Deleted Added
full compact
SemaInit.cpp (207619) SemaInit.cpp (208600)
1//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for initializers. The main entry
11// point is Sema::CheckInitList(), but all of the work is performed
12// within the InitListChecker class.
13//
14// This file also implements Sema::CheckInitializerTypes.
15//
16//===----------------------------------------------------------------------===//
17
18#include "SemaInit.h"
19#include "Lookup.h"
20#include "Sema.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Parse/Designator.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/ExprObjC.h"
26#include "clang/AST/TypeLoc.h"
27#include "llvm/Support/ErrorHandling.h"
28#include <map>
29using namespace clang;
30
31//===----------------------------------------------------------------------===//
32// Sema Initialization Checking
33//===----------------------------------------------------------------------===//
34
35static Expr *IsStringInit(Expr *Init, QualType DeclType, ASTContext &Context) {
36 const ArrayType *AT = Context.getAsArrayType(DeclType);
37 if (!AT) return 0;
38
39 if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
40 return 0;
41
42 // See if this is a string literal or @encode.
43 Init = Init->IgnoreParens();
44
45 // Handle @encode, which is a narrow string.
46 if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
47 return Init;
48
49 // Otherwise we can only handle string literals.
50 StringLiteral *SL = dyn_cast<StringLiteral>(Init);
51 if (SL == 0) return 0;
52
53 QualType ElemTy = Context.getCanonicalType(AT->getElementType());
54 // char array can be initialized with a narrow string.
55 // Only allow char x[] = "foo"; not char x[] = L"foo";
56 if (!SL->isWide())
57 return ElemTy->isCharType() ? Init : 0;
58
59 // wchar_t array can be initialized with a wide string: C99 6.7.8p15 (with
60 // correction from DR343): "An array with element type compatible with a
61 // qualified or unqualified version of wchar_t may be initialized by a wide
62 // string literal, optionally enclosed in braces."
63 if (Context.typesAreCompatible(Context.getWCharType(),
64 ElemTy.getUnqualifiedType()))
65 return Init;
66
67 return 0;
68}
69
70static void CheckStringInit(Expr *Str, QualType &DeclT, Sema &S) {
71 // Get the length of the string as parsed.
72 uint64_t StrLength =
73 cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
74
75
76 const ArrayType *AT = S.Context.getAsArrayType(DeclT);
77 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
78 // C99 6.7.8p14. We have an array of character type with unknown size
79 // being initialized to a string literal.
80 llvm::APSInt ConstVal(32);
81 ConstVal = StrLength;
82 // Return a new array type (C99 6.7.8p22).
83 DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
84 ConstVal,
85 ArrayType::Normal, 0);
86 return;
87 }
88
89 const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
90
91 // C99 6.7.8p14. We have an array of character type with known size. However,
92 // the size may be smaller or larger than the string we are initializing.
93 // FIXME: Avoid truncation for 64-bit length strings.
94 if (StrLength-1 > CAT->getSize().getZExtValue())
95 S.Diag(Str->getSourceRange().getBegin(),
96 diag::warn_initializer_string_for_char_array_too_long)
97 << Str->getSourceRange();
98
99 // Set the type to the actual size that we are initializing. If we have
100 // something like:
101 // char x[1] = "foo";
102 // then this will set the string literal's type to char[1].
103 Str->setType(DeclT);
104}
105
106//===----------------------------------------------------------------------===//
107// Semantic checking for initializer lists.
108//===----------------------------------------------------------------------===//
109
110/// @brief Semantic checking for initializer lists.
111///
112/// The InitListChecker class contains a set of routines that each
113/// handle the initialization of a certain kind of entity, e.g.,
114/// arrays, vectors, struct/union types, scalars, etc. The
115/// InitListChecker itself performs a recursive walk of the subobject
116/// structure of the type to be initialized, while stepping through
117/// the initializer list one element at a time. The IList and Index
118/// parameters to each of the Check* routines contain the active
119/// (syntactic) initializer list and the index into that initializer
120/// list that represents the current initializer. Each routine is
121/// responsible for moving that Index forward as it consumes elements.
122///
123/// Each Check* routine also has a StructuredList/StructuredIndex
124/// arguments, which contains the current the "structured" (semantic)
125/// initializer list and the index into that initializer list where we
126/// are copying initializers as we map them over to the semantic
127/// list. Once we have completed our recursive walk of the subobject
128/// structure, we will have constructed a full semantic initializer
129/// list.
130///
131/// C99 designators cause changes in the initializer list traversal,
132/// because they make the initialization "jump" into a specific
133/// subobject and then continue the initialization from that
134/// point. CheckDesignatedInitializer() recursively steps into the
135/// designated subobject and manages backing out the recursion to
136/// initialize the subobjects after the one designated.
137namespace {
138class InitListChecker {
139 Sema &SemaRef;
140 bool hadError;
141 std::map<InitListExpr *, InitListExpr *> SyntacticToSemantic;
142 InitListExpr *FullyStructuredList;
143
144 void CheckImplicitInitList(const InitializedEntity &Entity,
145 InitListExpr *ParentIList, QualType T,
146 unsigned &Index, InitListExpr *StructuredList,
147 unsigned &StructuredIndex,
148 bool TopLevelObject = false);
149 void CheckExplicitInitList(const InitializedEntity &Entity,
150 InitListExpr *IList, QualType &T,
151 unsigned &Index, InitListExpr *StructuredList,
152 unsigned &StructuredIndex,
153 bool TopLevelObject = false);
154 void CheckListElementTypes(const InitializedEntity &Entity,
155 InitListExpr *IList, QualType &DeclType,
156 bool SubobjectIsDesignatorContext,
157 unsigned &Index,
158 InitListExpr *StructuredList,
159 unsigned &StructuredIndex,
160 bool TopLevelObject = false);
161 void CheckSubElementType(const InitializedEntity &Entity,
162 InitListExpr *IList, QualType ElemType,
163 unsigned &Index,
164 InitListExpr *StructuredList,
165 unsigned &StructuredIndex);
166 void CheckScalarType(const InitializedEntity &Entity,
167 InitListExpr *IList, QualType DeclType,
168 unsigned &Index,
169 InitListExpr *StructuredList,
170 unsigned &StructuredIndex);
171 void CheckReferenceType(const InitializedEntity &Entity,
172 InitListExpr *IList, QualType DeclType,
173 unsigned &Index,
174 InitListExpr *StructuredList,
175 unsigned &StructuredIndex);
176 void CheckVectorType(const InitializedEntity &Entity,
177 InitListExpr *IList, QualType DeclType, unsigned &Index,
178 InitListExpr *StructuredList,
179 unsigned &StructuredIndex);
180 void CheckStructUnionTypes(const InitializedEntity &Entity,
181 InitListExpr *IList, QualType DeclType,
182 RecordDecl::field_iterator Field,
183 bool SubobjectIsDesignatorContext, unsigned &Index,
184 InitListExpr *StructuredList,
185 unsigned &StructuredIndex,
186 bool TopLevelObject = false);
187 void CheckArrayType(const InitializedEntity &Entity,
188 InitListExpr *IList, QualType &DeclType,
189 llvm::APSInt elementIndex,
190 bool SubobjectIsDesignatorContext, unsigned &Index,
191 InitListExpr *StructuredList,
192 unsigned &StructuredIndex);
193 bool CheckDesignatedInitializer(const InitializedEntity &Entity,
194 InitListExpr *IList, DesignatedInitExpr *DIE,
195 unsigned DesigIdx,
196 QualType &CurrentObjectType,
197 RecordDecl::field_iterator *NextField,
198 llvm::APSInt *NextElementIndex,
199 unsigned &Index,
200 InitListExpr *StructuredList,
201 unsigned &StructuredIndex,
202 bool FinishSubobjectInit,
203 bool TopLevelObject);
204 InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
205 QualType CurrentObjectType,
206 InitListExpr *StructuredList,
207 unsigned StructuredIndex,
208 SourceRange InitRange);
209 void UpdateStructuredListElement(InitListExpr *StructuredList,
210 unsigned &StructuredIndex,
211 Expr *expr);
212 int numArrayElements(QualType DeclType);
213 int numStructUnionElements(QualType DeclType);
214
215 void FillInValueInitForField(unsigned Init, FieldDecl *Field,
216 const InitializedEntity &ParentEntity,
217 InitListExpr *ILE, bool &RequiresSecondPass);
218 void FillInValueInitializations(const InitializedEntity &Entity,
219 InitListExpr *ILE, bool &RequiresSecondPass);
220public:
221 InitListChecker(Sema &S, const InitializedEntity &Entity,
222 InitListExpr *IL, QualType &T);
223 bool HadError() { return hadError; }
224
225 // @brief Retrieves the fully-structured initializer list used for
226 // semantic analysis and code generation.
227 InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
228};
229} // end anonymous namespace
230
231void InitListChecker::FillInValueInitForField(unsigned Init, FieldDecl *Field,
232 const InitializedEntity &ParentEntity,
233 InitListExpr *ILE,
234 bool &RequiresSecondPass) {
235 SourceLocation Loc = ILE->getSourceRange().getBegin();
236 unsigned NumInits = ILE->getNumInits();
237 InitializedEntity MemberEntity
238 = InitializedEntity::InitializeMember(Field, &ParentEntity);
239 if (Init >= NumInits || !ILE->getInit(Init)) {
240 // FIXME: We probably don't need to handle references
241 // specially here, since value-initialization of references is
242 // handled in InitializationSequence.
243 if (Field->getType()->isReferenceType()) {
244 // C++ [dcl.init.aggr]p9:
245 // If an incomplete or empty initializer-list leaves a
246 // member of reference type uninitialized, the program is
247 // ill-formed.
248 SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
249 << Field->getType()
250 << ILE->getSyntacticForm()->getSourceRange();
251 SemaRef.Diag(Field->getLocation(),
252 diag::note_uninit_reference_member);
253 hadError = true;
254 return;
255 }
256
257 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
258 true);
259 InitializationSequence InitSeq(SemaRef, MemberEntity, Kind, 0, 0);
260 if (!InitSeq) {
261 InitSeq.Diagnose(SemaRef, MemberEntity, Kind, 0, 0);
262 hadError = true;
263 return;
264 }
265
266 Sema::OwningExprResult MemberInit
267 = InitSeq.Perform(SemaRef, MemberEntity, Kind,
268 Sema::MultiExprArg(SemaRef, 0, 0));
269 if (MemberInit.isInvalid()) {
270 hadError = true;
271 return;
272 }
273
274 if (hadError) {
275 // Do nothing
276 } else if (Init < NumInits) {
277 ILE->setInit(Init, MemberInit.takeAs<Expr>());
278 } else if (InitSeq.getKind()
279 == InitializationSequence::ConstructorInitialization) {
280 // Value-initialization requires a constructor call, so
281 // extend the initializer list to include the constructor
282 // call and make a note that we'll need to take another pass
283 // through the initializer list.
284 ILE->updateInit(SemaRef.Context, Init, MemberInit.takeAs<Expr>());
285 RequiresSecondPass = true;
286 }
287 } else if (InitListExpr *InnerILE
288 = dyn_cast<InitListExpr>(ILE->getInit(Init)))
289 FillInValueInitializations(MemberEntity, InnerILE,
290 RequiresSecondPass);
291}
292
293/// Recursively replaces NULL values within the given initializer list
294/// with expressions that perform value-initialization of the
295/// appropriate type.
296void
297InitListChecker::FillInValueInitializations(const InitializedEntity &Entity,
298 InitListExpr *ILE,
299 bool &RequiresSecondPass) {
300 assert((ILE->getType() != SemaRef.Context.VoidTy) &&
301 "Should not have void type");
302 SourceLocation Loc = ILE->getSourceRange().getBegin();
303 if (ILE->getSyntacticForm())
304 Loc = ILE->getSyntacticForm()->getSourceRange().getBegin();
305
306 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
307 if (RType->getDecl()->isUnion() &&
308 ILE->getInitializedFieldInUnion())
309 FillInValueInitForField(0, ILE->getInitializedFieldInUnion(),
310 Entity, ILE, RequiresSecondPass);
311 else {
312 unsigned Init = 0;
313 for (RecordDecl::field_iterator
314 Field = RType->getDecl()->field_begin(),
315 FieldEnd = RType->getDecl()->field_end();
316 Field != FieldEnd; ++Field) {
317 if (Field->isUnnamedBitfield())
318 continue;
319
320 if (hadError)
321 return;
322
323 FillInValueInitForField(Init, *Field, Entity, ILE, RequiresSecondPass);
324 if (hadError)
325 return;
326
327 ++Init;
328
329 // Only look at the first initialization of a union.
330 if (RType->getDecl()->isUnion())
331 break;
332 }
333 }
334
335 return;
336 }
337
338 QualType ElementType;
339
340 InitializedEntity ElementEntity = Entity;
341 unsigned NumInits = ILE->getNumInits();
342 unsigned NumElements = NumInits;
343 if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
344 ElementType = AType->getElementType();
345 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
346 NumElements = CAType->getSize().getZExtValue();
347 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
348 0, Entity);
349 } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
350 ElementType = VType->getElementType();
351 NumElements = VType->getNumElements();
352 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
353 0, Entity);
354 } else
355 ElementType = ILE->getType();
356
357
358 for (unsigned Init = 0; Init != NumElements; ++Init) {
359 if (hadError)
360 return;
361
362 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
363 ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
364 ElementEntity.setElementIndex(Init);
365
366 if (Init >= NumInits || !ILE->getInit(Init)) {
367 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
368 true);
369 InitializationSequence InitSeq(SemaRef, ElementEntity, Kind, 0, 0);
370 if (!InitSeq) {
371 InitSeq.Diagnose(SemaRef, ElementEntity, Kind, 0, 0);
372 hadError = true;
373 return;
374 }
375
376 Sema::OwningExprResult ElementInit
377 = InitSeq.Perform(SemaRef, ElementEntity, Kind,
378 Sema::MultiExprArg(SemaRef, 0, 0));
379 if (ElementInit.isInvalid()) {
380 hadError = true;
381 return;
382 }
383
384 if (hadError) {
385 // Do nothing
386 } else if (Init < NumInits) {
387 ILE->setInit(Init, ElementInit.takeAs<Expr>());
388 } else if (InitSeq.getKind()
389 == InitializationSequence::ConstructorInitialization) {
390 // Value-initialization requires a constructor call, so
391 // extend the initializer list to include the constructor
392 // call and make a note that we'll need to take another pass
393 // through the initializer list.
394 ILE->updateInit(SemaRef.Context, Init, ElementInit.takeAs<Expr>());
395 RequiresSecondPass = true;
396 }
397 } else if (InitListExpr *InnerILE
398 = dyn_cast<InitListExpr>(ILE->getInit(Init)))
399 FillInValueInitializations(ElementEntity, InnerILE, RequiresSecondPass);
400 }
401}
402
403
404InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
405 InitListExpr *IL, QualType &T)
406 : SemaRef(S) {
407 hadError = false;
408
409 unsigned newIndex = 0;
410 unsigned newStructuredIndex = 0;
411 FullyStructuredList
412 = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
413 CheckExplicitInitList(Entity, IL, T, newIndex,
414 FullyStructuredList, newStructuredIndex,
415 /*TopLevelObject=*/true);
416
417 if (!hadError) {
418 bool RequiresSecondPass = false;
419 FillInValueInitializations(Entity, FullyStructuredList, RequiresSecondPass);
420 if (RequiresSecondPass && !hadError)
421 FillInValueInitializations(Entity, FullyStructuredList,
422 RequiresSecondPass);
423 }
424}
425
426int InitListChecker::numArrayElements(QualType DeclType) {
427 // FIXME: use a proper constant
428 int maxElements = 0x7FFFFFFF;
429 if (const ConstantArrayType *CAT =
430 SemaRef.Context.getAsConstantArrayType(DeclType)) {
431 maxElements = static_cast<int>(CAT->getSize().getZExtValue());
432 }
433 return maxElements;
434}
435
436int InitListChecker::numStructUnionElements(QualType DeclType) {
437 RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
438 int InitializableMembers = 0;
439 for (RecordDecl::field_iterator
440 Field = structDecl->field_begin(),
441 FieldEnd = structDecl->field_end();
442 Field != FieldEnd; ++Field) {
443 if ((*Field)->getIdentifier() || !(*Field)->isBitField())
444 ++InitializableMembers;
445 }
446 if (structDecl->isUnion())
447 return std::min(InitializableMembers, 1);
448 return InitializableMembers - structDecl->hasFlexibleArrayMember();
449}
450
451void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
452 InitListExpr *ParentIList,
453 QualType T, unsigned &Index,
454 InitListExpr *StructuredList,
455 unsigned &StructuredIndex,
456 bool TopLevelObject) {
457 int maxElements = 0;
458
459 if (T->isArrayType())
460 maxElements = numArrayElements(T);
461 else if (T->isRecordType())
462 maxElements = numStructUnionElements(T);
463 else if (T->isVectorType())
464 maxElements = T->getAs<VectorType>()->getNumElements();
465 else
466 assert(0 && "CheckImplicitInitList(): Illegal type");
467
468 if (maxElements == 0) {
469 SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
470 diag::err_implicit_empty_initializer);
471 ++Index;
472 hadError = true;
473 return;
474 }
475
476 // Build a structured initializer list corresponding to this subobject.
477 InitListExpr *StructuredSubobjectInitList
478 = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
479 StructuredIndex,
480 SourceRange(ParentIList->getInit(Index)->getSourceRange().getBegin(),
481 ParentIList->getSourceRange().getEnd()));
482 unsigned StructuredSubobjectInitIndex = 0;
483
484 // Check the element types and build the structural subobject.
485 unsigned StartIndex = Index;
486 CheckListElementTypes(Entity, ParentIList, T,
487 /*SubobjectIsDesignatorContext=*/false, Index,
488 StructuredSubobjectInitList,
489 StructuredSubobjectInitIndex,
490 TopLevelObject);
491 unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
492 StructuredSubobjectInitList->setType(T);
493
494 // Update the structured sub-object initializer so that it's ending
495 // range corresponds with the end of the last initializer it used.
496 if (EndIndex < ParentIList->getNumInits()) {
497 SourceLocation EndLoc
498 = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
499 StructuredSubobjectInitList->setRBraceLoc(EndLoc);
500 }
501
502 // Warn about missing braces.
503 if (T->isArrayType() || T->isRecordType()) {
504 SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
505 diag::warn_missing_braces)
506 << StructuredSubobjectInitList->getSourceRange()
507 << FixItHint::CreateInsertion(StructuredSubobjectInitList->getLocStart(),
508 "{")
509 << FixItHint::CreateInsertion(SemaRef.PP.getLocForEndOfToken(
510 StructuredSubobjectInitList->getLocEnd()),
511 "}");
512 }
513}
514
515void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
516 InitListExpr *IList, QualType &T,
517 unsigned &Index,
518 InitListExpr *StructuredList,
519 unsigned &StructuredIndex,
520 bool TopLevelObject) {
521 assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
522 SyntacticToSemantic[IList] = StructuredList;
523 StructuredList->setSyntacticForm(IList);
524 CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
525 Index, StructuredList, StructuredIndex, TopLevelObject);
526 IList->setType(T.getNonReferenceType());
527 StructuredList->setType(T.getNonReferenceType());
528 if (hadError)
529 return;
530
531 if (Index < IList->getNumInits()) {
532 // We have leftover initializers
533 if (StructuredIndex == 1 &&
534 IsStringInit(StructuredList->getInit(0), T, SemaRef.Context)) {
535 unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
536 if (SemaRef.getLangOptions().CPlusPlus) {
537 DK = diag::err_excess_initializers_in_char_array_initializer;
538 hadError = true;
539 }
540 // Special-case
541 SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
542 << IList->getInit(Index)->getSourceRange();
543 } else if (!T->isIncompleteType()) {
544 // Don't complain for incomplete types, since we'll get an error
545 // elsewhere
546 QualType CurrentObjectType = StructuredList->getType();
547 int initKind =
548 CurrentObjectType->isArrayType()? 0 :
549 CurrentObjectType->isVectorType()? 1 :
550 CurrentObjectType->isScalarType()? 2 :
551 CurrentObjectType->isUnionType()? 3 :
552 4;
553
554 unsigned DK = diag::warn_excess_initializers;
555 if (SemaRef.getLangOptions().CPlusPlus) {
556 DK = diag::err_excess_initializers;
557 hadError = true;
558 }
559 if (SemaRef.getLangOptions().OpenCL && initKind == 1) {
560 DK = diag::err_excess_initializers;
561 hadError = true;
562 }
563
564 SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
565 << initKind << IList->getInit(Index)->getSourceRange();
566 }
567 }
568
569 if (T->isScalarType() && !TopLevelObject)
570 SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
571 << IList->getSourceRange()
572 << FixItHint::CreateRemoval(IList->getLocStart())
573 << FixItHint::CreateRemoval(IList->getLocEnd());
574}
575
576void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
577 InitListExpr *IList,
578 QualType &DeclType,
579 bool SubobjectIsDesignatorContext,
580 unsigned &Index,
581 InitListExpr *StructuredList,
582 unsigned &StructuredIndex,
583 bool TopLevelObject) {
584 if (DeclType->isScalarType()) {
585 CheckScalarType(Entity, IList, DeclType, Index,
586 StructuredList, StructuredIndex);
587 } else if (DeclType->isVectorType()) {
588 CheckVectorType(Entity, IList, DeclType, Index,
589 StructuredList, StructuredIndex);
590 } else if (DeclType->isAggregateType()) {
591 if (DeclType->isRecordType()) {
592 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
593 CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
594 SubobjectIsDesignatorContext, Index,
595 StructuredList, StructuredIndex,
596 TopLevelObject);
597 } else if (DeclType->isArrayType()) {
598 llvm::APSInt Zero(
599 SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
600 false);
601 CheckArrayType(Entity, IList, DeclType, Zero,
602 SubobjectIsDesignatorContext, Index,
603 StructuredList, StructuredIndex);
604 } else
605 assert(0 && "Aggregate that isn't a structure or array?!");
606 } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
607 // This type is invalid, issue a diagnostic.
608 ++Index;
609 SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
610 << DeclType;
611 hadError = true;
612 } else if (DeclType->isRecordType()) {
613 // C++ [dcl.init]p14:
614 // [...] If the class is an aggregate (8.5.1), and the initializer
615 // is a brace-enclosed list, see 8.5.1.
616 //
617 // Note: 8.5.1 is handled below; here, we diagnose the case where
618 // we have an initializer list and a destination type that is not
619 // an aggregate.
620 // FIXME: In C++0x, this is yet another form of initialization.
621 SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
622 << DeclType << IList->getSourceRange();
623 hadError = true;
624 } else if (DeclType->isReferenceType()) {
625 CheckReferenceType(Entity, IList, DeclType, Index,
626 StructuredList, StructuredIndex);
1//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for initializers. The main entry
11// point is Sema::CheckInitList(), but all of the work is performed
12// within the InitListChecker class.
13//
14// This file also implements Sema::CheckInitializerTypes.
15//
16//===----------------------------------------------------------------------===//
17
18#include "SemaInit.h"
19#include "Lookup.h"
20#include "Sema.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Parse/Designator.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/ExprObjC.h"
26#include "clang/AST/TypeLoc.h"
27#include "llvm/Support/ErrorHandling.h"
28#include <map>
29using namespace clang;
30
31//===----------------------------------------------------------------------===//
32// Sema Initialization Checking
33//===----------------------------------------------------------------------===//
34
35static Expr *IsStringInit(Expr *Init, QualType DeclType, ASTContext &Context) {
36 const ArrayType *AT = Context.getAsArrayType(DeclType);
37 if (!AT) return 0;
38
39 if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
40 return 0;
41
42 // See if this is a string literal or @encode.
43 Init = Init->IgnoreParens();
44
45 // Handle @encode, which is a narrow string.
46 if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
47 return Init;
48
49 // Otherwise we can only handle string literals.
50 StringLiteral *SL = dyn_cast<StringLiteral>(Init);
51 if (SL == 0) return 0;
52
53 QualType ElemTy = Context.getCanonicalType(AT->getElementType());
54 // char array can be initialized with a narrow string.
55 // Only allow char x[] = "foo"; not char x[] = L"foo";
56 if (!SL->isWide())
57 return ElemTy->isCharType() ? Init : 0;
58
59 // wchar_t array can be initialized with a wide string: C99 6.7.8p15 (with
60 // correction from DR343): "An array with element type compatible with a
61 // qualified or unqualified version of wchar_t may be initialized by a wide
62 // string literal, optionally enclosed in braces."
63 if (Context.typesAreCompatible(Context.getWCharType(),
64 ElemTy.getUnqualifiedType()))
65 return Init;
66
67 return 0;
68}
69
70static void CheckStringInit(Expr *Str, QualType &DeclT, Sema &S) {
71 // Get the length of the string as parsed.
72 uint64_t StrLength =
73 cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
74
75
76 const ArrayType *AT = S.Context.getAsArrayType(DeclT);
77 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
78 // C99 6.7.8p14. We have an array of character type with unknown size
79 // being initialized to a string literal.
80 llvm::APSInt ConstVal(32);
81 ConstVal = StrLength;
82 // Return a new array type (C99 6.7.8p22).
83 DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
84 ConstVal,
85 ArrayType::Normal, 0);
86 return;
87 }
88
89 const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
90
91 // C99 6.7.8p14. We have an array of character type with known size. However,
92 // the size may be smaller or larger than the string we are initializing.
93 // FIXME: Avoid truncation for 64-bit length strings.
94 if (StrLength-1 > CAT->getSize().getZExtValue())
95 S.Diag(Str->getSourceRange().getBegin(),
96 diag::warn_initializer_string_for_char_array_too_long)
97 << Str->getSourceRange();
98
99 // Set the type to the actual size that we are initializing. If we have
100 // something like:
101 // char x[1] = "foo";
102 // then this will set the string literal's type to char[1].
103 Str->setType(DeclT);
104}
105
106//===----------------------------------------------------------------------===//
107// Semantic checking for initializer lists.
108//===----------------------------------------------------------------------===//
109
110/// @brief Semantic checking for initializer lists.
111///
112/// The InitListChecker class contains a set of routines that each
113/// handle the initialization of a certain kind of entity, e.g.,
114/// arrays, vectors, struct/union types, scalars, etc. The
115/// InitListChecker itself performs a recursive walk of the subobject
116/// structure of the type to be initialized, while stepping through
117/// the initializer list one element at a time. The IList and Index
118/// parameters to each of the Check* routines contain the active
119/// (syntactic) initializer list and the index into that initializer
120/// list that represents the current initializer. Each routine is
121/// responsible for moving that Index forward as it consumes elements.
122///
123/// Each Check* routine also has a StructuredList/StructuredIndex
124/// arguments, which contains the current the "structured" (semantic)
125/// initializer list and the index into that initializer list where we
126/// are copying initializers as we map them over to the semantic
127/// list. Once we have completed our recursive walk of the subobject
128/// structure, we will have constructed a full semantic initializer
129/// list.
130///
131/// C99 designators cause changes in the initializer list traversal,
132/// because they make the initialization "jump" into a specific
133/// subobject and then continue the initialization from that
134/// point. CheckDesignatedInitializer() recursively steps into the
135/// designated subobject and manages backing out the recursion to
136/// initialize the subobjects after the one designated.
137namespace {
138class InitListChecker {
139 Sema &SemaRef;
140 bool hadError;
141 std::map<InitListExpr *, InitListExpr *> SyntacticToSemantic;
142 InitListExpr *FullyStructuredList;
143
144 void CheckImplicitInitList(const InitializedEntity &Entity,
145 InitListExpr *ParentIList, QualType T,
146 unsigned &Index, InitListExpr *StructuredList,
147 unsigned &StructuredIndex,
148 bool TopLevelObject = false);
149 void CheckExplicitInitList(const InitializedEntity &Entity,
150 InitListExpr *IList, QualType &T,
151 unsigned &Index, InitListExpr *StructuredList,
152 unsigned &StructuredIndex,
153 bool TopLevelObject = false);
154 void CheckListElementTypes(const InitializedEntity &Entity,
155 InitListExpr *IList, QualType &DeclType,
156 bool SubobjectIsDesignatorContext,
157 unsigned &Index,
158 InitListExpr *StructuredList,
159 unsigned &StructuredIndex,
160 bool TopLevelObject = false);
161 void CheckSubElementType(const InitializedEntity &Entity,
162 InitListExpr *IList, QualType ElemType,
163 unsigned &Index,
164 InitListExpr *StructuredList,
165 unsigned &StructuredIndex);
166 void CheckScalarType(const InitializedEntity &Entity,
167 InitListExpr *IList, QualType DeclType,
168 unsigned &Index,
169 InitListExpr *StructuredList,
170 unsigned &StructuredIndex);
171 void CheckReferenceType(const InitializedEntity &Entity,
172 InitListExpr *IList, QualType DeclType,
173 unsigned &Index,
174 InitListExpr *StructuredList,
175 unsigned &StructuredIndex);
176 void CheckVectorType(const InitializedEntity &Entity,
177 InitListExpr *IList, QualType DeclType, unsigned &Index,
178 InitListExpr *StructuredList,
179 unsigned &StructuredIndex);
180 void CheckStructUnionTypes(const InitializedEntity &Entity,
181 InitListExpr *IList, QualType DeclType,
182 RecordDecl::field_iterator Field,
183 bool SubobjectIsDesignatorContext, unsigned &Index,
184 InitListExpr *StructuredList,
185 unsigned &StructuredIndex,
186 bool TopLevelObject = false);
187 void CheckArrayType(const InitializedEntity &Entity,
188 InitListExpr *IList, QualType &DeclType,
189 llvm::APSInt elementIndex,
190 bool SubobjectIsDesignatorContext, unsigned &Index,
191 InitListExpr *StructuredList,
192 unsigned &StructuredIndex);
193 bool CheckDesignatedInitializer(const InitializedEntity &Entity,
194 InitListExpr *IList, DesignatedInitExpr *DIE,
195 unsigned DesigIdx,
196 QualType &CurrentObjectType,
197 RecordDecl::field_iterator *NextField,
198 llvm::APSInt *NextElementIndex,
199 unsigned &Index,
200 InitListExpr *StructuredList,
201 unsigned &StructuredIndex,
202 bool FinishSubobjectInit,
203 bool TopLevelObject);
204 InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
205 QualType CurrentObjectType,
206 InitListExpr *StructuredList,
207 unsigned StructuredIndex,
208 SourceRange InitRange);
209 void UpdateStructuredListElement(InitListExpr *StructuredList,
210 unsigned &StructuredIndex,
211 Expr *expr);
212 int numArrayElements(QualType DeclType);
213 int numStructUnionElements(QualType DeclType);
214
215 void FillInValueInitForField(unsigned Init, FieldDecl *Field,
216 const InitializedEntity &ParentEntity,
217 InitListExpr *ILE, bool &RequiresSecondPass);
218 void FillInValueInitializations(const InitializedEntity &Entity,
219 InitListExpr *ILE, bool &RequiresSecondPass);
220public:
221 InitListChecker(Sema &S, const InitializedEntity &Entity,
222 InitListExpr *IL, QualType &T);
223 bool HadError() { return hadError; }
224
225 // @brief Retrieves the fully-structured initializer list used for
226 // semantic analysis and code generation.
227 InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
228};
229} // end anonymous namespace
230
231void InitListChecker::FillInValueInitForField(unsigned Init, FieldDecl *Field,
232 const InitializedEntity &ParentEntity,
233 InitListExpr *ILE,
234 bool &RequiresSecondPass) {
235 SourceLocation Loc = ILE->getSourceRange().getBegin();
236 unsigned NumInits = ILE->getNumInits();
237 InitializedEntity MemberEntity
238 = InitializedEntity::InitializeMember(Field, &ParentEntity);
239 if (Init >= NumInits || !ILE->getInit(Init)) {
240 // FIXME: We probably don't need to handle references
241 // specially here, since value-initialization of references is
242 // handled in InitializationSequence.
243 if (Field->getType()->isReferenceType()) {
244 // C++ [dcl.init.aggr]p9:
245 // If an incomplete or empty initializer-list leaves a
246 // member of reference type uninitialized, the program is
247 // ill-formed.
248 SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
249 << Field->getType()
250 << ILE->getSyntacticForm()->getSourceRange();
251 SemaRef.Diag(Field->getLocation(),
252 diag::note_uninit_reference_member);
253 hadError = true;
254 return;
255 }
256
257 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
258 true);
259 InitializationSequence InitSeq(SemaRef, MemberEntity, Kind, 0, 0);
260 if (!InitSeq) {
261 InitSeq.Diagnose(SemaRef, MemberEntity, Kind, 0, 0);
262 hadError = true;
263 return;
264 }
265
266 Sema::OwningExprResult MemberInit
267 = InitSeq.Perform(SemaRef, MemberEntity, Kind,
268 Sema::MultiExprArg(SemaRef, 0, 0));
269 if (MemberInit.isInvalid()) {
270 hadError = true;
271 return;
272 }
273
274 if (hadError) {
275 // Do nothing
276 } else if (Init < NumInits) {
277 ILE->setInit(Init, MemberInit.takeAs<Expr>());
278 } else if (InitSeq.getKind()
279 == InitializationSequence::ConstructorInitialization) {
280 // Value-initialization requires a constructor call, so
281 // extend the initializer list to include the constructor
282 // call and make a note that we'll need to take another pass
283 // through the initializer list.
284 ILE->updateInit(SemaRef.Context, Init, MemberInit.takeAs<Expr>());
285 RequiresSecondPass = true;
286 }
287 } else if (InitListExpr *InnerILE
288 = dyn_cast<InitListExpr>(ILE->getInit(Init)))
289 FillInValueInitializations(MemberEntity, InnerILE,
290 RequiresSecondPass);
291}
292
293/// Recursively replaces NULL values within the given initializer list
294/// with expressions that perform value-initialization of the
295/// appropriate type.
296void
297InitListChecker::FillInValueInitializations(const InitializedEntity &Entity,
298 InitListExpr *ILE,
299 bool &RequiresSecondPass) {
300 assert((ILE->getType() != SemaRef.Context.VoidTy) &&
301 "Should not have void type");
302 SourceLocation Loc = ILE->getSourceRange().getBegin();
303 if (ILE->getSyntacticForm())
304 Loc = ILE->getSyntacticForm()->getSourceRange().getBegin();
305
306 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
307 if (RType->getDecl()->isUnion() &&
308 ILE->getInitializedFieldInUnion())
309 FillInValueInitForField(0, ILE->getInitializedFieldInUnion(),
310 Entity, ILE, RequiresSecondPass);
311 else {
312 unsigned Init = 0;
313 for (RecordDecl::field_iterator
314 Field = RType->getDecl()->field_begin(),
315 FieldEnd = RType->getDecl()->field_end();
316 Field != FieldEnd; ++Field) {
317 if (Field->isUnnamedBitfield())
318 continue;
319
320 if (hadError)
321 return;
322
323 FillInValueInitForField(Init, *Field, Entity, ILE, RequiresSecondPass);
324 if (hadError)
325 return;
326
327 ++Init;
328
329 // Only look at the first initialization of a union.
330 if (RType->getDecl()->isUnion())
331 break;
332 }
333 }
334
335 return;
336 }
337
338 QualType ElementType;
339
340 InitializedEntity ElementEntity = Entity;
341 unsigned NumInits = ILE->getNumInits();
342 unsigned NumElements = NumInits;
343 if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
344 ElementType = AType->getElementType();
345 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
346 NumElements = CAType->getSize().getZExtValue();
347 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
348 0, Entity);
349 } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
350 ElementType = VType->getElementType();
351 NumElements = VType->getNumElements();
352 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
353 0, Entity);
354 } else
355 ElementType = ILE->getType();
356
357
358 for (unsigned Init = 0; Init != NumElements; ++Init) {
359 if (hadError)
360 return;
361
362 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
363 ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
364 ElementEntity.setElementIndex(Init);
365
366 if (Init >= NumInits || !ILE->getInit(Init)) {
367 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
368 true);
369 InitializationSequence InitSeq(SemaRef, ElementEntity, Kind, 0, 0);
370 if (!InitSeq) {
371 InitSeq.Diagnose(SemaRef, ElementEntity, Kind, 0, 0);
372 hadError = true;
373 return;
374 }
375
376 Sema::OwningExprResult ElementInit
377 = InitSeq.Perform(SemaRef, ElementEntity, Kind,
378 Sema::MultiExprArg(SemaRef, 0, 0));
379 if (ElementInit.isInvalid()) {
380 hadError = true;
381 return;
382 }
383
384 if (hadError) {
385 // Do nothing
386 } else if (Init < NumInits) {
387 ILE->setInit(Init, ElementInit.takeAs<Expr>());
388 } else if (InitSeq.getKind()
389 == InitializationSequence::ConstructorInitialization) {
390 // Value-initialization requires a constructor call, so
391 // extend the initializer list to include the constructor
392 // call and make a note that we'll need to take another pass
393 // through the initializer list.
394 ILE->updateInit(SemaRef.Context, Init, ElementInit.takeAs<Expr>());
395 RequiresSecondPass = true;
396 }
397 } else if (InitListExpr *InnerILE
398 = dyn_cast<InitListExpr>(ILE->getInit(Init)))
399 FillInValueInitializations(ElementEntity, InnerILE, RequiresSecondPass);
400 }
401}
402
403
404InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
405 InitListExpr *IL, QualType &T)
406 : SemaRef(S) {
407 hadError = false;
408
409 unsigned newIndex = 0;
410 unsigned newStructuredIndex = 0;
411 FullyStructuredList
412 = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
413 CheckExplicitInitList(Entity, IL, T, newIndex,
414 FullyStructuredList, newStructuredIndex,
415 /*TopLevelObject=*/true);
416
417 if (!hadError) {
418 bool RequiresSecondPass = false;
419 FillInValueInitializations(Entity, FullyStructuredList, RequiresSecondPass);
420 if (RequiresSecondPass && !hadError)
421 FillInValueInitializations(Entity, FullyStructuredList,
422 RequiresSecondPass);
423 }
424}
425
426int InitListChecker::numArrayElements(QualType DeclType) {
427 // FIXME: use a proper constant
428 int maxElements = 0x7FFFFFFF;
429 if (const ConstantArrayType *CAT =
430 SemaRef.Context.getAsConstantArrayType(DeclType)) {
431 maxElements = static_cast<int>(CAT->getSize().getZExtValue());
432 }
433 return maxElements;
434}
435
436int InitListChecker::numStructUnionElements(QualType DeclType) {
437 RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
438 int InitializableMembers = 0;
439 for (RecordDecl::field_iterator
440 Field = structDecl->field_begin(),
441 FieldEnd = structDecl->field_end();
442 Field != FieldEnd; ++Field) {
443 if ((*Field)->getIdentifier() || !(*Field)->isBitField())
444 ++InitializableMembers;
445 }
446 if (structDecl->isUnion())
447 return std::min(InitializableMembers, 1);
448 return InitializableMembers - structDecl->hasFlexibleArrayMember();
449}
450
451void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
452 InitListExpr *ParentIList,
453 QualType T, unsigned &Index,
454 InitListExpr *StructuredList,
455 unsigned &StructuredIndex,
456 bool TopLevelObject) {
457 int maxElements = 0;
458
459 if (T->isArrayType())
460 maxElements = numArrayElements(T);
461 else if (T->isRecordType())
462 maxElements = numStructUnionElements(T);
463 else if (T->isVectorType())
464 maxElements = T->getAs<VectorType>()->getNumElements();
465 else
466 assert(0 && "CheckImplicitInitList(): Illegal type");
467
468 if (maxElements == 0) {
469 SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
470 diag::err_implicit_empty_initializer);
471 ++Index;
472 hadError = true;
473 return;
474 }
475
476 // Build a structured initializer list corresponding to this subobject.
