Deleted Added
sdiff udiff text old ( 234009 ) new ( 234324 )
full compact
1/*-
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer,
10 * without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 * redistribution must be conditioned upon including a substantially
14 * similar Disclaimer requirement for further binary redistribution.
15 *
16 * NO WARRANTY
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27 * THE POSSIBILITY OF SUCH DAMAGES.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/ath/if_ath_tx.c 234324 2012-04-15 20:29:39Z adrian $");
32
33/*
34 * Driver for the Atheros Wireless LAN controller.
35 *
36 * This software is derived from work of Atsushi Onoe; his contribution
37 * is greatly appreciated.
38 */
39
40#include "opt_inet.h"
41#include "opt_ath.h"
42#include "opt_wlan.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/sysctl.h>
47#include <sys/mbuf.h>
48#include <sys/malloc.h>
49#include <sys/lock.h>
50#include <sys/mutex.h>
51#include <sys/kernel.h>
52#include <sys/socket.h>
53#include <sys/sockio.h>
54#include <sys/errno.h>
55#include <sys/callout.h>
56#include <sys/bus.h>
57#include <sys/endian.h>
58#include <sys/kthread.h>
59#include <sys/taskqueue.h>
60#include <sys/priv.h>
61
62#include <machine/bus.h>
63
64#include <net/if.h>
65#include <net/if_dl.h>
66#include <net/if_media.h>
67#include <net/if_types.h>
68#include <net/if_arp.h>
69#include <net/ethernet.h>
70#include <net/if_llc.h>
71
72#include <net80211/ieee80211_var.h>
73#include <net80211/ieee80211_regdomain.h>
74#ifdef IEEE80211_SUPPORT_SUPERG
75#include <net80211/ieee80211_superg.h>
76#endif
77#ifdef IEEE80211_SUPPORT_TDMA
78#include <net80211/ieee80211_tdma.h>
79#endif
80#include <net80211/ieee80211_ht.h>
81
82#include <net/bpf.h>
83
84#ifdef INET
85#include <netinet/in.h>
86#include <netinet/if_ether.h>
87#endif
88
89#include <dev/ath/if_athvar.h>
90#include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */
91#include <dev/ath/ath_hal/ah_diagcodes.h>
92
93#include <dev/ath/if_ath_debug.h>
94
95#ifdef ATH_TX99_DIAG
96#include <dev/ath/ath_tx99/ath_tx99.h>
97#endif
98
99#include <dev/ath/if_ath_misc.h>
100#include <dev/ath/if_ath_tx.h>
101#include <dev/ath/if_ath_tx_ht.h>
102
103/*
104 * How many retries to perform in software
105 */
106#define SWMAX_RETRIES 10
107
108static int ath_tx_ampdu_pending(struct ath_softc *sc, struct ath_node *an,
109 int tid);
110static int ath_tx_ampdu_running(struct ath_softc *sc, struct ath_node *an,
111 int tid);
112static int ath_tx_action_frame_override_queue(struct ath_softc *sc,
113 struct ieee80211_node *ni, struct mbuf *m0, int *tid);
114static int ath_tx_seqno_required(struct ath_softc *sc,
115 struct ieee80211_node *ni, struct ath_buf *bf, struct mbuf *m0);
116
117/*
118 * Whether to use the 11n rate scenario functions or not
119 */
120static inline int
121ath_tx_is_11n(struct ath_softc *sc)
122{
123 return (sc->sc_ah->ah_magic == 0x20065416);
124}
125
126/*
127 * Obtain the current TID from the given frame.
128 *
129 * Non-QoS frames need to go into TID 16 (IEEE80211_NONQOS_TID.)
130 * This has implications for which AC/priority the packet is placed
131 * in.
132 */
133static int
134ath_tx_gettid(struct ath_softc *sc, const struct mbuf *m0)
135{
136 const struct ieee80211_frame *wh;
137 int pri = M_WME_GETAC(m0);
138
139 wh = mtod(m0, const struct ieee80211_frame *);
140 if (! IEEE80211_QOS_HAS_SEQ(wh))
141 return IEEE80211_NONQOS_TID;
142 else
143 return WME_AC_TO_TID(pri);
144}
145
146/*
147 * Determine what the correct AC queue for the given frame
148 * should be.
149 *
150 * This code assumes that the TIDs map consistently to
151 * the underlying hardware (or software) ath_txq.
152 * Since the sender may try to set an AC which is
153 * arbitrary, non-QoS TIDs may end up being put on
154 * completely different ACs. There's no way to put a
155 * TID into multiple ath_txq's for scheduling, so
156 * for now we override the AC/TXQ selection and set
157 * non-QOS TID frames into the BE queue.
158 *
159 * This may be completely incorrect - specifically,
160 * some management frames may end up out of order
161 * compared to the QoS traffic they're controlling.
162 * I'll look into this later.
163 */
164static int
165ath_tx_getac(struct ath_softc *sc, const struct mbuf *m0)
166{
167 const struct ieee80211_frame *wh;
168 int pri = M_WME_GETAC(m0);
169 wh = mtod(m0, const struct ieee80211_frame *);
170 if (IEEE80211_QOS_HAS_SEQ(wh))
171 return pri;
172
173 return WME_AC_BE;
174}
175
176void
177ath_txfrag_cleanup(struct ath_softc *sc,
178 ath_bufhead *frags, struct ieee80211_node *ni)
179{
180 struct ath_buf *bf, *next;
181
182 ATH_TXBUF_LOCK_ASSERT(sc);
183
184 TAILQ_FOREACH_SAFE(bf, frags, bf_list, next) {
185 /* NB: bf assumed clean */
186 TAILQ_REMOVE(frags, bf, bf_list);
187 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
188 ieee80211_node_decref(ni);
189 }
190}
191
192/*
193 * Setup xmit of a fragmented frame. Allocate a buffer
194 * for each frag and bump the node reference count to
195 * reflect the held reference to be setup by ath_tx_start.
196 */
197int
198ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
199 struct mbuf *m0, struct ieee80211_node *ni)
200{
201 struct mbuf *m;
202 struct ath_buf *bf;
203
204 ATH_TXBUF_LOCK(sc);
205 for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
206 bf = _ath_getbuf_locked(sc);
207 if (bf == NULL) { /* out of buffers, cleanup */
208 device_printf(sc->sc_dev, "%s: no buffer?\n",
209 __func__);
210 ath_txfrag_cleanup(sc, frags, ni);
211 break;
212 }
213 ieee80211_node_incref(ni);
214 TAILQ_INSERT_TAIL(frags, bf, bf_list);
215 }
216 ATH_TXBUF_UNLOCK(sc);
217
218 return !TAILQ_EMPTY(frags);
219}
220
221/*
222 * Reclaim mbuf resources. For fragmented frames we
223 * need to claim each frag chained with m_nextpkt.
224 */
225void
226ath_freetx(struct mbuf *m)
227{
228 struct mbuf *next;
229
230 do {
231 next = m->m_nextpkt;
232 m->m_nextpkt = NULL;
233 m_freem(m);
234 } while ((m = next) != NULL);
235}
236
237static int
238ath_tx_dmasetup(struct ath_softc *sc, struct ath_buf *bf, struct mbuf *m0)
239{
240 struct mbuf *m;
241 int error;
242
243 /*
244 * Load the DMA map so any coalescing is done. This
245 * also calculates the number of descriptors we need.
246 */
247 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
248 bf->bf_segs, &bf->bf_nseg,
249 BUS_DMA_NOWAIT);
250 if (error == EFBIG) {
251 /* XXX packet requires too many descriptors */
252 bf->bf_nseg = ATH_TXDESC+1;
253 } else if (error != 0) {
254 sc->sc_stats.ast_tx_busdma++;
255 ath_freetx(m0);
256 return error;
257 }
258 /*
259 * Discard null packets and check for packets that
260 * require too many TX descriptors. We try to convert
261 * the latter to a cluster.
262 */
263 if (bf->bf_nseg > ATH_TXDESC) { /* too many desc's, linearize */
264 sc->sc_stats.ast_tx_linear++;
265 m = m_collapse(m0, M_DONTWAIT, ATH_TXDESC);
266 if (m == NULL) {
267 ath_freetx(m0);
268 sc->sc_stats.ast_tx_nombuf++;
269 return ENOMEM;
270 }
271 m0 = m;
272 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
273 bf->bf_segs, &bf->bf_nseg,
274 BUS_DMA_NOWAIT);
275 if (error != 0) {
276 sc->sc_stats.ast_tx_busdma++;
277 ath_freetx(m0);
278 return error;
279 }
280 KASSERT(bf->bf_nseg <= ATH_TXDESC,
281 ("too many segments after defrag; nseg %u", bf->bf_nseg));
282 } else if (bf->bf_nseg == 0) { /* null packet, discard */
283 sc->sc_stats.ast_tx_nodata++;
284 ath_freetx(m0);
285 return EIO;
286 }
287 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n",
288 __func__, m0, m0->m_pkthdr.len);
289 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
290 bf->bf_m = m0;
291
292 return 0;
293}
294
295/*
296 * Chain together segments+descriptors for a non-11n frame.
297 */
298static void
299ath_tx_chaindesclist(struct ath_softc *sc, struct ath_buf *bf)
300{
301 struct ath_hal *ah = sc->sc_ah;
302 struct ath_desc *ds, *ds0;
303 int i;
304
305 /*
306 * Fillin the remainder of the descriptor info.
307 */
308 ds0 = ds = bf->bf_desc;
309 for (i = 0; i < bf->bf_nseg; i++, ds++) {
310 ds->ds_data = bf->bf_segs[i].ds_addr;
311 if (i == bf->bf_nseg - 1)
312 ds->ds_link = 0;
313 else
314 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
315 ath_hal_filltxdesc(ah, ds
316 , bf->bf_segs[i].ds_len /* segment length */
317 , i == 0 /* first segment */
318 , i == bf->bf_nseg - 1 /* last segment */
319 , ds0 /* first descriptor */
320 );
321 DPRINTF(sc, ATH_DEBUG_XMIT,
322 "%s: %d: %08x %08x %08x %08x %08x %08x\n",
323 __func__, i, ds->ds_link, ds->ds_data,
324 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
325 bf->bf_lastds = ds;
326 }
327 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
328}
329
330/*
331 * Fill in the descriptor list for a aggregate subframe.
332 *
333 * The subframe is returned with the ds_link field in the last subframe
334 * pointing to 0.
335 */
336static void
337ath_tx_chaindesclist_subframe(struct ath_softc *sc, struct ath_buf *bf)
338{
339 struct ath_hal *ah = sc->sc_ah;
340 struct ath_desc *ds, *ds0;
341 int i;
342
343 ds0 = ds = bf->bf_desc;
344
345 /*
346 * There's no need to call ath_hal_setupfirsttxdesc here;
347 * That's only going to occur for the first frame in an aggregate.
348 */
349 for (i = 0; i < bf->bf_nseg; i++, ds++) {
350 ds->ds_data = bf->bf_segs[i].ds_addr;
351 if (i == bf->bf_nseg - 1)
352 ds->ds_link = 0;
353 else
354 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
355
356 /*
357 * This performs the setup for an aggregate frame.
358 * This includes enabling the aggregate flags if needed.
359 */
360 ath_hal_chaintxdesc(ah, ds,
361 bf->bf_state.bfs_pktlen,
362 bf->bf_state.bfs_hdrlen,
363 HAL_PKT_TYPE_AMPDU, /* forces aggregate bits to be set */
364 bf->bf_state.bfs_keyix,
365 0, /* cipher, calculated from keyix */
366 bf->bf_state.bfs_ndelim,
367 bf->bf_segs[i].ds_len, /* segment length */
368 i == 0, /* first segment */
369 i == bf->bf_nseg - 1, /* last segment */
370 bf->bf_next == NULL /* last sub-frame in aggr */
371 );
372
373 DPRINTF(sc, ATH_DEBUG_XMIT,
374 "%s: %d: %08x %08x %08x %08x %08x %08x\n",
375 __func__, i, ds->ds_link, ds->ds_data,
376 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
377 bf->bf_lastds = ds;
378 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
379 BUS_DMASYNC_PREWRITE);
380 }
381}
382
383/*
384 * Setup segments+descriptors for an 11n aggregate.
385 * bf_first is the first buffer in the aggregate.
386 * The descriptor list must already been linked together using
387 * bf->bf_next.
388 */
389static void
390ath_tx_setds_11n(struct ath_softc *sc, struct ath_buf *bf_first)
391{
392 struct ath_buf *bf, *bf_prev = NULL;
393
394 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: nframes=%d, al=%d\n",
395 __func__, bf_first->bf_state.bfs_nframes,
396 bf_first->bf_state.bfs_al);
397
398 /*
399 * Setup all descriptors of all subframes.
400 */
401 bf = bf_first;
402 while (bf != NULL) {
403 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
404 "%s: bf=%p, nseg=%d, pktlen=%d, seqno=%d\n",
405 __func__, bf, bf->bf_nseg, bf->bf_state.bfs_pktlen,
406 SEQNO(bf->bf_state.bfs_seqno));
407
408 /* Sub-frame setup */
409 ath_tx_chaindesclist_subframe(sc, bf);
410
411 /*
412 * Link the last descriptor of the previous frame
413 * to the beginning descriptor of this frame.
414 */
415 if (bf_prev != NULL)
416 bf_prev->bf_lastds->ds_link = bf->bf_daddr;
417
418 /* Save a copy so we can link the next descriptor in */
419 bf_prev = bf;
420 bf = bf->bf_next;
421 }
422
423 /*
424 * Setup first descriptor of first frame.
425 * chaintxdesc() overwrites the descriptor entries;
426 * setupfirsttxdesc() merges in things.
427 * Otherwise various fields aren't set correctly (eg flags).
428 */
429 ath_hal_setupfirsttxdesc(sc->sc_ah,
430 bf_first->bf_desc,
431 bf_first->bf_state.bfs_al,
432 bf_first->bf_state.bfs_txflags | HAL_TXDESC_INTREQ,
433 bf_first->bf_state.bfs_txpower,
434 bf_first->bf_state.bfs_txrate0,
435 bf_first->bf_state.bfs_try0,
436 bf_first->bf_state.bfs_txantenna,
437 bf_first->bf_state.bfs_ctsrate,
438 bf_first->bf_state.bfs_ctsduration);
439
440 /*
441 * Setup the last descriptor in the list.
442 * bf_prev points to the last; bf is NULL here.
443 */
444 ath_hal_setuplasttxdesc(sc->sc_ah, bf_prev->bf_desc,
445 bf_first->bf_desc);
446
447 /*
448 * Set the first descriptor bf_lastds field to point to
449 * the last descriptor in the last subframe, that's where
450 * the status update will occur.
451 */
452 bf_first->bf_lastds = bf_prev->bf_lastds;
453
454 /*
455 * And bf_last in the first descriptor points to the end of
456 * the aggregate list.
457 */
458 bf_first->bf_last = bf_prev;
459
460 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: end\n", __func__);
461}
462
463static void
464ath_tx_handoff_mcast(struct ath_softc *sc, struct ath_txq *txq,
465 struct ath_buf *bf)
466{
467 ATH_TXQ_LOCK_ASSERT(txq);
468 KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0,
469 ("%s: busy status 0x%x", __func__, bf->bf_flags));
470 if (txq->axq_link != NULL) {
471 struct ath_buf *last = ATH_TXQ_LAST(txq, axq_q_s);
472 struct ieee80211_frame *wh;
473
474 /* mark previous frame */
475 wh = mtod(last->bf_m, struct ieee80211_frame *);
476 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
477 bus_dmamap_sync(sc->sc_dmat, last->bf_dmamap,
478 BUS_DMASYNC_PREWRITE);
479
480 /* link descriptor */
481 *txq->axq_link = bf->bf_daddr;
482 }
483 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
484 txq->axq_link = &bf->bf_lastds->ds_link;
485}
486
487/*
488 * Hand-off packet to a hardware queue.
489 */
490static void
491ath_tx_handoff_hw(struct ath_softc *sc, struct ath_txq *txq,
492 struct ath_buf *bf)
493{
494 struct ath_hal *ah = sc->sc_ah;
495
496 /*
497 * Insert the frame on the outbound list and pass it on
498 * to the hardware. Multicast frames buffered for power
499 * save stations and transmit from the CAB queue are stored
500 * on a s/w only queue and loaded on to the CAB queue in
501 * the SWBA handler since frames only go out on DTIM and
502 * to avoid possible races.
503 */
504 ATH_TXQ_LOCK_ASSERT(txq);
505 KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0,
506 ("%s: busy status 0x%x", __func__, bf->bf_flags));
507 KASSERT(txq->axq_qnum != ATH_TXQ_SWQ,
508 ("ath_tx_handoff_hw called for mcast queue"));
509
510#if 0
511 /*
512 * This causes a LOR. Find out where the PCU lock is being
513 * held whilst the TXQ lock is grabbed - that shouldn't
514 * be occuring.
515 */
516 ATH_PCU_LOCK(sc);
517 if (sc->sc_inreset_cnt) {
518 ATH_PCU_UNLOCK(sc);
519 DPRINTF(sc, ATH_DEBUG_RESET,
520 "%s: called with sc_in_reset != 0\n",
521 __func__);
522 DPRINTF(sc, ATH_DEBUG_XMIT,
523 "%s: queued: TXDP[%u] = %p (%p) depth %d\n",
524 __func__, txq->axq_qnum,
525 (caddr_t)bf->bf_daddr, bf->bf_desc,
526 txq->axq_depth);
527 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
528 if (bf->bf_state.bfs_aggr)
529 txq->axq_aggr_depth++;
530 /*
531 * There's no need to update axq_link; the hardware
532 * is in reset and once the reset is complete, any
533 * non-empty queues will simply have DMA restarted.
534 */
535 return;
536 }
537 ATH_PCU_UNLOCK(sc);
538#endif
539
540 /* For now, so not to generate whitespace diffs */
541 if (1) {
542#ifdef IEEE80211_SUPPORT_TDMA
543 int qbusy;
544
545 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
546 qbusy = ath_hal_txqenabled(ah, txq->axq_qnum);
547 if (txq->axq_link == NULL) {
548 /*
549 * Be careful writing the address to TXDP. If
550 * the tx q is enabled then this write will be
551 * ignored. Normally this is not an issue but
552 * when tdma is in use and the q is beacon gated
553 * this race can occur. If the q is busy then
554 * defer the work to later--either when another
555 * packet comes along or when we prepare a beacon
556 * frame at SWBA.
557 */
558 if (!qbusy) {
559 ath_hal_puttxbuf(ah, txq->axq_qnum,
560 bf->bf_daddr);
561 txq->axq_flags &= ~ATH_TXQ_PUTPENDING;
562 DPRINTF(sc, ATH_DEBUG_XMIT,
563 "%s: TXDP[%u] = %p (%p) depth %d\n",
564 __func__, txq->axq_qnum,
565 (caddr_t)bf->bf_daddr, bf->bf_desc,
566 txq->axq_depth);
567 } else {
568 txq->axq_flags |= ATH_TXQ_PUTPENDING;
569 DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT,
570 "%s: Q%u busy, defer enable\n", __func__,
571 txq->axq_qnum);
572 }
573 } else {
574 *txq->axq_link = bf->bf_daddr;
575 DPRINTF(sc, ATH_DEBUG_XMIT,
576 "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
577 txq->axq_qnum, txq->axq_link,
578 (caddr_t)bf->bf_daddr, bf->bf_desc,
579 txq->axq_depth);
580 if ((txq->axq_flags & ATH_TXQ_PUTPENDING) && !qbusy) {
581 /*
582 * The q was busy when we previously tried
583 * to write the address of the first buffer
584 * in the chain. Since it's not busy now
585 * handle this chore. We are certain the
586 * buffer at the front is the right one since
587 * axq_link is NULL only when the buffer list
588 * is/was empty.
589 */
590 ath_hal_puttxbuf(ah, txq->axq_qnum,
591 TAILQ_FIRST(&txq->axq_q)->bf_daddr);
592 txq->axq_flags &= ~ATH_TXQ_PUTPENDING;
593 DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT,
594 "%s: Q%u restarted\n", __func__,
595 txq->axq_qnum);
596 }
597 }
598#else
599 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
600 if (txq->axq_link == NULL) {
601 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
602 DPRINTF(sc, ATH_DEBUG_XMIT,
603 "%s: TXDP[%u] = %p (%p) depth %d\n",
604 __func__, txq->axq_qnum,
605 (caddr_t)bf->bf_daddr, bf->bf_desc,
606 txq->axq_depth);
607 } else {
608 *txq->axq_link = bf->bf_daddr;
609 DPRINTF(sc, ATH_DEBUG_XMIT,
610 "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
611 txq->axq_qnum, txq->axq_link,
612 (caddr_t)bf->bf_daddr, bf->bf_desc,
613 txq->axq_depth);
614 }
615#endif /* IEEE80211_SUPPORT_TDMA */
616 if (bf->bf_state.bfs_aggr)
617 txq->axq_aggr_depth++;
618 txq->axq_link = &bf->bf_lastds->ds_link;
619 ath_hal_txstart(ah, txq->axq_qnum);
620 }
621}
622
623/*
624 * Restart TX DMA for the given TXQ.
