Deleted Added
sdiff udiff text old ( 284308 ) new ( 296528 )
full compact
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25 * Copyright (c) 2013 by Delphix. All rights reserved.
26 * Copyright 2015 RackTop Systems.
27 */
28
29/*
30 * Pool import support functions.
31 *
32 * To import a pool, we rely on reading the configuration information from the
33 * ZFS label of each device. If we successfully read the label, then we
34 * organize the configuration information in the following hierarchy:
35 *
36 * pool guid -> toplevel vdev guid -> label txg
37 *
38 * Duplicate entries matching this same tuple will be discarded. Once we have
39 * examined every device, we pick the best label txg config for each toplevel
40 * vdev. We then arrange these toplevel vdevs into a complete pool config, and
41 * update any paths that have changed. Finally, we attempt to import the pool
42 * using our derived config, and record the results.
43 */
44
45#include <ctype.h>
46#include <devid.h>
47#include <dirent.h>
48#include <errno.h>
49#include <libintl.h>
50#include <stddef.h>
51#include <stdlib.h>
52#include <string.h>
53#include <sys/stat.h>
54#include <unistd.h>
55#include <fcntl.h>
56#include <thread_pool.h>
57#include <libgeom.h>
58
59#include <sys/vdev_impl.h>
60
61#include "libzfs.h"
62#include "libzfs_impl.h"
63
64/*
65 * Intermediate structures used to gather configuration information.
66 */
67typedef struct config_entry {
68 uint64_t ce_txg;
69 nvlist_t *ce_config;
70 struct config_entry *ce_next;
71} config_entry_t;
72
73typedef struct vdev_entry {
74 uint64_t ve_guid;
75 config_entry_t *ve_configs;
76 struct vdev_entry *ve_next;
77} vdev_entry_t;
78
79typedef struct pool_entry {
80 uint64_t pe_guid;
81 vdev_entry_t *pe_vdevs;
82 struct pool_entry *pe_next;
83} pool_entry_t;
84
85typedef struct name_entry {
86 char *ne_name;
87 uint64_t ne_guid;
88 struct name_entry *ne_next;
89} name_entry_t;
90
91typedef struct pool_list {
92 pool_entry_t *pools;
93 name_entry_t *names;
94} pool_list_t;
95
96static char *
97get_devid(const char *path)
98{
99#ifdef have_devid
100 int fd;
101 ddi_devid_t devid;
102 char *minor, *ret;
103
104 if ((fd = open(path, O_RDONLY)) < 0)
105 return (NULL);
106
107 minor = NULL;
108 ret = NULL;
109 if (devid_get(fd, &devid) == 0) {
110 if (devid_get_minor_name(fd, &minor) == 0)
111 ret = devid_str_encode(devid, minor);
112 if (minor != NULL)
113 devid_str_free(minor);
114 devid_free(devid);
115 }
116 (void) close(fd);
117
118 return (ret);
119#else
120 return (NULL);
121#endif
122}
123
124
125/*
126 * Go through and fix up any path and/or devid information for the given vdev
127 * configuration.
128 */
129static int
130fix_paths(nvlist_t *nv, name_entry_t *names)
131{
132 nvlist_t **child;
133 uint_t c, children;
134 uint64_t guid;
135 name_entry_t *ne, *best;
136 char *path, *devid;
137 int matched;
138
139 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
140 &child, &children) == 0) {
141 for (c = 0; c < children; c++)
142 if (fix_paths(child[c], names) != 0)
143 return (-1);
144 return (0);
145 }
146
147 /*
148 * This is a leaf (file or disk) vdev. In either case, go through
149 * the name list and see if we find a matching guid. If so, replace
150 * the path and see if we can calculate a new devid.
151 *
152 * There may be multiple names associated with a particular guid, in
153 * which case we have overlapping slices or multiple paths to the same
154 * disk. If this is the case, then we want to pick the path that is
155 * the most similar to the original, where "most similar" is the number
156 * of matching characters starting from the end of the path. This will
157 * preserve slice numbers even if the disks have been reorganized, and
158 * will also catch preferred disk names if multiple paths exist.
159 */
160 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0);
161 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
162 path = NULL;
163
164 matched = 0;
165 best = NULL;
166 for (ne = names; ne != NULL; ne = ne->ne_next) {
167 if (ne->ne_guid == guid) {
168 const char *src, *dst;
169 int count;
170
171 if (path == NULL) {
172 best = ne;
173 break;
174 }
175
176 src = ne->ne_name + strlen(ne->ne_name) - 1;
177 dst = path + strlen(path) - 1;
178 for (count = 0; src >= ne->ne_name && dst >= path;
179 src--, dst--, count++)
180 if (*src != *dst)
181 break;
182
183 /*
184 * At this point, 'count' is the number of characters
185 * matched from the end.