477 InitListExpr *StructuredSubobjectInitList
478 = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
479 StructuredIndex,
480 SourceRange(ParentIList->getInit(Index)->getSourceRange().getBegin(),
481 ParentIList->getSourceRange().getEnd()));
482 unsigned StructuredSubobjectInitIndex = 0;
483
484 // Check the element types and build the structural subobject.
485 unsigned StartIndex = Index;
486 CheckListElementTypes(Entity, ParentIList, T,
487 /*SubobjectIsDesignatorContext=*/false, Index,
488 StructuredSubobjectInitList,
489 StructuredSubobjectInitIndex,
490 TopLevelObject);
491 unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
492 StructuredSubobjectInitList->setType(T);
493
494 // Update the structured sub-object initializer so that it's ending
495 // range corresponds with the end of the last initializer it used.
496 if (EndIndex < ParentIList->getNumInits()) {
497 SourceLocation EndLoc
498 = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
499 StructuredSubobjectInitList->setRBraceLoc(EndLoc);
500 }
501
502 // Warn about missing braces.
503 if (T->isArrayType() || T->isRecordType()) {
504 SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
505 diag::warn_missing_braces)
506 << StructuredSubobjectInitList->getSourceRange()
507 << FixItHint::CreateInsertion(StructuredSubobjectInitList->getLocStart(),
508 "{")
509 << FixItHint::CreateInsertion(SemaRef.PP.getLocForEndOfToken(
510 StructuredSubobjectInitList->getLocEnd()),
511 "}");
512 }
513}
514
515void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
516 InitListExpr *IList, QualType &T,
517 unsigned &Index,
518 InitListExpr *StructuredList,
519 unsigned &StructuredIndex,
520 bool TopLevelObject) {
521 assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
522 SyntacticToSemantic[IList] = StructuredList;
523 StructuredList->setSyntacticForm(IList);
524 CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
525 Index, StructuredList, StructuredIndex, TopLevelObject);
526 IList->setType(T.getNonReferenceType());
527 StructuredList->setType(T.getNonReferenceType());
528 if (hadError)
529 return;
530
531 if (Index < IList->getNumInits()) {
532 // We have leftover initializers
533 if (StructuredIndex == 1 &&
534 IsStringInit(StructuredList->getInit(0), T, SemaRef.Context)) {
535 unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
536 if (SemaRef.getLangOptions().CPlusPlus) {
537 DK = diag::err_excess_initializers_in_char_array_initializer;
538 hadError = true;
539 }
540 // Special-case
541 SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
542 << IList->getInit(Index)->getSourceRange();
543 } else if (!T->isIncompleteType()) {
544 // Don't complain for incomplete types, since we'll get an error
545 // elsewhere
546 QualType CurrentObjectType = StructuredList->getType();
547 int initKind =
548 CurrentObjectType->isArrayType()? 0 :
549 CurrentObjectType->isVectorType()? 1 :
550 CurrentObjectType->isScalarType()? 2 :
551 CurrentObjectType->isUnionType()? 3 :
552 4;
553
554 unsigned DK = diag::warn_excess_initializers;
555 if (SemaRef.getLangOptions().CPlusPlus) {
556 DK = diag::err_excess_initializers;
557 hadError = true;
558 }
559 if (SemaRef.getLangOptions().OpenCL && initKind == 1) {
560 DK = diag::err_excess_initializers;
561 hadError = true;
562 }
563
564 SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
565 << initKind << IList->getInit(Index)->getSourceRange();
566 }
567 }
568
569 if (T->isScalarType() && !TopLevelObject)
570 SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
571 << IList->getSourceRange()
572 << FixItHint::CreateRemoval(IList->getLocStart())
573 << FixItHint::CreateRemoval(IList->getLocEnd());
574}
575
576void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
577 InitListExpr *IList,
578 QualType &DeclType,
579 bool SubobjectIsDesignatorContext,
580 unsigned &Index,
581 InitListExpr *StructuredList,
582 unsigned &StructuredIndex,
583 bool TopLevelObject) {
584 if (DeclType->isScalarType()) {
585 CheckScalarType(Entity, IList, DeclType, Index,
586 StructuredList, StructuredIndex);
587 } else if (DeclType->isVectorType()) {
588 CheckVectorType(Entity, IList, DeclType, Index,
589 StructuredList, StructuredIndex);
590 } else if (DeclType->isAggregateType()) {
591 if (DeclType->isRecordType()) {
592 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
593 CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
594 SubobjectIsDesignatorContext, Index,
595 StructuredList, StructuredIndex,
596 TopLevelObject);
597 } else if (DeclType->isArrayType()) {
598 llvm::APSInt Zero(
599 SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
600 false);
601 CheckArrayType(Entity, IList, DeclType, Zero,
602 SubobjectIsDesignatorContext, Index,
603 StructuredList, StructuredIndex);
604 } else
605 assert(0 && "Aggregate that isn't a structure or array?!");
606 } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
607 // This type is invalid, issue a diagnostic.
608 ++Index;
609 SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
610 << DeclType;
611 hadError = true;
612 } else if (DeclType->isRecordType()) {
613 // C++ [dcl.init]p14:
614 // [...] If the class is an aggregate (8.5.1), and the initializer
615 // is a brace-enclosed list, see 8.5.1.
616 //
617 // Note: 8.5.1 is handled below; here, we diagnose the case where
618 // we have an initializer list and a destination type that is not
619 // an aggregate.
620 // FIXME: In C++0x, this is yet another form of initialization.
621 SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
622 << DeclType << IList->getSourceRange();
623 hadError = true;
624 } else if (DeclType->isReferenceType()) {
625 CheckReferenceType(Entity, IList, DeclType, Index,
626 StructuredList, StructuredIndex);
627 } else if (DeclType->isObjCInterfaceType()) {
627 } else if (DeclType->isObjCObjectType()) {
628 SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
629 << DeclType;
630 hadError = true;
631 } else {
632 SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
633 << DeclType;
634 hadError = true;
635 }
636}
637
638void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
639 InitListExpr *IList,
640 QualType ElemType,
641 unsigned &Index,
642 InitListExpr *StructuredList,
643 unsigned &StructuredIndex) {
644 Expr *expr = IList->getInit(Index);
645 if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
646 unsigned newIndex = 0;
647 unsigned newStructuredIndex = 0;
648 InitListExpr *newStructuredList
649 = getStructuredSubobjectInit(IList, Index, ElemType,
650 StructuredList, StructuredIndex,
651 SubInitList->getSourceRange());
652 CheckExplicitInitList(Entity, SubInitList, ElemType, newIndex,
653 newStructuredList, newStructuredIndex);
654 ++StructuredIndex;
655 ++Index;
656 } else if (Expr *Str = IsStringInit(expr, ElemType, SemaRef.Context)) {
657 CheckStringInit(Str, ElemType, SemaRef);
658 UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
659 ++Index;
660 } else if (ElemType->isScalarType()) {
661 CheckScalarType(Entity, IList, ElemType, Index,
662 StructuredList, StructuredIndex);
663 } else if (ElemType->isReferenceType()) {
664 CheckReferenceType(Entity, IList, ElemType, Index,
665 StructuredList, StructuredIndex);
666 } else {
667 if (SemaRef.getLangOptions().CPlusPlus) {
668 // C++ [dcl.init.aggr]p12:
669 // All implicit type conversions (clause 4) are considered when
670 // initializing the aggregate member with an ini- tializer from
671 // an initializer-list. If the initializer can initialize a
672 // member, the member is initialized. [...]
673
674 // FIXME: Better EqualLoc?
675 InitializationKind Kind =
676 InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
677 InitializationSequence Seq(SemaRef, Entity, Kind, &expr, 1);
678
679 if (Seq) {
680 Sema::OwningExprResult Result =
681 Seq.Perform(SemaRef, Entity, Kind,
682 Sema::MultiExprArg(SemaRef, (void **)&expr, 1));
683 if (Result.isInvalid())
684 hadError = true;
685
686 UpdateStructuredListElement(StructuredList, StructuredIndex,
687 Result.takeAs<Expr>());
688 ++Index;
689 return;
690 }
691
692 // Fall through for subaggregate initialization
693 } else {
694 // C99 6.7.8p13:
695 //
696 // The initializer for a structure or union object that has
697 // automatic storage duration shall be either an initializer
698 // list as described below, or a single expression that has
699 // compatible structure or union type. In the latter case, the
700 // initial value of the object, including unnamed members, is
701 // that of the expression.
702 if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
703 SemaRef.Context.hasSameUnqualifiedType(expr->getType(), ElemType)) {
704 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
705 ++Index;
706 return;
707 }
708
709 // Fall through for subaggregate initialization
710 }
711
712 // C++ [dcl.init.aggr]p12:
713 //
714 // [...] Otherwise, if the member is itself a non-empty
715 // subaggregate, brace elision is assumed and the initializer is
716 // considered for the initialization of the first member of
717 // the subaggregate.
718 if (ElemType->isAggregateType() || ElemType->isVectorType()) {
719 CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
720 StructuredIndex);
721 ++StructuredIndex;
722 } else {
723 // We cannot initialize this element, so let
724 // PerformCopyInitialization produce the appropriate diagnostic.
725 SemaRef.PerformCopyInitialization(Entity, SourceLocation(),
726 SemaRef.Owned(expr));
727 IList->setInit(Index, 0);
728 hadError = true;
729 ++Index;
730 ++StructuredIndex;
731 }
732 }
733}
734
735void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
736 InitListExpr *IList, QualType DeclType,
737 unsigned &Index,
738 InitListExpr *StructuredList,
739 unsigned &StructuredIndex) {
740 if (Index < IList->getNumInits()) {
741 Expr *expr = IList->getInit(Index);
742 if (isa<InitListExpr>(expr)) {
743 SemaRef.Diag(IList->getLocStart(),
744 diag::err_many_braces_around_scalar_init)
745 << IList->getSourceRange();
746 hadError = true;
747 ++Index;
748 ++StructuredIndex;
749 return;
750 } else if (isa<DesignatedInitExpr>(expr)) {
751 SemaRef.Diag(expr->getSourceRange().getBegin(),
752 diag::err_designator_for_scalar_init)
753 << DeclType << expr->getSourceRange();
754 hadError = true;
755 ++Index;
756 ++StructuredIndex;
757 return;
758 }
759
760 Sema::OwningExprResult Result =
761 SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
762 SemaRef.Owned(expr));
763
764 Expr *ResultExpr = 0;
765
766 if (Result.isInvalid())
767 hadError = true; // types weren't compatible.
768 else {
769 ResultExpr = Result.takeAs<Expr>();
770
771 if (ResultExpr != expr) {
772 // The type was promoted, update initializer list.
773 IList->setInit(Index, ResultExpr);
774 }
775 }
776 if (hadError)
777 ++StructuredIndex;
778 else
779 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
780 ++Index;
781 } else {
782 SemaRef.Diag(IList->getLocStart(), diag::err_empty_scalar_initializer)
783 << IList->getSourceRange();
784 hadError = true;
785 ++Index;
786 ++StructuredIndex;
787 return;
788 }
789}
790
791void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
792 InitListExpr *IList, QualType DeclType,
793 unsigned &Index,
794 InitListExpr *StructuredList,
795 unsigned &StructuredIndex) {
796 if (Index < IList->getNumInits()) {
797 Expr *expr = IList->getInit(Index);
798 if (isa<InitListExpr>(expr)) {
799 SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
800 << DeclType << IList->getSourceRange();
801 hadError = true;
802 ++Index;
803 ++StructuredIndex;
804 return;
805 }
806
807 Sema::OwningExprResult Result =
808 SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
809 SemaRef.Owned(expr));
810
811 if (Result.isInvalid())
812 hadError = true;
813
814 expr = Result.takeAs<Expr>();
815 IList->setInit(Index, expr);
816
817 if (hadError)
818 ++StructuredIndex;
819 else
820 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
821 ++Index;
822 } else {
823 // FIXME: It would be wonderful if we could point at the actual member. In
824 // general, it would be useful to pass location information down the stack,
825 // so that we know the location (or decl) of the "current object" being
826 // initialized.
827 SemaRef.Diag(IList->getLocStart(),
828 diag::err_init_reference_member_uninitialized)
829 << DeclType
830 << IList->getSourceRange();
831 hadError = true;
832 ++Index;
833 ++StructuredIndex;
834 return;
835 }
836}
837
838void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
839 InitListExpr *IList, QualType DeclType,
840 unsigned &Index,
841 InitListExpr *StructuredList,
842 unsigned &StructuredIndex) {
843 if (Index < IList->getNumInits()) {
844 const VectorType *VT = DeclType->getAs<VectorType>();
845 unsigned maxElements = VT->getNumElements();
846 unsigned numEltsInit = 0;
847 QualType elementType = VT->getElementType();
848
849 if (!SemaRef.getLangOptions().OpenCL) {
850 InitializedEntity ElementEntity =
851 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
852
853 for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
854 // Don't attempt to go past the end of the init list
855 if (Index >= IList->getNumInits())
856 break;
857
858 ElementEntity.setElementIndex(Index);
859 CheckSubElementType(ElementEntity, IList, elementType, Index,
860 StructuredList, StructuredIndex);
861 }
862 } else {
863 InitializedEntity ElementEntity =
864 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
865
866 // OpenCL initializers allows vectors to be constructed from vectors.
867 for (unsigned i = 0; i < maxElements; ++i) {
868 // Don't attempt to go past the end of the init list
869 if (Index >= IList->getNumInits())
870 break;
871
872 ElementEntity.setElementIndex(Index);
873
874 QualType IType = IList->getInit(Index)->getType();
875 if (!IType->isVectorType()) {
876 CheckSubElementType(ElementEntity, IList, elementType, Index,
877 StructuredList, StructuredIndex);
878 ++numEltsInit;
879 } else {
880 const VectorType *IVT = IType->getAs<VectorType>();
881 unsigned numIElts = IVT->getNumElements();
882 QualType VecType = SemaRef.Context.getExtVectorType(elementType,
883 numIElts);
884 CheckSubElementType(ElementEntity, IList, VecType, Index,
885 StructuredList, StructuredIndex);
886 numEltsInit += numIElts;
887 }
888 }
889 }
890
891 // OpenCL requires all elements to be initialized.
892 if (numEltsInit != maxElements)
893 if (SemaRef.getLangOptions().OpenCL)
894 SemaRef.Diag(IList->getSourceRange().getBegin(),
895 diag::err_vector_incorrect_num_initializers)
896 << (numEltsInit < maxElements) << maxElements << numEltsInit;
897 }
898}
899
900void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
901 InitListExpr *IList, QualType &DeclType,
902 llvm::APSInt elementIndex,
903 bool SubobjectIsDesignatorContext,
904 unsigned &Index,
905 InitListExpr *StructuredList,
906 unsigned &StructuredIndex) {
907 // Check for the special-case of initializing an array with a string.
908 if (Index < IList->getNumInits()) {
909 if (Expr *Str = IsStringInit(IList->getInit(Index), DeclType,
910 SemaRef.Context)) {
911 CheckStringInit(Str, DeclType, SemaRef);
912 // We place the string literal directly into the resulting
913 // initializer list. This is the only place where the structure
914 // of the structured initializer list doesn't match exactly,
915 // because doing so would involve allocating one character
916 // constant for each string.
917 UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
918 StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
919 ++Index;
920 return;
921 }
922 }
923 if (const VariableArrayType *VAT =
924 SemaRef.Context.getAsVariableArrayType(DeclType)) {
925 // Check for VLAs; in standard C it would be possible to check this
926 // earlier, but I don't know where clang accepts VLAs (gcc accepts
927 // them in all sorts of strange places).
928 SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
929 diag::err_variable_object_no_init)
930 << VAT->getSizeExpr()->getSourceRange();
931 hadError = true;
932 ++Index;
933 ++StructuredIndex;
934 return;
935 }
936
937 // We might know the maximum number of elements in advance.
938 llvm::APSInt maxElements(elementIndex.getBitWidth(),
939 elementIndex.isUnsigned());
940 bool maxElementsKnown = false;
941 if (const ConstantArrayType *CAT =
942 SemaRef.Context.getAsConstantArrayType(DeclType)) {
943 maxElements = CAT->getSize();
944 elementIndex.extOrTrunc(maxElements.getBitWidth());
945 elementIndex.setIsUnsigned(maxElements.isUnsigned());
946 maxElementsKnown = true;
947 }
948
949 QualType elementType = SemaRef.Context.getAsArrayType(DeclType)
950 ->getElementType();
951 while (Index < IList->getNumInits()) {
952 Expr *Init = IList->getInit(Index);
953 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
954 // If we're not the subobject that matches up with the '{' for
955 // the designator, we shouldn't be handling the
956 // designator. Return immediately.
957 if (!SubobjectIsDesignatorContext)
958 return;
959
960 // Handle this designated initializer. elementIndex will be
961 // updated to be the next array element we'll initialize.
962 if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
963 DeclType, 0, &elementIndex, Index,
964 StructuredList, StructuredIndex, true,
965 false)) {
966 hadError = true;
967 continue;
968 }
969
970 if (elementIndex.getBitWidth() > maxElements.getBitWidth())
971 maxElements.extend(elementIndex.getBitWidth());
972 else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
973 elementIndex.extend(maxElements.getBitWidth());
974 elementIndex.setIsUnsigned(maxElements.isUnsigned());
975
976 // If the array is of incomplete type, keep track of the number of
977 // elements in the initializer.
978 if (!maxElementsKnown && elementIndex > maxElements)
979 maxElements = elementIndex;
980
981 continue;
982 }
983
984 // If we know the maximum number of elements, and we've already
985 // hit it, stop consuming elements in the initializer list.
986 if (maxElementsKnown && elementIndex == maxElements)
987 break;
988
989 InitializedEntity ElementEntity =
990 InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
991 Entity);
992 // Check this element.
993 CheckSubElementType(ElementEntity, IList, elementType, Index,
994 StructuredList, StructuredIndex);
995 ++elementIndex;
996
997 // If the array is of incomplete type, keep track of the number of
998 // elements in the initializer.
999 if (!maxElementsKnown && elementIndex > maxElements)
1000 maxElements = elementIndex;
1001 }
1002 if (!hadError && DeclType->isIncompleteArrayType()) {
1003 // If this is an incomplete array type, the actual type needs to
1004 // be calculated here.
1005 llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1006 if (maxElements == Zero) {
1007 // Sizing an array implicitly to zero is not allowed by ISO C,
1008 // but is supported by GNU.
1009 SemaRef.Diag(IList->getLocStart(),
1010 diag::ext_typecheck_zero_array_size);
1011 }
1012
1013 DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1014 ArrayType::Normal, 0);
1015 }
1016}
1017
1018void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
1019 InitListExpr *IList,
1020 QualType DeclType,
1021 RecordDecl::field_iterator Field,
1022 bool SubobjectIsDesignatorContext,
1023 unsigned &Index,
1024 InitListExpr *StructuredList,
1025 unsigned &StructuredIndex,
1026 bool TopLevelObject) {
1027 RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
1028
1029 // If the record is invalid, some of it's members are invalid. To avoid
1030 // confusion, we forgo checking the intializer for the entire record.
1031 if (structDecl->isInvalidDecl()) {
1032 hadError = true;
1033 return;
1034 }
1035
1036 if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1037 // Value-initialize the first named member of the union.
1038 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1039 for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1040 Field != FieldEnd; ++Field) {
1041 if (Field->getDeclName()) {
1042 StructuredList->setInitializedFieldInUnion(*Field);
1043 break;
1044 }
1045 }
1046 return;
1047 }
1048
1049 // If structDecl is a forward declaration, this loop won't do
1050 // anything except look at designated initializers; That's okay,
1051 // because an error should get printed out elsewhere. It might be
1052 // worthwhile to skip over the rest of the initializer, though.
1053 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1054 RecordDecl::field_iterator FieldEnd = RD->field_end();
1055 bool InitializedSomething = false;
1056 bool CheckForMissingFields = true;
1057 while (Index < IList->getNumInits()) {
1058 Expr *Init = IList->getInit(Index);
1059
1060 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1061 // If we're not the subobject that matches up with the '{' for
1062 // the designator, we shouldn't be handling the
1063 // designator. Return immediately.
1064 if (!SubobjectIsDesignatorContext)
1065 return;
1066
1067 // Handle this designated initializer. Field will be updated to
1068 // the next field that we'll be initializing.
1069 if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1070 DeclType, &Field, 0, Index,
1071 StructuredList, StructuredIndex,
1072 true, TopLevelObject))
1073 hadError = true;
1074
1075 InitializedSomething = true;
1076
1077 // Disable check for missing fields when designators are used.
1078 // This matches gcc behaviour.
1079 CheckForMissingFields = false;
1080 continue;
1081 }
1082
1083 if (Field == FieldEnd) {
1084 // We've run out of fields. We're done.
1085 break;
1086 }
1087
1088 // We've already initialized a member of a union. We're done.
1089 if (InitializedSomething && DeclType->isUnionType())
1090 break;
1091
1092 // If we've hit the flexible array member at the end, we're done.
1093 if (Field->getType()->isIncompleteArrayType())
1094 break;
1095
1096 if (Field->isUnnamedBitfield()) {
1097 // Don't initialize unnamed bitfields, e.g. "int : 20;"
1098 ++Field;
1099 continue;
1100 }
1101
1102 InitializedEntity MemberEntity =
1103 InitializedEntity::InitializeMember(*Field, &Entity);
1104 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1105 StructuredList, StructuredIndex);
1106 InitializedSomething = true;
1107
1108 if (DeclType->isUnionType()) {
1109 // Initialize the first field within the union.
1110 StructuredList->setInitializedFieldInUnion(*Field);
1111 }
1112
1113 ++Field;
1114 }
1115
1116 // Emit warnings for missing struct field initializers.
1117 if (CheckForMissingFields && Field != FieldEnd &&
1118 !Field->getType()->isIncompleteArrayType() && !DeclType->isUnionType()) {
1119 // It is possible we have one or more unnamed bitfields remaining.
1120 // Find first (if any) named field and emit warning.
1121 for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1122 it != end; ++it) {
1123 if (!it->isUnnamedBitfield()) {
1124 SemaRef.Diag(IList->getSourceRange().getEnd(),
1125 diag::warn_missing_field_initializers) << it->getName();
1126 break;
1127 }
1128 }
1129 }
1130
1131 if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1132 Index >= IList->getNumInits())
1133 return;
1134
1135 // Handle GNU flexible array initializers.
1136 if (!TopLevelObject &&
1137 (!isa<InitListExpr>(IList->getInit(Index)) ||
1138 cast<InitListExpr>(IList->getInit(Index))->getNumInits() > 0)) {
1139 SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
1140 diag::err_flexible_array_init_nonempty)
1141 << IList->getInit(Index)->getSourceRange().getBegin();
1142 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1143 << *Field;
1144 hadError = true;
1145 ++Index;
1146 return;
1147 } else {
1148 SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
1149 diag::ext_flexible_array_init)
1150 << IList->getInit(Index)->getSourceRange().getBegin();
1151 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1152 << *Field;
1153 }
1154
1155 InitializedEntity MemberEntity =
1156 InitializedEntity::InitializeMember(*Field, &Entity);
1157
1158 if (isa<InitListExpr>(IList->getInit(Index)))
1159 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1160 StructuredList, StructuredIndex);
1161 else
1162 CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1163 StructuredList, StructuredIndex);
1164}
1165
1166/// \brief Expand a field designator that refers to a member of an
1167/// anonymous struct or union into a series of field designators that
1168/// refers to the field within the appropriate subobject.
1169///
1170/// Field/FieldIndex will be updated to point to the (new)
1171/// currently-designated field.
1172static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1173 DesignatedInitExpr *DIE,
1174 unsigned DesigIdx,
1175 FieldDecl *Field,
1176 RecordDecl::field_iterator &FieldIter,
1177 unsigned &FieldIndex) {
1178 typedef DesignatedInitExpr::Designator Designator;
1179
1180 // Build the path from the current object to the member of the
1181 // anonymous struct/union (backwards).
1182 llvm::SmallVector<FieldDecl *, 4> Path;
1183 SemaRef.BuildAnonymousStructUnionMemberPath(Field, Path);
1184
1185 // Build the replacement designators.
1186 llvm::SmallVector<Designator, 4> Replacements;
1187 for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
1188 FI = Path.rbegin(), FIEnd = Path.rend();
1189 FI != FIEnd; ++FI) {
1190 if (FI + 1 == FIEnd)
1191 Replacements.push_back(Designator((IdentifierInfo *)0,
1192 DIE->getDesignator(DesigIdx)->getDotLoc(),
1193 DIE->getDesignator(DesigIdx)->getFieldLoc()));
1194 else
1195 Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
1196 SourceLocation()));
1197 Replacements.back().setField(*FI);
1198 }
1199
1200 // Expand the current designator into the set of replacement
1201 // designators, so we have a full subobject path down to where the
1202 // member of the anonymous struct/union is actually stored.
1203 DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1204 &Replacements[0] + Replacements.size());
1205
1206 // Update FieldIter/FieldIndex;
1207 RecordDecl *Record = cast<RecordDecl>(Path.back()->getDeclContext());
1208 FieldIter = Record->field_begin();
1209 FieldIndex = 0;
1210 for (RecordDecl::field_iterator FEnd = Record->field_end();
1211 FieldIter != FEnd; ++FieldIter) {
1212 if (FieldIter->isUnnamedBitfield())
1213 continue;
1214
1215 if (*FieldIter == Path.back())
1216 return;
1217
1218 ++FieldIndex;
1219 }
1220
1221 assert(false && "Unable to find anonymous struct/union field");
1222}
1223
1224/// @brief Check the well-formedness of a C99 designated initializer.
1225///
1226/// Determines whether the designated initializer @p DIE, which
1227/// resides at the given @p Index within the initializer list @p
1228/// IList, is well-formed for a current object of type @p DeclType
1229/// (C99 6.7.8). The actual subobject that this designator refers to
1230/// within the current subobject is returned in either
1231/// @p NextField or @p NextElementIndex (whichever is appropriate).
1232///
1233/// @param IList The initializer list in which this designated
1234/// initializer occurs.
1235///
1236/// @param DIE The designated initializer expression.
1237///
1238/// @param DesigIdx The index of the current designator.
1239///
1240/// @param DeclType The type of the "current object" (C99 6.7.8p17),
1241/// into which the designation in @p DIE should refer.
1242///
1243/// @param NextField If non-NULL and the first designator in @p DIE is
1244/// a field, this will be set to the field declaration corresponding
1245/// to the field named by the designator.
1246///
1247/// @param NextElementIndex If non-NULL and the first designator in @p
1248/// DIE is an array designator or GNU array-range designator, this
1249/// will be set to the last index initialized by this designator.
1250///
1251/// @param Index Index into @p IList where the designated initializer
1252/// @p DIE occurs.
1253///
1254/// @param StructuredList The initializer list expression that
1255/// describes all of the subobject initializers in the order they'll
1256/// actually be initialized.
1257///
1258/// @returns true if there was an error, false otherwise.
1259bool
1260InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
1261 InitListExpr *IList,
1262 DesignatedInitExpr *DIE,
1263 unsigned DesigIdx,
1264 QualType &CurrentObjectType,
1265 RecordDecl::field_iterator *NextField,
1266 llvm::APSInt *NextElementIndex,
1267 unsigned &Index,
1268 InitListExpr *StructuredList,
1269 unsigned &StructuredIndex,
1270 bool FinishSubobjectInit,
1271 bool TopLevelObject) {
1272 if (DesigIdx == DIE->size()) {
1273 // Check the actual initialization for the designated object type.
1274 bool prevHadError = hadError;
1275
1276 // Temporarily remove the designator expression from the
1277 // initializer list that the child calls see, so that we don't try
1278 // to re-process the designator.
1279 unsigned OldIndex = Index;
1280 IList->setInit(OldIndex, DIE->getInit());
1281
1282 CheckSubElementType(Entity, IList, CurrentObjectType, Index,
1283 StructuredList, StructuredIndex);
1284
1285 // Restore the designated initializer expression in the syntactic
1286 // form of the initializer list.
1287 if (IList->getInit(OldIndex) != DIE->getInit())
1288 DIE->setInit(IList->getInit(OldIndex));
1289 IList->setInit(OldIndex, DIE);
1290
1291 return hadError && !prevHadError;
1292 }
1293
1294 bool IsFirstDesignator = (DesigIdx == 0);
1295 assert((IsFirstDesignator || StructuredList) &&
1296 "Need a non-designated initializer list to start from");
1297
1298 DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1299 // Determine the structural initializer list that corresponds to the
1300 // current subobject.
1301 StructuredList = IsFirstDesignator? SyntacticToSemantic[IList]
1302 : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
1303 StructuredList, StructuredIndex,
1304 SourceRange(D->getStartLocation(),
1305 DIE->getSourceRange().getEnd()));
1306 assert(StructuredList && "Expected a structured initializer list");
1307
1308 if (D->isFieldDesignator()) {
1309 // C99 6.7.8p7:
1310 //
1311 // If a designator has the form
1312 //
1313 // . identifier
1314 //
1315 // then the current object (defined below) shall have
1316 // structure or union type and the identifier shall be the
1317 // name of a member of that type.
1318 const RecordType *RT = CurrentObjectType->getAs<RecordType>();
1319 if (!RT) {
1320 SourceLocation Loc = D->getDotLoc();
1321 if (Loc.isInvalid())
1322 Loc = D->getFieldLoc();
1323 SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
1324 << SemaRef.getLangOptions().CPlusPlus << CurrentObjectType;
1325 ++Index;
1326 return true;
1327 }
1328
1329 // Note: we perform a linear search of the fields here, despite
1330 // the fact that we have a faster lookup method, because we always
1331 // need to compute the field's index.
1332 FieldDecl *KnownField = D->getField();
1333 IdentifierInfo *FieldName = D->getFieldName();
1334 unsigned FieldIndex = 0;
1335 RecordDecl::field_iterator
1336 Field = RT->getDecl()->field_begin(),
1337 FieldEnd = RT->getDecl()->field_end();
1338 for (; Field != FieldEnd; ++Field) {
1339 if (Field->isUnnamedBitfield())
1340 continue;
1341
1342 if (KnownField == *Field || Field->getIdentifier() == FieldName)
1343 break;
1344
1345 ++FieldIndex;
1346 }
1347
1348 if (Field == FieldEnd) {
1349 // There was no normal field in the struct with the designated
1350 // name. Perform another lookup for this name, which may find
1351 // something that we can't designate (e.g., a member function),
1352 // may find nothing, or may find a member of an anonymous
1353 // struct/union.
1354 DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
1355 FieldDecl *ReplacementField = 0;
1356 if (Lookup.first == Lookup.second) {
1357 // Name lookup didn't find anything. Determine whether this
1358 // was a typo for another field name.
1359 LookupResult R(SemaRef, FieldName, D->getFieldLoc(),
1360 Sema::LookupMemberName);
1361 if (SemaRef.CorrectTypo(R, /*Scope=*/0, /*SS=*/0, RT->getDecl(), false,
1362 Sema::CTC_NoKeywords) &&
1363 (ReplacementField = R.getAsSingle<FieldDecl>()) &&
1364 ReplacementField->getDeclContext()->getLookupContext()
1365 ->Equals(RT->getDecl())) {
1366 SemaRef.Diag(D->getFieldLoc(),
1367 diag::err_field_designator_unknown_suggest)
1368 << FieldName << CurrentObjectType << R.getLookupName()
1369 << FixItHint::CreateReplacement(D->getFieldLoc(),
1370 R.getLookupName().getAsString());
1371 SemaRef.Diag(ReplacementField->getLocation(),
1372 diag::note_previous_decl)
1373 << ReplacementField->getDeclName();
1374 } else {
1375 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
1376 << FieldName << CurrentObjectType;
1377 ++Index;
1378 return true;
1379 }
1380 } else if (!KnownField) {
1381 // Determine whether we found a field at all.
1382 ReplacementField = dyn_cast<FieldDecl>(*Lookup.first);
1383 }
1384
1385 if (!ReplacementField) {
1386 // Name lookup found something, but it wasn't a field.
1387 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
1388 << FieldName;
1389 SemaRef.Diag((*Lookup.first)->getLocation(),
1390 diag::note_field_designator_found);
1391 ++Index;
1392 return true;
1393 }
1394
1395 if (!KnownField &&
1396 cast<RecordDecl>((ReplacementField)->getDeclContext())
1397 ->isAnonymousStructOrUnion()) {
1398 // Handle an field designator that refers to a member of an
1399 // anonymous struct or union.
1400 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx,
1401 ReplacementField,
1402 Field, FieldIndex);
1403 D = DIE->getDesignator(DesigIdx);
1404 } else if (!KnownField) {
1405 // The replacement field comes from typo correction; find it
1406 // in the list of fields.
1407 FieldIndex = 0;
1408 Field = RT->getDecl()->field_begin();
1409 for (; Field != FieldEnd; ++Field) {
1410 if (Field->isUnnamedBitfield())
1411 continue;
1412
1413 if (ReplacementField == *Field ||
1414 Field->getIdentifier() == ReplacementField->getIdentifier())
1415 break;
1416
1417 ++FieldIndex;
1418 }
1419 }
1420 } else if (!KnownField &&
1421 cast<RecordDecl>((*Field)->getDeclContext())
1422 ->isAnonymousStructOrUnion()) {
1423 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, *Field,
1424 Field, FieldIndex);
1425 D = DIE->getDesignator(DesigIdx);
1426 }
1427
1428 // All of the fields of a union are located at the same place in
1429 // the initializer list.
1430 if (RT->getDecl()->isUnion()) {
1431 FieldIndex = 0;
1432 StructuredList->setInitializedFieldInUnion(*Field);
1433 }
1434
1435 // Update the designator with the field declaration.
1436 D->setField(*Field);
1437
1438 // Make sure that our non-designated initializer list has space
1439 // for a subobject corresponding to this field.
1440 if (FieldIndex >= StructuredList->getNumInits())
1441 StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
1442
1443 // This designator names a flexible array member.
1444 if (Field->getType()->isIncompleteArrayType()) {
1445 bool Invalid = false;
1446 if ((DesigIdx + 1) != DIE->size()) {
1447 // We can't designate an object within the flexible array
1448 // member (because GCC doesn't allow it).
1449 DesignatedInitExpr::Designator *NextD
1450 = DIE->getDesignator(DesigIdx + 1);
1451 SemaRef.Diag(NextD->getStartLocation(),
1452 diag::err_designator_into_flexible_array_member)
1453 << SourceRange(NextD->getStartLocation(),
1454 DIE->getSourceRange().getEnd());
1455 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1456 << *Field;
1457 Invalid = true;
1458 }
1459
1460 if (!hadError && !isa<InitListExpr>(DIE->getInit())) {
1461 // The initializer is not an initializer list.
1462 SemaRef.Diag(DIE->getInit()->getSourceRange().getBegin(),
1463 diag::err_flexible_array_init_needs_braces)
1464 << DIE->getInit()->getSourceRange();
1465 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1466 << *Field;
1467 Invalid = true;
1468 }
1469
1470 // Handle GNU flexible array initializers.
1471 if (!Invalid && !TopLevelObject &&
1472 cast<InitListExpr>(DIE->getInit())->getNumInits() > 0) {
1473 SemaRef.Diag(DIE->getSourceRange().getBegin(),
1474 diag::err_flexible_array_init_nonempty)
1475 << DIE->getSourceRange().getBegin();
1476 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1477 << *Field;
1478 Invalid = true;
1479 }
1480
1481 if (Invalid) {
1482 ++Index;
1483 return true;
1484 }
1485
1486 // Initialize the array.
1487 bool prevHadError = hadError;
1488 unsigned newStructuredIndex = FieldIndex;
1489 unsigned OldIndex = Index;
1490 IList->setInit(Index, DIE->getInit());
1491
1492 InitializedEntity MemberEntity =
1493 InitializedEntity::InitializeMember(*Field, &Entity);
1494 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1495 StructuredList, newStructuredIndex);
1496
1497 IList->setInit(OldIndex, DIE);
1498 if (hadError && !prevHadError) {
1499 ++Field;
1500 ++FieldIndex;
1501 if (NextField)
1502 *NextField = Field;
1503 StructuredIndex = FieldIndex;
1504 return true;
1505 }
1506 } else {
1507 // Recurse to check later designated subobjects.
1508 QualType FieldType = (*Field)->getType();
1509 unsigned newStructuredIndex = FieldIndex;
1510
1511 InitializedEntity MemberEntity =
1512 InitializedEntity::InitializeMember(*Field, &Entity);
1513 if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
1514 FieldType, 0, 0, Index,
1515 StructuredList, newStructuredIndex,
1516 true, false))
1517 return true;
1518 }
1519
1520 // Find the position of the next field to be initialized in this
1521 // subobject.
1522 ++Field;
1523 ++FieldIndex;
1524
1525 // If this the first designator, our caller will continue checking
1526 // the rest of this struct/class/union subobject.
1527 if (IsFirstDesignator) {
1528 if (NextField)
1529 *NextField = Field;
1530 StructuredIndex = FieldIndex;
1531 return false;
1532 }
1533
1534 if (!FinishSubobjectInit)
1535 return false;
1536
1537 // We've already initialized something in the union; we're done.
1538 if (RT->getDecl()->isUnion())
1539 return hadError;
1540
1541 // Check the remaining fields within this class/struct/union subobject.
1542 bool prevHadError = hadError;
1543
1544 CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
1545 StructuredList, FieldIndex);
1546 return hadError && !prevHadError;
1547 }
1548
1549 // C99 6.7.8p6:
1550 //
1551 // If a designator has the form
1552 //
1553 // [ constant-expression ]
1554 //
1555 // then the current object (defined below) shall have array
1556 // type and the expression shall be an integer constant
1557 // expression. If the array is of unknown size, any
1558 // nonnegative value is valid.
1559 //
1560 // Additionally, cope with the GNU extension that permits
1561 // designators of the form
1562 //
1563 // [ constant-expression ... constant-expression ]
1564 const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
1565 if (!AT) {
1566 SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
1567 << CurrentObjectType;
1568 ++Index;
1569 return true;
1570 }
1571
1572 Expr *IndexExpr = 0;
1573 llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
1574 if (D->isArrayDesignator()) {
1575 IndexExpr = DIE->getArrayIndex(*D);
1576 DesignatedStartIndex = IndexExpr->EvaluateAsInt(SemaRef.Context);
1577 DesignatedEndIndex = DesignatedStartIndex;
1578 } else {
1579 assert(D->isArrayRangeDesignator() && "Need array-range designator");
1580
1581
1582 DesignatedStartIndex =
1583 DIE->getArrayRangeStart(*D)->EvaluateAsInt(SemaRef.Context);
1584 DesignatedEndIndex =
1585 DIE->getArrayRangeEnd(*D)->EvaluateAsInt(SemaRef.Context);
1586 IndexExpr = DIE->getArrayRangeEnd(*D);
1587
1588 if (DesignatedStartIndex.getZExtValue() !=DesignatedEndIndex.getZExtValue())
1589 FullyStructuredList->sawArrayRangeDesignator();
1590 }
1591
1592 if (isa<ConstantArrayType>(AT)) {
1593 llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
1594 DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
1595 DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
1596 DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
1597 DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
1598 if (DesignatedEndIndex >= MaxElements) {
1599 SemaRef.Diag(IndexExpr->getSourceRange().getBegin(),
1600 diag::err_array_designator_too_large)
1601 << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
1602 << IndexExpr->getSourceRange();
1603 ++Index;
1604 return true;
1605 }
1606 } else {
1607 // Make sure the bit-widths and signedness match.
