ds_len);
4785 }
4786
4787 /* check the first 10 bd window size */
4788 if (wnd_sum < lso_mss) {
4789 return (1);
4790 }
4791
4792 /* run through the windows */
4793 for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) {
4794 /* subtract the first mbuf->m_len of the last wndw(-header) */
4795 wnd_sum -= htole16(segs[wnd_idx+1].ds_len);
4796 /* add the next mbuf len to the len of our new window */
4797 wnd_sum += htole16(segs[frag_idx].ds_len);
4798 if (wnd_sum < lso_mss) {
4799 return (1);
4800 }
4801 }
4802
4803 return (0);
4804}
4805
4806static uint8_t
4807bxe_set_pbd_csum_e2(struct bxe_fastpath *fp,
4808 struct mbuf *m,
4809 uint32_t *parsing_data)
4810{
4811 struct ether_vlan_header *eh = NULL;
4812 struct ip *ip4 = NULL;
4813 struct ip6_hdr *ip6 = NULL;
4814 caddr_t ip = NULL;
4815 struct tcphdr *th = NULL;
4816 int e_hlen, ip_hlen, l4_off;
4817 uint16_t proto;
4818
4819 if (m->m_pkthdr.csum_flags == CSUM_IP) {
4820 /* no L4 checksum offload needed */
4821 return (0);
4822 }
4823
4824 /* get the Ethernet header */
4825 eh = mtod(m, struct ether_vlan_header *);
4826
4827 /* handle VLAN encapsulation if present */
4828 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
4829 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
4830 proto = ntohs(eh->evl_proto);
4831 } else {
4832 e_hlen = ETHER_HDR_LEN;
4833 proto = ntohs(eh->evl_encap_proto);
4834 }
4835
4836 switch (proto) {
4837 case ETHERTYPE_IP:
4838 /* get the IP header, if mbuf len < 20 then header in next mbuf */
4839 ip4 = (m->m_len < sizeof(struct ip)) ?
4840 (struct ip *)m->m_next->m_data :
4841 (struct ip *)(m->m_data + e_hlen);
4842 /* ip_hl is number of 32-bit words */
4843 ip_hlen = (ip4->ip_hl << 2);
4844 ip = (caddr_t)ip4;
4845 break;
4846 case ETHERTYPE_IPV6:
4847 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
4848 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
4849 (struct ip6_hdr *)m->m_next->m_data :
4850 (struct ip6_hdr *)(m->m_data + e_hlen);
4851 /* XXX cannot support offload with IPv6 extensions */
4852 ip_hlen = sizeof(struct ip6_hdr);
4853 ip = (caddr_t)ip6;
4854 break;
4855 default:
4856 /* We can't offload in this case... */
4857 /* XXX error stat ??? */
4858 return (0);
4859 }
4860
4861 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
4862 l4_off = (e_hlen + ip_hlen);
4863
4864 *parsing_data |=
4865 (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
4866 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W);
4867
4868 if (m->m_pkthdr.csum_flags & (CSUM_TCP |
4869 CSUM_TSO |
4870 CSUM_TCP_IPV6)) {
4871 fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
4872 th = (struct tcphdr *)(ip + ip_hlen);
4873 /* th_off is number of 32-bit words */
4874 *parsing_data |= ((th->th_off <<
4875 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
4876 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW);
4877 return (l4_off + (th->th_off << 2)); /* entire header length */
4878 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
4879 CSUM_UDP_IPV6)) {
4880 fp->eth_q_stats.tx_ofld_frames_csum_udp++;
4881 return (l4_off + sizeof(struct udphdr)); /* entire header length */
4882 } else {
4883 /* XXX error stat ??? */
4884 return (0);
4885 }
4886}
4887
4888static uint8_t
4889bxe_set_pbd_csum(struct bxe_fastpath *fp,
4890 struct mbuf *m,
4891 struct eth_tx_parse_bd_e1x *pbd)
4892{
4893 struct ether_vlan_header *eh = NULL;
4894 struct ip *ip4 = NULL;
4895 struct ip6_hdr *ip6 = NULL;
4896 caddr_t ip = NULL;
4897 struct tcphdr *th = NULL;
4898 struct udphdr *uh = NULL;
4899 int e_hlen, ip_hlen;
4900 uint16_t proto;
4901 uint8_t hlen;
4902 uint16_t tmp_csum;
4903 uint32_t *tmp_uh;
4904
4905 /* get the Ethernet header */
4906 eh = mtod(m, struct ether_vlan_header *);
4907
4908 /* handle VLAN encapsulation if present */
4909 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
4910 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
4911 proto = ntohs(eh->evl_proto);
4912 } else {
4913 e_hlen = ETHER_HDR_LEN;
4914 proto = ntohs(eh->evl_encap_proto);
4915 }
4916
4917 switch (proto) {
4918 case ETHERTYPE_IP:
4919 /* get the IP header, if mbuf len < 20 then header in next mbuf */
4920 ip4 = (m->m_len < sizeof(struct ip)) ?
4921 (struct ip *)m->m_next->m_data :
4922 (struct ip *)(m->m_data + e_hlen);
4923 /* ip_hl is number of 32-bit words */
4924 ip_hlen = (ip4->ip_hl << 1);
4925 ip = (caddr_t)ip4;
4926 break;
4927 case ETHERTYPE_IPV6:
4928 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
4929 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
4930 (struct ip6_hdr *)m->m_next->m_data :
4931 (struct ip6_hdr *)(m->m_data + e_hlen);
4932 /* XXX cannot support offload with IPv6 extensions */
4933 ip_hlen = (sizeof(struct ip6_hdr) >> 1);
4934 ip = (caddr_t)ip6;
4935 break;
4936 default:
4937 /* We can't offload in this case... */
4938 /* XXX error stat ??? */
4939 return (0);
4940 }
4941
4942 hlen = (e_hlen >> 1);
4943
4944 /* note that rest of global_data is indirectly zeroed here */
4945 if (m->m_flags & M_VLANTAG) {
4946 pbd->global_data =
4947 htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
4948 } else {
4949 pbd->global_data = htole16(hlen);
4950 }
4951
4952 pbd->ip_hlen_w = ip_hlen;
4953
4954 hlen += pbd->ip_hlen_w;
4955
4956 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
4957
4958 if (m->m_pkthdr.csum_flags & (CSUM_TCP |
4959 CSUM_TSO |
4960 CSUM_TCP_IPV6)) {
4961 th = (struct tcphdr *)(ip + (ip_hlen << 1));
4962 /* th_off is number of 32-bit words */
4963 hlen += (uint16_t)(th->th_off << 1);
4964 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
4965 CSUM_UDP_IPV6)) {
4966 uh = (struct udphdr *)(ip + (ip_hlen << 1));
4967 hlen += (sizeof(struct udphdr) / 2);
4968 } else {
4969 /* valid case as only CSUM_IP was set */
4970 return (0);
4971 }
4972
4973 pbd->total_hlen_w = htole16(hlen);
4974
4975 if (m->m_pkthdr.csum_flags & (CSUM_TCP |
4976 CSUM_TSO |
4977 CSUM_TCP_IPV6)) {
4978 fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
4979 pbd->tcp_pseudo_csum = ntohs(th->th_sum);
4980 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
4981 CSUM_UDP_IPV6)) {
4982 fp->eth_q_stats.tx_ofld_frames_csum_udp++;
4983
4984 /*
4985 * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP
4986 * checksums and does not know anything about the UDP header and where
4987 * the checksum field is located. It only knows about TCP. Therefore
4988 * we "lie" to the hardware for outgoing UDP packets w/ checksum
4989 * offload. Since the checksum field offset for TCP is 16 bytes and
4990 * for UDP it is 6 bytes we pass a pointer to the hardware that is 10
4991 * bytes less than the start of the UDP header. This allows the
4992 * hardware to write the checksum in the correct spot. But the
4993 * hardware will compute a checksum which includes the last 10 bytes
4994 * of the IP header. To correct this we tweak the stack computed
4995 * pseudo checksum by folding in the calculation of the inverse
4996 * checksum for those final 10 bytes of the IP header. This allows
4997 * the correct checksum to be computed by the hardware.
4998 */
4999
5000 /* set pointer 10 bytes before UDP header */
5001 tmp_uh = (uint32_t *)((uint8_t *)uh - 10);
5002
5003 /* calculate a pseudo header checksum over the first 10 bytes */
5004 tmp_csum = in_pseudo(*tmp_uh,
5005 *(tmp_uh + 1),
5006 *(uint16_t *)(tmp_uh + 2));
5007
5008 pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum));
5009 }
5010
5011 return (hlen * 2); /* entire header length, number of bytes */
5012}
5013
5014static void
5015bxe_set_pbd_lso_e2(struct mbuf *m,
5016 uint32_t *parsing_data)
5017{
5018 *parsing_data |= ((m->m_pkthdr.tso_segsz <<
5019 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
5020 ETH_TX_PARSE_BD_E2_LSO_MSS);
5021
5022 /* XXX test for IPv6 with extension header... */
5023}
5024
5025static void
5026bxe_set_pbd_lso(struct mbuf *m,
5027 struct eth_tx_parse_bd_e1x *pbd)
5028{
5029 struct ether_vlan_header *eh = NULL;
5030 struct ip *ip = NULL;
5031 struct tcphdr *th = NULL;
5032 int e_hlen;
5033
5034 /* get the Ethernet header */
5035 eh = mtod(m, struct ether_vlan_header *);
5036
5037 /* handle VLAN encapsulation if present */
5038 e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ?
5039 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN;
5040
5041 /* get the IP and TCP header, with LSO entire header in first mbuf */
5042 /* XXX assuming IPv4 */
5043 ip = (struct ip *)(m->m_data + e_hlen);
5044 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
5045
5046 pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz);
5047 pbd->tcp_send_seq = ntohl(th->th_seq);
5048 pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff);
5049
5050#if 1
5051 /* XXX IPv4 */
5052 pbd->ip_id = ntohs(ip->ip_id);
5053 pbd->tcp_pseudo_csum =
5054 ntohs(in_pseudo(ip->ip_src.s_addr,
5055 ip->ip_dst.s_addr,
5056 htons(IPPROTO_TCP)));
5057#else
5058 /* XXX IPv6 */
5059 pbd->tcp_pseudo_csum =
5060 ntohs(in_pseudo(&ip6->ip6_src,
5061 &ip6->ip6_dst,
5062 htons(IPPROTO_TCP)));
5063#endif
5064
5065 pbd->global_data |=
5066 htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
5067}
5068
5069/*
5070 * Encapsulte an mbuf cluster into the tx bd chain and makes the memory
5071 * visible to the controller.
5072 *
5073 * If an mbuf is submitted to this routine and cannot be given to the
5074 * controller (e.g. it has too many fragments) then the function may free
5075 * the mbuf and return to the caller.
5076 *
5077 * Returns:
5078 * 0 = Success, !0 = Failure
5079 * Note the side effect that an mbuf may be freed if it causes a problem.
5080 */
5081static int
5082bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head)
5083{
5084 bus_dma_segment_t segs[32];
5085 struct mbuf *m0;
5086 struct bxe_sw_tx_bd *tx_buf;
5087 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
5088 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
5089 /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */
5090 struct eth_tx_bd *tx_data_bd;
5091 struct eth_tx_bd *tx_total_pkt_size_bd;
5092 struct eth_tx_start_bd *tx_start_bd;
5093 uint16_t bd_prod, pkt_prod, total_pkt_size;
5094 uint8_t mac_type;
5095 int defragged, error, nsegs, rc, nbds, vlan_off, ovlan;
5096 struct bxe_softc *sc;
5097 uint16_t tx_bd_avail;
5098 struct ether_vlan_header *eh;
5099 uint32_t pbd_e2_parsing_data = 0;
5100 uint8_t hlen = 0;
5101 int tmp_bd;
5102 int i;
5103
5104 sc = fp->sc;
5105
5106#if __FreeBSD_version >= 800000
5107 M_ASSERTPKTHDR(*m_head);
5108#endif /* #if __FreeBSD_version >= 800000 */
5109
5110 m0 = *m_head;
5111 rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0;
5112 tx_start_bd = NULL;
5113 tx_data_bd = NULL;
5114 tx_total_pkt_size_bd = NULL;
5115
5116 /* get the H/W pointer for packets and BDs */
5117 pkt_prod = fp->tx_pkt_prod;
5118 bd_prod = fp->tx_bd_prod;
5119
5120 mac_type = UNICAST_ADDRESS;
5121
5122 /* map the mbuf into the next open DMAable memory */
5123 tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)];
5124 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5125 tx_buf->m_map, m0,
5126 segs, &nsegs, BUS_DMA_NOWAIT);
5127
5128 /* mapping errors */
5129 if(__predict_false(error != 0)) {
5130 fp->eth_q_stats.tx_dma_mapping_failure++;
5131 if (error == ENOMEM) {
5132 /* resource issue, try again later */
5133 rc = ENOMEM;
5134 } else if (error == EFBIG) {
5135 /* possibly recoverable with defragmentation */
5136 fp->eth_q_stats.mbuf_defrag_attempts++;
5137 m0 = m_defrag(*m_head, M_NOWAIT);
5138 if (m0 == NULL) {
5139 fp->eth_q_stats.mbuf_defrag_failures++;
5140 rc = ENOBUFS;
5141 } else {
5142 /* defrag successful, try mapping again */
5143 *m_head = m0;
5144 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5145 tx_buf->m_map, m0,
5146 segs, &nsegs, BUS_DMA_NOWAIT);
5147 if (error) {
5148 fp->eth_q_stats.tx_dma_mapping_failure++;
5149 rc = error;
5150 }
5151 }
5152 } else {
5153 /* unknown, unrecoverable mapping error */
5154 BLOGE(sc, "Unknown TX mapping error rc=%d\n", error);
5155 bxe_dump_mbuf(sc, m0, FALSE);
5156 rc = error;
5157 }
5158
5159 goto bxe_tx_encap_continue;
5160 }
5161
5162 tx_bd_avail = bxe_tx_avail(sc, fp);
5163
5164 /* make sure there is enough room in the send queue */
5165 if (__predict_false(tx_bd_avail < (nsegs + 2))) {
5166 /* Recoverable, try again later. */
5167 fp->eth_q_stats.tx_hw_queue_full++;
5168 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5169 rc = ENOMEM;
5170 goto bxe_tx_encap_continue;
5171 }
5172
5173 /* capture the current H/W TX chain high watermark */
5174 if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth <
5175 (TX_BD_USABLE - tx_bd_avail))) {
5176 fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail);
5177 }
5178
5179 /* make sure it fits in the packet window */
5180 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5181 /*
5182 * The mbuf may be to big for the controller to handle. If the frame
5183 * is a TSO frame we'll need to do an additional check.
5184 */
5185 if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5186 if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) {
5187 goto bxe_tx_encap_continue; /* OK to send */
5188 } else {
5189 fp->eth_q_stats.tx_window_violation_tso++;
5190 }
5191 } else {
5192 fp->eth_q_stats.tx_window_violation_std++;
5193 }
5194
5195 /* lets try to defragment this mbuf and remap it */
5196 fp->eth_q_stats.mbuf_defrag_attempts++;
5197 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5198
5199 m0 = m_defrag(*m_head, M_NOWAIT);
5200 if (m0 == NULL) {
5201 fp->eth_q_stats.mbuf_defrag_failures++;
5202 /* Ugh, just drop the frame... :( */
5203 rc = ENOBUFS;
5204 } else {
5205 /* defrag successful, try mapping again */
5206 *m_head = m0;
5207 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5208 tx_buf->m_map, m0,
5209 segs, &nsegs, BUS_DMA_NOWAIT);
5210 if (error) {
5211 fp->eth_q_stats.tx_dma_mapping_failure++;
5212 /* No sense in trying to defrag/copy chain, drop it. :( */
5213 rc = error;
5214 }
5215 else {
5216 /* if the chain is still too long then drop it */
5217 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5218 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5219 rc = ENODEV;
5220 }
5221 }
5222 }
5223 }
5224
5225bxe_tx_encap_continue:
5226
5227 /* Check for errors */
5228 if (rc) {
5229 if (rc == ENOMEM) {
5230 /* recoverable try again later */
5231 } else {
5232 fp->eth_q_stats.tx_soft_errors++;
5233 fp->eth_q_stats.mbuf_alloc_tx--;
5234 m_freem(*m_head);
5235 *m_head = NULL;
5236 }
5237
5238 return (rc);
5239 }
5240
5241 /* set flag according to packet type (UNICAST_ADDRESS is default) */
5242 if (m0->m_flags & M_BCAST) {
5243 mac_type = BROADCAST_ADDRESS;
5244 } else if (m0->m_flags & M_MCAST) {
5245 mac_type = MULTICAST_ADDRESS;
5246 }
5247
5248 /* store the mbuf into the mbuf ring */
5249 tx_buf->m = m0;
5250 tx_buf->first_bd = fp->tx_bd_prod;
5251 tx_buf->flags = 0;
5252
5253 /* prepare the first transmit (start) BD for the mbuf */
5254 tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd;
5255
5256 BLOGD(sc, DBG_TX,
5257 "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n",
5258 pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd);
5259
5260 tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
5261 tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
5262 tx_start_bd->nbytes = htole16(segs[0].ds_len);
5263 total_pkt_size += tx_start_bd->nbytes;
5264 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
5265
5266 tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
5267
5268 /* all frames have at least Start BD + Parsing BD */
5269 nbds = nsegs + 1;
5270 tx_start_bd->nbd = htole16(nbds);
5271
5272 if (m0->m_flags & M_VLANTAG) {
5273 tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag);
5274 tx_start_bd->bd_flags.as_bitfield |=
5275 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
5276 } else {
5277 /* vf tx, start bd must hold the ethertype for fw to enforce it */
5278 if (IS_VF(sc)) {
5279 /* map ethernet header to find type and header length */
5280 eh = mtod(m0, struct ether_vlan_header *);
5281 tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto;
5282 } else {
5283 /* used by FW for packet accounting */
5284 tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod);
5285 }
5286 }
5287
5288 /*
5289 * add a parsing BD from the chain. The parsing BD is always added
5290 * though it is only used for TSO and chksum
5291 */
5292 bd_prod = TX_BD_NEXT(bd_prod);
5293
5294 if (m0->m_pkthdr.csum_flags) {
5295 if (m0->m_pkthdr.csum_flags & CSUM_IP) {
5296 fp->eth_q_stats.tx_ofld_frames_csum_ip++;
5297 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM;
5298 }
5299
5300 if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) {
5301 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 |
5302 ETH_TX_BD_FLAGS_L4_CSUM);
5303 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) {
5304 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 |
5305 ETH_TX_BD_FLAGS_IS_UDP |
5306 ETH_TX_BD_FLAGS_L4_CSUM);
5307 } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) ||
5308 (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
5309 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
5310 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) {
5311 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM |
5312 ETH_TX_BD_FLAGS_IS_UDP);
5313 }
5314 }
5315
5316 if (!CHIP_IS_E1x(sc)) {
5317 pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2;
5318 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
5319
5320 if (m0->m_pkthdr.csum_flags) {
5321 hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data);
5322 }
5323
5324 SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE,
5325 mac_type);
5326 } else {
5327 uint16_t global_data = 0;
5328
5329 pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x;
5330 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
5331
5332 if (m0->m_pkthdr.csum_flags) {
5333 hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x);
5334 }
5335
5336 SET_FLAG(global_data,
5337 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
5338 pbd_e1x->global_data |= htole16(global_data);
5339 }
5340
5341 /* setup the parsing BD with TSO specific info */
5342 if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5343 fp->eth_q_stats.tx_ofld_frames_lso++;
5344 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
5345
5346 if (__predict_false(tx_start_bd->nbytes > hlen)) {
5347 fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++;
5348
5349 /* split the first BD into header/data making the fw job easy */
5350 nbds++;
5351 tx_start_bd->nbd = htole16(nbds);
5352 tx_start_bd->nbytes = htole16(hlen);
5353
5354 bd_prod = TX_BD_NEXT(bd_prod);
5355
5356 /* new transmit BD after the tx_parse_bd */
5357 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5358 tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen));
5359 tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen));
5360 tx_data_bd->nbytes = htole16(segs[0].ds_len - hlen);
5361 if (tx_total_pkt_size_bd == NULL) {
5362 tx_total_pkt_size_bd = tx_data_bd;
5363 }
5364
5365 BLOGD(sc, DBG_TX,
5366 "TSO split header size is %d (%x:%x) nbds %d\n",
5367 le16toh(tx_start_bd->nbytes),
5368 le32toh(tx_start_bd->addr_hi),
5369 le32toh(tx_start_bd->addr_lo),
5370 nbds);
5371 }
5372
5373 if (!CHIP_IS_E1x(sc)) {
5374 bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data);
5375 } else {
5376 bxe_set_pbd_lso(m0, pbd_e1x);
5377 }
5378 }
5379
5380 if (pbd_e2_parsing_data) {
5381 pbd_e2->parsing_data = htole32(pbd_e2_parsing_data);
5382 }
5383
5384 /* prepare remaining BDs, start tx bd contains first seg/frag */
5385 for (i = 1; i < nsegs ; i++) {
5386 bd_prod = TX_BD_NEXT(bd_prod);
5387 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5388 tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr));
5389 tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr));
5390 tx_data_bd->nbytes = htole16(segs[i].ds_len);
5391 if (tx_total_pkt_size_bd == NULL) {
5392 tx_total_pkt_size_bd = tx_data_bd;
5393 }
5394 total_pkt_size += tx_data_bd->nbytes;
5395 }
5396
5397 BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd);
5398
5399 if (tx_total_pkt_size_bd != NULL) {
5400 tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size;
5401 }
5402
5403 if (__predict_false(sc->debug & DBG_TX)) {
5404 tmp_bd = tx_buf->first_bd;
5405 for (i = 0; i < nbds; i++)
5406 {
5407 if (i == 0) {
5408 BLOGD(sc, DBG_TX,
5409 "TX Strt: %p bd=%d nbd=%d vlan=0x%x "
5410 "bd_flags=0x%x hdr_nbds=%d\n",
5411 tx_start_bd,
5412 tmp_bd,
5413 le16toh(tx_start_bd->nbd),
5414 le16toh(tx_start_bd->vlan_or_ethertype),
5415 tx_start_bd->bd_flags.as_bitfield,
5416 (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS));
5417 } else if (i == 1) {
5418 if (pbd_e1x) {
5419 BLOGD(sc, DBG_TX,
5420 "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u "
5421 "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x "
5422 "tcp_seq=%u total_hlen_w=%u\n",
5423 pbd_e1x,
5424 tmp_bd,
5425 pbd_e1x->global_data,
5426 pbd_e1x->ip_hlen_w,
5427 pbd_e1x->ip_id,
5428 pbd_e1x->lso_mss,
5429 pbd_e1x->tcp_flags,
5430 pbd_e1x->tcp_pseudo_csum,
5431 pbd_e1x->tcp_send_seq,
5432 le16toh(pbd_e1x->total_hlen_w));
5433 } else { /* if (pbd_e2) */
5434 BLOGD(sc, DBG_TX,
5435 "-> Parse: %p bd=%d dst=%02x:%02x:%02x "
5436 "src=%02x:%02x:%02x parsing_data=0x%x\n",
5437 pbd_e2,
5438 tmp_bd,
5439 pbd_e2->data.mac_addr.dst_hi,
5440 pbd_e2->data.mac_addr.dst_mid,
5441 pbd_e2->data.mac_addr.dst_lo,
5442 pbd_e2->data.mac_addr.src_hi,
5443 pbd_e2->data.mac_addr.src_mid,
5444 pbd_e2->data.mac_addr.src_lo,
5445 pbd_e2->parsing_data);
5446 }
5447 }
5448
5449 if (i != 1) { /* skip parse db as it doesn't hold data */
5450 tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd;
5451 BLOGD(sc, DBG_TX,
5452 "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n",
5453 tx_data_bd,
5454 tmp_bd,
5455 le16toh(tx_data_bd->nbytes),
5456 le32toh(tx_data_bd->addr_hi),
5457 le32toh(tx_data_bd->addr_lo));
5458 }
5459
5460 tmp_bd = TX_BD_NEXT(tmp_bd);
5461 }
5462 }
5463
5464 BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod);
5465
5466 /* update TX BD producer index value for next TX */
5467 bd_prod = TX_BD_NEXT(bd_prod);
5468
5469 /*
5470 * If the chain of tx_bd's describing this frame is adjacent to or spans
5471 * an eth_tx_next_bd element then we need to increment the nbds value.
5472 */
5473 if (TX_BD_IDX(bd_prod) < nbds) {
5474 nbds++;
5475 }
5476
5477 /* don't allow reordering of writes for nbd and packets */
5478 mb();
5479
5480 fp->tx_db.data.prod += nbds;
5481
5482 /* producer points to the next free tx_bd at this point */
5483 fp->tx_pkt_prod++;
5484 fp->tx_bd_prod = bd_prod;
5485
5486 DOORBELL(sc, fp->index, fp->tx_db.raw);
5487
5488 fp->eth_q_stats.tx_pkts++;
5489
5490 /* Prevent speculative reads from getting ahead of the status block. */
5491 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle,
5492 0, 0, BUS_SPACE_BARRIER_READ);
5493
5494 /* Prevent speculative reads from getting ahead of the doorbell. */
5495 bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle,
5496 0, 0, BUS_SPACE_BARRIER_READ);
5497
5498 return (0);
5499}
5500
5501static void
5502bxe_tx_start_locked(struct bxe_softc *sc,
5503 if_t ifp,
5504 struct bxe_fastpath *fp)
5505{
5506 struct mbuf *m = NULL;
5507 int tx_count = 0;
5508 uint16_t tx_bd_avail;
5509
5510 BXE_FP_TX_LOCK_ASSERT(fp);
5511
5512 /* keep adding entries while there are frames to send */
5513 while (!if_sendq_empty(ifp)) {
5514
5515 /*
5516 * check for any frames to send
5517 * dequeue can still be NULL even if queue is not empty
5518 */
5519 m = if_dequeue(ifp);
5520 if (__predict_false(m == NULL)) {
5521 break;
5522 }
5523
5524 /* the mbuf now belongs to us */
5525 fp->eth_q_stats.mbuf_alloc_tx++;
5526
5527 /*
5528 * Put the frame into the transmit ring. If we don't have room,
5529 * place the mbuf back at the head of the TX queue, set the
5530 * OACTIVE flag, and wait for the NIC to drain the chain.
5531 */
5532 if (__predict_false(bxe_tx_encap(fp, &m))) {
5533 fp->eth_q_stats.tx_encap_failures++;
5534 if (m != NULL) {
5535 /* mark the TX queue as full and return the frame */
5536 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5537 if_sendq_prepend(ifp, m);
5538 fp->eth_q_stats.mbuf_alloc_tx--;
5539 fp->eth_q_stats.tx_queue_xoff++;
5540 }
5541
5542 /* stop looking for more work */
5543 break;
5544 }
5545
5546 /* the frame was enqueued successfully */
5547 tx_count++;
5548
5549 /* send a copy of the frame to any BPF listeners. */
5550 if_etherbpfmtap(ifp, m);
5551
5552 tx_bd_avail = bxe_tx_avail(sc, fp);
5553
5554 /* handle any completions if we're running low */
5555 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5556 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5557 bxe_txeof(sc, fp);
5558 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5559 break;
5560 }
5561 }
5562 }
5563
5564 /* all TX packets were dequeued and/or the tx ring is full */
5565 if (tx_count > 0) {
5566 /* reset the TX watchdog timeout timer */
5567 fp->watchdog_timer = BXE_TX_TIMEOUT;
5568 }
5569}
5570
5571/* Legacy (non-RSS) dispatch routine */
5572static void
5573bxe_tx_start(if_t ifp)
5574{
5575 struct bxe_softc *sc;
5576 struct bxe_fastpath *fp;
5577
5578 sc = if_getsoftc(ifp);
5579
5580 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
5581 BLOGW(sc, "Interface not running, ignoring transmit request\n");
5582 return;
5583 }
5584
5585 if (!sc->link_vars.link_up) {
5586 BLOGW(sc, "Interface link is down, ignoring transmit request\n");
5587 return;
5588 }
5589
5590 fp = &sc->fp[0];
5591
5592 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
5593 fp->eth_q_stats.tx_queue_full_return++;
5594 return;
5595 }
5596
5597 BXE_FP_TX_LOCK(fp);
5598 bxe_tx_start_locked(sc, ifp, fp);
5599 BXE_FP_TX_UNLOCK(fp);
5600}
5601
5602#if __FreeBSD_version >= 800000
5603
5604static int
5605bxe_tx_mq_start_locked(struct bxe_softc *sc,
5606 if_t ifp,
5607 struct bxe_fastpath *fp,
5608 struct mbuf *m)
5609{
5610 struct buf_ring *tx_br = fp->tx_br;
5611 struct mbuf *next;
5612 int depth, rc, tx_count;
5613 uint16_t tx_bd_avail;
5614
5615 rc = tx_count = 0;
5616
5617 BXE_FP_TX_LOCK_ASSERT(fp);
5618
5619 if (!tx_br) {
5620 BLOGE(sc, "Multiqueue TX and no buf_ring!\n");
5621 return (EINVAL);
5622 }
5623
5624 if (!sc->link_vars.link_up ||
5625 (if_getdrvflags(ifp) &
5626 (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING) {
5627 if (m != NULL)
5628 rc = drbr_enqueue(ifp, tx_br, m);
5629 goto bxe_tx_mq_start_locked_exit;
5630 }
5631
5632 /* fetch the depth of the driver queue */
5633 depth = drbr_inuse_drv(ifp, tx_br);
5634 if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) {
5635 fp->eth_q_stats.tx_max_drbr_queue_depth = depth;
5636 }
5637
5638 if (m == NULL) {
5639 /* no new work, check for pending frames */
5640 next = drbr_dequeue_drv(ifp, tx_br);
5641 } else if (drbr_needs_enqueue_drv(ifp, tx_br)) {
5642 /* have both new and pending work, maintain packet order */
5643 rc = drbr_enqueue(ifp, tx_br, m);
5644 if (rc != 0) {
5645 fp->eth_q_stats.tx_soft_errors++;
5646 goto bxe_tx_mq_start_locked_exit;
5647 }
5648 next = drbr_dequeue_drv(ifp, tx_br);
5649 } else {
5650 /* new work only and nothing pending */
5651 next = m;
5652 }
5653
5654 /* keep adding entries while there are frames to send */
5655 while (next != NULL) {
5656
5657 /* the mbuf now belongs to us */
5658 fp->eth_q_stats.mbuf_alloc_tx++;
5659
5660 /*
5661 * Put the frame into the transmit ring. If we don't have room,
5662 * place the mbuf back at the head of the TX queue, set the
5663 * OACTIVE flag, and wait for the NIC to drain the chain.
5664 */
5665 rc = bxe_tx_encap(fp, &next);
5666 if (__predict_false(rc != 0)) {
5667 fp->eth_q_stats.tx_encap_failures++;
5668 if (next != NULL) {
5669 /* mark the TX queue as full and save the frame */
5670 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5671 /* XXX this may reorder the frame */
5672 rc = drbr_enqueue(ifp, tx_br, next);
5673 fp->eth_q_stats.mbuf_alloc_tx--;
5674 fp->eth_q_stats.tx_frames_deferred++;
5675 }
5676
5677 /* stop looking for more work */
5678 break;
5679 }
5680
5681 /* the transmit frame was enqueued successfully */
5682 tx_count++;
5683
5684 /* send a copy of the frame to any BPF listeners */
5685 if_etherbpfmtap(ifp, next);
5686
5687 tx_bd_avail = bxe_tx_avail(sc, fp);
5688
5689 /* handle any completions if we're running low */
5690 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5691 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5692 bxe_txeof(sc, fp);
5693 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5694 break;
5695 }
5696 }
5697
5698 next = drbr_dequeue_drv(ifp, tx_br);
5699 }
5700
5701 /* all TX packets were dequeued and/or the tx ring is full */
5702 if (tx_count > 0) {
5703 /* reset the TX watchdog timeout timer */
5704 fp->watchdog_timer = BXE_TX_TIMEOUT;
5705 }
5706
5707bxe_tx_mq_start_locked_exit:
5708
5709 return (rc);
5710}
5711
5712/* Multiqueue (TSS) dispatch routine. */
5713static int
5714bxe_tx_mq_start(struct ifnet *ifp,
5715 struct mbuf *m)
5716{
5717 struct bxe_softc *sc = if_getsoftc(ifp);
5718 struct bxe_fastpath *fp;
5719 int fp_index, rc;
5720
5721 fp_index = 0; /* default is the first queue */
5722
5723 /* check if flowid is set */
5724
5725 if (BXE_VALID_FLOWID(m))
5726 fp_index = (m->m_pkthdr.flowid % sc->num_queues);
5727
5728 fp = &sc->fp[fp_index];
5729
5730 if (BXE_FP_TX_TRYLOCK(fp)) {
5731 rc = bxe_tx_mq_start_locked(sc, ifp, fp, m);
5732 BXE_FP_TX_UNLOCK(fp);
5733 } else
5734 rc = drbr_enqueue(ifp, fp->tx_br, m);
5735
5736 return (rc);
5737}
5738
5739static void
5740bxe_mq_flush(struct ifnet *ifp)
5741{
5742 struct bxe_softc *sc = if_getsoftc(ifp);
5743 struct bxe_fastpath *fp;
5744 struct mbuf *m;
5745 int i;
5746
5747 for (i = 0; i < sc->num_queues; i++) {
5748 fp = &sc->fp[i];
5749
5750 if (fp->state != BXE_FP_STATE_OPEN) {
5751 BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n",
5752 fp->index, fp->state);
5753 continue;
5754 }
5755
5756 if (fp->tx_br != NULL) {
5757 BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index);
5758 BXE_FP_TX_LOCK(fp);
5759 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
5760 m_freem(m);
5761 }
5762 BXE_FP_TX_UNLOCK(fp);
5763 }
5764 }
5765
5766 if_qflush(ifp);
5767}
5768
5769#endif /* FreeBSD_version >= 800000 */
5770
5771static uint16_t
5772bxe_cid_ilt_lines(struct bxe_softc *sc)
5773{
5774 if (IS_SRIOV(sc)) {
5775 return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS);
5776 }
5777 return (L2_ILT_LINES(sc));
5778}
5779
5780static void
5781bxe_ilt_set_info(struct bxe_softc *sc)
5782{
5783 struct ilt_client_info *ilt_client;
5784 struct ecore_ilt *ilt = sc->ilt;
5785 uint16_t line = 0;
5786
5787 ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
5788 BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line);
5789
5790 /* CDU */
5791 ilt_client = &ilt->clients[ILT_CLIENT_CDU];
5792 ilt_client->client_num = ILT_CLIENT_CDU;
5793 ilt_client->page_size = CDU_ILT_PAGE_SZ;
5794 ilt_client->flags = ILT_CLIENT_SKIP_MEM;
5795 ilt_client->start = line;
5796 line += bxe_cid_ilt_lines(sc);
5797
5798 if (CNIC_SUPPORT(sc)) {
5799 line += CNIC_ILT_LINES;
5800 }
5801
5802 ilt_client->end = (line - 1);
5803
5804 BLOGD(sc, DBG_LOAD,
5805 "ilt client[CDU]: start %d, end %d, "
5806 "psz 0x%x, flags 0x%x, hw psz %d\n",
5807 ilt_client->start, ilt_client->end,
5808 ilt_client->page_size,
5809 ilt_client->flags,
5810 ilog2(ilt_client->page_size >> 12));
5811
5812 /* QM */
5813 if (QM_INIT(sc->qm_cid_count)) {
5814 ilt_client = &ilt->clients[ILT_CLIENT_QM];
5815 ilt_client->client_num = ILT_CLIENT_QM;
5816 ilt_client->page_size = QM_ILT_PAGE_SZ;
5817 ilt_client->flags = 0;
5818 ilt_client->start = line;
5819
5820 /* 4 bytes for each cid */
5821 line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
5822 QM_ILT_PAGE_SZ);
5823
5824 ilt_client->end = (line - 1);
5825
5826 BLOGD(sc, DBG_LOAD,
5827 "ilt client[QM]: start %d, end %d, "
5828 "psz 0x%x, flags 0x%x, hw psz %d\n",
5829 ilt_client->start, ilt_client->end,
5830 ilt_client->page_size, ilt_client->flags,
5831 ilog2(ilt_client->page_size >> 12));
5832 }
5833
5834 if (CNIC_SUPPORT(sc)) {
5835 /* SRC */
5836 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
5837 ilt_client->client_num = ILT_CLIENT_SRC;
5838 ilt_client->page_size = SRC_ILT_PAGE_SZ;
5839 ilt_client->flags = 0;
5840 ilt_client->start = line;
5841 line += SRC_ILT_LINES;
5842 ilt_client->end = (line - 1);
5843
5844 BLOGD(sc, DBG_LOAD,
5845 "ilt client[SRC]: start %d, end %d, "
5846 "psz 0x%x, flags 0x%x, hw psz %d\n",
5847 ilt_client->start, ilt_client->end,
5848 ilt_client->page_size, ilt_client->flags,
5849 ilog2(ilt_client->page_size >> 12));
5850
5851 /* TM */
5852 ilt_client = &ilt->clients[ILT_CLIENT_TM];
5853 ilt_client->client_num = ILT_CLIENT_TM;
5854 ilt_client->page_size = TM_ILT_PAGE_SZ;
5855 ilt_client->flags = 0;
5856 ilt_client->start = line;
5857 line += TM_ILT_LINES;
5858 ilt_client->end = (line - 1);
5859
5860 BLOGD(sc, DBG_LOAD,
5861 "ilt client[TM]: start %d, end %d, "
5862 "psz 0x%x, flags 0x%x, hw psz %d\n",
5863 ilt_client->start, ilt_client->end,
5864 ilt_client->page_size, ilt_client->flags,
5865 ilog2(ilt_client->page_size >> 12));
5866 }
5867
5868 KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!"));
5869}
5870
5871static void
5872bxe_set_fp_rx_buf_size(struct bxe_softc *sc)
5873{
5874 int i;
5875 uint32_t rx_buf_size;
5876
5877 rx_buf_size = (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu);
5878
5879 for (i = 0; i < sc->num_queues; i++) {
5880 if(rx_buf_size <= MCLBYTES){
5881 sc->fp[i].rx_buf_size = rx_buf_size;
5882 sc->fp[i].mbuf_alloc_size = MCLBYTES;
5883 }else if (rx_buf_size <= MJUMPAGESIZE){
5884 sc->fp[i].rx_buf_size = rx_buf_size;
5885 sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
5886 }else if (rx_buf_size <= (MJUMPAGESIZE + MCLBYTES)){
5887 sc->fp[i].rx_buf_size = MCLBYTES;
5888 sc->fp[i].mbuf_alloc_size = MCLBYTES;
5889 }else if (rx_buf_size <= (2 * MJUMPAGESIZE)){
5890 sc->fp[i].rx_buf_size = MJUMPAGESIZE;
5891 sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
5892 }else {
5893 sc->fp[i].rx_buf_size = MCLBYTES;
5894 sc->fp[i].mbuf_alloc_size = MCLBYTES;
5895 }
5896 }
5897}
5898
5899static int
5900bxe_alloc_ilt_mem(struct bxe_softc *sc)
5901{
5902 int rc = 0;
5903
5904 if ((sc->ilt =
5905 (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt),
5906 M_BXE_ILT,
5907 (M_NOWAIT | M_ZERO))) == NULL) {
5908 rc = 1;
5909 }
5910
5911 return (rc);
5912}
5913
5914static int
5915bxe_alloc_ilt_lines_mem(struct bxe_softc *sc)
5916{
5917 int rc = 0;
5918
5919 if ((sc->ilt->lines =
5920 (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES),
5921 M_BXE_ILT,
5922 (M_NOWAIT | M_ZERO))) == NULL) {
5923 rc = 1;
5924 }
5925
5926 return (rc);
5927}
5928
5929static void
5930bxe_free_ilt_mem(struct bxe_softc *sc)
5931{
5932 if (sc->ilt != NULL) {
5933 free(sc->ilt, M_BXE_ILT);
5934 sc->ilt = NULL;
5935 }
5936}
5937
5938static void
5939bxe_free_ilt_lines_mem(struct bxe_softc *sc)
5940{
5941 if (sc->ilt->lines != NULL) {
5942 free(sc->ilt->lines, M_BXE_ILT);
5943 sc->ilt->lines = NULL;
5944 }
5945}
5946
5947static void
5948bxe_free_mem(struct bxe_softc *sc)
5949{
5950 int i;
5951
5952 for (i = 0; i < L2_ILT_LINES(sc); i++) {
5953 bxe_dma_free(sc, &sc->context[i].vcxt_dma);
5954 sc->context[i].vcxt = NULL;
5955 sc->context[i].size = 0;
5956 }
5957
5958 ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
5959
5960 bxe_free_ilt_lines_mem(sc);
5961
5962}
5963
5964static int
5965bxe_alloc_mem(struct bxe_softc *sc)
5966{
5967 int context_size;
5968 int allocated;
5969 int i;
5970
5971 /*
5972 * Allocate memory for CDU context:
5973 * This memory is allocated separately and not in the generic ILT
5974 * functions because CDU differs in few aspects:
5975 * 1. There can be multiple entities allocating memory for context -
5976 * regular L2, CNIC, and SRIOV drivers. Each separately controls
5977 * its own ILT lines.
5978 * 2. Since CDU page-size is not a single 4KB page (which is the case
5979 * for the other ILT clients), to be efficient we want to support
5980 * allocation of sub-page-size in the last entry.
5981 * 3. Context pointers are used by the driver to pass to FW / update
5982 * the context (for the other ILT clients the pointers are used just to
5983 * free the memory during unload).
5984 */
5985 context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc));
5986 for (i = 0, allocated = 0; allocated < context_size; i++) {
5987 sc->context[i].size = min(CDU_ILT_PAGE_SZ,
5988 (context_size - allocated));
5989
5990 if (bxe_dma_alloc(sc, sc->context[i].size,
5991 &sc->context[i].vcxt_dma,
5992 "cdu context") != 0) {
5993 bxe_free_mem(sc);
5994 return (-1);
5995 }
5996
5997 sc->context[i].vcxt =
5998 (union cdu_context *)sc->context[i].vcxt_dma.vaddr;
5999
6000 allocated += sc->context[i].size;
6001 }
6002
6003 bxe_alloc_ilt_lines_mem(sc);
6004
6005 BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n",
6006 sc->ilt, sc->ilt->start_line, sc->ilt->lines);
6007 {
6008 for (i = 0; i < 4; i++) {
6009 BLOGD(sc, DBG_LOAD,
6010 "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n",
6011 i,
6012 sc->ilt->clients[i].page_size,
6013 sc->ilt->clients[i].start,
6014 sc->ilt->clients[i].end,
6015 sc->ilt->clients[i].client_num,
6016 sc->ilt->clients[i].flags);
6017 }
6018 }
6019 if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
6020 BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n");
6021 bxe_free_mem(sc);
6022 return (-1);
6023 }
6024
6025 return (0);
6026}
6027
6028static void
6029bxe_free_rx_bd_chain(struct bxe_fastpath *fp)
6030{
6031 struct bxe_softc *sc;
6032 int i;
6033
6034 sc = fp->sc;
6035
6036 if (fp->rx_mbuf_tag == NULL) {
6037 return;
6038 }
6039
6040 /* free all mbufs and unload all maps */
6041 for (i = 0; i < RX_BD_TOTAL; i++) {
6042 if (fp->rx_mbuf_chain[i].m_map != NULL) {
6043 bus_dmamap_sync(fp->rx_mbuf_tag,
6044 fp->rx_mbuf_chain[i].m_map,
6045 BUS_DMASYNC_POSTREAD);
6046 bus_dmamap_unload(fp->rx_mbuf_tag,
6047 fp->rx_mbuf_chain[i].m_map);
6048 }
6049
6050 if (fp->rx_mbuf_chain[i].m != NULL) {
6051 m_freem(fp->rx_mbuf_chain[i].m);
6052 fp->rx_mbuf_chain[i].m = NULL;
6053 fp->eth_q_stats.mbuf_alloc_rx--;
6054 }
6055 }
6056}
6057
6058static void
6059bxe_free_tpa_pool(struct bxe_fastpath *fp)
6060{
6061 struct bxe_softc *sc;
6062 int i, max_agg_queues;
6063
6064 sc = fp->sc;
6065
6066 if (fp->rx_mbuf_tag == NULL) {
6067 return;
6068 }
6069
6070 max_agg_queues = MAX_AGG_QS(sc);
6071
6072 /* release all mbufs and unload all DMA maps in the TPA pool */
6073 for (i = 0; i < max_agg_queues; i++) {
6074 if (fp->rx_tpa_info[i].bd.m_map != NULL) {
6075 bus_dmamap_sync(fp->rx_mbuf_tag,
6076 fp->rx_tpa_info[i].bd.m_map,
6077 BUS_DMASYNC_POSTREAD);
6078 bus_dmamap_unload(fp->rx_mbuf_tag,
6079 fp->rx_tpa_info[i].bd.m_map);
6080 }
6081
6082 if (fp->rx_tpa_info[i].bd.m != NULL) {
6083 m_freem(fp->rx_tpa_info[i].bd.m);
6084 fp->rx_tpa_info[i].bd.m = NULL;
6085 fp->eth_q_stats.mbuf_alloc_tpa--;
6086 }
6087 }
6088}
6089
6090static void
6091bxe_free_sge_chain(struct bxe_fastpath *fp)
6092{
6093 struct bxe_softc *sc;
6094 int i;
6095
6096 sc = fp->sc;
6097
6098 if (fp->rx_sge_mbuf_tag == NULL) {
6099 return;
6100 }
6101
6102 /* rree all mbufs and unload all maps */
6103 for (i = 0; i < RX_SGE_TOTAL; i++) {
6104 if (fp->rx_sge_mbuf_chain[i].m_map != NULL) {
6105 bus_dmamap_sync(fp->rx_sge_mbuf_tag,
6106 fp->rx_sge_mbuf_chain[i].m_map,
6107 BUS_DMASYNC_POSTREAD);
6108 bus_dmamap_unload(fp->rx_sge_mbuf_tag,
6109 fp->rx_sge_mbuf_chain[i].m_map);
6110 }
6111
6112 if (fp->rx_sge_mbuf_chain[i].m != NULL) {
6113 m_freem(fp->rx_sge_mbuf_chain[i].m);
6114 fp->rx_sge_mbuf_chain[i].m = NULL;
6115 fp->eth_q_stats.mbuf_alloc_sge--;
6116 }
6117 }
6118}
6119
6120static void
6121bxe_free_fp_buffers(struct bxe_softc *sc)
6122{
6123 struct bxe_fastpath *fp;
6124 int i;
6125
6126 for (i = 0; i < sc->num_queues; i++) {
6127 fp = &sc->fp[i];
6128
6129#if __FreeBSD_version >= 800000
6130 if (fp->tx_br != NULL) {
6131 /* just in case bxe_mq_flush() wasn't called */
6132 if (mtx_initialized(&fp->tx_mtx)) {
6133 struct mbuf *m;
6134
6135 BXE_FP_TX_LOCK(fp);
6136 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL)
6137 m_freem(m);
6138 BXE_FP_TX_UNLOCK(fp);
6139 }
6140 }
6141#endif
6142
6143 /* free all RX buffers */
6144 bxe_free_rx_bd_chain(fp);
6145 bxe_free_tpa_pool(fp);
6146 bxe_free_sge_chain(fp);
6147
6148 if (fp->eth_q_stats.mbuf_alloc_rx != 0) {
6149 BLOGE(sc, "failed to claim all rx mbufs (%d left)\n",
6150 fp->eth_q_stats.mbuf_alloc_rx);
6151 }
6152
6153 if (fp->eth_q_stats.mbuf_alloc_sge != 0) {
6154 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6155 fp->eth_q_stats.mbuf_alloc_sge);
6156 }
6157
6158 if (fp->eth_q_stats.mbuf_alloc_tpa != 0) {
6159 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6160 fp->eth_q_stats.mbuf_alloc_tpa);
6161 }
6162
6163 if (fp->eth_q_stats.mbuf_alloc_tx != 0) {
6164 BLOGE(sc, "failed to release tx mbufs (%d left)\n",
6165 fp->eth_q_stats.mbuf_alloc_tx);
6166 }
6167
6168 /* XXX verify all mbufs were reclaimed */
6169 }
6170}
6171
6172static int
6173bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
6174 uint16_t prev_index,
6175 uint16_t index)
6176{
6177 struct bxe_sw_rx_bd *rx_buf;
6178 struct eth_rx_bd *rx_bd;
6179 bus_dma_segment_t segs[1];
6180 bus_dmamap_t map;
6181 struct mbuf *m;
6182 int nsegs, rc;
6183
6184 rc = 0;
6185
6186 /* allocate the new RX BD mbuf */
6187 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6188 if (__predict_false(m == NULL)) {
6189 fp->eth_q_stats.mbuf_rx_bd_alloc_failed++;
6190 return (ENOBUFS);
6191 }
6192
6193 fp->eth_q_stats.mbuf_alloc_rx++;
6194
6195 /* initialize the mbuf buffer length */
6196 m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6197
6198 /* map the mbuf into non-paged pool */
6199 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6200 fp->rx_mbuf_spare_map,
6201 m, segs, &nsegs, BUS_DMA_NOWAIT);
6202 if (__predict_false(rc != 0)) {
6203 fp->eth_q_stats.mbuf_rx_bd_mapping_failed++;
6204 m_freem(m);
6205 fp->eth_q_stats.mbuf_alloc_rx--;
6206 return (rc);
6207 }
6208
6209 /* all mbufs must map to a single segment */
6210 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6211
6212 /* release any existing RX BD mbuf mappings */
6213
6214 if (prev_index != index) {
6215 rx_buf = &fp->rx_mbuf_chain[prev_index];
6216
6217 if (rx_buf->m_map != NULL) {
6218 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6219 BUS_DMASYNC_POSTREAD);
6220 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6221 }
6222
6223 /*
6224 * We only get here from bxe_rxeof() when the maximum number
6225 * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already
6226 * holds the mbuf in the prev_index so it's OK to NULL it out
6227 * here without concern of a memory leak.
6228 */
6229 fp->rx_mbuf_chain[prev_index].m = NULL;
6230 }
6231
6232 rx_buf = &fp->rx_mbuf_chain[index];
6233
6234 if (rx_buf->m_map != NULL) {
6235 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6236 BUS_DMASYNC_POSTREAD);
6237 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6238 }
6239
6240 /* save the mbuf and mapping info for a future packet */
6241 map = (prev_index != index) ?
6242 fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map;
6243 rx_buf->m_map = fp->rx_mbuf_spare_map;
6244 fp->rx_mbuf_spare_map = map;
6245 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6246 BUS_DMASYNC_PREREAD);
6247 rx_buf->m = m;
6248
6249 rx_bd = &fp->rx_chain[index];
6250 rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6251 rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6252
6253 return (rc);
6254}
6255
6256static int
6257bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
6258 int queue)
6259{
6260 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
6261 bus_dma_segment_t segs[1];
6262 bus_dmamap_t map;
6263 struct mbuf *m;
6264 int nsegs;
6265 int rc = 0;
6266
6267 /* allocate the new TPA mbuf */
6268 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6269 if (__predict_false(m == NULL)) {
6270 fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++;
6271 return (ENOBUFS);
6272 }
6273
6274 fp->eth_q_stats.mbuf_alloc_tpa++;
6275
6276 /* initialize the mbuf buffer length */
6277 m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6278
6279 /* map the mbuf into non-paged pool */
6280 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6281 fp->rx_tpa_info_mbuf_spare_map,
6282 m, segs, &nsegs, BUS_DMA_NOWAIT);
6283 if (__predict_false(rc != 0)) {
6284 fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++;
6285 m_free(m);
6286 fp->eth_q_stats.mbuf_alloc_tpa--;
6287 return (rc);
6288 }
6289
6290 /* all mbufs must map to a single segment */
6291 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6292
6293 /* release any existing TPA mbuf mapping */
6294 if (tpa_info->bd.m_map != NULL) {
6295 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6296 BUS_DMASYNC_POSTREAD);
6297 bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map);
6298 }
6299
6300 /* save the mbuf and mapping info for the TPA mbuf */
6301 map = tpa_info->bd.m_map;
6302 tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map;
6303 fp->rx_tpa_info_mbuf_spare_map = map;
6304 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6305 BUS_DMASYNC_PREREAD);
6306 tpa_info->bd.m = m;
6307 tpa_info->seg = segs[0];
6308
6309 return (rc);
6310}
6311
6312/*
6313 * Allocate an mbuf and assign it to the receive scatter gather chain. The
6314 * caller must take care to save a copy of the existing mbuf in the SG mbuf
6315 * chain.
6316 */
6317static int
6318bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
6319 uint16_t index)
6320{
6321 struct bxe_sw_rx_bd *sge_buf;
6322 struct eth_rx_sge *sge;
6323 bus_dma_segment_t segs[1];
6324 bus_dmamap_t map;
6325 struct mbuf *m;
6326 int nsegs;
6327 int rc = 0;
6328
6329 /* allocate a new SGE mbuf */
6330 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE);
6331 if (__predict_false(m == NULL)) {
6332 fp->eth_q_stats.mbuf_rx_sge_alloc_failed++;
6333 return (ENOMEM);
6334 }
6335
6336 fp->eth_q_stats.mbuf_alloc_sge++;
6337
6338 /* initialize the mbuf buffer length */
6339 m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE;
6340
6341 /* map the SGE mbuf into non-paged pool */
6342 rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag,
6343 fp->rx_sge_mbuf_spare_map,
6344 m, segs, &nsegs, BUS_DMA_NOWAIT);
6345 if (__predict_false(rc != 0)) {
6346 fp->eth_q_stats.mbuf_rx_sge_mapping_failed++;
6347 m_freem(m);
6348 fp->eth_q_stats.mbuf_alloc_sge--;
6349 return (rc);
6350 }
6351
6352 /* all mbufs must map to a single segment */
6353 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6354
6355 sge_buf = &fp->rx_sge_mbuf_chain[index];
6356
6357 /* release any existing SGE mbuf mapping */
6358 if (sge_buf->m_map != NULL) {
6359 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6360 BUS_DMASYNC_POSTREAD);
6361 bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map);
6362 }
6363
6364 /* save the mbuf and mapping info for a future packet */
6365 map = sge_buf->m_map;
6366 sge_buf->m_map = fp->rx_sge_mbuf_spare_map;
6367 fp->rx_sge_mbuf_spare_map = map;
6368 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6369 BUS_DMASYNC_PREREAD);
6370 sge_buf->m = m;
6371
6372 sge = &fp->rx_sge_chain[index];
6373 sge->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6374 sge->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6375
6376 return (rc);
6377}
6378
6379static __noinline int
6380bxe_alloc_fp_buffers(struct bxe_softc *sc)
6381{
6382 struct bxe_fastpath *fp;
6383 int i, j, rc = 0;
6384 int ring_prod, cqe_ring_prod;
6385 int max_agg_queues;
6386
6387 for (i = 0; i < sc->num_queues; i++) {
6388 fp = &sc->fp[i];
6389
6390 ring_prod = cqe_ring_prod = 0;
6391 fp->rx_bd_cons = 0;
6392 fp->rx_cq_cons = 0;
6393
6394 /* allocate buffers for the RX BDs in RX BD chain */
6395 for (j = 0; j < sc->max_rx_bufs; j++) {
6396 rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod);
6397 if (rc != 0) {
6398 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
6399 i, rc);
6400 goto bxe_alloc_fp_buffers_error;
6401 }
6402
6403 ring_prod = RX_BD_NEXT(ring_prod);
6404 cqe_ring_prod = RCQ_NEXT(cqe_ring_prod);
6405 }
6406
6407 fp->rx_bd_prod = ring_prod;
6408 fp->rx_cq_prod = cqe_ring_prod;
6409 fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0;
6410
6411 max_agg_queues = MAX_AGG_QS(sc);
6412
6413 fp->tpa_enable = TRUE;
6414
6415 /* fill the TPA pool */
6416 for (j = 0; j < max_agg_queues; j++) {
6417 rc = bxe_alloc_rx_tpa_mbuf(fp, j);
6418 if (rc != 0) {
6419 BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n",
6420 i, j);
6421 fp->tpa_enable = FALSE;
6422 goto bxe_alloc_fp_buffers_error;
6423 }
6424
6425 fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP;
6426 }
6427
6428 if (fp->tpa_enable) {
6429 /* fill the RX SGE chain */
6430 ring_prod = 0;
6431 for (j = 0; j < RX_SGE_USABLE; j++) {
6432 rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod);
6433 if (rc != 0) {
6434 BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n",
6435 i, ring_prod);
6436 fp->tpa_enable = FALSE;
6437 ring_prod = 0;
6438 goto bxe_alloc_fp_buffers_error;
6439 }
6440
6441 ring_prod = RX_SGE_NEXT(ring_prod);
6442 }
6443
6444 fp->rx_sge_prod = ring_prod;
6445 }
6446 }
6447
6448 return (0);
6449
6450bxe_alloc_fp_buffers_error:
6451
6452 /* unwind what was already allocated */
6453 bxe_free_rx_bd_chain(fp);
6454 bxe_free_tpa_pool(fp);
6455 bxe_free_sge_chain(fp);
6456
6457 return (ENOBUFS);
6458}
6459
6460static void
6461bxe_free_fw_stats_mem(struct bxe_softc *sc)
6462{
6463 bxe_dma_free(sc, &sc->fw_stats_dma);
6464
6465 sc->fw_stats_num = 0;
6466
6467 sc->fw_stats_req_size = 0;
6468 sc->fw_stats_req = NULL;
6469 sc->fw_stats_req_mapping = 0;
6470
6471 sc->fw_stats_data_size = 0;
6472 sc->fw_stats_data = NULL;
6473 sc->fw_stats_data_mapping = 0;
6474}
6475
6476static int
6477bxe_alloc_fw_stats_mem(struct bxe_softc *sc)
6478{
6479 uint8_t num_queue_stats;
6480 int num_groups;
6481
6482 /* number of queues for statistics is number of eth queues */
6483 num_queue_stats = BXE_NUM_ETH_QUEUES(sc);
6484
6485 /*
6486 * Total number of FW statistics requests =
6487 * 1 for port stats + 1 for PF stats + num of queues
6488 */
6489 sc->fw_stats_num = (2 + num_queue_stats);
6490
6491 /*
6492 * Request is built from stats_query_header and an array of
6493 * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
6494 * rules. The real number or requests is configured in the
6495 * stats_query_header.
6496 */
6497 num_groups =
6498 ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) +
6499 ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0));
6500
6501 BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n",
6502 sc->fw_stats_num, num_groups);
6503
6504 sc->fw_stats_req_size =
6505 (sizeof(struct stats_query_header) +
6506 (num_groups * sizeof(struct stats_query_cmd_group)));
6507
6508 /*
6509 * Data for statistics requests + stats_counter.
6510 * stats_counter holds per-STORM counters that are incremented when
6511 * STORM has finished with the current request. Memory for FCoE
6512 * offloaded statistics are counted anyway, even if they will not be sent.
6513 * VF stats are not accounted for here as the data of VF stats is stored
6514 * in memory allocated by the VF, not here.
6515 */
6516 sc->fw_stats_data_size =
6517 (sizeof(struct stats_counter) +
6518 sizeof(struct per_port_stats) +
6519 sizeof(struct per_pf_stats) +
6520 /* sizeof(struct fcoe_statistics_params) + */
6521 (sizeof(struct per_queue_stats) * num_queue_stats));
6522
6523 if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
6524 &sc->fw_stats_dma, "fw stats") != 0) {
6525 bxe_free_fw_stats_mem(sc);
6526 return (-1);
6527 }
6528
6529 /* set up the shortcuts */
6530
6531 sc->fw_stats_req =
6532 (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr;
6533 sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
6534
6535 sc->fw_stats_data =
6536 (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr +
6537 sc->fw_stats_req_size);
6538 sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
6539 sc->fw_stats_req_size);
6540
6541 BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n",
6542 (uintmax_t)sc->fw_stats_req_mapping);
6543
6544 BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n",
6545 (uintmax_t)sc->fw_stats_data_mapping);
6546
6547 return (0);
6548}
6549
6550/*
6551 * Bits map:
6552 * 0-7 - Engine0 load counter.
6553 * 8-15 - Engine1 load counter.
6554 * 16 - Engine0 RESET_IN_PROGRESS bit.
6555 * 17 - Engine1 RESET_IN_PROGRESS bit.
6556 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active
6557 * function on the engine
6558 * 19 - Engine1 ONE_IS_LOADED.
6559 * 20 - Chip reset flow bit. When set none-leader must wait for both engines
6560 * leader to complete (check for both RESET_IN_PROGRESS bits and not
6561 * for just the one belonging to its engine).
6562 */
6563#define BXE_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1
6564#define BXE_PATH0_LOAD_CNT_MASK 0x000000ff
6565#define BXE_PATH0_LOAD_CNT_SHIFT 0
6566#define BXE_PATH1_LOAD_CNT_MASK 0x0000ff00
6567#define BXE_PATH1_LOAD_CNT_SHIFT 8
6568#define BXE_PATH0_RST_IN_PROG_BIT 0x00010000
6569#define BXE_PATH1_RST_IN_PROG_BIT 0x00020000
6570#define BXE_GLOBAL_RESET_BIT 0x00040000
6571
6572/* set the GLOBAL_RESET bit, should be run under rtnl lock */
6573static void
6574bxe_set_reset_global(struct bxe_softc *sc)
6575{
6576 uint32_t val;
6577 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6578 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6579 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT);
6580 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6581}
6582
6583/* clear the GLOBAL_RESET bit, should be run under rtnl lock */
6584static void
6585bxe_clear_reset_global(struct bxe_softc *sc)
6586{
6587 uint32_t val;
6588 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6589 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6590 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT));
6591 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6592}
6593
6594/* checks the GLOBAL_RESET bit, should be run under rtnl lock */
6595static uint8_t
6596bxe_reset_is_global(struct bxe_softc *sc)
6597{
6598 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6599 BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val);
6600 return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE;
6601}
6602
6603/* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
6604static void
6605bxe_set_reset_done(struct bxe_softc *sc)
6606{
6607 uint32_t val;
6608 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
6609 BXE_PATH0_RST_IN_PROG_BIT;
6610
6611 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6612
6613 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6614 /* Clear the bit */
6615 val &= ~bit;
6616 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6617
6618 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6619}
6620
6621/* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
6622static void
6623bxe_set_reset_in_progress(struct bxe_softc *sc)
6624{
6625 uint32_t val;
6626 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
6627 BXE_PATH0_RST_IN_PROG_BIT;
6628
6629 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6630
6631 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6632 /* Set the bit */
6633 val |= bit;
6634 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6635
6636 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6637}
6638
6639/* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
6640static uint8_t
6641bxe_reset_is_done(struct bxe_softc *sc,
6642 int engine)
6643{
6644 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6645 uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT :
6646 BXE_PATH0_RST_IN_PROG_BIT;
6647
6648 /* return false if bit is set */
6649 return (val & bit) ? FALSE : TRUE;
6650}
6651
6652/* get the load status for an engine, should be run under rtnl lock */
6653static uint8_t
6654bxe_get_load_status(struct bxe_softc *sc,
6655 int engine)
6656{
6657 uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK :
6658 BXE_PATH0_LOAD_CNT_MASK;
6659 uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT :
6660 BXE_PATH0_LOAD_CNT_SHIFT;
6661 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6662
6663 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
6664
6665 val = ((val & mask) >> shift);
6666
6667 BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val);
6668
6669 return (val != 0);
6670}
6671
6672/* set pf load mark */
6673/* XXX needs to be under rtnl lock */
6674static void
6675bxe_set_pf_load(struct bxe_softc *sc)
6676{
6677 uint32_t val;
6678 uint32_t val1;
6679 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
6680 BXE_PATH0_LOAD_CNT_MASK;
6681 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
6682 BXE_PATH0_LOAD_CNT_SHIFT;
6683
6684 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6685
6686 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6687 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
6688
6689 /* get the current counter value */
6690 val1 = ((val & mask) >> shift);
6691
6692 /* set bit of this PF */
6693 val1 |= (1 << SC_ABS_FUNC(sc));
6694
6695 /* clear the old value */
6696 val &= ~mask;
6697
6698 /* set the new one */
6699 val |= ((val1 << shift) & mask);
6700
6701 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6702
6703 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6704}
6705
6706/* clear pf load mark */
6707/* XXX needs to be under rtnl lock */
6708static uint8_t
6709bxe_clear_pf_load(struct bxe_softc *sc)
6710{
6711 uint32_t val1, val;
6712 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
6713 BXE_PATH0_LOAD_CNT_MASK;
6714 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
6715 BXE_PATH0_LOAD_CNT_SHIFT;
6716
6717 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6718 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6719 BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val);
6720
6721 /* get the current counter value */
6722 val1 = (val & mask) >> shift;
6723
6724 /* clear bit of that PF */
6725 val1 &= ~(1 << SC_ABS_FUNC(sc));
6726
6727 /* clear the old value */
6728 val &= ~mask;
6729
6730 /* set the new one */
6731 val |= ((val1 << shift) & mask);
6732
6733 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6734 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6735 return (val1 != 0);
6736}
6737
6738/* send load requrest to mcp and analyze response */
6739static int
6740bxe_nic_load_request(struct bxe_softc *sc,
6741 uint32_t *load_code)
6742{
6743 /* init fw_seq */
6744 sc->fw_seq =
6745 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
6746 DRV_MSG_SEQ_NUMBER_MASK);
6747
6748 BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq);
6749
6750 /* get the current FW pulse sequence */
6751 sc->fw_drv_pulse_wr_seq =
6752 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
6753 DRV_PULSE_SEQ_MASK);
6754
6755 BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n",
6756 sc->fw_drv_pulse_wr_seq);
6757
6758 /* load request */
6759 (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
6760 DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
6761
6762 /* if the MCP fails to respond we must abort */
6763 if (!(*load_code)) {
6764 BLOGE(sc, "MCP response failure!\n");
6765 return (-1);
6766 }
6767
6768 /* if MCP refused then must abort */
6769 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
6770 BLOGE(sc, "MCP refused load request\n");
6771 return (-1);
6772 }
6773
6774 return (0);
6775}
6776
6777/*
6778 * Check whether another PF has already loaded FW to chip. In virtualized
6779 * environments a pf from anoth VM may have already initialized the device
6780 * including loading FW.
6781 */
6782static int
6783bxe_nic_load_analyze_req(struct bxe_softc *sc,
6784 uint32_t load_code)
6785{
6786 uint32_t my_fw, loaded_fw;
6787
6788 /* is another pf loaded on this engine? */
6789 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
6790 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
6791 /* build my FW version dword */
6792 my_fw = (BCM_5710_FW_MAJOR_VERSION +
6793 (BCM_5710_FW_MINOR_VERSION << 8 ) +
6794 (BCM_5710_FW_REVISION_VERSION << 16) +
6795 (BCM_5710_FW_ENGINEERING_VERSION << 24));
6796
6797 /* read loaded FW from chip */
6798 loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
6799 BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n",
6800 loaded_fw, my_fw);
6801
6802 /* abort nic load if version mismatch */
6803 if (my_fw != loaded_fw) {
6804 BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)",
6805 loaded_fw, my_fw);
6806 return (-1);
6807 }
6808 }
6809
6810 return (0);
6811}
6812
6813/* mark PMF if applicable */
6814static void
6815bxe_nic_load_pmf(struct bxe_softc *sc,
6816 uint32_t load_code)
6817{
6818 uint32_t ncsi_oem_data_addr;
6819
6820 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
6821 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
6822 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
6823 /*
6824 * Barrier here for ordering between the writing to sc->port.pmf here
6825 * and reading it from the periodic task.
6826 */
6827 sc->port.pmf = 1;
6828 mb();
6829 } else {
6830 sc->port.pmf = 0;
6831 }
6832
6833 BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf);
6834
6835 /* XXX needed? */
6836 if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
6837 if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
6838 ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
6839 if (ncsi_oem_data_addr) {
6840 REG_WR(sc,
6841 (ncsi_oem_data_addr +
6842 offsetof(struct glob_ncsi_oem_data, driver_version)),
6843 0);
6844 }
6845 }
6846 }
6847}
6848
6849static void
6850bxe_read_mf_cfg(struct bxe_softc *sc)
6851{
6852 int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
6853 int abs_func;
6854 int vn;
6855
6856 if (BXE_NOMCP(sc)) {
6857 return; /* what should be the default bvalue in this case */
6858 }
6859
6860 /*
6861 * The formula for computing the absolute function number is...
6862 * For 2 port configuration (4 functions per port):
6863 * abs_func = 2 * vn + SC_PORT + SC_PATH
6864 * For 4 port configuration (2 functions per port):
6865 * abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
6866 */
6867 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
6868 abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
6869 if (abs_func >= E1H_FUNC_MAX) {
6870 break;
6871 }
6872 sc->devinfo.mf_info.mf_config[vn] =
6873 MFCFG_RD(sc, func_mf_config[abs_func].config);
6874 }
6875
6876 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
6877 FUNC_MF_CFG_FUNC_DISABLED) {
6878 BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n");
6879 sc->flags |= BXE_MF_FUNC_DIS;
6880 } else {
6881 BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n");
6882 sc->flags &= ~BXE_MF_FUNC_DIS;
6883 }
6884}
6885
6886/* acquire split MCP access lock register */
6887static int bxe_acquire_alr(struct bxe_softc *sc)
6888{
6889 uint32_t j, val;
6890
6891 for (j = 0; j < 1000; j++) {
6892 val = (1UL << 31);
6893 REG_WR(sc, GRCBASE_MCP + 0x9c, val);
6894 val = REG_RD(sc, GRCBASE_MCP + 0x9c);
6895 if (val & (1L << 31))
6896 break;
6897
6898 DELAY(5000);
6899 }
6900
6901 if (!(val & (1L << 31))) {
6902 BLOGE(sc, "Cannot acquire MCP access lock register\n");
6903 return (-1);
6904 }
6905
6906 return (0);
6907}
6908
6909/* release split MCP access lock register */
6910static void bxe_release_alr(struct bxe_softc *sc)
6911{
6912 REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
6913}
6914
6915static void
6916bxe_fan_failure(struct bxe_softc *sc)
6917{
6918 int port = SC_PORT(sc);
6919 uint32_t ext_phy_config;
6920
6921 /* mark the failure */
6922 ext_phy_config =
6923 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
6924
6925 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
6926 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
6927 SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
6928 ext_phy_config);
6929
6930 /* log the failure */
6931 BLOGW(sc, "Fan Failure has caused the driver to shutdown "
6932 "the card to prevent permanent damage. "
6933 "Please contact OEM Support for assistance\n");
6934
6935 /* XXX */
6936#if 1
6937 bxe_panic(sc, ("Schedule task to handle fan failure\n"));
6938#else
6939 /*
6940 * Schedule device reset (unload)
6941 * This is due to some boards consuming sufficient power when driver is
6942 * up to overheat if fan fails.
6943 */
6944 bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state);
6945 schedule_delayed_work(&sc->sp_rtnl_task, 0);
6946#endif
6947}
6948
6949/* this function is called upon a link interrupt */
6950static void
6951bxe_link_attn(struct bxe_softc *sc)
6952{
6953 uint32_t pause_enabled = 0;
6954 struct host_port_stats *pstats;
6955 int cmng_fns;
6956
6957 /* Make sure that we are synced with the current statistics */
6958 bxe_stats_handle(sc, STATS_EVENT_STOP);
6959
6960 elink_link_update(&sc->link_params, &sc->link_vars);
6961
6962 if (sc->link_vars.link_up) {
6963
6964 /* dropless flow control */
6965 if (!CHIP_IS_E1(sc) && sc->dropless_fc) {
6966 pause_enabled = 0;
6967
6968 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
6969 pause_enabled = 1;
6970 }
6971
6972 REG_WR(sc,
6973 (BAR_USTRORM_INTMEM +
6974 USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
6975 pause_enabled);
6976 }
6977
6978 if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
6979 pstats = BXE_SP(sc, port_stats);
6980 /* reset old mac stats */
6981 memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx));
6982 }
6983
6984 if (sc->state == BXE_STATE_OPEN) {
6985 bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
6986 }
6987 }
6988
6989 if (sc->link_vars.link_up && sc->link_vars.line_speed) {
6990 cmng_fns = bxe_get_cmng_fns_mode(sc);
6991
6992 if (cmng_fns != CMNG_FNS_NONE) {
6993 bxe_cmng_fns_init(sc, FALSE, cmng_fns);
6994 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
6995 } else {
6996 /* rate shaping and fairness are disabled */
6997 BLOGD(sc, DBG_LOAD, "single function mode without fairness\n");
6998 }
6999 }
7000
7001 bxe_link_report_locked(sc);
7002
7003 if (IS_MF(sc)) {
7004 ; // XXX bxe_link_sync_notify(sc);
7005 }
7006}
7007
7008static void
7009bxe_attn_int_asserted(struct bxe_softc *sc,
7010 uint32_t asserted)
7011{
7012 int port = SC_PORT(sc);
7013 uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
7014 MISC_REG_AEU_MASK_ATTN_FUNC_0;
7015 uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
7016 NIG_REG_MASK_INTERRUPT_PORT0;
7017 uint32_t aeu_mask;
7018 uint32_t nig_mask = 0;
7019 uint32_t reg_addr;
7020 uint32_t igu_acked;
7021 uint32_t cnt;
7022
7023 if (sc->attn_state & asserted) {
7024 BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted);
7025 }
7026
7027 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7028
7029 aeu_mask = REG_RD(sc, aeu_addr);
7030
7031 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n",
7032 aeu_mask, asserted);
7033
7034 aeu_mask &= ~(asserted & 0x3ff);
7035
7036 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
7037
7038 REG_WR(sc, aeu_addr, aeu_mask);
7039
7040 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7041
7042 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
7043 sc->attn_state |= asserted;
7044 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
7045
7046 if (asserted & ATTN_HARD_WIRED_MASK) {
7047 if (asserted & ATTN_NIG_FOR_FUNC) {
7048
7049 bxe_acquire_phy_lock(sc);
7050 /* save nig interrupt mask */
7051 nig_mask = REG_RD(sc, nig_int_mask_addr);
7052
7053 /* If nig_mask is not set, no need to call the update function */
7054 if (nig_mask) {
7055 REG_WR(sc, nig_int_mask_addr, 0);
7056
7057 bxe_link_attn(sc);
7058 }
7059
7060 /* handle unicore attn? */
7061 }
7062
7063 if (asserted & ATTN_SW_TIMER_4_FUNC) {
7064 BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n");
7065 }
7066
7067 if (asserted & GPIO_2_FUNC) {
7068 BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n");
7069 }
7070
7071 if (asserted & GPIO_3_FUNC) {
7072 BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n");
7073 }
7074
7075 if (asserted & GPIO_4_FUNC) {
7076 BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n");
7077 }
7078
7079 if (port == 0) {
7080 if (asserted & ATTN_GENERAL_ATTN_1) {
7081 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n");
7082 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
7083 }
7084 if (asserted & ATTN_GENERAL_ATTN_2) {
7085 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n");
7086 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
7087 }
7088 if (asserted & ATTN_GENERAL_ATTN_3) {
7089 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n");
7090 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
7091 }
7092 } else {
7093 if (asserted & ATTN_GENERAL_ATTN_4) {
7094 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n");
7095 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
7096 }
7097 if (asserted & ATTN_GENERAL_ATTN_5) {
7098 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n");
7099 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
7100 }
7101 if (asserted & ATTN_GENERAL_ATTN_6) {
7102 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n");
7103 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
7104 }
7105 }
7106 } /* hardwired */
7107
7108 if (sc->devinfo.int_block == INT_BLOCK_HC) {
7109 reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET);
7110 } else {
7111 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
7112 }
7113
7114 BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n",
7115 asserted,
7116 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
7117 REG_WR(sc, reg_addr, asserted);
7118
7119 /* now set back the mask */
7120 if (asserted & ATTN_NIG_FOR_FUNC) {
7121 /*
7122 * Verify that IGU ack through BAR was written before restoring
7123 * NIG mask. This loop should exit after 2-3 iterations max.
7124 */
7125 if (sc->devinfo.int_block != INT_BLOCK_HC) {
7126 cnt = 0;
7127
7128 do {
7129 igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
7130 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
7131 (++cnt < MAX_IGU_ATTN_ACK_TO));
7132
7133 if (!igu_acked) {
7134 BLOGE(sc, "Failed to verify IGU ack on time\n");
7135 }
7136
7137 mb();
7138 }
7139
7140 REG_WR(sc, nig_int_mask_addr, nig_mask);
7141
7142 bxe_release_phy_lock(sc);
7143 }
7144}
7145
7146static void
7147bxe_print_next_block(struct bxe_softc *sc,
7148 int idx,
7149 const char *blk)
7150{
7151 BLOGI(sc, "%s%s", idx ? ", " : "", blk);
7152}
7153
7154static int
7155bxe_check_blocks_with_parity0(struct bxe_softc *sc,
7156 uint32_t sig,
7157 int par_num,
7158 uint8_t print)
7159{
7160 uint32_t cur_bit = 0;
7161 int i = 0;
7162
7163 for (i = 0; sig; i++) {
7164 cur_bit = ((uint32_t)0x1 << i);
7165 if (sig & cur_bit) {
7166 switch (cur_bit) {
7167 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
7168 if (print)
7169 bxe_print_next_block(sc, par_num++, "BRB");
7170 break;
7171 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
7172 if (print)
7173 bxe_print_next_block(sc, par_num++, "PARSER");
7174 break;
7175 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
7176 if (print)
7177 bxe_print_next_block(sc, par_num++, "TSDM");
7178 break;
7179 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
7180 if (print)
7181 bxe_print_next_block(sc, par_num++, "SEARCHER");
7182 break;
7183 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
7184 if (print)
7185 bxe_print_next_block(sc, par_num++, "TCM");
7186 break;
7187 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
7188 if (print)
7189 bxe_print_next_block(sc, par_num++, "TSEMI");
7190 break;
7191 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
7192 if (print)
7193 bxe_print_next_block(sc, par_num++, "XPB");
7194 break;
7195 }
7196
7197 /* Clear the bit */
7198 sig &= ~cur_bit;
7199 }
7200 }
7201
7202 return (par_num);
7203}
7204
7205static int
7206bxe_check_blocks_with_parity1(struct bxe_softc *sc,
7207 uint32_t sig,
7208 int par_num,
7209 uint8_t *global,
7210 uint8_t print)
7211{
7212 int i = 0;
7213 uint32_t cur_bit = 0;
7214 for (i = 0; sig; i++) {
7215 cur_bit = ((uint32_t)0x1 << i);
7216 if (sig & cur_bit) {
7217 switch (cur_bit) {
7218 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
7219 if (print)
7220 bxe_print_next_block(sc, par_num++, "PBF");
7221 break;
7222 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
7223 if (print)
7224 bxe_print_next_block(sc, par_num++, "QM");
7225 break;
7226 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
7227 if (print)
7228 bxe_print_next_block(sc, par_num++, "TM");
7229 break;
7230 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
7231 if (print)
7232 bxe_print_next_block(sc, par_num++, "XSDM");
7233 break;
7234 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
7235 if (print)
7236 bxe_print_next_block(sc, par_num++, "XCM");
7237 break;
7238 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
7239 if (print)
7240 bxe_print_next_block(sc, par_num++, "XSEMI");
7241 break;
7242 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
7243 if (print)
7244 bxe_print_next_block(sc, par_num++, "DOORBELLQ");
7245 break;
7246 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
7247 if (print)
7248 bxe_print_next_block(sc, par_num++, "NIG");
7249 break;
7250 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
7251 if (print)
7252 bxe_print_next_block(sc, par_num++, "VAUX PCI CORE");
7253 *global = TRUE;
7254 break;
7255 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
7256 if (print)
7257 bxe_print_next_block(sc, par_num++, "DEBUG");
7258 break;
7259 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
7260 if (print)
7261 bxe_print_next_block(sc, par_num++, "USDM");
7262 break;
7263 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
7264 if (print)
7265 bxe_print_next_block(sc, par_num++, "UCM");
7266 break;
7267 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
7268 if (print)
7269 bxe_print_next_block(sc, par_num++, "USEMI");
7270 break;
7271 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
7272 if (print)
7273 bxe_print_next_block(sc, par_num++, "UPB");
7274 break;
7275 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
7276 if (print)
7277 bxe_print_next_block(sc, par_num++, "CSDM");
7278 break;
7279 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
7280 if (print)
7281 bxe_print_next_block(sc, par_num++, "CCM");
7282 break;
7283 }
7284
7285 /* Clear the bit */
7286 sig &= ~cur_bit;
7287 }
7288 }
7289
7290 return (par_num);
7291}
7292
7293static int
7294bxe_check_blocks_with_parity2(struct bxe_softc *sc,
7295 uint32_t sig,
7296 int par_num,
7297 uint8_t print)
7298{
7299 uint32_t cur_bit = 0;
7300 int i = 0;
7301
7302 for (i = 0; sig; i++) {
7303 cur_bit = ((uint32_t)0x1 << i);
7304 if (sig & cur_bit) {
7305 switch (cur_bit) {
7306 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
7307 if (print)
7308 bxe_print_next_block(sc, par_num++, "CSEMI");
7309 break;
7310 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
7311 if (print)
7312 bxe_print_next_block(sc, par_num++, "PXP");
7313 break;
7314 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
7315 if (print)
7316 bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT");
7317 break;
7318 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
7319 if (print)
7320 bxe_print_next_block(sc, par_num++, "CFC");
7321 break;
7322 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
7323 if (print)
7324 bxe_print_next_block(sc, par_num++, "CDU");
7325 break;
7326 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
7327 if (print)
7328 bxe_print_next_block(sc, par_num++, "DMAE");
7329 break;
7330 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
7331 if (print)
7332 bxe_print_next_block(sc, par_num++, "IGU");
7333 break;
7334 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
7335 if (print)
7336 bxe_print_next_block(sc, par_num++, "MISC");
7337 break;
7338 }
7339
7340 /* Clear the bit */
7341 sig &= ~cur_bit;
7342 }
7343 }
7344
7345 return (par_num);
7346}
7347
7348static int
7349bxe_check_blocks_with_parity3(struct bxe_softc *sc,
7350 uint32_t sig,
7351 int par_num,
7352 uint8_t *global,
7353 uint8_t print)
7354{
7355 uint32_t cur_bit = 0;
7356 int i = 0;
7357
7358 for (i = 0; sig; i++) {
7359 cur_bit = ((uint32_t)0x1 << i);
7360 if (sig & cur_bit) {
7361 switch (cur_bit) {
7362 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
7363 if (print)
7364 bxe_print_next_block(sc, par_num++, "MCP ROM");
7365 *global = TRUE;
7366 break;
7367 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
7368 if (print)
7369 bxe_print_next_block(sc, par_num++,
7370 "MCP UMP RX");
7371 *global = TRUE;
7372 break;
7373 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
7374 if (print)
7375 bxe_print_next_block(sc, par_num++,
7376 "MCP UMP TX");
7377 *global = TRUE;
7378 break;
7379 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
7380 if (print)
7381 bxe_print_next_block(sc, par_num++,
7382 "MCP SCPAD");
7383 *global = TRUE;
7384 break;
7385 }
7386
7387 /* Clear the bit */
7388 sig &= ~cur_bit;
7389 }
7390 }
7391
7392 return (par_num);
7393}
7394
7395static int
7396bxe_check_blocks_with_parity4(struct bxe_softc *sc,
7397 uint32_t sig,
7398 int par_num,
7399 uint8_t print)
7400{
7401 uint32_t cur_bit = 0;
7402 int i = 0;
7403
7404 for (i = 0; sig; i++) {
7405 cur_bit = ((uint32_t)0x1 << i);
7406 if (sig & cur_bit) {
7407 switch (cur_bit) {
7408 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
7409 if (print)
7410 bxe_print_next_block(sc, par_num++, "PGLUE_B");
7411 break;
7412 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
7413 if (print)
7414 bxe_print_next_block(sc, par_num++, "ATC");
7415 break;
7416 }
7417
7418 /* Clear the bit */
7419 sig &= ~cur_bit;
7420 }
7421 }
7422
7423 return (par_num);
7424}
7425
7426static uint8_t
7427bxe_parity_attn(struct bxe_softc *sc,
7428 uint8_t *global,
7429 uint8_t print,
7430 uint32_t *sig)
7431{
7432 int par_num = 0;
7433
7434 if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
7435 (sig[1] & HW_PRTY_ASSERT_SET_1) ||
7436 (sig[2] & HW_PRTY_ASSERT_SET_2) ||
7437 (sig[3] & HW_PRTY_ASSERT_SET_3) ||
7438 (sig[4] & HW_PRTY_ASSERT_SET_4)) {
7439 BLOGE(sc, "Parity error: HW block parity attention:\n"
7440 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
7441 (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0),
7442 (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1),
7443 (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2),
7444 (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3),
7445 (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4));
7446
7447 if (print)
7448 BLOGI(sc, "Parity errors detected in blocks: ");
7449
7450 par_num =
7451 bxe_check_blocks_with_parity0(sc, sig[0] &
7452 HW_PRTY_ASSERT_SET_0,
7453 par_num, print);
7454 par_num =
7455 bxe_check_blocks_with_parity1(sc, sig[1] &
7456 HW_PRTY_ASSERT_SET_1,
7457 par_num, global, print);
7458 par_num =
7459 bxe_check_blocks_with_parity2(sc, sig[2] &
7460 HW_PRTY_ASSERT_SET_2,
7461 par_num, print);
7462 par_num =
7463 bxe_check_blocks_with_parity3(sc, sig[3] &
7464 HW_PRTY_ASSERT_SET_3,
7465 par_num, global, print);
7466 par_num =
7467 bxe_check_blocks_with_parity4(sc, sig[4] &
7468 HW_PRTY_ASSERT_SET_4,
7469 par_num, print);
7470
7471 if (print)
7472 BLOGI(sc, "\n");
7473
7474 return (TRUE);
7475 }
7476
7477 return (FALSE);
7478}
7479
7480static uint8_t
7481bxe_chk_parity_attn(struct bxe_softc *sc,
7482 uint8_t *global,
7483 uint8_t print)
7484{
7485 struct attn_route attn = { {0} };
7486 int port = SC_PORT(sc);
7487
7488 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
7489 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
7490 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
7491 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
7492
7493 /*
7494 * Since MCP attentions can't be disabled inside the block, we need to
7495 * read AEU registers to see whether they're currently disabled
7496 */
7497 attn.sig[3] &= ((REG_RD(sc, (!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
7498 : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0)) &
7499 MISC_AEU_ENABLE_MCP_PRTY_BITS) |
7500 ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
7501
7502
7503 if (!CHIP_IS_E1x(sc))
7504 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
7505
7506 return (bxe_parity_attn(sc, global, print, attn.sig));
7507}
7508
7509static void
7510bxe_attn_int_deasserted4(struct bxe_softc *sc,
7511 uint32_t attn)
7512{
7513 uint32_t val;
7514
7515 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
7516 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
7517 BLOGE(sc, "PGLUE hw attention 0x%08x\n", val);
7518 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
7519 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
7520 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
7521 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
7522 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
7523 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
7524 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
7525 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
7526 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
7527 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
7528 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
7529 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
7530 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
7531 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
7532 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
7533 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
7534 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
7535 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
7536 }
7537
7538 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
7539 val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
7540 BLOGE(sc, "ATC hw attention 0x%08x\n", val);
7541 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
7542 BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
7543 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
7544 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
7545 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
7546 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
7547 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
7548 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
7549 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
7550 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
7551 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
7552 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
7553 }
7554
7555 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7556 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
7557 BLOGE(sc, "FATAL parity attention set4 0x%08x\n",
7558 (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7559 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
7560 }
7561}
7562
7563static void
7564bxe_e1h_disable(struct bxe_softc *sc)
7565{
7566 int port = SC_PORT(sc);
7567
7568 bxe_tx_disable(sc);
7569
7570 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7571}
7572
7573static void
7574bxe_e1h_enable(struct bxe_softc *sc)
7575{
7576 int port = SC_PORT(sc);
7577
7578 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7579
7580 // XXX bxe_tx_enable(sc);
7581}
7582
7583/*
7584 * called due to MCP event (on pmf):
7585 * reread new bandwidth configuration
7586 * configure FW
7587 * notify others function about the change
7588 */
7589static void
7590bxe_config_mf_bw(struct bxe_softc *sc)
7591{
7592 if (sc->link_vars.link_up) {
7593 bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
7594 // XXX bxe_link_sync_notify(sc);
7595 }
7596
7597 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7598}
7599
7600static void
7601bxe_set_mf_bw(struct bxe_softc *sc)
7602{
7603 bxe_config_mf_bw(sc);
7604 bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
7605}
7606
7607static void
7608bxe_handle_eee_event(struct bxe_softc *sc)
7609{
7610 BLOGD(sc, DBG_INTR, "EEE - LLDP event\n");
7611 bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
7612}
7613
7614#define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
7615
7616static void
7617bxe_drv_info_ether_stat(struct bxe_softc *sc)
7618{
7619 struct eth_stats_info *ether_stat =
7620 &sc->sp->drv_info_to_mcp.ether_stat;
7621
7622 strlcpy(ether_stat->version, BXE_DRIVER_VERSION,
7623 ETH_STAT_INFO_VERSION_LEN);
7624
7625 /* XXX (+ MAC_PAD) taken from other driver... verify this is right */
7626 sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
7627 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
7628 ether_stat->mac_local + MAC_PAD,
7629 MAC_PAD, ETH_ALEN);
7630
7631 ether_stat->mtu_size = sc->mtu;
7632
7633 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
7634 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
7635 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
7636 }
7637
7638 // XXX ether_stat->feature_flags |= ???;
7639
7640 ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0;
7641
7642 ether_stat->txq_size = sc->tx_ring_size;
7643 ether_stat->rxq_size = sc->rx_ring_size;
7644}
7645
7646static void
7647bxe_handle_drv_info_req(struct bxe_softc *sc)
7648{
7649 enum drv_info_opcode op_code;
7650 uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
7651
7652 /* if drv_info version supported by MFW doesn't match - send NACK */
7653 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
7654 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
7655 return;
7656 }
7657
7658 op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
7659 DRV_INFO_CONTROL_OP_CODE_SHIFT);
7660
7661 memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
7662
7663 switch (op_code) {
7664 case ETH_STATS_OPCODE:
7665 bxe_drv_info_ether_stat(sc);
7666 break;
7667 case FCOE_STATS_OPCODE:
7668 case ISCSI_STATS_OPCODE:
7669 default:
7670 /* if op code isn't supported - send NACK */
7671 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
7672 return;
7673 }
7674
7675 /*
7676 * If we got drv_info attn from MFW then these fields are defined in
7677 * shmem2 for sure
7678 */
7679 SHMEM2_WR(sc, drv_info_host_addr_lo,
7680 U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
7681 SHMEM2_WR(sc, drv_info_host_addr_hi,
7682 U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
7683
7684 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
7685}
7686
7687static void
7688bxe_dcc_event(struct bxe_softc *sc,
7689 uint32_t dcc_event)
7690{
7691 BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event);
7692
7693 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
7694 /*
7695 * This is the only place besides the function initialization
7696 * where the sc->flags can change so it is done without any
7697 * locks
7698 */
7699 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
7700 BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n");
7701 sc->flags |= BXE_MF_FUNC_DIS;
7702 bxe_e1h_disable(sc);
7703 } else {
7704 BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n");
7705 sc->flags &= ~BXE_MF_FUNC_DIS;
7706 bxe_e1h_enable(sc);
7707 }
7708 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
7709 }
7710
7711 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
7712 bxe_config_mf_bw(sc);
7713 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
7714 }
7715
7716 /* Report results to MCP */
7717 if (dcc_event)
7718 bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
7719 else
7720 bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
7721}
7722
7723static void
7724bxe_pmf_update(struct bxe_softc *sc)
7725{
7726 int port = SC_PORT(sc);
7727 uint32_t val;
7728
7729 sc->port.pmf = 1;
7730 BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf);
7731
7732 /*
7733 * We need the mb() to ensure the ordering between the writing to
7734 * sc->port.pmf here and reading it from the bxe_periodic_task().
7735 */
7736 mb();
7737
7738 /* queue a periodic task */
7739 // XXX schedule task...
7740
7741 // XXX bxe_dcbx_pmf_update(sc);
7742
7743 /* enable nig attention */
7744 val = (0xff0f | (1 << (SC_VN(sc) + 4)));
7745 if (sc->devinfo.int_block == INT_BLOCK_HC) {
7746 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val);
7747 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val);
7748 } else if (!CHIP_IS_E1x(sc)) {
7749 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
7750 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
7751 }
7752
7753 bxe_stats_handle(sc, STATS_EVENT_PMF);
7754}
7755
7756static int
7757bxe_mc_assert(struct bxe_softc *sc)
7758{
7759 char last_idx;
7760 int i, rc = 0;
7761 uint32_t row0, row1, row2, row3;
7762
7763 /* XSTORM */
7764 last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
7765 if (last_idx)
7766 BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7767
7768 /* print the asserts */
7769 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7770
7771 row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
7772 row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4);
7773 row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8);
7774 row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12);
7775
7776 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7777 BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7778 i, row3, row2, row1, row0);
7779 rc++;
7780 } else {
7781 break;
7782 }
7783 }
7784
7785 /* TSTORM */
7786 last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
7787 if (last_idx) {
7788 BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7789 }
7790
7791 /* print the asserts */
7792 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7793
7794 row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
7795 row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4);
7796 row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8);
7797 row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12);
7798
7799 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7800 BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7801 i, row3, row2, row1, row0);
7802 rc++;
7803 } else {
7804 break;
7805 }
7806 }
7807
7808 /* CSTORM */
7809 last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
7810 if (last_idx) {
7811 BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7812 }
7813
7814 /* print the asserts */
7815 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7816
7817 row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
7818 row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4);
7819 row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8);
7820 row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12);
7821
7822 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7823 BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7824 i, row3, row2, row1, row0);
7825 rc++;
7826 } else {
7827 break;
7828 }
7829 }
7830
7831 /* USTORM */
7832 last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
7833 if (last_idx) {
7834 BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7835 }
7836
7837 /* print the asserts */
7838 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7839
7840 row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
7841 row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4);
7842 row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8);
7843 row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12);
7844
7845 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7846 BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7847 i, row3, row2, row1, row0);
7848 rc++;
7849 } else {
7850 break;
7851 }
7852 }
7853
7854 return (rc);
7855}
7856
7857static void
7858bxe_attn_int_deasserted3(struct bxe_softc *sc,
7859 uint32_t attn)
7860{
7861 int func = SC_FUNC(sc);
7862 uint32_t val;
7863
7864 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
7865
7866 if (attn & BXE_PMF_LINK_ASSERT(sc)) {
7867
7868 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7869 bxe_read_mf_cfg(sc);
7870 sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
7871 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
7872 val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
7873
7874 if (val & DRV_STATUS_DCC_EVENT_MASK)
7875 bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK));
7876
7877 if (val & DRV_STATUS_SET_MF_BW)
7878 bxe_set_mf_bw(sc);
7879
7880 if (val & DRV_STATUS_DRV_INFO_REQ)
7881 bxe_handle_drv_info_req(sc);
7882
7883 if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
7884 bxe_pmf_update(sc);
7885
7886 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
7887 bxe_handle_eee_event(sc);
7888
7889 if (sc->link_vars.periodic_flags &
7890 ELINK_PERIODIC_FLAGS_LINK_EVENT) {
7891 /* sync with link */
7892 bxe_acquire_phy_lock(sc);
7893 sc->link_vars.periodic_flags &=
7894 ~ELINK_PERIODIC_FLAGS_LINK_EVENT;
7895 bxe_release_phy_lock(sc);
7896 if (IS_MF(sc))
7897 ; // XXX bxe_link_sync_notify(sc);
7898 bxe_link_report(sc);
7899 }
7900
7901 /*
7902 * Always call it here: bxe_link_report() will
7903 * prevent the link indication duplication.
7904 */
7905 bxe_link_status_update(sc);
7906
7907 } else if (attn & BXE_MC_ASSERT_BITS) {
7908
7909 BLOGE(sc, "MC assert!\n");
7910 bxe_mc_assert(sc);
7911 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
7912 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
7913 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
7914 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
7915 bxe_panic(sc, ("MC assert!\n"));
7916
7917 } else if (attn & BXE_MCP_ASSERT) {
7918
7919 BLOGE(sc, "MCP assert!\n");
7920 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
7921 // XXX bxe_fw_dump(sc);
7922
7923 } else {
7924 BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn);
7925 }
7926 }
7927
7928 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
7929 BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn);
7930 if (attn & BXE_GRC_TIMEOUT) {
7931 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
7932 BLOGE(sc, "GRC time-out 0x%08x\n", val);
7933 }
7934 if (attn & BXE_GRC_RSV) {
7935 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
7936 BLOGE(sc, "GRC reserved 0x%08x\n", val);
7937 }
7938 REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
7939 }
7940}
7941
7942static void
7943bxe_attn_int_deasserted2(struct bxe_softc *sc,
7944 uint32_t attn)
7945{
7946 int port = SC_PORT(sc);
7947 int reg_offset;
7948 uint32_t val0, mask0, val1, mask1;
7949 uint32_t val;
7950
7951 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
7952 val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
7953 BLOGE(sc, "CFC hw attention 0x%08x\n", val);
7954 /* CFC error attention */
7955 if (val & 0x2) {
7956 BLOGE(sc, "FATAL error from CFC\n");
7957 }
7958 }
7959
7960 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
7961 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
7962 BLOGE(sc, "PXP hw attention-0 0x%08x\n", val);
7963 /* RQ_USDMDP_FIFO_OVERFLOW */
7964 if (val & 0x18000) {
7965 BLOGE(sc, "FATAL error from PXP\n");
7966 }
7967
7968 if (!CHIP_IS_E1x(sc)) {
7969 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
7970 BLOGE(sc, "PXP hw attention-1 0x%08x\n", val);
7971 }
7972 }
7973
7974#define PXP2_EOP_ERROR_BIT PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
7975#define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
7976
7977 if (attn & AEU_PXP2_HW_INT_BIT) {
7978 /* CQ47854 workaround do not panic on
7979 * PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
7980 */
7981 if (!CHIP_IS_E1x(sc)) {
7982 mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
7983 val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
7984 mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
7985 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
7986 /*
7987 * If the only PXP2_EOP_ERROR_BIT is set in
7988 * STS0 and STS1 - clear it
7989 *
7990 * probably we lose additional attentions between
7991 * STS0 and STS_CLR0, in this case user will not
7992 * be notified about them
7993 */
7994 if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
7995 !(val1 & mask1))
7996 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
7997
7998 /* print the register, since no one can restore it */
7999 BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0);
8000
8001 /*
8002 * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8003 * then notify
8004 */
8005 if (val0 & PXP2_EOP_ERROR_BIT) {
8006 BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n");
8007
8008 /*
8009 * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
8010 * set then clear attention from PXP2 block without panic
8011 */
8012 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
8013 ((val1 & mask1) == 0))
8014 attn &= ~AEU_PXP2_HW_INT_BIT;
8015 }
8016 }
8017 }
8018
8019 if (attn & HW_INTERRUT_ASSERT_SET_2) {
8020 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
8021 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
8022
8023 val = REG_RD(sc, reg_offset);
8024 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
8025 REG_WR(sc, reg_offset, val);
8026
8027 BLOGE(sc, "FATAL HW block attention set2 0x%x\n",
8028 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2));
8029 bxe_panic(sc, ("HW block attention set2\n"));
8030 }
8031}
8032
8033static void
8034bxe_attn_int_deasserted1(struct bxe_softc *sc,
8035 uint32_t attn)
8036{
8037 int port = SC_PORT(sc);
8038 int reg_offset;
8039 uint32_t val;
8040
8041 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
8042 val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
8043 BLOGE(sc, "DB hw attention 0x%08x\n", val);
8044 /* DORQ discard attention */
8045 if (val & 0x2) {
8046 BLOGE(sc, "FATAL error from DORQ\n");
8047 }
8048 }
8049
8050 if (attn & HW_INTERRUT_ASSERT_SET_1) {
8051 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
8052 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
8053
8054 val = REG_RD(sc, reg_offset);
8055 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
8056 REG_WR(sc, reg_offset, val);
8057
8058 BLOGE(sc, "FATAL HW block attention set1 0x%08x\n",
8059 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1));
8060 bxe_panic(sc, ("HW block attention set1\n"));
8061 }
8062}
8063
8064static void
8065bxe_attn_int_deasserted0(struct bxe_softc *sc,
8066 uint32_t attn)
8067{
8068 int port = SC_PORT(sc);
8069 int reg_offset;
8070 uint32_t val;
8071
8072 reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
8073 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
8074
8075 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
8076 val = REG_RD(sc, reg_offset);
8077 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
8078 REG_WR(sc, reg_offset, val);
8079
8080 BLOGW(sc, "SPIO5 hw attention\n");
8081
8082 /* Fan failure attention */
8083 elink_hw_reset_phy(&sc->link_params);
8084 bxe_fan_failure(sc);
8085 }
8086
8087 if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
8088 bxe_acquire_phy_lock(sc);
8089 elink_handle_module_detect_int(&sc->link_params);
8090 bxe_release_phy_lock(sc);
8091 }
8092
8093 if (attn & HW_INTERRUT_ASSERT_SET_0) {
8094 val = REG_RD(sc, reg_offset);
8095 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
8096 REG_WR(sc, reg_offset, val);
8097
8098 bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n",
8099 (attn & HW_INTERRUT_ASSERT_SET_0)));
8100 }
8101}
8102
8103static void
8104bxe_attn_int_deasserted(struct bxe_softc *sc,
8105 uint32_t deasserted)
8106{
8107 struct attn_route attn;
8108 struct attn_route *group_mask;
8109 int port = SC_PORT(sc);
8110 int index;
8111 uint32_t reg_addr;
8112 uint32_t val;
8113 uint32_t aeu_mask;
8114 uint8_t global = FALSE;
8115
8116 /*
8117 * Need to take HW lock because MCP or other port might also
8118 * try to handle this event.
8119 */
8120 bxe_acquire_alr(sc);
8121
8122 if (bxe_chk_parity_attn(sc, &global, TRUE)) {
8123 /* XXX
8124 * In case of parity errors don't handle attentions so that
8125 * other function would "see" parity errors.
8126 */
8127 sc->recovery_state = BXE_RECOVERY_INIT;
8128 // XXX schedule a recovery task...
8129 /* disable HW interrupts */
8130 bxe_int_disable(sc);
8131 bxe_release_alr(sc);
8132 return;
8133 }
8134
8135 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
8136 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
8137 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
8138 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
8139 if (!CHIP_IS_E1x(sc)) {
8140 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
8141 } else {
8142 attn.sig[4] = 0;
8143 }
8144
8145 BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
8146 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
8147
8148 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
8149 if (deasserted & (1 << index)) {
8150 group_mask = &sc->attn_group[index];
8151
8152 BLOGD(sc, DBG_INTR,
8153 "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index,
8154 group_mask->sig[0], group_mask->sig[1],
8155 group_mask->sig[2], group_mask->sig[3],
8156 group_mask->sig[4]);
8157
8158 bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]);
8159 bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]);
8160 bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]);
8161 bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]);
8162 bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]);
8163 }
8164 }
8165
8166 bxe_release_alr(sc);
8167
8168 if (sc->devinfo.int_block == INT_BLOCK_HC) {
8169 reg_addr = (HC_REG_COMMAND_REG + port*32 +
8170 COMMAND_REG_ATTN_BITS_CLR);
8171 } else {
8172 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
8173 }
8174
8175 val = ~deasserted;
8176 BLOGD(sc, DBG_INTR,
8177 "about to mask 0x%08x at %s addr 0x%08x\n", val,
8178 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
8179 REG_WR(sc, reg_addr, val);
8180
8181 if (~sc->attn_state & deasserted) {
8182 BLOGE(sc, "IGU error\n");
8183 }
8184
8185 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8186 MISC_REG_AEU_MASK_ATTN_FUNC_0;
8187
8188 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8189
8190 aeu_mask = REG_RD(sc, reg_addr);
8191
8192 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n",
8193 aeu_mask, deasserted);
8194 aeu_mask |= (deasserted & 0x3ff);
8195 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
8196
8197 REG_WR(sc, reg_addr, aeu_mask);
8198 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8199
8200 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
8201 sc->attn_state &= ~deasserted;
8202 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
8203}
8204
8205static void
8206bxe_attn_int(struct bxe_softc *sc)
8207{
8208 /* read local copy of bits */
8209 uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
8210 uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
8211 uint32_t attn_state = sc->attn_state;
8212
8213 /* look for changed bits */
8214 uint32_t asserted = attn_bits & ~attn_ack & ~attn_state;
8215 uint32_t deasserted = ~attn_bits & attn_ack & attn_state;
8216
8217 BLOGD(sc, DBG_INTR,
8218 "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n",
8219 attn_bits, attn_ack, asserted, deasserted);
8220
8221 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
8222 BLOGE(sc, "BAD attention state\n");
8223 }
8224
8225 /* handle bits that were raised */
8226 if (asserted) {
8227 bxe_attn_int_asserted(sc, asserted);
8228 }
8229
8230 if (deasserted) {
8231 bxe_attn_int_deasserted(sc, deasserted);
8232 }
8233}
8234
8235static uint16_t
8236bxe_update_dsb_idx(struct bxe_softc *sc)
8237{
8238 struct host_sp_status_block *def_sb = sc->def_sb;
8239 uint16_t rc = 0;
8240
8241 mb(); /* status block is written to by the chip */
8242
8243 if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
8244 sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
8245 rc |= BXE_DEF_SB_ATT_IDX;
8246 }
8247
8248 if (sc->def_idx != def_sb->sp_sb.running_index) {
8249 sc->def_idx = def_sb->sp_sb.running_index;
8250 rc |= BXE_DEF_SB_IDX;
8251 }
8252
8253 mb();
8254
8255 return (rc);
8256}
8257
8258static inline struct ecore_queue_sp_obj *
8259bxe_cid_to_q_obj(struct bxe_softc *sc,
8260 uint32_t cid)
8261{
8262 BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid);
8263 return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj);
8264}
8265
8266static void
8267bxe_handle_mcast_eqe(struct bxe_softc *sc)
8268{
8269 struct ecore_mcast_ramrod_params rparam;
8270 int rc;
8271
8272 memset(&rparam, 0, sizeof(rparam));
8273
8274 rparam.mcast_obj = &sc->mcast_obj;
8275
8276 BXE_MCAST_LOCK(sc);
8277
8278 /* clear pending state for the last command */
8279 sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
8280
8281 /* if there are pending mcast commands - send them */
8282 if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
8283 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
8284 if (rc < 0) {
8285 BLOGD(sc, DBG_SP,
8286 "ERROR: Failed to send pending mcast commands (%d)\n", rc);
8287 }
8288 }
8289
8290 BXE_MCAST_UNLOCK(sc);
8291}
8292
8293static void
8294bxe_handle_classification_eqe(struct bxe_softc *sc,
8295 union event_ring_elem *elem)
8296{
8297 unsigned long ramrod_flags = 0;
8298 int rc = 0;
8299 uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8300 struct ecore_vlan_mac_obj *vlan_mac_obj;
8301
8302 /* always push next commands out, don't wait here */
8303 bit_set(&ramrod_flags, RAMROD_CONT);
8304
8305 switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) {
8306 case ECORE_FILTER_MAC_PENDING:
8307 BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n");
8308 vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
8309 break;
8310
8311 case ECORE_FILTER_MCAST_PENDING:
8312 BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n");
8313 /*
8314 * This is only relevant for 57710 where multicast MACs are
8315 * configured as unicast MACs using the same ramrod.
8316 */
8317 bxe_handle_mcast_eqe(sc);
8318 return;
8319
8320 default:
8321 BLOGE(sc, "Unsupported classification command: %d\n",
8322 elem->message.data.eth_event.echo);
8323 return;
8324 }
8325
8326 rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
8327
8328 if (rc < 0) {
8329 BLOGE(sc, "Failed to schedule new commands (%d)\n", rc);
8330 } else if (rc > 0) {
8331 BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n");
8332 }
8333}
8334
8335static void
8336bxe_handle_rx_mode_eqe(struct bxe_softc *sc,
8337 union event_ring_elem *elem)
8338{
8339 bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
8340
8341 /* send rx_mode command again if was requested */
8342 if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED,
8343 &sc->sp_state)) {
8344 bxe_set_storm_rx_mode(sc);
8345 }
8346}
8347
8348static void
8349bxe_update_eq_prod(struct bxe_softc *sc,
8350 uint16_t prod)
8351{
8352 storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
8353 wmb(); /* keep prod updates ordered */
8354}
8355
8356static void
8357bxe_eq_int(struct bxe_softc *sc)
8358{
8359 uint16_t hw_cons, sw_cons, sw_prod;
8360 union event_ring_elem *elem;
8361 uint8_t echo;
8362 uint32_t cid;
8363 uint8_t opcode;
8364 int spqe_cnt = 0;
8365 struct ecore_queue_sp_obj *q_obj;
8366 struct ecore_func_sp_obj *f_obj = &sc->func_obj;
8367 struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
8368
8369 hw_cons = le16toh(*sc->eq_cons_sb);
8370
8371 /*
8372 * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
8373 * when we get to the next-page we need to adjust so the loop
8374 * condition below will be met. The next element is the size of a
8375 * regular element and hence incrementing by 1
8376 */
8377 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
8378 hw_cons++;
8379 }
8380
8381 /*
8382 * This function may never run in parallel with itself for a
8383 * specific sc and no need for a read memory barrier here.
8384 */
8385 sw_cons = sc->eq_cons;
8386 sw_prod = sc->eq_prod;
8387
8388 BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n",
8389 hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left));
8390
8391 for (;
8392 sw_cons != hw_cons;
8393 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
8394
8395 elem = &sc->eq[EQ_DESC(sw_cons)];
8396
8397 /* elem CID originates from FW, actually LE */
8398 cid = SW_CID(elem->message.data.cfc_del_event.cid);
8399 opcode = elem->message.opcode;
8400
8401 /* handle eq element */
8402 switch (opcode) {
8403
8404 case EVENT_RING_OPCODE_STAT_QUERY:
8405 BLOGD(sc, DBG_SP, "got statistics completion event %d\n",
8406 sc->stats_comp++);
8407 /* nothing to do with stats comp */
8408 goto next_spqe;
8409
8410 case EVENT_RING_OPCODE_CFC_DEL:
8411 /* handle according to cid range */
8412 /* we may want to verify here that the sc state is HALTING */
8413 BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid);
8414 q_obj = bxe_cid_to_q_obj(sc, cid);
8415 if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
8416 break;
8417 }
8418 goto next_spqe;
8419
8420 case EVENT_RING_OPCODE_STOP_TRAFFIC:
8421 BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n");
8422 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
8423 break;
8424 }
8425 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED);
8426 goto next_spqe;
8427
8428 case EVENT_RING_OPCODE_START_TRAFFIC:
8429 BLOGD(sc, DBG_SP, "got START TRAFFIC\n");
8430 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) {
8431 break;
8432 }
8433 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED);
8434 goto next_spqe;
8435
8436 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
8437 echo = elem->message.data.function_update_event.echo;
8438 if (echo == SWITCH_UPDATE) {
8439 BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n");
8440 if (f_obj->complete_cmd(sc, f_obj,
8441 ECORE_F_CMD_SWITCH_UPDATE)) {
8442 break;
8443 }
8444 }
8445 else {
8446 BLOGD(sc, DBG_SP,
8447 "AFEX: ramrod completed FUNCTION_UPDATE\n");
8448 }
8449 goto next_spqe;
8450
8451 case EVENT_RING_OPCODE_FORWARD_SETUP:
8452 q_obj = &bxe_fwd_sp_obj(sc, q_obj);
8453 if (q_obj->complete_cmd(sc, q_obj,
8454 ECORE_Q_CMD_SETUP_TX_ONLY)) {
8455 break;
8456 }
8457 goto next_spqe;
8458
8459 case EVENT_RING_OPCODE_FUNCTION_START:
8460 BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n");
8461 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
8462 break;
8463 }
8464 goto next_spqe;
8465
8466 case EVENT_RING_OPCODE_FUNCTION_STOP:
8467 BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n");
8468 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
8469 break;
8470 }
8471 goto next_spqe;
8472 }
8473
8474 switch (opcode | sc->state) {
8475 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN):
8476 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT):
8477 cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8478 BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid);
8479 rss_raw->clear_pending(rss_raw);
8480 break;
8481
8482 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN):
8483 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG):
8484 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT):
8485 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN):
8486 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG):
8487 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8488 BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n");
8489 bxe_handle_classification_eqe(sc, elem);
8490 break;
8491
8492 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN):
8493 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG):
8494 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8495 BLOGD(sc, DBG_SP, "got mcast ramrod\n");
8496 bxe_handle_mcast_eqe(sc);
8497 break;
8498
8499 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN):
8500 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG):
8501 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8502 BLOGD(sc, DBG_SP, "got rx_mode ramrod\n");
8503 bxe_handle_rx_mode_eqe(sc, elem);
8504 break;
8505
8506 default:
8507 /* unknown event log error and continue */
8508 BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n",
8509 elem->message.opcode, sc->state);
8510 }
8511
8512next_spqe:
8513 spqe_cnt++;
8514 } /* for */
8515
8516 mb();
8517 atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
8518
8519 sc->eq_cons = sw_cons;
8520 sc->eq_prod = sw_prod;
8521
8522 /* make sure that above mem writes were issued towards the memory */
8523 wmb();
8524
8525 /* update producer */
8526 bxe_update_eq_prod(sc, sc->eq_prod);
8527}
8528
8529static void
8530bxe_handle_sp_tq(void *context,
8531 int pending)
8532{
8533 struct bxe_softc *sc = (struct bxe_softc *)context;
8534 uint16_t status;
8535
8536 BLOGD(sc, DBG_SP, "---> SP TASK <---\n");
8537
8538 /* what work needs to be performed? */
8539 status = bxe_update_dsb_idx(sc);
8540
8541 BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status);
8542
8543 /* HW attentions */
8544 if (status & BXE_DEF_SB_ATT_IDX) {
8545 BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n");
8546 bxe_attn_int(sc);
8547 status &= ~BXE_DEF_SB_ATT_IDX;
8548 }
8549
8550 /* SP events: STAT_QUERY and others */
8551 if (status & BXE_DEF_SB_IDX) {
8552 /* handle EQ completions */
8553 BLOGD(sc, DBG_SP, "---> EQ INTR <---\n");
8554 bxe_eq_int(sc);
8555 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
8556 le16toh(sc->def_idx), IGU_INT_NOP, 1);
8557 status &= ~BXE_DEF_SB_IDX;
8558 }
8559
8560 /* if status is non zero then something went wrong */
8561 if (__predict_false(status)) {
8562 BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status);
8563 }
8564
8565 /* ack status block only if something was actually handled */
8566 bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
8567 le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
8568
8569 /*
8570 * Must be called after the EQ processing (since eq leads to sriov
8571 * ramrod completion flows).
8572 * This flow may have been scheduled by the arrival of a ramrod
8573 * completion, or by the sriov code rescheduling itself.
8574 */
8575 // XXX bxe_iov_sp_task(sc);
8576
8577}
8578
8579static void
8580bxe_handle_fp_tq(void *context,
8581 int pending)
8582{
8583 struct bxe_fastpath *fp = (struct bxe_fastpath *)context;
8584 struct bxe_softc *sc = fp->sc;
8585 uint8_t more_tx = FALSE;
8586 uint8_t more_rx = FALSE;
8587
8588 BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index);
8589
8590 /* XXX
8591 * IFF_DRV_RUNNING state can't be checked here since we process
8592 * slowpath events on a client queue during setup. Instead
8593 * we need to add a "process/continue" flag here that the driver
8594 * can use to tell the task here not to do anything.
8595 */
8596#if 0
8597 if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
8598 return;
8599 }
8600#endif
8601
8602 /* update the fastpath index */
8603 bxe_update_fp_sb_idx(fp);
8604
8605 /* XXX add loop here if ever support multiple tx CoS */
8606 /* fp->txdata[cos] */
8607 if (bxe_has_tx_work(fp)) {
8608 BXE_FP_TX_LOCK(fp);
8609 more_tx = bxe_txeof(sc, fp);
8610 BXE_FP_TX_UNLOCK(fp);
8611 }
8612
8613 if (bxe_has_rx_work(fp)) {
8614 more_rx = bxe_rxeof(sc, fp);
8615 }
8616
8617 if (more_rx /*|| more_tx*/) {
8618 /* still more work to do */
8619 taskqueue_enqueue(fp->tq, &fp->tq_task);
8620 return;
8621 }
8622
8623 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
8624 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
8625}
8626
8627static void
8628bxe_task_fp(struct bxe_fastpath *fp)
8629{
8630 struct bxe_softc *sc = fp->sc;
8631 uint8_t more_tx = FALSE;
8632 uint8_t more_rx = FALSE;
8633
8634 BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index);
8635
8636 /* update the fastpath index */
8637 bxe_update_fp_sb_idx(fp);
8638
8639 /* XXX add loop here if ever support multiple tx CoS */
8640 /* fp->txdata[cos] */
8641 if (bxe_has_tx_work(fp)) {
8642 BXE_FP_TX_LOCK(fp);
8643 more_tx = bxe_txeof(sc, fp);
8644 BXE_FP_TX_UNLOCK(fp);
8645 }
8646
8647 if (bxe_has_rx_work(fp)) {
8648 more_rx = bxe_rxeof(sc, fp);
8649 }
8650
8651 if (more_rx /*|| more_tx*/) {
8652 /* still more work to do, bail out if this ISR and process later */
8653 taskqueue_enqueue(fp->tq, &fp->tq_task);
8654 return;
8655 }
8656
8657 /*
8658 * Here we write the fastpath index taken before doing any tx or rx work.
8659 * It is very well possible other hw events occurred up to this point and
8660 * they were actually processed accordingly above. Since we're going to
8661 * write an older fastpath index, an interrupt is coming which we might
8662 * not do any work in.
8663 */
8664 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
8665 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
8666}
8667
8668/*
8669 * Legacy interrupt entry point.
8670 *
8671 * Verifies that the controller generated the interrupt and
8672 * then calls a separate routine to handle the various
8673 * interrupt causes: link, RX, and TX.
8674 */
8675static void
8676bxe_intr_legacy(void *xsc)
8677{
8678 struct bxe_softc *sc = (struct bxe_softc *)xsc;
8679 struct bxe_fastpath *fp;
8680 uint16_t status, mask;
8681 int i;
8682
8683 BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n");
8684
8685 /*
8686 * 0 for ustorm, 1 for cstorm
8687 * the bits returned from ack_int() are 0-15
8688 * bit 0 = attention status block
8689 * bit 1 = fast path status block
8690 * a mask of 0x2 or more = tx/rx event
8691 * a mask of 1 = slow path event
8692 */
8693
8694 status = bxe_ack_int(sc);
8695
8696 /* the interrupt is not for us */
8697 if (__predict_false(status == 0)) {
8698 BLOGD(sc, DBG_INTR, "Not our interrupt!\n");
8699 return;
8700 }
8701
8702 BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status);
8703
8704 FOR_EACH_ETH_QUEUE(sc, i) {
8705 fp = &sc->fp[i];
8706 mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
8707 if (status & mask) {
8708 /* acknowledge and disable further fastpath interrupts */
8709 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8710 bxe_task_fp(fp);
8711 status &= ~mask;
8712 }
8713 }
8714
8715 if (__predict_false(status & 0x1)) {
8716 /* acknowledge and disable further slowpath interrupts */
8717 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8718
8719 /* schedule slowpath handler */
8720 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8721
8722 status &= ~0x1;
8723 }
8724
8725 if (__predict_false(status)) {
8726 BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status);
8727 }
8728}
8729
8730/* slowpath interrupt entry point */
8731static void
8732bxe_intr_sp(void *xsc)
8733{
8734 struct bxe_softc *sc = (struct bxe_softc *)xsc;
8735
8736 BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n");
8737
8738 /* acknowledge and disable further slowpath interrupts */
8739 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8740
8741 /* schedule slowpath handler */
8742 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8743}
8744
8745/* fastpath interrupt entry point */
8746static void
8747bxe_intr_fp(void *xfp)
8748{
8749 struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp;
8750 struct bxe_softc *sc = fp->sc;
8751
8752 BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index);
8753
8754 BLOGD(sc, DBG_INTR,
8755 "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n",
8756 curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id);
8757
8758 /* acknowledge and disable further fastpath interrupts */
8759 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8760
8761 bxe_task_fp(fp);
8762}
8763
8764/* Release all interrupts allocated by the driver. */
8765static void
8766bxe_interrupt_free(struct bxe_softc *sc)
8767{
8768 int i;
8769
8770 switch (sc->interrupt_mode) {
8771 case INTR_MODE_INTX:
8772 BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n");
8773 if (sc->intr[0].resource != NULL) {
8774 bus_release_resource(sc->dev,
8775 SYS_RES_IRQ,
8776 sc->intr[0].rid,
8777 sc->intr[0].resource);
8778 }
8779 break;
8780 case INTR_MODE_MSI:
8781 for (i = 0; i < sc->intr_count; i++) {
8782 BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i);
8783 if (sc->intr[i].resource && sc->intr[i].rid) {
8784 bus_release_resource(sc->dev,
8785 SYS_RES_IRQ,
8786 sc->intr[i].rid,
8787 sc->intr[i].resource);
8788 }
8789 }
8790 pci_release_msi(sc->dev);
8791 break;
8792 case INTR_MODE_MSIX:
8793 for (i = 0; i < sc->intr_count; i++) {
8794 BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i);
8795 if (sc->intr[i].resource && sc->intr[i].rid) {
8796 bus_release_resource(sc->dev,
8797 SYS_RES_IRQ,
8798 sc->intr[i].rid,
8799 sc->intr[i].resource);
8800 }
8801 }
8802 pci_release_msi(sc->dev);
8803 break;
8804 default:
8805 /* nothing to do as initial allocation failed */
8806 break;
8807 }
8808}
8809
8810/*
8811 * This function determines and allocates the appropriate
8812 * interrupt based on system capabilites and user request.
8813 *
8814 * The user may force a particular interrupt mode, specify
8815 * the number of receive queues, specify the method for
8816 * distribuitng received frames to receive queues, or use
8817 * the default settings which will automatically select the
8818 * best supported combination. In addition, the OS may or
8819 * may not support certain combinations of these settings.
8820 * This routine attempts to reconcile the settings requested
8821 * by the user with the capabilites available from the system
8822 * to select the optimal combination of features.
8823 *
8824 * Returns:
8825 * 0 = Success, !0 = Failure.
8826 */
8827static int
8828bxe_interrupt_alloc(struct bxe_softc *sc)
8829{
8830 int msix_count = 0;
8831 int msi_count = 0;
8832 int num_requested = 0;
8833 int num_allocated = 0;
8834 int rid, i, j;
8835 int rc;
8836
8837 /* get the number of available MSI/MSI-X interrupts from the OS */
8838 if (sc->interrupt_mode > 0) {
8839 if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) {
8840 msix_count = pci_msix_count(sc->dev);
8841 }
8842
8843 if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) {
8844 msi_count = pci_msi_count(sc->dev);
8845 }
8846
8847 BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n",
8848 msi_count, msix_count);
8849 }
8850
8851 do { /* try allocating MSI-X interrupt resources (at least 2) */
8852 if (sc->interrupt_mode != INTR_MODE_MSIX) {
8853 break;
8854 }
8855
8856 if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) ||
8857 (msix_count < 2)) {
8858 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8859 break;
8860 }
8861
8862 /* ask for the necessary number of MSI-X vectors */
8863 num_requested = min((sc->num_queues + 1), msix_count);
8864
8865 BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested);
8866
8867 num_allocated = num_requested;
8868 if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) {
8869 BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc);
8870 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8871 break;
8872 }
8873
8874 if (num_allocated < 2) { /* possible? */
8875 BLOGE(sc, "MSI-X allocation less than 2!\n");
8876 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8877 pci_release_msi(sc->dev);
8878 break;
8879 }
8880
8881 BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n",
8882 num_requested, num_allocated);
8883
8884 /* best effort so use the number of vectors allocated to us */
8885 sc->intr_count = num_allocated;
8886 sc->num_queues = num_allocated - 1;
8887
8888 rid = 1; /* initial resource identifier */
8889
8890 /* allocate the MSI-X vectors */
8891 for (i = 0; i < num_allocated; i++) {
8892 sc->intr[i].rid = (rid + i);
8893
8894 if ((sc->intr[i].resource =
8895 bus_alloc_resource_any(sc->dev,
8896 SYS_RES_IRQ,
8897 &sc->intr[i].rid,
8898 RF_ACTIVE)) == NULL) {
8899 BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n",
8900 i, (rid + i));
8901
8902 for (j = (i - 1); j >= 0; j--) {
8903 bus_release_resource(sc->dev,
8904 SYS_RES_IRQ,
8905 sc->intr[j].rid,
8906 sc->intr[j].resource);
8907 }
8908
8909 sc->intr_count = 0;
8910 sc->num_queues = 0;
8911 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8912 pci_release_msi(sc->dev);
8913 break;
8914 }
8915
8916 BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i));
8917 }
8918 } while (0);
8919
8920 do { /* try allocating MSI vector resources (at least 2) */
8921 if (sc->interrupt_mode != INTR_MODE_MSI) {
8922 break;
8923 }
8924
8925 if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) ||
8926 (msi_count < 1)) {
8927 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
8928 break;
8929 }
8930
8931 /* ask for a single MSI vector */
8932 num_requested = 1;
8933
8934 BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested);
8935
8936 num_allocated = num_requested;
8937 if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) {
8938 BLOGE(sc, "MSI alloc failed (%d)!\n", rc);
8939 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
8940 break;
8941 }
8942
8943 if (num_allocated != 1) { /* possible? */
8944 BLOGE(sc, "MSI allocation is not 1!\n");
8945 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
8946 pci_release_msi(sc->dev);
8947 break;
8948 }
8949
8950 BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n",
8951 num_requested, num_allocated);
8952
8953 /* best effort so use the number of vectors allocated to us */
8954 sc->intr_count = num_allocated;
8955 sc->num_queues = num_allocated;
8956
8957 rid = 1; /* initial resource identifier */
8958
8959 sc->intr[0].rid = rid;
8960
8961 if ((sc->intr[0].resource =
8962 bus_alloc_resource_any(sc->dev,
8963 SYS_RES_IRQ,
8964 &sc->intr[0].rid,
8965 RF_ACTIVE)) == NULL) {
8966 BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid);
8967 sc->intr_count = 0;
8968 sc->num_queues = 0;
8969 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
8970 pci_release_msi(sc->dev);
8971 break;
8972 }
8973
8974 BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid);
8975 } while (0);
8976
8977 do { /* try allocating INTx vector resources */
8978 if (sc->interrupt_mode != INTR_MODE_INTX) {
8979 break;
8980 }
8981
8982 BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n");
8983
8984 /* only one vector for INTx */
8985 sc->intr_count = 1;
8986 sc->num_queues = 1;
8987
8988 rid = 0; /* initial resource identifier */
8989
8990 sc->intr[0].rid = rid;
8991
8992 if ((sc->intr[0].resource =
8993 bus_alloc_resource_any(sc->dev,
8994 SYS_RES_IRQ,
8995 &sc->intr[0].rid,
8996 (RF_ACTIVE | RF_SHAREABLE))) == NULL) {
8997 BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid);
8998 sc->intr_count = 0;
8999 sc->num_queues = 0;
9000 sc->interrupt_mode = -1; /* Failed! */
9001 break;
9002 }
9003
9004 BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid);
9005 } while (0);
9006
9007 if (sc->interrupt_mode == -1) {
9008 BLOGE(sc, "Interrupt Allocation: FAILED!!!\n");
9009 rc = 1;
9010 } else {
9011 BLOGD(sc, DBG_LOAD,
9012 "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n",
9013 sc->interrupt_mode, sc->num_queues);
9014 rc = 0;
9015 }
9016
9017 return (rc);
9018}
9019
9020static void
9021bxe_interrupt_detach(struct bxe_softc *sc)
9022{
9023 struct bxe_fastpath *fp;
9024 int i;
9025
9026 /* release interrupt resources */
9027 for (i = 0; i < sc->intr_count; i++) {
9028 if (sc->intr[i].resource && sc->intr[i].tag) {
9029 BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i);
9030 bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag);
9031 }
9032 }
9033
9034 for (i = 0; i < sc->num_queues; i++) {
9035 fp = &sc->fp[i];
9036 if (fp->tq) {
9037 taskqueue_drain(fp->tq, &fp->tq_task);
9038 taskqueue_free(fp->tq);
9039 fp->tq = NULL;
9040 }
9041 }
9042
9043
9044 if (sc->sp_tq) {
9045 taskqueue_drain(sc->sp_tq, &sc->sp_tq_task);
9046 taskqueue_free(sc->sp_tq);
9047 sc->sp_tq = NULL;
9048 }
9049}
9050
9051/*
9052 * Enables interrupts and attach to the ISR.