625 *
626 * This must be called whether the queue is empty or not.
627 */
628void
629ath_txq_restart_dma(struct ath_softc *sc, struct ath_txq *txq)
630{
631 struct ath_hal *ah = sc->sc_ah;
632 struct ath_buf *bf, *bf_last;
633
634 ATH_TXQ_LOCK_ASSERT(txq);
635
636 /* This is always going to be cleared, empty or not */
637 txq->axq_flags &= ~ATH_TXQ_PUTPENDING;
638
639 /* XXX make this ATH_TXQ_FIRST */
640 bf = TAILQ_FIRST(&txq->axq_q);
641 bf_last = ATH_TXQ_LAST(txq, axq_q_s);
642
643 if (bf == NULL)
644 return;
645
646 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
647 txq->axq_link = &bf_last->bf_lastds->ds_link;
648 ath_hal_txstart(ah, txq->axq_qnum);
649}
650
651/*
652 * Hand off a packet to the hardware (or mcast queue.)
653 *
654 * The relevant hardware txq should be locked.
655 */
656static void
657ath_tx_handoff(struct ath_softc *sc, struct ath_txq *txq, struct ath_buf *bf)
658{
659 ATH_TXQ_LOCK_ASSERT(txq);
660
661 if (txq->axq_qnum == ATH_TXQ_SWQ)
662 ath_tx_handoff_mcast(sc, txq, bf);
663 else
664 ath_tx_handoff_hw(sc, txq, bf);
665}
666
667static int
668ath_tx_tag_crypto(struct ath_softc *sc, struct ieee80211_node *ni,
669 struct mbuf *m0, int iswep, int isfrag, int *hdrlen, int *pktlen,
670 int *keyix)
671{
672 DPRINTF(sc, ATH_DEBUG_XMIT,
673 "%s: hdrlen=%d, pktlen=%d, isfrag=%d, iswep=%d, m0=%p\n",
674 __func__,
675 *hdrlen,
676 *pktlen,
677 isfrag,
678 iswep,
679 m0);
680
681 if (iswep) {
682 const struct ieee80211_cipher *cip;
683 struct ieee80211_key *k;
684
685 /*
686 * Construct the 802.11 header+trailer for an encrypted
687 * frame. The only reason this can fail is because of an
688 * unknown or unsupported cipher/key type.
689 */
690 k = ieee80211_crypto_encap(ni, m0);
691 if (k == NULL) {
692 /*
693 * This can happen when the key is yanked after the
694 * frame was queued. Just discard the frame; the
695 * 802.11 layer counts failures and provides
696 * debugging/diagnostics.
697 */
698 return (0);
699 }
700 /*
701 * Adjust the packet + header lengths for the crypto
702 * additions and calculate the h/w key index. When
703 * a s/w mic is done the frame will have had any mic
704 * added to it prior to entry so m0->m_pkthdr.len will
705 * account for it. Otherwise we need to add it to the
706 * packet length.
707 */
708 cip = k->wk_cipher;
709 (*hdrlen) += cip->ic_header;
710 (*pktlen) += cip->ic_header + cip->ic_trailer;
711 /* NB: frags always have any TKIP MIC done in s/w */
712 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
713 (*pktlen) += cip->ic_miclen;
714 (*keyix) = k->wk_keyix;
715 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
716 /*
717 * Use station key cache slot, if assigned.
718 */
719 (*keyix) = ni->ni_ucastkey.wk_keyix;
720 if ((*keyix) == IEEE80211_KEYIX_NONE)
721 (*keyix) = HAL_TXKEYIX_INVALID;
722 } else
723 (*keyix) = HAL_TXKEYIX_INVALID;
724
725 return (1);
726}
727
728/*
729 * Calculate whether interoperability protection is required for
730 * this frame.
731 *
732 * This requires the rate control information be filled in,
733 * as the protection requirement depends upon the current
734 * operating mode / PHY.
735 */
736static void
737ath_tx_calc_protection(struct ath_softc *sc, struct ath_buf *bf)
738{
739 struct ieee80211_frame *wh;
740 uint8_t rix;
741 uint16_t flags;
742 int shortPreamble;
743 const HAL_RATE_TABLE *rt = sc->sc_currates;
744 struct ifnet *ifp = sc->sc_ifp;
745 struct ieee80211com *ic = ifp->if_l2com;
746
747 flags = bf->bf_state.bfs_txflags;
748 rix = bf->bf_state.bfs_rc[0].rix;
749 shortPreamble = bf->bf_state.bfs_shpream;
750 wh = mtod(bf->bf_m, struct ieee80211_frame *);
751
752 /*
753 * If 802.11g protection is enabled, determine whether
754 * to use RTS/CTS or just CTS. Note that this is only
755 * done for OFDM unicast frames.
756 */
757 if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
758 rt->info[rix].phy == IEEE80211_T_OFDM &&
759 (flags & HAL_TXDESC_NOACK) == 0) {
760 bf->bf_state.bfs_doprot = 1;
761 /* XXX fragments must use CCK rates w/ protection */
762 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) {
763 flags |= HAL_TXDESC_RTSENA;
764 } else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) {
765 flags |= HAL_TXDESC_CTSENA;
766 }
767 /*
768 * For frags it would be desirable to use the
769 * highest CCK rate for RTS/CTS. But stations
770 * farther away may detect it at a lower CCK rate
771 * so use the configured protection rate instead
772 * (for now).
773 */
774 sc->sc_stats.ast_tx_protect++;
775 }
776
777 /*
778 * If 11n protection is enabled and it's a HT frame,
779 * enable RTS.
780 *
781 * XXX ic_htprotmode or ic_curhtprotmode?
782 * XXX should it_htprotmode only matter if ic_curhtprotmode
783 * XXX indicates it's not a HT pure environment?
784 */
785 if ((ic->ic_htprotmode == IEEE80211_PROT_RTSCTS) &&
786 rt->info[rix].phy == IEEE80211_T_HT &&
787 (flags & HAL_TXDESC_NOACK) == 0) {
788 flags |= HAL_TXDESC_RTSENA;
789 sc->sc_stats.ast_tx_htprotect++;
790 }
791 bf->bf_state.bfs_txflags = flags;
792}
793
794/*
795 * Update the frame duration given the currently selected rate.
796 *
797 * This also updates the frame duration value, so it will require
798 * a DMA flush.
799 */
800static void
801ath_tx_calc_duration(struct ath_softc *sc, struct ath_buf *bf)
802{
803 struct ieee80211_frame *wh;
804 uint8_t rix;
805 uint16_t flags;
806 int shortPreamble;
807 struct ath_hal *ah = sc->sc_ah;
808 const HAL_RATE_TABLE *rt = sc->sc_currates;
809 int isfrag = bf->bf_m->m_flags & M_FRAG;
810
811 flags = bf->bf_state.bfs_txflags;
812 rix = bf->bf_state.bfs_rc[0].rix;
813 shortPreamble = bf->bf_state.bfs_shpream;
814 wh = mtod(bf->bf_m, struct ieee80211_frame *);
815
816 /*
817 * Calculate duration. This logically belongs in the 802.11
818 * layer but it lacks sufficient information to calculate it.
819 */
820 if ((flags & HAL_TXDESC_NOACK) == 0 &&
821 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
822 u_int16_t dur;
823 if (shortPreamble)
824 dur = rt->info[rix].spAckDuration;
825 else
826 dur = rt->info[rix].lpAckDuration;
827 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
828 dur += dur; /* additional SIFS+ACK */
829 KASSERT(bf->bf_m->m_nextpkt != NULL, ("no fragment"));
830 /*
831 * Include the size of next fragment so NAV is
832 * updated properly. The last fragment uses only
833 * the ACK duration
834 */
835 dur += ath_hal_computetxtime(ah, rt,
836 bf->bf_m->m_nextpkt->m_pkthdr.len,
837 rix, shortPreamble);
838 }
839 if (isfrag) {
840 /*
841 * Force hardware to use computed duration for next
842 * fragment by disabling multi-rate retry which updates
843 * duration based on the multi-rate duration table.
844 */
845 bf->bf_state.bfs_ismrr = 0;
846 bf->bf_state.bfs_try0 = ATH_TXMGTTRY;
847 /* XXX update bfs_rc[0].try? */
848 }
849
850 /* Update the duration field itself */
851 *(u_int16_t *)wh->i_dur = htole16(dur);
852 }
853}
854
855static uint8_t
856ath_tx_get_rtscts_rate(struct ath_hal *ah, const HAL_RATE_TABLE *rt,
857 int cix, int shortPreamble)
858{
859 uint8_t ctsrate;
860
861 /*
862 * CTS transmit rate is derived from the transmit rate
863 * by looking in the h/w rate table. We must also factor
864 * in whether or not a short preamble is to be used.
865 */
866 /* NB: cix is set above where RTS/CTS is enabled */
867 KASSERT(cix != 0xff, ("cix not setup"));
868 ctsrate = rt->info[cix].rateCode;
869
870 /* XXX this should only matter for legacy rates */
871 if (shortPreamble)
872 ctsrate |= rt->info[cix].shortPreamble;
873
874 return (ctsrate);
875}
876
877/*
878 * Calculate the RTS/CTS duration for legacy frames.
879 */
880static int
881ath_tx_calc_ctsduration(struct ath_hal *ah, int rix, int cix,
882 int shortPreamble, int pktlen, const HAL_RATE_TABLE *rt,
883 int flags)
884{
885 int ctsduration = 0;
886
887 /* This mustn't be called for HT modes */
888 if (rt->info[cix].phy == IEEE80211_T_HT) {
889 printf("%s: HT rate where it shouldn't be (0x%x)\n",
890 __func__, rt->info[cix].rateCode);
891 return (-1);
892 }
893
894 /*
895 * Compute the transmit duration based on the frame
896 * size and the size of an ACK frame. We call into the
897 * HAL to do the computation since it depends on the
898 * characteristics of the actual PHY being used.
899 *
900 * NB: CTS is assumed the same size as an ACK so we can
901 * use the precalculated ACK durations.
902 */
903 if (shortPreamble) {
904 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
905 ctsduration += rt->info[cix].spAckDuration;
906 ctsduration += ath_hal_computetxtime(ah,
907 rt, pktlen, rix, AH_TRUE);
908 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
909 ctsduration += rt->info[rix].spAckDuration;
910 } else {
911 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
912 ctsduration += rt->info[cix].lpAckDuration;
913 ctsduration += ath_hal_computetxtime(ah,
914 rt, pktlen, rix, AH_FALSE);
915 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
916 ctsduration += rt->info[rix].lpAckDuration;
917 }
918
919 return (ctsduration);
920}
921
922/*
923 * Update the given ath_buf with updated rts/cts setup and duration
924 * values.
925 *
926 * To support rate lookups for each software retry, the rts/cts rate
927 * and cts duration must be re-calculated.
928 *
929 * This function assumes the RTS/CTS flags have been set as needed;
930 * mrr has been disabled; and the rate control lookup has been done.
931 *
932 * XXX TODO: MRR need only be disabled for the pre-11n NICs.
933 * XXX The 11n NICs support per-rate RTS/CTS configuration.
934 */
935static void
936ath_tx_set_rtscts(struct ath_softc *sc, struct ath_buf *bf)
937{
938 uint16_t ctsduration = 0;
939 uint8_t ctsrate = 0;
940 uint8_t rix = bf->bf_state.bfs_rc[0].rix;
941 uint8_t cix = 0;
942 const HAL_RATE_TABLE *rt = sc->sc_currates;
943
944 /*
945 * No RTS/CTS enabled? Don't bother.
946 */
947 if ((bf->bf_state.bfs_txflags &
948 (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) == 0) {
949 /* XXX is this really needed? */
950 bf->bf_state.bfs_ctsrate = 0;
951 bf->bf_state.bfs_ctsduration = 0;
952 return;
953 }
954
955 /*
956 * If protection is enabled, use the protection rix control
957 * rate. Otherwise use the rate0 control rate.
958 */
959 if (bf->bf_state.bfs_doprot)
960 rix = sc->sc_protrix;
961 else
962 rix = bf->bf_state.bfs_rc[0].rix;
963
964 /*
965 * If the raw path has hard-coded ctsrate0 to something,
966 * use it.
967 */
968 if (bf->bf_state.bfs_ctsrate0 != 0)
969 cix = ath_tx_findrix(sc, bf->bf_state.bfs_ctsrate0);
970 else
971 /* Control rate from above */
972 cix = rt->info[rix].controlRate;
973
974 /* Calculate the rtscts rate for the given cix */
975 ctsrate = ath_tx_get_rtscts_rate(sc->sc_ah, rt, cix,
976 bf->bf_state.bfs_shpream);
977
978 /* The 11n chipsets do ctsduration calculations for you */
979 if (! ath_tx_is_11n(sc))
980 ctsduration = ath_tx_calc_ctsduration(sc->sc_ah, rix, cix,
981 bf->bf_state.bfs_shpream, bf->bf_state.bfs_pktlen,
982 rt, bf->bf_state.bfs_txflags);
983
984 /* Squirrel away in ath_buf */
985 bf->bf_state.bfs_ctsrate = ctsrate;
986 bf->bf_state.bfs_ctsduration = ctsduration;
987
988 /*
989 * Must disable multi-rate retry when using RTS/CTS.
990 * XXX TODO: only for pre-11n NICs.
991 */
992 bf->bf_state.bfs_ismrr = 0;
993 bf->bf_state.bfs_try0 =
994 bf->bf_state.bfs_rc[0].tries = ATH_TXMGTTRY; /* XXX ew */
995}
996
997/*
998 * Setup the descriptor chain for a normal or fast-frame
999 * frame.
1000 */
1001static void
1002ath_tx_setds(struct ath_softc *sc, struct ath_buf *bf)
1003{
1004 struct ath_desc *ds = bf->bf_desc;
1005 struct ath_hal *ah = sc->sc_ah;
1006
1007 ath_hal_setuptxdesc(ah, ds
1008 , bf->bf_state.bfs_pktlen /* packet length */
1009 , bf->bf_state.bfs_hdrlen /* header length */
1010 , bf->bf_state.bfs_atype /* Atheros packet type */
1011 , bf->bf_state.bfs_txpower /* txpower */
1012 , bf->bf_state.bfs_txrate0
1013 , bf->bf_state.bfs_try0 /* series 0 rate/tries */
1014 , bf->bf_state.bfs_keyix /* key cache index */
1015 , bf->bf_state.bfs_txantenna /* antenna mode */
1016 , bf->bf_state.bfs_txflags /* flags */
1017 , bf->bf_state.bfs_ctsrate /* rts/cts rate */
1018 , bf->bf_state.bfs_ctsduration /* rts/cts duration */
1019 );
1020
1021 /*
1022 * This will be overriden when the descriptor chain is written.
1023 */
1024 bf->bf_lastds = ds;
1025 bf->bf_last = bf;
1026
1027 /* XXX TODO: Setup descriptor chain */
1028}
1029
1030/*
1031 * Do a rate lookup.
1032 *
1033 * This performs a rate lookup for the given ath_buf only if it's required.
1034 * Non-data frames and raw frames don't require it.
1035 *
1036 * This populates the primary and MRR entries; MRR values are
1037 * then disabled later on if something requires it (eg RTS/CTS on
1038 * pre-11n chipsets.
1039 *
1040 * This needs to be done before the RTS/CTS fields are calculated
1041 * as they may depend upon the rate chosen.
1042 */
1043static void
1044ath_tx_do_ratelookup(struct ath_softc *sc, struct ath_buf *bf)
1045{
1046 uint8_t rate, rix;
1047 int try0;
1048
1049 if (! bf->bf_state.bfs_doratelookup)
1050 return;
1051
1052 /* Get rid of any previous state */
1053 bzero(bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc));
1054
1055 ATH_NODE_LOCK(ATH_NODE(bf->bf_node));
1056 ath_rate_findrate(sc, ATH_NODE(bf->bf_node), bf->bf_state.bfs_shpream,
1057 bf->bf_state.bfs_pktlen, &rix, &try0, &rate);
1058
1059 /* In case MRR is disabled, make sure rc[0] is setup correctly */
1060 bf->bf_state.bfs_rc[0].rix = rix;
1061 bf->bf_state.bfs_rc[0].ratecode = rate;
1062 bf->bf_state.bfs_rc[0].tries = try0;
1063
1064 if (bf->bf_state.bfs_ismrr && try0 != ATH_TXMAXTRY)
1065 ath_rate_getxtxrates(sc, ATH_NODE(bf->bf_node), rix,
1066 bf->bf_state.bfs_rc);
1067 ATH_NODE_UNLOCK(ATH_NODE(bf->bf_node));
1068
1069 sc->sc_txrix = rix; /* for LED blinking */
1070 sc->sc_lastdatarix = rix; /* for fast frames */
1071 bf->bf_state.bfs_try0 = try0;
1072 bf->bf_state.bfs_txrate0 = rate;
1073}
1074
1075/*
1076 * Set the rate control fields in the given descriptor based on
1077 * the bf_state fields and node state.
1078 *
1079 * The bfs fields should already be set with the relevant rate
1080 * control information, including whether MRR is to be enabled.
1081 *
1082 * Since the FreeBSD HAL currently sets up the first TX rate
1083 * in ath_hal_setuptxdesc(), this will setup the MRR
1084 * conditionally for the pre-11n chips, and call ath_buf_set_rate
1085 * unconditionally for 11n chips. These require the 11n rate
1086 * scenario to be set if MCS rates are enabled, so it's easier
1087 * to just always call it. The caller can then only set rates 2, 3
1088 * and 4 if multi-rate retry is needed.
1089 */
1090static void
1091ath_tx_set_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
1092 struct ath_buf *bf)
1093{
1094 struct ath_rc_series *rc = bf->bf_state.bfs_rc;
1095
1096 /* If mrr is disabled, blank tries 1, 2, 3 */
1097 if (! bf->bf_state.bfs_ismrr)
1098 rc[1].tries = rc[2].tries = rc[3].tries = 0;
1099
1100 /*
1101 * Always call - that way a retried descriptor will
1102 * have the MRR fields overwritten.
1103 *
1104 * XXX TODO: see if this is really needed - setting up
1105 * the first descriptor should set the MRR fields to 0
1106 * for us anyway.
1107 */
1108 if (ath_tx_is_11n(sc)) {
1109 ath_buf_set_rate(sc, ni, bf);
1110 } else {
1111 ath_hal_setupxtxdesc(sc->sc_ah, bf->bf_desc
1112 , rc[1].ratecode, rc[1].tries
1113 , rc[2].ratecode, rc[2].tries
1114 , rc[3].ratecode, rc[3].tries
1115 );
1116 }
1117}
1118
1119/*
1120 * Transmit the given frame to the hardware.
1121 *
1122 * The frame must already be setup; rate control must already have
1123 * been done.
1124 *
1125 * XXX since the TXQ lock is being held here (and I dislike holding
1126 * it for this long when not doing software aggregation), later on
1127 * break this function into "setup_normal" and "xmit_normal". The
1128 * lock only needs to be held for the ath_tx_handoff call.
1129 */
1130static void
1131ath_tx_xmit_normal(struct ath_softc *sc, struct ath_txq *txq,
1132 struct ath_buf *bf)
1133{
1134
1135 ATH_TXQ_LOCK_ASSERT(txq);
1136
1137 /* Setup the descriptor before handoff */
1138 ath_tx_do_ratelookup(sc, bf);
1139 ath_tx_calc_duration(sc, bf);
1140 ath_tx_calc_protection(sc, bf);
1141 ath_tx_set_rtscts(sc, bf);
1142 ath_tx_rate_fill_rcflags(sc, bf);
1143 ath_tx_setds(sc, bf);
1144 ath_tx_set_ratectrl(sc, bf->bf_node, bf);
1145 ath_tx_chaindesclist(sc, bf);
1146
1147 /* Hand off to hardware */
1148 ath_tx_handoff(sc, txq, bf);
1149}
1150
1151
1152
1153static int
1154ath_tx_normal_setup(struct ath_softc *sc, struct ieee80211_node *ni,
1155 struct ath_buf *bf, struct mbuf *m0, struct ath_txq *txq)
1156{
1157 struct ieee80211vap *vap = ni->ni_vap;
1158 struct ath_hal *ah = sc->sc_ah;
1159 struct ifnet *ifp = sc->sc_ifp;
1160 struct ieee80211com *ic = ifp->if_l2com;
1161 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1162 int error, iswep, ismcast, isfrag, ismrr;
1163 int keyix, hdrlen, pktlen, try0 = 0;
1164 u_int8_t rix = 0, txrate = 0;
1165 struct ath_desc *ds;
1166 struct ieee80211_frame *wh;
1167 u_int subtype, flags;
1168 HAL_PKT_TYPE atype;
1169 const HAL_RATE_TABLE *rt;
1170 HAL_BOOL shortPreamble;
1171 struct ath_node *an;
1172 u_int pri;
1173
1174 wh = mtod(m0, struct ieee80211_frame *);
1175 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
1176 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1177 isfrag = m0->m_flags & M_FRAG;
1178 hdrlen = ieee80211_anyhdrsize(wh);
1179 /*
1180 * Packet length must not include any
1181 * pad bytes; deduct them here.