1608 if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
1609 DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
1610 else if (DesignatedStartIndex.getBitWidth() <
1611 DesignatedEndIndex.getBitWidth())
1612 DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
1613 DesignatedStartIndex.setIsUnsigned(true);
1614 DesignatedEndIndex.setIsUnsigned(true);
1615 }
1616
1617 // Make sure that our non-designated initializer list has space
1618 // for a subobject corresponding to this array element.
1619 if (DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
1620 StructuredList->resizeInits(SemaRef.Context,
1621 DesignatedEndIndex.getZExtValue() + 1);
1622
1623 // Repeatedly perform subobject initializations in the range
1624 // [DesignatedStartIndex, DesignatedEndIndex].
1625
1626 // Move to the next designator
1627 unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
1628 unsigned OldIndex = Index;
1629
1630 InitializedEntity ElementEntity =
1631 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1632
1633 while (DesignatedStartIndex <= DesignatedEndIndex) {
1634 // Recurse to check later designated subobjects.
1635 QualType ElementType = AT->getElementType();
1636 Index = OldIndex;
1637
1638 ElementEntity.setElementIndex(ElementIndex);
1639 if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
1640 ElementType, 0, 0, Index,
1641 StructuredList, ElementIndex,
1642 (DesignatedStartIndex == DesignatedEndIndex),
1643 false))
1644 return true;
1645
1646 // Move to the next index in the array that we'll be initializing.
1647 ++DesignatedStartIndex;
1648 ElementIndex = DesignatedStartIndex.getZExtValue();
1649 }
1650
1651 // If this the first designator, our caller will continue checking
1652 // the rest of this array subobject.
1653 if (IsFirstDesignator) {
1654 if (NextElementIndex)
1655 *NextElementIndex = DesignatedStartIndex;
1656 StructuredIndex = ElementIndex;
1657 return false;
1658 }
1659
1660 if (!FinishSubobjectInit)
1661 return false;
1662
1663 // Check the remaining elements within this array subobject.
1664 bool prevHadError = hadError;
1665 CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
1666 /*SubobjectIsDesignatorContext=*/false, Index,
1667 StructuredList, ElementIndex);
1668 return hadError && !prevHadError;
1669}
1670
1671// Get the structured initializer list for a subobject of type
1672// @p CurrentObjectType.
1673InitListExpr *
1674InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
1675 QualType CurrentObjectType,
1676 InitListExpr *StructuredList,
1677 unsigned StructuredIndex,
1678 SourceRange InitRange) {
1679 Expr *ExistingInit = 0;
1680 if (!StructuredList)
1681 ExistingInit = SyntacticToSemantic[IList];
1682 else if (StructuredIndex < StructuredList->getNumInits())
1683 ExistingInit = StructuredList->getInit(StructuredIndex);
1684
1685 if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
1686 return Result;
1687
1688 if (ExistingInit) {
1689 // We are creating an initializer list that initializes the
1690 // subobjects of the current object, but there was already an
1691 // initialization that completely initialized the current
1692 // subobject, e.g., by a compound literal:
1693 //
1694 // struct X { int a, b; };
1695 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
1696 //
1697 // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
1698 // designated initializer re-initializes the whole
1699 // subobject [0], overwriting previous initializers.
1700 SemaRef.Diag(InitRange.getBegin(),
1701 diag::warn_subobject_initializer_overrides)
1702 << InitRange;
1703 SemaRef.Diag(ExistingInit->getSourceRange().getBegin(),
1704 diag::note_previous_initializer)
1705 << /*FIXME:has side effects=*/0
1706 << ExistingInit->getSourceRange();
1707 }
1708
1709 InitListExpr *Result
1710 = new (SemaRef.Context) InitListExpr(SemaRef.Context,
1711 InitRange.getBegin(), 0, 0,
1712 InitRange.getEnd());
1713
1714 Result->setType(CurrentObjectType.getNonReferenceType());
1715
1716 // Pre-allocate storage for the structured initializer list.
1717 unsigned NumElements = 0;
1718 unsigned NumInits = 0;
1719 if (!StructuredList)
1720 NumInits = IList->getNumInits();
1721 else if (Index < IList->getNumInits()) {
1722 if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index)))
1723 NumInits = SubList->getNumInits();
1724 }
1725
1726 if (const ArrayType *AType
1727 = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
1728 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
1729 NumElements = CAType->getSize().getZExtValue();
1730 // Simple heuristic so that we don't allocate a very large
1731 // initializer with many empty entries at the end.
1732 if (NumInits && NumElements > NumInits)
1733 NumElements = 0;
1734 }
1735 } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
1736 NumElements = VType->getNumElements();
1737 else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
1738 RecordDecl *RDecl = RType->getDecl();
1739 if (RDecl->isUnion())
1740 NumElements = 1;
1741 else
1742 NumElements = std::distance(RDecl->field_begin(),
1743 RDecl->field_end());
1744 }
1745
1746 if (NumElements < NumInits)
1747 NumElements = IList->getNumInits();
1748
1749 Result->reserveInits(SemaRef.Context, NumElements);
1750
1751 // Link this new initializer list into the structured initializer
1752 // lists.
1753 if (StructuredList)
1754 StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
1755 else {
1756 Result->setSyntacticForm(IList);
1757 SyntacticToSemantic[IList] = Result;
1758 }
1759
1760 return Result;
1761}
1762
1763/// Update the initializer at index @p StructuredIndex within the
1764/// structured initializer list to the value @p expr.
1765void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
1766 unsigned &StructuredIndex,
1767 Expr *expr) {
1768 // No structured initializer list to update
1769 if (!StructuredList)
1770 return;
1771
1772 if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
1773 StructuredIndex, expr)) {
1774 // This initializer overwrites a previous initializer. Warn.
1775 SemaRef.Diag(expr->getSourceRange().getBegin(),
1776 diag::warn_initializer_overrides)
1777 << expr->getSourceRange();
1778 SemaRef.Diag(PrevInit->getSourceRange().getBegin(),
1779 diag::note_previous_initializer)
1780 << /*FIXME:has side effects=*/0
1781 << PrevInit->getSourceRange();
1782 }
1783
1784 ++StructuredIndex;
1785}
1786
1787/// Check that the given Index expression is a valid array designator
1788/// value. This is essentailly just a wrapper around
1789/// VerifyIntegerConstantExpression that also checks for negative values
1790/// and produces a reasonable diagnostic if there is a
1791/// failure. Returns true if there was an error, false otherwise. If
1792/// everything went okay, Value will receive the value of the constant
1793/// expression.
1794static bool
1795CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
1796 SourceLocation Loc = Index->getSourceRange().getBegin();
1797
1798 // Make sure this is an integer constant expression.
1799 if (S.VerifyIntegerConstantExpression(Index, &Value))
1800 return true;
1801
1802 if (Value.isSigned() && Value.isNegative())
1803 return S.Diag(Loc, diag::err_array_designator_negative)
1804 << Value.toString(10) << Index->getSourceRange();
1805
1806 Value.setIsUnsigned(true);
1807 return false;
1808}
1809
1810Sema::OwningExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
1811 SourceLocation Loc,
1812 bool GNUSyntax,
1813 OwningExprResult Init) {
1814 typedef DesignatedInitExpr::Designator ASTDesignator;
1815
1816 bool Invalid = false;
1817 llvm::SmallVector<ASTDesignator, 32> Designators;
1818 llvm::SmallVector<Expr *, 32> InitExpressions;
1819
1820 // Build designators and check array designator expressions.
1821 for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
1822 const Designator &D = Desig.getDesignator(Idx);
1823 switch (D.getKind()) {
1824 case Designator::FieldDesignator:
1825 Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
1826 D.getFieldLoc()));
1827 break;
1828
1829 case Designator::ArrayDesignator: {
1830 Expr *Index = static_cast<Expr *>(D.getArrayIndex());
1831 llvm::APSInt IndexValue;
1832 if (!Index->isTypeDependent() &&
1833 !Index->isValueDependent() &&
1834 CheckArrayDesignatorExpr(*this, Index, IndexValue))
1835 Invalid = true;
1836 else {
1837 Designators.push_back(ASTDesignator(InitExpressions.size(),
1838 D.getLBracketLoc(),
1839 D.getRBracketLoc()));
1840 InitExpressions.push_back(Index);
1841 }
1842 break;
1843 }
1844
1845 case Designator::ArrayRangeDesignator: {
1846 Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
1847 Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
1848 llvm::APSInt StartValue;
1849 llvm::APSInt EndValue;
1850 bool StartDependent = StartIndex->isTypeDependent() ||
1851 StartIndex->isValueDependent();
1852 bool EndDependent = EndIndex->isTypeDependent() ||
1853 EndIndex->isValueDependent();
1854 if ((!StartDependent &&
1855 CheckArrayDesignatorExpr(*this, StartIndex, StartValue)) ||
1856 (!EndDependent &&
1857 CheckArrayDesignatorExpr(*this, EndIndex, EndValue)))
1858 Invalid = true;
1859 else {
1860 // Make sure we're comparing values with the same bit width.
1861 if (StartDependent || EndDependent) {
1862 // Nothing to compute.
1863 } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
1864 EndValue.extend(StartValue.getBitWidth());
1865 else if (StartValue.getBitWidth() < EndValue.getBitWidth())
1866 StartValue.extend(EndValue.getBitWidth());
1867
1868 if (!StartDependent && !EndDependent && EndValue < StartValue) {
1869 Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
1870 << StartValue.toString(10) << EndValue.toString(10)
1871 << StartIndex->getSourceRange() << EndIndex->getSourceRange();
1872 Invalid = true;
1873 } else {
1874 Designators.push_back(ASTDesignator(InitExpressions.size(),
1875 D.getLBracketLoc(),
1876 D.getEllipsisLoc(),
1877 D.getRBracketLoc()));
1878 InitExpressions.push_back(StartIndex);
1879 InitExpressions.push_back(EndIndex);
1880 }
1881 }
1882 break;
1883 }
1884 }
1885 }
1886
1887 if (Invalid || Init.isInvalid())
1888 return ExprError();
1889
1890 // Clear out the expressions within the designation.
1891 Desig.ClearExprs(*this);
1892
1893 DesignatedInitExpr *DIE
1894 = DesignatedInitExpr::Create(Context,
1895 Designators.data(), Designators.size(),
1896 InitExpressions.data(), InitExpressions.size(),
1897 Loc, GNUSyntax, Init.takeAs<Expr>());
1898 return Owned(DIE);
1899}
1900
1901bool Sema::CheckInitList(const InitializedEntity &Entity,
1902 InitListExpr *&InitList, QualType &DeclType) {
1903 InitListChecker CheckInitList(*this, Entity, InitList, DeclType);
1904 if (!CheckInitList.HadError())
1905 InitList = CheckInitList.getFullyStructuredList();
1906
1907 return CheckInitList.HadError();
1908}
1909
1910//===----------------------------------------------------------------------===//
1911// Initialization entity
1912//===----------------------------------------------------------------------===//
1913
1914InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
1915 const InitializedEntity &Parent)
1916 : Parent(&Parent), Index(Index)
1917{
1918 if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
1919 Kind = EK_ArrayElement;
1920 Type = AT->getElementType();
1921 } else {
1922 Kind = EK_VectorElement;
1923 Type = Parent.getType()->getAs<VectorType>()->getElementType();
1924 }
1925}
1926
1927InitializedEntity InitializedEntity::InitializeBase(ASTContext &Context,
1928 CXXBaseSpecifier *Base,
1929 bool IsInheritedVirtualBase)
1930{
1931 InitializedEntity Result;
1932 Result.Kind = EK_Base;
1933 Result.Base = reinterpret_cast<uintptr_t>(Base);
1934 if (IsInheritedVirtualBase)
1935 Result.Base |= 0x01;
1936
1937 Result.Type = Base->getType();
1938 return Result;
1939}
1940
1941DeclarationName InitializedEntity::getName() const {
1942 switch (getKind()) {
1943 case EK_Parameter:
1944 if (!VariableOrMember)
1945 return DeclarationName();
1946 // Fall through
1947
1948 case EK_Variable:
1949 case EK_Member:
1950 return VariableOrMember->getDeclName();
1951
1952 case EK_Result:
1953 case EK_Exception:
1954 case EK_New:
1955 case EK_Temporary:
1956 case EK_Base:
1957 case EK_ArrayElement:
1958 case EK_VectorElement:
1959 return DeclarationName();
1960 }
1961
1962 // Silence GCC warning
1963 return DeclarationName();
1964}
1965
1966DeclaratorDecl *InitializedEntity::getDecl() const {
1967 switch (getKind()) {
1968 case EK_Variable:
1969 case EK_Parameter:
1970 case EK_Member:
1971 return VariableOrMember;
1972
1973 case EK_Result:
1974 case EK_Exception:
1975 case EK_New:
1976 case EK_Temporary:
1977 case EK_Base:
1978 case EK_ArrayElement:
1979 case EK_VectorElement:
1980 return 0;
1981 }
1982
1983 // Silence GCC warning
1984 return 0;
1985}
1986
628 SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
629 << DeclType;
630 hadError = true;
631 } else {
632 SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
633 << DeclType;
634 hadError = true;
635 }
636}
637
638void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
639 InitListExpr *IList,
640 QualType ElemType,
641 unsigned &Index,
642 InitListExpr *StructuredList,
643 unsigned &StructuredIndex) {
644 Expr *expr = IList->getInit(Index);
645 if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
646 unsigned newIndex = 0;
647 unsigned newStructuredIndex = 0;
648 InitListExpr *newStructuredList
649 = getStructuredSubobjectInit(IList, Index, ElemType,
650 StructuredList, StructuredIndex,
651 SubInitList->getSourceRange());
652 CheckExplicitInitList(Entity, SubInitList, ElemType, newIndex,
653 newStructuredList, newStructuredIndex);
654 ++StructuredIndex;
655 ++Index;
656 } else if (Expr *Str = IsStringInit(expr, ElemType, SemaRef.Context)) {
657 CheckStringInit(Str, ElemType, SemaRef);
658 UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
659 ++Index;
660 } else if (ElemType->isScalarType()) {
661 CheckScalarType(Entity, IList, ElemType, Index,
662 StructuredList, StructuredIndex);
663 } else if (ElemType->isReferenceType()) {
664 CheckReferenceType(Entity, IList, ElemType, Index,
665 StructuredList, StructuredIndex);
666 } else {
667 if (SemaRef.getLangOptions().CPlusPlus) {
668 // C++ [dcl.init.aggr]p12:
669 // All implicit type conversions (clause 4) are considered when
670 // initializing the aggregate member with an ini- tializer from
671 // an initializer-list. If the initializer can initialize a
672 // member, the member is initialized. [...]
673
674 // FIXME: Better EqualLoc?
675 InitializationKind Kind =
676 InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
677 InitializationSequence Seq(SemaRef, Entity, Kind, &expr, 1);
678
679 if (Seq) {
680 Sema::OwningExprResult Result =
681 Seq.Perform(SemaRef, Entity, Kind,
682 Sema::MultiExprArg(SemaRef, (void **)&expr, 1));
683 if (Result.isInvalid())
684 hadError = true;
685
686 UpdateStructuredListElement(StructuredList, StructuredIndex,
687 Result.takeAs<Expr>());
688 ++Index;
689 return;
690 }
691
692 // Fall through for subaggregate initialization
693 } else {
694 // C99 6.7.8p13:
695 //
696 // The initializer for a structure or union object that has
697 // automatic storage duration shall be either an initializer
698 // list as described below, or a single expression that has
699 // compatible structure or union type. In the latter case, the
700 // initial value of the object, including unnamed members, is
701 // that of the expression.
702 if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
703 SemaRef.Context.hasSameUnqualifiedType(expr->getType(), ElemType)) {
704 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
705 ++Index;
706 return;
707 }
708
709 // Fall through for subaggregate initialization
710 }
711
712 // C++ [dcl.init.aggr]p12:
713 //
714 // [...] Otherwise, if the member is itself a non-empty
715 // subaggregate, brace elision is assumed and the initializer is
716 // considered for the initialization of the first member of
717 // the subaggregate.
718 if (ElemType->isAggregateType() || ElemType->isVectorType()) {
719 CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
720 StructuredIndex);
721 ++StructuredIndex;
722 } else {
723 // We cannot initialize this element, so let
724 // PerformCopyInitialization produce the appropriate diagnostic.
725 SemaRef.PerformCopyInitialization(Entity, SourceLocation(),
726 SemaRef.Owned(expr));
727 IList->setInit(Index, 0);
728 hadError = true;
729 ++Index;
730 ++StructuredIndex;
731 }
732 }
733}
734
735void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
736 InitListExpr *IList, QualType DeclType,
737 unsigned &Index,
738 InitListExpr *StructuredList,
739 unsigned &StructuredIndex) {
740 if (Index < IList->getNumInits()) {
741 Expr *expr = IList->getInit(Index);
742 if (isa<InitListExpr>(expr)) {
743 SemaRef.Diag(IList->getLocStart(),
744 diag::err_many_braces_around_scalar_init)
745 << IList->getSourceRange();
746 hadError = true;
747 ++Index;
748 ++StructuredIndex;
749 return;
750 } else if (isa<DesignatedInitExpr>(expr)) {
751 SemaRef.Diag(expr->getSourceRange().getBegin(),
752 diag::err_designator_for_scalar_init)
753 << DeclType << expr->getSourceRange();
754 hadError = true;
755 ++Index;
756 ++StructuredIndex;
757 return;
758 }
759
760 Sema::OwningExprResult Result =
761 SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
762 SemaRef.Owned(expr));
763
764 Expr *ResultExpr = 0;
765
766 if (Result.isInvalid())
767 hadError = true; // types weren't compatible.
768 else {
769 ResultExpr = Result.takeAs<Expr>();
770
771 if (ResultExpr != expr) {
772 // The type was promoted, update initializer list.
773 IList->setInit(Index, ResultExpr);
774 }
775 }
776 if (hadError)
777 ++StructuredIndex;
778 else
779 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
780 ++Index;
781 } else {
782 SemaRef.Diag(IList->getLocStart(), diag::err_empty_scalar_initializer)
783 << IList->getSourceRange();
784 hadError = true;
785 ++Index;
786 ++StructuredIndex;
787 return;
788 }
789}
790
791void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
792 InitListExpr *IList, QualType DeclType,
793 unsigned &Index,
794 InitListExpr *StructuredList,
795 unsigned &StructuredIndex) {
796 if (Index < IList->getNumInits()) {
797 Expr *expr = IList->getInit(Index);
798 if (isa<InitListExpr>(expr)) {
799 SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
800 << DeclType << IList->getSourceRange();
801 hadError = true;
802 ++Index;
803 ++StructuredIndex;
804 return;
805 }
806
807 Sema::OwningExprResult Result =
808 SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
809 SemaRef.Owned(expr));
810
811 if (Result.isInvalid())
812 hadError = true;
813
814 expr = Result.takeAs<Expr>();
815 IList->setInit(Index, expr);
816
817 if (hadError)
818 ++StructuredIndex;
819 else
820 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
821 ++Index;
822 } else {
823 // FIXME: It would be wonderful if we could point at the actual member. In
824 // general, it would be useful to pass location information down the stack,
825 // so that we know the location (or decl) of the "current object" being
826 // initialized.
827 SemaRef.Diag(IList->getLocStart(),
828 diag::err_init_reference_member_uninitialized)
829 << DeclType
830 << IList->getSourceRange();
831 hadError = true;
832 ++Index;
833 ++StructuredIndex;
834 return;
835 }
836}
837
838void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
839 InitListExpr *IList, QualType DeclType,
840 unsigned &Index,
841 InitListExpr *StructuredList,
842 unsigned &StructuredIndex) {
843 if (Index < IList->getNumInits()) {
844 const VectorType *VT = DeclType->getAs<VectorType>();
845 unsigned maxElements = VT->getNumElements();
846 unsigned numEltsInit = 0;
847 QualType elementType = VT->getElementType();
848
849 if (!SemaRef.getLangOptions().OpenCL) {
850 InitializedEntity ElementEntity =
851 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
852
853 for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
854 // Don't attempt to go past the end of the init list
855 if (Index >= IList->getNumInits())
856 break;
857
858 ElementEntity.setElementIndex(Index);
859 CheckSubElementType(ElementEntity, IList, elementType, Index,
860 StructuredList, StructuredIndex);
861 }
862 } else {
863 InitializedEntity ElementEntity =
864 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
865
866 // OpenCL initializers allows vectors to be constructed from vectors.
867 for (unsigned i = 0; i < maxElements; ++i) {
868 // Don't attempt to go past the end of the init list
869 if (Index >= IList->getNumInits())
870 break;
871
872 ElementEntity.setElementIndex(Index);
873
874 QualType IType = IList->getInit(Index)->getType();
875 if (!IType->isVectorType()) {
876 CheckSubElementType(ElementEntity, IList, elementType, Index,
877 StructuredList, StructuredIndex);
878 ++numEltsInit;
879 } else {
880 const VectorType *IVT = IType->getAs<VectorType>();
881 unsigned numIElts = IVT->getNumElements();
882 QualType VecType = SemaRef.Context.getExtVectorType(elementType,
883 numIElts);
884 CheckSubElementType(ElementEntity, IList, VecType, Index,
885 StructuredList, StructuredIndex);
886 numEltsInit += numIElts;
887 }
888 }
889 }
890
891 // OpenCL requires all elements to be initialized.
892 if (numEltsInit != maxElements)
893 if (SemaRef.getLangOptions().OpenCL)
894 SemaRef.Diag(IList->getSourceRange().getBegin(),
895 diag::err_vector_incorrect_num_initializers)
896 << (numEltsInit < maxElements) << maxElements << numEltsInit;
897 }
898}
899
900void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
901 InitListExpr *IList, QualType &DeclType,
902 llvm::APSInt elementIndex,
903 bool SubobjectIsDesignatorContext,
904 unsigned &Index,
905 InitListExpr *StructuredList,
906 unsigned &StructuredIndex) {
907 // Check for the special-case of initializing an array with a string.
908 if (Index < IList->getNumInits()) {
909 if (Expr *Str = IsStringInit(IList->getInit(Index), DeclType,
910 SemaRef.Context)) {
911 CheckStringInit(Str, DeclType, SemaRef);
912 // We place the string literal directly into the resulting
913 // initializer list. This is the only place where the structure
914 // of the structured initializer list doesn't match exactly,
915 // because doing so would involve allocating one character
916 // constant for each string.
917 UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
918 StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
919 ++Index;
920 return;
921 }
922 }
923 if (const VariableArrayType *VAT =
924 SemaRef.Context.getAsVariableArrayType(DeclType)) {
925 // Check for VLAs; in standard C it would be possible to check this
926 // earlier, but I don't know where clang accepts VLAs (gcc accepts
927 // them in all sorts of strange places).
928 SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
929 diag::err_variable_object_no_init)
930 << VAT->getSizeExpr()->getSourceRange();
931 hadError = true;
932 ++Index;
933 ++StructuredIndex;
934 return;
935 }
936
937 // We might know the maximum number of elements in advance.
938 llvm::APSInt maxElements(elementIndex.getBitWidth(),
939 elementIndex.isUnsigned());
940 bool maxElementsKnown = false;
941 if (const ConstantArrayType *CAT =
942 SemaRef.Context.getAsConstantArrayType(DeclType)) {
943 maxElements = CAT->getSize();
944 elementIndex.extOrTrunc(maxElements.getBitWidth());
945 elementIndex.setIsUnsigned(maxElements.isUnsigned());
946 maxElementsKnown = true;
947 }
948
949 QualType elementType = SemaRef.Context.getAsArrayType(DeclType)
950 ->getElementType();
951 while (Index < IList->getNumInits()) {
952 Expr *Init = IList->getInit(Index);
953 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
954 // If we're not the subobject that matches up with the '{' for
955 // the designator, we shouldn't be handling the
956 // designator. Return immediately.
957 if (!SubobjectIsDesignatorContext)
958 return;
959
960 // Handle this designated initializer. elementIndex will be
961 // updated to be the next array element we'll initialize.
962 if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
963 DeclType, 0, &elementIndex, Index,
964 StructuredList, StructuredIndex, true,
965 false)) {
966 hadError = true;
967 continue;
968 }
969
970 if (elementIndex.getBitWidth() > maxElements.getBitWidth())
971 maxElements.extend(elementIndex.getBitWidth());
972 else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
973 elementIndex.extend(maxElements.getBitWidth());
974 elementIndex.setIsUnsigned(maxElements.isUnsigned());
975
976 // If the array is of incomplete type, keep track of the number of
977 // elements in the initializer.
978 if (!maxElementsKnown && elementIndex > maxElements)
979 maxElements = elementIndex;
980
981 continue;
982 }
983
984 // If we know the maximum number of elements, and we've already
985 // hit it, stop consuming elements in the initializer list.
986 if (maxElementsKnown && elementIndex == maxElements)
987 break;
988
989 InitializedEntity ElementEntity =
990 InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
991 Entity);
992 // Check this element.
993 CheckSubElementType(ElementEntity, IList, elementType, Index,
994 StructuredList, StructuredIndex);
995 ++elementIndex;
996
997 // If the array is of incomplete type, keep track of the number of
998 // elements in the initializer.
999 if (!maxElementsKnown && elementIndex > maxElements)
1000 maxElements = elementIndex;
1001 }
1002 if (!hadError && DeclType->isIncompleteArrayType()) {
1003 // If this is an incomplete array type, the actual type needs to
1004 // be calculated here.
1005 llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1006 if (maxElements == Zero) {
1007 // Sizing an array implicitly to zero is not allowed by ISO C,
1008 // but is supported by GNU.
1009 SemaRef.Diag(IList->getLocStart(),
1010 diag::ext_typecheck_zero_array_size);
1011 }
1012
1013 DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1014 ArrayType::Normal, 0);
1015 }
1016}
1017
1018void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
1019 InitListExpr *IList,
1020 QualType DeclType,
1021 RecordDecl::field_iterator Field,
1022 bool SubobjectIsDesignatorContext,
1023 unsigned &Index,
1024 InitListExpr *StructuredList,
1025 unsigned &StructuredIndex,
1026 bool TopLevelObject) {
1027 RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
1028
1029 // If the record is invalid, some of it's members are invalid. To avoid
1030 // confusion, we forgo checking the intializer for the entire record.
1031 if (structDecl->isInvalidDecl()) {
1032 hadError = true;
1033 return;
1034 }
1035
1036 if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1037 // Value-initialize the first named member of the union.
1038 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1039 for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1040 Field != FieldEnd; ++Field) {
1041 if (Field->getDeclName()) {
1042 StructuredList->setInitializedFieldInUnion(*Field);
1043 break;
1044 }
1045 }
1046 return;
1047 }
1048
1049 // If structDecl is a forward declaration, this loop won't do
1050 // anything except look at designated initializers; That's okay,
1051 // because an error should get printed out elsewhere. It might be
1052 // worthwhile to skip over the rest of the initializer, though.
1053 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1054 RecordDecl::field_iterator FieldEnd = RD->field_end();
1055 bool InitializedSomething = false;
1056 bool CheckForMissingFields = true;
1057 while (Index < IList->getNumInits()) {
1058 Expr *Init = IList->getInit(Index);
1059
1060 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1061 // If we're not the subobject that matches up with the '{' for
1062 // the designator, we shouldn't be handling the
1063 // designator. Return immediately.
1064 if (!SubobjectIsDesignatorContext)
1065 return;
1066
1067 // Handle this designated initializer. Field will be updated to
1068 // the next field that we'll be initializing.
1069 if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1070 DeclType, &Field, 0, Index,
1071 StructuredList, StructuredIndex,
1072 true, TopLevelObject))
1073 hadError = true;
1074
1075 InitializedSomething = true;
1076
1077 // Disable check for missing fields when designators are used.
1078 // This matches gcc behaviour.
1079 CheckForMissingFields = false;
1080 continue;
1081 }
1082
1083 if (Field == FieldEnd) {
1084 // We've run out of fields. We're done.
1085 break;
1086 }
1087
1088 // We've already initialized a member of a union. We're done.
1089 if (InitializedSomething && DeclType->isUnionType())
1090 break;
1091
1092 // If we've hit the flexible array member at the end, we're done.
1093 if (Field->getType()->isIncompleteArrayType())
1094 break;
1095
1096 if (Field->isUnnamedBitfield()) {
1097 // Don't initialize unnamed bitfields, e.g. "int : 20;"
1098 ++Field;
1099 continue;
1100 }
1101
1102 InitializedEntity MemberEntity =
1103 InitializedEntity::InitializeMember(*Field, &Entity);
1104 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1105 StructuredList, StructuredIndex);
1106 InitializedSomething = true;
1107
1108 if (DeclType->isUnionType()) {
1109 // Initialize the first field within the union.
1110 StructuredList->setInitializedFieldInUnion(*Field);
1111 }
1112
1113 ++Field;
1114 }
1115
1116 // Emit warnings for missing struct field initializers.
1117 if (CheckForMissingFields && Field != FieldEnd &&
1118 !Field->getType()->isIncompleteArrayType() && !DeclType->isUnionType()) {
1119 // It is possible we have one or more unnamed bitfields remaining.
1120 // Find first (if any) named field and emit warning.
1121 for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1122 it != end; ++it) {
1123 if (!it->isUnnamedBitfield()) {
1124 SemaRef.Diag(IList->getSourceRange().getEnd(),
1125 diag::warn_missing_field_initializers) << it->getName();
1126 break;
1127 }
1128 }
1129 }
1130
1131 if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1132 Index >= IList->getNumInits())
1133 return;
1134
1135 // Handle GNU flexible array initializers.
1136 if (!TopLevelObject &&
1137 (!isa<InitListExpr>(IList->getInit(Index)) ||
1138 cast<InitListExpr>(IList->getInit(Index))->getNumInits() > 0)) {
1139 SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
1140 diag::err_flexible_array_init_nonempty)
1141 << IList->getInit(Index)->getSourceRange().getBegin();
1142 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1143 << *Field;
1144 hadError = true;
1145 ++Index;
1146 return;
1147 } else {
1148 SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
1149 diag::ext_flexible_array_init)
1150 << IList->getInit(Index)->getSourceRange().getBegin();
1151 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1152 << *Field;
1153 }
1154
1155 InitializedEntity MemberEntity =
1156 InitializedEntity::InitializeMember(*Field, &Entity);
1157
1158 if (isa<InitListExpr>(IList->getInit(Index)))
1159 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1160 StructuredList, StructuredIndex);
1161 else
1162 CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1163 StructuredList, StructuredIndex);
1164}
1165
1166/// \brief Expand a field designator that refers to a member of an
1167/// anonymous struct or union into a series of field designators that
1168/// refers to the field within the appropriate subobject.
1169///
1170/// Field/FieldIndex will be updated to point to the (new)
1171/// currently-designated field.
1172static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1173 DesignatedInitExpr *DIE,
1174 unsigned DesigIdx,
1175 FieldDecl *Field,
1176 RecordDecl::field_iterator &FieldIter,
1177 unsigned &FieldIndex) {
1178 typedef DesignatedInitExpr::Designator Designator;
1179
1180 // Build the path from the current object to the member of the
1181 // anonymous struct/union (backwards).
1182 llvm::SmallVector<FieldDecl *, 4> Path;
1183 SemaRef.BuildAnonymousStructUnionMemberPath(Field, Path);
1184
1185 // Build the replacement designators.
1186 llvm::SmallVector<Designator, 4> Replacements;
1187 for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
1188 FI = Path.rbegin(), FIEnd = Path.rend();
1189 FI != FIEnd; ++FI) {
1190 if (FI + 1 == FIEnd)
1191 Replacements.push_back(Designator((IdentifierInfo *)0,
1192 DIE->getDesignator(DesigIdx)->getDotLoc(),
1193 DIE->getDesignator(DesigIdx)->getFieldLoc()));
1194 else
1195 Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
1196 SourceLocation()));
1197 Replacements.back().setField(*FI);
1198 }
1199
1200 // Expand the current designator into the set of replacement
1201 // designators, so we have a full subobject path down to where the
1202 // member of the anonymous struct/union is actually stored.
1203 DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1204 &Replacements[0] + Replacements.size());
1205
1206 // Update FieldIter/FieldIndex;
1207 RecordDecl *Record = cast<RecordDecl>(Path.back()->getDeclContext());
1208 FieldIter = Record->field_begin();
1209 FieldIndex = 0;
1210 for (RecordDecl::field_iterator FEnd = Record->field_end();
1211 FieldIter != FEnd; ++FieldIter) {
1212 if (FieldIter->isUnnamedBitfield())
1213 continue;
1214
1215 if (*FieldIter == Path.back())
1216 return;
1217
1218 ++FieldIndex;
1219 }
1220
1221 assert(false && "Unable to find anonymous struct/union field");
1222}
1223
1224/// @brief Check the well-formedness of a C99 designated initializer.
1225///
1226/// Determines whether the designated initializer @p DIE, which
1227/// resides at the given @p Index within the initializer list @p
1228/// IList, is well-formed for a current object of type @p DeclType
1229/// (C99 6.7.8). The actual subobject that this designator refers to
1230/// within the current subobject is returned in either
1231/// @p NextField or @p NextElementIndex (whichever is appropriate).
1232///
1233/// @param IList The initializer list in which this designated
1234/// initializer occurs.
1235///
1236/// @param DIE The designated initializer expression.
1237///
1238/// @param DesigIdx The index of the current designator.
1239///
1240/// @param DeclType The type of the "current object" (C99 6.7.8p17),
1241/// into which the designation in @p DIE should refer.
1242///
1243/// @param NextField If non-NULL and the first designator in @p DIE is
1244/// a field, this will be set to the field declaration corresponding
1245/// to the field named by the designator.
1246///
1247/// @param NextElementIndex If non-NULL and the first designator in @p
1248/// DIE is an array designator or GNU array-range designator, this
1249/// will be set to the last index initialized by this designator.
1250///
1251/// @param Index Index into @p IList where the designated initializer
1252/// @p DIE occurs.
1253///
1254/// @param StructuredList The initializer list expression that
1255/// describes all of the subobject initializers in the order they'll
1256/// actually be initialized.
1257///
1258/// @returns true if there was an error, false otherwise.
1259bool
1260InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
1261 InitListExpr *IList,
1262 DesignatedInitExpr *DIE,
1263 unsigned DesigIdx,
1264 QualType &CurrentObjectType,
1265 RecordDecl::field_iterator *NextField,
1266 llvm::APSInt *NextElementIndex,
1267 unsigned &Index,
1268 InitListExpr *StructuredList,
1269 unsigned &StructuredIndex,
1270 bool FinishSubobjectInit,
1271 bool TopLevelObject) {
1272 if (DesigIdx == DIE->size()) {
1273 // Check the actual initialization for the designated object type.
1274 bool prevHadError = hadError;
1275
1276 // Temporarily remove the designator expression from the
1277 // initializer list that the child calls see, so that we don't try
1278 // to re-process the designator.
1279 unsigned OldIndex = Index;
1280 IList->setInit(OldIndex, DIE->getInit());
1281
1282 CheckSubElementType(Entity, IList, CurrentObjectType, Index,
1283 StructuredList, StructuredIndex);
1284
1285 // Restore the designated initializer expression in the syntactic
1286 // form of the initializer list.
1287 if (IList->getInit(OldIndex) != DIE->getInit())
1288 DIE->setInit(IList->getInit(OldIndex));
1289 IList->setInit(OldIndex, DIE);
1290
1291 return hadError && !prevHadError;
1292 }
1293
1294 bool IsFirstDesignator = (DesigIdx == 0);
1295 assert((IsFirstDesignator || StructuredList) &&
1296 "Need a non-designated initializer list to start from");
1297
1298 DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1299 // Determine the structural initializer list that corresponds to the
1300 // current subobject.
1301 StructuredList = IsFirstDesignator? SyntacticToSemantic[IList]
1302 : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
1303 StructuredList, StructuredIndex,
1304 SourceRange(D->getStartLocation(),
1305 DIE->getSourceRange().getEnd()));
1306 assert(StructuredList && "Expected a structured initializer list");
1307
1308 if (D->isFieldDesignator()) {
1309 // C99 6.7.8p7:
1310 //
1311 // If a designator has the form
1312 //
1313 // . identifier
1314 //
1315 // then the current object (defined below) shall have
1316 // structure or union type and the identifier shall be the
1317 // name of a member of that type.
1318 const RecordType *RT = CurrentObjectType->getAs<RecordType>();
1319 if (!RT) {
1320 SourceLocation Loc = D->getDotLoc();
1321 if (Loc.isInvalid())
1322 Loc = D->getFieldLoc();
1323 SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
1324 << SemaRef.getLangOptions().CPlusPlus << CurrentObjectType;
1325 ++Index;
1326 return true;
1327 }
1328
1329 // Note: we perform a linear search of the fields here, despite
1330 // the fact that we have a faster lookup method, because we always
1331 // need to compute the field's index.
1332 FieldDecl *KnownField = D->getField();
1333 IdentifierInfo *FieldName = D->getFieldName();
1334 unsigned FieldIndex = 0;
1335 RecordDecl::field_iterator
1336 Field = RT->getDecl()->field_begin(),
1337 FieldEnd = RT->getDecl()->field_end();
1338 for (; Field != FieldEnd; ++Field) {
1339 if (Field->isUnnamedBitfield())
1340 continue;
1341
1342 if (KnownField == *Field || Field->getIdentifier() == FieldName)
1343 break;
1344
1345 ++FieldIndex;
1346 }
1347
1348 if (Field == FieldEnd) {
1349 // There was no normal field in the struct with the designated
1350 // name. Perform another lookup for this name, which may find
1351 // something that we can't designate (e.g., a member function),
1352 // may find nothing, or may find a member of an anonymous
1353 // struct/union.
1354 DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
1355 FieldDecl *ReplacementField = 0;
1356 if (Lookup.first == Lookup.second) {
1357 // Name lookup didn't find anything. Determine whether this
1358 // was a typo for another field name.
1359 LookupResult R(SemaRef, FieldName, D->getFieldLoc(),
1360 Sema::LookupMemberName);
1361 if (SemaRef.CorrectTypo(R, /*Scope=*/0, /*SS=*/0, RT->getDecl(), false,
1362 Sema::CTC_NoKeywords) &&
1363 (ReplacementField = R.getAsSingle<FieldDecl>()) &&
1364 ReplacementField->getDeclContext()->getLookupContext()
1365 ->Equals(RT->getDecl())) {
1366 SemaRef.Diag(D->getFieldLoc(),
1367 diag::err_field_designator_unknown_suggest)
1368 << FieldName << CurrentObjectType << R.getLookupName()
1369 << FixItHint::CreateReplacement(D->getFieldLoc(),
1370 R.getLookupName().getAsString());
1371 SemaRef.Diag(ReplacementField->getLocation(),
1372 diag::note_previous_decl)
1373 << ReplacementField->getDeclName();
1374 } else {
1375 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
1376 << FieldName << CurrentObjectType;
1377 ++Index;
1378 return true;
1379 }
1380 } else if (!KnownField) {
1381 // Determine whether we found a field at all.