9053 *
9054 * When using multiple MSI/MSI-X vectors the first vector
9055 * is used for slowpath operations while all remaining
9056 * vectors are used for fastpath operations. If only a
9057 * single MSI/MSI-X vector is used (SINGLE_ISR) then the
9058 * ISR must look for both slowpath and fastpath completions.
9059 */
9060static int
9061bxe_interrupt_attach(struct bxe_softc *sc)
9062{
9063 struct bxe_fastpath *fp;
9064 int rc = 0;
9065 int i;
9066
9067 snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name),
9068 "bxe%d_sp_tq", sc->unit);
9069 TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc);
9070 sc->sp_tq = taskqueue_create_fast(sc->sp_tq_name, M_NOWAIT,
9071 taskqueue_thread_enqueue,
9072 &sc->sp_tq);
9073 taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */
9074 "%s", sc->sp_tq_name);
9075
9076
9077 for (i = 0; i < sc->num_queues; i++) {
9078 fp = &sc->fp[i];
9079 snprintf(fp->tq_name, sizeof(fp->tq_name),
9080 "bxe%d_fp%d_tq", sc->unit, i);
9081 TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp);
9082 fp->tq = taskqueue_create_fast(fp->tq_name, M_NOWAIT,
9083 taskqueue_thread_enqueue,
9084 &fp->tq);
9085 taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */
9086 "%s", fp->tq_name);
9087 }
9088
9089 /* setup interrupt handlers */
9090 if (sc->interrupt_mode == INTR_MODE_MSIX) {
9091 BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n");
9092
9093 /*
9094 * Setup the interrupt handler. Note that we pass the driver instance
9095 * to the interrupt handler for the slowpath.
9096 */
9097 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9098 (INTR_TYPE_NET | INTR_MPSAFE),
9099 NULL, bxe_intr_sp, sc,
9100 &sc->intr[0].tag)) != 0) {
9101 BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc);
9102 goto bxe_interrupt_attach_exit;
9103 }
9104
9105 bus_describe_intr(sc->dev, sc->intr[0].resource,
9106 sc->intr[0].tag, "sp");
9107
9108 /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */
9109
9110 /* initialize the fastpath vectors (note the first was used for sp) */
9111 for (i = 0; i < sc->num_queues; i++) {
9112 fp = &sc->fp[i];
9113 BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1));
9114
9115 /*
9116 * Setup the interrupt handler. Note that we pass the
9117 * fastpath context to the interrupt handler in this
9118 * case.
9119 */
9120 if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource,
9121 (INTR_TYPE_NET | INTR_MPSAFE),
9122 NULL, bxe_intr_fp, fp,
9123 &sc->intr[i + 1].tag)) != 0) {
9124 BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n",
9125 (i + 1), rc);
9126 goto bxe_interrupt_attach_exit;
9127 }
9128
9129 bus_describe_intr(sc->dev, sc->intr[i + 1].resource,
9130 sc->intr[i + 1].tag, "fp%02d", i);
9131
9132 /* bind the fastpath instance to a cpu */
9133 if (sc->num_queues > 1) {
9134 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i);
9135 }
9136
9137 fp->state = BXE_FP_STATE_IRQ;
9138 }
9139 } else if (sc->interrupt_mode == INTR_MODE_MSI) {
9140 BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n");
9141
9142 /*
9143 * Setup the interrupt handler. Note that we pass the
9144 * driver instance to the interrupt handler which
9145 * will handle both the slowpath and fastpath.
9146 */
9147 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9148 (INTR_TYPE_NET | INTR_MPSAFE),
9149 NULL, bxe_intr_legacy, sc,
9150 &sc->intr[0].tag)) != 0) {
9151 BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc);
9152 goto bxe_interrupt_attach_exit;
9153 }
9154
9155 } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */
9156 BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n");
9157
9158 /*
9159 * Setup the interrupt handler. Note that we pass the
9160 * driver instance to the interrupt handler which
9161 * will handle both the slowpath and fastpath.
9162 */
9163 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9164 (INTR_TYPE_NET | INTR_MPSAFE),
9165 NULL, bxe_intr_legacy, sc,
9166 &sc->intr[0].tag)) != 0) {
9167 BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc);
9168 goto bxe_interrupt_attach_exit;
9169 }
9170 }
9171
9172bxe_interrupt_attach_exit:
9173
9174 return (rc);
9175}
9176
9177static int bxe_init_hw_common_chip(struct bxe_softc *sc);
9178static int bxe_init_hw_common(struct bxe_softc *sc);
9179static int bxe_init_hw_port(struct bxe_softc *sc);
9180static int bxe_init_hw_func(struct bxe_softc *sc);
9181static void bxe_reset_common(struct bxe_softc *sc);
9182static void bxe_reset_port(struct bxe_softc *sc);
9183static void bxe_reset_func(struct bxe_softc *sc);
9184static int bxe_gunzip_init(struct bxe_softc *sc);
9185static void bxe_gunzip_end(struct bxe_softc *sc);
9186static int bxe_init_firmware(struct bxe_softc *sc);
9187static void bxe_release_firmware(struct bxe_softc *sc);
9188
9189static struct
9190ecore_func_sp_drv_ops bxe_func_sp_drv = {
9191 .init_hw_cmn_chip = bxe_init_hw_common_chip,
9192 .init_hw_cmn = bxe_init_hw_common,
9193 .init_hw_port = bxe_init_hw_port,
9194 .init_hw_func = bxe_init_hw_func,
9195
9196 .reset_hw_cmn = bxe_reset_common,
9197 .reset_hw_port = bxe_reset_port,
9198 .reset_hw_func = bxe_reset_func,
9199
9200 .gunzip_init = bxe_gunzip_init,
9201 .gunzip_end = bxe_gunzip_end,
9202
9203 .init_fw = bxe_init_firmware,
9204 .release_fw = bxe_release_firmware,
9205};
9206
9207static void
9208bxe_init_func_obj(struct bxe_softc *sc)
9209{
9210 sc->dmae_ready = 0;
9211
9212 ecore_init_func_obj(sc,
9213 &sc->func_obj,
9214 BXE_SP(sc, func_rdata),
9215 BXE_SP_MAPPING(sc, func_rdata),
9216 BXE_SP(sc, func_afex_rdata),
9217 BXE_SP_MAPPING(sc, func_afex_rdata),
9218 &bxe_func_sp_drv);
9219}
9220
9221static int
9222bxe_init_hw(struct bxe_softc *sc,
9223 uint32_t load_code)
9224{
9225 struct ecore_func_state_params func_params = { NULL };
9226 int rc;
9227
9228 /* prepare the parameters for function state transitions */
9229 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
9230
9231 func_params.f_obj = &sc->func_obj;
9232 func_params.cmd = ECORE_F_CMD_HW_INIT;
9233
9234 func_params.params.hw_init.load_phase = load_code;
9235
9236 /*
9237 * Via a plethora of function pointers, we will eventually reach
9238 * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func().
9239 */
9240 rc = ecore_func_state_change(sc, &func_params);
9241
9242 return (rc);
9243}
9244
9245static void
9246bxe_fill(struct bxe_softc *sc,
9247 uint32_t addr,
9248 int fill,
9249 uint32_t len)
9250{
9251 uint32_t i;
9252
9253 if (!(len % 4) && !(addr % 4)) {
9254 for (i = 0; i < len; i += 4) {
9255 REG_WR(sc, (addr + i), fill);
9256 }
9257 } else {
9258 for (i = 0; i < len; i++) {
9259 REG_WR8(sc, (addr + i), fill);
9260 }
9261 }
9262}
9263
9264/* writes FP SP data to FW - data_size in dwords */
9265static void
9266bxe_wr_fp_sb_data(struct bxe_softc *sc,
9267 int fw_sb_id,
9268 uint32_t *sb_data_p,
9269 uint32_t data_size)
9270{
9271 int index;
9272
9273 for (index = 0; index < data_size; index++) {
9274 REG_WR(sc,
9275 (BAR_CSTRORM_INTMEM +
9276 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
9277 (sizeof(uint32_t) * index)),
9278 *(sb_data_p + index));
9279 }
9280}
9281
9282static void
9283bxe_zero_fp_sb(struct bxe_softc *sc,
9284 int fw_sb_id)
9285{
9286 struct hc_status_block_data_e2 sb_data_e2;
9287 struct hc_status_block_data_e1x sb_data_e1x;
9288 uint32_t *sb_data_p;
9289 uint32_t data_size = 0;
9290
9291 if (!CHIP_IS_E1x(sc)) {
9292 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9293 sb_data_e2.common.state = SB_DISABLED;
9294 sb_data_e2.common.p_func.vf_valid = FALSE;
9295 sb_data_p = (uint32_t *)&sb_data_e2;
9296 data_size = (sizeof(struct hc_status_block_data_e2) /
9297 sizeof(uint32_t));
9298 } else {
9299 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9300 sb_data_e1x.common.state = SB_DISABLED;
9301 sb_data_e1x.common.p_func.vf_valid = FALSE;
9302 sb_data_p = (uint32_t *)&sb_data_e1x;
9303 data_size = (sizeof(struct hc_status_block_data_e1x) /
9304 sizeof(uint32_t));
9305 }
9306
9307 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9308
9309 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)),
9310 0, CSTORM_STATUS_BLOCK_SIZE);
9311 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
9312 0, CSTORM_SYNC_BLOCK_SIZE);
9313}
9314
9315static void
9316bxe_wr_sp_sb_data(struct bxe_softc *sc,
9317 struct hc_sp_status_block_data *sp_sb_data)
9318{
9319 int i;
9320
9321 for (i = 0;
9322 i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
9323 i++) {
9324 REG_WR(sc,
9325 (BAR_CSTRORM_INTMEM +
9326 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
9327 (i * sizeof(uint32_t))),
9328 *((uint32_t *)sp_sb_data + i));
9329 }
9330}
9331
9332static void
9333bxe_zero_sp_sb(struct bxe_softc *sc)
9334{
9335 struct hc_sp_status_block_data sp_sb_data;
9336
9337 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9338
9339 sp_sb_data.state = SB_DISABLED;
9340 sp_sb_data.p_func.vf_valid = FALSE;
9341
9342 bxe_wr_sp_sb_data(sc, &sp_sb_data);
9343
9344 bxe_fill(sc,
9345 (BAR_CSTRORM_INTMEM +
9346 CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
9347 0, CSTORM_SP_STATUS_BLOCK_SIZE);
9348 bxe_fill(sc,
9349 (BAR_CSTRORM_INTMEM +
9350 CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
9351 0, CSTORM_SP_SYNC_BLOCK_SIZE);
9352}
9353
9354static void
9355bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
9356 int igu_sb_id,
9357 int igu_seg_id)
9358{
9359 hc_sm->igu_sb_id = igu_sb_id;
9360 hc_sm->igu_seg_id = igu_seg_id;
9361 hc_sm->timer_value = 0xFF;
9362 hc_sm->time_to_expire = 0xFFFFFFFF;
9363}
9364
9365static void
9366bxe_map_sb_state_machines(struct hc_index_data *index_data)
9367{
9368 /* zero out state machine indices */
9369
9370 /* rx indices */
9371 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
9372
9373 /* tx indices */
9374 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
9375 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
9376 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
9377 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
9378
9379 /* map indices */
9380
9381 /* rx indices */
9382 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
9383 (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9384
9385 /* tx indices */
9386 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
9387 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9388 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
9389 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9390 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
9391 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9392 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
9393 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9394}
9395
9396static void
9397bxe_init_sb(struct bxe_softc *sc,
9398 bus_addr_t busaddr,
9399 int vfid,
9400 uint8_t vf_valid,
9401 int fw_sb_id,
9402 int igu_sb_id)
9403{
9404 struct hc_status_block_data_e2 sb_data_e2;
9405 struct hc_status_block_data_e1x sb_data_e1x;
9406 struct hc_status_block_sm *hc_sm_p;
9407 uint32_t *sb_data_p;
9408 int igu_seg_id;
9409 int data_size;
9410
9411 if (CHIP_INT_MODE_IS_BC(sc)) {
9412 igu_seg_id = HC_SEG_ACCESS_NORM;
9413 } else {
9414 igu_seg_id = IGU_SEG_ACCESS_NORM;
9415 }
9416
9417 bxe_zero_fp_sb(sc, fw_sb_id);
9418
9419 if (!CHIP_IS_E1x(sc)) {
9420 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9421 sb_data_e2.common.state = SB_ENABLED;
9422 sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
9423 sb_data_e2.common.p_func.vf_id = vfid;
9424 sb_data_e2.common.p_func.vf_valid = vf_valid;
9425 sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
9426 sb_data_e2.common.same_igu_sb_1b = TRUE;
9427 sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
9428 sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
9429 hc_sm_p = sb_data_e2.common.state_machine;
9430 sb_data_p = (uint32_t *)&sb_data_e2;
9431 data_size = (sizeof(struct hc_status_block_data_e2) /
9432 sizeof(uint32_t));
9433 bxe_map_sb_state_machines(sb_data_e2.index_data);
9434 } else {
9435 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9436 sb_data_e1x.common.state = SB_ENABLED;
9437 sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
9438 sb_data_e1x.common.p_func.vf_id = 0xff;
9439 sb_data_e1x.common.p_func.vf_valid = FALSE;
9440 sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
9441 sb_data_e1x.common.same_igu_sb_1b = TRUE;
9442 sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
9443 sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
9444 hc_sm_p = sb_data_e1x.common.state_machine;
9445 sb_data_p = (uint32_t *)&sb_data_e1x;
9446 data_size = (sizeof(struct hc_status_block_data_e1x) /
9447 sizeof(uint32_t));
9448 bxe_map_sb_state_machines(sb_data_e1x.index_data);
9449 }
9450
9451 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
9452 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
9453
9454 BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id);
9455
9456 /* write indices to HW - PCI guarantees endianity of regpairs */
9457 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9458}
9459
9460static inline uint8_t
9461bxe_fp_qzone_id(struct bxe_fastpath *fp)
9462{
9463 if (CHIP_IS_E1x(fp->sc)) {
9464 return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H);
9465 } else {
9466 return (fp->cl_id);
9467 }
9468}
9469
9470static inline uint32_t
9471bxe_rx_ustorm_prods_offset(struct bxe_softc *sc,
9472 struct bxe_fastpath *fp)
9473{
9474 uint32_t offset = BAR_USTRORM_INTMEM;
9475
9476 if (!CHIP_IS_E1x(sc)) {
9477 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
9478 } else {
9479 offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
9480 }
9481
9482 return (offset);
9483}
9484
9485static void
9486bxe_init_eth_fp(struct bxe_softc *sc,
9487 int idx)
9488{
9489 struct bxe_fastpath *fp = &sc->fp[idx];
9490 uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
9491 unsigned long q_type = 0;
9492 int cos;
9493
9494 fp->sc = sc;
9495 fp->index = idx;
9496
9497 fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
9498 fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
9499
9500 fp->cl_id = (CHIP_IS_E1x(sc)) ?
9501 (SC_L_ID(sc) + idx) :
9502 /* want client ID same as IGU SB ID for non-E1 */
9503 fp->igu_sb_id;
9504 fp->cl_qzone_id = bxe_fp_qzone_id(fp);
9505
9506 /* setup sb indices */
9507 if (!CHIP_IS_E1x(sc)) {
9508 fp->sb_index_values = fp->status_block.e2_sb->sb.index_values;
9509 fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
9510 } else {
9511 fp->sb_index_values = fp->status_block.e1x_sb->sb.index_values;
9512 fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index;
9513 }
9514
9515 /* init shortcut */
9516 fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp);
9517
9518 fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
9519
9520 /*
9521 * XXX If multiple CoS is ever supported then each fastpath structure
9522 * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
9523 */
9524 for (cos = 0; cos < sc->max_cos; cos++) {
9525 cids[cos] = idx;
9526 }
9527 fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
9528
9529 /* nothing more for a VF to do */
9530 if (IS_VF(sc)) {
9531 return;
9532 }
9533
9534 bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE,
9535 fp->fw_sb_id, fp->igu_sb_id);
9536
9537 bxe_update_fp_sb_idx(fp);
9538
9539 /* Configure Queue State object */
9540 bit_set(&q_type, ECORE_Q_TYPE_HAS_RX);
9541 bit_set(&q_type, ECORE_Q_TYPE_HAS_TX);
9542
9543 ecore_init_queue_obj(sc,
9544 &sc->sp_objs[idx].q_obj,
9545 fp->cl_id,
9546 cids,
9547 sc->max_cos,
9548 SC_FUNC(sc),
9549 BXE_SP(sc, q_rdata),
9550 BXE_SP_MAPPING(sc, q_rdata),
9551 q_type);
9552
9553 /* configure classification DBs */
9554 ecore_init_mac_obj(sc,
9555 &sc->sp_objs[idx].mac_obj,
9556 fp->cl_id,
9557 idx,
9558 SC_FUNC(sc),
9559 BXE_SP(sc, mac_rdata),
9560 BXE_SP_MAPPING(sc, mac_rdata),
9561 ECORE_FILTER_MAC_PENDING,
9562 &sc->sp_state,
9563 ECORE_OBJ_TYPE_RX_TX,
9564 &sc->macs_pool);
9565
9566 BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n",
9567 idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id);
9568}
9569
9570static inline void
9571bxe_update_rx_prod(struct bxe_softc *sc,
9572 struct bxe_fastpath *fp,
9573 uint16_t rx_bd_prod,
9574 uint16_t rx_cq_prod,
9575 uint16_t rx_sge_prod)
9576{
9577 struct ustorm_eth_rx_producers rx_prods = { 0 };
9578 uint32_t i;
9579
9580 /* update producers */
9581 rx_prods.bd_prod = rx_bd_prod;
9582 rx_prods.cqe_prod = rx_cq_prod;
9583 rx_prods.sge_prod = rx_sge_prod;
9584
9585 /*
9586 * Make sure that the BD and SGE data is updated before updating the
9587 * producers since FW might read the BD/SGE right after the producer
9588 * is updated.
9589 * This is only applicable for weak-ordered memory model archs such
9590 * as IA-64. The following barrier is also mandatory since FW will
9591 * assumes BDs must have buffers.
9592 */
9593 wmb();
9594
9595 for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
9596 REG_WR(sc,
9597 (fp->ustorm_rx_prods_offset + (i * 4)),
9598 ((uint32_t *)&rx_prods)[i]);
9599 }
9600
9601 wmb(); /* keep prod updates ordered */
9602
9603 BLOGD(sc, DBG_RX,
9604 "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n",
9605 fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod);
9606}
9607
9608static void
9609bxe_init_rx_rings(struct bxe_softc *sc)
9610{
9611 struct bxe_fastpath *fp;
9612 int i;
9613
9614 for (i = 0; i < sc->num_queues; i++) {
9615 fp = &sc->fp[i];
9616
9617 fp->rx_bd_cons = 0;
9618
9619 /*
9620 * Activate the BD ring...
9621 * Warning, this will generate an interrupt (to the TSTORM)
9622 * so this can only be done after the chip is initialized
9623 */
9624 bxe_update_rx_prod(sc, fp,
9625 fp->rx_bd_prod,
9626 fp->rx_cq_prod,
9627 fp->rx_sge_prod);
9628
9629 if (i != 0) {
9630 continue;
9631 }
9632
9633 if (CHIP_IS_E1(sc)) {
9634 REG_WR(sc,
9635 (BAR_USTRORM_INTMEM +
9636 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))),
9637 U64_LO(fp->rcq_dma.paddr));
9638 REG_WR(sc,
9639 (BAR_USTRORM_INTMEM +
9640 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4),
9641 U64_HI(fp->rcq_dma.paddr));
9642 }
9643 }
9644}
9645
9646static void
9647bxe_init_tx_ring_one(struct bxe_fastpath *fp)
9648{
9649 SET_FLAG(fp->tx_db.data.header.data, DOORBELL_HDR_T_DB_TYPE, 1);
9650 fp->tx_db.data.zero_fill1 = 0;
9651 fp->tx_db.data.prod = 0;
9652
9653 fp->tx_pkt_prod = 0;
9654 fp->tx_pkt_cons = 0;
9655 fp->tx_bd_prod = 0;
9656 fp->tx_bd_cons = 0;
9657 fp->eth_q_stats.tx_pkts = 0;
9658}
9659
9660static inline void
9661bxe_init_tx_rings(struct bxe_softc *sc)
9662{
9663 int i;
9664
9665 for (i = 0; i < sc->num_queues; i++) {
9666 bxe_init_tx_ring_one(&sc->fp[i]);
9667 }
9668}
9669
9670static void
9671bxe_init_def_sb(struct bxe_softc *sc)
9672{
9673 struct host_sp_status_block *def_sb = sc->def_sb;
9674 bus_addr_t mapping = sc->def_sb_dma.paddr;
9675 int igu_sp_sb_index;
9676 int igu_seg_id;
9677 int port = SC_PORT(sc);
9678 int func = SC_FUNC(sc);
9679 int reg_offset, reg_offset_en5;
9680 uint64_t section;
9681 int index, sindex;
9682 struct hc_sp_status_block_data sp_sb_data;
9683
9684 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9685
9686 if (CHIP_INT_MODE_IS_BC(sc)) {
9687 igu_sp_sb_index = DEF_SB_IGU_ID;
9688 igu_seg_id = HC_SEG_ACCESS_DEF;
9689 } else {
9690 igu_sp_sb_index = sc->igu_dsb_id;
9691 igu_seg_id = IGU_SEG_ACCESS_DEF;
9692 }
9693
9694 /* attentions */
9695 section = ((uint64_t)mapping +
9696 offsetof(struct host_sp_status_block, atten_status_block));
9697 def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
9698 sc->attn_state = 0;
9699
9700 reg_offset = (port) ?
9701 MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
9702 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
9703 reg_offset_en5 = (port) ?
9704 MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
9705 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
9706
9707 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
9708 /* take care of sig[0]..sig[4] */
9709 for (sindex = 0; sindex < 4; sindex++) {
9710 sc->attn_group[index].sig[sindex] =
9711 REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index)));
9712 }
9713
9714 if (!CHIP_IS_E1x(sc)) {
9715 /*
9716 * enable5 is separate from the rest of the registers,
9717 * and the address skip is 4 and not 16 between the
9718 * different groups
9719 */
9720 sc->attn_group[index].sig[4] =
9721 REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
9722 } else {
9723 sc->attn_group[index].sig[4] = 0;
9724 }
9725 }
9726
9727 if (sc->devinfo.int_block == INT_BLOCK_HC) {
9728 reg_offset = (port) ?
9729 HC_REG_ATTN_MSG1_ADDR_L :
9730 HC_REG_ATTN_MSG0_ADDR_L;
9731 REG_WR(sc, reg_offset, U64_LO(section));
9732 REG_WR(sc, (reg_offset + 4), U64_HI(section));
9733 } else if (!CHIP_IS_E1x(sc)) {
9734 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
9735 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
9736 }
9737
9738 section = ((uint64_t)mapping +
9739 offsetof(struct host_sp_status_block, sp_sb));
9740
9741 bxe_zero_sp_sb(sc);
9742
9743 /* PCI guarantees endianity of regpair */
9744 sp_sb_data.state = SB_ENABLED;
9745 sp_sb_data.host_sb_addr.lo = U64_LO(section);
9746 sp_sb_data.host_sb_addr.hi = U64_HI(section);
9747 sp_sb_data.igu_sb_id = igu_sp_sb_index;
9748 sp_sb_data.igu_seg_id = igu_seg_id;
9749 sp_sb_data.p_func.pf_id = func;
9750 sp_sb_data.p_func.vnic_id = SC_VN(sc);
9751 sp_sb_data.p_func.vf_id = 0xff;
9752
9753 bxe_wr_sp_sb_data(sc, &sp_sb_data);
9754
9755 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
9756}
9757
9758static void
9759bxe_init_sp_ring(struct bxe_softc *sc)
9760{
9761 atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
9762 sc->spq_prod_idx = 0;
9763 sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
9764 sc->spq_prod_bd = sc->spq;
9765 sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
9766}
9767
9768static void
9769bxe_init_eq_ring(struct bxe_softc *sc)
9770{
9771 union event_ring_elem *elem;
9772 int i;
9773
9774 for (i = 1; i <= NUM_EQ_PAGES; i++) {
9775 elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
9776
9777 elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
9778 BCM_PAGE_SIZE *
9779 (i % NUM_EQ_PAGES)));
9780 elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
9781 BCM_PAGE_SIZE *
9782 (i % NUM_EQ_PAGES)));
9783 }
9784
9785 sc->eq_cons = 0;
9786 sc->eq_prod = NUM_EQ_DESC;
9787 sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
9788
9789 atomic_store_rel_long(&sc->eq_spq_left,
9790 (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
9791 NUM_EQ_DESC) - 1));
9792}
9793
9794static void
9795bxe_init_internal_common(struct bxe_softc *sc)
9796{
9797 int i;
9798
9799 /*
9800 * Zero this manually as its initialization is currently missing
9801 * in the initTool.
9802 */
9803 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
9804 REG_WR(sc,
9805 (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
9806 0);
9807 }
9808
9809 if (!CHIP_IS_E1x(sc)) {
9810 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
9811 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
9812 }
9813}
9814
9815static void
9816bxe_init_internal(struct bxe_softc *sc,
9817 uint32_t load_code)
9818{
9819 switch (load_code) {
9820 case FW_MSG_CODE_DRV_LOAD_COMMON:
9821 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
9822 bxe_init_internal_common(sc);
9823 /* no break */
9824
9825 case FW_MSG_CODE_DRV_LOAD_PORT:
9826 /* nothing to do */
9827 /* no break */
9828
9829 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
9830 /* internal memory per function is initialized inside bxe_pf_init */
9831 break;
9832
9833 default:
9834 BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code);
9835 break;
9836 }
9837}
9838
9839static void
9840storm_memset_func_cfg(struct bxe_softc *sc,
9841 struct tstorm_eth_function_common_config *tcfg,
9842 uint16_t abs_fid)
9843{
9844 uint32_t addr;
9845 size_t size;
9846
9847 addr = (BAR_TSTRORM_INTMEM +
9848 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
9849 size = sizeof(struct tstorm_eth_function_common_config);
9850 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg);
9851}
9852
9853static void
9854bxe_func_init(struct bxe_softc *sc,
9855 struct bxe_func_init_params *p)
9856{
9857 struct tstorm_eth_function_common_config tcfg = { 0 };
9858
9859 if (CHIP_IS_E1x(sc)) {
9860 storm_memset_func_cfg(sc, &tcfg, p->func_id);
9861 }
9862
9863 /* Enable the function in the FW */
9864 storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
9865 storm_memset_func_en(sc, p->func_id, 1);
9866
9867 /* spq */
9868 if (p->func_flgs & FUNC_FLG_SPQ) {
9869 storm_memset_spq_addr(sc, p->spq_map, p->func_id);
9870 REG_WR(sc,
9871 (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)),
9872 p->spq_prod);
9873 }
9874}
9875
9876/*
9877 * Calculates the sum of vn_min_rates.
9878 * It's needed for further normalizing of the min_rates.
9879 * Returns:
9880 * sum of vn_min_rates.
9881 * or
9882 * 0 - if all the min_rates are 0.
9883 * In the later case fainess algorithm should be deactivated.
9884 * If all min rates are not zero then those that are zeroes will be set to 1.
9885 */
9886static void
9887bxe_calc_vn_min(struct bxe_softc *sc,
9888 struct cmng_init_input *input)
9889{
9890 uint32_t vn_cfg;
9891 uint32_t vn_min_rate;
9892 int all_zero = 1;
9893 int vn;
9894
9895 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
9896 vn_cfg = sc->devinfo.mf_info.mf_config[vn];
9897 vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
9898 FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
9899
9900 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
9901 /* skip hidden VNs */
9902 vn_min_rate = 0;
9903 } else if (!vn_min_rate) {
9904 /* If min rate is zero - set it to 100 */
9905 vn_min_rate = DEF_MIN_RATE;
9906 } else {
9907 all_zero = 0;
9908 }
9909
9910 input->vnic_min_rate[vn] = vn_min_rate;
9911 }
9912
9913 /* if ETS or all min rates are zeros - disable fairness */
9914 if (BXE_IS_ETS_ENABLED(sc)) {
9915 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
9916 BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n");
9917 } else if (all_zero) {
9918 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
9919 BLOGD(sc, DBG_LOAD,
9920 "Fariness disabled (all MIN values are zeroes)\n");
9921 } else {
9922 input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
9923 }
9924}
9925
9926static inline uint16_t
9927bxe_extract_max_cfg(struct bxe_softc *sc,
9928 uint32_t mf_cfg)
9929{
9930 uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
9931 FUNC_MF_CFG_MAX_BW_SHIFT);
9932
9933 if (!max_cfg) {
9934 BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n");
9935 max_cfg = 100;
9936 }
9937
9938 return (max_cfg);
9939}
9940
9941static void
9942bxe_calc_vn_max(struct bxe_softc *sc,
9943 int vn,
9944 struct cmng_init_input *input)
9945{
9946 uint16_t vn_max_rate;
9947 uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
9948 uint32_t max_cfg;
9949
9950 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
9951 vn_max_rate = 0;
9952 } else {
9953 max_cfg = bxe_extract_max_cfg(sc, vn_cfg);
9954
9955 if (IS_MF_SI(sc)) {
9956 /* max_cfg in percents of linkspeed */
9957 vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100);
9958 } else { /* SD modes */
9959 /* max_cfg is absolute in 100Mb units */
9960 vn_max_rate = (max_cfg * 100);
9961 }
9962 }
9963
9964 BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
9965
9966 input->vnic_max_rate[vn] = vn_max_rate;
9967}
9968
9969static void
9970bxe_cmng_fns_init(struct bxe_softc *sc,
9971 uint8_t read_cfg,
9972 uint8_t cmng_type)
9973{
9974 struct cmng_init_input input;
9975 int vn;
9976
9977 memset(&input, 0, sizeof(struct cmng_init_input));
9978
9979 input.port_rate = sc->link_vars.line_speed;
9980
9981 if (cmng_type == CMNG_FNS_MINMAX) {
9982 /* read mf conf from shmem */
9983 if (read_cfg) {
9984 bxe_read_mf_cfg(sc);
9985 }
9986
9987 /* get VN min rate and enable fairness if not 0 */
9988 bxe_calc_vn_min(sc, &input);
9989
9990 /* get VN max rate */
9991 if (sc->port.pmf) {
9992 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
9993 bxe_calc_vn_max(sc, vn, &input);
9994 }
9995 }
9996
9997 /* always enable rate shaping and fairness */
9998 input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
9999
10000 ecore_init_cmng(&input, &sc->cmng);
10001 return;
10002 }
10003
10004 /* rate shaping and fairness are disabled */
10005 BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n");
10006}
10007
10008static int
10009bxe_get_cmng_fns_mode(struct bxe_softc *sc)
10010{
10011 if (CHIP_REV_IS_SLOW(sc)) {
10012 return (CMNG_FNS_NONE);
10013 }
10014
10015 if (IS_MF(sc)) {
10016 return (CMNG_FNS_MINMAX);
10017 }
10018
10019 return (CMNG_FNS_NONE);
10020}
10021
10022static void
10023storm_memset_cmng(struct bxe_softc *sc,
10024 struct cmng_init *cmng,
10025 uint8_t port)
10026{
10027 int vn;
10028 int func;
10029 uint32_t addr;
10030 size_t size;
10031
10032 addr = (BAR_XSTRORM_INTMEM +
10033 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
10034 size = sizeof(struct cmng_struct_per_port);
10035 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port);
10036
10037 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10038 func = func_by_vn(sc, vn);
10039
10040 addr = (BAR_XSTRORM_INTMEM +
10041 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
10042 size = sizeof(struct rate_shaping_vars_per_vn);
10043 ecore_storm_memset_struct(sc, addr, size,
10044 (uint32_t *)&cmng->vnic.vnic_max_rate[vn]);
10045
10046 addr = (BAR_XSTRORM_INTMEM +
10047 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
10048 size = sizeof(struct fairness_vars_per_vn);
10049 ecore_storm_memset_struct(sc, addr, size,
10050 (uint32_t *)&cmng->vnic.vnic_min_rate[vn]);
10051 }
10052}
10053
10054static void
10055bxe_pf_init(struct bxe_softc *sc)
10056{
10057 struct bxe_func_init_params func_init = { 0 };
10058 struct event_ring_data eq_data = { { 0 } };
10059 uint16_t flags;
10060
10061 if (!CHIP_IS_E1x(sc)) {
10062 /* reset IGU PF statistics: MSIX + ATTN */
10063 /* PF */
10064 REG_WR(sc,
10065 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10066 (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10067 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10068 0);
10069 /* ATTN */
10070 REG_WR(sc,
10071 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10072 (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10073 (BXE_IGU_STAS_MSG_PF_CNT * 4) +
10074 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10075 0);
10076 }
10077
10078 /* function setup flags */
10079 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
10080
10081 /*
10082 * This flag is relevant for E1x only.
10083 * E2 doesn't have a TPA configuration in a function level.
10084 */
10085 flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0;
10086
10087 func_init.func_flgs = flags;
10088 func_init.pf_id = SC_FUNC(sc);
10089 func_init.func_id = SC_FUNC(sc);
10090 func_init.spq_map = sc->spq_dma.paddr;
10091 func_init.spq_prod = sc->spq_prod_idx;
10092
10093 bxe_func_init(sc, &func_init);
10094
10095 memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
10096
10097 /*
10098 * Congestion management values depend on the link rate.
10099 * There is no active link so initial link rate is set to 10Gbps.
10100 * When the link comes up the congestion management values are
10101 * re-calculated according to the actual link rate.
10102 */
10103 sc->link_vars.line_speed = SPEED_10000;
10104 bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc));
10105
10106 /* Only the PMF sets the HW */
10107 if (sc->port.pmf) {
10108 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
10109 }
10110
10111 /* init Event Queue - PCI bus guarantees correct endainity */
10112 eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
10113 eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
10114 eq_data.producer = sc->eq_prod;
10115 eq_data.index_id = HC_SP_INDEX_EQ_CONS;
10116 eq_data.sb_id = DEF_SB_ID;
10117 storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
10118}
10119
10120static void
10121bxe_hc_int_enable(struct bxe_softc *sc)
10122{
10123 int port = SC_PORT(sc);
10124 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10125 uint32_t val = REG_RD(sc, addr);
10126 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10127 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10128 (sc->intr_count == 1)) ? TRUE : FALSE;
10129 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10130
10131 if (msix) {
10132 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10133 HC_CONFIG_0_REG_INT_LINE_EN_0);
10134 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10135 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10136 if (single_msix) {
10137 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
10138 }
10139 } else if (msi) {
10140 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
10141 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10142 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10143 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10144 } else {
10145 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10146 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10147 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10148 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10149
10150 if (!CHIP_IS_E1(sc)) {
10151 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n",
10152 val, port, addr);
10153
10154 REG_WR(sc, addr, val);
10155
10156 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
10157 }
10158 }
10159
10160 if (CHIP_IS_E1(sc)) {
10161 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF);
10162 }
10163
10164 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
10165 val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10166
10167 REG_WR(sc, addr, val);
10168
10169 /* ensure that HC_CONFIG is written before leading/trailing edge config */
10170 mb();
10171
10172 if (!CHIP_IS_E1(sc)) {
10173 /* init leading/trailing edge */
10174 if (IS_MF(sc)) {
10175 val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10176 if (sc->port.pmf) {
10177 /* enable nig and gpio3 attention */
10178 val |= 0x1100;
10179 }
10180 } else {
10181 val = 0xffff;
10182 }
10183
10184 REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val);
10185 REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val);
10186 }
10187
10188 /* make sure that interrupts are indeed enabled from here on */
10189 mb();
10190}
10191
10192static void
10193bxe_igu_int_enable(struct bxe_softc *sc)
10194{
10195 uint32_t val;
10196 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10197 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10198 (sc->intr_count == 1)) ? TRUE : FALSE;
10199 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10200
10201 val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10202
10203 if (msix) {
10204 val &= ~(IGU_PF_CONF_INT_LINE_EN |
10205 IGU_PF_CONF_SINGLE_ISR_EN);
10206 val |= (IGU_PF_CONF_MSI_MSIX_EN |
10207 IGU_PF_CONF_ATTN_BIT_EN);
10208 if (single_msix) {
10209 val |= IGU_PF_CONF_SINGLE_ISR_EN;
10210 }
10211 } else if (msi) {
10212 val &= ~IGU_PF_CONF_INT_LINE_EN;
10213 val |= (IGU_PF_CONF_MSI_MSIX_EN |
10214 IGU_PF_CONF_ATTN_BIT_EN |
10215 IGU_PF_CONF_SINGLE_ISR_EN);
10216 } else {
10217 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
10218 val |= (IGU_PF_CONF_INT_LINE_EN |
10219 IGU_PF_CONF_ATTN_BIT_EN |
10220 IGU_PF_CONF_SINGLE_ISR_EN);
10221 }
10222
10223 /* clean previous status - need to configure igu prior to ack*/
10224 if ((!msix) || single_msix) {
10225 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10226 bxe_ack_int(sc);
10227 }
10228
10229 val |= IGU_PF_CONF_FUNC_EN;
10230
10231 BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n",
10232 val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10233
10234 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10235
10236 mb();
10237
10238 /* init leading/trailing edge */
10239 if (IS_MF(sc)) {
10240 val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10241 if (sc->port.pmf) {
10242 /* enable nig and gpio3 attention */
10243 val |= 0x1100;
10244 }
10245 } else {
10246 val = 0xffff;
10247 }
10248
10249 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
10250 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
10251
10252 /* make sure that interrupts are indeed enabled from here on */
10253 mb();
10254}
10255
10256static void
10257bxe_int_enable(struct bxe_softc *sc)
10258{
10259 if (sc->devinfo.int_block == INT_BLOCK_HC) {
10260 bxe_hc_int_enable(sc);
10261 } else {
10262 bxe_igu_int_enable(sc);
10263 }
10264}
10265
10266static void
10267bxe_hc_int_disable(struct bxe_softc *sc)
10268{
10269 int port = SC_PORT(sc);
10270 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10271 uint32_t val = REG_RD(sc, addr);
10272
10273 /*
10274 * In E1 we must use only PCI configuration space to disable MSI/MSIX
10275 * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC
10276 * block
10277 */
10278 if (CHIP_IS_E1(sc)) {
10279 /*
10280 * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register
10281 * to prevent from HC sending interrupts after we exit the function
10282 */
10283 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0);
10284
10285 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10286 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10287 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10288 } else {
10289 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10290 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10291 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10292 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10293 }
10294
10295 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr);
10296
10297 /* flush all outstanding writes */
10298 mb();
10299
10300 REG_WR(sc, addr, val);
10301 if (REG_RD(sc, addr) != val) {
10302 BLOGE(sc, "proper val not read from HC IGU!\n");
10303 }
10304}
10305
10306static void
10307bxe_igu_int_disable(struct bxe_softc *sc)
10308{
10309 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10310
10311 val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
10312 IGU_PF_CONF_INT_LINE_EN |
10313 IGU_PF_CONF_ATTN_BIT_EN);
10314
10315 BLOGD(sc, DBG_INTR, "write %x to IGU\n", val);
10316
10317 /* flush all outstanding writes */
10318 mb();
10319
10320 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10321 if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
10322 BLOGE(sc, "proper val not read from IGU!\n");
10323 }
10324}
10325
10326static void
10327bxe_int_disable(struct bxe_softc *sc)
10328{
10329 if (sc->devinfo.int_block == INT_BLOCK_HC) {
10330 bxe_hc_int_disable(sc);
10331 } else {
10332 bxe_igu_int_disable(sc);
10333 }
10334}
10335
10336static void
10337bxe_nic_init(struct bxe_softc *sc,
10338 int load_code)
10339{
10340 int i;
10341
10342 for (i = 0; i < sc->num_queues; i++) {
10343 bxe_init_eth_fp(sc, i);
10344 }
10345
10346 rmb(); /* ensure status block indices were read */
10347
10348 bxe_init_rx_rings(sc);
10349 bxe_init_tx_rings(sc);
10350
10351 if (IS_VF(sc)) {
10352 return;
10353 }
10354
10355 /* initialize MOD_ABS interrupts */
10356 elink_init_mod_abs_int(sc, &sc->link_vars,
10357 sc->devinfo.chip_id,
10358 sc->devinfo.shmem_base,
10359 sc->devinfo.shmem2_base,
10360 SC_PORT(sc));
10361
10362 bxe_init_def_sb(sc);
10363 bxe_update_dsb_idx(sc);
10364 bxe_init_sp_ring(sc);
10365 bxe_init_eq_ring(sc);
10366 bxe_init_internal(sc, load_code);
10367 bxe_pf_init(sc);
10368 bxe_stats_init(sc);
10369
10370 /* flush all before enabling interrupts */
10371 mb();
10372
10373 bxe_int_enable(sc);
10374
10375 /* check for SPIO5 */
10376 bxe_attn_int_deasserted0(sc,
10377 REG_RD(sc,
10378 (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
10379 SC_PORT(sc)*4)) &
10380 AEU_INPUTS_ATTN_BITS_SPIO5);
10381}
10382
10383static inline void
10384bxe_init_objs(struct bxe_softc *sc)
10385{
10386 /* mcast rules must be added to tx if tx switching is enabled */
10387 ecore_obj_type o_type =
10388 (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX :
10389 ECORE_OBJ_TYPE_RX;
10390
10391 /* RX_MODE controlling object */
10392 ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
10393
10394 /* multicast configuration controlling object */
10395 ecore_init_mcast_obj(sc,
10396 &sc->mcast_obj,
10397 sc->fp[0].cl_id,
10398 sc->fp[0].index,
10399 SC_FUNC(sc),
10400 SC_FUNC(sc),
10401 BXE_SP(sc, mcast_rdata),
10402 BXE_SP_MAPPING(sc, mcast_rdata),
10403 ECORE_FILTER_MCAST_PENDING,
10404 &sc->sp_state,
10405 o_type);
10406
10407 /* Setup CAM credit pools */
10408 ecore_init_mac_credit_pool(sc,
10409 &sc->macs_pool,
10410 SC_FUNC(sc),
10411 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10412 VNICS_PER_PATH(sc));
10413
10414 ecore_init_vlan_credit_pool(sc,
10415 &sc->vlans_pool,
10416 SC_ABS_FUNC(sc) >> 1,
10417 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10418 VNICS_PER_PATH(sc));
10419
10420 /* RSS configuration object */
10421 ecore_init_rss_config_obj(sc,
10422 &sc->rss_conf_obj,
10423 sc->fp[0].cl_id,
10424 sc->fp[0].index,
10425 SC_FUNC(sc),
10426 SC_FUNC(sc),
10427 BXE_SP(sc, rss_rdata),
10428 BXE_SP_MAPPING(sc, rss_rdata),
10429 ECORE_FILTER_RSS_CONF_PENDING,
10430 &sc->sp_state, ECORE_OBJ_TYPE_RX);
10431}
10432
10433/*
10434 * Initialize the function. This must be called before sending CLIENT_SETUP
10435 * for the first client.
10436 */
10437static inline int
10438bxe_func_start(struct bxe_softc *sc)
10439{
10440 struct ecore_func_state_params func_params = { NULL };
10441 struct ecore_func_start_params *start_params = &func_params.params.start;
10442
10443 /* Prepare parameters for function state transitions */
10444 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
10445
10446 func_params.f_obj = &sc->func_obj;
10447 func_params.cmd = ECORE_F_CMD_START;
10448
10449 /* Function parameters */
10450 start_params->mf_mode = sc->devinfo.mf_info.mf_mode;
10451 start_params->sd_vlan_tag = OVLAN(sc);
10452
10453 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
10454 start_params->network_cos_mode = STATIC_COS;
10455 } else { /* CHIP_IS_E1X */
10456 start_params->network_cos_mode = FW_WRR;
10457 }
10458
10459 //start_params->gre_tunnel_mode = 0;
10460 //start_params->gre_tunnel_rss = 0;
10461
10462 return (ecore_func_state_change(sc, &func_params));
10463}
10464
10465static int
10466bxe_set_power_state(struct bxe_softc *sc,
10467 uint8_t state)
10468{
10469 uint16_t pmcsr;
10470
10471 /* If there is no power capability, silently succeed */
10472 if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) {
10473 BLOGW(sc, "No power capability\n");
10474 return (0);
10475 }
10476
10477 pmcsr = pci_read_config(sc->dev,
10478 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10479 2);
10480
10481 switch (state) {
10482 case PCI_PM_D0:
10483 pci_write_config(sc->dev,
10484 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10485 ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2);
10486
10487 if (pmcsr & PCIM_PSTAT_DMASK) {
10488 /* delay required during transition out of D3hot */
10489 DELAY(20000);
10490 }
10491
10492 break;
10493
10494 case PCI_PM_D3hot:
10495 /* XXX if there are other clients above don't shut down the power */
10496
10497 /* don't shut down the power for emulation and FPGA */
10498 if (CHIP_REV_IS_SLOW(sc)) {
10499 return (0);
10500 }
10501
10502 pmcsr &= ~PCIM_PSTAT_DMASK;
10503 pmcsr |= PCIM_PSTAT_D3;
10504
10505 if (sc->wol) {
10506 pmcsr |= PCIM_PSTAT_PMEENABLE;
10507 }
10508
10509 pci_write_config(sc->dev,
10510 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10511 pmcsr, 4);
10512
10513 /*
10514 * No more memory access after this point until device is brought back
10515 * to D0 state.
10516 */
10517 break;
10518
10519 default:
10520 BLOGE(sc, "Can't support PCI power state = 0x%x pmcsr 0x%x\n",
10521 state, pmcsr);
10522 return (-1);
10523 }
10524
10525 return (0);
10526}
10527
10528
10529/* return true if succeeded to acquire the lock */
10530static uint8_t
10531bxe_trylock_hw_lock(struct bxe_softc *sc,
10532 uint32_t resource)
10533{
10534 uint32_t lock_status;
10535 uint32_t resource_bit = (1 << resource);
10536 int func = SC_FUNC(sc);
10537 uint32_t hw_lock_control_reg;
10538
10539 BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource);
10540
10541 /* Validating that the resource is within range */
10542 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
10543 BLOGD(sc, DBG_LOAD,
10544 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
10545 resource, HW_LOCK_MAX_RESOURCE_VALUE);
10546 return (FALSE);
10547 }
10548
10549 if (func <= 5) {
10550 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
10551 } else {
10552 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
10553 }
10554
10555 /* try to acquire the lock */
10556 REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
10557 lock_status = REG_RD(sc, hw_lock_control_reg);
10558 if (lock_status & resource_bit) {
10559 return (TRUE);
10560 }
10561
10562 BLOGE(sc, "Failed to get a resource lock 0x%x func %d "
10563 "lock_status 0x%x resource_bit 0x%x\n", resource, func,
10564 lock_status, resource_bit);
10565
10566 return (FALSE);
10567}
10568
10569/*
10570 * Get the recovery leader resource id according to the engine this function
10571 * belongs to. Currently only only 2 engines is supported.
10572 */
10573static int
10574bxe_get_leader_lock_resource(struct bxe_softc *sc)
10575{
10576 if (SC_PATH(sc)) {
10577 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1);
10578 } else {
10579 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0);
10580 }
10581}
10582
10583/* try to acquire a leader lock for current engine */
10584static uint8_t
10585bxe_trylock_leader_lock(struct bxe_softc *sc)
10586{
10587 return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
10588}
10589
10590static int
10591bxe_release_leader_lock(struct bxe_softc *sc)
10592{
10593 return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
10594}
10595
10596/* close gates #2, #3 and #4 */
10597static void
10598bxe_set_234_gates(struct bxe_softc *sc,
10599 uint8_t close)
10600{
10601 uint32_t val;
10602
10603 /* gates #2 and #4a are closed/opened for "not E1" only */
10604 if (!CHIP_IS_E1(sc)) {
10605 /* #4 */
10606 REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
10607 /* #2 */
10608 REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
10609 }
10610
10611 /* #3 */
10612 if (CHIP_IS_E1x(sc)) {
10613 /* prevent interrupts from HC on both ports */
10614 val = REG_RD(sc, HC_REG_CONFIG_1);
10615 REG_WR(sc, HC_REG_CONFIG_1,
10616 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
10617 (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
10618
10619 val = REG_RD(sc, HC_REG_CONFIG_0);
10620 REG_WR(sc, HC_REG_CONFIG_0,
10621 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
10622 (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
10623 } else {
10624 /* Prevent incoming interrupts in IGU */
10625 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
10626
10627 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
10628 (!close) ?
10629 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
10630 (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
10631 }
10632
10633 BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n",
10634 close ? "closing" : "opening");
10635
10636 wmb();
10637}
10638
10639/* poll for pending writes bit, it should get cleared in no more than 1s */
10640static int
10641bxe_er_poll_igu_vq(struct bxe_softc *sc)
10642{
10643 uint32_t cnt = 1000;
10644 uint32_t pend_bits = 0;
10645
10646 do {
10647 pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
10648
10649 if (pend_bits == 0) {
10650 break;
10651 }
10652
10653 DELAY(1000);
10654 } while (--cnt > 0);
10655
10656 if (cnt == 0) {
10657 BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits);
10658 return (-1);
10659 }
10660
10661 return (0);
10662}
10663
10664#define SHARED_MF_CLP_MAGIC 0x80000000 /* 'magic' bit */
10665
10666static void
10667bxe_clp_reset_prep(struct bxe_softc *sc,
10668 uint32_t *magic_val)
10669{
10670 /* Do some magic... */
10671 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
10672 *magic_val = val & SHARED_MF_CLP_MAGIC;
10673 MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
10674}
10675
10676/* restore the value of the 'magic' bit */
10677static void
10678bxe_clp_reset_done(struct bxe_softc *sc,
10679 uint32_t magic_val)
10680{
10681 /* Restore the 'magic' bit value... */
10682 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
10683 MFCFG_WR(sc, shared_mf_config.clp_mb,
10684 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
10685}
10686
10687/* prepare for MCP reset, takes care of CLP configurations */
10688static void
10689bxe_reset_mcp_prep(struct bxe_softc *sc,
10690 uint32_t *magic_val)
10691{
10692 uint32_t shmem;
10693 uint32_t validity_offset;
10694
10695 /* set `magic' bit in order to save MF config */
10696 if (!CHIP_IS_E1(sc)) {
10697 bxe_clp_reset_prep(sc, magic_val);
10698 }
10699
10700 /* get shmem offset */
10701 shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
10702 validity_offset =
10703 offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
10704
10705 /* Clear validity map flags */
10706 if (shmem > 0) {
10707 REG_WR(sc, shmem + validity_offset, 0);
10708 }
10709}
10710
10711#define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */
10712#define MCP_ONE_TIMEOUT 100 /* 100 ms */
10713
10714static void
10715bxe_mcp_wait_one(struct bxe_softc *sc)
10716{
10717 /* special handling for emulation and FPGA (10 times longer) */
10718 if (CHIP_REV_IS_SLOW(sc)) {
10719 DELAY((MCP_ONE_TIMEOUT*10) * 1000);
10720 } else {
10721 DELAY((MCP_ONE_TIMEOUT) * 1000);
10722 }
10723}
10724
10725/* initialize shmem_base and waits for validity signature to appear */
10726static int
10727bxe_init_shmem(struct bxe_softc *sc)
10728{
10729 int cnt = 0;
10730 uint32_t val = 0;
10731
10732 do {
10733 sc->devinfo.shmem_base =
10734 sc->link_params.shmem_base =
10735 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
10736
10737 if (sc->devinfo.shmem_base) {
10738 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
10739 if (val & SHR_MEM_VALIDITY_MB)
10740 return (0);
10741 }
10742
10743 bxe_mcp_wait_one(sc);
10744
10745 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
10746
10747 BLOGE(sc, "BAD MCP validity signature\n");
10748
10749 return (-1);
10750}
10751
10752static int
10753bxe_reset_mcp_comp(struct bxe_softc *sc,
10754 uint32_t magic_val)
10755{
10756 int rc = bxe_init_shmem(sc);
10757
10758 /* Restore the `magic' bit value */
10759 if (!CHIP_IS_E1(sc)) {
10760 bxe_clp_reset_done(sc, magic_val);
10761 }
10762
10763 return (rc);
10764}
10765
10766static void
10767bxe_pxp_prep(struct bxe_softc *sc)
10768{
10769 if (!CHIP_IS_E1(sc)) {
10770 REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
10771 REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
10772 wmb();
10773 }
10774}
10775
10776/*
10777 * Reset the whole chip except for:
10778 * - PCIE core
10779 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
10780 * - IGU
10781 * - MISC (including AEU)
10782 * - GRC
10783 * - RBCN, RBCP
10784 */
10785static void
10786bxe_process_kill_chip_reset(struct bxe_softc *sc,
10787 uint8_t global)
10788{
10789 uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
10790 uint32_t global_bits2, stay_reset2;
10791
10792 /*
10793 * Bits that have to be set in reset_mask2 if we want to reset 'global'
10794 * (per chip) blocks.
10795 */
10796 global_bits2 =
10797 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
10798 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
10799
10800 /*
10801 * Don't reset the following blocks.
10802 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
10803 * reset, as in 4 port device they might still be owned
10804 * by the MCP (there is only one leader per path).
10805 */
10806 not_reset_mask1 =
10807 MISC_REGISTERS_RESET_REG_1_RST_HC |
10808 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
10809 MISC_REGISTERS_RESET_REG_1_RST_PXP;
10810
10811 not_reset_mask2 =
10812 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
10813 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
10814 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
10815 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
10816 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
10817 MISC_REGISTERS_RESET_REG_2_RST_GRC |
10818 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
10819 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
10820 MISC_REGISTERS_RESET_REG_2_RST_ATC |
10821 MISC_REGISTERS_RESET_REG_2_PGLC |
10822 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
10823 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
10824 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
10825 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
10826 MISC_REGISTERS_RESET_REG_2_UMAC0 |
10827 MISC_REGISTERS_RESET_REG_2_UMAC1;
10828
10829 /*
10830 * Keep the following blocks in reset:
10831 * - all xxMACs are handled by the elink code.
10832 */
10833 stay_reset2 =
10834 MISC_REGISTERS_RESET_REG_2_XMAC |
10835 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
10836
10837 /* Full reset masks according to the chip */
10838 reset_mask1 = 0xffffffff;
10839
10840 if (CHIP_IS_E1(sc))
10841 reset_mask2 = 0xffff;
10842 else if (CHIP_IS_E1H(sc))
10843 reset_mask2 = 0x1ffff;
10844 else if (CHIP_IS_E2(sc))
10845 reset_mask2 = 0xfffff;
10846 else /* CHIP_IS_E3 */
10847 reset_mask2 = 0x3ffffff;
10848
10849 /* Don't reset global blocks unless we need to */
10850 if (!global)
10851 reset_mask2 &= ~global_bits2;
10852
10853 /*
10854 * In case of attention in the QM, we need to reset PXP
10855 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
10856 * because otherwise QM reset would release 'close the gates' shortly
10857 * before resetting the PXP, then the PSWRQ would send a write
10858 * request to PGLUE. Then when PXP is reset, PGLUE would try to
10859 * read the payload data from PSWWR, but PSWWR would not
10860 * respond. The write queue in PGLUE would stuck, dmae commands
10861 * would not return. Therefore it's important to reset the second
10862 * reset register (containing the
10863 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
10864 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
10865 * bit).
10866 */
10867 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
10868 reset_mask2 & (~not_reset_mask2));
10869
10870 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
10871 reset_mask1 & (~not_reset_mask1));
10872
10873 mb();
10874 wmb();
10875
10876 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
10877 reset_mask2 & (~stay_reset2));
10878
10879 mb();
10880 wmb();
10881
10882 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
10883 wmb();
10884}
10885
10886static int
10887bxe_process_kill(struct bxe_softc *sc,
10888 uint8_t global)
10889{
10890 int cnt = 1000;
10891 uint32_t val = 0;
10892 uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
10893 uint32_t tags_63_32 = 0;
10894
10895 /* Empty the Tetris buffer, wait for 1s */
10896 do {
10897 sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT);
10898 blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
10899 port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
10900 port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
10901 pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
10902 if (CHIP_IS_E3(sc)) {
10903 tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
10904 }
10905
10906 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
10907 ((port_is_idle_0 & 0x1) == 0x1) &&
10908 ((port_is_idle_1 & 0x1) == 0x1) &&
10909 (pgl_exp_rom2 == 0xffffffff) &&
10910 (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
10911 break;
10912 DELAY(1000);
10913 } while (cnt-- > 0);
10914
10915 if (cnt <= 0) {
10916 BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there "
10917 "are still outstanding read requests after 1s! "
10918 "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
10919 "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
10920 sr_cnt, blk_cnt, port_is_idle_0,
10921 port_is_idle_1, pgl_exp_rom2);
10922 return (-1);
10923 }
10924
10925 mb();
10926
10927 /* Close gates #2, #3 and #4 */
10928 bxe_set_234_gates(sc, TRUE);
10929
10930 /* Poll for IGU VQs for 57712 and newer chips */
10931 if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) {
10932 return (-1);
10933 }
10934
10935 /* XXX indicate that "process kill" is in progress to MCP */
10936
10937 /* clear "unprepared" bit */
10938 REG_WR(sc, MISC_REG_UNPREPARED, 0);
10939 mb();
10940
10941 /* Make sure all is written to the chip before the reset */
10942 wmb();
10943
10944 /*
10945 * Wait for 1ms to empty GLUE and PCI-E core queues,
10946 * PSWHST, GRC and PSWRD Tetris buffer.
10947 */
10948 DELAY(1000);
10949
10950 /* Prepare to chip reset: */
10951 /* MCP */
10952 if (global) {
10953 bxe_reset_mcp_prep(sc, &val);
10954 }
10955
10956 /* PXP */
10957 bxe_pxp_prep(sc);
10958 mb();
10959
10960 /* reset the chip */
10961 bxe_process_kill_chip_reset(sc, global);
10962 mb();
10963
10964 /* clear errors in PGB */
10965 if (!CHIP_IS_E1(sc))
10966 REG_WR(sc, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
10967
10968 /* Recover after reset: */
10969 /* MCP */
10970 if (global && bxe_reset_mcp_comp(sc, val)) {
10971 return (-1);
10972 }
10973
10974 /* XXX add resetting the NO_MCP mode DB here */
10975
10976 /* Open the gates #2, #3 and #4 */
10977 bxe_set_234_gates(sc, FALSE);
10978
10979 /* XXX
10980 * IGU/AEU preparation bring back the AEU/IGU to a reset state
10981 * re-enable attentions
10982 */
10983
10984 return (0);
10985}
10986
10987static int
10988bxe_leader_reset(struct bxe_softc *sc)
10989{
10990 int rc = 0;
10991 uint8_t global = bxe_reset_is_global(sc);
10992 uint32_t load_code;
10993
10994 /*
10995 * If not going to reset MCP, load "fake" driver to reset HW while
10996 * driver is owner of the HW.
10997 */
10998 if (!global && !BXE_NOMCP(sc)) {
10999 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
11000 DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
11001 if (!load_code) {
11002 BLOGE(sc, "MCP response failure, aborting\n");
11003 rc = -1;
11004 goto exit_leader_reset;
11005 }
11006
11007 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
11008 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
11009 BLOGE(sc, "MCP unexpected response, aborting\n");
11010 rc = -1;
11011 goto exit_leader_reset2;
11012 }
11013
11014 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
11015 if (!load_code) {
11016 BLOGE(sc, "MCP response failure, aborting\n");
11017 rc = -1;
11018 goto exit_leader_reset2;
11019 }
11020 }
11021
11022 /* try to recover after the failure */
11023 if (bxe_process_kill(sc, global)) {
11024 BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc));
11025 rc = -1;
11026 goto exit_leader_reset2;
11027 }
11028
11029 /*
11030 * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
11031 * state.
11032 */
11033 bxe_set_reset_done(sc);
11034 if (global) {
11035 bxe_clear_reset_global(sc);
11036 }
11037
11038exit_leader_reset2:
11039
11040 /* unload "fake driver" if it was loaded */
11041 if (!global && !BXE_NOMCP(sc)) {
11042 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
11043 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
11044 }
11045
11046exit_leader_reset:
11047
11048 sc->is_leader = 0;
11049 bxe_release_leader_lock(sc);
11050
11051 mb();
11052 return (rc);
11053}
11054
11055/*
11056 * prepare INIT transition, parameters configured:
11057 * - HC configuration
11058 * - Queue's CDU context
11059 */
11060static void
11061bxe_pf_q_prep_init(struct bxe_softc *sc,
11062 struct bxe_fastpath *fp,
11063 struct ecore_queue_init_params *init_params)
11064{
11065 uint8_t cos;
11066 int cxt_index, cxt_offset;
11067
11068 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
11069 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
11070
11071 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
11072 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
11073
11074 /* HC rate */
11075 init_params->rx.hc_rate =
11076 sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
11077 init_params->tx.hc_rate =
11078 sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
11079
11080 /* FW SB ID */
11081 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
11082
11083 /* CQ index among the SB indices */
11084 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11085 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
11086
11087 /* set maximum number of COSs supported by this queue */
11088 init_params->max_cos = sc->max_cos;
11089
11090 BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n",
11091 fp->index, init_params->max_cos);
11092
11093 /* set the context pointers queue object */
11094 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
11095 /* XXX change index/cid here if ever support multiple tx CoS */
11096 /* fp->txdata[cos]->cid */
11097 cxt_index = fp->index / ILT_PAGE_CIDS;
11098 cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
11099 init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth;
11100 }
11101}
11102
11103/* set flags that are common for the Tx-only and not normal connections */
11104static unsigned long
11105bxe_get_common_flags(struct bxe_softc *sc,
11106 struct bxe_fastpath *fp,
11107 uint8_t zero_stats)
11108{
11109 unsigned long flags = 0;
11110
11111 /* PF driver will always initialize the Queue to an ACTIVE state */
11112 bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
11113
11114 /*
11115 * tx only connections collect statistics (on the same index as the
11116 * parent connection). The statistics are zeroed when the parent
11117 * connection is initialized.
11118 */
11119
11120 bxe_set_bit(ECORE_Q_FLG_STATS, &flags);
11121 if (zero_stats) {
11122 bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
11123 }
11124
11125 /*
11126 * tx only connections can support tx-switching, though their
11127 * CoS-ness doesn't survive the loopback
11128 */
11129 if (sc->flags & BXE_TX_SWITCHING) {
11130 bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
11131 }
11132
11133 bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
11134
11135 return (flags);
11136}
11137
11138static unsigned long
11139bxe_get_q_flags(struct bxe_softc *sc,
11140 struct bxe_fastpath *fp,
11141 uint8_t leading)
11142{
11143 unsigned long flags = 0;
11144
11145 if (IS_MF_SD(sc)) {
11146 bxe_set_bit(ECORE_Q_FLG_OV, &flags);
11147 }
11148
11149 if (if_getcapenable(sc->ifp) & IFCAP_LRO) {
11150 bxe_set_bit(ECORE_Q_FLG_TPA, &flags);
11151 bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags);
11152 }
11153
11154 if (leading) {
11155 bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
11156 bxe_set_bit(ECORE_Q_FLG_MCAST, &flags);
11157 }
11158
11159 bxe_set_bit(ECORE_Q_FLG_VLAN, &flags);
11160
11161 /* merge with common flags */
11162 return (flags | bxe_get_common_flags(sc, fp, TRUE));
11163}
11164
11165static void
11166bxe_pf_q_prep_general(struct bxe_softc *sc,
11167 struct bxe_fastpath *fp,
11168 struct ecore_general_setup_params *gen_init,
11169 uint8_t cos)
11170{
11171 gen_init->stat_id = bxe_stats_id(fp);
11172 gen_init->spcl_id = fp->cl_id;
11173 gen_init->mtu = sc->mtu;
11174 gen_init->cos = cos;
11175}
11176
11177static void
11178bxe_pf_rx_q_prep(struct bxe_softc *sc,
11179 struct bxe_fastpath *fp,
11180 struct rxq_pause_params *pause,
11181 struct ecore_rxq_setup_params *rxq_init)
11182{
11183 uint8_t max_sge = 0;
11184 uint16_t sge_sz = 0;
11185 uint16_t tpa_agg_size = 0;
11186
11187 pause->sge_th_lo = SGE_TH_LO(sc);
11188 pause->sge_th_hi = SGE_TH_HI(sc);
11189
11190 /* validate SGE ring has enough to cross high threshold */
11191 if (sc->dropless_fc &&
11192 (pause->sge_th_hi + FW_PREFETCH_CNT) >
11193 (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) {
11194 BLOGW(sc, "sge ring threshold limit\n");
11195 }
11196
11197 /* minimum max_aggregation_size is 2*MTU (two full buffers) */
11198 tpa_agg_size = (2 * sc->mtu);
11199 if (tpa_agg_size < sc->max_aggregation_size) {
11200 tpa_agg_size = sc->max_aggregation_size;
11201 }
11202
11203 max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT;
11204 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
11205 (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT;
11206 sge_sz = (uint16_t)min(SGE_PAGES, 0xffff);
11207
11208 /* pause - not for e1 */
11209 if (!CHIP_IS_E1(sc)) {
11210 pause->bd_th_lo = BD_TH_LO(sc);
11211 pause->bd_th_hi = BD_TH_HI(sc);
11212
11213 pause->rcq_th_lo = RCQ_TH_LO(sc);
11214 pause->rcq_th_hi = RCQ_TH_HI(sc);
11215
11216 /* validate rings have enough entries to cross high thresholds */
11217 if (sc->dropless_fc &&
11218 pause->bd_th_hi + FW_PREFETCH_CNT >
11219 sc->rx_ring_size) {
11220 BLOGW(sc, "rx bd ring threshold limit\n");
11221 }
11222
11223 if (sc->dropless_fc &&
11224 pause->rcq_th_hi + FW_PREFETCH_CNT >
11225 RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) {
11226 BLOGW(sc, "rcq ring threshold limit\n");
11227 }
11228
11229 pause->pri_map = 1;
11230 }
11231
11232 /* rxq setup */
11233 rxq_init->dscr_map = fp->rx_dma.paddr;
11234 rxq_init->sge_map = fp->rx_sge_dma.paddr;
11235 rxq_init->rcq_map = fp->rcq_dma.paddr;
11236 rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE);
11237
11238 /*
11239 * This should be a maximum number of data bytes that may be
11240 * placed on the BD (not including paddings).
11241 */
11242 rxq_init->buf_sz = (fp->rx_buf_size -
11243 IP_HEADER_ALIGNMENT_PADDING);
11244
11245 rxq_init->cl_qzone_id = fp->cl_qzone_id;
11246 rxq_init->tpa_agg_sz = tpa_agg_size;
11247 rxq_init->sge_buf_sz = sge_sz;
11248 rxq_init->max_sges_pkt = max_sge;
11249 rxq_init->rss_engine_id = SC_FUNC(sc);
11250 rxq_init->mcast_engine_id = SC_FUNC(sc);
11251
11252 /*
11253 * Maximum number or simultaneous TPA aggregation for this Queue.
11254 * For PF Clients it should be the maximum available number.
11255 * VF driver(s) may want to define it to a smaller value.
11256 */
11257 rxq_init->max_tpa_queues = MAX_AGG_QS(sc);
11258
11259 rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT;
11260 rxq_init->fw_sb_id = fp->fw_sb_id;
11261
11262 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11263
11264 /*
11265 * configure silent vlan removal
11266 * if multi function mode is afex, then mask default vlan
11267 */
11268 if (IS_MF_AFEX(sc)) {
11269 rxq_init->silent_removal_value =
11270 sc->devinfo.mf_info.afex_def_vlan_tag;
11271 rxq_init->silent_removal_mask = EVL_VLID_MASK;
11272 }
11273}
11274
11275static void
11276bxe_pf_tx_q_prep(struct bxe_softc *sc,
11277 struct bxe_fastpath *fp,
11278 struct ecore_txq_setup_params *txq_init,
11279 uint8_t cos)
11280{
11281 /*
11282 * XXX If multiple CoS is ever supported then each fastpath structure
11283 * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
11284 * fp->txdata[cos]->tx_dma.paddr;
11285 */
11286 txq_init->dscr_map = fp->tx_dma.paddr;
11287 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
11288 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
11289 txq_init->fw_sb_id = fp->fw_sb_id;
11290
11291 /*
11292 * set the TSS leading client id for TX classfication to the
11293 * leading RSS client id
11294 */
11295 txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id);
11296}
11297
11298/*
11299 * This function performs 2 steps in a queue state machine:
11300 * 1) RESET->INIT
11301 * 2) INIT->SETUP
11302 */
11303static int
11304bxe_setup_queue(struct bxe_softc *sc,
11305 struct bxe_fastpath *fp,
11306 uint8_t leading)
11307{
11308 struct ecore_queue_state_params q_params = { NULL };
11309 struct ecore_queue_setup_params *setup_params =
11310 &q_params.params.setup;
11311 int rc;
11312
11313 BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index);
11314
11315 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
11316
11317 q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
11318
11319 /* we want to wait for completion in this context */
11320 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
11321
11322 /* prepare the INIT parameters */
11323 bxe_pf_q_prep_init(sc, fp, &q_params.params.init);
11324
11325 /* Set the command */
11326 q_params.cmd = ECORE_Q_CMD_INIT;
11327
11328 /* Change the state to INIT */
11329 rc = ecore_queue_state_change(sc, &q_params);
11330 if (rc) {
11331 BLOGE(sc, "Queue(%d) INIT failed rc = %d\n", fp->index, rc);
11332 return (rc);
11333 }
11334
11335 BLOGD(sc, DBG_LOAD, "init complete\n");
11336
11337 /* now move the Queue to the SETUP state */
11338 memset(setup_params, 0, sizeof(*setup_params));
11339
11340 /* set Queue flags */
11341 setup_params->flags = bxe_get_q_flags(sc, fp, leading);
11342
11343 /* set general SETUP parameters */
11344 bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params,
11345 FIRST_TX_COS_INDEX);
11346
11347 bxe_pf_rx_q_prep(sc, fp,
11348 &setup_params->pause_params,
11349 &setup_params->rxq_params);
11350
11351 bxe_pf_tx_q_prep(sc, fp,
11352 &setup_params->txq_params,
11353 FIRST_TX_COS_INDEX);
11354
11355 /* Set the command */
11356 q_params.cmd = ECORE_Q_CMD_SETUP;
11357
11358 /* change the state to SETUP */
11359 rc = ecore_queue_state_change(sc, &q_params);
11360 if (rc) {
11361 BLOGE(sc, "Queue(%d) SETUP failed (rc = %d)\n", fp->index, rc);
11362 return (rc);
11363 }
11364
11365 return (rc);
11366}
11367
11368static int
11369bxe_setup_leading(struct bxe_softc *sc)
11370{
11371 return (bxe_setup_queue(sc, &sc->fp[0], TRUE));
11372}
11373
11374static int
11375bxe_config_rss_pf(struct bxe_softc *sc,
11376 struct ecore_rss_config_obj *rss_obj,
11377 uint8_t config_hash)
11378{
11379 struct ecore_config_rss_params params = { NULL };
11380 int i;
11381
11382 /*
11383 * Although RSS is meaningless when there is a single HW queue we
11384 * still need it enabled in order to have HW Rx hash generated.
11385 */
11386
11387 params.rss_obj = rss_obj;
11388
11389 bxe_set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
11390
11391 bxe_set_bit(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
11392
11393 /* RSS configuration */
11394 bxe_set_bit(ECORE_RSS_IPV4, &params.rss_flags);
11395 bxe_set_bit(ECORE_RSS_IPV4_TCP, &params.rss_flags);
11396 bxe_set_bit(ECORE_RSS_IPV6, &params.rss_flags);
11397 bxe_set_bit(ECORE_RSS_IPV6_TCP, &params.rss_flags);
11398 if (rss_obj->udp_rss_v4) {
11399 bxe_set_bit(ECORE_RSS_IPV4_UDP, &params.rss_flags);
11400 }
11401 if (rss_obj->udp_rss_v6) {
11402 bxe_set_bit(ECORE_RSS_IPV6_UDP, &params.rss_flags);
11403 }
11404
11405 /* Hash bits */
11406 params.rss_result_mask = MULTI_MASK;
11407
11408 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
11409
11410 if (config_hash) {
11411 /* RSS keys */
11412 for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
11413 params.rss_key[i] = arc4random();
11414 }
11415
11416 bxe_set_bit(ECORE_RSS_SET_SRCH, &params.rss_flags);
11417 }
11418
11419 return (ecore_config_rss(sc, &params));
11420}
11421
11422static int
11423bxe_config_rss_eth(struct bxe_softc *sc,
11424 uint8_t config_hash)
11425{
11426 return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash));
11427}
11428
11429static int
11430bxe_init_rss_pf(struct bxe_softc *sc)
11431{
11432 uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc);
11433 int i;
11434
11435 /*
11436 * Prepare the initial contents of the indirection table if
11437 * RSS is enabled
11438 */
11439 for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
11440 sc->rss_conf_obj.ind_table[i] =
11441 (sc->fp->cl_id + (i % num_eth_queues));
11442 }
11443
11444 if (sc->udp_rss) {
11445 sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
11446 }
11447
11448 /*
11449 * For 57710 and 57711 SEARCHER configuration (rss_keys) is
11450 * per-port, so if explicit configuration is needed, do it only
11451 * for a PMF.
11452 *
11453 * For 57712 and newer it's a per-function configuration.
11454 */
11455 return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc)));
11456}
11457
11458static int
11459bxe_set_mac_one(struct bxe_softc *sc,
11460 uint8_t *mac,
11461 struct ecore_vlan_mac_obj *obj,
11462 uint8_t set,
11463 int mac_type,
11464 unsigned long *ramrod_flags)
11465{
11466 struct ecore_vlan_mac_ramrod_params ramrod_param;
11467 int rc;
11468
11469 memset(&ramrod_param, 0, sizeof(ramrod_param));
11470
11471 /* fill in general parameters */
11472 ramrod_param.vlan_mac_obj = obj;
11473 ramrod_param.ramrod_flags = *ramrod_flags;
11474
11475 /* fill a user request section if needed */
11476 if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) {
11477 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
11478
11479 bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
11480
11481 /* Set the command: ADD or DEL */
11482 ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
11483 ECORE_VLAN_MAC_DEL;
11484 }
11485
11486 rc = ecore_config_vlan_mac(sc, &ramrod_param);
11487
11488 if (rc == ECORE_EXISTS) {
11489 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
11490 /* do not treat adding same MAC as error */
11491 rc = 0;
11492 } else if (rc < 0) {
11493 BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc);
11494 }
11495
11496 return (rc);
11497}
11498
11499static int
11500bxe_set_eth_mac(struct bxe_softc *sc,
11501 uint8_t set)
11502{
11503 unsigned long ramrod_flags = 0;
11504
11505 BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n");
11506
11507 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
11508
11509 /* Eth MAC is set on RSS leading client (fp[0]) */
11510 return (bxe_set_mac_one(sc, sc->link_params.mac_addr,
11511 &sc->sp_objs->mac_obj,
11512 set, ECORE_ETH_MAC, &ramrod_flags));
11513}
11514
11515static int
11516bxe_get_cur_phy_idx(struct bxe_softc *sc)
11517{
11518 uint32_t sel_phy_idx = 0;
11519
11520 if (sc->link_params.num_phys <= 1) {
11521 return (ELINK_INT_PHY);
11522 }
11523
11524 if (sc->link_vars.link_up) {
11525 sel_phy_idx = ELINK_EXT_PHY1;
11526 /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
11527 if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
11528 (sc->link_params.phy[ELINK_EXT_PHY2].supported &
11529 ELINK_SUPPORTED_FIBRE))
11530 sel_phy_idx = ELINK_EXT_PHY2;
11531 } else {
11532 switch (elink_phy_selection(&sc->link_params)) {
11533 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
11534 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
11535 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
11536 sel_phy_idx = ELINK_EXT_PHY1;
11537 break;
11538 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
11539 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
11540 sel_phy_idx = ELINK_EXT_PHY2;
11541 break;
11542 }
11543 }
11544
11545 return (sel_phy_idx);
11546}
11547
11548static int
11549bxe_get_link_cfg_idx(struct bxe_softc *sc)
11550{
11551 uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc);
11552
11553 /*
11554 * The selected activated PHY is always after swapping (in case PHY
11555 * swapping is enabled). So when swapping is enabled, we need to reverse
11556 * the configuration
11557 */
11558
11559 if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11560 if (sel_phy_idx == ELINK_EXT_PHY1)
11561 sel_phy_idx = ELINK_EXT_PHY2;
11562 else if (sel_phy_idx == ELINK_EXT_PHY2)
11563 sel_phy_idx = ELINK_EXT_PHY1;
11564 }
11565
11566 return (ELINK_LINK_CONFIG_IDX(sel_phy_idx));
11567}
11568
11569static void
11570bxe_set_requested_fc(struct bxe_softc *sc)
11571{
11572 /*
11573 * Initialize link parameters structure variables
11574 * It is recommended to turn off RX FC for jumbo frames
11575 * for better performance
11576 */
11577 if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
11578 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
11579 } else {
11580 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
11581 }
11582}
11583
11584static void
11585bxe_calc_fc_adv(struct bxe_softc *sc)
11586{
11587 uint8_t cfg_idx = bxe_get_link_cfg_idx(sc);
11588 switch (sc->link_vars.ieee_fc &
11589 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
11590 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
11591 default:
11592 sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
11593 ADVERTISED_Pause);
11594 break;
11595
11596 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
11597 sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
11598 ADVERTISED_Pause);
11599 break;
11600
11601 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
11602 sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
11603 break;
11604 }
11605}
11606
11607static uint16_t
11608bxe_get_mf_speed(struct bxe_softc *sc)
11609{
11610 uint16_t line_speed = sc->link_vars.line_speed;
11611 if (IS_MF(sc)) {
11612 uint16_t maxCfg =
11613 bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]);
11614
11615 /* calculate the current MAX line speed limit for the MF devices */
11616 if (IS_MF_SI(sc)) {
11617 line_speed = (line_speed * maxCfg) / 100;
11618 } else { /* SD mode */
11619 uint16_t vn_max_rate = maxCfg * 100;
11620
11621 if (vn_max_rate < line_speed) {
11622 line_speed = vn_max_rate;
11623 }
11624 }
11625 }
11626
11627 return (line_speed);
11628}
11629
11630static void
11631bxe_fill_report_data(struct bxe_softc *sc,
11632 struct bxe_link_report_data *data)
11633{
11634 uint16_t line_speed = bxe_get_mf_speed(sc);
11635
11636 memset(data, 0, sizeof(*data));
11637
11638 /* fill the report data with the effective line speed */
11639 data->line_speed = line_speed;
11640
11641 /* Link is down */
11642 if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) {
11643 bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags);
11644 }
11645
11646 /* Full DUPLEX */
11647 if (sc->link_vars.duplex == DUPLEX_FULL) {
11648 bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags);
11649 }
11650
11651 /* Rx Flow Control is ON */
11652 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
11653 bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
11654 }
11655
11656 /* Tx Flow Control is ON */
11657 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
11658 bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
11659 }
11660}
11661
11662/* report link status to OS, should be called under phy_lock */
11663static void
11664bxe_link_report_locked(struct bxe_softc *sc)
11665{
11666 struct bxe_link_report_data cur_data;
11667
11668 /* reread mf_cfg */
11669 if (IS_PF(sc) && !CHIP_IS_E1(sc)) {
11670 bxe_read_mf_cfg(sc);
11671 }
11672
11673 /* Read the current link report info */
11674 bxe_fill_report_data(sc, &cur_data);
11675
11676 /* Don't report link down or exactly the same link status twice */
11677 if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
11678 (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11679 &sc->last_reported_link.link_report_flags) &&
11680 bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11681 &cur_data.link_report_flags))) {
11682 return;
11683 }
11684
11685 sc->link_cnt++;
11686
11687 /* report new link params and remember the state for the next time */
11688 memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
11689
11690 if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11691 &cur_data.link_report_flags)) {
11692 if_link_state_change(sc->ifp, LINK_STATE_DOWN);
11693 BLOGI(sc, "NIC Link is Down\n");
11694 } else {
11695 const char *duplex;
11696 const char *flow;
11697
11698 if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX,
11699 &cur_data.link_report_flags)) {
11700 duplex = "full";
11701 } else {
11702 duplex = "half";
11703 }
11704
11705 /*
11706 * Handle the FC at the end so that only these flags would be
11707 * possibly set. This way we may easily check if there is no FC
11708 * enabled.
11709 */
11710 if (cur_data.link_report_flags) {
11711 if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11712 &cur_data.link_report_flags) &&
11713 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11714 &cur_data.link_report_flags)) {
11715 flow = "ON - receive & transmit";
11716 } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11717 &cur_data.link_report_flags) &&
11718 !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11719 &cur_data.link_report_flags)) {
11720 flow = "ON - receive";
11721 } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11722 &cur_data.link_report_flags) &&
11723 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11724 &cur_data.link_report_flags)) {
11725 flow = "ON - transmit";
11726 } else {
11727 flow = "none"; /* possible? */
11728 }
11729 } else {
11730 flow = "none";
11731 }
11732
11733 if_link_state_change(sc->ifp, LINK_STATE_UP);
11734 BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
11735 cur_data.line_speed, duplex, flow);
11736 }
11737}
11738
11739static void
11740bxe_link_report(struct bxe_softc *sc)
11741{
11742 bxe_acquire_phy_lock(sc);
11743 bxe_link_report_locked(sc);
11744 bxe_release_phy_lock(sc);
11745}
11746
11747static void
11748bxe_link_status_update(struct bxe_softc *sc)
11749{
11750 if (sc->state != BXE_STATE_OPEN) {
11751 return;
11752 }
11753
11754 if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
11755 elink_link_status_update(&sc->link_params, &sc->link_vars);
11756 } else {
11757 sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
11758 ELINK_SUPPORTED_10baseT_Full |
11759 ELINK_SUPPORTED_100baseT_Half |
11760 ELINK_SUPPORTED_100baseT_Full |
11761 ELINK_SUPPORTED_1000baseT_Full |
11762 ELINK_SUPPORTED_2500baseX_Full |
11763 ELINK_SUPPORTED_10000baseT_Full |
11764 ELINK_SUPPORTED_TP |
11765 ELINK_SUPPORTED_FIBRE |
11766 ELINK_SUPPORTED_Autoneg |
11767 ELINK_SUPPORTED_Pause |
11768 ELINK_SUPPORTED_Asym_Pause);
11769 sc->port.advertising[0] = sc->port.supported[0];
11770
11771 sc->link_params.sc = sc;
11772 sc->link_params.port = SC_PORT(sc);
11773 sc->link_params.req_duplex[0] = DUPLEX_FULL;
11774 sc->link_params.req_flow_ctrl[0] = ELINK_FLOW_CTRL_NONE;
11775 sc->link_params.req_line_speed[0] = SPEED_10000;
11776 sc->link_params.speed_cap_mask[0] = 0x7f0000;
11777 sc->link_params.switch_cfg = ELINK_SWITCH_CFG_10G;
11778
11779 if (CHIP_REV_IS_FPGA(sc)) {
11780 sc->link_vars.mac_type = ELINK_MAC_TYPE_EMAC;
11781 sc->link_vars.line_speed = ELINK_SPEED_1000;
11782 sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
11783 LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
11784 } else {
11785 sc->link_vars.mac_type = ELINK_MAC_TYPE_BMAC;
11786 sc->link_vars.line_speed = ELINK_SPEED_10000;
11787 sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
11788 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
11789 }
11790
11791 sc->link_vars.link_up = 1;
11792
11793 sc->link_vars.duplex = DUPLEX_FULL;
11794 sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
11795
11796 if (IS_PF(sc)) {
11797 REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0);
11798 bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11799 bxe_link_report(sc);
11800 }
11801 }
11802
11803 if (IS_PF(sc)) {
11804 if (sc->link_vars.link_up) {
11805 bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11806 } else {
11807 bxe_stats_handle(sc, STATS_EVENT_STOP);
11808 }
11809 bxe_link_report(sc);
11810 } else {
11811 bxe_link_report(sc);
11812 bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11813 }
11814}
11815
11816static int
11817bxe_initial_phy_init(struct bxe_softc *sc,
11818 int load_mode)
11819{
11820 int rc, cfg_idx = bxe_get_link_cfg_idx(sc);
11821 uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
11822 struct elink_params *lp = &sc->link_params;
11823
11824 bxe_set_requested_fc(sc);
11825
11826 if (CHIP_REV_IS_SLOW(sc)) {
11827 uint32_t bond = CHIP_BOND_ID(sc);
11828 uint32_t feat = 0;
11829
11830 if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) {
11831 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
11832 } else if (bond & 0x4) {
11833 if (CHIP_IS_E3(sc)) {
11834 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC;
11835 } else {
11836 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
11837 }
11838 } else if (bond & 0x8) {
11839 if (CHIP_IS_E3(sc)) {
11840 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC;
11841 } else {
11842 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
11843 }
11844 }
11845
11846 /* disable EMAC for E3 and above */
11847 if (bond & 0x2) {
11848 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
11849 }
11850
11851 sc->link_params.feature_config_flags |= feat;
11852 }
11853
11854 bxe_acquire_phy_lock(sc);
11855
11856 if (load_mode == LOAD_DIAG) {
11857 lp->loopback_mode = ELINK_LOOPBACK_XGXS;
11858 /* Prefer doing PHY loopback at 10G speed, if possible */
11859 if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
11860 if (lp->speed_cap_mask[cfg_idx] &
11861 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
11862 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
11863 } else {
11864 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
11865 }
11866 }
11867 }
11868
11869 if (load_mode == LOAD_LOOPBACK_EXT) {
11870 lp->loopback_mode = ELINK_LOOPBACK_EXT;
11871 }
11872
11873 rc = elink_phy_init(&sc->link_params, &sc->link_vars);
11874
11875 bxe_release_phy_lock(sc);
11876
11877 bxe_calc_fc_adv(sc);
11878
11879 if (sc->link_vars.link_up) {
11880 bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11881 bxe_link_report(sc);
11882 }
11883
11884 if (!CHIP_REV_IS_SLOW(sc)) {
11885 bxe_periodic_start(sc);
11886 }
11887
11888 sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
11889 return (rc);
11890}
11891
11892/* must be called under IF_ADDR_LOCK */
11893
11894static int
11895bxe_set_mc_list(struct bxe_softc *sc)
11896{
11897 struct ecore_mcast_ramrod_params rparam = { NULL };
11898 int rc = 0;
11899 int mc_count = 0;
11900 int mcnt, i;
11901 struct ecore_mcast_list_elem *mc_mac, *mc_mac_start;
11902 unsigned char *mta;
11903 if_t ifp = sc->ifp;
11904
11905 mc_count = if_multiaddr_count(ifp, -1);/* XXX they don't have a limit */
11906 if (!mc_count)
11907 return (0);
11908
11909 mta = malloc(sizeof(unsigned char) * ETHER_ADDR_LEN *
11910 mc_count, M_DEVBUF, M_NOWAIT);
11911
11912 if(mta == NULL) {
11913 BLOGE(sc, "Failed to allocate temp mcast list\n");
11914 return (-1);
11915 }
11916 bzero(mta, (sizeof(unsigned char) * ETHER_ADDR_LEN * mc_count));
11917
11918 mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF, (M_NOWAIT | M_ZERO));
11919 mc_mac_start = mc_mac;
11920
11921 if (!mc_mac) {
11922 free(mta, M_DEVBUF);
11923 BLOGE(sc, "Failed to allocate temp mcast list\n");
11924 return (-1);
11925 }
11926 bzero(mc_mac, (sizeof(*mc_mac) * mc_count));
11927
11928 /* mta and mcnt not expected to be different */
11929 if_multiaddr_array(ifp, mta, &mcnt, mc_count);
11930
11931
11932 rparam.mcast_obj = &sc->mcast_obj;
11933 ECORE_LIST_INIT(&rparam.mcast_list);
11934
11935 for(i=0; i< mcnt; i++) {
11936
11937 mc_mac->mac = (uint8_t *)(mta + (i * ETHER_ADDR_LEN));
11938 ECORE_LIST_PUSH_TAIL(&mc_mac->link, &rparam.mcast_list);
11939
11940 BLOGD(sc, DBG_LOAD,
11941 "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n",
11942 mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2],
11943 mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]);
11944
11945 mc_mac++;
11946 }
11947 rparam.mcast_list_len = mc_count;
11948
11949 BXE_MCAST_LOCK(sc);
11950
11951 /* first, clear all configured multicast MACs */
11952 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
11953 if (rc < 0) {
11954 BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc);
11955 BXE_MCAST_UNLOCK(sc);
11956 free(mc_mac_start, M_DEVBUF);
11957 free(mta, M_DEVBUF);
11958 return (rc);
11959 }
11960
11961 /* Now add the new MACs */
11962 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD);
11963 if (rc < 0) {
11964 BLOGE(sc, "Failed to set new mcast config (%d)\n", rc);
11965 }
11966
11967 BXE_MCAST_UNLOCK(sc);
11968
11969 free(mc_mac_start, M_DEVBUF);
11970 free(mta, M_DEVBUF);
11971
11972 return (rc);
11973}
11974
11975static int
11976bxe_set_uc_list(struct bxe_softc *sc)
11977{
11978 if_t ifp = sc->ifp;
11979 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
11980 struct ifaddr *ifa;
11981 unsigned long ramrod_flags = 0;
11982 int rc;
11983
11984#if __FreeBSD_version < 800000
11985 IF_ADDR_LOCK(ifp);
11986#else
11987 if_addr_rlock(ifp);
11988#endif
11989
11990 /* first schedule a cleanup up of old configuration */
11991 rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE);
11992 if (rc < 0) {
11993 BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc);
11994#if __FreeBSD_version < 800000
11995 IF_ADDR_UNLOCK(ifp);
11996#else
11997 if_addr_runlock(ifp);
11998#endif
11999 return (rc);
12000 }
12001
12002 ifa = if_getifaddr(ifp); /* XXX Is this structure */
12003 while (ifa) {
12004 if (ifa->ifa_addr->sa_family != AF_LINK) {
12005 ifa = TAILQ_NEXT(ifa, ifa_link);
12006 continue;
12007 }
12008
12009 rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr),
12010 mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags);
12011 if (rc == -EEXIST) {
12012 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12013 /* do not treat adding same MAC as an error */
12014 rc = 0;
12015 } else if (rc < 0) {
12016 BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc);
12017#if __FreeBSD_version < 800000
12018 IF_ADDR_UNLOCK(ifp);
12019#else
12020 if_addr_runlock(ifp);
12021#endif
12022 return (rc);
12023 }
12024
12025 ifa = TAILQ_NEXT(ifa, ifa_link);
12026 }
12027
12028#if __FreeBSD_version < 800000
12029 IF_ADDR_UNLOCK(ifp);
12030#else
12031 if_addr_runlock(ifp);
12032#endif
12033
12034 /* Execute the pending commands */
12035 bit_set(&ramrod_flags, RAMROD_CONT);
12036 return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */,
12037 ECORE_UC_LIST_MAC, &ramrod_flags));
12038}
12039
12040static void
12041bxe_set_rx_mode(struct bxe_softc *sc)
12042{
12043 if_t ifp = sc->ifp;
12044 uint32_t rx_mode = BXE_RX_MODE_NORMAL;
12045
12046 if (sc->state != BXE_STATE_OPEN) {
12047 BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state);
12048 return;
12049 }
12050
12051 BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp));
12052
12053 if (if_getflags(ifp) & IFF_PROMISC) {
12054 rx_mode = BXE_RX_MODE_PROMISC;
12055 } else if ((if_getflags(ifp) & IFF_ALLMULTI) ||
12056 ((if_getamcount(ifp) > BXE_MAX_MULTICAST) &&
12057 CHIP_IS_E1(sc))) {
12058 rx_mode = BXE_RX_MODE_ALLMULTI;
12059 } else {
12060 if (IS_PF(sc)) {
12061 /* some multicasts */
12062 if (bxe_set_mc_list(sc) < 0) {
12063 rx_mode = BXE_RX_MODE_ALLMULTI;
12064 }
12065 if (bxe_set_uc_list(sc) < 0) {
12066 rx_mode = BXE_RX_MODE_PROMISC;
12067 }
12068 }
12069 }
12070
12071 sc->rx_mode = rx_mode;
12072
12073 /* schedule the rx_mode command */
12074 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
12075 BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n");
12076 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
12077 return;
12078 }
12079
12080 if (IS_PF(sc)) {
12081 bxe_set_storm_rx_mode(sc);
12082 }
12083}
12084
12085
12086/* update flags in shmem */
12087static void
12088bxe_update_drv_flags(struct bxe_softc *sc,
12089 uint32_t flags,
12090 uint32_t set)
12091{
12092 uint32_t drv_flags;
12093
12094 if (SHMEM2_HAS(sc, drv_flags)) {
12095 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12096 drv_flags = SHMEM2_RD(sc, drv_flags);
12097
12098 if (set) {
12099 SET_FLAGS(drv_flags, flags);
12100 } else {
12101 RESET_FLAGS(drv_flags, flags);
12102 }
12103
12104 SHMEM2_WR(sc, drv_flags, drv_flags);
12105 BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags);
12106
12107 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12108 }
12109}
12110
12111/* periodic timer callout routine, only runs when the interface is up */
12112
12113static void
12114bxe_periodic_callout_func(void *xsc)
12115{
12116 struct bxe_softc *sc = (struct bxe_softc *)xsc;
12117 struct bxe_fastpath *fp;
12118 uint16_t tx_bd_avail;
12119 int i;
12120
12121 if (!BXE_CORE_TRYLOCK(sc)) {
12122 /* just bail and try again next time */
12123
12124 if ((sc->state == BXE_STATE_OPEN) &&
12125 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12126 /* schedule the next periodic callout */
12127 callout_reset(&sc->periodic_callout, hz,
12128 bxe_periodic_callout_func, sc);
12129 }
12130
12131 return;
12132 }
12133
12134 if ((sc->state != BXE_STATE_OPEN) ||
12135 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
12136 BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state);
12137 BXE_CORE_UNLOCK(sc);
12138 return;
12139 }
12140
12141#if __FreeBSD_version >= 800000
12142
12143 FOR_EACH_QUEUE(sc, i) {
12144 fp = &sc->fp[i];
12145
12146 if (BXE_FP_TX_TRYLOCK(fp)) {
12147 if_t ifp = sc->ifp;
12148 /*
12149 * If interface was stopped due to unavailable
12150 * bds, try to process some tx completions
12151 */
12152 (void) bxe_txeof(sc, fp);
12153
12154 tx_bd_avail = bxe_tx_avail(sc, fp);
12155 if (tx_bd_avail >= BXE_TX_CLEANUP_THRESHOLD) {
12156 bxe_tx_mq_start_locked(sc, ifp, fp, NULL);
12157 }
12158 BXE_FP_TX_UNLOCK(fp);
12159 }
12160 }
12161
12162#else
12163
12164 fp = &sc->fp[0];
12165 if (BXE_FP_TX_TRYLOCK(fp)) {
12166 struct ifnet *ifp = sc->ifnet;
12167 /*
12168 * If interface was stopped due to unavailable
12169 * bds, try to process some tx completions
12170 */
12171 (void) bxe_txeof(sc, fp);
12172
12173 tx_bd_avail = bxe_tx_avail(sc, fp);
12174 if (tx_bd_avail >= BXE_TX_CLEANUP_THRESHOLD) {
12175 bxe_tx_start_locked(sc, ifp, fp);
12176 }
12177
12178 BXE_FP_TX_UNLOCK(fp);
12179 }
12180
12181#endif /* #if __FreeBSD_version >= 800000 */
12182
12183 /* Check for TX timeouts on any fastpath. */
12184 FOR_EACH_QUEUE(sc, i) {
12185 if (bxe_watchdog(sc, &sc->fp[i]) != 0) {
12186 /* Ruh-Roh, chip was reset! */
12187 break;
12188 }
12189 }
12190
12191 if (!CHIP_REV_IS_SLOW(sc)) {
12192 /*
12193 * This barrier is needed to ensure the ordering between the writing
12194 * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and
12195 * the reading here.
12196 */
12197 mb();
12198 if (sc->port.pmf) {
12199 bxe_acquire_phy_lock(sc);
12200 elink_period_func(&sc->link_params, &sc->link_vars);
12201 bxe_release_phy_lock(sc);
12202 }
12203 }
12204
12205 if (IS_PF(sc) && !(sc->flags & BXE_NO_PULSE)) {
12206 int mb_idx = SC_FW_MB_IDX(sc);
12207 uint32_t drv_pulse;
12208 uint32_t mcp_pulse;
12209
12210 ++sc->fw_drv_pulse_wr_seq;
12211 sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
12212
12213 drv_pulse = sc->fw_drv_pulse_wr_seq;
12214 bxe_drv_pulse(sc);
12215
12216 mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
12217 MCP_PULSE_SEQ_MASK);
12218
12219 /*
12220 * The delta between driver pulse and mcp response should
12221 * be 1 (before mcp response) or 0 (after mcp response).
12222 */
12223 if ((drv_pulse != mcp_pulse) &&
12224 (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
12225 /* someone lost a heartbeat... */
12226 BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
12227 drv_pulse, mcp_pulse);
12228 }
12229 }
12230
12231 /* state is BXE_STATE_OPEN */
12232 bxe_stats_handle(sc, STATS_EVENT_UPDATE);
12233
12234 BXE_CORE_UNLOCK(sc);
12235
12236 if ((sc->state == BXE_STATE_OPEN) &&
12237 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12238 /* schedule the next periodic callout */
12239 callout_reset(&sc->periodic_callout, hz,
12240 bxe_periodic_callout_func, sc);
12241 }
12242}
12243
12244static void
12245bxe_periodic_start(struct bxe_softc *sc)
12246{
12247 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO);
12248 callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc);
12249}
12250
12251static void
12252bxe_periodic_stop(struct bxe_softc *sc)
12253{
12254 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP);
12255 callout_drain(&sc->periodic_callout);
12256}
12257
12258/* start the controller */
12259static __noinline int
12260bxe_nic_load(struct bxe_softc *sc,
12261 int load_mode)
12262{
12263 uint32_t val;
12264 int load_code = 0;
12265 int i, rc = 0;
12266
12267 BXE_CORE_LOCK_ASSERT(sc);
12268
12269 BLOGD(sc, DBG_LOAD, "Starting NIC load...\n");
12270
12271 sc->state = BXE_STATE_OPENING_WAITING_LOAD;
12272
12273 if (IS_PF(sc)) {
12274 /* must be called before memory allocation and HW init */
12275 bxe_ilt_set_info(sc);
12276 }
12277
12278 sc->last_reported_link_state = LINK_STATE_UNKNOWN;
12279
12280 bxe_set_fp_rx_buf_size(sc);
12281
12282 if (bxe_alloc_fp_buffers(sc) != 0) {
12283 BLOGE(sc, "Failed to allocate fastpath memory\n");
12284 sc->state = BXE_STATE_CLOSED;
12285 rc = ENOMEM;
12286 goto bxe_nic_load_error0;
12287 }
12288
12289 if (bxe_alloc_mem(sc) != 0) {
12290 sc->state = BXE_STATE_CLOSED;
12291 rc = ENOMEM;
12292 goto bxe_nic_load_error0;
12293 }
12294
12295 if (bxe_alloc_fw_stats_mem(sc) != 0) {
12296 sc->state = BXE_STATE_CLOSED;
12297 rc = ENOMEM;
12298 goto bxe_nic_load_error0;
12299 }
12300
12301 if (IS_PF(sc)) {
12302 /* set pf load just before approaching the MCP */
12303 bxe_set_pf_load(sc);
12304
12305 /* if MCP exists send load request and analyze response */
12306 if (!BXE_NOMCP(sc)) {
12307 /* attempt to load pf */
12308 if (bxe_nic_load_request(sc, &load_code) != 0) {
12309 sc->state = BXE_STATE_CLOSED;
12310 rc = ENXIO;
12311 goto bxe_nic_load_error1;
12312 }
12313
12314 /* what did the MCP say? */
12315 if (bxe_nic_load_analyze_req(sc, load_code) != 0) {
12316 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12317 sc->state = BXE_STATE_CLOSED;
12318 rc = ENXIO;
12319 goto bxe_nic_load_error2;
12320 }
12321 } else {
12322 BLOGI(sc, "Device has no MCP!\n");
12323 load_code = bxe_nic_load_no_mcp(sc);
12324 }
12325
12326 /* mark PMF if applicable */
12327 bxe_nic_load_pmf(sc, load_code);
12328
12329 /* Init Function state controlling object */
12330 bxe_init_func_obj(sc);
12331
12332 /* Initialize HW */
12333 if (bxe_init_hw(sc, load_code) != 0) {
12334 BLOGE(sc, "HW init failed\n");
12335 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12336 sc->state = BXE_STATE_CLOSED;
12337 rc = ENXIO;
12338 goto bxe_nic_load_error2;
12339 }
12340 }
12341
12342 /* set ALWAYS_ALIVE bit in shmem */
12343 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
12344 bxe_drv_pulse(sc);
12345 sc->flags |= BXE_NO_PULSE;
12346
12347 /* attach interrupts */
12348 if (bxe_interrupt_attach(sc) != 0) {
12349 sc->state = BXE_STATE_CLOSED;
12350 rc = ENXIO;
12351 goto bxe_nic_load_error2;
12352 }
12353
12354 bxe_nic_init(sc, load_code);
12355
12356 /* Init per-function objects */
12357 if (IS_PF(sc)) {
12358 bxe_init_objs(sc);
12359 // XXX bxe_iov_nic_init(sc);
12360
12361 /* set AFEX default VLAN tag to an invalid value */
12362 sc->devinfo.mf_info.afex_def_vlan_tag = -1;
12363 // XXX bxe_nic_load_afex_dcc(sc, load_code);
12364
12365 sc->state = BXE_STATE_OPENING_WAITING_PORT;
12366 rc = bxe_func_start(sc);
12367 if (rc) {
12368 BLOGE(sc, "Function start failed! rc = %d\n", rc);
12369 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12370 sc->state = BXE_STATE_ERROR;
12371 goto bxe_nic_load_error3;
12372 }
12373
12374 /* send LOAD_DONE command to MCP */
12375 if (!BXE_NOMCP(sc)) {
12376 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12377 if (!load_code) {
12378 BLOGE(sc, "MCP response failure, aborting\n");
12379 sc->state = BXE_STATE_ERROR;
12380 rc = ENXIO;
12381 goto bxe_nic_load_error3;
12382 }
12383 }
12384
12385 rc = bxe_setup_leading(sc);
12386 if (rc) {
12387 BLOGE(sc, "Setup leading failed! rc = %d\n", rc);
12388 sc->state = BXE_STATE_ERROR;
12389 goto bxe_nic_load_error3;
12390 }
12391
12392 FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
12393 rc = bxe_setup_queue(sc, &sc->fp[i], FALSE);
12394 if (rc) {
12395 BLOGE(sc, "Queue(%d) setup failed rc = %d\n", i, rc);
12396 sc->state = BXE_STATE_ERROR;
12397 goto bxe_nic_load_error3;
12398 }
12399 }
12400
12401 rc = bxe_init_rss_pf(sc);
12402 if (rc) {
12403 BLOGE(sc, "PF RSS init failed\n");
12404 sc->state = BXE_STATE_ERROR;
12405 goto bxe_nic_load_error3;
12406 }
12407 }
12408 /* XXX VF */
12409
12410 /* now when Clients are configured we are ready to work */
12411 sc->state = BXE_STATE_OPEN;
12412
12413 /* Configure a ucast MAC */
12414 if (IS_PF(sc)) {
12415 rc = bxe_set_eth_mac(sc, TRUE);
12416 }
12417 if (rc) {
12418 BLOGE(sc, "Setting Ethernet MAC failed rc = %d\n", rc);
12419 sc->state = BXE_STATE_ERROR;
12420 goto bxe_nic_load_error3;
12421 }
12422
12423 if (sc->port.pmf) {
12424 rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN);
12425 if (rc) {
12426 sc->state = BXE_STATE_ERROR;
12427 goto bxe_nic_load_error3;
12428 }
12429 }
12430
12431 sc->link_params.feature_config_flags &=
12432 ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
12433
12434 /* start fast path */
12435
12436 /* Initialize Rx filter */
12437 bxe_set_rx_mode(sc);
12438
12439 /* start the Tx */
12440 switch (/* XXX load_mode */LOAD_OPEN) {
12441 case LOAD_NORMAL:
12442 case LOAD_OPEN:
12443 break;
12444
12445 case LOAD_DIAG:
12446 case LOAD_LOOPBACK_EXT:
12447 sc->state = BXE_STATE_DIAG;
12448 break;
12449
12450 default:
12451 break;
12452 }
12453
12454 if (sc->port.pmf) {
12455 bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
12456 } else {
12457 bxe_link_status_update(sc);
12458 }
12459
12460 /* start the periodic timer callout */
12461 bxe_periodic_start(sc);
12462
12463 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
12464 /* mark driver is loaded in shmem2 */
12465 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
12466 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
12467 (val |
12468 DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
12469 DRV_FLAGS_CAPABILITIES_LOADED_L2));
12470 }
12471
12472 /* wait for all pending SP commands to complete */
12473 if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) {
12474 BLOGE(sc, "Timeout waiting for all SPs to complete!\n");
12475 bxe_periodic_stop(sc);
12476 bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE);
12477 return (ENXIO);
12478 }
12479
12480 /* Tell the stack the driver is running! */
12481 if_setdrvflags(sc->ifp, IFF_DRV_RUNNING);
12482
12483 BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n");
12484
12485 return (0);
12486
12487bxe_nic_load_error3:
12488
12489 if (IS_PF(sc)) {
12490 bxe_int_disable_sync(sc, 1);
12491
12492 /* clean out queued objects */
12493 bxe_squeeze_objects(sc);
12494 }
12495
12496 bxe_interrupt_detach(sc);
12497
12498bxe_nic_load_error2:
12499
12500 if (IS_PF(sc) && !BXE_NOMCP(sc)) {
12501 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
12502 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
12503 }
12504
12505 sc->port.pmf = 0;
12506
12507bxe_nic_load_error1:
12508
12509 /* clear pf_load status, as it was already set */
12510 if (IS_PF(sc)) {
12511 bxe_clear_pf_load(sc);
12512 }
12513
12514bxe_nic_load_error0:
12515
12516 bxe_free_fw_stats_mem(sc);
12517 bxe_free_fp_buffers(sc);
12518 bxe_free_mem(sc);
12519
12520 return (rc);
12521}
12522
12523static int
12524bxe_init_locked(struct bxe_softc *sc)
12525{
12526 int other_engine = SC_PATH(sc) ? 0 : 1;
12527 uint8_t other_load_status, load_status;
12528 uint8_t global = FALSE;
12529 int rc;
12530
12531 BXE_CORE_LOCK_ASSERT(sc);
12532
12533 /* check if the driver is already running */
12534 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
12535 BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n");
12536 return (0);
12537 }
12538
12539 bxe_set_power_state(sc, PCI_PM_D0);
12540
12541 /*
12542 * If parity occurred during the unload, then attentions and/or
12543 * RECOVERY_IN_PROGRES may still be set. If so we want the first function
12544 * loaded on the current engine to complete the recovery. Parity recovery
12545 * is only relevant for PF driver.
12546 */
12547 if (IS_PF(sc)) {
12548 other_load_status = bxe_get_load_status(sc, other_engine);
12549 load_status = bxe_get_load_status(sc, SC_PATH(sc));
12550
12551 if (!bxe_reset_is_done(sc, SC_PATH(sc)) ||
12552 bxe_chk_parity_attn(sc, &global, TRUE)) {
12553 do {
12554 /*
12555 * If there are attentions and they are in global blocks, set
12556 * the GLOBAL_RESET bit regardless whether it will be this
12557 * function that will complete the recovery or not.
12558 */
12559 if (global) {
12560 bxe_set_reset_global(sc);
12561 }
12562
12563 /*
12564 * Only the first function on the current engine should try
12565 * to recover in open. In case of attentions in global blocks
12566 * only the first in the chip should try to recover.
12567 */
12568 if ((!load_status && (!global || !other_load_status)) &&
12569 bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) {
12570 BLOGI(sc, "Recovered during init\n");
12571 break;
12572 }
12573
12574 /* recovery has failed... */
12575 bxe_set_power_state(sc, PCI_PM_D3hot);
12576 sc->recovery_state = BXE_RECOVERY_FAILED;
12577
12578 BLOGE(sc, "Recovery flow hasn't properly "
12579 "completed yet, try again later. "
12580 "If you still see this message after a "
12581 "few retries then power cycle is required.\n");
12582
12583 rc = ENXIO;
12584 goto bxe_init_locked_done;
12585 } while (0);
12586 }
12587 }
12588
12589 sc->recovery_state = BXE_RECOVERY_DONE;
12590
12591 rc = bxe_nic_load(sc, LOAD_OPEN);
12592
12593bxe_init_locked_done:
12594
12595 if (rc) {
12596 /* Tell the stack the driver is NOT running! */
12597 BLOGE(sc, "Initialization failed, "
12598 "stack notified driver is NOT running!\n");
12599 if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING);
12600 }
12601
12602 return (rc);
12603}
12604
12605static int
12606bxe_stop_locked(struct bxe_softc *sc)
12607{
12608 BXE_CORE_LOCK_ASSERT(sc);
12609 return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE));
12610}
12611
12612/*
12613 * Handles controller initialization when called from an unlocked routine.
12614 * ifconfig calls this function.
12615 *
12616 * Returns:
12617 * void
12618 */
12619static void
12620bxe_init(void *xsc)
12621{
12622 struct bxe_softc *sc = (struct bxe_softc *)xsc;
12623
12624 BXE_CORE_LOCK(sc);
12625 bxe_init_locked(sc);
12626 BXE_CORE_UNLOCK(sc);
12627}
12628
12629static int
12630bxe_init_ifnet(struct bxe_softc *sc)
12631{
12632 if_t ifp;
12633 int capabilities;
12634
12635 /* ifconfig entrypoint for media type/status reporting */
12636 ifmedia_init(&sc->ifmedia, IFM_IMASK,
12637 bxe_ifmedia_update,
12638 bxe_ifmedia_status);
12639
12640 /* set the default interface values */
12641 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL);
12642 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL);
12643 ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO));
12644
12645 sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */
12646
12647 /* allocate the ifnet structure */
12648 if ((ifp = if_gethandle(IFT_ETHER)) == NULL) {
12649 BLOGE(sc, "Interface allocation failed!\n");
12650 return (ENXIO);
12651 }
12652
12653 if_setsoftc(ifp, sc);
12654 if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
12655 if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST));
12656 if_setioctlfn(ifp, bxe_ioctl);
12657 if_setstartfn(ifp, bxe_tx_start);
12658 if_setgetcounterfn(ifp, bxe_get_counter);
12659#if __FreeBSD_version >= 800000
12660 if_settransmitfn(ifp, bxe_tx_mq_start);
12661 if_setqflushfn(ifp, bxe_mq_flush);
12662#endif
12663#ifdef FreeBSD8_0
12664 if_settimer(ifp, 0);
12665#endif
12666 if_setinitfn(ifp, bxe_init);
12667 if_setmtu(ifp, sc->mtu);
12668 if_sethwassist(ifp, (CSUM_IP |
12669 CSUM_TCP |
12670 CSUM_UDP |
12671 CSUM_TSO |
12672 CSUM_TCP_IPV6 |
12673 CSUM_UDP_IPV6));
12674
12675 capabilities =
12676#if __FreeBSD_version < 700000
12677 (IFCAP_VLAN_MTU |
12678 IFCAP_VLAN_HWTAGGING |
12679 IFCAP_HWCSUM |
12680 IFCAP_JUMBO_MTU |
12681 IFCAP_LRO);
12682#else
12683 (IFCAP_VLAN_MTU |
12684 IFCAP_VLAN_HWTAGGING |
12685 IFCAP_VLAN_HWTSO |
12686 IFCAP_VLAN_HWFILTER |
12687 IFCAP_VLAN_HWCSUM |
12688 IFCAP_HWCSUM |
12689 IFCAP_JUMBO_MTU |
12690 IFCAP_LRO |
12691 IFCAP_TSO4 |
12692 IFCAP_TSO6 |
12693 IFCAP_WOL_MAGIC);
12694#endif
12695 if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */
12696 if_setbaudrate(ifp, IF_Gbps(10));
12697/* XXX */
12698 if_setsendqlen(ifp, sc->tx_ring_size);
12699 if_setsendqready(ifp);
12700/* XXX */
12701
12702 sc->ifp = ifp;
12703
12704 /* attach to the Ethernet interface list */
12705 ether_ifattach(ifp, sc->link_params.mac_addr);
12706
12707 return (0);
12708}
12709
12710static void
12711bxe_deallocate_bars(struct bxe_softc *sc)
12712{
12713 int i;
12714
12715 for (i = 0; i < MAX_BARS; i++) {
12716 if (sc->bar[i].resource != NULL) {
12717 bus_release_resource(sc->dev,
12718 SYS_RES_MEMORY,
12719 sc->bar[i].rid,
12720 sc->bar[i].resource);
12721 BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n",
12722 i, PCIR_BAR(i));
12723 }
12724 }
12725}
12726
12727static int
12728bxe_allocate_bars(struct bxe_softc *sc)
12729{
12730 u_int flags;
12731 int i;
12732
12733 memset(sc->bar, 0, sizeof(sc->bar));
12734
12735 for (i = 0; i < MAX_BARS; i++) {
12736
12737 /* memory resources reside at BARs 0, 2, 4 */
12738 /* Run `pciconf -lb` to see mappings */
12739 if ((i != 0) && (i != 2) && (i != 4)) {
12740 continue;
12741 }
12742
12743 sc->bar[i].rid = PCIR_BAR(i);
12744
12745 flags = RF_ACTIVE;
12746 if (i == 0) {
12747 flags |= RF_SHAREABLE;
12748 }
12749
12750 if ((sc->bar[i].resource =
12751 bus_alloc_resource_any(sc->dev,
12752 SYS_RES_MEMORY,
12753 &sc->bar[i].rid,
12754 flags)) == NULL) {
12755 return (0);
12756 }
12757
12758 sc->bar[i].tag = rman_get_bustag(sc->bar[i].resource);
12759 sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource);
12760 sc->bar[i].kva = (vm_offset_t)rman_get_virtual(sc->bar[i].resource);
12761
12762 BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%jd) -> %p\n",
12763 i, PCIR_BAR(i),
12764 (void *)rman_get_start(sc->bar[i].resource),
12765 (void *)rman_get_end(sc->bar[i].resource),
12766 rman_get_size(sc->bar[i].resource),
12767 (void *)sc->bar[i].kva);
12768 }
12769
12770 return (0);
12771}
12772
12773static void
12774bxe_get_function_num(struct bxe_softc *sc)
12775{
12776 uint32_t val = 0;
12777
12778 /*
12779 * Read the ME register to get the function number. The ME register
12780 * holds the relative-function number and absolute-function number. The
12781 * absolute-function number appears only in E2 and above. Before that
12782 * these bits always contained zero, therefore we cannot blindly use them.
12783 */
12784
12785 val = REG_RD(sc, BAR_ME_REGISTER);
12786
12787 sc->pfunc_rel =
12788 (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
12789 sc->path_id =
12790 (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1;
12791
12792 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
12793 sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
12794 } else {
12795 sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
12796 }
12797
12798 BLOGD(sc, DBG_LOAD,
12799 "Relative function %d, Absolute function %d, Path %d\n",
12800 sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
12801}
12802
12803static uint32_t
12804bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc)
12805{
12806 uint32_t shmem2_size;
12807 uint32_t offset;
12808 uint32_t mf_cfg_offset_value;
12809
12810 /* Non 57712 */
12811 offset = (SHMEM_RD(sc, func_mb) +
12812 (MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
12813
12814 /* 57712 plus */
12815 if (sc->devinfo.shmem2_base != 0) {
12816 shmem2_size = SHMEM2_RD(sc, size);
12817 if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
12818 mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
12819 if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
12820 offset = mf_cfg_offset_value;
12821 }
12822 }
12823 }
12824
12825 return (offset);
12826}
12827
12828static uint32_t
12829bxe_pcie_capability_read(struct bxe_softc *sc,
12830 int reg,
12831 int width)
12832{
12833 int pcie_reg;
12834
12835 /* ensure PCIe capability is enabled */
12836 if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) {
12837 if (pcie_reg != 0) {
12838 BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg);
12839 return (pci_read_config(sc->dev, (pcie_reg + reg), width));
12840 }
12841 }
12842
12843 BLOGE(sc, "PCIe capability NOT FOUND!!!\n");
12844
12845 return (0);
12846}
12847
12848static uint8_t
12849bxe_is_pcie_pending(struct bxe_softc *sc)
12850{
12851 return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) &
12852 PCIM_EXP_STA_TRANSACTION_PND);
12853}
12854
12855/*
12856 * Walk the PCI capabiites list for the device to find what features are
12857 * supported. These capabilites may be enabled/disabled by firmware so it's
12858 * best to walk the list rather than make assumptions.
12859 */
12860static void
12861bxe_probe_pci_caps(struct bxe_softc *sc)
12862{
12863 uint16_t link_status;
12864 int reg;
12865
12866 /* check if PCI Power Management is enabled */
12867 if (pci_find_cap(sc->dev, PCIY_PMG, &reg) == 0) {
12868 if (reg != 0) {
12869 BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg);
12870
12871 sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG;
12872 sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg;
12873 }
12874 }
12875
12876 link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2);
12877
12878 /* handle PCIe 2.0 workarounds for 57710 */
12879 if (CHIP_IS_E1(sc)) {
12880 /* workaround for 57710 errata E4_57710_27462 */
12881 sc->devinfo.pcie_link_speed =
12882 (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1;
12883
12884 /* workaround for 57710 errata E4_57710_27488 */
12885 sc->devinfo.pcie_link_width =
12886 ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
12887 if (sc->devinfo.pcie_link_speed > 1) {
12888 sc->devinfo.pcie_link_width =
12889 ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1;
12890 }
12891 } else {
12892 sc->devinfo.pcie_link_speed =
12893 (link_status & PCIM_LINK_STA_SPEED);
12894 sc->devinfo.pcie_link_width =
12895 ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
12896 }
12897
12898 BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n",
12899 sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
12900
12901 sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG;
12902 sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg;
12903
12904 /* check if MSI capability is enabled */
12905 if (pci_find_cap(sc->dev, PCIY_MSI, &reg) == 0) {
12906 if (reg != 0) {
12907 BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg);
12908
12909 sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG;
12910 sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg;
12911 }
12912 }
12913
12914 /* check if MSI-X capability is enabled */
12915 if (pci_find_cap(sc->dev, PCIY_MSIX, &reg) == 0) {
12916 if (reg != 0) {
12917 BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg);
12918
12919 sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG;
12920 sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg;
12921 }
12922 }
12923}
12924
12925static int
12926bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc)
12927{
12928 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
12929 uint32_t val;
12930
12931 /* get the outer vlan if we're in switch-dependent mode */
12932
12933 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
12934 mf_info->ext_id = (uint16_t)val;
12935
12936 mf_info->multi_vnics_mode = 1;
12937
12938 if (!VALID_OVLAN(mf_info->ext_id)) {
12939 BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id);
12940 return (1);
12941 }
12942
12943 /* get the capabilities */
12944 if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
12945 FUNC_MF_CFG_PROTOCOL_ISCSI) {
12946 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
12947 } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
12948 FUNC_MF_CFG_PROTOCOL_FCOE) {
12949 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
12950 } else {
12951 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
12952 }
12953
12954 mf_info->vnics_per_port =
12955 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
12956
12957 return (0);
12958}
12959
12960static uint32_t
12961bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc)
12962{
12963 uint32_t retval = 0;
12964 uint32_t val;
12965
12966 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
12967
12968 if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
12969 if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
12970 retval |= MF_PROTO_SUPPORT_ETHERNET;
12971 }
12972 if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
12973 retval |= MF_PROTO_SUPPORT_ISCSI;
12974 }
12975 if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
12976 retval |= MF_PROTO_SUPPORT_FCOE;
12977 }
12978 }
12979
12980 return (retval);
12981}
12982
12983static int
12984bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc)
12985{
12986 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
12987 uint32_t val;
12988
12989 /*
12990 * There is no outer vlan if we're in switch-independent mode.
12991 * If the mac is valid then assume multi-function.
12992 */
12993
12994 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
12995
12996 mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
12997
12998 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
12999
13000 mf_info->vnics_per_port =
13001 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13002
13003 return (0);
13004}
13005
13006static int
13007bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc)
13008{
13009 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13010 uint32_t e1hov_tag;
13011 uint32_t func_config;
13012 uint32_t niv_config;
13013
13014 mf_info->multi_vnics_mode = 1;
13015
13016 e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13017 func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13018 niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
13019
13020 mf_info->ext_id =
13021 (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
13022 FUNC_MF_CFG_E1HOV_TAG_SHIFT);
13023
13024 mf_info->default_vlan =
13025 (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
13026 FUNC_MF_CFG_AFEX_VLAN_SHIFT);
13027
13028 mf_info->niv_allowed_priorities =
13029 (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
13030 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
13031
13032 mf_info->niv_default_cos =
13033 (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
13034 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
13035
13036 mf_info->afex_vlan_mode =
13037 ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
13038 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
13039
13040 mf_info->niv_mba_enabled =
13041 ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
13042 FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
13043
13044 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13045
13046 mf_info->vnics_per_port =
13047 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13048
13049 return (0);
13050}
13051
13052static int
13053bxe_check_valid_mf_cfg(struct bxe_softc *sc)
13054{
13055 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13056 uint32_t mf_cfg1;
13057 uint32_t mf_cfg2;
13058 uint32_t ovlan1;
13059 uint32_t ovlan2;
13060 uint8_t i, j;
13061
13062 BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n",
13063 SC_PORT(sc));
13064 BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n",
13065 mf_info->mf_config[SC_VN(sc)]);
13066 BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n",
13067 mf_info->multi_vnics_mode);
13068 BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n",
13069 mf_info->vnics_per_port);
13070 BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n",
13071 mf_info->ext_id);
13072 BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n",
13073 mf_info->min_bw[0], mf_info->min_bw[1],
13074 mf_info->min_bw[2], mf_info->min_bw[3]);
13075 BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n",
13076 mf_info->max_bw[0], mf_info->max_bw[1],
13077 mf_info->max_bw[2], mf_info->max_bw[3]);
13078 BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n",
13079 sc->mac_addr_str);
13080
13081 /* various MF mode sanity checks... */
13082
13083 if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
13084 BLOGE(sc, "Enumerated function %d is marked as hidden\n",
13085 SC_PORT(sc));
13086 return (1);
13087 }
13088
13089 if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
13090 BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n",
13091 mf_info->vnics_per_port, mf_info->multi_vnics_mode);
13092 return (1);
13093 }
13094
13095 if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13096 /* vnic id > 0 must have valid ovlan in switch-dependent mode */
13097 if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
13098 BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n",
13099 SC_VN(sc), OVLAN(sc));
13100 return (1);
13101 }
13102
13103 if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
13104 BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n",
13105 mf_info->multi_vnics_mode, OVLAN(sc));
13106 return (1);
13107 }
13108
13109 /*
13110 * Verify all functions are either MF or SF mode. If MF, make sure
13111 * sure that all non-hidden functions have a valid ovlan. If SF,
13112 * make sure that all non-hidden functions have an invalid ovlan.
13113 */
13114 FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13115 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13116 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13117 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13118 (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) ||
13119 ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) {
13120 BLOGE(sc, "mf_mode=SD function %d MF config "
13121 "mismatch, multi_vnics_mode=%d ovlan=%d\n",
13122 i, mf_info->multi_vnics_mode, ovlan1);
13123 return (1);
13124 }
13125 }
13126
13127 /* Verify all funcs on the same port each have a different ovlan. */
13128 FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13129 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13130 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13131 /* iterate from the next function on the port to the max func */
13132 for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
13133 mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config);
13134 ovlan2 = MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
13135 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13136 VALID_OVLAN(ovlan1) &&
13137 !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) &&
13138 VALID_OVLAN(ovlan2) &&
13139 (ovlan1 == ovlan2)) {
13140 BLOGE(sc, "mf_mode=SD functions %d and %d "
13141 "have the same ovlan (%d)\n",
13142 i, j, ovlan1);
13143 return (1);
13144 }
13145 }
13146 }
13147 } /* MULTI_FUNCTION_SD */
13148
13149 return (0);
13150}
13151
13152static int
13153bxe_get_mf_cfg_info(struct bxe_softc *sc)
13154{
13155 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13156 uint32_t val, mac_upper;
13157 uint8_t i, vnic;
13158
13159 /* initialize mf_info defaults */
13160 mf_info->vnics_per_port = 1;
13161 mf_info->multi_vnics_mode = FALSE;
13162 mf_info->path_has_ovlan = FALSE;
13163 mf_info->mf_mode = SINGLE_FUNCTION;
13164
13165 if (!CHIP_IS_MF_CAP(sc)) {
13166 return (0);
13167 }
13168
13169 if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
13170 BLOGE(sc, "Invalid mf_cfg_base!\n");
13171 return (1);
13172 }
13173
13174 /* get the MF mode (switch dependent / independent / single-function) */
13175
13176 val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13177
13178 switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)
13179 {
13180 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
13181
13182 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13183
13184 /* check for legal upper mac bytes */
13185 if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
13186 mf_info->mf_mode = MULTI_FUNCTION_SI;
13187 } else {
13188 BLOGE(sc, "Invalid config for Switch Independent mode\n");
13189 }
13190
13191 break;
13192
13193 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
13194 case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
13195
13196 /* get outer vlan configuration */
13197 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13198
13199 if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
13200 FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
13201 mf_info->mf_mode = MULTI_FUNCTION_SD;
13202 } else {
13203 BLOGE(sc, "Invalid config for Switch Dependent mode\n");
13204 }
13205
13206 break;
13207
13208 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
13209
13210 /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
13211 return (0);
13212
13213 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
13214
13215 /*
13216 * Mark MF mode as NIV if MCP version includes NPAR-SD support
13217 * and the MAC address is valid.
13218 */
13219 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13220
13221 if ((SHMEM2_HAS(sc, afex_driver_support)) &&
13222 (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
13223 mf_info->mf_mode = MULTI_FUNCTION_AFEX;
13224 } else {
13225 BLOGE(sc, "Invalid config for AFEX mode\n");
13226 }
13227
13228 break;
13229
13230 default:
13231
13232 BLOGE(sc, "Unknown MF mode (0x%08x)\n",
13233 (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
13234
13235 return (1);
13236 }
13237
13238 /* set path mf_mode (which could be different than function mf_mode) */
13239 if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13240 mf_info->path_has_ovlan = TRUE;
13241 } else if (mf_info->mf_mode == SINGLE_FUNCTION) {
13242 /*
13243 * Decide on path multi vnics mode. If we're not in MF mode and in
13244 * 4-port mode, this is good enough to check vnic-0 of the other port
13245 * on the same path
13246 */
13247 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13248 uint8_t other_port = !(PORT_ID(sc) & 1);
13249 uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port));
13250
13251 val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag);
13252
13253 mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0;
13254 }
13255 }
13256
13257 if (mf_info->mf_mode == SINGLE_FUNCTION) {
13258 /* invalid MF config */
13259 if (SC_VN(sc) >= 1) {
13260 BLOGE(sc, "VNIC ID >= 1 in SF mode\n");
13261 return (1);
13262 }
13263
13264 return (0);
13265 }
13266
13267 /* get the MF configuration */
13268 mf_info->mf_config[SC_VN(sc)] =
13269 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13270
13271 switch(mf_info->mf_mode)
13272 {
13273 case MULTI_FUNCTION_SD:
13274
13275 bxe_get_shmem_mf_cfg_info_sd(sc);
13276 break;
13277
13278 case MULTI_FUNCTION_SI:
13279
13280 bxe_get_shmem_mf_cfg_info_si(sc);
13281 break;
13282
13283 case MULTI_FUNCTION_AFEX:
13284
13285 bxe_get_shmem_mf_cfg_info_niv(sc);
13286 break;
13287
13288 default:
13289
13290 BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n",
13291 mf_info->mf_mode);
13292 return (1);
13293 }
13294
13295 /* get the congestion management parameters */
13296
13297 vnic = 0;
13298 FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13299 /* get min/max bw */
13300 val = MFCFG_RD(sc, func_mf_config[i].config);
13301 mf_info->min_bw[vnic] =
13302 ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT);
13303 mf_info->max_bw[vnic] =
13304 ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT);
13305 vnic++;
13306 }
13307
13308 return (bxe_check_valid_mf_cfg(sc));
13309}
13310
13311static int
13312bxe_get_shmem_info(struct bxe_softc *sc)
13313{
13314 int port;
13315 uint32_t mac_hi, mac_lo, val;
13316
13317 port = SC_PORT(sc);
13318 mac_hi = mac_lo = 0;
13319
13320 sc->link_params.sc = sc;
13321 sc->link_params.port = port;
13322
13323 /* get the hardware config info */
13324 sc->devinfo.hw_config =
13325 SHMEM_RD(sc, dev_info.shared_hw_config.config);
13326 sc->devinfo.hw_config2 =
13327 SHMEM_RD(sc, dev_info.shared_hw_config.config2);
13328
13329 sc->link_params.hw_led_mode =
13330 ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
13331 SHARED_HW_CFG_LED_MODE_SHIFT);
13332
13333 /* get the port feature config */
13334 sc->port.config =
29
30#define BXE_DRIVER_VERSION "1.78.81"
31
32#include "bxe.h"
33#include "ecore_sp.h"
34#include "ecore_init.h"
35#include "ecore_init_ops.h"
36
37#include "57710_int_offsets.h"
38#include "57711_int_offsets.h"
39#include "57712_int_offsets.h"
40
41/*
42 * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these
43 * explicitly here for older kernels that don't include this changeset.