186 */
187 if (count > matched || best == NULL) {
188 best = ne;
189 matched = count;
190 }
191 }
192 }
193
194 if (best == NULL)
195 return (0);
196
197 if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0)
198 return (-1);
199
200 if ((devid = get_devid(best->ne_name)) == NULL) {
201 (void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID);
202 } else {
203 if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0) {
204 devid_str_free(devid);
205 return (-1);
206 }
207 devid_str_free(devid);
208 }
209
210 return (0);
211}
212
213/*
214 * Add the given configuration to the list of known devices.
215 */
216static int
217add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path,
218 nvlist_t *config)
219{
220 uint64_t pool_guid, vdev_guid, top_guid, txg, state;
221 pool_entry_t *pe;
222 vdev_entry_t *ve;
223 config_entry_t *ce;
224 name_entry_t *ne;
225
226 /*
227 * If this is a hot spare not currently in use or level 2 cache
228 * device, add it to the list of names to translate, but don't do
229 * anything else.
230 */
231 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
232 &state) == 0 &&
233 (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) &&
234 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) {
235 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
236 return (-1);
237
238 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
239 free(ne);
240 return (-1);
241 }
242 ne->ne_guid = vdev_guid;
243 ne->ne_next = pl->names;
244 pl->names = ne;
245 return (0);
246 }
247
248 /*
249 * If we have a valid config but cannot read any of these fields, then
250 * it means we have a half-initialized label. In vdev_label_init()
251 * we write a label with txg == 0 so that we can identify the device
252 * in case the user refers to the same disk later on. If we fail to
253 * create the pool, we'll be left with a label in this state
254 * which should not be considered part of a valid pool.
255 */
256 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
257 &pool_guid) != 0 ||
258 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
259 &vdev_guid) != 0 ||
260 nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID,
261 &top_guid) != 0 ||
262 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
263 &txg) != 0 || txg == 0) {
264 nvlist_free(config);
265 return (0);
266 }
267
268 /*
269 * First, see if we know about this pool. If not, then add it to the
270 * list of known pools.
271 */
272 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
273 if (pe->pe_guid == pool_guid)
274 break;
275 }
276
277 if (pe == NULL) {
278 if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) {
279 nvlist_free(config);
280 return (-1);
281 }
282 pe->pe_guid = pool_guid;
283 pe->pe_next = pl->pools;
284 pl->pools = pe;
285 }
286
287 /*
288 * Second, see if we know about this toplevel vdev. Add it if its
289 * missing.
290 */
291 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
292 if (ve->ve_guid == top_guid)
293 break;
294 }
295
296 if (ve == NULL) {
297 if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) {
298 nvlist_free(config);
299 return (-1);
300 }
301 ve->ve_guid = top_guid;
302 ve->ve_next = pe->pe_vdevs;
303 pe->pe_vdevs = ve;
304 }
305
306 /*
307 * Third, see if we have a config with a matching transaction group. If
308 * so, then we do nothing. Otherwise, add it to the list of known
309 * configs.
310 */
311 for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) {
312 if (ce->ce_txg == txg)
313 break;
314 }
315
316 if (ce == NULL) {
317 if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) {
318 nvlist_free(config);
319 return (-1);
320 }
321 ce->ce_txg = txg;
322 ce->ce_config = config;
323 ce->ce_next = ve->ve_configs;
324 ve->ve_configs = ce;
325 } else {
326 nvlist_free(config);
327 }
328
329 /*
330 * At this point we've successfully added our config to the list of
331 * known configs. The last thing to do is add the vdev guid -> path
332 * mappings so that we can fix up the configuration as necessary before
333 * doing the import.
334 */
335 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
336 return (-1);
337
338 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
339 free(ne);
340 return (-1);
341 }
342
343 ne->ne_guid = vdev_guid;
344 ne->ne_next = pl->names;
345 pl->names = ne;
346
347 return (0);
348}
349
350/*
351 * Returns true if the named pool matches the given GUID.