1382 ReplacementField = dyn_cast<FieldDecl>(*Lookup.first);
1383 }
1384
1385 if (!ReplacementField) {
1386 // Name lookup found something, but it wasn't a field.
1387 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
1388 << FieldName;
1389 SemaRef.Diag((*Lookup.first)->getLocation(),
1390 diag::note_field_designator_found);
1391 ++Index;
1392 return true;
1393 }
1394
1395 if (!KnownField &&
1396 cast<RecordDecl>((ReplacementField)->getDeclContext())
1397 ->isAnonymousStructOrUnion()) {
1398 // Handle an field designator that refers to a member of an
1399 // anonymous struct or union.
1400 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx,
1401 ReplacementField,
1402 Field, FieldIndex);
1403 D = DIE->getDesignator(DesigIdx);
1404 } else if (!KnownField) {
1405 // The replacement field comes from typo correction; find it
1406 // in the list of fields.
1407 FieldIndex = 0;
1408 Field = RT->getDecl()->field_begin();
1409 for (; Field != FieldEnd; ++Field) {
1410 if (Field->isUnnamedBitfield())
1411 continue;
1412
1413 if (ReplacementField == *Field ||
1414 Field->getIdentifier() == ReplacementField->getIdentifier())
1415 break;
1416
1417 ++FieldIndex;
1418 }
1419 }
1420 } else if (!KnownField &&
1421 cast<RecordDecl>((*Field)->getDeclContext())
1422 ->isAnonymousStructOrUnion()) {
1423 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, *Field,
1424 Field, FieldIndex);
1425 D = DIE->getDesignator(DesigIdx);
1426 }
1427
1428 // All of the fields of a union are located at the same place in
1429 // the initializer list.
1430 if (RT->getDecl()->isUnion()) {
1431 FieldIndex = 0;
1432 StructuredList->setInitializedFieldInUnion(*Field);
1433 }
1434
1435 // Update the designator with the field declaration.
1436 D->setField(*Field);
1437
1438 // Make sure that our non-designated initializer list has space
1439 // for a subobject corresponding to this field.
1440 if (FieldIndex >= StructuredList->getNumInits())
1441 StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
1442
1443 // This designator names a flexible array member.
1444 if (Field->getType()->isIncompleteArrayType()) {
1445 bool Invalid = false;
1446 if ((DesigIdx + 1) != DIE->size()) {
1447 // We can't designate an object within the flexible array
1448 // member (because GCC doesn't allow it).
1449 DesignatedInitExpr::Designator *NextD
1450 = DIE->getDesignator(DesigIdx + 1);
1451 SemaRef.Diag(NextD->getStartLocation(),
1452 diag::err_designator_into_flexible_array_member)
1453 << SourceRange(NextD->getStartLocation(),
1454 DIE->getSourceRange().getEnd());
1455 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1456 << *Field;
1457 Invalid = true;
1458 }
1459
1460 if (!hadError && !isa<InitListExpr>(DIE->getInit())) {
1461 // The initializer is not an initializer list.
1462 SemaRef.Diag(DIE->getInit()->getSourceRange().getBegin(),
1463 diag::err_flexible_array_init_needs_braces)
1464 << DIE->getInit()->getSourceRange();
1465 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1466 << *Field;
1467 Invalid = true;
1468 }
1469
1470 // Handle GNU flexible array initializers.
1471 if (!Invalid && !TopLevelObject &&
1472 cast<InitListExpr>(DIE->getInit())->getNumInits() > 0) {
1473 SemaRef.Diag(DIE->getSourceRange().getBegin(),
1474 diag::err_flexible_array_init_nonempty)
1475 << DIE->getSourceRange().getBegin();
1476 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1477 << *Field;
1478 Invalid = true;
1479 }
1480
1481 if (Invalid) {
1482 ++Index;
1483 return true;
1484 }
1485
1486 // Initialize the array.
1487 bool prevHadError = hadError;
1488 unsigned newStructuredIndex = FieldIndex;
1489 unsigned OldIndex = Index;
1490 IList->setInit(Index, DIE->getInit());
1491
1492 InitializedEntity MemberEntity =
1493 InitializedEntity::InitializeMember(*Field, &Entity);
1494 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1495 StructuredList, newStructuredIndex);
1496
1497 IList->setInit(OldIndex, DIE);
1498 if (hadError && !prevHadError) {
1499 ++Field;
1500 ++FieldIndex;
1501 if (NextField)
1502 *NextField = Field;
1503 StructuredIndex = FieldIndex;
1504 return true;
1505 }
1506 } else {
1507 // Recurse to check later designated subobjects.
1508 QualType FieldType = (*Field)->getType();
1509 unsigned newStructuredIndex = FieldIndex;
1510
1511 InitializedEntity MemberEntity =
1512 InitializedEntity::InitializeMember(*Field, &Entity);
1513 if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
1514 FieldType, 0, 0, Index,
1515 StructuredList, newStructuredIndex,
1516 true, false))
1517 return true;
1518 }
1519
1520 // Find the position of the next field to be initialized in this
1521 // subobject.
1522 ++Field;
1523 ++FieldIndex;
1524
1525 // If this the first designator, our caller will continue checking
1526 // the rest of this struct/class/union subobject.
1527 if (IsFirstDesignator) {
1528 if (NextField)
1529 *NextField = Field;
1530 StructuredIndex = FieldIndex;
1531 return false;
1532 }
1533
1534 if (!FinishSubobjectInit)
1535 return false;
1536
1537 // We've already initialized something in the union; we're done.
1538 if (RT->getDecl()->isUnion())
1539 return hadError;
1540
1541 // Check the remaining fields within this class/struct/union subobject.
1542 bool prevHadError = hadError;
1543
1544 CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
1545 StructuredList, FieldIndex);
1546 return hadError && !prevHadError;
1547 }
1548
1549 // C99 6.7.8p6:
1550 //
1551 // If a designator has the form
1552 //
1553 // [ constant-expression ]
1554 //
1555 // then the current object (defined below) shall have array
1556 // type and the expression shall be an integer constant
1557 // expression. If the array is of unknown size, any
1558 // nonnegative value is valid.
1559 //
1560 // Additionally, cope with the GNU extension that permits
1561 // designators of the form
1562 //
1563 // [ constant-expression ... constant-expression ]
1564 const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
1565 if (!AT) {
1566 SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
1567 << CurrentObjectType;
1568 ++Index;
1569 return true;
1570 }
1571
1572 Expr *IndexExpr = 0;
1573 llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
1574 if (D->isArrayDesignator()) {
1575 IndexExpr = DIE->getArrayIndex(*D);
1576 DesignatedStartIndex = IndexExpr->EvaluateAsInt(SemaRef.Context);
1577 DesignatedEndIndex = DesignatedStartIndex;
1578 } else {
1579 assert(D->isArrayRangeDesignator() && "Need array-range designator");
1580
1581
1582 DesignatedStartIndex =
1583 DIE->getArrayRangeStart(*D)->EvaluateAsInt(SemaRef.Context);
1584 DesignatedEndIndex =
1585 DIE->getArrayRangeEnd(*D)->EvaluateAsInt(SemaRef.Context);
1586 IndexExpr = DIE->getArrayRangeEnd(*D);
1587
1588 if (DesignatedStartIndex.getZExtValue() !=DesignatedEndIndex.getZExtValue())
1589 FullyStructuredList->sawArrayRangeDesignator();
1590 }
1591
1592 if (isa<ConstantArrayType>(AT)) {
1593 llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
1594 DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
1595 DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
1596 DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
1597 DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
1598 if (DesignatedEndIndex >= MaxElements) {
1599 SemaRef.Diag(IndexExpr->getSourceRange().getBegin(),
1600 diag::err_array_designator_too_large)
1601 << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
1602 << IndexExpr->getSourceRange();
1603 ++Index;
1604 return true;
1605 }
1606 } else {
1607 // Make sure the bit-widths and signedness match.
1608 if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
1609 DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
1610 else if (DesignatedStartIndex.getBitWidth() <
1611 DesignatedEndIndex.getBitWidth())
1612 DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
1613 DesignatedStartIndex.setIsUnsigned(true);
1614 DesignatedEndIndex.setIsUnsigned(true);
1615 }
1616
1617 // Make sure that our non-designated initializer list has space
1618 // for a subobject corresponding to this array element.
1619 if (DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
1620 StructuredList->resizeInits(SemaRef.Context,
1621 DesignatedEndIndex.getZExtValue() + 1);
1622
1623 // Repeatedly perform subobject initializations in the range
1624 // [DesignatedStartIndex, DesignatedEndIndex].
1625
1626 // Move to the next designator
1627 unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
1628 unsigned OldIndex = Index;
1629
1630 InitializedEntity ElementEntity =
1631 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1632
1633 while (DesignatedStartIndex <= DesignatedEndIndex) {
1634 // Recurse to check later designated subobjects.
1635 QualType ElementType = AT->getElementType();
1636 Index = OldIndex;
1637
1638 ElementEntity.setElementIndex(ElementIndex);
1639 if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
1640 ElementType, 0, 0, Index,
1641 StructuredList, ElementIndex,
1642 (DesignatedStartIndex == DesignatedEndIndex),
1643 false))
1644 return true;
1645
1646 // Move to the next index in the array that we'll be initializing.
1647 ++DesignatedStartIndex;
1648 ElementIndex = DesignatedStartIndex.getZExtValue();
1649 }
1650
1651 // If this the first designator, our caller will continue checking
1652 // the rest of this array subobject.
1653 if (IsFirstDesignator) {
1654 if (NextElementIndex)
1655 *NextElementIndex = DesignatedStartIndex;
1656 StructuredIndex = ElementIndex;
1657 return false;
1658 }
1659
1660 if (!FinishSubobjectInit)
1661 return false;
1662
1663 // Check the remaining elements within this array subobject.
1664 bool prevHadError = hadError;
1665 CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
1666 /*SubobjectIsDesignatorContext=*/false, Index,
1667 StructuredList, ElementIndex);
1668 return hadError && !prevHadError;
1669}
1670
1671// Get the structured initializer list for a subobject of type
1672// @p CurrentObjectType.
1673InitListExpr *
1674InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
1675 QualType CurrentObjectType,
1676 InitListExpr *StructuredList,
1677 unsigned StructuredIndex,
1678 SourceRange InitRange) {
1679 Expr *ExistingInit = 0;
1680 if (!StructuredList)
1681 ExistingInit = SyntacticToSemantic[IList];
1682 else if (StructuredIndex < StructuredList->getNumInits())
1683 ExistingInit = StructuredList->getInit(StructuredIndex);
1684
1685 if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
1686 return Result;
1687
1688 if (ExistingInit) {
1689 // We are creating an initializer list that initializes the
1690 // subobjects of the current object, but there was already an
1691 // initialization that completely initialized the current
1692 // subobject, e.g., by a compound literal:
1693 //
1694 // struct X { int a, b; };
1695 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
1696 //
1697 // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
1698 // designated initializer re-initializes the whole
1699 // subobject [0], overwriting previous initializers.
1700 SemaRef.Diag(InitRange.getBegin(),
1701 diag::warn_subobject_initializer_overrides)
1702 << InitRange;
1703 SemaRef.Diag(ExistingInit->getSourceRange().getBegin(),
1704 diag::note_previous_initializer)
1705 << /*FIXME:has side effects=*/0
1706 << ExistingInit->getSourceRange();
1707 }
1708
1709 InitListExpr *Result
1710 = new (SemaRef.Context) InitListExpr(SemaRef.Context,
1711 InitRange.getBegin(), 0, 0,
1712 InitRange.getEnd());
1713
1714 Result->setType(CurrentObjectType.getNonReferenceType());
1715
1716 // Pre-allocate storage for the structured initializer list.
1717 unsigned NumElements = 0;
1718 unsigned NumInits = 0;
1719 if (!StructuredList)
1720 NumInits = IList->getNumInits();
1721 else if (Index < IList->getNumInits()) {
1722 if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index)))
1723 NumInits = SubList->getNumInits();
1724 }
1725
1726 if (const ArrayType *AType
1727 = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
1728 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
1729 NumElements = CAType->getSize().getZExtValue();
1730 // Simple heuristic so that we don't allocate a very large
1731 // initializer with many empty entries at the end.
1732 if (NumInits && NumElements > NumInits)
1733 NumElements = 0;
1734 }
1735 } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
1736 NumElements = VType->getNumElements();
1737 else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
1738 RecordDecl *RDecl = RType->getDecl();
1739 if (RDecl->isUnion())
1740 NumElements = 1;
1741 else
1742 NumElements = std::distance(RDecl->field_begin(),
1743 RDecl->field_end());
1744 }
1745
1746 if (NumElements < NumInits)
1747 NumElements = IList->getNumInits();
1748
1749 Result->reserveInits(SemaRef.Context, NumElements);
1750
1751 // Link this new initializer list into the structured initializer
1752 // lists.
1753 if (StructuredList)
1754 StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
1755 else {
1756 Result->setSyntacticForm(IList);
1757 SyntacticToSemantic[IList] = Result;
1758 }
1759
1760 return Result;
1761}
1762
1763/// Update the initializer at index @p StructuredIndex within the
1764/// structured initializer list to the value @p expr.
1765void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
1766 unsigned &StructuredIndex,
1767 Expr *expr) {
1768 // No structured initializer list to update
1769 if (!StructuredList)
1770 return;
1771
1772 if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
1773 StructuredIndex, expr)) {
1774 // This initializer overwrites a previous initializer. Warn.
1775 SemaRef.Diag(expr->getSourceRange().getBegin(),
1776 diag::warn_initializer_overrides)
1777 << expr->getSourceRange();
1778 SemaRef.Diag(PrevInit->getSourceRange().getBegin(),
1779 diag::note_previous_initializer)
1780 << /*FIXME:has side effects=*/0
1781 << PrevInit->getSourceRange();
1782 }
1783
1784 ++StructuredIndex;
1785}
1786
1787/// Check that the given Index expression is a valid array designator
1788/// value. This is essentailly just a wrapper around
1789/// VerifyIntegerConstantExpression that also checks for negative values
1790/// and produces a reasonable diagnostic if there is a
1791/// failure. Returns true if there was an error, false otherwise. If
1792/// everything went okay, Value will receive the value of the constant
1793/// expression.
1794static bool
1795CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
1796 SourceLocation Loc = Index->getSourceRange().getBegin();
1797
1798 // Make sure this is an integer constant expression.
1799 if (S.VerifyIntegerConstantExpression(Index, &Value))
1800 return true;
1801
1802 if (Value.isSigned() && Value.isNegative())
1803 return S.Diag(Loc, diag::err_array_designator_negative)
1804 << Value.toString(10) << Index->getSourceRange();
1805
1806 Value.setIsUnsigned(true);
1807 return false;
1808}
1809
1810Sema::OwningExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
1811 SourceLocation Loc,
1812 bool GNUSyntax,
1813 OwningExprResult Init) {
1814 typedef DesignatedInitExpr::Designator ASTDesignator;
1815
1816 bool Invalid = false;
1817 llvm::SmallVector<ASTDesignator, 32> Designators;
1818 llvm::SmallVector<Expr *, 32> InitExpressions;
1819
1820 // Build designators and check array designator expressions.
1821 for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
1822 const Designator &D = Desig.getDesignator(Idx);
1823 switch (D.getKind()) {
1824 case Designator::FieldDesignator:
1825 Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
1826 D.getFieldLoc()));
1827 break;
1828
1829 case Designator::ArrayDesignator: {
1830 Expr *Index = static_cast<Expr *>(D.getArrayIndex());
1831 llvm::APSInt IndexValue;
1832 if (!Index->isTypeDependent() &&
1833 !Index->isValueDependent() &&
1834 CheckArrayDesignatorExpr(*this, Index, IndexValue))
1835 Invalid = true;
1836 else {
1837 Designators.push_back(ASTDesignator(InitExpressions.size(),
1838 D.getLBracketLoc(),
1839 D.getRBracketLoc()));
1840 InitExpressions.push_back(Index);
1841 }
1842 break;
1843 }
1844
1845 case Designator::ArrayRangeDesignator: {
1846 Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
1847 Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
1848 llvm::APSInt StartValue;
1849 llvm::APSInt EndValue;
1850 bool StartDependent = StartIndex->isTypeDependent() ||
1851 StartIndex->isValueDependent();
1852 bool EndDependent = EndIndex->isTypeDependent() ||
1853 EndIndex->isValueDependent();
1854 if ((!StartDependent &&
1855 CheckArrayDesignatorExpr(*this, StartIndex, StartValue)) ||
1856 (!EndDependent &&
1857 CheckArrayDesignatorExpr(*this, EndIndex, EndValue)))
1858 Invalid = true;
1859 else {
1860 // Make sure we're comparing values with the same bit width.
1861 if (StartDependent || EndDependent) {
1862 // Nothing to compute.
1863 } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
1864 EndValue.extend(StartValue.getBitWidth());
1865 else if (StartValue.getBitWidth() < EndValue.getBitWidth())
1866 StartValue.extend(EndValue.getBitWidth());
1867
1868 if (!StartDependent && !EndDependent && EndValue < StartValue) {
1869 Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
1870 << StartValue.toString(10) << EndValue.toString(10)
1871 << StartIndex->getSourceRange() << EndIndex->getSourceRange();
1872 Invalid = true;
1873 } else {
1874 Designators.push_back(ASTDesignator(InitExpressions.size(),
1875 D.getLBracketLoc(),
1876 D.getEllipsisLoc(),
1877 D.getRBracketLoc()));
1878 InitExpressions.push_back(StartIndex);
1879 InitExpressions.push_back(EndIndex);
1880 }
1881 }
1882 break;
1883 }
1884 }
1885 }
1886
1887 if (Invalid || Init.isInvalid())
1888 return ExprError();
1889
1890 // Clear out the expressions within the designation.
1891 Desig.ClearExprs(*this);
1892
1893 DesignatedInitExpr *DIE
1894 = DesignatedInitExpr::Create(Context,
1895 Designators.data(), Designators.size(),
1896 InitExpressions.data(), InitExpressions.size(),
1897 Loc, GNUSyntax, Init.takeAs<Expr>());
1898 return Owned(DIE);
1899}
1900
1901bool Sema::CheckInitList(const InitializedEntity &Entity,
1902 InitListExpr *&InitList, QualType &DeclType) {
1903 InitListChecker CheckInitList(*this, Entity, InitList, DeclType);
1904 if (!CheckInitList.HadError())
1905 InitList = CheckInitList.getFullyStructuredList();
1906
1907 return CheckInitList.HadError();
1908}
1909
1910//===----------------------------------------------------------------------===//
1911// Initialization entity
1912//===----------------------------------------------------------------------===//
1913
1914InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
1915 const InitializedEntity &Parent)
1916 : Parent(&Parent), Index(Index)
1917{
1918 if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
1919 Kind = EK_ArrayElement;
1920 Type = AT->getElementType();
1921 } else {
1922 Kind = EK_VectorElement;
1923 Type = Parent.getType()->getAs<VectorType>()->getElementType();
1924 }
1925}
1926
1927InitializedEntity InitializedEntity::InitializeBase(ASTContext &Context,
1928 CXXBaseSpecifier *Base,
1929 bool IsInheritedVirtualBase)
1930{
1931 InitializedEntity Result;
1932 Result.Kind = EK_Base;
1933 Result.Base = reinterpret_cast<uintptr_t>(Base);
1934 if (IsInheritedVirtualBase)
1935 Result.Base |= 0x01;
1936
1937 Result.Type = Base->getType();
1938 return Result;
1939}
1940
1941DeclarationName InitializedEntity::getName() const {
1942 switch (getKind()) {
1943 case EK_Parameter:
1944 if (!VariableOrMember)
1945 return DeclarationName();
1946 // Fall through
1947
1948 case EK_Variable:
1949 case EK_Member:
1950 return VariableOrMember->getDeclName();
1951
1952 case EK_Result:
1953 case EK_Exception:
1954 case EK_New:
1955 case EK_Temporary:
1956 case EK_Base:
1957 case EK_ArrayElement:
1958 case EK_VectorElement:
1959 return DeclarationName();
1960 }
1961
1962 // Silence GCC warning
1963 return DeclarationName();
1964}
1965
1966DeclaratorDecl *InitializedEntity::getDecl() const {
1967 switch (getKind()) {
1968 case EK_Variable:
1969 case EK_Parameter:
1970 case EK_Member:
1971 return VariableOrMember;
1972
1973 case EK_Result:
1974 case EK_Exception:
1975 case EK_New:
1976 case EK_Temporary:
1977 case EK_Base:
1978 case EK_ArrayElement:
1979 case EK_VectorElement:
1980 return 0;
1981 }
1982
1983 // Silence GCC warning
1984 return 0;
1985}
1986
1987bool InitializedEntity::allowsNRVO() const {
1988 switch (getKind()) {
1989 case EK_Result:
1990 case EK_Exception:
1991 return LocAndNRVO.NRVO;
1992
1993 case EK_Variable:
1994 case EK_Parameter:
1995 case EK_Member:
1996 case EK_New:
1997 case EK_Temporary:
1998 case EK_Base:
1999 case EK_ArrayElement:
2000 case EK_VectorElement:
2001 break;
2002 }
2003
2004 return false;
2005}
2006
1987//===----------------------------------------------------------------------===//
1988// Initialization sequence
1989//===----------------------------------------------------------------------===//
1990
1991void InitializationSequence::Step::Destroy() {
1992 switch (Kind) {
1993 case SK_ResolveAddressOfOverloadedFunction:
1994 case SK_CastDerivedToBaseRValue:
1995 case SK_CastDerivedToBaseLValue:
1996 case SK_BindReference:
1997 case SK_BindReferenceToTemporary:
1998 case SK_ExtraneousCopyToTemporary:
1999 case SK_UserConversion:
2000 case SK_QualificationConversionRValue:
2001 case SK_QualificationConversionLValue:
2002 case SK_ListInitialization:
2003 case SK_ConstructorInitialization:
2004 case SK_ZeroInitialization:
2005 case SK_CAssignment:
2006 case SK_StringInit:
2007 break;
2008
2009 case SK_ConversionSequence:
2010 delete ICS;
2011 }
2012}
2013
2014bool InitializationSequence::isDirectReferenceBinding() const {
2015 return getKind() == ReferenceBinding && Steps.back().Kind == SK_BindReference;
2016}
2017
2018bool InitializationSequence::isAmbiguous() const {
2019 if (getKind() != FailedSequence)
2020 return false;
2021
2022 switch (getFailureKind()) {
2023 case FK_TooManyInitsForReference:
2024 case FK_ArrayNeedsInitList:
2025 case FK_ArrayNeedsInitListOrStringLiteral:
2026 case FK_AddressOfOverloadFailed: // FIXME: Could do better
2027 case FK_NonConstLValueReferenceBindingToTemporary:
2028 case FK_NonConstLValueReferenceBindingToUnrelated:
2029 case FK_RValueReferenceBindingToLValue:
2030 case FK_ReferenceInitDropsQualifiers:
2031 case FK_ReferenceInitFailed:
2032 case FK_ConversionFailed:
2033 case FK_TooManyInitsForScalar:
2034 case FK_ReferenceBindingToInitList:
2035 case FK_InitListBadDestinationType:
2036 case FK_DefaultInitOfConst:
2007//===----------------------------------------------------------------------===//
2008// Initialization sequence
2009//===----------------------------------------------------------------------===//
2010
2011void InitializationSequence::Step::Destroy() {
2012 switch (Kind) {
2013 case SK_ResolveAddressOfOverloadedFunction:
2014 case SK_CastDerivedToBaseRValue:
2015 case SK_CastDerivedToBaseLValue:
2016 case SK_BindReference:
2017 case SK_BindReferenceToTemporary:
2018 case SK_ExtraneousCopyToTemporary:
2019 case SK_UserConversion:
2020 case SK_QualificationConversionRValue:
2021 case SK_QualificationConversionLValue:
2022 case SK_ListInitialization:
2023 case SK_ConstructorInitialization:
2024 case SK_ZeroInitialization:
2025 case SK_CAssignment:
2026 case SK_StringInit:
2027 break;
2028
2029 case SK_ConversionSequence:
2030 delete ICS;
2031 }
2032}
2033
2034bool InitializationSequence::isDirectReferenceBinding() const {
2035 return getKind() == ReferenceBinding && Steps.back().Kind == SK_BindReference;
2036}
2037
2038bool InitializationSequence::isAmbiguous() const {
2039 if (getKind() != FailedSequence)
2040 return false;
2041
2042 switch (getFailureKind()) {
2043 case FK_TooManyInitsForReference:
2044 case FK_ArrayNeedsInitList:
2045 case FK_ArrayNeedsInitListOrStringLiteral:
2046 case FK_AddressOfOverloadFailed: // FIXME: Could do better
2047 case FK_NonConstLValueReferenceBindingToTemporary:
2048 case FK_NonConstLValueReferenceBindingToUnrelated:
2049 case FK_RValueReferenceBindingToLValue:
2050 case FK_ReferenceInitDropsQualifiers:
2051 case FK_ReferenceInitFailed:
2052 case FK_ConversionFailed:
2053 case FK_TooManyInitsForScalar:
2054 case FK_ReferenceBindingToInitList:
2055 case FK_InitListBadDestinationType:
2056 case FK_DefaultInitOfConst:
2057 case FK_Incomplete:
2037 return false;
2038
2039 case FK_ReferenceInitOverloadFailed:
2040 case FK_UserConversionOverloadFailed:
2041 case FK_ConstructorOverloadFailed:
2042 return FailedOverloadResult == OR_Ambiguous;
2043 }
2044
2045 return false;
2046}
2047
2048bool InitializationSequence::isConstructorInitialization() const {
2049 return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
2050}
2051
2052void InitializationSequence::AddAddressOverloadResolutionStep(
2053 FunctionDecl *Function,
2054 DeclAccessPair Found) {
2055 Step S;
2056 S.Kind = SK_ResolveAddressOfOverloadedFunction;
2057 S.Type = Function->getType();
2058 S.Function.Function = Function;
2059 S.Function.FoundDecl = Found;
2060 Steps.push_back(S);
2061}
2062
2063void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
2064 bool IsLValue) {
2065 Step S;
2066 S.Kind = IsLValue? SK_CastDerivedToBaseLValue : SK_CastDerivedToBaseRValue;
2067 S.Type = BaseType;
2068 Steps.push_back(S);
2069}
2070
2071void InitializationSequence::AddReferenceBindingStep(QualType T,
2072 bool BindingTemporary) {
2073 Step S;
2074 S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
2075 S.Type = T;
2076 Steps.push_back(S);
2077}
2078
2079void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
2080 Step S;
2081 S.Kind = SK_ExtraneousCopyToTemporary;
2082 S.Type = T;
2083 Steps.push_back(S);
2084}
2085
2086void InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
2087 DeclAccessPair FoundDecl,
2088 QualType T) {
2089 Step S;
2090 S.Kind = SK_UserConversion;
2091 S.Type = T;
2092 S.Function.Function = Function;
2093 S.Function.FoundDecl = FoundDecl;
2094 Steps.push_back(S);
2095}
2096
2097void InitializationSequence::AddQualificationConversionStep(QualType Ty,
2098 bool IsLValue) {
2099 Step S;
2100 S.Kind = IsLValue? SK_QualificationConversionLValue
2101 : SK_QualificationConversionRValue;
2102 S.Type = Ty;
2103 Steps.push_back(S);
2104}
2105
2106void InitializationSequence::AddConversionSequenceStep(
2107 const ImplicitConversionSequence &ICS,
2108 QualType T) {
2109 Step S;
2110 S.Kind = SK_ConversionSequence;
2111 S.Type = T;
2112 S.ICS = new ImplicitConversionSequence(ICS);
2113 Steps.push_back(S);
2114}
2115
2116void InitializationSequence::AddListInitializationStep(QualType T) {
2117 Step S;
2118 S.Kind = SK_ListInitialization;
2119 S.Type = T;
2120 Steps.push_back(S);
2121}
2122
2123void
2124InitializationSequence::AddConstructorInitializationStep(
2125 CXXConstructorDecl *Constructor,
2126 AccessSpecifier Access,
2127 QualType T) {
2128 Step S;
2129 S.Kind = SK_ConstructorInitialization;
2130 S.Type = T;
2131 S.Function.Function = Constructor;
2132 S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access);
2133 Steps.push_back(S);
2134}
2135
2136void InitializationSequence::AddZeroInitializationStep(QualType T) {
2137 Step S;
2138 S.Kind = SK_ZeroInitialization;
2139 S.Type = T;
2140 Steps.push_back(S);
2141}
2142
2143void InitializationSequence::AddCAssignmentStep(QualType T) {
2144 Step S;
2145 S.Kind = SK_CAssignment;
2146 S.Type = T;
2147 Steps.push_back(S);
2148}
2149
2150void InitializationSequence::AddStringInitStep(QualType T) {
2151 Step S;
2152 S.Kind = SK_StringInit;
2153 S.Type = T;
2154 Steps.push_back(S);
2155}
2156
2157void InitializationSequence::SetOverloadFailure(FailureKind Failure,
2158 OverloadingResult Result) {
2159 SequenceKind = FailedSequence;
2160 this->Failure = Failure;
2161 this->FailedOverloadResult = Result;
2162}
2163
2164//===----------------------------------------------------------------------===//
2165// Attempt initialization
2166//===----------------------------------------------------------------------===//
2167
2168/// \brief Attempt list initialization (C++0x [dcl.init.list])
2169static void TryListInitialization(Sema &S,
2170 const InitializedEntity &Entity,
2171 const InitializationKind &Kind,
2172 InitListExpr *InitList,
2173 InitializationSequence &Sequence) {
2174 // FIXME: We only perform rudimentary checking of list
2175 // initializations at this point, then assume that any list
2176 // initialization of an array, aggregate, or scalar will be
2177 // well-formed. We we actually "perform" list initialization, we'll
2178 // do all of the necessary checking. C++0x initializer lists will
2179 // force us to perform more checking here.
2180 Sequence.setSequenceKind(InitializationSequence::ListInitialization);
2181
2182 QualType DestType = Entity.getType();
2183
2184 // C++ [dcl.init]p13:
2185 // If T is a scalar type, then a declaration of the form
2186 //
2187 // T x = { a };
2188 //
2189 // is equivalent to
2190 //
2191 // T x = a;
2192 if (DestType->isScalarType()) {
2193 if (InitList->getNumInits() > 1 && S.getLangOptions().CPlusPlus) {
2194 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
2195 return;
2196 }
2197
2198 // Assume scalar initialization from a single value works.
2199 } else if (DestType->isAggregateType()) {
2200 // Assume aggregate initialization works.
2201 } else if (DestType->isVectorType()) {
2202 // Assume vector initialization works.
2203 } else if (DestType->isReferenceType()) {
2204 // FIXME: C++0x defines behavior for this.
2205 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
2206 return;
2207 } else if (DestType->isRecordType()) {
2208 // FIXME: C++0x defines behavior for this
2209 Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
2210 }
2211
2212 // Add a general "list initialization" step.
2213 Sequence.AddListInitializationStep(DestType);
2214}
2215
2216/// \brief Try a reference initialization that involves calling a conversion
2217/// function.
2218///
2219/// FIXME: look intos DRs 656, 896
2220static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
2221 const InitializedEntity &Entity,
2222 const InitializationKind &Kind,
2223 Expr *Initializer,
2224 bool AllowRValues,
2225 InitializationSequence &Sequence) {
2226 QualType DestType = Entity.getType();
2227 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
2228 QualType T1 = cv1T1.getUnqualifiedType();
2229 QualType cv2T2 = Initializer->getType();
2230 QualType T2 = cv2T2.getUnqualifiedType();
2231
2232 bool DerivedToBase;
2233 assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
2234 T1, T2, DerivedToBase) &&
2235 "Must have incompatible references when binding via conversion");
2236 (void)DerivedToBase;
2237
2238 // Build the candidate set directly in the initialization sequence
2239 // structure, so that it will persist if we fail.
2240 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2241 CandidateSet.clear();
2242
2243 // Determine whether we are allowed to call explicit constructors or
2244 // explicit conversion operators.
2245 bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct;
2246
2247 const RecordType *T1RecordType = 0;
2058 return false;
2059
2060 case FK_ReferenceInitOverloadFailed:
2061 case FK_UserConversionOverloadFailed:
2062 case FK_ConstructorOverloadFailed:
2063 return FailedOverloadResult == OR_Ambiguous;
2064 }
2065
2066 return false;
2067}
2068
2069bool InitializationSequence::isConstructorInitialization() const {
2070 return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
2071}
2072
2073void InitializationSequence::AddAddressOverloadResolutionStep(
2074 FunctionDecl *Function,
2075 DeclAccessPair Found) {
2076 Step S;
2077 S.Kind = SK_ResolveAddressOfOverloadedFunction;
2078 S.Type = Function->getType();
2079 S.Function.Function = Function;
2080 S.Function.FoundDecl = Found;
2081 Steps.push_back(S);
2082}
2083
2084void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
2085 bool IsLValue) {
2086 Step S;
2087 S.Kind = IsLValue? SK_CastDerivedToBaseLValue : SK_CastDerivedToBaseRValue;
2088 S.Type = BaseType;
2089 Steps.push_back(S);
2090}
2091
2092void InitializationSequence::AddReferenceBindingStep(QualType T,
2093 bool BindingTemporary) {
2094 Step S;
2095 S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
2096 S.Type = T;
2097 Steps.push_back(S);
2098}
2099
2100void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
2101 Step S;
2102 S.Kind = SK_ExtraneousCopyToTemporary;
2103 S.Type = T;
2104 Steps.push_back(S);
2105}
2106
2107void InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
2108 DeclAccessPair FoundDecl,
2109 QualType T) {
2110 Step S;
2111 S.Kind = SK_UserConversion;
2112 S.Type = T;
2113 S.Function.Function = Function;
2114 S.Function.FoundDecl = FoundDecl;
2115 Steps.push_back(S);
2116}
2117
2118void InitializationSequence::AddQualificationConversionStep(QualType Ty,
2119 bool IsLValue) {
2120 Step S;
2121 S.Kind = IsLValue? SK_QualificationConversionLValue
2122 : SK_QualificationConversionRValue;
2123 S.Type = Ty;
2124 Steps.push_back(S);
2125}
2126
2127void InitializationSequence::AddConversionSequenceStep(
2128 const ImplicitConversionSequence &ICS,
2129 QualType T) {
2130 Step S;
2131 S.Kind = SK_ConversionSequence;
2132 S.Type = T;
2133 S.ICS = new ImplicitConversionSequence(ICS);
2134 Steps.push_back(S);
2135}
2136
2137void InitializationSequence::AddListInitializationStep(QualType T) {
2138 Step S;
2139 S.Kind = SK_ListInitialization;
2140 S.Type = T;
2141 Steps.push_back(S);
2142}
2143
2144void
2145InitializationSequence::AddConstructorInitializationStep(
2146 CXXConstructorDecl *Constructor,
2147 AccessSpecifier Access,
2148 QualType T) {
2149 Step S;
2150 S.Kind = SK_ConstructorInitialization;
2151 S.Type = T;
2152 S.Function.Function = Constructor;
2153 S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access);
2154 Steps.push_back(S);
2155}
2156
2157void InitializationSequence::AddZeroInitializationStep(QualType T) {
2158 Step S;
2159 S.Kind = SK_ZeroInitialization;
2160 S.Type = T;
2161 Steps.push_back(S);
2162}
2163
2164void InitializationSequence::AddCAssignmentStep(QualType T) {
2165 Step S;
2166 S.Kind = SK_CAssignment;
2167 S.Type = T;
2168 Steps.push_back(S);
2169}
2170
2171void InitializationSequence::AddStringInitStep(QualType T) {
2172 Step S;
2173 S.Kind = SK_StringInit;
2174 S.Type = T;
2175 Steps.push_back(S);
2176}
2177
2178void InitializationSequence::SetOverloadFailure(FailureKind Failure,
2179 OverloadingResult Result) {
2180 SequenceKind = FailedSequence;
2181 this->Failure = Failure;
2182 this->FailedOverloadResult = Result;
2183}
2184
2185//===----------------------------------------------------------------------===//
2186// Attempt initialization
2187//===----------------------------------------------------------------------===//
2188
2189/// \brief Attempt list initialization (C++0x [dcl.init.list])
2190static void TryListInitialization(Sema &S,
2191 const InitializedEntity &Entity,
2192 const InitializationKind &Kind,
2193 InitListExpr *InitList,
2194 InitializationSequence &Sequence) {
2195 // FIXME: We only perform rudimentary checking of list
2196 // initializations at this point, then assume that any list
2197 // initialization of an array, aggregate, or scalar will be
2198 // well-formed. We we actually "perform" list initialization, we'll
2199 // do all of the necessary checking. C++0x initializer lists will
2200 // force us to perform more checking here.
2201 Sequence.setSequenceKind(InitializationSequence::ListInitialization);
2202
2203 QualType DestType = Entity.getType();
2204
2205 // C++ [dcl.init]p13:
2206 // If T is a scalar type, then a declaration of the form
2207 //
2208 // T x = { a };
2209 //
2210 // is equivalent to
2211 //
2212 // T x = a;
2213 if (DestType->isScalarType()) {
2214 if (InitList->getNumInits() > 1 && S.getLangOptions().CPlusPlus) {
2215 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
2216 return;
2217 }
2218
2219 // Assume scalar initialization from a single value works.
2220 } else if (DestType->isAggregateType()) {
2221 // Assume aggregate initialization works.
2222 } else if (DestType->isVectorType()) {
2223 // Assume vector initialization works.
2224 } else if (DestType->isReferenceType()) {
2225 // FIXME: C++0x defines behavior for this.
2226 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
2227 return;
2228 } else if (DestType->isRecordType()) {
2229 // FIXME: C++0x defines behavior for this
2230 Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
2231 }
2232
2233 // Add a general "list initialization" step.
2234 Sequence.AddListInitializationStep(DestType);
2235}
2236
2237/// \brief Try a reference initialization that involves calling a conversion
2238/// function.
2239///
2240/// FIXME: look intos DRs 656, 896
2241static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
2242 const InitializedEntity &Entity,
2243 const InitializationKind &Kind,
2244 Expr *Initializer,
2245 bool AllowRValues,
2246 InitializationSequence &Sequence) {
2247 QualType DestType = Entity.getType();
2248 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
2249 QualType T1 = cv1T1.getUnqualifiedType();
2250 QualType cv2T2 = Initializer->getType();
2251 QualType T2 = cv2T2.getUnqualifiedType();
2252
2253 bool DerivedToBase;
2254 assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
2255 T1, T2, DerivedToBase) &&
2256 "Must have incompatible references when binding via conversion");
2257 (void)DerivedToBase;
2258
2259 // Build the candidate set directly in the initialization sequence
2260 // structure, so that it will persist if we fail.