44 */
45#ifndef CTLTYPE_U64
46#define CTLTYPE_U64 CTLTYPE_QUAD
47#define sysctl_handle_64 sysctl_handle_quad
48#endif
49
50/*
51 * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these
52 * here as zero(0) for older kernels that don't include this changeset
53 * thereby masking the functionality.
54 */
55#ifndef CSUM_TCP_IPV6
56#define CSUM_TCP_IPV6 0
57#define CSUM_UDP_IPV6 0
58#endif
59
60/*
61 * pci_find_cap was added in r219865. Re-define this at pci_find_extcap
62 * for older kernels that don't include this changeset.
63 */
64#if __FreeBSD_version < 900035
65#define pci_find_cap pci_find_extcap
66#endif
67
68#define BXE_DEF_SB_ATT_IDX 0x0001
69#define BXE_DEF_SB_IDX 0x0002
70
71/*
72 * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per
73 * function HW initialization.
74 */
75#define FLR_WAIT_USEC 10000 /* 10 msecs */
76#define FLR_WAIT_INTERVAL 50 /* usecs */
77#define FLR_POLL_CNT (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */
78
79struct pbf_pN_buf_regs {
80 int pN;
81 uint32_t init_crd;
82 uint32_t crd;
83 uint32_t crd_freed;
84};
85
86struct pbf_pN_cmd_regs {
87 int pN;
88 uint32_t lines_occup;
89 uint32_t lines_freed;
90};
91
92/*
93 * PCI Device ID Table used by bxe_probe().
94 */
95#define BXE_DEVDESC_MAX 64
96static struct bxe_device_type bxe_devs[] = {
97 {
98 BRCM_VENDORID,
99 CHIP_NUM_57710,
100 PCI_ANY_ID, PCI_ANY_ID,
101 "QLogic NetXtreme II BCM57710 10GbE"
102 },
103 {
104 BRCM_VENDORID,
105 CHIP_NUM_57711,
106 PCI_ANY_ID, PCI_ANY_ID,
107 "QLogic NetXtreme II BCM57711 10GbE"
108 },
109 {
110 BRCM_VENDORID,
111 CHIP_NUM_57711E,
112 PCI_ANY_ID, PCI_ANY_ID,
113 "QLogic NetXtreme II BCM57711E 10GbE"
114 },
115 {
116 BRCM_VENDORID,
117 CHIP_NUM_57712,
118 PCI_ANY_ID, PCI_ANY_ID,
119 "QLogic NetXtreme II BCM57712 10GbE"
120 },
121 {
122 BRCM_VENDORID,
123 CHIP_NUM_57712_MF,
124 PCI_ANY_ID, PCI_ANY_ID,
125 "QLogic NetXtreme II BCM57712 MF 10GbE"
126 },
127 {
128 BRCM_VENDORID,
129 CHIP_NUM_57800,
130 PCI_ANY_ID, PCI_ANY_ID,
131 "QLogic NetXtreme II BCM57800 10GbE"
132 },
133 {
134 BRCM_VENDORID,
135 CHIP_NUM_57800_MF,
136 PCI_ANY_ID, PCI_ANY_ID,
137 "QLogic NetXtreme II BCM57800 MF 10GbE"
138 },
139 {
140 BRCM_VENDORID,
141 CHIP_NUM_57810,
142 PCI_ANY_ID, PCI_ANY_ID,
143 "QLogic NetXtreme II BCM57810 10GbE"
144 },
145 {
146 BRCM_VENDORID,
147 CHIP_NUM_57810_MF,
148 PCI_ANY_ID, PCI_ANY_ID,
149 "QLogic NetXtreme II BCM57810 MF 10GbE"
150 },
151 {
152 BRCM_VENDORID,
153 CHIP_NUM_57811,
154 PCI_ANY_ID, PCI_ANY_ID,
155 "QLogic NetXtreme II BCM57811 10GbE"
156 },
157 {
158 BRCM_VENDORID,
159 CHIP_NUM_57811_MF,
160 PCI_ANY_ID, PCI_ANY_ID,
161 "QLogic NetXtreme II BCM57811 MF 10GbE"
162 },
163 {
164 BRCM_VENDORID,
165 CHIP_NUM_57840_4_10,
166 PCI_ANY_ID, PCI_ANY_ID,
167 "QLogic NetXtreme II BCM57840 4x10GbE"
168 },
169 {
170 BRCM_VENDORID,
171 CHIP_NUM_57840_MF,
172 PCI_ANY_ID, PCI_ANY_ID,
173 "QLogic NetXtreme II BCM57840 MF 10GbE"
174 },
175 {
176 0, 0, 0, 0, NULL
177 }
178};
179
180MALLOC_DECLARE(M_BXE_ILT);
181MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer");
182
183/*
184 * FreeBSD device entry points.
185 */
186static int bxe_probe(device_t);
187static int bxe_attach(device_t);
188static int bxe_detach(device_t);
189static int bxe_shutdown(device_t);
190
191/*
192 * FreeBSD KLD module/device interface event handler method.
193 */
194static device_method_t bxe_methods[] = {
195 /* Device interface (device_if.h) */
196 DEVMETHOD(device_probe, bxe_probe),
197 DEVMETHOD(device_attach, bxe_attach),
198 DEVMETHOD(device_detach, bxe_detach),
199 DEVMETHOD(device_shutdown, bxe_shutdown),
200 /* Bus interface (bus_if.h) */
201 DEVMETHOD(bus_print_child, bus_generic_print_child),
202 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
203 KOBJMETHOD_END
204};
205
206/*
207 * FreeBSD KLD Module data declaration
208 */
209static driver_t bxe_driver = {
210 "bxe", /* module name */
211 bxe_methods, /* event handler */
212 sizeof(struct bxe_softc) /* extra data */
213};
214
215/*
216 * FreeBSD dev class is needed to manage dev instances and
217 * to associate with a bus type
218 */
219static devclass_t bxe_devclass;
220
221MODULE_DEPEND(bxe, pci, 1, 1, 1);
222MODULE_DEPEND(bxe, ether, 1, 1, 1);
223DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0);
224
225/* resources needed for unloading a previously loaded device */
226
227#define BXE_PREV_WAIT_NEEDED 1
228struct mtx bxe_prev_mtx;
229MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF);
230struct bxe_prev_list_node {
231 LIST_ENTRY(bxe_prev_list_node) node;
232 uint8_t bus;
233 uint8_t slot;
234 uint8_t path;
235 uint8_t aer; /* XXX automatic error recovery */
236 uint8_t undi;
237};
238static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list);
239
240static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
241
242/* Tunable device values... */
243
244SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters");
245
246/* Debug */
247unsigned long bxe_debug = 0;
248SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN,
249 &bxe_debug, 0, "Debug logging mode");
250
251/* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
252static int bxe_interrupt_mode = INTR_MODE_MSIX;
253SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN,
254 &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode");
255
256/* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */
257static int bxe_queue_count = 4;
258SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN,
259 &bxe_queue_count, 0, "Multi-Queue queue count");
260
261/* max number of buffers per queue (default RX_BD_USABLE) */
262static int bxe_max_rx_bufs = 0;
263SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN,
264 &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue");
265
266/* Host interrupt coalescing RX tick timer (usecs) */
267static int bxe_hc_rx_ticks = 25;
268SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN,
269 &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks");
270
271/* Host interrupt coalescing TX tick timer (usecs) */
272static int bxe_hc_tx_ticks = 50;
273SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN,
274 &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks");
275
276/* Maximum number of Rx packets to process at a time */
277static int bxe_rx_budget = 0xffffffff;
278SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN,
279 &bxe_rx_budget, 0, "Rx processing budget");
280
281/* Maximum LRO aggregation size */
282static int bxe_max_aggregation_size = 0;
283SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN,
284 &bxe_max_aggregation_size, 0, "max aggregation size");
285
286/* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */
287static int bxe_mrrs = -1;
288SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN,
289 &bxe_mrrs, 0, "PCIe maximum read request size");
290
291/* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */
292static int bxe_autogreeen = 0;
293SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN,
294 &bxe_autogreeen, 0, "AutoGrEEEn support");
295
296/* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */
297static int bxe_udp_rss = 0;
298SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN,
299 &bxe_udp_rss, 0, "UDP RSS support");
300
301
302#define STAT_NAME_LEN 32 /* no stat names below can be longer than this */
303
304#define STATS_OFFSET32(stat_name) \
305 (offsetof(struct bxe_eth_stats, stat_name) / 4)
306
307#define Q_STATS_OFFSET32(stat_name) \
308 (offsetof(struct bxe_eth_q_stats, stat_name) / 4)
309
310static const struct {
311 uint32_t offset;
312 uint32_t size;
313 uint32_t flags;
314#define STATS_FLAGS_PORT 1
315#define STATS_FLAGS_FUNC 2 /* MF only cares about function stats */
316#define STATS_FLAGS_BOTH (STATS_FLAGS_FUNC | STATS_FLAGS_PORT)
317 char string[STAT_NAME_LEN];
318} bxe_eth_stats_arr[] = {
319 { STATS_OFFSET32(total_bytes_received_hi),
320 8, STATS_FLAGS_BOTH, "rx_bytes" },
321 { STATS_OFFSET32(error_bytes_received_hi),
322 8, STATS_FLAGS_BOTH, "rx_error_bytes" },
323 { STATS_OFFSET32(total_unicast_packets_received_hi),
324 8, STATS_FLAGS_BOTH, "rx_ucast_packets" },
325 { STATS_OFFSET32(total_multicast_packets_received_hi),
326 8, STATS_FLAGS_BOTH, "rx_mcast_packets" },
327 { STATS_OFFSET32(total_broadcast_packets_received_hi),
328 8, STATS_FLAGS_BOTH, "rx_bcast_packets" },
329 { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi),
330 8, STATS_FLAGS_PORT, "rx_crc_errors" },
331 { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi),
332 8, STATS_FLAGS_PORT, "rx_align_errors" },
333 { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi),
334 8, STATS_FLAGS_PORT, "rx_undersize_packets" },
335 { STATS_OFFSET32(etherstatsoverrsizepkts_hi),
336 8, STATS_FLAGS_PORT, "rx_oversize_packets" },
337 { STATS_OFFSET32(rx_stat_etherstatsfragments_hi),
338 8, STATS_FLAGS_PORT, "rx_fragments" },
339 { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi),
340 8, STATS_FLAGS_PORT, "rx_jabbers" },
341 { STATS_OFFSET32(no_buff_discard_hi),
342 8, STATS_FLAGS_BOTH, "rx_discards" },
343 { STATS_OFFSET32(mac_filter_discard),
344 4, STATS_FLAGS_PORT, "rx_filtered_packets" },
345 { STATS_OFFSET32(mf_tag_discard),
346 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" },
347 { STATS_OFFSET32(pfc_frames_received_hi),
348 8, STATS_FLAGS_PORT, "pfc_frames_received" },
349 { STATS_OFFSET32(pfc_frames_sent_hi),
350 8, STATS_FLAGS_PORT, "pfc_frames_sent" },
351 { STATS_OFFSET32(brb_drop_hi),
352 8, STATS_FLAGS_PORT, "rx_brb_discard" },
353 { STATS_OFFSET32(brb_truncate_hi),
354 8, STATS_FLAGS_PORT, "rx_brb_truncate" },
355 { STATS_OFFSET32(pause_frames_received_hi),
356 8, STATS_FLAGS_PORT, "rx_pause_frames" },
357 { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi),
358 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" },
359 { STATS_OFFSET32(nig_timer_max),
360 4, STATS_FLAGS_PORT, "rx_constant_pause_events" },
361 { STATS_OFFSET32(total_bytes_transmitted_hi),
362 8, STATS_FLAGS_BOTH, "tx_bytes" },
363 { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi),
364 8, STATS_FLAGS_PORT, "tx_error_bytes" },
365 { STATS_OFFSET32(total_unicast_packets_transmitted_hi),
366 8, STATS_FLAGS_BOTH, "tx_ucast_packets" },
367 { STATS_OFFSET32(total_multicast_packets_transmitted_hi),
368 8, STATS_FLAGS_BOTH, "tx_mcast_packets" },
369 { STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
370 8, STATS_FLAGS_BOTH, "tx_bcast_packets" },
371 { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi),
372 8, STATS_FLAGS_PORT, "tx_mac_errors" },
373 { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi),
374 8, STATS_FLAGS_PORT, "tx_carrier_errors" },
375 { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi),
376 8, STATS_FLAGS_PORT, "tx_single_collisions" },
377 { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi),
378 8, STATS_FLAGS_PORT, "tx_multi_collisions" },
379 { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi),
380 8, STATS_FLAGS_PORT, "tx_deferred" },
381 { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi),
382 8, STATS_FLAGS_PORT, "tx_excess_collisions" },
383 { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi),
384 8, STATS_FLAGS_PORT, "tx_late_collisions" },
385 { STATS_OFFSET32(tx_stat_etherstatscollisions_hi),
386 8, STATS_FLAGS_PORT, "tx_total_collisions" },
387 { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi),
388 8, STATS_FLAGS_PORT, "tx_64_byte_packets" },
389 { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi),
390 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" },
391 { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi),
392 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" },
393 { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi),
394 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" },
395 { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi),
396 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" },
397 { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi),
398 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" },
399 { STATS_OFFSET32(etherstatspktsover1522octets_hi),
400 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" },
401 { STATS_OFFSET32(pause_frames_sent_hi),
402 8, STATS_FLAGS_PORT, "tx_pause_frames" },
403 { STATS_OFFSET32(total_tpa_aggregations_hi),
404 8, STATS_FLAGS_FUNC, "tpa_aggregations" },
405 { STATS_OFFSET32(total_tpa_aggregated_frames_hi),
406 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"},
407 { STATS_OFFSET32(total_tpa_bytes_hi),
408 8, STATS_FLAGS_FUNC, "tpa_bytes"},
409 { STATS_OFFSET32(eee_tx_lpi),
410 4, STATS_FLAGS_PORT, "eee_tx_lpi"},
411 { STATS_OFFSET32(rx_calls),
412 4, STATS_FLAGS_FUNC, "rx_calls"},
413 { STATS_OFFSET32(rx_pkts),
414 4, STATS_FLAGS_FUNC, "rx_pkts"},
415 { STATS_OFFSET32(rx_tpa_pkts),
416 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"},
417 { STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts),
418 4, STATS_FLAGS_FUNC, "rx_erroneous_jumbo_sge_pkts"},
419 { STATS_OFFSET32(rx_bxe_service_rxsgl),
420 4, STATS_FLAGS_FUNC, "rx_bxe_service_rxsgl"},
421 { STATS_OFFSET32(rx_jumbo_sge_pkts),
422 4, STATS_FLAGS_FUNC, "rx_jumbo_sge_pkts"},
423 { STATS_OFFSET32(rx_soft_errors),
424 4, STATS_FLAGS_FUNC, "rx_soft_errors"},
425 { STATS_OFFSET32(rx_hw_csum_errors),
426 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"},
427 { STATS_OFFSET32(rx_ofld_frames_csum_ip),
428 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"},
429 { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
430 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"},
431 { STATS_OFFSET32(rx_budget_reached),
432 4, STATS_FLAGS_FUNC, "rx_budget_reached"},
433 { STATS_OFFSET32(tx_pkts),
434 4, STATS_FLAGS_FUNC, "tx_pkts"},
435 { STATS_OFFSET32(tx_soft_errors),
436 4, STATS_FLAGS_FUNC, "tx_soft_errors"},
437 { STATS_OFFSET32(tx_ofld_frames_csum_ip),
438 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"},
439 { STATS_OFFSET32(tx_ofld_frames_csum_tcp),
440 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"},
441 { STATS_OFFSET32(tx_ofld_frames_csum_udp),
442 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"},
443 { STATS_OFFSET32(tx_ofld_frames_lso),
444 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"},
445 { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
446 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"},
447 { STATS_OFFSET32(tx_encap_failures),
448 4, STATS_FLAGS_FUNC, "tx_encap_failures"},
449 { STATS_OFFSET32(tx_hw_queue_full),
450 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"},
451 { STATS_OFFSET32(tx_hw_max_queue_depth),
452 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"},
453 { STATS_OFFSET32(tx_dma_mapping_failure),
454 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"},
455 { STATS_OFFSET32(tx_max_drbr_queue_depth),
456 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"},
457 { STATS_OFFSET32(tx_window_violation_std),
458 4, STATS_FLAGS_FUNC, "tx_window_violation_std"},
459 { STATS_OFFSET32(tx_window_violation_tso),
460 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"},
461 { STATS_OFFSET32(tx_chain_lost_mbuf),
462 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"},
463 { STATS_OFFSET32(tx_frames_deferred),
464 4, STATS_FLAGS_FUNC, "tx_frames_deferred"},
465 { STATS_OFFSET32(tx_queue_xoff),
466 4, STATS_FLAGS_FUNC, "tx_queue_xoff"},
467 { STATS_OFFSET32(mbuf_defrag_attempts),
468 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"},
469 { STATS_OFFSET32(mbuf_defrag_failures),
470 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"},
471 { STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
472 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"},
473 { STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
474 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"},
475 { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
476 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"},
477 { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
478 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"},
479 { STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
480 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"},
481 { STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
482 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"},
483 { STATS_OFFSET32(mbuf_alloc_tx),
484 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"},
485 { STATS_OFFSET32(mbuf_alloc_rx),
486 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"},
487 { STATS_OFFSET32(mbuf_alloc_sge),
488 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"},
489 { STATS_OFFSET32(mbuf_alloc_tpa),
490 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"},
491 { STATS_OFFSET32(tx_queue_full_return),
492 4, STATS_FLAGS_FUNC, "tx_queue_full_return"}
493};
494
495static const struct {
496 uint32_t offset;
497 uint32_t size;
498 char string[STAT_NAME_LEN];
499} bxe_eth_q_stats_arr[] = {
500 { Q_STATS_OFFSET32(total_bytes_received_hi),
501 8, "rx_bytes" },
502 { Q_STATS_OFFSET32(total_unicast_packets_received_hi),
503 8, "rx_ucast_packets" },
504 { Q_STATS_OFFSET32(total_multicast_packets_received_hi),
505 8, "rx_mcast_packets" },
506 { Q_STATS_OFFSET32(total_broadcast_packets_received_hi),
507 8, "rx_bcast_packets" },
508 { Q_STATS_OFFSET32(no_buff_discard_hi),
509 8, "rx_discards" },
510 { Q_STATS_OFFSET32(total_bytes_transmitted_hi),
511 8, "tx_bytes" },
512 { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi),
513 8, "tx_ucast_packets" },
514 { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi),
515 8, "tx_mcast_packets" },
516 { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
517 8, "tx_bcast_packets" },
518 { Q_STATS_OFFSET32(total_tpa_aggregations_hi),
519 8, "tpa_aggregations" },
520 { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi),
521 8, "tpa_aggregated_frames"},
522 { Q_STATS_OFFSET32(total_tpa_bytes_hi),
523 8, "tpa_bytes"},
524 { Q_STATS_OFFSET32(rx_calls),
525 4, "rx_calls"},
526 { Q_STATS_OFFSET32(rx_pkts),
527 4, "rx_pkts"},
528 { Q_STATS_OFFSET32(rx_tpa_pkts),
529 4, "rx_tpa_pkts"},
530 { Q_STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts),
531 4, "rx_erroneous_jumbo_sge_pkts"},
532 { Q_STATS_OFFSET32(rx_bxe_service_rxsgl),
533 4, "rx_bxe_service_rxsgl"},
534 { Q_STATS_OFFSET32(rx_jumbo_sge_pkts),
535 4, "rx_jumbo_sge_pkts"},
536 { Q_STATS_OFFSET32(rx_soft_errors),
537 4, "rx_soft_errors"},
538 { Q_STATS_OFFSET32(rx_hw_csum_errors),
539 4, "rx_hw_csum_errors"},
540 { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip),
541 4, "rx_ofld_frames_csum_ip"},
542 { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
543 4, "rx_ofld_frames_csum_tcp_udp"},
544 { Q_STATS_OFFSET32(rx_budget_reached),
545 4, "rx_budget_reached"},
546 { Q_STATS_OFFSET32(tx_pkts),
547 4, "tx_pkts"},
548 { Q_STATS_OFFSET32(tx_soft_errors),
549 4, "tx_soft_errors"},
550 { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip),
551 4, "tx_ofld_frames_csum_ip"},
552 { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp),
553 4, "tx_ofld_frames_csum_tcp"},
554 { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp),
555 4, "tx_ofld_frames_csum_udp"},
556 { Q_STATS_OFFSET32(tx_ofld_frames_lso),
557 4, "tx_ofld_frames_lso"},
558 { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
559 4, "tx_ofld_frames_lso_hdr_splits"},
560 { Q_STATS_OFFSET32(tx_encap_failures),
561 4, "tx_encap_failures"},
562 { Q_STATS_OFFSET32(tx_hw_queue_full),
563 4, "tx_hw_queue_full"},
564 { Q_STATS_OFFSET32(tx_hw_max_queue_depth),
565 4, "tx_hw_max_queue_depth"},
566 { Q_STATS_OFFSET32(tx_dma_mapping_failure),
567 4, "tx_dma_mapping_failure"},
568 { Q_STATS_OFFSET32(tx_max_drbr_queue_depth),
569 4, "tx_max_drbr_queue_depth"},
570 { Q_STATS_OFFSET32(tx_window_violation_std),
571 4, "tx_window_violation_std"},
572 { Q_STATS_OFFSET32(tx_window_violation_tso),
573 4, "tx_window_violation_tso"},
574 { Q_STATS_OFFSET32(tx_chain_lost_mbuf),
575 4, "tx_chain_lost_mbuf"},
576 { Q_STATS_OFFSET32(tx_frames_deferred),
577 4, "tx_frames_deferred"},
578 { Q_STATS_OFFSET32(tx_queue_xoff),
579 4, "tx_queue_xoff"},
580 { Q_STATS_OFFSET32(mbuf_defrag_attempts),
581 4, "mbuf_defrag_attempts"},
582 { Q_STATS_OFFSET32(mbuf_defrag_failures),
583 4, "mbuf_defrag_failures"},
584 { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
585 4, "mbuf_rx_bd_alloc_failed"},
586 { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
587 4, "mbuf_rx_bd_mapping_failed"},
588 { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
589 4, "mbuf_rx_tpa_alloc_failed"},
590 { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
591 4, "mbuf_rx_tpa_mapping_failed"},
592 { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
593 4, "mbuf_rx_sge_alloc_failed"},
594 { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
595 4, "mbuf_rx_sge_mapping_failed"},
596 { Q_STATS_OFFSET32(mbuf_alloc_tx),
597 4, "mbuf_alloc_tx"},
598 { Q_STATS_OFFSET32(mbuf_alloc_rx),
599 4, "mbuf_alloc_rx"},
600 { Q_STATS_OFFSET32(mbuf_alloc_sge),
601 4, "mbuf_alloc_sge"},
602 { Q_STATS_OFFSET32(mbuf_alloc_tpa),
603 4, "mbuf_alloc_tpa"},
604 { Q_STATS_OFFSET32(tx_queue_full_return),
605 4, "tx_queue_full_return"}
606};
607
608#define BXE_NUM_ETH_STATS ARRAY_SIZE(bxe_eth_stats_arr)
609#define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr)
610
611
612static void bxe_cmng_fns_init(struct bxe_softc *sc,
613 uint8_t read_cfg,
614 uint8_t cmng_type);
615static int bxe_get_cmng_fns_mode(struct bxe_softc *sc);
616static void storm_memset_cmng(struct bxe_softc *sc,
617 struct cmng_init *cmng,
618 uint8_t port);
619static void bxe_set_reset_global(struct bxe_softc *sc);
620static void bxe_set_reset_in_progress(struct bxe_softc *sc);
621static uint8_t bxe_reset_is_done(struct bxe_softc *sc,
622 int engine);
623static uint8_t bxe_clear_pf_load(struct bxe_softc *sc);
624static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc,
625 uint8_t *global,
626 uint8_t print);
627static void bxe_int_disable(struct bxe_softc *sc);
628static int bxe_release_leader_lock(struct bxe_softc *sc);
629static void bxe_pf_disable(struct bxe_softc *sc);
630static void bxe_free_fp_buffers(struct bxe_softc *sc);
631static inline void bxe_update_rx_prod(struct bxe_softc *sc,
632 struct bxe_fastpath *fp,
633 uint16_t rx_bd_prod,
634 uint16_t rx_cq_prod,
635 uint16_t rx_sge_prod);
636static void bxe_link_report_locked(struct bxe_softc *sc);
637static void bxe_link_report(struct bxe_softc *sc);
638static void bxe_link_status_update(struct bxe_softc *sc);
639static void bxe_periodic_callout_func(void *xsc);
640static void bxe_periodic_start(struct bxe_softc *sc);
641static void bxe_periodic_stop(struct bxe_softc *sc);
642static int bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
643 uint16_t prev_index,
644 uint16_t index);
645static int bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
646 int queue);
647static int bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
648 uint16_t index);
649static uint8_t bxe_txeof(struct bxe_softc *sc,
650 struct bxe_fastpath *fp);
651static void bxe_task_fp(struct bxe_fastpath *fp);
652static __noinline void bxe_dump_mbuf(struct bxe_softc *sc,
653 struct mbuf *m,
654 uint8_t contents);
655static int bxe_alloc_mem(struct bxe_softc *sc);
656static void bxe_free_mem(struct bxe_softc *sc);
657static int bxe_alloc_fw_stats_mem(struct bxe_softc *sc);
658static void bxe_free_fw_stats_mem(struct bxe_softc *sc);
659static int bxe_interrupt_attach(struct bxe_softc *sc);
660static void bxe_interrupt_detach(struct bxe_softc *sc);
661static void bxe_set_rx_mode(struct bxe_softc *sc);
662static int bxe_init_locked(struct bxe_softc *sc);
663static int bxe_stop_locked(struct bxe_softc *sc);
664static __noinline int bxe_nic_load(struct bxe_softc *sc,
665 int load_mode);
666static __noinline int bxe_nic_unload(struct bxe_softc *sc,
667 uint32_t unload_mode,
668 uint8_t keep_link);
669
670static void bxe_handle_sp_tq(void *context, int pending);
671static void bxe_handle_fp_tq(void *context, int pending);
672
673static int bxe_add_cdev(struct bxe_softc *sc);
674static void bxe_del_cdev(struct bxe_softc *sc);
675static int bxe_alloc_buf_rings(struct bxe_softc *sc);
676static void bxe_free_buf_rings(struct bxe_softc *sc);
677
678/* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */
679uint32_t
680calc_crc32(uint8_t *crc32_packet,
681 uint32_t crc32_length,
682 uint32_t crc32_seed,
683 uint8_t complement)
684{
685 uint32_t byte = 0;
686 uint32_t bit = 0;
687 uint8_t msb = 0;
688 uint32_t temp = 0;
689 uint32_t shft = 0;
690 uint8_t current_byte = 0;
691 uint32_t crc32_result = crc32_seed;
692 const uint32_t CRC32_POLY = 0x1edc6f41;
693
694 if ((crc32_packet == NULL) ||
695 (crc32_length == 0) ||
696 ((crc32_length % 8) != 0))
697 {
698 return (crc32_result);
699 }
700
701 for (byte = 0; byte < crc32_length; byte = byte + 1)
702 {
703 current_byte = crc32_packet[byte];
704 for (bit = 0; bit < 8; bit = bit + 1)
705 {
706 /* msb = crc32_result[31]; */
707 msb = (uint8_t)(crc32_result >> 31);
708
709 crc32_result = crc32_result << 1;
710
711 /* it (msb != current_byte[bit]) */
712 if (msb != (0x1 & (current_byte >> bit)))
713 {
714 crc32_result = crc32_result ^ CRC32_POLY;
715 /* crc32_result[0] = 1 */
716 crc32_result |= 1;
717 }
718 }
719 }
720
721 /* Last step is to:
722 * 1. "mirror" every bit
723 * 2. swap the 4 bytes
724 * 3. complement each bit
725 */
726
727 /* Mirror */
728 temp = crc32_result;
729 shft = sizeof(crc32_result) * 8 - 1;
730
731 for (crc32_result >>= 1; crc32_result; crc32_result >>= 1)
732 {
733 temp <<= 1;
734 temp |= crc32_result & 1;
735 shft-- ;
736 }
737
738 /* temp[31-bit] = crc32_result[bit] */
739 temp <<= shft;
740
741 /* Swap */
742 /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */
743 {
744 uint32_t t0, t1, t2, t3;
745 t0 = (0x000000ff & (temp >> 24));
746 t1 = (0x0000ff00 & (temp >> 8));
747 t2 = (0x00ff0000 & (temp << 8));
748 t3 = (0xff000000 & (temp << 24));
749 crc32_result = t0 | t1 | t2 | t3;
750 }
751
752 /* Complement */
753 if (complement)
754 {
755 crc32_result = ~crc32_result;
756 }
757
758 return (crc32_result);
759}
760
761int
762bxe_test_bit(int nr,
763 volatile unsigned long *addr)
764{
765 return ((atomic_load_acq_long(addr) & (1 << nr)) != 0);
766}
767
768void
769bxe_set_bit(unsigned int nr,
770 volatile unsigned long *addr)
771{
772 atomic_set_acq_long(addr, (1 << nr));
773}
774
775void
776bxe_clear_bit(int nr,
777 volatile unsigned long *addr)
778{
779 atomic_clear_acq_long(addr, (1 << nr));
780}
781
782int
783bxe_test_and_set_bit(int nr,
784 volatile unsigned long *addr)
785{
786 unsigned long x;
787 nr = (1 << nr);
788 do {
789 x = *addr;
790 } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0);
791 // if (x & nr) bit_was_set; else bit_was_not_set;
792 return (x & nr);
793}
794
795int
796bxe_test_and_clear_bit(int nr,
797 volatile unsigned long *addr)
798{
799 unsigned long x;
800 nr = (1 << nr);
801 do {
802 x = *addr;
803 } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0);
804 // if (x & nr) bit_was_set; else bit_was_not_set;
805 return (x & nr);
806}
807
808int
809bxe_cmpxchg(volatile int *addr,
810 int old,
811 int new)
812{
813 int x;
814 do {
815 x = *addr;
816 } while (atomic_cmpset_acq_int(addr, old, new) == 0);
817 return (x);
818}
819
820/*
821 * Get DMA memory from the OS.
822 *
823 * Validates that the OS has provided DMA buffers in response to a
824 * bus_dmamap_load call and saves the physical address of those buffers.
825 * When the callback is used the OS will return 0 for the mapping function
826 * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any
827 * failures back to the caller.
828 *
829 * Returns:
830 * Nothing.
831 */
832static void
833bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
834{
835 struct bxe_dma *dma = arg;
836
837 if (error) {
838 dma->paddr = 0;
839 dma->nseg = 0;
840 BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error);
841 } else {
842 dma->paddr = segs->ds_addr;
843 dma->nseg = nseg;
844 }
845}
846
847/*
848 * Allocate a block of memory and map it for DMA. No partial completions
849 * allowed and release any resources acquired if we can't acquire all
850 * resources.
851 *
852 * Returns:
853 * 0 = Success, !0 = Failure
854 */
855int
856bxe_dma_alloc(struct bxe_softc *sc,
857 bus_size_t size,
858 struct bxe_dma *dma,
859 const char *msg)
860{
861 int rc;
862
863 if (dma->size > 0) {
864 BLOGE(sc, "dma block '%s' already has size %lu\n", msg,
865 (unsigned long)dma->size);
866 return (1);
867 }
868
869 memset(dma, 0, sizeof(*dma)); /* sanity */
870 dma->sc = sc;
871 dma->size = size;
872 snprintf(dma->msg, sizeof(dma->msg), "%s", msg);
873
874 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
875 BCM_PAGE_SIZE, /* alignment */
876 0, /* boundary limit */
877 BUS_SPACE_MAXADDR, /* restricted low */
878 BUS_SPACE_MAXADDR, /* restricted hi */
879 NULL, /* addr filter() */
880 NULL, /* addr filter() arg */
881 size, /* max map size */
882 1, /* num discontinuous */
883 size, /* max seg size */
884 BUS_DMA_ALLOCNOW, /* flags */
885 NULL, /* lock() */
886 NULL, /* lock() arg */
887 &dma->tag); /* returned dma tag */
888 if (rc != 0) {
889 BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc);
890 memset(dma, 0, sizeof(*dma));
891 return (1);
892 }
893
894 rc = bus_dmamem_alloc(dma->tag,
895 (void **)&dma->vaddr,
896 (BUS_DMA_NOWAIT | BUS_DMA_ZERO),
897 &dma->map);
898 if (rc != 0) {
899 BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc);
900 bus_dma_tag_destroy(dma->tag);
901 memset(dma, 0, sizeof(*dma));
902 return (1);
903 }
904
905 rc = bus_dmamap_load(dma->tag,
906 dma->map,
907 dma->vaddr,
908 size,
909 bxe_dma_map_addr, /* BLOGD in here */
910 dma,
911 BUS_DMA_NOWAIT);
912 if (rc != 0) {
913 BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc);
914 bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
915 bus_dma_tag_destroy(dma->tag);
916 memset(dma, 0, sizeof(*dma));
917 return (1);
918 }
919
920 return (0);
921}
922
923void
924bxe_dma_free(struct bxe_softc *sc,
925 struct bxe_dma *dma)
926{
927 if (dma->size > 0) {
928 DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL"));
929
930 bus_dmamap_sync(dma->tag, dma->map,
931 (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE));
932 bus_dmamap_unload(dma->tag, dma->map);
933 bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
934 bus_dma_tag_destroy(dma->tag);
935 }
936
937 memset(dma, 0, sizeof(*dma));
938}
939
940/*
941 * These indirect read and write routines are only during init.
942 * The locking is handled by the MCP.
943 */
944
945void
946bxe_reg_wr_ind(struct bxe_softc *sc,
947 uint32_t addr,
948 uint32_t val)
949{
950 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
951 pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4);
952 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
953}
954
955uint32_t
956bxe_reg_rd_ind(struct bxe_softc *sc,
957 uint32_t addr)
958{
959 uint32_t val;
960
961 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
962 val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4);
963 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
964
965 return (val);
966}
967
968static int
969bxe_acquire_hw_lock(struct bxe_softc *sc,
970 uint32_t resource)
971{
972 uint32_t lock_status;
973 uint32_t resource_bit = (1 << resource);
974 int func = SC_FUNC(sc);
975 uint32_t hw_lock_control_reg;
976 int cnt;
977
978 /* validate the resource is within range */
979 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
980 BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)"
981 " resource_bit 0x%x\n", resource, resource_bit);
982 return (-1);
983 }
984
985 if (func <= 5) {
986 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
987 } else {
988 hw_lock_control_reg =
989 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
990 }
991
992 /* validate the resource is not already taken */
993 lock_status = REG_RD(sc, hw_lock_control_reg);
994 if (lock_status & resource_bit) {
995 BLOGE(sc, "resource (0x%x) in use (status 0x%x bit 0x%x)\n",
996 resource, lock_status, resource_bit);
997 return (-1);
998 }
999
1000 /* try every 5ms for 5 seconds */
1001 for (cnt = 0; cnt < 1000; cnt++) {
1002 REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
1003 lock_status = REG_RD(sc, hw_lock_control_reg);
1004 if (lock_status & resource_bit) {
1005 return (0);
1006 }
1007 DELAY(5000);
1008 }
1009
1010 BLOGE(sc, "Resource 0x%x resource_bit 0x%x lock timeout!\n",
1011 resource, resource_bit);
1012 return (-1);
1013}
1014
1015static int
1016bxe_release_hw_lock(struct bxe_softc *sc,
1017 uint32_t resource)
1018{
1019 uint32_t lock_status;
1020 uint32_t resource_bit = (1 << resource);
1021 int func = SC_FUNC(sc);
1022 uint32_t hw_lock_control_reg;
1023
1024 /* validate the resource is within range */
1025 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1026 BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)"
1027 " resource_bit 0x%x\n", resource, resource_bit);
1028 return (-1);
1029 }
1030
1031 if (func <= 5) {
1032 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1033 } else {
1034 hw_lock_control_reg =
1035 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1036 }
1037
1038 /* validate the resource is currently taken */
1039 lock_status = REG_RD(sc, hw_lock_control_reg);
1040 if (!(lock_status & resource_bit)) {
1041 BLOGE(sc, "resource (0x%x) not in use (status 0x%x bit 0x%x)\n",
1042 resource, lock_status, resource_bit);
1043 return (-1);
1044 }
1045
1046 REG_WR(sc, hw_lock_control_reg, resource_bit);
1047 return (0);
1048}
1049static void bxe_acquire_phy_lock(struct bxe_softc *sc)
1050{
1051 BXE_PHY_LOCK(sc);
1052 bxe_acquire_hw_lock(sc,HW_LOCK_RESOURCE_MDIO);
1053}
1054
1055static void bxe_release_phy_lock(struct bxe_softc *sc)
1056{
1057 bxe_release_hw_lock(sc,HW_LOCK_RESOURCE_MDIO);
1058 BXE_PHY_UNLOCK(sc);
1059}
1060/*
1061 * Per pf misc lock must be acquired before the per port mcp lock. Otherwise,
1062 * had we done things the other way around, if two pfs from the same port
1063 * would attempt to access nvram at the same time, we could run into a
1064 * scenario such as:
1065 * pf A takes the port lock.
1066 * pf B succeeds in taking the same lock since they are from the same port.
1067 * pf A takes the per pf misc lock. Performs eeprom access.
1068 * pf A finishes. Unlocks the per pf misc lock.
1069 * Pf B takes the lock and proceeds to perform it's own access.
1070 * pf A unlocks the per port lock, while pf B is still working (!).
1071 * mcp takes the per port lock and corrupts pf B's access (and/or has it's own
1072 * access corrupted by pf B).*
1073 */
1074static int
1075bxe_acquire_nvram_lock(struct bxe_softc *sc)
1076{
1077 int port = SC_PORT(sc);
1078 int count, i;
1079 uint32_t val = 0;
1080
1081 /* acquire HW lock: protect against other PFs in PF Direct Assignment */
1082 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1083
1084 /* adjust timeout for emulation/FPGA */
1085 count = NVRAM_TIMEOUT_COUNT;
1086 if (CHIP_REV_IS_SLOW(sc)) {
1087 count *= 100;
1088 }
1089
1090 /* request access to nvram interface */
1091 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1092 (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port));
1093
1094 for (i = 0; i < count*10; i++) {
1095 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1096 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1097 break;
1098 }
1099
1100 DELAY(5);
1101 }
1102
1103 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1104 BLOGE(sc, "Cannot get access to nvram interface "
1105 "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n",
1106 port, val);
1107 return (-1);
1108 }
1109
1110 return (0);
1111}
1112
1113static int
1114bxe_release_nvram_lock(struct bxe_softc *sc)
1115{
1116 int port = SC_PORT(sc);
1117 int count, i;
1118 uint32_t val = 0;
1119
1120 /* adjust timeout for emulation/FPGA */
1121 count = NVRAM_TIMEOUT_COUNT;
1122 if (CHIP_REV_IS_SLOW(sc)) {
1123 count *= 100;
1124 }
1125
1126 /* relinquish nvram interface */
1127 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1128 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port));
1129
1130 for (i = 0; i < count*10; i++) {
1131 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1132 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1133 break;
1134 }
1135
1136 DELAY(5);
1137 }
1138
1139 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1140 BLOGE(sc, "Cannot free access to nvram interface "
1141 "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n",
1142 port, val);
1143 return (-1);
1144 }
1145
1146 /* release HW lock: protect against other PFs in PF Direct Assignment */
1147 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1148
1149 return (0);
1150}
1151
1152static void
1153bxe_enable_nvram_access(struct bxe_softc *sc)
1154{
1155 uint32_t val;
1156
1157 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1158
1159 /* enable both bits, even on read */
1160 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1161 (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN));
1162}
1163
1164static void
1165bxe_disable_nvram_access(struct bxe_softc *sc)
1166{
1167 uint32_t val;
1168
1169 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1170
1171 /* disable both bits, even after read */
1172 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1173 (val & ~(MCPR_NVM_ACCESS_ENABLE_EN |
1174 MCPR_NVM_ACCESS_ENABLE_WR_EN)));
1175}
1176
1177static int
1178bxe_nvram_read_dword(struct bxe_softc *sc,
1179 uint32_t offset,
1180 uint32_t *ret_val,
1181 uint32_t cmd_flags)
1182{
1183 int count, i, rc;
1184 uint32_t val;
1185
1186 /* build the command word */
1187 cmd_flags |= MCPR_NVM_COMMAND_DOIT;
1188
1189 /* need to clear DONE bit separately */
1190 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1191
1192 /* address of the NVRAM to read from */
1193 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1194 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1195
1196 /* issue a read command */
1197 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1198
1199 /* adjust timeout for emulation/FPGA */
1200 count = NVRAM_TIMEOUT_COUNT;
1201 if (CHIP_REV_IS_SLOW(sc)) {
1202 count *= 100;
1203 }
1204
1205 /* wait for completion */
1206 *ret_val = 0;
1207 rc = -1;
1208 for (i = 0; i < count; i++) {
1209 DELAY(5);
1210 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1211
1212 if (val & MCPR_NVM_COMMAND_DONE) {
1213 val = REG_RD(sc, MCP_REG_MCPR_NVM_READ);
1214 /* we read nvram data in cpu order
1215 * but ethtool sees it as an array of bytes
1216 * converting to big-endian will do the work
1217 */
1218 *ret_val = htobe32(val);
1219 rc = 0;
1220 break;
1221 }
1222 }
1223
1224 if (rc == -1) {
1225 BLOGE(sc, "nvram read timeout expired "
1226 "(offset 0x%x cmd_flags 0x%x val 0x%x)\n",
1227 offset, cmd_flags, val);
1228 }
1229
1230 return (rc);
1231}
1232
1233static int
1234bxe_nvram_read(struct bxe_softc *sc,
1235 uint32_t offset,
1236 uint8_t *ret_buf,
1237 int buf_size)
1238{
1239 uint32_t cmd_flags;
1240 uint32_t val;
1241 int rc;
1242
1243 if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) {
1244 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1245 offset, buf_size);
1246 return (-1);
1247 }
1248
1249 if ((offset + buf_size) > sc->devinfo.flash_size) {
1250 BLOGE(sc, "Invalid parameter, "
1251 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1252 offset, buf_size, sc->devinfo.flash_size);
1253 return (-1);
1254 }
1255
1256 /* request access to nvram interface */
1257 rc = bxe_acquire_nvram_lock(sc);
1258 if (rc) {
1259 return (rc);
1260 }
1261
1262 /* enable access to nvram interface */
1263 bxe_enable_nvram_access(sc);
1264
1265 /* read the first word(s) */
1266 cmd_flags = MCPR_NVM_COMMAND_FIRST;
1267 while ((buf_size > sizeof(uint32_t)) && (rc == 0)) {
1268 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1269 memcpy(ret_buf, &val, 4);
1270
1271 /* advance to the next dword */
1272 offset += sizeof(uint32_t);
1273 ret_buf += sizeof(uint32_t);
1274 buf_size -= sizeof(uint32_t);
1275 cmd_flags = 0;
1276 }
1277
1278 if (rc == 0) {
1279 cmd_flags |= MCPR_NVM_COMMAND_LAST;
1280 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1281 memcpy(ret_buf, &val, 4);
1282 }
1283
1284 /* disable access to nvram interface */
1285 bxe_disable_nvram_access(sc);
1286 bxe_release_nvram_lock(sc);
1287
1288 return (rc);
1289}
1290
1291static int
1292bxe_nvram_write_dword(struct bxe_softc *sc,
1293 uint32_t offset,
1294 uint32_t val,
1295 uint32_t cmd_flags)
1296{
1297 int count, i, rc;
1298
1299 /* build the command word */
1300 cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR);
1301
1302 /* need to clear DONE bit separately */
1303 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1304
1305 /* write the data */
1306 REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val);
1307
1308 /* address of the NVRAM to write to */
1309 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1310 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1311
1312 /* issue the write command */
1313 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1314
1315 /* adjust timeout for emulation/FPGA */
1316 count = NVRAM_TIMEOUT_COUNT;
1317 if (CHIP_REV_IS_SLOW(sc)) {
1318 count *= 100;
1319 }
1320
1321 /* wait for completion */
1322 rc = -1;
1323 for (i = 0; i < count; i++) {
1324 DELAY(5);
1325 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1326 if (val & MCPR_NVM_COMMAND_DONE) {
1327 rc = 0;
1328 break;
1329 }
1330 }
1331
1332 if (rc == -1) {
1333 BLOGE(sc, "nvram write timeout expired "
1334 "(offset 0x%x cmd_flags 0x%x val 0x%x)\n",
1335 offset, cmd_flags, val);
1336 }
1337
1338 return (rc);
1339}
1340
1341#define BYTE_OFFSET(offset) (8 * (offset & 0x03))
1342
1343static int
1344bxe_nvram_write1(struct bxe_softc *sc,
1345 uint32_t offset,
1346 uint8_t *data_buf,
1347 int buf_size)
1348{
1349 uint32_t cmd_flags;
1350 uint32_t align_offset;
1351 uint32_t val;
1352 int rc;
1353
1354 if ((offset + buf_size) > sc->devinfo.flash_size) {
1355 BLOGE(sc, "Invalid parameter, "
1356 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1357 offset, buf_size, sc->devinfo.flash_size);
1358 return (-1);
1359 }
1360
1361 /* request access to nvram interface */
1362 rc = bxe_acquire_nvram_lock(sc);
1363 if (rc) {
1364 return (rc);
1365 }
1366
1367 /* enable access to nvram interface */
1368 bxe_enable_nvram_access(sc);
1369
1370 cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST);
1371 align_offset = (offset & ~0x03);
1372 rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags);
1373
1374 if (rc == 0) {
1375 val &= ~(0xff << BYTE_OFFSET(offset));
1376 val |= (*data_buf << BYTE_OFFSET(offset));
1377
1378 /* nvram data is returned as an array of bytes
1379 * convert it back to cpu order
1380 */
1381 val = be32toh(val);
1382
1383 rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags);
1384 }
1385
1386 /* disable access to nvram interface */
1387 bxe_disable_nvram_access(sc);
1388 bxe_release_nvram_lock(sc);
1389
1390 return (rc);
1391}
1392
1393static int
1394bxe_nvram_write(struct bxe_softc *sc,
1395 uint32_t offset,
1396 uint8_t *data_buf,
1397 int buf_size)
1398{
1399 uint32_t cmd_flags;
1400 uint32_t val;
1401 uint32_t written_so_far;
1402 int rc;
1403
1404 if (buf_size == 1) {
1405 return (bxe_nvram_write1(sc, offset, data_buf, buf_size));
1406 }
1407
1408 if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) {
1409 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1410 offset, buf_size);
1411 return (-1);
1412 }
1413
1414 if (buf_size == 0) {
1415 return (0); /* nothing to do */
1416 }
1417
1418 if ((offset + buf_size) > sc->devinfo.flash_size) {
1419 BLOGE(sc, "Invalid parameter, "
1420 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1421 offset, buf_size, sc->devinfo.flash_size);
1422 return (-1);
1423 }
1424
1425 /* request access to nvram interface */
1426 rc = bxe_acquire_nvram_lock(sc);
1427 if (rc) {
1428 return (rc);
1429 }
1430
1431 /* enable access to nvram interface */
1432 bxe_enable_nvram_access(sc);
1433
1434 written_so_far = 0;
1435 cmd_flags = MCPR_NVM_COMMAND_FIRST;
1436 while ((written_so_far < buf_size) && (rc == 0)) {
1437 if (written_so_far == (buf_size - sizeof(uint32_t))) {
1438 cmd_flags |= MCPR_NVM_COMMAND_LAST;
1439 } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) {
1440 cmd_flags |= MCPR_NVM_COMMAND_LAST;
1441 } else if ((offset % NVRAM_PAGE_SIZE) == 0) {
1442 cmd_flags |= MCPR_NVM_COMMAND_FIRST;
1443 }
1444
1445 memcpy(&val, data_buf, 4);
1446
1447 rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags);
1448
1449 /* advance to the next dword */
1450 offset += sizeof(uint32_t);
1451 data_buf += sizeof(uint32_t);
1452 written_so_far += sizeof(uint32_t);
1453 cmd_flags = 0;
1454 }
1455
1456 /* disable access to nvram interface */
1457 bxe_disable_nvram_access(sc);
1458 bxe_release_nvram_lock(sc);
1459
1460 return (rc);
1461}
1462
1463/* copy command into DMAE command memory and set DMAE command Go */
1464void
1465bxe_post_dmae(struct bxe_softc *sc,
1466 struct dmae_cmd *dmae,
1467 int idx)
1468{
1469 uint32_t cmd_offset;
1470 int i;
1471
1472 cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_cmd) * idx));
1473 for (i = 0; i < ((sizeof(struct dmae_cmd) / 4)); i++) {
1474 REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i));
1475 }
1476
1477 REG_WR(sc, dmae_reg_go_c[idx], 1);
1478}
1479
1480uint32_t
1481bxe_dmae_opcode_add_comp(uint32_t opcode,
1482 uint8_t comp_type)
1483{
1484 return (opcode | ((comp_type << DMAE_CMD_C_DST_SHIFT) |
1485 DMAE_CMD_C_TYPE_ENABLE));
1486}
1487
1488uint32_t
1489bxe_dmae_opcode_clr_src_reset(uint32_t opcode)
1490{
1491 return (opcode & ~DMAE_CMD_SRC_RESET);
1492}
1493
1494uint32_t
1495bxe_dmae_opcode(struct bxe_softc *sc,
1496 uint8_t src_type,
1497 uint8_t dst_type,
1498 uint8_t with_comp,
1499 uint8_t comp_type)
1500{
1501 uint32_t opcode = 0;
1502
1503 opcode |= ((src_type << DMAE_CMD_SRC_SHIFT) |
1504 (dst_type << DMAE_CMD_DST_SHIFT));
1505
1506 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
1507
1508 opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
1509
1510 opcode |= ((SC_VN(sc) << DMAE_CMD_E1HVN_SHIFT) |
1511 (SC_VN(sc) << DMAE_CMD_DST_VN_SHIFT));
1512
1513 opcode |= (DMAE_COM_SET_ERR << DMAE_CMD_ERR_POLICY_SHIFT);
1514
1515#ifdef __BIG_ENDIAN
1516 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
1517#else
1518 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
1519#endif
1520
1521 if (with_comp) {
1522 opcode = bxe_dmae_opcode_add_comp(opcode, comp_type);
1523 }
1524
1525 return (opcode);
1526}
1527
1528static void
1529bxe_prep_dmae_with_comp(struct bxe_softc *sc,
1530 struct dmae_cmd *dmae,
1531 uint8_t src_type,
1532 uint8_t dst_type)
1533{
1534 memset(dmae, 0, sizeof(struct dmae_cmd));
1535
1536 /* set the opcode */
1537 dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type,
1538 TRUE, DMAE_COMP_PCI);
1539
1540 /* fill in the completion parameters */
1541 dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp));
1542 dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp));
1543 dmae->comp_val = DMAE_COMP_VAL;
1544}
1545
1546/* issue a DMAE command over the init channel and wait for completion */
1547static int
1548bxe_issue_dmae_with_comp(struct bxe_softc *sc,
1549 struct dmae_cmd *dmae)
1550{
1551 uint32_t *wb_comp = BXE_SP(sc, wb_comp);
1552 int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
1553
1554 BXE_DMAE_LOCK(sc);
1555
1556 /* reset completion */
1557 *wb_comp = 0;
1558
1559 /* post the command on the channel used for initializations */
1560 bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc));
1561
1562 /* wait for completion */
1563 DELAY(5);
1564
1565 while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
1566 if (!timeout ||
1567 (sc->recovery_state != BXE_RECOVERY_DONE &&
1568 sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) {
1569 BLOGE(sc, "DMAE timeout! *wb_comp 0x%x recovery_state 0x%x\n",
1570 *wb_comp, sc->recovery_state);
1571 BXE_DMAE_UNLOCK(sc);
1572 return (DMAE_TIMEOUT);
1573 }
1574
1575 timeout--;
1576 DELAY(50);
1577 }
1578
1579 if (*wb_comp & DMAE_PCI_ERR_FLAG) {
1580 BLOGE(sc, "DMAE PCI error! *wb_comp 0x%x recovery_state 0x%x\n",
1581 *wb_comp, sc->recovery_state);
1582 BXE_DMAE_UNLOCK(sc);
1583 return (DMAE_PCI_ERROR);
1584 }
1585
1586 BXE_DMAE_UNLOCK(sc);
1587 return (0);
1588}
1589
1590void
1591bxe_read_dmae(struct bxe_softc *sc,
1592 uint32_t src_addr,
1593 uint32_t len32)
1594{
1595 struct dmae_cmd dmae;
1596 uint32_t *data;
1597 int i, rc;
1598
1599 DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32));
1600
1601 if (!sc->dmae_ready) {
1602 data = BXE_SP(sc, wb_data[0]);
1603
1604 for (i = 0; i < len32; i++) {
1605 data[i] = (CHIP_IS_E1(sc)) ?
1606 bxe_reg_rd_ind(sc, (src_addr + (i * 4))) :
1607 REG_RD(sc, (src_addr + (i * 4)));
1608 }
1609
1610 return;
1611 }
1612
1613 /* set opcode and fixed command fields */
1614 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
1615
1616 /* fill in addresses and len */
1617 dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */
1618 dmae.src_addr_hi = 0;
1619 dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data));
1620 dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data));
1621 dmae.len = len32;
1622
1623 /* issue the command and wait for completion */
1624 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1625 bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1626 }
1627}
1628
1629void
1630bxe_write_dmae(struct bxe_softc *sc,
1631 bus_addr_t dma_addr,
1632 uint32_t dst_addr,
1633 uint32_t len32)
1634{
1635 struct dmae_cmd dmae;
1636 int rc;
1637
1638 if (!sc->dmae_ready) {
1639 DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32));
1640
1641 if (CHIP_IS_E1(sc)) {
1642 ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1643 } else {
1644 ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1645 }
1646
1647 return;
1648 }
1649
1650 /* set opcode and fixed command fields */
1651 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
1652
1653 /* fill in addresses and len */
1654 dmae.src_addr_lo = U64_LO(dma_addr);
1655 dmae.src_addr_hi = U64_HI(dma_addr);
1656 dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */
1657 dmae.dst_addr_hi = 0;
1658 dmae.len = len32;
1659
1660 /* issue the command and wait for completion */
1661 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1662 bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1663 }
1664}
1665
1666void
1667bxe_write_dmae_phys_len(struct bxe_softc *sc,
1668 bus_addr_t phys_addr,
1669 uint32_t addr,
1670 uint32_t len)
1671{
1672 int dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
1673 int offset = 0;
1674
1675 while (len > dmae_wr_max) {
1676 bxe_write_dmae(sc,
1677 (phys_addr + offset), /* src DMA address */
1678 (addr + offset), /* dst GRC address */
1679 dmae_wr_max);
1680 offset += (dmae_wr_max * 4);
1681 len -= dmae_wr_max;
1682 }
1683
1684 bxe_write_dmae(sc,
1685 (phys_addr + offset), /* src DMA address */
1686 (addr + offset), /* dst GRC address */
1687 len);
1688}
1689
1690void
1691bxe_set_ctx_validation(struct bxe_softc *sc,
1692 struct eth_context *cxt,
1693 uint32_t cid)
1694{
1695 /* ustorm cxt validation */
1696 cxt->ustorm_ag_context.cdu_usage =
1697 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1698 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
1699 /* xcontext validation */
1700 cxt->xstorm_ag_context.cdu_reserved =
1701 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1702 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
1703}
1704
1705static void
1706bxe_storm_memset_hc_timeout(struct bxe_softc *sc,
1707 uint8_t port,
1708 uint8_t fw_sb_id,
1709 uint8_t sb_index,
1710 uint8_t ticks)
1711{
1712 uint32_t addr =
1713 (BAR_CSTRORM_INTMEM +
1714 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
1715
1716 REG_WR8(sc, addr, ticks);
1717
1718 BLOGD(sc, DBG_LOAD,
1719 "port %d fw_sb_id %d sb_index %d ticks %d\n",
1720 port, fw_sb_id, sb_index, ticks);
1721}
1722
1723static void
1724bxe_storm_memset_hc_disable(struct bxe_softc *sc,
1725 uint8_t port,
1726 uint16_t fw_sb_id,
1727 uint8_t sb_index,
1728 uint8_t disable)
1729{
1730 uint32_t enable_flag =
1731 (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
1732 uint32_t addr =
1733 (BAR_CSTRORM_INTMEM +
1734 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
1735 uint8_t flags;
1736
1737 /* clear and set */
1738 flags = REG_RD8(sc, addr);
1739 flags &= ~HC_INDEX_DATA_HC_ENABLED;
1740 flags |= enable_flag;
1741 REG_WR8(sc, addr, flags);
1742
1743 BLOGD(sc, DBG_LOAD,
1744 "port %d fw_sb_id %d sb_index %d disable %d\n",
1745 port, fw_sb_id, sb_index, disable);
1746}
1747
1748void
1749bxe_update_coalesce_sb_index(struct bxe_softc *sc,
1750 uint8_t fw_sb_id,
1751 uint8_t sb_index,
1752 uint8_t disable,
1753 uint16_t usec)
1754{
1755 int port = SC_PORT(sc);
1756 uint8_t ticks = (usec / 4); /* XXX ??? */
1757
1758 bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks);
1759
1760 disable = (disable) ? 1 : ((usec) ? 0 : 1);
1761 bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable);
1762}
1763
1764void
1765elink_cb_udelay(struct bxe_softc *sc,
1766 uint32_t usecs)
1767{
1768 DELAY(usecs);
1769}
1770
1771uint32_t
1772elink_cb_reg_read(struct bxe_softc *sc,
1773 uint32_t reg_addr)
1774{
1775 return (REG_RD(sc, reg_addr));
1776}
1777
1778void
1779elink_cb_reg_write(struct bxe_softc *sc,
1780 uint32_t reg_addr,
1781 uint32_t val)
1782{
1783 REG_WR(sc, reg_addr, val);
1784}
1785
1786void
1787elink_cb_reg_wb_write(struct bxe_softc *sc,
1788 uint32_t offset,
1789 uint32_t *wb_write,
1790 uint16_t len)
1791{
1792 REG_WR_DMAE(sc, offset, wb_write, len);
1793}
1794
1795void
1796elink_cb_reg_wb_read(struct bxe_softc *sc,
1797 uint32_t offset,
1798 uint32_t *wb_write,
1799 uint16_t len)
1800{
1801 REG_RD_DMAE(sc, offset, wb_write, len);
1802}
1803
1804uint8_t
1805elink_cb_path_id(struct bxe_softc *sc)
1806{
1807 return (SC_PATH(sc));
1808}
1809
1810void
1811elink_cb_event_log(struct bxe_softc *sc,
1812 const elink_log_id_t elink_log_id,
1813 ...)
1814{
1815 /* XXX */
1816 BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id);
1817}
1818
1819static int
1820bxe_set_spio(struct bxe_softc *sc,
1821 int spio,
1822 uint32_t mode)
1823{
1824 uint32_t spio_reg;
1825
1826 /* Only 2 SPIOs are configurable */
1827 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
1828 BLOGE(sc, "Invalid SPIO 0x%x mode 0x%x\n", spio, mode);
1829 return (-1);
1830 }
1831
1832 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1833
1834 /* read SPIO and mask except the float bits */
1835 spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
1836
1837 switch (mode) {
1838 case MISC_SPIO_OUTPUT_LOW:
1839 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio);
1840 /* clear FLOAT and set CLR */
1841 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1842 spio_reg |= (spio << MISC_SPIO_CLR_POS);
1843 break;
1844
1845 case MISC_SPIO_OUTPUT_HIGH:
1846 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio);
1847 /* clear FLOAT and set SET */
1848 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1849 spio_reg |= (spio << MISC_SPIO_SET_POS);
1850 break;
1851
1852 case MISC_SPIO_INPUT_HI_Z:
1853 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio);
1854 /* set FLOAT */
1855 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
1856 break;
1857
1858 default:
1859 break;
1860 }
1861
1862 REG_WR(sc, MISC_REG_SPIO, spio_reg);
1863 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1864
1865 return (0);
1866}
1867
1868static int
1869bxe_gpio_read(struct bxe_softc *sc,
1870 int gpio_num,
1871 uint8_t port)
1872{
1873 /* The GPIO should be swapped if swap register is set and active */
1874 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
1875 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
1876 int gpio_shift = (gpio_num +
1877 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
1878 uint32_t gpio_mask = (1 << gpio_shift);
1879 uint32_t gpio_reg;
1880
1881 if (gpio_num > MISC_REGISTERS_GPIO_3) {
1882 BLOGE(sc, "Invalid GPIO %d port 0x%x gpio_port %d gpio_shift %d"
1883 " gpio_mask 0x%x\n", gpio_num, port, gpio_port, gpio_shift,
1884 gpio_mask);
1885 return (-1);
1886 }
1887
1888 /* read GPIO value */
1889 gpio_reg = REG_RD(sc, MISC_REG_GPIO);
1890
1891 /* get the requested pin value */
1892 return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
1893}
1894
1895static int
1896bxe_gpio_write(struct bxe_softc *sc,
1897 int gpio_num,
1898 uint32_t mode,
1899 uint8_t port)
1900{
1901 /* The GPIO should be swapped if swap register is set and active */
1902 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
1903 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
1904 int gpio_shift = (gpio_num +
1905 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
1906 uint32_t gpio_mask = (1 << gpio_shift);
1907 uint32_t gpio_reg;
1908
1909 if (gpio_num > MISC_REGISTERS_GPIO_3) {
1910 BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d"
1911 " gpio_shift %d gpio_mask 0x%x\n",
1912 gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask);
1913 return (-1);
1914 }
1915
1916 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
1917
1918 /* read GPIO and mask except the float bits */
1919 gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
1920
1921 switch (mode) {
1922 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1923 BLOGD(sc, DBG_PHY,
1924 "Set GPIO %d (shift %d) -> output low\n",
1925 gpio_num, gpio_shift);
1926 /* clear FLOAT and set CLR */
1927 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1928 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1929 break;
1930
1931 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1932 BLOGD(sc, DBG_PHY,
1933 "Set GPIO %d (shift %d) -> output high\n",
1934 gpio_num, gpio_shift);
1935 /* clear FLOAT and set SET */
1936 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1937 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1938 break;
1939
1940 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1941 BLOGD(sc, DBG_PHY,
1942 "Set GPIO %d (shift %d) -> input\n",
1943 gpio_num, gpio_shift);
1944 /* set FLOAT */
1945 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1946 break;
1947
1948 default:
1949 break;
1950 }
1951
1952 REG_WR(sc, MISC_REG_GPIO, gpio_reg);
1953 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
1954
1955 return (0);
1956}
1957
1958static int
1959bxe_gpio_mult_write(struct bxe_softc *sc,
1960 uint8_t pins,
1961 uint32_t mode)
1962{
1963 uint32_t gpio_reg;
1964
1965 /* any port swapping should be handled by caller */
1966
1967 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
1968
1969 /* read GPIO and mask except the float bits */
1970 gpio_reg = REG_RD(sc, MISC_REG_GPIO);
1971 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1972 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
1973 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
1974
1975 switch (mode) {
1976 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1977 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins);
1978 /* set CLR */
1979 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
1980 break;
1981
1982 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1983 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins);
1984 /* set SET */
1985 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
1986 break;
1987
1988 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1989 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins);
1990 /* set FLOAT */
1991 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1992 break;
1993
1994 default:
1995 BLOGE(sc, "Invalid GPIO mode assignment pins 0x%x mode 0x%x"
1996 " gpio_reg 0x%x\n", pins, mode, gpio_reg);
1997 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
1998 return (-1);
1999 }
2000
2001 REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2002 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2003
2004 return (0);
2005}
2006
2007static int
2008bxe_gpio_int_write(struct bxe_softc *sc,
2009 int gpio_num,
2010 uint32_t mode,
2011 uint8_t port)
2012{
2013 /* The GPIO should be swapped if swap register is set and active */
2014 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2015 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2016 int gpio_shift = (gpio_num +
2017 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2018 uint32_t gpio_mask = (1 << gpio_shift);
2019 uint32_t gpio_reg;
2020
2021 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2022 BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d"
2023 " gpio_shift %d gpio_mask 0x%x\n",
2024 gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask);
2025 return (-1);
2026 }
2027
2028 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2029
2030 /* read GPIO int */
2031 gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
2032
2033 switch (mode) {
2034 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2035 BLOGD(sc, DBG_PHY,
2036 "Clear GPIO INT %d (shift %d) -> output low\n",
2037 gpio_num, gpio_shift);
2038 /* clear SET and set CLR */
2039 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2040 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2041 break;
2042
2043 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2044 BLOGD(sc, DBG_PHY,
2045 "Set GPIO INT %d (shift %d) -> output high\n",
2046 gpio_num, gpio_shift);
2047 /* clear CLR and set SET */
2048 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2049 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2050 break;
2051
2052 default:
2053 break;
2054 }
2055
2056 REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
2057 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2058
2059 return (0);
2060}
2061
2062uint32_t
2063elink_cb_gpio_read(struct bxe_softc *sc,
2064 uint16_t gpio_num,
2065 uint8_t port)
2066{
2067 return (bxe_gpio_read(sc, gpio_num, port));
2068}
2069
2070uint8_t
2071elink_cb_gpio_write(struct bxe_softc *sc,
2072 uint16_t gpio_num,
2073 uint8_t mode, /* 0=low 1=high */
2074 uint8_t port)
2075{
2076 return (bxe_gpio_write(sc, gpio_num, mode, port));
2077}
2078
2079uint8_t
2080elink_cb_gpio_mult_write(struct bxe_softc *sc,
2081 uint8_t pins,
2082 uint8_t mode) /* 0=low 1=high */
2083{
2084 return (bxe_gpio_mult_write(sc, pins, mode));
2085}
2086
2087uint8_t
2088elink_cb_gpio_int_write(struct bxe_softc *sc,
2089 uint16_t gpio_num,
2090 uint8_t mode, /* 0=low 1=high */
2091 uint8_t port)
2092{
2093 return (bxe_gpio_int_write(sc, gpio_num, mode, port));
2094}
2095
2096void
2097elink_cb_notify_link_changed(struct bxe_softc *sc)
2098{
2099 REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
2100 (SC_FUNC(sc) * sizeof(uint32_t))), 1);
2101}
2102
2103/* send the MCP a request, block until there is a reply */
2104uint32_t
2105elink_cb_fw_command(struct bxe_softc *sc,
2106 uint32_t command,
2107 uint32_t param)
2108{
2109 int mb_idx = SC_FW_MB_IDX(sc);
2110 uint32_t seq;
2111 uint32_t rc = 0;
2112 uint32_t cnt = 1;
2113 uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
2114
2115 BXE_FWMB_LOCK(sc);
2116
2117 seq = ++sc->fw_seq;
2118 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
2119 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
2120
2121 BLOGD(sc, DBG_PHY,
2122 "wrote command 0x%08x to FW MB param 0x%08x\n",
2123 (command | seq), param);
2124
2125 /* Let the FW do it's magic. GIve it up to 5 seconds... */
2126 do {
2127 DELAY(delay * 1000);
2128 rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
2129 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2130
2131 BLOGD(sc, DBG_PHY,
2132 "[after %d ms] read 0x%x seq 0x%x from FW MB\n",
2133 cnt*delay, rc, seq);
2134
2135 /* is this a reply to our command? */
2136 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
2137 rc &= FW_MSG_CODE_MASK;
2138 } else {
2139 /* Ruh-roh! */
2140 BLOGE(sc, "FW failed to respond!\n");
2141 // XXX bxe_fw_dump(sc);
2142 rc = 0;
2143 }
2144
2145 BXE_FWMB_UNLOCK(sc);
2146 return (rc);
2147}
2148
2149static uint32_t
2150bxe_fw_command(struct bxe_softc *sc,
2151 uint32_t command,
2152 uint32_t param)
2153{
2154 return (elink_cb_fw_command(sc, command, param));
2155}
2156
2157static void
2158__storm_memset_dma_mapping(struct bxe_softc *sc,
2159 uint32_t addr,
2160 bus_addr_t mapping)
2161{
2162 REG_WR(sc, addr, U64_LO(mapping));
2163 REG_WR(sc, (addr + 4), U64_HI(mapping));
2164}
2165
2166static void
2167storm_memset_spq_addr(struct bxe_softc *sc,
2168 bus_addr_t mapping,
2169 uint16_t abs_fid)
2170{
2171 uint32_t addr = (XSEM_REG_FAST_MEMORY +
2172 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
2173 __storm_memset_dma_mapping(sc, addr, mapping);
2174}
2175
2176static void
2177storm_memset_vf_to_pf(struct bxe_softc *sc,
2178 uint16_t abs_fid,
2179 uint16_t pf_id)
2180{
2181 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2182 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2183 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2184 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2185}
2186
2187static void
2188storm_memset_func_en(struct bxe_softc *sc,
2189 uint16_t abs_fid,
2190 uint8_t enable)
2191{
2192 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2193 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2194 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2195 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2196}
2197
2198static void
2199storm_memset_eq_data(struct bxe_softc *sc,
2200 struct event_ring_data *eq_data,
2201 uint16_t pfid)
2202{
2203 uint32_t addr;
2204 size_t size;
2205
2206 addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
2207 size = sizeof(struct event_ring_data);
2208 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data);
2209}
2210
2211static void
2212storm_memset_eq_prod(struct bxe_softc *sc,
2213 uint16_t eq_prod,
2214 uint16_t pfid)
2215{
2216 uint32_t addr = (BAR_CSTRORM_INTMEM +
2217 CSTORM_EVENT_RING_PROD_OFFSET(pfid));
2218 REG_WR16(sc, addr, eq_prod);
2219}
2220
2221/*
2222 * Post a slowpath command.
2223 *
2224 * A slowpath command is used to propagate a configuration change through
2225 * the controller in a controlled manner, allowing each STORM processor and
2226 * other H/W blocks to phase in the change. The commands sent on the
2227 * slowpath are referred to as ramrods. Depending on the ramrod used the
2228 * completion of the ramrod will occur in different ways. Here's a
2229 * breakdown of ramrods and how they complete:
2230 *
2231 * RAMROD_CMD_ID_ETH_PORT_SETUP
2232 * Used to setup the leading connection on a port. Completes on the
2233 * Receive Completion Queue (RCQ) of that port (typically fp[0]).
2234 *
2235 * RAMROD_CMD_ID_ETH_CLIENT_SETUP
2236 * Used to setup an additional connection on a port. Completes on the
2237 * RCQ of the multi-queue/RSS connection being initialized.
2238 *
2239 * RAMROD_CMD_ID_ETH_STAT_QUERY
2240 * Used to force the storm processors to update the statistics database
2241 * in host memory. This ramrod is send on the leading connection CID and
2242 * completes as an index increment of the CSTORM on the default status
2243 * block.
2244 *
2245 * RAMROD_CMD_ID_ETH_UPDATE
2246 * Used to update the state of the leading connection, usually to udpate
2247 * the RSS indirection table. Completes on the RCQ of the leading
2248 * connection. (Not currently used under FreeBSD until OS support becomes
2249 * available.)
2250 *
2251 * RAMROD_CMD_ID_ETH_HALT
2252 * Used when tearing down a connection prior to driver unload. Completes
2253 * on the RCQ of the multi-queue/RSS connection being torn down. Don't
2254 * use this on the leading connection.
2255 *
2256 * RAMROD_CMD_ID_ETH_SET_MAC
2257 * Sets the Unicast/Broadcast/Multicast used by the port. Completes on
2258 * the RCQ of the leading connection.
2259 *
2260 * RAMROD_CMD_ID_ETH_CFC_DEL
2261 * Used when tearing down a conneciton prior to driver unload. Completes
2262 * on the RCQ of the leading connection (since the current connection
2263 * has been completely removed from controller memory).
2264 *
2265 * RAMROD_CMD_ID_ETH_PORT_DEL
2266 * Used to tear down the leading connection prior to driver unload,
2267 * typically fp[0]. Completes as an index increment of the CSTORM on the
2268 * default status block.
2269 *
2270 * RAMROD_CMD_ID_ETH_FORWARD_SETUP
2271 * Used for connection offload. Completes on the RCQ of the multi-queue
2272 * RSS connection that is being offloaded. (Not currently used under
2273 * FreeBSD.)
2274 *
2275 * There can only be one command pending per function.
2276 *
2277 * Returns:
2278 * 0 = Success, !0 = Failure.
2279 */
2280
2281/* must be called under the spq lock */
2282static inline
2283struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc)
2284{
2285 struct eth_spe *next_spe = sc->spq_prod_bd;
2286
2287 if (sc->spq_prod_bd == sc->spq_last_bd) {
2288 /* wrap back to the first eth_spq */
2289 sc->spq_prod_bd = sc->spq;
2290 sc->spq_prod_idx = 0;
2291 } else {
2292 sc->spq_prod_bd++;
2293 sc->spq_prod_idx++;
2294 }
2295
2296 return (next_spe);
2297}
2298
2299/* must be called under the spq lock */
2300static inline
2301void bxe_sp_prod_update(struct bxe_softc *sc)
2302{
2303 int func = SC_FUNC(sc);
2304
2305 /*
2306 * Make sure that BD data is updated before writing the producer.
2307 * BD data is written to the memory, the producer is read from the
2308 * memory, thus we need a full memory barrier to ensure the ordering.
2309 */
2310 mb();
2311
2312 REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
2313 sc->spq_prod_idx);
2314
2315 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
2316 BUS_SPACE_BARRIER_WRITE);
2317}
2318
2319/**
2320 * bxe_is_contextless_ramrod - check if the current command ends on EQ
2321 *
2322 * @cmd: command to check
2323 * @cmd_type: command type
2324 */
2325static inline
2326int bxe_is_contextless_ramrod(int cmd,
2327 int cmd_type)
2328{
2329 if ((cmd_type == NONE_CONNECTION_TYPE) ||
2330 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
2331 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
2332 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
2333 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
2334 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
2335 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
2336 return (TRUE);
2337 } else {
2338 return (FALSE);
2339 }
2340}
2341
2342/**
2343 * bxe_sp_post - place a single command on an SP ring
2344 *
2345 * @sc: driver handle
2346 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.)
2347 * @cid: SW CID the command is related to
2348 * @data_hi: command private data address (high 32 bits)
2349 * @data_lo: command private data address (low 32 bits)
2350 * @cmd_type: command type (e.g. NONE, ETH)
2351 *
2352 * SP data is handled as if it's always an address pair, thus data fields are
2353 * not swapped to little endian in upper functions. Instead this function swaps
2354 * data as if it's two uint32 fields.
2355 */
2356int
2357bxe_sp_post(struct bxe_softc *sc,
2358 int command,
2359 int cid,
2360 uint32_t data_hi,
2361 uint32_t data_lo,
2362 int cmd_type)
2363{
2364 struct eth_spe *spe;
2365 uint16_t type;
2366 int common;
2367
2368 common = bxe_is_contextless_ramrod(command, cmd_type);
2369
2370 BXE_SP_LOCK(sc);
2371
2372 if (common) {
2373 if (!atomic_load_acq_long(&sc->eq_spq_left)) {
2374 BLOGE(sc, "EQ ring is full!\n");
2375 BXE_SP_UNLOCK(sc);
2376 return (-1);
2377 }
2378 } else {
2379 if (!atomic_load_acq_long(&sc->cq_spq_left)) {
2380 BLOGE(sc, "SPQ ring is full!\n");
2381 BXE_SP_UNLOCK(sc);
2382 return (-1);
2383 }
2384 }
2385
2386 spe = bxe_sp_get_next(sc);
2387
2388 /* CID needs port number to be encoded int it */
2389 spe->hdr.conn_and_cmd_data =
2390 htole32((command << SPE_HDR_T_CMD_ID_SHIFT) | HW_CID(sc, cid));
2391
2392 type = (cmd_type << SPE_HDR_T_CONN_TYPE_SHIFT) & SPE_HDR_T_CONN_TYPE;
2393
2394 /* TBD: Check if it works for VFs */
2395 type |= ((SC_FUNC(sc) << SPE_HDR_T_FUNCTION_ID_SHIFT) &
2396 SPE_HDR_T_FUNCTION_ID);
2397
2398 spe->hdr.type = htole16(type);
2399
2400 spe->data.update_data_addr.hi = htole32(data_hi);
2401 spe->data.update_data_addr.lo = htole32(data_lo);
2402
2403 /*
2404 * It's ok if the actual decrement is issued towards the memory
2405 * somewhere between the lock and unlock. Thus no more explict
2406 * memory barrier is needed.
2407 */
2408 if (common) {
2409 atomic_subtract_acq_long(&sc->eq_spq_left, 1);
2410 } else {
2411 atomic_subtract_acq_long(&sc->cq_spq_left, 1);
2412 }
2413
2414 BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr);
2415 BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n",
2416 BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata));
2417 BLOGD(sc, DBG_SP,
2418 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n",
2419 sc->spq_prod_idx,
2420 (uint32_t)U64_HI(sc->spq_dma.paddr),
2421 (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq),
2422 command,
2423 common,
2424 HW_CID(sc, cid),
2425 data_hi,
2426 data_lo,
2427 type,
2428 atomic_load_acq_long(&sc->cq_spq_left),
2429 atomic_load_acq_long(&sc->eq_spq_left));
2430
2431 bxe_sp_prod_update(sc);
2432
2433 BXE_SP_UNLOCK(sc);
2434 return (0);
2435}
2436
2437/**
2438 * bxe_debug_print_ind_table - prints the indirection table configuration.
2439 *
2440 * @sc: driver hanlde
2441 * @p: pointer to rss configuration
2442 */
2443
2444/*
2445 * FreeBSD Device probe function.
2446 *
2447 * Compares the device found to the driver's list of supported devices and
2448 * reports back to the bsd loader whether this is the right driver for the device.
2449 * This is the driver entry function called from the "kldload" command.
2450 *
2451 * Returns:
2452 * BUS_PROBE_DEFAULT on success, positive value on failure.
2453 */
2454static int
2455bxe_probe(device_t dev)
2456{
2457 struct bxe_device_type *t;
2458 char *descbuf;
2459 uint16_t did, sdid, svid, vid;
2460
2461 /* Find our device structure */
2462 t = bxe_devs;
2463
2464 /* Get the data for the device to be probed. */
2465 vid = pci_get_vendor(dev);
2466 did = pci_get_device(dev);
2467 svid = pci_get_subvendor(dev);
2468 sdid = pci_get_subdevice(dev);
2469
2470 /* Look through the list of known devices for a match. */
2471 while (t->bxe_name != NULL) {
2472 if ((vid == t->bxe_vid) && (did == t->bxe_did) &&
2473 ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) &&
2474 ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) {
2475 descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
2476 if (descbuf == NULL)
2477 return (ENOMEM);
2478
2479 /* Print out the device identity. */
2480 snprintf(descbuf, BXE_DEVDESC_MAX,
2481 "%s (%c%d) BXE v:%s\n", t->bxe_name,
2482 (((pci_read_config(dev, PCIR_REVID, 4) &
2483 0xf0) >> 4) + 'A'),
2484 (pci_read_config(dev, PCIR_REVID, 4) & 0xf),
2485 BXE_DRIVER_VERSION);
2486
2487 device_set_desc_copy(dev, descbuf);
2488 free(descbuf, M_TEMP);
2489 return (BUS_PROBE_DEFAULT);
2490 }
2491 t++;
2492 }
2493
2494 return (ENXIO);
2495}
2496
2497static void
2498bxe_init_mutexes(struct bxe_softc *sc)
2499{
2500#ifdef BXE_CORE_LOCK_SX
2501 snprintf(sc->core_sx_name, sizeof(sc->core_sx_name),
2502 "bxe%d_core_lock", sc->unit);
2503 sx_init(&sc->core_sx, sc->core_sx_name);
2504#else
2505 snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name),
2506 "bxe%d_core_lock", sc->unit);
2507 mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF);
2508#endif
2509
2510 snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name),
2511 "bxe%d_sp_lock", sc->unit);
2512 mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF);
2513
2514 snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name),
2515 "bxe%d_dmae_lock", sc->unit);
2516 mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF);
2517
2518 snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name),
2519 "bxe%d_phy_lock", sc->unit);
2520 mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF);
2521
2522 snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name),
2523 "bxe%d_fwmb_lock", sc->unit);
2524 mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF);
2525
2526 snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name),
2527 "bxe%d_print_lock", sc->unit);
2528 mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF);
2529
2530 snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name),
2531 "bxe%d_stats_lock", sc->unit);
2532 mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF);
2533
2534 snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name),
2535 "bxe%d_mcast_lock", sc->unit);
2536 mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF);
2537}
2538
2539static void
2540bxe_release_mutexes(struct bxe_softc *sc)
2541{
2542#ifdef BXE_CORE_LOCK_SX
2543 sx_destroy(&sc->core_sx);
2544#else
2545 if (mtx_initialized(&sc->core_mtx)) {
2546 mtx_destroy(&sc->core_mtx);
2547 }
2548#endif
2549
2550 if (mtx_initialized(&sc->sp_mtx)) {
2551 mtx_destroy(&sc->sp_mtx);
2552 }
2553
2554 if (mtx_initialized(&sc->dmae_mtx)) {
2555 mtx_destroy(&sc->dmae_mtx);
2556 }
2557
2558 if (mtx_initialized(&sc->port.phy_mtx)) {
2559 mtx_destroy(&sc->port.phy_mtx);
2560 }
2561
2562 if (mtx_initialized(&sc->fwmb_mtx)) {
2563 mtx_destroy(&sc->fwmb_mtx);
2564 }
2565
2566 if (mtx_initialized(&sc->print_mtx)) {
2567 mtx_destroy(&sc->print_mtx);
2568 }
2569
2570 if (mtx_initialized(&sc->stats_mtx)) {
2571 mtx_destroy(&sc->stats_mtx);
2572 }
2573
2574 if (mtx_initialized(&sc->mcast_mtx)) {
2575 mtx_destroy(&sc->mcast_mtx);
2576 }
2577}
2578
2579static void
2580bxe_tx_disable(struct bxe_softc* sc)
2581{
2582 if_t ifp = sc->ifp;
2583
2584 /* tell the stack the driver is stopped and TX queue is full */
2585 if (ifp != NULL) {
2586 if_setdrvflags(ifp, 0);
2587 }
2588}
2589
2590static void
2591bxe_drv_pulse(struct bxe_softc *sc)
2592{
2593 SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
2594 sc->fw_drv_pulse_wr_seq);
2595}
2596
2597static inline uint16_t
2598bxe_tx_avail(struct bxe_softc *sc,
2599 struct bxe_fastpath *fp)
2600{
2601 int16_t used;
2602 uint16_t prod;
2603 uint16_t cons;
2604
2605 prod = fp->tx_bd_prod;
2606 cons = fp->tx_bd_cons;
2607
2608 used = SUB_S16(prod, cons);
2609
2610 return (int16_t)(sc->tx_ring_size) - used;
2611}
2612
2613static inline int
2614bxe_tx_queue_has_work(struct bxe_fastpath *fp)
2615{
2616 uint16_t hw_cons;
2617
2618 mb(); /* status block fields can change */
2619 hw_cons = le16toh(*fp->tx_cons_sb);
2620 return (hw_cons != fp->tx_pkt_cons);
2621}
2622
2623static inline uint8_t
2624bxe_has_tx_work(struct bxe_fastpath *fp)
2625{
2626 /* expand this for multi-cos if ever supported */
2627 return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE;
2628}
2629
2630static inline int
2631bxe_has_rx_work(struct bxe_fastpath *fp)
2632{
2633 uint16_t rx_cq_cons_sb;
2634
2635 mb(); /* status block fields can change */
2636 rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
2637 if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX)
2638 rx_cq_cons_sb++;
2639 return (fp->rx_cq_cons != rx_cq_cons_sb);
2640}
2641
2642static void
2643bxe_sp_event(struct bxe_softc *sc,
2644 struct bxe_fastpath *fp,
2645 union eth_rx_cqe *rr_cqe)
2646{
2647 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2648 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2649 enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
2650 struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
2651
2652 BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n",
2653 fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type);
2654
2655 switch (command) {
2656 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
2657 BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid);
2658 drv_cmd = ECORE_Q_CMD_UPDATE;
2659 break;
2660
2661 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
2662 BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid);
2663 drv_cmd = ECORE_Q_CMD_SETUP;
2664 break;
2665
2666 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
2667 BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
2668 drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
2669 break;
2670
2671 case (RAMROD_CMD_ID_ETH_HALT):
2672 BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid);
2673 drv_cmd = ECORE_Q_CMD_HALT;
2674 break;
2675
2676 case (RAMROD_CMD_ID_ETH_TERMINATE):
2677 BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid);
2678 drv_cmd = ECORE_Q_CMD_TERMINATE;
2679 break;
2680
2681 case (RAMROD_CMD_ID_ETH_EMPTY):
2682 BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid);
2683 drv_cmd = ECORE_Q_CMD_EMPTY;
2684 break;
2685
2686 default:
2687 BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n",
2688 command, fp->index);
2689 return;
2690 }
2691
2692 if ((drv_cmd != ECORE_Q_CMD_MAX) &&
2693 q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
2694 /*
2695 * q_obj->complete_cmd() failure means that this was
2696 * an unexpected completion.
2697 *
2698 * In this case we don't want to increase the sc->spq_left
2699 * because apparently we haven't sent this command the first
2700 * place.
2701 */
2702 // bxe_panic(sc, ("Unexpected SP completion\n"));
2703 return;
2704 }
2705
2706 atomic_add_acq_long(&sc->cq_spq_left, 1);
2707
2708 BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n",
2709 atomic_load_acq_long(&sc->cq_spq_left));
2710}
2711
2712/*
2713 * The current mbuf is part of an aggregation. Move the mbuf into the TPA
2714 * aggregation queue, put an empty mbuf back onto the receive chain, and mark
2715 * the current aggregation queue as in-progress.
2716 */
2717static void
2718bxe_tpa_start(struct bxe_softc *sc,
2719 struct bxe_fastpath *fp,
2720 uint16_t queue,
2721 uint16_t cons,
2722 uint16_t prod,
2723 struct eth_fast_path_rx_cqe *cqe)
2724{
2725 struct bxe_sw_rx_bd tmp_bd;
2726 struct bxe_sw_rx_bd *rx_buf;
2727 struct eth_rx_bd *rx_bd;
2728 int max_agg_queues;
2729 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
2730 uint16_t index;
2731
2732 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START "
2733 "cons=%d prod=%d\n",
2734 fp->index, queue, cons, prod);
2735
2736 max_agg_queues = MAX_AGG_QS(sc);
2737
2738 KASSERT((queue < max_agg_queues),
2739 ("fp[%02d] invalid aggr queue (%d >= %d)!",
2740 fp->index, queue, max_agg_queues));
2741
2742 KASSERT((tpa_info->state == BXE_TPA_STATE_STOP),
2743 ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!",
2744 fp->index, queue));
2745
2746 /* copy the existing mbuf and mapping from the TPA pool */
2747 tmp_bd = tpa_info->bd;
2748
2749 if (tmp_bd.m == NULL) {
2750 uint32_t *tmp;
2751
2752 tmp = (uint32_t *)cqe;
2753
2754 BLOGE(sc, "fp[%02d].tpa[%02d] cons[%d] prod[%d]mbuf not allocated!\n",
2755 fp->index, queue, cons, prod);
2756 BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n",
2757 *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7));
2758
2759 /* XXX Error handling? */
2760 return;
2761 }
2762
2763 /* change the TPA queue to the start state */
2764 tpa_info->state = BXE_TPA_STATE_START;
2765 tpa_info->placement_offset = cqe->placement_offset;
2766 tpa_info->parsing_flags = le16toh(cqe->pars_flags.flags);
2767 tpa_info->vlan_tag = le16toh(cqe->vlan_tag);
2768 tpa_info->len_on_bd = le16toh(cqe->len_on_bd);
2769
2770 fp->rx_tpa_queue_used |= (1 << queue);
2771
2772 /*
2773 * If all the buffer descriptors are filled with mbufs then fill in
2774 * the current consumer index with a new BD. Else if a maximum Rx
2775 * buffer limit is imposed then fill in the next producer index.
2776 */
2777 index = (sc->max_rx_bufs != RX_BD_USABLE) ?
2778 prod : cons;
2779
2780 /* move the received mbuf and mapping to TPA pool */
2781 tpa_info->bd = fp->rx_mbuf_chain[cons];
2782
2783 /* release any existing RX BD mbuf mappings */
2784 if (cons != index) {
2785 rx_buf = &fp->rx_mbuf_chain[cons];
2786
2787 if (rx_buf->m_map != NULL) {
2788 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
2789 BUS_DMASYNC_POSTREAD);
2790 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
2791 }
2792
2793 /*
2794 * We get here when the maximum number of rx buffers is less than
2795 * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL
2796 * it out here without concern of a memory leak.
2797 */
2798 fp->rx_mbuf_chain[cons].m = NULL;
2799 }
2800
2801 /* update the Rx SW BD with the mbuf info from the TPA pool */
2802 fp->rx_mbuf_chain[index] = tmp_bd;
2803
2804 /* update the Rx BD with the empty mbuf phys address from the TPA pool */
2805 rx_bd = &fp->rx_chain[index];
2806 rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr));
2807 rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr));
2808}
2809
2810/*
2811 * When a TPA aggregation is completed, loop through the individual mbufs
2812 * of the aggregation, combining them into a single mbuf which will be sent
2813 * up the stack. Refill all freed SGEs with mbufs as we go along.
2814 */
2815static int
2816bxe_fill_frag_mbuf(struct bxe_softc *sc,
2817 struct bxe_fastpath *fp,
2818 struct bxe_sw_tpa_info *tpa_info,
2819 uint16_t queue,
2820 uint16_t pages,
2821 struct mbuf *m,
2822 struct eth_end_agg_rx_cqe *cqe,
2823 uint16_t cqe_idx)
2824{
2825 struct mbuf *m_frag;
2826 uint32_t frag_len, frag_size, i;
2827 uint16_t sge_idx;
2828 int rc = 0;
2829 int j;
2830
2831 frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd;
2832
2833 BLOGD(sc, DBG_LRO,
2834 "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n",
2835 fp->index, queue, tpa_info->len_on_bd, frag_size, pages);
2836
2837 /* make sure the aggregated frame is not too big to handle */
2838 if (pages > 8 * PAGES_PER_SGE) {
2839
2840 uint32_t *tmp = (uint32_t *)cqe;
2841
2842 BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! "
2843 "pkt_len=%d len_on_bd=%d frag_size=%d\n",
2844 fp->index, cqe_idx, pages, le16toh(cqe->pkt_len),
2845 tpa_info->len_on_bd, frag_size);
2846
2847 BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n",
2848 *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7));
2849
2850 bxe_panic(sc, ("sge page count error\n"));
2851 return (EINVAL);
2852 }
2853
2854 /*
2855 * Scan through the scatter gather list pulling individual mbufs into a
2856 * single mbuf for the host stack.
2857 */
2858 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
2859 sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j]));
2860
2861 /*
2862 * Firmware gives the indices of the SGE as if the ring is an array
2863 * (meaning that the "next" element will consume 2 indices).
2864 */
2865 frag_len = min(frag_size, (uint32_t)(SGE_PAGES));
2866
2867 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d "
2868 "sge_idx=%d frag_size=%d frag_len=%d\n",
2869 fp->index, queue, i, j, sge_idx, frag_size, frag_len);
2870
2871 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
2872
2873 /* allocate a new mbuf for the SGE */
2874 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
2875 if (rc) {
2876 /* Leave all remaining SGEs in the ring! */
2877 return (rc);
2878 }
2879
2880 /* update the fragment length */
2881 m_frag->m_len = frag_len;
2882
2883 /* concatenate the fragment to the head mbuf */
2884 m_cat(m, m_frag);
2885 fp->eth_q_stats.mbuf_alloc_sge--;
2886
2887 /* update the TPA mbuf size and remaining fragment size */
2888 m->m_pkthdr.len += frag_len;
2889 frag_size -= frag_len;
2890 }
2891
2892 BLOGD(sc, DBG_LRO,
2893 "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n",
2894 fp->index, queue, frag_size);
2895
2896 return (rc);
2897}
2898
2899static inline void
2900bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp)
2901{
2902 int i, j;
2903
2904 for (i = 1; i <= RX_SGE_NUM_PAGES; i++) {
2905 int idx = RX_SGE_TOTAL_PER_PAGE * i - 1;
2906
2907 for (j = 0; j < 2; j++) {
2908 BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx);
2909 idx--;
2910 }
2911 }
2912}
2913
2914static inline void
2915bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp)
2916{
2917 /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */
2918 memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask));
2919
2920 /*
2921 * Clear the two last indices in the page to 1. These are the indices that
2922 * correspond to the "next" element, hence will never be indicated and
2923 * should be removed from the calculations.
2924 */
2925 bxe_clear_sge_mask_next_elems(fp);
2926}
2927
2928static inline void
2929bxe_update_last_max_sge(struct bxe_fastpath *fp,
2930 uint16_t idx)
2931{
2932 uint16_t last_max = fp->last_max_sge;
2933
2934 if (SUB_S16(idx, last_max) > 0) {
2935 fp->last_max_sge = idx;
2936 }
2937}
2938
2939static inline void
2940bxe_update_sge_prod(struct bxe_softc *sc,
2941 struct bxe_fastpath *fp,
2942 uint16_t sge_len,
2943 union eth_sgl_or_raw_data *cqe)
2944{
2945 uint16_t last_max, last_elem, first_elem;
2946 uint16_t delta = 0;
2947 uint16_t i;
2948
2949 if (!sge_len) {
2950 return;
2951 }
2952
2953 /* first mark all used pages */
2954 for (i = 0; i < sge_len; i++) {
2955 BIT_VEC64_CLEAR_BIT(fp->sge_mask,
2956 RX_SGE(le16toh(cqe->sgl[i])));
2957 }
2958
2959 BLOGD(sc, DBG_LRO,
2960 "fp[%02d] fp_cqe->sgl[%d] = %d\n",
2961 fp->index, sge_len - 1,
2962 le16toh(cqe->sgl[sge_len - 1]));
2963
2964 /* assume that the last SGE index is the biggest */
2965 bxe_update_last_max_sge(fp,
2966 le16toh(cqe->sgl[sge_len - 1]));
2967
2968 last_max = RX_SGE(fp->last_max_sge);
2969 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
2970 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
2971
2972 /* if ring is not full */
2973 if (last_elem + 1 != first_elem) {
2974 last_elem++;
2975 }
2976
2977 /* now update the prod */
2978 for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) {
2979 if (__predict_true(fp->sge_mask[i])) {
2980 break;
2981 }
2982
2983 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
2984 delta += BIT_VEC64_ELEM_SZ;
2985 }
2986
2987 if (delta > 0) {
2988 fp->rx_sge_prod += delta;
2989 /* clear page-end entries */
2990 bxe_clear_sge_mask_next_elems(fp);
2991 }
2992
2993 BLOGD(sc, DBG_LRO,
2994 "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n",
2995 fp->index, fp->last_max_sge, fp->rx_sge_prod);
2996}
2997
2998/*
2999 * The aggregation on the current TPA queue has completed. Pull the individual
3000 * mbuf fragments together into a single mbuf, perform all necessary checksum
3001 * calculations, and send the resuting mbuf to the stack.
3002 */
3003static void
3004bxe_tpa_stop(struct bxe_softc *sc,
3005 struct bxe_fastpath *fp,
3006 struct bxe_sw_tpa_info *tpa_info,
3007 uint16_t queue,
3008 uint16_t pages,
3009 struct eth_end_agg_rx_cqe *cqe,
3010 uint16_t cqe_idx)
3011{
3012 if_t ifp = sc->ifp;
3013 struct mbuf *m;
3014 int rc = 0;
3015
3016 BLOGD(sc, DBG_LRO,
3017 "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n",
3018 fp->index, queue, tpa_info->placement_offset,
3019 le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag);
3020
3021 m = tpa_info->bd.m;
3022
3023 /* allocate a replacement before modifying existing mbuf */
3024 rc = bxe_alloc_rx_tpa_mbuf(fp, queue);
3025 if (rc) {
3026 /* drop the frame and log an error */
3027 fp->eth_q_stats.rx_soft_errors++;
3028 goto bxe_tpa_stop_exit;
3029 }
3030
3031 /* we have a replacement, fixup the current mbuf */
3032 m_adj(m, tpa_info->placement_offset);
3033 m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd;
3034
3035 /* mark the checksums valid (taken care of by the firmware) */
3036 fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3037 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3038 m->m_pkthdr.csum_data = 0xffff;
3039 m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED |
3040 CSUM_IP_VALID |
3041 CSUM_DATA_VALID |
3042 CSUM_PSEUDO_HDR);
3043
3044 /* aggregate all of the SGEs into a single mbuf */
3045 rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx);
3046 if (rc) {
3047 /* drop the packet and log an error */
3048 fp->eth_q_stats.rx_soft_errors++;
3049 m_freem(m);
3050 } else {
3051 if (tpa_info->parsing_flags & PARSING_FLAGS_INNER_VLAN_EXIST) {
3052 m->m_pkthdr.ether_vtag = tpa_info->vlan_tag;
3053 m->m_flags |= M_VLANTAG;
3054 }
3055
3056 /* assign packet to this interface interface */
3057 if_setrcvif(m, ifp);
3058
3059#if __FreeBSD_version >= 800000
3060 /* specify what RSS queue was used for this flow */
3061 m->m_pkthdr.flowid = fp->index;
3062 BXE_SET_FLOWID(m);
3063#endif
3064
3065 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3066 fp->eth_q_stats.rx_tpa_pkts++;
3067
3068 /* pass the frame to the stack */
3069 if_input(ifp, m);
3070 }
3071
3072 /* we passed an mbuf up the stack or dropped the frame */
3073 fp->eth_q_stats.mbuf_alloc_tpa--;
3074
3075bxe_tpa_stop_exit:
3076
3077 fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP;
3078 fp->rx_tpa_queue_used &= ~(1 << queue);
3079}
3080
3081static uint8_t
3082bxe_service_rxsgl(
3083 struct bxe_fastpath *fp,
3084 uint16_t len,
3085 uint16_t lenonbd,
3086 struct mbuf *m,
3087 struct eth_fast_path_rx_cqe *cqe_fp)
3088{
3089 struct mbuf *m_frag;
3090 uint16_t frags, frag_len;
3091 uint16_t sge_idx = 0;
3092 uint16_t j;
3093 uint8_t i, rc = 0;
3094 uint32_t frag_size;
3095
3096 /* adjust the mbuf */
3097 m->m_len = lenonbd;
3098
3099 frag_size = len - lenonbd;
3100 frags = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3101
3102 for (i = 0, j = 0; i < frags; i += PAGES_PER_SGE, j++) {
3103 sge_idx = RX_SGE(le16toh(cqe_fp->sgl_or_raw_data.sgl[j]));
3104
3105 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
3106 frag_len = min(frag_size, (uint32_t)(SGE_PAGE_SIZE));
3107 m_frag->m_len = frag_len;
3108
3109 /* allocate a new mbuf for the SGE */
3110 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
3111 if (rc) {
3112 /* Leave all remaining SGEs in the ring! */
3113 return (rc);
3114 }
3115 fp->eth_q_stats.mbuf_alloc_sge--;
3116
3117 /* concatenate the fragment to the head mbuf */
3118 m_cat(m, m_frag);
3119
3120 frag_size -= frag_len;
3121 }
3122
3123 bxe_update_sge_prod(fp->sc, fp, frags, &cqe_fp->sgl_or_raw_data);
3124
3125 return rc;
3126}
3127
3128static uint8_t
3129bxe_rxeof(struct bxe_softc *sc,
3130 struct bxe_fastpath *fp)
3131{
3132 if_t ifp = sc->ifp;
3133 uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
3134 uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
3135 int rx_pkts = 0;
3136 int rc = 0;
3137
3138 BXE_FP_RX_LOCK(fp);
3139
3140 /* CQ "next element" is of the size of the regular element */
3141 hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
3142 if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) {
3143 hw_cq_cons++;
3144 }
3145
3146 bd_cons = fp->rx_bd_cons;
3147 bd_prod = fp->rx_bd_prod;
3148 bd_prod_fw = bd_prod;
3149 sw_cq_cons = fp->rx_cq_cons;
3150 sw_cq_prod = fp->rx_cq_prod;
3151
3152 /*
3153 * Memory barrier necessary as speculative reads of the rx
3154 * buffer can be ahead of the index in the status block
3155 */
3156 rmb();
3157
3158 BLOGD(sc, DBG_RX,
3159 "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n",
3160 fp->index, hw_cq_cons, sw_cq_cons);
3161
3162 while (sw_cq_cons != hw_cq_cons) {
3163 struct bxe_sw_rx_bd *rx_buf = NULL;
3164 union eth_rx_cqe *cqe;
3165 struct eth_fast_path_rx_cqe *cqe_fp;
3166 uint8_t cqe_fp_flags;
3167 enum eth_rx_cqe_type cqe_fp_type;
3168 uint16_t len, lenonbd, pad;
3169 struct mbuf *m = NULL;
3170
3171 comp_ring_cons = RCQ(sw_cq_cons);
3172 bd_prod = RX_BD(bd_prod);
3173 bd_cons = RX_BD(bd_cons);
3174
3175 cqe = &fp->rcq_chain[comp_ring_cons];
3176 cqe_fp = &cqe->fast_path_cqe;
3177 cqe_fp_flags = cqe_fp->type_error_flags;
3178 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
3179
3180 BLOGD(sc, DBG_RX,
3181 "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d "
3182 "BD prod=%d cons=%d CQE type=0x%x err=0x%x "
3183 "status=0x%x rss_hash=0x%x vlan=0x%x len=%u lenonbd=%u\n",
3184 fp->index,
3185 hw_cq_cons,
3186 sw_cq_cons,
3187 bd_prod,
3188 bd_cons,
3189 CQE_TYPE(cqe_fp_flags),
3190 cqe_fp_flags,
3191 cqe_fp->status_flags,
3192 le32toh(cqe_fp->rss_hash_result),
3193 le16toh(cqe_fp->vlan_tag),
3194 le16toh(cqe_fp->pkt_len_or_gro_seg_len),
3195 le16toh(cqe_fp->len_on_bd));
3196
3197 /* is this a slowpath msg? */
3198 if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) {
3199 bxe_sp_event(sc, fp, cqe);
3200 goto next_cqe;
3201 }
3202
3203 rx_buf = &fp->rx_mbuf_chain[bd_cons];
3204
3205 if (!CQE_TYPE_FAST(cqe_fp_type)) {
3206 struct bxe_sw_tpa_info *tpa_info;
3207 uint16_t frag_size, pages;
3208 uint8_t queue;
3209
3210 if (CQE_TYPE_START(cqe_fp_type)) {
3211 bxe_tpa_start(sc, fp, cqe_fp->queue_index,
3212 bd_cons, bd_prod, cqe_fp);
3213 m = NULL; /* packet not ready yet */
3214 goto next_rx;
3215 }
3216
3217 KASSERT(CQE_TYPE_STOP(cqe_fp_type),
3218 ("CQE type is not STOP! (0x%x)\n", cqe_fp_type));
3219
3220 queue = cqe->end_agg_cqe.queue_index;
3221 tpa_info = &fp->rx_tpa_info[queue];
3222
3223 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n",
3224 fp->index, queue);
3225
3226 frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) -
3227 tpa_info->len_on_bd);
3228 pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3229
3230 bxe_tpa_stop(sc, fp, tpa_info, queue, pages,
3231 &cqe->end_agg_cqe, comp_ring_cons);
3232
3233 bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe.sgl_or_raw_data);
3234
3235 goto next_cqe;
3236 }
3237
3238 /* non TPA */
3239
3240 /* is this an error packet? */
3241 if (__predict_false(cqe_fp_flags &
3242 ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
3243 BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons);
3244 fp->eth_q_stats.rx_soft_errors++;
3245 goto next_rx;
3246 }
3247
3248 len = le16toh(cqe_fp->pkt_len_or_gro_seg_len);
3249 lenonbd = le16toh(cqe_fp->len_on_bd);
3250 pad = cqe_fp->placement_offset;
3251
3252 m = rx_buf->m;
3253
3254 if (__predict_false(m == NULL)) {
3255 BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n",
3256 bd_cons, fp->index);
3257 goto next_rx;
3258 }
3259
3260 /* XXX double copy if packet length under a threshold */
3261
3262 /*
3263 * If all the buffer descriptors are filled with mbufs then fill in
3264 * the current consumer index with a new BD. Else if a maximum Rx
3265 * buffer limit is imposed then fill in the next producer index.
3266 */
3267 rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons,
3268 (sc->max_rx_bufs != RX_BD_USABLE) ?
3269 bd_prod : bd_cons);
3270 if (rc != 0) {
3271
3272 /* we simply reuse the received mbuf and don't post it to the stack */
3273 m = NULL;
3274
3275 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
3276 fp->index, rc);
3277 fp->eth_q_stats.rx_soft_errors++;
3278
3279 if (sc->max_rx_bufs != RX_BD_USABLE) {
3280 /* copy this consumer index to the producer index */
3281 memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf,
3282 sizeof(struct bxe_sw_rx_bd));
3283 memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd));
3284 }
3285
3286 goto next_rx;
3287 }
3288
3289 /* current mbuf was detached from the bd */
3290 fp->eth_q_stats.mbuf_alloc_rx--;
3291
3292 /* we allocated a replacement mbuf, fixup the current one */
3293 m_adj(m, pad);
3294 m->m_pkthdr.len = m->m_len = len;
3295
3296 if ((len > 60) && (len > lenonbd)) {
3297 fp->eth_q_stats.rx_bxe_service_rxsgl++;
3298 rc = bxe_service_rxsgl(fp, len, lenonbd, m, cqe_fp);
3299 if (rc)
3300 break;
3301 fp->eth_q_stats.rx_jumbo_sge_pkts++;
3302 } else if (lenonbd < len) {
3303 fp->eth_q_stats.rx_erroneous_jumbo_sge_pkts++;
3304 }
3305
3306 /* assign packet to this interface interface */
3307 if_setrcvif(m, ifp);
3308
3309 /* assume no hardware checksum has complated */
3310 m->m_pkthdr.csum_flags = 0;
3311
3312 /* validate checksum if offload enabled */
3313 if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
3314 /* check for a valid IP frame */
3315 if (!(cqe->fast_path_cqe.status_flags &
3316 ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) {
3317 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3318 if (__predict_false(cqe_fp_flags &
3319 ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) {
3320 fp->eth_q_stats.rx_hw_csum_errors++;
3321 } else {
3322 fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3323 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3324 }
3325 }
3326
3327 /* check for a valid TCP/UDP frame */
3328 if (!(cqe->fast_path_cqe.status_flags &
3329 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) {
3330 if (__predict_false(cqe_fp_flags &
3331 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) {
3332 fp->eth_q_stats.rx_hw_csum_errors++;
3333 } else {
3334 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3335 m->m_pkthdr.csum_data = 0xFFFF;
3336 m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID |
3337 CSUM_PSEUDO_HDR);
3338 }
3339 }
3340 }
3341
3342 /* if there is a VLAN tag then flag that info */
3343 if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_INNER_VLAN_EXIST) {
3344 m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag;
3345 m->m_flags |= M_VLANTAG;
3346 }
3347
3348#if __FreeBSD_version >= 800000
3349 /* specify what RSS queue was used for this flow */
3350 m->m_pkthdr.flowid = fp->index;
3351 BXE_SET_FLOWID(m);
3352#endif
3353
3354next_rx:
3355
3356 bd_cons = RX_BD_NEXT(bd_cons);
3357 bd_prod = RX_BD_NEXT(bd_prod);
3358 bd_prod_fw = RX_BD_NEXT(bd_prod_fw);
3359
3360 /* pass the frame to the stack */
3361 if (__predict_true(m != NULL)) {
3362 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3363 rx_pkts++;
3364 if_input(ifp, m);
3365 }
3366
3367next_cqe:
3368
3369 sw_cq_prod = RCQ_NEXT(sw_cq_prod);
3370 sw_cq_cons = RCQ_NEXT(sw_cq_cons);
3371
3372 /* limit spinning on the queue */
3373 if (rc != 0)
3374 break;
3375
3376 if (rx_pkts == sc->rx_budget) {
3377 fp->eth_q_stats.rx_budget_reached++;
3378 break;
3379 }
3380 } /* while work to do */
3381
3382 fp->rx_bd_cons = bd_cons;
3383 fp->rx_bd_prod = bd_prod_fw;
3384 fp->rx_cq_cons = sw_cq_cons;
3385 fp->rx_cq_prod = sw_cq_prod;
3386
3387 /* Update producers */
3388 bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod);
3389
3390 fp->eth_q_stats.rx_pkts += rx_pkts;
3391 fp->eth_q_stats.rx_calls++;
3392
3393 BXE_FP_RX_UNLOCK(fp);
3394
3395 return (sw_cq_cons != hw_cq_cons);
3396}
3397
3398static uint16_t
3399bxe_free_tx_pkt(struct bxe_softc *sc,
3400 struct bxe_fastpath *fp,
3401 uint16_t idx)
3402{
3403 struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx];
3404 struct eth_tx_start_bd *tx_start_bd;
3405 uint16_t bd_idx = TX_BD(tx_buf->first_bd);
3406 uint16_t new_cons;
3407 int nbd;
3408
3409 /* unmap the mbuf from non-paged memory */
3410 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
3411
3412 tx_start_bd = &fp->tx_chain[bd_idx].start_bd;
3413 nbd = le16toh(tx_start_bd->nbd) - 1;
3414
3415 new_cons = (tx_buf->first_bd + nbd);
3416
3417 /* free the mbuf */
3418 if (__predict_true(tx_buf->m != NULL)) {
3419 m_freem(tx_buf->m);
3420 fp->eth_q_stats.mbuf_alloc_tx--;
3421 } else {
3422 fp->eth_q_stats.tx_chain_lost_mbuf++;
3423 }
3424
3425 tx_buf->m = NULL;
3426 tx_buf->first_bd = 0;
3427
3428 return (new_cons);
3429}
3430
3431/* transmit timeout watchdog */
3432static int
3433bxe_watchdog(struct bxe_softc *sc,
3434 struct bxe_fastpath *fp)
3435{
3436 BXE_FP_TX_LOCK(fp);
3437
3438 if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) {
3439 BXE_FP_TX_UNLOCK(fp);
3440 return (0);
3441 }
3442
3443 BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index);
3444 if(sc->trigger_grcdump) {
3445 /* taking grcdump */
3446 bxe_grc_dump(sc);
3447 }
3448
3449 BXE_FP_TX_UNLOCK(fp);
3450
3451 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT);
3452 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
3453
3454 return (-1);
3455}
3456
3457/* processes transmit completions */
3458static uint8_t
3459bxe_txeof(struct bxe_softc *sc,
3460 struct bxe_fastpath *fp)
3461{
3462 if_t ifp = sc->ifp;
3463 uint16_t bd_cons, hw_cons, sw_cons, pkt_cons;
3464 uint16_t tx_bd_avail;
3465
3466 BXE_FP_TX_LOCK_ASSERT(fp);
3467
3468 bd_cons = fp->tx_bd_cons;
3469 hw_cons = le16toh(*fp->tx_cons_sb);
3470 sw_cons = fp->tx_pkt_cons;
3471
3472 while (sw_cons != hw_cons) {
3473 pkt_cons = TX_BD(sw_cons);
3474
3475 BLOGD(sc, DBG_TX,
3476 "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n",
3477 fp->index, hw_cons, sw_cons, pkt_cons);
3478
3479 bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons);
3480
3481 sw_cons++;
3482 }
3483
3484 fp->tx_pkt_cons = sw_cons;
3485 fp->tx_bd_cons = bd_cons;
3486
3487 BLOGD(sc, DBG_TX,
3488 "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n",
3489 fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod);
3490
3491 mb();
3492
3493 tx_bd_avail = bxe_tx_avail(sc, fp);
3494
3495 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
3496 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
3497 } else {
3498 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
3499 }
3500
3501 if (fp->tx_pkt_prod != fp->tx_pkt_cons) {
3502 /* reset the watchdog timer if there are pending transmits */
3503 fp->watchdog_timer = BXE_TX_TIMEOUT;
3504 return (TRUE);
3505 } else {
3506 /* clear watchdog when there are no pending transmits */
3507 fp->watchdog_timer = 0;
3508 return (FALSE);
3509 }
3510}
3511
3512static void
3513bxe_drain_tx_queues(struct bxe_softc *sc)
3514{
3515 struct bxe_fastpath *fp;
3516 int i, count;
3517
3518 /* wait until all TX fastpath tasks have completed */
3519 for (i = 0; i < sc->num_queues; i++) {
3520 fp = &sc->fp[i];
3521
3522 count = 1000;
3523
3524 while (bxe_has_tx_work(fp)) {
3525
3526 BXE_FP_TX_LOCK(fp);
3527 bxe_txeof(sc, fp);
3528 BXE_FP_TX_UNLOCK(fp);
3529
3530 if (count == 0) {
3531 BLOGE(sc, "Timeout waiting for fp[%d] "
3532 "transmits to complete!\n", i);
3533 bxe_panic(sc, ("tx drain failure\n"));
3534 return;
3535 }
3536
3537 count--;
3538 DELAY(1000);
3539 rmb();
3540 }
3541 }
3542
3543 return;
3544}
3545
3546static int
3547bxe_del_all_macs(struct bxe_softc *sc,
3548 struct ecore_vlan_mac_obj *mac_obj,
3549 int mac_type,
3550 uint8_t wait_for_comp)
3551{
3552 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
3553 int rc;
3554
3555 /* wait for completion of requested */
3556 if (wait_for_comp) {
3557 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
3558 }
3559
3560 /* Set the mac type of addresses we want to clear */
3561 bxe_set_bit(mac_type, &vlan_mac_flags);
3562
3563 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
3564 if (rc < 0) {
3565 BLOGE(sc, "Failed to delete MACs (%d) mac_type %d wait_for_comp 0x%x\n",
3566 rc, mac_type, wait_for_comp);
3567 }
3568
3569 return (rc);
3570}
3571
3572static int
3573bxe_fill_accept_flags(struct bxe_softc *sc,
3574 uint32_t rx_mode,
3575 unsigned long *rx_accept_flags,
3576 unsigned long *tx_accept_flags)
3577{
3578 /* Clear the flags first */
3579 *rx_accept_flags = 0;
3580 *tx_accept_flags = 0;
3581
3582 switch (rx_mode) {
3583 case BXE_RX_MODE_NONE:
3584 /*
3585 * 'drop all' supersedes any accept flags that may have been
3586 * passed to the function.
3587 */
3588 break;
3589
3590 case BXE_RX_MODE_NORMAL:
3591 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3592 bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
3593 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3594
3595 /* internal switching mode */
3596 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3597 bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
3598 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3599
3600 break;
3601
3602 case BXE_RX_MODE_ALLMULTI:
3603 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3604 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3605 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3606
3607 /* internal switching mode */
3608 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3609 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3610 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3611
3612 break;
3613
3614 case BXE_RX_MODE_PROMISC:
3615 /*
3616 * According to deffinition of SI mode, iface in promisc mode
3617 * should receive matched and unmatched (in resolution of port)
3618 * unicast packets.
3619 */
3620 bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
3621 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3622 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3623 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3624
3625 /* internal switching mode */
3626 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3627 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3628
3629 if (IS_MF_SI(sc)) {
3630 bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
3631 } else {
3632 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3633 }
3634
3635 break;
3636
3637 default:
3638 BLOGE(sc, "Unknown rx_mode (0x%x)\n", rx_mode);
3639 return (-1);
3640 }
3641
3642 /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
3643 if (rx_mode != BXE_RX_MODE_NONE) {
3644 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
3645 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
3646 }
3647
3648 return (0);
3649}
3650
3651static int
3652bxe_set_q_rx_mode(struct bxe_softc *sc,
3653 uint8_t cl_id,
3654 unsigned long rx_mode_flags,
3655 unsigned long rx_accept_flags,
3656 unsigned long tx_accept_flags,
3657 unsigned long ramrod_flags)
3658{
3659 struct ecore_rx_mode_ramrod_params ramrod_param;
3660 int rc;
3661
3662 memset(&ramrod_param, 0, sizeof(ramrod_param));
3663
3664 /* Prepare ramrod parameters */
3665 ramrod_param.cid = 0;
3666 ramrod_param.cl_id = cl_id;
3667 ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
3668 ramrod_param.func_id = SC_FUNC(sc);
3669
3670 ramrod_param.pstate = &sc->sp_state;
3671 ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
3672
3673 ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata);
3674 ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata);
3675
3676 bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
3677
3678 ramrod_param.ramrod_flags = ramrod_flags;
3679 ramrod_param.rx_mode_flags = rx_mode_flags;
3680
3681 ramrod_param.rx_accept_flags = rx_accept_flags;
3682 ramrod_param.tx_accept_flags = tx_accept_flags;
3683
3684 rc = ecore_config_rx_mode(sc, &ramrod_param);
3685 if (rc < 0) {
3686 BLOGE(sc, "Set rx_mode %d cli_id 0x%x rx_mode_flags 0x%x "
3687 "rx_accept_flags 0x%x tx_accept_flags 0x%x "
3688 "ramrod_flags 0x%x rc %d failed\n", sc->rx_mode, cl_id,
3689 (uint32_t)rx_mode_flags, (uint32_t)rx_accept_flags,
3690 (uint32_t)tx_accept_flags, (uint32_t)ramrod_flags, rc);
3691 return (rc);
3692 }
3693
3694 return (0);
3695}
3696
3697static int
3698bxe_set_storm_rx_mode(struct bxe_softc *sc)
3699{
3700 unsigned long rx_mode_flags = 0, ramrod_flags = 0;
3701 unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
3702 int rc;
3703
3704 rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
3705 &tx_accept_flags);
3706 if (rc) {
3707 return (rc);
3708 }
3709
3710 bxe_set_bit(RAMROD_RX, &ramrod_flags);
3711 bxe_set_bit(RAMROD_TX, &ramrod_flags);
3712
3713 /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */
3714 return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
3715 rx_accept_flags, tx_accept_flags,
3716 ramrod_flags));
3717}
3718
3719/* returns the "mcp load_code" according to global load_count array */
3720static int
3721bxe_nic_load_no_mcp(struct bxe_softc *sc)
3722{
3723 int path = SC_PATH(sc);
3724 int port = SC_PORT(sc);
3725
3726 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n",
3727 path, load_count[path][0], load_count[path][1],
3728 load_count[path][2]);
3729 load_count[path][0]++;
3730 load_count[path][1 + port]++;
3731 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n",
3732 path, load_count[path][0], load_count[path][1],
3733 load_count[path][2]);
3734 if (load_count[path][0] == 1) {
3735 return (FW_MSG_CODE_DRV_LOAD_COMMON);
3736 } else if (load_count[path][1 + port] == 1) {
3737 return (FW_MSG_CODE_DRV_LOAD_PORT);
3738 } else {
3739 return (FW_MSG_CODE_DRV_LOAD_FUNCTION);
3740 }
3741}
3742
3743/* returns the "mcp load_code" according to global load_count array */
3744static int
3745bxe_nic_unload_no_mcp(struct bxe_softc *sc)
3746{
3747 int port = SC_PORT(sc);
3748 int path = SC_PATH(sc);
3749
3750 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n",
3751 path, load_count[path][0], load_count[path][1],
3752 load_count[path][2]);
3753 load_count[path][0]--;
3754 load_count[path][1 + port]--;
3755 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n",
3756 path, load_count[path][0], load_count[path][1],
3757 load_count[path][2]);
3758 if (load_count[path][0] == 0) {
3759 return (FW_MSG_CODE_DRV_UNLOAD_COMMON);
3760 } else if (load_count[path][1 + port] == 0) {
3761 return (FW_MSG_CODE_DRV_UNLOAD_PORT);
3762 } else {
3763 return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION);
3764 }
3765}
3766
3767/* request unload mode from the MCP: COMMON, PORT or FUNCTION */
3768static uint32_t
3769bxe_send_unload_req(struct bxe_softc *sc,
3770 int unload_mode)
3771{
3772 uint32_t reset_code = 0;
3773
3774 /* Select the UNLOAD request mode */
3775 if (unload_mode == UNLOAD_NORMAL) {
3776 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3777 } else {
3778 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3779 }
3780
3781 /* Send the request to the MCP */
3782 if (!BXE_NOMCP(sc)) {
3783 reset_code = bxe_fw_command(sc, reset_code, 0);
3784 } else {
3785 reset_code = bxe_nic_unload_no_mcp(sc);
3786 }
3787
3788 return (reset_code);
3789}
3790
3791/* send UNLOAD_DONE command to the MCP */
3792static void
3793bxe_send_unload_done(struct bxe_softc *sc,
3794 uint8_t keep_link)
3795{
3796 uint32_t reset_param =
3797 keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
3798
3799 /* Report UNLOAD_DONE to MCP */
3800 if (!BXE_NOMCP(sc)) {
3801 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
3802 }
3803}
3804
3805static int
3806bxe_func_wait_started(struct bxe_softc *sc)
3807{
3808 int tout = 50;
3809
3810 if (!sc->port.pmf) {
3811 return (0);
3812 }
3813
3814 /*
3815 * (assumption: No Attention from MCP at this stage)
3816 * PMF probably in the middle of TX disable/enable transaction
3817 * 1. Sync IRS for default SB
3818 * 2. Sync SP queue - this guarantees us that attention handling started
3819 * 3. Wait, that TX disable/enable transaction completes
3820 *
3821 * 1+2 guarantee that if DCBX attention was scheduled it already changed
3822 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
3823 * received completion for the transaction the state is TX_STOPPED.
3824 * State will return to STARTED after completion of TX_STOPPED-->STARTED
3825 * transaction.
3826 */
3827
3828 /* XXX make sure default SB ISR is done */
3829 /* need a way to synchronize an irq (intr_mtx?) */
3830
3831 /* XXX flush any work queues */
3832
3833 while (ecore_func_get_state(sc, &sc->func_obj) !=
3834 ECORE_F_STATE_STARTED && tout--) {
3835 DELAY(20000);
3836 }
3837
3838 if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
3839 /*
3840 * Failed to complete the transaction in a "good way"
3841 * Force both transactions with CLR bit.
3842 */
3843 struct ecore_func_state_params func_params = { NULL };
3844
3845 BLOGE(sc, "Unexpected function state! "
3846 "Forcing STARTED-->TX_STOPPED-->STARTED\n");
3847
3848 func_params.f_obj = &sc->func_obj;
3849 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
3850
3851 /* STARTED-->TX_STOPPED */
3852 func_params.cmd = ECORE_F_CMD_TX_STOP;
3853 ecore_func_state_change(sc, &func_params);
3854
3855 /* TX_STOPPED-->STARTED */
3856 func_params.cmd = ECORE_F_CMD_TX_START;
3857 return (ecore_func_state_change(sc, &func_params));
3858 }
3859
3860 return (0);
3861}
3862
3863static int
3864bxe_stop_queue(struct bxe_softc *sc,
3865 int index)
3866{
3867 struct bxe_fastpath *fp = &sc->fp[index];
3868 struct ecore_queue_state_params q_params = { NULL };
3869 int rc;
3870
3871 BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index);
3872
3873 q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
3874 /* We want to wait for completion in this context */
3875 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
3876
3877 /* Stop the primary connection: */
3878
3879 /* ...halt the connection */
3880 q_params.cmd = ECORE_Q_CMD_HALT;
3881 rc = ecore_queue_state_change(sc, &q_params);
3882 if (rc) {
3883 return (rc);
3884 }
3885
3886 /* ...terminate the connection */
3887 q_params.cmd = ECORE_Q_CMD_TERMINATE;
3888 memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate));
3889 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
3890 rc = ecore_queue_state_change(sc, &q_params);
3891 if (rc) {
3892 return (rc);
3893 }
3894
3895 /* ...delete cfc entry */
3896 q_params.cmd = ECORE_Q_CMD_CFC_DEL;
3897 memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
3898 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
3899 return (ecore_queue_state_change(sc, &q_params));
3900}
3901
3902/* wait for the outstanding SP commands */
3903static inline uint8_t
3904bxe_wait_sp_comp(struct bxe_softc *sc,
3905 unsigned long mask)
3906{
3907 unsigned long tmp;
3908 int tout = 5000; /* wait for 5 secs tops */
3909
3910 while (tout--) {
3911 mb();
3912 if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
3913 return (TRUE);
3914 }
3915
3916 DELAY(1000);
3917 }
3918
3919 mb();
3920
3921 tmp = atomic_load_acq_long(&sc->sp_state);
3922 if (tmp & mask) {
3923 BLOGE(sc, "Filtering completion timed out: "
3924 "sp_state 0x%lx, mask 0x%lx\n",
3925 tmp, mask);
3926 return (FALSE);
3927 }
3928
3929 return (FALSE);
3930}
3931
3932static int
3933bxe_func_stop(struct bxe_softc *sc)
3934{
3935 struct ecore_func_state_params func_params = { NULL };
3936 int rc;
3937
3938 /* prepare parameters for function state transitions */
3939 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
3940 func_params.f_obj = &sc->func_obj;
3941 func_params.cmd = ECORE_F_CMD_STOP;
3942
3943 /*
3944 * Try to stop the function the 'good way'. If it fails (in case
3945 * of a parity error during bxe_chip_cleanup()) and we are
3946 * not in a debug mode, perform a state transaction in order to
3947 * enable further HW_RESET transaction.
3948 */
3949 rc = ecore_func_state_change(sc, &func_params);
3950 if (rc) {
3951 BLOGE(sc, "FUNC_STOP ramrod failed. "
3952 "Running a dry transaction (%d)\n", rc);
3953 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
3954 return (ecore_func_state_change(sc, &func_params));
3955 }
3956
3957 return (0);
3958}
3959
3960static int
3961bxe_reset_hw(struct bxe_softc *sc,
3962 uint32_t load_code)
3963{
3964 struct ecore_func_state_params func_params = { NULL };
3965
3966 /* Prepare parameters for function state transitions */
3967 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
3968
3969 func_params.f_obj = &sc->func_obj;
3970 func_params.cmd = ECORE_F_CMD_HW_RESET;
3971
3972 func_params.params.hw_init.load_phase = load_code;
3973
3974 return (ecore_func_state_change(sc, &func_params));
3975}
3976
3977static void
3978bxe_int_disable_sync(struct bxe_softc *sc,
3979 int disable_hw)
3980{
3981 if (disable_hw) {
3982 /* prevent the HW from sending interrupts */
3983 bxe_int_disable(sc);
3984 }
3985
3986 /* XXX need a way to synchronize ALL irqs (intr_mtx?) */
3987 /* make sure all ISRs are done */
3988
3989 /* XXX make sure sp_task is not running */
3990 /* cancel and flush work queues */
3991}
3992
3993static void
3994bxe_chip_cleanup(struct bxe_softc *sc,
3995 uint32_t unload_mode,
3996 uint8_t keep_link)
3997{
3998 int port = SC_PORT(sc);
3999 struct ecore_mcast_ramrod_params rparam = { NULL };
4000 uint32_t reset_code;
4001 int i, rc = 0;
4002
4003 bxe_drain_tx_queues(sc);
4004
4005 /* give HW time to discard old tx messages */
4006 DELAY(1000);
4007
4008 /* Clean all ETH MACs */
4009 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE);
4010 if (rc < 0) {
4011 BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc);
4012 }
4013
4014 /* Clean up UC list */
4015 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE);
4016 if (rc < 0) {
4017 BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc);
4018 }
4019
4020 /* Disable LLH */
4021 if (!CHIP_IS_E1(sc)) {
4022 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
4023 }
4024
4025 /* Set "drop all" to stop Rx */
4026
4027 /*
4028 * We need to take the BXE_MCAST_LOCK() here in order to prevent
4029 * a race between the completion code and this code.
4030 */
4031 BXE_MCAST_LOCK(sc);
4032
4033 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
4034 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
4035 } else {
4036 bxe_set_storm_rx_mode(sc);
4037 }
4038
4039 /* Clean up multicast configuration */
4040 rparam.mcast_obj = &sc->mcast_obj;
4041 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4042 if (rc < 0) {
4043 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4044 }
4045
4046 BXE_MCAST_UNLOCK(sc);
4047
4048 // XXX bxe_iov_chip_cleanup(sc);
4049
4050 /*
4051 * Send the UNLOAD_REQUEST to the MCP. This will return if
4052 * this function should perform FUNCTION, PORT, or COMMON HW
4053 * reset.
