Deleted Added
full compact
advansys.c (165102) advansys.c (168752)
1/*-
2 * Generic driver for the Advanced Systems Inc. SCSI controllers
3 * Product specific probe and attach routines can be found in:
4 *
5 * i386/isa/adv_isa.c ABP5140, ABP542, ABP5150, ABP842, ABP852
6 * i386/eisa/adv_eisa.c ABP742, ABP752
7 * pci/adv_pci.c ABP920, ABP930, ABP930U, ABP930UA, ABP940, ABP940U,
8 * ABP940UA, ABP950, ABP960, ABP960U, ABP960UA,
9 * ABP970, ABP970U
10 *
11 * Copyright (c) 1996-2000 Justin Gibbs.
12 * All rights reserved.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions, and the following disclaimer,
19 * without modification, immediately at the beginning of the file.
20 * 2. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
27 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 */
35/*-
36 * Ported from:
37 * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
38 *
39 * Copyright (c) 1995-1997 Advanced System Products, Inc.
40 * All Rights Reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that redistributions of source
44 * code retain the above copyright notice and this comment without
45 * modification.
46 */
47
48#include <sys/cdefs.h>
1/*-
2 * Generic driver for the Advanced Systems Inc. SCSI controllers
3 * Product specific probe and attach routines can be found in:
4 *
5 * i386/isa/adv_isa.c ABP5140, ABP542, ABP5150, ABP842, ABP852
6 * i386/eisa/adv_eisa.c ABP742, ABP752
7 * pci/adv_pci.c ABP920, ABP930, ABP930U, ABP930UA, ABP940, ABP940U,
8 * ABP940UA, ABP950, ABP960, ABP960U, ABP960UA,
9 * ABP970, ABP970U
10 *
11 * Copyright (c) 1996-2000 Justin Gibbs.
12 * All rights reserved.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions, and the following disclaimer,
19 * without modification, immediately at the beginning of the file.
20 * 2. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
27 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 */
35/*-
36 * Ported from:
37 * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
38 *
39 * Copyright (c) 1995-1997 Advanced System Products, Inc.
40 * All Rights Reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that redistributions of source
44 * code retain the above copyright notice and this comment without
45 * modification.
46 */
47
48#include <sys/cdefs.h>
49__FBSDID("$FreeBSD: head/sys/dev/advansys/advansys.c 165102 2006-12-11 18:28:31Z mjacob $");
49__FBSDID("$FreeBSD: head/sys/dev/advansys/advansys.c 168752 2007-04-15 08:49:19Z scottl $");
50
51#include <sys/param.h>
52#include <sys/systm.h>
53#include <sys/malloc.h>
54#include <sys/kernel.h>
55#include <sys/lock.h>
56#include <sys/module.h>
57#include <sys/mutex.h>
58
59#include <machine/bus.h>
60#include <machine/resource.h>
61#include <sys/bus.h>
62#include <sys/rman.h>
63
64#include <cam/cam.h>
65#include <cam/cam_ccb.h>
66#include <cam/cam_sim.h>
67#include <cam/cam_xpt_sim.h>
68#include <cam/cam_debug.h>
69
70#include <cam/scsi/scsi_all.h>
71#include <cam/scsi/scsi_message.h>
72
73#include <vm/vm.h>
74#include <vm/vm_param.h>
75#include <vm/pmap.h>
76
77#include <dev/advansys/advansys.h>
78
79static void adv_action(struct cam_sim *sim, union ccb *ccb);
80static void adv_execute_ccb(void *arg, bus_dma_segment_t *dm_segs,
81 int nsegments, int error);
82static void adv_poll(struct cam_sim *sim);
83static void adv_run_doneq(struct adv_softc *adv);
84static struct adv_ccb_info *
85 adv_alloc_ccb_info(struct adv_softc *adv);
86static void adv_destroy_ccb_info(struct adv_softc *adv,
87 struct adv_ccb_info *cinfo);
88static __inline struct adv_ccb_info *
89 adv_get_ccb_info(struct adv_softc *adv);
90static __inline void adv_free_ccb_info(struct adv_softc *adv,
91 struct adv_ccb_info *cinfo);
92static __inline void adv_set_state(struct adv_softc *adv, adv_state state);
93static __inline void adv_clear_state(struct adv_softc *adv, union ccb* ccb);
94static void adv_clear_state_really(struct adv_softc *adv, union ccb* ccb);
95
96static __inline struct adv_ccb_info *
97adv_get_ccb_info(struct adv_softc *adv)
98{
99 struct adv_ccb_info *cinfo;
100 int opri;
101
102 opri = splcam();
103 if ((cinfo = SLIST_FIRST(&adv->free_ccb_infos)) != NULL) {
104 SLIST_REMOVE_HEAD(&adv->free_ccb_infos, links);
105 } else {
106 cinfo = adv_alloc_ccb_info(adv);
107 }
108 splx(opri);
109
110 return (cinfo);
111}
112
113static __inline void
114adv_free_ccb_info(struct adv_softc *adv, struct adv_ccb_info *cinfo)
115{
116 int opri;
117
118 opri = splcam();
119 cinfo->state = ACCB_FREE;
120 SLIST_INSERT_HEAD(&adv->free_ccb_infos, cinfo, links);
121 splx(opri);
122}
123
124static __inline void
125adv_set_state(struct adv_softc *adv, adv_state state)
126{
127 if (adv->state == 0)
128 xpt_freeze_simq(adv->sim, /*count*/1);
129 adv->state |= state;
130}
131
132static __inline void
133adv_clear_state(struct adv_softc *adv, union ccb* ccb)
134{
135 if (adv->state != 0)
136 adv_clear_state_really(adv, ccb);
137}
138
139static void
140adv_clear_state_really(struct adv_softc *adv, union ccb* ccb)
141{
142 if ((adv->state & ADV_BUSDMA_BLOCK_CLEARED) != 0)
143 adv->state &= ~(ADV_BUSDMA_BLOCK_CLEARED|ADV_BUSDMA_BLOCK);
144 if ((adv->state & ADV_RESOURCE_SHORTAGE) != 0) {
145 int openings;
146
147 openings = adv->max_openings - adv->cur_active - ADV_MIN_FREE_Q;
148 if (openings >= adv->openings_needed) {
149 adv->state &= ~ADV_RESOURCE_SHORTAGE;
150 adv->openings_needed = 0;
151 }
152 }
153
154 if ((adv->state & ADV_IN_TIMEOUT) != 0) {
155 struct adv_ccb_info *cinfo;
156
157 cinfo = (struct adv_ccb_info *)ccb->ccb_h.ccb_cinfo_ptr;
158 if ((cinfo->state & ACCB_RECOVERY_CCB) != 0) {
159 struct ccb_hdr *ccb_h;
160
161 /*
162 * We now traverse our list of pending CCBs
163 * and reinstate their timeouts.
164 */
165 ccb_h = LIST_FIRST(&adv->pending_ccbs);
166 while (ccb_h != NULL) {
167 ccb_h->timeout_ch =
168 timeout(adv_timeout, (caddr_t)ccb_h,
169 (ccb_h->timeout * hz) / 1000);
170 ccb_h = LIST_NEXT(ccb_h, sim_links.le);
171 }
172 adv->state &= ~ADV_IN_TIMEOUT;
173 printf("%s: No longer in timeout\n", adv_name(adv));
174 }
175 }
176 if (adv->state == 0)
177 ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
178}
179
180void
181adv_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
182{
183 bus_addr_t* physaddr;
184
185 physaddr = (bus_addr_t*)arg;
186 *physaddr = segs->ds_addr;
187}
188
189char *
190adv_name(struct adv_softc *adv)
191{
192 static char name[10];
193
194 snprintf(name, sizeof(name), "adv%d", adv->unit);
195 return (name);
196}
197
198static void
199adv_action(struct cam_sim *sim, union ccb *ccb)
200{
201 struct adv_softc *adv;
202
203 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("adv_action\n"));
204
205 adv = (struct adv_softc *)cam_sim_softc(sim);
206
207 switch (ccb->ccb_h.func_code) {
208 /* Common cases first */
209 case XPT_SCSI_IO: /* Execute the requested I/O operation */
210 {
211 struct ccb_hdr *ccb_h;
212 struct ccb_scsiio *csio;
213 struct adv_ccb_info *cinfo;
214
215 ccb_h = &ccb->ccb_h;
216 csio = &ccb->csio;
217 cinfo = adv_get_ccb_info(adv);
218 if (cinfo == NULL)
219 panic("XXX Handle CCB info error!!!");
220
221 ccb_h->ccb_cinfo_ptr = cinfo;
222 cinfo->ccb = ccb;
223
224 /* Only use S/G if there is a transfer */
225 if ((ccb_h->flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
226 if ((ccb_h->flags & CAM_SCATTER_VALID) == 0) {
227 /*
228 * We've been given a pointer
229 * to a single buffer
230 */
231 if ((ccb_h->flags & CAM_DATA_PHYS) == 0) {
232 int s;
233 int error;
234
235 s = splsoftvm();
236 error =
237 bus_dmamap_load(adv->buffer_dmat,
238 cinfo->dmamap,
239 csio->data_ptr,
240 csio->dxfer_len,
241 adv_execute_ccb,
242 csio, /*flags*/0);
243 if (error == EINPROGRESS) {
244 /*
245 * So as to maintain ordering,
246 * freeze the controller queue
247 * until our mapping is
248 * returned.
249 */
250 adv_set_state(adv,
251 ADV_BUSDMA_BLOCK);
252 }
253 splx(s);
254 } else {
255 struct bus_dma_segment seg;
256
257 /* Pointer to physical buffer */
258 seg.ds_addr =
259 (bus_addr_t)csio->data_ptr;
260 seg.ds_len = csio->dxfer_len;
261 adv_execute_ccb(csio, &seg, 1, 0);
262 }
263 } else {
264 struct bus_dma_segment *segs;
265 if ((ccb_h->flags & CAM_DATA_PHYS) != 0)
266 panic("adv_setup_data - Physical "
267 "segment pointers unsupported");
268
269 if ((ccb_h->flags & CAM_SG_LIST_PHYS) == 0)
270 panic("adv_setup_data - Virtual "
271 "segment addresses unsupported");
272
273 /* Just use the segments provided */
274 segs = (struct bus_dma_segment *)csio->data_ptr;
275 adv_execute_ccb(ccb, segs, csio->sglist_cnt, 0);
276 }
277 } else {
278 adv_execute_ccb(ccb, NULL, 0, 0);
279 }
280 break;
281 }
282 case XPT_RESET_DEV: /* Bus Device Reset the specified SCSI device */
283 case XPT_TARGET_IO: /* Execute target I/O request */
284 case XPT_ACCEPT_TARGET_IO: /* Accept Host Target Mode CDB */
285 case XPT_CONT_TARGET_IO: /* Continue Host Target I/O Connection*/
286 case XPT_EN_LUN: /* Enable LUN as a target */
287 case XPT_ABORT: /* Abort the specified CCB */
288 /* XXX Implement */
289 ccb->ccb_h.status = CAM_REQ_INVALID;
290 xpt_done(ccb);
291 break;
292#define IS_CURRENT_SETTINGS(c) (c->type == CTS_TYPE_CURRENT_SETTINGS)
293#define IS_USER_SETTINGS(c) (c->type == CTS_TYPE_USER_SETTINGS)
294 case XPT_SET_TRAN_SETTINGS:
295 {
296 struct ccb_trans_settings_scsi *scsi;
297 struct ccb_trans_settings_spi *spi;
298 struct ccb_trans_settings *cts;
299 target_bit_vector targ_mask;
300 struct adv_transinfo *tconf;
301 u_int update_type;
302 int s;
303
304 cts = &ccb->cts;
305 targ_mask = ADV_TID_TO_TARGET_MASK(cts->ccb_h.target_id);
306 update_type = 0;
307
308 /*
309 * The user must specify which type of settings he wishes
310 * to change.
311 */
312 if (IS_CURRENT_SETTINGS(cts) && !IS_USER_SETTINGS(cts)) {
313 tconf = &adv->tinfo[cts->ccb_h.target_id].current;
314 update_type |= ADV_TRANS_GOAL;
315 } else if (IS_USER_SETTINGS(cts) && !IS_CURRENT_SETTINGS(cts)) {
316 tconf = &adv->tinfo[cts->ccb_h.target_id].user;
317 update_type |= ADV_TRANS_USER;
318 } else {
319 ccb->ccb_h.status = CAM_REQ_INVALID;
320 break;
321 }
322
323 s = splcam();
324 scsi = &cts->proto_specific.scsi;
325 spi = &cts->xport_specific.spi;
326 if ((update_type & ADV_TRANS_GOAL) != 0) {
327 if ((spi->valid & CTS_SPI_VALID_DISC) != 0) {
328 if ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0)
329 adv->disc_enable |= targ_mask;
330 else
331 adv->disc_enable &= ~targ_mask;
332 adv_write_lram_8(adv, ADVV_DISC_ENABLE_B,
333 adv->disc_enable);
334 }
335
336 if ((scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
337 if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0)
338 adv->cmd_qng_enabled |= targ_mask;
339 else
340 adv->cmd_qng_enabled &= ~targ_mask;
341 }
342 }
343
344 if ((update_type & ADV_TRANS_USER) != 0) {
345 if ((spi->valid & CTS_SPI_VALID_DISC) != 0) {
346 if ((spi->flags & CTS_SPI_VALID_DISC) != 0)
347 adv->user_disc_enable |= targ_mask;
348 else
349 adv->user_disc_enable &= ~targ_mask;
350 }
351
352 if ((scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
353 if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0)
354 adv->user_cmd_qng_enabled |= targ_mask;
355 else
356 adv->user_cmd_qng_enabled &= ~targ_mask;
357 }
358 }
359
360 /*
361 * If the user specifies either the sync rate, or offset,
362 * but not both, the unspecified parameter defaults to its
363 * current value in transfer negotiations.
364 */
365 if (((spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0)
366 || ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0)) {
367 /*
368 * If the user provided a sync rate but no offset,
369 * use the current offset.
370 */
371 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
372 spi->sync_offset = tconf->offset;
373
374 /*
375 * If the user provided an offset but no sync rate,
376 * use the current sync rate.