1182 */
1183 pktlen = m0->m_pkthdr.len - (hdrlen & 3);
1184
1185 /* Handle encryption twiddling if needed */
1186 if (! ath_tx_tag_crypto(sc, ni, m0, iswep, isfrag, &hdrlen,
1187 &pktlen, &keyix)) {
1188 ath_freetx(m0);
1189 return EIO;
1190 }
1191
1192 /* packet header may have moved, reset our local pointer */
1193 wh = mtod(m0, struct ieee80211_frame *);
1194
1195 pktlen += IEEE80211_CRC_LEN;
1196
1197 /*
1198 * Load the DMA map so any coalescing is done. This
1199 * also calculates the number of descriptors we need.
1200 */
1201 error = ath_tx_dmasetup(sc, bf, m0);
1202 if (error != 0)
1203 return error;
1204 bf->bf_node = ni; /* NB: held reference */
1205 m0 = bf->bf_m; /* NB: may have changed */
1206 wh = mtod(m0, struct ieee80211_frame *);
1207
1208 /* setup descriptors */
1209 ds = bf->bf_desc;
1210 rt = sc->sc_currates;
1211 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
1212
1213 /*
1214 * NB: the 802.11 layer marks whether or not we should
1215 * use short preamble based on the current mode and
1216 * negotiated parameters.
1217 */
1218 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1219 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
1220 shortPreamble = AH_TRUE;
1221 sc->sc_stats.ast_tx_shortpre++;
1222 } else {
1223 shortPreamble = AH_FALSE;
1224 }
1225
1226 an = ATH_NODE(ni);
1227 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
1228 ismrr = 0; /* default no multi-rate retry*/
1229 pri = M_WME_GETAC(m0); /* honor classification */
1230 /* XXX use txparams instead of fixed values */
1231 /*
1232 * Calculate Atheros packet type from IEEE80211 packet header,
1233 * setup for rate calculations, and select h/w transmit queue.
1234 */
1235 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
1236 case IEEE80211_FC0_TYPE_MGT:
1237 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1238 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
1239 atype = HAL_PKT_TYPE_BEACON;
1240 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1241 atype = HAL_PKT_TYPE_PROBE_RESP;
1242 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
1243 atype = HAL_PKT_TYPE_ATIM;
1244 else
1245 atype = HAL_PKT_TYPE_NORMAL; /* XXX */
1246 rix = an->an_mgmtrix;
1247 txrate = rt->info[rix].rateCode;
1248 if (shortPreamble)
1249 txrate |= rt->info[rix].shortPreamble;
1250 try0 = ATH_TXMGTTRY;
1251 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
1252 break;
1253 case IEEE80211_FC0_TYPE_CTL:
1254 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */
1255 rix = an->an_mgmtrix;
1256 txrate = rt->info[rix].rateCode;
1257 if (shortPreamble)
1258 txrate |= rt->info[rix].shortPreamble;
1259 try0 = ATH_TXMGTTRY;
1260 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
1261 break;
1262 case IEEE80211_FC0_TYPE_DATA:
1263 atype = HAL_PKT_TYPE_NORMAL; /* default */
1264 /*
1265 * Data frames: multicast frames go out at a fixed rate,
1266 * EAPOL frames use the mgmt frame rate; otherwise consult
1267 * the rate control module for the rate to use.
1268 */
1269 if (ismcast) {
1270 rix = an->an_mcastrix;
1271 txrate = rt->info[rix].rateCode;
1272 if (shortPreamble)
1273 txrate |= rt->info[rix].shortPreamble;
1274 try0 = 1;
1275 } else if (m0->m_flags & M_EAPOL) {
1276 /* XXX? maybe always use long preamble? */
1277 rix = an->an_mgmtrix;
1278 txrate = rt->info[rix].rateCode;
1279 if (shortPreamble)
1280 txrate |= rt->info[rix].shortPreamble;
1281 try0 = ATH_TXMAXTRY; /* XXX?too many? */
1282 } else {
1283 /*
1284 * Do rate lookup on each TX, rather than using
1285 * the hard-coded TX information decided here.
1286 */
1287 ismrr = 1;
1288 bf->bf_state.bfs_doratelookup = 1;
1289 }
1290 if (cap->cap_wmeParams[pri].wmep_noackPolicy)
1291 flags |= HAL_TXDESC_NOACK;
1292 break;
1293 default:
1294 if_printf(ifp, "bogus frame type 0x%x (%s)\n",
1295 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
1296 /* XXX statistic */
1297 ath_freetx(m0);
1298 return EIO;
1299 }
1300
1301 /*
1302 * Calculate miscellaneous flags.
1303 */
1304 if (ismcast) {
1305 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
1306 } else if (pktlen > vap->iv_rtsthreshold &&
1307 (ni->ni_ath_flags & IEEE80211_NODE_FF) == 0) {
1308 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
1309 sc->sc_stats.ast_tx_rts++;
1310 }
1311 if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */
1312 sc->sc_stats.ast_tx_noack++;
1313#ifdef IEEE80211_SUPPORT_TDMA
1314 if (sc->sc_tdma && (flags & HAL_TXDESC_NOACK) == 0) {
1315 DPRINTF(sc, ATH_DEBUG_TDMA,
1316 "%s: discard frame, ACK required w/ TDMA\n", __func__);
1317 sc->sc_stats.ast_tdma_ack++;
1318 ath_freetx(m0);
1319 return EIO;
1320 }
1321#endif
1322
1323 /*
1324 * Determine if a tx interrupt should be generated for
1325 * this descriptor. We take a tx interrupt to reap
1326 * descriptors when the h/w hits an EOL condition or
1327 * when the descriptor is specifically marked to generate
1328 * an interrupt. We periodically mark descriptors in this
1329 * way to insure timely replenishing of the supply needed
1330 * for sending frames. Defering interrupts reduces system
1331 * load and potentially allows more concurrent work to be
1332 * done but if done to aggressively can cause senders to
1333 * backup.
1334 *
1335 * NB: use >= to deal with sc_txintrperiod changing
1336 * dynamically through sysctl.
1337 */
1338 if (flags & HAL_TXDESC_INTREQ) {
1339 txq->axq_intrcnt = 0;
1340 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
1341 flags |= HAL_TXDESC_INTREQ;
1342 txq->axq_intrcnt = 0;
1343 }
1344
1345 /* This point forward is actual TX bits */
1346
1347 /*
1348 * At this point we are committed to sending the frame
1349 * and we don't need to look at m_nextpkt; clear it in
1350 * case this frame is part of frag chain.
1351 */
1352 m0->m_nextpkt = NULL;
1353
1354 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
1355 ieee80211_dump_pkt(ic, mtod(m0, const uint8_t *), m0->m_len,
1356 sc->sc_hwmap[rix].ieeerate, -1);
1357
1358 if (ieee80211_radiotap_active_vap(vap)) {
1359 u_int64_t tsf = ath_hal_gettsf64(ah);
1360
1361 sc->sc_tx_th.wt_tsf = htole64(tsf);
1362 sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
1363 if (iswep)
1364 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1365 if (isfrag)
1366 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
1367 sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
1368 sc->sc_tx_th.wt_txpower = ni->ni_txpower;
1369 sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
1370
1371 ieee80211_radiotap_tx(vap, m0);
1372 }
1373
1374 /* Blank the legacy rate array */
1375 bzero(&bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc));
1376
1377 /*
1378 * ath_buf_set_rate needs at least one rate/try to setup
1379 * the rate scenario.
1380 */
1381 bf->bf_state.bfs_rc[0].rix = rix;
1382 bf->bf_state.bfs_rc[0].tries = try0;
1383 bf->bf_state.bfs_rc[0].ratecode = txrate;
1384
1385 /* Store the decided rate index values away */
1386 bf->bf_state.bfs_pktlen = pktlen;
1387 bf->bf_state.bfs_hdrlen = hdrlen;
1388 bf->bf_state.bfs_atype = atype;
1389 bf->bf_state.bfs_txpower = ni->ni_txpower;
1390 bf->bf_state.bfs_txrate0 = txrate;
1391 bf->bf_state.bfs_try0 = try0;
1392 bf->bf_state.bfs_keyix = keyix;
1393 bf->bf_state.bfs_txantenna = sc->sc_txantenna;
1394 bf->bf_state.bfs_txflags = flags;
1395 bf->bf_state.bfs_shpream = shortPreamble;
1396
1397 /* XXX this should be done in ath_tx_setrate() */
1398 bf->bf_state.bfs_ctsrate0 = 0; /* ie, no hard-coded ctsrate */
1399 bf->bf_state.bfs_ctsrate = 0; /* calculated later */
1400 bf->bf_state.bfs_ctsduration = 0;
1401 bf->bf_state.bfs_ismrr = ismrr;
1402
1403 return 0;
1404}
1405
1406/*
1407 * Direct-dispatch the current frame to the hardware.
1408 *
1409 * This can be called by the net80211 code.
1410 *
1411 * XXX what about locking? Or, push the seqno assign into the
1412 * XXX aggregate scheduler so its serialised?
1413 */
1414int
1415ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni,
1416 struct ath_buf *bf, struct mbuf *m0)
1417{
1418 struct ieee80211vap *vap = ni->ni_vap;
1419 struct ath_vap *avp = ATH_VAP(vap);
1420 int r = 0;
1421 u_int pri;
1422 int tid;
1423 struct ath_txq *txq;
1424 int ismcast;
1425 const struct ieee80211_frame *wh;
1426 int is_ampdu, is_ampdu_tx, is_ampdu_pending;
1427 //ieee80211_seq seqno;
1428 uint8_t type, subtype;
1429
1430 /*
1431 * Determine the target hardware queue.
1432 *
1433 * For multicast frames, the txq gets overridden appropriately
1434 * depending upon the state of PS.
1435 *
1436 * For any other frame, we do a TID/QoS lookup inside the frame
1437 * to see what the TID should be. If it's a non-QoS frame, the
1438 * AC and TID are overridden. The TID/TXQ code assumes the
1439 * TID is on a predictable hardware TXQ, so we don't support
1440 * having a node TID queued to multiple hardware TXQs.
1441 * This may change in the future but would require some locking
1442 * fudgery.
1443 */
1444 pri = ath_tx_getac(sc, m0);
1445 tid = ath_tx_gettid(sc, m0);
1446
1447 txq = sc->sc_ac2q[pri];
1448 wh = mtod(m0, struct ieee80211_frame *);
1449 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1450 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1451 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1452
1453 /*
1454 * Enforce how deep the multicast queue can grow.
1455 *
1456 * XXX duplicated in ath_raw_xmit().
1457 */
1458 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1459 ATH_TXQ_LOCK(sc->sc_cabq);
1460
1461 if (sc->sc_cabq->axq_depth > sc->sc_txq_mcastq_maxdepth) {
1462 sc->sc_stats.ast_tx_mcastq_overflow++;
1463 r = ENOBUFS;
1464 }
1465
1466 ATH_TXQ_UNLOCK(sc->sc_cabq);
1467
1468 if (r != 0) {
1469 m_freem(m0);
1470 return r;
1471 }
1472 }
1473
1474 /* A-MPDU TX */
1475 is_ampdu_tx = ath_tx_ampdu_running(sc, ATH_NODE(ni), tid);
1476 is_ampdu_pending = ath_tx_ampdu_pending(sc, ATH_NODE(ni), tid);
1477 is_ampdu = is_ampdu_tx | is_ampdu_pending;
1478
1479 DPRINTF(sc, ATH_DEBUG_SW_TX,
1480 "%s: bf=%p, tid=%d, ac=%d, is_ampdu=%d\n",
1481 __func__, bf, tid, pri, is_ampdu);
1482
1483 /*
1484 * When servicing one or more stations in power-save mode
1485 * (or) if there is some mcast data waiting on the mcast
1486 * queue (to prevent out of order delivery) multicast frames
1487 * must be bufferd until after the beacon.
1488 *
1489 * TODO: we should lock the mcastq before we check the length.
1490 */
1491 if (ismcast && (vap->iv_ps_sta || avp->av_mcastq.axq_depth))
1492 txq = &avp->av_mcastq;
1493
1494 /* Do the generic frame setup */
1495 /* XXX should just bzero the bf_state? */
1496 bf->bf_state.bfs_dobaw = 0;
1497 bf->bf_state.bfs_seqno_assigned = 0;
1498 bf->bf_state.bfs_need_seqno = 0;
1499 bf->bf_state.bfs_seqno = -1; /* XXX debugging */
1500
1501 /* A-MPDU TX? Manually set sequence number */
1502 /* Don't do it whilst pending; the net80211 layer still assigns them */
1503 /* XXX do we need locking here? */
1504 if (is_ampdu_tx) {
1505 ATH_TXQ_LOCK(txq);
1506 /*
1507 * Always call; this function will
1508 * handle making sure that null data frames
1509 * don't get a sequence number from the current
1510 * TID and thus mess with the BAW.
1511 */
1512 //seqno = ath_tx_tid_seqno_assign(sc, ni, bf, m0);
1513 if (ath_tx_seqno_required(sc, ni, bf, m0)) {
1514 bf->bf_state.bfs_dobaw = 1;
1515 bf->bf_state.bfs_need_seqno = 1;
1516 }
1517 ATH_TXQ_UNLOCK(txq);
1518 } else {
1519 /* No AMPDU TX, we've been assigned a sequence number. */
1520 if (IEEE80211_QOS_HAS_SEQ(wh)) {
1521 bf->bf_state.bfs_seqno_assigned = 1;
1522 /* XXX we should store the frag+seqno in bfs_seqno */
1523 bf->bf_state.bfs_seqno =
1524 M_SEQNO_GET(m0) << IEEE80211_SEQ_SEQ_SHIFT;
1525 }
1526 }
1527
1528 /*
1529 * If needed, the sequence number has been assigned.
1530 * Squirrel it away somewhere easy to get to.
1531 */
1532 //bf->bf_state.bfs_seqno = M_SEQNO_GET(m0) << IEEE80211_SEQ_SEQ_SHIFT;
1533
1534 /* Is ampdu pending? fetch the seqno and print it out */
1535 if (is_ampdu_pending)
1536 DPRINTF(sc, ATH_DEBUG_SW_TX,
1537 "%s: tid %d: ampdu pending, seqno %d\n",
1538 __func__, tid, M_SEQNO_GET(m0));
1539
1540 /* This also sets up the DMA map */
1541 r = ath_tx_normal_setup(sc, ni, bf, m0, txq);
1542
1543 if (r != 0)
1544 return r;
1545
1546 /* At this point m0 could have changed! */
1547 m0 = bf->bf_m;
1548
1549 DPRINTF(sc, ATH_DEBUG_SW_TX,
1550 "%s: DONE: bf=%p, tid=%d, ac=%d, is_ampdu=%d, dobaw=%d, seqno=%d\n",
1551 __func__, bf, tid, pri, is_ampdu, bf->bf_state.bfs_dobaw, M_SEQNO_GET(m0));
1552
1553#if 1
1554 /*
1555 * If it's a multicast frame, do a direct-dispatch to the
1556 * destination hardware queue. Don't bother software
1557 * queuing it.
1558 */
1559 /*
1560 * If it's a BAR frame, do a direct dispatch to the
1561 * destination hardware queue. Don't bother software
1562 * queuing it, as the TID will now be paused.
1563 * Sending a BAR frame can occur from the net80211 txa timer
1564 * (ie, retries) or from the ath txtask (completion call.)
1565 * It queues directly to hardware because the TID is paused
1566 * at this point (and won't be unpaused until the BAR has
1567 * either been TXed successfully or max retries has been
1568 * reached.)
1569 */
1570 if (txq == &avp->av_mcastq) {
1571 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
1572 "%s: bf=%p: mcastq: TX'ing\n", __func__, bf);
1573 ATH_TXQ_LOCK(txq);
1574 ath_tx_xmit_normal(sc, txq, bf);
1575 ATH_TXQ_UNLOCK(txq);
1576 } else if (type == IEEE80211_FC0_TYPE_CTL &&
1577 subtype == IEEE80211_FC0_SUBTYPE_BAR) {
1578 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
1579 "%s: BAR: TX'ing direct\n", __func__);
1580 ATH_TXQ_LOCK(txq);
1581 ath_tx_xmit_normal(sc, txq, bf);
1582 ATH_TXQ_UNLOCK(txq);
1583 } else {
1584 /* add to software queue */
1585 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
1586 "%s: bf=%p: swq: TX'ing\n", __func__, bf);
1587 ath_tx_swq(sc, ni, txq, bf);
1588 }
1589#else
1590 /*
1591 * For now, since there's no software queue,
1592 * direct-dispatch to the hardware.
1593 */
1594 ATH_TXQ_LOCK(txq);
1595 ath_tx_xmit_normal(sc, txq, bf);
1596 ATH_TXQ_UNLOCK(txq);
1597#endif
1598
1599 return 0;
1600}
1601
1602static int
1603ath_tx_raw_start(struct ath_softc *sc, struct ieee80211_node *ni,
1604 struct ath_buf *bf, struct mbuf *m0,
1605 const struct ieee80211_bpf_params *params)
1606{
1607 struct ifnet *ifp = sc->sc_ifp;
1608 struct ieee80211com *ic = ifp->if_l2com;
1609 struct ath_hal *ah = sc->sc_ah;
1610 struct ieee80211vap *vap = ni->ni_vap;
1611 int error, ismcast, ismrr;
1612 int keyix, hdrlen, pktlen, try0, txantenna;
1613 u_int8_t rix, txrate;
1614 struct ieee80211_frame *wh;
1615 u_int flags;
1616 HAL_PKT_TYPE atype;
1617 const HAL_RATE_TABLE *rt;
1618 struct ath_desc *ds;
1619 u_int pri;
1620 int o_tid = -1;
1621 int do_override;
1622
1623 wh = mtod(m0, struct ieee80211_frame *);
1624 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1625 hdrlen = ieee80211_anyhdrsize(wh);
1626 /*
1627 * Packet length must not include any
1628 * pad bytes; deduct them here.
1629 */
1630 /* XXX honor IEEE80211_BPF_DATAPAD */
1631 pktlen = m0->m_pkthdr.len - (hdrlen & 3) + IEEE80211_CRC_LEN;
1632
1633
1634 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: ismcast=%d\n",
1635 __func__, ismcast);
1636
1637 /* Handle encryption twiddling if needed */
1638 if (! ath_tx_tag_crypto(sc, ni,
1639 m0, params->ibp_flags & IEEE80211_BPF_CRYPTO, 0,
1640 &hdrlen, &pktlen, &keyix)) {
1641 ath_freetx(m0);
1642 return EIO;
1643 }
1644 /* packet header may have moved, reset our local pointer */
1645 wh = mtod(m0, struct ieee80211_frame *);
1646
1647 /* Do the generic frame setup */
1648 /* XXX should just bzero the bf_state? */
1649 bf->bf_state.bfs_dobaw = 0;
1650
1651 error = ath_tx_dmasetup(sc, bf, m0);
1652 if (error != 0)
1653 return error;
1654 m0 = bf->bf_m; /* NB: may have changed */
1655 wh = mtod(m0, struct ieee80211_frame *);
1656 bf->bf_node = ni; /* NB: held reference */
1657
1658 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
1659 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
1660 if (params->ibp_flags & IEEE80211_BPF_RTS)
1661 flags |= HAL_TXDESC_RTSENA;
1662 else if (params->ibp_flags & IEEE80211_BPF_CTS) {
1663 /* XXX assume 11g/11n protection? */
1664 bf->bf_state.bfs_doprot = 1;
1665 flags |= HAL_TXDESC_CTSENA;
1666 }
1667 /* XXX leave ismcast to injector? */
1668 if ((params->ibp_flags & IEEE80211_BPF_NOACK) || ismcast)
1669 flags |= HAL_TXDESC_NOACK;
1670
1671 rt = sc->sc_currates;
1672 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
1673 rix = ath_tx_findrix(sc, params->ibp_rate0);
1674 txrate = rt->info[rix].rateCode;
1675 if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
1676 txrate |= rt->info[rix].shortPreamble;
1677 sc->sc_txrix = rix;
1678 try0 = params->ibp_try0;
1679 ismrr = (params->ibp_try1 != 0);
1680 txantenna = params->ibp_pri >> 2;
1681 if (txantenna == 0) /* XXX? */
1682 txantenna = sc->sc_txantenna;
1683
1684 /*
1685 * Since ctsrate is fixed, store it away for later
1686 * use when the descriptor fields are being set.
