Deleted Added
full compact
vdev.c (208370) vdev.c (209962)
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

--- 6 unchanged lines hidden (view full) ---

15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

--- 6 unchanged lines hidden (view full) ---

15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26
27#include <sys/zfs_context.h>
28#include <sys/fm/fs/zfs.h>
29#include <sys/spa.h>
30#include <sys/spa_impl.h>
31#include <sys/dmu.h>

--- 290 unchanged lines hidden (view full) ---

322 vd->vdev_guid = guid;
323 vd->vdev_guid_sum = guid;
324 vd->vdev_ops = ops;
325 vd->vdev_state = VDEV_STATE_CLOSED;
326
327 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
328 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
329 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
24 * Use is subject to license terms.
25 */
26
27#include <sys/zfs_context.h>
28#include <sys/fm/fs/zfs.h>
29#include <sys/spa.h>
30#include <sys/spa_impl.h>
31#include <sys/dmu.h>

--- 290 unchanged lines hidden (view full) ---

322 vd->vdev_guid = guid;
323 vd->vdev_guid_sum = guid;
324 vd->vdev_ops = ops;
325 vd->vdev_state = VDEV_STATE_CLOSED;
326
327 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
328 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
329 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
330 space_map_create(&vd->vdev_dtl_map, 0, -1ULL, 0, &vd->vdev_dtl_lock);
331 space_map_create(&vd->vdev_dtl_scrub, 0, -1ULL, 0, &vd->vdev_dtl_lock);
330 for (int t = 0; t < DTL_TYPES; t++) {
331 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
332 &vd->vdev_dtl_lock);
333 }
332 txg_list_create(&vd->vdev_ms_list,
333 offsetof(struct metaslab, ms_txg_node));
334 txg_list_create(&vd->vdev_dtl_list,
335 offsetof(struct vdev, vdev_dtl_node));
336 vd->vdev_stat.vs_timestamp = gethrtime();
337 vdev_queue_init(vd);
338 vdev_cache_init(vd);
339

--- 99 unchanged lines hidden (view full) ---

439
440 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
441 vd->vdev_path = spa_strdup(vd->vdev_path);
442 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
443 vd->vdev_devid = spa_strdup(vd->vdev_devid);
444 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
445 &vd->vdev_physpath) == 0)
446 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
334 txg_list_create(&vd->vdev_ms_list,
335 offsetof(struct metaslab, ms_txg_node));
336 txg_list_create(&vd->vdev_dtl_list,
337 offsetof(struct vdev, vdev_dtl_node));
338 vd->vdev_stat.vs_timestamp = gethrtime();
339 vdev_queue_init(vd);
340 vdev_cache_init(vd);
341

--- 99 unchanged lines hidden (view full) ---

441
442 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
443 vd->vdev_path = spa_strdup(vd->vdev_path);
444 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
445 vd->vdev_devid = spa_strdup(vd->vdev_devid);
446 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
447 &vd->vdev_physpath) == 0)
448 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
449 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
450 vd->vdev_fru = spa_strdup(vd->vdev_fru);
447
448 /*
449 * Set the whole_disk property. If it's not specified, leave the value
450 * as -1.
451 */
452 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
453 &vd->vdev_wholedisk) != 0)
454 vd->vdev_wholedisk = -1ULL;
455
456 /*
457 * Look for the 'not present' flag. This will only be set if the device
458 * was not present at the time of import.
459 */
451
452 /*
453 * Set the whole_disk property. If it's not specified, leave the value
454 * as -1.
455 */
456 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
457 &vd->vdev_wholedisk) != 0)
458 vd->vdev_wholedisk = -1ULL;
459
460 /*
461 * Look for the 'not present' flag. This will only be set if the device
462 * was not present at the time of import.
463 */
460 if (!spa->spa_import_faulted)
461 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
462 &vd->vdev_not_present);
464 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
465 &vd->vdev_not_present);
463
464 /*
465 * Get the alignment requirement.
466 */
467 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
468
469 /*
470 * If we're a top-level vdev, try to load the allocation parameters.

--- 9 unchanged lines hidden (view full) ---

480
481 /*
482 * If we're a leaf vdev, try to load the DTL object and other state.
483 */
484 if (vd->vdev_ops->vdev_op_leaf &&
485 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE)) {
486 if (alloctype == VDEV_ALLOC_LOAD) {
487 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
466
467 /*
468 * Get the alignment requirement.
469 */
470 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
471
472 /*
473 * If we're a top-level vdev, try to load the allocation parameters.

--- 9 unchanged lines hidden (view full) ---

483
484 /*
485 * If we're a leaf vdev, try to load the DTL object and other state.
486 */
487 if (vd->vdev_ops->vdev_op_leaf &&
488 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE)) {
489 if (alloctype == VDEV_ALLOC_LOAD) {
490 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
488 &vd->vdev_dtl.smo_object);
491 &vd->vdev_dtl_smo.smo_object);
489 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
490 &vd->vdev_unspare);
491 }
492 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
493 &vd->vdev_offline);
494
495 /*
496 * When importing a pool, we want to ignore the persistent fault

--- 67 unchanged lines hidden (view full) ---

564 vdev_cache_fini(vd);
565
566 if (vd->vdev_path)
567 spa_strfree(vd->vdev_path);
568 if (vd->vdev_devid)
569 spa_strfree(vd->vdev_devid);
570 if (vd->vdev_physpath)
571 spa_strfree(vd->vdev_physpath);
492 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
493 &vd->vdev_unspare);
494 }
495 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
496 &vd->vdev_offline);
497
498 /*
499 * When importing a pool, we want to ignore the persistent fault

--- 67 unchanged lines hidden (view full) ---

567 vdev_cache_fini(vd);
568
569 if (vd->vdev_path)
570 spa_strfree(vd->vdev_path);
571 if (vd->vdev_devid)
572 spa_strfree(vd->vdev_devid);
573 if (vd->vdev_physpath)
574 spa_strfree(vd->vdev_physpath);
575 if (vd->vdev_fru)
576 spa_strfree(vd->vdev_fru);
572
573 if (vd->vdev_isspare)
574 spa_spare_remove(vd);
575 if (vd->vdev_isl2cache)
576 spa_l2cache_remove(vd);
577
578 txg_list_destroy(&vd->vdev_ms_list);
579 txg_list_destroy(&vd->vdev_dtl_list);
577
578 if (vd->vdev_isspare)
579 spa_spare_remove(vd);
580 if (vd->vdev_isl2cache)
581 spa_l2cache_remove(vd);
582
583 txg_list_destroy(&vd->vdev_ms_list);
584 txg_list_destroy(&vd->vdev_dtl_list);
585
580 mutex_enter(&vd->vdev_dtl_lock);
586 mutex_enter(&vd->vdev_dtl_lock);
581 space_map_unload(&vd->vdev_dtl_map);
582 space_map_destroy(&vd->vdev_dtl_map);
583 space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
584 space_map_destroy(&vd->vdev_dtl_scrub);
587 for (int t = 0; t < DTL_TYPES; t++) {
588 space_map_unload(&vd->vdev_dtl[t]);
589 space_map_destroy(&vd->vdev_dtl[t]);
590 }
585 mutex_exit(&vd->vdev_dtl_lock);
591 mutex_exit(&vd->vdev_dtl_lock);
592
586 mutex_destroy(&vd->vdev_dtl_lock);
587 mutex_destroy(&vd->vdev_stat_lock);
588 mutex_destroy(&vd->vdev_probe_lock);
589
590 if (vd == spa->spa_root_vdev)
591 spa->spa_root_vdev = NULL;
592
593 kmem_free(vd, sizeof (vdev_t));

--- 121 unchanged lines hidden (view full) ---

715 ASSERT(mvd->vdev_children == 1);
716 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
717 mvd->vdev_ops == &vdev_replacing_ops ||
718 mvd->vdev_ops == &vdev_spare_ops);
719 cvd->vdev_ashift = mvd->vdev_ashift;
720
721 vdev_remove_child(mvd, cvd);
722 vdev_remove_child(pvd, mvd);
593 mutex_destroy(&vd->vdev_dtl_lock);
594 mutex_destroy(&vd->vdev_stat_lock);
595 mutex_destroy(&vd->vdev_probe_lock);
596
597 if (vd == spa->spa_root_vdev)
598 spa->spa_root_vdev = NULL;
599
600 kmem_free(vd, sizeof (vdev_t));