352 */
353static int
354pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid,
355 boolean_t *isactive)
356{
357 zpool_handle_t *zhp;
358 uint64_t theguid;
359
360 if (zpool_open_silent(hdl, name, &zhp) != 0)
361 return (-1);
362
363 if (zhp == NULL) {
364 *isactive = B_FALSE;
365 return (0);
366 }
367
368 verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID,
369 &theguid) == 0);
370
371 zpool_close(zhp);
372
373 *isactive = (theguid == guid);
374 return (0);
375}
376
377static nvlist_t *
378refresh_config(libzfs_handle_t *hdl, nvlist_t *config)
379{
380 nvlist_t *nvl;
381 zfs_cmd_t zc = { 0 };
382 int err;
383
384 if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0)
385 return (NULL);
386
387 if (zcmd_alloc_dst_nvlist(hdl, &zc,
388 zc.zc_nvlist_conf_size * 2) != 0) {
389 zcmd_free_nvlists(&zc);
390 return (NULL);
391 }
392
393 while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT,
394 &zc)) != 0 && errno == ENOMEM) {
395 if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) {
396 zcmd_free_nvlists(&zc);
397 return (NULL);
398 }
399 }
400
401 if (err) {
402 zcmd_free_nvlists(&zc);
403 return (NULL);
404 }
405
406 if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) {
407 zcmd_free_nvlists(&zc);
408 return (NULL);
409 }
410
411 zcmd_free_nvlists(&zc);
412 return (nvl);
413}
414
415/*
416 * Determine if the vdev id is a hole in the namespace.
417 */
418boolean_t
419vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id)
420{
421 for (int c = 0; c < holes; c++) {
422
423 /* Top-level is a hole */
424 if (hole_array[c] == id)
425 return (B_TRUE);
426 }
427 return (B_FALSE);
428}
429
430/*
431 * Convert our list of pools into the definitive set of configurations. We
432 * start by picking the best config for each toplevel vdev. Once that's done,
433 * we assemble the toplevel vdevs into a full config for the pool. We make a
434 * pass to fix up any incorrect paths, and then add it to the main list to
435 * return to the user.
436 */
437static nvlist_t *
438get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok)
439{
440 pool_entry_t *pe;
441 vdev_entry_t *ve;
442 config_entry_t *ce;
443 nvlist_t *ret = NULL, *config = NULL, *tmp, *nvtop, *nvroot;
444 nvlist_t **spares, **l2cache;
445 uint_t i, nspares, nl2cache;
446 boolean_t config_seen;
447 uint64_t best_txg;
448 char *name, *hostname;
449 uint64_t guid;
450 uint_t children = 0;
451 nvlist_t **child = NULL;
452 uint_t holes;
453 uint64_t *hole_array, max_id;
454 uint_t c;
455 boolean_t isactive;
456 uint64_t hostid;
457 nvlist_t *nvl;
458 boolean_t found_one = B_FALSE;
459 boolean_t valid_top_config = B_FALSE;
460
461 if (nvlist_alloc(&ret, 0, 0) != 0)
462 goto nomem;
463
464 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
465 uint64_t id, max_txg = 0;
466
467 if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0)
468 goto nomem;
469 config_seen = B_FALSE;
470
471 /*
472 * Iterate over all toplevel vdevs. Grab the pool configuration
473 * from the first one we find, and then go through the rest and
474 * add them as necessary to the 'vdevs' member of the config.
475 */
476 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
477
478 /*
479 * Determine the best configuration for this vdev by
480 * selecting the config with the latest transaction
481 * group.
482 */
483 best_txg = 0;
484 for (ce = ve->ve_configs; ce != NULL;
485 ce = ce->ce_next) {
486
487 if (ce->ce_txg > best_txg) {
488 tmp = ce->ce_config;
489 best_txg = ce->ce_txg;
490 }
491 }
492
493 /*
494 * We rely on the fact that the max txg for the
495 * pool will contain the most up-to-date information
496 * about the valid top-levels in the vdev namespace.