1687 */
1688 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA))
1689 bf->bf_state.bfs_ctsrate0 = params->ibp_ctsrate;
1690
1691 pri = params->ibp_pri & 3;
1692 /* Override pri if the frame isn't a QoS one */
1693 if (! IEEE80211_QOS_HAS_SEQ(wh))
1694 pri = ath_tx_getac(sc, m0);
1695
1696 /*
1697 * NB: we mark all packets as type PSPOLL so the h/w won't
1698 * set the sequence number, duration, etc.
1699 */
1700 atype = HAL_PKT_TYPE_PSPOLL;
1701
1702 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
1703 ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len,
1704 sc->sc_hwmap[rix].ieeerate, -1);
1705
1706 if (ieee80211_radiotap_active_vap(vap)) {
1707 u_int64_t tsf = ath_hal_gettsf64(ah);
1708
1709 sc->sc_tx_th.wt_tsf = htole64(tsf);
1710 sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
1711 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1712 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1713 if (m0->m_flags & M_FRAG)
1714 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
1715 sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
1716 sc->sc_tx_th.wt_txpower = ni->ni_txpower;
1717 sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
1718
1719 ieee80211_radiotap_tx(vap, m0);
1720 }
1721
1722 /*
1723 * Formulate first tx descriptor with tx controls.
1724 */
1725 ds = bf->bf_desc;
1726 /* XXX check return value? */
1727
1728 /* Store the decided rate index values away */
1729 bf->bf_state.bfs_pktlen = pktlen;
1730 bf->bf_state.bfs_hdrlen = hdrlen;
1731 bf->bf_state.bfs_atype = atype;
1732 bf->bf_state.bfs_txpower = params->ibp_power;
1733 bf->bf_state.bfs_txrate0 = txrate;
1734 bf->bf_state.bfs_try0 = try0;
1735 bf->bf_state.bfs_keyix = keyix;
1736 bf->bf_state.bfs_txantenna = txantenna;
1737 bf->bf_state.bfs_txflags = flags;
1738 bf->bf_state.bfs_shpream =
1739 !! (params->ibp_flags & IEEE80211_BPF_SHORTPRE);
1740
1741 /* XXX this should be done in ath_tx_setrate() */
1742 bf->bf_state.bfs_ctsrate = 0;
1743 bf->bf_state.bfs_ctsduration = 0;
1744 bf->bf_state.bfs_ismrr = ismrr;
1745
1746 /* Blank the legacy rate array */
1747 bzero(&bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc));
1748
1749 bf->bf_state.bfs_rc[0].rix =
1750 ath_tx_findrix(sc, params->ibp_rate0);
1751 bf->bf_state.bfs_rc[0].tries = try0;
1752 bf->bf_state.bfs_rc[0].ratecode = txrate;
1753
1754 if (ismrr) {
1755 int rix;
1756
1757 rix = ath_tx_findrix(sc, params->ibp_rate1);
1758 bf->bf_state.bfs_rc[1].rix = rix;
1759 bf->bf_state.bfs_rc[1].tries = params->ibp_try1;
1760
1761 rix = ath_tx_findrix(sc, params->ibp_rate2);
1762 bf->bf_state.bfs_rc[2].rix = rix;
1763 bf->bf_state.bfs_rc[2].tries = params->ibp_try2;
1764
1765 rix = ath_tx_findrix(sc, params->ibp_rate3);
1766 bf->bf_state.bfs_rc[3].rix = rix;
1767 bf->bf_state.bfs_rc[3].tries = params->ibp_try3;
1768 }
1769 /*
1770 * All the required rate control decisions have been made;
1771 * fill in the rc flags.
1772 */
1773 ath_tx_rate_fill_rcflags(sc, bf);
1774
1775 /* NB: no buffered multicast in power save support */
1776
1777 /* XXX If it's an ADDBA, override the correct queue */
1778 do_override = ath_tx_action_frame_override_queue(sc, ni, m0, &o_tid);
1779
1780 /* Map ADDBA to the correct priority */
1781 if (do_override) {
1782#if 0
1783 device_printf(sc->sc_dev,
1784 "%s: overriding tid %d pri %d -> %d\n",
1785 __func__, o_tid, pri, TID_TO_WME_AC(o_tid));
1786#endif
1787 pri = TID_TO_WME_AC(o_tid);
1788 }
1789
1790 /*
1791 * If we're overiding the ADDBA destination, dump directly
1792 * into the hardware queue, right after any pending
1793 * frames to that node are.
1794 */
1795 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: dooverride=%d\n",
1796 __func__, do_override);
1797
1798 if (do_override) {
1799 ATH_TXQ_LOCK(sc->sc_ac2q[pri]);
1800 ath_tx_xmit_normal(sc, sc->sc_ac2q[pri], bf);
1801 ATH_TXQ_UNLOCK(sc->sc_ac2q[pri]);
1802 } else {
1803 /* Queue to software queue */
1804 ath_tx_swq(sc, ni, sc->sc_ac2q[pri], bf);
1805 }
1806
1807 return 0;
1808}
1809
1810/*
1811 * Send a raw frame.
1812 *
1813 * This can be called by net80211.
1814 */
1815int
1816ath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1817 const struct ieee80211_bpf_params *params)
1818{
1819 struct ieee80211com *ic = ni->ni_ic;
1820 struct ifnet *ifp = ic->ic_ifp;
1821 struct ath_softc *sc = ifp->if_softc;
1822 struct ath_buf *bf;
1823 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
1824 int error = 0;
1825
1826 ATH_PCU_LOCK(sc);
1827 if (sc->sc_inreset_cnt > 0) {
1828 device_printf(sc->sc_dev, "%s: sc_inreset_cnt > 0; bailing\n",
1829 __func__);
1830 error = EIO;
1831 ATH_PCU_UNLOCK(sc);
1832 goto bad0;
1833 }
1834 sc->sc_txstart_cnt++;
1835 ATH_PCU_UNLOCK(sc);
1836
1837 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) {
1838 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: discard frame, %s", __func__,
1839 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ?
1840 "!running" : "invalid");
1841 m_freem(m);
1842 error = ENETDOWN;
1843 goto bad;
1844 }
1845
1846 /*
1847 * Enforce how deep the multicast queue can grow.
1848 *
1849 * XXX duplicated in ath_tx_start().
1850 */
1851 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1852 ATH_TXQ_LOCK(sc->sc_cabq);
1853
1854 if (sc->sc_cabq->axq_depth > sc->sc_txq_mcastq_maxdepth) {
1855 sc->sc_stats.ast_tx_mcastq_overflow++;
1856 error = ENOBUFS;
1857 }
1858
1859 ATH_TXQ_UNLOCK(sc->sc_cabq);
1860
1861 if (error != 0) {
1862 m_freem(m);
1863 goto bad;
1864 }
1865 }
1866
1867 /*
1868 * Grab a TX buffer and associated resources.
1869 */
1870 bf = ath_getbuf(sc);
1871 if (bf == NULL) {
1872 sc->sc_stats.ast_tx_nobuf++;
1873 m_freem(m);
1874 error = ENOBUFS;
1875 goto bad;
1876 }
1877
1878 if (params == NULL) {
1879 /*
1880 * Legacy path; interpret frame contents to decide
1881 * precisely how to send the frame.
1882 */
1883 if (ath_tx_start(sc, ni, bf, m)) {
1884 error = EIO; /* XXX */
1885 goto bad2;
1886 }
1887 } else {
1888 /*
1889 * Caller supplied explicit parameters to use in
1890 * sending the frame.
1891 */
1892 if (ath_tx_raw_start(sc, ni, bf, m, params)) {
1893 error = EIO; /* XXX */
1894 goto bad2;
1895 }
1896 }
1897 sc->sc_wd_timer = 5;
1898 ifp->if_opackets++;
1899 sc->sc_stats.ast_tx_raw++;
1900
1901 ATH_PCU_LOCK(sc);
1902 sc->sc_txstart_cnt--;
1903 ATH_PCU_UNLOCK(sc);
1904
1905 return 0;
1906bad2:
1907 ATH_TXBUF_LOCK(sc);
1908 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1909 ATH_TXBUF_UNLOCK(sc);
1910bad:
1911 ATH_PCU_LOCK(sc);
1912 sc->sc_txstart_cnt--;
1913 ATH_PCU_UNLOCK(sc);
1914bad0:
1915 ifp->if_oerrors++;
1916 sc->sc_stats.ast_tx_raw_fail++;
1917 ieee80211_free_node(ni);
1918
1919 return error;
1920}
1921
1922/* Some helper functions */
1923
1924/*
1925 * ADDBA (and potentially others) need to be placed in the same
1926 * hardware queue as the TID/node it's relating to. This is so
1927 * it goes out after any pending non-aggregate frames to the
1928 * same node/TID.
1929 *
1930 * If this isn't done, the ADDBA can go out before the frames
1931 * queued in hardware. Even though these frames have a sequence
1932 * number -earlier- than the ADDBA can be transmitted (but
1933 * no frames whose sequence numbers are after the ADDBA should
1934 * be!) they'll arrive after the ADDBA - and the receiving end
1935 * will simply drop them as being out of the BAW.
1936 *
1937 * The frames can't be appended to the TID software queue - it'll
1938 * never be sent out. So these frames have to be directly
1939 * dispatched to the hardware, rather than queued in software.
1940 * So if this function returns true, the TXQ has to be
1941 * overridden and it has to be directly dispatched.
1942 *
1943 * It's a dirty hack, but someone's gotta do it.
1944 */
1945
1946/*
1947 * XXX doesn't belong here!
1948 */
1949static int
1950ieee80211_is_action(struct ieee80211_frame *wh)
1951{
1952 /* Type: Management frame? */
1953 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) !=
1954 IEEE80211_FC0_TYPE_MGT)
1955 return 0;
1956
1957 /* Subtype: Action frame? */
1958 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) !=
1959 IEEE80211_FC0_SUBTYPE_ACTION)
1960 return 0;
1961
1962 return 1;
1963}
1964
1965#define MS(_v, _f) (((_v) & _f) >> _f##_S)
1966/*
1967 * Return an alternate TID for ADDBA request frames.
1968 *
1969 * Yes, this likely should be done in the net80211 layer.
1970 */
1971static int
1972ath_tx_action_frame_override_queue(struct ath_softc *sc,
1973 struct ieee80211_node *ni,
1974 struct mbuf *m0, int *tid)
1975{
1976 struct ieee80211_frame *wh = mtod(m0, struct ieee80211_frame *);
1977 struct ieee80211_action_ba_addbarequest *ia;
1978 uint8_t *frm;
1979 uint16_t baparamset;
1980
1981 /* Not action frame? Bail */
1982 if (! ieee80211_is_action(wh))
1983 return 0;
1984
1985 /* XXX Not needed for frames we send? */
1986#if 0
1987 /* Correct length? */
1988 if (! ieee80211_parse_action(ni, m))
1989 return 0;
1990#endif
1991
1992 /* Extract out action frame */
1993 frm = (u_int8_t *)&wh[1];
1994 ia = (struct ieee80211_action_ba_addbarequest *) frm;
1995
1996 /* Not ADDBA? Bail */
1997 if (ia->rq_header.ia_category != IEEE80211_ACTION_CAT_BA)
1998 return 0;
1999 if (ia->rq_header.ia_action != IEEE80211_ACTION_BA_ADDBA_REQUEST)
2000 return 0;
2001
2002 /* Extract TID, return it */
2003 baparamset = le16toh(ia->rq_baparamset);
2004 *tid = (int) MS(baparamset, IEEE80211_BAPS_TID);
2005
2006 return 1;
2007}
2008#undef MS
2009
2010/* Per-node software queue operations */
2011
2012/*
2013 * Add the current packet to the given BAW.
2014 * It is assumed that the current packet
2015 *
2016 * + fits inside the BAW;
2017 * + already has had a sequence number allocated.
2018 *
2019 * Since the BAW status may be modified by both the ath task and
2020 * the net80211/ifnet contexts, the TID must be locked.
2021 */
2022void
2023ath_tx_addto_baw(struct ath_softc *sc, struct ath_node *an,
2024 struct ath_tid *tid, struct ath_buf *bf)
2025{
2026 int index, cindex;
2027 struct ieee80211_tx_ampdu *tap;
2028
2029 ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
2030
2031 if (bf->bf_state.bfs_isretried)
2032 return;
2033
2034 /*
2035 * If this occurs we're in a lot of trouble. We should try to
2036 * recover from this without the session hanging?
2037 */
2038 if (! bf->bf_state.bfs_seqno_assigned) {
2039 device_printf(sc->sc_dev,
2040 "%s: bf=%p, seqno_assigned is 0?!\n", __func__, bf);
2041 return;
2042 }
2043
2044 tap = ath_tx_get_tx_tid(an, tid->tid);
2045
2046 if (bf->bf_state.bfs_addedbaw)
2047 device_printf(sc->sc_dev,
2048 "%s: re-added? bf=%p, tid=%d, seqno %d; window %d:%d; "
2049 "baw head=%d tail=%d\n",
2050 __func__, bf, tid->tid, SEQNO(bf->bf_state.bfs_seqno),
2051 tap->txa_start, tap->txa_wnd, tid->baw_head,
2052 tid->baw_tail);
2053
2054 /*
2055 * Verify that the given sequence number is not outside of the
2056 * BAW. Complain loudly if that's the case.
2057 */
2058 if (! BAW_WITHIN(tap->txa_start, tap->txa_wnd,
2059 SEQNO(bf->bf_state.bfs_seqno))) {
2060 device_printf(sc->sc_dev,
2061 "%s: bf=%p: outside of BAW?? tid=%d, seqno %d; window %d:%d; "
2062 "baw head=%d tail=%d\n",
2063 __func__, bf, tid->tid, SEQNO(bf->bf_state.bfs_seqno),
2064 tap->txa_start, tap->txa_wnd, tid->baw_head,
2065 tid->baw_tail);
2066
2067 }
2068
2069 /*
2070 * ni->ni_txseqs[] is the currently allocated seqno.
2071 * the txa state contains the current baw start.
2072 */
2073 index = ATH_BA_INDEX(tap->txa_start, SEQNO(bf->bf_state.bfs_seqno));
2074 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
2075 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2076 "%s: bf=%p, tid=%d, seqno %d; window %d:%d; index=%d cindex=%d "
2077 "baw head=%d tail=%d\n",
2078 __func__, bf, tid->tid, SEQNO(bf->bf_state.bfs_seqno),
2079 tap->txa_start, tap->txa_wnd, index, cindex, tid->baw_head,
2080 tid->baw_tail);
2081
2082
2083#if 0
2084 assert(tid->tx_buf[cindex] == NULL);
2085#endif
2086 if (tid->tx_buf[cindex] != NULL) {
2087 device_printf(sc->sc_dev,
2088 "%s: ba packet dup (index=%d, cindex=%d, "
2089 "head=%d, tail=%d)\n",
2090 __func__, index, cindex, tid->baw_head, tid->baw_tail);
2091 device_printf(sc->sc_dev,
2092 "%s: BA bf: %p; seqno=%d ; new bf: %p; seqno=%d\n",
2093 __func__,
2094 tid->tx_buf[cindex],
2095 SEQNO(tid->tx_buf[cindex]->bf_state.bfs_seqno),
2096 bf,
2097 SEQNO(bf->bf_state.bfs_seqno)
2098 );
2099 }
2100 tid->tx_buf[cindex] = bf;
2101
2102 if (index >= ((tid->baw_tail - tid->baw_head) &
2103 (ATH_TID_MAX_BUFS - 1))) {
2104 tid->baw_tail = cindex;
2105 INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
2106 }
2107}
2108
2109/*
2110 * Flip the BAW buffer entry over from the existing one to the new one.
2111 *
2112 * When software retransmitting a (sub-)frame, it is entirely possible that
2113 * the frame ath_buf is marked as BUSY and can't be immediately reused.
2114 * In that instance the buffer is cloned and the new buffer is used for
2115 * retransmit. We thus need to update the ath_buf slot in the BAW buf
2116 * tracking array to maintain consistency.
2117 */
2118static void
2119ath_tx_switch_baw_buf(struct ath_softc *sc, struct ath_node *an,
2120 struct ath_tid *tid, struct ath_buf *old_bf, struct ath_buf *new_bf)
2121{
2122 int index, cindex;
2123 struct ieee80211_tx_ampdu *tap;
2124 int seqno = SEQNO(old_bf->bf_state.bfs_seqno);
2125
2126 ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
2127
2128 tap = ath_tx_get_tx_tid(an, tid->tid);
2129 index = ATH_BA_INDEX(tap->txa_start, seqno);
2130 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
2131
2132 /*
2133 * Just warn for now; if it happens then we should find out
2134 * about it. It's highly likely the aggregation session will
2135 * soon hang.
2136 */
2137 if (old_bf->bf_state.bfs_seqno != new_bf->bf_state.bfs_seqno) {
2138 device_printf(sc->sc_dev, "%s: retransmitted buffer"
2139 " has mismatching seqno's, BA session may hang.\n",
2140 __func__);
2141 device_printf(sc->sc_dev, "%s: old seqno=%d, new_seqno=%d\n",
2142 __func__,
2143 old_bf->bf_state.bfs_seqno,
2144 new_bf->bf_state.bfs_seqno);
2145 }
2146
2147 if (tid->tx_buf[cindex] != old_bf) {
2148 device_printf(sc->sc_dev, "%s: ath_buf pointer incorrect; "
2149 " has m BA session may hang.\n",
2150 __func__);
2151 device_printf(sc->sc_dev, "%s: old bf=%p, new bf=%p\n",
2152 __func__,
2153 old_bf, new_bf);
2154 }
2155
2156 tid->tx_buf[cindex] = new_bf;
2157}
2158
2159/*
2160 * seq_start - left edge of BAW
2161 * seq_next - current/next sequence number to allocate
2162 *
2163 * Since the BAW status may be modified by both the ath task and
2164 * the net80211/ifnet contexts, the TID must be locked.
2165 */
2166static void
2167ath_tx_update_baw(struct ath_softc *sc, struct ath_node *an,
2168 struct ath_tid *tid, const struct ath_buf *bf)
2169{
2170 int index, cindex;
2171 struct ieee80211_tx_ampdu *tap;
2172 int seqno = SEQNO(bf->bf_state.bfs_seqno);
2173
2174 ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
2175
2176 tap = ath_tx_get_tx_tid(an, tid->tid);
2177 index = ATH_BA_INDEX(tap->txa_start, seqno);
2178 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
2179
2180 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2181 "%s: bf=%p: tid=%d, baw=%d:%d, seqno=%d, index=%d, cindex=%d, "
2182 "baw head=%d, tail=%d\n",
2183 __func__, bf, tid->tid, tap->txa_start, tap->txa_wnd, seqno, index,
2184 cindex, tid->baw_head, tid->baw_tail);
2185
2186 /*
2187 * If this occurs then we have a big problem - something else
2188 * has slid tap->txa_start along without updating the BAW
2189 * tracking start/end pointers. Thus the TX BAW state is now
2190 * completely busted.
2191 *
2192 * But for now, since I haven't yet fixed TDMA and buffer cloning,
2193 * it's quite possible that a cloned buffer is making its way
2194 * here and causing it to fire off. Disable TDMA for now.
2195 */
2196 if (tid->tx_buf[cindex] != bf) {
2197 device_printf(sc->sc_dev,
2198 "%s: comp bf=%p, seq=%d; slot bf=%p, seqno=%d\n",
2199 __func__,
2200 bf, SEQNO(bf->bf_state.bfs_seqno),
2201 tid->tx_buf[cindex],
2202 SEQNO(tid->tx_buf[cindex]->bf_state.bfs_seqno));
2203 }
2204
2205 tid->tx_buf[cindex] = NULL;
2206
2207 while (tid->baw_head != tid->baw_tail &&
2208 !tid->tx_buf[tid->baw_head]) {
2209 INCR(tap->txa_start, IEEE80211_SEQ_RANGE);
2210 INCR(tid->baw_head, ATH_TID_MAX_BUFS);
2211 }
2212 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2213 "%s: baw is now %d:%d, baw head=%d\n",
2214 __func__, tap->txa_start, tap->txa_wnd, tid->baw_head);
2215}
2216
2217/*
2218 * Mark the current node/TID as ready to TX.
2219 *
2220 * This is done to make it easy for the software scheduler to
2221 * find which nodes have data to send.
2222 *
2223 * The TXQ lock must be held.