377 */
378 if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
379 spi->sync_period = tconf->period;
380
381 adv_period_offset_to_sdtr(adv, &spi->sync_period,
382 &spi->sync_offset,
383 cts->ccb_h.target_id);
384
385 adv_set_syncrate(adv, /*struct cam_path */NULL,
386 cts->ccb_h.target_id, spi->sync_period,
387 spi->sync_offset, update_type);
388 }
389
390 splx(s);
391 ccb->ccb_h.status = CAM_REQ_CMP;
392 xpt_done(ccb);
393 break;
394 }
395 case XPT_GET_TRAN_SETTINGS:
396 /* Get default/user set transfer settings for the target */
397 {
398 struct ccb_trans_settings_scsi *scsi;
399 struct ccb_trans_settings_spi *spi;
400 struct ccb_trans_settings *cts;
401 struct adv_transinfo *tconf;
402 target_bit_vector target_mask;
403 int s;
404
405 cts = &ccb->cts;
406 target_mask = ADV_TID_TO_TARGET_MASK(cts->ccb_h.target_id);
407
408 scsi = &cts->proto_specific.scsi;
409 spi = &cts->xport_specific.spi;
410
411 cts->protocol = PROTO_SCSI;
412 cts->protocol_version = SCSI_REV_2;
413 cts->transport = XPORT_SPI;
414 cts->transport_version = 2;
415
416 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
417 spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
418
419 s = splcam();
420 if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
421 tconf = &adv->tinfo[cts->ccb_h.target_id].current;
422 if ((adv->disc_enable & target_mask) != 0)
423 spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
424 if ((adv->cmd_qng_enabled & target_mask) != 0)
425 scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
426 } else {
427 tconf = &adv->tinfo[cts->ccb_h.target_id].user;
428 if ((adv->user_disc_enable & target_mask) != 0)
429 spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
430 if ((adv->user_cmd_qng_enabled & target_mask) != 0)
431 scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
432 }
433 spi->sync_period = tconf->period;
434 spi->sync_offset = tconf->offset;
435 splx(s);
436 spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
437 spi->valid = CTS_SPI_VALID_SYNC_RATE
438 | CTS_SPI_VALID_SYNC_OFFSET
439 | CTS_SPI_VALID_BUS_WIDTH
440 | CTS_SPI_VALID_DISC;
441 scsi->valid = CTS_SCSI_VALID_TQ;
442 ccb->ccb_h.status = CAM_REQ_CMP;
443 xpt_done(ccb);
444 break;
445 }
446 case XPT_CALC_GEOMETRY:
447 {
448 int extended;
449
450 extended = (adv->control & ADV_CNTL_BIOS_GT_1GB) != 0;
451 cam_calc_geometry(&ccb->ccg, extended);
452 xpt_done(ccb);
453 break;
454 }
455 case XPT_RESET_BUS: /* Reset the specified SCSI bus */
456 {
457 int s;
458
459 s = splcam();
460 adv_stop_execution(adv);
461 adv_reset_bus(adv, /*initiate_reset*/TRUE);
462 adv_start_execution(adv);
463 splx(s);
464
465 ccb->ccb_h.status = CAM_REQ_CMP;
466 xpt_done(ccb);
467 break;
468 }
469 case XPT_TERM_IO: /* Terminate the I/O process */
470 /* XXX Implement */
471 ccb->ccb_h.status = CAM_REQ_INVALID;
472 xpt_done(ccb);
473 break;
474 case XPT_PATH_INQ: /* Path routing inquiry */
475 {
476 struct ccb_pathinq *cpi = &ccb->cpi;
477
478 cpi->version_num = 1; /* XXX??? */
479 cpi->hba_inquiry = PI_SDTR_ABLE|PI_TAG_ABLE;
480 cpi->target_sprt = 0;
481 cpi->hba_misc = 0;
482 cpi->hba_eng_cnt = 0;
483 cpi->max_target = 7;
484 cpi->max_lun = 7;
485 cpi->initiator_id = adv->scsi_id;
486 cpi->bus_id = cam_sim_bus(sim);
487 cpi->base_transfer_speed = 3300;
488 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
489 strncpy(cpi->hba_vid, "Advansys", HBA_IDLEN);
490 strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
491 cpi->unit_number = cam_sim_unit(sim);
492 cpi->ccb_h.status = CAM_REQ_CMP;
493 cpi->transport = XPORT_SPI;
494 cpi->transport_version = 2;
495 cpi->protocol = PROTO_SCSI;
496 cpi->protocol_version = SCSI_REV_2;
497 xpt_done(ccb);
498 break;
499 }
500 default:
501 ccb->ccb_h.status = CAM_REQ_INVALID;
502 xpt_done(ccb);
503 break;
504 }
505}
506
507/*
508 * Currently, the output of bus_dmammap_load suits our needs just
509 * fine, but should it change, we'd need to do something here.
510 */
511#define adv_fixup_dmasegs(adv, dm_segs) (struct adv_sg_entry *)(dm_segs)
512
513static void
514adv_execute_ccb(void *arg, bus_dma_segment_t *dm_segs,
515 int nsegments, int error)
516{
517 struct ccb_scsiio *csio;
518 struct ccb_hdr *ccb_h;
519 struct cam_sim *sim;
520 struct adv_softc *adv;
521 struct adv_ccb_info *cinfo;
522 struct adv_scsi_q scsiq;
523 struct adv_sg_head sghead;
524 int s;
525
526 csio = (struct ccb_scsiio *)arg;
527 ccb_h = &csio->ccb_h;
528 sim = xpt_path_sim(ccb_h->path);
529 adv = (struct adv_softc *)cam_sim_softc(sim);
530 cinfo = (struct adv_ccb_info *)csio->ccb_h.ccb_cinfo_ptr;
531
532 /*
533 * Setup our done routine to release the simq on
534 * the next ccb that completes.
535 */
536 if ((adv->state & ADV_BUSDMA_BLOCK) != 0)
537 adv->state |= ADV_BUSDMA_BLOCK_CLEARED;
538
539 if ((ccb_h->flags & CAM_CDB_POINTER) != 0) {
540 if ((ccb_h->flags & CAM_CDB_PHYS) == 0) {
541 /* XXX Need phystovirt!!!! */
542 /* How about pmap_kenter??? */
543 scsiq.cdbptr = csio->cdb_io.cdb_ptr;
544 } else {
545 scsiq.cdbptr = csio->cdb_io.cdb_ptr;
546 }
547 } else {
548 scsiq.cdbptr = csio->cdb_io.cdb_bytes;
549 }
550 /*
551 * Build up the request
552 */
553 scsiq.q1.status = 0;
554 scsiq.q1.q_no = 0;
555 scsiq.q1.cntl = 0;
556 scsiq.q1.sg_queue_cnt = 0;
557 scsiq.q1.target_id = ADV_TID_TO_TARGET_MASK(ccb_h->target_id);
558 scsiq.q1.target_lun = ccb_h->target_lun;
559 scsiq.q1.sense_len = csio->sense_len;
560 scsiq.q1.extra_bytes = 0;
561 scsiq.q2.ccb_index = cinfo - adv->ccb_infos;
562 scsiq.q2.target_ix = ADV_TIDLUN_TO_IX(ccb_h->target_id,
563 ccb_h->target_lun);
564 scsiq.q2.flag = 0;
565 scsiq.q2.cdb_len = csio->cdb_len;
566 if ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0)
567 scsiq.q2.tag_code = csio->tag_action;
568 else
569 scsiq.q2.tag_code = 0;
570 scsiq.q2.vm_id = 0;
571
572 if (nsegments != 0) {
573 bus_dmasync_op_t op;
574
575 scsiq.q1.data_addr = dm_segs->ds_addr;
576 scsiq.q1.data_cnt = dm_segs->ds_len;
577 if (nsegments > 1) {
578 scsiq.q1.cntl |= QC_SG_HEAD;
579 sghead.entry_cnt
580 = sghead.entry_to_copy
581 = nsegments;
582 sghead.res = 0;
583 sghead.sg_list = adv_fixup_dmasegs(adv, dm_segs);
584 scsiq.sg_head = &sghead;
585 } else {
586 scsiq.sg_head = NULL;
587 }
588 if ((ccb_h->flags & CAM_DIR_MASK) == CAM_DIR_IN)
589 op = BUS_DMASYNC_PREREAD;
590 else
591 op = BUS_DMASYNC_PREWRITE;
592 bus_dmamap_sync(adv->buffer_dmat, cinfo->dmamap, op);
593 } else {
594 scsiq.q1.data_addr = 0;
595 scsiq.q1.data_cnt = 0;
596 scsiq.sg_head = NULL;
597 }
598
599 s = splcam();
600
601 /*
602 * Last time we need to check if this SCB needs to
603 * be aborted.
604 */
605 if (ccb_h->status != CAM_REQ_INPROG) {
606 if (nsegments != 0)
607 bus_dmamap_unload(adv->buffer_dmat, cinfo->dmamap);
608 adv_clear_state(adv, (union ccb *)csio);
609 adv_free_ccb_info(adv, cinfo);
610 xpt_done((union ccb *)csio);
611 splx(s);
612 return;
613 }
614
615 if (adv_execute_scsi_queue(adv, &scsiq, csio->dxfer_len) != 0) {
616 /* Temporary resource shortage */
617 adv_set_state(adv, ADV_RESOURCE_SHORTAGE);
618 if (nsegments != 0)
619 bus_dmamap_unload(adv->buffer_dmat, cinfo->dmamap);
620 csio->ccb_h.status = CAM_REQUEUE_REQ;
621 adv_clear_state(adv, (union ccb *)csio);
622 adv_free_ccb_info(adv, cinfo);
623 xpt_done((union ccb *)csio);
624 splx(s);
625 return;
626 }
627 cinfo->state |= ACCB_ACTIVE;
628 ccb_h->status |= CAM_SIM_QUEUED;
629 LIST_INSERT_HEAD(&adv->pending_ccbs, ccb_h, sim_links.le);
630 /* Schedule our timeout */
631 ccb_h->timeout_ch =
632 timeout(adv_timeout, csio, (ccb_h->timeout * hz)/1000);
633 splx(s);
634}
635
636static struct adv_ccb_info *
637adv_alloc_ccb_info(struct adv_softc *adv)
638{
639 int error;
640 struct adv_ccb_info *cinfo;
641
642 cinfo = &adv->ccb_infos[adv->ccb_infos_allocated];
643 cinfo->state = ACCB_FREE;
644 error = bus_dmamap_create(adv->buffer_dmat, /*flags*/0,
645 &cinfo->dmamap);
646 if (error != 0) {
647 printf("%s: Unable to allocate CCB info "
648 "dmamap - error %d\n", adv_name(adv), error);
649 return (NULL);
650 }
651 adv->ccb_infos_allocated++;
652 return (cinfo);
653}
654
655static void
656adv_destroy_ccb_info(struct adv_softc *adv, struct adv_ccb_info *cinfo)
657{
658 bus_dmamap_destroy(adv->buffer_dmat, cinfo->dmamap);
659}
660
661void
662adv_timeout(void *arg)
663{
664 int s;
665 union ccb *ccb;
666 struct adv_softc *adv;
667 struct adv_ccb_info *cinfo;
668
669 ccb = (union ccb *)arg;
670 adv = (struct adv_softc *)xpt_path_sim(ccb->ccb_h.path)->softc;
671 cinfo = (struct adv_ccb_info *)ccb->ccb_h.ccb_cinfo_ptr;
672
673 xpt_print_path(ccb->ccb_h.path);
674 printf("Timed out\n");
675
676 s = splcam();
677 /* Have we been taken care of already?? */
678 if (cinfo == NULL || cinfo->state == ACCB_FREE) {
679 splx(s);
680 return;
681 }
682
683 adv_stop_execution(adv);
684
685 if ((cinfo->state & ACCB_ABORT_QUEUED) == 0) {
686 struct ccb_hdr *ccb_h;
687
688 /*
689 * In order to simplify the recovery process, we ask the XPT
690 * layer to halt the queue of new transactions and we traverse
691 * the list of pending CCBs and remove their timeouts. This
692 * means that the driver attempts to clear only one error
693 * condition at a time. In general, timeouts that occur
694 * close together are related anyway, so there is no benefit
695 * in attempting to handle errors in parrallel. Timeouts will
696 * be reinstated when the recovery process ends.
697 */
698 adv_set_state(adv, ADV_IN_TIMEOUT);
699
700 /* This CCB is the CCB representing our recovery actions */
701 cinfo->state |= ACCB_RECOVERY_CCB|ACCB_ABORT_QUEUED;
702
703 ccb_h = LIST_FIRST(&adv->pending_ccbs);
704 while (ccb_h != NULL) {
705 untimeout(adv_timeout, ccb_h, ccb_h->timeout_ch);
706 ccb_h = LIST_NEXT(ccb_h, sim_links.le);
707 }
708
709 /* XXX Should send a BDR */
710 /* Attempt an abort as our first tact */
711 xpt_print_path(ccb->ccb_h.path);
712 printf("Attempting abort\n");
713 adv_abort_ccb(adv, ccb->ccb_h.target_id,
714 ccb->ccb_h.target_lun, ccb,
715 CAM_CMD_TIMEOUT, /*queued_only*/FALSE);
716 ccb->ccb_h.timeout_ch =
717 timeout(adv_timeout, ccb, 2 * hz);
718 } else {
719 /* Our attempt to perform an abort failed, go for a reset */
720 xpt_print_path(ccb->ccb_h.path);
721 printf("Resetting bus\n");
722 ccb->ccb_h.status &= ~CAM_STATUS_MASK;
723 ccb->ccb_h.status |= CAM_CMD_TIMEOUT;
724 adv_reset_bus(adv, /*initiate_reset*/TRUE);
725 }
726 adv_start_execution(adv);
727 splx(s);
728}
729
730struct adv_softc *
731adv_alloc(device_t dev, bus_space_tag_t tag, bus_space_handle_t bsh)
732{
733 struct adv_softc *adv = device_get_softc(dev);
734
735 /*
736 * Allocate a storage area for us
737 */
738 LIST_INIT(&adv->pending_ccbs);
739 SLIST_INIT(&adv->free_ccb_infos);
740 adv->dev = dev;
741 adv->unit = device_get_unit(dev);
742 adv->tag = tag;
743 adv->bsh = bsh;
744
745 return(adv);
746}
747
748void
749adv_free(struct adv_softc *adv)
750{
751 switch (adv->init_level) {
752 case 6:
753 {
754 struct adv_ccb_info *cinfo;
755
756 while ((cinfo = SLIST_FIRST(&adv->free_ccb_infos)) != NULL) {
757 SLIST_REMOVE_HEAD(&adv->free_ccb_infos, links);
758 adv_destroy_ccb_info(adv, cinfo);
759 }
760
761 bus_dmamap_unload(adv->sense_dmat, adv->sense_dmamap);
762 }
763 case 5:
764 bus_dmamem_free(adv->sense_dmat, adv->sense_buffers,
765 adv->sense_dmamap);
766 case 4:
767 bus_dma_tag_destroy(adv->sense_dmat);
768 case 3:
769 bus_dma_tag_destroy(adv->buffer_dmat);
770 case 2:
771 bus_dma_tag_destroy(adv->parent_dmat);
772 case 1:
773 if (adv->ccb_infos != NULL)
774 free(adv->ccb_infos, M_DEVBUF);
775 case 0:
776 break;
777 }
778}
779
780int
781adv_init(struct adv_softc *adv)
782{
783 struct adv_eeprom_config eeprom_config;
784 int checksum, i;
785 int max_sync;
786 u_int16_t config_lsw;
787 u_int16_t config_msw;
788
789 adv_lib_init(adv);
790
791 /*
792 * Stop script execution.