4054 */
4055 reset_code = bxe_send_unload_req(sc, unload_mode);
4056
4057 /*
4058 * (assumption: No Attention from MCP at this stage)
4059 * PMF probably in the middle of TX disable/enable transaction
4060 */
4061 rc = bxe_func_wait_started(sc);
4062 if (rc) {
4063 BLOGE(sc, "bxe_func_wait_started failed (%d)\n", rc);
4064 }
4065
4066 /*
4067 * Close multi and leading connections
4068 * Completions for ramrods are collected in a synchronous way
4069 */
4070 for (i = 0; i < sc->num_queues; i++) {
4071 if (bxe_stop_queue(sc, i)) {
4072 goto unload_error;
4073 }
4074 }
4075
4076 /*
4077 * If SP settings didn't get completed so far - something
4078 * very wrong has happen.
4079 */
4080 if (!bxe_wait_sp_comp(sc, ~0x0UL)) {
4081 BLOGE(sc, "Common slow path ramrods got stuck!(%d)\n", rc);
4082 }
4083
4084unload_error:
4085
4086 rc = bxe_func_stop(sc);
4087 if (rc) {
4088 BLOGE(sc, "Function stop failed!(%d)\n", rc);
4089 }
4090
4091 /* disable HW interrupts */
4092 bxe_int_disable_sync(sc, TRUE);
4093
4094 /* detach interrupts */
4095 bxe_interrupt_detach(sc);
4096
4097 /* Reset the chip */
4098 rc = bxe_reset_hw(sc, reset_code);
4099 if (rc) {
4100 BLOGE(sc, "Hardware reset failed(%d)\n", rc);
4101 }
4102
4103 /* Report UNLOAD_DONE to MCP */
4104 bxe_send_unload_done(sc, keep_link);
4105}
4106
4107static void
4108bxe_disable_close_the_gate(struct bxe_softc *sc)
4109{
4110 uint32_t val;
4111 int port = SC_PORT(sc);
4112
4113 BLOGD(sc, DBG_LOAD,
4114 "Disabling 'close the gates'\n");
4115
4116 if (CHIP_IS_E1(sc)) {
4117 uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4118 MISC_REG_AEU_MASK_ATTN_FUNC_0;
4119 val = REG_RD(sc, addr);
4120 val &= ~(0x300);
4121 REG_WR(sc, addr, val);
4122 } else {
4123 val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
4124 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
4125 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
4126 REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
4127 }
4128}
4129
4130/*
4131 * Cleans the object that have internal lists without sending
4132 * ramrods. Should be run when interrutps are disabled.
4133 */
4134static void
4135bxe_squeeze_objects(struct bxe_softc *sc)
4136{
4137 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
4138 struct ecore_mcast_ramrod_params rparam = { NULL };
4139 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
4140 int rc;
4141
4142 /* Cleanup MACs' object first... */
4143
4144 /* Wait for completion of requested */
4145 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
4146 /* Perform a dry cleanup */
4147 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
4148
4149 /* Clean ETH primary MAC */
4150 bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
4151 rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
4152 &ramrod_flags);
4153 if (rc != 0) {
4154 BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc);
4155 }
4156
4157 /* Cleanup UC list */
4158 vlan_mac_flags = 0;
4159 bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
4160 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags,
4161 &ramrod_flags);
4162 if (rc != 0) {
4163 BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc);
4164 }
4165
4166 /* Now clean mcast object... */
4167
4168 rparam.mcast_obj = &sc->mcast_obj;
4169 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
4170
4171 /* Add a DEL command... */
4172 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4173 if (rc < 0) {
4174 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4175 }
4176
4177 /* now wait until all pending commands are cleared */
4178
4179 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4180 while (rc != 0) {
4181 if (rc < 0) {
4182 BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc);
4183 return;
4184 }
4185
4186 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4187 }
4188}
4189
4190/* stop the controller */
4191static __noinline int
4192bxe_nic_unload(struct bxe_softc *sc,
4193 uint32_t unload_mode,
4194 uint8_t keep_link)
4195{
4196 uint8_t global = FALSE;
4197 uint32_t val;
4198 int i;
4199
4200 BXE_CORE_LOCK_ASSERT(sc);
4201
4202 if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING);
4203
4204 for (i = 0; i < sc->num_queues; i++) {
4205 struct bxe_fastpath *fp;
4206
4207 fp = &sc->fp[i];
4208 BXE_FP_TX_LOCK(fp);
4209 BXE_FP_TX_UNLOCK(fp);
4210 }
4211
4212 BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n");
4213
4214 /* mark driver as unloaded in shmem2 */
4215 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
4216 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
4217 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
4218 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
4219 }
4220
4221 if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE &&
4222 (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) {
4223 /*
4224 * We can get here if the driver has been unloaded
4225 * during parity error recovery and is either waiting for a
4226 * leader to complete or for other functions to unload and
4227 * then ifconfig down has been issued. In this case we want to
4228 * unload and let other functions to complete a recovery
4229 * process.
4230 */
4231 sc->recovery_state = BXE_RECOVERY_DONE;
4232 sc->is_leader = 0;
4233 bxe_release_leader_lock(sc);
4234 mb();
4235
4236 BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n");
4237 BLOGE(sc, "Can't unload in closed or error state recover_state 0x%x"
4238 " state = 0x%x\n", sc->recovery_state, sc->state);
4239 return (-1);
4240 }
4241
4242 /*
4243 * Nothing to do during unload if previous bxe_nic_load()
4244 * did not completed successfully - all resourses are released.
4245 */
4246 if ((sc->state == BXE_STATE_CLOSED) ||
4247 (sc->state == BXE_STATE_ERROR)) {
4248 return (0);
4249 }
4250
4251 sc->state = BXE_STATE_CLOSING_WAITING_HALT;
4252 mb();
4253
4254 /* stop tx */
4255 bxe_tx_disable(sc);
4256
4257 sc->rx_mode = BXE_RX_MODE_NONE;
4258 /* XXX set rx mode ??? */
4259
4260 if (IS_PF(sc) && !sc->grcdump_done) {
4261 /* set ALWAYS_ALIVE bit in shmem */
4262 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
4263
4264 bxe_drv_pulse(sc);
4265
4266 bxe_stats_handle(sc, STATS_EVENT_STOP);
4267 bxe_save_statistics(sc);
4268 }
4269
4270 /* wait till consumers catch up with producers in all queues */
4271 bxe_drain_tx_queues(sc);
4272
4273 /* if VF indicate to PF this function is going down (PF will delete sp
4274 * elements and clear initializations
4275 */
4276 if (IS_VF(sc)) {
4277 ; /* bxe_vfpf_close_vf(sc); */
4278 } else if (unload_mode != UNLOAD_RECOVERY) {
4279 /* if this is a normal/close unload need to clean up chip */
4280 if (!sc->grcdump_done)
4281 bxe_chip_cleanup(sc, unload_mode, keep_link);
4282 } else {
4283 /* Send the UNLOAD_REQUEST to the MCP */
4284 bxe_send_unload_req(sc, unload_mode);
4285
4286 /*
4287 * Prevent transactions to host from the functions on the
4288 * engine that doesn't reset global blocks in case of global
4289 * attention once gloabl blocks are reset and gates are opened
4290 * (the engine which leader will perform the recovery
4291 * last).
4292 */
4293 if (!CHIP_IS_E1x(sc)) {
4294 bxe_pf_disable(sc);
4295 }
4296
4297 /* disable HW interrupts */
4298 bxe_int_disable_sync(sc, TRUE);
4299
4300 /* detach interrupts */
4301 bxe_interrupt_detach(sc);
4302
4303 /* Report UNLOAD_DONE to MCP */
4304 bxe_send_unload_done(sc, FALSE);
4305 }
4306
4307 /*
4308 * At this stage no more interrupts will arrive so we may safely clean
4309 * the queue'able objects here in case they failed to get cleaned so far.
4310 */
4311 if (IS_PF(sc)) {
4312 bxe_squeeze_objects(sc);
4313 }
4314
4315 /* There should be no more pending SP commands at this stage */
4316 sc->sp_state = 0;
4317
4318 sc->port.pmf = 0;
4319
4320 bxe_free_fp_buffers(sc);
4321
4322 if (IS_PF(sc)) {
4323 bxe_free_mem(sc);
4324 }
4325
4326 bxe_free_fw_stats_mem(sc);
4327
4328 sc->state = BXE_STATE_CLOSED;
4329
4330 /*
4331 * Check if there are pending parity attentions. If there are - set
4332 * RECOVERY_IN_PROGRESS.
4333 */
4334 if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) {
4335 bxe_set_reset_in_progress(sc);
4336
4337 /* Set RESET_IS_GLOBAL if needed */
4338 if (global) {
4339 bxe_set_reset_global(sc);
4340 }
4341 }
4342
4343 /*
4344 * The last driver must disable a "close the gate" if there is no
4345 * parity attention or "process kill" pending.
4346 */
4347 if (IS_PF(sc) && !bxe_clear_pf_load(sc) &&
4348 bxe_reset_is_done(sc, SC_PATH(sc))) {
4349 bxe_disable_close_the_gate(sc);
4350 }
4351
4352 BLOGD(sc, DBG_LOAD, "Ended NIC unload\n");
4353
4354 return (0);
4355}
4356
4357/*
4358 * Called by the OS to set various media options (i.e. link, speed, etc.) when
4359 * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...".
4360 */
4361static int
4362bxe_ifmedia_update(struct ifnet *ifp)
4363{
4364 struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp);
4365 struct ifmedia *ifm;
4366
4367 ifm = &sc->ifmedia;
4368
4369 /* We only support Ethernet media type. */
4370 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
4371 return (EINVAL);
4372 }
4373
4374 switch (IFM_SUBTYPE(ifm->ifm_media)) {
4375 case IFM_AUTO:
4376 break;
4377 case IFM_10G_CX4:
4378 case IFM_10G_SR:
4379 case IFM_10G_T:
4380 case IFM_10G_TWINAX:
4381 default:
4382 /* We don't support changing the media type. */
4383 BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n",
4384 IFM_SUBTYPE(ifm->ifm_media));
4385 return (EINVAL);
4386 }
4387
4388 return (0);
4389}
4390
4391/*
4392 * Called by the OS to get the current media status (i.e. link, speed, etc.).
4393 */
4394static void
4395bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
4396{
4397 struct bxe_softc *sc = if_getsoftc(ifp);
4398
4399 /* Report link down if the driver isn't running. */
4400 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
4401 ifmr->ifm_active |= IFM_NONE;
4402 return;
4403 }
4404
4405 /* Setup the default interface info. */
4406 ifmr->ifm_status = IFM_AVALID;
4407 ifmr->ifm_active = IFM_ETHER;
4408
4409 if (sc->link_vars.link_up) {
4410 ifmr->ifm_status |= IFM_ACTIVE;
4411 } else {
4412 ifmr->ifm_active |= IFM_NONE;
4413 return;
4414 }
4415
4416 ifmr->ifm_active |= sc->media;
4417
4418 if (sc->link_vars.duplex == DUPLEX_FULL) {
4419 ifmr->ifm_active |= IFM_FDX;
4420 } else {
4421 ifmr->ifm_active |= IFM_HDX;
4422 }
4423}
4424
4425static void
4426bxe_handle_chip_tq(void *context,
4427 int pending)
4428{
4429 struct bxe_softc *sc = (struct bxe_softc *)context;
4430 long work = atomic_load_acq_long(&sc->chip_tq_flags);
4431
4432 switch (work)
4433 {
4434
4435 case CHIP_TQ_REINIT:
4436 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
4437 /* restart the interface */
4438 BLOGD(sc, DBG_LOAD, "Restarting the interface...\n");
4439 bxe_periodic_stop(sc);
4440 BXE_CORE_LOCK(sc);
4441 bxe_stop_locked(sc);
4442 bxe_init_locked(sc);
4443 BXE_CORE_UNLOCK(sc);
4444 }
4445 break;
4446
4447 default:
4448 break;
4449 }
4450}
4451
4452/*
4453 * Handles any IOCTL calls from the operating system.
4454 *
4455 * Returns:
4456 * 0 = Success, >0 Failure
4457 */
4458static int
4459bxe_ioctl(if_t ifp,
4460 u_long command,
4461 caddr_t data)
4462{
4463 struct bxe_softc *sc = if_getsoftc(ifp);
4464 struct ifreq *ifr = (struct ifreq *)data;
4465 int mask = 0;
4466 int reinit = 0;
4467 int error = 0;
4468
4469 int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN);
4470 int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING);
4471
4472 switch (command)
4473 {
4474 case SIOCSIFMTU:
4475 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n",
4476 ifr->ifr_mtu);
4477
4478 if (sc->mtu == ifr->ifr_mtu) {
4479 /* nothing to change */
4480 break;
4481 }
4482
4483 if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) {
4484 BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n",
4485 ifr->ifr_mtu, mtu_min, mtu_max);
4486 error = EINVAL;
4487 break;
4488 }
4489
4490 atomic_store_rel_int((volatile unsigned int *)&sc->mtu,
4491 (unsigned long)ifr->ifr_mtu);
4492 /*
4493 atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp),
4494 (unsigned long)ifr->ifr_mtu);
4495 XXX - Not sure why it needs to be atomic
4496 */
4497 if_setmtu(ifp, ifr->ifr_mtu);
4498 reinit = 1;
4499 break;
4500
4501 case SIOCSIFFLAGS:
4502 /* toggle the interface state up or down */
4503 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n");
4504
4505 BXE_CORE_LOCK(sc);
4506 /* check if the interface is up */
4507 if (if_getflags(ifp) & IFF_UP) {
4508 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4509 /* set the receive mode flags */
4510 bxe_set_rx_mode(sc);
4511 } else if(sc->state != BXE_STATE_DISABLED) {
4512 bxe_init_locked(sc);
4513 }
4514 } else {
4515 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4516 bxe_periodic_stop(sc);
4517 bxe_stop_locked(sc);
4518 }
4519 }
4520 BXE_CORE_UNLOCK(sc);
4521
4522 break;
4523
4524 case SIOCADDMULTI:
4525 case SIOCDELMULTI:
4526 /* add/delete multicast addresses */
4527 BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n");
4528
4529 /* check if the interface is up */
4530 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4531 /* set the receive mode flags */
4532 BXE_CORE_LOCK(sc);
4533 bxe_set_rx_mode(sc);
4534 BXE_CORE_UNLOCK(sc);
4535 }
4536
4537 break;
4538
4539 case SIOCSIFCAP:
4540 /* find out which capabilities have changed */
4541 mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp));
4542
4543 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n",
4544 mask);
4545
4546 /* toggle the LRO capabilites enable flag */
4547 if (mask & IFCAP_LRO) {
4548 if_togglecapenable(ifp, IFCAP_LRO);
4549 BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n",
4550 (if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF");
4551 reinit = 1;
4552 }
4553
4554 /* toggle the TXCSUM checksum capabilites enable flag */
4555 if (mask & IFCAP_TXCSUM) {
4556 if_togglecapenable(ifp, IFCAP_TXCSUM);
4557 BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n",
4558 (if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF");
4559 if (if_getcapenable(ifp) & IFCAP_TXCSUM) {
4560 if_sethwassistbits(ifp, (CSUM_IP |
4561 CSUM_TCP |
4562 CSUM_UDP |
4563 CSUM_TSO |
4564 CSUM_TCP_IPV6 |
4565 CSUM_UDP_IPV6), 0);
4566 } else {
4567 if_clearhwassist(ifp); /* XXX */
4568 }
4569 }
4570
4571 /* toggle the RXCSUM checksum capabilities enable flag */
4572 if (mask & IFCAP_RXCSUM) {
4573 if_togglecapenable(ifp, IFCAP_RXCSUM);
4574 BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n",
4575 (if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF");
4576 if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
4577 if_sethwassistbits(ifp, (CSUM_IP |
4578 CSUM_TCP |
4579 CSUM_UDP |
4580 CSUM_TSO |
4581 CSUM_TCP_IPV6 |
4582 CSUM_UDP_IPV6), 0);
4583 } else {
4584 if_clearhwassist(ifp); /* XXX */
4585 }
4586 }
4587
4588 /* toggle TSO4 capabilities enabled flag */
4589 if (mask & IFCAP_TSO4) {
4590 if_togglecapenable(ifp, IFCAP_TSO4);
4591 BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n",
4592 (if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF");
4593 }
4594
4595 /* toggle TSO6 capabilities enabled flag */
4596 if (mask & IFCAP_TSO6) {
4597 if_togglecapenable(ifp, IFCAP_TSO6);
4598 BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n",
4599 (if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF");
4600 }
4601
4602 /* toggle VLAN_HWTSO capabilities enabled flag */
4603 if (mask & IFCAP_VLAN_HWTSO) {
4604
4605 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
4606 BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n",
4607 (if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF");
4608 }
4609
4610 /* toggle VLAN_HWCSUM capabilities enabled flag */
4611 if (mask & IFCAP_VLAN_HWCSUM) {
4612 /* XXX investigate this... */
4613 BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n");
4614 error = EINVAL;
4615 }
4616
4617 /* toggle VLAN_MTU capabilities enable flag */
4618 if (mask & IFCAP_VLAN_MTU) {
4619 /* XXX investigate this... */
4620 BLOGE(sc, "Changing VLAN_MTU is not supported!\n");
4621 error = EINVAL;
4622 }
4623
4624 /* toggle VLAN_HWTAGGING capabilities enabled flag */
4625 if (mask & IFCAP_VLAN_HWTAGGING) {
4626 /* XXX investigate this... */
4627 BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n");
4628 error = EINVAL;
4629 }
4630
4631 /* toggle VLAN_HWFILTER capabilities enabled flag */
4632 if (mask & IFCAP_VLAN_HWFILTER) {
4633 /* XXX investigate this... */
4634 BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n");
4635 error = EINVAL;
4636 }
4637
4638 /* XXX not yet...
4639 * IFCAP_WOL_MAGIC
4640 */
4641
4642 break;
4643
4644 case SIOCSIFMEDIA:
4645 case SIOCGIFMEDIA:
4646 /* set/get interface media */
4647 BLOGD(sc, DBG_IOCTL,
4648 "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n",
4649 (command & 0xff));
4650 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
4651 break;
4652
4653 default:
4654 BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n",
4655 (command & 0xff));
4656 error = ether_ioctl(ifp, command, data);
4657 break;
4658 }
4659
4660 if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
4661 BLOGD(sc, DBG_LOAD | DBG_IOCTL,
4662 "Re-initializing hardware from IOCTL change\n");
4663 bxe_periodic_stop(sc);
4664 BXE_CORE_LOCK(sc);
4665 bxe_stop_locked(sc);
4666 bxe_init_locked(sc);
4667 BXE_CORE_UNLOCK(sc);
4668 }
4669
4670 return (error);
4671}
4672
4673static __noinline void
4674bxe_dump_mbuf(struct bxe_softc *sc,
4675 struct mbuf *m,
4676 uint8_t contents)
4677{
4678 char * type;
4679 int i = 0;
4680
4681 if (!(sc->debug & DBG_MBUF)) {
4682 return;
4683 }
4684
4685 if (m == NULL) {
4686 BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n");
4687 return;
4688 }
4689
4690 while (m) {
4691
4692#if __FreeBSD_version >= 1000000
4693 BLOGD(sc, DBG_MBUF,
4694 "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
4695 i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data);
4696
4697 if (m->m_flags & M_PKTHDR) {
4698 BLOGD(sc, DBG_MBUF,
4699 "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n",
4700 i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS,
4701 (int)m->m_pkthdr.csum_flags, CSUM_BITS);
4702 }
4703#else
4704 BLOGD(sc, DBG_MBUF,
4705 "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
4706 i, m, m->m_len, m->m_flags,
4707 "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", m->m_data);
4708
4709 if (m->m_flags & M_PKTHDR) {
4710 BLOGD(sc, DBG_MBUF,
4711 "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n",
4712 i, m->m_pkthdr.len, m->m_flags,
4713 "\20\12M_BCAST\13M_MCAST\14M_FRAG"
4714 "\15M_FIRSTFRAG\16M_LASTFRAG\21M_VLANTAG"
4715 "\22M_PROMISC\23M_NOFREE",
4716 (int)m->m_pkthdr.csum_flags,
4717 "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP\4CSUM_IP_FRAGS"
4718 "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED"
4719 "\12CSUM_IP_VALID\13CSUM_DATA_VALID"
4720 "\14CSUM_PSEUDO_HDR");
4721 }
4722#endif /* #if __FreeBSD_version >= 1000000 */
4723
4724 if (m->m_flags & M_EXT) {
4725 switch (m->m_ext.ext_type) {
4726 case EXT_CLUSTER: type = "EXT_CLUSTER"; break;
4727 case EXT_SFBUF: type = "EXT_SFBUF"; break;
4728 case EXT_JUMBOP: type = "EXT_JUMBOP"; break;
4729 case EXT_JUMBO9: type = "EXT_JUMBO9"; break;
4730 case EXT_JUMBO16: type = "EXT_JUMBO16"; break;
4731 case EXT_PACKET: type = "EXT_PACKET"; break;
4732 case EXT_MBUF: type = "EXT_MBUF"; break;
4733 case EXT_NET_DRV: type = "EXT_NET_DRV"; break;
4734 case EXT_MOD_TYPE: type = "EXT_MOD_TYPE"; break;
4735 case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break;
4736 case EXT_EXTREF: type = "EXT_EXTREF"; break;
4737 default: type = "UNKNOWN"; break;
4738 }
4739
4740 BLOGD(sc, DBG_MBUF,
4741 "%02d: - m_ext: %p ext_size=%d type=%s\n",
4742 i, m->m_ext.ext_buf, m->m_ext.ext_size, type);
4743 }
4744
4745 if (contents) {
4746 bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE);
4747 }
4748
4749 m = m->m_next;
4750 i++;
4751 }
4752}
4753
4754/*
4755 * Checks to ensure the 13 bd sliding window is >= MSS for TSO.
4756 * Check that (13 total bds - 3 bds) = 10 bd window >= MSS.
4757 * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD
4758 * The headers comes in a separate bd in FreeBSD so 13-3=10.
4759 * Returns: 0 if OK to send, 1 if packet needs further defragmentation
4760 */
4761static int
4762bxe_chktso_window(struct bxe_softc *sc,
4763 int nsegs,
4764 bus_dma_segment_t *segs,
4765 struct mbuf *m)
4766{
4767 uint32_t num_wnds, wnd_size, wnd_sum;
4768 int32_t frag_idx, wnd_idx;
4769 unsigned short lso_mss;
4770 int defrag;
4771
4772 defrag = 0;
4773 wnd_sum = 0;
4774 wnd_size = 10;
4775 num_wnds = nsegs - wnd_size;
4776 lso_mss = htole16(m->m_pkthdr.tso_segsz);
4777
4778 /*
4779 * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the
4780 * first window sum of data while skipping the first assuming it is the
4781 * header in FreeBSD.
4782 */
4783 for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) {
4784 wnd_sum += htole16(segs[frag_idx].ds_len);
4785 }
4786
4787 /* check the first 10 bd window size */
4788 if (wnd_sum < lso_mss) {
4789 return (1);
4790 }
4791
4792 /* run through the windows */
4793 for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) {
4794 /* subtract the first mbuf->m_len of the last wndw(-header) */
4795 wnd_sum -= htole16(segs[wnd_idx+1].ds_len);
4796 /* add the next mbuf len to the len of our new window */
4797 wnd_sum += htole16(segs[frag_idx].ds_len);
4798 if (wnd_sum < lso_mss) {
4799 return (1);
4800 }
4801 }
4802
4803 return (0);
4804}
4805
4806static uint8_t
4807bxe_set_pbd_csum_e2(struct bxe_fastpath *fp,
4808 struct mbuf *m,
4809 uint32_t *parsing_data)
4810{
4811 struct ether_vlan_header *eh = NULL;
4812 struct ip *ip4 = NULL;
4813 struct ip6_hdr *ip6 = NULL;
4814 caddr_t ip = NULL;
4815 struct tcphdr *th = NULL;
4816 int e_hlen, ip_hlen, l4_off;
4817 uint16_t proto;
4818
4819 if (m->m_pkthdr.csum_flags == CSUM_IP) {
4820 /* no L4 checksum offload needed */
4821 return (0);
4822 }
4823
4824 /* get the Ethernet header */
4825 eh = mtod(m, struct ether_vlan_header *);
4826
4827 /* handle VLAN encapsulation if present */
4828 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
4829 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
4830 proto = ntohs(eh->evl_proto);
4831 } else {
4832 e_hlen = ETHER_HDR_LEN;
4833 proto = ntohs(eh->evl_encap_proto);
4834 }
4835
4836 switch (proto) {
4837 case ETHERTYPE_IP:
4838 /* get the IP header, if mbuf len < 20 then header in next mbuf */
4839 ip4 = (m->m_len < sizeof(struct ip)) ?
4840 (struct ip *)m->m_next->m_data :
4841 (struct ip *)(m->m_data + e_hlen);
4842 /* ip_hl is number of 32-bit words */
4843 ip_hlen = (ip4->ip_hl << 2);
4844 ip = (caddr_t)ip4;
4845 break;
4846 case ETHERTYPE_IPV6:
4847 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
4848 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
4849 (struct ip6_hdr *)m->m_next->m_data :
4850 (struct ip6_hdr *)(m->m_data + e_hlen);
4851 /* XXX cannot support offload with IPv6 extensions */
4852 ip_hlen = sizeof(struct ip6_hdr);
4853 ip = (caddr_t)ip6;
4854 break;
4855 default:
4856 /* We can't offload in this case... */
4857 /* XXX error stat ??? */
4858 return (0);
4859 }
4860
4861 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
4862 l4_off = (e_hlen + ip_hlen);
4863
4864 *parsing_data |=
4865 (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
4866 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W);
4867
4868 if (m->m_pkthdr.csum_flags & (CSUM_TCP |
4869 CSUM_TSO |
4870 CSUM_TCP_IPV6)) {
4871 fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
4872 th = (struct tcphdr *)(ip + ip_hlen);
4873 /* th_off is number of 32-bit words */
4874 *parsing_data |= ((th->th_off <<
4875 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
4876 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW);
4877 return (l4_off + (th->th_off << 2)); /* entire header length */
4878 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
4879 CSUM_UDP_IPV6)) {
4880 fp->eth_q_stats.tx_ofld_frames_csum_udp++;
4881 return (l4_off + sizeof(struct udphdr)); /* entire header length */
4882 } else {
4883 /* XXX error stat ??? */
4884 return (0);
4885 }
4886}
4887
4888static uint8_t
4889bxe_set_pbd_csum(struct bxe_fastpath *fp,
4890 struct mbuf *m,
4891 struct eth_tx_parse_bd_e1x *pbd)
4892{
4893 struct ether_vlan_header *eh = NULL;
4894 struct ip *ip4 = NULL;
4895 struct ip6_hdr *ip6 = NULL;
4896 caddr_t ip = NULL;
4897 struct tcphdr *th = NULL;
4898 struct udphdr *uh = NULL;
4899 int e_hlen, ip_hlen;
4900 uint16_t proto;
4901 uint8_t hlen;
4902 uint16_t tmp_csum;
4903 uint32_t *tmp_uh;
4904
4905 /* get the Ethernet header */
4906 eh = mtod(m, struct ether_vlan_header *);
4907
4908 /* handle VLAN encapsulation if present */
4909 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
4910 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
4911 proto = ntohs(eh->evl_proto);
4912 } else {
4913 e_hlen = ETHER_HDR_LEN;
4914 proto = ntohs(eh->evl_encap_proto);
4915 }
4916
4917 switch (proto) {
4918 case ETHERTYPE_IP:
4919 /* get the IP header, if mbuf len < 20 then header in next mbuf */
4920 ip4 = (m->m_len < sizeof(struct ip)) ?
4921 (struct ip *)m->m_next->m_data :
4922 (struct ip *)(m->m_data + e_hlen);
4923 /* ip_hl is number of 32-bit words */
4924 ip_hlen = (ip4->ip_hl << 1);
4925 ip = (caddr_t)ip4;
4926 break;
4927 case ETHERTYPE_IPV6:
4928 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
4929 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
4930 (struct ip6_hdr *)m->m_next->m_data :
4931 (struct ip6_hdr *)(m->m_data + e_hlen);
4932 /* XXX cannot support offload with IPv6 extensions */
4933 ip_hlen = (sizeof(struct ip6_hdr) >> 1);
4934 ip = (caddr_t)ip6;
4935 break;
4936 default:
4937 /* We can't offload in this case... */
4938 /* XXX error stat ??? */
4939 return (0);
4940 }
4941
4942 hlen = (e_hlen >> 1);
4943
4944 /* note that rest of global_data is indirectly zeroed here */
4945 if (m->m_flags & M_VLANTAG) {
4946 pbd->global_data =
4947 htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
4948 } else {
4949 pbd->global_data = htole16(hlen);
4950 }
4951
4952 pbd->ip_hlen_w = ip_hlen;
4953
4954 hlen += pbd->ip_hlen_w;
4955
4956 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
4957
4958 if (m->m_pkthdr.csum_flags & (CSUM_TCP |
4959 CSUM_TSO |
4960 CSUM_TCP_IPV6)) {
4961 th = (struct tcphdr *)(ip + (ip_hlen << 1));
4962 /* th_off is number of 32-bit words */
4963 hlen += (uint16_t)(th->th_off << 1);
4964 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
4965 CSUM_UDP_IPV6)) {
4966 uh = (struct udphdr *)(ip + (ip_hlen << 1));
4967 hlen += (sizeof(struct udphdr) / 2);
4968 } else {
4969 /* valid case as only CSUM_IP was set */
4970 return (0);
4971 }
4972
4973 pbd->total_hlen_w = htole16(hlen);
4974
4975 if (m->m_pkthdr.csum_flags & (CSUM_TCP |
4976 CSUM_TSO |
4977 CSUM_TCP_IPV6)) {
4978 fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
4979 pbd->tcp_pseudo_csum = ntohs(th->th_sum);
4980 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
4981 CSUM_UDP_IPV6)) {
4982 fp->eth_q_stats.tx_ofld_frames_csum_udp++;
4983
4984 /*
4985 * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP
4986 * checksums and does not know anything about the UDP header and where
4987 * the checksum field is located. It only knows about TCP. Therefore
4988 * we "lie" to the hardware for outgoing UDP packets w/ checksum
4989 * offload. Since the checksum field offset for TCP is 16 bytes and
4990 * for UDP it is 6 bytes we pass a pointer to the hardware that is 10
4991 * bytes less than the start of the UDP header. This allows the
4992 * hardware to write the checksum in the correct spot. But the
4993 * hardware will compute a checksum which includes the last 10 bytes
4994 * of the IP header. To correct this we tweak the stack computed
4995 * pseudo checksum by folding in the calculation of the inverse
4996 * checksum for those final 10 bytes of the IP header. This allows
4997 * the correct checksum to be computed by the hardware.
4998 */
4999
5000 /* set pointer 10 bytes before UDP header */
5001 tmp_uh = (uint32_t *)((uint8_t *)uh - 10);
5002
5003 /* calculate a pseudo header checksum over the first 10 bytes */
5004 tmp_csum = in_pseudo(*tmp_uh,
5005 *(tmp_uh + 1),
5006 *(uint16_t *)(tmp_uh + 2));
5007
5008 pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum));
5009 }
5010
5011 return (hlen * 2); /* entire header length, number of bytes */
5012}
5013
5014static void
5015bxe_set_pbd_lso_e2(struct mbuf *m,
5016 uint32_t *parsing_data)
5017{
5018 *parsing_data |= ((m->m_pkthdr.tso_segsz <<
5019 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
5020 ETH_TX_PARSE_BD_E2_LSO_MSS);
5021
5022 /* XXX test for IPv6 with extension header... */
5023}
5024
5025static void
5026bxe_set_pbd_lso(struct mbuf *m,
5027 struct eth_tx_parse_bd_e1x *pbd)
5028{
5029 struct ether_vlan_header *eh = NULL;
5030 struct ip *ip = NULL;
5031 struct tcphdr *th = NULL;
5032 int e_hlen;
5033
5034 /* get the Ethernet header */
5035 eh = mtod(m, struct ether_vlan_header *);
5036
5037 /* handle VLAN encapsulation if present */
5038 e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ?
5039 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN;
5040
5041 /* get the IP and TCP header, with LSO entire header in first mbuf */
5042 /* XXX assuming IPv4 */
5043 ip = (struct ip *)(m->m_data + e_hlen);
5044 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
5045
5046 pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz);
5047 pbd->tcp_send_seq = ntohl(th->th_seq);
5048 pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff);
5049
5050#if 1
5051 /* XXX IPv4 */
5052 pbd->ip_id = ntohs(ip->ip_id);
5053 pbd->tcp_pseudo_csum =
5054 ntohs(in_pseudo(ip->ip_src.s_addr,
5055 ip->ip_dst.s_addr,
5056 htons(IPPROTO_TCP)));
5057#else
5058 /* XXX IPv6 */
5059 pbd->tcp_pseudo_csum =
5060 ntohs(in_pseudo(&ip6->ip6_src,
5061 &ip6->ip6_dst,
5062 htons(IPPROTO_TCP)));
5063#endif
5064
5065 pbd->global_data |=
5066 htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
5067}
5068
5069/*
5070 * Encapsulte an mbuf cluster into the tx bd chain and makes the memory
5071 * visible to the controller.
5072 *
5073 * If an mbuf is submitted to this routine and cannot be given to the
5074 * controller (e.g. it has too many fragments) then the function may free
5075 * the mbuf and return to the caller.
5076 *
5077 * Returns:
5078 * 0 = Success, !0 = Failure
5079 * Note the side effect that an mbuf may be freed if it causes a problem.
5080 */
5081static int
5082bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head)
5083{
5084 bus_dma_segment_t segs[32];
5085 struct mbuf *m0;
5086 struct bxe_sw_tx_bd *tx_buf;
5087 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
5088 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
5089 /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */
5090 struct eth_tx_bd *tx_data_bd;
5091 struct eth_tx_bd *tx_total_pkt_size_bd;
5092 struct eth_tx_start_bd *tx_start_bd;
5093 uint16_t bd_prod, pkt_prod, total_pkt_size;
5094 uint8_t mac_type;
5095 int defragged, error, nsegs, rc, nbds, vlan_off, ovlan;
5096 struct bxe_softc *sc;
5097 uint16_t tx_bd_avail;
5098 struct ether_vlan_header *eh;
5099 uint32_t pbd_e2_parsing_data = 0;
5100 uint8_t hlen = 0;
5101 int tmp_bd;
5102 int i;
5103
5104 sc = fp->sc;
5105
5106#if __FreeBSD_version >= 800000
5107 M_ASSERTPKTHDR(*m_head);
5108#endif /* #if __FreeBSD_version >= 800000 */
5109
5110 m0 = *m_head;
5111 rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0;
5112 tx_start_bd = NULL;
5113 tx_data_bd = NULL;
5114 tx_total_pkt_size_bd = NULL;
5115
5116 /* get the H/W pointer for packets and BDs */
5117 pkt_prod = fp->tx_pkt_prod;
5118 bd_prod = fp->tx_bd_prod;
5119
5120 mac_type = UNICAST_ADDRESS;
5121
5122 /* map the mbuf into the next open DMAable memory */
5123 tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)];
5124 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5125 tx_buf->m_map, m0,
5126 segs, &nsegs, BUS_DMA_NOWAIT);
5127
5128 /* mapping errors */
5129 if(__predict_false(error != 0)) {
5130 fp->eth_q_stats.tx_dma_mapping_failure++;
5131 if (error == ENOMEM) {
5132 /* resource issue, try again later */
5133 rc = ENOMEM;
5134 } else if (error == EFBIG) {
5135 /* possibly recoverable with defragmentation */
5136 fp->eth_q_stats.mbuf_defrag_attempts++;
5137 m0 = m_defrag(*m_head, M_NOWAIT);
5138 if (m0 == NULL) {
5139 fp->eth_q_stats.mbuf_defrag_failures++;
5140 rc = ENOBUFS;
5141 } else {
5142 /* defrag successful, try mapping again */
5143 *m_head = m0;
5144 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5145 tx_buf->m_map, m0,
5146 segs, &nsegs, BUS_DMA_NOWAIT);
5147 if (error) {
5148 fp->eth_q_stats.tx_dma_mapping_failure++;
5149 rc = error;
5150 }
5151 }
5152 } else {
5153 /* unknown, unrecoverable mapping error */
5154 BLOGE(sc, "Unknown TX mapping error rc=%d\n", error);
5155 bxe_dump_mbuf(sc, m0, FALSE);
5156 rc = error;
5157 }
5158
5159 goto bxe_tx_encap_continue;
5160 }
5161
5162 tx_bd_avail = bxe_tx_avail(sc, fp);
5163
5164 /* make sure there is enough room in the send queue */
5165 if (__predict_false(tx_bd_avail < (nsegs + 2))) {
5166 /* Recoverable, try again later. */
5167 fp->eth_q_stats.tx_hw_queue_full++;
5168 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5169 rc = ENOMEM;
5170 goto bxe_tx_encap_continue;
5171 }
5172
5173 /* capture the current H/W TX chain high watermark */
5174 if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth <
5175 (TX_BD_USABLE - tx_bd_avail))) {
5176 fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail);
5177 }
5178
5179 /* make sure it fits in the packet window */
5180 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5181 /*
5182 * The mbuf may be to big for the controller to handle. If the frame
5183 * is a TSO frame we'll need to do an additional check.
5184 */
5185 if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5186 if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) {
5187 goto bxe_tx_encap_continue; /* OK to send */
5188 } else {
5189 fp->eth_q_stats.tx_window_violation_tso++;
5190 }
5191 } else {
5192 fp->eth_q_stats.tx_window_violation_std++;
5193 }
5194
5195 /* lets try to defragment this mbuf and remap it */
5196 fp->eth_q_stats.mbuf_defrag_attempts++;
5197 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5198
5199 m0 = m_defrag(*m_head, M_NOWAIT);
5200 if (m0 == NULL) {
5201 fp->eth_q_stats.mbuf_defrag_failures++;
5202 /* Ugh, just drop the frame... :( */
5203 rc = ENOBUFS;
5204 } else {
5205 /* defrag successful, try mapping again */
5206 *m_head = m0;
5207 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5208 tx_buf->m_map, m0,
5209 segs, &nsegs, BUS_DMA_NOWAIT);
5210 if (error) {
5211 fp->eth_q_stats.tx_dma_mapping_failure++;
5212 /* No sense in trying to defrag/copy chain, drop it. :( */
5213 rc = error;
5214 }
5215 else {
5216 /* if the chain is still too long then drop it */
5217 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5218 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5219 rc = ENODEV;
5220 }
5221 }
5222 }
5223 }
5224
5225bxe_tx_encap_continue:
5226
5227 /* Check for errors */
5228 if (rc) {
5229 if (rc == ENOMEM) {
5230 /* recoverable try again later */
5231 } else {
5232 fp->eth_q_stats.tx_soft_errors++;
5233 fp->eth_q_stats.mbuf_alloc_tx--;
5234 m_freem(*m_head);
5235 *m_head = NULL;
5236 }
5237
5238 return (rc);
5239 }
5240
5241 /* set flag according to packet type (UNICAST_ADDRESS is default) */
5242 if (m0->m_flags & M_BCAST) {
5243 mac_type = BROADCAST_ADDRESS;
5244 } else if (m0->m_flags & M_MCAST) {
5245 mac_type = MULTICAST_ADDRESS;
5246 }
5247
5248 /* store the mbuf into the mbuf ring */
5249 tx_buf->m = m0;
5250 tx_buf->first_bd = fp->tx_bd_prod;
5251 tx_buf->flags = 0;
5252
5253 /* prepare the first transmit (start) BD for the mbuf */
5254 tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd;
5255
5256 BLOGD(sc, DBG_TX,
5257 "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n",
5258 pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd);
5259
5260 tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
5261 tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
5262 tx_start_bd->nbytes = htole16(segs[0].ds_len);
5263 total_pkt_size += tx_start_bd->nbytes;
5264 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
5265
5266 tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
5267
5268 /* all frames have at least Start BD + Parsing BD */
5269 nbds = nsegs + 1;
5270 tx_start_bd->nbd = htole16(nbds);
5271
5272 if (m0->m_flags & M_VLANTAG) {
5273 tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag);
5274 tx_start_bd->bd_flags.as_bitfield |=
5275 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
5276 } else {
5277 /* vf tx, start bd must hold the ethertype for fw to enforce it */
5278 if (IS_VF(sc)) {
5279 /* map ethernet header to find type and header length */
5280 eh = mtod(m0, struct ether_vlan_header *);
5281 tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto;
5282 } else {
5283 /* used by FW for packet accounting */
5284 tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod);
5285 }
5286 }
5287
5288 /*
5289 * add a parsing BD from the chain. The parsing BD is always added
5290 * though it is only used for TSO and chksum
5291 */
5292 bd_prod = TX_BD_NEXT(bd_prod);
5293
5294 if (m0->m_pkthdr.csum_flags) {
5295 if (m0->m_pkthdr.csum_flags & CSUM_IP) {
5296 fp->eth_q_stats.tx_ofld_frames_csum_ip++;
5297 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM;
5298 }
5299
5300 if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) {
5301 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 |
5302 ETH_TX_BD_FLAGS_L4_CSUM);
5303 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) {
5304 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 |
5305 ETH_TX_BD_FLAGS_IS_UDP |
5306 ETH_TX_BD_FLAGS_L4_CSUM);
5307 } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) ||
5308 (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
5309 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
5310 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) {
5311 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM |
5312 ETH_TX_BD_FLAGS_IS_UDP);
5313 }
5314 }
5315
5316 if (!CHIP_IS_E1x(sc)) {
5317 pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2;
5318 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
5319
5320 if (m0->m_pkthdr.csum_flags) {
5321 hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data);
5322 }
5323
5324 SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE,
5325 mac_type);
5326 } else {
5327 uint16_t global_data = 0;
5328
5329 pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x;
5330 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
5331
5332 if (m0->m_pkthdr.csum_flags) {
5333 hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x);
5334 }
5335
5336 SET_FLAG(global_data,
5337 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
5338 pbd_e1x->global_data |= htole16(global_data);
5339 }
5340
5341 /* setup the parsing BD with TSO specific info */
5342 if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5343 fp->eth_q_stats.tx_ofld_frames_lso++;
5344 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
5345
5346 if (__predict_false(tx_start_bd->nbytes > hlen)) {
5347 fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++;
5348
5349 /* split the first BD into header/data making the fw job easy */
5350 nbds++;
5351 tx_start_bd->nbd = htole16(nbds);
5352 tx_start_bd->nbytes = htole16(hlen);
5353
5354 bd_prod = TX_BD_NEXT(bd_prod);
5355
5356 /* new transmit BD after the tx_parse_bd */
5357 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5358 tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen));
5359 tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen));
5360 tx_data_bd->nbytes = htole16(segs[0].ds_len - hlen);
5361 if (tx_total_pkt_size_bd == NULL) {
5362 tx_total_pkt_size_bd = tx_data_bd;
5363 }
5364
5365 BLOGD(sc, DBG_TX,
5366 "TSO split header size is %d (%x:%x) nbds %d\n",
5367 le16toh(tx_start_bd->nbytes),
5368 le32toh(tx_start_bd->addr_hi),
5369 le32toh(tx_start_bd->addr_lo),
5370 nbds);
5371 }
5372
5373 if (!CHIP_IS_E1x(sc)) {
5374 bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data);
5375 } else {
5376 bxe_set_pbd_lso(m0, pbd_e1x);
5377 }
5378 }
5379
5380 if (pbd_e2_parsing_data) {
5381 pbd_e2->parsing_data = htole32(pbd_e2_parsing_data);
5382 }
5383
5384 /* prepare remaining BDs, start tx bd contains first seg/frag */
5385 for (i = 1; i < nsegs ; i++) {
5386 bd_prod = TX_BD_NEXT(bd_prod);
5387 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5388 tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr));
5389 tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr));
5390 tx_data_bd->nbytes = htole16(segs[i].ds_len);
5391 if (tx_total_pkt_size_bd == NULL) {
5392 tx_total_pkt_size_bd = tx_data_bd;
5393 }
5394 total_pkt_size += tx_data_bd->nbytes;
5395 }
5396
5397 BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd);
5398
5399 if (tx_total_pkt_size_bd != NULL) {
5400 tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size;
5401 }
5402
5403 if (__predict_false(sc->debug & DBG_TX)) {
5404 tmp_bd = tx_buf->first_bd;
5405 for (i = 0; i < nbds; i++)
5406 {
5407 if (i == 0) {
5408 BLOGD(sc, DBG_TX,
5409 "TX Strt: %p bd=%d nbd=%d vlan=0x%x "
5410 "bd_flags=0x%x hdr_nbds=%d\n",
5411 tx_start_bd,
5412 tmp_bd,
5413 le16toh(tx_start_bd->nbd),
5414 le16toh(tx_start_bd->vlan_or_ethertype),
5415 tx_start_bd->bd_flags.as_bitfield,
5416 (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS));
5417 } else if (i == 1) {
5418 if (pbd_e1x) {
5419 BLOGD(sc, DBG_TX,
5420 "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u "
5421 "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x "
5422 "tcp_seq=%u total_hlen_w=%u\n",
5423 pbd_e1x,
5424 tmp_bd,
5425 pbd_e1x->global_data,
5426 pbd_e1x->ip_hlen_w,
5427 pbd_e1x->ip_id,
5428 pbd_e1x->lso_mss,
5429 pbd_e1x->tcp_flags,
5430 pbd_e1x->tcp_pseudo_csum,
5431 pbd_e1x->tcp_send_seq,
5432 le16toh(pbd_e1x->total_hlen_w));
5433 } else { /* if (pbd_e2) */
5434 BLOGD(sc, DBG_TX,
5435 "-> Parse: %p bd=%d dst=%02x:%02x:%02x "
5436 "src=%02x:%02x:%02x parsing_data=0x%x\n",
5437 pbd_e2,
5438 tmp_bd,
5439 pbd_e2->data.mac_addr.dst_hi,
5440 pbd_e2->data.mac_addr.dst_mid,
5441 pbd_e2->data.mac_addr.dst_lo,
5442 pbd_e2->data.mac_addr.src_hi,
5443 pbd_e2->data.mac_addr.src_mid,
5444 pbd_e2->data.mac_addr.src_lo,
5445 pbd_e2->parsing_data);
5446 }
5447 }
5448
5449 if (i != 1) { /* skip parse db as it doesn't hold data */
5450 tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd;
5451 BLOGD(sc, DBG_TX,
5452 "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n",
5453 tx_data_bd,
5454 tmp_bd,
5455 le16toh(tx_data_bd->nbytes),
5456 le32toh(tx_data_bd->addr_hi),
5457 le32toh(tx_data_bd->addr_lo));
5458 }
5459
5460 tmp_bd = TX_BD_NEXT(tmp_bd);
5461 }
5462 }
5463
5464 BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod);
5465
5466 /* update TX BD producer index value for next TX */
5467 bd_prod = TX_BD_NEXT(bd_prod);
5468
5469 /*
5470 * If the chain of tx_bd's describing this frame is adjacent to or spans
5471 * an eth_tx_next_bd element then we need to increment the nbds value.
5472 */
5473 if (TX_BD_IDX(bd_prod) < nbds) {
5474 nbds++;
5475 }
5476
5477 /* don't allow reordering of writes for nbd and packets */
5478 mb();
5479
5480 fp->tx_db.data.prod += nbds;
5481
5482 /* producer points to the next free tx_bd at this point */
5483 fp->tx_pkt_prod++;
5484 fp->tx_bd_prod = bd_prod;
5485
5486 DOORBELL(sc, fp->index, fp->tx_db.raw);
5487
5488 fp->eth_q_stats.tx_pkts++;
5489
5490 /* Prevent speculative reads from getting ahead of the status block. */
5491 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle,
5492 0, 0, BUS_SPACE_BARRIER_READ);
5493
5494 /* Prevent speculative reads from getting ahead of the doorbell. */
5495 bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle,
5496 0, 0, BUS_SPACE_BARRIER_READ);
5497
5498 return (0);
5499}
5500
5501static void
5502bxe_tx_start_locked(struct bxe_softc *sc,
5503 if_t ifp,
5504 struct bxe_fastpath *fp)
5505{
5506 struct mbuf *m = NULL;
5507 int tx_count = 0;
5508 uint16_t tx_bd_avail;
5509
5510 BXE_FP_TX_LOCK_ASSERT(fp);
5511
5512 /* keep adding entries while there are frames to send */
5513 while (!if_sendq_empty(ifp)) {
5514
5515 /*
5516 * check for any frames to send
5517 * dequeue can still be NULL even if queue is not empty
5518 */
5519 m = if_dequeue(ifp);
5520 if (__predict_false(m == NULL)) {
5521 break;
5522 }
5523
5524 /* the mbuf now belongs to us */
5525 fp->eth_q_stats.mbuf_alloc_tx++;
5526
5527 /*
5528 * Put the frame into the transmit ring. If we don't have room,
5529 * place the mbuf back at the head of the TX queue, set the
5530 * OACTIVE flag, and wait for the NIC to drain the chain.
5531 */
5532 if (__predict_false(bxe_tx_encap(fp, &m))) {
5533 fp->eth_q_stats.tx_encap_failures++;
5534 if (m != NULL) {
5535 /* mark the TX queue as full and return the frame */
5536 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5537 if_sendq_prepend(ifp, m);
5538 fp->eth_q_stats.mbuf_alloc_tx--;
5539 fp->eth_q_stats.tx_queue_xoff++;
5540 }
5541
5542 /* stop looking for more work */
5543 break;
5544 }
5545
5546 /* the frame was enqueued successfully */
5547 tx_count++;
5548
5549 /* send a copy of the frame to any BPF listeners. */
5550 if_etherbpfmtap(ifp, m);
5551
5552 tx_bd_avail = bxe_tx_avail(sc, fp);
5553
5554 /* handle any completions if we're running low */
5555 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5556 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5557 bxe_txeof(sc, fp);
5558 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5559 break;
5560 }
5561 }
5562 }
5563
5564 /* all TX packets were dequeued and/or the tx ring is full */
5565 if (tx_count > 0) {
5566 /* reset the TX watchdog timeout timer */
5567 fp->watchdog_timer = BXE_TX_TIMEOUT;
5568 }
5569}
5570
5571/* Legacy (non-RSS) dispatch routine */
5572static void
5573bxe_tx_start(if_t ifp)
5574{
5575 struct bxe_softc *sc;
5576 struct bxe_fastpath *fp;
5577
5578 sc = if_getsoftc(ifp);
5579
5580 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
5581 BLOGW(sc, "Interface not running, ignoring transmit request\n");
5582 return;
5583 }
5584
5585 if (!sc->link_vars.link_up) {
5586 BLOGW(sc, "Interface link is down, ignoring transmit request\n");
5587 return;
5588 }
5589
5590 fp = &sc->fp[0];
5591
5592 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
5593 fp->eth_q_stats.tx_queue_full_return++;
5594 return;
5595 }
5596
5597 BXE_FP_TX_LOCK(fp);
5598 bxe_tx_start_locked(sc, ifp, fp);
5599 BXE_FP_TX_UNLOCK(fp);
5600}
5601
5602#if __FreeBSD_version >= 800000
5603
5604static int
5605bxe_tx_mq_start_locked(struct bxe_softc *sc,
5606 if_t ifp,
5607 struct bxe_fastpath *fp,
5608 struct mbuf *m)
5609{
5610 struct buf_ring *tx_br = fp->tx_br;
5611 struct mbuf *next;
5612 int depth, rc, tx_count;
5613 uint16_t tx_bd_avail;
5614
5615 rc = tx_count = 0;
5616
5617 BXE_FP_TX_LOCK_ASSERT(fp);
5618
5619 if (!tx_br) {
5620 BLOGE(sc, "Multiqueue TX and no buf_ring!\n");
5621 return (EINVAL);
5622 }
5623
5624 if (!sc->link_vars.link_up ||
5625 (if_getdrvflags(ifp) &
5626 (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING) {
5627 if (m != NULL)
5628 rc = drbr_enqueue(ifp, tx_br, m);
5629 goto bxe_tx_mq_start_locked_exit;
5630 }
5631
5632 /* fetch the depth of the driver queue */
5633 depth = drbr_inuse_drv(ifp, tx_br);
5634 if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) {
5635 fp->eth_q_stats.tx_max_drbr_queue_depth = depth;
5636 }
5637
5638 if (m == NULL) {
5639 /* no new work, check for pending frames */
5640 next = drbr_dequeue_drv(ifp, tx_br);
5641 } else if (drbr_needs_enqueue_drv(ifp, tx_br)) {
5642 /* have both new and pending work, maintain packet order */
5643 rc = drbr_enqueue(ifp, tx_br, m);
5644 if (rc != 0) {
5645 fp->eth_q_stats.tx_soft_errors++;
5646 goto bxe_tx_mq_start_locked_exit;
5647 }
5648 next = drbr_dequeue_drv(ifp, tx_br);
5649 } else {
5650 /* new work only and nothing pending */
5651 next = m;
5652 }
5653
5654 /* keep adding entries while there are frames to send */
5655 while (next != NULL) {
5656
5657 /* the mbuf now belongs to us */
5658 fp->eth_q_stats.mbuf_alloc_tx++;
5659
5660 /*
5661 * Put the frame into the transmit ring. If we don't have room,
5662 * place the mbuf back at the head of the TX queue, set the
5663 * OACTIVE flag, and wait for the NIC to drain the chain.
5664 */
5665 rc = bxe_tx_encap(fp, &next);
5666 if (__predict_false(rc != 0)) {
5667 fp->eth_q_stats.tx_encap_failures++;
5668 if (next != NULL) {
5669 /* mark the TX queue as full and save the frame */
5670 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5671 /* XXX this may reorder the frame */
5672 rc = drbr_enqueue(ifp, tx_br, next);
5673 fp->eth_q_stats.mbuf_alloc_tx--;
5674 fp->eth_q_stats.tx_frames_deferred++;
5675 }
5676
5677 /* stop looking for more work */
5678 break;
5679 }
5680
5681 /* the transmit frame was enqueued successfully */
5682 tx_count++;
5683
5684 /* send a copy of the frame to any BPF listeners */
5685 if_etherbpfmtap(ifp, next);
5686
5687 tx_bd_avail = bxe_tx_avail(sc, fp);
5688
5689 /* handle any completions if we're running low */
5690 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5691 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5692 bxe_txeof(sc, fp);
5693 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5694 break;
5695 }
5696 }
5697
5698 next = drbr_dequeue_drv(ifp, tx_br);
5699 }
5700
5701 /* all TX packets were dequeued and/or the tx ring is full */
5702 if (tx_count > 0) {
5703 /* reset the TX watchdog timeout timer */
5704 fp->watchdog_timer = BXE_TX_TIMEOUT;
5705 }
5706
5707bxe_tx_mq_start_locked_exit:
5708
5709 return (rc);
5710}
5711
5712/* Multiqueue (TSS) dispatch routine. */
5713static int
5714bxe_tx_mq_start(struct ifnet *ifp,
5715 struct mbuf *m)
5716{
5717 struct bxe_softc *sc = if_getsoftc(ifp);
5718 struct bxe_fastpath *fp;
5719 int fp_index, rc;
5720
5721 fp_index = 0; /* default is the first queue */
5722
5723 /* check if flowid is set */
5724
5725 if (BXE_VALID_FLOWID(m))
5726 fp_index = (m->m_pkthdr.flowid % sc->num_queues);
5727
5728 fp = &sc->fp[fp_index];
5729
5730 if (BXE_FP_TX_TRYLOCK(fp)) {
5731 rc = bxe_tx_mq_start_locked(sc, ifp, fp, m);
5732 BXE_FP_TX_UNLOCK(fp);
5733 } else
5734 rc = drbr_enqueue(ifp, fp->tx_br, m);
5735
5736 return (rc);
5737}
5738
5739static void
5740bxe_mq_flush(struct ifnet *ifp)
5741{
5742 struct bxe_softc *sc = if_getsoftc(ifp);
5743 struct bxe_fastpath *fp;
5744 struct mbuf *m;
5745 int i;
5746
5747 for (i = 0; i < sc->num_queues; i++) {
5748 fp = &sc->fp[i];
5749
5750 if (fp->state != BXE_FP_STATE_OPEN) {
5751 BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n",
5752 fp->index, fp->state);
5753 continue;
5754 }
5755
5756 if (fp->tx_br != NULL) {
5757 BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index);
5758 BXE_FP_TX_LOCK(fp);
5759 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
5760 m_freem(m);
5761 }
5762 BXE_FP_TX_UNLOCK(fp);
5763 }
5764 }
5765
5766 if_qflush(ifp);
5767}
5768
5769#endif /* FreeBSD_version >= 800000 */
5770
5771static uint16_t
5772bxe_cid_ilt_lines(struct bxe_softc *sc)
5773{
5774 if (IS_SRIOV(sc)) {
5775 return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS);
5776 }
5777 return (L2_ILT_LINES(sc));
5778}
5779
5780static void
5781bxe_ilt_set_info(struct bxe_softc *sc)
5782{
5783 struct ilt_client_info *ilt_client;
5784 struct ecore_ilt *ilt = sc->ilt;
5785 uint16_t line = 0;
5786
5787 ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
5788 BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line);
5789
5790 /* CDU */
5791 ilt_client = &ilt->clients[ILT_CLIENT_CDU];
5792 ilt_client->client_num = ILT_CLIENT_CDU;
5793 ilt_client->page_size = CDU_ILT_PAGE_SZ;
5794 ilt_client->flags = ILT_CLIENT_SKIP_MEM;
5795 ilt_client->start = line;
5796 line += bxe_cid_ilt_lines(sc);
5797
5798 if (CNIC_SUPPORT(sc)) {
5799 line += CNIC_ILT_LINES;
5800 }
5801
5802 ilt_client->end = (line - 1);
5803
5804 BLOGD(sc, DBG_LOAD,
5805 "ilt client[CDU]: start %d, end %d, "
5806 "psz 0x%x, flags 0x%x, hw psz %d\n",
5807 ilt_client->start, ilt_client->end,
5808 ilt_client->page_size,
5809 ilt_client->flags,
5810 ilog2(ilt_client->page_size >> 12));
5811
5812 /* QM */
5813 if (QM_INIT(sc->qm_cid_count)) {
5814 ilt_client = &ilt->clients[ILT_CLIENT_QM];
5815 ilt_client->client_num = ILT_CLIENT_QM;
5816 ilt_client->page_size = QM_ILT_PAGE_SZ;
5817 ilt_client->flags = 0;
5818 ilt_client->start = line;
5819
5820 /* 4 bytes for each cid */
5821 line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
5822 QM_ILT_PAGE_SZ);
5823
5824 ilt_client->end = (line - 1);
5825
5826 BLOGD(sc, DBG_LOAD,
5827 "ilt client[QM]: start %d, end %d, "
5828 "psz 0x%x, flags 0x%x, hw psz %d\n",
5829 ilt_client->start, ilt_client->end,
5830 ilt_client->page_size, ilt_client->flags,
5831 ilog2(ilt_client->page_size >> 12));
5832 }
5833
5834 if (CNIC_SUPPORT(sc)) {
5835 /* SRC */
5836 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
5837 ilt_client->client_num = ILT_CLIENT_SRC;
5838 ilt_client->page_size = SRC_ILT_PAGE_SZ;
5839 ilt_client->flags = 0;
5840 ilt_client->start = line;
5841 line += SRC_ILT_LINES;
5842 ilt_client->end = (line - 1);
5843
5844 BLOGD(sc, DBG_LOAD,
5845 "ilt client[SRC]: start %d, end %d, "
5846 "psz 0x%x, flags 0x%x, hw psz %d\n",
5847 ilt_client->start, ilt_client->end,
5848 ilt_client->page_size, ilt_client->flags,
5849 ilog2(ilt_client->page_size >> 12));
5850
5851 /* TM */
5852 ilt_client = &ilt->clients[ILT_CLIENT_TM];
5853 ilt_client->client_num = ILT_CLIENT_TM;
5854 ilt_client->page_size = TM_ILT_PAGE_SZ;
5855 ilt_client->flags = 0;
5856 ilt_client->start = line;
5857 line += TM_ILT_LINES;
5858 ilt_client->end = (line - 1);
5859
5860 BLOGD(sc, DBG_LOAD,
5861 "ilt client[TM]: start %d, end %d, "
5862 "psz 0x%x, flags 0x%x, hw psz %d\n",
5863 ilt_client->start, ilt_client->end,
5864 ilt_client->page_size, ilt_client->flags,
5865 ilog2(ilt_client->page_size >> 12));
5866 }
5867
5868 KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!"));
5869}
5870
5871static void
5872bxe_set_fp_rx_buf_size(struct bxe_softc *sc)
5873{
5874 int i;
5875 uint32_t rx_buf_size;
5876
5877 rx_buf_size = (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu);
5878
5879 for (i = 0; i < sc->num_queues; i++) {
5880 if(rx_buf_size <= MCLBYTES){
5881 sc->fp[i].rx_buf_size = rx_buf_size;
5882 sc->fp[i].mbuf_alloc_size = MCLBYTES;
5883 }else if (rx_buf_size <= MJUMPAGESIZE){
5884 sc->fp[i].rx_buf_size = rx_buf_size;
5885 sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
5886 }else if (rx_buf_size <= (MJUMPAGESIZE + MCLBYTES)){
5887 sc->fp[i].rx_buf_size = MCLBYTES;
5888 sc->fp[i].mbuf_alloc_size = MCLBYTES;
5889 }else if (rx_buf_size <= (2 * MJUMPAGESIZE)){
5890 sc->fp[i].rx_buf_size = MJUMPAGESIZE;
5891 sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
5892 }else {
5893 sc->fp[i].rx_buf_size = MCLBYTES;
5894 sc->fp[i].mbuf_alloc_size = MCLBYTES;
5895 }
5896 }
5897}
5898
5899static int
5900bxe_alloc_ilt_mem(struct bxe_softc *sc)
5901{
5902 int rc = 0;
5903
5904 if ((sc->ilt =
5905 (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt),
5906 M_BXE_ILT,
5907 (M_NOWAIT | M_ZERO))) == NULL) {
5908 rc = 1;
5909 }
5910
5911 return (rc);
5912}
5913
5914static int
5915bxe_alloc_ilt_lines_mem(struct bxe_softc *sc)
5916{
5917 int rc = 0;
5918
5919 if ((sc->ilt->lines =
5920 (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES),
5921 M_BXE_ILT,
5922 (M_NOWAIT | M_ZERO))) == NULL) {
5923 rc = 1;
5924 }
5925
5926 return (rc);
5927}
5928
5929static void
5930bxe_free_ilt_mem(struct bxe_softc *sc)
5931{
5932 if (sc->ilt != NULL) {
5933 free(sc->ilt, M_BXE_ILT);
5934 sc->ilt = NULL;
5935 }
5936}
5937
5938static void
5939bxe_free_ilt_lines_mem(struct bxe_softc *sc)
5940{
5941 if (sc->ilt->lines != NULL) {
5942 free(sc->ilt->lines, M_BXE_ILT);
5943 sc->ilt->lines = NULL;
5944 }
5945}
5946
5947static void
5948bxe_free_mem(struct bxe_softc *sc)
5949{
5950 int i;
5951
5952 for (i = 0; i < L2_ILT_LINES(sc); i++) {
5953 bxe_dma_free(sc, &sc->context[i].vcxt_dma);
5954 sc->context[i].vcxt = NULL;
5955 sc->context[i].size = 0;
5956 }
5957
5958 ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
5959
5960 bxe_free_ilt_lines_mem(sc);
5961
5962}
5963
5964static int
5965bxe_alloc_mem(struct bxe_softc *sc)
5966{
5967 int context_size;
5968 int allocated;
5969 int i;
5970
5971 /*
5972 * Allocate memory for CDU context:
5973 * This memory is allocated separately and not in the generic ILT
5974 * functions because CDU differs in few aspects:
5975 * 1. There can be multiple entities allocating memory for context -
5976 * regular L2, CNIC, and SRIOV drivers. Each separately controls
5977 * its own ILT lines.
5978 * 2. Since CDU page-size is not a single 4KB page (which is the case
5979 * for the other ILT clients), to be efficient we want to support
5980 * allocation of sub-page-size in the last entry.
5981 * 3. Context pointers are used by the driver to pass to FW / update
5982 * the context (for the other ILT clients the pointers are used just to
5983 * free the memory during unload).
5984 */
5985 context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc));
5986 for (i = 0, allocated = 0; allocated < context_size; i++) {
5987 sc->context[i].size = min(CDU_ILT_PAGE_SZ,
5988 (context_size - allocated));
5989
5990 if (bxe_dma_alloc(sc, sc->context[i].size,
5991 &sc->context[i].vcxt_dma,
5992 "cdu context") != 0) {
5993 bxe_free_mem(sc);
5994 return (-1);
5995 }
5996
5997 sc->context[i].vcxt =
5998 (union cdu_context *)sc->context[i].vcxt_dma.vaddr;
5999
6000 allocated += sc->context[i].size;
6001 }
6002
6003 bxe_alloc_ilt_lines_mem(sc);
6004
6005 BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n",
6006 sc->ilt, sc->ilt->start_line, sc->ilt->lines);
6007 {
6008 for (i = 0; i < 4; i++) {
6009 BLOGD(sc, DBG_LOAD,
6010 "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n",
6011 i,
6012 sc->ilt->clients[i].page_size,
6013 sc->ilt->clients[i].start,
6014 sc->ilt->clients[i].end,
6015 sc->ilt->clients[i].client_num,
6016 sc->ilt->clients[i].flags);
6017 }
6018 }
6019 if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
6020 BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n");
6021 bxe_free_mem(sc);
6022 return (-1);
6023 }
6024
6025 return (0);
6026}
6027
6028static void
6029bxe_free_rx_bd_chain(struct bxe_fastpath *fp)
6030{
6031 struct bxe_softc *sc;
6032 int i;
6033
6034 sc = fp->sc;
6035
6036 if (fp->rx_mbuf_tag == NULL) {
6037 return;
6038 }
6039
6040 /* free all mbufs and unload all maps */
6041 for (i = 0; i < RX_BD_TOTAL; i++) {
6042 if (fp->rx_mbuf_chain[i].m_map != NULL) {
6043 bus_dmamap_sync(fp->rx_mbuf_tag,
6044 fp->rx_mbuf_chain[i].m_map,
6045 BUS_DMASYNC_POSTREAD);
6046 bus_dmamap_unload(fp->rx_mbuf_tag,
6047 fp->rx_mbuf_chain[i].m_map);
6048 }
6049
6050 if (fp->rx_mbuf_chain[i].m != NULL) {
6051 m_freem(fp->rx_mbuf_chain[i].m);
6052 fp->rx_mbuf_chain[i].m = NULL;
6053 fp->eth_q_stats.mbuf_alloc_rx--;
6054 }
6055 }
6056}
6057
6058static void
6059bxe_free_tpa_pool(struct bxe_fastpath *fp)
6060{
6061 struct bxe_softc *sc;
6062 int i, max_agg_queues;
6063
6064 sc = fp->sc;
6065
6066 if (fp->rx_mbuf_tag == NULL) {
6067 return;
6068 }
6069
6070 max_agg_queues = MAX_AGG_QS(sc);
6071
6072 /* release all mbufs and unload all DMA maps in the TPA pool */
6073 for (i = 0; i < max_agg_queues; i++) {
6074 if (fp->rx_tpa_info[i].bd.m_map != NULL) {
6075 bus_dmamap_sync(fp->rx_mbuf_tag,
6076 fp->rx_tpa_info[i].bd.m_map,
6077 BUS_DMASYNC_POSTREAD);
6078 bus_dmamap_unload(fp->rx_mbuf_tag,
6079 fp->rx_tpa_info[i].bd.m_map);
6080 }
6081
6082 if (fp->rx_tpa_info[i].bd.m != NULL) {
6083 m_freem(fp->rx_tpa_info[i].bd.m);
6084 fp->rx_tpa_info[i].bd.m = NULL;
6085 fp->eth_q_stats.mbuf_alloc_tpa--;
6086 }
6087 }
6088}
6089
6090static void
6091bxe_free_sge_chain(struct bxe_fastpath *fp)
6092{
6093 struct bxe_softc *sc;
6094 int i;
6095
6096 sc = fp->sc;
6097
6098 if (fp->rx_sge_mbuf_tag == NULL) {
6099 return;
6100 }
6101
6102 /* rree all mbufs and unload all maps */
6103 for (i = 0; i < RX_SGE_TOTAL; i++) {
6104 if (fp->rx_sge_mbuf_chain[i].m_map != NULL) {
6105 bus_dmamap_sync(fp->rx_sge_mbuf_tag,
6106 fp->rx_sge_mbuf_chain[i].m_map,
6107 BUS_DMASYNC_POSTREAD);
6108 bus_dmamap_unload(fp->rx_sge_mbuf_tag,
6109 fp->rx_sge_mbuf_chain[i].m_map);
6110 }
6111
6112 if (fp->rx_sge_mbuf_chain[i].m != NULL) {
6113 m_freem(fp->rx_sge_mbuf_chain[i].m);
6114 fp->rx_sge_mbuf_chain[i].m = NULL;
6115 fp->eth_q_stats.mbuf_alloc_sge--;
6116 }
6117 }
6118}
6119
6120static void
6121bxe_free_fp_buffers(struct bxe_softc *sc)
6122{
6123 struct bxe_fastpath *fp;
6124 int i;
6125
6126 for (i = 0; i < sc->num_queues; i++) {
6127 fp = &sc->fp[i];
6128
6129#if __FreeBSD_version >= 800000
6130 if (fp->tx_br != NULL) {
6131 /* just in case bxe_mq_flush() wasn't called */
6132 if (mtx_initialized(&fp->tx_mtx)) {
6133 struct mbuf *m;
6134
6135 BXE_FP_TX_LOCK(fp);
6136 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL)
6137 m_freem(m);
6138 BXE_FP_TX_UNLOCK(fp);
6139 }
6140 }
6141#endif
6142
6143 /* free all RX buffers */
6144 bxe_free_rx_bd_chain(fp);
6145 bxe_free_tpa_pool(fp);
6146 bxe_free_sge_chain(fp);
6147
6148 if (fp->eth_q_stats.mbuf_alloc_rx != 0) {
6149 BLOGE(sc, "failed to claim all rx mbufs (%d left)\n",
6150 fp->eth_q_stats.mbuf_alloc_rx);
6151 }
6152
6153 if (fp->eth_q_stats.mbuf_alloc_sge != 0) {
6154 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6155 fp->eth_q_stats.mbuf_alloc_sge);
6156 }
6157
6158 if (fp->eth_q_stats.mbuf_alloc_tpa != 0) {
6159 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6160 fp->eth_q_stats.mbuf_alloc_tpa);
6161 }
6162
6163 if (fp->eth_q_stats.mbuf_alloc_tx != 0) {
6164 BLOGE(sc, "failed to release tx mbufs (%d left)\n",
6165 fp->eth_q_stats.mbuf_alloc_tx);
6166 }
6167
6168 /* XXX verify all mbufs were reclaimed */
6169 }
6170}
6171
6172static int
6173bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
6174 uint16_t prev_index,
6175 uint16_t index)
6176{
6177 struct bxe_sw_rx_bd *rx_buf;
6178 struct eth_rx_bd *rx_bd;
6179 bus_dma_segment_t segs[1];
6180 bus_dmamap_t map;
6181 struct mbuf *m;
6182 int nsegs, rc;
6183
6184 rc = 0;
6185
6186 /* allocate the new RX BD mbuf */
6187 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6188 if (__predict_false(m == NULL)) {
6189 fp->eth_q_stats.mbuf_rx_bd_alloc_failed++;
6190 return (ENOBUFS);
6191 }
6192
6193 fp->eth_q_stats.mbuf_alloc_rx++;
6194
6195 /* initialize the mbuf buffer length */
6196 m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6197
6198 /* map the mbuf into non-paged pool */
6199 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6200 fp->rx_mbuf_spare_map,
6201 m, segs, &nsegs, BUS_DMA_NOWAIT);
6202 if (__predict_false(rc != 0)) {
6203 fp->eth_q_stats.mbuf_rx_bd_mapping_failed++;
6204 m_freem(m);
6205 fp->eth_q_stats.mbuf_alloc_rx--;
6206 return (rc);
6207 }
6208
6209 /* all mbufs must map to a single segment */
6210 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6211
6212 /* release any existing RX BD mbuf mappings */
6213
6214 if (prev_index != index) {
6215 rx_buf = &fp->rx_mbuf_chain[prev_index];
6216
6217 if (rx_buf->m_map != NULL) {
6218 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6219 BUS_DMASYNC_POSTREAD);
6220 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6221 }
6222
6223 /*
6224 * We only get here from bxe_rxeof() when the maximum number
6225 * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already
6226 * holds the mbuf in the prev_index so it's OK to NULL it out
6227 * here without concern of a memory leak.
6228 */
6229 fp->rx_mbuf_chain[prev_index].m = NULL;
6230 }
6231
6232 rx_buf = &fp->rx_mbuf_chain[index];
6233
6234 if (rx_buf->m_map != NULL) {
6235 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6236 BUS_DMASYNC_POSTREAD);
6237 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6238 }
6239
6240 /* save the mbuf and mapping info for a future packet */
6241 map = (prev_index != index) ?
6242 fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map;
6243 rx_buf->m_map = fp->rx_mbuf_spare_map;
6244 fp->rx_mbuf_spare_map = map;
6245 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6246 BUS_DMASYNC_PREREAD);
6247 rx_buf->m = m;
6248
6249 rx_bd = &fp->rx_chain[index];
6250 rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6251 rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6252
6253 return (rc);
6254}
6255
6256static int
6257bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
6258 int queue)
6259{
6260 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
6261 bus_dma_segment_t segs[1];
6262 bus_dmamap_t map;
6263 struct mbuf *m;
6264 int nsegs;
6265 int rc = 0;
6266
6267 /* allocate the new TPA mbuf */
6268 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6269 if (__predict_false(m == NULL)) {
6270 fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++;
6271 return (ENOBUFS);
6272 }
6273
6274 fp->eth_q_stats.mbuf_alloc_tpa++;
6275
6276 /* initialize the mbuf buffer length */
6277 m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6278
6279 /* map the mbuf into non-paged pool */
6280 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6281 fp->rx_tpa_info_mbuf_spare_map,
6282 m, segs, &nsegs, BUS_DMA_NOWAIT);
6283 if (__predict_false(rc != 0)) {
6284 fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++;
6285 m_free(m);
6286 fp->eth_q_stats.mbuf_alloc_tpa--;
6287 return (rc);
6288 }
6289
6290 /* all mbufs must map to a single segment */
6291 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6292
6293 /* release any existing TPA mbuf mapping */
6294 if (tpa_info->bd.m_map != NULL) {
6295 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6296 BUS_DMASYNC_POSTREAD);
6297 bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map);
6298 }
6299
6300 /* save the mbuf and mapping info for the TPA mbuf */
6301 map = tpa_info->bd.m_map;
6302 tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map;
6303 fp->rx_tpa_info_mbuf_spare_map = map;
6304 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6305 BUS_DMASYNC_PREREAD);
6306 tpa_info->bd.m = m;
6307 tpa_info->seg = segs[0];
6308
6309 return (rc);
6310}
6311
6312/*
6313 * Allocate an mbuf and assign it to the receive scatter gather chain. The
6314 * caller must take care to save a copy of the existing mbuf in the SG mbuf
6315 * chain.
6316 */
6317static int
6318bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
6319 uint16_t index)
6320{
6321 struct bxe_sw_rx_bd *sge_buf;
6322 struct eth_rx_sge *sge;
6323 bus_dma_segment_t segs[1];
6324 bus_dmamap_t map;
6325 struct mbuf *m;
6326 int nsegs;
6327 int rc = 0;
6328
6329 /* allocate a new SGE mbuf */
6330 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE);
6331 if (__predict_false(m == NULL)) {
6332 fp->eth_q_stats.mbuf_rx_sge_alloc_failed++;
6333 return (ENOMEM);
6334 }
6335
6336 fp->eth_q_stats.mbuf_alloc_sge++;
6337
6338 /* initialize the mbuf buffer length */
6339 m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE;
6340
6341 /* map the SGE mbuf into non-paged pool */
6342 rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag,
6343 fp->rx_sge_mbuf_spare_map,
6344 m, segs, &nsegs, BUS_DMA_NOWAIT);
6345 if (__predict_false(rc != 0)) {
6346 fp->eth_q_stats.mbuf_rx_sge_mapping_failed++;
6347 m_freem(m);
6348 fp->eth_q_stats.mbuf_alloc_sge--;
6349 return (rc);
6350 }
6351
6352 /* all mbufs must map to a single segment */
6353 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6354
6355 sge_buf = &fp->rx_sge_mbuf_chain[index];
6356
6357 /* release any existing SGE mbuf mapping */
6358 if (sge_buf->m_map != NULL) {
6359 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6360 BUS_DMASYNC_POSTREAD);
6361 bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map);
6362 }
6363
6364 /* save the mbuf and mapping info for a future packet */
6365 map = sge_buf->m_map;
6366 sge_buf->m_map = fp->rx_sge_mbuf_spare_map;
6367 fp->rx_sge_mbuf_spare_map = map;
6368 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6369 BUS_DMASYNC_PREREAD);
6370 sge_buf->m = m;
6371
6372 sge = &fp->rx_sge_chain[index];
6373 sge->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6374 sge->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6375
6376 return (rc);
6377}
6378
6379static __noinline int
6380bxe_alloc_fp_buffers(struct bxe_softc *sc)
6381{
6382 struct bxe_fastpath *fp;
6383 int i, j, rc = 0;
6384 int ring_prod, cqe_ring_prod;
6385 int max_agg_queues;
6386
6387 for (i = 0; i < sc->num_queues; i++) {
6388 fp = &sc->fp[i];
6389
6390 ring_prod = cqe_ring_prod = 0;
6391 fp->rx_bd_cons = 0;
6392 fp->rx_cq_cons = 0;
6393
6394 /* allocate buffers for the RX BDs in RX BD chain */
6395 for (j = 0; j < sc->max_rx_bufs; j++) {
6396 rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod);
6397 if (rc != 0) {
6398 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
6399 i, rc);
6400 goto bxe_alloc_fp_buffers_error;
6401 }
6402
6403 ring_prod = RX_BD_NEXT(ring_prod);
6404 cqe_ring_prod = RCQ_NEXT(cqe_ring_prod);
6405 }
6406
6407 fp->rx_bd_prod = ring_prod;
6408 fp->rx_cq_prod = cqe_ring_prod;
6409 fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0;
6410
6411 max_agg_queues = MAX_AGG_QS(sc);
6412
6413 fp->tpa_enable = TRUE;
6414
6415 /* fill the TPA pool */
6416 for (j = 0; j < max_agg_queues; j++) {
6417 rc = bxe_alloc_rx_tpa_mbuf(fp, j);
6418 if (rc != 0) {
6419 BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n",
6420 i, j);
6421 fp->tpa_enable = FALSE;
6422 goto bxe_alloc_fp_buffers_error;
6423 }
6424
6425 fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP;
6426 }
6427
6428 if (fp->tpa_enable) {
6429 /* fill the RX SGE chain */
6430 ring_prod = 0;
6431 for (j = 0; j < RX_SGE_USABLE; j++) {
6432 rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod);
6433 if (rc != 0) {
6434 BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n",
6435 i, ring_prod);
6436 fp->tpa_enable = FALSE;
6437 ring_prod = 0;
6438 goto bxe_alloc_fp_buffers_error;
6439 }
6440
6441 ring_prod = RX_SGE_NEXT(ring_prod);
6442 }
6443
6444 fp->rx_sge_prod = ring_prod;
6445 }
6446 }
6447
6448 return (0);
6449
6450bxe_alloc_fp_buffers_error:
6451
6452 /* unwind what was already allocated */
6453 bxe_free_rx_bd_chain(fp);
6454 bxe_free_tpa_pool(fp);
6455 bxe_free_sge_chain(fp);
6456
6457 return (ENOBUFS);
6458}
6459
6460static void
6461bxe_free_fw_stats_mem(struct bxe_softc *sc)
6462{
6463 bxe_dma_free(sc, &sc->fw_stats_dma);
6464
6465 sc->fw_stats_num = 0;
6466
6467 sc->fw_stats_req_size = 0;
6468 sc->fw_stats_req = NULL;
6469 sc->fw_stats_req_mapping = 0;
6470
6471 sc->fw_stats_data_size = 0;
6472 sc->fw_stats_data = NULL;
6473 sc->fw_stats_data_mapping = 0;
6474}
6475
6476static int
6477bxe_alloc_fw_stats_mem(struct bxe_softc *sc)
6478{
6479 uint8_t num_queue_stats;
6480 int num_groups;
6481
6482 /* number of queues for statistics is number of eth queues */
6483 num_queue_stats = BXE_NUM_ETH_QUEUES(sc);
6484
6485 /*
6486 * Total number of FW statistics requests =
6487 * 1 for port stats + 1 for PF stats + num of queues
6488 */
6489 sc->fw_stats_num = (2 + num_queue_stats);
6490
6491 /*
6492 * Request is built from stats_query_header and an array of
6493 * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
6494 * rules. The real number or requests is configured in the
6495 * stats_query_header.
6496 */
6497 num_groups =
6498 ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) +
6499 ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0));
6500
6501 BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n",
6502 sc->fw_stats_num, num_groups);
6503
6504 sc->fw_stats_req_size =
6505 (sizeof(struct stats_query_header) +
6506 (num_groups * sizeof(struct stats_query_cmd_group)));
6507
6508 /*
6509 * Data for statistics requests + stats_counter.
6510 * stats_counter holds per-STORM counters that are incremented when
6511 * STORM has finished with the current request. Memory for FCoE
6512 * offloaded statistics are counted anyway, even if they will not be sent.
6513 * VF stats are not accounted for here as the data of VF stats is stored
6514 * in memory allocated by the VF, not here.
6515 */
6516 sc->fw_stats_data_size =
6517 (sizeof(struct stats_counter) +
6518 sizeof(struct per_port_stats) +
6519 sizeof(struct per_pf_stats) +
6520 /* sizeof(struct fcoe_statistics_params) + */
6521 (sizeof(struct per_queue_stats) * num_queue_stats));
6522
6523 if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
6524 &sc->fw_stats_dma, "fw stats") != 0) {
6525 bxe_free_fw_stats_mem(sc);
6526 return (-1);
6527 }
6528
6529 /* set up the shortcuts */
6530
6531 sc->fw_stats_req =
6532 (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr;
6533 sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
6534
6535 sc->fw_stats_data =
6536 (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr +
6537 sc->fw_stats_req_size);
6538 sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
6539 sc->fw_stats_req_size);
6540
6541 BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n",
6542 (uintmax_t)sc->fw_stats_req_mapping);
6543
6544 BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n",
6545 (uintmax_t)sc->fw_stats_data_mapping);
6546
6547 return (0);
6548}
6549
6550/*
6551 * Bits map:
6552 * 0-7 - Engine0 load counter.
6553 * 8-15 - Engine1 load counter.
6554 * 16 - Engine0 RESET_IN_PROGRESS bit.
6555 * 17 - Engine1 RESET_IN_PROGRESS bit.
6556 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active
6557 * function on the engine
6558 * 19 - Engine1 ONE_IS_LOADED.
6559 * 20 - Chip reset flow bit. When set none-leader must wait for both engines
6560 * leader to complete (check for both RESET_IN_PROGRESS bits and not
6561 * for just the one belonging to its engine).
6562 */
6563#define BXE_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1
6564#define BXE_PATH0_LOAD_CNT_MASK 0x000000ff
6565#define BXE_PATH0_LOAD_CNT_SHIFT 0
6566#define BXE_PATH1_LOAD_CNT_MASK 0x0000ff00
6567#define BXE_PATH1_LOAD_CNT_SHIFT 8
6568#define BXE_PATH0_RST_IN_PROG_BIT 0x00010000
6569#define BXE_PATH1_RST_IN_PROG_BIT 0x00020000
6570#define BXE_GLOBAL_RESET_BIT 0x00040000
6571
6572/* set the GLOBAL_RESET bit, should be run under rtnl lock */
6573static void
6574bxe_set_reset_global(struct bxe_softc *sc)
6575{
6576 uint32_t val;
6577 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6578 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6579 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT);
6580 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6581}
6582
6583/* clear the GLOBAL_RESET bit, should be run under rtnl lock */
6584static void
6585bxe_clear_reset_global(struct bxe_softc *sc)
6586{
6587 uint32_t val;
6588 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6589 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6590 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT));
6591 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6592}
6593
6594/* checks the GLOBAL_RESET bit, should be run under rtnl lock */
6595static uint8_t
6596bxe_reset_is_global(struct bxe_softc *sc)
6597{
6598 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6599 BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val);
6600 return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE;
6601}
6602
6603/* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
6604static void
6605bxe_set_reset_done(struct bxe_softc *sc)
6606{
6607 uint32_t val;
6608 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
6609 BXE_PATH0_RST_IN_PROG_BIT;
6610
6611 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6612
6613 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6614 /* Clear the bit */
6615 val &= ~bit;
6616 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6617
6618 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6619}
6620
6621/* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
6622static void
6623bxe_set_reset_in_progress(struct bxe_softc *sc)
6624{
6625 uint32_t val;
6626 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
6627 BXE_PATH0_RST_IN_PROG_BIT;
6628
6629 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6630
6631 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6632 /* Set the bit */
6633 val |= bit;
6634 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6635
6636 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6637}
6638
6639/* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
6640static uint8_t
6641bxe_reset_is_done(struct bxe_softc *sc,
6642 int engine)
6643{
6644 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6645 uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT :
6646 BXE_PATH0_RST_IN_PROG_BIT;
6647
6648 /* return false if bit is set */
6649 return (val & bit) ? FALSE : TRUE;
6650}
6651
6652/* get the load status for an engine, should be run under rtnl lock */
6653static uint8_t
6654bxe_get_load_status(struct bxe_softc *sc,
6655 int engine)
6656{
6657 uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK :
6658 BXE_PATH0_LOAD_CNT_MASK;
6659 uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT :
6660 BXE_PATH0_LOAD_CNT_SHIFT;
6661 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6662
6663 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
6664
6665 val = ((val & mask) >> shift);
6666
6667 BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val);
6668
6669 return (val != 0);
6670}
6671
6672/* set pf load mark */
6673/* XXX needs to be under rtnl lock */
6674static void
6675bxe_set_pf_load(struct bxe_softc *sc)
6676{
6677 uint32_t val;
6678 uint32_t val1;
6679 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
6680 BXE_PATH0_LOAD_CNT_MASK;
6681 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
6682 BXE_PATH0_LOAD_CNT_SHIFT;
6683
6684 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6685
6686 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6687 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
6688
6689 /* get the current counter value */
6690 val1 = ((val & mask) >> shift);
6691
6692 /* set bit of this PF */
6693 val1 |= (1 << SC_ABS_FUNC(sc));
6694
6695 /* clear the old value */
6696 val &= ~mask;
6697
6698 /* set the new one */
6699 val |= ((val1 << shift) & mask);
6700
6701 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6702
6703 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6704}
6705
6706/* clear pf load mark */
6707/* XXX needs to be under rtnl lock */
6708static uint8_t
6709bxe_clear_pf_load(struct bxe_softc *sc)
6710{
6711 uint32_t val1, val;
6712 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
6713 BXE_PATH0_LOAD_CNT_MASK;
6714 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
6715 BXE_PATH0_LOAD_CNT_SHIFT;
6716
6717 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6718 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6719 BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val);
6720
6721 /* get the current counter value */
6722 val1 = (val & mask) >> shift;
6723
6724 /* clear bit of that PF */
6725 val1 &= ~(1 << SC_ABS_FUNC(sc));
6726
6727 /* clear the old value */
6728 val &= ~mask;
6729
6730 /* set the new one */
6731 val |= ((val1 << shift) & mask);
6732
6733 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6734 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6735 return (val1 != 0);
6736}
6737
6738/* send load requrest to mcp and analyze response */
6739static int
6740bxe_nic_load_request(struct bxe_softc *sc,
6741 uint32_t *load_code)
6742{
6743 /* init fw_seq */
6744 sc->fw_seq =
6745 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
6746 DRV_MSG_SEQ_NUMBER_MASK);
6747
6748 BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq);
6749
6750 /* get the current FW pulse sequence */
6751 sc->fw_drv_pulse_wr_seq =
6752 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
6753 DRV_PULSE_SEQ_MASK);
6754
6755 BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n",
6756 sc->fw_drv_pulse_wr_seq);
6757
6758 /* load request */
6759 (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
6760 DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
6761
6762 /* if the MCP fails to respond we must abort */
6763 if (!(*load_code)) {
6764 BLOGE(sc, "MCP response failure!\n");
6765 return (-1);
6766 }
6767
6768 /* if MCP refused then must abort */
6769 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
6770 BLOGE(sc, "MCP refused load request\n");
6771 return (-1);
6772 }
6773
6774 return (0);
6775}
6776
6777/*
6778 * Check whether another PF has already loaded FW to chip. In virtualized
6779 * environments a pf from anoth VM may have already initialized the device
6780 * including loading FW.
6781 */
6782static int
6783bxe_nic_load_analyze_req(struct bxe_softc *sc,
6784 uint32_t load_code)
6785{
6786 uint32_t my_fw, loaded_fw;
6787
6788 /* is another pf loaded on this engine? */
6789 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
6790 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
6791 /* build my FW version dword */
6792 my_fw = (BCM_5710_FW_MAJOR_VERSION +
6793 (BCM_5710_FW_MINOR_VERSION << 8 ) +
6794 (BCM_5710_FW_REVISION_VERSION << 16) +
6795 (BCM_5710_FW_ENGINEERING_VERSION << 24));
6796
6797 /* read loaded FW from chip */
6798 loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
6799 BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n",
6800 loaded_fw, my_fw);
6801
6802 /* abort nic load if version mismatch */
6803 if (my_fw != loaded_fw) {
6804 BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)",
6805 loaded_fw, my_fw);
6806 return (-1);
6807 }
6808 }
6809
6810 return (0);
6811}
6812
6813/* mark PMF if applicable */
6814static void
6815bxe_nic_load_pmf(struct bxe_softc *sc,
6816 uint32_t load_code)
6817{
6818 uint32_t ncsi_oem_data_addr;
6819
6820 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
6821 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
6822 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
6823 /*
6824 * Barrier here for ordering between the writing to sc->port.pmf here
6825 * and reading it from the periodic task.
6826 */
6827 sc->port.pmf = 1;
6828 mb();
6829 } else {
6830 sc->port.pmf = 0;
6831 }
6832
6833 BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf);
6834
6835 /* XXX needed? */
6836 if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
6837 if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
6838 ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
6839 if (ncsi_oem_data_addr) {
6840 REG_WR(sc,
6841 (ncsi_oem_data_addr +
6842 offsetof(struct glob_ncsi_oem_data, driver_version)),
6843 0);
6844 }
6845 }
6846 }
6847}
6848
6849static void
6850bxe_read_mf_cfg(struct bxe_softc *sc)
6851{
6852 int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
6853 int abs_func;
6854 int vn;
6855
6856 if (BXE_NOMCP(sc)) {
6857 return; /* what should be the default bvalue in this case */
6858 }
6859
6860 /*
6861 * The formula for computing the absolute function number is...
6862 * For 2 port configuration (4 functions per port):
6863 * abs_func = 2 * vn + SC_PORT + SC_PATH
6864 * For 4 port configuration (2 functions per port):
6865 * abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
6866 */
6867 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
6868 abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
6869 if (abs_func >= E1H_FUNC_MAX) {
6870 break;
6871 }
6872 sc->devinfo.mf_info.mf_config[vn] =
6873 MFCFG_RD(sc, func_mf_config[abs_func].config);
6874 }
6875
6876 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
6877 FUNC_MF_CFG_FUNC_DISABLED) {
6878 BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n");
6879 sc->flags |= BXE_MF_FUNC_DIS;
6880 } else {
6881 BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n");
6882 sc->flags &= ~BXE_MF_FUNC_DIS;
6883 }
6884}
6885
6886/* acquire split MCP access lock register */
6887static int bxe_acquire_alr(struct bxe_softc *sc)
6888{
6889 uint32_t j, val;
6890
6891 for (j = 0; j < 1000; j++) {
6892 val = (1UL << 31);
6893 REG_WR(sc, GRCBASE_MCP + 0x9c, val);
6894 val = REG_RD(sc, GRCBASE_MCP + 0x9c);
6895 if (val & (1L << 31))
6896 break;
6897
6898 DELAY(5000);
6899 }
6900
6901 if (!(val & (1L << 31))) {
6902 BLOGE(sc, "Cannot acquire MCP access lock register\n");
6903 return (-1);
6904 }
6905
6906 return (0);
6907}
6908
6909/* release split MCP access lock register */
6910static void bxe_release_alr(struct bxe_softc *sc)
6911{
6912 REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
6913}
6914
6915static void
6916bxe_fan_failure(struct bxe_softc *sc)
6917{
6918 int port = SC_PORT(sc);
6919 uint32_t ext_phy_config;
6920
6921 /* mark the failure */
6922 ext_phy_config =
6923 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
6924
6925 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
6926 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
6927 SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
6928 ext_phy_config);
6929
6930 /* log the failure */
6931 BLOGW(sc, "Fan Failure has caused the driver to shutdown "
6932 "the card to prevent permanent damage. "
6933 "Please contact OEM Support for assistance\n");
6934
6935 /* XXX */
6936#if 1
6937 bxe_panic(sc, ("Schedule task to handle fan failure\n"));
6938#else
6939 /*
6940 * Schedule device reset (unload)
6941 * This is due to some boards consuming sufficient power when driver is
6942 * up to overheat if fan fails.
6943 */
6944 bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state);
6945 schedule_delayed_work(&sc->sp_rtnl_task, 0);
6946#endif
6947}
6948
6949/* this function is called upon a link interrupt */
6950static void
6951bxe_link_attn(struct bxe_softc *sc)
6952{
6953 uint32_t pause_enabled = 0;
6954 struct host_port_stats *pstats;
6955 int cmng_fns;
6956
6957 /* Make sure that we are synced with the current statistics */
6958 bxe_stats_handle(sc, STATS_EVENT_STOP);
6959
6960 elink_link_update(&sc->link_params, &sc->link_vars);
6961
6962 if (sc->link_vars.link_up) {
6963
6964 /* dropless flow control */
6965 if (!CHIP_IS_E1(sc) && sc->dropless_fc) {
6966 pause_enabled = 0;
6967
6968 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
6969 pause_enabled = 1;
6970 }
6971
6972 REG_WR(sc,
6973 (BAR_USTRORM_INTMEM +
6974 USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
6975 pause_enabled);
6976 }
6977
6978 if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
6979 pstats = BXE_SP(sc, port_stats);
6980 /* reset old mac stats */
6981 memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx));
6982 }
6983
6984 if (sc->state == BXE_STATE_OPEN) {
6985 bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
6986 }
6987 }
6988
6989 if (sc->link_vars.link_up && sc->link_vars.line_speed) {
6990 cmng_fns = bxe_get_cmng_fns_mode(sc);
6991
6992 if (cmng_fns != CMNG_FNS_NONE) {
6993 bxe_cmng_fns_init(sc, FALSE, cmng_fns);
6994 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
6995 } else {
6996 /* rate shaping and fairness are disabled */
6997 BLOGD(sc, DBG_LOAD, "single function mode without fairness\n");
6998 }
6999 }
7000
7001 bxe_link_report_locked(sc);
7002
7003 if (IS_MF(sc)) {
7004 ; // XXX bxe_link_sync_notify(sc);
7005 }
7006}
7007
7008static void
7009bxe_attn_int_asserted(struct bxe_softc *sc,
7010 uint32_t asserted)
7011{
7012 int port = SC_PORT(sc);
7013 uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
7014 MISC_REG_AEU_MASK_ATTN_FUNC_0;
7015 uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
7016 NIG_REG_MASK_INTERRUPT_PORT0;
7017 uint32_t aeu_mask;
7018 uint32_t nig_mask = 0;
7019 uint32_t reg_addr;
7020 uint32_t igu_acked;
7021 uint32_t cnt;
7022
7023 if (sc->attn_state & asserted) {
7024 BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted);
7025 }
7026
7027 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7028
7029 aeu_mask = REG_RD(sc, aeu_addr);
7030
7031 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n",
7032 aeu_mask, asserted);
7033
7034 aeu_mask &= ~(asserted & 0x3ff);
7035
7036 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
7037
7038 REG_WR(sc, aeu_addr, aeu_mask);
7039
7040 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7041
7042 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
7043 sc->attn_state |= asserted;
7044 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
7045
7046 if (asserted & ATTN_HARD_WIRED_MASK) {
7047 if (asserted & ATTN_NIG_FOR_FUNC) {
7048
7049 bxe_acquire_phy_lock(sc);
7050 /* save nig interrupt mask */
7051 nig_mask = REG_RD(sc, nig_int_mask_addr);
7052
7053 /* If nig_mask is not set, no need to call the update function */
7054 if (nig_mask) {
7055 REG_WR(sc, nig_int_mask_addr, 0);
7056
7057 bxe_link_attn(sc);
7058 }
7059
7060 /* handle unicore attn? */
7061 }
7062
7063 if (asserted & ATTN_SW_TIMER_4_FUNC) {
7064 BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n");
7065 }
7066
7067 if (asserted & GPIO_2_FUNC) {
7068 BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n");
7069 }
7070
7071 if (asserted & GPIO_3_FUNC) {
7072 BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n");
7073 }
7074
7075 if (asserted & GPIO_4_FUNC) {
7076 BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n");
7077 }
7078
7079 if (port == 0) {
7080 if (asserted & ATTN_GENERAL_ATTN_1) {
7081 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n");
7082 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
7083 }
7084 if (asserted & ATTN_GENERAL_ATTN_2) {
7085 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n");
7086 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
7087 }
7088 if (asserted & ATTN_GENERAL_ATTN_3) {
7089 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n");
7090 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
7091 }
7092 } else {
7093 if (asserted & ATTN_GENERAL_ATTN_4) {
7094 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n");
7095 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
7096 }
7097 if (asserted & ATTN_GENERAL_ATTN_5) {
7098 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n");
7099 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
7100 }
7101 if (asserted & ATTN_GENERAL_ATTN_6) {
7102 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n");
7103 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
7104 }
7105 }
7106 } /* hardwired */
7107
7108 if (sc->devinfo.int_block == INT_BLOCK_HC) {
7109 reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET);
7110 } else {
7111 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
7112 }
7113
7114 BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n",
7115 asserted,
7116 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
7117 REG_WR(sc, reg_addr, asserted);
7118
7119 /* now set back the mask */
7120 if (asserted & ATTN_NIG_FOR_FUNC) {
7121 /*
7122 * Verify that IGU ack through BAR was written before restoring
7123 * NIG mask. This loop should exit after 2-3 iterations max.
7124 */
7125 if (sc->devinfo.int_block != INT_BLOCK_HC) {
7126 cnt = 0;
7127
7128 do {
7129 igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
7130 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
7131 (++cnt < MAX_IGU_ATTN_ACK_TO));
7132
7133 if (!igu_acked) {
7134 BLOGE(sc, "Failed to verify IGU ack on time\n");
7135 }
7136
7137 mb();
7138 }
7139
7140 REG_WR(sc, nig_int_mask_addr, nig_mask);
7141
7142 bxe_release_phy_lock(sc);
7143 }
7144}
7145
7146static void
7147bxe_print_next_block(struct bxe_softc *sc,
7148 int idx,
7149 const char *blk)
7150{
7151 BLOGI(sc, "%s%s", idx ? ", " : "", blk);
7152}
7153
7154static int
7155bxe_check_blocks_with_parity0(struct bxe_softc *sc,
7156 uint32_t sig,
7157 int par_num,
7158 uint8_t print)
7159{
7160 uint32_t cur_bit = 0;
7161 int i = 0;
7162
7163 for (i = 0; sig; i++) {
7164 cur_bit = ((uint32_t)0x1 << i);
7165 if (sig & cur_bit) {
7166 switch (cur_bit) {
7167 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
7168 if (print)
7169 bxe_print_next_block(sc, par_num++, "BRB");
7170 break;
7171 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
7172 if (print)
7173 bxe_print_next_block(sc, par_num++, "PARSER");
7174 break;
7175 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
7176 if (print)
7177 bxe_print_next_block(sc, par_num++, "TSDM");
7178 break;
7179 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
7180 if (print)
7181 bxe_print_next_block(sc, par_num++, "SEARCHER");
7182 break;
7183 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
7184 if (print)
7185 bxe_print_next_block(sc, par_num++, "TCM");
7186 break;
7187 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
7188 if (print)
7189 bxe_print_next_block(sc, par_num++, "TSEMI");
7190 break;
7191 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
7192 if (print)
7193 bxe_print_next_block(sc, par_num++, "XPB");
7194 break;
7195 }
7196
7197 /* Clear the bit */
7198 sig &= ~cur_bit;
7199 }
7200 }
7201
7202 return (par_num);
7203}
7204
7205static int
7206bxe_check_blocks_with_parity1(struct bxe_softc *sc,
7207 uint32_t sig,
7208 int par_num,
7209 uint8_t *global,
7210 uint8_t print)
7211{
7212 int i = 0;
7213 uint32_t cur_bit = 0;
7214 for (i = 0; sig; i++) {
7215 cur_bit = ((uint32_t)0x1 << i);
7216 if (sig & cur_bit) {
7217 switch (cur_bit) {
7218 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
7219 if (print)
7220 bxe_print_next_block(sc, par_num++, "PBF");
7221 break;
7222 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
7223 if (print)
7224 bxe_print_next_block(sc, par_num++, "QM");
7225 break;
7226 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
7227 if (print)
7228 bxe_print_next_block(sc, par_num++, "TM");
7229 break;
7230 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
7231 if (print)
7232 bxe_print_next_block(sc, par_num++, "XSDM");
7233 break;
7234 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
7235 if (print)
7236 bxe_print_next_block(sc, par_num++, "XCM");
7237 break;
7238 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
7239 if (print)
7240 bxe_print_next_block(sc, par_num++, "XSEMI");
7241 break;
7242 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
7243 if (print)
7244 bxe_print_next_block(sc, par_num++, "DOORBELLQ");
7245 break;
7246 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
7247 if (print)
7248 bxe_print_next_block(sc, par_num++, "NIG");
7249 break;
7250 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
7251 if (print)
7252 bxe_print_next_block(sc, par_num++, "VAUX PCI CORE");
7253 *global = TRUE;
7254 break;
7255 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
7256 if (print)
7257 bxe_print_next_block(sc, par_num++, "DEBUG");
7258 break;
7259 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
7260 if (print)
7261 bxe_print_next_block(sc, par_num++, "USDM");
7262 break;
7263 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
7264 if (print)
7265 bxe_print_next_block(sc, par_num++, "UCM");
7266 break;
7267 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
7268 if (print)
7269 bxe_print_next_block(sc, par_num++, "USEMI");
7270 break;
7271 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
7272 if (print)
7273 bxe_print_next_block(sc, par_num++, "UPB");
7274 break;
7275 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
7276 if (print)
7277 bxe_print_next_block(sc, par_num++, "CSDM");
7278 break;
7279 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
7280 if (print)
7281 bxe_print_next_block(sc, par_num++, "CCM");
7282 break;
7283 }
7284
7285 /* Clear the bit */
7286 sig &= ~cur_bit;
7287 }
7288 }
7289
7290 return (par_num);
7291}
7292
7293static int
7294bxe_check_blocks_with_parity2(struct bxe_softc *sc,
7295 uint32_t sig,
7296 int par_num,
7297 uint8_t print)
7298{
7299 uint32_t cur_bit = 0;
7300 int i = 0;
7301
7302 for (i = 0; sig; i++) {
7303 cur_bit = ((uint32_t)0x1 << i);
7304 if (sig & cur_bit) {
7305 switch (cur_bit) {
7306 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
7307 if (print)
7308 bxe_print_next_block(sc, par_num++, "CSEMI");
7309 break;
7310 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
7311 if (print)
7312 bxe_print_next_block(sc, par_num++, "PXP");
7313 break;
7314 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
7315 if (print)
7316 bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT");
7317 break;
7318 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
7319 if (print)
7320 bxe_print_next_block(sc, par_num++, "CFC");
7321 break;
7322 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
7323 if (print)
7324 bxe_print_next_block(sc, par_num++, "CDU");
7325 break;
7326 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
7327 if (print)
7328 bxe_print_next_block(sc, par_num++, "DMAE");
7329 break;
7330 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
7331 if (print)
7332 bxe_print_next_block(sc, par_num++, "IGU");
7333 break;
7334 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
7335 if (print)
7336 bxe_print_next_block(sc, par_num++, "MISC");
7337 break;
7338 }
7339
7340 /* Clear the bit */
7341 sig &= ~cur_bit;
7342 }
7343 }
7344
7345 return (par_num);
7346}
7347
7348static int
7349bxe_check_blocks_with_parity3(struct bxe_softc *sc,
7350 uint32_t sig,
7351 int par_num,
7352 uint8_t *global,
7353 uint8_t print)
7354{
7355 uint32_t cur_bit = 0;
7356 int i = 0;
7357
7358 for (i = 0; sig; i++) {
7359 cur_bit = ((uint32_t)0x1 << i);
7360 if (sig & cur_bit) {
7361 switch (cur_bit) {
7362 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
7363 if (print)
7364 bxe_print_next_block(sc, par_num++, "MCP ROM");
7365 *global = TRUE;
7366 break;
7367 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
7368 if (print)
7369 bxe_print_next_block(sc, par_num++,
7370 "MCP UMP RX");
7371 *global = TRUE;
7372 break;
7373 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
7374 if (print)
7375 bxe_print_next_block(sc, par_num++,
7376 "MCP UMP TX");
7377 *global = TRUE;
7378 break;
7379 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
7380 if (print)
7381 bxe_print_next_block(sc, par_num++,
7382 "MCP SCPAD");
7383 *global = TRUE;
7384 break;
7385 }
7386
7387 /* Clear the bit */
7388 sig &= ~cur_bit;
7389 }
7390 }
7391
7392 return (par_num);
7393}
7394
7395static int
7396bxe_check_blocks_with_parity4(struct bxe_softc *sc,
7397 uint32_t sig,
7398 int par_num,
7399 uint8_t print)
7400{
7401 uint32_t cur_bit = 0;
7402 int i = 0;
7403
7404 for (i = 0; sig; i++) {
7405 cur_bit = ((uint32_t)0x1 << i);
7406 if (sig & cur_bit) {
7407 switch (cur_bit) {
7408 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
7409 if (print)
7410 bxe_print_next_block(sc, par_num++, "PGLUE_B");
7411 break;
7412 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
7413 if (print)
7414 bxe_print_next_block(sc, par_num++, "ATC");
7415 break;
7416 }
7417
7418 /* Clear the bit */
7419 sig &= ~cur_bit;
7420 }
7421 }
7422
7423 return (par_num);
7424}
7425
7426static uint8_t
7427bxe_parity_attn(struct bxe_softc *sc,
7428 uint8_t *global,
7429 uint8_t print,
7430 uint32_t *sig)
7431{
7432 int par_num = 0;
7433
7434 if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
7435 (sig[1] & HW_PRTY_ASSERT_SET_1) ||
7436 (sig[2] & HW_PRTY_ASSERT_SET_2) ||
7437 (sig[3] & HW_PRTY_ASSERT_SET_3) ||
7438 (sig[4] & HW_PRTY_ASSERT_SET_4)) {
7439 BLOGE(sc, "Parity error: HW block parity attention:\n"
7440 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
7441 (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0),
7442 (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1),
7443 (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2),
7444 (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3),
7445 (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4));
7446
7447 if (print)
7448 BLOGI(sc, "Parity errors detected in blocks: ");
7449
7450 par_num =
7451 bxe_check_blocks_with_parity0(sc, sig[0] &
7452 HW_PRTY_ASSERT_SET_0,
7453 par_num, print);
7454 par_num =
7455 bxe_check_blocks_with_parity1(sc, sig[1] &
7456 HW_PRTY_ASSERT_SET_1,
7457 par_num, global, print);
7458 par_num =
7459 bxe_check_blocks_with_parity2(sc, sig[2] &
7460 HW_PRTY_ASSERT_SET_2,
7461 par_num, print);
7462 par_num =
7463 bxe_check_blocks_with_parity3(sc, sig[3] &
7464 HW_PRTY_ASSERT_SET_3,
7465 par_num, global, print);
7466 par_num =
7467 bxe_check_blocks_with_parity4(sc, sig[4] &
7468 HW_PRTY_ASSERT_SET_4,
7469 par_num, print);
7470
7471 if (print)
7472 BLOGI(sc, "\n");
7473
7474 return (TRUE);
7475 }
7476
7477 return (FALSE);
7478}
7479
7480static uint8_t
7481bxe_chk_parity_attn(struct bxe_softc *sc,
7482 uint8_t *global,
7483 uint8_t print)
7484{
7485 struct attn_route attn = { {0} };
7486 int port = SC_PORT(sc);
7487
7488 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
7489 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
7490 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
7491 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
7492
7493 /*
7494 * Since MCP attentions can't be disabled inside the block, we need to
7495 * read AEU registers to see whether they're currently disabled
7496 */
7497 attn.sig[3] &= ((REG_RD(sc, (!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
7498 : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0)) &
7499 MISC_AEU_ENABLE_MCP_PRTY_BITS) |
7500 ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
7501
7502
7503 if (!CHIP_IS_E1x(sc))
7504 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
7505
7506 return (bxe_parity_attn(sc, global, print, attn.sig));
7507}
7508
7509static void
7510bxe_attn_int_deasserted4(struct bxe_softc *sc,
7511 uint32_t attn)
7512{
7513 uint32_t val;
7514
7515 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
7516 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
7517 BLOGE(sc, "PGLUE hw attention 0x%08x\n", val);
7518 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
7519 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
7520 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
7521 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
7522 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
7523 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
7524 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
7525 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
7526 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
7527 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
7528 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
7529 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
7530 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
7531 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
7532 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
7533 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
7534 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
7535 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
7536 }
7537
7538 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
7539 val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
7540 BLOGE(sc, "ATC hw attention 0x%08x\n", val);
7541 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
7542 BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
7543 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
7544 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
7545 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
7546 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
7547 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
7548 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
7549 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
7550 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
7551 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
7552 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
7553 }
7554
7555 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7556 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
7557 BLOGE(sc, "FATAL parity attention set4 0x%08x\n",
7558 (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7559 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
7560 }
7561}
7562
7563static void
7564bxe_e1h_disable(struct bxe_softc *sc)
7565{
7566 int port = SC_PORT(sc);
7567
7568 bxe_tx_disable(sc);
7569
7570 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7571}
7572
7573static void
7574bxe_e1h_enable(struct bxe_softc *sc)
7575{
7576 int port = SC_PORT(sc);
7577
7578 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7579
7580 // XXX bxe_tx_enable(sc);
7581}
7582
7583/*
7584 * called due to MCP event (on pmf):
7585 * reread new bandwidth configuration
7586 * configure FW
7587 * notify others function about the change
7588 */
7589static void
7590bxe_config_mf_bw(struct bxe_softc *sc)
7591{
7592 if (sc->link_vars.link_up) {
7593 bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
7594 // XXX bxe_link_sync_notify(sc);
7595 }
7596
7597 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7598}
7599
7600static void
7601bxe_set_mf_bw(struct bxe_softc *sc)
7602{
7603 bxe_config_mf_bw(sc);
7604 bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
7605}
7606
7607static void
7608bxe_handle_eee_event(struct bxe_softc *sc)
7609{
7610 BLOGD(sc, DBG_INTR, "EEE - LLDP event\n");
7611 bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
7612}
7613
7614#define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
7615
7616static void
7617bxe_drv_info_ether_stat(struct bxe_softc *sc)
7618{
7619 struct eth_stats_info *ether_stat =
7620 &sc->sp->drv_info_to_mcp.ether_stat;
7621
7622 strlcpy(ether_stat->version, BXE_DRIVER_VERSION,
7623 ETH_STAT_INFO_VERSION_LEN);
7624
7625 /* XXX (+ MAC_PAD) taken from other driver... verify this is right */
7626 sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
7627 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
7628 ether_stat->mac_local + MAC_PAD,
7629 MAC_PAD, ETH_ALEN);
7630
7631 ether_stat->mtu_size = sc->mtu;
7632
7633 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
7634 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
7635 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
7636 }
7637
7638 // XXX ether_stat->feature_flags |= ???;
7639
7640 ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0;
7641
7642 ether_stat->txq_size = sc->tx_ring_size;
7643 ether_stat->rxq_size = sc->rx_ring_size;
7644}
7645
7646static void
7647bxe_handle_drv_info_req(struct bxe_softc *sc)
7648{
7649 enum drv_info_opcode op_code;
7650 uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
7651
7652 /* if drv_info version supported by MFW doesn't match - send NACK */
7653 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
7654 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
7655 return;
7656 }
7657
7658 op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
7659 DRV_INFO_CONTROL_OP_CODE_SHIFT);
7660
7661 memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
7662
7663 switch (op_code) {
7664 case ETH_STATS_OPCODE:
7665 bxe_drv_info_ether_stat(sc);
7666 break;
7667 case FCOE_STATS_OPCODE:
7668 case ISCSI_STATS_OPCODE:
7669 default:
7670 /* if op code isn't supported - send NACK */
7671 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
7672 return;
7673 }
7674
7675 /*
7676 * If we got drv_info attn from MFW then these fields are defined in
7677 * shmem2 for sure
7678 */
7679 SHMEM2_WR(sc, drv_info_host_addr_lo,
7680 U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
7681 SHMEM2_WR(sc, drv_info_host_addr_hi,
7682 U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
7683
7684 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
7685}
7686
7687static void
7688bxe_dcc_event(struct bxe_softc *sc,
7689 uint32_t dcc_event)
7690{
7691 BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event);
7692
7693 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
7694 /*
7695 * This is the only place besides the function initialization
7696 * where the sc->flags can change so it is done without any
7697 * locks
7698 */
7699 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
7700 BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n");
7701 sc->flags |= BXE_MF_FUNC_DIS;
7702 bxe_e1h_disable(sc);
7703 } else {
7704 BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n");
7705 sc->flags &= ~BXE_MF_FUNC_DIS;
7706 bxe_e1h_enable(sc);
7707 }
7708 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
7709 }
7710
7711 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
7712 bxe_config_mf_bw(sc);
7713 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
7714 }
7715
7716 /* Report results to MCP */
7717 if (dcc_event)
7718 bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
7719 else
7720 bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
7721}
7722
7723static void
7724bxe_pmf_update(struct bxe_softc *sc)
7725{
7726 int port = SC_PORT(sc);
7727 uint32_t val;
7728
7729 sc->port.pmf = 1;
7730 BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf);
7731
7732 /*
7733 * We need the mb() to ensure the ordering between the writing to
7734 * sc->port.pmf here and reading it from the bxe_periodic_task().
7735 */
7736 mb();
7737
7738 /* queue a periodic task */
7739 // XXX schedule task...
7740
7741 // XXX bxe_dcbx_pmf_update(sc);
7742
7743 /* enable nig attention */
7744 val = (0xff0f | (1 << (SC_VN(sc) + 4)));
7745 if (sc->devinfo.int_block == INT_BLOCK_HC) {
7746 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val);
7747 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val);
7748 } else if (!CHIP_IS_E1x(sc)) {
7749 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
7750 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
7751 }
7752
7753 bxe_stats_handle(sc, STATS_EVENT_PMF);
7754}
7755
7756static int
7757bxe_mc_assert(struct bxe_softc *sc)
7758{
7759 char last_idx;
7760 int i, rc = 0;
7761 uint32_t row0, row1, row2, row3;
7762
7763 /* XSTORM */
7764 last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
7765 if (last_idx)
7766 BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7767
7768 /* print the asserts */
7769 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7770
7771 row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
7772 row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4);
7773 row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8);
7774 row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12);
7775
7776 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7777 BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7778 i, row3, row2, row1, row0);
7779 rc++;
7780 } else {
7781 break;
7782 }
7783 }
7784
7785 /* TSTORM */
7786 last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
7787 if (last_idx) {
7788 BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7789 }
7790
7791 /* print the asserts */
7792 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7793
7794 row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
7795 row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4);
7796 row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8);
7797 row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12);
7798
7799 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7800 BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7801 i, row3, row2, row1, row0);
7802 rc++;
7803 } else {
7804 break;
7805 }
7806 }
7807
7808 /* CSTORM */
7809 last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
7810 if (last_idx) {
7811 BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7812 }
7813
7814 /* print the asserts */
7815 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7816
7817 row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
7818 row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4);
7819 row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8);
7820 row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12);
7821
7822 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7823 BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7824 i, row3, row2, row1, row0);
7825 rc++;
7826 } else {
7827 break;
7828 }
7829 }
7830
7831 /* USTORM */
7832 last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
7833 if (last_idx) {
7834 BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7835 }
7836
7837 /* print the asserts */
7838 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7839
7840 row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
7841 row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4);
7842 row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8);
7843 row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12);
7844
7845 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7846 BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7847 i, row3, row2, row1, row0);
7848 rc++;
7849 } else {
7850 break;
7851 }
7852 }
7853
7854 return (rc);
7855}
7856
7857static void
7858bxe_attn_int_deasserted3(struct bxe_softc *sc,
7859 uint32_t attn)
7860{
7861 int func = SC_FUNC(sc);
7862 uint32_t val;
7863
7864 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
7865
7866 if (attn & BXE_PMF_LINK_ASSERT(sc)) {
7867
7868 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7869 bxe_read_mf_cfg(sc);
7870 sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
7871 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
7872 val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
7873
7874 if (val & DRV_STATUS_DCC_EVENT_MASK)
7875 bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK));
7876
7877 if (val & DRV_STATUS_SET_MF_BW)
7878 bxe_set_mf_bw(sc);
7879
7880 if (val & DRV_STATUS_DRV_INFO_REQ)
7881 bxe_handle_drv_info_req(sc);
7882
7883 if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
7884 bxe_pmf_update(sc);
7885
7886 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
7887 bxe_handle_eee_event(sc);
7888
7889 if (sc->link_vars.periodic_flags &
7890 ELINK_PERIODIC_FLAGS_LINK_EVENT) {
7891 /* sync with link */
7892 bxe_acquire_phy_lock(sc);
7893 sc->link_vars.periodic_flags &=
7894 ~ELINK_PERIODIC_FLAGS_LINK_EVENT;
7895 bxe_release_phy_lock(sc);
7896 if (IS_MF(sc))
7897 ; // XXX bxe_link_sync_notify(sc);
7898 bxe_link_report(sc);
7899 }
7900
7901 /*
7902 * Always call it here: bxe_link_report() will
7903 * prevent the link indication duplication.
7904 */
7905 bxe_link_status_update(sc);
7906
7907 } else if (attn & BXE_MC_ASSERT_BITS) {
7908
7909 BLOGE(sc, "MC assert!\n");
7910 bxe_mc_assert(sc);
7911 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
7912 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
7913 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
7914 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
7915 bxe_panic(sc, ("MC assert!\n"));
7916
7917 } else if (attn & BXE_MCP_ASSERT) {
7918
7919 BLOGE(sc, "MCP assert!\n");
7920 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
7921 // XXX bxe_fw_dump(sc);
7922
7923 } else {
7924 BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn);
7925 }
7926 }
7927
7928 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
7929 BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn);
7930 if (attn & BXE_GRC_TIMEOUT) {
7931 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
7932 BLOGE(sc, "GRC time-out 0x%08x\n", val);
7933 }
7934 if (attn & BXE_GRC_RSV) {
7935 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
7936 BLOGE(sc, "GRC reserved 0x%08x\n", val);
7937 }
7938 REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
7939 }
7940}
7941
7942static void
7943bxe_attn_int_deasserted2(struct bxe_softc *sc,
7944 uint32_t attn)
7945{
7946 int port = SC_PORT(sc);
7947 int reg_offset;
7948 uint32_t val0, mask0, val1, mask1;
7949 uint32_t val;
7950
7951 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
7952 val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
7953 BLOGE(sc, "CFC hw attention 0x%08x\n", val);
7954 /* CFC error attention */
7955 if (val & 0x2) {
7956 BLOGE(sc, "FATAL error from CFC\n");
7957 }
7958 }
7959
7960 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
7961 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
7962 BLOGE(sc, "PXP hw attention-0 0x%08x\n", val);
7963 /* RQ_USDMDP_FIFO_OVERFLOW */
7964 if (val & 0x18000) {
7965 BLOGE(sc, "FATAL error from PXP\n");
7966 }
7967
7968 if (!CHIP_IS_E1x(sc)) {
7969 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
7970 BLOGE(sc, "PXP hw attention-1 0x%08x\n", val);
7971 }
7972 }
7973
7974#define PXP2_EOP_ERROR_BIT PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
7975#define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
7976
7977 if (attn & AEU_PXP2_HW_INT_BIT) {
7978 /* CQ47854 workaround do not panic on
7979 * PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
7980 */
7981 if (!CHIP_IS_E1x(sc)) {
7982 mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
7983 val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
7984 mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
7985 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
7986 /*
7987 * If the only PXP2_EOP_ERROR_BIT is set in
7988 * STS0 and STS1 - clear it
7989 *
7990 * probably we lose additional attentions between
7991 * STS0 and STS_CLR0, in this case user will not
7992 * be notified about them
7993 */
7994 if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
7995 !(val1 & mask1))
7996 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
7997
7998 /* print the register, since no one can restore it */
7999 BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0);
8000
8001 /*
8002 * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8003 * then notify
8004 */
8005 if (val0 & PXP2_EOP_ERROR_BIT) {
8006 BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n");
8007
8008 /*
8009 * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
8010 * set then clear attention from PXP2 block without panic
8011 */
8012 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
8013 ((val1 & mask1) == 0))
8014 attn &= ~AEU_PXP2_HW_INT_BIT;
8015 }
8016 }
8017 }
8018
8019 if (attn & HW_INTERRUT_ASSERT_SET_2) {
8020 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
8021 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
8022
8023 val = REG_RD(sc, reg_offset);
8024 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
8025 REG_WR(sc, reg_offset, val);
8026
8027 BLOGE(sc, "FATAL HW block attention set2 0x%x\n",
8028 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2));
8029 bxe_panic(sc, ("HW block attention set2\n"));
8030 }
8031}
8032
8033static void
8034bxe_attn_int_deasserted1(struct bxe_softc *sc,
8035 uint32_t attn)
8036{
8037 int port = SC_PORT(sc);
8038 int reg_offset;
8039 uint32_t val;
8040
8041 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
8042 val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
8043 BLOGE(sc, "DB hw attention 0x%08x\n", val);
8044 /* DORQ discard attention */
8045 if (val & 0x2) {
8046 BLOGE(sc, "FATAL error from DORQ\n");
8047 }
8048 }
8049
8050 if (attn & HW_INTERRUT_ASSERT_SET_1) {
8051 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
8052 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
8053
8054 val = REG_RD(sc, reg_offset);
8055 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
8056 REG_WR(sc, reg_offset, val);
8057
8058 BLOGE(sc, "FATAL HW block attention set1 0x%08x\n",
8059 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1));
8060 bxe_panic(sc, ("HW block attention set1\n"));
8061 }
8062}
8063
8064static void
8065bxe_attn_int_deasserted0(struct bxe_softc *sc,
8066 uint32_t attn)
8067{
8068 int port = SC_PORT(sc);
8069 int reg_offset;
8070 uint32_t val;
8071
8072 reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
8073 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
8074
8075 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
8076 val = REG_RD(sc, reg_offset);
8077 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
8078 REG_WR(sc, reg_offset, val);
8079
8080 BLOGW(sc, "SPIO5 hw attention\n");
8081
8082 /* Fan failure attention */
8083 elink_hw_reset_phy(&sc->link_params);
8084 bxe_fan_failure(sc);
8085 }
8086
8087 if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
8088 bxe_acquire_phy_lock(sc);
8089 elink_handle_module_detect_int(&sc->link_params);
8090 bxe_release_phy_lock(sc);
8091 }
8092
8093 if (attn & HW_INTERRUT_ASSERT_SET_0) {
8094 val = REG_RD(sc, reg_offset);
8095 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
8096 REG_WR(sc, reg_offset, val);
8097
8098 bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n",
8099 (attn & HW_INTERRUT_ASSERT_SET_0)));
8100 }
8101}
8102
8103static void
8104bxe_attn_int_deasserted(struct bxe_softc *sc,
8105 uint32_t deasserted)
8106{
8107 struct attn_route attn;
8108 struct attn_route *group_mask;
8109 int port = SC_PORT(sc);
8110 int index;
8111 uint32_t reg_addr;
8112 uint32_t val;
8113 uint32_t aeu_mask;
8114 uint8_t global = FALSE;
8115
8116 /*
8117 * Need to take HW lock because MCP or other port might also
8118 * try to handle this event.
8119 */
8120 bxe_acquire_alr(sc);
8121
8122 if (bxe_chk_parity_attn(sc, &global, TRUE)) {
8123 /* XXX
8124 * In case of parity errors don't handle attentions so that
8125 * other function would "see" parity errors.
8126 */
8127 sc->recovery_state = BXE_RECOVERY_INIT;
8128 // XXX schedule a recovery task...
8129 /* disable HW interrupts */
8130 bxe_int_disable(sc);
8131 bxe_release_alr(sc);
8132 return;
8133 }
8134
8135 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
8136 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
8137 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
8138 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
8139 if (!CHIP_IS_E1x(sc)) {
8140 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
8141 } else {
8142 attn.sig[4] = 0;
8143 }
8144
8145 BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
8146 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
8147
8148 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
8149 if (deasserted & (1 << index)) {
8150 group_mask = &sc->attn_group[index];
8151
8152 BLOGD(sc, DBG_INTR,
8153 "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index,
8154 group_mask->sig[0], group_mask->sig[1],
8155 group_mask->sig[2], group_mask->sig[3],
8156 group_mask->sig[4]);
8157
8158 bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]);
8159 bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]);
8160 bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]);
8161 bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]);
8162 bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]);
8163 }
8164 }
8165
8166 bxe_release_alr(sc);
8167
8168 if (sc->devinfo.int_block == INT_BLOCK_HC) {
8169 reg_addr = (HC_REG_COMMAND_REG + port*32 +
8170 COMMAND_REG_ATTN_BITS_CLR);
8171 } else {
8172 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
8173 }
8174
8175 val = ~deasserted;
8176 BLOGD(sc, DBG_INTR,
8177 "about to mask 0x%08x at %s addr 0x%08x\n", val,
8178 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
8179 REG_WR(sc, reg_addr, val);
8180
8181 if (~sc->attn_state & deasserted) {
8182 BLOGE(sc, "IGU error\n");
8183 }
8184
8185 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8186 MISC_REG_AEU_MASK_ATTN_FUNC_0;
8187
8188 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8189
8190 aeu_mask = REG_RD(sc, reg_addr);
8191
8192 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n",
8193 aeu_mask, deasserted);
8194 aeu_mask |= (deasserted & 0x3ff);
8195 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
8196
8197 REG_WR(sc, reg_addr, aeu_mask);
8198 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8199
8200 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
8201 sc->attn_state &= ~deasserted;
8202 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
8203}
8204
8205static void
8206bxe_attn_int(struct bxe_softc *sc)
8207{
8208 /* read local copy of bits */
8209 uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
8210 uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
8211 uint32_t attn_state = sc->attn_state;
8212
8213 /* look for changed bits */
8214 uint32_t asserted = attn_bits & ~attn_ack & ~attn_state;
8215 uint32_t deasserted = ~attn_bits & attn_ack & attn_state;
8216
8217 BLOGD(sc, DBG_INTR,
8218 "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n",
8219 attn_bits, attn_ack, asserted, deasserted);
8220
8221 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
8222 BLOGE(sc, "BAD attention state\n");
8223 }
8224
8225 /* handle bits that were raised */
8226 if (asserted) {
8227 bxe_attn_int_asserted(sc, asserted);
8228 }
8229
8230 if (deasserted) {
8231 bxe_attn_int_deasserted(sc, deasserted);
8232 }
8233}
8234
8235static uint16_t
8236bxe_update_dsb_idx(struct bxe_softc *sc)
8237{
8238 struct host_sp_status_block *def_sb = sc->def_sb;
8239 uint16_t rc = 0;
8240
8241 mb(); /* status block is written to by the chip */
8242
8243 if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
8244 sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
8245 rc |= BXE_DEF_SB_ATT_IDX;
8246 }
8247
8248 if (sc->def_idx != def_sb->sp_sb.running_index) {
8249 sc->def_idx = def_sb->sp_sb.running_index;
8250 rc |= BXE_DEF_SB_IDX;
8251 }
8252
8253 mb();
8254
8255 return (rc);
8256}
8257
8258static inline struct ecore_queue_sp_obj *
8259bxe_cid_to_q_obj(struct bxe_softc *sc,
8260 uint32_t cid)
8261{
8262 BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid);
8263 return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj);
8264}
8265
8266static void
8267bxe_handle_mcast_eqe(struct bxe_softc *sc)
8268{
8269 struct ecore_mcast_ramrod_params rparam;
8270 int rc;
8271
8272 memset(&rparam, 0, sizeof(rparam));
8273
8274 rparam.mcast_obj = &sc->mcast_obj;
8275
8276 BXE_MCAST_LOCK(sc);
8277
8278 /* clear pending state for the last command */
8279 sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
8280
8281 /* if there are pending mcast commands - send them */
8282 if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
8283 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
8284 if (rc < 0) {
8285 BLOGD(sc, DBG_SP,
8286 "ERROR: Failed to send pending mcast commands (%d)\n", rc);
8287 }
8288 }
8289
8290 BXE_MCAST_UNLOCK(sc);
8291}
8292
8293static void
8294bxe_handle_classification_eqe(struct bxe_softc *sc,
8295 union event_ring_elem *elem)
8296{
8297 unsigned long ramrod_flags = 0;
8298 int rc = 0;
8299 uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8300 struct ecore_vlan_mac_obj *vlan_mac_obj;
8301
8302 /* always push next commands out, don't wait here */
8303 bit_set(&ramrod_flags, RAMROD_CONT);
8304
8305 switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) {
8306 case ECORE_FILTER_MAC_PENDING:
8307 BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n");
8308 vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
8309 break;
8310
8311 case ECORE_FILTER_MCAST_PENDING:
8312 BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n");
8313 /*
8314 * This is only relevant for 57710 where multicast MACs are
8315 * configured as unicast MACs using the same ramrod.