497 */
498 if (best_txg > max_txg) {
499 (void) nvlist_remove(config,
500 ZPOOL_CONFIG_VDEV_CHILDREN,
501 DATA_TYPE_UINT64);
502 (void) nvlist_remove(config,
503 ZPOOL_CONFIG_HOLE_ARRAY,
504 DATA_TYPE_UINT64_ARRAY);
505
506 max_txg = best_txg;
507 hole_array = NULL;
508 holes = 0;
509 max_id = 0;
510 valid_top_config = B_FALSE;
511
512 if (nvlist_lookup_uint64(tmp,
513 ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) {
514 verify(nvlist_add_uint64(config,
515 ZPOOL_CONFIG_VDEV_CHILDREN,
516 max_id) == 0);
517 valid_top_config = B_TRUE;
518 }
519
520 if (nvlist_lookup_uint64_array(tmp,
521 ZPOOL_CONFIG_HOLE_ARRAY, &hole_array,
522 &holes) == 0) {
523 verify(nvlist_add_uint64_array(config,
524 ZPOOL_CONFIG_HOLE_ARRAY,
525 hole_array, holes) == 0);
526 }
527 }
528
529 if (!config_seen) {
530 /*
531 * Copy the relevant pieces of data to the pool
532 * configuration:
533 *
534 * version
535 * pool guid
536 * name
537 * comment (if available)
538 * pool state
539 * hostid (if available)
540 * hostname (if available)
541 */
542 uint64_t state, version;
543 char *comment = NULL;
544
545 version = fnvlist_lookup_uint64(tmp,
546 ZPOOL_CONFIG_VERSION);
547 fnvlist_add_uint64(config,
548 ZPOOL_CONFIG_VERSION, version);
549 guid = fnvlist_lookup_uint64(tmp,
550 ZPOOL_CONFIG_POOL_GUID);
551 fnvlist_add_uint64(config,
552 ZPOOL_CONFIG_POOL_GUID, guid);
553 name = fnvlist_lookup_string(tmp,
554 ZPOOL_CONFIG_POOL_NAME);
555 fnvlist_add_string(config,
556 ZPOOL_CONFIG_POOL_NAME, name);
557
558 if (nvlist_lookup_string(tmp,
559 ZPOOL_CONFIG_COMMENT, &comment) == 0)
560 fnvlist_add_string(config,
561 ZPOOL_CONFIG_COMMENT, comment);
562
563 state = fnvlist_lookup_uint64(tmp,
564 ZPOOL_CONFIG_POOL_STATE);
565 fnvlist_add_uint64(config,
566 ZPOOL_CONFIG_POOL_STATE, state);
567
568 hostid = 0;
569 if (nvlist_lookup_uint64(tmp,
570 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
571 fnvlist_add_uint64(config,
572 ZPOOL_CONFIG_HOSTID, hostid);
573 hostname = fnvlist_lookup_string(tmp,
574 ZPOOL_CONFIG_HOSTNAME);
575 fnvlist_add_string(config,
576 ZPOOL_CONFIG_HOSTNAME, hostname);
577 }
578
579 config_seen = B_TRUE;
580 }
581
582 /*
583 * Add this top-level vdev to the child array.
584 */
585 verify(nvlist_lookup_nvlist(tmp,
586 ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0);
587 verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID,
588 &id) == 0);
589
590 if (id >= children) {
591 nvlist_t **newchild;
592
593 newchild = zfs_alloc(hdl, (id + 1) *
594 sizeof (nvlist_t *));
595 if (newchild == NULL)
596 goto nomem;
597
598 for (c = 0; c < children; c++)
599 newchild[c] = child[c];
600
601 free(child);
602 child = newchild;
603 children = id + 1;
604 }
605 if (nvlist_dup(nvtop, &child[id], 0) != 0)
606 goto nomem;
607
608 }
609
610 /*
611 * If we have information about all the top-levels then
612 * clean up the nvlist which we've constructed. This
613 * means removing any extraneous devices that are
614 * beyond the valid range or adding devices to the end
615 * of our array which appear to be missing.
616 */
617 if (valid_top_config) {
618 if (max_id < children) {
619 for (c = max_id; c < children; c++)
620 nvlist_free(child[c]);
621 children = max_id;
622 } else if (max_id > children) {
623 nvlist_t **newchild;
624
625 newchild = zfs_alloc(hdl, (max_id) *
626 sizeof (nvlist_t *));
627 if (newchild == NULL)
628 goto nomem;
629
630 for (c = 0; c < children; c++)
631 newchild[c] = child[c];
632
633 free(child);
634 child = newchild;
635 children = max_id;
636 }
637 }
638
639 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
640 &guid) == 0);
641
642 /*
643 * The vdev namespace may contain holes as a result of
644 * device removal. We must add them back into the vdev
645 * tree before we process any missing devices.
646 */
647 if (holes > 0) {
648 ASSERT(valid_top_config);
649
650 for (c = 0; c < children; c++) {
651 nvlist_t *holey;
652
653 if (child[c] != NULL ||
654 !vdev_is_hole(hole_array, holes, c))
655 continue;
656
657 if (nvlist_alloc(&holey, NV_UNIQUE_NAME,
658 0) != 0)
659 goto nomem;
660
661 /*
662 * Holes in the namespace are treated as
663 * "hole" top-level vdevs and have a
664 * special flag set on them.