--- 121 unchanged lines hidden (view full) ---

722 ASSERT(mvd->vdev_children == 1);
723 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
724 mvd->vdev_ops == &vdev_replacing_ops ||
725 mvd->vdev_ops == &vdev_spare_ops);
726 cvd->vdev_ashift = mvd->vdev_ashift;
727
728 vdev_remove_child(mvd, cvd);
729 vdev_remove_child(pvd, mvd);
730
723 /*
724 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
725 * Otherwise, we could have detached an offline device, and when we
726 * go to import the pool we'll think we have two top-level vdevs,
727 * instead of a different version of the same top-level vdev.
728 */
731 /*
732 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
733 * Otherwise, we could have detached an offline device, and when we
734 * go to import the pool we'll think we have two top-level vdevs,
735 * instead of a different version of the same top-level vdev.
736 */
729 if (mvd->vdev_top == mvd)
730 cvd->vdev_guid = cvd->vdev_guid_sum = mvd->vdev_guid;
737 if (mvd->vdev_top == mvd) {
738 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
739 cvd->vdev_guid += guid_delta;
740 cvd->vdev_guid_sum += guid_delta;
741 }
731 cvd->vdev_id = mvd->vdev_id;
732 vdev_add_child(pvd, cvd);
733 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
734
735 if (cvd == cvd->vdev_top)
736 vdev_top_transfer(mvd, cvd);
737
738 ASSERT(mvd->vdev_children == 0);

--- 35 unchanged lines hidden (view full) ---

774 vd->vdev_ms = mspp;
775 vd->vdev_ms_count = newc;
776
777 for (m = oldc; m < newc; m++) {
778 space_map_obj_t smo = { 0, 0, 0 };
779 if (txg == 0) {
780 uint64_t object = 0;
781 error = dmu_read(mos, vd->vdev_ms_array,
742 cvd->vdev_id = mvd->vdev_id;
743 vdev_add_child(pvd, cvd);
744 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
745
746 if (cvd == cvd->vdev_top)
747 vdev_top_transfer(mvd, cvd);
748
749 ASSERT(mvd->vdev_children == 0);

--- 35 unchanged lines hidden (view full) ---

785 vd->vdev_ms = mspp;
786 vd->vdev_ms_count = newc;
787
788 for (m = oldc; m < newc; m++) {
789 space_map_obj_t smo = { 0, 0, 0 };
790 if (txg == 0) {
791 uint64_t object = 0;
792 error = dmu_read(mos, vd->vdev_ms_array,
782 m * sizeof (uint64_t), sizeof (uint64_t), &object);
793 m * sizeof (uint64_t), sizeof (uint64_t), &object,
794 DMU_READ_PREFETCH);
783 if (error)
784 return (error);
785 if (object != 0) {
786 dmu_buf_t *db;
787 error = dmu_bonus_hold(mos, object, FTAG, &db);
788 if (error)
789 return (error);
790 ASSERT3U(db->db_size, >=, sizeof (smo));

--- 23 unchanged lines hidden (view full) ---

814 vd->vdev_ms = NULL;
815 }
816}
817
818typedef struct vdev_probe_stats {
819 boolean_t vps_readable;
820 boolean_t vps_writeable;
821 int vps_flags;
795 if (error)
796 return (error);
797 if (object != 0) {
798 dmu_buf_t *db;
799 error = dmu_bonus_hold(mos, object, FTAG, &db);
800 if (error)
801 return (error);
802 ASSERT3U(db->db_size, >=, sizeof (smo));