2224 */
2225static void
2226ath_tx_tid_sched(struct ath_softc *sc, struct ath_tid *tid)
2227{
2228 struct ath_txq *txq = sc->sc_ac2q[tid->ac];
2229
2230 ATH_TXQ_LOCK_ASSERT(txq);
2231
2232 if (tid->paused)
2233 return; /* paused, can't schedule yet */
2234
2235 if (tid->sched)
2236 return; /* already scheduled */
2237
2238 tid->sched = 1;
2239
2240 TAILQ_INSERT_TAIL(&txq->axq_tidq, tid, axq_qelem);
2241}
2242
2243/*
2244 * Mark the current node as no longer needing to be polled for
2245 * TX packets.
2246 *
2247 * The TXQ lock must be held.
2248 */
2249static void
2250ath_tx_tid_unsched(struct ath_softc *sc, struct ath_tid *tid)
2251{
2252 struct ath_txq *txq = sc->sc_ac2q[tid->ac];
2253
2254 ATH_TXQ_LOCK_ASSERT(txq);
2255
2256 if (tid->sched == 0)
2257 return;
2258
2259 tid->sched = 0;
2260 TAILQ_REMOVE(&txq->axq_tidq, tid, axq_qelem);
2261}
2262
2263/*
2264 * Return whether a sequence number is actually required.
2265 *
2266 * A sequence number must only be allocated at the time that a frame
2267 * is considered for addition to the BAW/aggregate and being TXed.
2268 * The sequence number must not be allocated before the frame
2269 * is added to the BAW (protected by the same lock instance)
2270 * otherwise a the multi-entrant TX path may result in a later seqno
2271 * being added to the BAW first. The subsequent addition of the
2272 * earlier seqno would then not go into the BAW as it's now outside
2273 * of said BAW.
2274 *
2275 * This routine is used by ath_tx_start() to mark whether the frame
2276 * should get a sequence number before adding it to the BAW.
2277 *
2278 * Then the actual aggregate TX routines will check whether this
2279 * flag is set and if the frame needs to go into the BAW, it'll
2280 * have a sequence number allocated for it.
2281 */
2282static int
2283ath_tx_seqno_required(struct ath_softc *sc, struct ieee80211_node *ni,
2284 struct ath_buf *bf, struct mbuf *m0)
2285{
2286 const struct ieee80211_frame *wh;
2287 uint8_t subtype;
2288
2289 wh = mtod(m0, const struct ieee80211_frame *);
2290 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2291
2292 /* XXX assert txq lock */
2293 /* XXX assert ampdu is set */
2294
2295 return ((IEEE80211_QOS_HAS_SEQ(wh) &&
2296 subtype != IEEE80211_FC0_SUBTYPE_QOS_NULL));
2297}
2298
2299/*
2300 * Assign a sequence number manually to the given frame.
2301 *
2302 * This should only be called for A-MPDU TX frames.
2303 *
2304 * If this is called after the initial frame setup, make sure you've flushed
2305 * the DMA map or you'll risk sending stale data to the NIC. This routine
2306 * updates the actual frame contents with the relevant seqno.
2307 */
2308int
2309ath_tx_tid_seqno_assign(struct ath_softc *sc, struct ieee80211_node *ni,
2310 struct ath_buf *bf, struct mbuf *m0)
2311{
2312 struct ieee80211_frame *wh;
2313 int tid, pri;
2314 ieee80211_seq seqno;
2315 uint8_t subtype;
2316
2317 /* TID lookup */
2318 wh = mtod(m0, struct ieee80211_frame *);
2319 pri = M_WME_GETAC(m0); /* honor classification */
2320 tid = WME_AC_TO_TID(pri);
2321 DPRINTF(sc, ATH_DEBUG_SW_TX,
2322 "%s: bf=%p, pri=%d, tid=%d, qos has seq=%d\n",
2323 __func__, bf, pri, tid, IEEE80211_QOS_HAS_SEQ(wh));
2324
2325 if (! bf->bf_state.bfs_need_seqno) {
2326 device_printf(sc->sc_dev, "%s: bf=%p: need_seqno not set?!\n",
2327 __func__, bf);
2328 return -1;
2329 }
2330 /* XXX check for bfs_need_seqno? */
2331 if (bf->bf_state.bfs_seqno_assigned) {
2332 device_printf(sc->sc_dev,
2333 "%s: bf=%p: seqno already assigned (%d)?!\n",
2334 __func__, bf, SEQNO(bf->bf_state.bfs_seqno));
2335 return bf->bf_state.bfs_seqno >> IEEE80211_SEQ_SEQ_SHIFT;
2336 }
2337
2338 /* XXX Is it a control frame? Ignore */
2339
2340 /* Does the packet require a sequence number? */
2341 if (! IEEE80211_QOS_HAS_SEQ(wh))
2342 return -1;
2343
2344 /*
2345 * Is it a QOS NULL Data frame? Give it a sequence number from
2346 * the default TID (IEEE80211_NONQOS_TID.)
2347 *
2348 * The RX path of everything I've looked at doesn't include the NULL
2349 * data frame sequence number in the aggregation state updates, so
2350 * assigning it a sequence number there will cause a BAW hole on the
2351 * RX side.
2352 */
2353 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2354 if (subtype == IEEE80211_FC0_SUBTYPE_QOS_NULL) {
2355 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID];
2356 INCR(ni->ni_txseqs[IEEE80211_NONQOS_TID], IEEE80211_SEQ_RANGE);
2357 } else {
2358 /* Manually assign sequence number */
2359 seqno = ni->ni_txseqs[tid];
2360 INCR(ni->ni_txseqs[tid], IEEE80211_SEQ_RANGE);
2361 }
2362 *(uint16_t *)&wh->i_seq[0] = htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
2363 M_SEQNO_SET(m0, seqno);
2364 bf->bf_state.bfs_seqno = seqno << IEEE80211_SEQ_SEQ_SHIFT;
2365 bf->bf_state.bfs_seqno_assigned = 1;
2366
2367 /* Return so caller can do something with it if needed */
2368 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p: -> seqno=%d\n",
2369 __func__,
2370 bf,
2371 seqno);
2372 return seqno;
2373}
2374
2375/*
2376 * Attempt to direct dispatch an aggregate frame to hardware.
2377 * If the frame is out of BAW, queue.
2378 * Otherwise, schedule it as a single frame.
2379 */
2380static void
2381ath_tx_xmit_aggr(struct ath_softc *sc, struct ath_node *an, struct ath_buf *bf)
2382{
2383 struct ieee80211_node *ni = &an->an_node;
2384 struct ath_tid *tid = &an->an_tid[bf->bf_state.bfs_tid];
2385 struct ath_txq *txq = bf->bf_state.bfs_txq;
2386 struct ieee80211_tx_ampdu *tap;
2387
2388 ATH_TXQ_LOCK_ASSERT(txq);
2389
2390 tap = ath_tx_get_tx_tid(an, tid->tid);
2391
2392 /* paused? queue */
2393 if (tid->paused) {
2394 ATH_TXQ_INSERT_TAIL(tid, bf, bf_list);
2395 /* XXX don't sched - we're paused! */
2396 return;
2397 }
2398
2399 /*
2400 * TODO: If it's _before_ the BAW left edge, complain very loudly.
2401 * This means something (else) has slid the left edge along
2402 * before we got a chance to be TXed.
2403 */
2404
2405 /*
2406 * Is there space in this BAW for another frame?
2407 * If not, don't bother trying to schedule it; just
2408 * throw it back on the queue.
2409 *
2410 * If we allocate the sequence number before we add
2411 * it to the BAW, we risk racing with another TX
2412 * thread that gets in a frame into the BAW with
2413 * seqno greater than ours. We'd then fail the
2414 * below check and throw the frame on the tail of
2415 * the queue. The sender would then have a hole.
2416 *
2417 * XXX again, we're protecting ni->ni_txseqs[tid]
2418 * behind this hardware TXQ lock, like the rest of
2419 * the TIDs that map to it. Ugh.
2420 */
2421 if (bf->bf_state.bfs_dobaw) {
2422 ieee80211_seq seqno;
2423
2424 /*
2425 * If the sequence number is allocated, use it.
2426 * Otherwise, use the sequence number we WOULD
2427 * allocate.
2428 */
2429 if (bf->bf_state.bfs_seqno_assigned)
2430 seqno = SEQNO(bf->bf_state.bfs_seqno);
2431 else
2432 seqno = ni->ni_txseqs[bf->bf_state.bfs_tid];
2433
2434 /*
2435 * Check whether either the currently allocated
2436 * sequence number _OR_ the to-be allocated
2437 * sequence number is inside the BAW.
2438 */
2439 if (! BAW_WITHIN(tap->txa_start, tap->txa_wnd, seqno)) {
2440 ATH_TXQ_INSERT_TAIL(tid, bf, bf_list);
2441 ath_tx_tid_sched(sc, tid);
2442 return;
2443 }
2444 if (! bf->bf_state.bfs_seqno_assigned) {
2445 int seqno;
2446
2447 seqno = ath_tx_tid_seqno_assign(sc, ni, bf, bf->bf_m);
2448 if (seqno < 0) {
2449 device_printf(sc->sc_dev,
2450 "%s: bf=%p, huh, seqno=-1?\n",
2451 __func__,
2452 bf);
2453 /* XXX what can we even do here? */
2454 }
2455 /* Flush seqno update to RAM */
2456 /*
2457 * XXX This is required because the dmasetup
2458 * XXX is done early rather than at dispatch
2459 * XXX time. Ew, we should fix this!
2460 */
2461 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2462 BUS_DMASYNC_PREWRITE);
2463 }
2464 }
2465
2466 /* outside baw? queue */
2467 if (bf->bf_state.bfs_dobaw &&
2468 (! BAW_WITHIN(tap->txa_start, tap->txa_wnd,
2469 SEQNO(bf->bf_state.bfs_seqno)))) {
2470 device_printf(sc->sc_dev,
2471 "%s: bf=%p, shouldn't be outside BAW now?!\n",
2472 __func__,
2473 bf);
2474 ATH_TXQ_INSERT_TAIL(tid, bf, bf_list);
2475 ath_tx_tid_sched(sc, tid);
2476 return;
2477 }
2478
2479 /* Direct dispatch to hardware */
2480 ath_tx_do_ratelookup(sc, bf);
2481 ath_tx_calc_duration(sc, bf);
2482 ath_tx_calc_protection(sc, bf);
2483 ath_tx_set_rtscts(sc, bf);
2484 ath_tx_rate_fill_rcflags(sc, bf);
2485 ath_tx_setds(sc, bf);
2486 ath_tx_set_ratectrl(sc, bf->bf_node, bf);
2487 ath_tx_chaindesclist(sc, bf);
2488
2489 /* Statistics */
2490 sc->sc_aggr_stats.aggr_low_hwq_single_pkt++;
2491
2492 /* Track per-TID hardware queue depth correctly */
2493 tid->hwq_depth++;
2494
2495 /* Add to BAW */
2496 if (bf->bf_state.bfs_dobaw) {
2497 ath_tx_addto_baw(sc, an, tid, bf);
2498 bf->bf_state.bfs_addedbaw = 1;
2499 }
2500
2501 /* Set completion handler, multi-frame aggregate or not */
2502 bf->bf_comp = ath_tx_aggr_comp;
2503
2504 /* Hand off to hardware */
2505 ath_tx_handoff(sc, txq, bf);
2506}
2507
2508/*
2509 * Attempt to send the packet.
2510 * If the queue isn't busy, direct-dispatch.
2511 * If the queue is busy enough, queue the given packet on the
2512 * relevant software queue.
2513 */
2514void
2515ath_tx_swq(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_txq *txq,
2516 struct ath_buf *bf)
2517{
2518 struct ath_node *an = ATH_NODE(ni);
2519 struct ieee80211_frame *wh;
2520 struct ath_tid *atid;
2521 int pri, tid;
2522 struct mbuf *m0 = bf->bf_m;
2523
2524 /* Fetch the TID - non-QoS frames get assigned to TID 16 */
2525 wh = mtod(m0, struct ieee80211_frame *);
2526 pri = ath_tx_getac(sc, m0);
2527 tid = ath_tx_gettid(sc, m0);
2528 atid = &an->an_tid[tid];
2529
2530 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p, pri=%d, tid=%d, qos=%d, seqno=%d\n",
2531 __func__, bf, pri, tid, IEEE80211_QOS_HAS_SEQ(wh), SEQNO(bf->bf_state.bfs_seqno));
2532
2533 /* Set local packet state, used to queue packets to hardware */
2534 bf->bf_state.bfs_tid = tid;
2535 bf->bf_state.bfs_txq = txq;
2536 bf->bf_state.bfs_pri = pri;
2537
2538 /*
2539 * If the hardware queue isn't busy, queue it directly.
2540 * If the hardware queue is busy, queue it.
2541 * If the TID is paused or the traffic it outside BAW, software
2542 * queue it.
2543 */
2544 ATH_TXQ_LOCK(txq);
2545 if (atid->paused) {
2546 /* TID is paused, queue */
2547 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p: paused\n", __func__, bf);
2548 ATH_TXQ_INSERT_TAIL(atid, bf, bf_list);
2549 } else if (ath_tx_ampdu_pending(sc, an, tid)) {
2550 /* AMPDU pending; queue */
2551 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p: pending\n", __func__, bf);
2552 ATH_TXQ_INSERT_TAIL(atid, bf, bf_list);
2553 /* XXX sched? */
2554 } else if (ath_tx_ampdu_running(sc, an, tid)) {
2555 /* AMPDU running, attempt direct dispatch if possible */
2556 if (txq->axq_depth < sc->sc_hwq_limit) {
2557 DPRINTF(sc, ATH_DEBUG_SW_TX,
2558 "%s: bf=%p: xmit_aggr\n",
2559 __func__, bf);
2560 ath_tx_xmit_aggr(sc, an, bf);
2561 } else {
2562 DPRINTF(sc, ATH_DEBUG_SW_TX,
2563 "%s: bf=%p: ampdu; swq'ing\n",
2564 __func__, bf);
2565 ATH_TXQ_INSERT_TAIL(atid, bf, bf_list);
2566 ath_tx_tid_sched(sc, atid);
2567 }
2568 } else if (txq->axq_depth < sc->sc_hwq_limit) {
2569 /* AMPDU not running, attempt direct dispatch */
2570 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p: xmit_normal\n", __func__, bf);
2571 ath_tx_xmit_normal(sc, txq, bf);
2572 } else {
2573 /* Busy; queue */
2574 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p: swq'ing\n", __func__, bf);
2575 ATH_TXQ_INSERT_TAIL(atid, bf, bf_list);
2576 ath_tx_tid_sched(sc, atid);
2577 }
2578 ATH_TXQ_UNLOCK(txq);
2579}
2580
2581/*
2582 * Do the basic frame setup stuff that's required before the frame
2583 * is added to a software queue.
2584 *
2585 * All frames get mostly the same treatment and it's done once.
2586 * Retransmits fiddle with things like the rate control setup,
2587 * setting the retransmit bit in the packet; doing relevant DMA/bus
2588 * syncing and relinking it (back) into the hardware TX queue.
2589 *
2590 * Note that this may cause the mbuf to be reallocated, so
2591 * m0 may not be valid.
2592 */
2593
2594
2595/*
2596 * Configure the per-TID node state.
2597 *
2598 * This likely belongs in if_ath_node.c but I can't think of anywhere
2599 * else to put it just yet.
2600 *
2601 * This sets up the SLISTs and the mutex as appropriate.
2602 */
2603void
2604ath_tx_tid_init(struct ath_softc *sc, struct ath_node *an)
2605{
2606 int i, j;
2607 struct ath_tid *atid;
2608
2609 for (i = 0; i < IEEE80211_TID_SIZE; i++) {
2610 atid = &an->an_tid[i];
2611 TAILQ_INIT(&atid->axq_q);
2612 atid->tid = i;
2613 atid->an = an;
2614 for (j = 0; j < ATH_TID_MAX_BUFS; j++)
2615 atid->tx_buf[j] = NULL;
2616 atid->baw_head = atid->baw_tail = 0;
2617 atid->paused = 0;
2618 atid->sched = 0;
2619 atid->hwq_depth = 0;
2620 atid->cleanup_inprogress = 0;
2621 if (i == IEEE80211_NONQOS_TID)
2622 atid->ac = WME_AC_BE;
2623 else
2624 atid->ac = TID_TO_WME_AC(i);
2625 }
2626}
2627
2628/*
2629 * Pause the current TID. This stops packets from being transmitted
2630 * on it.
2631 *
2632 * Since this is also called from upper layers as well as the driver,
2633 * it will get the TID lock.
2634 */
2635static void
2636ath_tx_tid_pause(struct ath_softc *sc, struct ath_tid *tid)
2637{
2638
2639 ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
2640 tid->paused++;
2641 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: paused = %d\n",
2642 __func__, tid->paused);
2643}
2644
2645/*
2646 * Unpause the current TID, and schedule it if needed.
2647 */
2648static void
2649ath_tx_tid_resume(struct ath_softc *sc, struct ath_tid *tid)
2650{
2651 ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
2652
2653 tid->paused--;
2654
2655 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: unpaused = %d\n",
2656 __func__, tid->paused);
2657
2658 if (tid->paused || tid->axq_depth == 0) {
2659 return;
2660 }
2661
2662 ath_tx_tid_sched(sc, tid);
2663 /* Punt some frames to the hardware if needed */
2664 //ath_txq_sched(sc, sc->sc_ac2q[tid->ac]);
2665 taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask);
2666}
2667
2668/*
2669 * Suspend the queue because we need to TX a BAR.
2670 */
2671static void
2672ath_tx_tid_bar_suspend(struct ath_softc *sc, struct ath_tid *tid)
2673{
2674 ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
2675
2676 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2677 "%s: tid=%p, called\n",
2678 __func__,
2679 tid);
2680
2681 /* We shouldn't be called when bar_tx is 1 */
2682 if (tid->bar_tx) {
2683 device_printf(sc->sc_dev, "%s: bar_tx is 1?!\n",
2684 __func__);
2685 }
2686
2687 /* If we've already been called, just be patient. */
2688 if (tid->bar_wait)
2689 return;
2690
2691 /* Wait! */
2692 tid->bar_wait = 1;
2693
2694 /* Only one pause, no matter how many frames fail */
2695 ath_tx_tid_pause(sc, tid);
2696}
2697
2698/*
2699 * We've finished with BAR handling - either we succeeded or
2700 * failed. Either way, unsuspend TX.
2701 */
2702static void
2703ath_tx_tid_bar_unsuspend(struct ath_softc *sc, struct ath_tid *tid)
2704{
2705 ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
2706
2707 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2708 "%s: tid=%p, called\n",
2709 __func__,
2710 tid);
2711
2712 if (tid->bar_tx == 0 || tid->bar_wait == 0) {
2713 device_printf(sc->sc_dev, "%s: bar_tx=%d, bar_wait=%d: ?\n",
2714 __func__, tid->bar_tx, tid->bar_wait);
2715 }
2716
2717 tid->bar_tx = tid->bar_wait = 0;
2718 ath_tx_tid_resume(sc, tid);
2719}
2720
2721/*
2722 * Return whether we're ready to TX a BAR frame.
2723 *
2724 * Requires the TID lock be held.
2725 */
2726static int
2727ath_tx_tid_bar_tx_ready(struct ath_softc *sc, struct ath_tid *tid)
2728{
2729
2730 ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
2731
2732 if (tid->bar_wait == 0 || tid->hwq_depth > 0)
2733 return (0);
2734
2735 return (1);
2736}
2737
2738/*
2739 * Check whether the current TID is ready to have a BAR
2740 * TXed and if so, do the TX.
2741 *
2742 * Since the TID/TXQ lock can't be held during a call to
2743 * ieee80211_send_bar(), we have to do the dirty thing of unlocking it,
2744 * sending the BAR and locking it again.
2745 *
2746 * Eventually, the code to send the BAR should be broken out
2747 * from this routine so the lock doesn't have to be reacquired
2748 * just to be immediately dropped by the caller.
2749 */
2750static void
2751ath_tx_tid_bar_tx(struct ath_softc *sc, struct ath_tid *tid)
2752{
2753 struct ieee80211_tx_ampdu *tap;
2754
2755 ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
2756
2757 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2758 "%s: tid=%p, called\n",
2759 __func__,
2760 tid);
2761
2762 tap = ath_tx_get_tx_tid(tid->an, tid->tid);
2763
2764 /*
2765 * This is an error condition!
2766 */
2767 if (tid->bar_wait == 0 || tid->bar_tx == 1) {
2768 device_printf(sc->sc_dev,
2769 "%s: tid=%p, bar_tx=%d, bar_wait=%d: ?\n",
2770 __func__,
2771 tid,
2772 tid->bar_tx,
2773 tid->bar_wait);
2774 return;
2775 }
2776
2777 /* Don't do anything if we still have pending frames */
2778 if (tid->hwq_depth > 0) {
2779 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2780 "%s: tid=%p, hwq_depth=%d, waiting\n",
2781 __func__,
2782 tid,
2783 tid->hwq_depth);
2784 return;
2785 }
2786
2787 /* We're now about to TX */
2788 tid->bar_tx = 1;
2789
2790 /*
2791 * Calculate new BAW left edge, now that all frames have either
2792 * succeeded or failed.