2261 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2262 CandidateSet.clear();
2263
2264 // Determine whether we are allowed to call explicit constructors or
2265 // explicit conversion operators.
2266 bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct;
2267
2268 const RecordType *T1RecordType = 0;
2248 if (AllowRValues && (T1RecordType = T1->getAs<RecordType>())) {
2269 if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
2270 !S.RequireCompleteType(Kind.getLocation(), T1, 0)) {
2249 // The type we're converting to is a class type. Enumerate its constructors
2250 // to see if there is a suitable conversion.
2251 CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
2271 // The type we're converting to is a class type. Enumerate its constructors
2272 // to see if there is a suitable conversion.
2273 CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
2252
2253 DeclarationName ConstructorName
2254 = S.Context.DeclarationNames.getCXXConstructorName(
2255 S.Context.getCanonicalType(T1).getUnqualifiedType());
2256 DeclContext::lookup_iterator Con, ConEnd;
2257 for (llvm::tie(Con, ConEnd) = T1RecordDecl->lookup(ConstructorName);
2258 Con != ConEnd; ++Con) {
2259 NamedDecl *D = *Con;
2260 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2261
2262 // Find the constructor (which may be a template).
2263 CXXConstructorDecl *Constructor = 0;
2264 FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
2265 if (ConstructorTmpl)
2266 Constructor = cast<CXXConstructorDecl>(
2267 ConstructorTmpl->getTemplatedDecl());
2268 else
2269 Constructor = cast<CXXConstructorDecl>(D);
2270
2271 if (!Constructor->isInvalidDecl() &&
2272 Constructor->isConvertingConstructor(AllowExplicit)) {
2273 if (ConstructorTmpl)
2274 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2275 /*ExplicitArgs*/ 0,
2276 &Initializer, 1, CandidateSet);
2277 else
2278 S.AddOverloadCandidate(Constructor, FoundDecl,
2279 &Initializer, 1, CandidateSet);
2280 }
2281 }
2282 }
2283
2274 DeclarationName ConstructorName
2275 = S.Context.DeclarationNames.getCXXConstructorName(
2276 S.Context.getCanonicalType(T1).getUnqualifiedType());
2277 DeclContext::lookup_iterator Con, ConEnd;
2278 for (llvm::tie(Con, ConEnd) = T1RecordDecl->lookup(ConstructorName);
2279 Con != ConEnd; ++Con) {
2280 NamedDecl *D = *Con;
2281 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2282
2283 // Find the constructor (which may be a template).
2284 CXXConstructorDecl *Constructor = 0;
2285 FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
2286 if (ConstructorTmpl)
2287 Constructor = cast<CXXConstructorDecl>(
2288 ConstructorTmpl->getTemplatedDecl());
2289 else
2290 Constructor = cast<CXXConstructorDecl>(D);
2291
2292 if (!Constructor->isInvalidDecl() &&
2293 Constructor->isConvertingConstructor(AllowExplicit)) {
2294 if (ConstructorTmpl)
2295 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2296 /*ExplicitArgs*/ 0,
2297 &Initializer, 1, CandidateSet);
2298 else
2299 S.AddOverloadCandidate(Constructor, FoundDecl,
2300 &Initializer, 1, CandidateSet);
2301 }
2302 }
2303 }
2304
2284 if (const RecordType *T2RecordType = T2->getAs<RecordType>()) {
2305 const RecordType *T2RecordType = 0;
2306 if ((T2RecordType = T2->getAs<RecordType>()) &&
2307 !S.RequireCompleteType(Kind.getLocation(), T2, 0)) {
2285 // The type we're converting from is a class type, enumerate its conversion
2286 // functions.
2287 CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
2288
2289 // Determine the type we are converting to. If we are allowed to
2290 // convert to an rvalue, take the type that the destination type
2291 // refers to.
2292 QualType ToType = AllowRValues? cv1T1 : DestType;
2293
2294 const UnresolvedSetImpl *Conversions
2295 = T2RecordDecl->getVisibleConversionFunctions();
2296 for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
2297 E = Conversions->end(); I != E; ++I) {
2298 NamedDecl *D = *I;
2299 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
2300 if (isa<UsingShadowDecl>(D))
2301 D = cast<UsingShadowDecl>(D)->getTargetDecl();
2302
2303 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
2304 CXXConversionDecl *Conv;
2305 if (ConvTemplate)
2306 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2307 else
2308 Conv = cast<CXXConversionDecl>(*I);
2309
2310 // If the conversion function doesn't return a reference type,
2311 // it can't be considered for this conversion unless we're allowed to
2312 // consider rvalues.
2313 // FIXME: Do we need to make sure that we only consider conversion
2314 // candidates with reference-compatible results? That might be needed to
2315 // break recursion.
2316 if ((AllowExplicit || !Conv->isExplicit()) &&
2317 (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
2318 if (ConvTemplate)
2319 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
2320 ActingDC, Initializer,
2321 ToType, CandidateSet);
2322 else
2323 S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
2324 Initializer, ToType, CandidateSet);
2325 }
2326 }
2327 }
2328
2329 SourceLocation DeclLoc = Initializer->getLocStart();
2330
2331 // Perform overload resolution. If it fails, return the failed result.
2332 OverloadCandidateSet::iterator Best;
2333 if (OverloadingResult Result
2334 = S.BestViableFunction(CandidateSet, DeclLoc, Best))
2335 return Result;
2336
2337 FunctionDecl *Function = Best->Function;
2338
2339 // Compute the returned type of the conversion.
2340 if (isa<CXXConversionDecl>(Function))
2341 T2 = Function->getResultType();
2342 else
2343 T2 = cv1T1;
2344
2345 // Add the user-defined conversion step.
2346 Sequence.AddUserConversionStep(Function, Best->FoundDecl,
2347 T2.getNonReferenceType());
2348
2349 // Determine whether we need to perform derived-to-base or
2350 // cv-qualification adjustments.
2351 bool NewDerivedToBase = false;
2352 Sema::ReferenceCompareResult NewRefRelationship
2353 = S.CompareReferenceRelationship(DeclLoc, T1, T2.getNonReferenceType(),
2354 NewDerivedToBase);
2355 if (NewRefRelationship == Sema::Ref_Incompatible) {
2356 // If the type we've converted to is not reference-related to the
2357 // type we're looking for, then there is another conversion step
2358 // we need to perform to produce a temporary of the right type
2359 // that we'll be binding to.
2360 ImplicitConversionSequence ICS;
2361 ICS.setStandard();
2362 ICS.Standard = Best->FinalConversion;
2363 T2 = ICS.Standard.getToType(2);
2364 Sequence.AddConversionSequenceStep(ICS, T2);
2365 } else if (NewDerivedToBase)
2366 Sequence.AddDerivedToBaseCastStep(
2367 S.Context.getQualifiedType(T1,
2368 T2.getNonReferenceType().getQualifiers()),
2369 /*isLValue=*/true);
2370
2371 if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
2372 Sequence.AddQualificationConversionStep(cv1T1, T2->isReferenceType());
2373
2374 Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
2375 return OR_Success;
2376}
2377
2378/// \brief Attempt reference initialization (C++0x [dcl.init.list])
2379static void TryReferenceInitialization(Sema &S,
2380 const InitializedEntity &Entity,
2381 const InitializationKind &Kind,
2382 Expr *Initializer,
2383 InitializationSequence &Sequence) {
2384 Sequence.setSequenceKind(InitializationSequence::ReferenceBinding);
2385
2386 QualType DestType = Entity.getType();
2387 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
2388 Qualifiers T1Quals;
2389 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
2390 QualType cv2T2 = Initializer->getType();
2391 Qualifiers T2Quals;
2392 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
2393 SourceLocation DeclLoc = Initializer->getLocStart();
2394
2395 // If the initializer is the address of an overloaded function, try
2396 // to resolve the overloaded function. If all goes well, T2 is the
2397 // type of the resulting function.
2398 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
2399 DeclAccessPair Found;
2400 FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Initializer,
2401 T1,
2402 false,
2403 Found);
2404 if (!Fn) {
2405 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
2406 return;
2407 }
2408
2409 Sequence.AddAddressOverloadResolutionStep(Fn, Found);
2410 cv2T2 = Fn->getType();
2411 T2 = cv2T2.getUnqualifiedType();
2412 }
2413
2414 // Compute some basic properties of the types and the initializer.
2415 bool isLValueRef = DestType->isLValueReferenceType();
2416 bool isRValueRef = !isLValueRef;
2417 bool DerivedToBase = false;
2418 Expr::isLvalueResult InitLvalue = Initializer->isLvalue(S.Context);
2419 Sema::ReferenceCompareResult RefRelationship
2420 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase);
2421
2422 // C++0x [dcl.init.ref]p5:
2423 // A reference to type "cv1 T1" is initialized by an expression of type
2424 // "cv2 T2" as follows:
2425 //
2426 // - If the reference is an lvalue reference and the initializer
2427 // expression
2428 OverloadingResult ConvOvlResult = OR_Success;
2429 if (isLValueRef) {
2430 if (InitLvalue == Expr::LV_Valid &&
2431 RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2432 // - is an lvalue (but is not a bit-field), and "cv1 T1" is
2433 // reference-compatible with "cv2 T2," or
2434 //
2435 // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
2436 // bit-field when we're determining whether the reference initialization
2437 // can occur. However, we do pay attention to whether it is a bit-field
2438 // to decide whether we're actually binding to a temporary created from
2439 // the bit-field.
2440 if (DerivedToBase)
2441 Sequence.AddDerivedToBaseCastStep(
2442 S.Context.getQualifiedType(T1, T2Quals),
2443 /*isLValue=*/true);
2444 if (T1Quals != T2Quals)
2445 Sequence.AddQualificationConversionStep(cv1T1, /*IsLValue=*/true);
2446 bool BindingTemporary = T1Quals.hasConst() && !T1Quals.hasVolatile() &&
2447 (Initializer->getBitField() || Initializer->refersToVectorElement());
2448 Sequence.AddReferenceBindingStep(cv1T1, BindingTemporary);
2449 return;
2450 }
2451
2452 // - has a class type (i.e., T2 is a class type), where T1 is not
2453 // reference-related to T2, and can be implicitly converted to an
2454 // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
2455 // with "cv3 T3" (this conversion is selected by enumerating the
2456 // applicable conversion functions (13.3.1.6) and choosing the best
2457 // one through overload resolution (13.3)),
2458 if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType()) {
2459 ConvOvlResult = TryRefInitWithConversionFunction(S, Entity, Kind,
2460 Initializer,
2461 /*AllowRValues=*/false,
2462 Sequence);
2463 if (ConvOvlResult == OR_Success)
2464 return;
2465 if (ConvOvlResult != OR_No_Viable_Function) {
2466 Sequence.SetOverloadFailure(
2467 InitializationSequence::FK_ReferenceInitOverloadFailed,
2468 ConvOvlResult);
2469 }
2470 }
2471 }
2472
2473 // - Otherwise, the reference shall be an lvalue reference to a
2474 // non-volatile const type (i.e., cv1 shall be const), or the reference
2475 // shall be an rvalue reference and the initializer expression shall
2476 // be an rvalue.
2477 if (!((isLValueRef && T1Quals.hasConst() && !T1Quals.hasVolatile()) ||
2478 (isRValueRef && InitLvalue != Expr::LV_Valid))) {
2479 if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
2480 Sequence.SetOverloadFailure(
2481 InitializationSequence::FK_ReferenceInitOverloadFailed,
2482 ConvOvlResult);
2483 else if (isLValueRef)
2484 Sequence.SetFailed(InitLvalue == Expr::LV_Valid
2485 ? (RefRelationship == Sema::Ref_Related
2486 ? InitializationSequence::FK_ReferenceInitDropsQualifiers
2487 : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
2488 : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
2489 else
2490 Sequence.SetFailed(
2491 InitializationSequence::FK_RValueReferenceBindingToLValue);
2492
2493 return;
2494 }
2495
2496 // - If T1 and T2 are class types and
2497 if (T1->isRecordType() && T2->isRecordType()) {
2498 // - the initializer expression is an rvalue and "cv1 T1" is
2499 // reference-compatible with "cv2 T2", or
2500 if (InitLvalue != Expr::LV_Valid &&
2501 RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2502 // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
2503 // compiler the freedom to perform a copy here or bind to the
2504 // object, while C++0x requires that we bind directly to the
2505 // object. Hence, we always bind to the object without making an
2506 // extra copy. However, in C++03 requires that we check for the
2507 // presence of a suitable copy constructor:
2508 //
2509 // The constructor that would be used to make the copy shall
2510 // be callable whether or not the copy is actually done.
2511 if (!S.getLangOptions().CPlusPlus0x)
2512 Sequence.AddExtraneousCopyToTemporary(cv2T2);
2513
2514 if (DerivedToBase)
2515 Sequence.AddDerivedToBaseCastStep(
2516 S.Context.getQualifiedType(T1, T2Quals),
2517 /*isLValue=*/false);
2518 if (T1Quals != T2Quals)
2519 Sequence.AddQualificationConversionStep(cv1T1, /*IsLValue=*/false);
2520 Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
2521 return;
2522 }
2523
2524 // - T1 is not reference-related to T2 and the initializer expression
2525 // can be implicitly converted to an rvalue of type "cv3 T3" (this
2526 // conversion is selected by enumerating the applicable conversion
2527 // functions (13.3.1.6) and choosing the best one through overload
2528 // resolution (13.3)),
2529 if (RefRelationship == Sema::Ref_Incompatible) {
2530 ConvOvlResult = TryRefInitWithConversionFunction(S, Entity,
2531 Kind, Initializer,
2532 /*AllowRValues=*/true,
2533 Sequence);
2534 if (ConvOvlResult)
2535 Sequence.SetOverloadFailure(
2536 InitializationSequence::FK_ReferenceInitOverloadFailed,
2537 ConvOvlResult);
2538
2539 return;
2540 }
2541
2542 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
2543 return;
2544 }
2545
2546 // - If the initializer expression is an rvalue, with T2 an array type,
2547 // and "cv1 T1" is reference-compatible with "cv2 T2," the reference
2548 // is bound to the object represented by the rvalue (see 3.10).
2549 // FIXME: How can an array type be reference-compatible with anything?
2550 // Don't we mean the element types of T1 and T2?
2551
2552 // - Otherwise, a temporary of type ���cv1 T1��� is created and initialized
2553 // from the initializer expression using the rules for a non-reference
2554 // copy initialization (8.5). The reference is then bound to the
2555 // temporary. [...]
2556 // Determine whether we are allowed to call explicit constructors or
2557 // explicit conversion operators.
2558 bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct);
2559 ImplicitConversionSequence ICS
2560 = S.TryImplicitConversion(Initializer, cv1T1,
2561 /*SuppressUserConversions=*/false, AllowExplicit,
2562 /*FIXME:InOverloadResolution=*/false);
2563
2564 if (ICS.isBad()) {
2565 // FIXME: Use the conversion function set stored in ICS to turn
2566 // this into an overloading ambiguity diagnostic. However, we need
2567 // to keep that set as an OverloadCandidateSet rather than as some
2568 // other kind of set.
2569 if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
2570 Sequence.SetOverloadFailure(
2571 InitializationSequence::FK_ReferenceInitOverloadFailed,
2572 ConvOvlResult);
2573 else
2574 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
2575 return;
2576 }
2577
2578 // [...] If T1 is reference-related to T2, cv1 must be the
2579 // same cv-qualification as, or greater cv-qualification
2580 // than, cv2; otherwise, the program is ill-formed.
2581 unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
2582 unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
2583 if (RefRelationship == Sema::Ref_Related &&
2584 (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
2585 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
2586 return;
2587 }
2588
2589 // Perform the actual conversion.
2590 Sequence.AddConversionSequenceStep(ICS, cv1T1);
2591 Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
2592 return;
2593}
2594
2595/// \brief Attempt character array initialization from a string literal
2596/// (C++ [dcl.init.string], C99 6.7.8).
2597static void TryStringLiteralInitialization(Sema &S,
2598 const InitializedEntity &Entity,
2599 const InitializationKind &Kind,
2600 Expr *Initializer,
2601 InitializationSequence &Sequence) {
2602 Sequence.setSequenceKind(InitializationSequence::StringInit);
2603 Sequence.AddStringInitStep(Entity.getType());
2604}
2605
2606/// \brief Attempt initialization by constructor (C++ [dcl.init]), which
2607/// enumerates the constructors of the initialized entity and performs overload
2608/// resolution to select the best.
2609static void TryConstructorInitialization(Sema &S,
2610 const InitializedEntity &Entity,
2611 const InitializationKind &Kind,
2612 Expr **Args, unsigned NumArgs,
2613 QualType DestType,
2614 InitializationSequence &Sequence) {
2615 Sequence.setSequenceKind(InitializationSequence::ConstructorInitialization);
2616
2617 // Build the candidate set directly in the initialization sequence
2618 // structure, so that it will persist if we fail.
2619 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2620 CandidateSet.clear();
2621
2622 // Determine whether we are allowed to call explicit constructors or
2623 // explicit conversion operators.
2624 bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct ||
2625 Kind.getKind() == InitializationKind::IK_Value ||
2626 Kind.getKind() == InitializationKind::IK_Default);
2627
2628 // The type we're constructing needs to be complete.
2629 if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
2308 // The type we're converting from is a class type, enumerate its conversion
2309 // functions.
2310 CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
2311
2312 // Determine the type we are converting to. If we are allowed to
2313 // convert to an rvalue, take the type that the destination type
2314 // refers to.
2315 QualType ToType = AllowRValues? cv1T1 : DestType;
2316
2317 const UnresolvedSetImpl *Conversions
2318 = T2RecordDecl->getVisibleConversionFunctions();
2319 for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
2320 E = Conversions->end(); I != E; ++I) {
2321 NamedDecl *D = *I;
2322 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
2323 if (isa<UsingShadowDecl>(D))
2324 D = cast<UsingShadowDecl>(D)->getTargetDecl();
2325
2326 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
2327 CXXConversionDecl *Conv;
2328 if (ConvTemplate)
2329 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2330 else
2331 Conv = cast<CXXConversionDecl>(*I);
2332
2333 // If the conversion function doesn't return a reference type,
2334 // it can't be considered for this conversion unless we're allowed to
2335 // consider rvalues.
2336 // FIXME: Do we need to make sure that we only consider conversion
2337 // candidates with reference-compatible results? That might be needed to
2338 // break recursion.
2339 if ((AllowExplicit || !Conv->isExplicit()) &&
2340 (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
2341 if (ConvTemplate)
2342 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
2343 ActingDC, Initializer,
2344 ToType, CandidateSet);
2345 else
2346 S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
2347 Initializer, ToType, CandidateSet);
2348 }
2349 }
2350 }
2351
2352 SourceLocation DeclLoc = Initializer->getLocStart();
2353
2354 // Perform overload resolution. If it fails, return the failed result.
2355 OverloadCandidateSet::iterator Best;
2356 if (OverloadingResult Result
2357 = S.BestViableFunction(CandidateSet, DeclLoc, Best))
2358 return Result;
2359
2360 FunctionDecl *Function = Best->Function;
2361
2362 // Compute the returned type of the conversion.
2363 if (isa<CXXConversionDecl>(Function))
2364 T2 = Function->getResultType();
2365 else
2366 T2 = cv1T1;
2367
2368 // Add the user-defined conversion step.
2369 Sequence.AddUserConversionStep(Function, Best->FoundDecl,
2370 T2.getNonReferenceType());
2371
2372 // Determine whether we need to perform derived-to-base or
2373 // cv-qualification adjustments.
2374 bool NewDerivedToBase = false;
2375 Sema::ReferenceCompareResult NewRefRelationship
2376 = S.CompareReferenceRelationship(DeclLoc, T1, T2.getNonReferenceType(),
2377 NewDerivedToBase);
2378 if (NewRefRelationship == Sema::Ref_Incompatible) {
2379 // If the type we've converted to is not reference-related to the
2380 // type we're looking for, then there is another conversion step
2381 // we need to perform to produce a temporary of the right type
2382 // that we'll be binding to.
2383 ImplicitConversionSequence ICS;
2384 ICS.setStandard();
2385 ICS.Standard = Best->FinalConversion;
2386 T2 = ICS.Standard.getToType(2);
2387 Sequence.AddConversionSequenceStep(ICS, T2);
2388 } else if (NewDerivedToBase)
2389 Sequence.AddDerivedToBaseCastStep(
2390 S.Context.getQualifiedType(T1,
2391 T2.getNonReferenceType().getQualifiers()),
2392 /*isLValue=*/true);
2393
2394 if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
2395 Sequence.AddQualificationConversionStep(cv1T1, T2->isReferenceType());
2396
2397 Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
2398 return OR_Success;
2399}
2400
2401/// \brief Attempt reference initialization (C++0x [dcl.init.list])
2402static void TryReferenceInitialization(Sema &S,
2403 const InitializedEntity &Entity,
2404 const InitializationKind &Kind,
2405 Expr *Initializer,
2406 InitializationSequence &Sequence) {
2407 Sequence.setSequenceKind(InitializationSequence::ReferenceBinding);
2408
2409 QualType DestType = Entity.getType();
2410 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
2411 Qualifiers T1Quals;
2412 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
2413 QualType cv2T2 = Initializer->getType();
2414 Qualifiers T2Quals;
2415 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
2416 SourceLocation DeclLoc = Initializer->getLocStart();
2417
2418 // If the initializer is the address of an overloaded function, try
2419 // to resolve the overloaded function. If all goes well, T2 is the
2420 // type of the resulting function.
2421 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
2422 DeclAccessPair Found;
2423 FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Initializer,
2424 T1,
2425 false,
2426 Found);
2427 if (!Fn) {
2428 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
2429 return;
2430 }
2431
2432 Sequence.AddAddressOverloadResolutionStep(Fn, Found);
2433 cv2T2 = Fn->getType();
2434 T2 = cv2T2.getUnqualifiedType();
2435 }
2436
2437 // Compute some basic properties of the types and the initializer.
2438 bool isLValueRef = DestType->isLValueReferenceType();
2439 bool isRValueRef = !isLValueRef;
2440 bool DerivedToBase = false;
2441 Expr::isLvalueResult InitLvalue = Initializer->isLvalue(S.Context);
2442 Sema::ReferenceCompareResult RefRelationship
2443 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase);
2444
2445 // C++0x [dcl.init.ref]p5:
2446 // A reference to type "cv1 T1" is initialized by an expression of type
2447 // "cv2 T2" as follows:
2448 //
2449 // - If the reference is an lvalue reference and the initializer
2450 // expression
2451 OverloadingResult ConvOvlResult = OR_Success;
2452 if (isLValueRef) {
2453 if (InitLvalue == Expr::LV_Valid &&
2454 RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2455 // - is an lvalue (but is not a bit-field), and "cv1 T1" is
2456 // reference-compatible with "cv2 T2," or
2457 //
2458 // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
2459 // bit-field when we're determining whether the reference initialization
2460 // can occur. However, we do pay attention to whether it is a bit-field
2461 // to decide whether we're actually binding to a temporary created from
2462 // the bit-field.
2463 if (DerivedToBase)
2464 Sequence.AddDerivedToBaseCastStep(
2465 S.Context.getQualifiedType(T1, T2Quals),
2466 /*isLValue=*/true);
2467 if (T1Quals != T2Quals)
2468 Sequence.AddQualificationConversionStep(cv1T1, /*IsLValue=*/true);
2469 bool BindingTemporary = T1Quals.hasConst() && !T1Quals.hasVolatile() &&
2470 (Initializer->getBitField() || Initializer->refersToVectorElement());
2471 Sequence.AddReferenceBindingStep(cv1T1, BindingTemporary);
2472 return;
2473 }
2474
2475 // - has a class type (i.e., T2 is a class type), where T1 is not
2476 // reference-related to T2, and can be implicitly converted to an
2477 // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
2478 // with "cv3 T3" (this conversion is selected by enumerating the
2479 // applicable conversion functions (13.3.1.6) and choosing the best
2480 // one through overload resolution (13.3)),
2481 if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType()) {
2482 ConvOvlResult = TryRefInitWithConversionFunction(S, Entity, Kind,
2483 Initializer,
2484 /*AllowRValues=*/false,
2485 Sequence);
2486 if (ConvOvlResult == OR_Success)
2487 return;
2488 if (ConvOvlResult != OR_No_Viable_Function) {
2489 Sequence.SetOverloadFailure(
2490 InitializationSequence::FK_ReferenceInitOverloadFailed,
2491 ConvOvlResult);
2492 }
2493 }
2494 }
2495
2496 // - Otherwise, the reference shall be an lvalue reference to a
2497 // non-volatile const type (i.e., cv1 shall be const), or the reference
2498 // shall be an rvalue reference and the initializer expression shall
2499 // be an rvalue.
2500 if (!((isLValueRef && T1Quals.hasConst() && !T1Quals.hasVolatile()) ||
2501 (isRValueRef && InitLvalue != Expr::LV_Valid))) {
2502 if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
2503 Sequence.SetOverloadFailure(
2504 InitializationSequence::FK_ReferenceInitOverloadFailed,
2505 ConvOvlResult);
2506 else if (isLValueRef)
2507 Sequence.SetFailed(InitLvalue == Expr::LV_Valid
2508 ? (RefRelationship == Sema::Ref_Related
2509 ? InitializationSequence::FK_ReferenceInitDropsQualifiers
2510 : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
2511 : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
2512 else
2513 Sequence.SetFailed(
2514 InitializationSequence::FK_RValueReferenceBindingToLValue);
2515
2516 return;
2517 }
2518
2519 // - If T1 and T2 are class types and
2520 if (T1->isRecordType() && T2->isRecordType()) {
2521 // - the initializer expression is an rvalue and "cv1 T1" is
2522 // reference-compatible with "cv2 T2", or
2523 if (InitLvalue != Expr::LV_Valid &&
2524 RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2525 // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
2526 // compiler the freedom to perform a copy here or bind to the
2527 // object, while C++0x requires that we bind directly to the
2528 // object. Hence, we always bind to the object without making an
2529 // extra copy. However, in C++03 requires that we check for the
2530 // presence of a suitable copy constructor:
2531 //
2532 // The constructor that would be used to make the copy shall
2533 // be callable whether or not the copy is actually done.
2534 if (!S.getLangOptions().CPlusPlus0x)
2535 Sequence.AddExtraneousCopyToTemporary(cv2T2);
2536
2537 if (DerivedToBase)
2538 Sequence.AddDerivedToBaseCastStep(
2539 S.Context.getQualifiedType(T1, T2Quals),
2540 /*isLValue=*/false);
2541 if (T1Quals != T2Quals)
2542 Sequence.AddQualificationConversionStep(cv1T1, /*IsLValue=*/false);
2543 Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
2544 return;
2545 }
2546
2547 // - T1 is not reference-related to T2 and the initializer expression
2548 // can be implicitly converted to an rvalue of type "cv3 T3" (this
2549 // conversion is selected by enumerating the applicable conversion
2550 // functions (13.3.1.6) and choosing the best one through overload
2551 // resolution (13.3)),
2552 if (RefRelationship == Sema::Ref_Incompatible) {
2553 ConvOvlResult = TryRefInitWithConversionFunction(S, Entity,
2554 Kind, Initializer,
2555 /*AllowRValues=*/true,
2556 Sequence);
2557 if (ConvOvlResult)
2558 Sequence.SetOverloadFailure(
2559 InitializationSequence::FK_ReferenceInitOverloadFailed,
2560 ConvOvlResult);
2561
2562 return;
2563 }
2564
2565 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
2566 return;
2567 }
2568
2569 // - If the initializer expression is an rvalue, with T2 an array type,
2570 // and "cv1 T1" is reference-compatible with "cv2 T2," the reference
2571 // is bound to the object represented by the rvalue (see 3.10).
2572 // FIXME: How can an array type be reference-compatible with anything?
2573 // Don't we mean the element types of T1 and T2?
2574
2575 // - Otherwise, a temporary of type ���cv1 T1��� is created and initialized
2576 // from the initializer expression using the rules for a non-reference
2577 // copy initialization (8.5). The reference is then bound to the
2578 // temporary. [...]
2579 // Determine whether we are allowed to call explicit constructors or
2580 // explicit conversion operators.
2581 bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct);
2582 ImplicitConversionSequence ICS
2583 = S.TryImplicitConversion(Initializer, cv1T1,
2584 /*SuppressUserConversions=*/false, AllowExplicit,
2585 /*FIXME:InOverloadResolution=*/false);
2586
2587 if (ICS.isBad()) {
2588 // FIXME: Use the conversion function set stored in ICS to turn
2589 // this into an overloading ambiguity diagnostic. However, we need
2590 // to keep that set as an OverloadCandidateSet rather than as some
2591 // other kind of set.
2592 if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
2593 Sequence.SetOverloadFailure(
2594 InitializationSequence::FK_ReferenceInitOverloadFailed,
2595 ConvOvlResult);
2596 else
2597 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
2598 return;
2599 }
2600
2601 // [...] If T1 is reference-related to T2, cv1 must be the
2602 // same cv-qualification as, or greater cv-qualification
2603 // than, cv2; otherwise, the program is ill-formed.
2604 unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
2605 unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
2606 if (RefRelationship == Sema::Ref_Related &&
2607 (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
2608 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
2609 return;
2610 }
2611
2612 // Perform the actual conversion.
2613 Sequence.AddConversionSequenceStep(ICS, cv1T1);
2614 Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
2615 return;
2616}
2617
2618/// \brief Attempt character array initialization from a string literal
2619/// (C++ [dcl.init.string], C99 6.7.8).
2620static void TryStringLiteralInitialization(Sema &S,
2621 const InitializedEntity &Entity,
2622 const InitializationKind &Kind,
2623 Expr *Initializer,
2624 InitializationSequence &Sequence) {
2625 Sequence.setSequenceKind(InitializationSequence::StringInit);
2626 Sequence.AddStringInitStep(Entity.getType());
2627}
2628
2629/// \brief Attempt initialization by constructor (C++ [dcl.init]), which
2630/// enumerates the constructors of the initialized entity and performs overload
2631/// resolution to select the best.
2632static void TryConstructorInitialization(Sema &S,
2633 const InitializedEntity &Entity,
2634 const InitializationKind &Kind,
2635 Expr **Args, unsigned NumArgs,
2636 QualType DestType,
2637 InitializationSequence &Sequence) {
2638 Sequence.setSequenceKind(InitializationSequence::ConstructorInitialization);
2639
2640 // Build the candidate set directly in the initialization sequence
2641 // structure, so that it will persist if we fail.
2642 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2643 CandidateSet.clear();
2644
2645 // Determine whether we are allowed to call explicit constructors or
2646 // explicit conversion operators.
2647 bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct ||
2648 Kind.getKind() == InitializationKind::IK_Value ||
2649 Kind.getKind() == InitializationKind::IK_Default);
2650
2651 // The type we're constructing needs to be complete.
2652 if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
2630 Sequence.SetFailed(InitializationSequence::FK_ConversionFailed);
2653 Sequence.SetFailed(InitializationSequence::FK_Incomplete);
2631 return;
2632 }
2633
2634 // The type we're converting to is a class type. Enumerate its constructors
2635 // to see if one is suitable.
2636 const RecordType *DestRecordType = DestType->getAs<RecordType>();
2637 assert(DestRecordType && "Constructor initialization requires record type");
2638 CXXRecordDecl *DestRecordDecl
2639 = cast<CXXRecordDecl>(DestRecordType->getDecl());
2640
2641 DeclarationName ConstructorName
2642 = S.Context.DeclarationNames.getCXXConstructorName(
2643 S.Context.getCanonicalType(DestType).getUnqualifiedType());
2644 DeclContext::lookup_iterator Con, ConEnd;
2645 for (llvm::tie(Con, ConEnd) = DestRecordDecl->lookup(ConstructorName);
2646 Con != ConEnd; ++Con) {
2647 NamedDecl *D = *Con;
2648 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2649 bool SuppressUserConversions = false;
2650
2651 // Find the constructor (which may be a template).
2652 CXXConstructorDecl *Constructor = 0;
2653 FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
2654 if (ConstructorTmpl)
2655 Constructor = cast<CXXConstructorDecl>(
2656 ConstructorTmpl->getTemplatedDecl());
2657 else {
2658 Constructor = cast<CXXConstructorDecl>(D);
2659
2660 // If we're performing copy initialization using a copy constructor, we
2661 // suppress user-defined conversions on the arguments.
2662 // FIXME: Move constructors?
2663 if (Kind.getKind() == InitializationKind::IK_Copy &&
2664 Constructor->isCopyConstructor())
2665 SuppressUserConversions = true;
2666 }
2667
2668 if (!Constructor->isInvalidDecl() &&
2669 (AllowExplicit || !Constructor->isExplicit())) {
2670 if (ConstructorTmpl)
2671 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2672 /*ExplicitArgs*/ 0,
2673 Args, NumArgs, CandidateSet,
2674 SuppressUserConversions);
2675 else
2676 S.AddOverloadCandidate(Constructor, FoundDecl,
2677 Args, NumArgs, CandidateSet,
2678 SuppressUserConversions);
2679 }
2680 }
2681
2682 SourceLocation DeclLoc = Kind.getLocation();
2683
2684 // Perform overload resolution. If it fails, return the failed result.
2685 OverloadCandidateSet::iterator Best;
2686 if (OverloadingResult Result
2687 = S.BestViableFunction(CandidateSet, DeclLoc, Best)) {
2688 Sequence.SetOverloadFailure(
2689 InitializationSequence::FK_ConstructorOverloadFailed,
2690 Result);
2691 return;
2692 }
2693
2694 // C++0x [dcl.init]p6:
2695 // If a program calls for the default initialization of an object
2696 // of a const-qualified type T, T shall be a class type with a
2697 // user-provided default constructor.
2698 if (Kind.getKind() == InitializationKind::IK_Default &&
2699 Entity.getType().isConstQualified() &&
2700 cast<CXXConstructorDecl>(Best->Function)->isImplicit()) {
2701 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
2702 return;
2703 }
2704
2705 // Add the constructor initialization step. Any cv-qualification conversion is
2706 // subsumed by the initialization.
2707 Sequence.AddConstructorInitializationStep(
2708 cast<CXXConstructorDecl>(Best->Function),
2709 Best->FoundDecl.getAccess(),
2710 DestType);
2711}
2712
2713/// \brief Attempt value initialization (C++ [dcl.init]p7).
2714static void TryValueInitialization(Sema &S,
2715 const InitializedEntity &Entity,
2716 const InitializationKind &Kind,
2717 InitializationSequence &Sequence) {
2718 // C++ [dcl.init]p5:
2719 //
2720 // To value-initialize an object of type T means:
2721 QualType T = Entity.getType();
2722
2723 // -- if T is an array type, then each element is value-initialized;
2724 while (const ArrayType *AT = S.Context.getAsArrayType(T))
2725 T = AT->getElementType();
2726
2727 if (const RecordType *RT = T->getAs<RecordType>()) {
2728 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
2729 // -- if T is a class type (clause 9) with a user-declared
2730 // constructor (12.1), then the default constructor for T is
2731 // called (and the initialization is ill-formed if T has no
2732 // accessible default constructor);
2733 //
2734 // FIXME: we really want to refer to a single subobject of the array,
2735 // but Entity doesn't have a way to capture that (yet).
2736 if (ClassDecl->hasUserDeclaredConstructor())
2737 return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence);
2738
2739 // -- if T is a (possibly cv-qualified) non-union class type
2740 // without a user-provided constructor, then the object is
2741 // zero-initialized and, if T���s implicitly-declared default
2742 // constructor is non-trivial, that constructor is called.
2654 return;
2655 }
2656
2657 // The type we're converting to is a class type. Enumerate its constructors
2658 // to see if one is suitable.
2659 const RecordType *DestRecordType = DestType->getAs<RecordType>();
2660 assert(DestRecordType && "Constructor initialization requires record type");
2661 CXXRecordDecl *DestRecordDecl
2662 = cast<CXXRecordDecl>(DestRecordType->getDecl());
2663
2664 DeclarationName ConstructorName
2665 = S.Context.DeclarationNames.getCXXConstructorName(
2666 S.Context.getCanonicalType(DestType).getUnqualifiedType());
2667 DeclContext::lookup_iterator Con, ConEnd;
2668 for (llvm::tie(Con, ConEnd) = DestRecordDecl->lookup(ConstructorName);
2669 Con != ConEnd; ++Con) {
2670 NamedDecl *D = *Con;
2671 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2672 bool SuppressUserConversions = false;
2673
2674 // Find the constructor (which may be a template).
2675 CXXConstructorDecl *Constructor = 0;
2676 FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
2677 if (ConstructorTmpl)
2678 Constructor = cast<CXXConstructorDecl>(
2679 ConstructorTmpl->getTemplatedDecl());
2680 else {
2681 Constructor = cast<CXXConstructorDecl>(D);
2682
2683 // If we're performing copy initialization using a copy constructor, we
2684 // suppress user-defined conversions on the arguments.
2685 // FIXME: Move constructors?
2686 if (Kind.getKind() == InitializationKind::IK_Copy &&
2687 Constructor->isCopyConstructor())
2688 SuppressUserConversions = true;
2689 }
2690
2691 if (!Constructor->isInvalidDecl() &&
2692 (AllowExplicit || !Constructor->isExplicit())) {
2693 if (ConstructorTmpl)
2694 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2695 /*ExplicitArgs*/ 0,
2696 Args, NumArgs, CandidateSet,
2697 SuppressUserConversions);
2698 else
2699 S.AddOverloadCandidate(Constructor, FoundDecl,
2700 Args, NumArgs, CandidateSet,
2701 SuppressUserConversions);
2702 }
2703 }
2704
2705 SourceLocation DeclLoc = Kind.getLocation();
2706
2707 // Perform overload resolution. If it fails, return the failed result.
2708 OverloadCandidateSet::iterator Best;
2709 if (OverloadingResult Result
2710 = S.BestViableFunction(CandidateSet, DeclLoc, Best)) {
2711 Sequence.SetOverloadFailure(
2712 InitializationSequence::FK_ConstructorOverloadFailed,
2713 Result);
2714 return;
2715 }
2716
2717 // C++0x [dcl.init]p6:
2718 // If a program calls for the default initialization of an object
2719 // of a const-qualified type T, T shall be a class type with a
2720 // user-provided default constructor.
2721 if (Kind.getKind() == InitializationKind::IK_Default &&
2722 Entity.getType().isConstQualified() &&
2723 cast<CXXConstructorDecl>(Best->Function)->isImplicit()) {
2724 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
2725 return;
2726 }
2727
2728 // Add the constructor initialization step. Any cv-qualification conversion is
2729 // subsumed by the initialization.
2730 Sequence.AddConstructorInitializationStep(
2731 cast<CXXConstructorDecl>(Best->Function),
2732 Best->FoundDecl.getAccess(),
2733 DestType);
2734}
2735
2736/// \brief Attempt value initialization (C++ [dcl.init]p7).