--- 23 unchanged lines hidden (view full) ---

826 vd->vdev_ms = NULL;
827 }
828}
829
830typedef struct vdev_probe_stats {
831 boolean_t vps_readable;
832 boolean_t vps_writeable;
833 int vps_flags;
822 zio_t *vps_root;
823 vdev_t *vps_vd;
824} vdev_probe_stats_t;
825
826static void
827vdev_probe_done(zio_t *zio)
828{
834} vdev_probe_stats_t;
835
836static void
837vdev_probe_done(zio_t *zio)
838{
839 spa_t *spa = zio->io_spa;
840 vdev_t *vd = zio->io_vd;
829 vdev_probe_stats_t *vps = zio->io_private;
841 vdev_probe_stats_t *vps = zio->io_private;
830 vdev_t *vd = vps->vps_vd;
831
842
843 ASSERT(vd->vdev_probe_zio != NULL);
844
832 if (zio->io_type == ZIO_TYPE_READ) {
845 if (zio->io_type == ZIO_TYPE_READ) {
833 ASSERT(zio->io_vd == vd);
834 if (zio->io_error == 0)
835 vps->vps_readable = 1;
846 if (zio->io_error == 0)
847 vps->vps_readable = 1;
836 if (zio->io_error == 0 && (spa_mode & FWRITE)) {
837 zio_nowait(zio_write_phys(vps->vps_root, vd,
848 if (zio->io_error == 0 && spa_writeable(spa)) {
849 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
838 zio->io_offset, zio->io_size, zio->io_data,
839 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
840 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
841 } else {
842 zio_buf_free(zio->io_data, zio->io_size);
843 }
844 } else if (zio->io_type == ZIO_TYPE_WRITE) {
850 zio->io_offset, zio->io_size, zio->io_data,
851 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
852 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
853 } else {
854 zio_buf_free(zio->io_data, zio->io_size);
855 }
856 } else if (zio->io_type == ZIO_TYPE_WRITE) {
845 ASSERT(zio->io_vd == vd);
846 if (zio->io_error == 0)
847 vps->vps_writeable = 1;
848 zio_buf_free(zio->io_data, zio->io_size);
849 } else if (zio->io_type == ZIO_TYPE_NULL) {
857 if (zio->io_error == 0)
858 vps->vps_writeable = 1;
859 zio_buf_free(zio->io_data, zio->io_size);
860 } else if (zio->io_type == ZIO_TYPE_NULL) {
850 ASSERT(zio->io_vd == NULL);
851 ASSERT(zio == vps->vps_root);
861 zio_t *pio;
852
853 vd->vdev_cant_read |= !vps->vps_readable;
854 vd->vdev_cant_write |= !vps->vps_writeable;
855
856 if (vdev_readable(vd) &&
862
863 vd->vdev_cant_read |= !vps->vps_readable;
864 vd->vdev_cant_write |= !vps->vps_writeable;
865
866 if (vdev_readable(vd) &&
857 (vdev_writeable(vd) || !(spa_mode & FWRITE))) {
867 (vdev_writeable(vd) || !spa_writeable(spa))) {
858 zio->io_error = 0;
859 } else {
860 ASSERT(zio->io_error != 0);
861 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
868 zio->io_error = 0;
869 } else {
870 ASSERT(zio->io_error != 0);
871 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
862 zio->io_spa, vd, NULL, 0, 0);
872 spa, vd, NULL, 0, 0);
863 zio->io_error = ENXIO;
864 }
873 zio->io_error = ENXIO;
874 }
875
876 mutex_enter(&vd->vdev_probe_lock);
877 ASSERT(vd->vdev_probe_zio == zio);
878 vd->vdev_probe_zio = NULL;
879 mutex_exit(&vd->vdev_probe_lock);
880
881 while ((pio = zio_walk_parents(zio)) != NULL)
882 if (!vdev_accessible(vd, pio))
883 pio->io_error = ENXIO;
884
865 kmem_free(vps, sizeof (*vps));
866 }
867}
868
869/*
870 * Determine whether this device is accessible by reading and writing
871 * to several known locations: the pad regions of each vdev label
872 * but the first (which we leave alone in case it contains a VTOC).
873 */
874zio_t *
885 kmem_free(vps, sizeof (*vps));
886 }
887}
888
889/*
890 * Determine whether this device is accessible by reading and writing
891 * to several known locations: the pad regions of each vdev label
892 * but the first (which we leave alone in case it contains a VTOC).
893 */
894zio_t *
875vdev_probe(vdev_t *vd, zio_t *pio)
895vdev_probe(vdev_t *vd, zio_t *zio)
876{
877 spa_t *spa = vd->vdev_spa;
896{
897 spa_t *spa = vd->vdev_spa;
878 vdev_probe_stats_t *vps;
879 zio_t *zio;
898 vdev_probe_stats_t *vps = NULL;
899 zio_t *pio;
880
900
881 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
901 ASSERT(vd->vdev_ops->vdev_op_leaf);
882
902
883 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
884 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | ZIO_FLAG_DONT_RETRY;
903 /*
904 * Don't probe the probe.
905 */
906 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
907 return (NULL);
885
908
886 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
887 /*
888 * vdev_cant_read and vdev_cant_write can only transition
889 * from TRUE to FALSE when we have the SCL_ZIO lock as writer;
890 * otherwise they can only transition from FALSE to TRUE.
891 * This ensures that any zio looking at these values can
892 * assume that failures persist for the life of the I/O.
893 * That's important because when a device has intermittent
894 * connectivity problems, we want to ensure that they're
895 * ascribed to the device (ENXIO) and not the zio (EIO).
896 *
897 * Since we hold SCL_ZIO as writer here, clear both values
898 * so the probe can reevaluate from first principles.
899 */
900 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
901 vd->vdev_cant_read = B_FALSE;
902 vd->vdev_cant_write = B_FALSE;
909 /*
910 * To prevent 'probe storms' when a device fails, we create
911 * just one probe i/o at a time. All zios that want to probe
912 * this vdev will become parents of the probe io.
913 */
914 mutex_enter(&vd->vdev_probe_lock);
915
916 if ((pio = vd->vdev_probe_zio) == NULL) {
917 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
918
919 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
920 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
921 ZIO_FLAG_DONT_RETRY;
922
923 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
924 /*
925 * vdev_cant_read and vdev_cant_write can only
926 * transition from TRUE to FALSE when we have the
927 * SCL_ZIO lock as writer; otherwise they can only
928 * transition from FALSE to TRUE. This ensures that
929 * any zio looking at these values can assume that
930 * failures persist for the life of the I/O. That's
931 * important because when a device has intermittent
932 * connectivity problems, we want to ensure that
933 * they're ascribed to the device (ENXIO) and not
934 * the zio (EIO).
935 *
936 * Since we hold SCL_ZIO as writer here, clear both
937 * values so the probe can reevaluate from first
938 * principles.
939 */
940 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
941 vd->vdev_cant_read = B_FALSE;
942 vd->vdev_cant_write = B_FALSE;
943 }
944
945 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
946 vdev_probe_done, vps,
947 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
948
949 if (zio != NULL) {
950 vd->vdev_probe_wanted = B_TRUE;
951 spa_async_request(spa, SPA_ASYNC_PROBE);
952 }
903 }
904
953 }
954
905 ASSERT(vd->vdev_ops->vdev_op_leaf);
955 if (zio != NULL)
956 zio_add_child(zio, pio);
906
957
907 zio = zio_null(pio, spa, vdev_probe_done, vps, vps->vps_flags);
958 mutex_exit(&vd->vdev_probe_lock);
908
959
909 vps->vps_root = zio;
910 vps->vps_vd = vd;
960 if (vps == NULL) {
961 ASSERT(zio != NULL);
962 return (NULL);
963 }
911
912 for (int l = 1; l < VDEV_LABELS; l++) {
964
965 for (int l = 1; l < VDEV_LABELS; l++) {
913 zio_nowait(zio_read_phys(zio, vd,
966 zio_nowait(zio_read_phys(pio, vd,
914 vdev_label_offset(vd->vdev_psize, l,
967 vdev_label_offset(vd->vdev_psize, l,
915 offsetof(vdev_label_t, vl_pad)),
916 VDEV_SKIP_SIZE, zio_buf_alloc(VDEV_SKIP_SIZE),
968 offsetof(vdev_label_t, vl_pad2)),
969 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
917 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
918 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
919 }
920
970 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
971 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
972 }
973
921 return (zio);
974 if (zio == NULL)
975 return (pio);
976
977 zio_nowait(pio);
978 return (NULL);
922}
923
924/*
925 * Prepare a virtual device for access.
926 */
927int
928vdev_open(vdev_t *vd)
929{
979}
980
981/*
982 * Prepare a virtual device for access.
983 */
984int
985vdev_open(vdev_t *vd)
986{
987 spa_t *spa = vd->vdev_spa;
930 int error;
931 int c;
932 uint64_t osize = 0;
933 uint64_t asize, psize;
934 uint64_t ashift = 0;
935
988 int error;
989 int c;
990 uint64_t osize = 0;
991 uint64_t asize, psize;
992 uint64_t ashift = 0;
993
994 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
995
936 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
937 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
938 vd->vdev_state == VDEV_STATE_OFFLINE);
939
940 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
941
942 if (!vd->vdev_removed && vd->vdev_faulted) {
943 ASSERT(vd->vdev_children == 0);

--- 117 unchanged lines hidden (view full) ---

1061 */
1062 if (vd->vdev_top == vd) {
1063 vd->vdev_deflate_ratio = (1<<17) /
1064 (vdev_psize_to_asize(vd, 1<<17) >> SPA_MINBLOCKSHIFT);
1065 }
1066
1067 /*
1068 * If a leaf vdev has a DTL, and seems healthy, then kick off a
996 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
997 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
998 vd->vdev_state == VDEV_STATE_OFFLINE);
999
1000 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1001
1002 if (!vd->vdev_removed && vd->vdev_faulted) {
1003 ASSERT(vd->vdev_children == 0);

--- 117 unchanged lines hidden (view full) ---

1121 */
1122 if (vd->vdev_top == vd) {
1123 vd->vdev_deflate_ratio = (1<<17) /
1124 (vdev_psize_to_asize(vd, 1<<17) >> SPA_MINBLOCKSHIFT);
1125 }
1126
1127 /*
1128 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1069 * resilver. But don't do this if we are doing a reopen for a
1070 * scrub, since this would just restart the scrub we are already
1071 * doing.
1129 * resilver. But don't do this if we are doing a reopen for a scrub,
1130 * since this would just restart the scrub we are already doing.
1072 */
1131 */
1073 if (vd->vdev_children == 0 && !vd->vdev_spa->spa_scrub_reopen) {
1074 mutex_enter(&vd->vdev_dtl_lock);
1075 if (vd->vdev_dtl_map.sm_space != 0 && vdev_writeable(vd))
1076 spa_async_request(vd->vdev_spa, SPA_ASYNC_RESILVER);
1077 mutex_exit(&vd->vdev_dtl_lock);
1078 }
1132 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1133 vdev_resilver_needed(vd, NULL, NULL))
1134 spa_async_request(spa, SPA_ASYNC_RESILVER);
1079
1080 return (0);
1081}
1082
1083/*
1084 * Called once the vdevs are all opened, this routine validates the label
1085 * contents. This needs to be done before vdev_load() so that we don't
1086 * inadvertently do repair I/Os to the wrong device.

--- 62 unchanged lines hidden (view full) ---

1149 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1150 VDEV_AUX_CORRUPT_DATA);
1151 nvlist_free(label);
1152 return (0);
1153 }
1154
1155 nvlist_free(label);
1156
1135
1136 return (0);
1137}
1138
1139/*
1140 * Called once the vdevs are all opened, this routine validates the label
1141 * contents. This needs to be done before vdev_load() so that we don't
1142 * inadvertently do repair I/Os to the wrong device.