8316 */
8317 bxe_handle_mcast_eqe(sc);
8318 return;
8319
8320 default:
8321 BLOGE(sc, "Unsupported classification command: %d\n",
8322 elem->message.data.eth_event.echo);
8323 return;
8324 }
8325
8326 rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
8327
8328 if (rc < 0) {
8329 BLOGE(sc, "Failed to schedule new commands (%d)\n", rc);
8330 } else if (rc > 0) {
8331 BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n");
8332 }
8333}
8334
8335static void
8336bxe_handle_rx_mode_eqe(struct bxe_softc *sc,
8337 union event_ring_elem *elem)
8338{
8339 bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
8340
8341 /* send rx_mode command again if was requested */
8342 if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED,
8343 &sc->sp_state)) {
8344 bxe_set_storm_rx_mode(sc);
8345 }
8346}
8347
8348static void
8349bxe_update_eq_prod(struct bxe_softc *sc,
8350 uint16_t prod)
8351{
8352 storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
8353 wmb(); /* keep prod updates ordered */
8354}
8355
8356static void
8357bxe_eq_int(struct bxe_softc *sc)
8358{
8359 uint16_t hw_cons, sw_cons, sw_prod;
8360 union event_ring_elem *elem;
8361 uint8_t echo;
8362 uint32_t cid;
8363 uint8_t opcode;
8364 int spqe_cnt = 0;
8365 struct ecore_queue_sp_obj *q_obj;
8366 struct ecore_func_sp_obj *f_obj = &sc->func_obj;
8367 struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
8368
8369 hw_cons = le16toh(*sc->eq_cons_sb);
8370
8371 /*
8372 * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
8373 * when we get to the next-page we need to adjust so the loop
8374 * condition below will be met. The next element is the size of a
8375 * regular element and hence incrementing by 1
8376 */
8377 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
8378 hw_cons++;
8379 }
8380
8381 /*
8382 * This function may never run in parallel with itself for a
8383 * specific sc and no need for a read memory barrier here.
8384 */
8385 sw_cons = sc->eq_cons;
8386 sw_prod = sc->eq_prod;
8387
8388 BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n",
8389 hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left));
8390
8391 for (;
8392 sw_cons != hw_cons;
8393 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
8394
8395 elem = &sc->eq[EQ_DESC(sw_cons)];
8396
8397 /* elem CID originates from FW, actually LE */
8398 cid = SW_CID(elem->message.data.cfc_del_event.cid);
8399 opcode = elem->message.opcode;
8400
8401 /* handle eq element */
8402 switch (opcode) {
8403
8404 case EVENT_RING_OPCODE_STAT_QUERY:
8405 BLOGD(sc, DBG_SP, "got statistics completion event %d\n",
8406 sc->stats_comp++);
8407 /* nothing to do with stats comp */
8408 goto next_spqe;
8409
8410 case EVENT_RING_OPCODE_CFC_DEL:
8411 /* handle according to cid range */
8412 /* we may want to verify here that the sc state is HALTING */
8413 BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid);
8414 q_obj = bxe_cid_to_q_obj(sc, cid);
8415 if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
8416 break;
8417 }
8418 goto next_spqe;
8419
8420 case EVENT_RING_OPCODE_STOP_TRAFFIC:
8421 BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n");
8422 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
8423 break;
8424 }
8425 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED);
8426 goto next_spqe;
8427
8428 case EVENT_RING_OPCODE_START_TRAFFIC:
8429 BLOGD(sc, DBG_SP, "got START TRAFFIC\n");
8430 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) {
8431 break;
8432 }
8433 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED);
8434 goto next_spqe;
8435
8436 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
8437 echo = elem->message.data.function_update_event.echo;
8438 if (echo == SWITCH_UPDATE) {
8439 BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n");
8440 if (f_obj->complete_cmd(sc, f_obj,
8441 ECORE_F_CMD_SWITCH_UPDATE)) {
8442 break;
8443 }
8444 }
8445 else {
8446 BLOGD(sc, DBG_SP,
8447 "AFEX: ramrod completed FUNCTION_UPDATE\n");
8448 }
8449 goto next_spqe;
8450
8451 case EVENT_RING_OPCODE_FORWARD_SETUP:
8452 q_obj = &bxe_fwd_sp_obj(sc, q_obj);
8453 if (q_obj->complete_cmd(sc, q_obj,
8454 ECORE_Q_CMD_SETUP_TX_ONLY)) {
8455 break;
8456 }
8457 goto next_spqe;
8458
8459 case EVENT_RING_OPCODE_FUNCTION_START:
8460 BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n");
8461 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
8462 break;
8463 }
8464 goto next_spqe;
8465
8466 case EVENT_RING_OPCODE_FUNCTION_STOP:
8467 BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n");
8468 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
8469 break;
8470 }
8471 goto next_spqe;
8472 }
8473
8474 switch (opcode | sc->state) {
8475 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN):
8476 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT):
8477 cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8478 BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid);
8479 rss_raw->clear_pending(rss_raw);
8480 break;
8481
8482 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN):
8483 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG):
8484 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT):
8485 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN):
8486 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG):
8487 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8488 BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n");
8489 bxe_handle_classification_eqe(sc, elem);
8490 break;
8491
8492 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN):
8493 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG):
8494 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8495 BLOGD(sc, DBG_SP, "got mcast ramrod\n");
8496 bxe_handle_mcast_eqe(sc);
8497 break;
8498
8499 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN):
8500 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG):
8501 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8502 BLOGD(sc, DBG_SP, "got rx_mode ramrod\n");
8503 bxe_handle_rx_mode_eqe(sc, elem);
8504 break;
8505
8506 default:
8507 /* unknown event log error and continue */
8508 BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n",
8509 elem->message.opcode, sc->state);
8510 }
8511
8512next_spqe:
8513 spqe_cnt++;
8514 } /* for */
8515
8516 mb();
8517 atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
8518
8519 sc->eq_cons = sw_cons;
8520 sc->eq_prod = sw_prod;
8521
8522 /* make sure that above mem writes were issued towards the memory */
8523 wmb();
8524
8525 /* update producer */
8526 bxe_update_eq_prod(sc, sc->eq_prod);
8527}
8528
8529static void
8530bxe_handle_sp_tq(void *context,
8531 int pending)
8532{
8533 struct bxe_softc *sc = (struct bxe_softc *)context;
8534 uint16_t status;
8535
8536 BLOGD(sc, DBG_SP, "---> SP TASK <---\n");
8537
8538 /* what work needs to be performed? */
8539 status = bxe_update_dsb_idx(sc);
8540
8541 BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status);
8542
8543 /* HW attentions */
8544 if (status & BXE_DEF_SB_ATT_IDX) {
8545 BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n");
8546 bxe_attn_int(sc);
8547 status &= ~BXE_DEF_SB_ATT_IDX;
8548 }
8549
8550 /* SP events: STAT_QUERY and others */
8551 if (status & BXE_DEF_SB_IDX) {
8552 /* handle EQ completions */
8553 BLOGD(sc, DBG_SP, "---> EQ INTR <---\n");
8554 bxe_eq_int(sc);
8555 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
8556 le16toh(sc->def_idx), IGU_INT_NOP, 1);
8557 status &= ~BXE_DEF_SB_IDX;
8558 }
8559
8560 /* if status is non zero then something went wrong */
8561 if (__predict_false(status)) {
8562 BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status);
8563 }
8564
8565 /* ack status block only if something was actually handled */
8566 bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
8567 le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
8568
8569 /*
8570 * Must be called after the EQ processing (since eq leads to sriov
8571 * ramrod completion flows).
8572 * This flow may have been scheduled by the arrival of a ramrod
8573 * completion, or by the sriov code rescheduling itself.
8574 */
8575 // XXX bxe_iov_sp_task(sc);
8576
8577}
8578
8579static void
8580bxe_handle_fp_tq(void *context,
8581 int pending)
8582{
8583 struct bxe_fastpath *fp = (struct bxe_fastpath *)context;
8584 struct bxe_softc *sc = fp->sc;
8585 uint8_t more_tx = FALSE;
8586 uint8_t more_rx = FALSE;
8587
8588 BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index);
8589
8590 /* XXX
8591 * IFF_DRV_RUNNING state can't be checked here since we process
8592 * slowpath events on a client queue during setup. Instead
8593 * we need to add a "process/continue" flag here that the driver
8594 * can use to tell the task here not to do anything.
8595 */
8596#if 0
8597 if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
8598 return;
8599 }
8600#endif
8601
8602 /* update the fastpath index */
8603 bxe_update_fp_sb_idx(fp);
8604
8605 /* XXX add loop here if ever support multiple tx CoS */
8606 /* fp->txdata[cos] */
8607 if (bxe_has_tx_work(fp)) {
8608 BXE_FP_TX_LOCK(fp);
8609 more_tx = bxe_txeof(sc, fp);
8610 BXE_FP_TX_UNLOCK(fp);
8611 }
8612
8613 if (bxe_has_rx_work(fp)) {
8614 more_rx = bxe_rxeof(sc, fp);
8615 }
8616
8617 if (more_rx /*|| more_tx*/) {
8618 /* still more work to do */
8619 taskqueue_enqueue(fp->tq, &fp->tq_task);
8620 return;
8621 }
8622
8623 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
8624 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
8625}
8626
8627static void
8628bxe_task_fp(struct bxe_fastpath *fp)
8629{
8630 struct bxe_softc *sc = fp->sc;
8631 uint8_t more_tx = FALSE;
8632 uint8_t more_rx = FALSE;
8633
8634 BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index);
8635
8636 /* update the fastpath index */
8637 bxe_update_fp_sb_idx(fp);
8638
8639 /* XXX add loop here if ever support multiple tx CoS */
8640 /* fp->txdata[cos] */
8641 if (bxe_has_tx_work(fp)) {
8642 BXE_FP_TX_LOCK(fp);
8643 more_tx = bxe_txeof(sc, fp);
8644 BXE_FP_TX_UNLOCK(fp);
8645 }
8646
8647 if (bxe_has_rx_work(fp)) {
8648 more_rx = bxe_rxeof(sc, fp);
8649 }
8650
8651 if (more_rx /*|| more_tx*/) {
8652 /* still more work to do, bail out if this ISR and process later */
8653 taskqueue_enqueue(fp->tq, &fp->tq_task);
8654 return;
8655 }
8656
8657 /*
8658 * Here we write the fastpath index taken before doing any tx or rx work.
8659 * It is very well possible other hw events occurred up to this point and
8660 * they were actually processed accordingly above. Since we're going to
8661 * write an older fastpath index, an interrupt is coming which we might
8662 * not do any work in.
8663 */
8664 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
8665 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
8666}
8667
8668/*
8669 * Legacy interrupt entry point.
8670 *
8671 * Verifies that the controller generated the interrupt and
8672 * then calls a separate routine to handle the various
8673 * interrupt causes: link, RX, and TX.
8674 */
8675static void
8676bxe_intr_legacy(void *xsc)
8677{
8678 struct bxe_softc *sc = (struct bxe_softc *)xsc;
8679 struct bxe_fastpath *fp;
8680 uint16_t status, mask;
8681 int i;
8682
8683 BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n");
8684
8685 /*
8686 * 0 for ustorm, 1 for cstorm
8687 * the bits returned from ack_int() are 0-15
8688 * bit 0 = attention status block
8689 * bit 1 = fast path status block
8690 * a mask of 0x2 or more = tx/rx event
8691 * a mask of 1 = slow path event
8692 */
8693
8694 status = bxe_ack_int(sc);
8695
8696 /* the interrupt is not for us */
8697 if (__predict_false(status == 0)) {
8698 BLOGD(sc, DBG_INTR, "Not our interrupt!\n");
8699 return;
8700 }
8701
8702 BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status);
8703
8704 FOR_EACH_ETH_QUEUE(sc, i) {
8705 fp = &sc->fp[i];
8706 mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
8707 if (status & mask) {
8708 /* acknowledge and disable further fastpath interrupts */
8709 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8710 bxe_task_fp(fp);
8711 status &= ~mask;
8712 }
8713 }
8714
8715 if (__predict_false(status & 0x1)) {
8716 /* acknowledge and disable further slowpath interrupts */
8717 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8718
8719 /* schedule slowpath handler */
8720 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8721
8722 status &= ~0x1;
8723 }
8724
8725 if (__predict_false(status)) {
8726 BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status);
8727 }
8728}
8729
8730/* slowpath interrupt entry point */
8731static void
8732bxe_intr_sp(void *xsc)
8733{
8734 struct bxe_softc *sc = (struct bxe_softc *)xsc;
8735
8736 BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n");
8737
8738 /* acknowledge and disable further slowpath interrupts */
8739 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8740
8741 /* schedule slowpath handler */
8742 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8743}
8744
8745/* fastpath interrupt entry point */
8746static void
8747bxe_intr_fp(void *xfp)
8748{
8749 struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp;
8750 struct bxe_softc *sc = fp->sc;
8751
8752 BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index);
8753
8754 BLOGD(sc, DBG_INTR,
8755 "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n",
8756 curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id);
8757
8758 /* acknowledge and disable further fastpath interrupts */
8759 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8760
8761 bxe_task_fp(fp);
8762}
8763
8764/* Release all interrupts allocated by the driver. */
8765static void
8766bxe_interrupt_free(struct bxe_softc *sc)
8767{
8768 int i;
8769
8770 switch (sc->interrupt_mode) {
8771 case INTR_MODE_INTX:
8772 BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n");
8773 if (sc->intr[0].resource != NULL) {
8774 bus_release_resource(sc->dev,
8775 SYS_RES_IRQ,
8776 sc->intr[0].rid,
8777 sc->intr[0].resource);
8778 }
8779 break;
8780 case INTR_MODE_MSI:
8781 for (i = 0; i < sc->intr_count; i++) {
8782 BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i);
8783 if (sc->intr[i].resource && sc->intr[i].rid) {
8784 bus_release_resource(sc->dev,
8785 SYS_RES_IRQ,
8786 sc->intr[i].rid,
8787 sc->intr[i].resource);
8788 }
8789 }
8790 pci_release_msi(sc->dev);
8791 break;
8792 case INTR_MODE_MSIX:
8793 for (i = 0; i < sc->intr_count; i++) {
8794 BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i);
8795 if (sc->intr[i].resource && sc->intr[i].rid) {
8796 bus_release_resource(sc->dev,
8797 SYS_RES_IRQ,
8798 sc->intr[i].rid,
8799 sc->intr[i].resource);
8800 }
8801 }
8802 pci_release_msi(sc->dev);
8803 break;
8804 default:
8805 /* nothing to do as initial allocation failed */
8806 break;
8807 }
8808}
8809
8810/*
8811 * This function determines and allocates the appropriate
8812 * interrupt based on system capabilites and user request.
8813 *
8814 * The user may force a particular interrupt mode, specify
8815 * the number of receive queues, specify the method for
8816 * distribuitng received frames to receive queues, or use
8817 * the default settings which will automatically select the
8818 * best supported combination. In addition, the OS may or
8819 * may not support certain combinations of these settings.
8820 * This routine attempts to reconcile the settings requested
8821 * by the user with the capabilites available from the system
8822 * to select the optimal combination of features.
8823 *
8824 * Returns:
8825 * 0 = Success, !0 = Failure.
8826 */
8827static int
8828bxe_interrupt_alloc(struct bxe_softc *sc)
8829{
8830 int msix_count = 0;
8831 int msi_count = 0;
8832 int num_requested = 0;
8833 int num_allocated = 0;
8834 int rid, i, j;
8835 int rc;
8836
8837 /* get the number of available MSI/MSI-X interrupts from the OS */
8838 if (sc->interrupt_mode > 0) {
8839 if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) {
8840 msix_count = pci_msix_count(sc->dev);
8841 }
8842
8843 if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) {
8844 msi_count = pci_msi_count(sc->dev);
8845 }
8846
8847 BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n",
8848 msi_count, msix_count);
8849 }
8850
8851 do { /* try allocating MSI-X interrupt resources (at least 2) */
8852 if (sc->interrupt_mode != INTR_MODE_MSIX) {
8853 break;
8854 }
8855
8856 if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) ||
8857 (msix_count < 2)) {
8858 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8859 break;
8860 }
8861
8862 /* ask for the necessary number of MSI-X vectors */
8863 num_requested = min((sc->num_queues + 1), msix_count);
8864
8865 BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested);
8866
8867 num_allocated = num_requested;
8868 if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) {
8869 BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc);
8870 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8871 break;
8872 }
8873
8874 if (num_allocated < 2) { /* possible? */
8875 BLOGE(sc, "MSI-X allocation less than 2!\n");
8876 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8877 pci_release_msi(sc->dev);
8878 break;
8879 }
8880
8881 BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n",
8882 num_requested, num_allocated);
8883
8884 /* best effort so use the number of vectors allocated to us */
8885 sc->intr_count = num_allocated;
8886 sc->num_queues = num_allocated - 1;
8887
8888 rid = 1; /* initial resource identifier */
8889
8890 /* allocate the MSI-X vectors */
8891 for (i = 0; i < num_allocated; i++) {
8892 sc->intr[i].rid = (rid + i);
8893
8894 if ((sc->intr[i].resource =
8895 bus_alloc_resource_any(sc->dev,
8896 SYS_RES_IRQ,
8897 &sc->intr[i].rid,
8898 RF_ACTIVE)) == NULL) {
8899 BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n",
8900 i, (rid + i));
8901
8902 for (j = (i - 1); j >= 0; j--) {
8903 bus_release_resource(sc->dev,
8904 SYS_RES_IRQ,
8905 sc->intr[j].rid,
8906 sc->intr[j].resource);
8907 }
8908
8909 sc->intr_count = 0;
8910 sc->num_queues = 0;
8911 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8912 pci_release_msi(sc->dev);
8913 break;
8914 }
8915
8916 BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i));
8917 }
8918 } while (0);
8919
8920 do { /* try allocating MSI vector resources (at least 2) */
8921 if (sc->interrupt_mode != INTR_MODE_MSI) {
8922 break;
8923 }
8924
8925 if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) ||
8926 (msi_count < 1)) {
8927 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
8928 break;
8929 }
8930
8931 /* ask for a single MSI vector */
8932 num_requested = 1;
8933
8934 BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested);
8935
8936 num_allocated = num_requested;
8937 if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) {
8938 BLOGE(sc, "MSI alloc failed (%d)!\n", rc);
8939 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
8940 break;
8941 }
8942
8943 if (num_allocated != 1) { /* possible? */
8944 BLOGE(sc, "MSI allocation is not 1!\n");
8945 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
8946 pci_release_msi(sc->dev);
8947 break;
8948 }
8949
8950 BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n",
8951 num_requested, num_allocated);
8952
8953 /* best effort so use the number of vectors allocated to us */
8954 sc->intr_count = num_allocated;
8955 sc->num_queues = num_allocated;
8956
8957 rid = 1; /* initial resource identifier */
8958
8959 sc->intr[0].rid = rid;
8960
8961 if ((sc->intr[0].resource =
8962 bus_alloc_resource_any(sc->dev,
8963 SYS_RES_IRQ,
8964 &sc->intr[0].rid,
8965 RF_ACTIVE)) == NULL) {
8966 BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid);
8967 sc->intr_count = 0;
8968 sc->num_queues = 0;
8969 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
8970 pci_release_msi(sc->dev);
8971 break;
8972 }
8973
8974 BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid);
8975 } while (0);
8976
8977 do { /* try allocating INTx vector resources */
8978 if (sc->interrupt_mode != INTR_MODE_INTX) {
8979 break;
8980 }
8981
8982 BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n");
8983
8984 /* only one vector for INTx */
8985 sc->intr_count = 1;
8986 sc->num_queues = 1;
8987
8988 rid = 0; /* initial resource identifier */
8989
8990 sc->intr[0].rid = rid;
8991
8992 if ((sc->intr[0].resource =
8993 bus_alloc_resource_any(sc->dev,
8994 SYS_RES_IRQ,
8995 &sc->intr[0].rid,
8996 (RF_ACTIVE | RF_SHAREABLE))) == NULL) {
8997 BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid);
8998 sc->intr_count = 0;
8999 sc->num_queues = 0;
9000 sc->interrupt_mode = -1; /* Failed! */
9001 break;
9002 }
9003
9004 BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid);
9005 } while (0);
9006
9007 if (sc->interrupt_mode == -1) {
9008 BLOGE(sc, "Interrupt Allocation: FAILED!!!\n");
9009 rc = 1;
9010 } else {
9011 BLOGD(sc, DBG_LOAD,
9012 "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n",
9013 sc->interrupt_mode, sc->num_queues);
9014 rc = 0;
9015 }
9016
9017 return (rc);
9018}
9019
9020static void
9021bxe_interrupt_detach(struct bxe_softc *sc)
9022{
9023 struct bxe_fastpath *fp;
9024 int i;
9025
9026 /* release interrupt resources */
9027 for (i = 0; i < sc->intr_count; i++) {
9028 if (sc->intr[i].resource && sc->intr[i].tag) {
9029 BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i);
9030 bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag);
9031 }
9032 }
9033
9034 for (i = 0; i < sc->num_queues; i++) {
9035 fp = &sc->fp[i];
9036 if (fp->tq) {
9037 taskqueue_drain(fp->tq, &fp->tq_task);
9038 taskqueue_free(fp->tq);
9039 fp->tq = NULL;
9040 }
9041 }
9042
9043
9044 if (sc->sp_tq) {
9045 taskqueue_drain(sc->sp_tq, &sc->sp_tq_task);
9046 taskqueue_free(sc->sp_tq);
9047 sc->sp_tq = NULL;
9048 }
9049}
9050
9051/*
9052 * Enables interrupts and attach to the ISR.
9053 *
9054 * When using multiple MSI/MSI-X vectors the first vector
9055 * is used for slowpath operations while all remaining
9056 * vectors are used for fastpath operations. If only a
9057 * single MSI/MSI-X vector is used (SINGLE_ISR) then the
9058 * ISR must look for both slowpath and fastpath completions.
9059 */
9060static int
9061bxe_interrupt_attach(struct bxe_softc *sc)
9062{
9063 struct bxe_fastpath *fp;
9064 int rc = 0;
9065 int i;
9066
9067 snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name),
9068 "bxe%d_sp_tq", sc->unit);
9069 TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc);
9070 sc->sp_tq = taskqueue_create_fast(sc->sp_tq_name, M_NOWAIT,
9071 taskqueue_thread_enqueue,
9072 &sc->sp_tq);
9073 taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */
9074 "%s", sc->sp_tq_name);
9075
9076
9077 for (i = 0; i < sc->num_queues; i++) {
9078 fp = &sc->fp[i];
9079 snprintf(fp->tq_name, sizeof(fp->tq_name),
9080 "bxe%d_fp%d_tq", sc->unit, i);
9081 TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp);
9082 fp->tq = taskqueue_create_fast(fp->tq_name, M_NOWAIT,
9083 taskqueue_thread_enqueue,
9084 &fp->tq);
9085 taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */
9086 "%s", fp->tq_name);
9087 }
9088
9089 /* setup interrupt handlers */
9090 if (sc->interrupt_mode == INTR_MODE_MSIX) {
9091 BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n");
9092
9093 /*
9094 * Setup the interrupt handler. Note that we pass the driver instance
9095 * to the interrupt handler for the slowpath.
9096 */
9097 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9098 (INTR_TYPE_NET | INTR_MPSAFE),
9099 NULL, bxe_intr_sp, sc,
9100 &sc->intr[0].tag)) != 0) {
9101 BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc);
9102 goto bxe_interrupt_attach_exit;
9103 }
9104
9105 bus_describe_intr(sc->dev, sc->intr[0].resource,
9106 sc->intr[0].tag, "sp");
9107
9108 /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */
9109
9110 /* initialize the fastpath vectors (note the first was used for sp) */
9111 for (i = 0; i < sc->num_queues; i++) {
9112 fp = &sc->fp[i];
9113 BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1));
9114
9115 /*
9116 * Setup the interrupt handler. Note that we pass the
9117 * fastpath context to the interrupt handler in this
9118 * case.
9119 */
9120 if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource,
9121 (INTR_TYPE_NET | INTR_MPSAFE),
9122 NULL, bxe_intr_fp, fp,
9123 &sc->intr[i + 1].tag)) != 0) {
9124 BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n",
9125 (i + 1), rc);
9126 goto bxe_interrupt_attach_exit;
9127 }
9128
9129 bus_describe_intr(sc->dev, sc->intr[i + 1].resource,
9130 sc->intr[i + 1].tag, "fp%02d", i);
9131
9132 /* bind the fastpath instance to a cpu */
9133 if (sc->num_queues > 1) {
9134 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i);
9135 }
9136
9137 fp->state = BXE_FP_STATE_IRQ;
9138 }
9139 } else if (sc->interrupt_mode == INTR_MODE_MSI) {
9140 BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n");
9141
9142 /*
9143 * Setup the interrupt handler. Note that we pass the
9144 * driver instance to the interrupt handler which
9145 * will handle both the slowpath and fastpath.
9146 */
9147 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9148 (INTR_TYPE_NET | INTR_MPSAFE),
9149 NULL, bxe_intr_legacy, sc,
9150 &sc->intr[0].tag)) != 0) {
9151 BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc);
9152 goto bxe_interrupt_attach_exit;
9153 }
9154
9155 } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */
9156 BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n");
9157
9158 /*
9159 * Setup the interrupt handler. Note that we pass the
9160 * driver instance to the interrupt handler which
9161 * will handle both the slowpath and fastpath.
9162 */
9163 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9164 (INTR_TYPE_NET | INTR_MPSAFE),
9165 NULL, bxe_intr_legacy, sc,
9166 &sc->intr[0].tag)) != 0) {
9167 BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc);
9168 goto bxe_interrupt_attach_exit;
9169 }
9170 }
9171
9172bxe_interrupt_attach_exit:
9173
9174 return (rc);
9175}
9176
9177static int bxe_init_hw_common_chip(struct bxe_softc *sc);
9178static int bxe_init_hw_common(struct bxe_softc *sc);
9179static int bxe_init_hw_port(struct bxe_softc *sc);
9180static int bxe_init_hw_func(struct bxe_softc *sc);
9181static void bxe_reset_common(struct bxe_softc *sc);
9182static void bxe_reset_port(struct bxe_softc *sc);
9183static void bxe_reset_func(struct bxe_softc *sc);
9184static int bxe_gunzip_init(struct bxe_softc *sc);
9185static void bxe_gunzip_end(struct bxe_softc *sc);
9186static int bxe_init_firmware(struct bxe_softc *sc);
9187static void bxe_release_firmware(struct bxe_softc *sc);
9188
9189static struct
9190ecore_func_sp_drv_ops bxe_func_sp_drv = {
9191 .init_hw_cmn_chip = bxe_init_hw_common_chip,
9192 .init_hw_cmn = bxe_init_hw_common,
9193 .init_hw_port = bxe_init_hw_port,
9194 .init_hw_func = bxe_init_hw_func,
9195
9196 .reset_hw_cmn = bxe_reset_common,
9197 .reset_hw_port = bxe_reset_port,
9198 .reset_hw_func = bxe_reset_func,
9199
9200 .gunzip_init = bxe_gunzip_init,
9201 .gunzip_end = bxe_gunzip_end,
9202
9203 .init_fw = bxe_init_firmware,
9204 .release_fw = bxe_release_firmware,
9205};
9206
9207static void
9208bxe_init_func_obj(struct bxe_softc *sc)
9209{
9210 sc->dmae_ready = 0;
9211
9212 ecore_init_func_obj(sc,
9213 &sc->func_obj,
9214 BXE_SP(sc, func_rdata),
9215 BXE_SP_MAPPING(sc, func_rdata),
9216 BXE_SP(sc, func_afex_rdata),
9217 BXE_SP_MAPPING(sc, func_afex_rdata),
9218 &bxe_func_sp_drv);
9219}
9220
9221static int
9222bxe_init_hw(struct bxe_softc *sc,
9223 uint32_t load_code)
9224{
9225 struct ecore_func_state_params func_params = { NULL };
9226 int rc;
9227
9228 /* prepare the parameters for function state transitions */
9229 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
9230
9231 func_params.f_obj = &sc->func_obj;
9232 func_params.cmd = ECORE_F_CMD_HW_INIT;
9233
9234 func_params.params.hw_init.load_phase = load_code;
9235
9236 /*
9237 * Via a plethora of function pointers, we will eventually reach
9238 * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func().
9239 */
9240 rc = ecore_func_state_change(sc, &func_params);
9241
9242 return (rc);
9243}
9244
9245static void
9246bxe_fill(struct bxe_softc *sc,
9247 uint32_t addr,
9248 int fill,
9249 uint32_t len)
9250{
9251 uint32_t i;
9252
9253 if (!(len % 4) && !(addr % 4)) {
9254 for (i = 0; i < len; i += 4) {
9255 REG_WR(sc, (addr + i), fill);
9256 }
9257 } else {
9258 for (i = 0; i < len; i++) {
9259 REG_WR8(sc, (addr + i), fill);
9260 }
9261 }
9262}
9263
9264/* writes FP SP data to FW - data_size in dwords */
9265static void
9266bxe_wr_fp_sb_data(struct bxe_softc *sc,
9267 int fw_sb_id,
9268 uint32_t *sb_data_p,
9269 uint32_t data_size)
9270{
9271 int index;
9272
9273 for (index = 0; index < data_size; index++) {
9274 REG_WR(sc,
9275 (BAR_CSTRORM_INTMEM +
9276 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
9277 (sizeof(uint32_t) * index)),
9278 *(sb_data_p + index));
9279 }
9280}
9281
9282static void
9283bxe_zero_fp_sb(struct bxe_softc *sc,
9284 int fw_sb_id)
9285{
9286 struct hc_status_block_data_e2 sb_data_e2;
9287 struct hc_status_block_data_e1x sb_data_e1x;
9288 uint32_t *sb_data_p;
9289 uint32_t data_size = 0;
9290
9291 if (!CHIP_IS_E1x(sc)) {
9292 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9293 sb_data_e2.common.state = SB_DISABLED;
9294 sb_data_e2.common.p_func.vf_valid = FALSE;
9295 sb_data_p = (uint32_t *)&sb_data_e2;
9296 data_size = (sizeof(struct hc_status_block_data_e2) /
9297 sizeof(uint32_t));
9298 } else {
9299 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9300 sb_data_e1x.common.state = SB_DISABLED;
9301 sb_data_e1x.common.p_func.vf_valid = FALSE;
9302 sb_data_p = (uint32_t *)&sb_data_e1x;
9303 data_size = (sizeof(struct hc_status_block_data_e1x) /
9304 sizeof(uint32_t));
9305 }
9306
9307 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9308
9309 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)),
9310 0, CSTORM_STATUS_BLOCK_SIZE);
9311 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
9312 0, CSTORM_SYNC_BLOCK_SIZE);
9313}
9314
9315static void
9316bxe_wr_sp_sb_data(struct bxe_softc *sc,
9317 struct hc_sp_status_block_data *sp_sb_data)
9318{
9319 int i;
9320
9321 for (i = 0;
9322 i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
9323 i++) {
9324 REG_WR(sc,
9325 (BAR_CSTRORM_INTMEM +
9326 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
9327 (i * sizeof(uint32_t))),
9328 *((uint32_t *)sp_sb_data + i));
9329 }
9330}
9331
9332static void
9333bxe_zero_sp_sb(struct bxe_softc *sc)
9334{
9335 struct hc_sp_status_block_data sp_sb_data;
9336
9337 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9338
9339 sp_sb_data.state = SB_DISABLED;
9340 sp_sb_data.p_func.vf_valid = FALSE;
9341
9342 bxe_wr_sp_sb_data(sc, &sp_sb_data);
9343
9344 bxe_fill(sc,
9345 (BAR_CSTRORM_INTMEM +
9346 CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
9347 0, CSTORM_SP_STATUS_BLOCK_SIZE);
9348 bxe_fill(sc,
9349 (BAR_CSTRORM_INTMEM +
9350 CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
9351 0, CSTORM_SP_SYNC_BLOCK_SIZE);
9352}
9353
9354static void
9355bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
9356 int igu_sb_id,
9357 int igu_seg_id)
9358{
9359 hc_sm->igu_sb_id = igu_sb_id;
9360 hc_sm->igu_seg_id = igu_seg_id;
9361 hc_sm->timer_value = 0xFF;
9362 hc_sm->time_to_expire = 0xFFFFFFFF;
9363}
9364
9365static void
9366bxe_map_sb_state_machines(struct hc_index_data *index_data)
9367{
9368 /* zero out state machine indices */
9369
9370 /* rx indices */
9371 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
9372
9373 /* tx indices */
9374 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
9375 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
9376 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
9377 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
9378
9379 /* map indices */
9380
9381 /* rx indices */
9382 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
9383 (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9384
9385 /* tx indices */
9386 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
9387 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9388 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
9389 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9390 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
9391 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9392 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
9393 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9394}
9395
9396static void
9397bxe_init_sb(struct bxe_softc *sc,
9398 bus_addr_t busaddr,
9399 int vfid,
9400 uint8_t vf_valid,
9401 int fw_sb_id,
9402 int igu_sb_id)
9403{
9404 struct hc_status_block_data_e2 sb_data_e2;
9405 struct hc_status_block_data_e1x sb_data_e1x;
9406 struct hc_status_block_sm *hc_sm_p;
9407 uint32_t *sb_data_p;
9408 int igu_seg_id;
9409 int data_size;
9410
9411 if (CHIP_INT_MODE_IS_BC(sc)) {
9412 igu_seg_id = HC_SEG_ACCESS_NORM;
9413 } else {
9414 igu_seg_id = IGU_SEG_ACCESS_NORM;
9415 }
9416
9417 bxe_zero_fp_sb(sc, fw_sb_id);
9418
9419 if (!CHIP_IS_E1x(sc)) {
9420 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9421 sb_data_e2.common.state = SB_ENABLED;
9422 sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
9423 sb_data_e2.common.p_func.vf_id = vfid;
9424 sb_data_e2.common.p_func.vf_valid = vf_valid;
9425 sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
9426 sb_data_e2.common.same_igu_sb_1b = TRUE;
9427 sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
9428 sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
9429 hc_sm_p = sb_data_e2.common.state_machine;
9430 sb_data_p = (uint32_t *)&sb_data_e2;
9431 data_size = (sizeof(struct hc_status_block_data_e2) /
9432 sizeof(uint32_t));
9433 bxe_map_sb_state_machines(sb_data_e2.index_data);
9434 } else {
9435 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9436 sb_data_e1x.common.state = SB_ENABLED;
9437 sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
9438 sb_data_e1x.common.p_func.vf_id = 0xff;
9439 sb_data_e1x.common.p_func.vf_valid = FALSE;
9440 sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
9441 sb_data_e1x.common.same_igu_sb_1b = TRUE;
9442 sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
9443 sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
9444 hc_sm_p = sb_data_e1x.common.state_machine;
9445 sb_data_p = (uint32_t *)&sb_data_e1x;
9446 data_size = (sizeof(struct hc_status_block_data_e1x) /
9447 sizeof(uint32_t));
9448 bxe_map_sb_state_machines(sb_data_e1x.index_data);
9449 }
9450
9451 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
9452 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
9453
9454 BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id);
9455
9456 /* write indices to HW - PCI guarantees endianity of regpairs */
9457 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9458}
9459
9460static inline uint8_t
9461bxe_fp_qzone_id(struct bxe_fastpath *fp)
9462{
9463 if (CHIP_IS_E1x(fp->sc)) {
9464 return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H);
9465 } else {
9466 return (fp->cl_id);
9467 }
9468}
9469
9470static inline uint32_t
9471bxe_rx_ustorm_prods_offset(struct bxe_softc *sc,
9472 struct bxe_fastpath *fp)
9473{
9474 uint32_t offset = BAR_USTRORM_INTMEM;
9475
9476 if (!CHIP_IS_E1x(sc)) {
9477 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
9478 } else {
9479 offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
9480 }
9481
9482 return (offset);
9483}
9484
9485static void
9486bxe_init_eth_fp(struct bxe_softc *sc,
9487 int idx)
9488{
9489 struct bxe_fastpath *fp = &sc->fp[idx];
9490 uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
9491 unsigned long q_type = 0;
9492 int cos;
9493
9494 fp->sc = sc;
9495 fp->index = idx;
9496
9497 fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
9498 fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
9499
9500 fp->cl_id = (CHIP_IS_E1x(sc)) ?
9501 (SC_L_ID(sc) + idx) :
9502 /* want client ID same as IGU SB ID for non-E1 */
9503 fp->igu_sb_id;
9504 fp->cl_qzone_id = bxe_fp_qzone_id(fp);
9505
9506 /* setup sb indices */
9507 if (!CHIP_IS_E1x(sc)) {
9508 fp->sb_index_values = fp->status_block.e2_sb->sb.index_values;
9509 fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
9510 } else {
9511 fp->sb_index_values = fp->status_block.e1x_sb->sb.index_values;
9512 fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index;
9513 }
9514
9515 /* init shortcut */
9516 fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp);
9517
9518 fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
9519
9520 /*
9521 * XXX If multiple CoS is ever supported then each fastpath structure
9522 * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
9523 */
9524 for (cos = 0; cos < sc->max_cos; cos++) {
9525 cids[cos] = idx;
9526 }
9527 fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
9528
9529 /* nothing more for a VF to do */
9530 if (IS_VF(sc)) {
9531 return;
9532 }
9533
9534 bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE,
9535 fp->fw_sb_id, fp->igu_sb_id);
9536
9537 bxe_update_fp_sb_idx(fp);
9538
9539 /* Configure Queue State object */
9540 bit_set(&q_type, ECORE_Q_TYPE_HAS_RX);
9541 bit_set(&q_type, ECORE_Q_TYPE_HAS_TX);
9542
9543 ecore_init_queue_obj(sc,
9544 &sc->sp_objs[idx].q_obj,
9545 fp->cl_id,
9546 cids,
9547 sc->max_cos,
9548 SC_FUNC(sc),
9549 BXE_SP(sc, q_rdata),
9550 BXE_SP_MAPPING(sc, q_rdata),
9551 q_type);
9552
9553 /* configure classification DBs */
9554 ecore_init_mac_obj(sc,
9555 &sc->sp_objs[idx].mac_obj,
9556 fp->cl_id,
9557 idx,
9558 SC_FUNC(sc),
9559 BXE_SP(sc, mac_rdata),
9560 BXE_SP_MAPPING(sc, mac_rdata),
9561 ECORE_FILTER_MAC_PENDING,
9562 &sc->sp_state,
9563 ECORE_OBJ_TYPE_RX_TX,
9564 &sc->macs_pool);
9565
9566 BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n",
9567 idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id);
9568}
9569
9570static inline void
9571bxe_update_rx_prod(struct bxe_softc *sc,
9572 struct bxe_fastpath *fp,
9573 uint16_t rx_bd_prod,
9574 uint16_t rx_cq_prod,
9575 uint16_t rx_sge_prod)
9576{
9577 struct ustorm_eth_rx_producers rx_prods = { 0 };
9578 uint32_t i;
9579
9580 /* update producers */
9581 rx_prods.bd_prod = rx_bd_prod;
9582 rx_prods.cqe_prod = rx_cq_prod;
9583 rx_prods.sge_prod = rx_sge_prod;
9584
9585 /*
9586 * Make sure that the BD and SGE data is updated before updating the
9587 * producers since FW might read the BD/SGE right after the producer
9588 * is updated.
9589 * This is only applicable for weak-ordered memory model archs such
9590 * as IA-64. The following barrier is also mandatory since FW will
9591 * assumes BDs must have buffers.
9592 */
9593 wmb();
9594
9595 for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
9596 REG_WR(sc,
9597 (fp->ustorm_rx_prods_offset + (i * 4)),
9598 ((uint32_t *)&rx_prods)[i]);
9599 }
9600
9601 wmb(); /* keep prod updates ordered */
9602
9603 BLOGD(sc, DBG_RX,
9604 "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n",
9605 fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod);
9606}
9607
9608static void
9609bxe_init_rx_rings(struct bxe_softc *sc)
9610{
9611 struct bxe_fastpath *fp;
9612 int i;
9613
9614 for (i = 0; i < sc->num_queues; i++) {
9615 fp = &sc->fp[i];
9616
9617 fp->rx_bd_cons = 0;
9618
9619 /*
9620 * Activate the BD ring...
9621 * Warning, this will generate an interrupt (to the TSTORM)
9622 * so this can only be done after the chip is initialized
9623 */
9624 bxe_update_rx_prod(sc, fp,
9625 fp->rx_bd_prod,
9626 fp->rx_cq_prod,
9627 fp->rx_sge_prod);
9628
9629 if (i != 0) {
9630 continue;
9631 }
9632
9633 if (CHIP_IS_E1(sc)) {
9634 REG_WR(sc,
9635 (BAR_USTRORM_INTMEM +
9636 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))),
9637 U64_LO(fp->rcq_dma.paddr));
9638 REG_WR(sc,
9639 (BAR_USTRORM_INTMEM +
9640 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4),
9641 U64_HI(fp->rcq_dma.paddr));
9642 }
9643 }
9644}
9645
9646static void
9647bxe_init_tx_ring_one(struct bxe_fastpath *fp)
9648{
9649 SET_FLAG(fp->tx_db.data.header.data, DOORBELL_HDR_T_DB_TYPE, 1);
9650 fp->tx_db.data.zero_fill1 = 0;
9651 fp->tx_db.data.prod = 0;
9652
9653 fp->tx_pkt_prod = 0;
9654 fp->tx_pkt_cons = 0;
9655 fp->tx_bd_prod = 0;
9656 fp->tx_bd_cons = 0;
9657 fp->eth_q_stats.tx_pkts = 0;
9658}
9659
9660static inline void
9661bxe_init_tx_rings(struct bxe_softc *sc)
9662{
9663 int i;
9664
9665 for (i = 0; i < sc->num_queues; i++) {
9666 bxe_init_tx_ring_one(&sc->fp[i]);
9667 }
9668}
9669
9670static void
9671bxe_init_def_sb(struct bxe_softc *sc)
9672{
9673 struct host_sp_status_block *def_sb = sc->def_sb;
9674 bus_addr_t mapping = sc->def_sb_dma.paddr;
9675 int igu_sp_sb_index;
9676 int igu_seg_id;
9677 int port = SC_PORT(sc);
9678 int func = SC_FUNC(sc);
9679 int reg_offset, reg_offset_en5;
9680 uint64_t section;
9681 int index, sindex;
9682 struct hc_sp_status_block_data sp_sb_data;
9683
9684 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9685
9686 if (CHIP_INT_MODE_IS_BC(sc)) {
9687 igu_sp_sb_index = DEF_SB_IGU_ID;
9688 igu_seg_id = HC_SEG_ACCESS_DEF;
9689 } else {
9690 igu_sp_sb_index = sc->igu_dsb_id;
9691 igu_seg_id = IGU_SEG_ACCESS_DEF;
9692 }
9693
9694 /* attentions */
9695 section = ((uint64_t)mapping +
9696 offsetof(struct host_sp_status_block, atten_status_block));
9697 def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
9698 sc->attn_state = 0;
9699
9700 reg_offset = (port) ?
9701 MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
9702 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
9703 reg_offset_en5 = (port) ?
9704 MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
9705 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
9706
9707 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
9708 /* take care of sig[0]..sig[4] */
9709 for (sindex = 0; sindex < 4; sindex++) {
9710 sc->attn_group[index].sig[sindex] =
9711 REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index)));
9712 }
9713
9714 if (!CHIP_IS_E1x(sc)) {
9715 /*
9716 * enable5 is separate from the rest of the registers,
9717 * and the address skip is 4 and not 16 between the
9718 * different groups
9719 */
9720 sc->attn_group[index].sig[4] =
9721 REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
9722 } else {
9723 sc->attn_group[index].sig[4] = 0;
9724 }
9725 }
9726
9727 if (sc->devinfo.int_block == INT_BLOCK_HC) {
9728 reg_offset = (port) ?
9729 HC_REG_ATTN_MSG1_ADDR_L :
9730 HC_REG_ATTN_MSG0_ADDR_L;
9731 REG_WR(sc, reg_offset, U64_LO(section));
9732 REG_WR(sc, (reg_offset + 4), U64_HI(section));
9733 } else if (!CHIP_IS_E1x(sc)) {
9734 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
9735 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
9736 }
9737
9738 section = ((uint64_t)mapping +
9739 offsetof(struct host_sp_status_block, sp_sb));
9740
9741 bxe_zero_sp_sb(sc);
9742
9743 /* PCI guarantees endianity of regpair */
9744 sp_sb_data.state = SB_ENABLED;
9745 sp_sb_data.host_sb_addr.lo = U64_LO(section);
9746 sp_sb_data.host_sb_addr.hi = U64_HI(section);
9747 sp_sb_data.igu_sb_id = igu_sp_sb_index;
9748 sp_sb_data.igu_seg_id = igu_seg_id;
9749 sp_sb_data.p_func.pf_id = func;
9750 sp_sb_data.p_func.vnic_id = SC_VN(sc);
9751 sp_sb_data.p_func.vf_id = 0xff;
9752
9753 bxe_wr_sp_sb_data(sc, &sp_sb_data);
9754
9755 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
9756}
9757
9758static void
9759bxe_init_sp_ring(struct bxe_softc *sc)
9760{
9761 atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
9762 sc->spq_prod_idx = 0;
9763 sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
9764 sc->spq_prod_bd = sc->spq;
9765 sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
9766}
9767
9768static void
9769bxe_init_eq_ring(struct bxe_softc *sc)
9770{
9771 union event_ring_elem *elem;
9772 int i;
9773
9774 for (i = 1; i <= NUM_EQ_PAGES; i++) {
9775 elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
9776
9777 elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
9778 BCM_PAGE_SIZE *
9779 (i % NUM_EQ_PAGES)));
9780 elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
9781 BCM_PAGE_SIZE *
9782 (i % NUM_EQ_PAGES)));
9783 }
9784
9785 sc->eq_cons = 0;
9786 sc->eq_prod = NUM_EQ_DESC;
9787 sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
9788
9789 atomic_store_rel_long(&sc->eq_spq_left,
9790 (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
9791 NUM_EQ_DESC) - 1));
9792}
9793
9794static void
9795bxe_init_internal_common(struct bxe_softc *sc)
9796{
9797 int i;
9798
9799 /*
9800 * Zero this manually as its initialization is currently missing
9801 * in the initTool.
9802 */
9803 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
9804 REG_WR(sc,
9805 (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
9806 0);
9807 }
9808
9809 if (!CHIP_IS_E1x(sc)) {
9810 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
9811 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
9812 }
9813}
9814
9815static void
9816bxe_init_internal(struct bxe_softc *sc,
9817 uint32_t load_code)
9818{
9819 switch (load_code) {
9820 case FW_MSG_CODE_DRV_LOAD_COMMON:
9821 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
9822 bxe_init_internal_common(sc);
9823 /* no break */
9824
9825 case FW_MSG_CODE_DRV_LOAD_PORT:
9826 /* nothing to do */
9827 /* no break */
9828
9829 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
9830 /* internal memory per function is initialized inside bxe_pf_init */
9831 break;
9832
9833 default:
9834 BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code);
9835 break;
9836 }
9837}
9838
9839static void
9840storm_memset_func_cfg(struct bxe_softc *sc,
9841 struct tstorm_eth_function_common_config *tcfg,
9842 uint16_t abs_fid)
9843{
9844 uint32_t addr;
9845 size_t size;
9846
9847 addr = (BAR_TSTRORM_INTMEM +
9848 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
9849 size = sizeof(struct tstorm_eth_function_common_config);
9850 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg);
9851}
9852
9853static void
9854bxe_func_init(struct bxe_softc *sc,
9855 struct bxe_func_init_params *p)
9856{
9857 struct tstorm_eth_function_common_config tcfg = { 0 };
9858
9859 if (CHIP_IS_E1x(sc)) {
9860 storm_memset_func_cfg(sc, &tcfg, p->func_id);
9861 }
9862
9863 /* Enable the function in the FW */
9864 storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
9865 storm_memset_func_en(sc, p->func_id, 1);
9866
9867 /* spq */
9868 if (p->func_flgs & FUNC_FLG_SPQ) {
9869 storm_memset_spq_addr(sc, p->spq_map, p->func_id);
9870 REG_WR(sc,
9871 (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)),
9872 p->spq_prod);
9873 }
9874}
9875
9876/*
9877 * Calculates the sum of vn_min_rates.
9878 * It's needed for further normalizing of the min_rates.
9879 * Returns:
9880 * sum of vn_min_rates.
9881 * or
9882 * 0 - if all the min_rates are 0.
9883 * In the later case fainess algorithm should be deactivated.
9884 * If all min rates are not zero then those that are zeroes will be set to 1.
9885 */
9886static void
9887bxe_calc_vn_min(struct bxe_softc *sc,
9888 struct cmng_init_input *input)
9889{
9890 uint32_t vn_cfg;
9891 uint32_t vn_min_rate;
9892 int all_zero = 1;
9893 int vn;
9894
9895 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
9896 vn_cfg = sc->devinfo.mf_info.mf_config[vn];
9897 vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
9898 FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
9899
9900 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
9901 /* skip hidden VNs */
9902 vn_min_rate = 0;
9903 } else if (!vn_min_rate) {
9904 /* If min rate is zero - set it to 100 */
9905 vn_min_rate = DEF_MIN_RATE;
9906 } else {
9907 all_zero = 0;
9908 }
9909
9910 input->vnic_min_rate[vn] = vn_min_rate;
9911 }
9912
9913 /* if ETS or all min rates are zeros - disable fairness */
9914 if (BXE_IS_ETS_ENABLED(sc)) {
9915 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
9916 BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n");
9917 } else if (all_zero) {
9918 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
9919 BLOGD(sc, DBG_LOAD,
9920 "Fariness disabled (all MIN values are zeroes)\n");
9921 } else {
9922 input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
9923 }
9924}
9925
9926static inline uint16_t
9927bxe_extract_max_cfg(struct bxe_softc *sc,
9928 uint32_t mf_cfg)
9929{
9930 uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
9931 FUNC_MF_CFG_MAX_BW_SHIFT);
9932
9933 if (!max_cfg) {
9934 BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n");
9935 max_cfg = 100;
9936 }
9937
9938 return (max_cfg);
9939}
9940
9941static void
9942bxe_calc_vn_max(struct bxe_softc *sc,
9943 int vn,
9944 struct cmng_init_input *input)
9945{
9946 uint16_t vn_max_rate;
9947 uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
9948 uint32_t max_cfg;
9949
9950 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
9951 vn_max_rate = 0;
9952 } else {
9953 max_cfg = bxe_extract_max_cfg(sc, vn_cfg);
9954
9955 if (IS_MF_SI(sc)) {
9956 /* max_cfg in percents of linkspeed */
9957 vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100);
9958 } else { /* SD modes */
9959 /* max_cfg is absolute in 100Mb units */
9960 vn_max_rate = (max_cfg * 100);
9961 }
9962 }
9963
9964 BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
9965
9966 input->vnic_max_rate[vn] = vn_max_rate;
9967}
9968
9969static void
9970bxe_cmng_fns_init(struct bxe_softc *sc,
9971 uint8_t read_cfg,
9972 uint8_t cmng_type)
9973{
9974 struct cmng_init_input input;
9975 int vn;
9976
9977 memset(&input, 0, sizeof(struct cmng_init_input));
9978
9979 input.port_rate = sc->link_vars.line_speed;
9980
9981 if (cmng_type == CMNG_FNS_MINMAX) {
9982 /* read mf conf from shmem */
9983 if (read_cfg) {
9984 bxe_read_mf_cfg(sc);
9985 }
9986
9987 /* get VN min rate and enable fairness if not 0 */
9988 bxe_calc_vn_min(sc, &input);
9989
9990 /* get VN max rate */
9991 if (sc->port.pmf) {
9992 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
9993 bxe_calc_vn_max(sc, vn, &input);
9994 }
9995 }
9996
9997 /* always enable rate shaping and fairness */
9998 input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
9999
10000 ecore_init_cmng(&input, &sc->cmng);
10001 return;
10002 }
10003
10004 /* rate shaping and fairness are disabled */
10005 BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n");
10006}
10007
10008static int
10009bxe_get_cmng_fns_mode(struct bxe_softc *sc)
10010{
10011 if (CHIP_REV_IS_SLOW(sc)) {
10012 return (CMNG_FNS_NONE);
10013 }
10014
10015 if (IS_MF(sc)) {
10016 return (CMNG_FNS_MINMAX);
10017 }
10018
10019 return (CMNG_FNS_NONE);
10020}
10021
10022static void
10023storm_memset_cmng(struct bxe_softc *sc,
10024 struct cmng_init *cmng,
10025 uint8_t port)
10026{
10027 int vn;
10028 int func;
10029 uint32_t addr;
10030 size_t size;
10031
10032 addr = (BAR_XSTRORM_INTMEM +
10033 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
10034 size = sizeof(struct cmng_struct_per_port);
10035 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port);
10036
10037 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10038 func = func_by_vn(sc, vn);
10039
10040 addr = (BAR_XSTRORM_INTMEM +
10041 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
10042 size = sizeof(struct rate_shaping_vars_per_vn);
10043 ecore_storm_memset_struct(sc, addr, size,
10044 (uint32_t *)&cmng->vnic.vnic_max_rate[vn]);
10045
10046 addr = (BAR_XSTRORM_INTMEM +
10047 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
10048 size = sizeof(struct fairness_vars_per_vn);
10049 ecore_storm_memset_struct(sc, addr, size,
10050 (uint32_t *)&cmng->vnic.vnic_min_rate[vn]);
10051 }
10052}
10053
10054static void
10055bxe_pf_init(struct bxe_softc *sc)
10056{
10057 struct bxe_func_init_params func_init = { 0 };
10058 struct event_ring_data eq_data = { { 0 } };
10059 uint16_t flags;
10060
10061 if (!CHIP_IS_E1x(sc)) {
10062 /* reset IGU PF statistics: MSIX + ATTN */
10063 /* PF */
10064 REG_WR(sc,
10065 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10066 (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10067 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10068 0);
10069 /* ATTN */
10070 REG_WR(sc,
10071 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10072 (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10073 (BXE_IGU_STAS_MSG_PF_CNT * 4) +
10074 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10075 0);
10076 }
10077
10078 /* function setup flags */
10079 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
10080
10081 /*
10082 * This flag is relevant for E1x only.
10083 * E2 doesn't have a TPA configuration in a function level.
10084 */
10085 flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0;
10086
10087 func_init.func_flgs = flags;
10088 func_init.pf_id = SC_FUNC(sc);
10089 func_init.func_id = SC_FUNC(sc);
10090 func_init.spq_map = sc->spq_dma.paddr;
10091 func_init.spq_prod = sc->spq_prod_idx;
10092
10093 bxe_func_init(sc, &func_init);
10094
10095 memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
10096
10097 /*
10098 * Congestion management values depend on the link rate.
10099 * There is no active link so initial link rate is set to 10Gbps.
10100 * When the link comes up the congestion management values are
10101 * re-calculated according to the actual link rate.
10102 */
10103 sc->link_vars.line_speed = SPEED_10000;
10104 bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc));
10105
10106 /* Only the PMF sets the HW */
10107 if (sc->port.pmf) {
10108 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
10109 }
10110
10111 /* init Event Queue - PCI bus guarantees correct endainity */
10112 eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
10113 eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
10114 eq_data.producer = sc->eq_prod;
10115 eq_data.index_id = HC_SP_INDEX_EQ_CONS;
10116 eq_data.sb_id = DEF_SB_ID;
10117 storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
10118}
10119
10120static void
10121bxe_hc_int_enable(struct bxe_softc *sc)
10122{
10123 int port = SC_PORT(sc);
10124 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10125 uint32_t val = REG_RD(sc, addr);
10126 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10127 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10128 (sc->intr_count == 1)) ? TRUE : FALSE;
10129 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10130
10131 if (msix) {
10132 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10133 HC_CONFIG_0_REG_INT_LINE_EN_0);
10134 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10135 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10136 if (single_msix) {
10137 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
10138 }
10139 } else if (msi) {
10140 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
10141 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10142 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10143 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10144 } else {
10145 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10146 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10147 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10148 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10149
10150 if (!CHIP_IS_E1(sc)) {
10151 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n",
10152 val, port, addr);
10153
10154 REG_WR(sc, addr, val);
10155
10156 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
10157 }
10158 }
10159
10160 if (CHIP_IS_E1(sc)) {
10161 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF);
10162 }
10163
10164 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
10165 val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10166
10167 REG_WR(sc, addr, val);
10168
10169 /* ensure that HC_CONFIG is written before leading/trailing edge config */
10170 mb();
10171
10172 if (!CHIP_IS_E1(sc)) {
10173 /* init leading/trailing edge */
10174 if (IS_MF(sc)) {
10175 val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10176 if (sc->port.pmf) {
10177 /* enable nig and gpio3 attention */
10178 val |= 0x1100;
10179 }
10180 } else {
10181 val = 0xffff;
10182 }
10183
10184 REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val);
10185 REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val);
10186 }
10187
10188 /* make sure that interrupts are indeed enabled from here on */
10189 mb();
10190}
10191
10192static void
10193bxe_igu_int_enable(struct bxe_softc *sc)
10194{
10195 uint32_t val;
10196 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10197 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10198 (sc->intr_count == 1)) ? TRUE : FALSE;
10199 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10200
10201 val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10202
10203 if (msix) {
10204 val &= ~(IGU_PF_CONF_INT_LINE_EN |
10205 IGU_PF_CONF_SINGLE_ISR_EN);
10206 val |= (IGU_PF_CONF_MSI_MSIX_EN |
10207 IGU_PF_CONF_ATTN_BIT_EN);
10208 if (single_msix) {
10209 val |= IGU_PF_CONF_SINGLE_ISR_EN;
10210 }
10211 } else if (msi) {
10212 val &= ~IGU_PF_CONF_INT_LINE_EN;
10213 val |= (IGU_PF_CONF_MSI_MSIX_EN |
10214 IGU_PF_CONF_ATTN_BIT_EN |
10215 IGU_PF_CONF_SINGLE_ISR_EN);
10216 } else {
10217 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
10218 val |= (IGU_PF_CONF_INT_LINE_EN |
10219 IGU_PF_CONF_ATTN_BIT_EN |
10220 IGU_PF_CONF_SINGLE_ISR_EN);
10221 }
10222
10223 /* clean previous status - need to configure igu prior to ack*/
10224 if ((!msix) || single_msix) {
10225 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10226 bxe_ack_int(sc);
10227 }
10228
10229 val |= IGU_PF_CONF_FUNC_EN;
10230
10231 BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n",
10232 val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10233
10234 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10235
10236 mb();
10237
10238 /* init leading/trailing edge */
10239 if (IS_MF(sc)) {
10240 val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10241 if (sc->port.pmf) {
10242 /* enable nig and gpio3 attention */
10243 val |= 0x1100;
10244 }
10245 } else {
10246 val = 0xffff;
10247 }
10248
10249 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
10250 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
10251
10252 /* make sure that interrupts are indeed enabled from here on */
10253 mb();
10254}
10255
10256static void
10257bxe_int_enable(struct bxe_softc *sc)
10258{
10259 if (sc->devinfo.int_block == INT_BLOCK_HC) {
10260 bxe_hc_int_enable(sc);
10261 } else {
10262 bxe_igu_int_enable(sc);
10263 }
10264}
10265
10266static void
10267bxe_hc_int_disable(struct bxe_softc *sc)
10268{
10269 int port = SC_PORT(sc);
10270 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10271 uint32_t val = REG_RD(sc, addr);
10272
10273 /*
10274 * In E1 we must use only PCI configuration space to disable MSI/MSIX
10275 * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC
10276 * block
10277 */
10278 if (CHIP_IS_E1(sc)) {
10279 /*
10280 * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register
10281 * to prevent from HC sending interrupts after we exit the function
10282 */
10283 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0);
10284
10285 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10286 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10287 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10288 } else {
10289 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10290 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10291 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10292 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10293 }
10294
10295 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr);
10296
10297 /* flush all outstanding writes */
10298 mb();
10299
10300 REG_WR(sc, addr, val);
10301 if (REG_RD(sc, addr) != val) {
10302 BLOGE(sc, "proper val not read from HC IGU!\n");
10303 }
10304}
10305
10306static void
10307bxe_igu_int_disable(struct bxe_softc *sc)
10308{
10309 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10310
10311 val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
10312 IGU_PF_CONF_INT_LINE_EN |
10313 IGU_PF_CONF_ATTN_BIT_EN);
10314
10315 BLOGD(sc, DBG_INTR, "write %x to IGU\n", val);
10316
10317 /* flush all outstanding writes */
10318 mb();
10319
10320 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10321 if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
10322 BLOGE(sc, "proper val not read from IGU!\n");
10323 }
10324}
10325
10326static void
10327bxe_int_disable(struct bxe_softc *sc)
10328{
10329 if (sc->devinfo.int_block == INT_BLOCK_HC) {
10330 bxe_hc_int_disable(sc);
10331 } else {
10332 bxe_igu_int_disable(sc);
10333 }
10334}
10335
10336static void
10337bxe_nic_init(struct bxe_softc *sc,
10338 int load_code)
10339{
10340 int i;
10341
10342 for (i = 0; i < sc->num_queues; i++) {
10343 bxe_init_eth_fp(sc, i);
10344 }
10345
10346 rmb(); /* ensure status block indices were read */
10347
10348 bxe_init_rx_rings(sc);
10349 bxe_init_tx_rings(sc);
10350
10351 if (IS_VF(sc)) {
10352 return;
10353 }
10354
10355 /* initialize MOD_ABS interrupts */
10356 elink_init_mod_abs_int(sc, &sc->link_vars,
10357 sc->devinfo.chip_id,
10358 sc->devinfo.shmem_base,
10359 sc->devinfo.shmem2_base,
10360 SC_PORT(sc));
10361
10362 bxe_init_def_sb(sc);
10363 bxe_update_dsb_idx(sc);
10364 bxe_init_sp_ring(sc);
10365 bxe_init_eq_ring(sc);
10366 bxe_init_internal(sc, load_code);
10367 bxe_pf_init(sc);
10368 bxe_stats_init(sc);
10369
10370 /* flush all before enabling interrupts */
10371 mb();
10372
10373 bxe_int_enable(sc);
10374
10375 /* check for SPIO5 */
10376 bxe_attn_int_deasserted0(sc,
10377 REG_RD(sc,
10378 (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
10379 SC_PORT(sc)*4)) &
10380 AEU_INPUTS_ATTN_BITS_SPIO5);
10381}
10382
10383static inline void
10384bxe_init_objs(struct bxe_softc *sc)
10385{
10386 /* mcast rules must be added to tx if tx switching is enabled */
10387 ecore_obj_type o_type =
10388 (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX :
10389 ECORE_OBJ_TYPE_RX;
10390
10391 /* RX_MODE controlling object */
10392 ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
10393
10394 /* multicast configuration controlling object */
10395 ecore_init_mcast_obj(sc,
10396 &sc->mcast_obj,
10397 sc->fp[0].cl_id,
10398 sc->fp[0].index,
10399 SC_FUNC(sc),
10400 SC_FUNC(sc),
10401 BXE_SP(sc, mcast_rdata),
10402 BXE_SP_MAPPING(sc, mcast_rdata),
10403 ECORE_FILTER_MCAST_PENDING,
10404 &sc->sp_state,
10405 o_type);
10406
10407 /* Setup CAM credit pools */
10408 ecore_init_mac_credit_pool(sc,
10409 &sc->macs_pool,
10410 SC_FUNC(sc),
10411 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10412 VNICS_PER_PATH(sc));
10413
10414 ecore_init_vlan_credit_pool(sc,
10415 &sc->vlans_pool,
10416 SC_ABS_FUNC(sc) >> 1,
10417 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10418 VNICS_PER_PATH(sc));
10419
10420 /* RSS configuration object */
10421 ecore_init_rss_config_obj(sc,
10422 &sc->rss_conf_obj,
10423 sc->fp[0].cl_id,
10424 sc->fp[0].index,
10425 SC_FUNC(sc),
10426 SC_FUNC(sc),
10427 BXE_SP(sc, rss_rdata),
10428 BXE_SP_MAPPING(sc, rss_rdata),
10429 ECORE_FILTER_RSS_CONF_PENDING,
10430 &sc->sp_state, ECORE_OBJ_TYPE_RX);
10431}
10432
10433/*
10434 * Initialize the function. This must be called before sending CLIENT_SETUP
10435 * for the first client.
10436 */
10437static inline int
10438bxe_func_start(struct bxe_softc *sc)
10439{
10440 struct ecore_func_state_params func_params = { NULL };
10441 struct ecore_func_start_params *start_params = &func_params.params.start;
10442
10443 /* Prepare parameters for function state transitions */
10444 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
10445
10446 func_params.f_obj = &sc->func_obj;
10447 func_params.cmd = ECORE_F_CMD_START;
10448
10449 /* Function parameters */
10450 start_params->mf_mode = sc->devinfo.mf_info.mf_mode;
10451 start_params->sd_vlan_tag = OVLAN(sc);
10452
10453 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
10454 start_params->network_cos_mode = STATIC_COS;
10455 } else { /* CHIP_IS_E1X */
10456 start_params->network_cos_mode = FW_WRR;
10457 }
10458
10459 //start_params->gre_tunnel_mode = 0;
10460 //start_params->gre_tunnel_rss = 0;
10461
10462 return (ecore_func_state_change(sc, &func_params));
10463}
10464
10465static int
10466bxe_set_power_state(struct bxe_softc *sc,
10467 uint8_t state)
10468{
10469 uint16_t pmcsr;
10470
10471 /* If there is no power capability, silently succeed */
10472 if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) {
10473 BLOGW(sc, "No power capability\n");
10474 return (0);
10475 }
10476
10477 pmcsr = pci_read_config(sc->dev,
10478 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10479 2);
10480
10481 switch (state) {
10482 case PCI_PM_D0:
10483 pci_write_config(sc->dev,
10484 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10485 ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2);
10486
10487 if (pmcsr & PCIM_PSTAT_DMASK) {
10488 /* delay required during transition out of D3hot */
10489 DELAY(20000);
10490 }
10491
10492 break;
10493
10494 case PCI_PM_D3hot:
10495 /* XXX if there are other clients above don't shut down the power */
10496
10497 /* don't shut down the power for emulation and FPGA */
10498 if (CHIP_REV_IS_SLOW(sc)) {
10499 return (0);
10500 }
10501
10502 pmcsr &= ~PCIM_PSTAT_DMASK;
10503 pmcsr |= PCIM_PSTAT_D3;
10504
10505 if (sc->wol) {
10506 pmcsr |= PCIM_PSTAT_PMEENABLE;
10507 }
10508
10509 pci_write_config(sc->dev,
10510 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10511 pmcsr, 4);
10512
10513 /*
10514 * No more memory access after this point until device is brought back
10515 * to D0 state.
10516 */
10517 break;
10518
10519 default:
10520 BLOGE(sc, "Can't support PCI power state = 0x%x pmcsr 0x%x\n",
10521 state, pmcsr);
10522 return (-1);
10523 }
10524
10525 return (0);
10526}
10527
10528
10529/* return true if succeeded to acquire the lock */
10530static uint8_t
10531bxe_trylock_hw_lock(struct bxe_softc *sc,
10532 uint32_t resource)
10533{
10534 uint32_t lock_status;
10535 uint32_t resource_bit = (1 << resource);
10536 int func = SC_FUNC(sc);
10537 uint32_t hw_lock_control_reg;
10538
10539 BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource);
10540
10541 /* Validating that the resource is within range */
10542 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
10543 BLOGD(sc, DBG_LOAD,
10544 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
10545 resource, HW_LOCK_MAX_RESOURCE_VALUE);
10546 return (FALSE);
10547 }
10548
10549 if (func <= 5) {
10550 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
10551 } else {
10552 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
10553 }
10554
10555 /* try to acquire the lock */
10556 REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
10557 lock_status = REG_RD(sc, hw_lock_control_reg);
10558 if (lock_status & resource_bit) {
10559 return (TRUE);
10560 }
10561
10562 BLOGE(sc, "Failed to get a resource lock 0x%x func %d "
10563 "lock_status 0x%x resource_bit 0x%x\n", resource, func,
10564 lock_status, resource_bit);
10565
10566 return (FALSE);
10567}
10568
10569/*
10570 * Get the recovery leader resource id according to the engine this function
10571 * belongs to. Currently only only 2 engines is supported.
10572 */
10573static int
10574bxe_get_leader_lock_resource(struct bxe_softc *sc)
10575{
10576 if (SC_PATH(sc)) {
10577 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1);
10578 } else {
10579 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0);
10580 }
10581}
10582
10583/* try to acquire a leader lock for current engine */
10584static uint8_t
10585bxe_trylock_leader_lock(struct bxe_softc *sc)
10586{
10587 return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
10588}
10589
10590static int
10591bxe_release_leader_lock(struct bxe_softc *sc)
10592{
10593 return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
10594}
10595
10596/* close gates #2, #3 and #4 */
10597static void
10598bxe_set_234_gates(struct bxe_softc *sc,
10599 uint8_t close)
10600{
10601 uint32_t val;
10602
10603 /* gates #2 and #4a are closed/opened for "not E1" only */
10604 if (!CHIP_IS_E1(sc)) {
10605 /* #4 */
10606 REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
10607 /* #2 */
10608 REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
10609 }
10610
10611 /* #3 */
10612 if (CHIP_IS_E1x(sc)) {
10613 /* prevent interrupts from HC on both ports */
10614 val = REG_RD(sc, HC_REG_CONFIG_1);
10615 REG_WR(sc, HC_REG_CONFIG_1,
10616 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
10617 (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
10618
10619 val = REG_RD(sc, HC_REG_CONFIG_0);
10620 REG_WR(sc, HC_REG_CONFIG_0,
10621 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
10622 (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
10623 } else {
10624 /* Prevent incoming interrupts in IGU */
10625 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
10626
10627 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
10628 (!close) ?
10629 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
10630 (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
10631 }
10632
10633 BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n",
10634 close ? "closing" : "opening");
10635
10636 wmb();
10637}
10638
10639/* poll for pending writes bit, it should get cleared in no more than 1s */
10640static int
10641bxe_er_poll_igu_vq(struct bxe_softc *sc)
10642{
10643 uint32_t cnt = 1000;
10644 uint32_t pend_bits = 0;
10645
10646 do {
10647 pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
10648
10649 if (pend_bits == 0) {
10650 break;
10651 }
10652
10653 DELAY(1000);
10654 } while (--cnt > 0);
10655
10656 if (cnt == 0) {
10657 BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits);
10658 return (-1);
10659 }
10660
10661 return (0);
10662}
10663
10664#define SHARED_MF_CLP_MAGIC 0x80000000 /* 'magic' bit */
10665
10666static void
10667bxe_clp_reset_prep(struct bxe_softc *sc,
10668 uint32_t *magic_val)
10669{
10670 /* Do some magic... */
10671 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
10672 *magic_val = val & SHARED_MF_CLP_MAGIC;
10673 MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
10674}
10675
10676/* restore the value of the 'magic' bit */
10677static void
10678bxe_clp_reset_done(struct bxe_softc *sc,
10679 uint32_t magic_val)
10680{
10681 /* Restore the 'magic' bit value... */
10682 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
10683 MFCFG_WR(sc, shared_mf_config.clp_mb,
10684 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
10685}
10686
10687/* prepare for MCP reset, takes care of CLP configurations */
10688static void
10689bxe_reset_mcp_prep(struct bxe_softc *sc,
10690 uint32_t *magic_val)
10691{
10692 uint32_t shmem;
10693 uint32_t validity_offset;
10694
10695 /* set `magic' bit in order to save MF config */
10696 if (!CHIP_IS_E1(sc)) {
10697 bxe_clp_reset_prep(sc, magic_val);
10698 }
10699
10700 /* get shmem offset */
10701 shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
10702 validity_offset =
10703 offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
10704
10705 /* Clear validity map flags */
10706 if (shmem > 0) {
10707 REG_WR(sc, shmem + validity_offset, 0);
10708 }
10709}
10710
10711#define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */
10712#define MCP_ONE_TIMEOUT 100 /* 100 ms */
10713
10714static void
10715bxe_mcp_wait_one(struct bxe_softc *sc)
10716{
10717 /* special handling for emulation and FPGA (10 times longer) */
10718 if (CHIP_REV_IS_SLOW(sc)) {
10719 DELAY((MCP_ONE_TIMEOUT*10) * 1000);
10720 } else {
10721 DELAY((MCP_ONE_TIMEOUT) * 1000);
10722 }
10723}
10724
10725/* initialize shmem_base and waits for validity signature to appear */
10726static int
10727bxe_init_shmem(struct bxe_softc *sc)
10728{
10729 int cnt = 0;
10730 uint32_t val = 0;
10731
10732 do {
10733 sc->devinfo.shmem_base =
10734 sc->link_params.shmem_base =
10735 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
10736
10737 if (sc->devinfo.shmem_base) {
10738 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
10739 if (val & SHR_MEM_VALIDITY_MB)
10740 return (0);
10741 }
10742
10743 bxe_mcp_wait_one(sc);
10744
10745 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
10746
10747 BLOGE(sc, "BAD MCP validity signature\n");
10748
10749 return (-1);
10750}
10751
10752static int
10753bxe_reset_mcp_comp(struct bxe_softc *sc,
10754 uint32_t magic_val)
10755{
10756 int rc = bxe_init_shmem(sc);
10757
10758 /* Restore the `magic' bit value */
10759 if (!CHIP_IS_E1(sc)) {
10760 bxe_clp_reset_done(sc, magic_val);
10761 }
10762
10763 return (rc);
10764}
10765
10766static void
10767bxe_pxp_prep(struct bxe_softc *sc)
10768{
10769 if (!CHIP_IS_E1(sc)) {
10770 REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
10771 REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
10772 wmb();
10773 }
10774}
10775
10776/*
10777 * Reset the whole chip except for:
10778 * - PCIE core
10779 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
10780 * - IGU
10781 * - MISC (including AEU)
10782 * - GRC
10783 * - RBCN, RBCP
10784 */
10785static void
10786bxe_process_kill_chip_reset(struct bxe_softc *sc,
10787 uint8_t global)
10788{
10789 uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
10790 uint32_t global_bits2, stay_reset2;
10791
10792 /*
10793 * Bits that have to be set in reset_mask2 if we want to reset 'global'
10794 * (per chip) blocks.
10795 */
10796 global_bits2 =
10797 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
10798 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
10799
10800 /*
10801 * Don't reset the following blocks.
10802 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
10803 * reset, as in 4 port device they might still be owned
10804 * by the MCP (there is only one leader per path).
10805 */
10806 not_reset_mask1 =
10807 MISC_REGISTERS_RESET_REG_1_RST_HC |
10808 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
10809 MISC_REGISTERS_RESET_REG_1_RST_PXP;
10810
10811 not_reset_mask2 =
10812 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
10813 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
10814 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
10815 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
10816 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
10817 MISC_REGISTERS_RESET_REG_2_RST_GRC |
10818 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
10819 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
10820 MISC_REGISTERS_RESET_REG_2_RST_ATC |
10821 MISC_REGISTERS_RESET_REG_2_PGLC |
10822 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
10823 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
10824 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
10825 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
10826 MISC_REGISTERS_RESET_REG_2_UMAC0 |
10827 MISC_REGISTERS_RESET_REG_2_UMAC1;
10828
10829 /*
10830 * Keep the following blocks in reset:
10831 * - all xxMACs are handled by the elink code.
10832 */
10833 stay_reset2 =
10834 MISC_REGISTERS_RESET_REG_2_XMAC |
10835 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
10836
10837 /* Full reset masks according to the chip */
10838 reset_mask1 = 0xffffffff;
10839
10840 if (CHIP_IS_E1(sc))
10841 reset_mask2 = 0xffff;
10842 else if (CHIP_IS_E1H(sc))
10843 reset_mask2 = 0x1ffff;
10844 else if (CHIP_IS_E2(sc))
10845 reset_mask2 = 0xfffff;
10846 else /* CHIP_IS_E3 */
10847 reset_mask2 = 0x3ffffff;
10848
10849 /* Don't reset global blocks unless we need to */
10850 if (!global)
10851 reset_mask2 &= ~global_bits2;
10852
10853 /*
10854 * In case of attention in the QM, we need to reset PXP
10855 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
10856 * because otherwise QM reset would release 'close the gates' shortly
10857 * before resetting the PXP, then the PSWRQ would send a write
10858 * request to PGLUE. Then when PXP is reset, PGLUE would try to
10859 * read the payload data from PSWWR, but PSWWR would not
10860 * respond. The write queue in PGLUE would stuck, dmae commands
10861 * would not return. Therefore it's important to reset the second
10862 * reset register (containing the
10863 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
10864 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
10865 * bit).
10866 */
10867 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
10868 reset_mask2 & (~not_reset_mask2));
10869
10870 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
10871 reset_mask1 & (~not_reset_mask1));
10872
10873 mb();
10874 wmb();
10875
10876 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
10877 reset_mask2 & (~stay_reset2));
10878
10879 mb();
10880 wmb();
10881
10882 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
10883 wmb();
10884}
10885
10886static int
10887bxe_process_kill(struct bxe_softc *sc,
10888 uint8_t global)
10889{
10890 int cnt = 1000;
10891 uint32_t val = 0;
10892 uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
10893 uint32_t tags_63_32 = 0;
10894
10895 /* Empty the Tetris buffer, wait for 1s */
10896 do {
10897 sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT);
10898 blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
10899 port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
10900 port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
10901 pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
10902 if (CHIP_IS_E3(sc)) {
10903 tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
10904 }
10905
10906 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
10907 ((port_is_idle_0 & 0x1) == 0x1) &&
10908 ((port_is_idle_1 & 0x1) == 0x1) &&
10909 (pgl_exp_rom2 == 0xffffffff) &&
10910 (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
10911 break;
10912 DELAY(1000);
10913 } while (cnt-- > 0);
10914
10915 if (cnt <= 0) {
10916 BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there "
10917 "are still outstanding read requests after 1s! "
10918 "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
10919 "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
10920 sr_cnt, blk_cnt, port_is_idle_0,
10921 port_is_idle_1, pgl_exp_rom2);
10922 return (-1);
10923 }
10924
10925 mb();
10926
10927 /* Close gates #2, #3 and #4 */
10928 bxe_set_234_gates(sc, TRUE);
10929
10930 /* Poll for IGU VQs for 57712 and newer chips */
10931 if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) {
10932 return (-1);
10933 }
10934
10935 /* XXX indicate that "process kill" is in progress to MCP */
10936
10937 /* clear "unprepared" bit */
10938 REG_WR(sc, MISC_REG_UNPREPARED, 0);
10939 mb();
10940
10941 /* Make sure all is written to the chip before the reset */
10942 wmb();
10943
10944 /*
10945 * Wait for 1ms to empty GLUE and PCI-E core queues,
10946 * PSWHST, GRC and PSWRD Tetris buffer.
10947 */
10948 DELAY(1000);
10949
10950 /* Prepare to chip reset: */
10951 /* MCP */
10952 if (global) {
10953 bxe_reset_mcp_prep(sc, &val);
10954 }
10955
10956 /* PXP */
10957 bxe_pxp_prep(sc);
10958 mb();
10959
10960 /* reset the chip */
10961 bxe_process_kill_chip_reset(sc, global);
10962 mb();
10963
10964 /* clear errors in PGB */
10965 if (!CHIP_IS_E1(sc))
10966 REG_WR(sc, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
10967
10968 /* Recover after reset: */
10969 /* MCP */
10970 if (global && bxe_reset_mcp_comp(sc, val)) {
10971 return (-1);
10972 }
10973
10974 /* XXX add resetting the NO_MCP mode DB here */
10975
10976 /* Open the gates #2, #3 and #4 */
10977 bxe_set_234_gates(sc, FALSE);
10978
10979 /* XXX
10980 * IGU/AEU preparation bring back the AEU/IGU to a reset state
10981 * re-enable attentions
10982 */
10983
10984 return (0);
10985}
10986
10987static int
10988bxe_leader_reset(struct bxe_softc *sc)
10989{
10990 int rc = 0;
10991 uint8_t global = bxe_reset_is_global(sc);
10992 uint32_t load_code;
10993
10994 /*
10995 * If not going to reset MCP, load "fake" driver to reset HW while
10996 * driver is owner of the HW.
10997 */
10998 if (!global && !BXE_NOMCP(sc)) {
10999 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
11000 DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
11001 if (!load_code) {
11002 BLOGE(sc, "MCP response failure, aborting\n");
11003 rc = -1;
11004 goto exit_leader_reset;
11005 }
11006
11007 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
11008 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
11009 BLOGE(sc, "MCP unexpected response, aborting\n");
11010 rc = -1;
11011 goto exit_leader_reset2;
11012 }
11013
11014 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
11015 if (!load_code) {
11016 BLOGE(sc, "MCP response failure, aborting\n");
11017 rc = -1;
11018 goto exit_leader_reset2;
11019 }
11020 }
11021
11022 /* try to recover after the failure */
11023 if (bxe_process_kill(sc, global)) {
11024 BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc));
11025 rc = -1;
11026 goto exit_leader_reset2;
11027 }
11028
11029 /*
11030 * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
11031 * state.
11032 */
11033 bxe_set_reset_done(sc);
11034 if (global) {
11035 bxe_clear_reset_global(sc);
11036 }
11037
11038exit_leader_reset2:
11039
11040 /* unload "fake driver" if it was loaded */
11041 if (!global && !BXE_NOMCP(sc)) {
11042 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
11043 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
11044 }
11045
11046exit_leader_reset:
11047
11048 sc->is_leader = 0;
11049 bxe_release_leader_lock(sc);
11050
11051 mb();
11052 return (rc);
11053}
11054
11055/*
11056 * prepare INIT transition, parameters configured:
11057 * - HC configuration
11058 * - Queue's CDU context
11059 */
11060static void
11061bxe_pf_q_prep_init(struct bxe_softc *sc,
11062 struct bxe_fastpath *fp,
11063 struct ecore_queue_init_params *init_params)
11064{
11065 uint8_t cos;
11066 int cxt_index, cxt_offset;
11067
11068 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
11069 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
11070
11071 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
11072 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
11073
11074 /* HC rate */
11075 init_params->rx.hc_rate =
11076 sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
11077 init_params->tx.hc_rate =
11078 sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
11079
11080 /* FW SB ID */
11081 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
11082
11083 /* CQ index among the SB indices */
11084 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11085 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
11086
11087 /* set maximum number of COSs supported by this queue */
11088 init_params->max_cos = sc->max_cos;
11089
11090 BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n",
11091 fp->index, init_params->max_cos);
11092
11093 /* set the context pointers queue object */
11094 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
11095 /* XXX change index/cid here if ever support multiple tx CoS */
11096 /* fp->txdata[cos]->cid */
11097 cxt_index = fp->index / ILT_PAGE_CIDS;
11098 cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
11099 init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth;
11100 }
11101}
11102
11103/* set flags that are common for the Tx-only and not normal connections */
11104static unsigned long
11105bxe_get_common_flags(struct bxe_softc *sc,
11106 struct bxe_fastpath *fp,
11107 uint8_t zero_stats)
11108{
11109 unsigned long flags = 0;
11110
11111 /* PF driver will always initialize the Queue to an ACTIVE state */
11112 bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
11113
11114 /*
11115 * tx only connections collect statistics (on the same index as the
11116 * parent connection). The statistics are zeroed when the parent
11117 * connection is initialized.
11118 */
11119
11120 bxe_set_bit(ECORE_Q_FLG_STATS, &flags);
11121 if (zero_stats) {
11122 bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
11123 }
11124
11125 /*
11126 * tx only connections can support tx-switching, though their
11127 * CoS-ness doesn't survive the loopback
11128 */
11129 if (sc->flags & BXE_TX_SWITCHING) {
11130 bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
11131 }
11132
11133 bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
11134
11135 return (flags);
11136}
11137
11138static unsigned long
11139bxe_get_q_flags(struct bxe_softc *sc,
11140 struct bxe_fastpath *fp,
11141 uint8_t leading)
11142{
11143 unsigned long flags = 0;
11144
11145 if (IS_MF_SD(sc)) {
11146 bxe_set_bit(ECORE_Q_FLG_OV, &flags);
11147 }
11148
11149 if (if_getcapenable(sc->ifp) & IFCAP_LRO) {
11150 bxe_set_bit(ECORE_Q_FLG_TPA, &flags);
11151 bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags);
11152 }
11153
11154 if (leading) {
11155 bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
11156 bxe_set_bit(ECORE_Q_FLG_MCAST, &flags);
11157 }
11158
11159 bxe_set_bit(ECORE_Q_FLG_VLAN, &flags);
11160
11161 /* merge with common flags */
11162 return (flags | bxe_get_common_flags(sc, fp, TRUE));
11163}
11164
11165static void
11166bxe_pf_q_prep_general(struct bxe_softc *sc,
11167 struct bxe_fastpath *fp,
11168 struct ecore_general_setup_params *gen_init,
11169 uint8_t cos)
11170{
11171 gen_init->stat_id = bxe_stats_id(fp);
11172 gen_init->spcl_id = fp->cl_id;
11173 gen_init->mtu = sc->mtu;
11174 gen_init->cos = cos;
11175}
11176
11177static void
11178bxe_pf_rx_q_prep(struct bxe_softc *sc,
11179 struct bxe_fastpath *fp,
11180 struct rxq_pause_params *pause,
11181 struct ecore_rxq_setup_params *rxq_init)
11182{
11183 uint8_t max_sge = 0;
11184 uint16_t sge_sz = 0;
11185 uint16_t tpa_agg_size = 0;
11186
11187 pause->sge_th_lo = SGE_TH_LO(sc);
11188 pause->sge_th_hi = SGE_TH_HI(sc);
11189
11190 /* validate SGE ring has enough to cross high threshold */
11191 if (sc->dropless_fc &&
11192 (pause->sge_th_hi + FW_PREFETCH_CNT) >
11193 (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) {
11194 BLOGW(sc, "sge ring threshold limit\n");
11195 }
11196
11197 /* minimum max_aggregation_size is 2*MTU (two full buffers) */
11198 tpa_agg_size = (2 * sc->mtu);
11199 if (tpa_agg_size < sc->max_aggregation_size) {
11200 tpa_agg_size = sc->max_aggregation_size;
11201 }
11202
11203 max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT;
11204 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
11205 (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT;
11206 sge_sz = (uint16_t)min(SGE_PAGES, 0xffff);
11207
11208 /* pause - not for e1 */
11209 if (!CHIP_IS_E1(sc)) {
11210 pause->bd_th_lo = BD_TH_LO(sc);
11211 pause->bd_th_hi = BD_TH_HI(sc);
11212
11213 pause->rcq_th_lo = RCQ_TH_LO(sc);
11214 pause->rcq_th_hi = RCQ_TH_HI(sc);
11215
11216 /* validate rings have enough entries to cross high thresholds */
11217 if (sc->dropless_fc &&
11218 pause->bd_th_hi + FW_PREFETCH_CNT >
11219 sc->rx_ring_size) {
11220 BLOGW(sc, "rx bd ring threshold limit\n");
11221 }
11222
11223 if (sc->dropless_fc &&
11224 pause->rcq_th_hi + FW_PREFETCH_CNT >
11225 RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) {
11226 BLOGW(sc, "rcq ring threshold limit\n");
11227 }
11228
11229 pause->pri_map = 1;
11230 }
11231
11232 /* rxq setup */
11233 rxq_init->dscr_map = fp->rx_dma.paddr;
11234 rxq_init->sge_map = fp->rx_sge_dma.paddr;
11235 rxq_init->rcq_map = fp->rcq_dma.paddr;
11236 rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE);
11237
11238 /*
11239 * This should be a maximum number of data bytes that may be
11240 * placed on the BD (not including paddings).
11241 */
11242 rxq_init->buf_sz = (fp->rx_buf_size -
11243 IP_HEADER_ALIGNMENT_PADDING);
11244
11245 rxq_init->cl_qzone_id = fp->cl_qzone_id;
11246 rxq_init->tpa_agg_sz = tpa_agg_size;
11247 rxq_init->sge_buf_sz = sge_sz;
11248 rxq_init->max_sges_pkt = max_sge;
11249 rxq_init->rss_engine_id = SC_FUNC(sc);
11250 rxq_init->mcast_engine_id = SC_FUNC(sc);
11251
11252 /*
11253 * Maximum number or simultaneous TPA aggregation for this Queue.
11254 * For PF Clients it should be the maximum available number.
11255 * VF driver(s) may want to define it to a smaller value.
11256 */
11257 rxq_init->max_tpa_queues = MAX_AGG_QS(sc);
11258
11259 rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT;
11260 rxq_init->fw_sb_id = fp->fw_sb_id;
11261
11262 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11263
11264 /*
11265 * configure silent vlan removal
11266 * if multi function mode is afex, then mask default vlan
11267 */
11268 if (IS_MF_AFEX(sc)) {
11269 rxq_init->silent_removal_value =
11270 sc->devinfo.mf_info.afex_def_vlan_tag;
11271 rxq_init->silent_removal_mask = EVL_VLID_MASK;
11272 }
11273}
11274
11275static void
11276bxe_pf_tx_q_prep(struct bxe_softc *sc,
11277 struct bxe_fastpath *fp,
11278 struct ecore_txq_setup_params *txq_init,
11279 uint8_t cos)
11280{
11281 /*
11282 * XXX If multiple CoS is ever supported then each fastpath structure
11283 * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
11284 * fp->txdata[cos]->tx_dma.paddr;
11285 */
11286 txq_init->dscr_map = fp->tx_dma.paddr;
11287 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
11288 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
11289 txq_init->fw_sb_id = fp->fw_sb_id;
11290
11291 /*
11292 * set the TSS leading client id for TX classfication to the
11293 * leading RSS client id
11294 */
11295 txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id);
11296}
11297
11298/*
11299 * This function performs 2 steps in a queue state machine:
11300 * 1) RESET->INIT
11301 * 2) INIT->SETUP
11302 */
11303static int
11304bxe_setup_queue(struct bxe_softc *sc,
11305 struct bxe_fastpath *fp,
11306 uint8_t leading)
11307{
11308 struct ecore_queue_state_params q_params = { NULL };
11309 struct ecore_queue_setup_params *setup_params =
11310 &q_params.params.setup;
11311 int rc;
11312
11313 BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index);
11314
11315 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
11316
11317 q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
11318
11319 /* we want to wait for completion in this context */
11320 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
11321
11322 /* prepare the INIT parameters */
11323 bxe_pf_q_prep_init(sc, fp, &q_params.params.init);
11324
11325 /* Set the command */
11326 q_params.cmd = ECORE_Q_CMD_INIT;
11327
11328 /* Change the state to INIT */
11329 rc = ecore_queue_state_change(sc, &q_params);
11330 if (rc) {
11331 BLOGE(sc, "Queue(%d) INIT failed rc = %d\n", fp->index, rc);
11332 return (rc);
11333 }
11334
11335 BLOGD(sc, DBG_LOAD, "init complete\n");
11336
11337 /* now move the Queue to the SETUP state */
11338 memset(setup_params, 0, sizeof(*setup_params));
11339
11340 /* set Queue flags */
11341 setup_params->flags = bxe_get_q_flags(sc, fp, leading);
11342
11343 /* set general SETUP parameters */
11344 bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params,
11345 FIRST_TX_COS_INDEX);
11346
11347 bxe_pf_rx_q_prep(sc, fp,
11348 &setup_params->pause_params,
11349 &setup_params->rxq_params);
11350
11351 bxe_pf_tx_q_prep(sc, fp,
11352 &setup_params->txq_params,
11353 FIRST_TX_COS_INDEX);
11354
11355 /* Set the command */
11356 q_params.cmd = ECORE_Q_CMD_SETUP;
11357
11358 /* change the state to SETUP */
11359 rc = ecore_queue_state_change(sc, &q_params);
11360 if (rc) {
11361 BLOGE(sc, "Queue(%d) SETUP failed (rc = %d)\n", fp->index, rc);
11362 return (rc);
11363 }
11364
11365 return (rc);
11366}
11367
11368static int
11369bxe_setup_leading(struct bxe_softc *sc)
11370{
11371 return (bxe_setup_queue(sc, &sc->fp[0], TRUE));
11372}
11373
11374static int
11375bxe_config_rss_pf(struct bxe_softc *sc,
11376 struct ecore_rss_config_obj *rss_obj,
11377 uint8_t config_hash)
11378{
11379 struct ecore_config_rss_params params = { NULL };
11380 int i;
11381
11382 /*
11383 * Although RSS is meaningless when there is a single HW queue we
11384 * still need it enabled in order to have HW Rx hash generated.
11385 */
11386
11387 params.rss_obj = rss_obj;
11388
11389 bxe_set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
11390
11391 bxe_set_bit(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
11392
11393 /* RSS configuration */
11394 bxe_set_bit(ECORE_RSS_IPV4, &params.rss_flags);
11395 bxe_set_bit(ECORE_RSS_IPV4_TCP, &params.rss_flags);
11396 bxe_set_bit(ECORE_RSS_IPV6, &params.rss_flags);
11397 bxe_set_bit(ECORE_RSS_IPV6_TCP, &params.rss_flags);
11398 if (rss_obj->udp_rss_v4) {
11399 bxe_set_bit(ECORE_RSS_IPV4_UDP, &params.rss_flags);
11400 }
11401 if (rss_obj->udp_rss_v6) {
11402 bxe_set_bit(ECORE_RSS_IPV6_UDP, &params.rss_flags);
11403 }
11404
11405 /* Hash bits */
11406 params.rss_result_mask = MULTI_MASK;
11407
11408 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
11409
11410 if (config_hash) {
11411 /* RSS keys */
11412 for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
11413 params.rss_key[i] = arc4random();
11414 }
11415
11416 bxe_set_bit(ECORE_RSS_SET_SRCH, &params.rss_flags);
11417 }
11418
11419 return (ecore_config_rss(sc, &params));
11420}
11421
11422static int
11423bxe_config_rss_eth(struct bxe_softc *sc,
11424 uint8_t config_hash)
11425{
11426 return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash));
11427}
11428
11429static int
11430bxe_init_rss_pf(struct bxe_softc *sc)
11431{
11432 uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc);
11433 int i;
11434
11435 /*
11436 * Prepare the initial contents of the indirection table if
11437 * RSS is enabled
11438 */
11439 for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
11440 sc->rss_conf_obj.ind_table[i] =
11441 (sc->fp->cl_id + (i % num_eth_queues));
11442 }
11443
11444 if (sc->udp_rss) {
11445 sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
11446 }
11447
11448 /*
11449 * For 57710 and 57711 SEARCHER configuration (rss_keys) is
11450 * per-port, so if explicit configuration is needed, do it only
11451 * for a PMF.
11452 *
11453 * For 57712 and newer it's a per-function configuration.
11454 */
11455 return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc)));
11456}
11457
11458static int
11459bxe_set_mac_one(struct bxe_softc *sc,
11460 uint8_t *mac,
11461 struct ecore_vlan_mac_obj *obj,
11462 uint8_t set,
11463 int mac_type,
11464 unsigned long *ramrod_flags)
11465{
11466 struct ecore_vlan_mac_ramrod_params ramrod_param;
11467 int rc;
11468
11469 memset(&ramrod_param, 0, sizeof(ramrod_param));
11470
11471 /* fill in general parameters */
11472 ramrod_param.vlan_mac_obj = obj;
11473 ramrod_param.ramrod_flags = *ramrod_flags;
11474
11475 /* fill a user request section if needed */
11476 if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) {
11477 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
11478
11479 bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
11480
11481 /* Set the command: ADD or DEL */
11482 ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
11483 ECORE_VLAN_MAC_DEL;
11484 }
11485
11486 rc = ecore_config_vlan_mac(sc, &ramrod_param);
11487
11488 if (rc == ECORE_EXISTS) {
11489 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
11490 /* do not treat adding same MAC as error */
11491 rc = 0;
11492 } else if (rc < 0) {
11493 BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc);
11494 }
11495
11496 return (rc);
11497}
11498
11499static int
11500bxe_set_eth_mac(struct bxe_softc *sc,
11501 uint8_t set)
11502{
11503 unsigned long ramrod_flags = 0;
11504
11505 BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n");
11506
11507 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
11508
11509 /* Eth MAC is set on RSS leading client (fp[0]) */
11510 return (bxe_set_mac_one(sc, sc->link_params.mac_addr,
11511 &sc->sp_objs->mac_obj,
11512 set, ECORE_ETH_MAC, &ramrod_flags));
11513}
11514
11515static int
11516bxe_get_cur_phy_idx(struct bxe_softc *sc)
11517{
11518 uint32_t sel_phy_idx = 0;
11519
11520 if (sc->link_params.num_phys <= 1) {
11521 return (ELINK_INT_PHY);
11522 }
11523
11524 if (sc->link_vars.link_up) {
11525 sel_phy_idx = ELINK_EXT_PHY1;
11526 /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
11527 if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
11528 (sc->link_params.phy[ELINK_EXT_PHY2].supported &
11529 ELINK_SUPPORTED_FIBRE))
11530 sel_phy_idx = ELINK_EXT_PHY2;
11531 } else {
11532 switch (elink_phy_selection(&sc->link_params)) {
11533 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
11534 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
11535 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
11536 sel_phy_idx = ELINK_EXT_PHY1;
11537 break;
11538 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
11539 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
11540 sel_phy_idx = ELINK_EXT_PHY2;
11541 break;
11542 }
11543 }
11544
11545 return (sel_phy_idx);
11546}
11547
11548static int
11549bxe_get_link_cfg_idx(struct bxe_softc *sc)
11550{
11551 uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc);
11552
11553 /*
11554 * The selected activated PHY is always after swapping (in case PHY
11555 * swapping is enabled). So when swapping is enabled, we need to reverse
11556 * the configuration
11557 */
11558
11559 if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11560 if (sel_phy_idx == ELINK_EXT_PHY1)
11561 sel_phy_idx = ELINK_EXT_PHY2;
11562 else if (sel_phy_idx == ELINK_EXT_PHY2)
11563 sel_phy_idx = ELINK_EXT_PHY1;
11564 }
11565
11566 return (ELINK_LINK_CONFIG_IDX(sel_phy_idx));
11567}
11568
11569static void
11570bxe_set_requested_fc(struct bxe_softc *sc)
11571{
11572 /*
11573 * Initialize link parameters structure variables
11574 * It is recommended to turn off RX FC for jumbo frames
11575 * for better performance
11576 */
11577 if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
11578 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
11579 } else {
11580 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
11581 }
11582}
11583
11584static void
11585bxe_calc_fc_adv(struct bxe_softc *sc)
11586{
11587 uint8_t cfg_idx = bxe_get_link_cfg_idx(sc);
11588 switch (sc->link_vars.ieee_fc &
11589 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
11590 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
11591 default:
11592 sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
11593 ADVERTISED_Pause);
11594 break;
11595
11596 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
11597 sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
11598 ADVERTISED_Pause);
11599 break;
11600
11601 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
11602 sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
11603 break;
11604 }
11605}
11606
11607static uint16_t
11608bxe_get_mf_speed(struct bxe_softc *sc)
11609{
11610 uint16_t line_speed = sc->link_vars.line_speed;
11611 if (IS_MF(sc)) {
11612 uint16_t maxCfg =
11613 bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]);
11614
11615 /* calculate the current MAX line speed limit for the MF devices */
11616 if (IS_MF_SI(sc)) {
11617 line_speed = (line_speed * maxCfg) / 100;
11618 } else { /* SD mode */
11619 uint16_t vn_max_rate = maxCfg * 100;
11620
11621 if (vn_max_rate < line_speed) {
11622 line_speed = vn_max_rate;
11623 }
11624 }
11625 }
11626
11627 return (line_speed);
11628}
11629
11630static void
11631bxe_fill_report_data(struct bxe_softc *sc,
11632 struct bxe_link_report_data *data)
11633{
11634 uint16_t line_speed = bxe_get_mf_speed(sc);
11635
11636 memset(data, 0, sizeof(*data));
11637
11638 /* fill the report data with the effective line speed */
11639 data->line_speed = line_speed;
11640
11641 /* Link is down */
11642 if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) {
11643 bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags);
11644 }
11645
11646 /* Full DUPLEX */
11647 if (sc->link_vars.duplex == DUPLEX_FULL) {
11648 bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags);
11649 }
11650
11651 /* Rx Flow Control is ON */
11652 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
11653 bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
11654 }
11655
11656 /* Tx Flow Control is ON */
11657 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
11658 bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
11659 }
11660}
11661
11662/* report link status to OS, should be called under phy_lock */
11663static void
11664bxe_link_report_locked(struct bxe_softc *sc)
11665{
11666 struct bxe_link_report_data cur_data;
11667
11668 /* reread mf_cfg */
11669 if (IS_PF(sc) && !CHIP_IS_E1(sc)) {
11670 bxe_read_mf_cfg(sc);
11671 }
11672
11673 /* Read the current link report info */
11674 bxe_fill_report_data(sc, &cur_data);
11675
11676 /* Don't report link down or exactly the same link status twice */
11677 if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
11678 (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11679 &sc->last_reported_link.link_report_flags) &&
11680 bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11681 &cur_data.link_report_flags))) {
11682 return;
11683 }
11684
11685 sc->link_cnt++;
11686
11687 /* report new link params and remember the state for the next time */
11688 memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
11689
11690 if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11691 &cur_data.link_report_flags)) {
11692 if_link_state_change(sc->ifp, LINK_STATE_DOWN);
11693 BLOGI(sc, "NIC Link is Down\n");
11694 } else {
11695 const char *duplex;
11696 const char *flow;
11697
11698 if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX,
11699 &cur_data.link_report_flags)) {
11700 duplex = "full";
11701 } else {
11702 duplex = "half";
11703 }
11704
11705 /*
11706 * Handle the FC at the end so that only these flags would be
11707 * possibly set. This way we may easily check if there is no FC
11708 * enabled.
11709 */
11710 if (cur_data.link_report_flags) {
11711 if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11712 &cur_data.link_report_flags) &&
11713 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11714 &cur_data.link_report_flags)) {
11715 flow = "ON - receive & transmit";
11716 } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11717 &cur_data.link_report_flags) &&
11718 !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11719 &cur_data.link_report_flags)) {
11720 flow = "ON - receive";
11721 } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11722 &cur_data.link_report_flags) &&
11723 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11724 &cur_data.link_report_flags)) {
11725 flow = "ON - transmit";
11726 } else {
11727 flow = "none"; /* possible? */
11728 }
11729 } else {
11730 flow = "none";
11731 }
11732
11733 if_link_state_change(sc->ifp, LINK_STATE_UP);
11734 BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
11735 cur_data.line_speed, duplex, flow);
11736 }
11737}
11738
11739static void
11740bxe_link_report(struct bxe_softc *sc)
11741{
11742 bxe_acquire_phy_lock(sc);
11743 bxe_link_report_locked(sc);
11744 bxe_release_phy_lock(sc);
11745}
11746
11747static void
11748bxe_link_status_update(struct bxe_softc *sc)
11749{
11750 if (sc->state != BXE_STATE_OPEN) {
11751 return;
11752 }
11753
11754 if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
11755 elink_link_status_update(&sc->link_params, &sc->link_vars);
11756 } else {
11757 sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
11758 ELINK_SUPPORTED_10baseT_Full |
11759 ELINK_SUPPORTED_100baseT_Half |
11760 ELINK_SUPPORTED_100baseT_Full |
11761 ELINK_SUPPORTED_1000baseT_Full |
11762 ELINK_SUPPORTED_2500baseX_Full |
11763 ELINK_SUPPORTED_10000baseT_Full |
11764 ELINK_SUPPORTED_TP |
11765 ELINK_SUPPORTED_FIBRE |
11766 ELINK_SUPPORTED_Autoneg |
11767 ELINK_SUPPORTED_Pause |
11768 ELINK_SUPPORTED_Asym_Pause);
11769 sc->port.advertising[0] = sc->port.supported[0];
11770
11771 sc->link_params.sc = sc;
11772 sc->link_params.port = SC_PORT(sc);
11773 sc->link_params.req_duplex[0] = DUPLEX_FULL;
11774 sc->link_params.req_flow_ctrl[0] = ELINK_FLOW_CTRL_NONE;
11775 sc->link_params.req_line_speed[0] = SPEED_10000;
11776 sc->link_params.speed_cap_mask[0] = 0x7f0000;
11777 sc->link_params.switch_cfg = ELINK_SWITCH_CFG_10G;
11778
11779 if (CHIP_REV_IS_FPGA(sc)) {
11780 sc->link_vars.mac_type = ELINK_MAC_TYPE_EMAC;
11781 sc->link_vars.line_speed = ELINK_SPEED_1000;
11782 sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
11783 LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
11784 } else {
11785 sc->link_vars.mac_type = ELINK_MAC_TYPE_BMAC;
11786 sc->link_vars.line_speed = ELINK_SPEED_10000;
11787 sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
11788 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
11789 }
11790
11791 sc->link_vars.link_up = 1;
11792
11793 sc->link_vars.duplex = DUPLEX_FULL;
11794 sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
11795
11796 if (IS_PF(sc)) {
11797 REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0);
11798 bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11799 bxe_link_report(sc);
11800 }
11801 }
11802
11803 if (IS_PF(sc)) {
11804 if (sc->link_vars.link_up) {
11805 bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11806 } else {
11807 bxe_stats_handle(sc, STATS_EVENT_STOP);
11808 }
11809 bxe_link_report(sc);
11810 } else {
11811 bxe_link_report(sc);
11812 bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11813 }
11814}
11815
11816static int
11817bxe_initial_phy_init(struct bxe_softc *sc,
11818 int load_mode)
11819{
11820 int rc, cfg_idx = bxe_get_link_cfg_idx(sc);
11821 uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
11822 struct elink_params *lp = &sc->link_params;
11823
11824 bxe_set_requested_fc(sc);
11825
11826 if (CHIP_REV_IS_SLOW(sc)) {
11827 uint32_t bond = CHIP_BOND_ID(sc);
11828 uint32_t feat = 0;
11829
11830 if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) {
11831 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
11832 } else if (bond & 0x4) {
11833 if (CHIP_IS_E3(sc)) {
11834 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC;
11835 } else {
11836 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
11837 }
11838 } else if (bond & 0x8) {
11839 if (CHIP_IS_E3(sc)) {
11840 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC;
11841 } else {
11842 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
11843 }
11844 }
11845
11846 /* disable EMAC for E3 and above */
11847 if (bond & 0x2) {
11848 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
11849 }
11850
11851 sc->link_params.feature_config_flags |= feat;
11852 }
11853
11854 bxe_acquire_phy_lock(sc);
11855
11856 if (load_mode == LOAD_DIAG) {
11857 lp->loopback_mode = ELINK_LOOPBACK_XGXS;
11858 /* Prefer doing PHY loopback at 10G speed, if possible */
11859 if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
11860 if (lp->speed_cap_mask[cfg_idx] &
11861 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
11862 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
11863 } else {
11864 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
11865 }
11866 }
11867 }
11868
11869 if (load_mode == LOAD_LOOPBACK_EXT) {
11870 lp->loopback_mode = ELINK_LOOPBACK_EXT;
11871 }
11872
11873 rc = elink_phy_init(&sc->link_params, &sc->link_vars);
11874
11875 bxe_release_phy_lock(sc);
11876
11877 bxe_calc_fc_adv(sc);
11878
11879 if (sc->link_vars.link_up) {
11880 bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11881 bxe_link_report(sc);
11882 }
11883
11884 if (!CHIP_REV_IS_SLOW(sc)) {
11885 bxe_periodic_start(sc);
11886 }
11887
11888 sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
11889 return (rc);
11890}
11891
11892/* must be called under IF_ADDR_LOCK */
11893
11894static int
11895bxe_set_mc_list(struct bxe_softc *sc)
11896{
11897 struct ecore_mcast_ramrod_params rparam = { NULL };
11898 int rc = 0;
11899 int mc_count = 0;
11900 int mcnt, i;
11901 struct ecore_mcast_list_elem *mc_mac, *mc_mac_start;
11902 unsigned char *mta;
11903 if_t ifp = sc->ifp;
11904
11905 mc_count = if_multiaddr_count(ifp, -1);/* XXX they don't have a limit */
11906 if (!mc_count)
11907 return (0);
11908
11909 mta = malloc(sizeof(unsigned char) * ETHER_ADDR_LEN *
11910 mc_count, M_DEVBUF, M_NOWAIT);
11911
11912 if(mta == NULL) {
11913 BLOGE(sc, "Failed to allocate temp mcast list\n");
11914 return (-1);
11915 }
11916 bzero(mta, (sizeof(unsigned char) * ETHER_ADDR_LEN * mc_count));
11917
11918 mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF, (M_NOWAIT | M_ZERO));
11919 mc_mac_start = mc_mac;
11920
11921 if (!mc_mac) {
11922 free(mta, M_DEVBUF);
11923 BLOGE(sc, "Failed to allocate temp mcast list\n");
11924 return (-1);
11925 }
11926 bzero(mc_mac, (sizeof(*mc_mac) * mc_count));
11927
11928 /* mta and mcnt not expected to be different */
11929 if_multiaddr_array(ifp, mta, &mcnt, mc_count);
11930
11931
11932 rparam.mcast_obj = &sc->mcast_obj;
11933 ECORE_LIST_INIT(&rparam.mcast_list);
11934
11935 for(i=0; i< mcnt; i++) {
11936
11937 mc_mac->mac = (uint8_t *)(mta + (i * ETHER_ADDR_LEN));
11938 ECORE_LIST_PUSH_TAIL(&mc_mac->link, &rparam.mcast_list);
11939
11940 BLOGD(sc, DBG_LOAD,
11941 "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n",
11942 mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2],
11943 mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]);
11944
11945 mc_mac++;
11946 }
11947 rparam.mcast_list_len = mc_count;
11948
11949 BXE_MCAST_LOCK(sc);
11950
11951 /* first, clear all configured multicast MACs */
11952 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
11953 if (rc < 0) {
11954 BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc);
11955 BXE_MCAST_UNLOCK(sc);
11956 free(mc_mac_start, M_DEVBUF);
11957 free(mta, M_DEVBUF);
11958 return (rc);
11959 }
11960
11961 /* Now add the new MACs */
11962 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD);
11963 if (rc < 0) {
11964 BLOGE(sc, "Failed to set new mcast config (%d)\n", rc);
11965 }
11966
11967 BXE_MCAST_UNLOCK(sc);
11968
11969 free(mc_mac_start, M_DEVBUF);
11970 free(mta, M_DEVBUF);
11971
11972 return (rc);
11973}
11974
11975static int
11976bxe_set_uc_list(struct bxe_softc *sc)
11977{
11978 if_t ifp = sc->ifp;
11979 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
11980 struct ifaddr *ifa;
11981 unsigned long ramrod_flags = 0;
11982 int rc;
11983
11984#if __FreeBSD_version < 800000
11985 IF_ADDR_LOCK(ifp);
11986#else
11987 if_addr_rlock(ifp);
11988#endif
11989
11990 /* first schedule a cleanup up of old configuration */
11991 rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE);
11992 if (rc < 0) {
11993 BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc);
11994#if __FreeBSD_version < 800000
11995 IF_ADDR_UNLOCK(ifp);
11996#else
11997 if_addr_runlock(ifp);
11998#endif
11999 return (rc);
12000 }
12001
12002 ifa = if_getifaddr(ifp); /* XXX Is this structure */
12003 while (ifa) {
12004 if (ifa->ifa_addr->sa_family != AF_LINK) {
12005 ifa = TAILQ_NEXT(ifa, ifa_link);
12006 continue;
12007 }
12008
12009 rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr),
12010 mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags);
12011 if (rc == -EEXIST) {
12012 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12013 /* do not treat adding same MAC as an error */
12014 rc = 0;
12015 } else if (rc < 0) {
12016 BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc);
12017#if __FreeBSD_version < 800000
12018 IF_ADDR_UNLOCK(ifp);
12019#else
12020 if_addr_runlock(ifp);
12021#endif
12022 return (rc);
12023 }
12024
12025 ifa = TAILQ_NEXT(ifa, ifa_link);
12026 }
12027
12028#if __FreeBSD_version < 800000
12029 IF_ADDR_UNLOCK(ifp);
12030#else
12031 if_addr_runlock(ifp);
12032#endif
12033
12034 /* Execute the pending commands */
12035 bit_set(&ramrod_flags, RAMROD_CONT);
12036 return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */,
12037 ECORE_UC_LIST_MAC, &ramrod_flags));
12038}
12039
12040static void
12041bxe_set_rx_mode(struct bxe_softc *sc)
12042{
12043 if_t ifp = sc->ifp;
12044 uint32_t rx_mode = BXE_RX_MODE_NORMAL;
12045
12046 if (sc->state != BXE_STATE_OPEN) {
12047 BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state);
12048 return;
12049 }
12050
12051 BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp));
12052
12053 if (if_getflags(ifp) & IFF_PROMISC) {
12054 rx_mode = BXE_RX_MODE_PROMISC;
12055 } else if ((if_getflags(ifp) & IFF_ALLMULTI) ||
12056 ((if_getamcount(ifp) > BXE_MAX_MULTICAST) &&
12057 CHIP_IS_E1(sc))) {
12058 rx_mode = BXE_RX_MODE_ALLMULTI;
12059 } else {
12060 if (IS_PF(sc)) {
12061 /* some multicasts */
12062 if (bxe_set_mc_list(sc) < 0) {
12063 rx_mode = BXE_RX_MODE_ALLMULTI;
12064 }
12065 if (bxe_set_uc_list(sc) < 0) {
12066 rx_mode = BXE_RX_MODE_PROMISC;
12067 }
12068 }
12069 }
12070
12071 sc->rx_mode = rx_mode;
12072
12073 /* schedule the rx_mode command */
12074 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
12075 BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n");
12076 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
12077 return;
12078 }
12079
12080 if (IS_PF(sc)) {
12081 bxe_set_storm_rx_mode(sc);
12082 }
12083}
12084
12085
12086/* update flags in shmem */
12087static void
12088bxe_update_drv_flags(struct bxe_softc *sc,
12089 uint32_t flags,
12090 uint32_t set)
12091{
12092 uint32_t drv_flags;
12093
12094 if (SHMEM2_HAS(sc, drv_flags)) {
12095 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12096 drv_flags = SHMEM2_RD(sc, drv_flags);
12097
12098 if (set) {
12099 SET_FLAGS(drv_flags, flags);
12100 } else {
12101 RESET_FLAGS(drv_flags, flags);
12102 }
12103
12104 SHMEM2_WR(sc, drv_flags, drv_flags);
12105 BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags);
12106
12107 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12108 }
12109}
12110
12111/* periodic timer callout routine, only runs when the interface is up */
12112
12113static void
12114bxe_periodic_callout_func(void *xsc)
12115{
12116 struct bxe_softc *sc = (struct bxe_softc *)xsc;
12117 struct bxe_fastpath *fp;
12118 uint16_t tx_bd_avail;
12119 int i;
12120
12121 if (!BXE_CORE_TRYLOCK(sc)) {
12122 /* just bail and try again next time */
12123
12124 if ((sc->state == BXE_STATE_OPEN) &&
12125 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12126 /* schedule the next periodic callout */
12127 callout_reset(&sc->periodic_callout, hz,
12128 bxe_periodic_callout_func, sc);
12129 }
12130
12131 return;
12132 }
12133
12134 if ((sc->state != BXE_STATE_OPEN) ||
12135 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
12136 BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state);
12137 BXE_CORE_UNLOCK(sc);
12138 return;
12139 }
12140
12141#if __FreeBSD_version >= 800000
12142
12143 FOR_EACH_QUEUE(sc, i) {
12144 fp = &sc->fp[i];
12145
12146 if (BXE_FP_TX_TRYLOCK(fp)) {
12147 if_t ifp = sc->ifp;
12148 /*
12149 * If interface was stopped due to unavailable
12150 * bds, try to process some tx completions
12151 */
12152 (void) bxe_txeof(sc, fp);
12153
12154 tx_bd_avail = bxe_tx_avail(sc, fp);
12155 if (tx_bd_avail >= BXE_TX_CLEANUP_THRESHOLD) {
12156 bxe_tx_mq_start_locked(sc, ifp, fp, NULL);
12157 }
12158 BXE_FP_TX_UNLOCK(fp);
12159 }
12160 }
12161
12162#else
12163
12164 fp = &sc->fp[0];
12165 if (BXE_FP_TX_TRYLOCK(fp)) {
12166 struct ifnet *ifp = sc->ifnet;
12167 /*
12168 * If interface was stopped due to unavailable
12169 * bds, try to process some tx completions
12170 */
12171 (void) bxe_txeof(sc, fp);
12172
12173 tx_bd_avail = bxe_tx_avail(sc, fp);
12174 if (tx_bd_avail >= BXE_TX_CLEANUP_THRESHOLD) {
12175 bxe_tx_start_locked(sc, ifp, fp);
12176 }
12177
12178 BXE_FP_TX_UNLOCK(fp);
12179 }
12180
12181#endif /* #if __FreeBSD_version >= 800000 */
12182
12183 /* Check for TX timeouts on any fastpath. */
12184 FOR_EACH_QUEUE(sc, i) {
12185 if (bxe_watchdog(sc, &sc->fp[i]) != 0) {
12186 /* Ruh-Roh, chip was reset! */
12187 break;
12188 }
12189 }
12190
12191 if (!CHIP_REV_IS_SLOW(sc)) {
12192 /*
12193 * This barrier is needed to ensure the ordering between the writing
12194 * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and
12195 * the reading here.
12196 */
12197 mb();
12198 if (sc->port.pmf) {
12199 bxe_acquire_phy_lock(sc);
12200 elink_period_func(&sc->link_params, &sc->link_vars);
12201 bxe_release_phy_lock(sc);
12202 }
12203 }
12204
12205 if (IS_PF(sc) && !(sc->flags & BXE_NO_PULSE)) {
12206 int mb_idx = SC_FW_MB_IDX(sc);
12207 uint32_t drv_pulse;
12208 uint32_t mcp_pulse;
12209
12210 ++sc->fw_drv_pulse_wr_seq;
12211 sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
12212
12213 drv_pulse = sc->fw_drv_pulse_wr_seq;
12214 bxe_drv_pulse(sc);
12215
12216 mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
12217 MCP_PULSE_SEQ_MASK);
12218
12219 /*
12220 * The delta between driver pulse and mcp response should
12221 * be 1 (before mcp response) or 0 (after mcp response).
12222 */
12223 if ((drv_pulse != mcp_pulse) &&
12224 (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
12225 /* someone lost a heartbeat... */
12226 BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
12227 drv_pulse, mcp_pulse);
12228 }
12229 }
12230
12231 /* state is BXE_STATE_OPEN */
12232 bxe_stats_handle(sc, STATS_EVENT_UPDATE);
12233
12234 BXE_CORE_UNLOCK(sc);
12235
12236 if ((sc->state == BXE_STATE_OPEN) &&
12237 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12238 /* schedule the next periodic callout */
12239 callout_reset(&sc->periodic_callout, hz,
12240 bxe_periodic_callout_func, sc);
12241 }
12242}
12243
12244static void
12245bxe_periodic_start(struct bxe_softc *sc)
12246{
12247 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO);
12248 callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc);
12249}
12250
12251static void
12252bxe_periodic_stop(struct bxe_softc *sc)
12253{
12254 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP);
12255 callout_drain(&sc->periodic_callout);
12256}
12257
12258/* start the controller */
12259static __noinline int
12260bxe_nic_load(struct bxe_softc *sc,
12261 int load_mode)
12262{
12263 uint32_t val;
12264 int load_code = 0;
12265 int i, rc = 0;
12266
12267 BXE_CORE_LOCK_ASSERT(sc);
12268
12269 BLOGD(sc, DBG_LOAD, "Starting NIC load...\n");
12270
12271 sc->state = BXE_STATE_OPENING_WAITING_LOAD;
12272
12273 if (IS_PF(sc)) {
12274 /* must be called before memory allocation and HW init */
12275 bxe_ilt_set_info(sc);
12276 }
12277
12278 sc->last_reported_link_state = LINK_STATE_UNKNOWN;
12279
12280 bxe_set_fp_rx_buf_size(sc);
12281
12282 if (bxe_alloc_fp_buffers(sc) != 0) {
12283 BLOGE(sc, "Failed to allocate fastpath memory\n");
12284 sc->state = BXE_STATE_CLOSED;
12285 rc = ENOMEM;
12286 goto bxe_nic_load_error0;
12287 }
12288
12289 if (bxe_alloc_mem(sc) != 0) {
12290 sc->state = BXE_STATE_CLOSED;
12291 rc = ENOMEM;
12292 goto bxe_nic_load_error0;
12293 }
12294
12295 if (bxe_alloc_fw_stats_mem(sc) != 0) {
12296 sc->state = BXE_STATE_CLOSED;
12297 rc = ENOMEM;
12298 goto bxe_nic_load_error0;
12299 }
12300
12301 if (IS_PF(sc)) {
12302 /* set pf load just before approaching the MCP */
12303 bxe_set_pf_load(sc);
12304
12305 /* if MCP exists send load request and analyze response */
12306 if (!BXE_NOMCP(sc)) {
12307 /* attempt to load pf */
12308 if (bxe_nic_load_request(sc, &load_code) != 0) {
12309 sc->state = BXE_STATE_CLOSED;
12310 rc = ENXIO;
12311 goto bxe_nic_load_error1;
12312 }
12313
12314 /* what did the MCP say? */
12315 if (bxe_nic_load_analyze_req(sc, load_code) != 0) {
12316 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12317 sc->state = BXE_STATE_CLOSED;
12318 rc = ENXIO;
12319 goto bxe_nic_load_error2;
12320 }
12321 } else {
12322 BLOGI(sc, "Device has no MCP!\n");
12323 load_code = bxe_nic_load_no_mcp(sc);
12324 }
12325
12326 /* mark PMF if applicable */
12327 bxe_nic_load_pmf(sc, load_code);
12328
12329 /* Init Function state controlling object */
12330 bxe_init_func_obj(sc);
12331
12332 /* Initialize HW */
12333 if (bxe_init_hw(sc, load_code) != 0) {
12334 BLOGE(sc, "HW init failed\n");
12335 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12336 sc->state = BXE_STATE_CLOSED;
12337 rc = ENXIO;
12338 goto bxe_nic_load_error2;
12339 }
12340 }
12341
12342 /* set ALWAYS_ALIVE bit in shmem */
12343 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
12344 bxe_drv_pulse(sc);
12345 sc->flags |= BXE_NO_PULSE;
12346
12347 /* attach interrupts */
12348 if (bxe_interrupt_attach(sc) != 0) {
12349 sc->state = BXE_STATE_CLOSED;
12350 rc = ENXIO;
12351 goto bxe_nic_load_error2;
12352 }
12353
12354 bxe_nic_init(sc, load_code);
12355
12356 /* Init per-function objects */
12357 if (IS_PF(sc)) {
12358 bxe_init_objs(sc);
12359 // XXX bxe_iov_nic_init(sc);
12360
12361 /* set AFEX default VLAN tag to an invalid value */
12362 sc->devinfo.mf_info.afex_def_vlan_tag = -1;
12363 // XXX bxe_nic_load_afex_dcc(sc, load_code);
12364
12365 sc->state = BXE_STATE_OPENING_WAITING_PORT;
12366 rc = bxe_func_start(sc);
12367 if (rc) {
12368 BLOGE(sc, "Function start failed! rc = %d\n", rc);
12369 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12370 sc->state = BXE_STATE_ERROR;
12371 goto bxe_nic_load_error3;
12372 }
12373
12374 /* send LOAD_DONE command to MCP */
12375 if (!BXE_NOMCP(sc)) {
12376 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12377 if (!load_code) {
12378 BLOGE(sc, "MCP response failure, aborting\n");
12379 sc->state = BXE_STATE_ERROR;
12380 rc = ENXIO;
12381 goto bxe_nic_load_error3;
12382 }
12383 }
12384
12385 rc = bxe_setup_leading(sc);
12386 if (rc) {
12387 BLOGE(sc, "Setup leading failed! rc = %d\n", rc);
12388 sc->state = BXE_STATE_ERROR;
12389 goto bxe_nic_load_error3;
12390 }
12391
12392 FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
12393 rc = bxe_setup_queue(sc, &sc->fp[i], FALSE);
12394 if (rc) {
12395 BLOGE(sc, "Queue(%d) setup failed rc = %d\n", i, rc);
12396 sc->state = BXE_STATE_ERROR;
12397 goto bxe_nic_load_error3;
12398 }
12399 }
12400
12401 rc = bxe_init_rss_pf(sc);
12402 if (rc) {
12403 BLOGE(sc, "PF RSS init failed\n");
12404 sc->state = BXE_STATE_ERROR;
12405 goto bxe_nic_load_error3;
12406 }
12407 }
12408 /* XXX VF */
12409
12410 /* now when Clients are configured we are ready to work */
12411 sc->state = BXE_STATE_OPEN;
12412
12413 /* Configure a ucast MAC */
12414 if (IS_PF(sc)) {
12415 rc = bxe_set_eth_mac(sc, TRUE);
12416 }
12417 if (rc) {
12418 BLOGE(sc, "Setting Ethernet MAC failed rc = %d\n", rc);
12419 sc->state = BXE_STATE_ERROR;
12420 goto bxe_nic_load_error3;
12421 }
12422
12423 if (sc->port.pmf) {
12424 rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN);
12425 if (rc) {
12426 sc->state = BXE_STATE_ERROR;
12427 goto bxe_nic_load_error3;
12428 }
12429 }
12430
12431 sc->link_params.feature_config_flags &=
12432 ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
12433
12434 /* start fast path */
12435
12436 /* Initialize Rx filter */
12437 bxe_set_rx_mode(sc);
12438
12439 /* start the Tx */
12440 switch (/* XXX load_mode */LOAD_OPEN) {
12441 case LOAD_NORMAL:
12442 case LOAD_OPEN:
12443 break;
12444
12445 case LOAD_DIAG:
12446 case LOAD_LOOPBACK_EXT:
12447 sc->state = BXE_STATE_DIAG;
12448 break;
12449
12450 default:
12451 break;
12452 }
12453
12454 if (sc->port.pmf) {
12455 bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
12456 } else {
12457 bxe_link_status_update(sc);
12458 }
12459
12460 /* start the periodic timer callout */
12461 bxe_periodic_start(sc);
12462
12463 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
12464 /* mark driver is loaded in shmem2 */
12465 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
12466 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
12467 (val |
12468 DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
12469 DRV_FLAGS_CAPABILITIES_LOADED_L2));
12470 }
12471
12472 /* wait for all pending SP commands to complete */
12473 if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) {
12474 BLOGE(sc, "Timeout waiting for all SPs to complete!\n");
12475 bxe_periodic_stop(sc);
12476 bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE);
12477 return (ENXIO);
12478 }
12479
12480 /* Tell the stack the driver is running! */
12481 if_setdrvflags(sc->ifp, IFF_DRV_RUNNING);
12482
12483 BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n");
12484
12485 return (0);
12486
12487bxe_nic_load_error3:
12488
12489 if (IS_PF(sc)) {
12490 bxe_int_disable_sync(sc, 1);
12491
12492 /* clean out queued objects */
12493 bxe_squeeze_objects(sc);
12494 }
12495
12496 bxe_interrupt_detach(sc);
12497
12498bxe_nic_load_error2:
12499
12500 if (IS_PF(sc) && !BXE_NOMCP(sc)) {
12501 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
12502 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
12503 }
12504
12505 sc->port.pmf = 0;
12506
12507bxe_nic_load_error1:
12508
12509 /* clear pf_load status, as it was already set */
12510 if (IS_PF(sc)) {
12511 bxe_clear_pf_load(sc);
12512 }
12513
12514bxe_nic_load_error0:
12515
12516 bxe_free_fw_stats_mem(sc);
12517 bxe_free_fp_buffers(sc);
12518 bxe_free_mem(sc);
12519
12520 return (rc);
12521}
12522
12523static int
12524bxe_init_locked(struct bxe_softc *sc)
12525{
12526 int other_engine = SC_PATH(sc) ? 0 : 1;
12527 uint8_t other_load_status, load_status;
12528 uint8_t global = FALSE;
12529 int rc;
12530
12531 BXE_CORE_LOCK_ASSERT(sc);
12532
12533 /* check if the driver is already running */
12534 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
12535 BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n");
12536 return (0);
12537 }
12538
12539 bxe_set_power_state(sc, PCI_PM_D0);
12540
12541 /*
12542 * If parity occurred during the unload, then attentions and/or
12543 * RECOVERY_IN_PROGRES may still be set. If so we want the first function
12544 * loaded on the current engine to complete the recovery. Parity recovery
12545 * is only relevant for PF driver.