2737static void TryValueInitialization(Sema &S,
2738 const InitializedEntity &Entity,
2739 const InitializationKind &Kind,
2740 InitializationSequence &Sequence) {
2741 // C++ [dcl.init]p5:
2742 //
2743 // To value-initialize an object of type T means:
2744 QualType T = Entity.getType();
2745
2746 // -- if T is an array type, then each element is value-initialized;
2747 while (const ArrayType *AT = S.Context.getAsArrayType(T))
2748 T = AT->getElementType();
2749
2750 if (const RecordType *RT = T->getAs<RecordType>()) {
2751 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
2752 // -- if T is a class type (clause 9) with a user-declared
2753 // constructor (12.1), then the default constructor for T is
2754 // called (and the initialization is ill-formed if T has no
2755 // accessible default constructor);
2756 //
2757 // FIXME: we really want to refer to a single subobject of the array,
2758 // but Entity doesn't have a way to capture that (yet).
2759 if (ClassDecl->hasUserDeclaredConstructor())
2760 return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence);
2761
2762 // -- if T is a (possibly cv-qualified) non-union class type
2763 // without a user-provided constructor, then the object is
2764 // zero-initialized and, if T���s implicitly-declared default
2765 // constructor is non-trivial, that constructor is called.
2743 if ((ClassDecl->getTagKind() == TagDecl::TK_class ||
2744 ClassDecl->getTagKind() == TagDecl::TK_struct) &&
2766 if ((ClassDecl->getTagKind() == TTK_Class ||
2767 ClassDecl->getTagKind() == TTK_Struct) &&
2745 !ClassDecl->hasTrivialConstructor()) {
2746 Sequence.AddZeroInitializationStep(Entity.getType());
2747 return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence);
2748 }
2749 }
2750 }
2751
2752 Sequence.AddZeroInitializationStep(Entity.getType());
2753 Sequence.setSequenceKind(InitializationSequence::ZeroInitialization);
2754}
2755
2756/// \brief Attempt default initialization (C++ [dcl.init]p6).
2757static void TryDefaultInitialization(Sema &S,
2758 const InitializedEntity &Entity,
2759 const InitializationKind &Kind,
2760 InitializationSequence &Sequence) {
2761 assert(Kind.getKind() == InitializationKind::IK_Default);
2762
2763 // C++ [dcl.init]p6:
2764 // To default-initialize an object of type T means:
2765 // - if T is an array type, each element is default-initialized;
2766 QualType DestType = Entity.getType();
2767 while (const ArrayType *Array = S.Context.getAsArrayType(DestType))
2768 DestType = Array->getElementType();
2769
2770 // - if T is a (possibly cv-qualified) class type (Clause 9), the default
2771 // constructor for T is called (and the initialization is ill-formed if
2772 // T has no accessible default constructor);
2773 if (DestType->isRecordType() && S.getLangOptions().CPlusPlus) {
2774 return TryConstructorInitialization(S, Entity, Kind, 0, 0, DestType,
2775 Sequence);
2776 }
2777
2778 // - otherwise, no initialization is performed.
2779 Sequence.setSequenceKind(InitializationSequence::NoInitialization);
2780
2781 // If a program calls for the default initialization of an object of
2782 // a const-qualified type T, T shall be a class type with a user-provided
2783 // default constructor.
2784 if (DestType.isConstQualified() && S.getLangOptions().CPlusPlus)
2785 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
2786}
2787
2788/// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
2789/// which enumerates all conversion functions and performs overload resolution
2790/// to select the best.
2791static void TryUserDefinedConversion(Sema &S,
2792 const InitializedEntity &Entity,
2793 const InitializationKind &Kind,
2794 Expr *Initializer,
2795 InitializationSequence &Sequence) {
2796 Sequence.setSequenceKind(InitializationSequence::UserDefinedConversion);
2797
2798 QualType DestType = Entity.getType();
2799 assert(!DestType->isReferenceType() && "References are handled elsewhere");
2800 QualType SourceType = Initializer->getType();
2801 assert((DestType->isRecordType() || SourceType->isRecordType()) &&
2802 "Must have a class type to perform a user-defined conversion");
2803
2804 // Build the candidate set directly in the initialization sequence
2805 // structure, so that it will persist if we fail.
2806 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2807 CandidateSet.clear();
2808
2809 // Determine whether we are allowed to call explicit constructors or
2810 // explicit conversion operators.
2811 bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct;
2812
2813 if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
2814 // The type we're converting to is a class type. Enumerate its constructors
2815 // to see if there is a suitable conversion.
2816 CXXRecordDecl *DestRecordDecl
2817 = cast<CXXRecordDecl>(DestRecordType->getDecl());
2818
2819 // Try to complete the type we're converting to.
2820 if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
2821 DeclarationName ConstructorName
2822 = S.Context.DeclarationNames.getCXXConstructorName(
2823 S.Context.getCanonicalType(DestType).getUnqualifiedType());
2824 DeclContext::lookup_iterator Con, ConEnd;
2825 for (llvm::tie(Con, ConEnd) = DestRecordDecl->lookup(ConstructorName);
2826 Con != ConEnd; ++Con) {
2827 NamedDecl *D = *Con;
2828 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2829 bool SuppressUserConversions = false;
2830
2831 // Find the constructor (which may be a template).
2832 CXXConstructorDecl *Constructor = 0;
2833 FunctionTemplateDecl *ConstructorTmpl
2834 = dyn_cast<FunctionTemplateDecl>(D);
2835 if (ConstructorTmpl)
2836 Constructor = cast<CXXConstructorDecl>(
2837 ConstructorTmpl->getTemplatedDecl());
2838 else {
2839 Constructor = cast<CXXConstructorDecl>(D);
2840
2841 // If we're performing copy initialization using a copy constructor,
2842 // we suppress user-defined conversions on the arguments.
2843 // FIXME: Move constructors?
2844 if (Kind.getKind() == InitializationKind::IK_Copy &&
2845 Constructor->isCopyConstructor())
2846 SuppressUserConversions = true;
2847
2848 }
2849
2850 if (!Constructor->isInvalidDecl() &&
2851 Constructor->isConvertingConstructor(AllowExplicit)) {
2852 if (ConstructorTmpl)
2853 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2854 /*ExplicitArgs*/ 0,
2855 &Initializer, 1, CandidateSet,
2856 SuppressUserConversions);
2857 else
2858 S.AddOverloadCandidate(Constructor, FoundDecl,
2859 &Initializer, 1, CandidateSet,
2860 SuppressUserConversions);
2861 }
2862 }
2863 }
2864 }
2865
2866 SourceLocation DeclLoc = Initializer->getLocStart();
2867
2868 if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
2869 // The type we're converting from is a class type, enumerate its conversion
2870 // functions.
2871
2872 // We can only enumerate the conversion functions for a complete type; if
2873 // the type isn't complete, simply skip this step.
2874 if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
2875 CXXRecordDecl *SourceRecordDecl
2876 = cast<CXXRecordDecl>(SourceRecordType->getDecl());
2877
2878 const UnresolvedSetImpl *Conversions
2879 = SourceRecordDecl->getVisibleConversionFunctions();
2880 for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
2881 E = Conversions->end();
2882 I != E; ++I) {
2883 NamedDecl *D = *I;
2884 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
2885 if (isa<UsingShadowDecl>(D))
2886 D = cast<UsingShadowDecl>(D)->getTargetDecl();
2887
2888 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
2889 CXXConversionDecl *Conv;
2890 if (ConvTemplate)
2891 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2892 else
2893 Conv = cast<CXXConversionDecl>(D);
2894
2895 if (AllowExplicit || !Conv->isExplicit()) {
2896 if (ConvTemplate)
2897 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
2898 ActingDC, Initializer, DestType,
2899 CandidateSet);
2900 else
2901 S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
2902 Initializer, DestType, CandidateSet);
2903 }
2904 }
2905 }
2906 }
2907
2908 // Perform overload resolution. If it fails, return the failed result.
2909 OverloadCandidateSet::iterator Best;
2910 if (OverloadingResult Result
2911 = S.BestViableFunction(CandidateSet, DeclLoc, Best)) {
2912 Sequence.SetOverloadFailure(
2913 InitializationSequence::FK_UserConversionOverloadFailed,
2914 Result);
2915 return;
2916 }
2917
2918 FunctionDecl *Function = Best->Function;
2919
2920 if (isa<CXXConstructorDecl>(Function)) {
2921 // Add the user-defined conversion step. Any cv-qualification conversion is
2922 // subsumed by the initialization.
2923 Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType);
2924 return;
2925 }
2926
2927 // Add the user-defined conversion step that calls the conversion function.
2928 QualType ConvType = Function->getResultType().getNonReferenceType();
2929 if (ConvType->getAs<RecordType>()) {
2930 // If we're converting to a class type, there may be an copy if
2931 // the resulting temporary object (possible to create an object of
2932 // a base class type). That copy is not a separate conversion, so
2933 // we just make a note of the actual destination type (possibly a
2934 // base class of the type returned by the conversion function) and
2935 // let the user-defined conversion step handle the conversion.
2936 Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType);
2937 return;
2938 }
2939
2940 Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType);
2941
2942 // If the conversion following the call to the conversion function
2943 // is interesting, add it as a separate step.
2944 if (Best->FinalConversion.First || Best->FinalConversion.Second ||
2945 Best->FinalConversion.Third) {
2946 ImplicitConversionSequence ICS;
2947 ICS.setStandard();
2948 ICS.Standard = Best->FinalConversion;
2949 Sequence.AddConversionSequenceStep(ICS, DestType);
2950 }
2951}
2952
2953/// \brief Attempt an implicit conversion (C++ [conv]) converting from one
2954/// non-class type to another.
2955static void TryImplicitConversion(Sema &S,
2956 const InitializedEntity &Entity,
2957 const InitializationKind &Kind,
2958 Expr *Initializer,
2959 InitializationSequence &Sequence) {
2960 ImplicitConversionSequence ICS
2961 = S.TryImplicitConversion(Initializer, Entity.getType(),
2962 /*SuppressUserConversions=*/true,
2963 /*AllowExplicit=*/false,
2964 /*InOverloadResolution=*/false);
2965
2966 if (ICS.isBad()) {
2967 Sequence.SetFailed(InitializationSequence::FK_ConversionFailed);
2968 return;
2969 }
2970
2971 Sequence.AddConversionSequenceStep(ICS, Entity.getType());
2972}
2973
2974InitializationSequence::InitializationSequence(Sema &S,
2975 const InitializedEntity &Entity,
2976 const InitializationKind &Kind,
2977 Expr **Args,
2978 unsigned NumArgs)
2979 : FailedCandidateSet(Kind.getLocation()) {
2980 ASTContext &Context = S.Context;
2981
2982 // C++0x [dcl.init]p16:
2983 // The semantics of initializers are as follows. The destination type is
2984 // the type of the object or reference being initialized and the source
2985 // type is the type of the initializer expression. The source type is not
2986 // defined when the initializer is a braced-init-list or when it is a
2987 // parenthesized list of expressions.
2988 QualType DestType = Entity.getType();
2989
2990 if (DestType->isDependentType() ||
2991 Expr::hasAnyTypeDependentArguments(Args, NumArgs)) {
2992 SequenceKind = DependentSequence;
2993 return;
2994 }
2995
2996 QualType SourceType;
2997 Expr *Initializer = 0;
2998 if (NumArgs == 1) {
2999 Initializer = Args[0];
3000 if (!isa<InitListExpr>(Initializer))
3001 SourceType = Initializer->getType();
3002 }
3003
3004 // - If the initializer is a braced-init-list, the object is
3005 // list-initialized (8.5.4).
3006 if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
3007 TryListInitialization(S, Entity, Kind, InitList, *this);
3008 return;
3009 }
3010
3011 // - If the destination type is a reference type, see 8.5.3.
3012 if (DestType->isReferenceType()) {
3013 // C++0x [dcl.init.ref]p1:
3014 // A variable declared to be a T& or T&&, that is, "reference to type T"
3015 // (8.3.2), shall be initialized by an object, or function, of type T or
3016 // by an object that can be converted into a T.
3017 // (Therefore, multiple arguments are not permitted.)
3018 if (NumArgs != 1)
3019 SetFailed(FK_TooManyInitsForReference);
3020 else
3021 TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
3022 return;
3023 }
3024
3025 // - If the destination type is an array of characters, an array of
3026 // char16_t, an array of char32_t, or an array of wchar_t, and the
3027 // initializer is a string literal, see 8.5.2.
3028 if (Initializer && IsStringInit(Initializer, DestType, Context)) {
3029 TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
3030 return;
3031 }
3032
3033 // - If the initializer is (), the object is value-initialized.
3034 if (Kind.getKind() == InitializationKind::IK_Value ||
3035 (Kind.getKind() == InitializationKind::IK_Direct && NumArgs == 0)) {
3036 TryValueInitialization(S, Entity, Kind, *this);
3037 return;
3038 }
3039
3040 // Handle default initialization.
3041 if (Kind.getKind() == InitializationKind::IK_Default){
3042 TryDefaultInitialization(S, Entity, Kind, *this);
3043 return;
3044 }
3045
3046 // - Otherwise, if the destination type is an array, the program is
3047 // ill-formed.
3048 if (const ArrayType *AT = Context.getAsArrayType(DestType)) {
3049 if (AT->getElementType()->isAnyCharacterType())
3050 SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
3051 else
3052 SetFailed(FK_ArrayNeedsInitList);
3053
3054 return;
3055 }
3056
3057 // Handle initialization in C
3058 if (!S.getLangOptions().CPlusPlus) {
3059 setSequenceKind(CAssignment);
3060 AddCAssignmentStep(DestType);
3061 return;
3062 }
3063
3064 // - If the destination type is a (possibly cv-qualified) class type:
3065 if (DestType->isRecordType()) {
3066 // - If the initialization is direct-initialization, or if it is
3067 // copy-initialization where the cv-unqualified version of the
3068 // source type is the same class as, or a derived class of, the
3069 // class of the destination, constructors are considered. [...]
3070 if (Kind.getKind() == InitializationKind::IK_Direct ||
3071 (Kind.getKind() == InitializationKind::IK_Copy &&
3072 (Context.hasSameUnqualifiedType(SourceType, DestType) ||
3073 S.IsDerivedFrom(SourceType, DestType))))
3074 TryConstructorInitialization(S, Entity, Kind, Args, NumArgs,
3075 Entity.getType(), *this);
3076 // - Otherwise (i.e., for the remaining copy-initialization cases),
3077 // user-defined conversion sequences that can convert from the source
3078 // type to the destination type or (when a conversion function is
3079 // used) to a derived class thereof are enumerated as described in
3080 // 13.3.1.4, and the best one is chosen through overload resolution
3081 // (13.3).
3082 else
3083 TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
3084 return;
3085 }
3086
3087 if (NumArgs > 1) {
3088 SetFailed(FK_TooManyInitsForScalar);
3089 return;
3090 }
3091 assert(NumArgs == 1 && "Zero-argument case handled above");
3092
3093 // - Otherwise, if the source type is a (possibly cv-qualified) class
3094 // type, conversion functions are considered.
3095 if (!SourceType.isNull() && SourceType->isRecordType()) {
3096 TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
3097 return;
3098 }
3099
3100 // - Otherwise, the initial value of the object being initialized is the
3101 // (possibly converted) value of the initializer expression. Standard
3102 // conversions (Clause 4) will be used, if necessary, to convert the
3103 // initializer expression to the cv-unqualified version of the
3104 // destination type; no user-defined conversions are considered.
3105 setSequenceKind(StandardConversion);
3106 TryImplicitConversion(S, Entity, Kind, Initializer, *this);
3107}
3108
3109InitializationSequence::~InitializationSequence() {
3110 for (llvm::SmallVectorImpl<Step>::iterator Step = Steps.begin(),
3111 StepEnd = Steps.end();
3112 Step != StepEnd; ++Step)
3113 Step->Destroy();
3114}
3115
3116//===----------------------------------------------------------------------===//
3117// Perform initialization
3118//===----------------------------------------------------------------------===//
3119static Sema::AssignmentAction
3120getAssignmentAction(const InitializedEntity &Entity) {
3121 switch(Entity.getKind()) {
3122 case InitializedEntity::EK_Variable:
3123 case InitializedEntity::EK_New:
3124 return Sema::AA_Initializing;
3125
3126 case InitializedEntity::EK_Parameter:
3127 if (Entity.getDecl() &&
3128 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
3129 return Sema::AA_Sending;
3130
3131 return Sema::AA_Passing;
3132
3133 case InitializedEntity::EK_Result:
3134 return Sema::AA_Returning;
3135
3136 case InitializedEntity::EK_Exception:
3137 case InitializedEntity::EK_Base:
3138 llvm_unreachable("No assignment action for C++-specific initialization");
3139 break;
3140
3141 case InitializedEntity::EK_Temporary:
3142 // FIXME: Can we tell apart casting vs. converting?
3143 return Sema::AA_Casting;
3144
3145 case InitializedEntity::EK_Member:
3146 case InitializedEntity::EK_ArrayElement:
3147 case InitializedEntity::EK_VectorElement:
3148 return Sema::AA_Initializing;
3149 }
3150
3151 return Sema::AA_Converting;
3152}
3153
3154/// \brief Whether we should binding a created object as a temporary when
3155/// initializing the given entity.
3156static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
3157 switch (Entity.getKind()) {
3158 case InitializedEntity::EK_ArrayElement:
3159 case InitializedEntity::EK_Member:
3160 case InitializedEntity::EK_Result:
3161 case InitializedEntity::EK_New:
3162 case InitializedEntity::EK_Variable:
3163 case InitializedEntity::EK_Base:
3164 case InitializedEntity::EK_VectorElement:
3165 case InitializedEntity::EK_Exception:
3166 return false;
3167
3168 case InitializedEntity::EK_Parameter:
3169 case InitializedEntity::EK_Temporary:
3170 return true;
3171 }
3172
3173 llvm_unreachable("missed an InitializedEntity kind?");
3174}
3175
3176/// \brief Whether the given entity, when initialized with an object
3177/// created for that initialization, requires destruction.
3178static bool shouldDestroyTemporary(const InitializedEntity &Entity) {
3179 switch (Entity.getKind()) {
3180 case InitializedEntity::EK_Member:
3181 case InitializedEntity::EK_Result:
3182 case InitializedEntity::EK_New:
3183 case InitializedEntity::EK_Base:
3184 case InitializedEntity::EK_VectorElement:
3185 return false;
3186
3187 case InitializedEntity::EK_Variable:
3188 case InitializedEntity::EK_Parameter:
3189 case InitializedEntity::EK_Temporary:
3190 case InitializedEntity::EK_ArrayElement:
3191 case InitializedEntity::EK_Exception:
3192 return true;
3193 }
3194
3195 llvm_unreachable("missed an InitializedEntity kind?");
3196}
3197
3198/// \brief Make a (potentially elidable) temporary copy of the object
3199/// provided by the given initializer by calling the appropriate copy
3200/// constructor.
3201///
3202/// \param S The Sema object used for type-checking.
3203///
3204/// \param T The type of the temporary object, which must either by
3205/// the type of the initializer expression or a superclass thereof.
3206///
3207/// \param Enter The entity being initialized.
3208///
3209/// \param CurInit The initializer expression.
3210///
3211/// \param IsExtraneousCopy Whether this is an "extraneous" copy that
3212/// is permitted in C++03 (but not C++0x) when binding a reference to
3213/// an rvalue.
3214///
3215/// \returns An expression that copies the initializer expression into
3216/// a temporary object, or an error expression if a copy could not be
3217/// created.
3218static Sema::OwningExprResult CopyObject(Sema &S,
3219 QualType T,
3220 const InitializedEntity &Entity,
3221 Sema::OwningExprResult CurInit,
3222 bool IsExtraneousCopy) {
3223 // Determine which class type we're copying to.
3224 Expr *CurInitExpr = (Expr *)CurInit.get();
3225 CXXRecordDecl *Class = 0;
3226 if (const RecordType *Record = T->getAs<RecordType>())
3227 Class = cast<CXXRecordDecl>(Record->getDecl());
3228 if (!Class)
3229 return move(CurInit);
3230
3231 // C++0x [class.copy]p34:
3232 // When certain criteria are met, an implementation is allowed to
3233 // omit the copy/move construction of a class object, even if the
3234 // copy/move constructor and/or destructor for the object have
3235 // side effects. [...]
3236 // - when a temporary class object that has not been bound to a
3237 // reference (12.2) would be copied/moved to a class object
3238 // with the same cv-unqualified type, the copy/move operation
3239 // can be omitted by constructing the temporary object
3240 // directly into the target of the omitted copy/move
3241 //
3242 // Note that the other three bullets are handled elsewhere. Copy
2768 !ClassDecl->hasTrivialConstructor()) {
2769 Sequence.AddZeroInitializationStep(Entity.getType());
2770 return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence);
2771 }
2772 }
2773 }
2774
2775 Sequence.AddZeroInitializationStep(Entity.getType());
2776 Sequence.setSequenceKind(InitializationSequence::ZeroInitialization);
2777}
2778
2779/// \brief Attempt default initialization (C++ [dcl.init]p6).
2780static void TryDefaultInitialization(Sema &S,
2781 const InitializedEntity &Entity,
2782 const InitializationKind &Kind,
2783 InitializationSequence &Sequence) {
2784 assert(Kind.getKind() == InitializationKind::IK_Default);
2785
2786 // C++ [dcl.init]p6:
2787 // To default-initialize an object of type T means:
2788 // - if T is an array type, each element is default-initialized;
2789 QualType DestType = Entity.getType();
2790 while (const ArrayType *Array = S.Context.getAsArrayType(DestType))
2791 DestType = Array->getElementType();
2792
2793 // - if T is a (possibly cv-qualified) class type (Clause 9), the default
2794 // constructor for T is called (and the initialization is ill-formed if
2795 // T has no accessible default constructor);
2796 if (DestType->isRecordType() && S.getLangOptions().CPlusPlus) {
2797 return TryConstructorInitialization(S, Entity, Kind, 0, 0, DestType,
2798 Sequence);
2799 }
2800
2801 // - otherwise, no initialization is performed.
2802 Sequence.setSequenceKind(InitializationSequence::NoInitialization);
2803
2804 // If a program calls for the default initialization of an object of
2805 // a const-qualified type T, T shall be a class type with a user-provided
2806 // default constructor.
2807 if (DestType.isConstQualified() && S.getLangOptions().CPlusPlus)
2808 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
2809}
2810
2811/// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
2812/// which enumerates all conversion functions and performs overload resolution
2813/// to select the best.
2814static void TryUserDefinedConversion(Sema &S,
2815 const InitializedEntity &Entity,
2816 const InitializationKind &Kind,
2817 Expr *Initializer,
2818 InitializationSequence &Sequence) {
2819 Sequence.setSequenceKind(InitializationSequence::UserDefinedConversion);
2820
2821 QualType DestType = Entity.getType();
2822 assert(!DestType->isReferenceType() && "References are handled elsewhere");
2823 QualType SourceType = Initializer->getType();
2824 assert((DestType->isRecordType() || SourceType->isRecordType()) &&
2825 "Must have a class type to perform a user-defined conversion");
2826
2827 // Build the candidate set directly in the initialization sequence
2828 // structure, so that it will persist if we fail.
2829 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2830 CandidateSet.clear();
2831
2832 // Determine whether we are allowed to call explicit constructors or
2833 // explicit conversion operators.
2834 bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct;
2835
2836 if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
2837 // The type we're converting to is a class type. Enumerate its constructors
2838 // to see if there is a suitable conversion.
2839 CXXRecordDecl *DestRecordDecl
2840 = cast<CXXRecordDecl>(DestRecordType->getDecl());
2841
2842 // Try to complete the type we're converting to.
2843 if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
2844 DeclarationName ConstructorName
2845 = S.Context.DeclarationNames.getCXXConstructorName(
2846 S.Context.getCanonicalType(DestType).getUnqualifiedType());
2847 DeclContext::lookup_iterator Con, ConEnd;
2848 for (llvm::tie(Con, ConEnd) = DestRecordDecl->lookup(ConstructorName);
2849 Con != ConEnd; ++Con) {
2850 NamedDecl *D = *Con;
2851 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2852 bool SuppressUserConversions = false;
2853
2854 // Find the constructor (which may be a template).
2855 CXXConstructorDecl *Constructor = 0;
2856 FunctionTemplateDecl *ConstructorTmpl
2857 = dyn_cast<FunctionTemplateDecl>(D);
2858 if (ConstructorTmpl)
2859 Constructor = cast<CXXConstructorDecl>(
2860 ConstructorTmpl->getTemplatedDecl());
2861 else {
2862 Constructor = cast<CXXConstructorDecl>(D);
2863
2864 // If we're performing copy initialization using a copy constructor,
2865 // we suppress user-defined conversions on the arguments.
2866 // FIXME: Move constructors?
2867 if (Kind.getKind() == InitializationKind::IK_Copy &&
2868 Constructor->isCopyConstructor())
2869 SuppressUserConversions = true;
2870
2871 }
2872
2873 if (!Constructor->isInvalidDecl() &&
2874 Constructor->isConvertingConstructor(AllowExplicit)) {
2875 if (ConstructorTmpl)
2876 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2877 /*ExplicitArgs*/ 0,
2878 &Initializer, 1, CandidateSet,
2879 SuppressUserConversions);
2880 else
2881 S.AddOverloadCandidate(Constructor, FoundDecl,
2882 &Initializer, 1, CandidateSet,
2883 SuppressUserConversions);
2884 }
2885 }
2886 }
2887 }
2888
2889 SourceLocation DeclLoc = Initializer->getLocStart();
2890
2891 if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
2892 // The type we're converting from is a class type, enumerate its conversion
2893 // functions.
2894
2895 // We can only enumerate the conversion functions for a complete type; if
2896 // the type isn't complete, simply skip this step.
2897 if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
2898 CXXRecordDecl *SourceRecordDecl
2899 = cast<CXXRecordDecl>(SourceRecordType->getDecl());
2900
2901 const UnresolvedSetImpl *Conversions
2902 = SourceRecordDecl->getVisibleConversionFunctions();
2903 for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
2904 E = Conversions->end();
2905 I != E; ++I) {
2906 NamedDecl *D = *I;
2907 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
2908 if (isa<UsingShadowDecl>(D))
2909 D = cast<UsingShadowDecl>(D)->getTargetDecl();
2910
2911 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
2912 CXXConversionDecl *Conv;
2913 if (ConvTemplate)
2914 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2915 else
2916 Conv = cast<CXXConversionDecl>(D);
2917
2918 if (AllowExplicit || !Conv->isExplicit()) {
2919 if (ConvTemplate)
2920 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
2921 ActingDC, Initializer, DestType,
2922 CandidateSet);
2923 else
2924 S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
2925 Initializer, DestType, CandidateSet);
2926 }
2927 }
2928 }
2929 }
2930
2931 // Perform overload resolution. If it fails, return the failed result.
2932 OverloadCandidateSet::iterator Best;
2933 if (OverloadingResult Result
2934 = S.BestViableFunction(CandidateSet, DeclLoc, Best)) {
2935 Sequence.SetOverloadFailure(
2936 InitializationSequence::FK_UserConversionOverloadFailed,
2937 Result);
2938 return;
2939 }
2940
2941 FunctionDecl *Function = Best->Function;
2942
2943 if (isa<CXXConstructorDecl>(Function)) {
2944 // Add the user-defined conversion step. Any cv-qualification conversion is
2945 // subsumed by the initialization.
2946 Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType);
2947 return;
2948 }
2949
2950 // Add the user-defined conversion step that calls the conversion function.
2951 QualType ConvType = Function->getResultType().getNonReferenceType();
2952 if (ConvType->getAs<RecordType>()) {
2953 // If we're converting to a class type, there may be an copy if
2954 // the resulting temporary object (possible to create an object of
2955 // a base class type). That copy is not a separate conversion, so
2956 // we just make a note of the actual destination type (possibly a
2957 // base class of the type returned by the conversion function) and
2958 // let the user-defined conversion step handle the conversion.
2959 Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType);
2960 return;
2961 }
2962
2963 Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType);
2964
2965 // If the conversion following the call to the conversion function
2966 // is interesting, add it as a separate step.
2967 if (Best->FinalConversion.First || Best->FinalConversion.Second ||
2968 Best->FinalConversion.Third) {
2969 ImplicitConversionSequence ICS;
2970 ICS.setStandard();
2971 ICS.Standard = Best->FinalConversion;
2972 Sequence.AddConversionSequenceStep(ICS, DestType);
2973 }
2974}
2975
2976/// \brief Attempt an implicit conversion (C++ [conv]) converting from one
2977/// non-class type to another.
2978static void TryImplicitConversion(Sema &S,
2979 const InitializedEntity &Entity,
2980 const InitializationKind &Kind,
2981 Expr *Initializer,
2982 InitializationSequence &Sequence) {
2983 ImplicitConversionSequence ICS
2984 = S.TryImplicitConversion(Initializer, Entity.getType(),
2985 /*SuppressUserConversions=*/true,
2986 /*AllowExplicit=*/false,
2987 /*InOverloadResolution=*/false);
2988
2989 if (ICS.isBad()) {
2990 Sequence.SetFailed(InitializationSequence::FK_ConversionFailed);
2991 return;
2992 }
2993
2994 Sequence.AddConversionSequenceStep(ICS, Entity.getType());
2995}
2996
2997InitializationSequence::InitializationSequence(Sema &S,
2998 const InitializedEntity &Entity,
2999 const InitializationKind &Kind,
3000 Expr **Args,
3001 unsigned NumArgs)
3002 : FailedCandidateSet(Kind.getLocation()) {
3003 ASTContext &Context = S.Context;
3004
3005 // C++0x [dcl.init]p16:
3006 // The semantics of initializers are as follows. The destination type is
3007 // the type of the object or reference being initialized and the source
3008 // type is the type of the initializer expression. The source type is not
3009 // defined when the initializer is a braced-init-list or when it is a
3010 // parenthesized list of expressions.
3011 QualType DestType = Entity.getType();
3012
3013 if (DestType->isDependentType() ||
3014 Expr::hasAnyTypeDependentArguments(Args, NumArgs)) {
3015 SequenceKind = DependentSequence;
3016 return;
3017 }
3018
3019 QualType SourceType;
3020 Expr *Initializer = 0;
3021 if (NumArgs == 1) {
3022 Initializer = Args[0];
3023 if (!isa<InitListExpr>(Initializer))
3024 SourceType = Initializer->getType();
3025 }
3026
3027 // - If the initializer is a braced-init-list, the object is
3028 // list-initialized (8.5.4).
3029 if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
3030 TryListInitialization(S, Entity, Kind, InitList, *this);
3031 return;
3032 }
3033
3034 // - If the destination type is a reference type, see 8.5.3.
3035 if (DestType->isReferenceType()) {
3036 // C++0x [dcl.init.ref]p1:
3037 // A variable declared to be a T& or T&&, that is, "reference to type T"
3038 // (8.3.2), shall be initialized by an object, or function, of type T or
3039 // by an object that can be converted into a T.
3040 // (Therefore, multiple arguments are not permitted.)
3041 if (NumArgs != 1)
3042 SetFailed(FK_TooManyInitsForReference);
3043 else
3044 TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
3045 return;
3046 }
3047
3048 // - If the destination type is an array of characters, an array of
3049 // char16_t, an array of char32_t, or an array of wchar_t, and the
3050 // initializer is a string literal, see 8.5.2.
3051 if (Initializer && IsStringInit(Initializer, DestType, Context)) {
3052 TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
3053 return;
3054 }
3055
3056 // - If the initializer is (), the object is value-initialized.
3057 if (Kind.getKind() == InitializationKind::IK_Value ||
3058 (Kind.getKind() == InitializationKind::IK_Direct && NumArgs == 0)) {
3059 TryValueInitialization(S, Entity, Kind, *this);
3060 return;
3061 }
3062
3063 // Handle default initialization.
3064 if (Kind.getKind() == InitializationKind::IK_Default){
3065 TryDefaultInitialization(S, Entity, Kind, *this);
3066 return;
3067 }
3068
3069 // - Otherwise, if the destination type is an array, the program is
3070 // ill-formed.
3071 if (const ArrayType *AT = Context.getAsArrayType(DestType)) {
3072 if (AT->getElementType()->isAnyCharacterType())
3073 SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
3074 else
3075 SetFailed(FK_ArrayNeedsInitList);
3076
3077 return;
3078 }
3079
3080 // Handle initialization in C
3081 if (!S.getLangOptions().CPlusPlus) {
3082 setSequenceKind(CAssignment);
3083 AddCAssignmentStep(DestType);
3084 return;
3085 }
3086
3087 // - If the destination type is a (possibly cv-qualified) class type:
3088 if (DestType->isRecordType()) {
3089 // - If the initialization is direct-initialization, or if it is
3090 // copy-initialization where the cv-unqualified version of the
3091 // source type is the same class as, or a derived class of, the
3092 // class of the destination, constructors are considered. [...]
3093 if (Kind.getKind() == InitializationKind::IK_Direct ||
3094 (Kind.getKind() == InitializationKind::IK_Copy &&
3095 (Context.hasSameUnqualifiedType(SourceType, DestType) ||
3096 S.IsDerivedFrom(SourceType, DestType))))
3097 TryConstructorInitialization(S, Entity, Kind, Args, NumArgs,
3098 Entity.getType(), *this);
3099 // - Otherwise (i.e., for the remaining copy-initialization cases),
3100 // user-defined conversion sequences that can convert from the source
3101 // type to the destination type or (when a conversion function is
3102 // used) to a derived class thereof are enumerated as described in
3103 // 13.3.1.4, and the best one is chosen through overload resolution
3104 // (13.3).
3105 else
3106 TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
3107 return;
3108 }
3109
3110 if (NumArgs > 1) {
3111 SetFailed(FK_TooManyInitsForScalar);
3112 return;
3113 }
3114 assert(NumArgs == 1 && "Zero-argument case handled above");
3115
3116 // - Otherwise, if the source type is a (possibly cv-qualified) class
3117 // type, conversion functions are considered.
3118 if (!SourceType.isNull() && SourceType->isRecordType()) {
3119 TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
3120 return;
3121 }
3122
3123 // - Otherwise, the initial value of the object being initialized is the
3124 // (possibly converted) value of the initializer expression. Standard
3125 // conversions (Clause 4) will be used, if necessary, to convert the
3126 // initializer expression to the cv-unqualified version of the
3127 // destination type; no user-defined conversions are considered.
3128 setSequenceKind(StandardConversion);
3129 TryImplicitConversion(S, Entity, Kind, Initializer, *this);
3130}
3131
3132InitializationSequence::~InitializationSequence() {
3133 for (llvm::SmallVectorImpl<Step>::iterator Step = Steps.begin(),
3134 StepEnd = Steps.end();
3135 Step != StepEnd; ++Step)
3136 Step->Destroy();
3137}
3138
3139//===----------------------------------------------------------------------===//
3140// Perform initialization
3141//===----------------------------------------------------------------------===//
3142static Sema::AssignmentAction
3143getAssignmentAction(const InitializedEntity &Entity) {
3144 switch(Entity.getKind()) {
3145 case InitializedEntity::EK_Variable:
3146 case InitializedEntity::EK_New:
3147 return Sema::AA_Initializing;
3148
3149 case InitializedEntity::EK_Parameter:
3150 if (Entity.getDecl() &&
3151 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
3152 return Sema::AA_Sending;
3153
3154 return Sema::AA_Passing;
3155
3156 case InitializedEntity::EK_Result:
3157 return Sema::AA_Returning;
3158
3159 case InitializedEntity::EK_Exception:
3160 case InitializedEntity::EK_Base:
3161 llvm_unreachable("No assignment action for C++-specific initialization");
3162 break;
3163
3164 case InitializedEntity::EK_Temporary:
3165 // FIXME: Can we tell apart casting vs. converting?
3166 return Sema::AA_Casting;
3167
3168 case InitializedEntity::EK_Member:
3169 case InitializedEntity::EK_ArrayElement:
3170 case InitializedEntity::EK_VectorElement:
3171 return Sema::AA_Initializing;
3172 }
3173
3174 return Sema::AA_Converting;
3175}
3176
3177/// \brief Whether we should binding a created object as a temporary when
3178/// initializing the given entity.
3179static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
3180 switch (Entity.getKind()) {
3181 case InitializedEntity::EK_ArrayElement:
3182 case InitializedEntity::EK_Member:
3183 case InitializedEntity::EK_Result:
3184 case InitializedEntity::EK_New:
3185 case InitializedEntity::EK_Variable:
3186 case InitializedEntity::EK_Base:
3187 case InitializedEntity::EK_VectorElement:
3188 case InitializedEntity::EK_Exception:
3189 return false;
3190
3191 case InitializedEntity::EK_Parameter:
3192 case InitializedEntity::EK_Temporary:
3193 return true;
3194 }
3195
3196 llvm_unreachable("missed an InitializedEntity kind?");
3197}
3198
3199/// \brief Whether the given entity, when initialized with an object
3200/// created for that initialization, requires destruction.
3201static bool shouldDestroyTemporary(const InitializedEntity &Entity) {
3202 switch (Entity.getKind()) {
3203 case InitializedEntity::EK_Member:
3204 case InitializedEntity::EK_Result:
3205 case InitializedEntity::EK_New:
3206 case InitializedEntity::EK_Base:
3207 case InitializedEntity::EK_VectorElement:
3208 return false;
3209
3210 case InitializedEntity::EK_Variable:
3211 case InitializedEntity::EK_Parameter:
3212 case InitializedEntity::EK_Temporary:
3213 case InitializedEntity::EK_ArrayElement:
3214 case InitializedEntity::EK_Exception:
3215 return true;
3216 }
3217
3218 llvm_unreachable("missed an InitializedEntity kind?");
3219}
3220
3221/// \brief Make a (potentially elidable) temporary copy of the object
3222/// provided by the given initializer by calling the appropriate copy
3223/// constructor.
3224///
3225/// \param S The Sema object used for type-checking.
3226///
3227/// \param T The type of the temporary object, which must either by
3228/// the type of the initializer expression or a superclass thereof.
3229///
3230/// \param Enter The entity being initialized.
3231///
3232/// \param CurInit The initializer expression.
3233///
3234/// \param IsExtraneousCopy Whether this is an "extraneous" copy that
3235/// is permitted in C++03 (but not C++0x) when binding a reference to
3236/// an rvalue.
3237///
3238/// \returns An expression that copies the initializer expression into
3239/// a temporary object, or an error expression if a copy could not be
3240/// created.
3241static Sema::OwningExprResult CopyObject(Sema &S,
3242 QualType T,
3243 const InitializedEntity &Entity,
3244 Sema::OwningExprResult CurInit,
3245 bool IsExtraneousCopy) {
3246 // Determine which class type we're copying to.
3247 Expr *CurInitExpr = (Expr *)CurInit.get();
3248 CXXRecordDecl *Class = 0;
3249 if (const RecordType *Record = T->getAs<RecordType>())
3250 Class = cast<CXXRecordDecl>(Record->getDecl());
3251 if (!Class)
3252 return move(CurInit);
3253
3254 // C++0x [class.copy]p34:
3255 // When certain criteria are met, an implementation is allowed to
3256 // omit the copy/move construction of a class object, even if the
3257 // copy/move constructor and/or destructor for the object have
3258 // side effects. [...]
3259 // - when a temporary class object that has not been bound to a
3260 // reference (12.2) would be copied/moved to a class object
3261 // with the same cv-unqualified type, the copy/move operation
3262 // can be omitted by constructing the temporary object
3263 // directly into the target of the omitted copy/move
3264 //
3265 // Note that the other three bullets are handled elsewhere. Copy
3243 // elision for return statements and throw expressions are (FIXME:
3244 // not yet) handled as part of constructor initialization, while
3245 // copy elision for exception handlers is handled by the run-time.