--- 62 unchanged lines hidden (view full) ---

1205 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1206 VDEV_AUX_CORRUPT_DATA);
1207 nvlist_free(label);
1208 return (0);
1209 }
1210
1211 nvlist_free(label);
1212
1157 if (spa->spa_load_state == SPA_LOAD_OPEN &&
1213 /*
1214 * If spa->spa_load_verbatim is true, no need to check the
1215 * state of the pool.
1216 */
1217 if (!spa->spa_load_verbatim &&
1218 spa->spa_load_state == SPA_LOAD_OPEN &&
1158 state != POOL_STATE_ACTIVE)
1159 return (EBADF);
1160
1161 /*
1162 * If we were able to open and validate a vdev that was
1163 * previously marked permanently unavailable, clear that state
1164 * now.
1165 */

--- 5 unchanged lines hidden (view full) ---

1171}
1172
1173/*
1174 * Close a virtual device.
1175 */
1176void
1177vdev_close(vdev_t *vd)
1178{
1219 state != POOL_STATE_ACTIVE)
1220 return (EBADF);
1221
1222 /*
1223 * If we were able to open and validate a vdev that was
1224 * previously marked permanently unavailable, clear that state
1225 * now.
1226 */

--- 5 unchanged lines hidden (view full) ---

1232}
1233
1234/*
1235 * Close a virtual device.
1236 */
1237void
1238vdev_close(vdev_t *vd)
1239{
1240 spa_t *spa = vd->vdev_spa;
1241
1242 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1243
1179 vd->vdev_ops->vdev_op_close(vd);
1180
1181 vdev_cache_purge(vd);
1182
1183 /*
1184 * We record the previous state before we close it, so that if we are
1185 * doing a reopen(), we don't generate FMA ereports if we notice that
1186 * it's still faulted.

--- 20 unchanged lines hidden (view full) ---

1207 /*
1208 * Call vdev_validate() here to make sure we have the same device.
1209 * Otherwise, a device with an invalid label could be successfully
1210 * opened in response to vdev_reopen().
1211 */
1212 if (vd->vdev_aux) {
1213 (void) vdev_validate_aux(vd);
1214 if (vdev_readable(vd) && vdev_writeable(vd) &&
1244 vd->vdev_ops->vdev_op_close(vd);
1245
1246 vdev_cache_purge(vd);
1247
1248 /*
1249 * We record the previous state before we close it, so that if we are
1250 * doing a reopen(), we don't generate FMA ereports if we notice that
1251 * it's still faulted.

--- 20 unchanged lines hidden (view full) ---

1272 /*
1273 * Call vdev_validate() here to make sure we have the same device.
1274 * Otherwise, a device with an invalid label could be successfully
1275 * opened in response to vdev_reopen().
1276 */
1277 if (vd->vdev_aux) {
1278 (void) vdev_validate_aux(vd);
1279 if (vdev_readable(vd) && vdev_writeable(vd) &&
1280 vd->vdev_aux == &spa->spa_l2cache &&
1215 !l2arc_vdev_present(vd)) {
1216 uint64_t size = vdev_get_rsize(vd);
1217 l2arc_add_vdev(spa, vd,
1218 VDEV_LABEL_START_SIZE,
1219 size - VDEV_LABEL_START_SIZE);
1220 }
1221 } else {
1222 (void) vdev_validate(vd);

--- 66 unchanged lines hidden (view full) ---

1289 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1290
1291 if (flags & VDD_DTL)
1292 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1293
1294 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1295}
1296
1281 !l2arc_vdev_present(vd)) {
1282 uint64_t size = vdev_get_rsize(vd);
1283 l2arc_add_vdev(spa, vd,
1284 VDEV_LABEL_START_SIZE,
1285 size - VDEV_LABEL_START_SIZE);
1286 }
1287 } else {
1288 (void) vdev_validate(vd);