793 */
794 adv_write_lram_16(adv, ADV_HALTCODE_W, 0x00FE);
795 adv_stop_execution(adv);
796 if (adv_stop_chip(adv) == 0 || adv_is_chip_halted(adv) == 0) {
797 printf("adv%d: Unable to halt adapter. Initialization"
798 "failed\n", adv->unit);
799 return (1);
800 }
801 ADV_OUTW(adv, ADV_REG_PROG_COUNTER, ADV_MCODE_START_ADDR);
802 if (ADV_INW(adv, ADV_REG_PROG_COUNTER) != ADV_MCODE_START_ADDR) {
803 printf("adv%d: Unable to set program counter. Initialization"
804 "failed\n", adv->unit);
805 return (1);
806 }
807
808 config_msw = ADV_INW(adv, ADV_CONFIG_MSW);
809 config_lsw = ADV_INW(adv, ADV_CONFIG_LSW);
810
811 if ((config_msw & ADV_CFG_MSW_CLR_MASK) != 0) {
812 config_msw &= ~ADV_CFG_MSW_CLR_MASK;
813 /*
814 * XXX The Linux code flags this as an error,
815 * but what should we report to the user???
816 * It seems that clearing the config register
817 * makes this error recoverable.
818 */
819 ADV_OUTW(adv, ADV_CONFIG_MSW, config_msw);
820 }
821
822 /* Suck in the configuration from the EEProm */
823 checksum = adv_get_eeprom_config(adv, &eeprom_config);
824
825 if (ADV_INW(adv, ADV_CHIP_STATUS) & ADV_CSW_AUTO_CONFIG) {
826 /*
827 * XXX The Linux code sets a warning level for this
828 * condition, yet nothing of meaning is printed to
829 * the user. What does this mean???
830 */
831 if (adv->chip_version == 3) {
832 if (eeprom_config.cfg_lsw != config_lsw)
833 eeprom_config.cfg_lsw = config_lsw;
834 if (eeprom_config.cfg_msw != config_msw) {
835 eeprom_config.cfg_msw = config_msw;
836 }
837 }
838 }
839 if (checksum == eeprom_config.chksum) {
840
841 /* Range/Sanity checking */
842 if (eeprom_config.max_total_qng < ADV_MIN_TOTAL_QNG) {
843 eeprom_config.max_total_qng = ADV_MIN_TOTAL_QNG;
844 }
845 if (eeprom_config.max_total_qng > ADV_MAX_TOTAL_QNG) {
846 eeprom_config.max_total_qng = ADV_MAX_TOTAL_QNG;
847 }
848 if (eeprom_config.max_tag_qng > eeprom_config.max_total_qng) {
849 eeprom_config.max_tag_qng = eeprom_config.max_total_qng;
850 }
851 if (eeprom_config.max_tag_qng < ADV_MIN_TAG_Q_PER_DVC) {
852 eeprom_config.max_tag_qng = ADV_MIN_TAG_Q_PER_DVC;
853 }
854 adv->max_openings = eeprom_config.max_total_qng;
855 adv->user_disc_enable = eeprom_config.disc_enable;
856 adv->user_cmd_qng_enabled = eeprom_config.use_cmd_qng;
857 adv->isa_dma_speed = EEPROM_DMA_SPEED(eeprom_config);
858 adv->scsi_id = EEPROM_SCSIID(eeprom_config) & ADV_MAX_TID;
859 EEPROM_SET_SCSIID(eeprom_config, adv->scsi_id);
860 adv->control = eeprom_config.cntl;
861 for (i = 0; i <= ADV_MAX_TID; i++) {
862 u_int8_t sync_data;
863
864 if ((eeprom_config.init_sdtr & (0x1 << i)) == 0)
865 sync_data = 0;
866 else
867 sync_data = eeprom_config.sdtr_data[i];
868 adv_sdtr_to_period_offset(adv,
869 sync_data,
870 &adv->tinfo[i].user.period,
871 &adv->tinfo[i].user.offset,
872 i);
873 }
874 config_lsw = eeprom_config.cfg_lsw;
875 eeprom_config.cfg_msw = config_msw;
876 } else {
877 u_int8_t sync_data;
878
879 printf("adv%d: Warning EEPROM Checksum mismatch. "
880 "Using default device parameters\n", adv->unit);
881
882 /* Set reasonable defaults since we can't read the EEPROM */
883 adv->isa_dma_speed = /*ADV_DEF_ISA_DMA_SPEED*/1;
884 adv->max_openings = ADV_DEF_MAX_TOTAL_QNG;
885 adv->disc_enable = TARGET_BIT_VECTOR_SET;
886 adv->user_disc_enable = TARGET_BIT_VECTOR_SET;
887 adv->cmd_qng_enabled = TARGET_BIT_VECTOR_SET;
888 adv->user_cmd_qng_enabled = TARGET_BIT_VECTOR_SET;
889 adv->scsi_id = 7;
890 adv->control = 0xFFFF;
891
892 if (adv->chip_version == ADV_CHIP_VER_PCI_ULTRA_3050)
893 /* Default to no Ultra to support the 3030 */
894 adv->control &= ~ADV_CNTL_SDTR_ENABLE_ULTRA;
895 sync_data = ADV_DEF_SDTR_OFFSET | (ADV_DEF_SDTR_INDEX << 4);
896 for (i = 0; i <= ADV_MAX_TID; i++) {
897 adv_sdtr_to_period_offset(adv, sync_data,
898 &adv->tinfo[i].user.period,
899 &adv->tinfo[i].user.offset,
900 i);
901 }
902 config_lsw |= ADV_CFG_LSW_SCSI_PARITY_ON;
903 }
904 config_msw &= ~ADV_CFG_MSW_CLR_MASK;
905 config_lsw |= ADV_CFG_LSW_HOST_INT_ON;
906 if ((adv->type & (ADV_PCI|ADV_ULTRA)) == (ADV_PCI|ADV_ULTRA)
907 && (adv->control & ADV_CNTL_SDTR_ENABLE_ULTRA) == 0)
908 /* 25ns or 10MHz */
909 max_sync = 25;
910 else
911 /* Unlimited */
912 max_sync = 0;
913 for (i = 0; i <= ADV_MAX_TID; i++) {
914 if (adv->tinfo[i].user.period < max_sync)
915 adv->tinfo[i].user.period = max_sync;
916 }
917
918 if (adv_test_external_lram(adv) == 0) {
919 if ((adv->type & (ADV_PCI|ADV_ULTRA)) == (ADV_PCI|ADV_ULTRA)) {
920 eeprom_config.max_total_qng =
921 ADV_MAX_PCI_ULTRA_INRAM_TOTAL_QNG;
922 eeprom_config.max_tag_qng =
923 ADV_MAX_PCI_ULTRA_INRAM_TAG_QNG;
924 } else {
925 eeprom_config.cfg_msw |= 0x0800;
926 config_msw |= 0x0800;
927 eeprom_config.max_total_qng =
928 ADV_MAX_PCI_INRAM_TOTAL_QNG;
929 eeprom_config.max_tag_qng = ADV_MAX_INRAM_TAG_QNG;
930 }
931 adv->max_openings = eeprom_config.max_total_qng;
932 }
933 ADV_OUTW(adv, ADV_CONFIG_MSW, config_msw);
934 ADV_OUTW(adv, ADV_CONFIG_LSW, config_lsw);
935#if 0
936 /*
937 * Don't write the eeprom data back for now.
938 * I'd rather not mess up the user's card. We also don't
939 * fully sanitize the eeprom settings above for the write-back
940 * to be 100% correct.
941 */
942 if (adv_set_eeprom_config(adv, &eeprom_config) != 0)
943 printf("%s: WARNING! Failure writing to EEPROM.\n",
944 adv_name(adv));
945#endif
946
947 adv_set_chip_scsiid(adv, adv->scsi_id);
948 if (adv_init_lram_and_mcode(adv))
949 return (1);
950
951 adv->disc_enable = adv->user_disc_enable;
952
953 adv_write_lram_8(adv, ADVV_DISC_ENABLE_B, adv->disc_enable);
954 for (i = 0; i <= ADV_MAX_TID; i++) {
955 /*
956 * Start off in async mode.
957 */
958 adv_set_syncrate(adv, /*struct cam_path */NULL,
959 i, /*period*/0, /*offset*/0,
960 ADV_TRANS_CUR);
961 /*
962 * Enable the use of tagged commands on all targets.
963 * This allows the kernel driver to make up it's own mind
964 * as it sees fit to tag queue instead of having the
965 * firmware try and second guess the tag_code settins.
966 */
967 adv_write_lram_8(adv, ADVV_MAX_DVC_QNG_BEG + i,
968 adv->max_openings);
969 }
970 adv_write_lram_8(adv, ADVV_USE_TAGGED_QNG_B, TARGET_BIT_VECTOR_SET);
971 adv_write_lram_8(adv, ADVV_CAN_TAGGED_QNG_B, TARGET_BIT_VECTOR_SET);
972 printf("adv%d: AdvanSys %s Host Adapter, SCSI ID %d, queue depth %d\n",
973 adv->unit, (adv->type & ADV_ULTRA) && (max_sync == 0)
974 ? "Ultra SCSI" : "SCSI",
975 adv->scsi_id, adv->max_openings);
976 return (0);
977}
978
979void
980adv_intr(void *arg)
981{
982 struct adv_softc *adv;
983 u_int16_t chipstat;
984 u_int16_t saved_ram_addr;
985 u_int8_t ctrl_reg;
986 u_int8_t saved_ctrl_reg;
987 u_int8_t host_flag;
988
989 adv = (struct adv_softc *)arg;
990
991 chipstat = ADV_INW(adv, ADV_CHIP_STATUS);
992
993 /* Is it for us? */
994 if ((chipstat & (ADV_CSW_INT_PENDING|ADV_CSW_SCSI_RESET_LATCH)) == 0)
995 return;
996
997 ctrl_reg = ADV_INB(adv, ADV_CHIP_CTRL);
998 saved_ctrl_reg = ctrl_reg & (~(ADV_CC_SCSI_RESET | ADV_CC_CHIP_RESET |
999 ADV_CC_SINGLE_STEP | ADV_CC_DIAG |
1000 ADV_CC_TEST));
1001
1002 if ((chipstat & (ADV_CSW_SCSI_RESET_LATCH|ADV_CSW_SCSI_RESET_ACTIVE))) {
1003 printf("Detected Bus Reset\n");
1004 adv_reset_bus(adv, /*initiate_reset*/FALSE);
1005 return;
1006 }
1007
1008 if ((chipstat & ADV_CSW_INT_PENDING) != 0) {
1009
1010 saved_ram_addr = ADV_INW(adv, ADV_LRAM_ADDR);
1011 host_flag = adv_read_lram_8(adv, ADVV_HOST_FLAG_B);
1012 adv_write_lram_8(adv, ADVV_HOST_FLAG_B,
1013 host_flag | ADV_HOST_FLAG_IN_ISR);
1014
1015 adv_ack_interrupt(adv);
1016
1017 if ((chipstat & ADV_CSW_HALTED) != 0
1018 && (ctrl_reg & ADV_CC_SINGLE_STEP) != 0) {
1019 adv_isr_chip_halted(adv);
1020 saved_ctrl_reg &= ~ADV_CC_HALT;
1021 } else {
1022 adv_run_doneq(adv);
1023 }
1024 ADV_OUTW(adv, ADV_LRAM_ADDR, saved_ram_addr);
1025#ifdef DIAGNOSTIC
1026 if (ADV_INW(adv, ADV_LRAM_ADDR) != saved_ram_addr)
1027 panic("adv_intr: Unable to set LRAM addr");
1028#endif
1029 adv_write_lram_8(adv, ADVV_HOST_FLAG_B, host_flag);
1030 }
1031
1032 ADV_OUTB(adv, ADV_CHIP_CTRL, saved_ctrl_reg);
1033}
1034
1035static void
1036adv_run_doneq(struct adv_softc *adv)
1037{
1038 struct adv_q_done_info scsiq;
1039 u_int doneq_head;
1040 u_int done_qno;
1041
1042 doneq_head = adv_read_lram_16(adv, ADVV_DONE_Q_TAIL_W) & 0xFF;
1043 done_qno = adv_read_lram_8(adv, ADV_QNO_TO_QADDR(doneq_head)
1044 + ADV_SCSIQ_B_FWD);
1045 while (done_qno != ADV_QLINK_END) {
1046 union ccb* ccb;
1047 struct adv_ccb_info *cinfo;
1048 u_int done_qaddr;
1049 u_int sg_queue_cnt;
1050 int aborted;
1051
1052 done_qaddr = ADV_QNO_TO_QADDR(done_qno);
1053
1054 /* Pull status from this request */
1055 sg_queue_cnt = adv_copy_lram_doneq(adv, done_qaddr, &scsiq,
1056 adv->max_dma_count);
1057
1058 /* Mark it as free */
1059 adv_write_lram_8(adv, done_qaddr + ADV_SCSIQ_B_STATUS,
1060 scsiq.q_status & ~(QS_READY|QS_ABORTED));
1061
1062 /* Process request based on retrieved info */
1063 if ((scsiq.cntl & QC_SG_HEAD) != 0) {
1064 u_int i;
1065
1066 /*
1067 * S/G based request. Free all of the queue
1068 * structures that contained S/G information.