3266 // elision for return statements and throw expressions are handled as part
3267 // of constructor initialization, while copy elision for exception handlers
3268 // is handled by the run-time.
3246 bool Elidable = CurInitExpr->isTemporaryObject() &&
3247 S.Context.hasSameUnqualifiedType(T, CurInitExpr->getType());
3248 SourceLocation Loc;
3249 switch (Entity.getKind()) {
3250 case InitializedEntity::EK_Result:
3251 Loc = Entity.getReturnLoc();
3252 break;
3253
3254 case InitializedEntity::EK_Exception:
3255 Loc = Entity.getThrowLoc();
3256 break;
3257
3258 case InitializedEntity::EK_Variable:
3259 Loc = Entity.getDecl()->getLocation();
3260 break;
3261
3262 case InitializedEntity::EK_ArrayElement:
3263 case InitializedEntity::EK_Member:
3264 case InitializedEntity::EK_Parameter:
3265 case InitializedEntity::EK_Temporary:
3266 case InitializedEntity::EK_New:
3267 case InitializedEntity::EK_Base:
3268 case InitializedEntity::EK_VectorElement:
3269 Loc = CurInitExpr->getLocStart();
3270 break;
3271 }
3272
3273 // Make sure that the type we are copying is complete.
3274 if (S.RequireCompleteType(Loc, T, S.PDiag(diag::err_temp_copy_incomplete)))
3275 return move(CurInit);
3276
3277 // Perform overload resolution using the class's copy constructors.
3278 DeclarationName ConstructorName
3279 = S.Context.DeclarationNames.getCXXConstructorName(
3280 S.Context.getCanonicalType(S.Context.getTypeDeclType(Class)));
3281 DeclContext::lookup_iterator Con, ConEnd;
3282 OverloadCandidateSet CandidateSet(Loc);
3283 for (llvm::tie(Con, ConEnd) = Class->lookup(ConstructorName);
3284 Con != ConEnd; ++Con) {
3285 // Only consider copy constructors.
3286 CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(*Con);
3287 if (!Constructor || Constructor->isInvalidDecl() ||
3288 !Constructor->isCopyConstructor() ||
3289 !Constructor->isConvertingConstructor(/*AllowExplicit=*/false))
3290 continue;
3291
3292 DeclAccessPair FoundDecl
3293 = DeclAccessPair::make(Constructor, Constructor->getAccess());
3294 S.AddOverloadCandidate(Constructor, FoundDecl,
3295 &CurInitExpr, 1, CandidateSet);
3296 }
3297
3298 OverloadCandidateSet::iterator Best;
3299 switch (S.BestViableFunction(CandidateSet, Loc, Best)) {
3300 case OR_Success:
3301 break;
3302
3303 case OR_No_Viable_Function:
3304 S.Diag(Loc, diag::err_temp_copy_no_viable)
3305 << (int)Entity.getKind() << CurInitExpr->getType()
3306 << CurInitExpr->getSourceRange();
3307 S.PrintOverloadCandidates(CandidateSet, Sema::OCD_AllCandidates,
3308 &CurInitExpr, 1);
3309 return S.ExprError();
3310
3311 case OR_Ambiguous:
3312 S.Diag(Loc, diag::err_temp_copy_ambiguous)
3313 << (int)Entity.getKind() << CurInitExpr->getType()
3314 << CurInitExpr->getSourceRange();
3315 S.PrintOverloadCandidates(CandidateSet, Sema::OCD_ViableCandidates,
3316 &CurInitExpr, 1);
3317 return S.ExprError();
3318
3319 case OR_Deleted:
3320 S.Diag(Loc, diag::err_temp_copy_deleted)
3321 << (int)Entity.getKind() << CurInitExpr->getType()
3322 << CurInitExpr->getSourceRange();
3323 S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
3324 << Best->Function->isDeleted();
3325 return S.ExprError();
3326 }
3327
3328 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3329 ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(S);
3330 CurInit.release(); // Ownership transferred into MultiExprArg, below.
3331
3332 S.CheckConstructorAccess(Loc, Constructor, Entity,
3333 Best->FoundDecl.getAccess());
3334
3335 if (IsExtraneousCopy) {
3336 // If this is a totally extraneous copy for C++03 reference
3337 // binding purposes, just return the original initialization
3338 // expression. We don't generate an (elided) copy operation here
3339 // because doing so would require us to pass down a flag to avoid
3340 // infinite recursion, where each step adds another extraneous,
3341 // elidable copy.
3342
3343 // Instantiate the default arguments of any extra parameters in
3344 // the selected copy constructor, as if we were going to create a
3345 // proper call to the copy constructor.
3346 for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
3347 ParmVarDecl *Parm = Constructor->getParamDecl(I);
3348 if (S.RequireCompleteType(Loc, Parm->getType(),
3349 S.PDiag(diag::err_call_incomplete_argument)))
3350 break;
3351
3352 // Build the default argument expression; we don't actually care
3353 // if this succeeds or not, because this routine will complain
3354 // if there was a problem.
3355 S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
3356 }
3357
3358 return S.Owned(CurInitExpr);
3359 }
3360
3361 // Determine the arguments required to actually perform the
3362 // constructor call (we might have derived-to-base conversions, or
3363 // the copy constructor may have default arguments).
3364 if (S.CompleteConstructorCall(Constructor,
3365 Sema::MultiExprArg(S,
3366 (void **)&CurInitExpr,
3367 1),
3368 Loc, ConstructorArgs))
3369 return S.ExprError();
3370
3371 // Actually perform the constructor call.
3372 CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable,
3373 move_arg(ConstructorArgs));
3374
3375 // If we're supposed to bind temporaries, do so.
3376 if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
3377 CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
3378 return move(CurInit);
3379}
3380
3381void InitializationSequence::PrintInitLocationNote(Sema &S,
3382 const InitializedEntity &Entity) {
3383 if (Entity.getKind() == InitializedEntity::EK_Parameter && Entity.getDecl()) {
3384 if (Entity.getDecl()->getLocation().isInvalid())
3385 return;
3386
3387 if (Entity.getDecl()->getDeclName())
3388 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
3389 << Entity.getDecl()->getDeclName();
3390 else
3391 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
3392 }
3393}
3394
3395Action::OwningExprResult
3396InitializationSequence::Perform(Sema &S,
3397 const InitializedEntity &Entity,
3398 const InitializationKind &Kind,
3399 Action::MultiExprArg Args,
3400 QualType *ResultType) {
3401 if (SequenceKind == FailedSequence) {
3402 unsigned NumArgs = Args.size();
3403 Diagnose(S, Entity, Kind, (Expr **)Args.release(), NumArgs);
3404 return S.ExprError();
3405 }
3406
3407 if (SequenceKind == DependentSequence) {
3408 // If the declaration is a non-dependent, incomplete array type
3409 // that has an initializer, then its type will be completed once
3410 // the initializer is instantiated.
3411 if (ResultType && !Entity.getType()->isDependentType() &&
3412 Args.size() == 1) {
3413 QualType DeclType = Entity.getType();
3414 if (const IncompleteArrayType *ArrayT
3415 = S.Context.getAsIncompleteArrayType(DeclType)) {
3416 // FIXME: We don't currently have the ability to accurately
3417 // compute the length of an initializer list without
3418 // performing full type-checking of the initializer list
3419 // (since we have to determine where braces are implicitly
3420 // introduced and such). So, we fall back to making the array
3421 // type a dependently-sized array type with no specified
3422 // bound.
3423 if (isa<InitListExpr>((Expr *)Args.get()[0])) {
3424 SourceRange Brackets;
3425
3426 // Scavange the location of the brackets from the entity, if we can.
3427 if (DeclaratorDecl *DD = Entity.getDecl()) {
3428 if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
3429 TypeLoc TL = TInfo->getTypeLoc();
3430 if (IncompleteArrayTypeLoc *ArrayLoc
3431 = dyn_cast<IncompleteArrayTypeLoc>(&TL))
3432 Brackets = ArrayLoc->getBracketsRange();
3433 }
3434 }
3435
3436 *ResultType
3437 = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
3438 /*NumElts=*/0,
3439 ArrayT->getSizeModifier(),
3440 ArrayT->getIndexTypeCVRQualifiers(),
3441 Brackets);
3442 }
3443
3444 }
3445 }
3446
3447 if (Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast())
3448 return Sema::OwningExprResult(S, Args.release()[0]);
3449
3450 if (Args.size() == 0)
3451 return S.Owned((Expr *)0);
3452
3453 unsigned NumArgs = Args.size();
3454 return S.Owned(new (S.Context) ParenListExpr(S.Context,
3455 SourceLocation(),
3456 (Expr **)Args.release(),
3457 NumArgs,
3458 SourceLocation()));
3459 }
3460
3461 if (SequenceKind == NoInitialization)
3462 return S.Owned((Expr *)0);
3463
3464 QualType DestType = Entity.getType().getNonReferenceType();
3465 // FIXME: Ugly hack around the fact that Entity.getType() is not
3466 // the same as Entity.getDecl()->getType() in cases involving type merging,
3467 // and we want latter when it makes sense.
3468 if (ResultType)
3469 *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
3470 Entity.getType();
3471
3472 Sema::OwningExprResult CurInit = S.Owned((Expr *)0);
3473
3474 assert(!Steps.empty() && "Cannot have an empty initialization sequence");
3475
3476 // For initialization steps that start with a single initializer,
3477 // grab the only argument out the Args and place it into the "current"
3478 // initializer.
3479 switch (Steps.front().Kind) {
3480 case SK_ResolveAddressOfOverloadedFunction:
3481 case SK_CastDerivedToBaseRValue:
3482 case SK_CastDerivedToBaseLValue:
3483 case SK_BindReference:
3484 case SK_BindReferenceToTemporary:
3485 case SK_ExtraneousCopyToTemporary:
3486 case SK_UserConversion:
3487 case SK_QualificationConversionLValue:
3488 case SK_QualificationConversionRValue:
3489 case SK_ConversionSequence:
3490 case SK_ListInitialization:
3491 case SK_CAssignment:
3492 case SK_StringInit:
3493 assert(Args.size() == 1);
3494 CurInit = Sema::OwningExprResult(S, ((Expr **)(Args.get()))[0]->Retain());
3495 if (CurInit.isInvalid())
3496 return S.ExprError();
3497 break;
3498
3499 case SK_ConstructorInitialization:
3500 case SK_ZeroInitialization:
3501 break;
3502 }
3503
3504 // Walk through the computed steps for the initialization sequence,
3505 // performing the specified conversions along the way.
3506 bool ConstructorInitRequiresZeroInit = false;
3507 for (step_iterator Step = step_begin(), StepEnd = step_end();
3508 Step != StepEnd; ++Step) {
3509 if (CurInit.isInvalid())
3510 return S.ExprError();
3511
3512 Expr *CurInitExpr = (Expr *)CurInit.get();
3513 QualType SourceType = CurInitExpr? CurInitExpr->getType() : QualType();
3514
3515 switch (Step->Kind) {
3516 case SK_ResolveAddressOfOverloadedFunction:
3517 // Overload resolution determined which function invoke; update the
3518 // initializer to reflect that choice.
3519 S.CheckAddressOfMemberAccess(CurInitExpr, Step->Function.FoundDecl);
3269 bool Elidable = CurInitExpr->isTemporaryObject() &&
3270 S.Context.hasSameUnqualifiedType(T, CurInitExpr->getType());
3271 SourceLocation Loc;
3272 switch (Entity.getKind()) {
3273 case InitializedEntity::EK_Result:
3274 Loc = Entity.getReturnLoc();
3275 break;
3276
3277 case InitializedEntity::EK_Exception:
3278 Loc = Entity.getThrowLoc();
3279 break;
3280
3281 case InitializedEntity::EK_Variable:
3282 Loc = Entity.getDecl()->getLocation();
3283 break;
3284
3285 case InitializedEntity::EK_ArrayElement:
3286 case InitializedEntity::EK_Member:
3287 case InitializedEntity::EK_Parameter:
3288 case InitializedEntity::EK_Temporary:
3289 case InitializedEntity::EK_New:
3290 case InitializedEntity::EK_Base:
3291 case InitializedEntity::EK_VectorElement:
3292 Loc = CurInitExpr->getLocStart();
3293 break;
3294 }
3295
3296 // Make sure that the type we are copying is complete.
3297 if (S.RequireCompleteType(Loc, T, S.PDiag(diag::err_temp_copy_incomplete)))
3298 return move(CurInit);
3299
3300 // Perform overload resolution using the class's copy constructors.
3301 DeclarationName ConstructorName
3302 = S.Context.DeclarationNames.getCXXConstructorName(
3303 S.Context.getCanonicalType(S.Context.getTypeDeclType(Class)));
3304 DeclContext::lookup_iterator Con, ConEnd;
3305 OverloadCandidateSet CandidateSet(Loc);
3306 for (llvm::tie(Con, ConEnd) = Class->lookup(ConstructorName);
3307 Con != ConEnd; ++Con) {
3308 // Only consider copy constructors.
3309 CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(*Con);
3310 if (!Constructor || Constructor->isInvalidDecl() ||
3311 !Constructor->isCopyConstructor() ||
3312 !Constructor->isConvertingConstructor(/*AllowExplicit=*/false))
3313 continue;
3314
3315 DeclAccessPair FoundDecl
3316 = DeclAccessPair::make(Constructor, Constructor->getAccess());
3317 S.AddOverloadCandidate(Constructor, FoundDecl,
3318 &CurInitExpr, 1, CandidateSet);
3319 }
3320
3321 OverloadCandidateSet::iterator Best;
3322 switch (S.BestViableFunction(CandidateSet, Loc, Best)) {
3323 case OR_Success:
3324 break;
3325
3326 case OR_No_Viable_Function:
3327 S.Diag(Loc, diag::err_temp_copy_no_viable)
3328 << (int)Entity.getKind() << CurInitExpr->getType()
3329 << CurInitExpr->getSourceRange();
3330 S.PrintOverloadCandidates(CandidateSet, Sema::OCD_AllCandidates,
3331 &CurInitExpr, 1);
3332 return S.ExprError();
3333
3334 case OR_Ambiguous:
3335 S.Diag(Loc, diag::err_temp_copy_ambiguous)
3336 << (int)Entity.getKind() << CurInitExpr->getType()
3337 << CurInitExpr->getSourceRange();
3338 S.PrintOverloadCandidates(CandidateSet, Sema::OCD_ViableCandidates,
3339 &CurInitExpr, 1);
3340 return S.ExprError();
3341
3342 case OR_Deleted:
3343 S.Diag(Loc, diag::err_temp_copy_deleted)
3344 << (int)Entity.getKind() << CurInitExpr->getType()
3345 << CurInitExpr->getSourceRange();
3346 S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
3347 << Best->Function->isDeleted();
3348 return S.ExprError();
3349 }
3350
3351 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3352 ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(S);
3353 CurInit.release(); // Ownership transferred into MultiExprArg, below.
3354
3355 S.CheckConstructorAccess(Loc, Constructor, Entity,
3356 Best->FoundDecl.getAccess());
3357
3358 if (IsExtraneousCopy) {
3359 // If this is a totally extraneous copy for C++03 reference
3360 // binding purposes, just return the original initialization
3361 // expression. We don't generate an (elided) copy operation here
3362 // because doing so would require us to pass down a flag to avoid
3363 // infinite recursion, where each step adds another extraneous,
3364 // elidable copy.
3365
3366 // Instantiate the default arguments of any extra parameters in
3367 // the selected copy constructor, as if we were going to create a
3368 // proper call to the copy constructor.
3369 for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
3370 ParmVarDecl *Parm = Constructor->getParamDecl(I);
3371 if (S.RequireCompleteType(Loc, Parm->getType(),
3372 S.PDiag(diag::err_call_incomplete_argument)))
3373 break;
3374
3375 // Build the default argument expression; we don't actually care
3376 // if this succeeds or not, because this routine will complain
3377 // if there was a problem.
3378 S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
3379 }
3380
3381 return S.Owned(CurInitExpr);
3382 }
3383
3384 // Determine the arguments required to actually perform the
3385 // constructor call (we might have derived-to-base conversions, or
3386 // the copy constructor may have default arguments).
3387 if (S.CompleteConstructorCall(Constructor,
3388 Sema::MultiExprArg(S,
3389 (void **)&CurInitExpr,
3390 1),
3391 Loc, ConstructorArgs))
3392 return S.ExprError();
3393
3394 // Actually perform the constructor call.
3395 CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable,
3396 move_arg(ConstructorArgs));
3397
3398 // If we're supposed to bind temporaries, do so.
3399 if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
3400 CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
3401 return move(CurInit);
3402}
3403
3404void InitializationSequence::PrintInitLocationNote(Sema &S,
3405 const InitializedEntity &Entity) {
3406 if (Entity.getKind() == InitializedEntity::EK_Parameter && Entity.getDecl()) {
3407 if (Entity.getDecl()->getLocation().isInvalid())
3408 return;
3409
3410 if (Entity.getDecl()->getDeclName())
3411 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
3412 << Entity.getDecl()->getDeclName();
3413 else
3414 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
3415 }
3416}
3417
3418Action::OwningExprResult
3419InitializationSequence::Perform(Sema &S,
3420 const InitializedEntity &Entity,
3421 const InitializationKind &Kind,
3422 Action::MultiExprArg Args,
3423 QualType *ResultType) {
3424 if (SequenceKind == FailedSequence) {
3425 unsigned NumArgs = Args.size();
3426 Diagnose(S, Entity, Kind, (Expr **)Args.release(), NumArgs);
3427 return S.ExprError();
3428 }
3429
3430 if (SequenceKind == DependentSequence) {
3431 // If the declaration is a non-dependent, incomplete array type
3432 // that has an initializer, then its type will be completed once
3433 // the initializer is instantiated.
3434 if (ResultType && !Entity.getType()->isDependentType() &&
3435 Args.size() == 1) {
3436 QualType DeclType = Entity.getType();
3437 if (const IncompleteArrayType *ArrayT
3438 = S.Context.getAsIncompleteArrayType(DeclType)) {
3439 // FIXME: We don't currently have the ability to accurately
3440 // compute the length of an initializer list without
3441 // performing full type-checking of the initializer list
3442 // (since we have to determine where braces are implicitly
3443 // introduced and such). So, we fall back to making the array
3444 // type a dependently-sized array type with no specified
3445 // bound.
3446 if (isa<InitListExpr>((Expr *)Args.get()[0])) {
3447 SourceRange Brackets;
3448
3449 // Scavange the location of the brackets from the entity, if we can.
3450 if (DeclaratorDecl *DD = Entity.getDecl()) {
3451 if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
3452 TypeLoc TL = TInfo->getTypeLoc();
3453 if (IncompleteArrayTypeLoc *ArrayLoc
3454 = dyn_cast<IncompleteArrayTypeLoc>(&TL))
3455 Brackets = ArrayLoc->getBracketsRange();
3456 }
3457 }
3458
3459 *ResultType
3460 = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
3461 /*NumElts=*/0,
3462 ArrayT->getSizeModifier(),
3463 ArrayT->getIndexTypeCVRQualifiers(),
3464 Brackets);
3465 }
3466
3467 }
3468 }
3469
3470 if (Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast())
3471 return Sema::OwningExprResult(S, Args.release()[0]);
3472
3473 if (Args.size() == 0)
3474 return S.Owned((Expr *)0);
3475
3476 unsigned NumArgs = Args.size();
3477 return S.Owned(new (S.Context) ParenListExpr(S.Context,
3478 SourceLocation(),
3479 (Expr **)Args.release(),
3480 NumArgs,
3481 SourceLocation()));
3482 }
3483
3484 if (SequenceKind == NoInitialization)
3485 return S.Owned((Expr *)0);
3486
3487 QualType DestType = Entity.getType().getNonReferenceType();
3488 // FIXME: Ugly hack around the fact that Entity.getType() is not
3489 // the same as Entity.getDecl()->getType() in cases involving type merging,
3490 // and we want latter when it makes sense.
3491 if (ResultType)
3492 *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
3493 Entity.getType();
3494
3495 Sema::OwningExprResult CurInit = S.Owned((Expr *)0);
3496
3497 assert(!Steps.empty() && "Cannot have an empty initialization sequence");
3498
3499 // For initialization steps that start with a single initializer,
3500 // grab the only argument out the Args and place it into the "current"
3501 // initializer.
3502 switch (Steps.front().Kind) {
3503 case SK_ResolveAddressOfOverloadedFunction:
3504 case SK_CastDerivedToBaseRValue:
3505 case SK_CastDerivedToBaseLValue:
3506 case SK_BindReference:
3507 case SK_BindReferenceToTemporary:
3508 case SK_ExtraneousCopyToTemporary:
3509 case SK_UserConversion:
3510 case SK_QualificationConversionLValue:
3511 case SK_QualificationConversionRValue:
3512 case SK_ConversionSequence:
3513 case SK_ListInitialization:
3514 case SK_CAssignment:
3515 case SK_StringInit:
3516 assert(Args.size() == 1);
3517 CurInit = Sema::OwningExprResult(S, ((Expr **)(Args.get()))[0]->Retain());
3518 if (CurInit.isInvalid())
3519 return S.ExprError();
3520 break;
3521
3522 case SK_ConstructorInitialization:
3523 case SK_ZeroInitialization:
3524 break;
3525 }
3526
3527 // Walk through the computed steps for the initialization sequence,
3528 // performing the specified conversions along the way.
3529 bool ConstructorInitRequiresZeroInit = false;
3530 for (step_iterator Step = step_begin(), StepEnd = step_end();
3531 Step != StepEnd; ++Step) {
3532 if (CurInit.isInvalid())
3533 return S.ExprError();
3534
3535 Expr *CurInitExpr = (Expr *)CurInit.get();
3536 QualType SourceType = CurInitExpr? CurInitExpr->getType() : QualType();
3537
3538 switch (Step->Kind) {
3539 case SK_ResolveAddressOfOverloadedFunction:
3540 // Overload resolution determined which function invoke; update the
3541 // initializer to reflect that choice.
3542 S.CheckAddressOfMemberAccess(CurInitExpr, Step->Function.FoundDecl);
3543 S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation());
3520 CurInit = S.FixOverloadedFunctionReference(move(CurInit),
3521 Step->Function.FoundDecl,
3522 Step->Function.Function);
3523 break;
3524
3525 case SK_CastDerivedToBaseRValue:
3526 case SK_CastDerivedToBaseLValue: {
3527 // We have a derived-to-base cast that produces either an rvalue or an
3528 // lvalue. Perform that cast.
3529
3530 CXXBaseSpecifierArray BasePath;
3531
3532 // Casts to inaccessible base classes are allowed with C-style casts.
3533 bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
3534 if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
3535 CurInitExpr->getLocStart(),
3536 CurInitExpr->getSourceRange(),
3537 &BasePath, IgnoreBaseAccess))
3538 return S.ExprError();
3539
3544 CurInit = S.FixOverloadedFunctionReference(move(CurInit),
3545 Step->Function.FoundDecl,
3546 Step->Function.Function);
3547 break;
3548
3549 case SK_CastDerivedToBaseRValue:
3550 case SK_CastDerivedToBaseLValue: {
3551 // We have a derived-to-base cast that produces either an rvalue or an
3552 // lvalue. Perform that cast.
3553
3554 CXXBaseSpecifierArray BasePath;
3555
3556 // Casts to inaccessible base classes are allowed with C-style casts.
3557 bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
3558 if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
3559 CurInitExpr->getLocStart(),
3560 CurInitExpr->getSourceRange(),
3561 &BasePath, IgnoreBaseAccess))
3562 return S.ExprError();
3563
3564 if (S.BasePathInvolvesVirtualBase(BasePath)) {
3565 QualType T = SourceType;
3566 if (const PointerType *Pointer = T->getAs<PointerType>())
3567 T = Pointer->getPointeeType();
3568 if (const RecordType *RecordTy = T->getAs<RecordType>())
3569 S.MarkVTableUsed(CurInitExpr->getLocStart(),
3570 cast<CXXRecordDecl>(RecordTy->getDecl()));
3571 }
3572
3540 CurInit = S.Owned(new (S.Context) ImplicitCastExpr(Step->Type,
3541 CastExpr::CK_DerivedToBase,
3542 (Expr*)CurInit.release(),
3543 BasePath,
3544 Step->Kind == SK_CastDerivedToBaseLValue));
3545 break;
3546 }
3547
3548 case SK_BindReference:
3549 if (FieldDecl *BitField = CurInitExpr->getBitField()) {
3550 // References cannot bind to bit fields (C++ [dcl.init.ref]p5).
3551 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
3552 << Entity.getType().isVolatileQualified()
3553 << BitField->getDeclName()
3554 << CurInitExpr->getSourceRange();
3555 S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
3556 return S.ExprError();
3557 }
3558
3559 if (CurInitExpr->refersToVectorElement()) {
3560 // References cannot bind to vector elements.
3561 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
3562 << Entity.getType().isVolatileQualified()
3563 << CurInitExpr->getSourceRange();
3564 PrintInitLocationNote(S, Entity);
3565 return S.ExprError();
3566 }
3567
3568 // Reference binding does not have any corresponding ASTs.
3569
3570 // Check exception specifications
3571 if (S.CheckExceptionSpecCompatibility(CurInitExpr, DestType))
3572 return S.ExprError();
3573
3574 break;
3575
3576 case SK_BindReferenceToTemporary:
3577 // Reference binding does not have any corresponding ASTs.
3578
3579 // Check exception specifications
3580 if (S.CheckExceptionSpecCompatibility(CurInitExpr, DestType))
3581 return S.ExprError();
3582
3583 break;
3584
3585 case SK_ExtraneousCopyToTemporary:
3586 CurInit = CopyObject(S, Step->Type, Entity, move(CurInit),
3587 /*IsExtraneousCopy=*/true);
3588 break;
3589
3590 case SK_UserConversion: {
3591 // We have a user-defined conversion that invokes either a constructor
3592 // or a conversion function.
3593 CastExpr::CastKind CastKind = CastExpr::CK_Unknown;
3594 bool IsCopy = false;
3595 FunctionDecl *Fn = Step->Function.Function;
3596 DeclAccessPair FoundFn = Step->Function.FoundDecl;
3597 bool CreatedObject = false;
3598 bool IsLvalue = false;
3599 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
3600 // Build a call to the selected constructor.
3601 ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(S);
3602 SourceLocation Loc = CurInitExpr->getLocStart();
3603 CurInit.release(); // Ownership transferred into MultiExprArg, below.
3604
3605 // Determine the arguments required to actually perform the constructor
3606 // call.
3607 if (S.CompleteConstructorCall(Constructor,
3608 Sema::MultiExprArg(S,
3609 (void **)&CurInitExpr,
3610 1),
3611 Loc, ConstructorArgs))
3612 return S.ExprError();
3613
3614 // Build the an expression that constructs a temporary.
3615 CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
3616 move_arg(ConstructorArgs));
3617 if (CurInit.isInvalid())
3618 return S.ExprError();
3619
3620 S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity,
3621 FoundFn.getAccess());
3573 CurInit = S.Owned(new (S.Context) ImplicitCastExpr(Step->Type,
3574 CastExpr::CK_DerivedToBase,
3575 (Expr*)CurInit.release(),
3576 BasePath,
3577 Step->Kind == SK_CastDerivedToBaseLValue));
3578 break;
3579 }
3580
3581 case SK_BindReference:
3582 if (FieldDecl *BitField = CurInitExpr->getBitField()) {
3583 // References cannot bind to bit fields (C++ [dcl.init.ref]p5).
3584 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
3585 << Entity.getType().isVolatileQualified()
3586 << BitField->getDeclName()
3587 << CurInitExpr->getSourceRange();
3588 S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
3589 return S.ExprError();
3590 }
3591
3592 if (CurInitExpr->refersToVectorElement()) {
3593 // References cannot bind to vector elements.
3594 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
3595 << Entity.getType().isVolatileQualified()
3596 << CurInitExpr->getSourceRange();
3597 PrintInitLocationNote(S, Entity);
3598 return S.ExprError();
3599 }
3600
3601 // Reference binding does not have any corresponding ASTs.
3602
3603 // Check exception specifications
3604 if (S.CheckExceptionSpecCompatibility(CurInitExpr, DestType))
3605 return S.ExprError();
3606
3607 break;
3608
3609 case SK_BindReferenceToTemporary:
3610 // Reference binding does not have any corresponding ASTs.
3611
3612 // Check exception specifications
3613 if (S.CheckExceptionSpecCompatibility(CurInitExpr, DestType))
3614 return S.ExprError();
3615
3616 break;
3617
3618 case SK_ExtraneousCopyToTemporary:
3619 CurInit = CopyObject(S, Step->Type, Entity, move(CurInit),
3620 /*IsExtraneousCopy=*/true);
3621 break;
3622
3623 case SK_UserConversion: {
3624 // We have a user-defined conversion that invokes either a constructor
3625 // or a conversion function.
3626 CastExpr::CastKind CastKind = CastExpr::CK_Unknown;
3627 bool IsCopy = false;
3628 FunctionDecl *Fn = Step->Function.Function;
3629 DeclAccessPair FoundFn = Step->Function.FoundDecl;
3630 bool CreatedObject = false;
3631 bool IsLvalue = false;
3632 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
3633 // Build a call to the selected constructor.
3634 ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(S);
3635 SourceLocation Loc = CurInitExpr->getLocStart();
3636 CurInit.release(); // Ownership transferred into MultiExprArg, below.
3637
3638 // Determine the arguments required to actually perform the constructor
3639 // call.
3640 if (S.CompleteConstructorCall(Constructor,
3641 Sema::MultiExprArg(S,
3642 (void **)&CurInitExpr,
3643 1),
3644 Loc, ConstructorArgs))
3645 return S.ExprError();
3646
3647 // Build the an expression that constructs a temporary.
3648 CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
3649 move_arg(ConstructorArgs));
3650 if (CurInit.isInvalid())
3651 return S.ExprError();
3652
3653 S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity,
3654 FoundFn.getAccess());
3655 S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
3622
3623 CastKind = CastExpr::CK_ConstructorConversion;
3624 QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
3625 if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
3626 S.IsDerivedFrom(SourceType, Class))
3627 IsCopy = true;
3628
3629 CreatedObject = true;
3630 } else {
3631 // Build a call to the conversion function.
3632 CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
3633 IsLvalue = Conversion->getResultType()->isLValueReferenceType();
3634 S.CheckMemberOperatorAccess(Kind.getLocation(), CurInitExpr, 0,
3635 FoundFn);
3656
3657 CastKind = CastExpr::CK_ConstructorConversion;
3658 QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
3659 if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
3660 S.IsDerivedFrom(SourceType, Class))
3661 IsCopy = true;
3662
3663 CreatedObject = true;
3664 } else {
3665 // Build a call to the conversion function.
3666 CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
3667 IsLvalue = Conversion->getResultType()->isLValueReferenceType();
3668 S.CheckMemberOperatorAccess(Kind.getLocation(), CurInitExpr, 0,
3669 FoundFn);
3670 S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
3636
3637 // FIXME: Should we move this initialization into a separate
3638 // derived-to-base conversion? I believe the answer is "no", because
3639 // we don't want to turn off access control here for c-style casts.
3640 if (S.PerformObjectArgumentInitialization(CurInitExpr, /*Qualifier=*/0,
3641 FoundFn, Conversion))
3642 return S.ExprError();
3643
3644 // Do a little dance to make sure that CurInit has the proper
3645 // pointer.
3646 CurInit.release();
3647
3648 // Build the actual call to the conversion function.
3649 CurInit = S.Owned(S.BuildCXXMemberCallExpr(CurInitExpr, FoundFn,
3650 Conversion));
3651 if (CurInit.isInvalid() || !CurInit.get())
3652 return S.ExprError();
3653
3654 CastKind = CastExpr::CK_UserDefinedConversion;
3655
3656 CreatedObject = Conversion->getResultType()->isRecordType();
3657 }
3658
3659 bool RequiresCopy = !IsCopy &&
3660 getKind() != InitializationSequence::ReferenceBinding;
3661 if (RequiresCopy || shouldBindAsTemporary(Entity))
3662 CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
3663 else if (CreatedObject && shouldDestroyTemporary(Entity)) {
3664 CurInitExpr = static_cast<Expr *>(CurInit.get());
3665 QualType T = CurInitExpr->getType();
3666 if (const RecordType *Record = T->getAs<RecordType>()) {
3667 CXXDestructorDecl *Destructor
3668 = cast<CXXRecordDecl>(Record->getDecl())->getDestructor(S.Context);
3669 S.CheckDestructorAccess(CurInitExpr->getLocStart(), Destructor,
3670 S.PDiag(diag::err_access_dtor_temp) << T);
3671 S.MarkDeclarationReferenced(CurInitExpr->getLocStart(), Destructor);
3672 }
3673 }
3674
3675 CurInitExpr = CurInit.takeAs<Expr>();
3676 CurInit = S.Owned(new (S.Context) ImplicitCastExpr(CurInitExpr->getType(),
3677 CastKind,
3678 CurInitExpr,
3679 CXXBaseSpecifierArray(),
3680 IsLvalue));
3681
3682 if (RequiresCopy)
3683 CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity,
3684 move(CurInit), /*IsExtraneousCopy=*/false);
3685
3686 break;
3687 }
3688
3689 case SK_QualificationConversionLValue:
3690 case SK_QualificationConversionRValue:
3691 // Perform a qualification conversion; these can never go wrong.
3692 S.ImpCastExprToType(CurInitExpr, Step->Type,
3693 CastExpr::CK_NoOp,
3694 Step->Kind == SK_QualificationConversionLValue);
3695 CurInit.release();
3696 CurInit = S.Owned(CurInitExpr);
3697 break;
3698
3699 case SK_ConversionSequence: {
3700 bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
3701
3702 if (S.PerformImplicitConversion(CurInitExpr, Step->Type, *Step->ICS,
3703 Sema::AA_Converting, IgnoreBaseAccess))
3704 return S.ExprError();
3705
3706 CurInit.release();
3707 CurInit = S.Owned(CurInitExpr);
3708 break;
3709 }
3710
3711 case SK_ListInitialization: {
3712 InitListExpr *InitList = cast<InitListExpr>(CurInitExpr);
3713 QualType Ty = Step->Type;
3714 if (S.CheckInitList(Entity, InitList, ResultType? *ResultType : Ty))
3715 return S.ExprError();
3716
3717 CurInit.release();
3718 CurInit = S.Owned(InitList);
3719 break;
3720 }
3721
3722 case SK_ConstructorInitialization: {
3723 unsigned NumArgs = Args.size();
3724 CXXConstructorDecl *Constructor
3725 = cast<CXXConstructorDecl>(Step->Function.Function);
3671
3672 // FIXME: Should we move this initialization into a separate
3673 // derived-to-base conversion? I believe the answer is "no", because
3674 // we don't want to turn off access control here for c-style casts.
3675 if (S.PerformObjectArgumentInitialization(CurInitExpr, /*Qualifier=*/0,
3676 FoundFn, Conversion))
3677 return S.ExprError();
3678
3679 // Do a little dance to make sure that CurInit has the proper
3680 // pointer.
3681 CurInit.release();
3682
3683 // Build the actual call to the conversion function.
3684 CurInit = S.Owned(S.BuildCXXMemberCallExpr(CurInitExpr, FoundFn,
3685 Conversion));
3686 if (CurInit.isInvalid() || !CurInit.get())
3687 return S.ExprError();
3688
3689 CastKind = CastExpr::CK_UserDefinedConversion;
3690
3691 CreatedObject = Conversion->getResultType()->isRecordType();
3692 }
3693
3694 bool RequiresCopy = !IsCopy &&
3695 getKind() != InitializationSequence::ReferenceBinding;
3696 if (RequiresCopy || shouldBindAsTemporary(Entity))
3697 CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
3698 else if (CreatedObject && shouldDestroyTemporary(Entity)) {
3699 CurInitExpr = static_cast<Expr *>(CurInit.get());
3700 QualType T = CurInitExpr->getType();
3701 if (const RecordType *Record = T->getAs<RecordType>()) {
3702 CXXDestructorDecl *Destructor
3703 = cast<CXXRecordDecl>(Record->getDecl())->getDestructor(S.Context);
3704 S.CheckDestructorAccess(CurInitExpr->getLocStart(), Destructor,
3705 S.PDiag(diag::err_access_dtor_temp) << T);
3706 S.MarkDeclarationReferenced(CurInitExpr->getLocStart(), Destructor);
3707 }
3708 }
3709
3710 CurInitExpr = CurInit.takeAs<Expr>();
3711 CurInit = S.Owned(new (S.Context) ImplicitCastExpr(CurInitExpr->getType(),
3712 CastKind,
3713 CurInitExpr,
3714 CXXBaseSpecifierArray(),
3715 IsLvalue));
3716
3717 if (RequiresCopy)
3718 CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity,
3719 move(CurInit), /*IsExtraneousCopy=*/false);
3720
3721 break;
3722 }
3723
3724 case SK_QualificationConversionLValue:
3725 case SK_QualificationConversionRValue:
3726 // Perform a qualification conversion; these can never go wrong.
3727 S.ImpCastExprToType(CurInitExpr, Step->Type,
3728 CastExpr::CK_NoOp,
3729 Step->Kind == SK_QualificationConversionLValue);
3730 CurInit.release();
3731 CurInit = S.Owned(CurInitExpr);
3732 break;
3733
3734 case SK_ConversionSequence: {
3735 bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
3736
3737 if (S.PerformImplicitConversion(CurInitExpr, Step->Type, *Step->ICS,
3738 Sema::AA_Converting, IgnoreBaseAccess))
3739 return S.ExprError();
3740
3741 CurInit.release();
3742 CurInit = S.Owned(CurInitExpr);
3743 break;
3744 }
3745
3746 case SK_ListInitialization: {
3747 InitListExpr *InitList = cast<InitListExpr>(CurInitExpr);
3748 QualType Ty = Step->Type;
3749 if (S.CheckInitList(Entity, InitList, ResultType? *ResultType : Ty))
3750 return S.ExprError();
3751
3752 CurInit.release();
3753 CurInit = S.Owned(InitList);
3754 break;
3755 }
3756
3757 case SK_ConstructorInitialization: {
3758 unsigned NumArgs = Args.size();
3759 CXXConstructorDecl *Constructor
3760 = cast<CXXConstructorDecl>(Step->Function.Function);
3726
3761
3727 // Build a call to the selected constructor.
3728 ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(S);
3729 SourceLocation Loc = Kind.getLocation();
3730
3731 // Determine the arguments required to actually perform the constructor
3732 // call.
3733 if (S.CompleteConstructorCall(Constructor, move(Args),
3734 Loc, ConstructorArgs))
3735 return S.ExprError();
3736
3737 // Build the expression that constructs a temporary.
3738 if (Entity.getKind() == InitializedEntity::EK_Temporary &&
3739 NumArgs != 1 && // FIXME: Hack to work around cast weirdness
3740 (Kind.getKind() == InitializationKind::IK_Direct ||
3741 Kind.getKind() == InitializationKind::IK_Value)) {
3742 // An explicitly-constructed temporary, e.g., X(1, 2).