--- 66 unchanged lines hidden (view full) ---

1355 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1356
1357 if (flags & VDD_DTL)
1358 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1359
1360 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1361}
1362
1363/*
1364 * DTLs.
1365 *
1366 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1367 * the vdev has less than perfect replication. There are three kinds of DTL:
1368 *
1369 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1370 *
1371 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1372 *
1373 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1374 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1375 * txgs that was scrubbed.
1376 *
1377 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1378 * persistent errors or just some device being offline.
1379 * Unlike the other three, the DTL_OUTAGE map is not generally
1380 * maintained; it's only computed when needed, typically to
1381 * determine whether a device can be detached.
1382 *
1383 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1384 * either has the data or it doesn't.
1385 *
1386 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1387 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1388 * if any child is less than fully replicated, then so is its parent.
1389 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1390 * comprising only those txgs which appear in 'maxfaults' or more children;
1391 * those are the txgs we don't have enough replication to read. For example,
1392 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1393 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1394 * two child DTL_MISSING maps.
1395 *
1396 * It should be clear from the above that to compute the DTLs and outage maps
1397 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1398 * Therefore, that is all we keep on disk. When loading the pool, or after
1399 * a configuration change, we generate all other DTLs from first principles.
1400 */
1297void
1401void
1298vdev_dtl_dirty(space_map_t *sm, uint64_t txg, uint64_t size)
1402vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1299{
1403{
1404 space_map_t *sm = &vd->vdev_dtl[t];
1405
1406 ASSERT(t < DTL_TYPES);
1407 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1408
1300 mutex_enter(sm->sm_lock);
1301 if (!space_map_contains(sm, txg, size))
1302 space_map_add(sm, txg, size);
1303 mutex_exit(sm->sm_lock);
1304}
1305
1409 mutex_enter(sm->sm_lock);
1410 if (!space_map_contains(sm, txg, size))
1411 space_map_add(sm, txg, size);
1412 mutex_exit(sm->sm_lock);
1413}
1414
1306int
1307vdev_dtl_contains(space_map_t *sm, uint64_t txg, uint64_t size)
1415boolean_t
1416vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1308{
1417{
1309 int dirty;
1418 space_map_t *sm = &vd->vdev_dtl[t];
1419 boolean_t dirty = B_FALSE;
1310
1420
1311 /*
1312 * Quick test without the lock -- covers the common case that
1313 * there are no dirty time segments.
1314 */
1315 if (sm->sm_space == 0)
1316 return (0);
1421 ASSERT(t < DTL_TYPES);
1422 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1317
1318 mutex_enter(sm->sm_lock);
1423
1424 mutex_enter(sm->sm_lock);
1319 dirty = space_map_contains(sm, txg, size);
1425 if (sm->sm_space != 0)
1426 dirty = space_map_contains(sm, txg, size);
1320 mutex_exit(sm->sm_lock);
1321
1322 return (dirty);
1323}
1324
1427 mutex_exit(sm->sm_lock);
1428
1429 return (dirty);
1430}
1431
1432boolean_t
1433vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1434{
1435 space_map_t *sm = &vd->vdev_dtl[t];
1436 boolean_t empty;
1437
1438 mutex_enter(sm->sm_lock);
1439 empty = (sm->sm_space == 0);
1440 mutex_exit(sm->sm_lock);
1441
1442 return (empty);
1443}
1444
1325/*
1326 * Reassess DTLs after a config change or scrub completion.
1327 */
1328void
1329vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1330{
1331 spa_t *spa = vd->vdev_spa;
1445/*
1446 * Reassess DTLs after a config change or scrub completion.
1447 */
1448void
1449vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1450{
1451 spa_t *spa = vd->vdev_spa;
1332 int c;
1452 avl_tree_t reftree;
1453 int minref;
1333
1454
1334 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
1455 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1335
1456
1336 if (vd->vdev_children == 0) {
1457 for (int c = 0; c < vd->vdev_children; c++)
1458 vdev_dtl_reassess(vd->vdev_child[c], txg,
1459 scrub_txg, scrub_done);
1460
1461 if (vd == spa->spa_root_vdev)
1462 return;
1463
1464 if (vd->vdev_ops->vdev_op_leaf) {
1337 mutex_enter(&vd->vdev_dtl_lock);
1338 if (scrub_txg != 0 &&
1339 (spa->spa_scrub_started || spa->spa_scrub_errors == 0)) {
1340 /* XXX should check scrub_done? */
1341 /*
1342 * We completed a scrub up to scrub_txg. If we
1343 * did it without rebooting, then the scrub dtl
1344 * will be valid, so excise the old region and
1345 * fold in the scrub dtl. Otherwise, leave the
1346 * dtl as-is if there was an error.
1465 mutex_enter(&vd->vdev_dtl_lock);
1466 if (scrub_txg != 0 &&
1467 (spa->spa_scrub_started || spa->spa_scrub_errors == 0)) {
1468 /* XXX should check scrub_done? */
1469 /*
1470 * We completed a scrub up to scrub_txg. If we
1471 * did it without rebooting, then the scrub dtl
1472 * will be valid, so excise the old region and
1473 * fold in the scrub dtl. Otherwise, leave the
1474 * dtl as-is if there was an error.
1475 *
1476 * There's little trick here: to excise the beginning
1477 * of the DTL_MISSING map, we put it into a reference
1478 * tree and then add a segment with refcnt -1 that
1479 * covers the range [0, scrub_txg). This means
1480 * that each txg in that range has refcnt -1 or 0.
1481 * We then add DTL_SCRUB with a refcnt of 2, so that
1482 * entries in the range [0, scrub_txg) will have a
1483 * positive refcnt -- either 1 or 2. We then convert
1484 * the reference tree into the new DTL_MISSING map.
1347 */
1485 */
1348 space_map_excise(&vd->vdev_dtl_map, 0, scrub_txg);
1349 space_map_union(&vd->vdev_dtl_map, &vd->vdev_dtl_scrub);
1486 space_map_ref_create(&reftree);
1487 space_map_ref_add_map(&reftree,
1488 &vd->vdev_dtl[DTL_MISSING], 1);
1489 space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1490 space_map_ref_add_map(&reftree,
1491 &vd->vdev_dtl[DTL_SCRUB], 2);
1492 space_map_ref_generate_map(&reftree,
1493 &vd->vdev_dtl[DTL_MISSING], 1);
1494 space_map_ref_destroy(&reftree);
1350 }
1495 }
1496 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1497 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1498 space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1351 if (scrub_done)
1499 if (scrub_done)
1352 space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
1500 space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1501 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1502 if (!vdev_readable(vd))
1503 space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1504 else
1505 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1506 space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1353 mutex_exit(&vd->vdev_dtl_lock);
1354
1355 if (txg != 0)
1356 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1357 return;
1358 }
1359
1507 mutex_exit(&vd->vdev_dtl_lock);
1508
1509 if (txg != 0)
1510 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1511 return;
1512 }
1513
1360 /*
1361 * Make sure the DTLs are always correct under the scrub lock.
1362 */
1363 if (vd == spa->spa_root_vdev)
1364 mutex_enter(&spa->spa_scrub_lock);
1365
1366 mutex_enter(&vd->vdev_dtl_lock);
1514 mutex_enter(&vd->vdev_dtl_lock);
1367 space_map_vacate(&vd->vdev_dtl_map, NULL, NULL);
1368 space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
1369 mutex_exit(&vd->vdev_dtl_lock);
1370
1371 for (c = 0; c < vd->vdev_children; c++) {
1372 vdev_t *cvd = vd->vdev_child[c];
1373 vdev_dtl_reassess(cvd, txg, scrub_txg, scrub_done);
1374 mutex_enter(&vd->vdev_dtl_lock);
1375 space_map_union(&vd->vdev_dtl_map, &cvd->vdev_dtl_map);
1376 space_map_union(&vd->vdev_dtl_scrub, &cvd->vdev_dtl_scrub);
1377 mutex_exit(&vd->vdev_dtl_lock);
1515 for (int t = 0; t < DTL_TYPES; t++) {
1516 /* account for child's outage in parent's missing map */
1517 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1518 if (t == DTL_SCRUB)
1519 continue; /* leaf vdevs only */
1520 if (t == DTL_PARTIAL)
1521 minref = 1; /* i.e. non-zero */
1522 else if (vd->vdev_nparity != 0)
1523 minref = vd->vdev_nparity + 1; /* RAID-Z */
1524 else
1525 minref = vd->vdev_children; /* any kind of mirror */
1526 space_map_ref_create(&reftree);
1527 for (int c = 0; c < vd->vdev_children; c++) {
1528 vdev_t *cvd = vd->vdev_child[c];
1529 mutex_enter(&cvd->vdev_dtl_lock);
1530 space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1531 mutex_exit(&cvd->vdev_dtl_lock);
1532 }
1533 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1534 space_map_ref_destroy(&reftree);
1378 }
1535 }
1379
1380 if (vd == spa->spa_root_vdev)
1381 mutex_exit(&spa->spa_scrub_lock);
1536 mutex_exit(&vd->vdev_dtl_lock);
1382}
1383
1384static int
1385vdev_dtl_load(vdev_t *vd)
1386{
1387 spa_t *spa = vd->vdev_spa;
1537}
1538
1539static int
1540vdev_dtl_load(vdev_t *vd)
1541{
1542 spa_t *spa = vd->vdev_spa;
1388 space_map_obj_t *smo = &vd->vdev_dtl;
1543 space_map_obj_t *smo = &vd->vdev_dtl_smo;
1389 objset_t *mos = spa->spa_meta_objset;
1390 dmu_buf_t *db;
1391 int error;
1392
1393 ASSERT(vd->vdev_children == 0);
1394
1395 if (smo->smo_object == 0)
1396 return (0);
1397
1398 if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1399 return (error);
1400
1401 ASSERT3U(db->db_size, >=, sizeof (*smo));
1402 bcopy(db->db_data, smo, sizeof (*smo));
1403 dmu_buf_rele(db, FTAG);
1404
1405 mutex_enter(&vd->vdev_dtl_lock);
1544 objset_t *mos = spa->spa_meta_objset;
1545 dmu_buf_t *db;
1546 int error;
1547
1548 ASSERT(vd->vdev_children == 0);
1549
1550 if (smo->smo_object == 0)
1551 return (0);
1552
1553 if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1554 return (error);
1555
1556 ASSERT3U(db->db_size, >=, sizeof (*smo));
1557 bcopy(db->db_data, smo, sizeof (*smo));
1558 dmu_buf_rele(db, FTAG);
1559
1560 mutex_enter(&vd->vdev_dtl_lock);
1406 error = space_map_load(&vd->vdev_dtl_map, NULL, SM_ALLOC, smo, mos);
1561 error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1562 NULL, SM_ALLOC, smo, mos);
1407 mutex_exit(&vd->vdev_dtl_lock);
1408
1409 return (error);
1410}
1411
1412void
1413vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1414{
1415 spa_t *spa = vd->vdev_spa;
1563 mutex_exit(&vd->vdev_dtl_lock);
1564
1565 return (error);
1566}
1567
1568void
1569vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1570{
1571 spa_t *spa = vd->vdev_spa;
1416 space_map_obj_t *smo = &vd->vdev_dtl;
1417 space_map_t *sm = &vd->vdev_dtl_map;
1572 space_map_obj_t *smo = &vd->vdev_dtl_smo;
1573 space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1418 objset_t *mos = spa->spa_meta_objset;
1419 space_map_t smsync;
1420 kmutex_t smlock;
1421 dmu_buf_t *db;
1422 dmu_tx_t *tx;
1423
1424 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1425

--- 41 unchanged lines hidden (view full) ---

1467 ASSERT3U(db->db_size, >=, sizeof (*smo));
1468 bcopy(smo, db->db_data, sizeof (*smo));
1469 dmu_buf_rele(db, FTAG);
1470
1471 dmu_tx_commit(tx);
1472}
1473
1474/*
1574 objset_t *mos = spa->spa_meta_objset;
1575 space_map_t smsync;
1576 kmutex_t smlock;
1577 dmu_buf_t *db;
1578 dmu_tx_t *tx;
1579
1580 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1581