1069 */
1070 for (i = 0; i < sg_queue_cnt; i++) {
1071 done_qno = adv_read_lram_8(adv, done_qaddr
1072 + ADV_SCSIQ_B_FWD);
1073
1074#ifdef DIAGNOSTIC
1075 if (done_qno == ADV_QLINK_END) {
1076 panic("adv_qdone: Corrupted SG "
1077 "list encountered");
1078 }
1079#endif
1080 done_qaddr = ADV_QNO_TO_QADDR(done_qno);
1081
1082 /* Mark SG queue as free */
1083 adv_write_lram_8(adv, done_qaddr
1084 + ADV_SCSIQ_B_STATUS, QS_FREE);
1085 }
1086 } else
1087 sg_queue_cnt = 0;
1088#ifdef DIAGNOSTIC
1089 if (adv->cur_active < (sg_queue_cnt + 1))
1090 panic("adv_qdone: Attempting to free more "
1091 "queues than are active");
1092#endif
1093 adv->cur_active -= sg_queue_cnt + 1;
1094
1095 aborted = (scsiq.q_status & QS_ABORTED) != 0;
1096
1097 if ((scsiq.q_status != QS_DONE)
1098 && (scsiq.q_status & QS_ABORTED) == 0)
1099 panic("adv_qdone: completed scsiq with unknown status");
1100
1101 scsiq.remain_bytes += scsiq.extra_bytes;
1102
1103 if ((scsiq.d3.done_stat == QD_WITH_ERROR) &&
1104 (scsiq.d3.host_stat == QHSTA_M_DATA_OVER_RUN)) {
1105 if ((scsiq.cntl & (QC_DATA_IN|QC_DATA_OUT)) == 0) {
1106 scsiq.d3.done_stat = QD_NO_ERROR;
1107 scsiq.d3.host_stat = QHSTA_NO_ERROR;
1108 }
1109 }
1110
1111 cinfo = &adv->ccb_infos[scsiq.d2.ccb_index];
1112 ccb = cinfo->ccb;
1113 ccb->csio.resid = scsiq.remain_bytes;
1114 adv_done(adv, ccb,
1115 scsiq.d3.done_stat, scsiq.d3.host_stat,
1116 scsiq.d3.scsi_stat, scsiq.q_no);
1117
1118 doneq_head = done_qno;
1119 done_qno = adv_read_lram_8(adv, done_qaddr + ADV_SCSIQ_B_FWD);
1120 }
1121 adv_write_lram_16(adv, ADVV_DONE_Q_TAIL_W, doneq_head);
1122}
1123
1124
1125void
1126adv_done(struct adv_softc *adv, union ccb *ccb, u_int done_stat,
1127 u_int host_stat, u_int scsi_status, u_int q_no)
1128{
1129 struct adv_ccb_info *cinfo;
1130
1131 cinfo = (struct adv_ccb_info *)ccb->ccb_h.ccb_cinfo_ptr;
1132 LIST_REMOVE(&ccb->ccb_h, sim_links.le);
1133 untimeout(adv_timeout, ccb, ccb->ccb_h.timeout_ch);
1134 if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
1135 bus_dmasync_op_t op;
1136
1137 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN)
1138 op = BUS_DMASYNC_POSTREAD;
1139 else
1140 op = BUS_DMASYNC_POSTWRITE;
1141 bus_dmamap_sync(adv->buffer_dmat, cinfo->dmamap, op);
1142 bus_dmamap_unload(adv->buffer_dmat, cinfo->dmamap);
1143 }
1144
1145 switch (done_stat) {
1146 case QD_NO_ERROR:
1147 if (host_stat == QHSTA_NO_ERROR) {
1148 ccb->ccb_h.status = CAM_REQ_CMP;
1149 break;
1150 }
1151 xpt_print_path(ccb->ccb_h.path);
1152 printf("adv_done - queue done without error, "
1153 "but host status non-zero(%x)\n", host_stat);
1154 /*FALLTHROUGH*/
1155 case QD_WITH_ERROR:
1156 switch (host_stat) {
1157 case QHSTA_M_TARGET_STATUS_BUSY:
1158 case QHSTA_M_BAD_QUEUE_FULL_OR_BUSY:
1159 /*
1160 * Assume that if we were a tagged transaction
1161 * the target reported queue full. Otherwise,
1162 * report busy. The firmware really should just
1163 * pass the original status back up to us even
1164 * if it thinks the target was in error for
1165 * returning this status as no other transactions
1166 * from this initiator are in effect, but this
1167 * ignores multi-initiator setups and there is
1168 * evidence that the firmware gets its per-device
1169 * transaction counts screwed up occassionally.
1170 */
1171 ccb->ccb_h.status |= CAM_SCSI_STATUS_ERROR;
1172 if ((ccb->ccb_h.flags & CAM_TAG_ACTION_VALID) != 0
1173 && host_stat != QHSTA_M_TARGET_STATUS_BUSY)
1174 scsi_status = SCSI_STATUS_QUEUE_FULL;
1175 else
1176 scsi_status = SCSI_STATUS_BUSY;
1177 adv_abort_ccb(adv, ccb->ccb_h.target_id,
1178 ccb->ccb_h.target_lun,
1179 /*ccb*/NULL, CAM_REQUEUE_REQ,
1180 /*queued_only*/TRUE);
1181 /*FALLTHROUGH*/
1182 case QHSTA_M_NO_AUTO_REQ_SENSE:
1183 case QHSTA_NO_ERROR:
1184 ccb->csio.scsi_status = scsi_status;
1185 switch (scsi_status) {
1186 case SCSI_STATUS_CHECK_COND:
1187 case SCSI_STATUS_CMD_TERMINATED:
1188 ccb->ccb_h.status |= CAM_AUTOSNS_VALID;
1189 /* Structure copy */
1190 ccb->csio.sense_data =
1191 adv->sense_buffers[q_no - 1];
1192 /* FALLTHROUGH */
1193 case SCSI_STATUS_BUSY:
1194 case SCSI_STATUS_RESERV_CONFLICT:
1195 case SCSI_STATUS_QUEUE_FULL:
1196 case SCSI_STATUS_COND_MET:
1197 case SCSI_STATUS_INTERMED:
1198 case SCSI_STATUS_INTERMED_COND_MET:
1199 ccb->ccb_h.status |= CAM_SCSI_STATUS_ERROR;
1200 break;
1201 case SCSI_STATUS_OK:
1202 ccb->ccb_h.status |= CAM_REQ_CMP;
1203 break;
1204 }
1205 break;
1206 case QHSTA_M_SEL_TIMEOUT:
1207 ccb->ccb_h.status = CAM_SEL_TIMEOUT;
1208 break;
1209 case QHSTA_M_DATA_OVER_RUN:
1210 ccb->ccb_h.status = CAM_DATA_RUN_ERR;
1211 break;
1212 case QHSTA_M_UNEXPECTED_BUS_FREE:
1213 ccb->ccb_h.status = CAM_UNEXP_BUSFREE;
1214 break;
1215 case QHSTA_M_BAD_BUS_PHASE_SEQ:
1216 ccb->ccb_h.status = CAM_SEQUENCE_FAIL;
1217 break;
1218 case QHSTA_M_BAD_CMPL_STATUS_IN:
1219 /* No command complete after a status message */
1220 ccb->ccb_h.status = CAM_SEQUENCE_FAIL;
1221 break;
1222 case QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT:
1223 case QHSTA_M_WTM_TIMEOUT:
1224 case QHSTA_M_HUNG_REQ_SCSI_BUS_RESET:
1225 /* The SCSI bus hung in a phase */
1226 ccb->ccb_h.status = CAM_SEQUENCE_FAIL;
1227 adv_reset_bus(adv, /*initiate_reset*/TRUE);
1228 break;
1229 case QHSTA_M_AUTO_REQ_SENSE_FAIL:
1230 ccb->ccb_h.status = CAM_AUTOSENSE_FAIL;
1231 break;
1232 case QHSTA_D_QDONE_SG_LIST_CORRUPTED:
1233 case QHSTA_D_ASC_DVC_ERROR_CODE_SET:
1234 case QHSTA_D_HOST_ABORT_FAILED:
1235 case QHSTA_D_EXE_SCSI_Q_FAILED:
1236 case QHSTA_D_ASPI_NO_BUF_POOL:
1237 case QHSTA_M_BAD_TAG_CODE:
1238 case QHSTA_D_LRAM_CMP_ERROR:
1239 case QHSTA_M_MICRO_CODE_ERROR_HALT:
1240 default:
1241 panic("%s: Unhandled Host status error %x",
1242 adv_name(adv), host_stat);
1243 /* NOTREACHED */
1244 }
1245 break;
1246
1247 case QD_ABORTED_BY_HOST:
1248 /* Don't clobber any, more explicit, error codes we've set */
1249 if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG)
1250 ccb->ccb_h.status = CAM_REQ_ABORTED;
1251 break;
1252
1253 default:
1254 xpt_print_path(ccb->ccb_h.path);
1255 printf("adv_done - queue done with unknown status %x:%x\n",
1256 done_stat, host_stat);
1257 ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1258 break;
1259 }
1260 adv_clear_state(adv, ccb);
1261 if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP
1262 && (ccb->ccb_h.status & CAM_DEV_QFRZN) == 0) {
1263 xpt_freeze_devq(ccb->ccb_h.path, /*count*/1);
1264 ccb->ccb_h.status |= CAM_DEV_QFRZN;
1265 }
1266 adv_free_ccb_info(adv, cinfo);
1267 /*
1268 * Null this out so that we catch driver bugs that cause a
1269 * ccb to be completed twice.
1270 */
1271 ccb->ccb_h.ccb_cinfo_ptr = NULL;
1272 ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
1273 xpt_done(ccb);
1274}
1275
1276/*
1277 * Function to poll for command completion when
1278 * interrupts are disabled (crash dumps)
1279 */
1280static void
1281adv_poll(struct cam_sim *sim)
1282{
1283 adv_intr(cam_sim_softc(sim));
1284}
1285
1286/*
1287 * Attach all the sub-devices we can find
1288 */
1289int
1290adv_attach(adv)
1291 struct adv_softc *adv;
1292{
1293 struct ccb_setasync csa;
1294 struct cam_devq *devq;
1295 int max_sg;
1296
1297 /*
1298 * Allocate an array of ccb mapping structures. We put the
1299 * index of the ccb_info structure into the queue representing
1300 * a transaction and use it for mapping the queue to the
1301 * upper level SCSI transaction it represents.
1302 */
1303 adv->ccb_infos = malloc(sizeof(*adv->ccb_infos) * adv->max_openings,
1304 M_DEVBUF, M_NOWAIT);
1305
1306 if (adv->ccb_infos == NULL)
1307 return (ENOMEM);
1308
1309 adv->init_level++;
1310
1311 /*
1312 * Create our DMA tags. These tags define the kinds of device
1313 * accessible memory allocations and memory mappings we will
1314 * need to perform during normal operation.
1315 *
1316 * Unless we need to further restrict the allocation, we rely
1317 * on the restrictions of the parent dmat, hence the common
1318 * use of MAXADDR and MAXSIZE.
1319 *
1320 * The ASC boards use chains of "queues" (the transactional
1321 * resources on the board) to represent long S/G lists.
1322 * The first queue represents the command and holds a
1323 * single address and data pair. The queues that follow
1324 * can each hold ADV_SG_LIST_PER_Q entries. Given the
1325 * total number of queues, we can express the largest
1326 * transaction we can map. We reserve a few queues for
1327 * error recovery. Take those into account as well.
1328 *
1329 * There is a way to take an interrupt to download the
1330 * next batch of S/G entries if there are more than 255
1331 * of them (the counter in the queue structure is a u_int8_t).
1332 * We don't use this feature, so limit the S/G list size
1333 * accordingly.
1334 */
1335 max_sg = (adv->max_openings - ADV_MIN_FREE_Q - 1) * ADV_SG_LIST_PER_Q;
1336 if (max_sg > 255)
1337 max_sg = 255;
1338
1339 /* DMA tag for mapping buffers into device visible space. */
1340 if (bus_dma_tag_create(
1341 /* parent */ adv->parent_dmat,
1342 /* alignment */ 1,
1343 /* boundary */ 0,
1344 /* lowaddr */ BUS_SPACE_MAXADDR,
1345 /* highaddr */ BUS_SPACE_MAXADDR,
1346 /* filter */ NULL,
1347 /* filterarg */ NULL,
1348 /* maxsize */ MAXPHYS,
1349 /* nsegments */ max_sg,
1350 /* maxsegsz */ BUS_SPACE_MAXSIZE_32BIT,
1351 /* flags */ BUS_DMA_ALLOCNOW,
1352 /* lockfunc */ busdma_lock_mutex,
1353 /* lockarg */ &Giant,
1354 &adv->buffer_dmat) != 0) {
1355 return (ENXIO);
1356 }
1357 adv->init_level++;
1358
1359 /* DMA tag for our sense buffers */
1360 if (bus_dma_tag_create(
1361 /* parent */ adv->parent_dmat,
1362 /* alignment */ 1,
1363 /* boundary */ 0,
1364 /* lowaddr */ BUS_SPACE_MAXADDR,
1365 /* highaddr */ BUS_SPACE_MAXADDR,
1366 /* filter */ NULL,
1367 /* filterarg */ NULL,
1368 /* maxsize */ sizeof(struct scsi_sense_data) *
1369 adv->max_openings,
1370 /* nsegments */ 1,
1371 /* maxsegsz */ BUS_SPACE_MAXSIZE_32BIT,
1372 /* flags */ 0,
1373 /* lockfunc */ busdma_lock_mutex,
1374 /* lockarg */ &Giant,
1375 &adv->sense_dmat) != 0) {
1376 return (ENXIO);
1377 }
1378
1379 adv->init_level++;
1380
1381 /* Allocation for our sense buffers */
1382 if (bus_dmamem_alloc(adv->sense_dmat, (void **)&adv->sense_buffers,
1383 BUS_DMA_NOWAIT, &adv->sense_dmamap) != 0) {
1384 return (ENOMEM);
1385 }
1386
1387 adv->init_level++;
1388
1389 /* And permanently map them */
1390 bus_dmamap_load(adv->sense_dmat, adv->sense_dmamap,
1391 adv->sense_buffers,
1392 sizeof(struct scsi_sense_data)*adv->max_openings,
1393 adv_map, &adv->sense_physbase, /*flags*/0);
1394
1395 adv->init_level++;
1396
1397 /*
1398 * Fire up the chip
1399 */
1400 if (adv_start_chip(adv) != 1) {
1401 printf("adv%d: Unable to start on board processor. Aborting.\n",
1402 adv->unit);
1403 return (ENXIO);
1404 }
1405
1406 /*
1407 * Create the device queue for our SIM.
1408 */
1409 devq = cam_simq_alloc(adv->max_openings);
1410 if (devq == NULL)
1411 return (ENOMEM);
1412
1413 /*
1414 * Construct our SIM entry.