2793 *
2794 * XXX verify this is _actually_ the valid value to begin at!
2795 */
2796 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2797 "%s: tid=%p, new BAW left edge=%d\n",
2798 __func__,
2799 tid,
2800 tap->txa_start);
2801
2802 /* Try sending the BAR frame */
2803 /* We can't hold the lock here! */
2804
2805 ATH_TXQ_UNLOCK(sc->sc_ac2q[tid->ac]);
2806 if (ieee80211_send_bar(&tid->an->an_node, tap, tap->txa_start) == 0) {
2807 /* Success? Now we wait for notification that it's done */
2808 ATH_TXQ_LOCK(sc->sc_ac2q[tid->ac]);
2809 return;
2810 }
2811
2812 /* Failure? For now, warn loudly and continue */
2813 ATH_TXQ_LOCK(sc->sc_ac2q[tid->ac]);
2814 device_printf(sc->sc_dev, "%s: tid=%p, failed to TX BAR, continue!\n",
2815 __func__, tid);
2816 ath_tx_tid_bar_unsuspend(sc, tid);
2817}
2818
2819
2820/*
2821 * Free any packets currently pending in the software TX queue.
2822 *
2823 * This will be called when a node is being deleted.
2824 *
2825 * It can also be called on an active node during an interface
2826 * reset or state transition.
2827 *
2828 * (From Linux/reference):
2829 *
2830 * TODO: For frame(s) that are in the retry state, we will reuse the
2831 * sequence number(s) without setting the retry bit. The
2832 * alternative is to give up on these and BAR the receiver's window
2833 * forward.
2834 */
2835static void
2836ath_tx_tid_drain(struct ath_softc *sc, struct ath_node *an,
2837 struct ath_tid *tid, ath_bufhead *bf_cq)
2838{
2839 struct ath_buf *bf;
2840 struct ieee80211_tx_ampdu *tap;
2841 struct ieee80211_node *ni = &an->an_node;
2842 int t = 0;
2843 struct ath_txq *txq = sc->sc_ac2q[tid->ac];
2844
2845 tap = ath_tx_get_tx_tid(an, tid->tid);
2846
2847 ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
2848
2849 /* Walk the queue, free frames */
2850 for (;;) {
2851 bf = TAILQ_FIRST(&tid->axq_q);
2852 if (bf == NULL) {
2853 break;
2854 }
2855
2856 if (t == 0) {
2857 device_printf(sc->sc_dev,
2858 "%s: node %p: bf=%p: addbaw=%d, dobaw=%d, "
2859 "seqno_assign=%d, seqno_required=%d, seqno=%d, retry=%d\n",
2860 __func__, ni, bf,
2861 bf->bf_state.bfs_addedbaw,
2862 bf->bf_state.bfs_dobaw,
2863 bf->bf_state.bfs_need_seqno,
2864 bf->bf_state.bfs_seqno_assigned,
2865 SEQNO(bf->bf_state.bfs_seqno),
2866 bf->bf_state.bfs_retries);
2867 device_printf(sc->sc_dev,
2868 "%s: node %p: bf=%p: tid txq_depth=%d hwq_depth=%d\n",
2869 __func__, ni, bf,
2870 tid->axq_depth,
2871 tid->hwq_depth);
2872 device_printf(sc->sc_dev,
2873 "%s: node %p: bf=%p: tid %d: txq_depth=%d, "
2874 "txq_aggr_depth=%d, sched=%d, paused=%d, "
2875 "hwq_depth=%d, incomp=%d, baw_head=%d, "
2876 "baw_tail=%d txa_start=%d, ni_txseqs=%d\n",
2877 __func__, ni, bf, tid->tid, txq->axq_depth,
2878 txq->axq_aggr_depth, tid->sched, tid->paused,
2879 tid->hwq_depth, tid->incomp, tid->baw_head,
2880 tid->baw_tail, tap == NULL ? -1 : tap->txa_start,
2881 ni->ni_txseqs[tid->tid]);
2882
2883 /* XXX Dump the frame, see what it is? */
2884 ieee80211_dump_pkt(ni->ni_ic,
2885 mtod(bf->bf_m, const uint8_t *),
2886 bf->bf_m->m_len, 0, -1);
2887
2888 t = 1;
2889 }
2890
2891
2892 /*
2893 * If the current TID is running AMPDU, update
2894 * the BAW.
2895 */
2896 if (ath_tx_ampdu_running(sc, an, tid->tid) &&
2897 bf->bf_state.bfs_dobaw) {
2898 /*
2899 * Only remove the frame from the BAW if it's
2900 * been transmitted at least once; this means
2901 * the frame was in the BAW to begin with.
2902 */
2903 if (bf->bf_state.bfs_retries > 0) {
2904 ath_tx_update_baw(sc, an, tid, bf);
2905 bf->bf_state.bfs_dobaw = 0;
2906 }
2907 /*
2908 * This has become a non-fatal error now
2909 */
2910 if (! bf->bf_state.bfs_addedbaw)
2911 device_printf(sc->sc_dev,
2912 "%s: wasn't added: seqno %d\n",
2913 __func__, SEQNO(bf->bf_state.bfs_seqno));
2914 }
2915 ATH_TXQ_REMOVE(tid, bf, bf_list);
2916 TAILQ_INSERT_TAIL(bf_cq, bf, bf_list);
2917 }
2918
2919 /*
2920 * Now that it's completed, grab the TID lock and update
2921 * the sequence number and BAW window.
2922 * Because sequence numbers have been assigned to frames
2923 * that haven't been sent yet, it's entirely possible
2924 * we'll be called with some pending frames that have not
2925 * been transmitted.
2926 *
2927 * The cleaner solution is to do the sequence number allocation
2928 * when the packet is first transmitted - and thus the "retries"
2929 * check above would be enough to update the BAW/seqno.
2930 */
2931
2932 /* But don't do it for non-QoS TIDs */
2933 if (tap) {
2934#if 0
2935 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
2936 "%s: node %p: TID %d: sliding BAW left edge to %d\n",
2937 __func__, an, tid->tid, tap->txa_start);
2938#endif
2939 ni->ni_txseqs[tid->tid] = tap->txa_start;
2940 tid->baw_tail = tid->baw_head;
2941 }
2942}
2943
2944/*
2945 * Flush all software queued packets for the given node.
2946 *
2947 * This occurs when a completion handler frees the last buffer
2948 * for a node, and the node is thus freed. This causes the node
2949 * to be cleaned up, which ends up calling ath_tx_node_flush.
2950 */
2951void
2952ath_tx_node_flush(struct ath_softc *sc, struct ath_node *an)
2953{
2954 int tid;
2955 ath_bufhead bf_cq;
2956 struct ath_buf *bf;
2957
2958 TAILQ_INIT(&bf_cq);
2959
2960 for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) {
2961 struct ath_tid *atid = &an->an_tid[tid];
2962 struct ath_txq *txq = sc->sc_ac2q[atid->ac];
2963
2964 /* Remove this tid from the list of active tids */
2965 ATH_TXQ_LOCK(txq);
2966 ath_tx_tid_unsched(sc, atid);
2967
2968 /* Free packets */
2969 ath_tx_tid_drain(sc, an, atid, &bf_cq);
2970 ATH_TXQ_UNLOCK(txq);
2971 }
2972
2973 /* Handle completed frames */
2974 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
2975 TAILQ_REMOVE(&bf_cq, bf, bf_list);
2976 ath_tx_default_comp(sc, bf, 0);
2977 }
2978}
2979
2980/*
2981 * Drain all the software TXQs currently with traffic queued.
2982 */
2983void
2984ath_tx_txq_drain(struct ath_softc *sc, struct ath_txq *txq)
2985{
2986 struct ath_tid *tid;
2987 ath_bufhead bf_cq;
2988 struct ath_buf *bf;
2989
2990 TAILQ_INIT(&bf_cq);
2991 ATH_TXQ_LOCK(txq);
2992
2993 /*
2994 * Iterate over all active tids for the given txq,
2995 * flushing and unsched'ing them
2996 */
2997 while (! TAILQ_EMPTY(&txq->axq_tidq)) {
2998 tid = TAILQ_FIRST(&txq->axq_tidq);
2999 ath_tx_tid_drain(sc, tid->an, tid, &bf_cq);
3000 ath_tx_tid_unsched(sc, tid);
3001 }
3002
3003 ATH_TXQ_UNLOCK(txq);
3004
3005 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
3006 TAILQ_REMOVE(&bf_cq, bf, bf_list);
3007 ath_tx_default_comp(sc, bf, 0);
3008 }
3009}
3010
3011/*
3012 * Handle completion of non-aggregate session frames.
3013 */
3014void
3015ath_tx_normal_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
3016{
3017 struct ieee80211_node *ni = bf->bf_node;
3018 struct ath_node *an = ATH_NODE(ni);
3019 int tid = bf->bf_state.bfs_tid;
3020 struct ath_tid *atid = &an->an_tid[tid];
3021 struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
3022
3023 /* The TID state is protected behind the TXQ lock */
3024 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
3025
3026 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p: fail=%d, hwq_depth now %d\n",
3027 __func__, bf, fail, atid->hwq_depth - 1);
3028
3029 atid->hwq_depth--;
3030 if (atid->hwq_depth < 0)
3031 device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n",
3032 __func__, atid->hwq_depth);
3033 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3034
3035 /*
3036 * punt to rate control if we're not being cleaned up
3037 * during a hw queue drain and the frame wanted an ACK.
3038 */
3039 if (fail == 0 && ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0))
3040 ath_tx_update_ratectrl(sc, ni, bf->bf_state.bfs_rc,
3041 ts, bf->bf_state.bfs_pktlen,
3042 1, (ts->ts_status == 0) ? 0 : 1);
3043
3044 ath_tx_default_comp(sc, bf, fail);
3045}
3046
3047/*
3048 * Handle cleanup of aggregate session packets that aren't
3049 * an A-MPDU.
3050 *
3051 * There's no need to update the BAW here - the session is being
3052 * torn down.
3053 */
3054static void
3055ath_tx_comp_cleanup_unaggr(struct ath_softc *sc, struct ath_buf *bf)
3056{
3057 struct ieee80211_node *ni = bf->bf_node;
3058 struct ath_node *an = ATH_NODE(ni);
3059 int tid = bf->bf_state.bfs_tid;
3060 struct ath_tid *atid = &an->an_tid[tid];
3061
3062 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: TID %d: incomp=%d\n",
3063 __func__, tid, atid->incomp);
3064
3065 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
3066 atid->incomp--;
3067 if (atid->incomp == 0) {
3068 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
3069 "%s: TID %d: cleaned up! resume!\n",
3070 __func__, tid);
3071 atid->cleanup_inprogress = 0;
3072 ath_tx_tid_resume(sc, atid);
3073 }
3074 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3075
3076 ath_tx_default_comp(sc, bf, 0);
3077}
3078
3079/*
3080 * Performs transmit side cleanup when TID changes from aggregated to
3081 * unaggregated.
3082 *
3083 * - Discard all retry frames from the s/w queue.
3084 * - Fix the tx completion function for all buffers in s/w queue.
3085 * - Count the number of unacked frames, and let transmit completion
3086 * handle it later.
3087 *
3088 * The caller is responsible for pausing the TID.
3089 */
3090static void
3091ath_tx_cleanup(struct ath_softc *sc, struct ath_node *an, int tid)
3092{
3093 struct ath_tid *atid = &an->an_tid[tid];
3094 struct ieee80211_tx_ampdu *tap;
3095 struct ath_buf *bf, *bf_next;
3096 ath_bufhead bf_cq;
3097
3098 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
3099 "%s: TID %d: called\n", __func__, tid);
3100
3101 TAILQ_INIT(&bf_cq);
3102 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
3103
3104 /*
3105 * Update the frames in the software TX queue:
3106 *
3107 * + Discard retry frames in the queue
3108 * + Fix the completion function to be non-aggregate
3109 */
3110 bf = TAILQ_FIRST(&atid->axq_q);
3111 while (bf) {
3112 if (bf->bf_state.bfs_isretried) {
3113 bf_next = TAILQ_NEXT(bf, bf_list);
3114 TAILQ_REMOVE(&atid->axq_q, bf, bf_list);
3115 atid->axq_depth--;
3116 if (bf->bf_state.bfs_dobaw) {
3117 ath_tx_update_baw(sc, an, atid, bf);
3118 if (! bf->bf_state.bfs_addedbaw)
3119 device_printf(sc->sc_dev,
3120 "%s: wasn't added: seqno %d\n",
3121 __func__,
3122 SEQNO(bf->bf_state.bfs_seqno));
3123 }
3124 bf->bf_state.bfs_dobaw = 0;
3125 /*
3126 * Call the default completion handler with "fail" just
3127 * so upper levels are suitably notified about this.
3128 */
3129 TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
3130 bf = bf_next;
3131 continue;
3132 }
3133 /* Give these the default completion handler */
3134 bf->bf_comp = ath_tx_normal_comp;
3135 bf = TAILQ_NEXT(bf, bf_list);
3136 }
3137
3138 /* The caller is required to pause the TID */
3139#if 0
3140 /* Pause the TID */
3141 ath_tx_tid_pause(sc, atid);
3142#endif
3143
3144 /*
3145 * Calculate what hardware-queued frames exist based
3146 * on the current BAW size. Ie, what frames have been
3147 * added to the TX hardware queue for this TID but
3148 * not yet ACKed.
3149 */
3150 tap = ath_tx_get_tx_tid(an, tid);
3151 /* Need the lock - fiddling with BAW */
3152 while (atid->baw_head != atid->baw_tail) {
3153 if (atid->tx_buf[atid->baw_head]) {
3154 atid->incomp++;
3155 atid->cleanup_inprogress = 1;
3156 atid->tx_buf[atid->baw_head] = NULL;
3157 }
3158 INCR(atid->baw_head, ATH_TID_MAX_BUFS);
3159 INCR(tap->txa_start, IEEE80211_SEQ_RANGE);
3160 }
3161
3162 /*
3163 * If cleanup is required, defer TID scheduling
3164 * until all the HW queued packets have been
3165 * sent.
3166 */
3167 if (! atid->cleanup_inprogress)
3168 ath_tx_tid_resume(sc, atid);
3169
3170 if (atid->cleanup_inprogress)
3171 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
3172 "%s: TID %d: cleanup needed: %d packets\n",
3173 __func__, tid, atid->incomp);
3174 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3175
3176 /* Handle completing frames and fail them */
3177 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
3178 TAILQ_REMOVE(&bf_cq, bf, bf_list);
3179 ath_tx_default_comp(sc, bf, 1);
3180 }
3181}
3182
3183static void
3184ath_tx_set_retry(struct ath_softc *sc, struct ath_buf *bf)
3185{
3186 struct ieee80211_frame *wh;
3187
3188 wh = mtod(bf->bf_m, struct ieee80211_frame *);
3189 /* Only update/resync if needed */
3190 if (bf->bf_state.bfs_isretried == 0) {
3191 wh->i_fc[1] |= IEEE80211_FC1_RETRY;
3192 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3193 BUS_DMASYNC_PREWRITE);
3194 }
3195 sc->sc_stats.ast_tx_swretries++;
3196 bf->bf_state.bfs_isretried = 1;
3197 bf->bf_state.bfs_retries ++;
3198}
3199
3200static struct ath_buf *
3201ath_tx_retry_clone(struct ath_softc *sc, struct ath_node *an,
3202 struct ath_tid *tid, struct ath_buf *bf)
3203{
3204 struct ath_buf *nbf;
3205 int error;
3206
3207 nbf = ath_buf_clone(sc, bf);
3208
3209#if 0
3210 device_printf(sc->sc_dev, "%s: ATH_BUF_BUSY; cloning\n",
3211 __func__);
3212#endif
3213
3214 if (nbf == NULL) {
3215 /* Failed to clone */
3216 device_printf(sc->sc_dev,
3217 "%s: failed to clone a busy buffer\n",
3218 __func__);
3219 return NULL;
3220 }
3221
3222 /* Setup the dma for the new buffer */
3223 error = ath_tx_dmasetup(sc, nbf, nbf->bf_m);
3224 if (error != 0) {
3225 device_printf(sc->sc_dev,
3226 "%s: failed to setup dma for clone\n",
3227 __func__);
3228 /*
3229 * Put this at the head of the list, not tail;
3230 * that way it doesn't interfere with the
3231 * busy buffer logic (which uses the tail of
3232 * the list.)
3233 */
3234 ATH_TXBUF_LOCK(sc);
3235 TAILQ_INSERT_HEAD(&sc->sc_txbuf, nbf, bf_list);
3236 ATH_TXBUF_UNLOCK(sc);
3237 return NULL;
3238 }
3239
3240 /* Update BAW if required, before we free the original buf */
3241 if (bf->bf_state.bfs_dobaw)
3242 ath_tx_switch_baw_buf(sc, an, tid, bf, nbf);
3243
3244 /* Free current buffer; return the older buffer */
3245 bf->bf_m = NULL;
3246 bf->bf_node = NULL;
3247 ath_freebuf(sc, bf);
3248 return nbf;
3249}
3250
3251/*
3252 * Handle retrying an unaggregate frame in an aggregate
3253 * session.
3254 *
3255 * If too many retries occur, pause the TID, wait for
3256 * any further retransmits (as there's no reason why
3257 * non-aggregate frames in an aggregate session are
3258 * transmitted in-order; they just have to be in-BAW)
3259 * and then queue a BAR.
3260 */
3261static void
3262ath_tx_aggr_retry_unaggr(struct ath_softc *sc, struct ath_buf *bf)
3263{
3264 struct ieee80211_node *ni = bf->bf_node;
3265 struct ath_node *an = ATH_NODE(ni);
3266 int tid = bf->bf_state.bfs_tid;
3267 struct ath_tid *atid = &an->an_tid[tid];
3268 struct ieee80211_tx_ampdu *tap;
3269
3270 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
3271
3272 tap = ath_tx_get_tx_tid(an, tid);
3273
3274 /*
3275 * If the buffer is marked as busy, we can't directly
3276 * reuse it. Instead, try to clone the buffer.
3277 * If the clone is successful, recycle the old buffer.
3278 * If the clone is unsuccessful, set bfs_retries to max
3279 * to force the next bit of code to free the buffer
3280 * for us.
3281 */
3282 if ((bf->bf_state.bfs_retries < SWMAX_RETRIES) &&
3283 (bf->bf_flags & ATH_BUF_BUSY)) {
3284 struct ath_buf *nbf;
3285 nbf = ath_tx_retry_clone(sc, an, atid, bf);
3286 if (nbf)
3287 /* bf has been freed at this point */
3288 bf = nbf;
3289 else
3290 bf->bf_state.bfs_retries = SWMAX_RETRIES + 1;
3291 }
3292
3293 if (bf->bf_state.bfs_retries >= SWMAX_RETRIES) {
3294 DPRINTF(sc, ATH_DEBUG_SW_TX_RETRIES,
3295 "%s: exceeded retries; seqno %d\n",
3296 __func__, SEQNO(bf->bf_state.bfs_seqno));
3297 sc->sc_stats.ast_tx_swretrymax++;
3298
3299 /* Update BAW anyway */
3300 if (bf->bf_state.bfs_dobaw) {
3301 ath_tx_update_baw(sc, an, atid, bf);
3302 if (! bf->bf_state.bfs_addedbaw)
3303 device_printf(sc->sc_dev,
3304 "%s: wasn't added: seqno %d\n",
3305 __func__, SEQNO(bf->bf_state.bfs_seqno));
3306 }
3307 bf->bf_state.bfs_dobaw = 0;
3308
3309 /* Suspend the TX queue and get ready to send the BAR */
3310 ath_tx_tid_bar_suspend(sc, atid);
3311
3312 /* Send the BAR if there are no other frames waiting */
3313 if (ath_tx_tid_bar_tx_ready(sc, atid))
3314 ath_tx_tid_bar_tx(sc, atid);
3315
3316 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3317
3318 /* Free buffer, bf is free after this call */
3319 ath_tx_default_comp(sc, bf, 0);
3320 return;
3321 }
3322
3323 /*
3324 * This increments the retry counter as well as
3325 * sets the retry flag in the ath_buf and packet
3326 * body.
3327 */
3328 ath_tx_set_retry(sc, bf);
3329
3330 /*
3331 * Insert this at the head of the queue, so it's
3332 * retried before any current/subsequent frames.
3333 */
3334 ATH_TXQ_INSERT_HEAD(atid, bf, bf_list);
3335 ath_tx_tid_sched(sc, atid);
3336 /* Send the BAR if there are no other frames waiting */
3337 if (ath_tx_tid_bar_tx_ready(sc, atid))
3338 ath_tx_tid_bar_tx(sc, atid);
3339
3340 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3341}
3342
3343/*
3344 * Common code for aggregate excessive retry/subframe retry.