--- 41 unchanged lines hidden (view full) ---

1623 ASSERT3U(db->db_size, >=, sizeof (*smo));
1624 bcopy(smo, db->db_data, sizeof (*smo));
1625 dmu_buf_rele(db, FTAG);
1626
1627 dmu_tx_commit(tx);
1628}
1629
1630/*
1631 * Determine whether the specified vdev can be offlined/detached/removed
1632 * without losing data.
1633 */
1634boolean_t
1635vdev_dtl_required(vdev_t *vd)
1636{
1637 spa_t *spa = vd->vdev_spa;
1638 vdev_t *tvd = vd->vdev_top;
1639 uint8_t cant_read = vd->vdev_cant_read;
1640 boolean_t required;
1641
1642 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1643
1644 if (vd == spa->spa_root_vdev || vd == tvd)
1645 return (B_TRUE);
1646
1647 /*
1648 * Temporarily mark the device as unreadable, and then determine
1649 * whether this results in any DTL outages in the top-level vdev.
1650 * If not, we can safely offline/detach/remove the device.
1651 */
1652 vd->vdev_cant_read = B_TRUE;
1653 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1654 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1655 vd->vdev_cant_read = cant_read;
1656 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1657
1658 return (required);
1659}
1660
1661/*
1475 * Determine if resilver is needed, and if so the txg range.
1476 */
1477boolean_t
1478vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1479{
1480 boolean_t needed = B_FALSE;
1481 uint64_t thismin = UINT64_MAX;
1482 uint64_t thismax = 0;
1483
1484 if (vd->vdev_children == 0) {
1485 mutex_enter(&vd->vdev_dtl_lock);
1662 * Determine if resilver is needed, and if so the txg range.
1663 */
1664boolean_t
1665vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1666{
1667 boolean_t needed = B_FALSE;
1668 uint64_t thismin = UINT64_MAX;
1669 uint64_t thismax = 0;
1670
1671 if (vd->vdev_children == 0) {
1672 mutex_enter(&vd->vdev_dtl_lock);
1486 if (vd->vdev_dtl_map.sm_space != 0 && vdev_writeable(vd)) {
1673 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1674 vdev_writeable(vd)) {
1487 space_seg_t *ss;
1488
1675 space_seg_t *ss;
1676
1489 ss = avl_first(&vd->vdev_dtl_map.sm_root);
1677 ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1490 thismin = ss->ss_start - 1;
1678 thismin = ss->ss_start - 1;
1491 ss = avl_last(&vd->vdev_dtl_map.sm_root);
1679 ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1492 thismax = ss->ss_end;
1493 needed = B_TRUE;
1494 }
1495 mutex_exit(&vd->vdev_dtl_lock);
1496 } else {
1680 thismax = ss->ss_end;
1681 needed = B_TRUE;
1682 }
1683 mutex_exit(&vd->vdev_dtl_lock);
1684 } else {
1497 int c;
1498 for (c = 0; c < vd->vdev_children; c++) {
1685 for (int c = 0; c < vd->vdev_children; c++) {
1499 vdev_t *cvd = vd->vdev_child[c];
1500 uint64_t cmin, cmax;
1501
1502 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1503 thismin = MIN(thismin, cmin);
1504 thismax = MAX(thismax, cmax);
1505 needed = B_TRUE;
1506 }

--- 5 unchanged lines hidden (view full) ---

1512 *maxp = thismax;
1513 }
1514 return (needed);
1515}
1516
1517void
1518vdev_load(vdev_t *vd)
1519{
1686 vdev_t *cvd = vd->vdev_child[c];
1687 uint64_t cmin, cmax;
1688
1689 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1690 thismin = MIN(thismin, cmin);
1691 thismax = MAX(thismax, cmax);
1692 needed = B_TRUE;
1693 }

--- 5 unchanged lines hidden (view full) ---

1699 *maxp = thismax;
1700 }
1701 return (needed);
1702}
1703
1704void
1705vdev_load(vdev_t *vd)
1706{
1520 int c;
1521
1522 /*
1523 * Recursively load all children.
1524 */
1707 /*
1708 * Recursively load all children.
1709 */
1525 for (c = 0; c < vd->vdev_children; c++)
1710 for (int c = 0; c < vd->vdev_children; c++)
1526 vdev_load(vd->vdev_child[c]);
1527
1528 /*
1529 * If this is a top-level vdev, initialize its metaslabs.
1530 */
1531 if (vd == vd->vdev_top &&
1532 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1533 vdev_metaslab_init(vd, 0) != 0))

--- 203 unchanged lines hidden (view full) ---

1737 if (newstate)
1738 *newstate = vd->vdev_state;
1739 if ((flags & ZFS_ONLINE_UNSPARE) &&
1740 !vdev_is_dead(vd) && vd->vdev_parent &&
1741 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
1742 vd->vdev_parent->vdev_child[0] == vd)
1743 vd->vdev_unspare = B_TRUE;
1744
1711 vdev_load(vd->vdev_child[c]);
1712
1713 /*
1714 * If this is a top-level vdev, initialize its metaslabs.
1715 */
1716 if (vd == vd->vdev_top &&
1717 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1718 vdev_metaslab_init(vd, 0) != 0))

--- 203 unchanged lines hidden (view full) ---

1922 if (newstate)
1923 *newstate = vd->vdev_state;
1924 if ((flags & ZFS_ONLINE_UNSPARE) &&
1925 !vdev_is_dead(vd) && vd->vdev_parent &&
1926 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
1927 vd->vdev_parent->vdev_child[0] == vd)
1928 vd->vdev_unspare = B_TRUE;
1929
1745 (void) spa_vdev_state_exit(spa, vd, 0);
1746
1747 VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0);
1748
1749 return (0);
1930 return (spa_vdev_state_exit(spa, vd, 0));
1750}
1751
1752int
1753vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
1754{
1755 vdev_t *vd;
1756
1757 spa_vdev_state_enter(spa);

--- 4 unchanged lines hidden (view full) ---

1762 if (!vd->vdev_ops->vdev_op_leaf)
1763 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1764
1765 /*
1766 * If the device isn't already offline, try to offline it.
1767 */
1768 if (!vd->vdev_offline) {
1769 /*
1931}
1932
1933int
1934vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
1935{
1936 vdev_t *vd;
1937
1938 spa_vdev_state_enter(spa);

--- 4 unchanged lines hidden (view full) ---

1943 if (!vd->vdev_ops->vdev_op_leaf)
1944 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1945
1946 /*
1947 * If the device isn't already offline, try to offline it.
1948 */
1949 if (!vd->vdev_offline) {
1950 /*
1770 * If this device's top-level vdev has a non-empty DTL,
1771 * don't allow the device to be offlined.
1772 *
1773 * XXX -- make this more precise by allowing the offline
1774 * as long as the remaining devices don't have any DTL holes.
1951 * If this device has the only valid copy of some data,
1952 * don't allow it to be offlined.
1775 */
1953 */
1776 if (vd->vdev_top->vdev_dtl_map.sm_space != 0)
1954 if (vd->vdev_aux == NULL && vdev_dtl_required(vd))
1777 return (spa_vdev_state_exit(spa, NULL, EBUSY));
1778
1779 /*
1780 * Offline this device and reopen its top-level vdev.
1781 * If this action results in the top-level vdev becoming
1782 * unusable, undo it and fail the request.
1783 */
1784 vd->vdev_offline = B_TRUE;
1785 vdev_reopen(vd->vdev_top);
1955 return (spa_vdev_state_exit(spa, NULL, EBUSY));
1956
1957 /*
1958 * Offline this device and reopen its top-level vdev.
1959 * If this action results in the top-level vdev becoming
1960 * unusable, undo it and fail the request.
1961 */
1962 vd->vdev_offline = B_TRUE;
1963 vdev_reopen(vd->vdev_top);
1786 if (vdev_is_dead(vd->vdev_top) && vd->vdev_aux == NULL) {
1964 if (vd->vdev_aux == NULL && vdev_is_dead(vd->vdev_top)) {
1787 vd->vdev_offline = B_FALSE;
1788 vdev_reopen(vd->vdev_top);
1789 return (spa_vdev_state_exit(spa, NULL, EBUSY));
1790 }
1791 }
1792
1793 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
1794