12546 */
12547 if (IS_PF(sc)) {
12548 other_load_status = bxe_get_load_status(sc, other_engine);
12549 load_status = bxe_get_load_status(sc, SC_PATH(sc));
12550
12551 if (!bxe_reset_is_done(sc, SC_PATH(sc)) ||
12552 bxe_chk_parity_attn(sc, &global, TRUE)) {
12553 do {
12554 /*
12555 * If there are attentions and they are in global blocks, set
12556 * the GLOBAL_RESET bit regardless whether it will be this
12557 * function that will complete the recovery or not.
12558 */
12559 if (global) {
12560 bxe_set_reset_global(sc);
12561 }
12562
12563 /*
12564 * Only the first function on the current engine should try
12565 * to recover in open. In case of attentions in global blocks
12566 * only the first in the chip should try to recover.
12567 */
12568 if ((!load_status && (!global || !other_load_status)) &&
12569 bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) {
12570 BLOGI(sc, "Recovered during init\n");
12571 break;
12572 }
12573
12574 /* recovery has failed... */
12575 bxe_set_power_state(sc, PCI_PM_D3hot);
12576 sc->recovery_state = BXE_RECOVERY_FAILED;
12577
12578 BLOGE(sc, "Recovery flow hasn't properly "
12579 "completed yet, try again later. "
12580 "If you still see this message after a "
12581 "few retries then power cycle is required.\n");
12582
12583 rc = ENXIO;
12584 goto bxe_init_locked_done;
12585 } while (0);
12586 }
12587 }
12588
12589 sc->recovery_state = BXE_RECOVERY_DONE;
12590
12591 rc = bxe_nic_load(sc, LOAD_OPEN);
12592
12593bxe_init_locked_done:
12594
12595 if (rc) {
12596 /* Tell the stack the driver is NOT running! */
12597 BLOGE(sc, "Initialization failed, "
12598 "stack notified driver is NOT running!\n");
12599 if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING);
12600 }
12601
12602 return (rc);
12603}
12604
12605static int
12606bxe_stop_locked(struct bxe_softc *sc)
12607{
12608 BXE_CORE_LOCK_ASSERT(sc);
12609 return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE));
12610}
12611
12612/*
12613 * Handles controller initialization when called from an unlocked routine.
12614 * ifconfig calls this function.
12615 *
12616 * Returns:
12617 * void
12618 */
12619static void
12620bxe_init(void *xsc)
12621{
12622 struct bxe_softc *sc = (struct bxe_softc *)xsc;
12623
12624 BXE_CORE_LOCK(sc);
12625 bxe_init_locked(sc);
12626 BXE_CORE_UNLOCK(sc);
12627}
12628
12629static int
12630bxe_init_ifnet(struct bxe_softc *sc)
12631{
12632 if_t ifp;
12633 int capabilities;
12634
12635 /* ifconfig entrypoint for media type/status reporting */
12636 ifmedia_init(&sc->ifmedia, IFM_IMASK,
12637 bxe_ifmedia_update,
12638 bxe_ifmedia_status);
12639
12640 /* set the default interface values */
12641 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL);
12642 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL);
12643 ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO));
12644
12645 sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */
12646
12647 /* allocate the ifnet structure */
12648 if ((ifp = if_gethandle(IFT_ETHER)) == NULL) {
12649 BLOGE(sc, "Interface allocation failed!\n");
12650 return (ENXIO);
12651 }
12652
12653 if_setsoftc(ifp, sc);
12654 if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
12655 if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST));
12656 if_setioctlfn(ifp, bxe_ioctl);
12657 if_setstartfn(ifp, bxe_tx_start);
12658 if_setgetcounterfn(ifp, bxe_get_counter);
12659#if __FreeBSD_version >= 800000
12660 if_settransmitfn(ifp, bxe_tx_mq_start);
12661 if_setqflushfn(ifp, bxe_mq_flush);
12662#endif
12663#ifdef FreeBSD8_0
12664 if_settimer(ifp, 0);
12665#endif
12666 if_setinitfn(ifp, bxe_init);
12667 if_setmtu(ifp, sc->mtu);
12668 if_sethwassist(ifp, (CSUM_IP |
12669 CSUM_TCP |
12670 CSUM_UDP |
12671 CSUM_TSO |
12672 CSUM_TCP_IPV6 |
12673 CSUM_UDP_IPV6));
12674
12675 capabilities =
12676#if __FreeBSD_version < 700000
12677 (IFCAP_VLAN_MTU |
12678 IFCAP_VLAN_HWTAGGING |
12679 IFCAP_HWCSUM |
12680 IFCAP_JUMBO_MTU |
12681 IFCAP_LRO);
12682#else
12683 (IFCAP_VLAN_MTU |
12684 IFCAP_VLAN_HWTAGGING |
12685 IFCAP_VLAN_HWTSO |
12686 IFCAP_VLAN_HWFILTER |
12687 IFCAP_VLAN_HWCSUM |
12688 IFCAP_HWCSUM |
12689 IFCAP_JUMBO_MTU |
12690 IFCAP_LRO |
12691 IFCAP_TSO4 |
12692 IFCAP_TSO6 |
12693 IFCAP_WOL_MAGIC);
12694#endif
12695 if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */
12696 if_setbaudrate(ifp, IF_Gbps(10));
12697/* XXX */
12698 if_setsendqlen(ifp, sc->tx_ring_size);
12699 if_setsendqready(ifp);
12700/* XXX */
12701
12702 sc->ifp = ifp;
12703
12704 /* attach to the Ethernet interface list */
12705 ether_ifattach(ifp, sc->link_params.mac_addr);
12706
12707 return (0);
12708}
12709
12710static void
12711bxe_deallocate_bars(struct bxe_softc *sc)
12712{
12713 int i;
12714
12715 for (i = 0; i < MAX_BARS; i++) {
12716 if (sc->bar[i].resource != NULL) {
12717 bus_release_resource(sc->dev,
12718 SYS_RES_MEMORY,
12719 sc->bar[i].rid,
12720 sc->bar[i].resource);
12721 BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n",
12722 i, PCIR_BAR(i));
12723 }
12724 }
12725}
12726
12727static int
12728bxe_allocate_bars(struct bxe_softc *sc)
12729{
12730 u_int flags;
12731 int i;
12732
12733 memset(sc->bar, 0, sizeof(sc->bar));
12734
12735 for (i = 0; i < MAX_BARS; i++) {
12736
12737 /* memory resources reside at BARs 0, 2, 4 */
12738 /* Run `pciconf -lb` to see mappings */
12739 if ((i != 0) && (i != 2) && (i != 4)) {
12740 continue;
12741 }
12742
12743 sc->bar[i].rid = PCIR_BAR(i);
12744
12745 flags = RF_ACTIVE;
12746 if (i == 0) {
12747 flags |= RF_SHAREABLE;
12748 }
12749
12750 if ((sc->bar[i].resource =
12751 bus_alloc_resource_any(sc->dev,
12752 SYS_RES_MEMORY,
12753 &sc->bar[i].rid,
12754 flags)) == NULL) {
12755 return (0);
12756 }
12757
12758 sc->bar[i].tag = rman_get_bustag(sc->bar[i].resource);
12759 sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource);
12760 sc->bar[i].kva = (vm_offset_t)rman_get_virtual(sc->bar[i].resource);
12761
12762 BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%jd) -> %p\n",
12763 i, PCIR_BAR(i),
12764 (void *)rman_get_start(sc->bar[i].resource),
12765 (void *)rman_get_end(sc->bar[i].resource),
12766 rman_get_size(sc->bar[i].resource),
12767 (void *)sc->bar[i].kva);
12768 }
12769
12770 return (0);
12771}
12772
12773static void
12774bxe_get_function_num(struct bxe_softc *sc)
12775{
12776 uint32_t val = 0;
12777
12778 /*
12779 * Read the ME register to get the function number. The ME register
12780 * holds the relative-function number and absolute-function number. The
12781 * absolute-function number appears only in E2 and above. Before that
12782 * these bits always contained zero, therefore we cannot blindly use them.
12783 */
12784
12785 val = REG_RD(sc, BAR_ME_REGISTER);
12786
12787 sc->pfunc_rel =
12788 (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
12789 sc->path_id =
12790 (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1;
12791
12792 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
12793 sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
12794 } else {
12795 sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
12796 }
12797
12798 BLOGD(sc, DBG_LOAD,
12799 "Relative function %d, Absolute function %d, Path %d\n",
12800 sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
12801}
12802
12803static uint32_t
12804bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc)
12805{
12806 uint32_t shmem2_size;
12807 uint32_t offset;
12808 uint32_t mf_cfg_offset_value;
12809
12810 /* Non 57712 */
12811 offset = (SHMEM_RD(sc, func_mb) +
12812 (MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
12813
12814 /* 57712 plus */
12815 if (sc->devinfo.shmem2_base != 0) {
12816 shmem2_size = SHMEM2_RD(sc, size);
12817 if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
12818 mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
12819 if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
12820 offset = mf_cfg_offset_value;
12821 }
12822 }
12823 }
12824
12825 return (offset);
12826}
12827
12828static uint32_t
12829bxe_pcie_capability_read(struct bxe_softc *sc,
12830 int reg,
12831 int width)
12832{
12833 int pcie_reg;
12834
12835 /* ensure PCIe capability is enabled */
12836 if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) {
12837 if (pcie_reg != 0) {
12838 BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg);
12839 return (pci_read_config(sc->dev, (pcie_reg + reg), width));
12840 }
12841 }
12842
12843 BLOGE(sc, "PCIe capability NOT FOUND!!!\n");
12844
12845 return (0);
12846}
12847
12848static uint8_t
12849bxe_is_pcie_pending(struct bxe_softc *sc)
12850{
12851 return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) &
12852 PCIM_EXP_STA_TRANSACTION_PND);
12853}
12854
12855/*
12856 * Walk the PCI capabiites list for the device to find what features are
12857 * supported. These capabilites may be enabled/disabled by firmware so it's
12858 * best to walk the list rather than make assumptions.
12859 */
12860static void
12861bxe_probe_pci_caps(struct bxe_softc *sc)
12862{
12863 uint16_t link_status;
12864 int reg;
12865
12866 /* check if PCI Power Management is enabled */
12867 if (pci_find_cap(sc->dev, PCIY_PMG, &reg) == 0) {
12868 if (reg != 0) {
12869 BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg);
12870
12871 sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG;
12872 sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg;
12873 }
12874 }
12875
12876 link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2);
12877
12878 /* handle PCIe 2.0 workarounds for 57710 */
12879 if (CHIP_IS_E1(sc)) {
12880 /* workaround for 57710 errata E4_57710_27462 */
12881 sc->devinfo.pcie_link_speed =
12882 (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1;
12883
12884 /* workaround for 57710 errata E4_57710_27488 */
12885 sc->devinfo.pcie_link_width =
12886 ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
12887 if (sc->devinfo.pcie_link_speed > 1) {
12888 sc->devinfo.pcie_link_width =
12889 ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1;
12890 }
12891 } else {
12892 sc->devinfo.pcie_link_speed =
12893 (link_status & PCIM_LINK_STA_SPEED);
12894 sc->devinfo.pcie_link_width =
12895 ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
12896 }
12897
12898 BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n",
12899 sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
12900
12901 sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG;
12902 sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg;
12903
12904 /* check if MSI capability is enabled */
12905 if (pci_find_cap(sc->dev, PCIY_MSI, &reg) == 0) {
12906 if (reg != 0) {
12907 BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg);
12908
12909 sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG;
12910 sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg;
12911 }
12912 }
12913
12914 /* check if MSI-X capability is enabled */
12915 if (pci_find_cap(sc->dev, PCIY_MSIX, &reg) == 0) {
12916 if (reg != 0) {
12917 BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg);
12918
12919 sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG;
12920 sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg;
12921 }
12922 }
12923}
12924
12925static int
12926bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc)
12927{
12928 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
12929 uint32_t val;
12930
12931 /* get the outer vlan if we're in switch-dependent mode */
12932
12933 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
12934 mf_info->ext_id = (uint16_t)val;
12935
12936 mf_info->multi_vnics_mode = 1;
12937
12938 if (!VALID_OVLAN(mf_info->ext_id)) {
12939 BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id);
12940 return (1);
12941 }
12942
12943 /* get the capabilities */
12944 if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
12945 FUNC_MF_CFG_PROTOCOL_ISCSI) {
12946 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
12947 } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
12948 FUNC_MF_CFG_PROTOCOL_FCOE) {
12949 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
12950 } else {
12951 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
12952 }
12953
12954 mf_info->vnics_per_port =
12955 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
12956
12957 return (0);
12958}
12959
12960static uint32_t
12961bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc)
12962{
12963 uint32_t retval = 0;
12964 uint32_t val;
12965
12966 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
12967
12968 if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
12969 if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
12970 retval |= MF_PROTO_SUPPORT_ETHERNET;
12971 }
12972 if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
12973 retval |= MF_PROTO_SUPPORT_ISCSI;
12974 }
12975 if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
12976 retval |= MF_PROTO_SUPPORT_FCOE;
12977 }
12978 }
12979
12980 return (retval);
12981}
12982
12983static int
12984bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc)
12985{
12986 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
12987 uint32_t val;
12988
12989 /*
12990 * There is no outer vlan if we're in switch-independent mode.
12991 * If the mac is valid then assume multi-function.
12992 */
12993
12994 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
12995
12996 mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
12997
12998 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
12999
13000 mf_info->vnics_per_port =
13001 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13002
13003 return (0);
13004}
13005
13006static int
13007bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc)
13008{
13009 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13010 uint32_t e1hov_tag;
13011 uint32_t func_config;
13012 uint32_t niv_config;
13013
13014 mf_info->multi_vnics_mode = 1;
13015
13016 e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13017 func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13018 niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
13019
13020 mf_info->ext_id =
13021 (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
13022 FUNC_MF_CFG_E1HOV_TAG_SHIFT);
13023
13024 mf_info->default_vlan =
13025 (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
13026 FUNC_MF_CFG_AFEX_VLAN_SHIFT);
13027
13028 mf_info->niv_allowed_priorities =
13029 (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
13030 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
13031
13032 mf_info->niv_default_cos =
13033 (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
13034 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
13035
13036 mf_info->afex_vlan_mode =
13037 ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
13038 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
13039
13040 mf_info->niv_mba_enabled =
13041 ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
13042 FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
13043
13044 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13045
13046 mf_info->vnics_per_port =
13047 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13048
13049 return (0);
13050}
13051
13052static int
13053bxe_check_valid_mf_cfg(struct bxe_softc *sc)
13054{
13055 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13056 uint32_t mf_cfg1;
13057 uint32_t mf_cfg2;
13058 uint32_t ovlan1;
13059 uint32_t ovlan2;
13060 uint8_t i, j;
13061
13062 BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n",
13063 SC_PORT(sc));
13064 BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n",
13065 mf_info->mf_config[SC_VN(sc)]);
13066 BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n",
13067 mf_info->multi_vnics_mode);
13068 BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n",
13069 mf_info->vnics_per_port);
13070 BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n",
13071 mf_info->ext_id);
13072 BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n",
13073 mf_info->min_bw[0], mf_info->min_bw[1],
13074 mf_info->min_bw[2], mf_info->min_bw[3]);
13075 BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n",
13076 mf_info->max_bw[0], mf_info->max_bw[1],
13077 mf_info->max_bw[2], mf_info->max_bw[3]);
13078 BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n",
13079 sc->mac_addr_str);
13080
13081 /* various MF mode sanity checks... */
13082
13083 if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
13084 BLOGE(sc, "Enumerated function %d is marked as hidden\n",
13085 SC_PORT(sc));
13086 return (1);
13087 }
13088
13089 if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
13090 BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n",
13091 mf_info->vnics_per_port, mf_info->multi_vnics_mode);
13092 return (1);
13093 }
13094
13095 if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13096 /* vnic id > 0 must have valid ovlan in switch-dependent mode */
13097 if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
13098 BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n",
13099 SC_VN(sc), OVLAN(sc));
13100 return (1);
13101 }
13102
13103 if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
13104 BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n",
13105 mf_info->multi_vnics_mode, OVLAN(sc));
13106 return (1);
13107 }
13108
13109 /*
13110 * Verify all functions are either MF or SF mode. If MF, make sure
13111 * sure that all non-hidden functions have a valid ovlan. If SF,
13112 * make sure that all non-hidden functions have an invalid ovlan.
13113 */
13114 FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13115 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13116 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13117 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13118 (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) ||
13119 ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) {
13120 BLOGE(sc, "mf_mode=SD function %d MF config "
13121 "mismatch, multi_vnics_mode=%d ovlan=%d\n",
13122 i, mf_info->multi_vnics_mode, ovlan1);
13123 return (1);
13124 }
13125 }
13126
13127 /* Verify all funcs on the same port each have a different ovlan. */
13128 FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13129 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13130 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13131 /* iterate from the next function on the port to the max func */
13132 for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
13133 mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config);
13134 ovlan2 = MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
13135 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13136 VALID_OVLAN(ovlan1) &&
13137 !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) &&
13138 VALID_OVLAN(ovlan2) &&
13139 (ovlan1 == ovlan2)) {
13140 BLOGE(sc, "mf_mode=SD functions %d and %d "
13141 "have the same ovlan (%d)\n",
13142 i, j, ovlan1);
13143 return (1);
13144 }
13145 }
13146 }
13147 } /* MULTI_FUNCTION_SD */
13148
13149 return (0);
13150}
13151
13152static int
13153bxe_get_mf_cfg_info(struct bxe_softc *sc)
13154{
13155 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13156 uint32_t val, mac_upper;
13157 uint8_t i, vnic;
13158
13159 /* initialize mf_info defaults */
13160 mf_info->vnics_per_port = 1;
13161 mf_info->multi_vnics_mode = FALSE;
13162 mf_info->path_has_ovlan = FALSE;
13163 mf_info->mf_mode = SINGLE_FUNCTION;
13164
13165 if (!CHIP_IS_MF_CAP(sc)) {
13166 return (0);
13167 }
13168
13169 if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
13170 BLOGE(sc, "Invalid mf_cfg_base!\n");
13171 return (1);
13172 }
13173
13174 /* get the MF mode (switch dependent / independent / single-function) */
13175
13176 val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13177
13178 switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)
13179 {
13180 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
13181
13182 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13183
13184 /* check for legal upper mac bytes */
13185 if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
13186 mf_info->mf_mode = MULTI_FUNCTION_SI;
13187 } else {
13188 BLOGE(sc, "Invalid config for Switch Independent mode\n");
13189 }
13190
13191 break;
13192
13193 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
13194 case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
13195
13196 /* get outer vlan configuration */
13197 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13198
13199 if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
13200 FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
13201 mf_info->mf_mode = MULTI_FUNCTION_SD;
13202 } else {
13203 BLOGE(sc, "Invalid config for Switch Dependent mode\n");
13204 }
13205
13206 break;
13207
13208 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
13209
13210 /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
13211 return (0);
13212
13213 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
13214
13215 /*
13216 * Mark MF mode as NIV if MCP version includes NPAR-SD support
13217 * and the MAC address is valid.
13218 */
13219 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13220
13221 if ((SHMEM2_HAS(sc, afex_driver_support)) &&
13222 (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
13223 mf_info->mf_mode = MULTI_FUNCTION_AFEX;
13224 } else {
13225 BLOGE(sc, "Invalid config for AFEX mode\n");
13226 }
13227
13228 break;
13229
13230 default:
13231
13232 BLOGE(sc, "Unknown MF mode (0x%08x)\n",
13233 (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
13234
13235 return (1);
13236 }
13237
13238 /* set path mf_mode (which could be different than function mf_mode) */
13239 if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13240 mf_info->path_has_ovlan = TRUE;
13241 } else if (mf_info->mf_mode == SINGLE_FUNCTION) {
13242 /*
13243 * Decide on path multi vnics mode. If we're not in MF mode and in
13244 * 4-port mode, this is good enough to check vnic-0 of the other port
13245 * on the same path
13246 */
13247 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13248 uint8_t other_port = !(PORT_ID(sc) & 1);
13249 uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port));
13250
13251 val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag);
13252
13253 mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0;
13254 }
13255 }
13256
13257 if (mf_info->mf_mode == SINGLE_FUNCTION) {
13258 /* invalid MF config */
13259 if (SC_VN(sc) >= 1) {
13260 BLOGE(sc, "VNIC ID >= 1 in SF mode\n");
13261 return (1);
13262 }
13263
13264 return (0);
13265 }
13266
13267 /* get the MF configuration */
13268 mf_info->mf_config[SC_VN(sc)] =
13269 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13270
13271 switch(mf_info->mf_mode)
13272 {
13273 case MULTI_FUNCTION_SD:
13274
13275 bxe_get_shmem_mf_cfg_info_sd(sc);
13276 break;
13277
13278 case MULTI_FUNCTION_SI:
13279
13280 bxe_get_shmem_mf_cfg_info_si(sc);
13281 break;
13282
13283 case MULTI_FUNCTION_AFEX:
13284
13285 bxe_get_shmem_mf_cfg_info_niv(sc);
13286 break;
13287
13288 default:
13289
13290 BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n",
13291 mf_info->mf_mode);
13292 return (1);
13293 }
13294
13295 /* get the congestion management parameters */
13296
13297 vnic = 0;
13298 FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13299 /* get min/max bw */
13300 val = MFCFG_RD(sc, func_mf_config[i].config);
13301 mf_info->min_bw[vnic] =
13302 ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT);
13303 mf_info->max_bw[vnic] =
13304 ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT);
13305 vnic++;
13306 }
13307
13308 return (bxe_check_valid_mf_cfg(sc));
13309}
13310
13311static int
13312bxe_get_shmem_info(struct bxe_softc *sc)
13313{
13314 int port;
13315 uint32_t mac_hi, mac_lo, val;
13316
13317 port = SC_PORT(sc);
13318 mac_hi = mac_lo = 0;
13319
13320 sc->link_params.sc = sc;
13321 sc->link_params.port = port;
13322
13323 /* get the hardware config info */
13324 sc->devinfo.hw_config =
13325 SHMEM_RD(sc, dev_info.shared_hw_config.config);
13326 sc->devinfo.hw_config2 =
13327 SHMEM_RD(sc, dev_info.shared_hw_config.config2);
13328
13329 sc->link_params.hw_led_mode =
13330 ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
13331 SHARED_HW_CFG_LED_MODE_SHIFT);
13332
13333 /* get the port feature config */
13334 sc->port.config =
13335 SHMEM_RD(sc, dev_info.port_feature_config[port].config),
13335 SHMEM_RD(sc, dev_info.port_feature_config[port].config);
13336
13337 /* get the link params */
13338 sc->link_params.speed_cap_mask[0] =
13339 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask);
13340 sc->link_params.speed_cap_mask[1] =
13341 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2);
13342
13343 /* get the lane config */
13344 sc->link_params.lane_config =
13345 SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
13346
13347 /* get the link config */
13348 val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
13349 sc->port.link_config[ELINK_INT_PHY] = val;
13350 sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
13351 sc->port.link_config[ELINK_EXT_PHY1] =
13352 SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
13353
13354 /* get the override preemphasis flag and enable it or turn it off */
13355 val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13356 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
13357 sc->link_params.feature_config_flags |=
13358 ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13359 } else {
13360 sc->link_params.feature_config_flags &=
13361 ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13362 }
13363
13364 /* get the initial value of the link params */
13365 sc->link_params.multi_phy_config =
13366 SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
13367
13368 /* get external phy info */
13369 sc->port.ext_phy_config =
13370 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
13371
13372 /* get the multifunction configuration */
13373 bxe_get_mf_cfg_info(sc);
13374
13375 /* get the mac address */
13376 if (IS_MF(sc)) {
13377 mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13378 mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
13379 } else {
13380 mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
13381 mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
13382 }
13383
13384 if ((mac_lo == 0) && (mac_hi == 0)) {
13385 *sc->mac_addr_str = 0;
13386 BLOGE(sc, "No Ethernet address programmed!\n");
13387 } else {
13388 sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8);
13389 sc->link_params.mac_addr[1] = (uint8_t)(mac_hi);
13390 sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24);
13391 sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16);
13392 sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8);
13393 sc->link_params.mac_addr[5] = (uint8_t)(mac_lo);
13394 snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
13395 "%02x:%02x:%02x:%02x:%02x:%02x",
13396 sc->link_params.mac_addr[0], sc->link_params.mac_addr[1],
13397 sc->link_params.mac_addr[2], sc->link_params.mac_addr[3],
13398 sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]);
13399 BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str);
13400 }
13401
13402 return (0);
13403}
13404
13405static void
13406bxe_get_tunable_params(struct bxe_softc *sc)
13407{
13408 /* sanity checks */
13409
13410 if ((bxe_interrupt_mode != INTR_MODE_INTX) &&
13411 (bxe_interrupt_mode != INTR_MODE_MSI) &&
13412 (bxe_interrupt_mode != INTR_MODE_MSIX)) {
13413 BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode);
13414 bxe_interrupt_mode = INTR_MODE_MSIX;
13415 }
13416
13417 if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) {
13418 BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count);
13419 bxe_queue_count = 0;
13420 }
13421
13422 if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) {
13423 if (bxe_max_rx_bufs == 0) {
13424 bxe_max_rx_bufs = RX_BD_USABLE;
13425 } else {
13426 BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs);
13427 bxe_max_rx_bufs = 2048;
13428 }
13429 }
13430
13431 if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) {
13432 BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks);
13433 bxe_hc_rx_ticks = 25;
13434 }
13435
13436 if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) {
13437 BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks);
13438 bxe_hc_tx_ticks = 50;
13439 }
13440
13441 if (bxe_max_aggregation_size == 0) {
13442 bxe_max_aggregation_size = TPA_AGG_SIZE;
13443 }
13444
13445 if (bxe_max_aggregation_size > 0xffff) {
13446 BLOGW(sc, "invalid max_aggregation_size (%d)\n",
13447 bxe_max_aggregation_size);
13448 bxe_max_aggregation_size = TPA_AGG_SIZE;
13449 }
13450
13451 if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) {
13452 BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs);
13453 bxe_mrrs = -1;
13454 }
13455
13456 if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) {
13457 BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen);
13458 bxe_autogreeen = 0;
13459 }
13460
13461 if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) {
13462 BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss);
13463 bxe_udp_rss = 0;
13464 }
13465
13466 /* pull in user settings */
13467
13468 sc->interrupt_mode = bxe_interrupt_mode;
13469 sc->max_rx_bufs = bxe_max_rx_bufs;
13470 sc->hc_rx_ticks = bxe_hc_rx_ticks;
13471 sc->hc_tx_ticks = bxe_hc_tx_ticks;
13472 sc->max_aggregation_size = bxe_max_aggregation_size;
13473 sc->mrrs = bxe_mrrs;
13474 sc->autogreeen = bxe_autogreeen;
13475 sc->udp_rss = bxe_udp_rss;
13476
13477 if (bxe_interrupt_mode == INTR_MODE_INTX) {
13478 sc->num_queues = 1;
13479 } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */
13480 sc->num_queues =
13481 min((bxe_queue_count ? bxe_queue_count : mp_ncpus),
13482 MAX_RSS_CHAINS);
13483 if (sc->num_queues > mp_ncpus) {
13484 sc->num_queues = mp_ncpus;
13485 }
13486 }
13487
13488 BLOGD(sc, DBG_LOAD,
13489 "User Config: "
13490 "debug=0x%lx "
13491 "interrupt_mode=%d "
13492 "queue_count=%d "
13493 "hc_rx_ticks=%d "
13494 "hc_tx_ticks=%d "
13495 "rx_budget=%d "
13496 "max_aggregation_size=%d "
13497 "mrrs=%d "
13498 "autogreeen=%d "
13499 "udp_rss=%d\n",
13500 bxe_debug,
13501 sc->interrupt_mode,
13502 sc->num_queues,
13503 sc->hc_rx_ticks,
13504 sc->hc_tx_ticks,
13505 bxe_rx_budget,
13506 sc->max_aggregation_size,
13507 sc->mrrs,
13508 sc->autogreeen,
13509 sc->udp_rss);
13510}
13511
13512static int
13513bxe_media_detect(struct bxe_softc *sc)
13514{
13515 int port_type;
13516 uint32_t phy_idx = bxe_get_cur_phy_idx(sc);
13517
13518 switch (sc->link_params.phy[phy_idx].media_type) {
13519 case ELINK_ETH_PHY_SFPP_10G_FIBER:
13520 case ELINK_ETH_PHY_XFP_FIBER:
13521 BLOGI(sc, "Found 10Gb Fiber media.\n");
13522 sc->media = IFM_10G_SR;
13523 port_type = PORT_FIBRE;
13524 break;
13525 case ELINK_ETH_PHY_SFP_1G_FIBER:
13526 BLOGI(sc, "Found 1Gb Fiber media.\n");
13527 sc->media = IFM_1000_SX;
13528 port_type = PORT_FIBRE;
13529 break;
13530 case ELINK_ETH_PHY_KR:
13531 case ELINK_ETH_PHY_CX4:
13532 BLOGI(sc, "Found 10GBase-CX4 media.\n");
13533 sc->media = IFM_10G_CX4;
13534 port_type = PORT_FIBRE;
13535 break;
13536 case ELINK_ETH_PHY_DA_TWINAX:
13537 BLOGI(sc, "Found 10Gb Twinax media.\n");
13538 sc->media = IFM_10G_TWINAX;
13539 port_type = PORT_DA;
13540 break;
13541 case ELINK_ETH_PHY_BASE_T:
13542 if (sc->link_params.speed_cap_mask[0] &
13543 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
13544 BLOGI(sc, "Found 10GBase-T media.\n");
13545 sc->media = IFM_10G_T;
13546 port_type = PORT_TP;
13547 } else {
13548 BLOGI(sc, "Found 1000Base-T media.\n");
13549 sc->media = IFM_1000_T;
13550 port_type = PORT_TP;
13551 }
13552 break;
13553 case ELINK_ETH_PHY_NOT_PRESENT:
13554 BLOGI(sc, "Media not present.\n");
13555 sc->media = 0;
13556 port_type = PORT_OTHER;
13557 break;
13558 case ELINK_ETH_PHY_UNSPECIFIED:
13559 default:
13560 BLOGI(sc, "Unknown media!\n");
13561 sc->media = 0;
13562 port_type = PORT_OTHER;
13563 break;
13564 }
13565 return port_type;
13566}
13567
13568#define GET_FIELD(value, fname) \
13569 (((value) & (fname##_MASK)) >> (fname##_SHIFT))
13570#define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
13571#define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
13572
13573static int
13574bxe_get_igu_cam_info(struct bxe_softc *sc)
13575{
13576 int pfid = SC_FUNC(sc);
13577 int igu_sb_id;
13578 uint32_t val;
13579 uint8_t fid, igu_sb_cnt = 0;
13580
13581 sc->igu_base_sb = 0xff;
13582
13583 if (CHIP_INT_MODE_IS_BC(sc)) {
13584 int vn = SC_VN(sc);
13585 igu_sb_cnt = sc->igu_sb_cnt;
13586 sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
13587 FP_SB_MAX_E1x);
13588 sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
13589 (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
13590 return (0);
13591 }
13592
13593 /* IGU in normal mode - read CAM */
13594 for (igu_sb_id = 0;
13595 igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
13596 igu_sb_id++) {
13597 val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
13598 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
13599 continue;
13600 }
13601 fid = IGU_FID(val);
13602 if ((fid & IGU_FID_ENCODE_IS_PF)) {
13603 if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
13604 continue;
13605 }
13606 if (IGU_VEC(val) == 0) {
13607 /* default status block */
13608 sc->igu_dsb_id = igu_sb_id;
13609 } else {
13610 if (sc->igu_base_sb == 0xff) {
13611 sc->igu_base_sb = igu_sb_id;
13612 }
13613 igu_sb_cnt++;
13614 }
13615 }
13616 }
13617
13618 /*
13619 * Due to new PF resource allocation by MFW T7.4 and above, it's optional
13620 * that number of CAM entries will not be equal to the value advertised in
13621 * PCI. Driver should use the minimal value of both as the actual status
13622 * block count
13623 */
13624 sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
13625
13626 if (igu_sb_cnt == 0) {
13627 BLOGE(sc, "CAM configuration error\n");
13628 return (-1);
13629 }
13630
13631 return (0);
13632}
13633
13634/*
13635 * Gather various information from the device config space, the device itself,
13636 * shmem, and the user input.
13637 */
13638static int
13639bxe_get_device_info(struct bxe_softc *sc)
13640{
13641 uint32_t val;
13642 int rc;
13643
13644 /* Get the data for the device */
13645 sc->devinfo.vendor_id = pci_get_vendor(sc->dev);
13646 sc->devinfo.device_id = pci_get_device(sc->dev);
13647 sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev);
13648 sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev);
13649
13650 /* get the chip revision (chip metal comes from pci config space) */
13651 sc->devinfo.chip_id =
13652 sc->link_params.chip_id =
13653 (((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) |
13654 ((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) |
13655 (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) |
13656 ((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0));
13657
13658 /* force 57811 according to MISC register */
13659 if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
13660 if (CHIP_IS_57810(sc)) {
13661 sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
13662 (sc->devinfo.chip_id & 0x0000ffff));
13663 } else if (CHIP_IS_57810_MF(sc)) {
13664 sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
13665 (sc->devinfo.chip_id & 0x0000ffff));
13666 }
13667 sc->devinfo.chip_id |= 0x1;
13668 }
13669
13670 BLOGD(sc, DBG_LOAD,
13671 "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n",
13672 sc->devinfo.chip_id,
13673 ((sc->devinfo.chip_id >> 16) & 0xffff),
13674 ((sc->devinfo.chip_id >> 12) & 0xf),
13675 ((sc->devinfo.chip_id >> 4) & 0xff),
13676 ((sc->devinfo.chip_id >> 0) & 0xf));
13677
13678 val = (REG_RD(sc, 0x2874) & 0x55);
13679 if ((sc->devinfo.chip_id & 0x1) ||
13680 (CHIP_IS_E1(sc) && val) ||
13681 (CHIP_IS_E1H(sc) && (val == 0x55))) {
13682 sc->flags |= BXE_ONE_PORT_FLAG;
13683 BLOGD(sc, DBG_LOAD, "single port device\n");
13684 }
13685
13686 /* set the doorbell size */
13687 sc->doorbell_size = (1 << BXE_DB_SHIFT);
13688
13689 /* determine whether the device is in 2 port or 4 port mode */
13690 sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/
13691 if (CHIP_IS_E2E3(sc)) {
13692 /*
13693 * Read port4mode_en_ovwr[0]:
13694 * If 1, four port mode is in port4mode_en_ovwr[1].
13695 * If 0, four port mode is in port4mode_en[0].
13696 */
13697 val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
13698 if (val & 1) {
13699 val = ((val >> 1) & 1);
13700 } else {
13701 val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
13702 }
13703
13704 sc->devinfo.chip_port_mode =
13705 (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
13706
13707 BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2");
13708 }
13709
13710 /* get the function and path info for the device */
13711 bxe_get_function_num(sc);
13712
13713 /* get the shared memory base address */
13714 sc->devinfo.shmem_base =
13715 sc->link_params.shmem_base =
13716 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
13717 sc->devinfo.shmem2_base =
13718 REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
13719 MISC_REG_GENERIC_CR_0));
13720
13721 BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n",
13722 sc->devinfo.shmem_base, sc->devinfo.shmem2_base);
13723
13724 if (!sc->devinfo.shmem_base) {
13725 /* this should ONLY prevent upcoming shmem reads */
13726 BLOGI(sc, "MCP not active\n");
13727 sc->flags |= BXE_NO_MCP_FLAG;
13728 return (0);
13729 }
13730
13731 /* make sure the shared memory contents are valid */
13732 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
13733 if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
13734 (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
13735 BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val);
13736 return (0);
13737 }
13738 BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val);
13739
13740 /* get the bootcode version */
13741 sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
13742 snprintf(sc->devinfo.bc_ver_str,
13743 sizeof(sc->devinfo.bc_ver_str),
13744 "%d.%d.%d",
13745 ((sc->devinfo.bc_ver >> 24) & 0xff),
13746 ((sc->devinfo.bc_ver >> 16) & 0xff),
13747 ((sc->devinfo.bc_ver >> 8) & 0xff));
13748 BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str);
13749
13750 /* get the bootcode shmem address */
13751 sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc);
13752 BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base);
13753
13754 /* clean indirect addresses as they're not used */
13755 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
13756 if (IS_PF(sc)) {
13757 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
13758 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
13759 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
13760 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
13761 if (CHIP_IS_E1x(sc)) {
13762 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
13763 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
13764 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
13765 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
13766 }
13767
13768 /*
13769 * Enable internal target-read (in case we are probed after PF
13770 * FLR). Must be done prior to any BAR read access. Only for
13771 * 57712 and up
13772 */
13773 if (!CHIP_IS_E1x(sc)) {
13774 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
13775 }
13776 }
13777
13778 /* get the nvram size */
13779 val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
13780 sc->devinfo.flash_size =
13781 (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
13782 BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size);
13783
13784 /* get PCI capabilites */
13785 bxe_probe_pci_caps(sc);
13786
13787 bxe_set_power_state(sc, PCI_PM_D0);
13788
13789 /* get various configuration parameters from shmem */
13790 bxe_get_shmem_info(sc);
13791
13792 if (sc->devinfo.pcie_msix_cap_reg != 0) {
13793 val = pci_read_config(sc->dev,
13794 (sc->devinfo.pcie_msix_cap_reg +
13795 PCIR_MSIX_CTRL),
13796 2);
13797 sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE);
13798 } else {
13799 sc->igu_sb_cnt = 1;
13800 }
13801
13802 sc->igu_base_addr = BAR_IGU_INTMEM;
13803
13804 /* initialize IGU parameters */
13805 if (CHIP_IS_E1x(sc)) {
13806 sc->devinfo.int_block = INT_BLOCK_HC;
13807 sc->igu_dsb_id = DEF_SB_IGU_ID;
13808 sc->igu_base_sb = 0;
13809 } else {
13810 sc->devinfo.int_block = INT_BLOCK_IGU;
13811
13812 /* do not allow device reset during IGU info preocessing */
13813 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
13814
13815 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
13816
13817 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
13818 int tout = 5000;
13819
13820 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n");
13821
13822 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
13823 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
13824 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
13825
13826 while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
13827 tout--;
13828 DELAY(1000);
13829 }
13830
13831 if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
13832 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n");
13833 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
13834 return (-1);
13835 }
13836 }
13837
13838 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
13839 BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n");
13840 sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
13841 } else {
13842 BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n");
13843 }
13844
13845 rc = bxe_get_igu_cam_info(sc);
13846
13847 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
13848
13849 if (rc) {
13850 return (rc);
13851 }
13852 }
13853
13854 /*
13855 * Get base FW non-default (fast path) status block ID. This value is
13856 * used to initialize the fw_sb_id saved on the fp/queue structure to
13857 * determine the id used by the FW.
13858 */
13859 if (CHIP_IS_E1x(sc)) {
13860 sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
13861 } else {
13862 /*
13863 * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
13864 * the same queue are indicated on the same IGU SB). So we prefer
13865 * FW and IGU SBs to be the same value.
13866 */
13867 sc->base_fw_ndsb = sc->igu_base_sb;
13868 }
13869
13870 BLOGD(sc, DBG_LOAD,
13871 "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n",
13872 sc->igu_dsb_id, sc->igu_base_sb,
13873 sc->igu_sb_cnt, sc->base_fw_ndsb);
13874
13875 elink_phy_probe(&sc->link_params);
13876
13877 return (0);
13878}
13879
13880static void
13881bxe_link_settings_supported(struct bxe_softc *sc,
13882 uint32_t switch_cfg)
13883{
13884 uint32_t cfg_size = 0;
13885 uint32_t idx;
13886 uint8_t port = SC_PORT(sc);
13887
13888 /* aggregation of supported attributes of all external phys */
13889 sc->port.supported[0] = 0;
13890 sc->port.supported[1] = 0;
13891
13892 switch (sc->link_params.num_phys) {
13893 case 1:
13894 sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported;
13895 cfg_size = 1;
13896 break;
13897 case 2:
13898 sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported;
13899 cfg_size = 1;
13900 break;
13901 case 3:
13902 if (sc->link_params.multi_phy_config &
13903 PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
13904 sc->port.supported[1] =
13905 sc->link_params.phy[ELINK_EXT_PHY1].supported;
13906 sc->port.supported[0] =
13907 sc->link_params.phy[ELINK_EXT_PHY2].supported;
13908 } else {
13909 sc->port.supported[0] =
13910 sc->link_params.phy[ELINK_EXT_PHY1].supported;
13911 sc->port.supported[1] =
13912 sc->link_params.phy[ELINK_EXT_PHY2].supported;
13913 }
13914 cfg_size = 2;
13915 break;
13916 }
13917
13918 if (!(sc->port.supported[0] || sc->port.supported[1])) {
13919 BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n",
13920 SHMEM_RD(sc,
13921 dev_info.port_hw_config[port].external_phy_config),
13922 SHMEM_RD(sc,
13923 dev_info.port_hw_config[port].external_phy_config2));
13924 return;
13925 }
13926
13927 if (CHIP_IS_E3(sc))
13928 sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
13929 else {
13930 switch (switch_cfg) {
13931 case ELINK_SWITCH_CFG_1G:
13932 sc->port.phy_addr =
13933 REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
13934 break;
13935 case ELINK_SWITCH_CFG_10G:
13936 sc->port.phy_addr =
13937 REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
13938 break;
13939 default:
13940 BLOGE(sc, "Invalid switch config in link_config=0x%08x\n",
13941 sc->port.link_config[0]);
13942 return;
13943 }
13944 }
13945
13946 BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr);
13947
13948 /* mask what we support according to speed_cap_mask per configuration */
13949 for (idx = 0; idx < cfg_size; idx++) {
13950 if (!(sc->link_params.speed_cap_mask[idx] &
13951 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
13952 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half;
13953 }
13954
13955 if (!(sc->link_params.speed_cap_mask[idx] &
13956 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
13957 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full;
13958 }
13959
13960 if (!(sc->link_params.speed_cap_mask[idx] &
13961 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
13962 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half;
13963 }
13964
13965 if (!(sc->link_params.speed_cap_mask[idx] &
13966 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
13967 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full;
13968 }
13969
13970 if (!(sc->link_params.speed_cap_mask[idx] &
13971 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
13972 sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full;
13973 }
13974
13975 if (!(sc->link_params.speed_cap_mask[idx] &
13976 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
13977 sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full;
13978 }
13979
13980 if (!(sc->link_params.speed_cap_mask[idx] &
13981 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
13982 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full;
13983 }
13984
13985 if (!(sc->link_params.speed_cap_mask[idx] &
13986 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
13987 sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full;
13988 }
13989 }
13990
13991 BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n",
13992 sc->port.supported[0], sc->port.supported[1]);
13993}
13994
13995static void
13996bxe_link_settings_requested(struct bxe_softc *sc)
13997{
13998 uint32_t link_config;
13999 uint32_t idx;
14000 uint32_t cfg_size = 0;
14001
14002 sc->port.advertising[0] = 0;
14003 sc->port.advertising[1] = 0;
14004
14005 switch (sc->link_params.num_phys) {
14006 case 1:
14007 case 2:
14008 cfg_size = 1;
14009 break;
14010 case 3:
14011 cfg_size = 2;
14012 break;
14013 }
14014
14015 for (idx = 0; idx < cfg_size; idx++) {
14016 sc->link_params.req_duplex[idx] = DUPLEX_FULL;
14017 link_config = sc->port.link_config[idx];
14018
14019 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
14020 case PORT_FEATURE_LINK_SPEED_AUTO:
14021 if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
14022 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14023 sc->port.advertising[idx] |= sc->port.supported[idx];
14024 if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
14025 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
14026 sc->port.advertising[idx] |=
14027 (ELINK_SUPPORTED_100baseT_Half |
14028 ELINK_SUPPORTED_100baseT_Full);
14029 } else {
14030 /* force 10G, no AN */
14031 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14032 sc->port.advertising[idx] |=
14033 (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
14034 continue;
14035 }
14036 break;
14037
14038 case PORT_FEATURE_LINK_SPEED_10M_FULL:
14039 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) {
14040 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14041 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full |
14042 ADVERTISED_TP);
14043 } else {
14044 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14045 "speed_cap_mask=0x%08x\n",
14046 link_config, sc->link_params.speed_cap_mask[idx]);
14047 return;
14048 }
14049 break;
14050
14051 case PORT_FEATURE_LINK_SPEED_10M_HALF:
14052 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) {
14053 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14054 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14055 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half |
14056 ADVERTISED_TP);
14057 } else {
14058 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14059 "speed_cap_mask=0x%08x\n",
14060 link_config, sc->link_params.speed_cap_mask[idx]);
14061 return;
14062 }
14063 break;
14064
14065 case PORT_FEATURE_LINK_SPEED_100M_FULL:
14066 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) {
14067 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14068 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full |
14069 ADVERTISED_TP);
14070 } else {
14071 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14072 "speed_cap_mask=0x%08x\n",
14073 link_config, sc->link_params.speed_cap_mask[idx]);
14074 return;
14075 }
14076 break;
14077
14078 case PORT_FEATURE_LINK_SPEED_100M_HALF:
14079 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) {
14080 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14081 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14082 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half |
14083 ADVERTISED_TP);
14084 } else {
14085 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14086 "speed_cap_mask=0x%08x\n",
14087 link_config, sc->link_params.speed_cap_mask[idx]);
14088 return;
14089 }
14090 break;
14091
14092 case PORT_FEATURE_LINK_SPEED_1G:
14093 if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) {
14094 sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000;
14095 sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full |
14096 ADVERTISED_TP);
14097 } else {
14098 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14099 "speed_cap_mask=0x%08x\n",
14100 link_config, sc->link_params.speed_cap_mask[idx]);
14101 return;
14102 }
14103 break;
14104
14105 case PORT_FEATURE_LINK_SPEED_2_5G:
14106 if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) {
14107 sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500;
14108 sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full |
14109 ADVERTISED_TP);
14110 } else {
14111 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14112 "speed_cap_mask=0x%08x\n",
14113 link_config, sc->link_params.speed_cap_mask[idx]);
14114 return;
14115 }
14116 break;
14117
14118 case PORT_FEATURE_LINK_SPEED_10G_CX4:
14119 if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) {
14120 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14121 sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full |
14122 ADVERTISED_FIBRE);
14123 } else {
14124 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14125 "speed_cap_mask=0x%08x\n",
14126 link_config, sc->link_params.speed_cap_mask[idx]);
14127 return;
14128 }
14129 break;
14130
14131 case PORT_FEATURE_LINK_SPEED_20G:
14132 sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
14133 break;
14134
14135 default:
14136 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14137 "speed_cap_mask=0x%08x\n",
14138 link_config, sc->link_params.speed_cap_mask[idx]);
14139 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14140 sc->port.advertising[idx] = sc->port.supported[idx];
14141 break;
14142 }
14143
14144 sc->link_params.req_flow_ctrl[idx] =
14145 (link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
14146
14147 if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
14148 if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
14149 sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE;
14150 } else {
14151 bxe_set_requested_fc(sc);
14152 }
14153 }
14154
14155 BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d "
14156 "req_flow_ctrl=0x%x advertising=0x%x\n",
14157 sc->link_params.req_line_speed[idx],
14158 sc->link_params.req_duplex[idx],
14159 sc->link_params.req_flow_ctrl[idx],
14160 sc->port.advertising[idx]);
14161 }
14162}
14163
14164static void
14165bxe_get_phy_info(struct bxe_softc *sc)
14166{
14167 uint8_t port = SC_PORT(sc);
14168 uint32_t config = sc->port.config;
14169 uint32_t eee_mode;
14170
14171 /* shmem data already read in bxe_get_shmem_info() */
14172
14173 BLOGD(sc, DBG_LOAD, "lane_config=0x%08x speed_cap_mask0=0x%08x "
14174 "link_config0=0x%08x\n",
14175 sc->link_params.lane_config,
14176 sc->link_params.speed_cap_mask[0],
14177 sc->port.link_config[0]);
14178
14179 bxe_link_settings_supported(sc, sc->link_params.switch_cfg);
14180 bxe_link_settings_requested(sc);
14181
14182 if (sc->autogreeen == AUTO_GREEN_FORCE_ON) {
14183 sc->link_params.feature_config_flags |=
14184 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14185 } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) {
14186 sc->link_params.feature_config_flags &=
14187 ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14188 } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) {
14189 sc->link_params.feature_config_flags |=
14190 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14191 }
14192
14193 /* configure link feature according to nvram value */
14194 eee_mode =
14195 (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) &
14196 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
14197 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
14198 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
14199 sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
14200 ELINK_EEE_MODE_ENABLE_LPI |
14201 ELINK_EEE_MODE_OUTPUT_TIME);
14202 } else {
14203 sc->link_params.eee_mode = 0;
14204 }
14205
14206 /* get the media type */
14207 bxe_media_detect(sc);
14208}
14209
14210static void
14211bxe_get_params(struct bxe_softc *sc)
14212{
14213 /* get user tunable params */
14214 bxe_get_tunable_params(sc);
14215
14216 /* select the RX and TX ring sizes */
14217 sc->tx_ring_size = TX_BD_USABLE;
14218 sc->rx_ring_size = RX_BD_USABLE;
14219
14220 /* XXX disable WoL */
14221 sc->wol = 0;
14222}
14223
14224static void
14225bxe_set_modes_bitmap(struct bxe_softc *sc)
14226{
14227 uint32_t flags = 0;
14228
14229 if (CHIP_REV_IS_FPGA(sc)) {
14230 SET_FLAGS(flags, MODE_FPGA);
14231 } else if (CHIP_REV_IS_EMUL(sc)) {
14232 SET_FLAGS(flags, MODE_EMUL);
14233 } else {
14234 SET_FLAGS(flags, MODE_ASIC);
14235 }
14236
14237 if (CHIP_IS_MODE_4_PORT(sc)) {
14238 SET_FLAGS(flags, MODE_PORT4);
14239 } else {
14240 SET_FLAGS(flags, MODE_PORT2);
14241 }
14242
14243 if (CHIP_IS_E2(sc)) {
14244 SET_FLAGS(flags, MODE_E2);
14245 } else if (CHIP_IS_E3(sc)) {
14246 SET_FLAGS(flags, MODE_E3);
14247 if (CHIP_REV(sc) == CHIP_REV_Ax) {
14248 SET_FLAGS(flags, MODE_E3_A0);
14249 } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ {
14250 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
14251 }
14252 }
14253
14254 if (IS_MF(sc)) {
14255 SET_FLAGS(flags, MODE_MF);
14256 switch (sc->devinfo.mf_info.mf_mode) {
14257 case MULTI_FUNCTION_SD:
14258 SET_FLAGS(flags, MODE_MF_SD);
14259 break;
14260 case MULTI_FUNCTION_SI:
14261 SET_FLAGS(flags, MODE_MF_SI);
14262 break;
14263 case MULTI_FUNCTION_AFEX:
14264 SET_FLAGS(flags, MODE_MF_AFEX);
14265 break;
14266 }
14267 } else {
14268 SET_FLAGS(flags, MODE_SF);
14269 }
14270
14271#if defined(__LITTLE_ENDIAN)
14272 SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
14273#else /* __BIG_ENDIAN */
14274 SET_FLAGS(flags, MODE_BIG_ENDIAN);
14275#endif
14276
14277 INIT_MODE_FLAGS(sc) = flags;
14278}
14279
14280static int
14281bxe_alloc_hsi_mem(struct bxe_softc *sc)
14282{
14283 struct bxe_fastpath *fp;
14284 bus_addr_t busaddr;
14285 int max_agg_queues;
14286 int max_segments;
14287 bus_size_t max_size;
14288 bus_size_t max_seg_size;
14289 char buf[32];
14290 int rc;
14291 int i, j;
14292
14293 /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */
14294
14295 /* allocate the parent bus DMA tag */
14296 rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */
14297 1, /* alignment */
14298 0, /* boundary limit */
14299 BUS_SPACE_MAXADDR, /* restricted low */
14300 BUS_SPACE_MAXADDR, /* restricted hi */
14301 NULL, /* addr filter() */
14302 NULL, /* addr filter() arg */
14303 BUS_SPACE_MAXSIZE_32BIT, /* max map size */
14304 BUS_SPACE_UNRESTRICTED, /* num discontinuous */
14305 BUS_SPACE_MAXSIZE_32BIT, /* max seg size */
14306 0, /* flags */
14307 NULL, /* lock() */
14308 NULL, /* lock() arg */
14309 &sc->parent_dma_tag); /* returned dma tag */
14310 if (rc != 0) {
14311 BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc);
14312 return (1);
14313 }
14314
14315 /************************/
14316 /* DEFAULT STATUS BLOCK */
14317 /************************/
14318
14319 if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block),
14320 &sc->def_sb_dma, "default status block") != 0) {
14321 /* XXX */
14322 bus_dma_tag_destroy(sc->parent_dma_tag);
14323 return (1);
14324 }
14325
14326 sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
14327
14328 /***************/
14329 /* EVENT QUEUE */
14330 /***************/
14331
14332 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14333 &sc->eq_dma, "event queue") != 0) {
14334 /* XXX */
14335 bxe_dma_free(sc, &sc->def_sb_dma);
14336 sc->def_sb = NULL;
14337 bus_dma_tag_destroy(sc->parent_dma_tag);
14338 return (1);
14339 }
14340
14341 sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr;
14342
14343 /*************/
14344 /* SLOW PATH */
14345 /*************/
14346
14347 if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath),
14348 &sc->sp_dma, "slow path") != 0) {
14349 /* XXX */
14350 bxe_dma_free(sc, &sc->eq_dma);
14351 sc->eq = NULL;
14352 bxe_dma_free(sc, &sc->def_sb_dma);
14353 sc->def_sb = NULL;
14354 bus_dma_tag_destroy(sc->parent_dma_tag);
14355 return (1);
14356 }
14357
14358 sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr;
14359
14360 /*******************/
14361 /* SLOW PATH QUEUE */
14362 /*******************/
14363
14364 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14365 &sc->spq_dma, "slow path queue") != 0) {
14366 /* XXX */
14367 bxe_dma_free(sc, &sc->sp_dma);
14368 sc->sp = NULL;
14369 bxe_dma_free(sc, &sc->eq_dma);
14370 sc->eq = NULL;
14371 bxe_dma_free(sc, &sc->def_sb_dma);
14372 sc->def_sb = NULL;
14373 bus_dma_tag_destroy(sc->parent_dma_tag);
14374 return (1);
14375 }
14376
14377 sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
14378
14379 /***************************/
14380 /* FW DECOMPRESSION BUFFER */
14381 /***************************/
14382
14383 if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
14384 "fw decompression buffer") != 0) {
14385 /* XXX */
14386 bxe_dma_free(sc, &sc->spq_dma);
14387 sc->spq = NULL;
14388 bxe_dma_free(sc, &sc->sp_dma);
14389 sc->sp = NULL;
14390 bxe_dma_free(sc, &sc->eq_dma);
14391 sc->eq = NULL;
14392 bxe_dma_free(sc, &sc->def_sb_dma);
14393 sc->def_sb = NULL;
14394 bus_dma_tag_destroy(sc->parent_dma_tag);
14395 return (1);
14396 }
14397
14398 sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
14399
14400 if ((sc->gz_strm =
14401 malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) {
14402 /* XXX */
14403 bxe_dma_free(sc, &sc->gz_buf_dma);
14404 sc->gz_buf = NULL;
14405 bxe_dma_free(sc, &sc->spq_dma);
14406 sc->spq = NULL;
14407 bxe_dma_free(sc, &sc->sp_dma);
14408 sc->sp = NULL;
14409 bxe_dma_free(sc, &sc->eq_dma);
14410 sc->eq = NULL;
14411 bxe_dma_free(sc, &sc->def_sb_dma);
14412 sc->def_sb = NULL;
14413 bus_dma_tag_destroy(sc->parent_dma_tag);
14414 return (1);
14415 }
14416
14417 /*************/
14418 /* FASTPATHS */
14419 /*************/
14420
14421 /* allocate DMA memory for each fastpath structure */
14422 for (i = 0; i < sc->num_queues; i++) {
14423 fp = &sc->fp[i];
14424 fp->sc = sc;
14425 fp->index = i;
14426
14427 /*******************/
14428 /* FP STATUS BLOCK */
14429 /*******************/
14430
14431 snprintf(buf, sizeof(buf), "fp %d status block", i);
14432 if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block),
14433 &fp->sb_dma, buf) != 0) {
14434 /* XXX unwind and free previous fastpath allocations */
14435 BLOGE(sc, "Failed to alloc %s\n", buf);
14436 return (1);
14437 } else {
14438 if (CHIP_IS_E2E3(sc)) {
14439 fp->status_block.e2_sb =
14440 (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr;
14441 } else {
14442 fp->status_block.e1x_sb =
14443 (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr;
14444 }
14445 }
14446
14447 /******************/
14448 /* FP TX BD CHAIN */
14449 /******************/
14450
14451 snprintf(buf, sizeof(buf), "fp %d tx bd chain", i);
14452 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES),
14453 &fp->tx_dma, buf) != 0) {
14454 /* XXX unwind and free previous fastpath allocations */
14455 BLOGE(sc, "Failed to alloc %s\n", buf);
14456 return (1);
14457 } else {
14458 fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr;
14459 }
14460
14461 /* link together the tx bd chain pages */
14462 for (j = 1; j <= TX_BD_NUM_PAGES; j++) {
14463 /* index into the tx bd chain array to last entry per page */
14464 struct eth_tx_next_bd *tx_next_bd =
14465 &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd;
14466 /* point to the next page and wrap from last page */
14467 busaddr = (fp->tx_dma.paddr +
14468 (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES)));
14469 tx_next_bd->addr_hi = htole32(U64_HI(busaddr));
14470 tx_next_bd->addr_lo = htole32(U64_LO(busaddr));
14471 }
14472
14473 /******************/
14474 /* FP RX BD CHAIN */
14475 /******************/
14476
14477 snprintf(buf, sizeof(buf), "fp %d rx bd chain", i);
14478 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES),
14479 &fp->rx_dma, buf) != 0) {
14480 /* XXX unwind and free previous fastpath allocations */
14481 BLOGE(sc, "Failed to alloc %s\n", buf);
14482 return (1);
14483 } else {
14484 fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr;
14485 }
14486
14487 /* link together the rx bd chain pages */
14488 for (j = 1; j <= RX_BD_NUM_PAGES; j++) {
14489 /* index into the rx bd chain array to last entry per page */
14490 struct eth_rx_bd *rx_bd =
14491 &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2];
14492 /* point to the next page and wrap from last page */
14493 busaddr = (fp->rx_dma.paddr +
14494 (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES)));
14495 rx_bd->addr_hi = htole32(U64_HI(busaddr));
14496 rx_bd->addr_lo = htole32(U64_LO(busaddr));
14497 }
14498
14499 /*******************/
14500 /* FP RX RCQ CHAIN */
14501 /*******************/
14502
14503 snprintf(buf, sizeof(buf), "fp %d rcq chain", i);
14504 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES),
14505 &fp->rcq_dma, buf) != 0) {
14506 /* XXX unwind and free previous fastpath allocations */
14507 BLOGE(sc, "Failed to alloc %s\n", buf);
14508 return (1);
14509 } else {
14510 fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr;
14511 }
14512
14513 /* link together the rcq chain pages */
14514 for (j = 1; j <= RCQ_NUM_PAGES; j++) {
14515 /* index into the rcq chain array to last entry per page */
14516 struct eth_rx_cqe_next_page *rx_cqe_next =
14517 (struct eth_rx_cqe_next_page *)
14518 &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1];
14519 /* point to the next page and wrap from last page */
14520 busaddr = (fp->rcq_dma.paddr +
14521 (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES)));
14522 rx_cqe_next->addr_hi = htole32(U64_HI(busaddr));
14523 rx_cqe_next->addr_lo = htole32(U64_LO(busaddr));
14524 }
14525
14526 /*******************/
14527 /* FP RX SGE CHAIN */
14528 /*******************/
14529
14530 snprintf(buf, sizeof(buf), "fp %d sge chain", i);
14531 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES),
14532 &fp->rx_sge_dma, buf) != 0) {
14533 /* XXX unwind and free previous fastpath allocations */
14534 BLOGE(sc, "Failed to alloc %s\n", buf);
14535 return (1);
14536 } else {
14537 fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr;
14538 }
14539
14540 /* link together the sge chain pages */
14541 for (j = 1; j <= RX_SGE_NUM_PAGES; j++) {
14542 /* index into the rcq chain array to last entry per page */
14543 struct eth_rx_sge *rx_sge =
14544 &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2];
14545 /* point to the next page and wrap from last page */
14546 busaddr = (fp->rx_sge_dma.paddr +
14547 (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES)));
14548 rx_sge->addr_hi = htole32(U64_HI(busaddr));
14549 rx_sge->addr_lo = htole32(U64_LO(busaddr));
14550 }
14551
14552 /***********************/
14553 /* FP TX MBUF DMA MAPS */
14554 /***********************/
14555
14556 /* set required sizes before mapping to conserve resources */
14557 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
14558 max_size = BXE_TSO_MAX_SIZE;
14559 max_segments = BXE_TSO_MAX_SEGMENTS;
14560 max_seg_size = BXE_TSO_MAX_SEG_SIZE;
14561 } else {
14562 max_size = (MCLBYTES * BXE_MAX_SEGMENTS);
14563 max_segments = BXE_MAX_SEGMENTS;
14564 max_seg_size = MCLBYTES;
14565 }
14566
14567 /* create a dma tag for the tx mbufs */
14568 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
14569 1, /* alignment */
14570 0, /* boundary limit */
14571 BUS_SPACE_MAXADDR, /* restricted low */
14572 BUS_SPACE_MAXADDR, /* restricted hi */
14573 NULL, /* addr filter() */
14574 NULL, /* addr filter() arg */
14575 max_size, /* max map size */
14576 max_segments, /* num discontinuous */
14577 max_seg_size, /* max seg size */
14578 0, /* flags */
14579 NULL, /* lock() */
14580 NULL, /* lock() arg */
14581 &fp->tx_mbuf_tag); /* returned dma tag */
14582 if (rc != 0) {
14583 /* XXX unwind and free previous fastpath allocations */
14584 BLOGE(sc, "Failed to create dma tag for "
14585 "'fp %d tx mbufs' (%d)\n", i, rc);
14586 return (1);
14587 }
14588
14589 /* create dma maps for each of the tx mbuf clusters */
14590 for (j = 0; j < TX_BD_TOTAL; j++) {
14591 if (bus_dmamap_create(fp->tx_mbuf_tag,
14592 BUS_DMA_NOWAIT,
14593 &fp->tx_mbuf_chain[j].m_map)) {
14594 /* XXX unwind and free previous fastpath allocations */
14595 BLOGE(sc, "Failed to create dma map for "
14596 "'fp %d tx mbuf %d' (%d)\n", i, j, rc);
14597 return (1);
14598 }
14599 }
14600
14601 /***********************/
14602 /* FP RX MBUF DMA MAPS */
14603 /***********************/
14604
14605 /* create a dma tag for the rx mbufs */
14606 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
14607 1, /* alignment */
14608 0, /* boundary limit */
14609 BUS_SPACE_MAXADDR, /* restricted low */
14610 BUS_SPACE_MAXADDR, /* restricted hi */
14611 NULL, /* addr filter() */
14612 NULL, /* addr filter() arg */
14613 MJUM9BYTES, /* max map size */
14614 1, /* num discontinuous */
14615 MJUM9BYTES, /* max seg size */
14616 0, /* flags */
14617 NULL, /* lock() */
14618 NULL, /* lock() arg */
14619 &fp->rx_mbuf_tag); /* returned dma tag */
14620 if (rc != 0) {
14621 /* XXX unwind and free previous fastpath allocations */
14622 BLOGE(sc, "Failed to create dma tag for "
14623 "'fp %d rx mbufs' (%d)\n", i, rc);
14624 return (1);
14625 }
14626
14627 /* create dma maps for each of the rx mbuf clusters */
14628 for (j = 0; j < RX_BD_TOTAL; j++) {
14629 if (bus_dmamap_create(fp->rx_mbuf_tag,
14630 BUS_DMA_NOWAIT,
14631 &fp->rx_mbuf_chain[j].m_map)) {
14632 /* XXX unwind and free previous fastpath allocations */
14633 BLOGE(sc, "Failed to create dma map for "
14634 "'fp %d rx mbuf %d' (%d)\n", i, j, rc);
14635 return (1);
14636 }
14637 }
14638
14639 /* create dma map for the spare rx mbuf cluster */
14640 if (bus_dmamap_create(fp->rx_mbuf_tag,
14641 BUS_DMA_NOWAIT,
14642 &fp->rx_mbuf_spare_map)) {
14643 /* XXX unwind and free previous fastpath allocations */
14644 BLOGE(sc, "Failed to create dma map for "
14645 "'fp %d spare rx mbuf' (%d)\n", i, rc);
14646 return (1);
14647 }
14648
14649 /***************************/
14650 /* FP RX SGE MBUF DMA MAPS */
14651 /***************************/
14652
14653 /* create a dma tag for the rx sge mbufs */
14654 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
14655 1, /* alignment */
14656 0, /* boundary limit */
14657 BUS_SPACE_MAXADDR, /* restricted low */
14658 BUS_SPACE_MAXADDR, /* restricted hi */
14659 NULL, /* addr filter() */
14660 NULL, /* addr filter() arg */
14661 BCM_PAGE_SIZE, /* max map size */
14662 1, /* num discontinuous */
14663 BCM_PAGE_SIZE, /* max seg size */
14664 0, /* flags */
14665 NULL, /* lock() */
14666 NULL, /* lock() arg */
14667 &fp->rx_sge_mbuf_tag); /* returned dma tag */
14668 if (rc != 0) {
14669 /* XXX unwind and free previous fastpath allocations */
14670 BLOGE(sc, "Failed to create dma tag for "
14671 "'fp %d rx sge mbufs' (%d)\n", i, rc);
14672 return (1);
14673 }
14674
14675 /* create dma maps for the rx sge mbuf clusters */
14676 for (j = 0; j < RX_SGE_TOTAL; j++) {
14677 if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
14678 BUS_DMA_NOWAIT,
14679 &fp->rx_sge_mbuf_chain[j].m_map)) {
14680 /* XXX unwind and free previous fastpath allocations */
14681 BLOGE(sc, "Failed to create dma map for "
14682 "'fp %d rx sge mbuf %d' (%d)\n", i, j, rc);
14683 return (1);
14684 }
14685 }
14686
14687 /* create dma map for the spare rx sge mbuf cluster */
14688 if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
14689 BUS_DMA_NOWAIT,
14690 &fp->rx_sge_mbuf_spare_map)) {
14691 /* XXX unwind and free previous fastpath allocations */
14692 BLOGE(sc, "Failed to create dma map for "
14693 "'fp %d spare rx sge mbuf' (%d)\n", i, rc);
14694 return (1);
14695 }
14696
14697 /***************************/
14698 /* FP RX TPA MBUF DMA MAPS */
14699 /***************************/
14700
14701 /* create dma maps for the rx tpa mbuf clusters */
14702 max_agg_queues = MAX_AGG_QS(sc);
14703
14704 for (j = 0; j < max_agg_queues; j++) {
14705 if (bus_dmamap_create(fp->rx_mbuf_tag,
14706 BUS_DMA_NOWAIT,
14707 &fp->rx_tpa_info[j].bd.m_map)) {
14708 /* XXX unwind and free previous fastpath allocations */
14709 BLOGE(sc, "Failed to create dma map for "
14710 "'fp %d rx tpa mbuf %d' (%d)\n", i, j, rc);
14711 return (1);
14712 }
14713 }
14714
14715 /* create dma map for the spare rx tpa mbuf cluster */
14716 if (bus_dmamap_create(fp->rx_mbuf_tag,
14717 BUS_DMA_NOWAIT,
14718 &fp->rx_tpa_info_mbuf_spare_map)) {
14719 /* XXX unwind and free previous fastpath allocations */
14720 BLOGE(sc, "Failed to create dma map for "
14721 "'fp %d spare rx tpa mbuf' (%d)\n", i, rc);
14722 return (1);
14723 }
14724
14725 bxe_init_sge_ring_bit_mask(fp);
14726 }
14727
14728 return (0);
14729}
14730
14731static void
14732bxe_free_hsi_mem(struct bxe_softc *sc)
14733{
14734 struct bxe_fastpath *fp;
14735 int max_agg_queues;
14736 int i, j;
14737
14738 if (sc->parent_dma_tag == NULL) {
14739 return; /* assume nothing was allocated */
14740 }
14741
14742 for (i = 0; i < sc->num_queues; i++) {
14743 fp = &sc->fp[i];
14744
14745 /*******************/
14746 /* FP STATUS BLOCK */
14747 /*******************/
14748
14749 bxe_dma_free(sc, &fp->sb_dma);
14750 memset(&fp->status_block, 0, sizeof(fp->status_block));
14751
14752 /******************/
14753 /* FP TX BD CHAIN */
14754 /******************/
14755
14756 bxe_dma_free(sc, &fp->tx_dma);
14757 fp->tx_chain = NULL;
14758
14759 /******************/
14760 /* FP RX BD CHAIN */
14761 /******************/
14762
14763 bxe_dma_free(sc, &fp->rx_dma);
14764 fp->rx_chain = NULL;
14765
14766 /*******************/
14767 /* FP RX RCQ CHAIN */
14768 /*******************/
14769
14770 bxe_dma_free(sc, &fp->rcq_dma);
14771 fp->rcq_chain = NULL;
14772
14773 /*******************/
14774 /* FP RX SGE CHAIN */
14775 /*******************/
14776
14777 bxe_dma_free(sc, &fp->rx_sge_dma);
14778 fp->rx_sge_chain = NULL;
14779
14780 /***********************/
14781 /* FP TX MBUF DMA MAPS */
14782 /***********************/
14783
14784 if (fp->tx_mbuf_tag != NULL) {
14785 for (j = 0; j < TX_BD_TOTAL; j++) {
14786 if (fp->tx_mbuf_chain[j].m_map != NULL) {
14787 bus_dmamap_unload(fp->tx_mbuf_tag,
14788 fp->tx_mbuf_chain[j].m_map);
14789 bus_dmamap_destroy(fp->tx_mbuf_tag,
14790 fp->tx_mbuf_chain[j].m_map);
14791 }
14792 }
14793
14794 bus_dma_tag_destroy(fp->tx_mbuf_tag);
14795 fp->tx_mbuf_tag = NULL;
14796 }
14797
14798 /***********************/
14799 /* FP RX MBUF DMA MAPS */
14800 /***********************/
14801
14802 if (fp->rx_mbuf_tag != NULL) {
14803 for (j = 0; j < RX_BD_TOTAL; j++) {
14804 if (fp->rx_mbuf_chain[j].m_map != NULL) {
14805 bus_dmamap_unload(fp->rx_mbuf_tag,
14806 fp->rx_mbuf_chain[j].m_map);
14807 bus_dmamap_destroy(fp->rx_mbuf_tag,
14808 fp->rx_mbuf_chain[j].m_map);
14809 }
14810 }
14811
14812 if (fp->rx_mbuf_spare_map != NULL) {
14813 bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
14814 bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
14815 }
14816
14817 /***************************/
14818 /* FP RX TPA MBUF DMA MAPS */
14819 /***************************/
14820
14821 max_agg_queues = MAX_AGG_QS(sc);
14822
14823 for (j = 0; j < max_agg_queues; j++) {
14824 if (fp->rx_tpa_info[j].bd.m_map != NULL) {
14825 bus_dmamap_unload(fp->rx_mbuf_tag,
14826 fp->rx_tpa_info[j].bd.m_map);
14827 bus_dmamap_destroy(fp->rx_mbuf_tag,
14828 fp->rx_tpa_info[j].bd.m_map);
14829 }
14830 }
14831
14832 if (fp->rx_tpa_info_mbuf_spare_map != NULL) {
14833 bus_dmamap_unload(fp->rx_mbuf_tag,
14834 fp->rx_tpa_info_mbuf_spare_map);
14835 bus_dmamap_destroy(fp->rx_mbuf_tag,
14836 fp->rx_tpa_info_mbuf_spare_map);
14837 }
14838
14839 bus_dma_tag_destroy(fp->rx_mbuf_tag);
14840 fp->rx_mbuf_tag = NULL;
14841 }
14842
14843 /***************************/
14844 /* FP RX SGE MBUF DMA MAPS */
14845 /***************************/
14846
14847 if (fp->rx_sge_mbuf_tag != NULL) {
14848 for (j = 0; j < RX_SGE_TOTAL; j++) {
14849 if (fp->rx_sge_mbuf_chain[j].m_map != NULL) {
14850 bus_dmamap_unload(fp->rx_sge_mbuf_tag,
14851 fp->rx_sge_mbuf_chain[j].m_map);
14852 bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
14853 fp->rx_sge_mbuf_chain[j].m_map);
14854 }
14855 }
14856
14857 if (fp->rx_sge_mbuf_spare_map != NULL) {
14858 bus_dmamap_unload(fp->rx_sge_mbuf_tag,
14859 fp->rx_sge_mbuf_spare_map);
14860 bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
14861 fp->rx_sge_mbuf_spare_map);
14862 }
14863
14864 bus_dma_tag_destroy(fp->rx_sge_mbuf_tag);
14865 fp->rx_sge_mbuf_tag = NULL;
14866 }
14867 }
14868
14869 /***************************/
14870 /* FW DECOMPRESSION BUFFER */
14871 /***************************/
14872
14873 bxe_dma_free(sc, &sc->gz_buf_dma);
14874 sc->gz_buf = NULL;
14875 free(sc->gz_strm, M_DEVBUF);
14876 sc->gz_strm = NULL;
14877
14878 /*******************/
14879 /* SLOW PATH QUEUE */
14880 /*******************/
14881
14882 bxe_dma_free(sc, &sc->spq_dma);
14883 sc->spq = NULL;
14884
14885 /*************/
14886 /* SLOW PATH */
14887 /*************/
14888
14889 bxe_dma_free(sc, &sc->sp_dma);
14890 sc->sp = NULL;
14891
14892 /***************/
14893 /* EVENT QUEUE */
14894 /***************/
14895
14896 bxe_dma_free(sc, &sc->eq_dma);
14897 sc->eq = NULL;
14898
14899 /************************/
14900 /* DEFAULT STATUS BLOCK */
14901 /************************/
14902
14903 bxe_dma_free(sc, &sc->def_sb_dma);
14904 sc->def_sb = NULL;
14905
14906 bus_dma_tag_destroy(sc->parent_dma_tag);
14907 sc->parent_dma_tag = NULL;
14908}
14909
14910/*
14911 * Previous driver DMAE transaction may have occurred when pre-boot stage
14912 * ended and boot began. This would invalidate the addresses of the
14913 * transaction, resulting in was-error bit set in the PCI causing all
14914 * hw-to-host PCIe transactions to timeout. If this happened we want to clear
14915 * the interrupt which detected this from the pglueb and the was-done bit
14916 */
14917static void
14918bxe_prev_interrupted_dmae(struct bxe_softc *sc)
14919{
14920 uint32_t val;
14921
14922 if (!CHIP_IS_E1x(sc)) {
14923 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
14924 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
14925 BLOGD(sc, DBG_LOAD,
14926 "Clearing 'was-error' bit that was set in pglueb");
14927 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc));
14928 }
14929 }
14930}
14931
14932static int
14933bxe_prev_mcp_done(struct bxe_softc *sc)
14934{
14935 uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
14936 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
14937 if (!rc) {
14938 BLOGE(sc, "MCP response failure, aborting\n");
14939 return (-1);
14940 }
14941
14942 return (0);
14943}
14944
14945static struct bxe_prev_list_node *
14946bxe_prev_path_get_entry(struct bxe_softc *sc)
14947{
14948 struct bxe_prev_list_node *tmp;
14949
14950 LIST_FOREACH(tmp, &bxe_prev_list, node) {
14951 if ((sc->pcie_bus == tmp->bus) &&
14952 (sc->pcie_device == tmp->slot) &&
14953 (SC_PATH(sc) == tmp->path)) {
14954 return (tmp);
14955 }
14956 }
14957
14958 return (NULL);
14959}
14960
14961static uint8_t
14962bxe_prev_is_path_marked(struct bxe_softc *sc)
14963{
14964 struct bxe_prev_list_node *tmp;
14965 int rc = FALSE;
14966
14967 mtx_lock(&bxe_prev_mtx);
14968
14969 tmp = bxe_prev_path_get_entry(sc);
14970 if (tmp) {
14971 if (tmp->aer) {
14972 BLOGD(sc, DBG_LOAD,
14973 "Path %d/%d/%d was marked by AER\n",
14974 sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
14975 } else {
14976 rc = TRUE;
14977 BLOGD(sc, DBG_LOAD,
14978 "Path %d/%d/%d was already cleaned from previous drivers\n",
14979 sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
14980 }
14981 }
14982
14983 mtx_unlock(&bxe_prev_mtx);
14984
14985 return (rc);
14986}
14987
14988static int
14989bxe_prev_mark_path(struct bxe_softc *sc,
14990 uint8_t after_undi)
14991{
14992 struct bxe_prev_list_node *tmp;
14993
14994 mtx_lock(&bxe_prev_mtx);
14995
14996 /* Check whether the entry for this path already exists */
14997 tmp = bxe_prev_path_get_entry(sc);
14998 if (tmp) {
14999 if (!tmp->aer) {
15000 BLOGD(sc, DBG_LOAD,
15001 "Re-marking AER in path %d/%d/%d\n",
15002 sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15003 } else {
15004 BLOGD(sc, DBG_LOAD,
15005 "Removing AER indication from path %d/%d/%d\n",
15006 sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15007 tmp->aer = 0;
15008 }
15009
15010 mtx_unlock(&bxe_prev_mtx);
15011 return (0);
15012 }
15013
15014 mtx_unlock(&bxe_prev_mtx);
15015
15016 /* Create an entry for this path and add it */
15017 tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF,
15018 (M_NOWAIT | M_ZERO));
15019 if (!tmp) {
15020 BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n");
15021 return (-1);
15022 }
15023
15024 tmp->bus = sc->pcie_bus;
15025 tmp->slot = sc->pcie_device;
15026 tmp->path = SC_PATH(sc);
15027 tmp->aer = 0;
15028 tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
15029
15030 mtx_lock(&bxe_prev_mtx);
15031
15032 BLOGD(sc, DBG_LOAD,
15033 "Marked path %d/%d/%d - finished previous unload\n",
15034 sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15035 LIST_INSERT_HEAD(&bxe_prev_list, tmp, node);
15036
15037 mtx_unlock(&bxe_prev_mtx);
15038
15039 return (0);
15040}
15041
15042static int
15043bxe_do_flr(struct bxe_softc *sc)
15044{
15045 int i;
15046
15047 /* only E2 and onwards support FLR */
15048 if (CHIP_IS_E1x(sc)) {
15049 BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n");
15050 return (-1);
15051 }
15052
15053 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
15054 if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
15055 BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n",
15056 sc->devinfo.bc_ver);
15057 return (-1);
15058 }
15059
15060 /* Wait for Transaction Pending bit clean */
15061 for (i = 0; i < 4; i++) {
15062 if (i) {
15063 DELAY(((1 << (i - 1)) * 100) * 1000);
15064 }
15065
15066 if (!bxe_is_pcie_pending(sc)) {
15067 goto clear;
15068 }
15069 }
15070
15071 BLOGE(sc, "PCIE transaction is not cleared, "
15072 "proceeding with reset anyway\n");
15073
15074clear:
15075
15076 BLOGD(sc, DBG_LOAD, "Initiating FLR\n");
15077 bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
15078
15079 return (0);
15080}
15081
15082struct bxe_mac_vals {
15083 uint32_t xmac_addr;
15084 uint32_t xmac_val;
15085 uint32_t emac_addr;
15086 uint32_t emac_val;
15087 uint32_t umac_addr;
15088 uint32_t umac_val;
15089 uint32_t bmac_addr;
15090 uint32_t bmac_val[2];
15091};
15092
15093static void
15094bxe_prev_unload_close_mac(struct bxe_softc *sc,
15095 struct bxe_mac_vals *vals)
15096{
15097 uint32_t val, base_addr, offset, mask, reset_reg;
15098 uint8_t mac_stopped = FALSE;
15099 uint8_t port = SC_PORT(sc);
15100 uint32_t wb_data[2];
15101
15102 /* reset addresses as they also mark which values were changed */
15103 vals->bmac_addr = 0;
15104 vals->umac_addr = 0;
15105 vals->xmac_addr = 0;
15106 vals->emac_addr = 0;
15107
15108 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
15109
15110 if (!CHIP_IS_E3(sc)) {
15111 val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
15112 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
15113 if ((mask & reset_reg) && val) {
15114 BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n");
15115 base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
15116 : NIG_REG_INGRESS_BMAC0_MEM;
15117 offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
15118 : BIGMAC_REGISTER_BMAC_CONTROL;
15119
15120 /*
15121 * use rd/wr since we cannot use dmae. This is safe
15122 * since MCP won't access the bus due to the request
15123 * to unload, and no function on the path can be
15124 * loaded at this time.
15125 */
15126 wb_data[0] = REG_RD(sc, base_addr + offset);
15127 wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
15128 vals->bmac_addr = base_addr + offset;
15129 vals->bmac_val[0] = wb_data[0];
15130 vals->bmac_val[1] = wb_data[1];
15131 wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
15132 REG_WR(sc, vals->bmac_addr, wb_data[0]);
15133 REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
15134 }
15135
15136 BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n");
15137 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4;
15138 vals->emac_val = REG_RD(sc, vals->emac_addr);
15139 REG_WR(sc, vals->emac_addr, 0);
15140 mac_stopped = TRUE;
15141 } else {
15142 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
15143 BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n");
15144 base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
15145 val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
15146 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1));
15147 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1));
15148 vals->xmac_addr = base_addr + XMAC_REG_CTRL;
15149 vals->xmac_val = REG_RD(sc, vals->xmac_addr);
15150 REG_WR(sc, vals->xmac_addr, 0);
15151 mac_stopped = TRUE;
15152 }
15153
15154 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
15155 if (mask & reset_reg) {
15156 BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n");
15157 base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
15158 vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
15159 vals->umac_val = REG_RD(sc, vals->umac_addr);
15160 REG_WR(sc, vals->umac_addr, 0);
15161 mac_stopped = TRUE;
15162 }
15163 }
15164
15165 if (mac_stopped) {
15166 DELAY(20000);
15167 }
15168}
15169
15170#define BXE_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
15171#define BXE_PREV_UNDI_RCQ(val) ((val) & 0xffff)
15172#define BXE_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff)
15173#define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
15174
15175static void
15176bxe_prev_unload_undi_inc(struct bxe_softc *sc,
15177 uint8_t port,
15178 uint8_t inc)
15179{
15180 uint16_t rcq, bd;
15181 uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port));
15182
15183 rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc;
15184 bd = BXE_PREV_UNDI_BD(tmp_reg) + inc;
15185
15186 tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd);
15187 REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg);
15188
15189 BLOGD(sc, DBG_LOAD,
15190 "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
15191 port, bd, rcq);
15192}
15193
15194static int
15195bxe_prev_unload_common(struct bxe_softc *sc)
15196{
15197 uint32_t reset_reg, tmp_reg = 0, rc;
15198 uint8_t prev_undi = FALSE;
15199 struct bxe_mac_vals mac_vals;
15200 uint32_t timer_count = 1000;
15201 uint32_t prev_brb;
15202
15203 /*
15204 * It is possible a previous function received 'common' answer,
15205 * but hasn't loaded yet, therefore creating a scenario of
15206 * multiple functions receiving 'common' on the same path.
15207 */
15208 BLOGD(sc, DBG_LOAD, "Common unload Flow\n");
15209
15210 memset(&mac_vals, 0, sizeof(mac_vals));
15211
15212 if (bxe_prev_is_path_marked(sc)) {
15213 return (bxe_prev_mcp_done(sc));
15214 }
15215
15216 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
15217
15218 /* Reset should be performed after BRB is emptied */
15219 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
15220 /* Close the MAC Rx to prevent BRB from filling up */
15221 bxe_prev_unload_close_mac(sc, &mac_vals);
15222
15223 /* close LLH filters towards the BRB */
15224 elink_set_rx_filter(&sc->link_params, 0);
15225
15226 /*
15227 * Check if the UNDI driver was previously loaded.
15228 * UNDI driver initializes CID offset for normal bell to 0x7
15229 */
15230 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
15231 tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
15232 if (tmp_reg == 0x7) {
15233 BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n");
15234 prev_undi = TRUE;
15235 /* clear the UNDI indication */
15236 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
15237 /* clear possible idle check errors */
15238 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
15239 }
15240 }
15241
15242 /* wait until BRB is empty */
15243 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15244 while (timer_count) {
15245 prev_brb = tmp_reg;
15246
15247 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15248 if (!tmp_reg) {
15249 break;
15250 }
15251
15252 BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg);
15253
15254 /* reset timer as long as BRB actually gets emptied */
15255 if (prev_brb > tmp_reg) {
15256 timer_count = 1000;
15257 } else {
15258 timer_count--;
15259 }
15260
15261 /* If UNDI resides in memory, manually increment it */
15262 if (prev_undi) {
15263 bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
15264 }
15265
15266 DELAY(10);
15267 }
15268
15269 if (!timer_count) {
15270 BLOGE(sc, "Failed to empty BRB\n");
15271 }
15272 }
15273
15274 /* No packets are in the pipeline, path is ready for reset */
15275 bxe_reset_common(sc);
15276
15277 if (mac_vals.xmac_addr) {
15278 REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
15279 }
15280 if (mac_vals.umac_addr) {
15281 REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
15282 }
15283 if (mac_vals.emac_addr) {
15284 REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
15285 }
15286 if (mac_vals.bmac_addr) {
15287 REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
15288 REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
15289 }
15290
15291 rc = bxe_prev_mark_path(sc, prev_undi);
15292 if (rc) {
15293 bxe_prev_mcp_done(sc);
15294 return (rc);
15295 }
15296
15297 return (bxe_prev_mcp_done(sc));
15298}
15299
15300static int
15301bxe_prev_unload_uncommon(struct bxe_softc *sc)
15302{
15303 int rc;
15304
15305 BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n");
15306
15307 /* Test if previous unload process was already finished for this path */
15308 if (bxe_prev_is_path_marked(sc)) {
15309 return (bxe_prev_mcp_done(sc));
15310 }
15311
15312 BLOGD(sc, DBG_LOAD, "Path is unmarked\n");
15313
15314 /*
15315 * If function has FLR capabilities, and existing FW version matches
15316 * the one required, then FLR will be sufficient to clean any residue
15317 * left by previous driver
15318 */
15319 rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
15320 if (!rc) {
15321 /* fw version is good */
15322 BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n");
15323 rc = bxe_do_flr(sc);
15324 }
15325
15326 if (!rc) {
15327 /* FLR was performed */
15328 BLOGD(sc, DBG_LOAD, "FLR successful\n");
15329 return (0);
15330 }
15331
15332 BLOGD(sc, DBG_LOAD, "Could not FLR\n");
15333
15334 /* Close the MCP request, return failure*/
15335 rc = bxe_prev_mcp_done(sc);
15336 if (!rc) {
15337 rc = BXE_PREV_WAIT_NEEDED;
15338 }
15339
15340 return (rc);
15341}
15342
15343static int
15344bxe_prev_unload(struct bxe_softc *sc)
15345{
15346 int time_counter = 10;
15347 uint32_t fw, hw_lock_reg, hw_lock_val;
15348 uint32_t rc = 0;
15349
15350 /*
15351 * Clear HW from errors which may have resulted from an interrupted
15352 * DMAE transaction.
15353 */
15354 bxe_prev_interrupted_dmae(sc);
15355
15356 /* Release previously held locks */
15357 hw_lock_reg =
15358 (SC_FUNC(sc) <= 5) ?
15359 (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) :
15360 (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
15361
15362 hw_lock_val = (REG_RD(sc, hw_lock_reg));
15363 if (hw_lock_val) {
15364 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
15365 BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n");
15366 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
15367 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
15368 }
15369 BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n");
15370 REG_WR(sc, hw_lock_reg, 0xffffffff);
15371 } else {
15372 BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n");
15373 }
15374
15375 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
15376 BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n");
15377 REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
15378 }
15379
15380 do {
15381 /* Lock MCP using an unload request */
15382 fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
15383 if (!fw) {
15384 BLOGE(sc, "MCP response failure, aborting\n");
15385 rc = -1;
15386 break;
15387 }
15388
15389 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
15390 rc = bxe_prev_unload_common(sc);
15391 break;
15392 }
15393
15394 /* non-common reply from MCP night require looping */
15395 rc = bxe_prev_unload_uncommon(sc);
15396 if (rc != BXE_PREV_WAIT_NEEDED) {
15397 break;
15398 }
15399
15400 DELAY(20000);
15401 } while (--time_counter);
15402
15403 if (!time_counter || rc) {
15404 BLOGE(sc, "Failed to unload previous driver!"
15405 " time_counter %d rc %d\n", time_counter, rc);
15406 rc = -1;
15407 }
15408
15409 return (rc);
15410}
15411
15412void
15413bxe_dcbx_set_state(struct bxe_softc *sc,
15414 uint8_t dcb_on,
15415 uint32_t dcbx_enabled)
15416{
15417 if (!CHIP_IS_E1x(sc)) {
15418 sc->dcb_state = dcb_on;
15419 sc->dcbx_enabled = dcbx_enabled;
15420 } else {
15421 sc->dcb_state = FALSE;
15422 sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID;
15423 }
15424 BLOGD(sc, DBG_LOAD,
15425 "DCB state [%s:%s]\n",
15426 dcb_on ? "ON" : "OFF",
15427 (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" :
15428 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" :
15429 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ?
15430 "on-chip with negotiation" : "invalid");
15431}
15432
15433/* must be called after sriov-enable */
15434static int
15435bxe_set_qm_cid_count(struct bxe_softc *sc)
15436{
15437 int cid_count = BXE_L2_MAX_CID(sc);
15438
15439 if (IS_SRIOV(sc)) {
15440 cid_count += BXE_VF_CIDS;
15441 }
15442
15443 if (CNIC_SUPPORT(sc)) {
15444 cid_count += CNIC_CID_MAX;
15445 }
15446
15447 return (roundup(cid_count, QM_CID_ROUND));
15448}
15449
15450static void
15451bxe_init_multi_cos(struct bxe_softc *sc)
15452{
15453 int pri, cos;
15454
15455 uint32_t pri_map = 0; /* XXX change to user config */
15456
15457 for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) {
15458 cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
15459 if (cos < sc->max_cos) {
15460 sc->prio_to_cos[pri] = cos;
15461 } else {
15462 BLOGW(sc, "Invalid COS %d for priority %d "
15463 "(max COS is %d), setting to 0\n",
15464 cos, pri, (sc->max_cos - 1));
15465 sc->prio_to_cos[pri] = 0;
15466 }
15467 }
15468}
15469
15470static int
15471bxe_sysctl_state(SYSCTL_HANDLER_ARGS)
15472{
15473 struct bxe_softc *sc;
15474 int error, result;
15475
15476 result = 0;
15477 error = sysctl_handle_int(oidp, &result, 0, req);
15478
15479 if (error || !req->newptr) {
15480 return (error);
15481 }
15482
15483 if (result == 1) {
15484 uint32_t temp;
15485 sc = (struct bxe_softc *)arg1;
15486
15487 BLOGI(sc, "... dumping driver state ...\n");
15488 temp = SHMEM2_RD(sc, temperature_in_half_celsius);
15489 BLOGI(sc, "\t Device Temperature = %d Celsius\n", (temp/2));
15490 }
15491
15492 return (error);
15493}
15494
15495static int
15496bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS)
15497{
15498 struct bxe_softc *sc = (struct bxe_softc *)arg1;
15499 uint32_t *eth_stats = (uint32_t *)&sc->eth_stats;
15500 uint32_t *offset;
15501 uint64_t value = 0;
15502 int index = (int)arg2;
15503
15504 if (index >= BXE_NUM_ETH_STATS) {
15505 BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index);
15506 return (-1);
15507 }
15508
15509 offset = (eth_stats + bxe_eth_stats_arr[index].offset);
15510
15511 switch (bxe_eth_stats_arr[index].size) {
15512 case 4:
15513 value = (uint64_t)*offset;
15514 break;
15515 case 8:
15516 value = HILO_U64(*offset, *(offset + 1));
15517 break;
15518 default:
15519 BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n",
15520 index, bxe_eth_stats_arr[index].size);
15521 return (-1);
15522 }
15523
15524 return (sysctl_handle_64(oidp, &value, 0, req));
15525}
15526
15527static int
15528bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS)
15529{
15530 struct bxe_softc *sc = (struct bxe_softc *)arg1;
15531 uint32_t *eth_stats;
15532 uint32_t *offset;
15533 uint64_t value = 0;
15534 uint32_t q_stat = (uint32_t)arg2;
15535 uint32_t fp_index = ((q_stat >> 16) & 0xffff);
15536 uint32_t index = (q_stat & 0xffff);
15537
15538 eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats;
15539
15540 if (index >= BXE_NUM_ETH_Q_STATS) {
15541 BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index);
15542 return (-1);
15543 }
15544
15545 offset = (eth_stats + bxe_eth_q_stats_arr[index].offset);
15546
15547 switch (bxe_eth_q_stats_arr[index].size) {
15548 case 4:
15549 value = (uint64_t)*offset;
15550 break;
15551 case 8:
15552 value = HILO_U64(*offset, *(offset + 1));
15553 break;
15554 default:
15555 BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n",
15556 index, bxe_eth_q_stats_arr[index].size);
15557 return (-1);
15558 }
15559
15560 return (sysctl_handle_64(oidp, &value, 0, req));
15561}
15562
15563static void
15564bxe_add_sysctls(struct bxe_softc *sc)
15565{
15566 struct sysctl_ctx_list *ctx;
15567 struct sysctl_oid_list *children;
15568 struct sysctl_oid *queue_top, *queue;
15569 struct sysctl_oid_list *queue_top_children, *queue_children;
15570 char queue_num_buf[32];
15571 uint32_t q_stat;
15572 int i, j;
15573
15574 ctx = device_get_sysctl_ctx(sc->dev);
15575 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
15576
15577 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version",
15578 CTLFLAG_RD, BXE_DRIVER_VERSION, 0,
15579 "version");
15580
15581 snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d",
15582 BCM_5710_FW_MAJOR_VERSION,
15583 BCM_5710_FW_MINOR_VERSION,
15584 BCM_5710_FW_REVISION_VERSION,
15585 BCM_5710_FW_ENGINEERING_VERSION);
15586
15587 snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s",
15588 ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION) ? "Single" :
15589 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD) ? "MF-SD" :
15590 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI) ? "MF-SI" :
15591 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" :
15592 "Unknown"));
15593 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics",
15594 CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0,
15595 "multifunction vnics per port");
15596
15597 snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d",
15598 ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" :
15599 (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" :
15600 (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" :
15601 "???GT/s"),
15602 sc->devinfo.pcie_link_width);
15603
15604 sc->debug = bxe_debug;
15605
15606#if __FreeBSD_version >= 900000
15607 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
15608 CTLFLAG_RD, sc->devinfo.bc_ver_str, 0,
15609 "bootcode version");
15610 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
15611 CTLFLAG_RD, sc->fw_ver_str, 0,
15612 "firmware version");
15613 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
15614 CTLFLAG_RD, sc->mf_mode_str, 0,
15615 "multifunction mode");
15616 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
15617 CTLFLAG_RD, sc->mac_addr_str, 0,
15618 "mac address");
15619 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
15620 CTLFLAG_RD, sc->pci_link_str, 0,
15621 "pci link status");
15622 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "debug",
15623 CTLFLAG_RW, &sc->debug,
15624 "debug logging mode");
15625#else
15626 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
15627 CTLFLAG_RD, &sc->devinfo.bc_ver_str, 0,
15628 "bootcode version");
15629 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
15630 CTLFLAG_RD, &sc->fw_ver_str, 0,
15631 "firmware version");
15632 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
15633 CTLFLAG_RD, &sc->mf_mode_str, 0,
15634 "multifunction mode");
15635 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
15636 CTLFLAG_RD, &sc->mac_addr_str, 0,
15637 "mac address");
15638 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
15639 CTLFLAG_RD, &sc->pci_link_str, 0,
15640 "pci link status");
15641 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "debug",
15642 CTLFLAG_RW, &sc->debug, 0,
15643 "debug logging mode");
15644#endif /* #if __FreeBSD_version >= 900000 */
15645
15646 sc->trigger_grcdump = 0;
15647 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "trigger_grcdump",
15648 CTLFLAG_RW, &sc->trigger_grcdump, 0,
15649 "trigger grcdump should be invoked"
15650 " before collecting grcdump");
15651
15652 sc->grcdump_started = 0;
15653 sc->grcdump_done = 0;
15654 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "grcdump_done",
15655 CTLFLAG_RD, &sc->grcdump_done, 0,
15656 "set by driver when grcdump is done");
15657
15658 sc->rx_budget = bxe_rx_budget;
15659 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget",
15660 CTLFLAG_RW, &sc->rx_budget, 0,
15661 "rx processing budget");
15662
15663 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state",
15664 CTLTYPE_UINT | CTLFLAG_RW, sc, 0,
15665 bxe_sysctl_state, "IU", "dump driver state");
15666
15667 for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
15668 SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
15669 bxe_eth_stats_arr[i].string,
15670 CTLTYPE_U64 | CTLFLAG_RD, sc, i,
15671 bxe_sysctl_eth_stat, "LU",
15672 bxe_eth_stats_arr[i].string);
15673 }
15674
15675 /* add a new parent node for all queues "dev.bxe.#.queue" */
15676 queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue",
15677 CTLFLAG_RD, NULL, "queue");
15678 queue_top_children = SYSCTL_CHILDREN(queue_top);
15679
15680 for (i = 0; i < sc->num_queues; i++) {
15681 /* add a new parent node for a single queue "dev.bxe.#.queue.#" */
15682 snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i);
15683 queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO,
15684 queue_num_buf, CTLFLAG_RD, NULL,
15685 "single queue");
15686 queue_children = SYSCTL_CHILDREN(queue);
15687
15688 for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) {
15689 q_stat = ((i << 16) | j);
15690 SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO,
15691 bxe_eth_q_stats_arr[j].string,
15692 CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat,
15693 bxe_sysctl_eth_q_stat, "LU",
15694 bxe_eth_q_stats_arr[j].string);
15695 }
15696 }
15697}
15698
15699static int
15700bxe_alloc_buf_rings(struct bxe_softc *sc)
15701{
15702#if __FreeBSD_version >= 800000
15703
15704 int i;
15705 struct bxe_fastpath *fp;
15706
15707 for (i = 0; i < sc->num_queues; i++) {
15708
15709 fp = &sc->fp[i];
15710
15711 fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF,
15712 M_NOWAIT, &fp->tx_mtx);
15713 if (fp->tx_br == NULL)
15714 return (-1);
15715 }
15716#endif
15717 return (0);
15718}
15719
15720static void
15721bxe_free_buf_rings(struct bxe_softc *sc)
15722{
15723#if __FreeBSD_version >= 800000
15724
15725 int i;
15726 struct bxe_fastpath *fp;
15727
15728 for (i = 0; i < sc->num_queues; i++) {
15729
15730 fp = &sc->fp[i];
15731
15732 if (fp->tx_br) {
15733 buf_ring_free(fp->tx_br, M_DEVBUF);
15734 fp->tx_br = NULL;
15735 }
15736 }
15737
15738#endif
15739}
15740
15741static void
15742bxe_init_fp_mutexs(struct bxe_softc *sc)
15743{
15744 int i;
15745 struct bxe_fastpath *fp;
15746
15747 for (i = 0; i < sc->num_queues; i++) {
15748
15749 fp = &sc->fp[i];
15750
15751 snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name),
15752 "bxe%d_fp%d_tx_lock", sc->unit, i);
15753 mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF);
15754
15755 snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name),
15756 "bxe%d_fp%d_rx_lock", sc->unit, i);
15757 mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF);
15758 }
15759}
15760
15761static void
15762bxe_destroy_fp_mutexs(struct bxe_softc *sc)
15763{
15764 int i;
15765 struct bxe_fastpath *fp;
15766
15767 for (i = 0; i < sc->num_queues; i++) {
15768
15769 fp = &sc->fp[i];
15770
15771 if (mtx_initialized(&fp->tx_mtx)) {
15772 mtx_destroy(&fp->tx_mtx);
15773 }
15774
15775 if (mtx_initialized(&fp->rx_mtx)) {
15776 mtx_destroy(&fp->rx_mtx);
15777 }
15778 }
15779}
15780
15781
15782/*
15783 * Device attach function.
15784 *
15785 * Allocates device resources, performs secondary chip identification, and
15786 * initializes driver instance variables. This function is called from driver
15787 * load after a successful probe.
15788 *
15789 * Returns:
15790 * 0 = Success, >0 = Failure
15791 */
15792static int
15793bxe_attach(device_t dev)
15794{
15795 struct bxe_softc *sc;
15796
15797 sc = device_get_softc(dev);
15798
15799 BLOGD(sc, DBG_LOAD, "Starting attach...\n");
15800
15801 sc->state = BXE_STATE_CLOSED;
15802
15803 sc->dev = dev;
15804 sc->unit = device_get_unit(dev);
15805
15806 BLOGD(sc, DBG_LOAD, "softc = %p\n", sc);
15807
15808 sc->pcie_bus = pci_get_bus(dev);
15809 sc->pcie_device = pci_get_slot(dev);
15810 sc->pcie_func = pci_get_function(dev);
15811
15812 /* enable bus master capability */
15813 pci_enable_busmaster(dev);
15814
15815 /* get the BARs */
15816 if (bxe_allocate_bars(sc) != 0) {
15817 return (ENXIO);
15818 }
15819
15820 /* initialize the mutexes */
15821 bxe_init_mutexes(sc);
15822
15823 /* prepare the periodic callout */
15824 callout_init(&sc->periodic_callout, 0);
15825
15826 /* prepare the chip taskqueue */
15827 sc->chip_tq_flags = CHIP_TQ_NONE;
15828 snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name),
15829 "bxe%d_chip_tq", sc->unit);
15830 TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc);
15831 sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT,
15832 taskqueue_thread_enqueue,
15833 &sc->chip_tq);
15834 taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */
15835 "%s", sc->chip_tq_name);
15836
15837 /* get device info and set params */
15838 if (bxe_get_device_info(sc) != 0) {
15839 BLOGE(sc, "getting device info\n");
15840 bxe_deallocate_bars(sc);
15841 pci_disable_busmaster(dev);
15842 return (ENXIO);
15843 }
15844
15845 /* get final misc params */
15846 bxe_get_params(sc);
15847
15848 /* set the default MTU (changed via ifconfig) */
15849 sc->mtu = ETHERMTU;
15850
15851 bxe_set_modes_bitmap(sc);
15852
15853 /* XXX
15854 * If in AFEX mode and the function is configured for FCoE
15855 * then bail... no L2 allowed.
15856 */
15857
15858 /* get phy settings from shmem and 'and' against admin settings */
15859 bxe_get_phy_info(sc);
15860
15861 /* initialize the FreeBSD ifnet interface */
15862 if (bxe_init_ifnet(sc) != 0) {
15863 bxe_release_mutexes(sc);
15864 bxe_deallocate_bars(sc);
15865 pci_disable_busmaster(dev);
15866 return (ENXIO);
15867 }
15868
15869 if (bxe_add_cdev(sc) != 0) {
15870 if (sc->ifp != NULL) {
15871 ether_ifdetach(sc->ifp);
15872 }
15873 ifmedia_removeall(&sc->ifmedia);
15874 bxe_release_mutexes(sc);
15875 bxe_deallocate_bars(sc);
15876 pci_disable_busmaster(dev);
15877 return (ENXIO);
15878 }
15879
15880 /* allocate device interrupts */
15881 if (bxe_interrupt_alloc(sc) != 0) {
15882 bxe_del_cdev(sc);
15883 if (sc->ifp != NULL) {
15884 ether_ifdetach(sc->ifp);
15885 }
15886 ifmedia_removeall(&sc->ifmedia);
15887 bxe_release_mutexes(sc);
15888 bxe_deallocate_bars(sc);
15889 pci_disable_busmaster(dev);
15890 return (ENXIO);
15891 }
15892
15893 bxe_init_fp_mutexs(sc);
15894
15895 if (bxe_alloc_buf_rings(sc) != 0) {
15896 bxe_free_buf_rings(sc);
15897 bxe_interrupt_free(sc);
15898 bxe_del_cdev(sc);
15899 if (sc->ifp != NULL) {
15900 ether_ifdetach(sc->ifp);
15901 }
15902 ifmedia_removeall(&sc->ifmedia);
15903 bxe_release_mutexes(sc);
15904 bxe_deallocate_bars(sc);
15905 pci_disable_busmaster(dev);
15906 return (ENXIO);
15907 }
15908
15909 /* allocate ilt */
15910 if (bxe_alloc_ilt_mem(sc) != 0) {
15911 bxe_free_buf_rings(sc);
15912 bxe_interrupt_free(sc);
15913 bxe_del_cdev(sc);
15914 if (sc->ifp != NULL) {
15915 ether_ifdetach(sc->ifp);
15916 }
15917 ifmedia_removeall(&sc->ifmedia);
15918 bxe_release_mutexes(sc);
15919 bxe_deallocate_bars(sc);
15920 pci_disable_busmaster(dev);
15921 return (ENXIO);
15922 }
15923
15924 /* allocate the host hardware/software hsi structures */
15925 if (bxe_alloc_hsi_mem(sc) != 0) {
15926 bxe_free_ilt_mem(sc);
15927 bxe_free_buf_rings(sc);
15928 bxe_interrupt_free(sc);
15929 bxe_del_cdev(sc);
15930 if (sc->ifp != NULL) {
15931 ether_ifdetach(sc->ifp);
15932 }
15933 ifmedia_removeall(&sc->ifmedia);
15934 bxe_release_mutexes(sc);
15935 bxe_deallocate_bars(sc);
15936 pci_disable_busmaster(dev);
15937 return (ENXIO);
15938 }
15939
15940 /* need to reset chip if UNDI was active */
15941 if (IS_PF(sc) && !BXE_NOMCP(sc)) {
15942 /* init fw_seq */
15943 sc->fw_seq =
15944 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
15945 DRV_MSG_SEQ_NUMBER_MASK);
15946 BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq);
15947 bxe_prev_unload(sc);
15948 }
15949
15950#if 1
15951 /* XXX */
15952 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
15953#else
15954 if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) &&
15955 SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) &&
15956 SHMEM2_RD(sc, dcbx_lldp_params_offset) &&
15957 SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) {
15958 bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON);
15959 bxe_dcbx_init_params(sc);
15960 } else {
15961 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
15962 }
15963#endif
15964
15965 /* calculate qm_cid_count */
15966 sc->qm_cid_count = bxe_set_qm_cid_count(sc);
15967 BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count);
15968
15969 sc->max_cos = 1;
15970 bxe_init_multi_cos(sc);
15971
15972 bxe_add_sysctls(sc);
15973
15974 return (0);
15975}
15976
15977/*
15978 * Device detach function.
15979 *
15980 * Stops the controller, resets the controller, and releases resources.
15981 *
15982 * Returns:
15983 * 0 = Success, >0 = Failure
15984 */
15985static int
15986bxe_detach(device_t dev)
15987{
15988 struct bxe_softc *sc;
15989 if_t ifp;
15990
15991 sc = device_get_softc(dev);
15992
15993 BLOGD(sc, DBG_LOAD, "Starting detach...\n");
15994
15995 ifp = sc->ifp;
15996 if (ifp != NULL && if_vlantrunkinuse(ifp)) {
15997 BLOGE(sc, "Cannot detach while VLANs are in use.\n");
15998 return(EBUSY);
15999 }
16000
16001 bxe_del_cdev(sc);
16002
16003 /* stop the periodic callout */
16004 bxe_periodic_stop(sc);
16005
16006 /* stop the chip taskqueue */
16007 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE);
16008 if (sc->chip_tq) {
16009 taskqueue_drain(sc->chip_tq, &sc->chip_tq_task);
16010 taskqueue_free(sc->chip_tq);
16011 sc->chip_tq = NULL;
16012 }
16013
16014 /* stop and reset the controller if it was open */
16015 if (sc->state != BXE_STATE_CLOSED) {
16016 BXE_CORE_LOCK(sc);
16017 bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE);
16018 sc->state = BXE_STATE_DISABLED;
16019 BXE_CORE_UNLOCK(sc);
16020 }
16021
16022 /* release the network interface */
16023 if (ifp != NULL) {
16024 ether_ifdetach(ifp);
16025 }
16026 ifmedia_removeall(&sc->ifmedia);
16027
16028 /* XXX do the following based on driver state... */
16029
16030 /* free the host hardware/software hsi structures */
16031 bxe_free_hsi_mem(sc);
16032
16033 /* free ilt */
16034 bxe_free_ilt_mem(sc);
16035
16036 bxe_free_buf_rings(sc);
16037
16038 /* release the interrupts */
16039 bxe_interrupt_free(sc);
16040
16041 /* Release the mutexes*/
16042 bxe_destroy_fp_mutexs(sc);
16043 bxe_release_mutexes(sc);
16044
16045
16046 /* Release the PCIe BAR mapped memory */
16047 bxe_deallocate_bars(sc);
16048
16049 /* Release the FreeBSD interface. */
16050 if (sc->ifp != NULL) {
16051 if_free(sc->ifp);
16052 }
16053
16054 pci_disable_busmaster(dev);
16055
16056 return (0);
16057}
16058
16059/*
16060 * Device shutdown function.
16061 *
16062 * Stops and resets the controller.
16063 *
16064 * Returns:
16065 * Nothing
16066 */
16067static int
16068bxe_shutdown(device_t dev)
16069{
16070 struct bxe_softc *sc;
16071
16072 sc = device_get_softc(dev);
16073
16074 BLOGD(sc, DBG_LOAD, "Starting shutdown...\n");
16075
16076 /* stop the periodic callout */
16077 bxe_periodic_stop(sc);
16078
16079 BXE_CORE_LOCK(sc);
16080 bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE);
16081 BXE_CORE_UNLOCK(sc);
16082
16083 return (0);
16084}
16085
16086void
16087bxe_igu_ack_sb(struct bxe_softc *sc,
16088 uint8_t igu_sb_id,
16089 uint8_t segment,
16090 uint16_t index,
16091 uint8_t op,
16092 uint8_t update)
16093{
16094 uint32_t igu_addr = sc->igu_base_addr;
16095 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
16096 bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr);
16097}
16098
16099static void
16100bxe_igu_clear_sb_gen(struct bxe_softc *sc,
16101 uint8_t func,
16102 uint8_t idu_sb_id,
16103 uint8_t is_pf)
16104{
16105 uint32_t data, ctl, cnt = 100;
16106 uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
16107 uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
16108 uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
16109 uint32_t sb_bit = 1 << (idu_sb_id%32);
16110 uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
16111 uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
16112
16113 /* Not supported in BC mode */
16114 if (CHIP_INT_MODE_IS_BC(sc)) {
16115 return;
16116 }
16117
16118 data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
16119 IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
16120 IGU_REGULAR_CLEANUP_SET |
16121 IGU_REGULAR_BCLEANUP);
16122
16123 ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
16124 (func_encode << IGU_CTRL_REG_FID_SHIFT) |
16125 (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
16126
16127 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16128 data, igu_addr_data);
16129 REG_WR(sc, igu_addr_data, data);
16130
16131 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16132 BUS_SPACE_BARRIER_WRITE);
16133 mb();
16134
16135 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16136 ctl, igu_addr_ctl);
16137 REG_WR(sc, igu_addr_ctl, ctl);
16138
16139 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16140 BUS_SPACE_BARRIER_WRITE);
16141 mb();
16142
16143 /* wait for clean up to finish */
16144 while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
16145 DELAY(20000);
16146 }
16147
16148 if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
16149 BLOGD(sc, DBG_LOAD,
16150 "Unable to finish IGU cleanup: "
16151 "idu_sb_id %d offset %d bit %d (cnt %d)\n",
16152 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
16153 }
16154}
16155
16156static void
16157bxe_igu_clear_sb(struct bxe_softc *sc,
16158 uint8_t idu_sb_id)
16159{
16160 bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
16161}
16162
16163
16164
16165
16166
16167
16168
16169/*******************/
16170/* ECORE CALLBACKS */
16171/*******************/
16172
16173static void
16174bxe_reset_common(struct bxe_softc *sc)
16175{
16176 uint32_t val = 0x1400;
16177
16178 /* reset_common */
16179 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f);
16180
16181 if (CHIP_IS_E3(sc)) {
16182 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
16183 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
16184 }
16185
16186 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
16187}
16188
16189static void
16190bxe_common_init_phy(struct bxe_softc *sc)
16191{
16192 uint32_t shmem_base[2];
16193 uint32_t shmem2_base[2];
16194
16195 /* Avoid common init in case MFW supports LFA */
16196 if (SHMEM2_RD(sc, size) >
16197 (uint32_t)offsetof(struct shmem2_region,
16198 lfa_host_addr[SC_PORT(sc)])) {
16199 return;
16200 }
16201
16202 shmem_base[0] = sc->devinfo.shmem_base;
16203 shmem2_base[0] = sc->devinfo.shmem2_base;
16204
16205 if (!CHIP_IS_E1x(sc)) {
16206 shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr);
16207 shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
16208 }
16209
16210 bxe_acquire_phy_lock(sc);
16211 elink_common_init_phy(sc, shmem_base, shmem2_base,
16212 sc->devinfo.chip_id, 0);
16213 bxe_release_phy_lock(sc);
16214}
16215
16216static void
16217bxe_pf_disable(struct bxe_softc *sc)
16218{
16219 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
16220
16221 val &= ~IGU_PF_CONF_FUNC_EN;
16222
16223 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
16224 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
16225 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
16226}
16227
16228static void
16229bxe_init_pxp(struct bxe_softc *sc)
16230{
16231 uint16_t devctl;
16232 int r_order, w_order;
16233
16234 devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2);
16235
16236 BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl);
16237
16238 w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5);
16239
16240 if (sc->mrrs == -1) {
16241 r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12);
16242 } else {
16243 BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs);
16244 r_order = sc->mrrs;
16245 }
16246
16247 ecore_init_pxp_arb(sc, r_order, w_order);
16248}
16249
16250static uint32_t
16251bxe_get_pretend_reg(struct bxe_softc *sc)
16252{
16253 uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
16254 uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
16255 return (base + (SC_ABS_FUNC(sc)) * stride);
16256}
16257
16258/*
16259 * Called only on E1H or E2.
16260 * When pretending to be PF, the pretend value is the function number 0..7.
16261 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
16262 * combination.
16263 */
16264static int
16265bxe_pretend_func(struct bxe_softc *sc,
16266 uint16_t pretend_func_val)
16267{
16268 uint32_t pretend_reg;
16269
16270 if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) {
16271 return (-1);
16272 }
16273
16274 /* get my own pretend register */
16275 pretend_reg = bxe_get_pretend_reg(sc);
16276 REG_WR(sc, pretend_reg, pretend_func_val);
16277 REG_RD(sc, pretend_reg);
16278 return (0);
16279}
16280
16281static void
16282bxe_iov_init_dmae(struct bxe_softc *sc)
16283{
16284 return;
16285}
16286
16287static void
16288bxe_iov_init_dq(struct bxe_softc *sc)
16289{
16290 return;
16291}
16292
16293/* send a NIG loopback debug packet */
16294static void
16295bxe_lb_pckt(struct bxe_softc *sc)
16296{
16297 uint32_t wb_write[3];
16298
16299 /* Ethernet source and destination addresses */
16300 wb_write[0] = 0x55555555;
16301 wb_write[1] = 0x55555555;
16302 wb_write[2] = 0x20; /* SOP */
16303 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16304
16305 /* NON-IP protocol */
16306 wb_write[0] = 0x09000000;
16307 wb_write[1] = 0x55555555;
16308 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */
16309 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16310}
16311
16312/*
16313 * Some of the internal memories are not directly readable from the driver.
16314 * To test them we send debug packets.
16315 */
16316static int
16317bxe_int_mem_test(struct bxe_softc *sc)
16318{
16319 int factor;
16320 int count, i;
16321 uint32_t val = 0;
16322
16323 if (CHIP_REV_IS_FPGA(sc)) {
16324 factor = 120;
16325 } else if (CHIP_REV_IS_EMUL(sc)) {
16326 factor = 200;
16327 } else {
16328 factor = 1;
16329 }
16330
16331 /* disable inputs of parser neighbor blocks */
16332 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16333 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16334 REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16335 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16336
16337 /* write 0 to parser credits for CFC search request */
16338 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16339
16340 /* send Ethernet packet */
16341 bxe_lb_pckt(sc);
16342
16343 /* TODO do i reset NIG statistic? */
16344 /* Wait until NIG register shows 1 packet of size 0x10 */
16345 count = 1000 * factor;
16346 while (count) {
16347 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16348 val = *BXE_SP(sc, wb_data[0]);
16349 if (val == 0x10) {
16350 break;
16351 }
16352
16353 DELAY(10000);
16354 count--;
16355 }
16356
16357 if (val != 0x10) {
16358 BLOGE(sc, "NIG timeout val=0x%x\n", val);
16359 return (-1);
16360 }
16361
16362 /* wait until PRS register shows 1 packet */
16363 count = (1000 * factor);
16364 while (count) {
16365 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16366 if (val == 1) {
16367 break;
16368 }
16369
16370 DELAY(10000);
16371 count--;
16372 }
16373
16374 if (val != 0x1) {
16375 BLOGE(sc, "PRS timeout val=0x%x\n", val);
16376 return (-2);
16377 }
16378
16379 /* Reset and init BRB, PRS */
16380 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16381 DELAY(50000);
16382 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16383 DELAY(50000);
16384 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16385 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16386
16387 /* Disable inputs of parser neighbor blocks */
16388 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16389 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16390 REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16391 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16392
16393 /* Write 0 to parser credits for CFC search request */
16394 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16395
16396 /* send 10 Ethernet packets */
16397 for (i = 0; i < 10; i++) {
16398 bxe_lb_pckt(sc);
16399 }
16400
16401 /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */
16402 count = (1000 * factor);
16403 while (count) {
16404 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16405 val = *BXE_SP(sc, wb_data[0]);
16406 if (val == 0xb0) {
16407 break;
16408 }
16409
16410 DELAY(10000);
16411 count--;
16412 }
16413
16414 if (val != 0xb0) {
16415 BLOGE(sc, "NIG timeout val=0x%x\n", val);
16416 return (-3);
16417 }
16418
16419 /* Wait until PRS register shows 2 packets */
16420 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16421 if (val != 2) {
16422 BLOGE(sc, "PRS timeout val=0x%x\n", val);
16423 }
16424
16425 /* Write 1 to parser credits for CFC search request */
16426 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
16427
16428 /* Wait until PRS register shows 3 packets */
16429 DELAY(10000 * factor);
16430
16431 /* Wait until NIG register shows 1 packet of size 0x10 */
16432 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16433 if (val != 3) {
16434 BLOGE(sc, "PRS timeout val=0x%x\n", val);
16435 }
16436
16437 /* clear NIG EOP FIFO */
16438 for (i = 0; i < 11; i++) {
16439 REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO);
16440 }
16441
16442 val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY);
16443 if (val != 1) {
16444 BLOGE(sc, "clear of NIG failed val=0x%x\n", val);
16445 return (-4);
16446 }
16447
16448 /* Reset and init BRB, PRS, NIG */
16449 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16450 DELAY(50000);
16451 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16452 DELAY(50000);
16453 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16454 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16455 if (!CNIC_SUPPORT(sc)) {
16456 /* set NIC mode */
16457 REG_WR(sc, PRS_REG_NIC_MODE, 1);
16458 }
16459
16460 /* Enable inputs of parser neighbor blocks */
16461 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff);
16462 REG_WR(sc, TCM_REG_PRS_IFEN, 0x1);
16463 REG_WR(sc, CFC_REG_DEBUG0, 0x0);
16464 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1);
16465
16466 return (0);
16467}
16468
16469static void
16470bxe_setup_fan_failure_detection(struct bxe_softc *sc)
16471{
16472 int is_required;
16473 uint32_t val;
16474 int port;
16475
16476 is_required = 0;
16477 val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
16478 SHARED_HW_CFG_FAN_FAILURE_MASK);
16479
16480 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
16481 is_required = 1;
16482 }
16483 /*
16484 * The fan failure mechanism is usually related to the PHY type since
16485 * the power consumption of the board is affected by the PHY. Currently,
16486 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
16487 */
16488 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
16489 for (port = PORT_0; port < PORT_MAX; port++) {
16490 is_required |= elink_fan_failure_det_req(sc,
16491 sc->devinfo.shmem_base,
16492 sc->devinfo.shmem2_base,
16493 port);
16494 }
16495 }
16496
16497 BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required);
16498
16499 if (is_required == 0) {
16500 return;
16501 }
16502
16503 /* Fan failure is indicated by SPIO 5 */
16504 bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
16505
16506 /* set to active low mode */
16507 val = REG_RD(sc, MISC_REG_SPIO_INT);
16508 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
16509 REG_WR(sc, MISC_REG_SPIO_INT, val);
16510
16511 /* enable interrupt to signal the IGU */
16512 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
16513 val |= MISC_SPIO_SPIO5;
16514 REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
16515}
16516
16517static void
16518bxe_enable_blocks_attention(struct bxe_softc *sc)
16519{
16520 uint32_t val;
16521
16522 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
16523 if (!CHIP_IS_E1x(sc)) {
16524 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
16525 } else {
16526 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
16527 }
16528 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
16529 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
16530 /*
16531 * mask read length error interrupts in brb for parser
16532 * (parsing unit and 'checksum and crc' unit)
16533 * these errors are legal (PU reads fixed length and CAC can cause
16534 * read length error on truncated packets)
16535 */
16536 REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
16537 REG_WR(sc, QM_REG_QM_INT_MASK, 0);
16538 REG_WR(sc, TM_REG_TM_INT_MASK, 0);
16539 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
16540 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
16541 REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
16542/* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
16543/* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
16544 REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
16545 REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
16546 REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
16547/* REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
16548/* REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
16549 REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
16550 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
16551 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
16552 REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
16553/* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
16554/* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
16555
16556 val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
16557 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
16558 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
16559 if (!CHIP_IS_E1x(sc)) {
16560 val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
16561 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
16562 }
16563 REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
16564
16565 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
16566 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
16567 REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
16568/* REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
16569
16570 if (!CHIP_IS_E1x(sc)) {
16571 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
16572 REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
16573 }
16574
16575 REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
16576 REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
16577/* REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
16578 REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */
16579}
16580
16581/**
16582 * bxe_init_hw_common - initialize the HW at the COMMON phase.
16583 *
16584 * @sc: driver handle
16585 */
16586static int
16587bxe_init_hw_common(struct bxe_softc *sc)
16588{
16589 uint8_t abs_func_id;
16590 uint32_t val;
16591
16592 BLOGD(sc, DBG_LOAD, "starting common init for func %d\n",
16593 SC_ABS_FUNC(sc));
16594
16595 /*
16596 * take the RESET lock to protect undi_unload flow from accessing
16597 * registers while we are resetting the chip
16598 */
16599 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
16600
16601 bxe_reset_common(sc);
16602
16603 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
16604
16605 val = 0xfffc;
16606 if (CHIP_IS_E3(sc)) {
16607 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
16608 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
16609 }
16610
16611 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
16612
16613 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
16614
16615 ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
16616 BLOGD(sc, DBG_LOAD, "after misc block init\n");
16617
16618 if (!CHIP_IS_E1x(sc)) {
16619 /*
16620 * 4-port mode or 2-port mode we need to turn off master-enable for
16621 * everyone. After that we turn it back on for self. So, we disregard
16622 * multi-function, and always disable all functions on the given path,
16623 * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
16624 */
16625 for (abs_func_id = SC_PATH(sc);
16626 abs_func_id < (E2_FUNC_MAX * 2);
16627 abs_func_id += 2) {
16628 if (abs_func_id == SC_ABS_FUNC(sc)) {
16629 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
16630 continue;
16631 }
16632
16633 bxe_pretend_func(sc, abs_func_id);
16634
16635 /* clear pf enable */
16636 bxe_pf_disable(sc);
16637
16638 bxe_pretend_func(sc, SC_ABS_FUNC(sc));
16639 }
16640 }
16641
16642 BLOGD(sc, DBG_LOAD, "after pf disable\n");
16643
16644 ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
16645
16646 if (CHIP_IS_E1(sc)) {
16647 /*
16648 * enable HW interrupt from PXP on USDM overflow
16649 * bit 16 on INT_MASK_0
16650 */
16651 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
16652 }
16653
16654 ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
16655 bxe_init_pxp(sc);
16656
16657#ifdef __BIG_ENDIAN
16658 REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
16659 REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
16660 REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
16661 REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
16662 REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
16663 /* make sure this value is 0 */
16664 REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
16665
16666 //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
16667 REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
16668 REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
16669 REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
16670 REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
16671#endif
16672
16673 ecore_ilt_init_page_size(sc, INITOP_SET);
16674
16675 if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
16676 REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
16677 }
16678
16679 /* let the HW do it's magic... */
16680 DELAY(100000);
16681
16682 /* finish PXP init */
16683 val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
16684 if (val != 1) {
16685 BLOGE(sc, "PXP2 CFG failed PXP2_REG_RQ_CFG_DONE val = 0x%x\n",
16686 val);
16687 return (-1);
16688 }
16689 val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
16690 if (val != 1) {
16691 BLOGE(sc, "PXP2 RD_INIT failed val = 0x%x\n", val);
16692 return (-1);
16693 }
16694
16695 BLOGD(sc, DBG_LOAD, "after pxp init\n");
16696
16697 /*
16698 * Timer bug workaround for E2 only. We need to set the entire ILT to have
16699 * entries with value "0" and valid bit on. This needs to be done by the
16700 * first PF that is loaded in a path (i.e. common phase)
16701 */
16702 if (!CHIP_IS_E1x(sc)) {
16703/*
16704 * In E2 there is a bug in the timers block that can cause function 6 / 7
16705 * (i.e. vnic3) to start even if it is marked as "scan-off".
16706 * This occurs when a different function (func2,3) is being marked
16707 * as "scan-off". Real-life scenario for example: if a driver is being
16708 * load-unloaded while func6,7 are down. This will cause the timer to access
16709 * the ilt, translate to a logical address and send a request to read/write.
16710 * Since the ilt for the function that is down is not valid, this will cause
16711 * a translation error which is unrecoverable.
16712 * The Workaround is intended to make sure that when this happens nothing
16713 * fatal will occur. The workaround:
16714 * 1. First PF driver which loads on a path will:
16715 * a. After taking the chip out of reset, by using pretend,
16716 * it will write "0" to the following registers of
16717 * the other vnics.
16718 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
16719 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
16720 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
16721 * And for itself it will write '1' to
16722 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
16723 * dmae-operations (writing to pram for example.)
16724 * note: can be done for only function 6,7 but cleaner this
16725 * way.
16726 * b. Write zero+valid to the entire ILT.
16727 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of
16728 * VNIC3 (of that port). The range allocated will be the
16729 * entire ILT. This is needed to prevent ILT range error.
16730 * 2. Any PF driver load flow:
16731 * a. ILT update with the physical addresses of the allocated
16732 * logical pages.
16733 * b. Wait 20msec. - note that this timeout is needed to make
16734 * sure there are no requests in one of the PXP internal
16735 * queues with "old" ILT addresses.
16736 * c. PF enable in the PGLC.
16737 * d. Clear the was_error of the PF in the PGLC. (could have
16738 * occurred while driver was down)
16739 * e. PF enable in the CFC (WEAK + STRONG)
16740 * f. Timers scan enable
16741 * 3. PF driver unload flow:
16742 * a. Clear the Timers scan_en.
16743 * b. Polling for scan_on=0 for that PF.
16744 * c. Clear the PF enable bit in the PXP.
16745 * d. Clear the PF enable in the CFC (WEAK + STRONG)
16746 * e. Write zero+valid to all ILT entries (The valid bit must
16747 * stay set)
16748 * f. If this is VNIC 3 of a port then also init
16749 * first_timers_ilt_entry to zero and last_timers_ilt_entry
16750 * to the last enrty in the ILT.
16751 *
16752 * Notes:
16753 * Currently the PF error in the PGLC is non recoverable.
16754 * In the future the there will be a recovery routine for this error.
16755 * Currently attention is masked.
16756 * Having an MCP lock on the load/unload process does not guarantee that
16757 * there is no Timer disable during Func6/7 enable. This is because the
16758 * Timers scan is currently being cleared by the MCP on FLR.
16759 * Step 2.d can be done only for PF6/7 and the driver can also check if
16760 * there is error before clearing it. But the flow above is simpler and
16761 * more general.