3345 * If retrying, queues buffers to bf_q. If not, frees the
3346 * buffers.
3347 *
3348 * XXX should unify this with ath_tx_aggr_retry_unaggr()
3349 */
3350static int
3351ath_tx_retry_subframe(struct ath_softc *sc, struct ath_buf *bf,
3352 ath_bufhead *bf_q)
3353{
3354 struct ieee80211_node *ni = bf->bf_node;
3355 struct ath_node *an = ATH_NODE(ni);
3356 int tid = bf->bf_state.bfs_tid;
3357 struct ath_tid *atid = &an->an_tid[tid];
3358
3359 ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[atid->ac]);
3360
3361 ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc);
3362 ath_hal_set11nburstduration(sc->sc_ah, bf->bf_desc, 0);
3363 /* ath_hal_set11n_virtualmorefrag(sc->sc_ah, bf->bf_desc, 0); */
3364
3365 /*
3366 * If the buffer is marked as busy, we can't directly
3367 * reuse it. Instead, try to clone the buffer.
3368 * If the clone is successful, recycle the old buffer.
3369 * If the clone is unsuccessful, set bfs_retries to max
3370 * to force the next bit of code to free the buffer
3371 * for us.
3372 */
3373 if ((bf->bf_state.bfs_retries < SWMAX_RETRIES) &&
3374 (bf->bf_flags & ATH_BUF_BUSY)) {
3375 struct ath_buf *nbf;
3376 nbf = ath_tx_retry_clone(sc, an, atid, bf);
3377 if (nbf)
3378 /* bf has been freed at this point */
3379 bf = nbf;
3380 else
3381 bf->bf_state.bfs_retries = SWMAX_RETRIES + 1;
3382 }
3383
3384 if (bf->bf_state.bfs_retries >= SWMAX_RETRIES) {
3385 sc->sc_stats.ast_tx_swretrymax++;
3386 DPRINTF(sc, ATH_DEBUG_SW_TX_RETRIES,
3387 "%s: max retries: seqno %d\n",
3388 __func__, SEQNO(bf->bf_state.bfs_seqno));
3389 ath_tx_update_baw(sc, an, atid, bf);
3390 if (! bf->bf_state.bfs_addedbaw)
3391 device_printf(sc->sc_dev,
3392 "%s: wasn't added: seqno %d\n",
3393 __func__, SEQNO(bf->bf_state.bfs_seqno));
3394 bf->bf_state.bfs_dobaw = 0;
3395 return 1;
3396 }
3397
3398 ath_tx_set_retry(sc, bf);
3399 bf->bf_next = NULL; /* Just to make sure */
3400
3401 TAILQ_INSERT_TAIL(bf_q, bf, bf_list);
3402 return 0;
3403}
3404
3405/*
3406 * error pkt completion for an aggregate destination
3407 */
3408static void
3409ath_tx_comp_aggr_error(struct ath_softc *sc, struct ath_buf *bf_first,
3410 struct ath_tid *tid)
3411{
3412 struct ieee80211_node *ni = bf_first->bf_node;
3413 struct ath_node *an = ATH_NODE(ni);
3414 struct ath_buf *bf_next, *bf;
3415 ath_bufhead bf_q;
3416 int drops = 0;
3417 struct ieee80211_tx_ampdu *tap;
3418 ath_bufhead bf_cq;
3419
3420 TAILQ_INIT(&bf_q);
3421 TAILQ_INIT(&bf_cq);
3422
3423 /*
3424 * Update rate control - all frames have failed.
3425 *
3426 * XXX use the length in the first frame in the series;
3427 * XXX just so things are consistent for now.
3428 */
3429 ath_tx_update_ratectrl(sc, ni, bf_first->bf_state.bfs_rc,
3430 &bf_first->bf_status.ds_txstat,
3431 bf_first->bf_state.bfs_pktlen,
3432 bf_first->bf_state.bfs_nframes, bf_first->bf_state.bfs_nframes);
3433
3434 ATH_TXQ_LOCK(sc->sc_ac2q[tid->ac]);
3435 tap = ath_tx_get_tx_tid(an, tid->tid);
3436 sc->sc_stats.ast_tx_aggr_failall++;
3437
3438 /* Retry all subframes */
3439 bf = bf_first;
3440 while (bf) {
3441 bf_next = bf->bf_next;
3442 bf->bf_next = NULL; /* Remove it from the aggr list */
3443 sc->sc_stats.ast_tx_aggr_fail++;
3444 if (ath_tx_retry_subframe(sc, bf, &bf_q)) {
3445 drops++;
3446 bf->bf_next = NULL;
3447 TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
3448 }
3449 bf = bf_next;
3450 }
3451
3452 /* Prepend all frames to the beginning of the queue */
3453 while ((bf = TAILQ_LAST(&bf_q, ath_bufhead_s)) != NULL) {
3454 TAILQ_REMOVE(&bf_q, bf, bf_list);
3455 ATH_TXQ_INSERT_HEAD(tid, bf, bf_list);
3456 }
3457
3458 ath_tx_tid_sched(sc, tid);
3459
3460 /*
3461 * send bar if we dropped any frames
3462 *
3463 * Keep the txq lock held for now, as we need to ensure
3464 * that ni_txseqs[] is consistent (as it's being updated
3465 * in the ifnet TX context or raw TX context.)
3466 */
3467 if (drops) {
3468 /* Suspend the TX queue and get ready to send the BAR */
3469 ath_tx_tid_bar_suspend(sc, tid);
3470 }
3471
3472 ATH_TXQ_UNLOCK(sc->sc_ac2q[tid->ac]);
3473
3474 /*
3475 * Send BAR if required
3476 */
3477 ATH_TXQ_LOCK(sc->sc_ac2q[tid->ac]);
3478 if (ath_tx_tid_bar_tx_ready(sc, tid))
3479 ath_tx_tid_bar_tx(sc, tid);
3480 ATH_TXQ_UNLOCK(sc->sc_ac2q[tid->ac]);
3481
3482 /* Complete frames which errored out */
3483 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
3484 TAILQ_REMOVE(&bf_cq, bf, bf_list);
3485 ath_tx_default_comp(sc, bf, 0);
3486 }
3487}
3488
3489/*
3490 * Handle clean-up of packets from an aggregate list.
3491 *
3492 * There's no need to update the BAW here - the session is being
3493 * torn down.
3494 */
3495static void
3496ath_tx_comp_cleanup_aggr(struct ath_softc *sc, struct ath_buf *bf_first)
3497{
3498 struct ath_buf *bf, *bf_next;
3499 struct ieee80211_node *ni = bf_first->bf_node;
3500 struct ath_node *an = ATH_NODE(ni);
3501 int tid = bf_first->bf_state.bfs_tid;
3502 struct ath_tid *atid = &an->an_tid[tid];
3503
3504 bf = bf_first;
3505
3506 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
3507
3508 /* update incomp */
3509 while (bf) {
3510 atid->incomp--;
3511 bf = bf->bf_next;
3512 }
3513
3514 if (atid->incomp == 0) {
3515 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
3516 "%s: TID %d: cleaned up! resume!\n",
3517 __func__, tid);
3518 atid->cleanup_inprogress = 0;
3519 ath_tx_tid_resume(sc, atid);
3520 }
3521
3522 /* Send BAR if required */
3523 if (ath_tx_tid_bar_tx_ready(sc, atid))
3524 ath_tx_tid_bar_tx(sc, atid);
3525 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3526
3527 /* Handle frame completion */
3528 while (bf) {
3529 bf_next = bf->bf_next;
3530 ath_tx_default_comp(sc, bf, 1);
3531 bf = bf_next;
3532 }
3533}
3534
3535/*
3536 * Handle completion of an set of aggregate frames.
3537 *
3538 * XXX for now, simply complete each sub-frame.
3539 *
3540 * Note: the completion handler is the last descriptor in the aggregate,
3541 * not the last descriptor in the first frame.
3542 */
3543static void
3544ath_tx_aggr_comp_aggr(struct ath_softc *sc, struct ath_buf *bf_first,
3545 int fail)
3546{
3547 //struct ath_desc *ds = bf->bf_lastds;
3548 struct ieee80211_node *ni = bf_first->bf_node;
3549 struct ath_node *an = ATH_NODE(ni);
3550 int tid = bf_first->bf_state.bfs_tid;
3551 struct ath_tid *atid = &an->an_tid[tid];
3552 struct ath_tx_status ts;
3553 struct ieee80211_tx_ampdu *tap;
3554 ath_bufhead bf_q;
3555 ath_bufhead bf_cq;
3556 int seq_st, tx_ok;
3557 int hasba, isaggr;
3558 uint32_t ba[2];
3559 struct ath_buf *bf, *bf_next;
3560 int ba_index;
3561 int drops = 0;
3562 int nframes = 0, nbad = 0, nf;
3563 int pktlen;
3564 /* XXX there's too much on the stack? */
3565 struct ath_rc_series rc[4];
3566 int txseq;
3567
3568 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: called; hwq_depth=%d\n",
3569 __func__, atid->hwq_depth);
3570
3571 /* The TID state is kept behind the TXQ lock */
3572 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
3573
3574 atid->hwq_depth--;
3575 if (atid->hwq_depth < 0)
3576 device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n",
3577 __func__, atid->hwq_depth);
3578
3579 /*
3580 * Punt cleanup to the relevant function, not our problem now
3581 */
3582 if (atid->cleanup_inprogress) {
3583 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3584 ath_tx_comp_cleanup_aggr(sc, bf_first);
3585 return;
3586 }
3587
3588 /*
3589 * Take a copy; this may be needed -after- bf_first
3590 * has been completed and freed.
3591 */
3592 ts = bf_first->bf_status.ds_txstat;
3593 /*
3594 * XXX for now, use the first frame in the aggregate for
3595 * XXX rate control completion; it's at least consistent.
3596 */
3597 pktlen = bf_first->bf_state.bfs_pktlen;
3598
3599 /*
3600 * handle errors first
3601 */
3602 if (ts.ts_status & HAL_TXERR_XRETRY) {
3603 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3604 ath_tx_comp_aggr_error(sc, bf_first, atid);
3605 return;
3606 }
3607
3608 TAILQ_INIT(&bf_q);
3609 TAILQ_INIT(&bf_cq);
3610 tap = ath_tx_get_tx_tid(an, tid);
3611
3612 /*
3613 * extract starting sequence and block-ack bitmap
3614 */
3615 /* XXX endian-ness of seq_st, ba? */
3616 seq_st = ts.ts_seqnum;
3617 hasba = !! (ts.ts_flags & HAL_TX_BA);
3618 tx_ok = (ts.ts_status == 0);
3619 isaggr = bf_first->bf_state.bfs_aggr;
3620 ba[0] = ts.ts_ba_low;
3621 ba[1] = ts.ts_ba_high;
3622
3623 /*
3624 * Copy the TX completion status and the rate control
3625 * series from the first descriptor, as it may be freed
3626 * before the rate control code can get its grubby fingers
3627 * into things.
3628 */
3629 memcpy(rc, bf_first->bf_state.bfs_rc, sizeof(rc));
3630
3631 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
3632 "%s: txa_start=%d, tx_ok=%d, status=%.8x, flags=%.8x, "
3633 "isaggr=%d, seq_st=%d, hasba=%d, ba=%.8x, %.8x\n",
3634 __func__, tap->txa_start, tx_ok, ts.ts_status, ts.ts_flags,
3635 isaggr, seq_st, hasba, ba[0], ba[1]);
3636
3637 /* Occasionally, the MAC sends a tx status for the wrong TID. */
3638 if (tid != ts.ts_tid) {
3639 device_printf(sc->sc_dev, "%s: tid %d != hw tid %d\n",
3640 __func__, tid, ts.ts_tid);
3641 tx_ok = 0;
3642 }
3643
3644 /* AR5416 BA bug; this requires an interface reset */
3645 if (isaggr && tx_ok && (! hasba)) {
3646 device_printf(sc->sc_dev,
3647 "%s: AR5416 bug: hasba=%d; txok=%d, isaggr=%d, "
3648 "seq_st=%d\n",
3649 __func__, hasba, tx_ok, isaggr, seq_st);
3650 /* XXX TODO: schedule an interface reset */
3651 }
3652
3653 /*
3654 * Walk the list of frames, figure out which ones were correctly
3655 * sent and which weren't.
3656 */
3657 bf = bf_first;
3658 nf = bf_first->bf_state.bfs_nframes;
3659
3660 /* bf_first is going to be invalid once this list is walked */
3661 bf_first = NULL;
3662
3663 /*
3664 * Walk the list of completed frames and determine
3665 * which need to be completed and which need to be
3666 * retransmitted.
3667 *
3668 * For completed frames, the completion functions need
3669 * to be called at the end of this function as the last
3670 * node reference may free the node.
3671 *
3672 * Finally, since the TXQ lock can't be held during the
3673 * completion callback (to avoid lock recursion),
3674 * the completion calls have to be done outside of the
3675 * lock.
3676 */
3677 while (bf) {
3678 nframes++;
3679 ba_index = ATH_BA_INDEX(seq_st,
3680 SEQNO(bf->bf_state.bfs_seqno));
3681 bf_next = bf->bf_next;
3682 bf->bf_next = NULL; /* Remove it from the aggr list */
3683
3684 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
3685 "%s: checking bf=%p seqno=%d; ack=%d\n",
3686 __func__, bf, SEQNO(bf->bf_state.bfs_seqno),
3687 ATH_BA_ISSET(ba, ba_index));
3688
3689 if (tx_ok && ATH_BA_ISSET(ba, ba_index)) {
3690 sc->sc_stats.ast_tx_aggr_ok++;
3691 ath_tx_update_baw(sc, an, atid, bf);
3692 bf->bf_state.bfs_dobaw = 0;
3693 if (! bf->bf_state.bfs_addedbaw)
3694 device_printf(sc->sc_dev,
3695 "%s: wasn't added: seqno %d\n",
3696 __func__, SEQNO(bf->bf_state.bfs_seqno));
3697 bf->bf_next = NULL;
3698 TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
3699 } else {
3700 sc->sc_stats.ast_tx_aggr_fail++;
3701 if (ath_tx_retry_subframe(sc, bf, &bf_q)) {
3702 drops++;
3703 bf->bf_next = NULL;
3704 TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
3705 }
3706 nbad++;
3707 }
3708 bf = bf_next;
3709 }
3710
3711 /*
3712 * Now that the BAW updates have been done, unlock
3713 *
3714 * txseq is grabbed before the lock is released so we
3715 * have a consistent view of what -was- in the BAW.
3716 * Anything after this point will not yet have been
3717 * TXed.
3718 */
3719 txseq = tap->txa_start;
3720 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3721
3722 if (nframes != nf)
3723 device_printf(sc->sc_dev,
3724 "%s: num frames seen=%d; bf nframes=%d\n",
3725 __func__, nframes, nf);
3726
3727 /*
3728 * Now we know how many frames were bad, call the rate
3729 * control code.
3730 */
3731 if (fail == 0)
3732 ath_tx_update_ratectrl(sc, ni, rc, &ts, pktlen, nframes,
3733 nbad);
3734
3735 /*
3736 * send bar if we dropped any frames
3737 */
3738 if (drops) {
3739 /* Suspend the TX queue and get ready to send the BAR */
3740 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
3741 ath_tx_tid_bar_suspend(sc, atid);
3742 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3743 }
3744
3745 /* Prepend all frames to the beginning of the queue */
3746 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
3747 while ((bf = TAILQ_LAST(&bf_q, ath_bufhead_s)) != NULL) {
3748 TAILQ_REMOVE(&bf_q, bf, bf_list);
3749 ATH_TXQ_INSERT_HEAD(atid, bf, bf_list);
3750 }
3751 ath_tx_tid_sched(sc, atid);
3752 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3753
3754 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
3755 "%s: txa_start now %d\n", __func__, tap->txa_start);
3756
3757 /*
3758 * Send BAR if required
3759 */
3760 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
3761 if (ath_tx_tid_bar_tx_ready(sc, atid))
3762 ath_tx_tid_bar_tx(sc, atid);
3763 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3764
3765 /* Do deferred completion */
3766 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
3767 TAILQ_REMOVE(&bf_cq, bf, bf_list);
3768 ath_tx_default_comp(sc, bf, 0);
3769 }
3770}
3771
3772/*
3773 * Handle completion of unaggregated frames in an ADDBA
3774 * session.
3775 *
3776 * Fail is set to 1 if the entry is being freed via a call to
3777 * ath_tx_draintxq().
3778 */
3779static void
3780ath_tx_aggr_comp_unaggr(struct ath_softc *sc, struct ath_buf *bf, int fail)
3781{
3782 struct ieee80211_node *ni = bf->bf_node;
3783 struct ath_node *an = ATH_NODE(ni);
3784 int tid = bf->bf_state.bfs_tid;
3785 struct ath_tid *atid = &an->an_tid[tid];
3786 struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
3787
3788 /*
3789 * Update rate control status here, before we possibly
3790 * punt to retry or cleanup.
3791 *
3792 * Do it outside of the TXQ lock.
3793 */
3794 if (fail == 0 && ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0))
3795 ath_tx_update_ratectrl(sc, ni, bf->bf_state.bfs_rc,
3796 &bf->bf_status.ds_txstat,
3797 bf->bf_state.bfs_pktlen,
3798 1, (ts->ts_status == 0) ? 0 : 1);
3799
3800 /*
3801 * This is called early so atid->hwq_depth can be tracked.
3802 * This unfortunately means that it's released and regrabbed
3803 * during retry and cleanup. That's rather inefficient.
3804 */
3805 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
3806
3807 if (tid == IEEE80211_NONQOS_TID)
3808 device_printf(sc->sc_dev, "%s: TID=16!\n", __func__);
3809
3810 DPRINTF(sc, ATH_DEBUG_SW_TX,
3811 "%s: bf=%p: tid=%d, hwq_depth=%d, seqno=%d\n",
3812 __func__, bf, bf->bf_state.bfs_tid, atid->hwq_depth,
3813 SEQNO(bf->bf_state.bfs_seqno));
3814
3815 atid->hwq_depth--;
3816 if (atid->hwq_depth < 0)
3817 device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n",
3818 __func__, atid->hwq_depth);
3819
3820 /*
3821 * If a cleanup is in progress, punt to comp_cleanup;
3822 * rather than handling it here. It's thus their
3823 * responsibility to clean up, call the completion
3824 * function in net80211, etc.
3825 */
3826 if (atid->cleanup_inprogress) {
3827 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3828 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: cleanup_unaggr\n",
3829 __func__);
3830 ath_tx_comp_cleanup_unaggr(sc, bf);
3831 return;
3832 }
3833
3834 /*
3835 * Don't bother with the retry check if all frames
3836 * are being failed (eg during queue deletion.)
3837 */
3838 if (fail == 0 && ts->ts_status & HAL_TXERR_XRETRY) {
3839 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3840 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: retry_unaggr\n",
3841 __func__);
3842 ath_tx_aggr_retry_unaggr(sc, bf);
3843 return;
3844 }
3845
3846 /* Success? Complete */
3847 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: TID=%d, seqno %d\n",
3848 __func__, tid, SEQNO(bf->bf_state.bfs_seqno));
3849 if (bf->bf_state.bfs_dobaw) {
3850 ath_tx_update_baw(sc, an, atid, bf);
3851 bf->bf_state.bfs_dobaw = 0;
3852 if (! bf->bf_state.bfs_addedbaw)
3853 device_printf(sc->sc_dev,
3854 "%s: wasn't added: seqno %d\n",
3855 __func__, SEQNO(bf->bf_state.bfs_seqno));
3856 }
3857
3858 /*
3859 * Send BAR if required
3860 */
3861 if (ath_tx_tid_bar_tx_ready(sc, atid))
3862 ath_tx_tid_bar_tx(sc, atid);
3863
3864 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3865
3866 ath_tx_default_comp(sc, bf, fail);
3867 /* bf is freed at this point */
3868}
3869
3870void
3871ath_tx_aggr_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
3872{
3873 if (bf->bf_state.bfs_aggr)
3874 ath_tx_aggr_comp_aggr(sc, bf, fail);
3875 else
3876 ath_tx_aggr_comp_unaggr(sc, bf, fail);
3877}
3878
3879/*
3880 * Schedule some packets from the given node/TID to the hardware.
3881 *
3882 * This is the aggregate version.