--- 63 unchanged lines hidden (view full) ---

1858vdev_writeable(vdev_t *vd)
1859{
1860 return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
1861}
1862
1863boolean_t
1864vdev_allocatable(vdev_t *vd)
1865{
1965 vd->vdev_offline = B_FALSE;
1966 vdev_reopen(vd->vdev_top);
1967 return (spa_vdev_state_exit(spa, NULL, EBUSY));
1968 }
1969 }
1970
1971 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
1972

--- 63 unchanged lines hidden (view full) ---

2036vdev_writeable(vdev_t *vd)
2037{
2038 return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2039}
2040
2041boolean_t
2042vdev_allocatable(vdev_t *vd)
2043{
2044 uint64_t state = vd->vdev_state;
2045
1866 /*
2046 /*
1867 * We currently allow allocations from vdevs which maybe in the
2047 * We currently allow allocations from vdevs which may be in the
1868 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
1869 * fails to reopen then we'll catch it later when we're holding
2048 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2049 * fails to reopen then we'll catch it later when we're holding
1870 * the proper locks.
2050 * the proper locks. Note that we have to get the vdev state
2051 * in a local variable because although it changes atomically,
2052 * we're asking two separate questions about it.
1871 */
2053 */
1872 return (!(vdev_is_dead(vd) && vd->vdev_state != VDEV_STATE_CLOSED) &&
2054 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
1873 !vd->vdev_cant_write);
1874}
1875
1876boolean_t
1877vdev_accessible(vdev_t *vd, zio_t *zio)
1878{
1879 ASSERT(zio->io_vd == vd);
1880

--- 53 unchanged lines hidden (view full) ---

1934 vd->vdev_stat.vs_dspace = 0;
1935 vd->vdev_stat.vs_alloc = 0;
1936 mutex_exit(&vd->vdev_stat_lock);
1937}
1938
1939void
1940vdev_stat_update(zio_t *zio, uint64_t psize)
1941{
2055 !vd->vdev_cant_write);
2056}
2057
2058boolean_t
2059vdev_accessible(vdev_t *vd, zio_t *zio)
2060{
2061 ASSERT(zio->io_vd == vd);
2062

--- 53 unchanged lines hidden (view full) ---

2116 vd->vdev_stat.vs_dspace = 0;
2117 vd->vdev_stat.vs_alloc = 0;
2118 mutex_exit(&vd->vdev_stat_lock);
2119}
2120
2121void
2122vdev_stat_update(zio_t *zio, uint64_t psize)
2123{
1942 vdev_t *rvd = zio->io_spa->spa_root_vdev;
2124 spa_t *spa = zio->io_spa;
2125 vdev_t *rvd = spa->spa_root_vdev;
1943 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
1944 vdev_t *pvd;
1945 uint64_t txg = zio->io_txg;
1946 vdev_stat_t *vs = &vd->vdev_stat;
1947 zio_type_t type = zio->io_type;
1948 int flags = zio->io_flags;
1949
1950 /*

--- 16 unchanged lines hidden (view full) ---

1967 * because unlike i/o counts, errors are not additive.
1968 * When reading a ditto block, for example, failure of
1969 * one top-level vdev does not imply a root-level error.
1970 */
1971 if (vd == rvd)
1972 return;
1973
1974 ASSERT(vd == zio->io_vd);
2126 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2127 vdev_t *pvd;
2128 uint64_t txg = zio->io_txg;
2129 vdev_stat_t *vs = &vd->vdev_stat;
2130 zio_type_t type = zio->io_type;
2131 int flags = zio->io_flags;
2132
2133 /*

--- 16 unchanged lines hidden (view full) ---

2150 * because unlike i/o counts, errors are not additive.
2151 * When reading a ditto block, for example, failure of
2152 * one top-level vdev does not imply a root-level error.
2153 */
2154 if (vd == rvd)
2155 return;
2156
2157 ASSERT(vd == zio->io_vd);
1975 if (!(flags & ZIO_FLAG_IO_BYPASS)) {
1976 mutex_enter(&vd->vdev_stat_lock);
1977 vs->vs_ops[type]++;
1978 vs->vs_bytes[type] += psize;
1979 mutex_exit(&vd->vdev_stat_lock);
1980 }
2158
2159 if (flags & ZIO_FLAG_IO_BYPASS)
2160 return;
2161
2162 mutex_enter(&vd->vdev_stat_lock);
2163
1981 if (flags & ZIO_FLAG_IO_REPAIR) {
2164 if (flags & ZIO_FLAG_IO_REPAIR) {
1982 ASSERT(zio->io_delegate_list == NULL);
1983 mutex_enter(&vd->vdev_stat_lock);
1984 if (flags & ZIO_FLAG_SCRUB_THREAD)
1985 vs->vs_scrub_repaired += psize;
2165 if (flags & ZIO_FLAG_SCRUB_THREAD)
2166 vs->vs_scrub_repaired += psize;
1986 else
2167 if (flags & ZIO_FLAG_SELF_HEAL)
1987 vs->vs_self_healed += psize;
2168 vs->vs_self_healed += psize;
1988 mutex_exit(&vd->vdev_stat_lock);
1989 }
2169 }
2170
2171 vs->vs_ops[type]++;
2172 vs->vs_bytes[type] += psize;
2173
2174 mutex_exit(&vd->vdev_stat_lock);
1990 return;
1991 }
1992
1993 if (flags & ZIO_FLAG_SPECULATIVE)
1994 return;
1995
1996 mutex_enter(&vd->vdev_stat_lock);
2175 return;
2176 }
2177
2178 if (flags & ZIO_FLAG_SPECULATIVE)
2179 return;
2180
2181 mutex_enter(&vd->vdev_stat_lock);
1997 if (type == ZIO_TYPE_READ) {
2182 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
1998 if (zio->io_error == ECKSUM)
1999 vs->vs_checksum_errors++;
2000 else
2001 vs->vs_read_errors++;
2002 }
2183 if (zio->io_error == ECKSUM)
2184 vs->vs_checksum_errors++;
2185 else
2186 vs->vs_read_errors++;
2187 }
2003 if (type == ZIO_TYPE_WRITE)
2188 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2004 vs->vs_write_errors++;
2005 mutex_exit(&vd->vdev_stat_lock);
2006
2189 vs->vs_write_errors++;
2190 mutex_exit(&vd->vdev_stat_lock);
2191
2007 if (type == ZIO_TYPE_WRITE && txg != 0 && vd->vdev_children == 0) {
2008 if (flags & ZIO_FLAG_SCRUB_THREAD) {
2009 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2010 for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
2011 vdev_dtl_dirty(&pvd->vdev_dtl_scrub, txg, 1);
2012 }
2013 if (!(flags & ZIO_FLAG_IO_REPAIR)) {
2014 if (vdev_dtl_contains(&vd->vdev_dtl_map, txg, 1))
2192 if (type == ZIO_TYPE_WRITE && txg != 0 &&
2193 (!(flags & ZIO_FLAG_IO_REPAIR) ||
2194 (flags & ZIO_FLAG_SCRUB_THREAD))) {
2195 /*
2196 * This is either a normal write (not a repair), or it's a
2197 * repair induced by the scrub thread. In the normal case,
2198 * we commit the DTL change in the same txg as the block
2199 * was born. In the scrub-induced repair case, we know that
2200 * scrubs run in first-pass syncing context, so we commit
2201 * the DTL change in spa->spa_syncing_txg.
2202 *
2203 * We currently do not make DTL entries for failed spontaneous
2204 * self-healing writes triggered by normal (non-scrubbing)
2205 * reads, because we have no transactional context in which to
2206 * do so -- and it's not clear that it'd be desirable anyway.
2207 */
2208 if (vd->vdev_ops->vdev_op_leaf) {
2209 uint64_t commit_txg = txg;
2210 if (flags & ZIO_FLAG_SCRUB_THREAD) {
2211 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2212 ASSERT(spa_sync_pass(spa) == 1);
2213 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2214 commit_txg = spa->spa_syncing_txg;
2215 }
2216 ASSERT(commit_txg >= spa->spa_syncing_txg);
2217 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2015 return;
2218 return;
2016 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2017 for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
2018 vdev_dtl_dirty(&pvd->vdev_dtl_map, txg, 1);
2219 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2220 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2221 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2019 }
2222 }
2223 if (vd != rvd)
2224 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2020 }
2021}
2022
2023void
2024vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete)
2025{
2026 int c;
2027 vdev_stat_t *vs = &vd->vdev_stat;