1415 */
1416 adv->sim = cam_sim_alloc(adv_action, adv_poll, "adv", adv, adv->unit,
50
51#include <sys/param.h>
52#include <sys/systm.h>
53#include <sys/malloc.h>
54#include <sys/kernel.h>
55#include <sys/lock.h>
56#include <sys/module.h>
57#include <sys/mutex.h>
58
59#include <machine/bus.h>
60#include <machine/resource.h>
61#include <sys/bus.h>
62#include <sys/rman.h>
63
64#include <cam/cam.h>
65#include <cam/cam_ccb.h>
66#include <cam/cam_sim.h>
67#include <cam/cam_xpt_sim.h>
68#include <cam/cam_debug.h>
69
70#include <cam/scsi/scsi_all.h>
71#include <cam/scsi/scsi_message.h>
72
73#include <vm/vm.h>
74#include <vm/vm_param.h>
75#include <vm/pmap.h>
76
77#include <dev/advansys/advansys.h>
78
79static void adv_action(struct cam_sim *sim, union ccb *ccb);
80static void adv_execute_ccb(void *arg, bus_dma_segment_t *dm_segs,
81 int nsegments, int error);
82static void adv_poll(struct cam_sim *sim);
83static void adv_run_doneq(struct adv_softc *adv);
84static struct adv_ccb_info *
85 adv_alloc_ccb_info(struct adv_softc *adv);
86static void adv_destroy_ccb_info(struct adv_softc *adv,
87 struct adv_ccb_info *cinfo);
88static __inline struct adv_ccb_info *
89 adv_get_ccb_info(struct adv_softc *adv);
90static __inline void adv_free_ccb_info(struct adv_softc *adv,
91 struct adv_ccb_info *cinfo);
92static __inline void adv_set_state(struct adv_softc *adv, adv_state state);
93static __inline void adv_clear_state(struct adv_softc *adv, union ccb* ccb);
94static void adv_clear_state_really(struct adv_softc *adv, union ccb* ccb);
95
96static __inline struct adv_ccb_info *
97adv_get_ccb_info(struct adv_softc *adv)
98{
99 struct adv_ccb_info *cinfo;
100 int opri;
101
102 opri = splcam();
103 if ((cinfo = SLIST_FIRST(&adv->free_ccb_infos)) != NULL) {
104 SLIST_REMOVE_HEAD(&adv->free_ccb_infos, links);
105 } else {
106 cinfo = adv_alloc_ccb_info(adv);
107 }
108 splx(opri);
109
110 return (cinfo);
111}
112
113static __inline void
114adv_free_ccb_info(struct adv_softc *adv, struct adv_ccb_info *cinfo)
115{
116 int opri;
117
118 opri = splcam();
119 cinfo->state = ACCB_FREE;
120 SLIST_INSERT_HEAD(&adv->free_ccb_infos, cinfo, links);
121 splx(opri);
122}
123
124static __inline void
125adv_set_state(struct adv_softc *adv, adv_state state)
126{
127 if (adv->state == 0)
128 xpt_freeze_simq(adv->sim, /*count*/1);
129 adv->state |= state;
130}
131
132static __inline void
133adv_clear_state(struct adv_softc *adv, union ccb* ccb)
134{
135 if (adv->state != 0)
136 adv_clear_state_really(adv, ccb);
137}
138
139static void
140adv_clear_state_really(struct adv_softc *adv, union ccb* ccb)
141{
142 if ((adv->state & ADV_BUSDMA_BLOCK_CLEARED) != 0)
143 adv->state &= ~(ADV_BUSDMA_BLOCK_CLEARED|ADV_BUSDMA_BLOCK);
144 if ((adv->state & ADV_RESOURCE_SHORTAGE) != 0) {
145 int openings;
146
147 openings = adv->max_openings - adv->cur_active - ADV_MIN_FREE_Q;
148 if (openings >= adv->openings_needed) {
149 adv->state &= ~ADV_RESOURCE_SHORTAGE;
150 adv->openings_needed = 0;
151 }
152 }
153
154 if ((adv->state & ADV_IN_TIMEOUT) != 0) {
155 struct adv_ccb_info *cinfo;
156
157 cinfo = (struct adv_ccb_info *)ccb->ccb_h.ccb_cinfo_ptr;
158 if ((cinfo->state & ACCB_RECOVERY_CCB) != 0) {
159 struct ccb_hdr *ccb_h;
160
161 /*
162 * We now traverse our list of pending CCBs
163 * and reinstate their timeouts.
164 */
165 ccb_h = LIST_FIRST(&adv->pending_ccbs);
166 while (ccb_h != NULL) {
167 ccb_h->timeout_ch =
168 timeout(adv_timeout, (caddr_t)ccb_h,
169 (ccb_h->timeout * hz) / 1000);
170 ccb_h = LIST_NEXT(ccb_h, sim_links.le);
171 }
172 adv->state &= ~ADV_IN_TIMEOUT;
173 printf("%s: No longer in timeout\n", adv_name(adv));
174 }
175 }
176 if (adv->state == 0)
177 ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
178}
179
180void
181adv_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
182{
183 bus_addr_t* physaddr;
184
185 physaddr = (bus_addr_t*)arg;
186 *physaddr = segs->ds_addr;
187}
188
189char *
190adv_name(struct adv_softc *adv)
191{
192 static char name[10];
193
194 snprintf(name, sizeof(name), "adv%d", adv->unit);
195 return (name);
196}
197
198static void
199adv_action(struct cam_sim *sim, union ccb *ccb)
200{
201 struct adv_softc *adv;
202
203 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("adv_action\n"));
204
205 adv = (struct adv_softc *)cam_sim_softc(sim);
206
207 switch (ccb->ccb_h.func_code) {
208 /* Common cases first */
209 case XPT_SCSI_IO: /* Execute the requested I/O operation */
210 {
211 struct ccb_hdr *ccb_h;
212 struct ccb_scsiio *csio;
213 struct adv_ccb_info *cinfo;
214
215 ccb_h = &ccb->ccb_h;
216 csio = &ccb->csio;
217 cinfo = adv_get_ccb_info(adv);
218 if (cinfo == NULL)
219 panic("XXX Handle CCB info error!!!");
220
221 ccb_h->ccb_cinfo_ptr = cinfo;
222 cinfo->ccb = ccb;
223
224 /* Only use S/G if there is a transfer */
225 if ((ccb_h->flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
226 if ((ccb_h->flags & CAM_SCATTER_VALID) == 0) {
227 /*
228 * We've been given a pointer
229 * to a single buffer
230 */
231 if ((ccb_h->flags & CAM_DATA_PHYS) == 0) {
232 int s;
233 int error;
234
235 s = splsoftvm();
236 error =
237 bus_dmamap_load(adv->buffer_dmat,
238 cinfo->dmamap,
239 csio->data_ptr,
240 csio->dxfer_len,
241 adv_execute_ccb,
242 csio, /*flags*/0);
243 if (error == EINPROGRESS) {
244 /*
245 * So as to maintain ordering,
246 * freeze the controller queue
247 * until our mapping is
248 * returned.
249 */
250 adv_set_state(adv,
251 ADV_BUSDMA_BLOCK);
252 }
253 splx(s);
254 } else {
255 struct bus_dma_segment seg;
256
257 /* Pointer to physical buffer */
258 seg.ds_addr =
259 (bus_addr_t)csio->data_ptr;
260 seg.ds_len = csio->dxfer_len;
261 adv_execute_ccb(csio, &seg, 1, 0);
262 }
263 } else {
264 struct bus_dma_segment *segs;
265 if ((ccb_h->flags & CAM_DATA_PHYS) != 0)
266 panic("adv_setup_data - Physical "
267 "segment pointers unsupported");
268
269 if ((ccb_h->flags & CAM_SG_LIST_PHYS) == 0)
270 panic("adv_setup_data - Virtual "
271 "segment addresses unsupported");
272
273 /* Just use the segments provided */
274 segs = (struct bus_dma_segment *)csio->data_ptr;
275 adv_execute_ccb(ccb, segs, csio->sglist_cnt, 0);
276 }
277 } else {
278 adv_execute_ccb(ccb, NULL, 0, 0);
279 }
280 break;
281 }
282 case XPT_RESET_DEV: /* Bus Device Reset the specified SCSI device */
283 case XPT_TARGET_IO: /* Execute target I/O request */
284 case XPT_ACCEPT_TARGET_IO: /* Accept Host Target Mode CDB */
285 case XPT_CONT_TARGET_IO: /* Continue Host Target I/O Connection*/
286 case XPT_EN_LUN: /* Enable LUN as a target */
287 case XPT_ABORT: /* Abort the specified CCB */
288 /* XXX Implement */
289 ccb->ccb_h.status = CAM_REQ_INVALID;
290 xpt_done(ccb);
291 break;
292#define IS_CURRENT_SETTINGS(c) (c->type == CTS_TYPE_CURRENT_SETTINGS)
293#define IS_USER_SETTINGS(c) (c->type == CTS_TYPE_USER_SETTINGS)
294 case XPT_SET_TRAN_SETTINGS:
295 {
296 struct ccb_trans_settings_scsi *scsi;
297 struct ccb_trans_settings_spi *spi;
298 struct ccb_trans_settings *cts;
299 target_bit_vector targ_mask;
300 struct adv_transinfo *tconf;
301 u_int update_type;
302 int s;
303
304 cts = &ccb->cts;
305 targ_mask = ADV_TID_TO_TARGET_MASK(cts->ccb_h.target_id);
306 update_type = 0;
307
308 /*
309 * The user must specify which type of settings he wishes
310 * to change.
311 */
312 if (IS_CURRENT_SETTINGS(cts) && !IS_USER_SETTINGS(cts)) {
313 tconf = &adv->tinfo[cts->ccb_h.target_id].current;
314 update_type |= ADV_TRANS_GOAL;
315 } else if (IS_USER_SETTINGS(cts) && !IS_CURRENT_SETTINGS(cts)) {
316 tconf = &adv->tinfo[cts->ccb_h.target_id].user;
317 update_type |= ADV_TRANS_USER;
318 } else {
319 ccb->ccb_h.status = CAM_REQ_INVALID;
320 break;
321 }
322
323 s = splcam();
324 scsi = &cts->proto_specific.scsi;
325 spi = &cts->xport_specific.spi;
326 if ((update_type & ADV_TRANS_GOAL) != 0) {
327 if ((spi->valid & CTS_SPI_VALID_DISC) != 0) {
328 if ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0)
329 adv->disc_enable |= targ_mask;
330 else
331 adv->disc_enable &= ~targ_mask;
332 adv_write_lram_8(adv, ADVV_DISC_ENABLE_B,
333 adv->disc_enable);
334 }
335
336 if ((scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
337 if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0)
338 adv->cmd_qng_enabled |= targ_mask;
339 else
340 adv->cmd_qng_enabled &= ~targ_mask;
341 }
342 }
343
344 if ((update_type & ADV_TRANS_USER) != 0) {
345 if ((spi->valid & CTS_SPI_VALID_DISC) != 0) {
346 if ((spi->flags & CTS_SPI_VALID_DISC) != 0)
347 adv->user_disc_enable |= targ_mask;
348 else
349 adv->user_disc_enable &= ~targ_mask;
350 }
351
352 if ((scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
353 if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0)
354 adv->user_cmd_qng_enabled |= targ_mask;
355 else
356 adv->user_cmd_qng_enabled &= ~targ_mask;
357 }
358 }
359
360 /*
361 * If the user specifies either the sync rate, or offset,
362 * but not both, the unspecified parameter defaults to its
363 * current value in transfer negotiations.
364 */
365 if (((spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0)
366 || ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0)) {
367 /*
368 * If the user provided a sync rate but no offset,
369 * use the current offset.
370 */
371 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
372 spi->sync_offset = tconf->offset;
373
374 /*
375 * If the user provided an offset but no sync rate,
376 * use the current sync rate.
377 */
378 if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
379 spi->sync_period = tconf->period;
380
381 adv_period_offset_to_sdtr(adv, &spi->sync_period,
382 &spi->sync_offset,
383 cts->ccb_h.target_id);
384
385 adv_set_syncrate(adv, /*struct cam_path */NULL,
386 cts->ccb_h.target_id, spi->sync_period,
387 spi->sync_offset, update_type);
388 }
389
390 splx(s);
391 ccb->ccb_h.status = CAM_REQ_CMP;
392 xpt_done(ccb);
393 break;
394 }
395 case XPT_GET_TRAN_SETTINGS:
396 /* Get default/user set transfer settings for the target */
397 {
398 struct ccb_trans_settings_scsi *scsi;
399 struct ccb_trans_settings_spi *spi;
400 struct ccb_trans_settings *cts;
401 struct adv_transinfo *tconf;
402 target_bit_vector target_mask;
403 int s;
404
405 cts = &ccb->cts;
406 target_mask = ADV_TID_TO_TARGET_MASK(cts->ccb_h.target_id);
407
408 scsi = &cts->proto_specific.scsi;
409 spi = &cts->xport_specific.spi;
410
411 cts->protocol = PROTO_SCSI;
412 cts->protocol_version = SCSI_REV_2;
413 cts->transport = XPORT_SPI;
414 cts->transport_version = 2;
415
416 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
417 spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
418
419 s = splcam();
420 if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
421 tconf = &adv->tinfo[cts->ccb_h.target_id].current;
422 if ((adv->disc_enable & target_mask) != 0)
423 spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
424 if ((adv->cmd_qng_enabled & target_mask) != 0)
425 scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
426 } else {
427 tconf = &adv->tinfo[cts->ccb_h.target_id].user;
428 if ((adv->user_disc_enable & target_mask) != 0)
429 spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
430 if ((adv->user_cmd_qng_enabled & target_mask) != 0)
431 scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
432 }
433 spi->sync_period = tconf->period;
434 spi->sync_offset = tconf->offset;
435 splx(s);
436 spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
437 spi->valid = CTS_SPI_VALID_SYNC_RATE
438 | CTS_SPI_VALID_SYNC_OFFSET
439 | CTS_SPI_VALID_BUS_WIDTH
440 | CTS_SPI_VALID_DISC;
441 scsi->valid = CTS_SCSI_VALID_TQ;
442 ccb->ccb_h.status = CAM_REQ_CMP;
443 xpt_done(ccb);
444 break;
445 }
446 case XPT_CALC_GEOMETRY:
447 {
448 int extended;
449
450 extended = (adv->control & ADV_CNTL_BIOS_GT_1GB) != 0;
451 cam_calc_geometry(&ccb->ccg, extended);
452 xpt_done(ccb);
453 break;
454 }
455 case XPT_RESET_BUS: /* Reset the specified SCSI bus */
456 {
457 int s;
458
459 s = splcam();
460 adv_stop_execution(adv);
461 adv_reset_bus(adv, /*initiate_reset*/TRUE);
462 adv_start_execution(adv);
463 splx(s);
464
465 ccb->ccb_h.status = CAM_REQ_CMP;
466 xpt_done(ccb);
467 break;
468 }
469 case XPT_TERM_IO: /* Terminate the I/O process */
470 /* XXX Implement */
471 ccb->ccb_h.status = CAM_REQ_INVALID;
472 xpt_done(ccb);
473 break;
474 case XPT_PATH_INQ: /* Path routing inquiry */
475 {
476 struct ccb_pathinq *cpi = &ccb->cpi;
477
478 cpi->version_num = 1; /* XXX??? */
479 cpi->hba_inquiry = PI_SDTR_ABLE|PI_TAG_ABLE;
480 cpi->target_sprt = 0;
481 cpi->hba_misc = 0;
482 cpi->hba_eng_cnt = 0;
483 cpi->max_target = 7;
484 cpi->max_lun = 7;
485 cpi->initiator_id = adv->scsi_id;
486 cpi->bus_id = cam_sim_bus(sim);
487 cpi->base_transfer_speed = 3300;
488 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
489 strncpy(cpi->hba_vid, "Advansys", HBA_IDLEN);
490 strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
491 cpi->unit_number = cam_sim_unit(sim);
492 cpi->ccb_h.status = CAM_REQ_CMP;
493 cpi->transport = XPORT_SPI;
494 cpi->transport_version = 2;
495 cpi->protocol = PROTO_SCSI;
496 cpi->protocol_version = SCSI_REV_2;
497 xpt_done(ccb);
498 break;
499 }
500 default:
501 ccb->ccb_h.status = CAM_REQ_INVALID;
502 xpt_done(ccb);
503 break;
504 }
505}
506
507/*
508 * Currently, the output of bus_dmammap_load suits our needs just
509 * fine, but should it change, we'd need to do something here.