3883 */
3884void
3885ath_tx_tid_hw_queue_aggr(struct ath_softc *sc, struct ath_node *an,
3886 struct ath_tid *tid)
3887{
3888 struct ath_buf *bf;
3889 struct ath_txq *txq = sc->sc_ac2q[tid->ac];
3890 struct ieee80211_tx_ampdu *tap;
3891 struct ieee80211_node *ni = &an->an_node;
3892 ATH_AGGR_STATUS status;
3893 ath_bufhead bf_q;
3894
3895 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d\n", __func__, tid->tid);
3896 ATH_TXQ_LOCK_ASSERT(txq);
3897
3898 tap = ath_tx_get_tx_tid(an, tid->tid);
3899
3900 if (tid->tid == IEEE80211_NONQOS_TID)
3901 device_printf(sc->sc_dev, "%s: called for TID=NONQOS_TID?\n",
3902 __func__);
3903
3904 for (;;) {
3905 status = ATH_AGGR_DONE;
3906
3907 /*
3908 * If the upper layer has paused the TID, don't
3909 * queue any further packets.
3910 *
3911 * This can also occur from the completion task because
3912 * of packet loss; but as its serialised with this code,
3913 * it won't "appear" half way through queuing packets.
3914 */
3915 if (tid->paused)
3916 break;
3917
3918 bf = TAILQ_FIRST(&tid->axq_q);
3919 if (bf == NULL) {
3920 break;
3921 }
3922
3923 /*
3924 * If the packet doesn't fall within the BAW (eg a NULL
3925 * data frame), schedule it directly; continue.
3926 */
3927 if (! bf->bf_state.bfs_dobaw) {
3928 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
3929 "%s: non-baw packet\n",
3930 __func__);
3931 ATH_TXQ_REMOVE(tid, bf, bf_list);
3932 bf->bf_state.bfs_aggr = 0;
3933 ath_tx_do_ratelookup(sc, bf);
3934 ath_tx_calc_duration(sc, bf);
3935 ath_tx_calc_protection(sc, bf);
3936 ath_tx_set_rtscts(sc, bf);
3937 ath_tx_rate_fill_rcflags(sc, bf);
3938 ath_tx_setds(sc, bf);
3939 ath_tx_chaindesclist(sc, bf);
3940 ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc);
3941 ath_tx_set_ratectrl(sc, ni, bf);
3942
3943 sc->sc_aggr_stats.aggr_nonbaw_pkt++;
3944
3945 /* Queue the packet; continue */
3946 goto queuepkt;
3947 }
3948
3949 TAILQ_INIT(&bf_q);
3950
3951 /*
3952 * Do a rate control lookup on the first frame in the
3953 * list. The rate control code needs that to occur
3954 * before it can determine whether to TX.
3955 * It's inaccurate because the rate control code doesn't
3956 * really "do" aggregate lookups, so it only considers
3957 * the size of the first frame.
3958 */
3959 ath_tx_do_ratelookup(sc, bf);
3960 bf->bf_state.bfs_rc[3].rix = 0;
3961 bf->bf_state.bfs_rc[3].tries = 0;
3962
3963 ath_tx_calc_duration(sc, bf);
3964 ath_tx_calc_protection(sc, bf);
3965
3966 ath_tx_set_rtscts(sc, bf);
3967 ath_tx_rate_fill_rcflags(sc, bf);
3968
3969 status = ath_tx_form_aggr(sc, an, tid, &bf_q);
3970
3971 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
3972 "%s: ath_tx_form_aggr() status=%d\n", __func__, status);
3973
3974 /*
3975 * No frames to be picked up - out of BAW
3976 */
3977 if (TAILQ_EMPTY(&bf_q))
3978 break;
3979
3980 /*
3981 * This assumes that the descriptor list in the ath_bufhead
3982 * are already linked together via bf_next pointers.
3983 */
3984 bf = TAILQ_FIRST(&bf_q);
3985
3986 if (status == ATH_AGGR_8K_LIMITED)
3987 sc->sc_aggr_stats.aggr_rts_aggr_limited++;
3988
3989 /*
3990 * If it's the only frame send as non-aggregate
3991 * assume that ath_tx_form_aggr() has checked
3992 * whether it's in the BAW and added it appropriately.
3993 */
3994 if (bf->bf_state.bfs_nframes == 1) {
3995 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
3996 "%s: single-frame aggregate\n", __func__);
3997 bf->bf_state.bfs_aggr = 0;
3998 ath_tx_setds(sc, bf);
3999 ath_tx_chaindesclist(sc, bf);
4000 ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc);
4001 ath_tx_set_ratectrl(sc, ni, bf);
4002 if (status == ATH_AGGR_BAW_CLOSED)
4003 sc->sc_aggr_stats.aggr_baw_closed_single_pkt++;
4004 else
4005 sc->sc_aggr_stats.aggr_single_pkt++;
4006 } else {
4007 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
4008 "%s: multi-frame aggregate: %d frames, "
4009 "length %d\n",
4010 __func__, bf->bf_state.bfs_nframes,
4011 bf->bf_state.bfs_al);
4012 bf->bf_state.bfs_aggr = 1;
4013 sc->sc_aggr_stats.aggr_pkts[bf->bf_state.bfs_nframes]++;
4014 sc->sc_aggr_stats.aggr_aggr_pkt++;
4015
4016 /*
4017 * Calculate the duration/protection as required.
4018 */
4019 ath_tx_calc_duration(sc, bf);
4020 ath_tx_calc_protection(sc, bf);
4021
4022 /*
4023 * Update the rate and rtscts information based on the
4024 * rate decision made by the rate control code;
4025 * the first frame in the aggregate needs it.
4026 */
4027 ath_tx_set_rtscts(sc, bf);
4028
4029 /*
4030 * Setup the relevant descriptor fields
4031 * for aggregation. The first descriptor
4032 * already points to the rest in the chain.
4033 */
4034 ath_tx_setds_11n(sc, bf);
4035
4036 /*
4037 * setup first desc with rate and aggr info
4038 */
4039 ath_tx_set_ratectrl(sc, ni, bf);
4040 }
4041 queuepkt:
4042 //txq = bf->bf_state.bfs_txq;
4043
4044 /* Set completion handler, multi-frame aggregate or not */
4045 bf->bf_comp = ath_tx_aggr_comp;
4046
4047 if (bf->bf_state.bfs_tid == IEEE80211_NONQOS_TID)
4048 device_printf(sc->sc_dev, "%s: TID=16?\n", __func__);
4049
4050 /* Punt to txq */
4051 ath_tx_handoff(sc, txq, bf);
4052
4053 /* Track outstanding buffer count to hardware */
4054 /* aggregates are "one" buffer */
4055 tid->hwq_depth++;
4056
4057 /*
4058 * Break out if ath_tx_form_aggr() indicated
4059 * there can't be any further progress (eg BAW is full.)
4060 * Checking for an empty txq is done above.
4061 *
4062 * XXX locking on txq here?
4063 */
4064 if (txq->axq_aggr_depth >= sc->sc_hwq_limit ||
4065 status == ATH_AGGR_BAW_CLOSED)
4066 break;
4067 }
4068}
4069
4070/*
4071 * Schedule some packets from the given node/TID to the hardware.
4072 */
4073void
4074ath_tx_tid_hw_queue_norm(struct ath_softc *sc, struct ath_node *an,
4075 struct ath_tid *tid)
4076{
4077 struct ath_buf *bf;
4078 struct ath_txq *txq = sc->sc_ac2q[tid->ac];
4079 struct ieee80211_node *ni = &an->an_node;
4080
4081 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: node %p: TID %d: called\n",
4082 __func__, an, tid->tid);
4083
4084 ATH_TXQ_LOCK_ASSERT(txq);
4085
4086 /* Check - is AMPDU pending or running? then print out something */
4087 if (ath_tx_ampdu_pending(sc, an, tid->tid))
4088 device_printf(sc->sc_dev, "%s: tid=%d, ampdu pending?\n",
4089 __func__, tid->tid);
4090 if (ath_tx_ampdu_running(sc, an, tid->tid))
4091 device_printf(sc->sc_dev, "%s: tid=%d, ampdu running?\n",
4092 __func__, tid->tid);
4093
4094 for (;;) {
4095
4096 /*
4097 * If the upper layers have paused the TID, don't
4098 * queue any further packets.
4099 */
4100 if (tid->paused)
4101 break;
4102
4103 bf = TAILQ_FIRST(&tid->axq_q);
4104 if (bf == NULL) {
4105 break;
4106 }
4107
4108 ATH_TXQ_REMOVE(tid, bf, bf_list);
4109
4110 KASSERT(txq == bf->bf_state.bfs_txq, ("txqs not equal!\n"));
4111
4112 /* Sanity check! */
4113 if (tid->tid != bf->bf_state.bfs_tid) {
4114 device_printf(sc->sc_dev, "%s: bfs_tid %d !="
4115 " tid %d\n",
4116 __func__, bf->bf_state.bfs_tid, tid->tid);
4117 }
4118 /* Normal completion handler */
4119 bf->bf_comp = ath_tx_normal_comp;
4120
4121 /* Program descriptors + rate control */
4122 ath_tx_do_ratelookup(sc, bf);
4123 ath_tx_calc_duration(sc, bf);
4124 ath_tx_calc_protection(sc, bf);
4125 ath_tx_set_rtscts(sc, bf);
4126 ath_tx_rate_fill_rcflags(sc, bf);
4127 ath_tx_setds(sc, bf);
4128 ath_tx_chaindesclist(sc, bf);
4129 ath_tx_set_ratectrl(sc, ni, bf);
4130
4131 /* Track outstanding buffer count to hardware */
4132 /* aggregates are "one" buffer */
4133 tid->hwq_depth++;
4134
4135 /* Punt to hardware or software txq */
4136 ath_tx_handoff(sc, txq, bf);
4137 }
4138}
4139
4140/*
4141 * Schedule some packets to the given hardware queue.
4142 *
4143 * This function walks the list of TIDs (ie, ath_node TIDs
4144 * with queued traffic) and attempts to schedule traffic
4145 * from them.
4146 *
4147 * TID scheduling is implemented as a FIFO, with TIDs being
4148 * added to the end of the queue after some frames have been
4149 * scheduled.
4150 */
4151void
4152ath_txq_sched(struct ath_softc *sc, struct ath_txq *txq)
4153{
4154 struct ath_tid *tid, *next, *last;
4155
4156 ATH_TXQ_LOCK_ASSERT(txq);
4157
4158 /*
4159 * Don't schedule if the hardware queue is busy.
4160 * This (hopefully) gives some more time to aggregate
4161 * some packets in the aggregation queue.
4162 */
4163 if (txq->axq_aggr_depth >= sc->sc_hwq_limit) {
4164 sc->sc_aggr_stats.aggr_sched_nopkt++;
4165 return;
4166 }
4167
4168 last = TAILQ_LAST(&txq->axq_tidq, axq_t_s);
4169
4170 TAILQ_FOREACH_SAFE(tid, &txq->axq_tidq, axq_qelem, next) {
4171 /*
4172 * Suspend paused queues here; they'll be resumed
4173 * once the addba completes or times out.
4174 */
4175 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, paused=%d\n",
4176 __func__, tid->tid, tid->paused);
4177 ath_tx_tid_unsched(sc, tid);
4178 if (tid->paused) {
4179 continue;
4180 }
4181 if (ath_tx_ampdu_running(sc, tid->an, tid->tid))
4182 ath_tx_tid_hw_queue_aggr(sc, tid->an, tid);
4183 else
4184 ath_tx_tid_hw_queue_norm(sc, tid->an, tid);
4185
4186 /* Not empty? Re-schedule */
4187 if (tid->axq_depth != 0)
4188 ath_tx_tid_sched(sc, tid);
4189
4190 /* Give the software queue time to aggregate more packets */
4191 if (txq->axq_aggr_depth >= sc->sc_hwq_limit) {
4192 break;
4193 }
4194
4195 /*
4196 * If this was the last entry on the original list, stop.
4197 * Otherwise nodes that have been rescheduled onto the end
4198 * of the TID FIFO list will just keep being rescheduled.
4199 */
4200 if (tid == last)
4201 break;
4202 }
4203}
4204
4205/*
4206 * TX addba handling
4207 */
4208
4209/*
4210 * Return net80211 TID struct pointer, or NULL for none
4211 */
4212struct ieee80211_tx_ampdu *
4213ath_tx_get_tx_tid(struct ath_node *an, int tid)
4214{
4215 struct ieee80211_node *ni = &an->an_node;
4216 struct ieee80211_tx_ampdu *tap;
4217
4218 if (tid == IEEE80211_NONQOS_TID)
4219 return NULL;
4220
4221 tap = &ni->ni_tx_ampdu[tid];
4222 return tap;
4223}
4224
4225/*
4226 * Is AMPDU-TX running?
4227 */
4228static int
4229ath_tx_ampdu_running(struct ath_softc *sc, struct ath_node *an, int tid)
4230{
4231 struct ieee80211_tx_ampdu *tap;
4232
4233 if (tid == IEEE80211_NONQOS_TID)
4234 return 0;
4235
4236 tap = ath_tx_get_tx_tid(an, tid);
4237 if (tap == NULL)
4238 return 0; /* Not valid; default to not running */
4239
4240 return !! (tap->txa_flags & IEEE80211_AGGR_RUNNING);
4241}
4242
4243/*
4244 * Is AMPDU-TX negotiation pending?
4245 */
4246static int
4247ath_tx_ampdu_pending(struct ath_softc *sc, struct ath_node *an, int tid)
4248{
4249 struct ieee80211_tx_ampdu *tap;
4250
4251 if (tid == IEEE80211_NONQOS_TID)
4252 return 0;
4253
4254 tap = ath_tx_get_tx_tid(an, tid);
4255 if (tap == NULL)
4256 return 0; /* Not valid; default to not pending */
4257
4258 return !! (tap->txa_flags & IEEE80211_AGGR_XCHGPEND);
4259}
4260
4261/*
4262 * Is AMPDU-TX pending for the given TID?
4263 */
4264
4265
4266/*
4267 * Method to handle sending an ADDBA request.
4268 *
4269 * We tap this so the relevant flags can be set to pause the TID
4270 * whilst waiting for the response.
4271 *
4272 * XXX there's no timeout handler we can override?
4273 */
4274int
4275ath_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
4276 int dialogtoken, int baparamset, int batimeout)
4277{
4278 struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4279 int tid = tap->txa_tid;
4280 struct ath_node *an = ATH_NODE(ni);
4281 struct ath_tid *atid = &an->an_tid[tid];
4282
4283 /*
4284 * XXX danger Will Robinson!
4285 *
4286 * Although the taskqueue may be running and scheduling some more
4287 * packets, these should all be _before_ the addba sequence number.
4288 * However, net80211 will keep self-assigning sequence numbers
4289 * until addba has been negotiated.
4290 *
4291 * In the past, these packets would be "paused" (which still works
4292 * fine, as they're being scheduled to the driver in the same
4293 * serialised method which is calling the addba request routine)
4294 * and when the aggregation session begins, they'll be dequeued
4295 * as aggregate packets and added to the BAW. However, now there's
4296 * a "bf->bf_state.bfs_dobaw" flag, and this isn't set for these
4297 * packets. Thus they never get included in the BAW tracking and
4298 * this can cause the initial burst of packets after the addba
4299 * negotiation to "hang", as they quickly fall outside the BAW.
4300 *
4301 * The "eventual" solution should be to tag these packets with
4302 * dobaw. Although net80211 has given us a sequence number,
4303 * it'll be "after" the left edge of the BAW and thus it'll
4304 * fall within it.
4305 */
4306 ATH_TXQ_LOCK(sc->sc_ac2q[atid->tid]);
4307 ath_tx_tid_pause(sc, atid);
4308 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->tid]);
4309
4310 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
4311 "%s: called; dialogtoken=%d, baparamset=%d, batimeout=%d\n",
4312 __func__, dialogtoken, baparamset, batimeout);
4313 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
4314 "%s: txa_start=%d, ni_txseqs=%d\n",
4315 __func__, tap->txa_start, ni->ni_txseqs[tid]);
4316
4317 return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
4318 batimeout);
4319}
4320
4321/*
4322 * Handle an ADDBA response.
4323 *
4324 * We unpause the queue so TX'ing can resume.
4325 *
4326 * Any packets TX'ed from this point should be "aggregate" (whether
4327 * aggregate or not) so the BAW is updated.
4328 *
4329 * Note! net80211 keeps self-assigning sequence numbers until
4330 * ampdu is negotiated. This means the initially-negotiated BAW left
4331 * edge won't match the ni->ni_txseq.
4332 *
4333 * So, being very dirty, the BAW left edge is "slid" here to match
4334 * ni->ni_txseq.
4335 *
4336 * What likely SHOULD happen is that all packets subsequent to the
4337 * addba request should be tagged as aggregate and queued as non-aggregate
4338 * frames; thus updating the BAW. For now though, I'll just slide the
4339 * window.
4340 */
4341int
4342ath_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
4343 int status, int code, int batimeout)
4344{
4345 struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4346 int tid = tap->txa_tid;
4347 struct ath_node *an = ATH_NODE(ni);
4348 struct ath_tid *atid = &an->an_tid[tid];
4349 int r;
4350
4351 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
4352 "%s: called; status=%d, code=%d, batimeout=%d\n", __func__,
4353 status, code, batimeout);
4354
4355 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
4356 "%s: txa_start=%d, ni_txseqs=%d\n",
4357 __func__, tap->txa_start, ni->ni_txseqs[tid]);
4358
4359 /*
4360 * Call this first, so the interface flags get updated
4361 * before the TID is unpaused. Otherwise a race condition
4362 * exists where the unpaused TID still doesn't yet have
4363 * IEEE80211_AGGR_RUNNING set.
4364 */
4365 r = sc->sc_addba_response(ni, tap, status, code, batimeout);
4366
4367 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
4368 /*
4369 * XXX dirty!
4370 * Slide the BAW left edge to wherever net80211 left it for us.
4371 * Read above for more information.
4372 */
4373 tap->txa_start = ni->ni_txseqs[tid];
4374 ath_tx_tid_resume(sc, atid);
4375 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
4376 return r;
4377}
4378
4379
4380/*
4381 * Stop ADDBA on a queue.
4382 */
4383void
4384ath_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
4385{
4386 struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4387 int tid = tap->txa_tid;
4388 struct ath_node *an = ATH_NODE(ni);
4389 struct ath_tid *atid = &an->an_tid[tid];
4390
4391 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: called\n", __func__);
4392
4393 /* Pause TID traffic early, so there aren't any races */
4394 ATH_TXQ_LOCK(sc->sc_ac2q[atid->tid]);
4395 ath_tx_tid_pause(sc, atid);
4396 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->tid]);
4397
4398 /* There's no need to hold the TXQ lock here */
4399 sc->sc_addba_stop(ni, tap);
4400
4401 /*
4402 * ath_tx_cleanup will resume the TID if possible, otherwise
4403 * it'll set the cleanup flag, and it'll be unpaused once
4404 * things have been cleaned up.
4405 */
4406 ath_tx_cleanup(sc, an, tid);
4407}
4408
4409/*
4410 * Note: net80211 bar_timeout() doesn't call this function on BAR failure;
4411 * it simply tears down the aggregation session. Ew.
4412 *
4413 * It however will call ieee80211_ampdu_stop() which will call
4414 * ic->ic_addba_stop().
4415 *
4416 * XXX This uses a hard-coded max BAR count value; the whole
4417 * XXX BAR TX success or failure should be better handled!
4418 */
4419void
4420ath_bar_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
4421 int status)
4422{
4423 struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4424 int tid = tap->txa_tid;
4425 struct ath_node *an = ATH_NODE(ni);
4426 struct ath_tid *atid = &an->an_tid[tid];
4427 int attempts = tap->txa_attempts;
4428
4429 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
4430 "%s: called; status=%d\n", __func__, status);
4431
4432 /* Note: This may update the BAW details */
4433 sc->sc_bar_response(ni, tap, status);
4434
4435 /* Unpause the TID */
4436 /*
4437 * XXX if this is attempt=50, the TID will be downgraded
4438 * XXX to a non-aggregate session. So we must unpause the
4439 * XXX TID here or it'll never be done.
4440 */
4441 if (status == 0 || attempts == 50) {
4442 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
4443 ath_tx_tid_bar_unsuspend(sc, atid);
4444 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
4445 }
4446}
4447
4448/*
4449 * This is called whenever the pending ADDBA request times out.
4450 * Unpause and reschedule the TID.
4451 */
4452void
4453ath_addba_response_timeout(struct ieee80211_node *ni,
4454 struct ieee80211_tx_ampdu *tap)
4455{
4456 struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4457 int tid = tap->txa_tid;
4458 struct ath_node *an = ATH_NODE(ni);
4459 struct ath_tid *atid = &an->an_tid[tid];
4460
4461 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
4462 "%s: called; resuming\n", __func__);
4463
4464 /* Note: This updates the aggregate state to (again) pending */
4465 sc->sc_addba_response_timeout(ni, tap);
4466
4467 /* Unpause the TID; which reschedules it */
4468 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
4469 ath_tx_tid_resume(sc, atid);
4470 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
4471}