16762 * All ILT entries are written by zero+valid and not just PF6/7
16763 * ILT entries since in the future the ILT entries allocation for
16764 * PF-s might be dynamic.
16765 */
16766 struct ilt_client_info ilt_cli;
16767 struct ecore_ilt ilt;
16768
16769 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
16770 memset(&ilt, 0, sizeof(struct ecore_ilt));
16771
16772 /* initialize dummy TM client */
16773 ilt_cli.start = 0;
16774 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
16775 ilt_cli.client_num = ILT_CLIENT_TM;
16776
16777 /*
16778 * Step 1: set zeroes to all ilt page entries with valid bit on
16779 * Step 2: set the timers first/last ilt entry to point
16780 * to the entire range to prevent ILT range error for 3rd/4th
16781 * vnic (this code assumes existence of the vnic)
16782 *
16783 * both steps performed by call to ecore_ilt_client_init_op()
16784 * with dummy TM client
16785 *
16786 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
16787 * and his brother are split registers
16788 */
16789
16790 bxe_pretend_func(sc, (SC_PATH(sc) + 6));
16791 ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
16792 bxe_pretend_func(sc, SC_ABS_FUNC(sc));
16793
16794 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN);
16795 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN);
16796 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
16797 }
16798
16799 REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
16800 REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
16801
16802 if (!CHIP_IS_E1x(sc)) {
16803 int factor = CHIP_REV_IS_EMUL(sc) ? 1000 :
16804 (CHIP_REV_IS_FPGA(sc) ? 400 : 0);
16805
16806 ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
16807 ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
16808
16809 /* let the HW do it's magic... */
16810 do {
16811 DELAY(200000);
16812 val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
16813 } while (factor-- && (val != 1));
16814
16815 if (val != 1) {
16816 BLOGE(sc, "ATC_INIT failed val = 0x%x\n", val);
16817 return (-1);
16818 }
16819 }
16820
16821 BLOGD(sc, DBG_LOAD, "after pglue and atc init\n");
16822
16823 ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
16824
16825 bxe_iov_init_dmae(sc);
16826
16827 /* clean the DMAE memory */
16828 sc->dmae_ready = 1;
16829 ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1);
16830
16831 ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
16832
16833 ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
16834
16835 ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
16836
16837 ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
16838
16839 bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
16840 bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
16841 bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
16842 bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
16843
16844 ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
16845
16846 /* QM queues pointers table */
16847 ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
16848
16849 /* soft reset pulse */
16850 REG_WR(sc, QM_REG_SOFT_RESET, 1);
16851 REG_WR(sc, QM_REG_SOFT_RESET, 0);
16852
16853 if (CNIC_SUPPORT(sc))
16854 ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
16855
16856 ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
16857 REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT);
16858 if (!CHIP_REV_IS_SLOW(sc)) {
16859 /* enable hw interrupt from doorbell Q */
16860 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
16861 }
16862
16863 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16864
16865 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16866 REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
16867
16868 if (!CHIP_IS_E1(sc)) {
16869 REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
16870 }
16871
16872 if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
16873 if (IS_MF_AFEX(sc)) {
16874 /*
16875 * configure that AFEX and VLAN headers must be
16876 * received in AFEX mode
16877 */
16878 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
16879 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
16880 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
16881 REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
16882 REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
16883 } else {
16884 /*
16885 * Bit-map indicating which L2 hdrs may appear
16886 * after the basic Ethernet header
16887 */
16888 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
16889 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
16890 }
16891 }
16892
16893 ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
16894 ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
16895 ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
16896 ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
16897
16898 if (!CHIP_IS_E1x(sc)) {
16899 /* reset VFC memories */
16900 REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
16901 VFC_MEMORIES_RST_REG_CAM_RST |
16902 VFC_MEMORIES_RST_REG_RAM_RST);
16903 REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
16904 VFC_MEMORIES_RST_REG_CAM_RST |
16905 VFC_MEMORIES_RST_REG_RAM_RST);
16906
16907 DELAY(20000);
16908 }
16909
16910 ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
16911 ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
16912 ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
16913 ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
16914
16915 /* sync semi rtc */
16916 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
16917 0x80000000);
16918 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
16919 0x80000000);
16920
16921 ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
16922 ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
16923 ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
16924
16925 if (!CHIP_IS_E1x(sc)) {
16926 if (IS_MF_AFEX(sc)) {
16927 /*
16928 * configure that AFEX and VLAN headers must be
16929 * sent in AFEX mode
16930 */
16931 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
16932 REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
16933 REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
16934 REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
16935 REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
16936 } else {
16937 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
16938 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
16939 }
16940 }
16941
16942 REG_WR(sc, SRC_REG_SOFT_RST, 1);
16943
16944 ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
16945
16946 if (CNIC_SUPPORT(sc)) {
16947 REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
16948 REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
16949 REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
16950 REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
16951 REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
16952 REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
16953 REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
16954 REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
16955 REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
16956 REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
16957 }
16958 REG_WR(sc, SRC_REG_SOFT_RST, 0);
16959
16960 if (sizeof(union cdu_context) != 1024) {
16961 /* we currently assume that a context is 1024 bytes */
16962 BLOGE(sc, "please adjust the size of cdu_context(%ld)\n",
16963 (long)sizeof(union cdu_context));
16964 }
16965
16966 ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
16967 val = (4 << 24) + (0 << 12) + 1024;
16968 REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
16969
16970 ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
16971
16972 REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
16973 /* enable context validation interrupt from CFC */
16974 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
16975
16976 /* set the thresholds to prevent CFC/CDU race */
16977 REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
16978 ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
16979
16980 if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) {
16981 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
16982 }
16983
16984 ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
16985 ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
16986
16987 /* Reset PCIE errors for debug */
16988 REG_WR(sc, 0x2814, 0xffffffff);
16989 REG_WR(sc, 0x3820, 0xffffffff);
16990
16991 if (!CHIP_IS_E1x(sc)) {
16992 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
16993 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
16994 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
16995 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
16996 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
16997 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
16998 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
16999 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
17000 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
17001 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
17002 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
17003 }
17004
17005 ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
17006
17007 if (!CHIP_IS_E1(sc)) {
17008 /* in E3 this done in per-port section */
17009 if (!CHIP_IS_E3(sc))
17010 REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
17011 }
17012
17013 if (CHIP_IS_E1H(sc)) {
17014 /* not applicable for E2 (and above ...) */
17015 REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
17016 }
17017
17018 if (CHIP_REV_IS_SLOW(sc)) {
17019 DELAY(200000);
17020 }
17021
17022 /* finish CFC init */
17023 val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
17024 if (val != 1) {
17025 BLOGE(sc, "CFC LL_INIT failed val=0x%x\n", val);
17026 return (-1);
17027 }
17028 val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
17029 if (val != 1) {
17030 BLOGE(sc, "CFC AC_INIT failed val=0x%x\n", val);
17031 return (-1);
17032 }
17033 val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
17034 if (val != 1) {
17035 BLOGE(sc, "CFC CAM_INIT failed val=0x%x\n", val);
17036 return (-1);
17037 }
17038 REG_WR(sc, CFC_REG_DEBUG0, 0);
17039
17040 if (CHIP_IS_E1(sc)) {
17041 /* read NIG statistic to see if this is our first up since powerup */
17042 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
17043 val = *BXE_SP(sc, wb_data[0]);
17044
17045 /* do internal memory self test */
17046 if ((val == 0) && bxe_int_mem_test(sc)) {
17047 BLOGE(sc, "internal mem self test failed val=0x%x\n", val);
17048 return (-1);
17049 }
17050 }
17051
17052 bxe_setup_fan_failure_detection(sc);
17053
17054 /* clear PXP2 attentions */
17055 REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
17056
17057 bxe_enable_blocks_attention(sc);
17058
17059 if (!CHIP_REV_IS_SLOW(sc)) {
17060 ecore_enable_blocks_parity(sc);
17061 }
17062
17063 if (!BXE_NOMCP(sc)) {
17064 if (CHIP_IS_E1x(sc)) {
17065 bxe_common_init_phy(sc);
17066 }
17067 }
17068
17069 return (0);
17070}
17071
17072/**
17073 * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase.
17074 *
17075 * @sc: driver handle
17076 */
17077static int
17078bxe_init_hw_common_chip(struct bxe_softc *sc)
17079{
17080 int rc = bxe_init_hw_common(sc);
17081
17082 if (rc) {
17083 BLOGE(sc, "bxe_init_hw_common failed rc=%d\n", rc);
17084 return (rc);
17085 }
17086
17087 /* In E2 2-PORT mode, same ext phy is used for the two paths */
17088 if (!BXE_NOMCP(sc)) {
17089 bxe_common_init_phy(sc);
17090 }
17091
17092 return (0);
17093}
17094
17095static int
17096bxe_init_hw_port(struct bxe_softc *sc)
17097{
17098 int port = SC_PORT(sc);
17099 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
17100 uint32_t low, high;
17101 uint32_t val;
17102
17103 BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port);
17104
17105 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
17106
17107 ecore_init_block(sc, BLOCK_MISC, init_phase);
17108 ecore_init_block(sc, BLOCK_PXP, init_phase);
17109 ecore_init_block(sc, BLOCK_PXP2, init_phase);
17110
17111 /*
17112 * Timers bug workaround: disables the pf_master bit in pglue at
17113 * common phase, we need to enable it here before any dmae access are
17114 * attempted. Therefore we manually added the enable-master to the
17115 * port phase (it also happens in the function phase)
17116 */
17117 if (!CHIP_IS_E1x(sc)) {
17118 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17119 }
17120
17121 ecore_init_block(sc, BLOCK_ATC, init_phase);
17122 ecore_init_block(sc, BLOCK_DMAE, init_phase);
17123 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
17124 ecore_init_block(sc, BLOCK_QM, init_phase);
17125
17126 ecore_init_block(sc, BLOCK_TCM, init_phase);
17127 ecore_init_block(sc, BLOCK_UCM, init_phase);
17128 ecore_init_block(sc, BLOCK_CCM, init_phase);
17129 ecore_init_block(sc, BLOCK_XCM, init_phase);
17130
17131 /* QM cid (connection) count */
17132 ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
17133
17134 if (CNIC_SUPPORT(sc)) {
17135 ecore_init_block(sc, BLOCK_TM, init_phase);
17136 REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20);
17137 REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
17138 }
17139
17140 ecore_init_block(sc, BLOCK_DORQ, init_phase);
17141
17142 ecore_init_block(sc, BLOCK_BRB1, init_phase);
17143
17144 if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) {
17145 if (IS_MF(sc)) {
17146 low = (BXE_ONE_PORT(sc) ? 160 : 246);
17147 } else if (sc->mtu > 4096) {
17148 if (BXE_ONE_PORT(sc)) {
17149 low = 160;
17150 } else {
17151 val = sc->mtu;
17152 /* (24*1024 + val*4)/256 */
17153 low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
17154 }
17155 } else {
17156 low = (BXE_ONE_PORT(sc) ? 80 : 160);
17157 }
17158 high = (low + 56); /* 14*1024/256 */
17159 REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
17160 REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
17161 }
17162
17163 if (CHIP_IS_MODE_4_PORT(sc)) {
17164 REG_WR(sc, SC_PORT(sc) ?
17165 BRB1_REG_MAC_GUARANTIED_1 :
17166 BRB1_REG_MAC_GUARANTIED_0, 40);
17167 }
17168
17169 ecore_init_block(sc, BLOCK_PRS, init_phase);
17170 if (CHIP_IS_E3B0(sc)) {
17171 if (IS_MF_AFEX(sc)) {
17172 /* configure headers for AFEX mode */
17173 REG_WR(sc, SC_PORT(sc) ?
17174 PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17175 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
17176 REG_WR(sc, SC_PORT(sc) ?
17177 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
17178 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
17179 REG_WR(sc, SC_PORT(sc) ?
17180 PRS_REG_MUST_HAVE_HDRS_PORT_1 :
17181 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
17182 } else {
17183 /* Ovlan exists only if we are in multi-function +
17184 * switch-dependent mode, in switch-independent there
17185 * is no ovlan headers
17186 */
17187 REG_WR(sc, SC_PORT(sc) ?
17188 PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17189 PRS_REG_HDRS_AFTER_BASIC_PORT_0,
17190 (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
17191 }
17192 }
17193
17194 ecore_init_block(sc, BLOCK_TSDM, init_phase);
17195 ecore_init_block(sc, BLOCK_CSDM, init_phase);
17196 ecore_init_block(sc, BLOCK_USDM, init_phase);
17197 ecore_init_block(sc, BLOCK_XSDM, init_phase);
17198
17199 ecore_init_block(sc, BLOCK_TSEM, init_phase);
17200 ecore_init_block(sc, BLOCK_USEM, init_phase);
17201 ecore_init_block(sc, BLOCK_CSEM, init_phase);
17202 ecore_init_block(sc, BLOCK_XSEM, init_phase);
17203
17204 ecore_init_block(sc, BLOCK_UPB, init_phase);
17205 ecore_init_block(sc, BLOCK_XPB, init_phase);
17206
17207 ecore_init_block(sc, BLOCK_PBF, init_phase);
17208
17209 if (CHIP_IS_E1x(sc)) {
17210 /* configure PBF to work without PAUSE mtu 9000 */
17211 REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
17212
17213 /* update threshold */
17214 REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
17215 /* update init credit */
17216 REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
17217
17218 /* probe changes */
17219 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1);
17220 DELAY(50);
17221 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0);
17222 }
17223
17224 if (CNIC_SUPPORT(sc)) {
17225 ecore_init_block(sc, BLOCK_SRC, init_phase);
17226 }
17227
17228 ecore_init_block(sc, BLOCK_CDU, init_phase);
17229 ecore_init_block(sc, BLOCK_CFC, init_phase);
17230
17231 if (CHIP_IS_E1(sc)) {
17232 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
17233 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
17234 }
17235 ecore_init_block(sc, BLOCK_HC, init_phase);
17236
17237 ecore_init_block(sc, BLOCK_IGU, init_phase);
17238
17239 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
17240 /* init aeu_mask_attn_func_0/1:
17241 * - SF mode: bits 3-7 are masked. only bits 0-2 are in use
17242 * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
17243 * bits 4-7 are used for "per vn group attention" */
17244 val = IS_MF(sc) ? 0xF7 : 0x7;
17245 /* Enable DCBX attention for all but E1 */
17246 val |= CHIP_IS_E1(sc) ? 0 : 0x10;
17247 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
17248
17249 ecore_init_block(sc, BLOCK_NIG, init_phase);
17250
17251 if (!CHIP_IS_E1x(sc)) {
17252 /* Bit-map indicating which L2 hdrs may appear after the
17253 * basic Ethernet header
17254 */
17255 if (IS_MF_AFEX(sc)) {
17256 REG_WR(sc, SC_PORT(sc) ?
17257 NIG_REG_P1_HDRS_AFTER_BASIC :
17258 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
17259 } else {
17260 REG_WR(sc, SC_PORT(sc) ?
17261 NIG_REG_P1_HDRS_AFTER_BASIC :
17262 NIG_REG_P0_HDRS_AFTER_BASIC,
17263 IS_MF_SD(sc) ? 7 : 6);
17264 }
17265
17266 if (CHIP_IS_E3(sc)) {
17267 REG_WR(sc, SC_PORT(sc) ?
17268 NIG_REG_LLH1_MF_MODE :
17269 NIG_REG_LLH_MF_MODE, IS_MF(sc));
17270 }
17271 }
17272 if (!CHIP_IS_E3(sc)) {
17273 REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
17274 }
17275
17276 if (!CHIP_IS_E1(sc)) {
17277 /* 0x2 disable mf_ov, 0x1 enable */
17278 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
17279 (IS_MF_SD(sc) ? 0x1 : 0x2));
17280
17281 if (!CHIP_IS_E1x(sc)) {
17282 val = 0;
17283 switch (sc->devinfo.mf_info.mf_mode) {
17284 case MULTI_FUNCTION_SD:
17285 val = 1;
17286 break;
17287 case MULTI_FUNCTION_SI:
17288 case MULTI_FUNCTION_AFEX:
17289 val = 2;
17290 break;
17291 }
17292
17293 REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
17294 NIG_REG_LLH0_CLS_TYPE), val);
17295 }
17296 REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
17297 REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
17298 REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
17299 }
17300
17301 /* If SPIO5 is set to generate interrupts, enable it for this port */
17302 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17303 if (val & MISC_SPIO_SPIO5) {
17304 uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
17305 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
17306 val = REG_RD(sc, reg_addr);
17307 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
17308 REG_WR(sc, reg_addr, val);
17309 }
17310
17311 return (0);
17312}
17313
17314static uint32_t
17315bxe_flr_clnup_reg_poll(struct bxe_softc *sc,
17316 uint32_t reg,
17317 uint32_t expected,
17318 uint32_t poll_count)
17319{
17320 uint32_t cur_cnt = poll_count;
17321 uint32_t val;
17322
17323 while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
17324 DELAY(FLR_WAIT_INTERVAL);
17325 }
17326
17327 return (val);
17328}
17329
17330static int
17331bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc,
17332 uint32_t reg,
17333 char *msg,
17334 uint32_t poll_cnt)
17335{
17336 uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
17337
17338 if (val != 0) {
17339 BLOGE(sc, "%s usage count=%d\n", msg, val);
17340 return (1);
17341 }
17342
17343 return (0);
17344}
17345
17346/* Common routines with VF FLR cleanup */
17347static uint32_t
17348bxe_flr_clnup_poll_count(struct bxe_softc *sc)
17349{
17350 /* adjust polling timeout */
17351 if (CHIP_REV_IS_EMUL(sc)) {
17352 return (FLR_POLL_CNT * 2000);
17353 }
17354
17355 if (CHIP_REV_IS_FPGA(sc)) {
17356 return (FLR_POLL_CNT * 120);
17357 }
17358
17359 return (FLR_POLL_CNT);
17360}
17361
17362static int
17363bxe_poll_hw_usage_counters(struct bxe_softc *sc,
17364 uint32_t poll_cnt)
17365{
17366 /* wait for CFC PF usage-counter to zero (includes all the VFs) */
17367 if (bxe_flr_clnup_poll_hw_counter(sc,
17368 CFC_REG_NUM_LCIDS_INSIDE_PF,
17369 "CFC PF usage counter timed out",
17370 poll_cnt)) {
17371 return (1);
17372 }
17373
17374 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
17375 if (bxe_flr_clnup_poll_hw_counter(sc,
17376 DORQ_REG_PF_USAGE_CNT,
17377 "DQ PF usage counter timed out",
17378 poll_cnt)) {
17379 return (1);
17380 }
17381
17382 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
17383 if (bxe_flr_clnup_poll_hw_counter(sc,
17384 QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc),
17385 "QM PF usage counter timed out",
17386 poll_cnt)) {
17387 return (1);
17388 }
17389
17390 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
17391 if (bxe_flr_clnup_poll_hw_counter(sc,
17392 TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc),
17393 "Timers VNIC usage counter timed out",
17394 poll_cnt)) {
17395 return (1);
17396 }
17397
17398 if (bxe_flr_clnup_poll_hw_counter(sc,
17399 TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc),
17400 "Timers NUM_SCANS usage counter timed out",
17401 poll_cnt)) {
17402 return (1);
17403 }
17404
17405 /* Wait DMAE PF usage counter to zero */
17406 if (bxe_flr_clnup_poll_hw_counter(sc,
17407 dmae_reg_go_c[INIT_DMAE_C(sc)],
17408 "DMAE dommand register timed out",
17409 poll_cnt)) {
17410 return (1);
17411 }
17412
17413 return (0);
17414}
17415
17416#define OP_GEN_PARAM(param) \
17417 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
17418#define OP_GEN_TYPE(type) \
17419 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
17420#define OP_GEN_AGG_VECT(index) \
17421 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
17422
17423static int
17424bxe_send_final_clnup(struct bxe_softc *sc,
17425 uint8_t clnup_func,
17426 uint32_t poll_cnt)
17427{
17428 uint32_t op_gen_command = 0;
17429 uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
17430 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
17431 int ret = 0;
17432
17433 if (REG_RD(sc, comp_addr)) {
17434 BLOGE(sc, "Cleanup complete was not 0 before sending\n");
17435 return (1);
17436 }
17437
17438 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
17439 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
17440 op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
17441 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
17442
17443 BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n");
17444 REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
17445
17446 if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
17447 BLOGE(sc, "FW final cleanup did not succeed\n");
17448 BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n",
17449 (REG_RD(sc, comp_addr)));
17450 bxe_panic(sc, ("FLR cleanup failed\n"));
17451 return (1);
17452 }
17453
17454 /* Zero completion for nxt FLR */
17455 REG_WR(sc, comp_addr, 0);
17456
17457 return (ret);
17458}
17459
17460static void
17461bxe_pbf_pN_buf_flushed(struct bxe_softc *sc,
17462 struct pbf_pN_buf_regs *regs,
17463 uint32_t poll_count)
17464{
17465 uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
17466 uint32_t cur_cnt = poll_count;
17467
17468 crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
17469 crd = crd_start = REG_RD(sc, regs->crd);
17470 init_crd = REG_RD(sc, regs->init_crd);
17471
17472 BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
17473 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : s:%x\n", regs->pN, crd);
17474 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
17475
17476 while ((crd != init_crd) &&
17477 ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) <
17478 (init_crd - crd_start))) {
17479 if (cur_cnt--) {
17480 DELAY(FLR_WAIT_INTERVAL);
17481 crd = REG_RD(sc, regs->crd);
17482 crd_freed = REG_RD(sc, regs->crd_freed);
17483 } else {
17484 BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN);
17485 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : c:%x\n", regs->pN, crd);
17486 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed);
17487 break;
17488 }
17489 }
17490
17491 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n",
17492 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
17493}
17494
17495static void
17496bxe_pbf_pN_cmd_flushed(struct bxe_softc *sc,
17497 struct pbf_pN_cmd_regs *regs,
17498 uint32_t poll_count)
17499{
17500 uint32_t occup, to_free, freed, freed_start;
17501 uint32_t cur_cnt = poll_count;
17502
17503 occup = to_free = REG_RD(sc, regs->lines_occup);
17504 freed = freed_start = REG_RD(sc, regs->lines_freed);
17505
17506 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup);
17507 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
17508
17509 while (occup &&
17510 ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) {
17511 if (cur_cnt--) {
17512 DELAY(FLR_WAIT_INTERVAL);
17513 occup = REG_RD(sc, regs->lines_occup);
17514 freed = REG_RD(sc, regs->lines_freed);
17515 } else {
17516 BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN);
17517 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup);
17518 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
17519 break;
17520 }
17521 }
17522
17523 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n",
17524 poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
17525}
17526
17527static void
17528bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count)
17529{
17530 struct pbf_pN_cmd_regs cmd_regs[] = {
17531 {0, (CHIP_IS_E3B0(sc)) ?
17532 PBF_REG_TQ_OCCUPANCY_Q0 :
17533 PBF_REG_P0_TQ_OCCUPANCY,
17534 (CHIP_IS_E3B0(sc)) ?
17535 PBF_REG_TQ_LINES_FREED_CNT_Q0 :
17536 PBF_REG_P0_TQ_LINES_FREED_CNT},
17537 {1, (CHIP_IS_E3B0(sc)) ?
17538 PBF_REG_TQ_OCCUPANCY_Q1 :
17539 PBF_REG_P1_TQ_OCCUPANCY,
17540 (CHIP_IS_E3B0(sc)) ?
17541 PBF_REG_TQ_LINES_FREED_CNT_Q1 :
17542 PBF_REG_P1_TQ_LINES_FREED_CNT},
17543 {4, (CHIP_IS_E3B0(sc)) ?
17544 PBF_REG_TQ_OCCUPANCY_LB_Q :
17545 PBF_REG_P4_TQ_OCCUPANCY,
17546 (CHIP_IS_E3B0(sc)) ?
17547 PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
17548 PBF_REG_P4_TQ_LINES_FREED_CNT}
17549 };
17550
17551 struct pbf_pN_buf_regs buf_regs[] = {
17552 {0, (CHIP_IS_E3B0(sc)) ?
17553 PBF_REG_INIT_CRD_Q0 :
17554 PBF_REG_P0_INIT_CRD ,
17555 (CHIP_IS_E3B0(sc)) ?
17556 PBF_REG_CREDIT_Q0 :
17557 PBF_REG_P0_CREDIT,
17558 (CHIP_IS_E3B0(sc)) ?
17559 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
17560 PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
17561 {1, (CHIP_IS_E3B0(sc)) ?
17562 PBF_REG_INIT_CRD_Q1 :
17563 PBF_REG_P1_INIT_CRD,
17564 (CHIP_IS_E3B0(sc)) ?
17565 PBF_REG_CREDIT_Q1 :
17566 PBF_REG_P1_CREDIT,
17567 (CHIP_IS_E3B0(sc)) ?
17568 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
17569 PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
17570 {4, (CHIP_IS_E3B0(sc)) ?
17571 PBF_REG_INIT_CRD_LB_Q :
17572 PBF_REG_P4_INIT_CRD,
17573 (CHIP_IS_E3B0(sc)) ?
17574 PBF_REG_CREDIT_LB_Q :
17575 PBF_REG_P4_CREDIT,
17576 (CHIP_IS_E3B0(sc)) ?
17577 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
17578 PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
17579 };
17580
17581 int i;
17582
17583 /* Verify the command queues are flushed P0, P1, P4 */
17584 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
17585 bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
17586 }
17587
17588 /* Verify the transmission buffers are flushed P0, P1, P4 */
17589 for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
17590 bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
17591 }
17592}
17593
17594static void
17595bxe_hw_enable_status(struct bxe_softc *sc)
17596{
17597 uint32_t val;
17598
17599 val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
17600 BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
17601
17602 val = REG_RD(sc, PBF_REG_DISABLE_PF);
17603 BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val);
17604
17605 val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
17606 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
17607
17608 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
17609 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
17610
17611 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
17612 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
17613
17614 val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
17615 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
17616
17617 val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
17618 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
17619
17620 val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
17621 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val);
17622}
17623
17624static int
17625bxe_pf_flr_clnup(struct bxe_softc *sc)
17626{
17627 uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc);
17628
17629 BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc));
17630
17631 /* Re-enable PF target read access */
17632 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
17633
17634 /* Poll HW usage counters */
17635 BLOGD(sc, DBG_LOAD, "Polling usage counters\n");
17636 if (bxe_poll_hw_usage_counters(sc, poll_cnt)) {
17637 return (-1);
17638 }
17639
17640 /* Zero the igu 'trailing edge' and 'leading edge' */
17641
17642 /* Send the FW cleanup command */
17643 if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) {
17644 return (-1);
17645 }
17646
17647 /* ATC cleanup */
17648
17649 /* Verify TX hw is flushed */
17650 bxe_tx_hw_flushed(sc, poll_cnt);
17651
17652 /* Wait 100ms (not adjusted according to platform) */
17653 DELAY(100000);
17654
17655 /* Verify no pending pci transactions */
17656 if (bxe_is_pcie_pending(sc)) {
17657 BLOGE(sc, "PCIE Transactions still pending\n");
17658 }
17659
17660 /* Debug */
17661 bxe_hw_enable_status(sc);
17662
17663 /*
17664 * Master enable - Due to WB DMAE writes performed before this
17665 * register is re-initialized as part of the regular function init
17666 */
17667 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17668
17669 return (0);
17670}
17671
17672static int
17673bxe_init_hw_func(struct bxe_softc *sc)
17674{
17675 int port = SC_PORT(sc);
17676 int func = SC_FUNC(sc);
17677 int init_phase = PHASE_PF0 + func;
17678 struct ecore_ilt *ilt = sc->ilt;
17679 uint16_t cdu_ilt_start;
17680 uint32_t addr, val;
17681 uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
17682 int i, main_mem_width, rc;
17683
17684 BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func);
17685
17686 /* FLR cleanup */
17687 if (!CHIP_IS_E1x(sc)) {
17688 rc = bxe_pf_flr_clnup(sc);
17689 if (rc) {
17690 BLOGE(sc, "FLR cleanup failed!\n");
17691 // XXX bxe_fw_dump(sc);
17692 // XXX bxe_idle_chk(sc);
17693 return (rc);
17694 }
17695 }
17696
17697 /* set MSI reconfigure capability */
17698 if (sc->devinfo.int_block == INT_BLOCK_HC) {
17699 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
17700 val = REG_RD(sc, addr);
17701 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
17702 REG_WR(sc, addr, val);
17703 }
17704
17705 ecore_init_block(sc, BLOCK_PXP, init_phase);
17706 ecore_init_block(sc, BLOCK_PXP2, init_phase);
17707
17708 ilt = sc->ilt;
17709 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
17710
17711 for (i = 0; i < L2_ILT_LINES(sc); i++) {
17712 ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
17713 ilt->lines[cdu_ilt_start + i].page_mapping =
17714 sc->context[i].vcxt_dma.paddr;
17715 ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
17716 }
17717 ecore_ilt_init_op(sc, INITOP_SET);
17718
17719 /* Set NIC mode */
17720 REG_WR(sc, PRS_REG_NIC_MODE, 1);
17721 BLOGD(sc, DBG_LOAD, "NIC MODE configured\n");
17722
17723 if (!CHIP_IS_E1x(sc)) {
17724 uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
17725
17726 /* Turn on a single ISR mode in IGU if driver is going to use
17727 * INT#x or MSI
17728 */
17729 if (sc->interrupt_mode != INTR_MODE_MSIX) {
17730 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
17731 }
17732
17733 /*
17734 * Timers workaround bug: function init part.
17735 * Need to wait 20msec after initializing ILT,
17736 * needed to make sure there are no requests in
17737 * one of the PXP internal queues with "old" ILT addresses
17738 */
17739 DELAY(20000);
17740
17741 /*
17742 * Master enable - Due to WB DMAE writes performed before this
17743 * register is re-initialized as part of the regular function
17744 * init
17745 */
17746 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17747 /* Enable the function in IGU */
17748 REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
17749 }
17750
17751 sc->dmae_ready = 1;
17752
17753 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
17754
17755 if (!CHIP_IS_E1x(sc))
17756 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
17757
17758 ecore_init_block(sc, BLOCK_ATC, init_phase);
17759 ecore_init_block(sc, BLOCK_DMAE, init_phase);
17760 ecore_init_block(sc, BLOCK_NIG, init_phase);
17761 ecore_init_block(sc, BLOCK_SRC, init_phase);
17762 ecore_init_block(sc, BLOCK_MISC, init_phase);
17763 ecore_init_block(sc, BLOCK_TCM, init_phase);
17764 ecore_init_block(sc, BLOCK_UCM, init_phase);
17765 ecore_init_block(sc, BLOCK_CCM, init_phase);
17766 ecore_init_block(sc, BLOCK_XCM, init_phase);
17767 ecore_init_block(sc, BLOCK_TSEM, init_phase);
17768 ecore_init_block(sc, BLOCK_USEM, init_phase);
17769 ecore_init_block(sc, BLOCK_CSEM, init_phase);
17770 ecore_init_block(sc, BLOCK_XSEM, init_phase);
17771
17772 if (!CHIP_IS_E1x(sc))
17773 REG_WR(sc, QM_REG_PF_EN, 1);
17774
17775 if (!CHIP_IS_E1x(sc)) {
17776 REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
17777 REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
17778 REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
17779 REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
17780 }
17781 ecore_init_block(sc, BLOCK_QM, init_phase);
17782
17783 ecore_init_block(sc, BLOCK_TM, init_phase);
17784 ecore_init_block(sc, BLOCK_DORQ, init_phase);
17785
17786 bxe_iov_init_dq(sc);
17787
17788 ecore_init_block(sc, BLOCK_BRB1, init_phase);
17789 ecore_init_block(sc, BLOCK_PRS, init_phase);
17790 ecore_init_block(sc, BLOCK_TSDM, init_phase);
17791 ecore_init_block(sc, BLOCK_CSDM, init_phase);
17792 ecore_init_block(sc, BLOCK_USDM, init_phase);
17793 ecore_init_block(sc, BLOCK_XSDM, init_phase);
17794 ecore_init_block(sc, BLOCK_UPB, init_phase);
17795 ecore_init_block(sc, BLOCK_XPB, init_phase);
17796 ecore_init_block(sc, BLOCK_PBF, init_phase);
17797 if (!CHIP_IS_E1x(sc))
17798 REG_WR(sc, PBF_REG_DISABLE_PF, 0);
17799
17800 ecore_init_block(sc, BLOCK_CDU, init_phase);
17801
17802 ecore_init_block(sc, BLOCK_CFC, init_phase);
17803
17804 if (!CHIP_IS_E1x(sc))
17805 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
17806
17807 if (IS_MF(sc)) {
17808 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
17809 REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc));
17810 }
17811
17812 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
17813
17814 /* HC init per function */
17815 if (sc->devinfo.int_block == INT_BLOCK_HC) {
17816 if (CHIP_IS_E1H(sc)) {
17817 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
17818
17819 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
17820 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
17821 }
17822 ecore_init_block(sc, BLOCK_HC, init_phase);
17823
17824 } else {
17825 int num_segs, sb_idx, prod_offset;
17826
17827 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
17828
17829 if (!CHIP_IS_E1x(sc)) {
17830 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
17831 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
17832 }
17833
17834 ecore_init_block(sc, BLOCK_IGU, init_phase);
17835
17836 if (!CHIP_IS_E1x(sc)) {
17837 int dsb_idx = 0;
17838 /**
17839 * Producer memory:
17840 * E2 mode: address 0-135 match to the mapping memory;
17841 * 136 - PF0 default prod; 137 - PF1 default prod;
17842 * 138 - PF2 default prod; 139 - PF3 default prod;
17843 * 140 - PF0 attn prod; 141 - PF1 attn prod;
17844 * 142 - PF2 attn prod; 143 - PF3 attn prod;
17845 * 144-147 reserved.
17846 *
17847 * E1.5 mode - In backward compatible mode;
17848 * for non default SB; each even line in the memory
17849 * holds the U producer and each odd line hold
17850 * the C producer. The first 128 producers are for
17851 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
17852 * producers are for the DSB for each PF.
17853 * Each PF has five segments: (the order inside each
17854 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
17855 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
17856 * 144-147 attn prods;
17857 */
17858 /* non-default-status-blocks */
17859 num_segs = CHIP_INT_MODE_IS_BC(sc) ?
17860 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
17861 for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
17862 prod_offset = (sc->igu_base_sb + sb_idx) *
17863 num_segs;
17864
17865 for (i = 0; i < num_segs; i++) {
17866 addr = IGU_REG_PROD_CONS_MEMORY +
17867 (prod_offset + i) * 4;
17868 REG_WR(sc, addr, 0);
17869 }
17870 /* send consumer update with value 0 */
17871 bxe_ack_sb(sc, sc->igu_base_sb + sb_idx,
17872 USTORM_ID, 0, IGU_INT_NOP, 1);
17873 bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
17874 }
17875
17876 /* default-status-blocks */
17877 num_segs = CHIP_INT_MODE_IS_BC(sc) ?
17878 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
17879
17880 if (CHIP_IS_MODE_4_PORT(sc))
17881 dsb_idx = SC_FUNC(sc);
17882 else
17883 dsb_idx = SC_VN(sc);
17884
17885 prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
17886 IGU_BC_BASE_DSB_PROD + dsb_idx :
17887 IGU_NORM_BASE_DSB_PROD + dsb_idx);
17888
17889 /*
17890 * igu prods come in chunks of E1HVN_MAX (4) -
17891 * does not matters what is the current chip mode
17892 */
17893 for (i = 0; i < (num_segs * E1HVN_MAX);
17894 i += E1HVN_MAX) {
17895 addr = IGU_REG_PROD_CONS_MEMORY +
17896 (prod_offset + i)*4;
17897 REG_WR(sc, addr, 0);
17898 }
17899 /* send consumer update with 0 */
17900 if (CHIP_INT_MODE_IS_BC(sc)) {
17901 bxe_ack_sb(sc, sc->igu_dsb_id,
17902 USTORM_ID, 0, IGU_INT_NOP, 1);
17903 bxe_ack_sb(sc, sc->igu_dsb_id,
17904 CSTORM_ID, 0, IGU_INT_NOP, 1);
17905 bxe_ack_sb(sc, sc->igu_dsb_id,
17906 XSTORM_ID, 0, IGU_INT_NOP, 1);
17907 bxe_ack_sb(sc, sc->igu_dsb_id,
17908 TSTORM_ID, 0, IGU_INT_NOP, 1);
17909 bxe_ack_sb(sc, sc->igu_dsb_id,
17910 ATTENTION_ID, 0, IGU_INT_NOP, 1);
17911 } else {
17912 bxe_ack_sb(sc, sc->igu_dsb_id,
17913 USTORM_ID, 0, IGU_INT_NOP, 1);
17914 bxe_ack_sb(sc, sc->igu_dsb_id,
17915 ATTENTION_ID, 0, IGU_INT_NOP, 1);
17916 }
17917 bxe_igu_clear_sb(sc, sc->igu_dsb_id);
17918
17919 /* !!! these should become driver const once
17920 rf-tool supports split-68 const */
17921 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
17922 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
17923 REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
17924 REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
17925 REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
17926 REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
17927 }
17928 }
17929
17930 /* Reset PCIE errors for debug */
17931 REG_WR(sc, 0x2114, 0xffffffff);
17932 REG_WR(sc, 0x2120, 0xffffffff);
17933
17934 if (CHIP_IS_E1x(sc)) {
17935 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
17936 main_mem_base = HC_REG_MAIN_MEMORY +
17937 SC_PORT(sc) * (main_mem_size * 4);
17938 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
17939 main_mem_width = 8;
17940
17941 val = REG_RD(sc, main_mem_prty_clr);
17942 if (val) {
17943 BLOGD(sc, DBG_LOAD,
17944 "Parity errors in HC block during function init (0x%x)!\n",
17945 val);
17946 }
17947
17948 /* Clear "false" parity errors in MSI-X table */
17949 for (i = main_mem_base;
17950 i < main_mem_base + main_mem_size * 4;
17951 i += main_mem_width) {
17952 bxe_read_dmae(sc, i, main_mem_width / 4);
17953 bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data),
17954 i, main_mem_width / 4);
17955 }
17956 /* Clear HC parity attention */
17957 REG_RD(sc, main_mem_prty_clr);
17958 }
17959
17960#if 1
17961 /* Enable STORMs SP logging */
17962 REG_WR8(sc, BAR_USTRORM_INTMEM +
17963 USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
17964 REG_WR8(sc, BAR_TSTRORM_INTMEM +
17965 TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
17966 REG_WR8(sc, BAR_CSTRORM_INTMEM +
17967 CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
17968 REG_WR8(sc, BAR_XSTRORM_INTMEM +
17969 XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
17970#endif
17971
17972 elink_phy_probe(&sc->link_params);
17973
17974 return (0);
17975}
17976
17977static void
17978bxe_link_reset(struct bxe_softc *sc)
17979{
17980 if (!BXE_NOMCP(sc)) {
17981 bxe_acquire_phy_lock(sc);
17982 elink_lfa_reset(&sc->link_params, &sc->link_vars);
17983 bxe_release_phy_lock(sc);
17984 } else {
17985 if (!CHIP_REV_IS_SLOW(sc)) {
17986 BLOGW(sc, "Bootcode is missing - cannot reset link\n");
17987 }
17988 }
17989}
17990
17991static void
17992bxe_reset_port(struct bxe_softc *sc)
17993{
17994 int port = SC_PORT(sc);
17995 uint32_t val;
17996
17997 /* reset physical Link */
17998 bxe_link_reset(sc);
17999
18000 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
18001
18002 /* Do not rcv packets to BRB */
18003 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
18004 /* Do not direct rcv packets that are not for MCP to the BRB */
18005 REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
18006 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
18007
18008 /* Configure AEU */
18009 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
18010
18011 DELAY(100000);
18012
18013 /* Check for BRB port occupancy */
18014 val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
18015 if (val) {
18016 BLOGD(sc, DBG_LOAD,
18017 "BRB1 is not empty, %d blocks are occupied\n", val);
18018 }
18019
18020 /* TODO: Close Doorbell port? */
18021}
18022
18023static void
18024bxe_ilt_wr(struct bxe_softc *sc,
18025 uint32_t index,
18026 bus_addr_t addr)
18027{
18028 int reg;
18029 uint32_t wb_write[2];
18030
18031 if (CHIP_IS_E1(sc)) {
18032 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
18033 } else {
18034 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
18035 }
18036
18037 wb_write[0] = ONCHIP_ADDR1(addr);
18038 wb_write[1] = ONCHIP_ADDR2(addr);
18039 REG_WR_DMAE(sc, reg, wb_write, 2);
18040}
18041
18042static void
18043bxe_clear_func_ilt(struct bxe_softc *sc,
18044 uint32_t func)
18045{
18046 uint32_t i, base = FUNC_ILT_BASE(func);
18047 for (i = base; i < base + ILT_PER_FUNC; i++) {
18048 bxe_ilt_wr(sc, i, 0);
18049 }
18050}
18051
18052static void
18053bxe_reset_func(struct bxe_softc *sc)
18054{
18055 struct bxe_fastpath *fp;
18056 int port = SC_PORT(sc);
18057 int func = SC_FUNC(sc);
18058 int i;
18059
18060 /* Disable the function in the FW */
18061 REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
18062 REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
18063 REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
18064 REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
18065
18066 /* FP SBs */
18067 FOR_EACH_ETH_QUEUE(sc, i) {
18068 fp = &sc->fp[i];
18069 REG_WR8(sc, BAR_CSTRORM_INTMEM +
18070 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
18071 SB_DISABLED);
18072 }
18073
18074 /* SP SB */
18075 REG_WR8(sc, BAR_CSTRORM_INTMEM +
18076 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
18077 SB_DISABLED);
18078
18079 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
18080 REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0);
18081 }
18082
18083 /* Configure IGU */
18084 if (sc->devinfo.int_block == INT_BLOCK_HC) {
18085 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18086 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18087 } else {
18088 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18089 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18090 }
18091
18092 if (CNIC_LOADED(sc)) {
18093 /* Disable Timer scan */
18094 REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
18095 /*
18096 * Wait for at least 10ms and up to 2 second for the timers
18097 * scan to complete
18098 */
18099 for (i = 0; i < 200; i++) {
18100 DELAY(10000);
18101 if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4))
18102 break;
18103 }
18104 }
18105
18106 /* Clear ILT */
18107 bxe_clear_func_ilt(sc, func);
18108
18109 /*
18110 * Timers workaround bug for E2: if this is vnic-3,
18111 * we need to set the entire ilt range for this timers.
18112 */
18113 if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
18114 struct ilt_client_info ilt_cli;
18115 /* use dummy TM client */
18116 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
18117 ilt_cli.start = 0;
18118 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
18119 ilt_cli.client_num = ILT_CLIENT_TM;
18120
18121 ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR);
18122 }
18123
18124 /* this assumes that reset_port() called before reset_func()*/
18125 if (!CHIP_IS_E1x(sc)) {
18126 bxe_pf_disable(sc);
18127 }
18128
18129 sc->dmae_ready = 0;
18130}
18131
18132static int
18133bxe_gunzip_init(struct bxe_softc *sc)
18134{
18135 return (0);
18136}
18137
18138static void
18139bxe_gunzip_end(struct bxe_softc *sc)
18140{
18141 return;
18142}
18143
18144static int
18145bxe_init_firmware(struct bxe_softc *sc)
18146{
18147 if (CHIP_IS_E1(sc)) {
18148 ecore_init_e1_firmware(sc);
18149 sc->iro_array = e1_iro_arr;
18150 } else if (CHIP_IS_E1H(sc)) {
18151 ecore_init_e1h_firmware(sc);
18152 sc->iro_array = e1h_iro_arr;
18153 } else if (!CHIP_IS_E1x(sc)) {
18154 ecore_init_e2_firmware(sc);
18155 sc->iro_array = e2_iro_arr;
18156 } else {
18157 BLOGE(sc, "Unsupported chip revision\n");
18158 return (-1);
18159 }
18160
18161 return (0);
18162}
18163
18164static void
18165bxe_release_firmware(struct bxe_softc *sc)
18166{
18167 /* Do nothing */
18168 return;
18169}
18170
18171static int
18172ecore_gunzip(struct bxe_softc *sc,
18173 const uint8_t *zbuf,
18174 int len)
18175{
18176 /* XXX : Implement... */
18177 BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n");
18178 return (FALSE);
18179}
18180
18181static void
18182ecore_reg_wr_ind(struct bxe_softc *sc,
18183 uint32_t addr,
18184 uint32_t val)
18185{
18186 bxe_reg_wr_ind(sc, addr, val);
18187}
18188
18189static void
18190ecore_write_dmae_phys_len(struct bxe_softc *sc,
18191 bus_addr_t phys_addr,
18192 uint32_t addr,
18193 uint32_t len)
18194{
18195 bxe_write_dmae_phys_len(sc, phys_addr, addr, len);
18196}
18197
18198void
18199ecore_storm_memset_struct(struct bxe_softc *sc,
18200 uint32_t addr,
18201 size_t size,
18202 uint32_t *data)
18203{
18204 uint8_t i;
18205 for (i = 0; i < size/4; i++) {
18206 REG_WR(sc, addr + (i * 4), data[i]);
18207 }
18208}
18209
18210
18211/*
18212 * character device - ioctl interface definitions
18213 */
18214
18215
18216#include "bxe_dump.h"
18217#include "bxe_ioctl.h"
18218#include <sys/conf.h>
18219
18220static int bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
18221 struct thread *td);
18222
18223static struct cdevsw bxe_cdevsw = {
18224 .d_version = D_VERSION,
18225 .d_ioctl = bxe_eioctl,
18226 .d_name = "bxecnic",
18227};
18228
18229#define BXE_PATH(sc) (CHIP_IS_E1x(sc) ? 0 : (sc->pcie_func & 1))
18230
18231
18232#define DUMP_ALL_PRESETS 0x1FFF
18233#define DUMP_MAX_PRESETS 13
18234#define IS_E1_REG(chips) ((chips & DUMP_CHIP_E1) == DUMP_CHIP_E1)
18235#define IS_E1H_REG(chips) ((chips & DUMP_CHIP_E1H) == DUMP_CHIP_E1H)
18236#define IS_E2_REG(chips) ((chips & DUMP_CHIP_E2) == DUMP_CHIP_E2)
18237#define IS_E3A0_REG(chips) ((chips & DUMP_CHIP_E3A0) == DUMP_CHIP_E3A0)
18238#define IS_E3B0_REG(chips) ((chips & DUMP_CHIP_E3B0) == DUMP_CHIP_E3B0)
18239
18240#define IS_REG_IN_PRESET(presets, idx) \
18241 ((presets & (1 << (idx-1))) == (1 << (idx-1)))
18242
18243
18244static int
18245bxe_get_preset_regs_len(struct bxe_softc *sc, uint32_t preset)
18246{
18247 if (CHIP_IS_E1(sc))
18248 return dump_num_registers[0][preset-1];
18249 else if (CHIP_IS_E1H(sc))
18250 return dump_num_registers[1][preset-1];
18251 else if (CHIP_IS_E2(sc))
18252 return dump_num_registers[2][preset-1];
18253 else if (CHIP_IS_E3A0(sc))
18254 return dump_num_registers[3][preset-1];
18255 else if (CHIP_IS_E3B0(sc))
18256 return dump_num_registers[4][preset-1];
18257 else
18258 return 0;
18259}
18260
18261static int
18262bxe_get_total_regs_len32(struct bxe_softc *sc)
18263{
18264 uint32_t preset_idx;
18265 int regdump_len32 = 0;
18266
18267
18268 /* Calculate the total preset regs length */
18269 for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) {
18270 regdump_len32 += bxe_get_preset_regs_len(sc, preset_idx);
18271 }
18272
18273 return regdump_len32;
18274}
18275
18276static const uint32_t *
18277__bxe_get_page_addr_ar(struct bxe_softc *sc)
18278{
18279 if (CHIP_IS_E2(sc))
18280 return page_vals_e2;
18281 else if (CHIP_IS_E3(sc))
18282 return page_vals_e3;
18283 else
18284 return NULL;
18285}
18286
18287static uint32_t
18288__bxe_get_page_reg_num(struct bxe_softc *sc)
18289{
18290 if (CHIP_IS_E2(sc))
18291 return PAGE_MODE_VALUES_E2;
18292 else if (CHIP_IS_E3(sc))
18293 return PAGE_MODE_VALUES_E3;
18294 else
18295 return 0;
18296}
18297
18298static const uint32_t *
18299__bxe_get_page_write_ar(struct bxe_softc *sc)
18300{
18301 if (CHIP_IS_E2(sc))
18302 return page_write_regs_e2;
18303 else if (CHIP_IS_E3(sc))
18304 return page_write_regs_e3;
18305 else
18306 return NULL;
18307}
18308
18309static uint32_t
18310__bxe_get_page_write_num(struct bxe_softc *sc)
18311{
18312 if (CHIP_IS_E2(sc))
18313 return PAGE_WRITE_REGS_E2;
18314 else if (CHIP_IS_E3(sc))
18315 return PAGE_WRITE_REGS_E3;
18316 else
18317 return 0;
18318}
18319
18320static const struct reg_addr *
18321__bxe_get_page_read_ar(struct bxe_softc *sc)
18322{
18323 if (CHIP_IS_E2(sc))
18324 return page_read_regs_e2;
18325 else if (CHIP_IS_E3(sc))
18326 return page_read_regs_e3;
18327 else
18328 return NULL;
18329}
18330
18331static uint32_t
18332__bxe_get_page_read_num(struct bxe_softc *sc)
18333{
18334 if (CHIP_IS_E2(sc))
18335 return PAGE_READ_REGS_E2;
18336 else if (CHIP_IS_E3(sc))
18337 return PAGE_READ_REGS_E3;
18338 else
18339 return 0;
18340}
18341
18342static bool
18343bxe_is_reg_in_chip(struct bxe_softc *sc, const struct reg_addr *reg_info)
18344{
18345 if (CHIP_IS_E1(sc))
18346 return IS_E1_REG(reg_info->chips);
18347 else if (CHIP_IS_E1H(sc))
18348 return IS_E1H_REG(reg_info->chips);
18349 else if (CHIP_IS_E2(sc))
18350 return IS_E2_REG(reg_info->chips);
18351 else if (CHIP_IS_E3A0(sc))
18352 return IS_E3A0_REG(reg_info->chips);
18353 else if (CHIP_IS_E3B0(sc))
18354 return IS_E3B0_REG(reg_info->chips);
18355 else
18356 return 0;
18357}
18358
18359static bool
18360bxe_is_wreg_in_chip(struct bxe_softc *sc, const struct wreg_addr *wreg_info)
18361{
18362 if (CHIP_IS_E1(sc))
18363 return IS_E1_REG(wreg_info->chips);
18364 else if (CHIP_IS_E1H(sc))
18365 return IS_E1H_REG(wreg_info->chips);
18366 else if (CHIP_IS_E2(sc))
18367 return IS_E2_REG(wreg_info->chips);
18368 else if (CHIP_IS_E3A0(sc))
18369 return IS_E3A0_REG(wreg_info->chips);
18370 else if (CHIP_IS_E3B0(sc))
18371 return IS_E3B0_REG(wreg_info->chips);
18372 else
18373 return 0;
18374}
18375
18376/**
18377 * bxe_read_pages_regs - read "paged" registers
18378 *
18379 * @bp device handle
18380 * @p output buffer
18381 *
18382 * Reads "paged" memories: memories that may only be read by first writing to a
18383 * specific address ("write address") and then reading from a specific address
18384 * ("read address"). There may be more than one write address per "page" and
18385 * more than one read address per write address.
18386 */
18387static void
18388bxe_read_pages_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset)
18389{
18390 uint32_t i, j, k, n;
18391
18392 /* addresses of the paged registers */
18393 const uint32_t *page_addr = __bxe_get_page_addr_ar(sc);
18394 /* number of paged registers */
18395 int num_pages = __bxe_get_page_reg_num(sc);
18396 /* write addresses */
18397 const uint32_t *write_addr = __bxe_get_page_write_ar(sc);
18398 /* number of write addresses */
18399 int write_num = __bxe_get_page_write_num(sc);
18400 /* read addresses info */
18401 const struct reg_addr *read_addr = __bxe_get_page_read_ar(sc);
18402 /* number of read addresses */
18403 int read_num = __bxe_get_page_read_num(sc);
18404 uint32_t addr, size;
18405
18406 for (i = 0; i < num_pages; i++) {
18407 for (j = 0; j < write_num; j++) {
18408 REG_WR(sc, write_addr[j], page_addr[i]);
18409
18410 for (k = 0; k < read_num; k++) {
18411 if (IS_REG_IN_PRESET(read_addr[k].presets, preset)) {
18412 size = read_addr[k].size;
18413 for (n = 0; n < size; n++) {
18414 addr = read_addr[k].addr + n*4;
18415 *p++ = REG_RD(sc, addr);
18416 }
18417 }
18418 }
18419 }
18420 }
18421 return;
18422}
18423
18424
18425static int
18426bxe_get_preset_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset)
18427{
18428 uint32_t i, j, addr;
18429 const struct wreg_addr *wreg_addr_p = NULL;
18430
18431 if (CHIP_IS_E1(sc))
18432 wreg_addr_p = &wreg_addr_e1;
18433 else if (CHIP_IS_E1H(sc))
18434 wreg_addr_p = &wreg_addr_e1h;
18435 else if (CHIP_IS_E2(sc))
18436 wreg_addr_p = &wreg_addr_e2;
18437 else if (CHIP_IS_E3A0(sc))
18438 wreg_addr_p = &wreg_addr_e3;
18439 else if (CHIP_IS_E3B0(sc))
18440 wreg_addr_p = &wreg_addr_e3b0;
18441 else
18442 return (-1);
18443
18444 /* Read the idle_chk registers */
18445 for (i = 0; i < IDLE_REGS_COUNT; i++) {
18446 if (bxe_is_reg_in_chip(sc, &idle_reg_addrs[i]) &&
18447 IS_REG_IN_PRESET(idle_reg_addrs[i].presets, preset)) {
18448 for (j = 0; j < idle_reg_addrs[i].size; j++)
18449 *p++ = REG_RD(sc, idle_reg_addrs[i].addr + j*4);
18450 }
18451 }
18452
18453 /* Read the regular registers */
18454 for (i = 0; i < REGS_COUNT; i++) {
18455 if (bxe_is_reg_in_chip(sc, &reg_addrs[i]) &&
18456 IS_REG_IN_PRESET(reg_addrs[i].presets, preset)) {
18457 for (j = 0; j < reg_addrs[i].size; j++)
18458 *p++ = REG_RD(sc, reg_addrs[i].addr + j*4);
18459 }
18460 }
18461
18462 /* Read the CAM registers */
18463 if (bxe_is_wreg_in_chip(sc, wreg_addr_p) &&
18464 IS_REG_IN_PRESET(wreg_addr_p->presets, preset)) {
18465 for (i = 0; i < wreg_addr_p->size; i++) {
18466 *p++ = REG_RD(sc, wreg_addr_p->addr + i*4);
18467
18468 /* In case of wreg_addr register, read additional
18469 registers from read_regs array
18470 */
18471 for (j = 0; j < wreg_addr_p->read_regs_count; j++) {
18472 addr = *(wreg_addr_p->read_regs);
18473 *p++ = REG_RD(sc, addr + j*4);
18474 }
18475 }
18476 }
18477
18478 /* Paged registers are supported in E2 & E3 only */
18479 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
18480 /* Read "paged" registers */
18481 bxe_read_pages_regs(sc, p, preset);
18482 }
18483
18484 return 0;
18485}
18486
18487int
18488bxe_grc_dump(struct bxe_softc *sc)
18489{
18490 int rval = 0;
18491 uint32_t preset_idx;
18492 uint8_t *buf;
18493 uint32_t size;
18494 struct dump_header *d_hdr;
18495 uint32_t i;
18496 uint32_t reg_val;
18497 uint32_t reg_addr;
18498 uint32_t cmd_offset;
18499 int context_size;
18500 int allocated;
18501 struct ecore_ilt *ilt = SC_ILT(sc);
18502 struct bxe_fastpath *fp;
18503 struct ilt_client_info *ilt_cli;
18504 int grc_dump_size;
18505
18506
18507 if (sc->grcdump_done || sc->grcdump_started)
18508 return (rval);
18509
18510 sc->grcdump_started = 1;
18511 BLOGI(sc, "Started collecting grcdump\n");
18512
18513 grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
18514 sizeof(struct dump_header);
18515
18516 sc->grc_dump = malloc(grc_dump_size, M_DEVBUF, M_NOWAIT);
18517
18518 if (sc->grc_dump == NULL) {
18519 BLOGW(sc, "Unable to allocate memory for grcdump collection\n");
18520 return(ENOMEM);
18521 }
18522
18523
18524
18525 /* Disable parity attentions as long as following dump may
18526 * cause false alarms by reading never written registers. We
18527 * will re-enable parity attentions right after the dump.
18528 */
18529
18530 /* Disable parity on path 0 */
18531 bxe_pretend_func(sc, 0);
18532
18533 ecore_disable_blocks_parity(sc);
18534
18535 /* Disable parity on path 1 */
18536 bxe_pretend_func(sc, 1);
18537 ecore_disable_blocks_parity(sc);
18538
18539 /* Return to current function */
18540 bxe_pretend_func(sc, SC_ABS_FUNC(sc));
18541
18542 buf = sc->grc_dump;
18543 d_hdr = sc->grc_dump;
18544
18545 d_hdr->header_size = (sizeof(struct dump_header) >> 2) - 1;
18546 d_hdr->version = BNX2X_DUMP_VERSION;
18547 d_hdr->preset = DUMP_ALL_PRESETS;
18548
18549 if (CHIP_IS_E1(sc)) {
18550 d_hdr->dump_meta_data = DUMP_CHIP_E1;
18551 } else if (CHIP_IS_E1H(sc)) {
18552 d_hdr->dump_meta_data = DUMP_CHIP_E1H;
18553 } else if (CHIP_IS_E2(sc)) {
18554 d_hdr->dump_meta_data = DUMP_CHIP_E2 |
18555 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18556 } else if (CHIP_IS_E3A0(sc)) {
18557 d_hdr->dump_meta_data = DUMP_CHIP_E3A0 |
18558 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18559 } else if (CHIP_IS_E3B0(sc)) {
18560 d_hdr->dump_meta_data = DUMP_CHIP_E3B0 |
18561 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18562 }
18563
18564 buf += sizeof(struct dump_header);
18565
18566 for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) {
18567
18568 /* Skip presets with IOR */
18569 if ((preset_idx == 2) || (preset_idx == 5) || (preset_idx == 8) ||
18570 (preset_idx == 11))
18571 continue;
18572
18573 rval = bxe_get_preset_regs(sc, (uint32_t *)buf, preset_idx);
18574
18575 if (rval)
18576 break;
18577
18578 size = bxe_get_preset_regs_len(sc, preset_idx) * (sizeof (uint32_t));
18579
18580 buf += size;
18581 }
18582
18583 bxe_pretend_func(sc, 0);
18584 ecore_clear_blocks_parity(sc);
18585 ecore_enable_blocks_parity(sc);
18586
18587 bxe_pretend_func(sc, 1);
18588 ecore_clear_blocks_parity(sc);
18589 ecore_enable_blocks_parity(sc);
18590
18591 /* Return to current function */
18592 bxe_pretend_func(sc, SC_ABS_FUNC(sc));
18593
18594
18595 context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc));
18596 for (i = 0, allocated = 0; allocated < context_size; i++) {
18597
18598 BLOGI(sc, "cdu_context i %d paddr %#jx vaddr %p size 0x%zx\n", i,
18599 (uintmax_t)sc->context[i].vcxt_dma.paddr,
18600 sc->context[i].vcxt_dma.vaddr,
18601 sc->context[i].size);
18602 allocated += sc->context[i].size;
18603 }
18604 BLOGI(sc, "fw stats start_paddr %#jx end_paddr %#jx vaddr %p size 0x%x\n",
18605 (uintmax_t)sc->fw_stats_req_mapping,
18606 (uintmax_t)sc->fw_stats_data_mapping,
18607 sc->fw_stats_req, (sc->fw_stats_req_size + sc->fw_stats_data_size));
18608 BLOGI(sc, "def_status_block paddr %p vaddr %p size 0x%zx\n",
18609 (void *)sc->def_sb_dma.paddr, sc->def_sb,
18610 sizeof(struct host_sp_status_block));
18611 BLOGI(sc, "event_queue paddr %#jx vaddr %p size 0x%x\n",
18612 (uintmax_t)sc->eq_dma.paddr, sc->eq_dma.vaddr, BCM_PAGE_SIZE);
18613 BLOGI(sc, "slow path paddr %#jx vaddr %p size 0x%zx\n",
18614 (uintmax_t)sc->sp_dma.paddr, sc->sp_dma.vaddr,
18615 sizeof(struct bxe_slowpath));
18616 BLOGI(sc, "slow path queue paddr %#jx vaddr %p size 0x%x\n",
18617 (uintmax_t)sc->spq_dma.paddr, sc->spq_dma.vaddr, BCM_PAGE_SIZE);
18618 BLOGI(sc, "fw_buf paddr %#jx vaddr %p size 0x%x\n",
18619 (uintmax_t)sc->gz_buf_dma.paddr, sc->gz_buf_dma.vaddr,
18620 FW_BUF_SIZE);
18621 for (i = 0; i < sc->num_queues; i++) {
18622 fp = &sc->fp[i];
18623 BLOGI(sc, "FP status block fp %d paddr %#jx vaddr %p size 0x%zx\n", i,
18624 (uintmax_t)fp->sb_dma.paddr, fp->sb_dma.vaddr,
18625 sizeof(union bxe_host_hc_status_block));
18626 BLOGI(sc, "TX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
18627 (uintmax_t)fp->tx_dma.paddr, fp->tx_dma.vaddr,
18628 (BCM_PAGE_SIZE * TX_BD_NUM_PAGES));
18629 BLOGI(sc, "RX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
18630 (uintmax_t)fp->rx_dma.paddr, fp->rx_dma.vaddr,
18631 (BCM_PAGE_SIZE * RX_BD_NUM_PAGES));
18632 BLOGI(sc, "RX RCQ CHAIN fp %d paddr %#jx vaddr %p size 0x%zx\n", i,
18633 (uintmax_t)fp->rcq_dma.paddr, fp->rcq_dma.vaddr,
18634 (BCM_PAGE_SIZE * RCQ_NUM_PAGES));
18635 BLOGI(sc, "RX SGE CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
18636 (uintmax_t)fp->rx_sge_dma.paddr, fp->rx_sge_dma.vaddr,
18637 (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES));
18638 }
18639
18640 ilt_cli = &ilt->clients[1];
18641 for (i = ilt_cli->start; i <= ilt_cli->end; i++) {
18642 BLOGI(sc, "ECORE_ILT paddr %#jx vaddr %p size 0x%x\n",
18643 (uintmax_t)(((struct bxe_dma *)((&ilt->lines[i])->page))->paddr),
18644 ((struct bxe_dma *)((&ilt->lines[i])->page))->vaddr, BCM_PAGE_SIZE);
18645 }
18646
18647
18648 cmd_offset = DMAE_REG_CMD_MEM;
18649 for (i = 0; i < 224; i++) {
18650 reg_addr = (cmd_offset +(i * 4));
18651 reg_val = REG_RD(sc, reg_addr);
18652 BLOGI(sc, "DMAE_REG_CMD_MEM i=%d reg_addr 0x%x reg_val 0x%08x\n",i,
18653 reg_addr, reg_val);
18654 }
18655
18656
18657 BLOGI(sc, "Collection of grcdump done\n");
18658 sc->grcdump_done = 1;
18659 return(rval);
18660}
18661
18662static int
18663bxe_add_cdev(struct bxe_softc *sc)
18664{
18665 sc->eeprom = malloc(BXE_EEPROM_MAX_DATA_LEN, M_DEVBUF, M_NOWAIT);
18666
18667 if (sc->eeprom == NULL) {
18668 BLOGW(sc, "Unable to alloc for eeprom size buffer\n");
18669 return (-1);
18670 }
18671
18672 sc->ioctl_dev = make_dev(&bxe_cdevsw,
18673 sc->ifp->if_dunit,
18674 UID_ROOT,
18675 GID_WHEEL,
18676 0600,
18677 "%s",
18678 if_name(sc->ifp));
18679
18680 if (sc->ioctl_dev == NULL) {
18681 free(sc->eeprom, M_DEVBUF);
18682 sc->eeprom = NULL;
18683 return (-1);
18684 }
18685
18686 sc->ioctl_dev->si_drv1 = sc;
18687
18688 return (0);
18689}
18690
18691static void
18692bxe_del_cdev(struct bxe_softc *sc)
18693{
18694 if (sc->ioctl_dev != NULL)
18695 destroy_dev(sc->ioctl_dev);
18696
18697 if (sc->eeprom != NULL) {
18698 free(sc->eeprom, M_DEVBUF);
18699 sc->eeprom = NULL;
18700 }
18701 sc->ioctl_dev = NULL;
18702
18703 return;
18704}
18705
18706static bool bxe_is_nvram_accessible(struct bxe_softc *sc)
18707{
18708
18709 if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) == 0)
18710 return FALSE;
18711
18712 return TRUE;
18713}
18714
18715
18716static int
18717bxe_wr_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len)
18718{
18719 int rval = 0;
18720
18721 if(!bxe_is_nvram_accessible(sc)) {
18722 BLOGW(sc, "Cannot access eeprom when interface is down\n");
18723 return (-EAGAIN);
18724 }
18725 rval = bxe_nvram_write(sc, offset, (uint8_t *)data, len);
18726
18727
18728 return (rval);
18729}
18730
18731static int
18732bxe_rd_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len)
18733{
18734 int rval = 0;
18735
18736 if(!bxe_is_nvram_accessible(sc)) {
18737 BLOGW(sc, "Cannot access eeprom when interface is down\n");
18738 return (-EAGAIN);
18739 }
18740 rval = bxe_nvram_read(sc, offset, (uint8_t *)data, len);
18741
18742 return (rval);
18743}
18744
18745static int
18746bxe_eeprom_rd_wr(struct bxe_softc *sc, bxe_eeprom_t *eeprom)
18747{
18748 int rval = 0;
18749
18750 switch (eeprom->eeprom_cmd) {
18751
18752 case BXE_EEPROM_CMD_SET_EEPROM:
18753
18754 rval = copyin(eeprom->eeprom_data, sc->eeprom,
18755 eeprom->eeprom_data_len);
18756
18757 if (rval)
18758 break;
18759
18760 rval = bxe_wr_eeprom(sc, sc->eeprom, eeprom->eeprom_offset,
18761 eeprom->eeprom_data_len);
18762 break;
18763
18764 case BXE_EEPROM_CMD_GET_EEPROM:
18765
18766 rval = bxe_rd_eeprom(sc, sc->eeprom, eeprom->eeprom_offset,
18767 eeprom->eeprom_data_len);
18768
18769 if (rval) {
18770 break;
18771 }
18772
18773 rval = copyout(sc->eeprom, eeprom->eeprom_data,
18774 eeprom->eeprom_data_len);
18775 break;
18776
18777 default:
18778 rval = EINVAL;
18779 break;
18780 }
18781
18782 if (rval) {
18783 BLOGW(sc, "ioctl cmd %d failed rval %d\n", eeprom->eeprom_cmd, rval);
18784 }
18785
18786 return (rval);
18787}
18788
18789static int
18790bxe_get_settings(struct bxe_softc *sc, bxe_dev_setting_t *dev_p)
18791{
18792 uint32_t ext_phy_config;
18793 int port = SC_PORT(sc);
18794 int cfg_idx = bxe_get_link_cfg_idx(sc);
18795
18796 dev_p->supported = sc->port.supported[cfg_idx] |
18797 (sc->port.supported[cfg_idx ^ 1] &
18798 (ELINK_SUPPORTED_TP | ELINK_SUPPORTED_FIBRE));
18799 dev_p->advertising = sc->port.advertising[cfg_idx];
18800 if(sc->link_params.phy[bxe_get_cur_phy_idx(sc)].media_type ==
18801 ELINK_ETH_PHY_SFP_1G_FIBER) {
18802 dev_p->supported = ~(ELINK_SUPPORTED_10000baseT_Full);
18803 dev_p->advertising &= ~(ADVERTISED_10000baseT_Full);
18804 }
18805 if ((sc->state == BXE_STATE_OPEN) && sc->link_vars.link_up &&
18806 !(sc->flags & BXE_MF_FUNC_DIS)) {
18807 dev_p->duplex = sc->link_vars.duplex;
18808 if (IS_MF(sc) && !BXE_NOMCP(sc))
18809 dev_p->speed = bxe_get_mf_speed(sc);
18810 else
18811 dev_p->speed = sc->link_vars.line_speed;
18812 } else {
18813 dev_p->duplex = DUPLEX_UNKNOWN;
18814 dev_p->speed = SPEED_UNKNOWN;
18815 }
18816
18817 dev_p->port = bxe_media_detect(sc);
18818
18819 ext_phy_config = SHMEM_RD(sc,
18820 dev_info.port_hw_config[port].external_phy_config);
18821 if((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) ==
18822 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
18823 dev_p->phy_address = sc->port.phy_addr;
18824 else if(((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) !=
18825 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
18826 ((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) !=
18827 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
18828 dev_p->phy_address = ELINK_XGXS_EXT_PHY_ADDR(ext_phy_config);
18829 else
18830 dev_p->phy_address = 0;
18831
18832 if(sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG)
18833 dev_p->autoneg = AUTONEG_ENABLE;
18834 else
18835 dev_p->autoneg = AUTONEG_DISABLE;
18836
18837
18838 return 0;
18839}
18840
18841static int
18842bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
18843 struct thread *td)
18844{
18845 struct bxe_softc *sc;
18846 int rval = 0;
18847 device_t pci_dev;
18848 bxe_grcdump_t *dump = NULL;
18849 int grc_dump_size;
18850 bxe_drvinfo_t *drv_infop = NULL;
18851 bxe_dev_setting_t *dev_p;
18852 bxe_dev_setting_t dev_set;
18853 bxe_get_regs_t *reg_p;
18854 bxe_reg_rdw_t *reg_rdw_p;
18855 bxe_pcicfg_rdw_t *cfg_rdw_p;
18856 bxe_perm_mac_addr_t *mac_addr_p;
18857
18858
18859 if ((sc = (struct bxe_softc *)dev->si_drv1) == NULL)
18860 return ENXIO;
18861
18862 pci_dev= sc->dev;
18863
18864 dump = (bxe_grcdump_t *)data;
18865
18866 switch(cmd) {
18867
18868 case BXE_GRC_DUMP_SIZE:
18869 dump->pci_func = sc->pcie_func;
18870 dump->grcdump_size =
18871 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
18872 sizeof(struct dump_header);
18873 break;
18874
18875 case BXE_GRC_DUMP:
18876
18877 grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
18878 sizeof(struct dump_header);
18879 if ((!sc->trigger_grcdump) || (dump->grcdump == NULL) ||
18880 (dump->grcdump_size < grc_dump_size)) {
18881 rval = EINVAL;
18882 break;
18883 }
18884
18885 if((sc->trigger_grcdump) && (!sc->grcdump_done) &&
18886 (!sc->grcdump_started)) {
18887 rval = bxe_grc_dump(sc);
18888 }
18889
18890 if((!rval) && (sc->grcdump_done) && (sc->grcdump_started) &&
18891 (sc->grc_dump != NULL)) {
18892 dump->grcdump_dwords = grc_dump_size >> 2;
18893 rval = copyout(sc->grc_dump, dump->grcdump, grc_dump_size);
18894 free(sc->grc_dump, M_DEVBUF);
18895 sc->grc_dump = NULL;
18896 sc->grcdump_started = 0;
18897 sc->grcdump_done = 0;
18898 }
18899
18900 break;
18901
18902 case BXE_DRV_INFO:
18903 drv_infop = (bxe_drvinfo_t *)data;
18904 snprintf(drv_infop->drv_name, BXE_DRV_NAME_LENGTH, "%s", "bxe");
18905 snprintf(drv_infop->drv_version, BXE_DRV_VERSION_LENGTH, "v:%s",
18906 BXE_DRIVER_VERSION);
18907 snprintf(drv_infop->mfw_version, BXE_MFW_VERSION_LENGTH, "%s",
18908 sc->devinfo.bc_ver_str);
18909 snprintf(drv_infop->stormfw_version, BXE_STORMFW_VERSION_LENGTH,
18910 "%s", sc->fw_ver_str);
18911 drv_infop->eeprom_dump_len = sc->devinfo.flash_size;
18912 drv_infop->reg_dump_len =
18913 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t))
18914 + sizeof(struct dump_header);
18915 snprintf(drv_infop->bus_info, BXE_BUS_INFO_LENGTH, "%d:%d:%d",
18916 sc->pcie_bus, sc->pcie_device, sc->pcie_func);
18917 break;
18918
18919 case BXE_DEV_SETTING:
18920 dev_p = (bxe_dev_setting_t *)data;
18921 bxe_get_settings(sc, &dev_set);
18922 dev_p->supported = dev_set.supported;
18923 dev_p->advertising = dev_set.advertising;
18924 dev_p->speed = dev_set.speed;
18925 dev_p->duplex = dev_set.duplex;
18926 dev_p->port = dev_set.port;
18927 dev_p->phy_address = dev_set.phy_address;
18928 dev_p->autoneg = dev_set.autoneg;
18929
18930 break;
18931
18932 case BXE_GET_REGS:
18933
18934 reg_p = (bxe_get_regs_t *)data;
18935 grc_dump_size = reg_p->reg_buf_len;
18936
18937 if((!sc->grcdump_done) && (!sc->grcdump_started)) {
18938 bxe_grc_dump(sc);
18939 }
18940 if((sc->grcdump_done) && (sc->grcdump_started) &&
18941 (sc->grc_dump != NULL)) {
18942 rval = copyout(sc->grc_dump, reg_p->reg_buf, grc_dump_size);
18943 free(sc->grc_dump, M_DEVBUF);
18944 sc->grc_dump = NULL;
18945 sc->grcdump_started = 0;
18946 sc->grcdump_done = 0;
18947 }
18948
18949 break;
18950
18951 case BXE_RDW_REG:
18952 reg_rdw_p = (bxe_reg_rdw_t *)data;
18953 if((reg_rdw_p->reg_cmd == BXE_READ_REG_CMD) &&
18954 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT))
18955 reg_rdw_p->reg_val = REG_RD(sc, reg_rdw_p->reg_id);
18956
18957 if((reg_rdw_p->reg_cmd == BXE_WRITE_REG_CMD) &&
18958 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT))
18959 REG_WR(sc, reg_rdw_p->reg_id, reg_rdw_p->reg_val);
18960
18961 break;
18962
18963 case BXE_RDW_PCICFG:
18964 cfg_rdw_p = (bxe_pcicfg_rdw_t *)data;
18965 if(cfg_rdw_p->cfg_cmd == BXE_READ_PCICFG) {
18966
18967 cfg_rdw_p->cfg_val = pci_read_config(sc->dev, cfg_rdw_p->cfg_id,
18968 cfg_rdw_p->cfg_width);
18969
18970 } else if(cfg_rdw_p->cfg_cmd == BXE_WRITE_PCICFG) {
18971 pci_write_config(sc->dev, cfg_rdw_p->cfg_id, cfg_rdw_p->cfg_val,
18972 cfg_rdw_p->cfg_width);
18973 } else {
18974 BLOGW(sc, "BXE_RDW_PCICFG ioctl wrong cmd passed\n");
18975 }
18976 break;
18977
18978 case BXE_MAC_ADDR:
18979 mac_addr_p = (bxe_perm_mac_addr_t *)data;
18980 snprintf(mac_addr_p->mac_addr_str, sizeof(sc->mac_addr_str), "%s",
18981 sc->mac_addr_str);
18982 break;
18983
18984 case BXE_EEPROM:
18985 rval = bxe_eeprom_rd_wr(sc, (bxe_eeprom_t *)data);
18986 break;
18987
18988
18989 default:
18990 break;
18991 }
18992
18993 return (rval);
18994}
13336
13337 /* get the link params */
13338 sc->link_params.speed_cap_mask[0] =
13339 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask);
13340 sc->link_params.speed_cap_mask[1] =
13341 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2);
13342
13343 /* get the lane config */
13344 sc->link_params.lane_config =
13345 SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
13346
13347 /* get the link config */
13348 val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
13349 sc->port.link_config[ELINK_INT_PHY] = val;
13350 sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
13351 sc->port.link_config[ELINK_EXT_PHY1] =
13352 SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
13353
13354 /* get the override preemphasis flag and enable it or turn it off */
13355 val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13356 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
13357 sc->link_params.feature_config_flags |=
13358 ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13359 } else {
13360 sc->link_params.feature_config_flags &=
13361 ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13362 }
13363
13364 /* get the initial value of the link params */
13365 sc->link_params.multi_phy_config =
13366 SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
13367
13368 /* get external phy info */
13369 sc->port.ext_phy_config =
13370 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
13371
13372 /* get the multifunction configuration */
13373 bxe_get_mf_cfg_info(sc);
13374
13375 /* get the mac address */
13376 if (IS_MF(sc)) {
13377 mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13378 mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
13379 } else {
13380 mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
13381 mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
13382 }
13383
13384 if ((mac_lo == 0) && (mac_hi == 0)) {
13385 *sc->mac_addr_str = 0;
13386 BLOGE(sc, "No Ethernet address programmed!\n");
13387 } else {
13388 sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8);
13389 sc->link_params.mac_addr[1] = (uint8_t)(mac_hi);
13390 sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24);
13391 sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16);
13392 sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8);
13393 sc->link_params.mac_addr[5] = (uint8_t)(mac_lo);
13394 snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
13395 "%02x:%02x:%02x:%02x:%02x:%02x",
13396 sc->link_params.mac_addr[0], sc->link_params.mac_addr[1],
13397 sc->link_params.mac_addr[2], sc->link_params.mac_addr[3],
13398 sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]);
13399 BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str);
13400 }
13401
13402 return (0);
13403}
13404
13405static void
13406bxe_get_tunable_params(struct bxe_softc *sc)
13407{
13408 /* sanity checks */
13409
13410 if ((bxe_interrupt_mode != INTR_MODE_INTX) &&
13411 (bxe_interrupt_mode != INTR_MODE_MSI) &&
13412 (bxe_interrupt_mode != INTR_MODE_MSIX)) {
13413 BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode);
13414 bxe_interrupt_mode = INTR_MODE_MSIX;
13415 }
13416
13417 if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) {
13418 BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count);
13419 bxe_queue_count = 0;
13420 }
13421
13422 if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) {
13423 if (bxe_max_rx_bufs == 0) {
13424 bxe_max_rx_bufs = RX_BD_USABLE;
13425 } else {
13426 BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs);
13427 bxe_max_rx_bufs = 2048;
13428 }
13429 }
13430
13431 if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) {
13432 BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks);
13433 bxe_hc_rx_ticks = 25;
13434 }
13435
13436 if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) {
13437 BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks);
13438 bxe_hc_tx_ticks = 50;
13439 }
13440
13441 if (bxe_max_aggregation_size == 0) {
13442 bxe_max_aggregation_size = TPA_AGG_SIZE;
13443 }
13444
13445 if (bxe_max_aggregation_size > 0xffff) {
13446 BLOGW(sc, "invalid max_aggregation_size (%d)\n",
13447 bxe_max_aggregation_size);
13448 bxe_max_aggregation_size = TPA_AGG_SIZE;
13449 }
13450
13451 if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) {
13452 BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs);
13453 bxe_mrrs = -1;
13454 }
13455
13456 if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) {
13457 BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen);
13458 bxe_autogreeen = 0;
13459 }
13460
13461 if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) {
13462 BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss);
13463 bxe_udp_rss = 0;
13464 }
13465
13466 /* pull in user settings */
13467
13468 sc->interrupt_mode = bxe_interrupt_mode;
13469 sc->max_rx_bufs = bxe_max_rx_bufs;
13470 sc->hc_rx_ticks = bxe_hc_rx_ticks;
13471 sc->hc_tx_ticks = bxe_hc_tx_ticks;
13472 sc->max_aggregation_size = bxe_max_aggregation_size;
13473 sc->mrrs = bxe_mrrs;
13474 sc->autogreeen = bxe_autogreeen;
13475 sc->udp_rss = bxe_udp_rss;
13476
13477 if (bxe_interrupt_mode == INTR_MODE_INTX) {
13478 sc->num_queues = 1;
13479 } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */
13480 sc->num_queues =
13481 min((bxe_queue_count ? bxe_queue_count : mp_ncpus),
13482 MAX_RSS_CHAINS);
13483 if (sc->num_queues > mp_ncpus) {
13484 sc->num_queues = mp_ncpus;
13485 }
13486 }
13487
13488 BLOGD(sc, DBG_LOAD,
13489 "User Config: "
13490 "debug=0x%lx "
13491 "interrupt_mode=%d "
13492 "queue_count=%d "
13493 "hc_rx_ticks=%d "
13494 "hc_tx_ticks=%d "
13495 "rx_budget=%d "
13496 "max_aggregation_size=%d "
13497 "mrrs=%d "
13498 "autogreeen=%d "
13499 "udp_rss=%d\n",
13500 bxe_debug,
13501 sc->interrupt_mode,
13502 sc->num_queues,
13503 sc->hc_rx_ticks,
13504 sc->hc_tx_ticks,
13505 bxe_rx_budget,
13506 sc->max_aggregation_size,
13507 sc->mrrs,
13508 sc->autogreeen,
13509 sc->udp_rss);
13510}
13511
13512static int
13513bxe_media_detect(struct bxe_softc *sc)
13514{
13515 int port_type;
13516 uint32_t phy_idx = bxe_get_cur_phy_idx(sc);
13517
13518 switch (sc->link_params.phy[phy_idx].media_type) {
13519 case ELINK_ETH_PHY_SFPP_10G_FIBER:
13520 case ELINK_ETH_PHY_XFP_FIBER:
13521 BLOGI(sc, "Found 10Gb Fiber media.\n");
13522 sc->media = IFM_10G_SR;
13523 port_type = PORT_FIBRE;
13524 break;
13525 case ELINK_ETH_PHY_SFP_1G_FIBER:
13526 BLOGI(sc, "Found 1Gb Fiber media.\n");
13527 sc->media = IFM_1000_SX;
13528 port_type = PORT_FIBRE;
13529 break;
13530 case ELINK_ETH_PHY_KR:
13531 case ELINK_ETH_PHY_CX4:
13532 BLOGI(sc, "Found 10GBase-CX4 media.\n");
13533 sc->media = IFM_10G_CX4;
13534 port_type = PORT_FIBRE;
13535 break;
13536 case ELINK_ETH_PHY_DA_TWINAX:
13537 BLOGI(sc, "Found 10Gb Twinax media.\n");
13538 sc->media = IFM_10G_TWINAX;
13539 port_type = PORT_DA;
13540 break;
13541 case ELINK_ETH_PHY_BASE_T:
13542 if (sc->link_params.speed_cap_mask[0] &
13543 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
13544 BLOGI(sc, "Found 10GBase-T media.\n");
13545 sc->media = IFM_10G_T;
13546 port_type = PORT_TP;
13547 } else {
13548 BLOGI(sc, "Found 1000Base-T media.\n");
13549 sc->media = IFM_1000_T;
13550 port_type = PORT_TP;
13551 }
13552 break;
13553 case ELINK_ETH_PHY_NOT_PRESENT:
13554 BLOGI(sc, "Media not present.\n");
13555 sc->media = 0;
13556 port_type = PORT_OTHER;
13557 break;
13558 case ELINK_ETH_PHY_UNSPECIFIED:
13559 default:
13560 BLOGI(sc, "Unknown media!\n");
13561 sc->media = 0;
13562 port_type = PORT_OTHER;
13563 break;
13564 }
13565 return port_type;
13566}
13567
13568#define GET_FIELD(value, fname) \
13569 (((value) & (fname##_MASK)) >> (fname##_SHIFT))
13570#define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
13571#define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
13572
13573static int
13574bxe_get_igu_cam_info(struct bxe_softc *sc)
13575{
13576 int pfid = SC_FUNC(sc);
13577 int igu_sb_id;
13578 uint32_t val;
13579 uint8_t fid, igu_sb_cnt = 0;
13580
13581 sc->igu_base_sb = 0xff;
13582
13583 if (CHIP_INT_MODE_IS_BC(sc)) {
13584 int vn = SC_VN(sc);
13585 igu_sb_cnt = sc->igu_sb_cnt;
13586 sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
13587 FP_SB_MAX_E1x);
13588 sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
13589 (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
13590 return (0);
13591 }
13592
13593 /* IGU in normal mode - read CAM */
13594 for (igu_sb_id = 0;
13595 igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
13596 igu_sb_id++) {
13597 val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
13598 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
13599 continue;
13600 }
13601 fid = IGU_FID(val);
13602 if ((fid & IGU_FID_ENCODE_IS_PF)) {
13603 if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
13604 continue;
13605 }
13606 if (IGU_VEC(val) == 0) {
13607 /* default status block */
13608 sc->igu_dsb_id = igu_sb_id;
13609 } else {
13610 if (sc->igu_base_sb == 0xff) {
13611 sc->igu_base_sb = igu_sb_id;
13612 }
13613 igu_sb_cnt++;
13614 }
13615 }
13616 }
13617
13618 /*
13619 * Due to new PF resource allocation by MFW T7.4 and above, it's optional
13620 * that number of CAM entries will not be equal to the value advertised in
13621 * PCI. Driver should use the minimal value of both as the actual status
13622 * block count
13623 */
13624 sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
13625
13626 if (igu_sb_cnt == 0) {
13627 BLOGE(sc, "CAM configuration error\n");
13628 return (-1);
13629 }
13630
13631 return (0);
13632}
13633
13634/*
13635 * Gather various information from the device config space, the device itself,
13636 * shmem, and the user input.
13637 */
13638static int
13639bxe_get_device_info(struct bxe_softc *sc)
13640{
13641 uint32_t val;
13642 int rc;
13643
13644 /* Get the data for the device */
13645 sc->devinfo.vendor_id = pci_get_vendor(sc->dev);
13646 sc->devinfo.device_id = pci_get_device(sc->dev);
13647 sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev);
13648 sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev);
13649
13650 /* get the chip revision (chip metal comes from pci config space) */
13651 sc->devinfo.chip_id =
13652 sc->link_params.chip_id =
13653 (((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) |
13654 ((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) |
13655 (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) |
13656 ((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0));
13657
13658 /* force 57811 according to MISC register */
13659 if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
13660 if (CHIP_IS_57810(sc)) {
13661 sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
13662 (sc->devinfo.chip_id & 0x0000ffff));
13663 } else if (CHIP_IS_57810_MF(sc)) {
13664 sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
13665 (sc->devinfo.chip_id & 0x0000ffff));
13666 }
13667 sc->devinfo.chip_id |= 0x1;
13668 }
13669
13670 BLOGD(sc, DBG_LOAD,
13671 "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n",
13672 sc->devinfo.chip_id,
13673 ((sc->devinfo.chip_id >> 16) & 0xffff),
13674 ((sc->devinfo.chip_id >> 12) & 0xf),
13675 ((sc->devinfo.chip_id >> 4) & 0xff),
13676 ((sc->devinfo.chip_id >> 0) & 0xf));
13677
13678 val = (REG_RD(sc, 0x2874) & 0x55);
13679 if ((sc->devinfo.chip_id & 0x1) ||
13680 (CHIP_IS_E1(sc) && val) ||
13681 (CHIP_IS_E1H(sc) && (val == 0x55))) {
13682 sc->flags |= BXE_ONE_PORT_FLAG;
13683 BLOGD(sc, DBG_LOAD, "single port device\n");
13684 }
13685
13686 /* set the doorbell size */
13687 sc->doorbell_size = (1 << BXE_DB_SHIFT);
13688
13689 /* determine whether the device is in 2 port or 4 port mode */
13690 sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/
13691 if (CHIP_IS_E2E3(sc)) {
13692 /*
13693 * Read port4mode_en_ovwr[0]:
13694 * If 1, four port mode is in port4mode_en_ovwr[1].
13695 * If 0, four port mode is in port4mode_en[0].
13696 */
13697 val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
13698 if (val & 1) {
13699 val = ((val >> 1) & 1);
13700 } else {
13701 val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
13702 }
13703
13704 sc->devinfo.chip_port_mode =
13705 (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
13706
13707 BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2");
13708 }
13709
13710 /* get the function and path info for the device */
13711 bxe_get_function_num(sc);
13712
13713 /* get the shared memory base address */
13714 sc->devinfo.shmem_base =
13715 sc->link_params.shmem_base =
13716 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
13717 sc->devinfo.shmem2_base =
13718 REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
13719 MISC_REG_GENERIC_CR_0));
13720
13721 BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n",
13722 sc->devinfo.shmem_base, sc->devinfo.shmem2_base);
13723
13724 if (!sc->devinfo.shmem_base) {
13725 /* this should ONLY prevent upcoming shmem reads */
13726 BLOGI(sc, "MCP not active\n");
13727 sc->flags |= BXE_NO_MCP_FLAG;
13728 return (0);
13729 }
13730
13731 /* make sure the shared memory contents are valid */
13732 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
13733 if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
13734 (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
13735 BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val);
13736 return (0);
13737 }
13738 BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val);
13739
13740 /* get the bootcode version */
13741 sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
13742 snprintf(sc->devinfo.bc_ver_str,
13743 sizeof(sc->devinfo.bc_ver_str),
13744 "%d.%d.%d",
13745 ((sc->devinfo.bc_ver >> 24) & 0xff),
13746 ((sc->devinfo.bc_ver >> 16) & 0xff),
13747 ((sc->devinfo.bc_ver >> 8) & 0xff));
13748 BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str);
13749
13750 /* get the bootcode shmem address */
13751 sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc);
13752 BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base);
13753
13754 /* clean indirect addresses as they're not used */
13755 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
13756 if (IS_PF(sc)) {
13757 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
13758 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
13759 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
13760 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
13761 if (CHIP_IS_E1x(sc)) {
13762 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
13763 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
13764 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
13765 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
13766 }
13767
13768 /*
13769 * Enable internal target-read (in case we are probed after PF
13770 * FLR). Must be done prior to any BAR read access. Only for
13771 * 57712 and up
13772 */
13773 if (!CHIP_IS_E1x(sc)) {
13774 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
13775 }
13776 }
13777
13778 /* get the nvram size */
13779 val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
13780 sc->devinfo.flash_size =
13781 (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
13782 BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size);
13783
13784 /* get PCI capabilites */
13785 bxe_probe_pci_caps(sc);
13786
13787 bxe_set_power_state(sc, PCI_PM_D0);
13788
13789 /* get various configuration parameters from shmem */
13790 bxe_get_shmem_info(sc);
13791
13792 if (sc->devinfo.pcie_msix_cap_reg != 0) {
13793 val = pci_read_config(sc->dev,
13794 (sc->devinfo.pcie_msix_cap_reg +
13795 PCIR_MSIX_CTRL),
13796 2);
13797 sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE);
13798 } else {
13799 sc->igu_sb_cnt = 1;
13800 }
13801
13802 sc->igu_base_addr = BAR_IGU_INTMEM;
13803
13804 /* initialize IGU parameters */
13805 if (CHIP_IS_E1x(sc)) {
13806 sc->devinfo.int_block = INT_BLOCK_HC;
13807 sc->igu_dsb_id = DEF_SB_IGU_ID;
13808 sc->igu_base_sb = 0;
13809 } else {
13810 sc->devinfo.int_block = INT_BLOCK_IGU;
13811
13812 /* do not allow device reset during IGU info preocessing */
13813 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
13814
13815 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
13816
13817 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
13818 int tout = 5000;
13819
13820 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n");
13821
13822 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
13823 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
13824 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
13825
13826 while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
13827 tout--;
13828 DELAY(1000);
13829 }
13830
13831 if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
13832 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n");
13833 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
13834 return (-1);
13835 }
13836 }
13837
13838 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
13839 BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n");
13840 sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
13841 } else {
13842 BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n");
13843 }
13844
13845 rc = bxe_get_igu_cam_info(sc);
13846
13847 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
13848
13849 if (rc) {
13850 return (rc);
13851 }
13852 }
13853
13854 /*
13855 * Get base FW non-default (fast path) status block ID. This value is
13856 * used to initialize the fw_sb_id saved on the fp/queue structure to
13857 * determine the id used by the FW.
13858 */
13859 if (CHIP_IS_E1x(sc)) {
13860 sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
13861 } else {
13862 /*
13863 * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
13864 * the same queue are indicated on the same IGU SB). So we prefer
13865 * FW and IGU SBs to be the same value.
13866 */
13867 sc->base_fw_ndsb = sc->igu_base_sb;
13868 }
13869
13870 BLOGD(sc, DBG_LOAD,
13871 "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n",
13872 sc->igu_dsb_id, sc->igu_base_sb,
13873 sc->igu_sb_cnt, sc->base_fw_ndsb);
13874
13875 elink_phy_probe(&sc->link_params);
13876
13877 return (0);
13878}
13879
13880static void
13881bxe_link_settings_supported(struct bxe_softc *sc,
13882 uint32_t switch_cfg)
13883{
13884 uint32_t cfg_size = 0;
13885 uint32_t idx;
13886 uint8_t port = SC_PORT(sc);
13887
13888 /* aggregation of supported attributes of all external phys */
13889 sc->port.supported[0] = 0;
13890 sc->port.supported[1] = 0;
13891
13892 switch (sc->link_params.num_phys) {
13893 case 1:
13894 sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported;
13895 cfg_size = 1;
13896 break;
13897 case 2:
13898 sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported;
13899 cfg_size = 1;
13900 break;
13901 case 3:
13902 if (sc->link_params.multi_phy_config &
13903 PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
13904 sc->port.supported[1] =
13905 sc->link_params.phy[ELINK_EXT_PHY1].supported;
13906 sc->port.supported[0] =
13907 sc->link_params.phy[ELINK_EXT_PHY2].supported;
13908 } else {
13909 sc->port.supported[0] =
13910 sc->link_params.phy[ELINK_EXT_PHY1].supported;
13911 sc->port.supported[1] =
13912 sc->link_params.phy[ELINK_EXT_PHY2].supported;
13913 }
13914 cfg_size = 2;
13915 break;
13916 }
13917
13918 if (!(sc->port.supported[0] || sc->port.supported[1])) {
13919 BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n",
13920 SHMEM_RD(sc,
13921 dev_info.port_hw_config[port].external_phy_config),
13922 SHMEM_RD(sc,
13923 dev_info.port_hw_config[port].external_phy_config2));
13924 return;
13925 }
13926
13927 if (CHIP_IS_E3(sc))
13928 sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
13929 else {
13930 switch (switch_cfg) {
13931 case ELINK_SWITCH_CFG_1G:
13932 sc->port.phy_addr =
13933 REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
13934 break;
13935 case ELINK_SWITCH_CFG_10G:
13936 sc->port.phy_addr =
13937 REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
13938 break;
13939 default:
13940 BLOGE(sc, "Invalid switch config in link_config=0x%08x\n",
13941 sc->port.link_config[0]);
13942 return;
13943 }
13944 }
13945
13946 BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr);
13947
13948 /* mask what we support according to speed_cap_mask per configuration */
13949 for (idx = 0; idx < cfg_size; idx++) {
13950 if (!(sc->link_params.speed_cap_mask[idx] &
13951 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
13952 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half;
13953 }
13954
13955 if (!(sc->link_params.speed_cap_mask[idx] &
13956 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
13957 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full;
13958 }
13959
13960 if (!(sc->link_params.speed_cap_mask[idx] &
13961 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
13962 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half;
13963 }
13964
13965 if (!(sc->link_params.speed_cap_mask[idx] &
13966 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
13967 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full;
13968 }
13969
13970 if (!(sc->link_params.speed_cap_mask[idx] &
13971 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
13972 sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full;
13973 }
13974
13975 if (!(sc->link_params.speed_cap_mask[idx] &
13976 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
13977 sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full;
13978 }
13979
13980 if (!(sc->link_params.speed_cap_mask[idx] &
13981 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
13982 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full;
13983 }
13984
13985 if (!(sc->link_params.speed_cap_mask[idx] &
13986 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
13987 sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full;
13988 }
13989 }
13990
13991 BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n",
13992 sc->port.supported[0], sc->port.supported[1]);
13993}
13994
13995static void
13996bxe_link_settings_requested(struct bxe_softc *sc)
13997{
13998 uint32_t link_config;
13999 uint32_t idx;
14000 uint32_t cfg_size = 0;
14001
14002 sc->port.advertising[0] = 0;
14003 sc->port.advertising[1] = 0;
14004
14005 switch (sc->link_params.num_phys) {
14006 case 1:
14007 case 2:
14008 cfg_size = 1;
14009 break;
14010 case 3:
14011 cfg_size = 2;
14012 break;
14013 }
14014
14015 for (idx = 0; idx < cfg_size; idx++) {
14016 sc->link_params.req_duplex[idx] = DUPLEX_FULL;
14017 link_config = sc->port.link_config[idx];
14018
14019 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
14020 case PORT_FEATURE_LINK_SPEED_AUTO:
14021 if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
14022 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14023 sc->port.advertising[idx] |= sc->port.supported[idx];
14024 if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
14025 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
14026 sc->port.advertising[idx] |=
14027 (ELINK_SUPPORTED_100baseT_Half |
14028 ELINK_SUPPORTED_100baseT_Full);
14029 } else {
14030 /* force 10G, no AN */
14031 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14032 sc->port.advertising[idx] |=
14033 (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
14034 continue;
14035 }
14036 break;
14037
14038 case PORT_FEATURE_LINK_SPEED_10M_FULL:
14039 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) {
14040 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14041 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full |
14042 ADVERTISED_TP);
14043 } else {
14044 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14045 "speed_cap_mask=0x%08x\n",
14046 link_config, sc->link_params.speed_cap_mask[idx]);
14047 return;
14048 }
14049 break;
14050
14051 case PORT_FEATURE_LINK_SPEED_10M_HALF:
14052 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) {
14053 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14054 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14055 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half |
14056 ADVERTISED_TP);
14057 } else {
14058 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14059 "speed_cap_mask=0x%08x\n",
14060 link_config, sc->link_params.speed_cap_mask[idx]);
14061 return;
14062 }
14063 break;
14064
14065 case PORT_FEATURE_LINK_SPEED_100M_FULL:
14066 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) {
14067 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14068 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full |
14069 ADVERTISED_TP);
14070 } else {
14071 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14072 "speed_cap_mask=0x%08x\n",
14073 link_config, sc->link_params.speed_cap_mask[idx]);
14074 return;
14075 }
14076 break;
14077
14078 case PORT_FEATURE_LINK_SPEED_100M_HALF:
14079 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) {
14080 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14081 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14082 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half |
14083 ADVERTISED_TP);
14084 } else {
14085 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14086 "speed_cap_mask=0x%08x\n",
14087 link_config, sc->link_params.speed_cap_mask[idx]);
14088 return;
14089 }
14090 break;
14091
14092 case PORT_FEATURE_LINK_SPEED_1G:
14093 if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) {
14094 sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000;
14095 sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full |
14096 ADVERTISED_TP);
14097 } else {
14098 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14099 "speed_cap_mask=0x%08x\n",
14100 link_config, sc->link_params.speed_cap_mask[idx]);
14101 return;
14102 }
14103 break;
14104
14105 case PORT_FEATURE_LINK_SPEED_2_5G:
14106 if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) {
14107 sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500;
14108 sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full |
14109 ADVERTISED_TP);
14110 } else {
14111 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14112 "speed_cap_mask=0x%08x\n",
14113 link_config, sc->link_params.speed_cap_mask[idx]);
14114 return;
14115 }
14116 break;
14117
14118 case PORT_FEATURE_LINK_SPEED_10G_CX4:
14119 if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) {
14120 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14121 sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full |
14122 ADVERTISED_FIBRE);
14123 } else {
14124 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14125 "speed_cap_mask=0x%08x\n",
14126 link_config, sc->link_params.speed_cap_mask[idx]);
14127 return;
14128 }
14129 break;
14130
14131 case PORT_FEATURE_LINK_SPEED_20G:
14132 sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
14133 break;
14134
14135 default:
14136 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14137 "speed_cap_mask=0x%08x\n",
14138 link_config, sc->link_params.speed_cap_mask[idx]);
14139 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14140 sc->port.advertising[idx] = sc->port.supported[idx];
14141 break;
14142 }
14143
14144 sc->link_params.req_flow_ctrl[idx] =
14145 (link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
14146
14147 if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
14148 if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
14149 sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE;
14150 } else {
14151 bxe_set_requested_fc(sc);
14152 }
14153 }
14154
14155 BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d "
14156 "req_flow_ctrl=0x%x advertising=0x%x\n",
14157 sc->link_params.req_line_speed[idx],
14158 sc->link_params.req_duplex[idx],
14159 sc->link_params.req_flow_ctrl[idx],
14160 sc->port.advertising[idx]);
14161 }
14162}
14163
14164static void
14165bxe_get_phy_info(struct bxe_softc *sc)
14166{
14167 uint8_t port = SC_PORT(sc);
14168 uint32_t config = sc->port.config;
14169 uint32_t eee_mode;
14170
14171 /* shmem data already read in bxe_get_shmem_info() */
14172
14173 BLOGD(sc, DBG_LOAD, "lane_config=0x%08x speed_cap_mask0=0x%08x "
14174 "link_config0=0x%08x\n",
14175 sc->link_params.lane_config,
14176 sc->link_params.speed_cap_mask[0],
14177 sc->port.link_config[0]);
14178
14179 bxe_link_settings_supported(sc, sc->link_params.switch_cfg);
14180 bxe_link_settings_requested(sc);
14181
14182 if (sc->autogreeen == AUTO_GREEN_FORCE_ON) {
14183 sc->link_params.feature_config_flags |=
14184 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14185 } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) {
14186 sc->link_params.feature_config_flags &=
14187 ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14188 } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) {
14189 sc->link_params.feature_config_flags |=
14190 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14191 }
14192
14193 /* configure link feature according to nvram value */
14194 eee_mode =
14195 (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) &
14196 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
14197 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
14198 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
14199 sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
14200 ELINK_EEE_MODE_ENABLE_LPI |
14201 ELINK_EEE_MODE_OUTPUT_TIME);
14202 } else {
14203 sc->link_params.eee_mode = 0;
14204 }
14205
14206 /* get the media type */
14207 bxe_media_detect(sc);
14208}
14209
14210static void
14211bxe_get_params(struct bxe_softc *sc)
14212{
14213 /* get user tunable params */
14214 bxe_get_tunable_params(sc);
14215
14216 /* select the RX and TX ring sizes */
14217 sc->tx_ring_size = TX_BD_USABLE;
14218 sc->rx_ring_size = RX_BD_USABLE;
14219
14220 /* XXX disable WoL */
14221 sc->wol = 0;
14222}
14223
14224static void
14225bxe_set_modes_bitmap(struct bxe_softc *sc)
14226{
14227 uint32_t flags = 0;
14228
14229 if (CHIP_REV_IS_FPGA(sc)) {
14230 SET_FLAGS(flags, MODE_FPGA);
14231 } else if (CHIP_REV_IS_EMUL(sc)) {
14232 SET_FLAGS(flags, MODE_EMUL);
14233 } else {
14234 SET_FLAGS(flags, MODE_ASIC);
14235 }
14236
14237 if (CHIP_IS_MODE_4_PORT(sc)) {
14238 SET_FLAGS(flags, MODE_PORT4);
14239 } else {
14240 SET_FLAGS(flags, MODE_PORT2);
14241 }
14242
14243 if (CHIP_IS_E2(sc)) {
14244 SET_FLAGS(flags, MODE_E2);
14245 } else if (CHIP_IS_E3(sc)) {
14246 SET_FLAGS(flags, MODE_E3);
14247 if (CHIP_REV(sc) == CHIP_REV_Ax) {
14248 SET_FLAGS(flags, MODE_E3_A0);
14249 } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ {
14250 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
14251 }
14252 }
14253
14254 if (IS_MF(sc)) {
14255 SET_FLAGS(flags, MODE_MF);
14256 switch (sc->devinfo.mf_info.mf_mode) {
14257 case MULTI_FUNCTION_SD:
14258 SET_FLAGS(flags, MODE_MF_SD);
14259 break;
14260 case MULTI_FUNCTION_SI:
14261 SET_FLAGS(flags, MODE_MF_SI);
14262 break;
14263 case MULTI_FUNCTION_AFEX:
14264 SET_FLAGS(flags, MODE_MF_AFEX);
14265 break;
14266 }
14267 } else {
14268 SET_FLAGS(flags, MODE_SF);
14269 }
14270
14271#if defined(__LITTLE_ENDIAN)
14272 SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
14273#else /* __BIG_ENDIAN */
14274 SET_FLAGS(flags, MODE_BIG_ENDIAN);
14275#endif
14276
14277 INIT_MODE_FLAGS(sc) = flags;
14278}
14279
14280static int
14281bxe_alloc_hsi_mem(struct bxe_softc *sc)
14282{
14283 struct bxe_fastpath *fp;
14284 bus_addr_t busaddr;
14285 int max_agg_queues;
14286 int max_segments;
14287 bus_size_t max_size;
14288 bus_size_t max_seg_size;
14289 char buf[32];
14290 int rc;
14291 int i, j;
14292
14293 /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */
14294
14295 /* allocate the parent bus DMA tag */
14296 rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */
14297 1, /* alignment */
14298 0, /* boundary limit */
14299 BUS_SPACE_MAXADDR, /* restricted low */
14300 BUS_SPACE_MAXADDR, /* restricted hi */
14301 NULL, /* addr filter() */
14302 NULL, /* addr filter() arg */
14303 BUS_SPACE_MAXSIZE_32BIT, /* max map size */
14304 BUS_SPACE_UNRESTRICTED, /* num discontinuous */
14305 BUS_SPACE_MAXSIZE_32BIT, /* max seg size */
14306 0, /* flags */
14307 NULL, /* lock() */
14308 NULL, /* lock() arg */
14309 &sc->parent_dma_tag); /* returned dma tag */
14310 if (rc != 0) {
14311 BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc);
14312 return (1);
14313 }
14314
14315 /************************/
14316 /* DEFAULT STATUS BLOCK */
14317 /************************/
14318
14319 if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block),
14320 &sc->def_sb_dma, "default status block") != 0) {
14321 /* XXX */
14322 bus_dma_tag_destroy(sc->parent_dma_tag);
14323 return (1);
14324 }
14325
14326 sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
14327
14328 /***************/
14329 /* EVENT QUEUE */
14330 /***************/
14331
14332 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14333 &sc->eq_dma, "event queue") != 0) {
14334 /* XXX */
14335 bxe_dma_free(sc, &sc->def_sb_dma);
14336 sc->def_sb = NULL;
14337 bus_dma_tag_destroy(sc->parent_dma_tag);
14338 return (1);
14339 }
14340
14341 sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr;
14342
14343 /*************/
14344 /* SLOW PATH */
14345 /*************/
14346
14347 if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath),
14348 &sc->sp_dma, "slow path") != 0) {
14349 /* XXX */
14350 bxe_dma_free(sc, &sc->eq_dma);
14351 sc->eq = NULL;
14352 bxe_dma_free(sc, &sc->def_sb_dma);
14353 sc->def_sb = NULL;
14354 bus_dma_tag_destroy(sc->parent_dma_tag);
14355 return (1);
14356 }
14357
14358 sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr;
14359
14360 /*******************/
14361 /* SLOW PATH QUEUE */
14362 /*******************/
14363
14364 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14365 &sc->spq_dma, "slow path queue") != 0) {
14366 /* XXX */
14367 bxe_dma_free(sc, &sc->sp_dma);
14368 sc->sp = NULL;
14369 bxe_dma_free(sc, &sc->eq_dma);
14370 sc->eq = NULL;
14371 bxe_dma_free(sc, &sc->def_sb_dma);
14372 sc->def_sb = NULL;
14373 bus_dma_tag_destroy(sc->parent_dma_tag);
14374 return (1);
14375 }
14376
14377 sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
14378
14379 /***************************/
14380 /* FW DECOMPRESSION BUFFER */
14381 /***************************/
14382
14383 if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
14384 "fw decompression buffer") != 0) {
14385 /* XXX */
14386 bxe_dma_free(sc, &sc->spq_dma);
14387 sc->spq = NULL;
14388 bxe_dma_free(sc, &sc->sp_dma);
14389 sc->sp = NULL;
14390 bxe_dma_free(sc, &sc->eq_dma);
14391 sc->eq = NULL;
14392 bxe_dma_free(sc, &sc->def_sb_dma);
14393 sc->def_sb = NULL;
14394 bus_dma_tag_destroy(sc->parent_dma_tag);
14395 return (1);
14396 }
14397
14398 sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
14399
14400 if ((sc->gz_strm =
14401 malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) {
14402 /* XXX */
14403 bxe_dma_free(sc, &sc->gz_buf_dma);
14404 sc->gz_buf = NULL;
14405 bxe_dma_free(sc, &sc->spq_dma);
14406 sc->spq = NULL;
14407 bxe_dma_free(sc, &sc->sp_dma);
14408 sc->sp = NULL;
14409 bxe_dma_free(sc, &sc->eq_dma);
14410 sc->eq = NULL;
14411 bxe_dma_free(sc, &sc->def_sb_dma);
14412 sc->def_sb = NULL;
14413 bus_dma_tag_destroy(sc->parent_dma_tag);
14414 return (1);
14415 }
14416
14417 /*************/
14418 /* FASTPATHS */
14419 /*************/
14420
14421 /* allocate DMA memory for each fastpath structure */
14422 for (i = 0; i < sc->num_queues; i++) {
14423 fp = &sc->fp[i];
14424 fp->sc = sc;
14425 fp->index = i;
14426
14427 /*******************/
14428 /* FP STATUS BLOCK */
14429 /*******************/
14430
14431 snprintf(buf, sizeof(buf), "fp %d status block", i);
14432 if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block),
14433 &fp->sb_dma, buf) != 0) {
14434 /* XXX unwind and free previous fastpath allocations */
14435 BLOGE(sc, "Failed to alloc %s\n", buf);
14436 return (1);
14437 } else {
14438 if (CHIP_IS_E2E3(sc)) {
14439 fp->status_block.e2_sb =
14440 (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr;
14441 } else {
14442 fp->status_block.e1x_sb =
14443 (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr;
14444 }
14445 }
14446
14447 /******************/
14448 /* FP TX BD CHAIN */
14449 /******************/
14450
14451 snprintf(buf, sizeof(buf), "fp %d tx bd chain", i);
14452 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES),
14453 &fp->tx_dma, buf) != 0) {
14454 /* XXX unwind and free previous fastpath allocations */
14455 BLOGE(sc, "Failed to alloc %s\n", buf);
14456 return (1);
14457 } else {
14458 fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr;
14459 }
14460
14461 /* link together the tx bd chain pages */
14462 for (j = 1; j <= TX_BD_NUM_PAGES; j++) {
14463 /* index into the tx bd chain array to last entry per page */
14464 struct eth_tx_next_bd *tx_next_bd =
14465 &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd;
14466 /* point to the next page and wrap from last page */
14467 busaddr = (fp->tx_dma.paddr +
14468 (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES)));
14469 tx_next_bd->addr_hi = htole32(U64_HI(busaddr));
14470 tx_next_bd->addr_lo = htole32(U64_LO(busaddr));
14471 }
14472
14473 /******************/
14474 /* FP RX BD CHAIN */
14475 /******************/
14476
14477 snprintf(buf, sizeof(buf), "fp %d rx bd chain", i);
14478 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES),
14479 &fp->rx_dma, buf) != 0) {
14480 /* XXX unwind and free previous fastpath allocations */
14481 BLOGE(sc, "Failed to alloc %s\n", buf);
14482 return (1);
14483 } else {
14484 fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr;
14485 }
14486
14487 /* link together the rx bd chain pages */
14488 for (j = 1; j <= RX_BD_NUM_PAGES; j++) {
14489 /* index into the rx bd chain array to last entry per page */
14490 struct eth_rx_bd *rx_bd =
14491 &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2];
14492 /* point to the next page and wrap from last page */
14493 busaddr = (fp->rx_dma.paddr +
14494 (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES)));
14495 rx_bd->addr_hi = htole32(U64_HI(busaddr));
14496 rx_bd->addr_lo = htole32(U64_LO(busaddr));
14497 }
14498
14499 /*******************/
14500 /* FP RX RCQ CHAIN */
14501 /*******************/
14502
14503 snprintf(buf, sizeof(buf), "fp %d rcq chain", i);
14504 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES),
14505 &fp->rcq_dma, buf) != 0) {
14506 /* XXX unwind and free previous fastpath allocations */
14507 BLOGE(sc, "Failed to alloc %s\n", buf);
14508 return (1);
14509 } else {
14510 fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr;
14511 }
14512
14513 /* link together the rcq chain pages */
14514 for (j = 1; j <= RCQ_NUM_PAGES; j++) {
14515 /* index into the rcq chain array to last entry per page */
14516 struct eth_rx_cqe_next_page *rx_cqe_next =
14517 (struct eth_rx_cqe_next_page *)
14518 &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1];
14519 /* point to the next page and wrap from last page */
14520 busaddr = (fp->rcq_dma.paddr +
14521 (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES)));
14522 rx_cqe_next->addr_hi = htole32(U64_HI(busaddr));
14523 rx_cqe_next->addr_lo = htole32(U64_LO(busaddr));
14524 }
14525
14526 /*******************/
14527 /* FP RX SGE CHAIN */
14528 /*******************/
14529
14530 snprintf(buf, sizeof(buf), "fp %d sge chain", i);
14531 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES),
14532 &fp->rx_sge_dma, buf) != 0) {
14533 /* XXX unwind and free previous fastpath allocations */
14534 BLOGE(sc, "Failed to alloc %s\n", buf);
14535 return (1);
14536 } else {
14537 fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr;
14538 }
14539
14540 /* link together the sge chain pages */
14541 for (j = 1; j <= RX_SGE_NUM_PAGES; j++) {
14542 /* index into the rcq chain array to last entry per page */
14543 struct eth_rx_sge *rx_sge =
14544 &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2];
14545 /* point to the next page and wrap from last page */
14546 busaddr = (fp->rx_sge_dma.paddr +
14547 (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES)));
14548 rx_sge->addr_hi = htole32(U64_HI(busaddr));
14549 rx_sge->addr_lo = htole32(U64_LO(busaddr));
14550 }
14551
14552 /***********************/
14553 /* FP TX MBUF DMA MAPS */
14554 /***********************/
14555
14556 /* set required sizes before mapping to conserve resources */
14557 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
14558 max_size = BXE_TSO_MAX_SIZE;
14559 max_segments = BXE_TSO_MAX_SEGMENTS;
14560 max_seg_size = BXE_TSO_MAX_SEG_SIZE;
14561 } else {
14562 max_size = (MCLBYTES * BXE_MAX_SEGMENTS);
14563 max_segments = BXE_MAX_SEGMENTS;
14564 max_seg_size = MCLBYTES;
14565 }
14566
14567 /* create a dma tag for the tx mbufs */
14568 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
14569 1, /* alignment */
14570 0, /* boundary limit */
14571 BUS_SPACE_MAXADDR, /* restricted low */
14572 BUS_SPACE_MAXADDR, /* restricted hi */
14573 NULL, /* addr filter() */
14574 NULL, /* addr filter() arg */
14575 max_size, /* max map size */
14576 max_segments, /* num discontinuous */
14577 max_seg_size, /* max seg size */
14578 0, /* flags */
14579 NULL, /* lock() */
14580 NULL, /* lock() arg */
14581 &fp->tx_mbuf_tag); /* returned dma tag */
14582 if (rc != 0) {
14583 /* XXX unwind and free previous fastpath allocations */
14584 BLOGE(sc, "Failed to create dma tag for "
14585 "'fp %d tx mbufs' (%d)\n", i, rc);
14586 return (1);
14587 }
14588
14589 /* create dma maps for each of the tx mbuf clusters */
14590 for (j = 0; j < TX_BD_TOTAL; j++) {
14591 if (bus_dmamap_create(fp->tx_mbuf_tag,
14592 BUS_DMA_NOWAIT,
14593 &fp->tx_mbuf_chain[j].m_map)) {
14594 /* XXX unwind and free previous fastpath allocations */
14595 BLOGE(sc, "Failed to create dma map for "
14596 "'fp %d tx mbuf %d' (%d)\n", i, j, rc);
14597 return (1);
14598 }
14599 }
14600
14601 /***********************/
14602 /* FP RX MBUF DMA MAPS */
14603 /***********************/
14604
14605 /* create a dma tag for the rx mbufs */
14606 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
14607 1, /* alignment */
14608 0, /* boundary limit */
14609 BUS_SPACE_MAXADDR, /* restricted low */
14610 BUS_SPACE_MAXADDR, /* restricted hi */
14611 NULL, /* addr filter() */
14612 NULL, /* addr filter() arg */
14613 MJUM9BYTES, /* max map size */
14614 1, /* num discontinuous */
14615 MJUM9BYTES, /* max seg size */
14616 0, /* flags */
14617 NULL, /* lock() */
14618 NULL, /* lock() arg */
14619 &fp->rx_mbuf_tag); /* returned dma tag */
14620 if (rc != 0) {
14621 /* XXX unwind and free previous fastpath allocations */
14622 BLOGE(sc, "Failed to create dma tag for "
14623 "'fp %d rx mbufs' (%d)\n", i, rc);
14624 return (1);
14625 }
14626
14627 /* create dma maps for each of the rx mbuf clusters */
14628 for (j = 0; j < RX_BD_TOTAL; j++) {
14629 if (bus_dmamap_create(fp->rx_mbuf_tag,
14630 BUS_DMA_NOWAIT,
14631 &fp->rx_mbuf_chain[j].m_map)) {
14632 /* XXX unwind and free previous fastpath allocations */
14633 BLOGE(sc, "Failed to create dma map for "
14634 "'fp %d rx mbuf %d' (%d)\n", i, j, rc);
14635 return (1);
14636 }
14637 }
14638
14639 /* create dma map for the spare rx mbuf cluster */
14640 if (bus_dmamap_create(fp->rx_mbuf_tag,
14641 BUS_DMA_NOWAIT,
14642 &fp->rx_mbuf_spare_map)) {
14643 /* XXX unwind and free previous fastpath allocations */
14644 BLOGE(sc, "Failed to create dma map for "
14645 "'fp %d spare rx mbuf' (%d)\n", i, rc);
14646 return (1);
14647 }
14648
14649 /***************************/
14650 /* FP RX SGE MBUF DMA MAPS */
14651 /***************************/
14652
14653 /* create a dma tag for the rx sge mbufs */
14654 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
14655 1, /* alignment */
14656 0, /* boundary limit */
14657 BUS_SPACE_MAXADDR, /* restricted low */
14658 BUS_SPACE_MAXADDR, /* restricted hi */
14659 NULL, /* addr filter() */
14660 NULL, /* addr filter() arg */
14661 BCM_PAGE_SIZE, /* max map size */
14662 1, /* num discontinuous */
14663 BCM_PAGE_SIZE, /* max seg size */
14664 0, /* flags */
14665 NULL, /* lock() */
14666 NULL, /* lock() arg */
14667 &fp->rx_sge_mbuf_tag); /* returned dma tag */
14668 if (rc != 0) {
14669 /* XXX unwind and free previous fastpath allocations */
14670 BLOGE(sc, "Failed to create dma tag for "
14671 "'fp %d rx sge mbufs' (%d)\n", i, rc);
14672 return (1);
14673 }
14674
14675 /* create dma maps for the rx sge mbuf clusters */
14676 for (j = 0; j < RX_SGE_TOTAL; j++) {
14677 if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
14678 BUS_DMA_NOWAIT,
14679 &fp->rx_sge_mbuf_chain[j].m_map)) {
14680 /* XXX unwind and free previous fastpath allocations */
14681 BLOGE(sc, "Failed to create dma map for "
14682 "'fp %d rx sge mbuf %d' (%d)\n", i, j, rc);
14683 return (1);
14684 }
14685 }
14686
14687 /* create dma map for the spare rx sge mbuf cluster */
14688 if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
14689 BUS_DMA_NOWAIT,
14690 &fp->rx_sge_mbuf_spare_map)) {
14691 /* XXX unwind and free previous fastpath allocations */
14692 BLOGE(sc, "Failed to create dma map for "
14693 "'fp %d spare rx sge mbuf' (%d)\n", i, rc);
14694 return (1);
14695 }
14696
14697 /***************************/
14698 /* FP RX TPA MBUF DMA MAPS */
14699 /***************************/
14700
14701 /* create dma maps for the rx tpa mbuf clusters */
14702 max_agg_queues = MAX_AGG_QS(sc);
14703
14704 for (j = 0; j < max_agg_queues; j++) {
14705 if (bus_dmamap_create(fp->rx_mbuf_tag,
14706 BUS_DMA_NOWAIT,
14707 &fp->rx_tpa_info[j].bd.m_map)) {
14708 /* XXX unwind and free previous fastpath allocations */
14709 BLOGE(sc, "Failed to create dma map for "
14710 "'fp %d rx tpa mbuf %d' (%d)\n", i, j, rc);
14711 return (1);
14712 }
14713 }
14714
14715 /* create dma map for the spare rx tpa mbuf cluster */
14716 if (bus_dmamap_create(fp->rx_mbuf_tag,
14717 BUS_DMA_NOWAIT,
14718 &fp->rx_tpa_info_mbuf_spare_map)) {
14719 /* XXX unwind and free previous fastpath allocations */
14720 BLOGE(sc, "Failed to create dma map for "
14721 "'fp %d spare rx tpa mbuf' (%d)\n", i, rc);
14722 return (1);
14723 }
14724
14725 bxe_init_sge_ring_bit_mask(fp);
14726 }
14727
14728 return (0);
14729}
14730
14731static void
14732bxe_free_hsi_mem(struct bxe_softc *sc)
14733{
14734 struct bxe_fastpath *fp;
14735 int max_agg_queues;
14736 int i, j;
14737
14738 if (sc->parent_dma_tag == NULL) {
14739 return; /* assume nothing was allocated */
14740 }
14741
14742 for (i = 0; i < sc->num_queues; i++) {
14743 fp = &sc->fp[i];
14744
14745 /*******************/
14746 /* FP STATUS BLOCK */
14747 /*******************/
14748
14749 bxe_dma_free(sc, &fp->sb_dma);
14750 memset(&fp->status_block, 0, sizeof(fp->status_block));
14751
14752 /******************/
14753 /* FP TX BD CHAIN */
14754 /******************/
14755
14756 bxe_dma_free(sc, &fp->tx_dma);
14757 fp->tx_chain = NULL;
14758
14759 /******************/
14760 /* FP RX BD CHAIN */
14761 /******************/
14762
14763 bxe_dma_free(sc, &fp->rx_dma);
14764 fp->rx_chain = NULL;
14765
14766 /*******************/
14767 /* FP RX RCQ CHAIN */
14768 /*******************/
14769
14770 bxe_dma_free(sc, &fp->rcq_dma);
14771 fp->rcq_chain = NULL;
14772
14773 /*******************/
14774 /* FP RX SGE CHAIN */
14775 /*******************/
14776
14777 bxe_dma_free(sc, &fp->rx_sge_dma);
14778 fp->rx_sge_chain = NULL;
14779
14780 /***********************/
14781 /* FP TX MBUF DMA MAPS */
14782 /***********************/
14783
14784 if (fp->tx_mbuf_tag != NULL) {
14785 for (j = 0; j < TX_BD_TOTAL; j++) {
14786 if (fp->tx_mbuf_chain[j].m_map != NULL) {
14787 bus_dmamap_unload(fp->tx_mbuf_tag,
14788 fp->tx_mbuf_chain[j].m_map);
14789 bus_dmamap_destroy(fp->tx_mbuf_tag,
14790 fp->tx_mbuf_chain[j].m_map);
14791 }
14792 }
14793
14794 bus_dma_tag_destroy(fp->tx_mbuf_tag);
14795 fp->tx_mbuf_tag = NULL;
14796 }
14797
14798 /***********************/
14799 /* FP RX MBUF DMA MAPS */
14800 /***********************/
14801
14802 if (fp->rx_mbuf_tag != NULL) {
14803 for (j = 0; j < RX_BD_TOTAL; j++) {
14804 if (fp->rx_mbuf_chain[j].m_map != NULL) {
14805 bus_dmamap_unload(fp->rx_mbuf_tag,
14806 fp->rx_mbuf_chain[j].m_map);
14807 bus_dmamap_destroy(fp->rx_mbuf_tag,
14808 fp->rx_mbuf_chain[j].m_map);
14809 }
14810 }
14811
14812 if (fp->rx_mbuf_spare_map != NULL) {
14813 bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
14814 bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
14815 }
14816
14817 /***************************/
14818 /* FP RX TPA MBUF DMA MAPS */
14819 /***************************/
14820
14821 max_agg_queues = MAX_AGG_QS(sc);
14822
14823 for (j = 0; j < max_agg_queues; j++) {
14824 if (fp->rx_tpa_info[j].bd.m_map != NULL) {
14825 bus_dmamap_unload(fp->rx_mbuf_tag,
14826 fp->rx_tpa_info[j].bd.m_map);
14827 bus_dmamap_destroy(fp->rx_mbuf_tag,
14828 fp->rx_tpa_info[j].bd.m_map);
14829 }
14830 }
14831
14832 if (fp->rx_tpa_info_mbuf_spare_map != NULL) {
14833 bus_dmamap_unload(fp->rx_mbuf_tag,
14834 fp->rx_tpa_info_mbuf_spare_map);
14835 bus_dmamap_destroy(fp->rx_mbuf_tag,
14836 fp->rx_tpa_info_mbuf_spare_map);
14837 }
14838
14839 bus_dma_tag_destroy(fp->rx_mbuf_tag);
14840 fp->rx_mbuf_tag = NULL;
14841 }
14842
14843 /***************************/
14844 /* FP RX SGE MBUF DMA MAPS */
14845 /***************************/
14846
14847 if (fp->rx_sge_mbuf_tag != NULL) {
14848 for (j = 0; j < RX_SGE_TOTAL; j++) {
14849 if (fp->rx_sge_mbuf_chain[j].m_map != NULL) {
14850 bus_dmamap_unload(fp->rx_sge_mbuf_tag,
14851 fp->rx_sge_mbuf_chain[j].m_map);
14852 bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
14853 fp->rx_sge_mbuf_chain[j].m_map);
14854 }
14855 }
14856
14857 if (fp->rx_sge_mbuf_spare_map != NULL) {
14858 bus_dmamap_unload(fp->rx_sge_mbuf_tag,
14859 fp->rx_sge_mbuf_spare_map);
14860 bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
14861 fp->rx_sge_mbuf_spare_map);
14862 }
14863
14864 bus_dma_tag_destroy(fp->rx_sge_mbuf_tag);
14865 fp->rx_sge_mbuf_tag = NULL;
14866 }
14867 }
14868
14869 /***************************/
14870 /* FW DECOMPRESSION BUFFER */
14871 /***************************/
14872
14873 bxe_dma_free(sc, &sc->gz_buf_dma);
14874 sc->gz_buf = NULL;
14875 free(sc->gz_strm, M_DEVBUF);
14876 sc->gz_strm = NULL;
14877
14878 /*******************/
14879 /* SLOW PATH QUEUE */
14880 /*******************/
14881
14882 bxe_dma_free(sc, &sc->spq_dma);
14883 sc->spq = NULL;
14884
14885 /*************/
14886 /* SLOW PATH */
14887 /*************/
14888
14889 bxe_dma_free(sc, &sc->sp_dma);
14890 sc->sp = NULL;
14891
14892 /***************/
14893 /* EVENT QUEUE */
14894 /***************/
14895
14896 bxe_dma_free(sc, &sc->eq_dma);
14897 sc->eq = NULL;
14898
14899 /************************/
14900 /* DEFAULT STATUS BLOCK */
14901 /************************/
14902
14903 bxe_dma_free(sc, &sc->def_sb_dma);
14904 sc->def_sb = NULL;
14905
14906 bus_dma_tag_destroy(sc->parent_dma_tag);
14907 sc->parent_dma_tag = NULL;
14908}
14909
14910/*
14911 * Previous driver DMAE transaction may have occurred when pre-boot stage
14912 * ended and boot began. This would invalidate the addresses of the
14913 * transaction, resulting in was-error bit set in the PCI causing all
14914 * hw-to-host PCIe transactions to timeout. If this happened we want to clear
14915 * the interrupt which detected this from the pglueb and the was-done bit
14916 */
14917static void
14918bxe_prev_interrupted_dmae(struct bxe_softc *sc)
14919{
14920 uint32_t val;
14921
14922 if (!CHIP_IS_E1x(sc)) {
14923 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
14924 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
14925 BLOGD(sc, DBG_LOAD,
14926 "Clearing 'was-error' bit that was set in pglueb");
14927 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc));
14928 }
14929 }
14930}
14931
14932static int
14933bxe_prev_mcp_done(struct bxe_softc *sc)
14934{
14935 uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
14936 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
14937 if (!rc) {
14938 BLOGE(sc, "MCP response failure, aborting\n");
14939 return (-1);
14940 }
14941
14942 return (0);
14943}
14944
14945static struct bxe_prev_list_node *
14946bxe_prev_path_get_entry(struct bxe_softc *sc)
14947{
14948 struct bxe_prev_list_node *tmp;
14949
14950 LIST_FOREACH(tmp, &bxe_prev_list, node) {
14951 if ((sc->pcie_bus == tmp->bus) &&
14952 (sc->pcie_device == tmp->slot) &&
14953 (SC_PATH(sc) == tmp->path)) {
14954 return (tmp);
14955 }
14956 }
14957
14958 return (NULL);
14959}
14960
14961static uint8_t
14962bxe_prev_is_path_marked(struct bxe_softc *sc)
14963{
14964 struct bxe_prev_list_node *tmp;
14965 int rc = FALSE;
14966
14967 mtx_lock(&bxe_prev_mtx);
14968
14969 tmp = bxe_prev_path_get_entry(sc);
14970 if (tmp) {
14971 if (tmp->aer) {
14972 BLOGD(sc, DBG_LOAD,
14973 "Path %d/%d/%d was marked by AER\n",
14974 sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
14975 } else {
14976 rc = TRUE;
14977 BLOGD(sc, DBG_LOAD,
14978 "Path %d/%d/%d was already cleaned from previous drivers\n",
14979 sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
14980 }
14981 }
14982
14983 mtx_unlock(&bxe_prev_mtx);
14984
14985 return (rc);
14986}
14987
14988static int
14989bxe_prev_mark_path(struct bxe_softc *sc,
14990 uint8_t after_undi)
14991{
14992 struct bxe_prev_list_node *tmp;
14993
14994 mtx_lock(&bxe_prev_mtx);
14995
14996 /* Check whether the entry for this path already exists */
14997 tmp = bxe_prev_path_get_entry(sc);
14998 if (tmp) {
14999 if (!tmp->aer) {
15000 BLOGD(sc, DBG_LOAD,
15001 "Re-marking AER in path %d/%d/%d\n",
15002 sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15003 } else {
15004 BLOGD(sc, DBG_LOAD,
15005 "Removing AER indication from path %d/%d/%d\n",
15006 sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15007 tmp->aer = 0;
15008 }
15009
15010 mtx_unlock(&bxe_prev_mtx);
15011 return (0);
15012 }
15013
15014 mtx_unlock(&bxe_prev_mtx);
15015
15016 /* Create an entry for this path and add it */
15017 tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF,
15018 (M_NOWAIT | M_ZERO));
15019 if (!tmp) {
15020 BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n");
15021 return (-1);
15022 }
15023
15024 tmp->bus = sc->pcie_bus;
15025 tmp->slot = sc->pcie_device;
15026 tmp->path = SC_PATH(sc);
15027 tmp->aer = 0;
15028 tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
15029
15030 mtx_lock(&bxe_prev_mtx);
15031
15032 BLOGD(sc, DBG_LOAD,
15033 "Marked path %d/%d/%d - finished previous unload\n",
15034 sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15035 LIST_INSERT_HEAD(&bxe_prev_list, tmp, node);
15036
15037 mtx_unlock(&bxe_prev_mtx);
15038
15039 return (0);
15040}
15041
15042static int
15043bxe_do_flr(struct bxe_softc *sc)
15044{
15045 int i;
15046
15047 /* only E2 and onwards support FLR */
15048 if (CHIP_IS_E1x(sc)) {
15049 BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n");
15050 return (-1);
15051 }
15052
15053 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
15054 if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
15055 BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n",
15056 sc->devinfo.bc_ver);
15057 return (-1);
15058 }
15059
15060 /* Wait for Transaction Pending bit clean */
15061 for (i = 0; i < 4; i++) {
15062 if (i) {
15063 DELAY(((1 << (i - 1)) * 100) * 1000);
15064 }
15065
15066 if (!bxe_is_pcie_pending(sc)) {
15067 goto clear;
15068 }
15069 }
15070
15071 BLOGE(sc, "PCIE transaction is not cleared, "
15072 "proceeding with reset anyway\n");
15073
15074clear:
15075
15076 BLOGD(sc, DBG_LOAD, "Initiating FLR\n");
15077 bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
15078
15079 return (0);
15080}
15081
15082struct bxe_mac_vals {
15083 uint32_t xmac_addr;
15084 uint32_t xmac_val;
15085 uint32_t emac_addr;
15086 uint32_t emac_val;
15087 uint32_t umac_addr;
15088 uint32_t umac_val;
15089 uint32_t bmac_addr;
15090 uint32_t bmac_val[2];
15091};
15092
15093static void
15094bxe_prev_unload_close_mac(struct bxe_softc *sc,
15095 struct bxe_mac_vals *vals)
15096{
15097 uint32_t val, base_addr, offset, mask, reset_reg;
15098 uint8_t mac_stopped = FALSE;
15099 uint8_t port = SC_PORT(sc);
15100 uint32_t wb_data[2];
15101
15102 /* reset addresses as they also mark which values were changed */
15103 vals->bmac_addr = 0;
15104 vals->umac_addr = 0;
15105 vals->xmac_addr = 0;
15106 vals->emac_addr = 0;
15107
15108 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
15109
15110 if (!CHIP_IS_E3(sc)) {
15111 val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
15112 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
15113 if ((mask & reset_reg) && val) {
15114 BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n");
15115 base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
15116 : NIG_REG_INGRESS_BMAC0_MEM;
15117 offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
15118 : BIGMAC_REGISTER_BMAC_CONTROL;
15119
15120 /*
15121 * use rd/wr since we cannot use dmae. This is safe
15122 * since MCP won't access the bus due to the request
15123 * to unload, and no function on the path can be
15124 * loaded at this time.