510 */
511#define adv_fixup_dmasegs(adv, dm_segs) (struct adv_sg_entry *)(dm_segs)
512
513static void
514adv_execute_ccb(void *arg, bus_dma_segment_t *dm_segs,
515 int nsegments, int error)
516{
517 struct ccb_scsiio *csio;
518 struct ccb_hdr *ccb_h;
519 struct cam_sim *sim;
520 struct adv_softc *adv;
521 struct adv_ccb_info *cinfo;
522 struct adv_scsi_q scsiq;
523 struct adv_sg_head sghead;
524 int s;
525
526 csio = (struct ccb_scsiio *)arg;
527 ccb_h = &csio->ccb_h;
528 sim = xpt_path_sim(ccb_h->path);
529 adv = (struct adv_softc *)cam_sim_softc(sim);
530 cinfo = (struct adv_ccb_info *)csio->ccb_h.ccb_cinfo_ptr;
531
532 /*
533 * Setup our done routine to release the simq on
534 * the next ccb that completes.
535 */
536 if ((adv->state & ADV_BUSDMA_BLOCK) != 0)
537 adv->state |= ADV_BUSDMA_BLOCK_CLEARED;
538
539 if ((ccb_h->flags & CAM_CDB_POINTER) != 0) {
540 if ((ccb_h->flags & CAM_CDB_PHYS) == 0) {
541 /* XXX Need phystovirt!!!! */
542 /* How about pmap_kenter??? */
543 scsiq.cdbptr = csio->cdb_io.cdb_ptr;
544 } else {
545 scsiq.cdbptr = csio->cdb_io.cdb_ptr;
546 }
547 } else {
548 scsiq.cdbptr = csio->cdb_io.cdb_bytes;
549 }
550 /*
551 * Build up the request
552 */
553 scsiq.q1.status = 0;
554 scsiq.q1.q_no = 0;
555 scsiq.q1.cntl = 0;
556 scsiq.q1.sg_queue_cnt = 0;
557 scsiq.q1.target_id = ADV_TID_TO_TARGET_MASK(ccb_h->target_id);
558 scsiq.q1.target_lun = ccb_h->target_lun;
559 scsiq.q1.sense_len = csio->sense_len;
560 scsiq.q1.extra_bytes = 0;
561 scsiq.q2.ccb_index = cinfo - adv->ccb_infos;
562 scsiq.q2.target_ix = ADV_TIDLUN_TO_IX(ccb_h->target_id,
563 ccb_h->target_lun);
564 scsiq.q2.flag = 0;
565 scsiq.q2.cdb_len = csio->cdb_len;
566 if ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0)
567 scsiq.q2.tag_code = csio->tag_action;
568 else
569 scsiq.q2.tag_code = 0;
570 scsiq.q2.vm_id = 0;
571
572 if (nsegments != 0) {
573 bus_dmasync_op_t op;
574
575 scsiq.q1.data_addr = dm_segs->ds_addr;
576 scsiq.q1.data_cnt = dm_segs->ds_len;
577 if (nsegments > 1) {
578 scsiq.q1.cntl |= QC_SG_HEAD;
579 sghead.entry_cnt
580 = sghead.entry_to_copy
581 = nsegments;
582 sghead.res = 0;
583 sghead.sg_list = adv_fixup_dmasegs(adv, dm_segs);
584 scsiq.sg_head = &sghead;
585 } else {
586 scsiq.sg_head = NULL;
587 }
588 if ((ccb_h->flags & CAM_DIR_MASK) == CAM_DIR_IN)
589 op = BUS_DMASYNC_PREREAD;
590 else
591 op = BUS_DMASYNC_PREWRITE;
592 bus_dmamap_sync(adv->buffer_dmat, cinfo->dmamap, op);
593 } else {
594 scsiq.q1.data_addr = 0;
595 scsiq.q1.data_cnt = 0;
596 scsiq.sg_head = NULL;
597 }
598
599 s = splcam();
600
601 /*
602 * Last time we need to check if this SCB needs to
603 * be aborted.
604 */
605 if (ccb_h->status != CAM_REQ_INPROG) {
606 if (nsegments != 0)
607 bus_dmamap_unload(adv->buffer_dmat, cinfo->dmamap);
608 adv_clear_state(adv, (union ccb *)csio);
609 adv_free_ccb_info(adv, cinfo);
610 xpt_done((union ccb *)csio);
611 splx(s);
612 return;
613 }
614
615 if (adv_execute_scsi_queue(adv, &scsiq, csio->dxfer_len) != 0) {
616 /* Temporary resource shortage */
617 adv_set_state(adv, ADV_RESOURCE_SHORTAGE);
618 if (nsegments != 0)
619 bus_dmamap_unload(adv->buffer_dmat, cinfo->dmamap);
620 csio->ccb_h.status = CAM_REQUEUE_REQ;
621 adv_clear_state(adv, (union ccb *)csio);
622 adv_free_ccb_info(adv, cinfo);
623 xpt_done((union ccb *)csio);
624 splx(s);
625 return;
626 }
627 cinfo->state |= ACCB_ACTIVE;
628 ccb_h->status |= CAM_SIM_QUEUED;
629 LIST_INSERT_HEAD(&adv->pending_ccbs, ccb_h, sim_links.le);
630 /* Schedule our timeout */
631 ccb_h->timeout_ch =
632 timeout(adv_timeout, csio, (ccb_h->timeout * hz)/1000);
633 splx(s);
634}
635
636static struct adv_ccb_info *
637adv_alloc_ccb_info(struct adv_softc *adv)
638{
639 int error;
640 struct adv_ccb_info *cinfo;
641
642 cinfo = &adv->ccb_infos[adv->ccb_infos_allocated];
643 cinfo->state = ACCB_FREE;
644 error = bus_dmamap_create(adv->buffer_dmat, /*flags*/0,
645 &cinfo->dmamap);
646 if (error != 0) {
647 printf("%s: Unable to allocate CCB info "
648 "dmamap - error %d\n", adv_name(adv), error);
649 return (NULL);
650 }
651 adv->ccb_infos_allocated++;
652 return (cinfo);
653}
654
655static void
656adv_destroy_ccb_info(struct adv_softc *adv, struct adv_ccb_info *cinfo)
657{
658 bus_dmamap_destroy(adv->buffer_dmat, cinfo->dmamap);
659}
660
661void
662adv_timeout(void *arg)
663{
664 int s;
665 union ccb *ccb;
666 struct adv_softc *adv;
667 struct adv_ccb_info *cinfo;
668
669 ccb = (union ccb *)arg;
670 adv = (struct adv_softc *)xpt_path_sim(ccb->ccb_h.path)->softc;
671 cinfo = (struct adv_ccb_info *)ccb->ccb_h.ccb_cinfo_ptr;
672
673 xpt_print_path(ccb->ccb_h.path);
674 printf("Timed out\n");
675
676 s = splcam();
677 /* Have we been taken care of already?? */
678 if (cinfo == NULL || cinfo->state == ACCB_FREE) {
679 splx(s);
680 return;
681 }
682
683 adv_stop_execution(adv);
684
685 if ((cinfo->state & ACCB_ABORT_QUEUED) == 0) {
686 struct ccb_hdr *ccb_h;
687
688 /*
689 * In order to simplify the recovery process, we ask the XPT
690 * layer to halt the queue of new transactions and we traverse
691 * the list of pending CCBs and remove their timeouts. This
692 * means that the driver attempts to clear only one error
693 * condition at a time. In general, timeouts that occur
694 * close together are related anyway, so there is no benefit
695 * in attempting to handle errors in parrallel. Timeouts will
696 * be reinstated when the recovery process ends.
697 */
698 adv_set_state(adv, ADV_IN_TIMEOUT);
699
700 /* This CCB is the CCB representing our recovery actions */
701 cinfo->state |= ACCB_RECOVERY_CCB|ACCB_ABORT_QUEUED;
702
703 ccb_h = LIST_FIRST(&adv->pending_ccbs);
704 while (ccb_h != NULL) {
705 untimeout(adv_timeout, ccb_h, ccb_h->timeout_ch);
706 ccb_h = LIST_NEXT(ccb_h, sim_links.le);
707 }
708
709 /* XXX Should send a BDR */
710 /* Attempt an abort as our first tact */
711 xpt_print_path(ccb->ccb_h.path);
712 printf("Attempting abort\n");
713 adv_abort_ccb(adv, ccb->ccb_h.target_id,
714 ccb->ccb_h.target_lun, ccb,
715 CAM_CMD_TIMEOUT, /*queued_only*/FALSE);
716 ccb->ccb_h.timeout_ch =
717 timeout(adv_timeout, ccb, 2 * hz);
718 } else {
719 /* Our attempt to perform an abort failed, go for a reset */
720 xpt_print_path(ccb->ccb_h.path);
721 printf("Resetting bus\n");
722 ccb->ccb_h.status &= ~CAM_STATUS_MASK;
723 ccb->ccb_h.status |= CAM_CMD_TIMEOUT;
724 adv_reset_bus(adv, /*initiate_reset*/TRUE);
725 }
726 adv_start_execution(adv);
727 splx(s);
728}
729
730struct adv_softc *
731adv_alloc(device_t dev, bus_space_tag_t tag, bus_space_handle_t bsh)
732{
733 struct adv_softc *adv = device_get_softc(dev);
734
735 /*
736 * Allocate a storage area for us
737 */
738 LIST_INIT(&adv->pending_ccbs);
739 SLIST_INIT(&adv->free_ccb_infos);
740 adv->dev = dev;
741 adv->unit = device_get_unit(dev);
742 adv->tag = tag;
743 adv->bsh = bsh;
744
745 return(adv);
746}
747
748void
749adv_free(struct adv_softc *adv)
750{
751 switch (adv->init_level) {
752 case 6:
753 {
754 struct adv_ccb_info *cinfo;
755
756 while ((cinfo = SLIST_FIRST(&adv->free_ccb_infos)) != NULL) {
757 SLIST_REMOVE_HEAD(&adv->free_ccb_infos, links);
758 adv_destroy_ccb_info(adv, cinfo);
759 }
760
761 bus_dmamap_unload(adv->sense_dmat, adv->sense_dmamap);
762 }
763 case 5:
764 bus_dmamem_free(adv->sense_dmat, adv->sense_buffers,
765 adv->sense_dmamap);
766 case 4:
767 bus_dma_tag_destroy(adv->sense_dmat);
768 case 3:
769 bus_dma_tag_destroy(adv->buffer_dmat);
770 case 2:
771 bus_dma_tag_destroy(adv->parent_dmat);
772 case 1:
773 if (adv->ccb_infos != NULL)
774 free(adv->ccb_infos, M_DEVBUF);
775 case 0:
776 break;
777 }
778}
779
780int
781adv_init(struct adv_softc *adv)
782{
783 struct adv_eeprom_config eeprom_config;
784 int checksum, i;
785 int max_sync;
786 u_int16_t config_lsw;
787 u_int16_t config_msw;
788
789 adv_lib_init(adv);
790
791 /*
792 * Stop script execution.
793 */
794 adv_write_lram_16(adv, ADV_HALTCODE_W, 0x00FE);
795 adv_stop_execution(adv);
796 if (adv_stop_chip(adv) == 0 || adv_is_chip_halted(adv) == 0) {
797 printf("adv%d: Unable to halt adapter. Initialization"
798 "failed\n", adv->unit);
799 return (1);
800 }
801 ADV_OUTW(adv, ADV_REG_PROG_COUNTER, ADV_MCODE_START_ADDR);
802 if (ADV_INW(adv, ADV_REG_PROG_COUNTER) != ADV_MCODE_START_ADDR) {
803 printf("adv%d: Unable to set program counter. Initialization"
804 "failed\n", adv->unit);
805 return (1);
806 }
807
808 config_msw = ADV_INW(adv, ADV_CONFIG_MSW);
809 config_lsw = ADV_INW(adv, ADV_CONFIG_LSW);
810
811 if ((config_msw & ADV_CFG_MSW_CLR_MASK) != 0) {
812 config_msw &= ~ADV_CFG_MSW_CLR_MASK;
813 /*
814 * XXX The Linux code flags this as an error,
815 * but what should we report to the user???
816 * It seems that clearing the config register
817 * makes this error recoverable.
818 */
819 ADV_OUTW(adv, ADV_CONFIG_MSW, config_msw);
820 }
821
822 /* Suck in the configuration from the EEProm */
823 checksum = adv_get_eeprom_config(adv, &eeprom_config);
824
825 if (ADV_INW(adv, ADV_CHIP_STATUS) & ADV_CSW_AUTO_CONFIG) {
826 /*
827 * XXX The Linux code sets a warning level for this
828 * condition, yet nothing of meaning is printed to
829 * the user. What does this mean???