3743 unsigned NumExprs = ConstructorArgs.size();
3744 Expr **Exprs = (Expr **)ConstructorArgs.take();
3745 S.MarkDeclarationReferenced(Kind.getLocation(), Constructor);
3746 CurInit = S.Owned(new (S.Context) CXXTemporaryObjectExpr(S.Context,
3747 Constructor,
3748 Entity.getType(),
3749 Kind.getLocation(),
3750 Exprs,
3751 NumExprs,
3752 Kind.getParenRange().getEnd(),
3753 ConstructorInitRequiresZeroInit));
3754 } else {
3755 CXXConstructExpr::ConstructionKind ConstructKind =
3756 CXXConstructExpr::CK_Complete;
3757
3758 if (Entity.getKind() == InitializedEntity::EK_Base) {
3759 ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
3760 CXXConstructExpr::CK_VirtualBase :
3761 CXXConstructExpr::CK_NonVirtualBase;
3762 }
3762 // Build a call to the selected constructor.
3763 ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(S);
3764 SourceLocation Loc = Kind.getLocation();
3765
3766 // Determine the arguments required to actually perform the constructor
3767 // call.
3768 if (S.CompleteConstructorCall(Constructor, move(Args),
3769 Loc, ConstructorArgs))
3770 return S.ExprError();
3771
3772 // Build the expression that constructs a temporary.
3773 if (Entity.getKind() == InitializedEntity::EK_Temporary &&
3774 NumArgs != 1 && // FIXME: Hack to work around cast weirdness
3775 (Kind.getKind() == InitializationKind::IK_Direct ||
3776 Kind.getKind() == InitializationKind::IK_Value)) {
3777 // An explicitly-constructed temporary, e.g., X(1, 2).
3778 unsigned NumExprs = ConstructorArgs.size();
3779 Expr **Exprs = (Expr **)ConstructorArgs.take();
3780 S.MarkDeclarationReferenced(Kind.getLocation(), Constructor);
3781 CurInit = S.Owned(new (S.Context) CXXTemporaryObjectExpr(S.Context,
3782 Constructor,
3783 Entity.getType(),
3784 Kind.getLocation(),
3785 Exprs,
3786 NumExprs,
3787 Kind.getParenRange().getEnd(),
3788 ConstructorInitRequiresZeroInit));
3789 } else {
3790 CXXConstructExpr::ConstructionKind ConstructKind =
3791 CXXConstructExpr::CK_Complete;
3792
3793 if (Entity.getKind() == InitializedEntity::EK_Base) {
3794 ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
3795 CXXConstructExpr::CK_VirtualBase :
3796 CXXConstructExpr::CK_NonVirtualBase;
3797 }
3763 CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
3764 Constructor,
3765 move_arg(ConstructorArgs),
3766 ConstructorInitRequiresZeroInit,
3767 ConstructKind);
3798
3799 // If the entity allows NRVO, mark the construction as elidable
3800 // unconditionally.
3801 if (Entity.allowsNRVO())
3802 CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
3803 Constructor, /*Elidable=*/true,
3804 move_arg(ConstructorArgs),
3805 ConstructorInitRequiresZeroInit,
3806 ConstructKind);
3807 else
3808 CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
3809 Constructor,
3810 move_arg(ConstructorArgs),
3811 ConstructorInitRequiresZeroInit,
3812 ConstructKind);
3768 }
3769 if (CurInit.isInvalid())
3770 return S.ExprError();
3771
3772 // Only check access if all of that succeeded.
3773 S.CheckConstructorAccess(Loc, Constructor, Entity,
3774 Step->Function.FoundDecl.getAccess());
3813 }
3814 if (CurInit.isInvalid())
3815 return S.ExprError();
3816
3817 // Only check access if all of that succeeded.
3818 S.CheckConstructorAccess(Loc, Constructor, Entity,
3819 Step->Function.FoundDecl.getAccess());
3820 S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Loc);
3775
3776 if (shouldBindAsTemporary(Entity))
3777 CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
3778
3779 break;
3780 }
3781
3782 case SK_ZeroInitialization: {
3783 step_iterator NextStep = Step;
3784 ++NextStep;
3785 if (NextStep != StepEnd &&
3786 NextStep->Kind == SK_ConstructorInitialization) {
3787 // The need for zero-initialization is recorded directly into
3788 // the call to the object's constructor within the next step.
3789 ConstructorInitRequiresZeroInit = true;
3790 } else if (Kind.getKind() == InitializationKind::IK_Value &&
3791 S.getLangOptions().CPlusPlus &&
3792 !Kind.isImplicitValueInit()) {
3793 CurInit = S.Owned(new (S.Context) CXXZeroInitValueExpr(Step->Type,
3794 Kind.getRange().getBegin(),
3795 Kind.getRange().getEnd()));
3796 } else {
3797 CurInit = S.Owned(new (S.Context) ImplicitValueInitExpr(Step->Type));
3798 }
3799 break;
3800 }
3801
3802 case SK_CAssignment: {
3803 QualType SourceType = CurInitExpr->getType();
3804 Sema::AssignConvertType ConvTy =
3805 S.CheckSingleAssignmentConstraints(Step->Type, CurInitExpr);
3806
3807 // If this is a call, allow conversion to a transparent union.
3808 if (ConvTy != Sema::Compatible &&
3809 Entity.getKind() == InitializedEntity::EK_Parameter &&
3810 S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExpr)
3811 == Sema::Compatible)
3812 ConvTy = Sema::Compatible;
3813
3814 bool Complained;
3815 if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
3816 Step->Type, SourceType,
3817 CurInitExpr,
3818 getAssignmentAction(Entity),
3819 &Complained)) {
3820 PrintInitLocationNote(S, Entity);
3821 return S.ExprError();
3822 } else if (Complained)
3823 PrintInitLocationNote(S, Entity);
3824
3825 CurInit.release();
3826 CurInit = S.Owned(CurInitExpr);
3827 break;
3828 }
3829
3830 case SK_StringInit: {
3831 QualType Ty = Step->Type;
3832 CheckStringInit(CurInitExpr, ResultType ? *ResultType : Ty, S);
3833 break;
3834 }
3835 }
3836 }
3837
3838 return move(CurInit);
3839}
3840
3841//===----------------------------------------------------------------------===//
3842// Diagnose initialization failures
3843//===----------------------------------------------------------------------===//
3844bool InitializationSequence::Diagnose(Sema &S,
3845 const InitializedEntity &Entity,
3846 const InitializationKind &Kind,
3847 Expr **Args, unsigned NumArgs) {
3848 if (SequenceKind != FailedSequence)
3849 return false;
3850
3851 QualType DestType = Entity.getType();
3852 switch (Failure) {
3853 case FK_TooManyInitsForReference:
3854 // FIXME: Customize for the initialized entity?
3855 if (NumArgs == 0)
3856 S.Diag(Kind.getLocation(), diag::err_reference_without_init)
3857 << DestType.getNonReferenceType();
3858 else // FIXME: diagnostic below could be better!
3859 S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
3860 << SourceRange(Args[0]->getLocStart(), Args[NumArgs - 1]->getLocEnd());
3861 break;
3862
3863 case FK_ArrayNeedsInitList:
3864 case FK_ArrayNeedsInitListOrStringLiteral:
3865 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list)
3866 << (Failure == FK_ArrayNeedsInitListOrStringLiteral);
3867 break;
3868
3869 case FK_AddressOfOverloadFailed: {
3870 DeclAccessPair Found;
3871 S.ResolveAddressOfOverloadedFunction(Args[0],
3872 DestType.getNonReferenceType(),
3873 true,
3874 Found);
3875 break;
3876 }
3877
3878 case FK_ReferenceInitOverloadFailed:
3879 case FK_UserConversionOverloadFailed:
3880 switch (FailedOverloadResult) {
3881 case OR_Ambiguous:
3882 if (Failure == FK_UserConversionOverloadFailed)
3883 S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
3884 << Args[0]->getType() << DestType
3885 << Args[0]->getSourceRange();
3886 else
3887 S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
3888 << DestType << Args[0]->getType()
3889 << Args[0]->getSourceRange();
3890
3891 S.PrintOverloadCandidates(FailedCandidateSet, Sema::OCD_ViableCandidates,
3892 Args, NumArgs);
3893 break;
3894
3895 case OR_No_Viable_Function:
3896 S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
3897 << Args[0]->getType() << DestType.getNonReferenceType()
3898 << Args[0]->getSourceRange();
3899 S.PrintOverloadCandidates(FailedCandidateSet, Sema::OCD_AllCandidates,
3900 Args, NumArgs);
3901 break;
3902
3903 case OR_Deleted: {
3904 S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
3905 << Args[0]->getType() << DestType.getNonReferenceType()
3906 << Args[0]->getSourceRange();
3907 OverloadCandidateSet::iterator Best;
3908 OverloadingResult Ovl = S.BestViableFunction(FailedCandidateSet,
3909 Kind.getLocation(),
3910 Best);
3911 if (Ovl == OR_Deleted) {
3912 S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
3913 << Best->Function->isDeleted();
3914 } else {
3915 llvm_unreachable("Inconsistent overload resolution?");
3916 }
3917 break;
3918 }
3919
3920 case OR_Success:
3921 llvm_unreachable("Conversion did not fail!");
3922 break;
3923 }
3924 break;
3925
3926 case FK_NonConstLValueReferenceBindingToTemporary:
3927 case FK_NonConstLValueReferenceBindingToUnrelated:
3928 S.Diag(Kind.getLocation(),
3929 Failure == FK_NonConstLValueReferenceBindingToTemporary
3930 ? diag::err_lvalue_reference_bind_to_temporary
3931 : diag::err_lvalue_reference_bind_to_unrelated)
3932 << DestType.getNonReferenceType().isVolatileQualified()
3933 << DestType.getNonReferenceType()
3934 << Args[0]->getType()
3935 << Args[0]->getSourceRange();
3936 break;
3937
3938 case FK_RValueReferenceBindingToLValue:
3939 S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
3940 << Args[0]->getSourceRange();
3941 break;
3942
3943 case FK_ReferenceInitDropsQualifiers:
3944 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
3945 << DestType.getNonReferenceType()
3946 << Args[0]->getType()
3947 << Args[0]->getSourceRange();
3948 break;
3949
3950 case FK_ReferenceInitFailed:
3951 S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
3952 << DestType.getNonReferenceType()
3953 << (Args[0]->isLvalue(S.Context) == Expr::LV_Valid)
3954 << Args[0]->getType()
3955 << Args[0]->getSourceRange();
3956 break;
3957
3958 case FK_ConversionFailed:
3959 S.Diag(Kind.getLocation(), diag::err_init_conversion_failed)
3960 << (int)Entity.getKind()
3961 << DestType
3962 << (Args[0]->isLvalue(S.Context) == Expr::LV_Valid)
3963 << Args[0]->getType()
3964 << Args[0]->getSourceRange();
3965 break;
3966
3967 case FK_TooManyInitsForScalar: {
3968 SourceRange R;
3969
3970 if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0]))
3971 R = SourceRange(InitList->getInit(1)->getLocStart(),
3972 InitList->getLocEnd());
3973 else
3974 R = SourceRange(Args[0]->getLocStart(), Args[NumArgs - 1]->getLocEnd());
3975
3976 S.Diag(Kind.getLocation(), diag::err_excess_initializers)
3977 << /*scalar=*/2 << R;
3978 break;
3979 }
3980
3981 case FK_ReferenceBindingToInitList:
3982 S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
3983 << DestType.getNonReferenceType() << Args[0]->getSourceRange();
3984 break;
3985
3986 case FK_InitListBadDestinationType:
3987 S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
3988 << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
3989 break;
3990
3991 case FK_ConstructorOverloadFailed: {
3992 SourceRange ArgsRange;
3993 if (NumArgs)
3994 ArgsRange = SourceRange(Args[0]->getLocStart(),
3995 Args[NumArgs - 1]->getLocEnd());
3996
3997 // FIXME: Using "DestType" for the entity we're printing is probably
3998 // bad.
3999 switch (FailedOverloadResult) {
4000 case OR_Ambiguous:
4001 S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
4002 << DestType << ArgsRange;
4003 S.PrintOverloadCandidates(FailedCandidateSet,
4004 Sema::OCD_ViableCandidates, Args, NumArgs);
4005 break;
4006
4007 case OR_No_Viable_Function:
4008 if (Kind.getKind() == InitializationKind::IK_Default &&
4009 (Entity.getKind() == InitializedEntity::EK_Base ||
4010 Entity.getKind() == InitializedEntity::EK_Member) &&
4011 isa<CXXConstructorDecl>(S.CurContext)) {
4012 // This is implicit default initialization of a member or
4013 // base within a constructor. If no viable function was
4014 // found, notify the user that she needs to explicitly
4015 // initialize this base/member.
4016 CXXConstructorDecl *Constructor
4017 = cast<CXXConstructorDecl>(S.CurContext);
4018 if (Entity.getKind() == InitializedEntity::EK_Base) {
4019 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
4020 << Constructor->isImplicit()
4021 << S.Context.getTypeDeclType(Constructor->getParent())
4022 << /*base=*/0
4023 << Entity.getType();
4024
4025 RecordDecl *BaseDecl
4026 = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
4027 ->getDecl();
4028 S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
4029 << S.Context.getTagDeclType(BaseDecl);
4030 } else {
4031 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
4032 << Constructor->isImplicit()
4033 << S.Context.getTypeDeclType(Constructor->getParent())
4034 << /*member=*/1
4035 << Entity.getName();
4036 S.Diag(Entity.getDecl()->getLocation(), diag::note_field_decl);
4037
4038 if (const RecordType *Record
4039 = Entity.getType()->getAs<RecordType>())
4040 S.Diag(Record->getDecl()->getLocation(),
4041 diag::note_previous_decl)
4042 << S.Context.getTagDeclType(Record->getDecl());
4043 }
4044 break;
4045 }
4046
4047 S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
4048 << DestType << ArgsRange;
4049 S.PrintOverloadCandidates(FailedCandidateSet, Sema::OCD_AllCandidates,
4050 Args, NumArgs);
4051 break;
4052
4053 case OR_Deleted: {
4054 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
4055 << true << DestType << ArgsRange;
4056 OverloadCandidateSet::iterator Best;
4057 OverloadingResult Ovl = S.BestViableFunction(FailedCandidateSet,
4058 Kind.getLocation(),
4059 Best);
4060 if (Ovl == OR_Deleted) {
4061 S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
4062 << Best->Function->isDeleted();
4063 } else {
4064 llvm_unreachable("Inconsistent overload resolution?");
4065 }
4066 break;
4067 }
4068
4069 case OR_Success:
4070 llvm_unreachable("Conversion did not fail!");
4071 break;
4072 }
4073 break;
4074 }
4075
4076 case FK_DefaultInitOfConst:
4077 if (Entity.getKind() == InitializedEntity::EK_Member &&
4078 isa<CXXConstructorDecl>(S.CurContext)) {
4079 // This is implicit default-initialization of a const member in
4080 // a constructor. Complain that it needs to be explicitly
4081 // initialized.
4082 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
4083 S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
4084 << Constructor->isImplicit()
4085 << S.Context.getTypeDeclType(Constructor->getParent())
4086 << /*const=*/1
4087 << Entity.getName();
4088 S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
4089 << Entity.getName();
4090 } else {
4091 S.Diag(Kind.getLocation(), diag::err_default_init_const)
4092 << DestType << (bool)DestType->getAs<RecordType>();
4093 }
4094 break;
3821
3822 if (shouldBindAsTemporary(Entity))
3823 CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
3824
3825 break;
3826 }
3827
3828 case SK_ZeroInitialization: {
3829 step_iterator NextStep = Step;
3830 ++NextStep;
3831 if (NextStep != StepEnd &&
3832 NextStep->Kind == SK_ConstructorInitialization) {
3833 // The need for zero-initialization is recorded directly into
3834 // the call to the object's constructor within the next step.
3835 ConstructorInitRequiresZeroInit = true;
3836 } else if (Kind.getKind() == InitializationKind::IK_Value &&
3837 S.getLangOptions().CPlusPlus &&
3838 !Kind.isImplicitValueInit()) {
3839 CurInit = S.Owned(new (S.Context) CXXZeroInitValueExpr(Step->Type,
3840 Kind.getRange().getBegin(),
3841 Kind.getRange().getEnd()));
3842 } else {
3843 CurInit = S.Owned(new (S.Context) ImplicitValueInitExpr(Step->Type));
3844 }
3845 break;
3846 }
3847
3848 case SK_CAssignment: {
3849 QualType SourceType = CurInitExpr->getType();
3850 Sema::AssignConvertType ConvTy =
3851 S.CheckSingleAssignmentConstraints(Step->Type, CurInitExpr);
3852
3853 // If this is a call, allow conversion to a transparent union.
3854 if (ConvTy != Sema::Compatible &&
3855 Entity.getKind() == InitializedEntity::EK_Parameter &&
3856 S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExpr)
3857 == Sema::Compatible)
3858 ConvTy = Sema::Compatible;
3859
3860 bool Complained;
3861 if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
3862 Step->Type, SourceType,
3863 CurInitExpr,
3864 getAssignmentAction(Entity),
3865 &Complained)) {
3866 PrintInitLocationNote(S, Entity);
3867 return S.ExprError();
3868 } else if (Complained)
3869 PrintInitLocationNote(S, Entity);
3870
3871 CurInit.release();
3872 CurInit = S.Owned(CurInitExpr);
3873 break;
3874 }
3875
3876 case SK_StringInit: {
3877 QualType Ty = Step->Type;
3878 CheckStringInit(CurInitExpr, ResultType ? *ResultType : Ty, S);
3879 break;
3880 }
3881 }
3882 }
3883
3884 return move(CurInit);
3885}
3886
3887//===----------------------------------------------------------------------===//
3888// Diagnose initialization failures
3889//===----------------------------------------------------------------------===//
3890bool InitializationSequence::Diagnose(Sema &S,
3891 const InitializedEntity &Entity,
3892 const InitializationKind &Kind,
3893 Expr **Args, unsigned NumArgs) {
3894 if (SequenceKind != FailedSequence)
3895 return false;
3896
3897 QualType DestType = Entity.getType();
3898 switch (Failure) {
3899 case FK_TooManyInitsForReference:
3900 // FIXME: Customize for the initialized entity?
3901 if (NumArgs == 0)
3902 S.Diag(Kind.getLocation(), diag::err_reference_without_init)
3903 << DestType.getNonReferenceType();
3904 else // FIXME: diagnostic below could be better!
3905 S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
3906 << SourceRange(Args[0]->getLocStart(), Args[NumArgs - 1]->getLocEnd());
3907 break;
3908
3909 case FK_ArrayNeedsInitList:
3910 case FK_ArrayNeedsInitListOrStringLiteral:
3911 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list)
3912 << (Failure == FK_ArrayNeedsInitListOrStringLiteral);
3913 break;
3914
3915 case FK_AddressOfOverloadFailed: {
3916 DeclAccessPair Found;
3917 S.ResolveAddressOfOverloadedFunction(Args[0],
3918 DestType.getNonReferenceType(),
3919 true,
3920 Found);
3921 break;
3922 }
3923
3924 case FK_ReferenceInitOverloadFailed:
3925 case FK_UserConversionOverloadFailed:
3926 switch (FailedOverloadResult) {
3927 case OR_Ambiguous:
3928 if (Failure == FK_UserConversionOverloadFailed)
3929 S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
3930 << Args[0]->getType() << DestType
3931 << Args[0]->getSourceRange();
3932 else
3933 S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
3934 << DestType << Args[0]->getType()
3935 << Args[0]->getSourceRange();
3936
3937 S.PrintOverloadCandidates(FailedCandidateSet, Sema::OCD_ViableCandidates,
3938 Args, NumArgs);
3939 break;
3940
3941 case OR_No_Viable_Function:
3942 S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
3943 << Args[0]->getType() << DestType.getNonReferenceType()
3944 << Args[0]->getSourceRange();
3945 S.PrintOverloadCandidates(FailedCandidateSet, Sema::OCD_AllCandidates,
3946 Args, NumArgs);
3947 break;
3948
3949 case OR_Deleted: {
3950 S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
3951 << Args[0]->getType() << DestType.getNonReferenceType()
3952 << Args[0]->getSourceRange();
3953 OverloadCandidateSet::iterator Best;
3954 OverloadingResult Ovl = S.BestViableFunction(FailedCandidateSet,
3955 Kind.getLocation(),
3956 Best);
3957 if (Ovl == OR_Deleted) {
3958 S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
3959 << Best->Function->isDeleted();
3960 } else {
3961 llvm_unreachable("Inconsistent overload resolution?");
3962 }
3963 break;
3964 }
3965
3966 case OR_Success:
3967 llvm_unreachable("Conversion did not fail!");
3968 break;
3969 }
3970 break;
3971
3972 case FK_NonConstLValueReferenceBindingToTemporary:
3973 case FK_NonConstLValueReferenceBindingToUnrelated:
3974 S.Diag(Kind.getLocation(),
3975 Failure == FK_NonConstLValueReferenceBindingToTemporary
3976 ? diag::err_lvalue_reference_bind_to_temporary
3977 : diag::err_lvalue_reference_bind_to_unrelated)
3978 << DestType.getNonReferenceType().isVolatileQualified()
3979 << DestType.getNonReferenceType()
3980 << Args[0]->getType()
3981 << Args[0]->getSourceRange();
3982 break;
3983
3984 case FK_RValueReferenceBindingToLValue:
3985 S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
3986 << Args[0]->getSourceRange();
3987 break;
3988
3989 case FK_ReferenceInitDropsQualifiers:
3990 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
3991 << DestType.getNonReferenceType()
3992 << Args[0]->getType()
3993 << Args[0]->getSourceRange();
3994 break;
3995
3996 case FK_ReferenceInitFailed:
3997 S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
3998 << DestType.getNonReferenceType()
3999 << (Args[0]->isLvalue(S.Context) == Expr::LV_Valid)
4000 << Args[0]->getType()
4001 << Args[0]->getSourceRange();
4002 break;
4003
4004 case FK_ConversionFailed:
4005 S.Diag(Kind.getLocation(), diag::err_init_conversion_failed)
4006 << (int)Entity.getKind()
4007 << DestType
4008 << (Args[0]->isLvalue(S.Context) == Expr::LV_Valid)
4009 << Args[0]->getType()
4010 << Args[0]->getSourceRange();
4011 break;
4012
4013 case FK_TooManyInitsForScalar: {
4014 SourceRange R;
4015
4016 if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0]))
4017 R = SourceRange(InitList->getInit(1)->getLocStart(),
4018 InitList->getLocEnd());
4019 else
4020 R = SourceRange(Args[0]->getLocStart(), Args[NumArgs - 1]->getLocEnd());
4021
4022 S.Diag(Kind.getLocation(), diag::err_excess_initializers)
4023 << /*scalar=*/2 << R;
4024 break;
4025 }
4026
4027 case FK_ReferenceBindingToInitList:
4028 S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
4029 << DestType.getNonReferenceType() << Args[0]->getSourceRange();
4030 break;
4031
4032 case FK_InitListBadDestinationType:
4033 S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
4034 << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
4035 break;
4036
4037 case FK_ConstructorOverloadFailed: {
4038 SourceRange ArgsRange;
4039 if (NumArgs)
4040 ArgsRange = SourceRange(Args[0]->getLocStart(),
4041 Args[NumArgs - 1]->getLocEnd());
4042
4043 // FIXME: Using "DestType" for the entity we're printing is probably
4044 // bad.
4045 switch (FailedOverloadResult) {
4046 case OR_Ambiguous:
4047 S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
4048 << DestType << ArgsRange;
4049 S.PrintOverloadCandidates(FailedCandidateSet,
4050 Sema::OCD_ViableCandidates, Args, NumArgs);
4051 break;
4052
4053 case OR_No_Viable_Function:
4054 if (Kind.getKind() == InitializationKind::IK_Default &&
4055 (Entity.getKind() == InitializedEntity::EK_Base ||
4056 Entity.getKind() == InitializedEntity::EK_Member) &&
4057 isa<CXXConstructorDecl>(S.CurContext)) {
4058 // This is implicit default initialization of a member or
4059 // base within a constructor. If no viable function was
4060 // found, notify the user that she needs to explicitly
4061 // initialize this base/member.
4062 CXXConstructorDecl *Constructor
4063 = cast<CXXConstructorDecl>(S.CurContext);
4064 if (Entity.getKind() == InitializedEntity::EK_Base) {
4065 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
4066 << Constructor->isImplicit()
4067 << S.Context.getTypeDeclType(Constructor->getParent())
4068 << /*base=*/0
4069 << Entity.getType();
4070
4071 RecordDecl *BaseDecl
4072 = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
4073 ->getDecl();
4074 S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
4075 << S.Context.getTagDeclType(BaseDecl);
4076 } else {
4077 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
4078 << Constructor->isImplicit()
4079 << S.Context.getTypeDeclType(Constructor->getParent())
4080 << /*member=*/1
4081 << Entity.getName();
4082 S.Diag(Entity.getDecl()->getLocation(), diag::note_field_decl);
4083
4084 if (const RecordType *Record
4085 = Entity.getType()->getAs<RecordType>())
4086 S.Diag(Record->getDecl()->getLocation(),
4087 diag::note_previous_decl)
4088 << S.Context.getTagDeclType(Record->getDecl());
4089 }
4090 break;
4091 }
4092
4093 S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
4094 << DestType << ArgsRange;
4095 S.PrintOverloadCandidates(FailedCandidateSet, Sema::OCD_AllCandidates,
4096 Args, NumArgs);
4097 break;
4098
4099 case OR_Deleted: {
4100 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
4101 << true << DestType << ArgsRange;
4102 OverloadCandidateSet::iterator Best;
4103 OverloadingResult Ovl = S.BestViableFunction(FailedCandidateSet,
4104 Kind.getLocation(),
4105 Best);
4106 if (Ovl == OR_Deleted) {
4107 S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
4108 << Best->Function->isDeleted();
4109 } else {
4110 llvm_unreachable("Inconsistent overload resolution?");
4111 }
4112 break;
4113 }
4114
4115 case OR_Success:
4116 llvm_unreachable("Conversion did not fail!");
4117 break;
4118 }
4119 break;
4120 }
4121
4122 case FK_DefaultInitOfConst:
4123 if (Entity.getKind() == InitializedEntity::EK_Member &&
4124 isa<CXXConstructorDecl>(S.CurContext)) {
4125 // This is implicit default-initialization of a const member in
4126 // a constructor. Complain that it needs to be explicitly
4127 // initialized.
4128 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
4129 S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
4130 << Constructor->isImplicit()
4131 << S.Context.getTypeDeclType(Constructor->getParent())
4132 << /*const=*/1
4133 << Entity.getName();
4134 S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
4135 << Entity.getName();
4136 } else {
4137 S.Diag(Kind.getLocation(), diag::err_default_init_const)
4138 << DestType << (bool)DestType->getAs<RecordType>();
4139 }
4140 break;
4141
4142 case FK_Incomplete:
4143 S.RequireCompleteType(Kind.getLocation(), DestType,
4144 diag::err_init_incomplete_type);
4145 break;
4095 }
4096
4097 PrintInitLocationNote(S, Entity);
4098 return true;
4099}
4100
4101void InitializationSequence::dump(llvm::raw_ostream &OS) const {
4102 switch (SequenceKind) {
4103 case FailedSequence: {
4104 OS << "Failed sequence: ";
4105 switch (Failure) {
4106 case FK_TooManyInitsForReference:
4107 OS << "too many initializers for reference";
4108 break;
4109
4110 case FK_ArrayNeedsInitList:
4111 OS << "array requires initializer list";
4112 break;
4113
4114 case FK_ArrayNeedsInitListOrStringLiteral:
4115 OS << "array requires initializer list or string literal";
4116 break;
4117
4118 case FK_AddressOfOverloadFailed:
4119 OS << "address of overloaded function failed";
4120 break;
4121
4122 case FK_ReferenceInitOverloadFailed:
4123 OS << "overload resolution for reference initialization failed";
4124 break;
4125
4126 case FK_NonConstLValueReferenceBindingToTemporary:
4127 OS << "non-const lvalue reference bound to temporary";
4128 break;
4129
4130 case FK_NonConstLValueReferenceBindingToUnrelated:
4131 OS << "non-const lvalue reference bound to unrelated type";
4132 break;
4133
4134 case FK_RValueReferenceBindingToLValue:
4135 OS << "rvalue reference bound to an lvalue";
4136 break;
4137
4138 case FK_ReferenceInitDropsQualifiers:
4139 OS << "reference initialization drops qualifiers";
4140 break;
4141
4142 case FK_ReferenceInitFailed:
4143 OS << "reference initialization failed";
4144 break;
4145
4146 case FK_ConversionFailed:
4147 OS << "conversion failed";
4148 break;
4149
4150 case FK_TooManyInitsForScalar:
4151 OS << "too many initializers for scalar";
4152 break;
4153
4154 case FK_ReferenceBindingToInitList:
4155 OS << "referencing binding to initializer list";
4156 break;
4157
4158 case FK_InitListBadDestinationType:
4159 OS << "initializer list for non-aggregate, non-scalar type";
4160 break;
4161
4162 case FK_UserConversionOverloadFailed:
4163 OS << "overloading failed for user-defined conversion";
4164 break;
4165
4166 case FK_ConstructorOverloadFailed:
4167 OS << "constructor overloading failed";
4168 break;
4169
4170 case FK_DefaultInitOfConst:
4171 OS << "default initialization of a const variable";
4172 break;
4146 }
4147
4148 PrintInitLocationNote(S, Entity);
4149 return true;
4150}
4151
4152void InitializationSequence::dump(llvm::raw_ostream &OS) const {
4153 switch (SequenceKind) {
4154 case FailedSequence: {
4155 OS << "Failed sequence: ";
4156 switch (Failure) {
4157 case FK_TooManyInitsForReference:
4158 OS << "too many initializers for reference";
4159 break;
4160
4161 case FK_ArrayNeedsInitList:
4162 OS << "array requires initializer list";
4163 break;
4164
4165 case FK_ArrayNeedsInitListOrStringLiteral:
4166 OS << "array requires initializer list or string literal";
4167 break;
4168
4169 case FK_AddressOfOverloadFailed:
4170 OS << "address of overloaded function failed";
4171 break;
4172
4173 case FK_ReferenceInitOverloadFailed:
4174 OS << "overload resolution for reference initialization failed";
4175 break;
4176
4177 case FK_NonConstLValueReferenceBindingToTemporary:
4178 OS << "non-const lvalue reference bound to temporary";
4179 break;
4180
4181 case FK_NonConstLValueReferenceBindingToUnrelated:
4182 OS << "non-const lvalue reference bound to unrelated type";
4183 break;
4184
4185 case FK_RValueReferenceBindingToLValue:
4186 OS << "rvalue reference bound to an lvalue";
4187 break;
4188
4189 case FK_ReferenceInitDropsQualifiers:
4190 OS << "reference initialization drops qualifiers";
4191 break;
4192
4193 case FK_ReferenceInitFailed:
4194 OS << "reference initialization failed";
4195 break;
4196
4197 case FK_ConversionFailed:
4198 OS << "conversion failed";
4199 break;
4200
4201 case FK_TooManyInitsForScalar:
4202 OS << "too many initializers for scalar";
4203 break;
4204
4205 case FK_ReferenceBindingToInitList:
4206 OS << "referencing binding to initializer list";
4207 break;
4208
4209 case FK_InitListBadDestinationType:
4210 OS << "initializer list for non-aggregate, non-scalar type";
4211 break;
4212
4213 case FK_UserConversionOverloadFailed:
4214 OS << "overloading failed for user-defined conversion";
4215 break;
4216
4217 case FK_ConstructorOverloadFailed:
4218 OS << "constructor overloading failed";
4219 break;
4220
4221 case FK_DefaultInitOfConst:
4222 OS << "default initialization of a const variable";
4223 break;
4224
4225 case FK_Incomplete:
4226 OS << "initialization of incomplete type";
4227 break;
4173 }
4174 OS << '\n';
4175 return;
4176 }
4177
4178 case DependentSequence:
4179 OS << "Dependent sequence: ";
4180 return;
4181
4182 case UserDefinedConversion:
4183 OS << "User-defined conversion sequence: ";
4184 break;
4185
4186 case ConstructorInitialization:
4187 OS << "Constructor initialization sequence: ";
4188 break;
4189
4190 case ReferenceBinding:
4191 OS << "Reference binding: ";
4192 break;
4193
4194 case ListInitialization:
4195 OS << "List initialization: ";
4196 break;
4197
4198 case ZeroInitialization:
4199 OS << "Zero initialization\n";
4200 return;
4201
4202 case NoInitialization:
4203 OS << "No initialization\n";
4204 return;
4205
4206 case StandardConversion:
4207 OS << "Standard conversion: ";
4208 break;
4209
4210 case CAssignment:
4211 OS << "C assignment: ";
4212 break;
4213
4214 case StringInit:
4215 OS << "String initialization: ";
4216 break;
4217 }
4218
4219 for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
4220 if (S != step_begin()) {
4221 OS << " -> ";
4222 }
4223
4224 switch (S->Kind) {
4225 case SK_ResolveAddressOfOverloadedFunction:
4226 OS << "resolve address of overloaded function";
4227 break;
4228
4229 case SK_CastDerivedToBaseRValue:
4230 OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
4231 break;
4232
4233 case SK_CastDerivedToBaseLValue:
4234 OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
4235 break;
4236
4237 case SK_BindReference:
4238 OS << "bind reference to lvalue";
4239 break;
4240
4241 case SK_BindReferenceToTemporary:
4242 OS << "bind reference to a temporary";
4243 break;
4244
4245 case SK_ExtraneousCopyToTemporary:
4246 OS << "extraneous C++03 copy to temporary";
4247 break;
4248
4249 case SK_UserConversion:
4250 OS << "user-defined conversion via " << S->Function.Function;
4251 break;
4252
4253 case SK_QualificationConversionRValue:
4254 OS << "qualification conversion (rvalue)";
4255
4256 case SK_QualificationConversionLValue:
4257 OS << "qualification conversion (lvalue)";
4258 break;
4259
4260 case SK_ConversionSequence:
4261 OS << "implicit conversion sequence (";
4262 S->ICS->DebugPrint(); // FIXME: use OS
4263 OS << ")";
4264 break;
4265
4266 case SK_ListInitialization:
4267 OS << "list initialization";
4268 break;
4269
4270 case SK_ConstructorInitialization:
4271 OS << "constructor initialization";
4272 break;
4273
4274 case SK_ZeroInitialization:
4275 OS << "zero initialization";
4276 break;
4277
4278 case SK_CAssignment:
4279 OS << "C assignment";
4280 break;
4281
4282 case SK_StringInit:
4283 OS << "string initialization";
4284 break;
4285 }
4286 }
4287}
4288
4289void InitializationSequence::dump() const {
4290 dump(llvm::errs());
4291}
4292
4293//===----------------------------------------------------------------------===//
4294// Initialization helper functions
4295//===----------------------------------------------------------------------===//
4296Sema::OwningExprResult
4297Sema::PerformCopyInitialization(const InitializedEntity &Entity,
4298 SourceLocation EqualLoc,
4299 OwningExprResult Init) {
4300 if (Init.isInvalid())
4301 return ExprError();
4302
4303 Expr *InitE = (Expr *)Init.get();
4304 assert(InitE && "No initialization expression?");
4305
4306 if (EqualLoc.isInvalid())
4307 EqualLoc = InitE->getLocStart();
4308
4309 InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
4310 EqualLoc);
4311 InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
4312 Init.release();
4313 return Seq.Perform(*this, Entity, Kind,
4314 MultiExprArg(*this, (void**)&InitE, 1));
4315}
4228 }
4229 OS << '\n';
4230 return;
4231 }
4232
4233 case DependentSequence:
4234 OS << "Dependent sequence: ";
4235 return;
4236
4237 case UserDefinedConversion:
4238 OS << "User-defined conversion sequence: ";
4239 break;
4240
4241 case ConstructorInitialization:
4242 OS << "Constructor initialization sequence: ";
4243 break;
4244
4245 case ReferenceBinding:
4246 OS << "Reference binding: ";
4247 break;
4248
4249 case ListInitialization:
4250 OS << "List initialization: ";
4251 break;
4252
4253 case ZeroInitialization:
4254 OS << "Zero initialization\n";
4255 return;
4256
4257 case NoInitialization:
4258 OS << "No initialization\n";
4259 return;
4260
4261 case StandardConversion:
4262 OS << "Standard conversion: ";
4263 break;
4264
4265 case CAssignment:
4266 OS << "C assignment: ";
4267 break;
4268
4269 case StringInit:
4270 OS << "String initialization: ";
4271 break;
4272 }
4273
4274 for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
4275 if (S != step_begin()) {
4276 OS << " -> ";
4277 }
4278
4279 switch (S->Kind) {
4280 case SK_ResolveAddressOfOverloadedFunction:
4281 OS << "resolve address of overloaded function";
4282 break;
4283
4284 case SK_CastDerivedToBaseRValue:
4285 OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
4286 break;
4287
4288 case SK_CastDerivedToBaseLValue:
4289 OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
4290 break;
4291
4292 case SK_BindReference:
4293 OS << "bind reference to lvalue";
4294 break;
4295
4296 case SK_BindReferenceToTemporary:
4297 OS << "bind reference to a temporary";
4298 break;
4299
4300 case SK_ExtraneousCopyToTemporary:
4301 OS << "extraneous C++03 copy to temporary";
4302 break;
4303
4304 case SK_UserConversion:
4305 OS << "user-defined conversion via " << S->Function.Function;
4306 break;
4307
4308 case SK_QualificationConversionRValue:
4309 OS << "qualification conversion (rvalue)";
4310
4311 case SK_QualificationConversionLValue:
4312 OS << "qualification conversion (lvalue)";
4313 break;
4314
4315 case SK_ConversionSequence:
4316 OS << "implicit conversion sequence (";
4317 S->ICS->DebugPrint(); // FIXME: use OS
4318 OS << ")";
4319 break;
4320
4321 case SK_ListInitialization:
4322 OS << "list initialization";
4323 break;
4324
4325 case SK_ConstructorInitialization:
4326 OS << "constructor initialization";
4327 break;
4328
4329 case SK_ZeroInitialization:
4330 OS << "zero initialization";
4331 break;
4332
4333 case SK_CAssignment:
4334 OS << "C assignment";
4335 break;
4336
4337 case SK_StringInit:
4338 OS << "string initialization";
4339 break;
4340 }
4341 }
4342}
4343
4344void InitializationSequence::dump() const {
4345 dump(llvm::errs());
4346}
4347
4348//===----------------------------------------------------------------------===//
4349// Initialization helper functions
4350//===----------------------------------------------------------------------===//
4351Sema::OwningExprResult
4352Sema::PerformCopyInitialization(const InitializedEntity &Entity,
4353 SourceLocation EqualLoc,
4354 OwningExprResult Init) {
4355 if (Init.isInvalid())
4356 return ExprError();
4357
4358 Expr *InitE = (Expr *)Init.get();
4359 assert(InitE && "No initialization expression?");
4360
4361 if (EqualLoc.isInvalid())
4362 EqualLoc = InitE->getLocStart();
4363
4364 InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
4365 EqualLoc);
4366 InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
4367 Init.release();
4368 return Seq.Perform(*this, Entity, Kind,
4369 MultiExprArg(*this, (void**)&InitE, 1));
4370}