15125 */
15126 wb_data[0] = REG_RD(sc, base_addr + offset);
15127 wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
15128 vals->bmac_addr = base_addr + offset;
15129 vals->bmac_val[0] = wb_data[0];
15130 vals->bmac_val[1] = wb_data[1];
15131 wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
15132 REG_WR(sc, vals->bmac_addr, wb_data[0]);
15133 REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
15134 }
15135
15136 BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n");
15137 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4;
15138 vals->emac_val = REG_RD(sc, vals->emac_addr);
15139 REG_WR(sc, vals->emac_addr, 0);
15140 mac_stopped = TRUE;
15141 } else {
15142 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
15143 BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n");
15144 base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
15145 val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
15146 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1));
15147 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1));
15148 vals->xmac_addr = base_addr + XMAC_REG_CTRL;
15149 vals->xmac_val = REG_RD(sc, vals->xmac_addr);
15150 REG_WR(sc, vals->xmac_addr, 0);
15151 mac_stopped = TRUE;
15152 }
15153
15154 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
15155 if (mask & reset_reg) {
15156 BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n");
15157 base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
15158 vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
15159 vals->umac_val = REG_RD(sc, vals->umac_addr);
15160 REG_WR(sc, vals->umac_addr, 0);
15161 mac_stopped = TRUE;
15162 }
15163 }
15164
15165 if (mac_stopped) {
15166 DELAY(20000);
15167 }
15168}
15169
15170#define BXE_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
15171#define BXE_PREV_UNDI_RCQ(val) ((val) & 0xffff)
15172#define BXE_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff)
15173#define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
15174
15175static void
15176bxe_prev_unload_undi_inc(struct bxe_softc *sc,
15177 uint8_t port,
15178 uint8_t inc)
15179{
15180 uint16_t rcq, bd;
15181 uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port));
15182
15183 rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc;
15184 bd = BXE_PREV_UNDI_BD(tmp_reg) + inc;
15185
15186 tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd);
15187 REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg);
15188
15189 BLOGD(sc, DBG_LOAD,
15190 "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
15191 port, bd, rcq);
15192}
15193
15194static int
15195bxe_prev_unload_common(struct bxe_softc *sc)
15196{
15197 uint32_t reset_reg, tmp_reg = 0, rc;
15198 uint8_t prev_undi = FALSE;
15199 struct bxe_mac_vals mac_vals;
15200 uint32_t timer_count = 1000;
15201 uint32_t prev_brb;
15202
15203 /*
15204 * It is possible a previous function received 'common' answer,
15205 * but hasn't loaded yet, therefore creating a scenario of
15206 * multiple functions receiving 'common' on the same path.
15207 */
15208 BLOGD(sc, DBG_LOAD, "Common unload Flow\n");
15209
15210 memset(&mac_vals, 0, sizeof(mac_vals));
15211
15212 if (bxe_prev_is_path_marked(sc)) {
15213 return (bxe_prev_mcp_done(sc));
15214 }
15215
15216 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
15217
15218 /* Reset should be performed after BRB is emptied */
15219 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
15220 /* Close the MAC Rx to prevent BRB from filling up */
15221 bxe_prev_unload_close_mac(sc, &mac_vals);
15222
15223 /* close LLH filters towards the BRB */
15224 elink_set_rx_filter(&sc->link_params, 0);
15225
15226 /*
15227 * Check if the UNDI driver was previously loaded.
15228 * UNDI driver initializes CID offset for normal bell to 0x7
15229 */
15230 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
15231 tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
15232 if (tmp_reg == 0x7) {
15233 BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n");
15234 prev_undi = TRUE;
15235 /* clear the UNDI indication */
15236 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
15237 /* clear possible idle check errors */
15238 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
15239 }
15240 }
15241
15242 /* wait until BRB is empty */
15243 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15244 while (timer_count) {
15245 prev_brb = tmp_reg;
15246
15247 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15248 if (!tmp_reg) {
15249 break;
15250 }
15251
15252 BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg);
15253
15254 /* reset timer as long as BRB actually gets emptied */
15255 if (prev_brb > tmp_reg) {
15256 timer_count = 1000;
15257 } else {
15258 timer_count--;
15259 }
15260
15261 /* If UNDI resides in memory, manually increment it */
15262 if (prev_undi) {
15263 bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
15264 }
15265
15266 DELAY(10);
15267 }
15268
15269 if (!timer_count) {
15270 BLOGE(sc, "Failed to empty BRB\n");
15271 }
15272 }
15273
15274 /* No packets are in the pipeline, path is ready for reset */
15275 bxe_reset_common(sc);
15276
15277 if (mac_vals.xmac_addr) {
15278 REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
15279 }
15280 if (mac_vals.umac_addr) {
15281 REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
15282 }
15283 if (mac_vals.emac_addr) {
15284 REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
15285 }
15286 if (mac_vals.bmac_addr) {
15287 REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
15288 REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
15289 }
15290
15291 rc = bxe_prev_mark_path(sc, prev_undi);
15292 if (rc) {
15293 bxe_prev_mcp_done(sc);
15294 return (rc);
15295 }
15296
15297 return (bxe_prev_mcp_done(sc));
15298}
15299
15300static int
15301bxe_prev_unload_uncommon(struct bxe_softc *sc)
15302{
15303 int rc;
15304
15305 BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n");
15306
15307 /* Test if previous unload process was already finished for this path */
15308 if (bxe_prev_is_path_marked(sc)) {
15309 return (bxe_prev_mcp_done(sc));
15310 }
15311
15312 BLOGD(sc, DBG_LOAD, "Path is unmarked\n");
15313
15314 /*
15315 * If function has FLR capabilities, and existing FW version matches
15316 * the one required, then FLR will be sufficient to clean any residue
15317 * left by previous driver
15318 */
15319 rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
15320 if (!rc) {
15321 /* fw version is good */
15322 BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n");
15323 rc = bxe_do_flr(sc);
15324 }
15325
15326 if (!rc) {
15327 /* FLR was performed */
15328 BLOGD(sc, DBG_LOAD, "FLR successful\n");
15329 return (0);
15330 }
15331
15332 BLOGD(sc, DBG_LOAD, "Could not FLR\n");
15333
15334 /* Close the MCP request, return failure*/
15335 rc = bxe_prev_mcp_done(sc);
15336 if (!rc) {
15337 rc = BXE_PREV_WAIT_NEEDED;
15338 }
15339
15340 return (rc);
15341}
15342
15343static int
15344bxe_prev_unload(struct bxe_softc *sc)
15345{
15346 int time_counter = 10;
15347 uint32_t fw, hw_lock_reg, hw_lock_val;
15348 uint32_t rc = 0;
15349
15350 /*
15351 * Clear HW from errors which may have resulted from an interrupted
15352 * DMAE transaction.
15353 */
15354 bxe_prev_interrupted_dmae(sc);
15355
15356 /* Release previously held locks */
15357 hw_lock_reg =
15358 (SC_FUNC(sc) <= 5) ?
15359 (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) :
15360 (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
15361
15362 hw_lock_val = (REG_RD(sc, hw_lock_reg));
15363 if (hw_lock_val) {
15364 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
15365 BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n");
15366 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
15367 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
15368 }
15369 BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n");
15370 REG_WR(sc, hw_lock_reg, 0xffffffff);
15371 } else {
15372 BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n");
15373 }
15374
15375 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
15376 BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n");
15377 REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
15378 }
15379
15380 do {
15381 /* Lock MCP using an unload request */
15382 fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
15383 if (!fw) {
15384 BLOGE(sc, "MCP response failure, aborting\n");
15385 rc = -1;
15386 break;
15387 }
15388
15389 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
15390 rc = bxe_prev_unload_common(sc);
15391 break;
15392 }
15393
15394 /* non-common reply from MCP night require looping */
15395 rc = bxe_prev_unload_uncommon(sc);
15396 if (rc != BXE_PREV_WAIT_NEEDED) {
15397 break;
15398 }
15399
15400 DELAY(20000);
15401 } while (--time_counter);
15402
15403 if (!time_counter || rc) {
15404 BLOGE(sc, "Failed to unload previous driver!"
15405 " time_counter %d rc %d\n", time_counter, rc);
15406 rc = -1;
15407 }
15408
15409 return (rc);
15410}
15411
15412void
15413bxe_dcbx_set_state(struct bxe_softc *sc,
15414 uint8_t dcb_on,
15415 uint32_t dcbx_enabled)
15416{
15417 if (!CHIP_IS_E1x(sc)) {
15418 sc->dcb_state = dcb_on;
15419 sc->dcbx_enabled = dcbx_enabled;
15420 } else {
15421 sc->dcb_state = FALSE;
15422 sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID;
15423 }
15424 BLOGD(sc, DBG_LOAD,
15425 "DCB state [%s:%s]\n",
15426 dcb_on ? "ON" : "OFF",
15427 (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" :
15428 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" :
15429 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ?
15430 "on-chip with negotiation" : "invalid");
15431}
15432
15433/* must be called after sriov-enable */
15434static int
15435bxe_set_qm_cid_count(struct bxe_softc *sc)
15436{
15437 int cid_count = BXE_L2_MAX_CID(sc);
15438
15439 if (IS_SRIOV(sc)) {
15440 cid_count += BXE_VF_CIDS;
15441 }
15442
15443 if (CNIC_SUPPORT(sc)) {
15444 cid_count += CNIC_CID_MAX;
15445 }
15446
15447 return (roundup(cid_count, QM_CID_ROUND));
15448}
15449
15450static void
15451bxe_init_multi_cos(struct bxe_softc *sc)
15452{
15453 int pri, cos;
15454
15455 uint32_t pri_map = 0; /* XXX change to user config */
15456
15457 for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) {
15458 cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
15459 if (cos < sc->max_cos) {
15460 sc->prio_to_cos[pri] = cos;
15461 } else {
15462 BLOGW(sc, "Invalid COS %d for priority %d "
15463 "(max COS is %d), setting to 0\n",
15464 cos, pri, (sc->max_cos - 1));
15465 sc->prio_to_cos[pri] = 0;
15466 }
15467 }
15468}
15469
15470static int
15471bxe_sysctl_state(SYSCTL_HANDLER_ARGS)
15472{
15473 struct bxe_softc *sc;
15474 int error, result;
15475
15476 result = 0;
15477 error = sysctl_handle_int(oidp, &result, 0, req);
15478
15479 if (error || !req->newptr) {
15480 return (error);
15481 }
15482
15483 if (result == 1) {
15484 uint32_t temp;
15485 sc = (struct bxe_softc *)arg1;
15486
15487 BLOGI(sc, "... dumping driver state ...\n");
15488 temp = SHMEM2_RD(sc, temperature_in_half_celsius);
15489 BLOGI(sc, "\t Device Temperature = %d Celsius\n", (temp/2));
15490 }
15491
15492 return (error);
15493}
15494
15495static int
15496bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS)
15497{
15498 struct bxe_softc *sc = (struct bxe_softc *)arg1;
15499 uint32_t *eth_stats = (uint32_t *)&sc->eth_stats;
15500 uint32_t *offset;
15501 uint64_t value = 0;
15502 int index = (int)arg2;
15503
15504 if (index >= BXE_NUM_ETH_STATS) {
15505 BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index);
15506 return (-1);
15507 }
15508
15509 offset = (eth_stats + bxe_eth_stats_arr[index].offset);
15510
15511 switch (bxe_eth_stats_arr[index].size) {
15512 case 4:
15513 value = (uint64_t)*offset;
15514 break;
15515 case 8:
15516 value = HILO_U64(*offset, *(offset + 1));
15517 break;
15518 default:
15519 BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n",
15520 index, bxe_eth_stats_arr[index].size);
15521 return (-1);
15522 }
15523
15524 return (sysctl_handle_64(oidp, &value, 0, req));
15525}
15526
15527static int
15528bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS)
15529{
15530 struct bxe_softc *sc = (struct bxe_softc *)arg1;
15531 uint32_t *eth_stats;
15532 uint32_t *offset;
15533 uint64_t value = 0;
15534 uint32_t q_stat = (uint32_t)arg2;
15535 uint32_t fp_index = ((q_stat >> 16) & 0xffff);
15536 uint32_t index = (q_stat & 0xffff);
15537
15538 eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats;
15539
15540 if (index >= BXE_NUM_ETH_Q_STATS) {
15541 BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index);
15542 return (-1);
15543 }
15544
15545 offset = (eth_stats + bxe_eth_q_stats_arr[index].offset);
15546
15547 switch (bxe_eth_q_stats_arr[index].size) {
15548 case 4:
15549 value = (uint64_t)*offset;
15550 break;
15551 case 8:
15552 value = HILO_U64(*offset, *(offset + 1));
15553 break;
15554 default:
15555 BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n",
15556 index, bxe_eth_q_stats_arr[index].size);
15557 return (-1);
15558 }
15559
15560 return (sysctl_handle_64(oidp, &value, 0, req));
15561}
15562
15563static void
15564bxe_add_sysctls(struct bxe_softc *sc)
15565{
15566 struct sysctl_ctx_list *ctx;
15567 struct sysctl_oid_list *children;
15568 struct sysctl_oid *queue_top, *queue;
15569 struct sysctl_oid_list *queue_top_children, *queue_children;
15570 char queue_num_buf[32];
15571 uint32_t q_stat;
15572 int i, j;
15573
15574 ctx = device_get_sysctl_ctx(sc->dev);
15575 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
15576
15577 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version",
15578 CTLFLAG_RD, BXE_DRIVER_VERSION, 0,
15579 "version");
15580
15581 snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d",
15582 BCM_5710_FW_MAJOR_VERSION,
15583 BCM_5710_FW_MINOR_VERSION,
15584 BCM_5710_FW_REVISION_VERSION,
15585 BCM_5710_FW_ENGINEERING_VERSION);
15586
15587 snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s",
15588 ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION) ? "Single" :
15589 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD) ? "MF-SD" :
15590 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI) ? "MF-SI" :
15591 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" :
15592 "Unknown"));
15593 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics",
15594 CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0,
15595 "multifunction vnics per port");
15596
15597 snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d",
15598 ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" :
15599 (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" :
15600 (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" :
15601 "???GT/s"),
15602 sc->devinfo.pcie_link_width);
15603
15604 sc->debug = bxe_debug;
15605
15606#if __FreeBSD_version >= 900000
15607 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
15608 CTLFLAG_RD, sc->devinfo.bc_ver_str, 0,
15609 "bootcode version");
15610 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
15611 CTLFLAG_RD, sc->fw_ver_str, 0,
15612 "firmware version");
15613 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
15614 CTLFLAG_RD, sc->mf_mode_str, 0,
15615 "multifunction mode");
15616 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
15617 CTLFLAG_RD, sc->mac_addr_str, 0,
15618 "mac address");
15619 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
15620 CTLFLAG_RD, sc->pci_link_str, 0,
15621 "pci link status");
15622 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "debug",
15623 CTLFLAG_RW, &sc->debug,
15624 "debug logging mode");
15625#else
15626 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
15627 CTLFLAG_RD, &sc->devinfo.bc_ver_str, 0,
15628 "bootcode version");
15629 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
15630 CTLFLAG_RD, &sc->fw_ver_str, 0,
15631 "firmware version");
15632 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
15633 CTLFLAG_RD, &sc->mf_mode_str, 0,
15634 "multifunction mode");
15635 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
15636 CTLFLAG_RD, &sc->mac_addr_str, 0,
15637 "mac address");
15638 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
15639 CTLFLAG_RD, &sc->pci_link_str, 0,
15640 "pci link status");
15641 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "debug",
15642 CTLFLAG_RW, &sc->debug, 0,
15643 "debug logging mode");
15644#endif /* #if __FreeBSD_version >= 900000 */
15645
15646 sc->trigger_grcdump = 0;
15647 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "trigger_grcdump",
15648 CTLFLAG_RW, &sc->trigger_grcdump, 0,
15649 "trigger grcdump should be invoked"
15650 " before collecting grcdump");
15651
15652 sc->grcdump_started = 0;
15653 sc->grcdump_done = 0;
15654 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "grcdump_done",
15655 CTLFLAG_RD, &sc->grcdump_done, 0,
15656 "set by driver when grcdump is done");
15657
15658 sc->rx_budget = bxe_rx_budget;
15659 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget",
15660 CTLFLAG_RW, &sc->rx_budget, 0,
15661 "rx processing budget");
15662
15663 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state",
15664 CTLTYPE_UINT | CTLFLAG_RW, sc, 0,
15665 bxe_sysctl_state, "IU", "dump driver state");
15666
15667 for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
15668 SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
15669 bxe_eth_stats_arr[i].string,
15670 CTLTYPE_U64 | CTLFLAG_RD, sc, i,
15671 bxe_sysctl_eth_stat, "LU",
15672 bxe_eth_stats_arr[i].string);
15673 }
15674
15675 /* add a new parent node for all queues "dev.bxe.#.queue" */
15676 queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue",
15677 CTLFLAG_RD, NULL, "queue");
15678 queue_top_children = SYSCTL_CHILDREN(queue_top);
15679
15680 for (i = 0; i < sc->num_queues; i++) {
15681 /* add a new parent node for a single queue "dev.bxe.#.queue.#" */
15682 snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i);
15683 queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO,
15684 queue_num_buf, CTLFLAG_RD, NULL,
15685 "single queue");
15686 queue_children = SYSCTL_CHILDREN(queue);
15687
15688 for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) {
15689 q_stat = ((i << 16) | j);
15690 SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO,
15691 bxe_eth_q_stats_arr[j].string,
15692 CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat,
15693 bxe_sysctl_eth_q_stat, "LU",
15694 bxe_eth_q_stats_arr[j].string);
15695 }
15696 }
15697}
15698
15699static int
15700bxe_alloc_buf_rings(struct bxe_softc *sc)
15701{
15702#if __FreeBSD_version >= 800000
15703
15704 int i;
15705 struct bxe_fastpath *fp;
15706
15707 for (i = 0; i < sc->num_queues; i++) {
15708
15709 fp = &sc->fp[i];
15710
15711 fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF,
15712 M_NOWAIT, &fp->tx_mtx);
15713 if (fp->tx_br == NULL)
15714 return (-1);
15715 }
15716#endif
15717 return (0);
15718}
15719
15720static void
15721bxe_free_buf_rings(struct bxe_softc *sc)
15722{
15723#if __FreeBSD_version >= 800000
15724
15725 int i;
15726 struct bxe_fastpath *fp;
15727
15728 for (i = 0; i < sc->num_queues; i++) {
15729
15730 fp = &sc->fp[i];
15731
15732 if (fp->tx_br) {
15733 buf_ring_free(fp->tx_br, M_DEVBUF);
15734 fp->tx_br = NULL;
15735 }
15736 }
15737
15738#endif
15739}
15740
15741static void
15742bxe_init_fp_mutexs(struct bxe_softc *sc)
15743{
15744 int i;
15745 struct bxe_fastpath *fp;
15746
15747 for (i = 0; i < sc->num_queues; i++) {
15748
15749 fp = &sc->fp[i];
15750
15751 snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name),
15752 "bxe%d_fp%d_tx_lock", sc->unit, i);
15753 mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF);
15754
15755 snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name),
15756 "bxe%d_fp%d_rx_lock", sc->unit, i);
15757 mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF);
15758 }
15759}
15760
15761static void
15762bxe_destroy_fp_mutexs(struct bxe_softc *sc)
15763{
15764 int i;
15765 struct bxe_fastpath *fp;
15766
15767 for (i = 0; i < sc->num_queues; i++) {
15768
15769 fp = &sc->fp[i];
15770
15771 if (mtx_initialized(&fp->tx_mtx)) {
15772 mtx_destroy(&fp->tx_mtx);
15773 }
15774
15775 if (mtx_initialized(&fp->rx_mtx)) {
15776 mtx_destroy(&fp->rx_mtx);
15777 }
15778 }
15779}
15780
15781
15782/*
15783 * Device attach function.
15784 *
15785 * Allocates device resources, performs secondary chip identification, and
15786 * initializes driver instance variables. This function is called from driver
15787 * load after a successful probe.
15788 *
15789 * Returns:
15790 * 0 = Success, >0 = Failure
15791 */
15792static int
15793bxe_attach(device_t dev)
15794{
15795 struct bxe_softc *sc;
15796
15797 sc = device_get_softc(dev);
15798
15799 BLOGD(sc, DBG_LOAD, "Starting attach...\n");
15800
15801 sc->state = BXE_STATE_CLOSED;
15802
15803 sc->dev = dev;
15804 sc->unit = device_get_unit(dev);
15805
15806 BLOGD(sc, DBG_LOAD, "softc = %p\n", sc);
15807
15808 sc->pcie_bus = pci_get_bus(dev);
15809 sc->pcie_device = pci_get_slot(dev);
15810 sc->pcie_func = pci_get_function(dev);
15811
15812 /* enable bus master capability */
15813 pci_enable_busmaster(dev);
15814
15815 /* get the BARs */
15816 if (bxe_allocate_bars(sc) != 0) {
15817 return (ENXIO);
15818 }
15819
15820 /* initialize the mutexes */
15821 bxe_init_mutexes(sc);
15822
15823 /* prepare the periodic callout */
15824 callout_init(&sc->periodic_callout, 0);
15825
15826 /* prepare the chip taskqueue */
15827 sc->chip_tq_flags = CHIP_TQ_NONE;
15828 snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name),
15829 "bxe%d_chip_tq", sc->unit);
15830 TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc);
15831 sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT,
15832 taskqueue_thread_enqueue,
15833 &sc->chip_tq);
15834 taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */
15835 "%s", sc->chip_tq_name);
15836
15837 /* get device info and set params */
15838 if (bxe_get_device_info(sc) != 0) {
15839 BLOGE(sc, "getting device info\n");
15840 bxe_deallocate_bars(sc);
15841 pci_disable_busmaster(dev);
15842 return (ENXIO);
15843 }
15844
15845 /* get final misc params */
15846 bxe_get_params(sc);
15847
15848 /* set the default MTU (changed via ifconfig) */
15849 sc->mtu = ETHERMTU;
15850
15851 bxe_set_modes_bitmap(sc);
15852
15853 /* XXX
15854 * If in AFEX mode and the function is configured for FCoE
15855 * then bail... no L2 allowed.
15856 */
15857
15858 /* get phy settings from shmem and 'and' against admin settings */
15859 bxe_get_phy_info(sc);
15860
15861 /* initialize the FreeBSD ifnet interface */
15862 if (bxe_init_ifnet(sc) != 0) {
15863 bxe_release_mutexes(sc);
15864 bxe_deallocate_bars(sc);
15865 pci_disable_busmaster(dev);
15866 return (ENXIO);
15867 }
15868
15869 if (bxe_add_cdev(sc) != 0) {
15870 if (sc->ifp != NULL) {
15871 ether_ifdetach(sc->ifp);
15872 }
15873 ifmedia_removeall(&sc->ifmedia);
15874 bxe_release_mutexes(sc);
15875 bxe_deallocate_bars(sc);
15876 pci_disable_busmaster(dev);
15877 return (ENXIO);
15878 }
15879
15880 /* allocate device interrupts */
15881 if (bxe_interrupt_alloc(sc) != 0) {
15882 bxe_del_cdev(sc);
15883 if (sc->ifp != NULL) {
15884 ether_ifdetach(sc->ifp);
15885 }
15886 ifmedia_removeall(&sc->ifmedia);
15887 bxe_release_mutexes(sc);
15888 bxe_deallocate_bars(sc);
15889 pci_disable_busmaster(dev);
15890 return (ENXIO);
15891 }
15892
15893 bxe_init_fp_mutexs(sc);
15894
15895 if (bxe_alloc_buf_rings(sc) != 0) {
15896 bxe_free_buf_rings(sc);
15897 bxe_interrupt_free(sc);
15898 bxe_del_cdev(sc);
15899 if (sc->ifp != NULL) {
15900 ether_ifdetach(sc->ifp);
15901 }
15902 ifmedia_removeall(&sc->ifmedia);
15903 bxe_release_mutexes(sc);
15904 bxe_deallocate_bars(sc);
15905 pci_disable_busmaster(dev);
15906 return (ENXIO);
15907 }
15908
15909 /* allocate ilt */
15910 if (bxe_alloc_ilt_mem(sc) != 0) {
15911 bxe_free_buf_rings(sc);
15912 bxe_interrupt_free(sc);
15913 bxe_del_cdev(sc);
15914 if (sc->ifp != NULL) {
15915 ether_ifdetach(sc->ifp);
15916 }
15917 ifmedia_removeall(&sc->ifmedia);
15918 bxe_release_mutexes(sc);
15919 bxe_deallocate_bars(sc);
15920 pci_disable_busmaster(dev);
15921 return (ENXIO);
15922 }
15923
15924 /* allocate the host hardware/software hsi structures */
15925 if (bxe_alloc_hsi_mem(sc) != 0) {
15926 bxe_free_ilt_mem(sc);
15927 bxe_free_buf_rings(sc);
15928 bxe_interrupt_free(sc);
15929 bxe_del_cdev(sc);
15930 if (sc->ifp != NULL) {
15931 ether_ifdetach(sc->ifp);
15932 }
15933 ifmedia_removeall(&sc->ifmedia);
15934 bxe_release_mutexes(sc);
15935 bxe_deallocate_bars(sc);
15936 pci_disable_busmaster(dev);
15937 return (ENXIO);
15938 }
15939
15940 /* need to reset chip if UNDI was active */
15941 if (IS_PF(sc) && !BXE_NOMCP(sc)) {
15942 /* init fw_seq */
15943 sc->fw_seq =
15944 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
15945 DRV_MSG_SEQ_NUMBER_MASK);
15946 BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq);
15947 bxe_prev_unload(sc);
15948 }
15949
15950#if 1
15951 /* XXX */
15952 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
15953#else
15954 if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) &&
15955 SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) &&
15956 SHMEM2_RD(sc, dcbx_lldp_params_offset) &&
15957 SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) {
15958 bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON);
15959 bxe_dcbx_init_params(sc);
15960 } else {
15961 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
15962 }
15963#endif
15964
15965 /* calculate qm_cid_count */
15966 sc->qm_cid_count = bxe_set_qm_cid_count(sc);
15967 BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count);
15968
15969 sc->max_cos = 1;
15970 bxe_init_multi_cos(sc);
15971
15972 bxe_add_sysctls(sc);
15973
15974 return (0);
15975}
15976
15977/*
15978 * Device detach function.
15979 *
15980 * Stops the controller, resets the controller, and releases resources.
15981 *
15982 * Returns:
15983 * 0 = Success, >0 = Failure
15984 */
15985static int
15986bxe_detach(device_t dev)
15987{
15988 struct bxe_softc *sc;
15989 if_t ifp;
15990
15991 sc = device_get_softc(dev);
15992
15993 BLOGD(sc, DBG_LOAD, "Starting detach...\n");
15994
15995 ifp = sc->ifp;
15996 if (ifp != NULL && if_vlantrunkinuse(ifp)) {
15997 BLOGE(sc, "Cannot detach while VLANs are in use.\n");
15998 return(EBUSY);
15999 }
16000
16001 bxe_del_cdev(sc);
16002
16003 /* stop the periodic callout */
16004 bxe_periodic_stop(sc);
16005
16006 /* stop the chip taskqueue */
16007 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE);
16008 if (sc->chip_tq) {
16009 taskqueue_drain(sc->chip_tq, &sc->chip_tq_task);
16010 taskqueue_free(sc->chip_tq);
16011 sc->chip_tq = NULL;
16012 }
16013
16014 /* stop and reset the controller if it was open */
16015 if (sc->state != BXE_STATE_CLOSED) {
16016 BXE_CORE_LOCK(sc);
16017 bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE);
16018 sc->state = BXE_STATE_DISABLED;
16019 BXE_CORE_UNLOCK(sc);
16020 }
16021
16022 /* release the network interface */
16023 if (ifp != NULL) {
16024 ether_ifdetach(ifp);
16025 }
16026 ifmedia_removeall(&sc->ifmedia);
16027
16028 /* XXX do the following based on driver state... */
16029
16030 /* free the host hardware/software hsi structures */
16031 bxe_free_hsi_mem(sc);
16032
16033 /* free ilt */
16034 bxe_free_ilt_mem(sc);
16035
16036 bxe_free_buf_rings(sc);
16037
16038 /* release the interrupts */
16039 bxe_interrupt_free(sc);
16040
16041 /* Release the mutexes*/
16042 bxe_destroy_fp_mutexs(sc);
16043 bxe_release_mutexes(sc);
16044
16045
16046 /* Release the PCIe BAR mapped memory */
16047 bxe_deallocate_bars(sc);
16048
16049 /* Release the FreeBSD interface. */
16050 if (sc->ifp != NULL) {
16051 if_free(sc->ifp);
16052 }
16053
16054 pci_disable_busmaster(dev);
16055
16056 return (0);
16057}
16058
16059/*
16060 * Device shutdown function.
16061 *
16062 * Stops and resets the controller.
16063 *
16064 * Returns:
16065 * Nothing
16066 */
16067static int
16068bxe_shutdown(device_t dev)
16069{
16070 struct bxe_softc *sc;
16071
16072 sc = device_get_softc(dev);
16073
16074 BLOGD(sc, DBG_LOAD, "Starting shutdown...\n");
16075
16076 /* stop the periodic callout */
16077 bxe_periodic_stop(sc);
16078
16079 BXE_CORE_LOCK(sc);
16080 bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE);
16081 BXE_CORE_UNLOCK(sc);
16082
16083 return (0);
16084}
16085
16086void
16087bxe_igu_ack_sb(struct bxe_softc *sc,
16088 uint8_t igu_sb_id,
16089 uint8_t segment,
16090 uint16_t index,
16091 uint8_t op,
16092 uint8_t update)
16093{
16094 uint32_t igu_addr = sc->igu_base_addr;
16095 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
16096 bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr);
16097}
16098
16099static void
16100bxe_igu_clear_sb_gen(struct bxe_softc *sc,
16101 uint8_t func,
16102 uint8_t idu_sb_id,
16103 uint8_t is_pf)
16104{
16105 uint32_t data, ctl, cnt = 100;
16106 uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
16107 uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
16108 uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
16109 uint32_t sb_bit = 1 << (idu_sb_id%32);
16110 uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
16111 uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
16112
16113 /* Not supported in BC mode */
16114 if (CHIP_INT_MODE_IS_BC(sc)) {
16115 return;
16116 }
16117
16118 data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
16119 IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
16120 IGU_REGULAR_CLEANUP_SET |
16121 IGU_REGULAR_BCLEANUP);
16122
16123 ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
16124 (func_encode << IGU_CTRL_REG_FID_SHIFT) |
16125 (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
16126
16127 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16128 data, igu_addr_data);
16129 REG_WR(sc, igu_addr_data, data);
16130
16131 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16132 BUS_SPACE_BARRIER_WRITE);
16133 mb();
16134
16135 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16136 ctl, igu_addr_ctl);
16137 REG_WR(sc, igu_addr_ctl, ctl);
16138
16139 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16140 BUS_SPACE_BARRIER_WRITE);
16141 mb();
16142
16143 /* wait for clean up to finish */
16144 while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
16145 DELAY(20000);
16146 }
16147
16148 if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
16149 BLOGD(sc, DBG_LOAD,
16150 "Unable to finish IGU cleanup: "
16151 "idu_sb_id %d offset %d bit %d (cnt %d)\n",
16152 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
16153 }
16154}
16155
16156static void
16157bxe_igu_clear_sb(struct bxe_softc *sc,
16158 uint8_t idu_sb_id)
16159{
16160 bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
16161}
16162
16163
16164
16165
16166
16167
16168
16169/*******************/
16170/* ECORE CALLBACKS */
16171/*******************/
16172
16173static void
16174bxe_reset_common(struct bxe_softc *sc)
16175{
16176 uint32_t val = 0x1400;
16177
16178 /* reset_common */
16179 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f);
16180
16181 if (CHIP_IS_E3(sc)) {
16182 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
16183 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
16184 }
16185
16186 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
16187}
16188
16189static void
16190bxe_common_init_phy(struct bxe_softc *sc)
16191{
16192 uint32_t shmem_base[2];
16193 uint32_t shmem2_base[2];
16194
16195 /* Avoid common init in case MFW supports LFA */
16196 if (SHMEM2_RD(sc, size) >
16197 (uint32_t)offsetof(struct shmem2_region,
16198 lfa_host_addr[SC_PORT(sc)])) {
16199 return;
16200 }
16201
16202 shmem_base[0] = sc->devinfo.shmem_base;
16203 shmem2_base[0] = sc->devinfo.shmem2_base;
16204
16205 if (!CHIP_IS_E1x(sc)) {
16206 shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr);
16207 shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
16208 }
16209
16210 bxe_acquire_phy_lock(sc);
16211 elink_common_init_phy(sc, shmem_base, shmem2_base,
16212 sc->devinfo.chip_id, 0);
16213 bxe_release_phy_lock(sc);
16214}
16215
16216static void
16217bxe_pf_disable(struct bxe_softc *sc)
16218{
16219 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
16220
16221 val &= ~IGU_PF_CONF_FUNC_EN;
16222
16223 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
16224 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
16225 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
16226}
16227
16228static void
16229bxe_init_pxp(struct bxe_softc *sc)
16230{
16231 uint16_t devctl;
16232 int r_order, w_order;
16233
16234 devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2);
16235
16236 BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl);
16237
16238 w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5);
16239
16240 if (sc->mrrs == -1) {
16241 r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12);
16242 } else {
16243 BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs);
16244 r_order = sc->mrrs;
16245 }
16246
16247 ecore_init_pxp_arb(sc, r_order, w_order);
16248}
16249
16250static uint32_t
16251bxe_get_pretend_reg(struct bxe_softc *sc)
16252{
16253 uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
16254 uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
16255 return (base + (SC_ABS_FUNC(sc)) * stride);
16256}
16257
16258/*
16259 * Called only on E1H or E2.
16260 * When pretending to be PF, the pretend value is the function number 0..7.
16261 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
16262 * combination.
16263 */
16264static int
16265bxe_pretend_func(struct bxe_softc *sc,
16266 uint16_t pretend_func_val)
16267{
16268 uint32_t pretend_reg;
16269
16270 if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) {
16271 return (-1);
16272 }
16273
16274 /* get my own pretend register */
16275 pretend_reg = bxe_get_pretend_reg(sc);
16276 REG_WR(sc, pretend_reg, pretend_func_val);
16277 REG_RD(sc, pretend_reg);
16278 return (0);
16279}
16280
16281static void
16282bxe_iov_init_dmae(struct bxe_softc *sc)
16283{
16284 return;
16285}
16286
16287static void
16288bxe_iov_init_dq(struct bxe_softc *sc)
16289{
16290 return;
16291}
16292
16293/* send a NIG loopback debug packet */
16294static void
16295bxe_lb_pckt(struct bxe_softc *sc)
16296{
16297 uint32_t wb_write[3];
16298
16299 /* Ethernet source and destination addresses */
16300 wb_write[0] = 0x55555555;
16301 wb_write[1] = 0x55555555;
16302 wb_write[2] = 0x20; /* SOP */
16303 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16304
16305 /* NON-IP protocol */
16306 wb_write[0] = 0x09000000;
16307 wb_write[1] = 0x55555555;
16308 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */
16309 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16310}
16311
16312/*
16313 * Some of the internal memories are not directly readable from the driver.
16314 * To test them we send debug packets.
16315 */
16316static int
16317bxe_int_mem_test(struct bxe_softc *sc)
16318{
16319 int factor;
16320 int count, i;
16321 uint32_t val = 0;
16322
16323 if (CHIP_REV_IS_FPGA(sc)) {
16324 factor = 120;
16325 } else if (CHIP_REV_IS_EMUL(sc)) {
16326 factor = 200;
16327 } else {
16328 factor = 1;
16329 }
16330
16331 /* disable inputs of parser neighbor blocks */
16332 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16333 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16334 REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16335 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16336
16337 /* write 0 to parser credits for CFC search request */
16338 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16339
16340 /* send Ethernet packet */
16341 bxe_lb_pckt(sc);
16342
16343 /* TODO do i reset NIG statistic? */
16344 /* Wait until NIG register shows 1 packet of size 0x10 */
16345 count = 1000 * factor;
16346 while (count) {
16347 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16348 val = *BXE_SP(sc, wb_data[0]);
16349 if (val == 0x10) {
16350 break;
16351 }
16352
16353 DELAY(10000);
16354 count--;
16355 }
16356
16357 if (val != 0x10) {
16358 BLOGE(sc, "NIG timeout val=0x%x\n", val);
16359 return (-1);
16360 }
16361
16362 /* wait until PRS register shows 1 packet */
16363 count = (1000 * factor);
16364 while (count) {
16365 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16366 if (val == 1) {
16367 break;
16368 }
16369
16370 DELAY(10000);
16371 count--;
16372 }
16373
16374 if (val != 0x1) {
16375 BLOGE(sc, "PRS timeout val=0x%x\n", val);
16376 return (-2);
16377 }
16378
16379 /* Reset and init BRB, PRS */
16380 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16381 DELAY(50000);
16382 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16383 DELAY(50000);
16384 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16385 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16386
16387 /* Disable inputs of parser neighbor blocks */
16388 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16389 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16390 REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16391 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16392
16393 /* Write 0 to parser credits for CFC search request */
16394 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16395
16396 /* send 10 Ethernet packets */
16397 for (i = 0; i < 10; i++) {
16398 bxe_lb_pckt(sc);
16399 }
16400
16401 /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */
16402 count = (1000 * factor);
16403 while (count) {
16404 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16405 val = *BXE_SP(sc, wb_data[0]);
16406 if (val == 0xb0) {
16407 break;
16408 }
16409
16410 DELAY(10000);
16411 count--;
16412 }
16413
16414 if (val != 0xb0) {
16415 BLOGE(sc, "NIG timeout val=0x%x\n", val);
16416 return (-3);
16417 }
16418
16419 /* Wait until PRS register shows 2 packets */
16420 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16421 if (val != 2) {
16422 BLOGE(sc, "PRS timeout val=0x%x\n", val);
16423 }
16424
16425 /* Write 1 to parser credits for CFC search request */
16426 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
16427
16428 /* Wait until PRS register shows 3 packets */
16429 DELAY(10000 * factor);
16430
16431 /* Wait until NIG register shows 1 packet of size 0x10 */
16432 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16433 if (val != 3) {
16434 BLOGE(sc, "PRS timeout val=0x%x\n", val);
16435 }
16436
16437 /* clear NIG EOP FIFO */
16438 for (i = 0; i < 11; i++) {
16439 REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO);
16440 }
16441
16442 val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY);
16443 if (val != 1) {
16444 BLOGE(sc, "clear of NIG failed val=0x%x\n", val);
16445 return (-4);
16446 }
16447
16448 /* Reset and init BRB, PRS, NIG */
16449 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16450 DELAY(50000);
16451 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16452 DELAY(50000);
16453 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16454 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16455 if (!CNIC_SUPPORT(sc)) {
16456 /* set NIC mode */
16457 REG_WR(sc, PRS_REG_NIC_MODE, 1);
16458 }
16459
16460 /* Enable inputs of parser neighbor blocks */
16461 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff);
16462 REG_WR(sc, TCM_REG_PRS_IFEN, 0x1);
16463 REG_WR(sc, CFC_REG_DEBUG0, 0x0);
16464 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1);
16465
16466 return (0);
16467}
16468
16469static void
16470bxe_setup_fan_failure_detection(struct bxe_softc *sc)
16471{
16472 int is_required;
16473 uint32_t val;
16474 int port;
16475
16476 is_required = 0;
16477 val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
16478 SHARED_HW_CFG_FAN_FAILURE_MASK);
16479
16480 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
16481 is_required = 1;
16482 }
16483 /*
16484 * The fan failure mechanism is usually related to the PHY type since
16485 * the power consumption of the board is affected by the PHY. Currently,
16486 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
16487 */
16488 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
16489 for (port = PORT_0; port < PORT_MAX; port++) {
16490 is_required |= elink_fan_failure_det_req(sc,
16491 sc->devinfo.shmem_base,
16492 sc->devinfo.shmem2_base,
16493 port);
16494 }
16495 }
16496
16497 BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required);
16498
16499 if (is_required == 0) {
16500 return;
16501 }
16502
16503 /* Fan failure is indicated by SPIO 5 */
16504 bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
16505
16506 /* set to active low mode */
16507 val = REG_RD(sc, MISC_REG_SPIO_INT);
16508 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
16509 REG_WR(sc, MISC_REG_SPIO_INT, val);
16510
16511 /* enable interrupt to signal the IGU */
16512 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
16513 val |= MISC_SPIO_SPIO5;
16514 REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
16515}
16516
16517static void
16518bxe_enable_blocks_attention(struct bxe_softc *sc)
16519{
16520 uint32_t val;
16521
16522 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
16523 if (!CHIP_IS_E1x(sc)) {
16524 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
16525 } else {
16526 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
16527 }
16528 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
16529 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
16530 /*
16531 * mask read length error interrupts in brb for parser
16532 * (parsing unit and 'checksum and crc' unit)
16533 * these errors are legal (PU reads fixed length and CAC can cause
16534 * read length error on truncated packets)
16535 */
16536 REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
16537 REG_WR(sc, QM_REG_QM_INT_MASK, 0);
16538 REG_WR(sc, TM_REG_TM_INT_MASK, 0);
16539 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
16540 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
16541 REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
16542/* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
16543/* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
16544 REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
16545 REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
16546 REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
16547/* REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
16548/* REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
16549 REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
16550 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
16551 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
16552 REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
16553/* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
16554/* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
16555
16556 val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
16557 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
16558 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
16559 if (!CHIP_IS_E1x(sc)) {
16560 val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
16561 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
16562 }
16563 REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
16564
16565 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
16566 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
16567 REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
16568/* REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
16569
16570 if (!CHIP_IS_E1x(sc)) {
16571 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
16572 REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
16573 }
16574
16575 REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
16576 REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
16577/* REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
16578 REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */
16579}
16580
16581/**
16582 * bxe_init_hw_common - initialize the HW at the COMMON phase.
16583 *
16584 * @sc: driver handle
16585 */
16586static int
16587bxe_init_hw_common(struct bxe_softc *sc)
16588{
16589 uint8_t abs_func_id;
16590 uint32_t val;
16591
16592 BLOGD(sc, DBG_LOAD, "starting common init for func %d\n",
16593 SC_ABS_FUNC(sc));
16594
16595 /*
16596 * take the RESET lock to protect undi_unload flow from accessing
16597 * registers while we are resetting the chip
16598 */
16599 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
16600
16601 bxe_reset_common(sc);
16602
16603 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
16604
16605 val = 0xfffc;
16606 if (CHIP_IS_E3(sc)) {
16607 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
16608 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
16609 }
16610
16611 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
16612
16613 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
16614
16615 ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
16616 BLOGD(sc, DBG_LOAD, "after misc block init\n");
16617
16618 if (!CHIP_IS_E1x(sc)) {
16619 /*
16620 * 4-port mode or 2-port mode we need to turn off master-enable for
16621 * everyone. After that we turn it back on for self. So, we disregard
16622 * multi-function, and always disable all functions on the given path,
16623 * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
16624 */
16625 for (abs_func_id = SC_PATH(sc);
16626 abs_func_id < (E2_FUNC_MAX * 2);
16627 abs_func_id += 2) {
16628 if (abs_func_id == SC_ABS_FUNC(sc)) {
16629 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
16630 continue;
16631 }
16632
16633 bxe_pretend_func(sc, abs_func_id);
16634
16635 /* clear pf enable */
16636 bxe_pf_disable(sc);
16637
16638 bxe_pretend_func(sc, SC_ABS_FUNC(sc));
16639 }
16640 }
16641
16642 BLOGD(sc, DBG_LOAD, "after pf disable\n");
16643
16644 ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
16645
16646 if (CHIP_IS_E1(sc)) {
16647 /*
16648 * enable HW interrupt from PXP on USDM overflow
16649 * bit 16 on INT_MASK_0
16650 */
16651 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
16652 }
16653
16654 ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
16655 bxe_init_pxp(sc);
16656
16657#ifdef __BIG_ENDIAN
16658 REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
16659 REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
16660 REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
16661 REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
16662 REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
16663 /* make sure this value is 0 */
16664 REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
16665
16666 //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
16667 REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
16668 REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
16669 REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
16670 REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
16671#endif
16672
16673 ecore_ilt_init_page_size(sc, INITOP_SET);
16674
16675 if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
16676 REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
16677 }
16678
16679 /* let the HW do it's magic... */
16680 DELAY(100000);
16681
16682 /* finish PXP init */
16683 val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
16684 if (val != 1) {
16685 BLOGE(sc, "PXP2 CFG failed PXP2_REG_RQ_CFG_DONE val = 0x%x\n",
16686 val);
16687 return (-1);
16688 }
16689 val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
16690 if (val != 1) {
16691 BLOGE(sc, "PXP2 RD_INIT failed val = 0x%x\n", val);
16692 return (-1);
16693 }
16694
16695 BLOGD(sc, DBG_LOAD, "after pxp init\n");
16696
16697 /*
16698 * Timer bug workaround for E2 only. We need to set the entire ILT to have
16699 * entries with value "0" and valid bit on. This needs to be done by the
16700 * first PF that is loaded in a path (i.e. common phase)
16701 */
16702 if (!CHIP_IS_E1x(sc)) {
16703/*
16704 * In E2 there is a bug in the timers block that can cause function 6 / 7
16705 * (i.e. vnic3) to start even if it is marked as "scan-off".
16706 * This occurs when a different function (func2,3) is being marked
16707 * as "scan-off". Real-life scenario for example: if a driver is being
16708 * load-unloaded while func6,7 are down. This will cause the timer to access
16709 * the ilt, translate to a logical address and send a request to read/write.
16710 * Since the ilt for the function that is down is not valid, this will cause
16711 * a translation error which is unrecoverable.
16712 * The Workaround is intended to make sure that when this happens nothing
16713 * fatal will occur. The workaround:
16714 * 1. First PF driver which loads on a path will:
16715 * a. After taking the chip out of reset, by using pretend,
16716 * it will write "0" to the following registers of
16717 * the other vnics.
16718 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
16719 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
16720 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
16721 * And for itself it will write '1' to
16722 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
16723 * dmae-operations (writing to pram for example.)
16724 * note: can be done for only function 6,7 but cleaner this
16725 * way.
16726 * b. Write zero+valid to the entire ILT.
16727 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of
16728 * VNIC3 (of that port). The range allocated will be the
16729 * entire ILT. This is needed to prevent ILT range error.
16730 * 2. Any PF driver load flow:
16731 * a. ILT update with the physical addresses of the allocated
16732 * logical pages.
16733 * b. Wait 20msec. - note that this timeout is needed to make
16734 * sure there are no requests in one of the PXP internal
16735 * queues with "old" ILT addresses.
16736 * c. PF enable in the PGLC.
16737 * d. Clear the was_error of the PF in the PGLC. (could have
16738 * occurred while driver was down)
16739 * e. PF enable in the CFC (WEAK + STRONG)
16740 * f. Timers scan enable
16741 * 3. PF driver unload flow:
16742 * a. Clear the Timers scan_en.
16743 * b. Polling for scan_on=0 for that PF.
16744 * c. Clear the PF enable bit in the PXP.
16745 * d. Clear the PF enable in the CFC (WEAK + STRONG)
16746 * e. Write zero+valid to all ILT entries (The valid bit must
16747 * stay set)
16748 * f. If this is VNIC 3 of a port then also init
16749 * first_timers_ilt_entry to zero and last_timers_ilt_entry
16750 * to the last enrty in the ILT.
16751 *
16752 * Notes:
16753 * Currently the PF error in the PGLC is non recoverable.
16754 * In the future the there will be a recovery routine for this error.
16755 * Currently attention is masked.
16756 * Having an MCP lock on the load/unload process does not guarantee that
16757 * there is no Timer disable during Func6/7 enable. This is because the
16758 * Timers scan is currently being cleared by the MCP on FLR.
16759 * Step 2.d can be done only for PF6/7 and the driver can also check if
16760 * there is error before clearing it. But the flow above is simpler and
16761 * more general.
16762 * All ILT entries are written by zero+valid and not just PF6/7
16763 * ILT entries since in the future the ILT entries allocation for
16764 * PF-s might be dynamic.
16765 */
16766 struct ilt_client_info ilt_cli;
16767 struct ecore_ilt ilt;
16768
16769 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
16770 memset(&ilt, 0, sizeof(struct ecore_ilt));
16771
16772 /* initialize dummy TM client */
16773 ilt_cli.start = 0;
16774 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
16775 ilt_cli.client_num = ILT_CLIENT_TM;
16776
16777 /*
16778 * Step 1: set zeroes to all ilt page entries with valid bit on
16779 * Step 2: set the timers first/last ilt entry to point
16780 * to the entire range to prevent ILT range error for 3rd/4th
16781 * vnic (this code assumes existence of the vnic)
16782 *
16783 * both steps performed by call to ecore_ilt_client_init_op()
16784 * with dummy TM client
16785 *
16786 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
16787 * and his brother are split registers
16788 */
16789
16790 bxe_pretend_func(sc, (SC_PATH(sc) + 6));
16791 ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
16792 bxe_pretend_func(sc, SC_ABS_FUNC(sc));
16793
16794 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN);
16795 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN);
16796 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
16797 }
16798
16799 REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
16800 REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
16801
16802 if (!CHIP_IS_E1x(sc)) {
16803 int factor = CHIP_REV_IS_EMUL(sc) ? 1000 :
16804 (CHIP_REV_IS_FPGA(sc) ? 400 : 0);
16805
16806 ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
16807 ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
16808
16809 /* let the HW do it's magic... */
16810 do {
16811 DELAY(200000);
16812 val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
16813 } while (factor-- && (val != 1));
16814
16815 if (val != 1) {
16816 BLOGE(sc, "ATC_INIT failed val = 0x%x\n", val);
16817 return (-1);
16818 }
16819 }
16820
16821 BLOGD(sc, DBG_LOAD, "after pglue and atc init\n");
16822
16823 ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
16824
16825 bxe_iov_init_dmae(sc);
16826
16827 /* clean the DMAE memory */
16828 sc->dmae_ready = 1;
16829 ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1);
16830
16831 ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
16832
16833 ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
16834
16835 ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
16836
16837 ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
16838
16839 bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
16840 bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
16841 bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
16842 bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
16843
16844 ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
16845
16846 /* QM queues pointers table */
16847 ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
16848
16849 /* soft reset pulse */
16850 REG_WR(sc, QM_REG_SOFT_RESET, 1);
16851 REG_WR(sc, QM_REG_SOFT_RESET, 0);
16852
16853 if (CNIC_SUPPORT(sc))
16854 ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
16855
16856 ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
16857 REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT);
16858 if (!CHIP_REV_IS_SLOW(sc)) {
16859 /* enable hw interrupt from doorbell Q */
16860 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
16861 }
16862
16863 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16864
16865 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16866 REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
16867
16868 if (!CHIP_IS_E1(sc)) {
16869 REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
16870 }
16871
16872 if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
16873 if (IS_MF_AFEX(sc)) {
16874 /*
16875 * configure that AFEX and VLAN headers must be
16876 * received in AFEX mode
16877 */
16878 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
16879 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
16880 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
16881 REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
16882 REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
16883 } else {
16884 /*
16885 * Bit-map indicating which L2 hdrs may appear
16886 * after the basic Ethernet header
16887 */
16888 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
16889 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
16890 }
16891 }
16892
16893 ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
16894 ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
16895 ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
16896 ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
16897
16898 if (!CHIP_IS_E1x(sc)) {
16899 /* reset VFC memories */
16900 REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
16901 VFC_MEMORIES_RST_REG_CAM_RST |
16902 VFC_MEMORIES_RST_REG_RAM_RST);
16903 REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
16904 VFC_MEMORIES_RST_REG_CAM_RST |
16905 VFC_MEMORIES_RST_REG_RAM_RST);
16906
16907 DELAY(20000);
16908 }
16909
16910 ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
16911 ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
16912 ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
16913 ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
16914
16915 /* sync semi rtc */
16916 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
16917 0x80000000);
16918 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
16919 0x80000000);
16920
16921 ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
16922 ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
16923 ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
16924
16925 if (!CHIP_IS_E1x(sc)) {
16926 if (IS_MF_AFEX(sc)) {
16927 /*
16928 * configure that AFEX and VLAN headers must be
16929 * sent in AFEX mode
16930 */
16931 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
16932 REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
16933 REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
16934 REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
16935 REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
16936 } else {
16937 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
16938 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
16939 }
16940 }
16941
16942 REG_WR(sc, SRC_REG_SOFT_RST, 1);
16943
16944 ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
16945
16946 if (CNIC_SUPPORT(sc)) {
16947 REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
16948 REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
16949 REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
16950 REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
16951 REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
16952 REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
16953 REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
16954 REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
16955 REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
16956 REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
16957 }
16958 REG_WR(sc, SRC_REG_SOFT_RST, 0);
16959
16960 if (sizeof(union cdu_context) != 1024) {
16961 /* we currently assume that a context is 1024 bytes */
16962 BLOGE(sc, "please adjust the size of cdu_context(%ld)\n",
16963 (long)sizeof(union cdu_context));
16964 }
16965
16966 ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
16967 val = (4 << 24) + (0 << 12) + 1024;
16968 REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
16969
16970 ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
16971
16972 REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
16973 /* enable context validation interrupt from CFC */
16974 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
16975
16976 /* set the thresholds to prevent CFC/CDU race */
16977 REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
16978 ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
16979
16980 if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) {
16981 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
16982 }
16983
16984 ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
16985 ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
16986
16987 /* Reset PCIE errors for debug */
16988 REG_WR(sc, 0x2814, 0xffffffff);
16989 REG_WR(sc, 0x3820, 0xffffffff);
16990
16991 if (!CHIP_IS_E1x(sc)) {
16992 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
16993 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
16994 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
16995 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
16996 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
16997 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
16998 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
16999 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
17000 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
17001 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
17002 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
17003 }
17004
17005 ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
17006
17007 if (!CHIP_IS_E1(sc)) {
17008 /* in E3 this done in per-port section */
17009 if (!CHIP_IS_E3(sc))
17010 REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
17011 }
17012
17013 if (CHIP_IS_E1H(sc)) {
17014 /* not applicable for E2 (and above ...) */
17015 REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
17016 }
17017
17018 if (CHIP_REV_IS_SLOW(sc)) {
17019 DELAY(200000);
17020 }
17021
17022 /* finish CFC init */
17023 val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
17024 if (val != 1) {
17025 BLOGE(sc, "CFC LL_INIT failed val=0x%x\n", val);
17026 return (-1);
17027 }
17028 val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
17029 if (val != 1) {
17030 BLOGE(sc, "CFC AC_INIT failed val=0x%x\n", val);
17031 return (-1);
17032 }
17033 val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
17034 if (val != 1) {
17035 BLOGE(sc, "CFC CAM_INIT failed val=0x%x\n", val);
17036 return (-1);
17037 }
17038 REG_WR(sc, CFC_REG_DEBUG0, 0);
17039
17040 if (CHIP_IS_E1(sc)) {
17041 /* read NIG statistic to see if this is our first up since powerup */
17042 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
17043 val = *BXE_SP(sc, wb_data[0]);
17044
17045 /* do internal memory self test */
17046 if ((val == 0) && bxe_int_mem_test(sc)) {
17047 BLOGE(sc, "internal mem self test failed val=0x%x\n", val);
17048 return (-1);
17049 }
17050 }
17051
17052 bxe_setup_fan_failure_detection(sc);
17053
17054 /* clear PXP2 attentions */
17055 REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
17056
17057 bxe_enable_blocks_attention(sc);
17058
17059 if (!CHIP_REV_IS_SLOW(sc)) {
17060 ecore_enable_blocks_parity(sc);
17061 }
17062
17063 if (!BXE_NOMCP(sc)) {
17064 if (CHIP_IS_E1x(sc)) {
17065 bxe_common_init_phy(sc);
17066 }
17067 }
17068
17069 return (0);
17070}
17071
17072/**
17073 * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase.
17074 *
17075 * @sc: driver handle
17076 */
17077static int
17078bxe_init_hw_common_chip(struct bxe_softc *sc)
17079{
17080 int rc = bxe_init_hw_common(sc);
17081
17082 if (rc) {
17083 BLOGE(sc, "bxe_init_hw_common failed rc=%d\n", rc);
17084 return (rc);
17085 }
17086
17087 /* In E2 2-PORT mode, same ext phy is used for the two paths */
17088 if (!BXE_NOMCP(sc)) {
17089 bxe_common_init_phy(sc);
17090 }
17091
17092 return (0);
17093}
17094
17095static int
17096bxe_init_hw_port(struct bxe_softc *sc)
17097{
17098 int port = SC_PORT(sc);
17099 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
17100 uint32_t low, high;
17101 uint32_t val;
17102
17103 BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port);
17104
17105 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
17106
17107 ecore_init_block(sc, BLOCK_MISC, init_phase);
17108 ecore_init_block(sc, BLOCK_PXP, init_phase);
17109 ecore_init_block(sc, BLOCK_PXP2, init_phase);
17110
17111 /*
17112 * Timers bug workaround: disables the pf_master bit in pglue at
17113 * common phase, we need to enable it here before any dmae access are
17114 * attempted. Therefore we manually added the enable-master to the
17115 * port phase (it also happens in the function phase)
17116 */
17117 if (!CHIP_IS_E1x(sc)) {
17118 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17119 }
17120
17121 ecore_init_block(sc, BLOCK_ATC, init_phase);
17122 ecore_init_block(sc, BLOCK_DMAE, init_phase);
17123 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
17124 ecore_init_block(sc, BLOCK_QM, init_phase);
17125
17126 ecore_init_block(sc, BLOCK_TCM, init_phase);
17127 ecore_init_block(sc, BLOCK_UCM, init_phase);
17128 ecore_init_block(sc, BLOCK_CCM, init_phase);
17129 ecore_init_block(sc, BLOCK_XCM, init_phase);
17130
17131 /* QM cid (connection) count */
17132 ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
17133
17134 if (CNIC_SUPPORT(sc)) {
17135 ecore_init_block(sc, BLOCK_TM, init_phase);
17136 REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20);
17137 REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
17138 }
17139
17140 ecore_init_block(sc, BLOCK_DORQ, init_phase);
17141
17142 ecore_init_block(sc, BLOCK_BRB1, init_phase);
17143
17144 if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) {
17145 if (IS_MF(sc)) {
17146 low = (BXE_ONE_PORT(sc) ? 160 : 246);
17147 } else if (sc->mtu > 4096) {
17148 if (BXE_ONE_PORT(sc)) {
17149 low = 160;
17150 } else {
17151 val = sc->mtu;
17152 /* (24*1024 + val*4)/256 */
17153 low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
17154 }
17155 } else {
17156 low = (BXE_ONE_PORT(sc) ? 80 : 160);
17157 }
17158 high = (low + 56); /* 14*1024/256 */
17159 REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
17160 REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
17161 }
17162
17163 if (CHIP_IS_MODE_4_PORT(sc)) {
17164 REG_WR(sc, SC_PORT(sc) ?
17165 BRB1_REG_MAC_GUARANTIED_1 :
17166 BRB1_REG_MAC_GUARANTIED_0, 40);
17167 }
17168
17169 ecore_init_block(sc, BLOCK_PRS, init_phase);
17170 if (CHIP_IS_E3B0(sc)) {
17171 if (IS_MF_AFEX(sc)) {
17172 /* configure headers for AFEX mode */
17173 REG_WR(sc, SC_PORT(sc) ?
17174 PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17175 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
17176 REG_WR(sc, SC_PORT(sc) ?
17177 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
17178 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
17179 REG_WR(sc, SC_PORT(sc) ?
17180 PRS_REG_MUST_HAVE_HDRS_PORT_1 :
17181 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
17182 } else {
17183 /* Ovlan exists only if we are in multi-function +
17184 * switch-dependent mode, in switch-independent there
17185 * is no ovlan headers
17186 */
17187 REG_WR(sc, SC_PORT(sc) ?
17188 PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17189 PRS_REG_HDRS_AFTER_BASIC_PORT_0,
17190 (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
17191 }
17192 }
17193
17194 ecore_init_block(sc, BLOCK_TSDM, init_phase);
17195 ecore_init_block(sc, BLOCK_CSDM, init_phase);
17196 ecore_init_block(sc, BLOCK_USDM, init_phase);
17197 ecore_init_block(sc, BLOCK_XSDM, init_phase);
17198
17199 ecore_init_block(sc, BLOCK_TSEM, init_phase);
17200 ecore_init_block(sc, BLOCK_USEM, init_phase);
17201 ecore_init_block(sc, BLOCK_CSEM, init_phase);
17202 ecore_init_block(sc, BLOCK_XSEM, init_phase);
17203
17204 ecore_init_block(sc, BLOCK_UPB, init_phase);
17205 ecore_init_block(sc, BLOCK_XPB, init_phase);
17206
17207 ecore_init_block(sc, BLOCK_PBF, init_phase);
17208
17209 if (CHIP_IS_E1x(sc)) {
17210 /* configure PBF to work without PAUSE mtu 9000 */
17211 REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
17212
17213 /* update threshold */
17214 REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
17215 /* update init credit */
17216 REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
17217
17218 /* probe changes */
17219 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1);
17220 DELAY(50);
17221 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0);
17222 }
17223
17224 if (CNIC_SUPPORT(sc)) {
17225 ecore_init_block(sc, BLOCK_SRC, init_phase);
17226 }
17227
17228 ecore_init_block(sc, BLOCK_CDU, init_phase);
17229 ecore_init_block(sc, BLOCK_CFC, init_phase);
17230
17231 if (CHIP_IS_E1(sc)) {
17232 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
17233 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
17234 }
17235 ecore_init_block(sc, BLOCK_HC, init_phase);
17236
17237 ecore_init_block(sc, BLOCK_IGU, init_phase);
17238
17239 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
17240 /* init aeu_mask_attn_func_0/1:
17241 * - SF mode: bits 3-7 are masked. only bits 0-2 are in use
17242 * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
17243 * bits 4-7 are used for "per vn group attention" */
17244 val = IS_MF(sc) ? 0xF7 : 0x7;
17245 /* Enable DCBX attention for all but E1 */
17246 val |= CHIP_IS_E1(sc) ? 0 : 0x10;
17247 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
17248
17249 ecore_init_block(sc, BLOCK_NIG, init_phase);
17250
17251 if (!CHIP_IS_E1x(sc)) {
17252 /* Bit-map indicating which L2 hdrs may appear after the
17253 * basic Ethernet header
17254 */
17255 if (IS_MF_AFEX(sc)) {
17256 REG_WR(sc, SC_PORT(sc) ?
17257 NIG_REG_P1_HDRS_AFTER_BASIC :
17258 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
17259 } else {
17260 REG_WR(sc, SC_PORT(sc) ?
17261 NIG_REG_P1_HDRS_AFTER_BASIC :
17262 NIG_REG_P0_HDRS_AFTER_BASIC,
17263 IS_MF_SD(sc) ? 7 : 6);
17264 }
17265
17266 if (CHIP_IS_E3(sc)) {
17267 REG_WR(sc, SC_PORT(sc) ?
17268 NIG_REG_LLH1_MF_MODE :
17269 NIG_REG_LLH_MF_MODE, IS_MF(sc));
17270 }
17271 }
17272 if (!CHIP_IS_E3(sc)) {
17273 REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
17274 }
17275
17276 if (!CHIP_IS_E1(sc)) {
17277 /* 0x2 disable mf_ov, 0x1 enable */
17278 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
17279 (IS_MF_SD(sc) ? 0x1 : 0x2));
17280
17281 if (!CHIP_IS_E1x(sc)) {
17282 val = 0;
17283 switch (sc->devinfo.mf_info.mf_mode) {
17284 case MULTI_FUNCTION_SD:
17285 val = 1;
17286 break;
17287 case MULTI_FUNCTION_SI:
17288 case MULTI_FUNCTION_AFEX:
17289 val = 2;
17290 break;
17291 }
17292
17293 REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
17294 NIG_REG_LLH0_CLS_TYPE), val);
17295 }
17296 REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
17297 REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
17298 REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
17299 }
17300
17301 /* If SPIO5 is set to generate interrupts, enable it for this port */
17302 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17303 if (val & MISC_SPIO_SPIO5) {
17304 uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
17305 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
17306 val = REG_RD(sc, reg_addr);
17307 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
17308 REG_WR(sc, reg_addr, val);
17309 }
17310
17311 return (0);
17312}
17313
17314static uint32_t
17315bxe_flr_clnup_reg_poll(struct bxe_softc *sc,
17316 uint32_t reg,
17317 uint32_t expected,
17318 uint32_t poll_count)
17319{
17320 uint32_t cur_cnt = poll_count;
17321 uint32_t val;
17322
17323 while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
17324 DELAY(FLR_WAIT_INTERVAL);
17325 }
17326
17327 return (val);
17328}
17329
17330static int
17331bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc,
17332 uint32_t reg,
17333 char *msg,
17334 uint32_t poll_cnt)
17335{
17336 uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
17337
17338 if (val != 0) {
17339 BLOGE(sc, "%s usage count=%d\n", msg, val);
17340 return (1);
17341 }
17342
17343 return (0);
17344}
17345
17346/* Common routines with VF FLR cleanup */
17347static uint32_t
17348bxe_flr_clnup_poll_count(struct bxe_softc *sc)
17349{
17350 /* adjust polling timeout */
17351 if (CHIP_REV_IS_EMUL(sc)) {
17352 return (FLR_POLL_CNT * 2000);
17353 }
17354
17355 if (CHIP_REV_IS_FPGA(sc)) {
17356 return (FLR_POLL_CNT * 120);
17357 }
17358
17359 return (FLR_POLL_CNT);
17360}
17361
17362static int
17363bxe_poll_hw_usage_counters(struct bxe_softc *sc,
17364 uint32_t poll_cnt)
17365{
17366 /* wait for CFC PF usage-counter to zero (includes all the VFs) */
17367 if (bxe_flr_clnup_poll_hw_counter(sc,
17368 CFC_REG_NUM_LCIDS_INSIDE_PF,
17369 "CFC PF usage counter timed out",
17370 poll_cnt)) {
17371 return (1);
17372 }
17373
17374 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
17375 if (bxe_flr_clnup_poll_hw_counter(sc,
17376 DORQ_REG_PF_USAGE_CNT,
17377 "DQ PF usage counter timed out",
17378 poll_cnt)) {
17379 return (1);
17380 }
17381
17382 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
17383 if (bxe_flr_clnup_poll_hw_counter(sc,
17384 QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc),
17385 "QM PF usage counter timed out",
17386 poll_cnt)) {
17387 return (1);
17388 }
17389
17390 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
17391 if (bxe_flr_clnup_poll_hw_counter(sc,
17392 TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc),
17393 "Timers VNIC usage counter timed out",
17394 poll_cnt)) {
17395 return (1);
17396 }
17397
17398 if (bxe_flr_clnup_poll_hw_counter(sc,
17399 TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc),
17400 "Timers NUM_SCANS usage counter timed out",
17401 poll_cnt)) {
17402 return (1);
17403 }
17404
17405 /* Wait DMAE PF usage counter to zero */
17406 if (bxe_flr_clnup_poll_hw_counter(sc,
17407 dmae_reg_go_c[INIT_DMAE_C(sc)],
17408 "DMAE dommand register timed out",
17409 poll_cnt)) {
17410 return (1);
17411 }
17412
17413 return (0);
17414}
17415
17416#define OP_GEN_PARAM(param) \
17417 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
17418#define OP_GEN_TYPE(type) \
17419 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
17420#define OP_GEN_AGG_VECT(index) \
17421 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
17422
17423static int
17424bxe_send_final_clnup(struct bxe_softc *sc,
17425 uint8_t clnup_func,
17426 uint32_t poll_cnt)
17427{
17428 uint32_t op_gen_command = 0;
17429 uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
17430 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
17431 int ret = 0;
17432
17433 if (REG_RD(sc, comp_addr)) {
17434 BLOGE(sc, "Cleanup complete was not 0 before sending\n");
17435 return (1);
17436 }
17437
17438 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
17439 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
17440 op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
17441 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
17442
17443 BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n");
17444 REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
17445
17446 if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
17447 BLOGE(sc, "FW final cleanup did not succeed\n");
17448 BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n",
17449 (REG_RD(sc, comp_addr)));
17450 bxe_panic(sc, ("FLR cleanup failed\n"));
17451 return (1);
17452 }
17453
17454 /* Zero completion for nxt FLR */
17455 REG_WR(sc, comp_addr, 0);
17456
17457 return (ret);
17458}
17459
17460static void
17461bxe_pbf_pN_buf_flushed(struct bxe_softc *sc,
17462 struct pbf_pN_buf_regs *regs,
17463 uint32_t poll_count)
17464{
17465 uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
17466 uint32_t cur_cnt = poll_count;
17467
17468 crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
17469 crd = crd_start = REG_RD(sc, regs->crd);
17470 init_crd = REG_RD(sc, regs->init_crd);
17471
17472 BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
17473 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : s:%x\n", regs->pN, crd);
17474 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
17475
17476 while ((crd != init_crd) &&
17477 ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) <
17478 (init_crd - crd_start))) {
17479 if (cur_cnt--) {
17480 DELAY(FLR_WAIT_INTERVAL);
17481 crd = REG_RD(sc, regs->crd);
17482 crd_freed = REG_RD(sc, regs->crd_freed);
17483 } else {
17484 BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN);
17485 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : c:%x\n", regs->pN, crd);
17486 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed);
17487 break;
17488 }
17489 }
17490
17491 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n",
17492 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
17493}
17494
17495static void
17496bxe_pbf_pN_cmd_flushed(struct bxe_softc *sc,
17497 struct pbf_pN_cmd_regs *regs,
17498 uint32_t poll_count)
17499{
17500 uint32_t occup, to_free, freed, freed_start;
17501 uint32_t cur_cnt = poll_count;
17502
17503 occup = to_free = REG_RD(sc, regs->lines_occup);
17504 freed = freed_start = REG_RD(sc, regs->lines_freed);
17505
17506 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup);
17507 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
17508
17509 while (occup &&
17510 ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) {
17511 if (cur_cnt--) {
17512 DELAY(FLR_WAIT_INTERVAL);
17513 occup = REG_RD(sc, regs->lines_occup);
17514 freed = REG_RD(sc, regs->lines_freed);
17515 } else {
17516 BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN);
17517 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup);
17518 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
17519 break;
17520 }
17521 }
17522
17523 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n",
17524 poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
17525}
17526
17527static void
17528bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count)
17529{
17530 struct pbf_pN_cmd_regs cmd_regs[] = {
17531 {0, (CHIP_IS_E3B0(sc)) ?
17532 PBF_REG_TQ_OCCUPANCY_Q0 :
17533 PBF_REG_P0_TQ_OCCUPANCY,
17534 (CHIP_IS_E3B0(sc)) ?
17535 PBF_REG_TQ_LINES_FREED_CNT_Q0 :
17536 PBF_REG_P0_TQ_LINES_FREED_CNT},
17537 {1, (CHIP_IS_E3B0(sc)) ?
17538 PBF_REG_TQ_OCCUPANCY_Q1 :
17539 PBF_REG_P1_TQ_OCCUPANCY,
17540 (CHIP_IS_E3B0(sc)) ?
17541 PBF_REG_TQ_LINES_FREED_CNT_Q1 :
17542 PBF_REG_P1_TQ_LINES_FREED_CNT},
17543 {4, (CHIP_IS_E3B0(sc)) ?
17544 PBF_REG_TQ_OCCUPANCY_LB_Q :
17545 PBF_REG_P4_TQ_OCCUPANCY,
17546 (CHIP_IS_E3B0(sc)) ?
17547 PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
17548 PBF_REG_P4_TQ_LINES_FREED_CNT}
17549 };
17550
17551 struct pbf_pN_buf_regs buf_regs[] = {
17552 {0, (CHIP_IS_E3B0(sc)) ?
17553 PBF_REG_INIT_CRD_Q0 :
17554 PBF_REG_P0_INIT_CRD ,
17555 (CHIP_IS_E3B0(sc)) ?
17556 PBF_REG_CREDIT_Q0 :
17557 PBF_REG_P0_CREDIT,
17558 (CHIP_IS_E3B0(sc)) ?
17559 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
17560 PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
17561 {1, (CHIP_IS_E3B0(sc)) ?
17562 PBF_REG_INIT_CRD_Q1 :
17563 PBF_REG_P1_INIT_CRD,
17564 (CHIP_IS_E3B0(sc)) ?
17565 PBF_REG_CREDIT_Q1 :
17566 PBF_REG_P1_CREDIT,
17567 (CHIP_IS_E3B0(sc)) ?
17568 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
17569 PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
17570 {4, (CHIP_IS_E3B0(sc)) ?
17571 PBF_REG_INIT_CRD_LB_Q :
17572 PBF_REG_P4_INIT_CRD,
17573 (CHIP_IS_E3B0(sc)) ?
17574 PBF_REG_CREDIT_LB_Q :
17575 PBF_REG_P4_CREDIT,
17576 (CHIP_IS_E3B0(sc)) ?
17577 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
17578 PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
17579 };
17580
17581 int i;
17582
17583 /* Verify the command queues are flushed P0, P1, P4 */
17584 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
17585 bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
17586 }
17587
17588 /* Verify the transmission buffers are flushed P0, P1, P4 */
17589 for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
17590 bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
17591 }
17592}
17593
17594static void
17595bxe_hw_enable_status(struct bxe_softc *sc)
17596{
17597 uint32_t val;
17598
17599 val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
17600 BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
17601
17602 val = REG_RD(sc, PBF_REG_DISABLE_PF);
17603 BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val);
17604
17605 val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
17606 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
17607
17608 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
17609 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
17610
17611 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
17612 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
17613
17614 val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
17615 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
17616
17617 val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
17618 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
17619
17620 val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
17621 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val);
17622}
17623
17624static int
17625bxe_pf_flr_clnup(struct bxe_softc *sc)
17626{
17627 uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc);
17628
17629 BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc));
17630
17631 /* Re-enable PF target read access */
17632 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
17633
17634 /* Poll HW usage counters */
17635 BLOGD(sc, DBG_LOAD, "Polling usage counters\n");
17636 if (bxe_poll_hw_usage_counters(sc, poll_cnt)) {
17637 return (-1);
17638 }
17639
17640 /* Zero the igu 'trailing edge' and 'leading edge' */
17641
17642 /* Send the FW cleanup command */
17643 if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) {
17644 return (-1);
17645 }
17646
17647 /* ATC cleanup */
17648
17649 /* Verify TX hw is flushed */
17650 bxe_tx_hw_flushed(sc, poll_cnt);
17651
17652 /* Wait 100ms (not adjusted according to platform) */
17653 DELAY(100000);
17654
17655 /* Verify no pending pci transactions */
17656 if (bxe_is_pcie_pending(sc)) {
17657 BLOGE(sc, "PCIE Transactions still pending\n");
17658 }
17659
17660 /* Debug */
17661 bxe_hw_enable_status(sc);
17662
17663 /*
17664 * Master enable - Due to WB DMAE writes performed before this
17665 * register is re-initialized as part of the regular function init
17666 */
17667 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17668
17669 return (0);
17670}
17671
17672static int
17673bxe_init_hw_func(struct bxe_softc *sc)
17674{
17675 int port = SC_PORT(sc);
17676 int func = SC_FUNC(sc);
17677 int init_phase = PHASE_PF0 + func;
17678 struct ecore_ilt *ilt = sc->ilt;
17679 uint16_t cdu_ilt_start;
17680 uint32_t addr, val;
17681 uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
17682 int i, main_mem_width, rc;
17683
17684 BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func);
17685
17686 /* FLR cleanup */
17687 if (!CHIP_IS_E1x(sc)) {
17688 rc = bxe_pf_flr_clnup(sc);
17689 if (rc) {
17690 BLOGE(sc, "FLR cleanup failed!\n");
17691 // XXX bxe_fw_dump(sc);
17692 // XXX bxe_idle_chk(sc);
17693 return (rc);
17694 }
17695 }
17696
17697 /* set MSI reconfigure capability */
17698 if (sc->devinfo.int_block == INT_BLOCK_HC) {
17699 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
17700 val = REG_RD(sc, addr);
17701 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
17702 REG_WR(sc, addr, val);
17703 }
17704
17705 ecore_init_block(sc, BLOCK_PXP, init_phase);
17706 ecore_init_block(sc, BLOCK_PXP2, init_phase);
17707
17708 ilt = sc->ilt;
17709 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
17710
17711 for (i = 0; i < L2_ILT_LINES(sc); i++) {
17712 ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
17713 ilt->lines[cdu_ilt_start + i].page_mapping =
17714 sc->context[i].vcxt_dma.paddr;
17715 ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
17716 }
17717 ecore_ilt_init_op(sc, INITOP_SET);
17718
17719 /* Set NIC mode */
17720 REG_WR(sc, PRS_REG_NIC_MODE, 1);
17721 BLOGD(sc, DBG_LOAD, "NIC MODE configured\n");
17722
17723 if (!CHIP_IS_E1x(sc)) {
17724 uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
17725
17726 /* Turn on a single ISR mode in IGU if driver is going to use
17727 * INT#x or MSI
17728 */
17729 if (sc->interrupt_mode != INTR_MODE_MSIX) {
17730 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
17731 }
17732
17733 /*
17734 * Timers workaround bug: function init part.
17735 * Need to wait 20msec after initializing ILT,
17736 * needed to make sure there are no requests in
17737 * one of the PXP internal queues with "old" ILT addresses
17738 */
17739 DELAY(20000);
17740
17741 /*
17742 * Master enable - Due to WB DMAE writes performed before this
17743 * register is re-initialized as part of the regular function
17744 * init
17745 */
17746 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17747 /* Enable the function in IGU */
17748 REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
17749 }
17750
17751 sc->dmae_ready = 1;
17752
17753 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
17754
17755 if (!CHIP_IS_E1x(sc))
17756 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
17757
17758 ecore_init_block(sc, BLOCK_ATC, init_phase);
17759 ecore_init_block(sc, BLOCK_DMAE, init_phase);
17760 ecore_init_block(sc, BLOCK_NIG, init_phase);
17761 ecore_init_block(sc, BLOCK_SRC, init_phase);
17762 ecore_init_block(sc, BLOCK_MISC, init_phase);
17763 ecore_init_block(sc, BLOCK_TCM, init_phase);
17764 ecore_init_block(sc, BLOCK_UCM, init_phase);
17765 ecore_init_block(sc, BLOCK_CCM, init_phase);
17766 ecore_init_block(sc, BLOCK_XCM, init_phase);
17767 ecore_init_block(sc, BLOCK_TSEM, init_phase);
17768 ecore_init_block(sc, BLOCK_USEM, init_phase);
17769 ecore_init_block(sc, BLOCK_CSEM, init_phase);
17770 ecore_init_block(sc, BLOCK_XSEM, init_phase);
17771
17772 if (!CHIP_IS_E1x(sc))
17773 REG_WR(sc, QM_REG_PF_EN, 1);
17774
17775 if (!CHIP_IS_E1x(sc)) {
17776 REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
17777 REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
17778 REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
17779 REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
17780 }
17781 ecore_init_block(sc, BLOCK_QM, init_phase);
17782
17783 ecore_init_block(sc, BLOCK_TM, init_phase);
17784 ecore_init_block(sc, BLOCK_DORQ, init_phase);
17785
17786 bxe_iov_init_dq(sc);
17787
17788 ecore_init_block(sc, BLOCK_BRB1, init_phase);
17789 ecore_init_block(sc, BLOCK_PRS, init_phase);
17790 ecore_init_block(sc, BLOCK_TSDM, init_phase);
17791 ecore_init_block(sc, BLOCK_CSDM, init_phase);
17792 ecore_init_block(sc, BLOCK_USDM, init_phase);
17793 ecore_init_block(sc, BLOCK_XSDM, init_phase);
17794 ecore_init_block(sc, BLOCK_UPB, init_phase);
17795 ecore_init_block(sc, BLOCK_XPB, init_phase);
17796 ecore_init_block(sc, BLOCK_PBF, init_phase);
17797 if (!CHIP_IS_E1x(sc))
17798 REG_WR(sc, PBF_REG_DISABLE_PF, 0);
17799
17800 ecore_init_block(sc, BLOCK_CDU, init_phase);
17801
17802 ecore_init_block(sc, BLOCK_CFC, init_phase);
17803
17804 if (!CHIP_IS_E1x(sc))
17805 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
17806
17807 if (IS_MF(sc)) {
17808 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
17809 REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc));
17810 }
17811
17812 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
17813
17814 /* HC init per function */
17815 if (sc->devinfo.int_block == INT_BLOCK_HC) {
17816 if (CHIP_IS_E1H(sc)) {
17817 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
17818
17819 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
17820 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
17821 }
17822 ecore_init_block(sc, BLOCK_HC, init_phase);
17823
17824 } else {
17825 int num_segs, sb_idx, prod_offset;
17826
17827 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
17828
17829 if (!CHIP_IS_E1x(sc)) {
17830 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
17831 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
17832 }
17833
17834 ecore_init_block(sc, BLOCK_IGU, init_phase);
17835
17836 if (!CHIP_IS_E1x(sc)) {
17837 int dsb_idx = 0;
17838 /**
17839 * Producer memory:
17840 * E2 mode: address 0-135 match to the mapping memory;
17841 * 136 - PF0 default prod; 137 - PF1 default prod;
17842 * 138 - PF2 default prod; 139 - PF3 default prod;
17843 * 140 - PF0 attn prod; 141 - PF1 attn prod;
17844 * 142 - PF2 attn prod; 143 - PF3 attn prod;
17845 * 144-147 reserved.
17846 *
17847 * E1.5 mode - In backward compatible mode;
17848 * for non default SB; each even line in the memory
17849 * holds the U producer and each odd line hold
17850 * the C producer. The first 128 producers are for
17851 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
17852 * producers are for the DSB for each PF.
17853 * Each PF has five segments: (the order inside each
17854 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
17855 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
17856 * 144-147 attn prods;
17857 */
17858 /* non-default-status-blocks */
17859 num_segs = CHIP_INT_MODE_IS_BC(sc) ?
17860 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
17861 for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
17862 prod_offset = (sc->igu_base_sb + sb_idx) *
17863 num_segs;
17864
17865 for (i = 0; i < num_segs; i++) {
17866 addr = IGU_REG_PROD_CONS_MEMORY +
17867 (prod_offset + i) * 4;
17868 REG_WR(sc, addr, 0);
17869 }
17870 /* send consumer update with value 0 */
17871 bxe_ack_sb(sc, sc->igu_base_sb + sb_idx,
17872 USTORM_ID, 0, IGU_INT_NOP, 1);
17873 bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
17874 }
17875
17876 /* default-status-blocks */
17877 num_segs = CHIP_INT_MODE_IS_BC(sc) ?
17878 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
17879
17880 if (CHIP_IS_MODE_4_PORT(sc))
17881 dsb_idx = SC_FUNC(sc);
17882 else
17883 dsb_idx = SC_VN(sc);
17884
17885 prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
17886 IGU_BC_BASE_DSB_PROD + dsb_idx :
17887 IGU_NORM_BASE_DSB_PROD + dsb_idx);
17888
17889 /*
17890 * igu prods come in chunks of E1HVN_MAX (4) -
17891 * does not matters what is the current chip mode
17892 */
17893 for (i = 0; i < (num_segs * E1HVN_MAX);
17894 i += E1HVN_MAX) {
17895 addr = IGU_REG_PROD_CONS_MEMORY +
17896 (prod_offset + i)*4;
17897 REG_WR(sc, addr, 0);
17898 }
17899 /* send consumer update with 0 */
17900 if (CHIP_INT_MODE_IS_BC(sc)) {
17901 bxe_ack_sb(sc, sc->igu_dsb_id,
17902 USTORM_ID, 0, IGU_INT_NOP, 1);
17903 bxe_ack_sb(sc, sc->igu_dsb_id,
17904 CSTORM_ID, 0, IGU_INT_NOP, 1);
17905 bxe_ack_sb(sc, sc->igu_dsb_id,
17906 XSTORM_ID, 0, IGU_INT_NOP, 1);
17907 bxe_ack_sb(sc, sc->igu_dsb_id,
17908 TSTORM_ID, 0, IGU_INT_NOP, 1);
17909 bxe_ack_sb(sc, sc->igu_dsb_id,
17910 ATTENTION_ID, 0, IGU_INT_NOP, 1);
17911 } else {
17912 bxe_ack_sb(sc, sc->igu_dsb_id,
17913 USTORM_ID, 0, IGU_INT_NOP, 1);
17914 bxe_ack_sb(sc, sc->igu_dsb_id,
17915 ATTENTION_ID, 0, IGU_INT_NOP, 1);
17916 }
17917 bxe_igu_clear_sb(sc, sc->igu_dsb_id);
17918
17919 /* !!! these should become driver const once
17920 rf-tool supports split-68 const */
17921 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
17922 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
17923 REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
17924 REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
17925 REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
17926 REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
17927 }
17928 }
17929
17930 /* Reset PCIE errors for debug */
17931 REG_WR(sc, 0x2114, 0xffffffff);
17932 REG_WR(sc, 0x2120, 0xffffffff);
17933
17934 if (CHIP_IS_E1x(sc)) {
17935 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
17936 main_mem_base = HC_REG_MAIN_MEMORY +
17937 SC_PORT(sc) * (main_mem_size * 4);
17938 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
17939 main_mem_width = 8;
17940
17941 val = REG_RD(sc, main_mem_prty_clr);
17942 if (val) {
17943 BLOGD(sc, DBG_LOAD,
17944 "Parity errors in HC block during function init (0x%x)!\n",
17945 val);
17946 }
17947
17948 /* Clear "false" parity errors in MSI-X table */
17949 for (i = main_mem_base;
17950 i < main_mem_base + main_mem_size * 4;
17951 i += main_mem_width) {
17952 bxe_read_dmae(sc, i, main_mem_width / 4);
17953 bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data),
17954 i, main_mem_width / 4);
17955 }
17956 /* Clear HC parity attention */
17957 REG_RD(sc, main_mem_prty_clr);
17958 }
17959
17960#if 1
17961 /* Enable STORMs SP logging */
17962 REG_WR8(sc, BAR_USTRORM_INTMEM +
17963 USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
17964 REG_WR8(sc, BAR_TSTRORM_INTMEM +
17965 TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
17966 REG_WR8(sc, BAR_CSTRORM_INTMEM +
17967 CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
17968 REG_WR8(sc, BAR_XSTRORM_INTMEM +
17969 XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
17970#endif
17971
17972 elink_phy_probe(&sc->link_params);
17973
17974 return (0);
17975}
17976
17977static void
17978bxe_link_reset(struct bxe_softc *sc)
17979{
17980 if (!BXE_NOMCP(sc)) {
17981 bxe_acquire_phy_lock(sc);
17982 elink_lfa_reset(&sc->link_params, &sc->link_vars);
17983 bxe_release_phy_lock(sc);
17984 } else {
17985 if (!CHIP_REV_IS_SLOW(sc)) {
17986 BLOGW(sc, "Bootcode is missing - cannot reset link\n");
17987 }
17988 }
17989}
17990
17991static void
17992bxe_reset_port(struct bxe_softc *sc)
17993{
17994 int port = SC_PORT(sc);
17995 uint32_t val;
17996
17997 /* reset physical Link */
17998 bxe_link_reset(sc);
17999
18000 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
18001
18002 /* Do not rcv packets to BRB */
18003 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
18004 /* Do not direct rcv packets that are not for MCP to the BRB */
18005 REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
18006 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
18007
18008 /* Configure AEU */
18009 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
18010
18011 DELAY(100000);
18012
18013 /* Check for BRB port occupancy */
18014 val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
18015 if (val) {
18016 BLOGD(sc, DBG_LOAD,
18017 "BRB1 is not empty, %d blocks are occupied\n", val);
18018 }
18019
18020 /* TODO: Close Doorbell port? */
18021}
18022
18023static void
18024bxe_ilt_wr(struct bxe_softc *sc,
18025 uint32_t index,
18026 bus_addr_t addr)
18027{
18028 int reg;
18029 uint32_t wb_write[2];
18030
18031 if (CHIP_IS_E1(sc)) {
18032 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
18033 } else {
18034 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
18035 }
18036
18037 wb_write[0] = ONCHIP_ADDR1(addr);
18038 wb_write[1] = ONCHIP_ADDR2(addr);
18039 REG_WR_DMAE(sc, reg, wb_write, 2);
18040}
18041
18042static void
18043bxe_clear_func_ilt(struct bxe_softc *sc,
18044 uint32_t func)
18045{
18046 uint32_t i, base = FUNC_ILT_BASE(func);
18047 for (i = base; i < base + ILT_PER_FUNC; i++) {
18048 bxe_ilt_wr(sc, i, 0);
18049 }
18050}
18051
18052static void
18053bxe_reset_func(struct bxe_softc *sc)
18054{
18055 struct bxe_fastpath *fp;
18056 int port = SC_PORT(sc);
18057 int func = SC_FUNC(sc);
18058 int i;
18059
18060 /* Disable the function in the FW */
18061 REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
18062 REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
18063 REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
18064 REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
18065
18066 /* FP SBs */
18067 FOR_EACH_ETH_QUEUE(sc, i) {
18068 fp = &sc->fp[i];
18069 REG_WR8(sc, BAR_CSTRORM_INTMEM +
18070 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
18071 SB_DISABLED);
18072 }
18073
18074 /* SP SB */
18075 REG_WR8(sc, BAR_CSTRORM_INTMEM +
18076 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
18077 SB_DISABLED);
18078
18079 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
18080 REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0);
18081 }
18082
18083 /* Configure IGU */
18084 if (sc->devinfo.int_block == INT_BLOCK_HC) {
18085 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18086 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18087 } else {
18088 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18089 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18090 }
18091
18092 if (CNIC_LOADED(sc)) {
18093 /* Disable Timer scan */
18094 REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
18095 /*
18096 * Wait for at least 10ms and up to 2 second for the timers
18097 * scan to complete
18098 */
18099 for (i = 0; i < 200; i++) {
18100 DELAY(10000);
18101 if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4))
18102 break;
18103 }
18104 }
18105
18106 /* Clear ILT */
18107 bxe_clear_func_ilt(sc, func);
18108
18109 /*
18110 * Timers workaround bug for E2: if this is vnic-3,
18111 * we need to set the entire ilt range for this timers.
18112 */
18113 if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
18114 struct ilt_client_info ilt_cli;
18115 /* use dummy TM client */
18116 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
18117 ilt_cli.start = 0;
18118 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
18119 ilt_cli.client_num = ILT_CLIENT_TM;
18120
18121 ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR);
18122 }
18123
18124 /* this assumes that reset_port() called before reset_func()*/
18125 if (!CHIP_IS_E1x(sc)) {
18126 bxe_pf_disable(sc);
18127 }
18128
18129 sc->dmae_ready = 0;
18130}
18131
18132static int
18133bxe_gunzip_init(struct bxe_softc *sc)
18134{
18135 return (0);
18136}
18137
18138static void
18139bxe_gunzip_end(struct bxe_softc *sc)
18140{
18141 return;
18142}
18143
18144static int
18145bxe_init_firmware(struct bxe_softc *sc)
18146{
18147 if (CHIP_IS_E1(sc)) {
18148 ecore_init_e1_firmware(sc);
18149 sc->iro_array = e1_iro_arr;
18150 } else if (CHIP_IS_E1H(sc)) {
18151 ecore_init_e1h_firmware(sc);
18152 sc->iro_array = e1h_iro_arr;
18153 } else if (!CHIP_IS_E1x(sc)) {
18154 ecore_init_e2_firmware(sc);
18155 sc->iro_array = e2_iro_arr;
18156 } else {
18157 BLOGE(sc, "Unsupported chip revision\n");
18158 return (-1);
18159 }
18160
18161 return (0);
18162}
18163
18164static void
18165bxe_release_firmware(struct bxe_softc *sc)
18166{
18167 /* Do nothing */
18168 return;
18169}
18170
18171static int
18172ecore_gunzip(struct bxe_softc *sc,
18173 const uint8_t *zbuf,
18174 int len)
18175{
18176 /* XXX : Implement... */
18177 BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n");
18178 return (FALSE);
18179}
18180
18181static void
18182ecore_reg_wr_ind(struct bxe_softc *sc,
18183 uint32_t addr,
18184 uint32_t val)
18185{
18186 bxe_reg_wr_ind(sc, addr, val);
18187}
18188
18189static void
18190ecore_write_dmae_phys_len(struct bxe_softc *sc,
18191 bus_addr_t phys_addr,
18192 uint32_t addr,
18193 uint32_t len)
18194{
18195 bxe_write_dmae_phys_len(sc, phys_addr, addr, len);
18196}
18197
18198void
18199ecore_storm_memset_struct(struct bxe_softc *sc,
18200 uint32_t addr,
18201 size_t size,
18202 uint32_t *data)
18203{
18204 uint8_t i;
18205 for (i = 0; i < size/4; i++) {
18206 REG_WR(sc, addr + (i * 4), data[i]);
18207 }
18208}
18209
18210
18211/*
18212 * character device - ioctl interface definitions
18213 */
18214
18215
18216#include "bxe_dump.h"
18217#include "bxe_ioctl.h"
18218#include <sys/conf.h>
18219
18220static int bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
18221 struct thread *td);
18222
18223static struct cdevsw bxe_cdevsw = {
18224 .d_version = D_VERSION,
18225 .d_ioctl = bxe_eioctl,
18226 .d_name = "bxecnic",
18227};
18228
18229#define BXE_PATH(sc) (CHIP_IS_E1x(sc) ? 0 : (sc->pcie_func & 1))
18230
18231
18232#define DUMP_ALL_PRESETS 0x1FFF
18233#define DUMP_MAX_PRESETS 13
18234#define IS_E1_REG(chips) ((chips & DUMP_CHIP_E1) == DUMP_CHIP_E1)
18235#define IS_E1H_REG(chips) ((chips & DUMP_CHIP_E1H) == DUMP_CHIP_E1H)
18236#define IS_E2_REG(chips) ((chips & DUMP_CHIP_E2) == DUMP_CHIP_E2)
18237#define IS_E3A0_REG(chips) ((chips & DUMP_CHIP_E3A0) == DUMP_CHIP_E3A0)
18238#define IS_E3B0_REG(chips) ((chips & DUMP_CHIP_E3B0) == DUMP_CHIP_E3B0)
18239
18240#define IS_REG_IN_PRESET(presets, idx) \
18241 ((presets & (1 << (idx-1))) == (1 << (idx-1)))
18242
18243
18244static int
18245bxe_get_preset_regs_len(struct bxe_softc *sc, uint32_t preset)
18246{
18247 if (CHIP_IS_E1(sc))
18248 return dump_num_registers[0][preset-1];
18249 else if (CHIP_IS_E1H(sc))
18250 return dump_num_registers[1][preset-1];
18251 else if (CHIP_IS_E2(sc))
18252 return dump_num_registers[2][preset-1];
18253 else if (CHIP_IS_E3A0(sc))
18254 return dump_num_registers[3][preset-1];
18255 else if (CHIP_IS_E3B0(sc))
18256 return dump_num_registers[4][preset-1];
18257 else
18258 return 0;
18259}
18260
18261static int
18262bxe_get_total_regs_len32(struct bxe_softc *sc)
18263{
18264 uint32_t preset_idx;
18265 int regdump_len32 = 0;
18266
18267
18268 /* Calculate the total preset regs length */
18269 for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) {
18270 regdump_len32 += bxe_get_preset_regs_len(sc, preset_idx);
18271 }
18272
18273 return regdump_len32;
18274}
18275
18276static const uint32_t *
18277__bxe_get_page_addr_ar(struct bxe_softc *sc)
18278{
18279 if (CHIP_IS_E2(sc))
18280 return page_vals_e2;
18281 else if (CHIP_IS_E3(sc))
18282 return page_vals_e3;
18283 else
18284 return NULL;
18285}
18286
18287static uint32_t
18288__bxe_get_page_reg_num(struct bxe_softc *sc)
18289{
18290 if (CHIP_IS_E2(sc))
18291 return PAGE_MODE_VALUES_E2;
18292 else if (CHIP_IS_E3(sc))
18293 return PAGE_MODE_VALUES_E3;
18294 else
18295 return 0;
18296}
18297
18298static const uint32_t *
18299__bxe_get_page_write_ar(struct bxe_softc *sc)
18300{
18301 if (CHIP_IS_E2(sc))
18302 return page_write_regs_e2;
18303 else if (CHIP_IS_E3(sc))
18304 return page_write_regs_e3;
18305 else
18306 return NULL;
18307}
18308
18309static uint32_t
18310__bxe_get_page_write_num(struct bxe_softc *sc)
18311{
18312 if (CHIP_IS_E2(sc))
18313 return PAGE_WRITE_REGS_E2;
18314 else if (CHIP_IS_E3(sc))
18315 return PAGE_WRITE_REGS_E3;
18316 else
18317 return 0;
18318}
18319
18320static const struct reg_addr *
18321__bxe_get_page_read_ar(struct bxe_softc *sc)
18322{
18323 if (CHIP_IS_E2(sc))
18324 return page_read_regs_e2;
18325 else if (CHIP_IS_E3(sc))
18326 return page_read_regs_e3;
18327 else
18328 return NULL;
18329}
18330
18331static uint32_t
18332__bxe_get_page_read_num(struct bxe_softc *sc)
18333{
18334 if (CHIP_IS_E2(sc))
18335 return PAGE_READ_REGS_E2;
18336 else if (CHIP_IS_E3(sc))
18337 return PAGE_READ_REGS_E3;
18338 else
18339 return 0;
18340}
18341
18342static bool
18343bxe_is_reg_in_chip(struct bxe_softc *sc, const struct reg_addr *reg_info)
18344{
18345 if (CHIP_IS_E1(sc))
18346 return IS_E1_REG(reg_info->chips);
18347 else if (CHIP_IS_E1H(sc))
18348 return IS_E1H_REG(reg_info->chips);
18349 else if (CHIP_IS_E2(sc))
18350 return IS_E2_REG(reg_info->chips);
18351 else if (CHIP_IS_E3A0(sc))
18352 return IS_E3A0_REG(reg_info->chips);
18353 else if (CHIP_IS_E3B0(sc))
18354 return IS_E3B0_REG(reg_info->chips);
18355 else
18356 return 0;
18357}
18358
18359static bool
18360bxe_is_wreg_in_chip(struct bxe_softc *sc, const struct wreg_addr *wreg_info)
18361{
18362 if (CHIP_IS_E1(sc))
18363 return IS_E1_REG(wreg_info->chips);
18364 else if (CHIP_IS_E1H(sc))
18365 return IS_E1H_REG(wreg_info->chips);
18366 else if (CHIP_IS_E2(sc))
18367 return IS_E2_REG(wreg_info->chips);
18368 else if (CHIP_IS_E3A0(sc))
18369 return IS_E3A0_REG(wreg_info->chips);
18370 else if (CHIP_IS_E3B0(sc))
18371 return IS_E3B0_REG(wreg_info->chips);
18372 else
18373 return 0;
18374}
18375
18376/**
18377 * bxe_read_pages_regs - read "paged" registers
18378 *
18379 * @bp device handle
18380 * @p output buffer
18381 *
18382 * Reads "paged" memories: memories that may only be read by first writing to a
18383 * specific address ("write address") and then reading from a specific address
18384 * ("read address"). There may be more than one write address per "page" and
18385 * more than one read address per write address.
18386 */
18387static void
18388bxe_read_pages_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset)
18389{
18390 uint32_t i, j, k, n;
18391
18392 /* addresses of the paged registers */
18393 const uint32_t *page_addr = __bxe_get_page_addr_ar(sc);
18394 /* number of paged registers */
18395 int num_pages = __bxe_get_page_reg_num(sc);
18396 /* write addresses */
18397 const uint32_t *write_addr = __bxe_get_page_write_ar(sc);
18398 /* number of write addresses */
18399 int write_num = __bxe_get_page_write_num(sc);
18400 /* read addresses info */
18401 const struct reg_addr *read_addr = __bxe_get_page_read_ar(sc);
18402 /* number of read addresses */
18403 int read_num = __bxe_get_page_read_num(sc);
18404 uint32_t addr, size;
18405
18406 for (i = 0; i < num_pages; i++) {
18407 for (j = 0; j < write_num; j++) {
18408 REG_WR(sc, write_addr[j], page_addr[i]);
18409
18410 for (k = 0; k < read_num; k++) {
18411 if (IS_REG_IN_PRESET(read_addr[k].presets, preset)) {
18412 size = read_addr[k].size;
18413 for (n = 0; n < size; n++) {
18414 addr = read_addr[k].addr + n*4;
18415 *p++ = REG_RD(sc, addr);
18416 }
18417 }
18418 }
18419 }
18420 }
18421 return;
18422}
18423
18424
18425static int
18426bxe_get_preset_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset)
18427{
18428 uint32_t i, j, addr;
18429 const struct wreg_addr *wreg_addr_p = NULL;
18430
18431 if (CHIP_IS_E1(sc))
18432 wreg_addr_p = &wreg_addr_e1;
18433 else if (CHIP_IS_E1H(sc))
18434 wreg_addr_p = &wreg_addr_e1h;
18435 else if (CHIP_IS_E2(sc))
18436 wreg_addr_p = &wreg_addr_e2;
18437 else if (CHIP_IS_E3A0(sc))
18438 wreg_addr_p = &wreg_addr_e3;
18439 else if (CHIP_IS_E3B0(sc))
18440 wreg_addr_p = &wreg_addr_e3b0;
18441 else
18442 return (-1);
18443
18444 /* Read the idle_chk registers */
18445 for (i = 0; i < IDLE_REGS_COUNT; i++) {
18446 if (bxe_is_reg_in_chip(sc, &idle_reg_addrs[i]) &&
18447 IS_REG_IN_PRESET(idle_reg_addrs[i].presets, preset)) {
18448 for (j = 0; j < idle_reg_addrs[i].size; j++)
18449 *p++ = REG_RD(sc, idle_reg_addrs[i].addr + j*4);
18450 }
18451 }
18452
18453 /* Read the regular registers */
18454 for (i = 0; i < REGS_COUNT; i++) {
18455 if (bxe_is_reg_in_chip(sc, &reg_addrs[i]) &&
18456 IS_REG_IN_PRESET(reg_addrs[i].presets, preset)) {
18457 for (j = 0; j < reg_addrs[i].size; j++)
18458 *p++ = REG_RD(sc, reg_addrs[i].addr + j*4);
18459 }
18460 }
18461
18462 /* Read the CAM registers */
18463 if (bxe_is_wreg_in_chip(sc, wreg_addr_p) &&
18464 IS_REG_IN_PRESET(wreg_addr_p->presets, preset)) {
18465 for (i = 0; i < wreg_addr_p->size; i++) {
18466 *p++ = REG_RD(sc, wreg_addr_p->addr + i*4);
18467
18468 /* In case of wreg_addr register, read additional
18469 registers from read_regs array
18470 */
18471 for (j = 0; j < wreg_addr_p->read_regs_count; j++) {
18472 addr = *(wreg_addr_p->read_regs);
18473 *p++ = REG_RD(sc, addr + j*4);
18474 }
18475 }
18476 }
18477
18478 /* Paged registers are supported in E2 & E3 only */
18479 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
18480 /* Read "paged" registers */
18481 bxe_read_pages_regs(sc, p, preset);
18482 }
18483
18484 return 0;
18485}
18486
18487int
18488bxe_grc_dump(struct bxe_softc *sc)
18489{
18490 int rval = 0;
18491 uint32_t preset_idx;
18492 uint8_t *buf;
18493 uint32_t size;
18494 struct dump_header *d_hdr;
18495 uint32_t i;
18496 uint32_t reg_val;
18497 uint32_t reg_addr;
18498 uint32_t cmd_offset;
18499 int context_size;
18500 int allocated;
18501 struct ecore_ilt *ilt = SC_ILT(sc);
18502 struct bxe_fastpath *fp;
18503 struct ilt_client_info *ilt_cli;
18504 int grc_dump_size;
18505
18506
18507 if (sc->grcdump_done || sc->grcdump_started)
18508 return (rval);
18509
18510 sc->grcdump_started = 1;
18511 BLOGI(sc, "Started collecting grcdump\n");
18512
18513 grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
18514 sizeof(struct dump_header);
18515
18516 sc->grc_dump = malloc(grc_dump_size, M_DEVBUF, M_NOWAIT);
18517
18518 if (sc->grc_dump == NULL) {
18519 BLOGW(sc, "Unable to allocate memory for grcdump collection\n");
18520 return(ENOMEM);
18521 }
18522
18523
18524
18525 /* Disable parity attentions as long as following dump may
18526 * cause false alarms by reading never written registers. We
18527 * will re-enable parity attentions right after the dump.
18528 */
18529
18530 /* Disable parity on path 0 */
18531 bxe_pretend_func(sc, 0);
18532
18533 ecore_disable_blocks_parity(sc);
18534
18535 /* Disable parity on path 1 */
18536 bxe_pretend_func(sc, 1);
18537 ecore_disable_blocks_parity(sc);
18538
18539 /* Return to current function */
18540 bxe_pretend_func(sc, SC_ABS_FUNC(sc));
18541
18542 buf = sc->grc_dump;
18543 d_hdr = sc->grc_dump;
18544
18545 d_hdr->header_size = (sizeof(struct dump_header) >> 2) - 1;
18546 d_hdr->version = BNX2X_DUMP_VERSION;
18547 d_hdr->preset = DUMP_ALL_PRESETS;
18548
18549 if (CHIP_IS_E1(sc)) {
18550 d_hdr->dump_meta_data = DUMP_CHIP_E1;
18551 } else if (CHIP_IS_E1H(sc)) {
18552 d_hdr->dump_meta_data = DUMP_CHIP_E1H;
18553 } else if (CHIP_IS_E2(sc)) {
18554 d_hdr->dump_meta_data = DUMP_CHIP_E2 |
18555 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18556 } else if (CHIP_IS_E3A0(sc)) {
18557 d_hdr->dump_meta_data = DUMP_CHIP_E3A0 |
18558 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18559 } else if (CHIP_IS_E3B0(sc)) {
18560 d_hdr->dump_meta_data = DUMP_CHIP_E3B0 |
18561 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18562 }
18563
18564 buf += sizeof(struct dump_header);
18565
18566 for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) {
18567
18568 /* Skip presets with IOR */
18569 if ((preset_idx == 2) || (preset_idx == 5) || (preset_idx == 8) ||
18570 (preset_idx == 11))
18571 continue;
18572
18573 rval = bxe_get_preset_regs(sc, (uint32_t *)buf, preset_idx);
18574
18575 if (rval)
18576 break;
18577
18578 size = bxe_get_preset_regs_len(sc, preset_idx) * (sizeof (uint32_t));
18579
18580 buf += size;
18581 }
18582
18583 bxe_pretend_func(sc, 0);
18584 ecore_clear_blocks_parity(sc);
18585 ecore_enable_blocks_parity(sc);
18586
18587 bxe_pretend_func(sc, 1);
18588 ecore_clear_blocks_parity(sc);
18589 ecore_enable_blocks_parity(sc);
18590
18591 /* Return to current function */
18592 bxe_pretend_func(sc, SC_ABS_FUNC(sc));
18593
18594
18595 context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc));
18596 for (i = 0, allocated = 0; allocated < context_size; i++) {
18597
18598 BLOGI(sc, "cdu_context i %d paddr %#jx vaddr %p size 0x%zx\n", i,
18599 (uintmax_t)sc->context[i].vcxt_dma.paddr,
18600 sc->context[i].vcxt_dma.vaddr,
18601 sc->context[i].size);
18602 allocated += sc->context[i].size;
18603 }
18604 BLOGI(sc, "fw stats start_paddr %#jx end_paddr %#jx vaddr %p size 0x%x\n",
18605 (uintmax_t)sc->fw_stats_req_mapping,
18606 (uintmax_t)sc->fw_stats_data_mapping,
18607 sc->fw_stats_req, (sc->fw_stats_req_size + sc->fw_stats_data_size));
18608 BLOGI(sc, "def_status_block paddr %p vaddr %p size 0x%zx\n",
18609 (void *)sc->def_sb_dma.paddr, sc->def_sb,
18610 sizeof(struct host_sp_status_block));
18611 BLOGI(sc, "event_queue paddr %#jx vaddr %p size 0x%x\n",
18612 (uintmax_t)sc->eq_dma.paddr, sc->eq_dma.vaddr, BCM_PAGE_SIZE);
18613 BLOGI(sc, "slow path paddr %#jx vaddr %p size 0x%zx\n",
18614 (uintmax_t)sc->sp_dma.paddr, sc->sp_dma.vaddr,
18615 sizeof(struct bxe_slowpath));
18616 BLOGI(sc, "slow path queue paddr %#jx vaddr %p size 0x%x\n",
18617 (uintmax_t)sc->spq_dma.paddr, sc->spq_dma.vaddr, BCM_PAGE_SIZE);
18618 BLOGI(sc, "fw_buf paddr %#jx vaddr %p size 0x%x\n",
18619 (uintmax_t)sc->gz_buf_dma.paddr, sc->gz_buf_dma.vaddr,
18620 FW_BUF_SIZE);
18621 for (i = 0; i < sc->num_queues; i++) {
18622 fp = &sc->fp[i];
18623 BLOGI(sc, "FP status block fp %d paddr %#jx vaddr %p size 0x%zx\n", i,
18624 (uintmax_t)fp->sb_dma.paddr, fp->sb_dma.vaddr,
18625 sizeof(union bxe_host_hc_status_block));
18626 BLOGI(sc, "TX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
18627 (uintmax_t)fp->tx_dma.paddr, fp->tx_dma.vaddr,
18628 (BCM_PAGE_SIZE * TX_BD_NUM_PAGES));
18629 BLOGI(sc, "RX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
18630 (uintmax_t)fp->rx_dma.paddr, fp->rx_dma.vaddr,
18631 (BCM_PAGE_SIZE * RX_BD_NUM_PAGES));
18632 BLOGI(sc, "RX RCQ CHAIN fp %d paddr %#jx vaddr %p size 0x%zx\n", i,
18633 (uintmax_t)fp->rcq_dma.paddr, fp->rcq_dma.vaddr,
18634 (BCM_PAGE_SIZE * RCQ_NUM_PAGES));
18635 BLOGI(sc, "RX SGE CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
18636 (uintmax_t)fp->rx_sge_dma.paddr, fp->rx_sge_dma.vaddr,
18637 (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES));
18638 }
18639
18640 ilt_cli = &ilt->clients[1];
18641 for (i = ilt_cli->start; i <= ilt_cli->end; i++) {
18642 BLOGI(sc, "ECORE_ILT paddr %#jx vaddr %p size 0x%x\n",
18643 (uintmax_t)(((struct bxe_dma *)((&ilt->lines[i])->page))->paddr),
18644 ((struct bxe_dma *)((&ilt->lines[i])->page))->vaddr, BCM_PAGE_SIZE);
18645 }
18646
18647
18648 cmd_offset = DMAE_REG_CMD_MEM;
18649 for (i = 0; i < 224; i++) {
18650 reg_addr = (cmd_offset +(i * 4));
18651 reg_val = REG_RD(sc, reg_addr);
18652 BLOGI(sc, "DMAE_REG_CMD_MEM i=%d reg_addr 0x%x reg_val 0x%08x\n",i,
18653 reg_addr, reg_val);
18654 }
18655
18656
18657 BLOGI(sc, "Collection of grcdump done\n");
18658 sc->grcdump_done = 1;
18659 return(rval);
18660}
18661
18662static int
18663bxe_add_cdev(struct bxe_softc *sc)
18664{
18665 sc->eeprom = malloc(BXE_EEPROM_MAX_DATA_LEN, M_DEVBUF, M_NOWAIT);
18666
18667 if (sc->eeprom == NULL) {
18668 BLOGW(sc, "Unable to alloc for eeprom size buffer\n");
18669 return (-1);
18670 }
18671
18672 sc->ioctl_dev = make_dev(&bxe_cdevsw,
18673 sc->ifp->if_dunit,
18674 UID_ROOT,
18675 GID_WHEEL,
18676 0600,
18677 "%s",
18678 if_name(sc->ifp));
18679
18680 if (sc->ioctl_dev == NULL) {
18681 free(sc->eeprom, M_DEVBUF);
18682 sc->eeprom = NULL;
18683 return (-1);
18684 }
18685
18686 sc->ioctl_dev->si_drv1 = sc;
18687
18688 return (0);
18689}
18690
18691static void
18692bxe_del_cdev(struct bxe_softc *sc)
18693{
18694 if (sc->ioctl_dev != NULL)
18695 destroy_dev(sc->ioctl_dev);
18696
18697 if (sc->eeprom != NULL) {
18698 free(sc->eeprom, M_DEVBUF);
18699 sc->eeprom = NULL;
18700 }
18701 sc->ioctl_dev = NULL;
18702
18703 return;
18704}
18705
18706static bool bxe_is_nvram_accessible(struct bxe_softc *sc)
18707{
18708
18709 if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) == 0)
18710 return FALSE;
18711
18712 return TRUE;
18713}
18714
18715
18716static int
18717bxe_wr_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len)
18718{
18719 int rval = 0;
18720
18721 if(!bxe_is_nvram_accessible(sc)) {
18722 BLOGW(sc, "Cannot access eeprom when interface is down\n");
18723 return (-EAGAIN);
18724 }
18725 rval = bxe_nvram_write(sc, offset, (uint8_t *)data, len);
18726
18727
18728 return (rval);
18729}
18730
18731static int
18732bxe_rd_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len)
18733{
18734 int rval = 0;
18735
18736 if(!bxe_is_nvram_accessible(sc)) {
18737 BLOGW(sc, "Cannot access eeprom when interface is down\n");
18738 return (-EAGAIN);
18739 }
18740 rval = bxe_nvram_read(sc, offset, (uint8_t *)data, len);
18741
18742 return (rval);
18743}
18744
18745static int
18746bxe_eeprom_rd_wr(struct bxe_softc *sc, bxe_eeprom_t *eeprom)
18747{
18748 int rval = 0;
18749
18750 switch (eeprom->eeprom_cmd) {
18751
18752 case BXE_EEPROM_CMD_SET_EEPROM:
18753
18754 rval = copyin(eeprom->eeprom_data, sc->eeprom,
18755 eeprom->eeprom_data_len);
18756
18757 if (rval)
18758 break;
18759
18760 rval = bxe_wr_eeprom(sc, sc->eeprom, eeprom->eeprom_offset,
18761 eeprom->eeprom_data_len);
18762 break;
18763
18764 case BXE_EEPROM_CMD_GET_EEPROM:
18765
18766 rval = bxe_rd_eeprom(sc, sc->eeprom, eeprom->eeprom_offset,
18767 eeprom->eeprom_data_len);
18768
18769 if (rval) {
18770 break;
18771 }
18772
18773 rval = copyout(sc->eeprom, eeprom->eeprom_data,
18774 eeprom->eeprom_data_len);
18775 break;
18776
18777 default:
18778 rval = EINVAL;
18779 break;
18780 }
18781
18782 if (rval) {
18783 BLOGW(sc, "ioctl cmd %d failed rval %d\n", eeprom->eeprom_cmd, rval);
18784 }
18785
18786 return (rval);
18787}
18788
18789static int
18790bxe_get_settings(struct bxe_softc *sc, bxe_dev_setting_t *dev_p)
18791{
18792 uint32_t ext_phy_config;
18793 int port = SC_PORT(sc);
18794 int cfg_idx = bxe_get_link_cfg_idx(sc);
18795
18796 dev_p->supported = sc->port.supported[cfg_idx] |
18797 (sc->port.supported[cfg_idx ^ 1] &
18798 (ELINK_SUPPORTED_TP | ELINK_SUPPORTED_FIBRE));
18799 dev_p->advertising = sc->port.advertising[cfg_idx];
18800 if(sc->link_params.phy[bxe_get_cur_phy_idx(sc)].media_type ==
18801 ELINK_ETH_PHY_SFP_1G_FIBER) {
18802 dev_p->supported = ~(ELINK_SUPPORTED_10000baseT_Full);
18803 dev_p->advertising &= ~(ADVERTISED_10000baseT_Full);
18804 }
18805 if ((sc->state == BXE_STATE_OPEN) && sc->link_vars.link_up &&
18806 !(sc->flags & BXE_MF_FUNC_DIS)) {
18807 dev_p->duplex = sc->link_vars.duplex;
18808 if (IS_MF(sc) && !BXE_NOMCP(sc))
18809 dev_p->speed = bxe_get_mf_speed(sc);
18810 else
18811 dev_p->speed = sc->link_vars.line_speed;
18812 } else {
18813 dev_p->duplex = DUPLEX_UNKNOWN;
18814 dev_p->speed = SPEED_UNKNOWN;
18815 }
18816
18817 dev_p->port = bxe_media_detect(sc);
18818
18819 ext_phy_config = SHMEM_RD(sc,
18820 dev_info.port_hw_config[port].external_phy_config);
18821 if((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) ==
18822 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
18823 dev_p->phy_address = sc->port.phy_addr;
18824 else if(((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) !=
18825 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
18826 ((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) !=
18827 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
18828 dev_p->phy_address = ELINK_XGXS_EXT_PHY_ADDR(ext_phy_config);
18829 else
18830 dev_p->phy_address = 0;
18831
18832 if(sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG)
18833 dev_p->autoneg = AUTONEG_ENABLE;
18834 else
18835 dev_p->autoneg = AUTONEG_DISABLE;
18836
18837
18838 return 0;
18839}
18840
18841static int
18842bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
18843 struct thread *td)
18844{
18845 struct bxe_softc *sc;
18846 int rval = 0;
18847 device_t pci_dev;
18848 bxe_grcdump_t *dump = NULL;
18849 int grc_dump_size;
18850 bxe_drvinfo_t *drv_infop = NULL;
18851 bxe_dev_setting_t *dev_p;
18852 bxe_dev_setting_t dev_set;
18853 bxe_get_regs_t *reg_p;
18854 bxe_reg_rdw_t *reg_rdw_p;
18855 bxe_pcicfg_rdw_t *cfg_rdw_p;
18856 bxe_perm_mac_addr_t *mac_addr_p;
18857
18858
18859 if ((sc = (struct bxe_softc *)dev->si_drv1) == NULL)
18860 return ENXIO;
18861
18862 pci_dev= sc->dev;
18863
18864 dump = (bxe_grcdump_t *)data;
18865
18866 switch(cmd) {
18867
18868 case BXE_GRC_DUMP_SIZE:
18869 dump->pci_func = sc->pcie_func;
18870 dump->grcdump_size =
18871 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
18872 sizeof(struct dump_header);
18873 break;
18874
18875 case BXE_GRC_DUMP:
18876
18877 grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
18878 sizeof(struct dump_header);
18879 if ((!sc->trigger_grcdump) || (dump->grcdump == NULL) ||
18880 (dump->grcdump_size < grc_dump_size)) {
18881 rval = EINVAL;
18882 break;
18883 }
18884
18885 if((sc->trigger_grcdump) && (!sc->grcdump_done) &&
18886 (!sc->grcdump_started)) {
18887 rval = bxe_grc_dump(sc);
18888 }
18889
18890 if((!rval) && (sc->grcdump_done) && (sc->grcdump_started) &&
18891 (sc->grc_dump != NULL)) {
18892 dump->grcdump_dwords = grc_dump_size >> 2;
18893 rval = copyout(sc->grc_dump, dump->grcdump, grc_dump_size);
18894 free(sc->grc_dump, M_DEVBUF);
18895 sc->grc_dump = NULL;
18896 sc->grcdump_started = 0;
18897 sc->grcdump_done = 0;
18898 }
18899
18900 break;
18901
18902 case BXE_DRV_INFO:
18903 drv_infop = (bxe_drvinfo_t *)data;
18904 snprintf(drv_infop->drv_name, BXE_DRV_NAME_LENGTH, "%s", "bxe");
18905 snprintf(drv_infop->drv_version, BXE_DRV_VERSION_LENGTH, "v:%s",
18906 BXE_DRIVER_VERSION);
18907 snprintf(drv_infop->mfw_version, BXE_MFW_VERSION_LENGTH, "%s",
18908 sc->devinfo.bc_ver_str);
18909 snprintf(drv_infop->stormfw_version, BXE_STORMFW_VERSION_LENGTH,
18910 "%s", sc->fw_ver_str);
18911 drv_infop->eeprom_dump_len = sc->devinfo.flash_size;
18912 drv_infop->reg_dump_len =
18913 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t))
18914 + sizeof(struct dump_header);
18915 snprintf(drv_infop->bus_info, BXE_BUS_INFO_LENGTH, "%d:%d:%d",
18916 sc->pcie_bus, sc->pcie_device, sc->pcie_func);
18917 break;
18918
18919 case BXE_DEV_SETTING:
18920 dev_p = (bxe_dev_setting_t *)data;
18921 bxe_get_settings(sc, &dev_set);
18922 dev_p->supported = dev_set.supported;
18923 dev_p->advertising = dev_set.advertising;
18924 dev_p->speed = dev_set.speed;
18925 dev_p->duplex = dev_set.duplex;
18926 dev_p->port = dev_set.port;
18927 dev_p->phy_address = dev_set.phy_address;
18928 dev_p->autoneg = dev_set.autoneg;
18929
18930 break;
18931
18932 case BXE_GET_REGS:
18933
18934 reg_p = (bxe_get_regs_t *)data;
18935 grc_dump_size = reg_p->reg_buf_len;
18936
18937 if((!sc->grcdump_done) && (!sc->grcdump_started)) {
18938 bxe_grc_dump(sc);
18939 }
18940 if((sc->grcdump_done) && (sc->grcdump_started) &&
18941 (sc->grc_dump != NULL)) {
18942 rval = copyout(sc->grc_dump, reg_p->reg_buf, grc_dump_size);
18943 free(sc->grc_dump, M_DEVBUF);
18944 sc->grc_dump = NULL;
18945 sc->grcdump_started = 0;
18946 sc->grcdump_done = 0;
18947 }
18948
18949 break;
18950
18951 case BXE_RDW_REG:
18952 reg_rdw_p = (bxe_reg_rdw_t *)data;
18953 if((reg_rdw_p->reg_cmd == BXE_READ_REG_CMD) &&
18954 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT))
18955 reg_rdw_p->reg_val = REG_RD(sc, reg_rdw_p->reg_id);
18956
18957 if((reg_rdw_p->reg_cmd == BXE_WRITE_REG_CMD) &&
18958 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT))
18959 REG_WR(sc, reg_rdw_p->reg_id, reg_rdw_p->reg_val);
18960
18961 break;
18962
18963 case BXE_RDW_PCICFG:
18964 cfg_rdw_p = (bxe_pcicfg_rdw_t *)data;
18965 if(cfg_rdw_p->cfg_cmd == BXE_READ_PCICFG) {
18966
18967 cfg_rdw_p->cfg_val = pci_read_config(sc->dev, cfg_rdw_p->cfg_id,
18968 cfg_rdw_p->cfg_width);
18969
18970 } else if(cfg_rdw_p->cfg_cmd == BXE_WRITE_PCICFG) {
18971 pci_write_config(sc->dev, cfg_rdw_p->cfg_id, cfg_rdw_p->cfg_val,
18972 cfg_rdw_p->cfg_width);
18973 } else {
18974 BLOGW(sc, "BXE_RDW_PCICFG ioctl wrong cmd passed\n");
18975 }
18976 break;
18977
18978 case BXE_MAC_ADDR:
18979 mac_addr_p = (bxe_perm_mac_addr_t *)data;
18980 snprintf(mac_addr_p->mac_addr_str, sizeof(sc->mac_addr_str), "%s",
18981 sc->mac_addr_str);
18982 break;
18983
18984 case BXE_EEPROM:
18985 rval = bxe_eeprom_rd_wr(sc, (bxe_eeprom_t *)data);
18986 break;
18987
18988
18989 default:
18990 break;
18991 }
18992
18993 return (rval);
18994}