830 */
831 if (adv->chip_version == 3) {
832 if (eeprom_config.cfg_lsw != config_lsw)
833 eeprom_config.cfg_lsw = config_lsw;
834 if (eeprom_config.cfg_msw != config_msw) {
835 eeprom_config.cfg_msw = config_msw;
836 }
837 }
838 }
839 if (checksum == eeprom_config.chksum) {
840
841 /* Range/Sanity checking */
842 if (eeprom_config.max_total_qng < ADV_MIN_TOTAL_QNG) {
843 eeprom_config.max_total_qng = ADV_MIN_TOTAL_QNG;
844 }
845 if (eeprom_config.max_total_qng > ADV_MAX_TOTAL_QNG) {
846 eeprom_config.max_total_qng = ADV_MAX_TOTAL_QNG;
847 }
848 if (eeprom_config.max_tag_qng > eeprom_config.max_total_qng) {
849 eeprom_config.max_tag_qng = eeprom_config.max_total_qng;
850 }
851 if (eeprom_config.max_tag_qng < ADV_MIN_TAG_Q_PER_DVC) {
852 eeprom_config.max_tag_qng = ADV_MIN_TAG_Q_PER_DVC;
853 }
854 adv->max_openings = eeprom_config.max_total_qng;
855 adv->user_disc_enable = eeprom_config.disc_enable;
856 adv->user_cmd_qng_enabled = eeprom_config.use_cmd_qng;
857 adv->isa_dma_speed = EEPROM_DMA_SPEED(eeprom_config);
858 adv->scsi_id = EEPROM_SCSIID(eeprom_config) & ADV_MAX_TID;
859 EEPROM_SET_SCSIID(eeprom_config, adv->scsi_id);
860 adv->control = eeprom_config.cntl;
861 for (i = 0; i <= ADV_MAX_TID; i++) {
862 u_int8_t sync_data;
863
864 if ((eeprom_config.init_sdtr & (0x1 << i)) == 0)
865 sync_data = 0;
866 else
867 sync_data = eeprom_config.sdtr_data[i];
868 adv_sdtr_to_period_offset(adv,
869 sync_data,
870 &adv->tinfo[i].user.period,
871 &adv->tinfo[i].user.offset,
872 i);
873 }
874 config_lsw = eeprom_config.cfg_lsw;
875 eeprom_config.cfg_msw = config_msw;
876 } else {
877 u_int8_t sync_data;
878
879 printf("adv%d: Warning EEPROM Checksum mismatch. "
880 "Using default device parameters\n", adv->unit);
881
882 /* Set reasonable defaults since we can't read the EEPROM */
883 adv->isa_dma_speed = /*ADV_DEF_ISA_DMA_SPEED*/1;
884 adv->max_openings = ADV_DEF_MAX_TOTAL_QNG;
885 adv->disc_enable = TARGET_BIT_VECTOR_SET;
886 adv->user_disc_enable = TARGET_BIT_VECTOR_SET;
887 adv->cmd_qng_enabled = TARGET_BIT_VECTOR_SET;
888 adv->user_cmd_qng_enabled = TARGET_BIT_VECTOR_SET;
889 adv->scsi_id = 7;
890 adv->control = 0xFFFF;
891
892 if (adv->chip_version == ADV_CHIP_VER_PCI_ULTRA_3050)
893 /* Default to no Ultra to support the 3030 */
894 adv->control &= ~ADV_CNTL_SDTR_ENABLE_ULTRA;
895 sync_data = ADV_DEF_SDTR_OFFSET | (ADV_DEF_SDTR_INDEX << 4);
896 for (i = 0; i <= ADV_MAX_TID; i++) {
897 adv_sdtr_to_period_offset(adv, sync_data,
898 &adv->tinfo[i].user.period,
899 &adv->tinfo[i].user.offset,
900 i);
901 }
902 config_lsw |= ADV_CFG_LSW_SCSI_PARITY_ON;
903 }
904 config_msw &= ~ADV_CFG_MSW_CLR_MASK;
905 config_lsw |= ADV_CFG_LSW_HOST_INT_ON;
906 if ((adv->type & (ADV_PCI|ADV_ULTRA)) == (ADV_PCI|ADV_ULTRA)
907 && (adv->control & ADV_CNTL_SDTR_ENABLE_ULTRA) == 0)
908 /* 25ns or 10MHz */
909 max_sync = 25;
910 else
911 /* Unlimited */
912 max_sync = 0;
913 for (i = 0; i <= ADV_MAX_TID; i++) {
914 if (adv->tinfo[i].user.period < max_sync)
915 adv->tinfo[i].user.period = max_sync;
916 }
917
918 if (adv_test_external_lram(adv) == 0) {
919 if ((adv->type & (ADV_PCI|ADV_ULTRA)) == (ADV_PCI|ADV_ULTRA)) {
920 eeprom_config.max_total_qng =
921 ADV_MAX_PCI_ULTRA_INRAM_TOTAL_QNG;
922 eeprom_config.max_tag_qng =
923 ADV_MAX_PCI_ULTRA_INRAM_TAG_QNG;
924 } else {
925 eeprom_config.cfg_msw |= 0x0800;
926 config_msw |= 0x0800;
927 eeprom_config.max_total_qng =
928 ADV_MAX_PCI_INRAM_TOTAL_QNG;
929 eeprom_config.max_tag_qng = ADV_MAX_INRAM_TAG_QNG;
930 }
931 adv->max_openings = eeprom_config.max_total_qng;
932 }
933 ADV_OUTW(adv, ADV_CONFIG_MSW, config_msw);
934 ADV_OUTW(adv, ADV_CONFIG_LSW, config_lsw);
935#if 0
936 /*
937 * Don't write the eeprom data back for now.
938 * I'd rather not mess up the user's card. We also don't
939 * fully sanitize the eeprom settings above for the write-back
940 * to be 100% correct.
941 */
942 if (adv_set_eeprom_config(adv, &eeprom_config) != 0)
943 printf("%s: WARNING! Failure writing to EEPROM.\n",
944 adv_name(adv));
945#endif
946
947 adv_set_chip_scsiid(adv, adv->scsi_id);
948 if (adv_init_lram_and_mcode(adv))
949 return (1);
950
951 adv->disc_enable = adv->user_disc_enable;
952
953 adv_write_lram_8(adv, ADVV_DISC_ENABLE_B, adv->disc_enable);
954 for (i = 0; i <= ADV_MAX_TID; i++) {
955 /*
956 * Start off in async mode.
957 */
958 adv_set_syncrate(adv, /*struct cam_path */NULL,
959 i, /*period*/0, /*offset*/0,
960 ADV_TRANS_CUR);
961 /*
962 * Enable the use of tagged commands on all targets.
963 * This allows the kernel driver to make up it's own mind
964 * as it sees fit to tag queue instead of having the
965 * firmware try and second guess the tag_code settins.
966 */
967 adv_write_lram_8(adv, ADVV_MAX_DVC_QNG_BEG + i,
968 adv->max_openings);
969 }
970 adv_write_lram_8(adv, ADVV_USE_TAGGED_QNG_B, TARGET_BIT_VECTOR_SET);
971 adv_write_lram_8(adv, ADVV_CAN_TAGGED_QNG_B, TARGET_BIT_VECTOR_SET);
972 printf("adv%d: AdvanSys %s Host Adapter, SCSI ID %d, queue depth %d\n",
973 adv->unit, (adv->type & ADV_ULTRA) && (max_sync == 0)
974 ? "Ultra SCSI" : "SCSI",
975 adv->scsi_id, adv->max_openings);
976 return (0);
977}
978
979void
980adv_intr(void *arg)
981{
982 struct adv_softc *adv;
983 u_int16_t chipstat;
984 u_int16_t saved_ram_addr;
985 u_int8_t ctrl_reg;
986 u_int8_t saved_ctrl_reg;
987 u_int8_t host_flag;
988
989 adv = (struct adv_softc *)arg;
990
991 chipstat = ADV_INW(adv, ADV_CHIP_STATUS);
992
993 /* Is it for us? */
994 if ((chipstat & (ADV_CSW_INT_PENDING|ADV_CSW_SCSI_RESET_LATCH)) == 0)
995 return;
996
997 ctrl_reg = ADV_INB(adv, ADV_CHIP_CTRL);
998 saved_ctrl_reg = ctrl_reg & (~(ADV_CC_SCSI_RESET | ADV_CC_CHIP_RESET |
999 ADV_CC_SINGLE_STEP | ADV_CC_DIAG |
1000 ADV_CC_TEST));
1001
1002 if ((chipstat & (ADV_CSW_SCSI_RESET_LATCH|ADV_CSW_SCSI_RESET_ACTIVE))) {
1003 printf("Detected Bus Reset\n");
1004 adv_reset_bus(adv, /*initiate_reset*/FALSE);
1005 return;
1006 }
1007
1008 if ((chipstat & ADV_CSW_INT_PENDING) != 0) {
1009
1010 saved_ram_addr = ADV_INW(adv, ADV_LRAM_ADDR);
1011 host_flag = adv_read_lram_8(adv, ADVV_HOST_FLAG_B);
1012 adv_write_lram_8(adv, ADVV_HOST_FLAG_B,
1013 host_flag | ADV_HOST_FLAG_IN_ISR);
1014
1015 adv_ack_interrupt(adv);
1016
1017 if ((chipstat & ADV_CSW_HALTED) != 0
1018 && (ctrl_reg & ADV_CC_SINGLE_STEP) != 0) {
1019 adv_isr_chip_halted(adv);
1020 saved_ctrl_reg &= ~ADV_CC_HALT;
1021 } else {
1022 adv_run_doneq(adv);
1023 }
1024 ADV_OUTW(adv, ADV_LRAM_ADDR, saved_ram_addr);
1025#ifdef DIAGNOSTIC
1026 if (ADV_INW(adv, ADV_LRAM_ADDR) != saved_ram_addr)
1027 panic("adv_intr: Unable to set LRAM addr");
1028#endif
1029 adv_write_lram_8(adv, ADVV_HOST_FLAG_B, host_flag);
1030 }
1031
1032 ADV_OUTB(adv, ADV_CHIP_CTRL, saved_ctrl_reg);
1033}
1034
1035static void
1036adv_run_doneq(struct adv_softc *adv)
1037{
1038 struct adv_q_done_info scsiq;
1039 u_int doneq_head;
1040 u_int done_qno;
1041
1042 doneq_head = adv_read_lram_16(adv, ADVV_DONE_Q_TAIL_W) & 0xFF;
1043 done_qno = adv_read_lram_8(adv, ADV_QNO_TO_QADDR(doneq_head)
1044 + ADV_SCSIQ_B_FWD);
1045 while (done_qno != ADV_QLINK_END) {
1046 union ccb* ccb;
1047 struct adv_ccb_info *cinfo;
1048 u_int done_qaddr;
1049 u_int sg_queue_cnt;
1050 int aborted;
1051
1052 done_qaddr = ADV_QNO_TO_QADDR(done_qno);
1053
1054 /* Pull status from this request */
1055 sg_queue_cnt = adv_copy_lram_doneq(adv, done_qaddr, &scsiq,
1056 adv->max_dma_count);
1057
1058 /* Mark it as free */
1059 adv_write_lram_8(adv, done_qaddr + ADV_SCSIQ_B_STATUS,
1060 scsiq.q_status & ~(QS_READY|QS_ABORTED));
1061
1062 /* Process request based on retrieved info */
1063 if ((scsiq.cntl & QC_SG_HEAD) != 0) {
1064 u_int i;
1065
1066 /*
1067 * S/G based request. Free all of the queue
1068 * structures that contained S/G information.
1069 */
1070 for (i = 0; i < sg_queue_cnt; i++) {
1071 done_qno = adv_read_lram_8(adv, done_qaddr
1072 + ADV_SCSIQ_B_FWD);
1073
1074#ifdef DIAGNOSTIC
1075 if (done_qno == ADV_QLINK_END) {
1076 panic("adv_qdone: Corrupted SG "
1077 "list encountered");
1078 }
1079#endif
1080 done_qaddr = ADV_QNO_TO_QADDR(done_qno);
1081
1082 /* Mark SG queue as free */
1083 adv_write_lram_8(adv, done_qaddr
1084 + ADV_SCSIQ_B_STATUS, QS_FREE);
1085 }
1086 } else
1087 sg_queue_cnt = 0;
1088#ifdef DIAGNOSTIC
1089 if (adv->cur_active < (sg_queue_cnt + 1))
1090 panic("adv_qdone: Attempting to free more "
1091 "queues than are active");
1092#endif
1093 adv->cur_active -= sg_queue_cnt + 1;
1094
1095 aborted = (scsiq.q_status & QS_ABORTED) != 0;
1096
1097 if ((scsiq.q_status != QS_DONE)
1098 && (scsiq.q_status & QS_ABORTED) == 0)
1099 panic("adv_qdone: completed scsiq with unknown status");
1100
1101 scsiq.remain_bytes += scsiq.extra_bytes;
1102
1103 if ((scsiq.d3.done_stat == QD_WITH_ERROR) &&
1104 (scsiq.d3.host_stat == QHSTA_M_DATA_OVER_RUN)) {
1105 if ((scsiq.cntl & (QC_DATA_IN|QC_DATA_OUT)) == 0) {
1106 scsiq.d3.done_stat = QD_NO_ERROR;
1107 scsiq.d3.host_stat = QHSTA_NO_ERROR;
1108 }
1109 }
1110
1111 cinfo = &adv->ccb_infos[scsiq.d2.ccb_index];
1112 ccb = cinfo->ccb;
1113 ccb->csio.resid = scsiq.remain_bytes;
1114 adv_done(adv, ccb,
1115 scsiq.d3.done_stat, scsiq.d3.host_stat,
1116 scsiq.d3.scsi_stat, scsiq.q_no);
1117
1118 doneq_head = done_qno;
1119 done_qno = adv_read_lram_8(adv, done_qaddr + ADV_SCSIQ_B_FWD);
1120 }
1121 adv_write_lram_16(adv, ADVV_DONE_Q_TAIL_W, doneq_head);
1122}
1123
1124
1125void
1126adv_done(struct adv_softc *adv, union ccb *ccb, u_int done_stat,
1127 u_int host_stat, u_int scsi_status, u_int q_no)
1128{
1129 struct adv_ccb_info *cinfo;
1130
1131 cinfo = (struct adv_ccb_info *)ccb->ccb_h.ccb_cinfo_ptr;
1132 LIST_REMOVE(&ccb->ccb_h, sim_links.le);
1133 untimeout(adv_timeout, ccb, ccb->ccb_h.timeout_ch);
1134 if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
1135 bus_dmasync_op_t op;
1136
1137 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN)
1138 op = BUS_DMASYNC_POSTREAD;
1139 else
1140 op = BUS_DMASYNC_POSTWRITE;
1141 bus_dmamap_sync(adv->buffer_dmat, cinfo->dmamap, op);
1142 bus_dmamap_unload(adv->buffer_dmat, cinfo->dmamap);
1143 }
1144
1145 switch (done_stat) {
1146 case QD_NO_ERROR:
1147 if (host_stat == QHSTA_NO_ERROR) {
1148 ccb->ccb_h.status = CAM_REQ_CMP;
1149 break;
1150 }
1151 xpt_print_path(ccb->ccb_h.path);
1152 printf("adv_done - queue done without error, "
1153 "but host status non-zero(%x)\n", host_stat);
1154 /*FALLTHROUGH*/
1155 case QD_WITH_ERROR:
1156 switch (host_stat) {
1157 case QHSTA_M_TARGET_STATUS_BUSY:
1158 case QHSTA_M_BAD_QUEUE_FULL_OR_BUSY:
1159 /*
1160 * Assume that if we were a tagged transaction
1161 * the target reported queue full. Otherwise,
1162 * report busy. The firmware really should just
1163 * pass the original status back up to us even
1164 * if it thinks the target was in error for
1165 * returning this status as no other transactions
1166 * from this initiator are in effect, but this
1167 * ignores multi-initiator setups and there is
1168 * evidence that the firmware gets its per-device
1169 * transaction counts screwed up occassionally.