--- 78 unchanged lines hidden (view full) ---

2106void
2107vdev_config_dirty(vdev_t *vd)
2108{
2109 spa_t *spa = vd->vdev_spa;
2110 vdev_t *rvd = spa->spa_root_vdev;
2111 int c;
2112
2113 /*
2225 }
2226}
2227
2228void
2229vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete)
2230{
2231 int c;
2232 vdev_stat_t *vs = &vd->vdev_stat;

--- 78 unchanged lines hidden (view full) ---

2311void
2312vdev_config_dirty(vdev_t *vd)
2313{
2314 spa_t *spa = vd->vdev_spa;
2315 vdev_t *rvd = spa->spa_root_vdev;
2316 int c;
2317
2318 /*
2114 * If this is an aux vdev (as with l2cache devices), then we update the
2115 * vdev config manually and set the sync flag.
2319 * If this is an aux vdev (as with l2cache and spare devices), then we
2320 * update the vdev config manually and set the sync flag.
2116 */
2117 if (vd->vdev_aux != NULL) {
2118 spa_aux_vdev_t *sav = vd->vdev_aux;
2119 nvlist_t **aux;
2120 uint_t naux;
2121
2122 for (c = 0; c < sav->sav_count; c++) {
2123 if (sav->sav_vdevs[c] == vd)

--- 5 unchanged lines hidden (view full) ---

2129 * We're being removed. There's nothing more to do.
2130 */
2131 ASSERT(sav->sav_sync == B_TRUE);
2132 return;
2133 }
2134
2135 sav->sav_sync = B_TRUE;
2136
2321 */
2322 if (vd->vdev_aux != NULL) {
2323 spa_aux_vdev_t *sav = vd->vdev_aux;
2324 nvlist_t **aux;
2325 uint_t naux;
2326
2327 for (c = 0; c < sav->sav_count; c++) {
2328 if (sav->sav_vdevs[c] == vd)

--- 5 unchanged lines hidden (view full) ---

2334 * We're being removed. There's nothing more to do.
2335 */
2336 ASSERT(sav->sav_sync == B_TRUE);
2337 return;
2338 }
2339
2340 sav->sav_sync = B_TRUE;
2341
2137 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2138 ZPOOL_CONFIG_L2CACHE, &aux, &naux) == 0);
2342 if (nvlist_lookup_nvlist_array(sav->sav_config,
2343 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2344 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2345 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2346 }
2139
2140 ASSERT(c < naux);
2141
2142 /*
2143 * Setting the nvlist in the middle if the array is a little
2144 * sketchy, but it will work.
2145 */
2146 nvlist_free(aux[c]);

--- 77 unchanged lines hidden (view full) ---

2224}
2225
2226/*
2227 * Propagate vdev state up from children to parent.
2228 */
2229void
2230vdev_propagate_state(vdev_t *vd)
2231{
2347
2348 ASSERT(c < naux);
2349
2350 /*
2351 * Setting the nvlist in the middle if the array is a little
2352 * sketchy, but it will work.
2353 */
2354 nvlist_free(aux[c]);

--- 77 unchanged lines hidden (view full) ---

2432}
2433
2434/*
2435 * Propagate vdev state up from children to parent.
2436 */
2437void
2438vdev_propagate_state(vdev_t *vd)
2439{
2232 vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2440 spa_t *spa = vd->vdev_spa;
2441 vdev_t *rvd = spa->spa_root_vdev;
2233 int degraded = 0, faulted = 0;
2234 int corrupted = 0;
2235 int c;
2236 vdev_t *child;
2237
2238 if (vd->vdev_children > 0) {
2239 for (c = 0; c < vd->vdev_children; c++) {
2240 child = vd->vdev_child[c];
2241
2242 if (!vdev_readable(child) ||
2442 int degraded = 0, faulted = 0;
2443 int corrupted = 0;
2444 int c;
2445 vdev_t *child;
2446
2447 if (vd->vdev_children > 0) {
2448 for (c = 0; c < vd->vdev_children; c++) {
2449 child = vd->vdev_child[c];
2450
2451 if (!vdev_readable(child) ||
2243 (!vdev_writeable(child) && (spa_mode & FWRITE))) {
2452 (!vdev_writeable(child) && spa_writeable(spa))) {
2244 /*
2245 * Root special: if there is a top-level log
2246 * device, treat the root vdev as if it were
2247 * degraded.
2248 */
2249 if (child->vdev_islog && vd == rvd)
2250 degraded++;
2251 else

--- 83 unchanged lines hidden (view full) ---

2335 } else if (state == VDEV_STATE_CANT_OPEN) {
2336 /*
2337 * If we fail to open a vdev during an import, we mark it as
2338 * "not available", which signifies that it was never there to
2339 * begin with. Failure to open such a device is not considered
2340 * an error.
2341 */
2342 if (spa->spa_load_state == SPA_LOAD_IMPORT &&
2453 /*
2454 * Root special: if there is a top-level log
2455 * device, treat the root vdev as if it were
2456 * degraded.
2457 */
2458 if (child->vdev_islog && vd == rvd)
2459 degraded++;
2460 else

--- 83 unchanged lines hidden (view full) ---

2544 } else if (state == VDEV_STATE_CANT_OPEN) {
2545 /*
2546 * If we fail to open a vdev during an import, we mark it as
2547 * "not available", which signifies that it was never there to
2548 * begin with. Failure to open such a device is not considered
2549 * an error.
2550 */
2551 if (spa->spa_load_state == SPA_LOAD_IMPORT &&
2343 !spa->spa_import_faulted &&
2344 vd->vdev_ops->vdev_op_leaf)
2345 vd->vdev_not_present = 1;
2346
2347 /*
2348 * Post the appropriate ereport. If the 'prevstate' field is
2349 * set to something other than VDEV_STATE_UNKNOWN, it indicates
2350 * that this is part of a vdev_reopen(). In this case, we don't
2351 * want to post the ereport if the device was already in the

--- 42 unchanged lines hidden (view full) ---

2394 }
2395
2396 /* Erase any notion of persistent removed state */
2397 vd->vdev_removed = B_FALSE;
2398 } else {
2399 vd->vdev_removed = B_FALSE;
2400 }
2401
2552 vd->vdev_ops->vdev_op_leaf)
2553 vd->vdev_not_present = 1;
2554
2555 /*
2556 * Post the appropriate ereport. If the 'prevstate' field is
2557 * set to something other than VDEV_STATE_UNKNOWN, it indicates
2558 * that this is part of a vdev_reopen(). In this case, we don't
2559 * want to post the ereport if the device was already in the

--- 42 unchanged lines hidden (view full) ---

2602 }
2603
2604 /* Erase any notion of persistent removed state */
2605 vd->vdev_removed = B_FALSE;
2606 } else {
2607 vd->vdev_removed = B_FALSE;
2608 }
2609
2402 if (!isopen)
2403 vdev_propagate_state(vd);
2610 if (!isopen && vd->vdev_parent)
2611 vdev_propagate_state(vd->vdev_parent);
2404}
2405
2406/*
2407 * Check the vdev configuration to ensure that it's capable of supporting
2408 * a root pool.
2409 *
2410 * On Solaris, we do not support RAID-Z or partial configuration. In
2411 * addition, only a single top-level vdev is allowed and none of the

--- 36 unchanged lines hidden ---
2612}
2613
2614/*
2615 * Check the vdev configuration to ensure that it's capable of supporting
2616 * a root pool.
2617 *
2618 * On Solaris, we do not support RAID-Z or partial configuration. In
2619 * addition, only a single top-level vdev is allowed and none of the

--- 36 unchanged lines hidden ---