1170 */
1171 ccb->ccb_h.status |= CAM_SCSI_STATUS_ERROR;
1172 if ((ccb->ccb_h.flags & CAM_TAG_ACTION_VALID) != 0
1173 && host_stat != QHSTA_M_TARGET_STATUS_BUSY)
1174 scsi_status = SCSI_STATUS_QUEUE_FULL;
1175 else
1176 scsi_status = SCSI_STATUS_BUSY;
1177 adv_abort_ccb(adv, ccb->ccb_h.target_id,
1178 ccb->ccb_h.target_lun,
1179 /*ccb*/NULL, CAM_REQUEUE_REQ,
1180 /*queued_only*/TRUE);
1181 /*FALLTHROUGH*/
1182 case QHSTA_M_NO_AUTO_REQ_SENSE:
1183 case QHSTA_NO_ERROR:
1184 ccb->csio.scsi_status = scsi_status;
1185 switch (scsi_status) {
1186 case SCSI_STATUS_CHECK_COND:
1187 case SCSI_STATUS_CMD_TERMINATED:
1188 ccb->ccb_h.status |= CAM_AUTOSNS_VALID;
1189 /* Structure copy */
1190 ccb->csio.sense_data =
1191 adv->sense_buffers[q_no - 1];
1192 /* FALLTHROUGH */
1193 case SCSI_STATUS_BUSY:
1194 case SCSI_STATUS_RESERV_CONFLICT:
1195 case SCSI_STATUS_QUEUE_FULL:
1196 case SCSI_STATUS_COND_MET:
1197 case SCSI_STATUS_INTERMED:
1198 case SCSI_STATUS_INTERMED_COND_MET:
1199 ccb->ccb_h.status |= CAM_SCSI_STATUS_ERROR;
1200 break;
1201 case SCSI_STATUS_OK:
1202 ccb->ccb_h.status |= CAM_REQ_CMP;
1203 break;
1204 }
1205 break;
1206 case QHSTA_M_SEL_TIMEOUT:
1207 ccb->ccb_h.status = CAM_SEL_TIMEOUT;
1208 break;
1209 case QHSTA_M_DATA_OVER_RUN:
1210 ccb->ccb_h.status = CAM_DATA_RUN_ERR;
1211 break;
1212 case QHSTA_M_UNEXPECTED_BUS_FREE:
1213 ccb->ccb_h.status = CAM_UNEXP_BUSFREE;
1214 break;
1215 case QHSTA_M_BAD_BUS_PHASE_SEQ:
1216 ccb->ccb_h.status = CAM_SEQUENCE_FAIL;
1217 break;
1218 case QHSTA_M_BAD_CMPL_STATUS_IN:
1219 /* No command complete after a status message */
1220 ccb->ccb_h.status = CAM_SEQUENCE_FAIL;
1221 break;
1222 case QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT:
1223 case QHSTA_M_WTM_TIMEOUT:
1224 case QHSTA_M_HUNG_REQ_SCSI_BUS_RESET:
1225 /* The SCSI bus hung in a phase */
1226 ccb->ccb_h.status = CAM_SEQUENCE_FAIL;
1227 adv_reset_bus(adv, /*initiate_reset*/TRUE);
1228 break;
1229 case QHSTA_M_AUTO_REQ_SENSE_FAIL:
1230 ccb->ccb_h.status = CAM_AUTOSENSE_FAIL;
1231 break;
1232 case QHSTA_D_QDONE_SG_LIST_CORRUPTED:
1233 case QHSTA_D_ASC_DVC_ERROR_CODE_SET:
1234 case QHSTA_D_HOST_ABORT_FAILED:
1235 case QHSTA_D_EXE_SCSI_Q_FAILED:
1236 case QHSTA_D_ASPI_NO_BUF_POOL:
1237 case QHSTA_M_BAD_TAG_CODE:
1238 case QHSTA_D_LRAM_CMP_ERROR:
1239 case QHSTA_M_MICRO_CODE_ERROR_HALT:
1240 default:
1241 panic("%s: Unhandled Host status error %x",
1242 adv_name(adv), host_stat);
1243 /* NOTREACHED */
1244 }
1245 break;
1246
1247 case QD_ABORTED_BY_HOST:
1248 /* Don't clobber any, more explicit, error codes we've set */
1249 if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG)
1250 ccb->ccb_h.status = CAM_REQ_ABORTED;
1251 break;
1252
1253 default:
1254 xpt_print_path(ccb->ccb_h.path);
1255 printf("adv_done - queue done with unknown status %x:%x\n",
1256 done_stat, host_stat);
1257 ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1258 break;
1259 }
1260 adv_clear_state(adv, ccb);
1261 if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP
1262 && (ccb->ccb_h.status & CAM_DEV_QFRZN) == 0) {
1263 xpt_freeze_devq(ccb->ccb_h.path, /*count*/1);
1264 ccb->ccb_h.status |= CAM_DEV_QFRZN;
1265 }
1266 adv_free_ccb_info(adv, cinfo);
1267 /*
1268 * Null this out so that we catch driver bugs that cause a
1269 * ccb to be completed twice.
1270 */
1271 ccb->ccb_h.ccb_cinfo_ptr = NULL;
1272 ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
1273 xpt_done(ccb);
1274}
1275
1276/*
1277 * Function to poll for command completion when
1278 * interrupts are disabled (crash dumps)
1279 */
1280static void
1281adv_poll(struct cam_sim *sim)
1282{
1283 adv_intr(cam_sim_softc(sim));
1284}
1285
1286/*
1287 * Attach all the sub-devices we can find
1288 */
1289int
1290adv_attach(adv)
1291 struct adv_softc *adv;
1292{
1293 struct ccb_setasync csa;
1294 struct cam_devq *devq;
1295 int max_sg;
1296
1297 /*
1298 * Allocate an array of ccb mapping structures. We put the
1299 * index of the ccb_info structure into the queue representing
1300 * a transaction and use it for mapping the queue to the
1301 * upper level SCSI transaction it represents.
1302 */
1303 adv->ccb_infos = malloc(sizeof(*adv->ccb_infos) * adv->max_openings,
1304 M_DEVBUF, M_NOWAIT);
1305
1306 if (adv->ccb_infos == NULL)
1307 return (ENOMEM);
1308
1309 adv->init_level++;
1310
1311 /*
1312 * Create our DMA tags. These tags define the kinds of device
1313 * accessible memory allocations and memory mappings we will
1314 * need to perform during normal operation.
1315 *
1316 * Unless we need to further restrict the allocation, we rely
1317 * on the restrictions of the parent dmat, hence the common
1318 * use of MAXADDR and MAXSIZE.
1319 *
1320 * The ASC boards use chains of "queues" (the transactional
1321 * resources on the board) to represent long S/G lists.
1322 * The first queue represents the command and holds a
1323 * single address and data pair. The queues that follow
1324 * can each hold ADV_SG_LIST_PER_Q entries. Given the
1325 * total number of queues, we can express the largest
1326 * transaction we can map. We reserve a few queues for
1327 * error recovery. Take those into account as well.
1328 *
1329 * There is a way to take an interrupt to download the
1330 * next batch of S/G entries if there are more than 255
1331 * of them (the counter in the queue structure is a u_int8_t).
1332 * We don't use this feature, so limit the S/G list size
1333 * accordingly.
1334 */
1335 max_sg = (adv->max_openings - ADV_MIN_FREE_Q - 1) * ADV_SG_LIST_PER_Q;
1336 if (max_sg > 255)
1337 max_sg = 255;
1338
1339 /* DMA tag for mapping buffers into device visible space. */
1340 if (bus_dma_tag_create(
1341 /* parent */ adv->parent_dmat,
1342 /* alignment */ 1,
1343 /* boundary */ 0,
1344 /* lowaddr */ BUS_SPACE_MAXADDR,
1345 /* highaddr */ BUS_SPACE_MAXADDR,
1346 /* filter */ NULL,
1347 /* filterarg */ NULL,
1348 /* maxsize */ MAXPHYS,
1349 /* nsegments */ max_sg,
1350 /* maxsegsz */ BUS_SPACE_MAXSIZE_32BIT,
1351 /* flags */ BUS_DMA_ALLOCNOW,
1352 /* lockfunc */ busdma_lock_mutex,
1353 /* lockarg */ &Giant,
1354 &adv->buffer_dmat) != 0) {
1355 return (ENXIO);
1356 }
1357 adv->init_level++;
1358
1359 /* DMA tag for our sense buffers */
1360 if (bus_dma_tag_create(
1361 /* parent */ adv->parent_dmat,
1362 /* alignment */ 1,
1363 /* boundary */ 0,
1364 /* lowaddr */ BUS_SPACE_MAXADDR,
1365 /* highaddr */ BUS_SPACE_MAXADDR,
1366 /* filter */ NULL,
1367 /* filterarg */ NULL,
1368 /* maxsize */ sizeof(struct scsi_sense_data) *
1369 adv->max_openings,
1370 /* nsegments */ 1,
1371 /* maxsegsz */ BUS_SPACE_MAXSIZE_32BIT,
1372 /* flags */ 0,
1373 /* lockfunc */ busdma_lock_mutex,
1374 /* lockarg */ &Giant,
1375 &adv->sense_dmat) != 0) {
1376 return (ENXIO);
1377 }
1378
1379 adv->init_level++;
1380
1381 /* Allocation for our sense buffers */
1382 if (bus_dmamem_alloc(adv->sense_dmat, (void **)&adv->sense_buffers,
1383 BUS_DMA_NOWAIT, &adv->sense_dmamap) != 0) {
1384 return (ENOMEM);
1385 }
1386
1387 adv->init_level++;
1388
1389 /* And permanently map them */
1390 bus_dmamap_load(adv->sense_dmat, adv->sense_dmamap,
1391 adv->sense_buffers,
1392 sizeof(struct scsi_sense_data)*adv->max_openings,
1393 adv_map, &adv->sense_physbase, /*flags*/0);
1394
1395 adv->init_level++;
1396
1397 /*
1398 * Fire up the chip
1399 */
1400 if (adv_start_chip(adv) != 1) {
1401 printf("adv%d: Unable to start on board processor. Aborting.\n",
1402 adv->unit);
1403 return (ENXIO);
1404 }
1405
1406 /*
1407 * Create the device queue for our SIM.
1408 */
1409 devq = cam_simq_alloc(adv->max_openings);
1410 if (devq == NULL)
1411 return (ENOMEM);
1412
1413 /*
1414 * Construct our SIM entry.
1415 */
1416 adv->sim = cam_sim_alloc(adv_action, adv_poll, "adv", adv, adv->unit,
1417 1, adv->max_openings, devq);
1417 &Giant, 1, adv->max_openings, devq);
1418 if (adv->sim == NULL)
1419 return (ENOMEM);
1420
1421 /*
1422 * Register the bus.
1423 *
1424 * XXX Twin Channel EISA Cards???
1425 */
1426 if (xpt_bus_register(adv->sim, 0) != CAM_SUCCESS) {
1427 cam_sim_free(adv->sim, /*free devq*/TRUE);
1428 return (ENXIO);
1429 }
1430
1431 if (xpt_create_path(&adv->path, /*periph*/NULL, cam_sim_path(adv->sim),
1432 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD)
1433 != CAM_REQ_CMP) {
1434 xpt_bus_deregister(cam_sim_path(adv->sim));
1435 cam_sim_free(adv->sim, /*free devq*/TRUE);
1436 return (ENXIO);
1437 }
1438
1439 xpt_setup_ccb(&csa.ccb_h, adv->path, /*priority*/5);
1440 csa.ccb_h.func_code = XPT_SASYNC_CB;
1441 csa.event_enable = AC_FOUND_DEVICE|AC_LOST_DEVICE;
1442 csa.callback = advasync;
1443 csa.callback_arg = adv;
1444 xpt_action((union ccb *)&csa);
1445 return (0);
1446}
1447MODULE_DEPEND(adv, cam, 1, 1, 1);
1418 if (adv->sim == NULL)
1419 return (ENOMEM);
1420
1421 /*
1422 * Register the bus.
1423 *
1424 * XXX Twin Channel EISA Cards???
1425 */
1426 if (xpt_bus_register(adv->sim, 0) != CAM_SUCCESS) {
1427 cam_sim_free(adv->sim, /*free devq*/TRUE);
1428 return (ENXIO);
1429 }
1430
1431 if (xpt_create_path(&adv->path, /*periph*/NULL, cam_sim_path(adv->sim),
1432 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD)
1433 != CAM_REQ_CMP) {
1434 xpt_bus_deregister(cam_sim_path(adv->sim));
1435 cam_sim_free(adv->sim, /*free devq*/TRUE);
1436 return (ENXIO);
1437 }
1438
1439 xpt_setup_ccb(&csa.ccb_h, adv->path, /*priority*/5);
1440 csa.ccb_h.func_code = XPT_SASYNC_CB;
1441 csa.event_enable = AC_FOUND_DEVICE|AC_LOST_DEVICE;
1442 csa.callback = advasync;
1443 csa.callback_arg = adv;
1444 xpt_action((union ccb *)&csa);
1445 return (0);
1446}
1447MODULE_DEPEND(adv, cam, 1, 1, 1);