665 */
666 if (nvlist_add_string(holey,
667 ZPOOL_CONFIG_TYPE,
668 VDEV_TYPE_HOLE) != 0 ||
669 nvlist_add_uint64(holey,
670 ZPOOL_CONFIG_ID, c) != 0 ||
671 nvlist_add_uint64(holey,
672 ZPOOL_CONFIG_GUID, 0ULL) != 0) {
673 nvlist_free(holey);
674 goto nomem;
675 }
676 child[c] = holey;
677 }
678 }
679
680 /*
681 * Look for any missing top-level vdevs. If this is the case,
682 * create a faked up 'missing' vdev as a placeholder. We cannot
683 * simply compress the child array, because the kernel performs
684 * certain checks to make sure the vdev IDs match their location
685 * in the configuration.
686 */
687 for (c = 0; c < children; c++) {
688 if (child[c] == NULL) {
689 nvlist_t *missing;
690 if (nvlist_alloc(&missing, NV_UNIQUE_NAME,
691 0) != 0)
692 goto nomem;
693 if (nvlist_add_string(missing,
694 ZPOOL_CONFIG_TYPE,
695 VDEV_TYPE_MISSING) != 0 ||
696 nvlist_add_uint64(missing,
697 ZPOOL_CONFIG_ID, c) != 0 ||
698 nvlist_add_uint64(missing,
699 ZPOOL_CONFIG_GUID, 0ULL) != 0) {
700 nvlist_free(missing);
701 goto nomem;
702 }
703 child[c] = missing;
704 }
705 }
706
707 /*
708 * Put all of this pool's top-level vdevs into a root vdev.
709 */
710 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
711 goto nomem;
712 if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
713 VDEV_TYPE_ROOT) != 0 ||
714 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 ||
715 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 ||
716 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
717 child, children) != 0) {
718 nvlist_free(nvroot);
719 goto nomem;
720 }
721
722 for (c = 0; c < children; c++)
723 nvlist_free(child[c]);
724 free(child);
725 children = 0;
726 child = NULL;
727
728 /*
729 * Go through and fix up any paths and/or devids based on our
730 * known list of vdev GUID -> path mappings.
731 */
732 if (fix_paths(nvroot, pl->names) != 0) {
733 nvlist_free(nvroot);
734 goto nomem;
735 }
736
737 /*
738 * Add the root vdev to this pool's configuration.
739 */
740 if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
741 nvroot) != 0) {
742 nvlist_free(nvroot);
743 goto nomem;
744 }
745 nvlist_free(nvroot);
746
747 /*
748 * zdb uses this path to report on active pools that were
749 * imported or created using -R.
750 */
751 if (active_ok)
752 goto add_pool;
753
754 /*
755 * Determine if this pool is currently active, in which case we
756 * can't actually import it.
757 */
758 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
759 &name) == 0);
760 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
761 &guid) == 0);
762
763 if (pool_active(hdl, name, guid, &isactive) != 0)
764 goto error;
765
766 if (isactive) {
767 nvlist_free(config);
768 config = NULL;
769 continue;
770 }
771
772 if ((nvl = refresh_config(hdl, config)) == NULL) {
773 nvlist_free(config);
774 config = NULL;
775 continue;
776 }
777
778 nvlist_free(config);
779 config = nvl;
780
781 /*
782 * Go through and update the paths for spares, now that we have
783 * them.
784 */
785 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
786 &nvroot) == 0);
787 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
788 &spares, &nspares) == 0) {
789 for (i = 0; i < nspares; i++) {
790 if (fix_paths(spares[i], pl->names) != 0)
791 goto nomem;
792 }
793 }
794
795 /*
796 * Update the paths for l2cache devices.
797 */
798 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
799 &l2cache, &nl2cache) == 0) {
800 for (i = 0; i < nl2cache; i++) {
801 if (fix_paths(l2cache[i], pl->names) != 0)
802 goto nomem;
803 }
804 }
805
806 /*
807 * Restore the original information read from the actual label.
808 */
809 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID,
810 DATA_TYPE_UINT64);
811 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME,
812 DATA_TYPE_STRING);
813 if (hostid != 0) {
814 verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
815 hostid) == 0);
816 verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
817 hostname) == 0);
818 }
819
820add_pool:
821 /*
822 * Add this pool to the list of configs.
823 */
824 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
825 &name) == 0);
826 if (nvlist_add_nvlist(ret, name, config) != 0)
827 goto nomem;
828
829 found_one = B_TRUE;
830 nvlist_free(config);
831 config = NULL;
832 }
833
834 if (!found_one) {
835 nvlist_free(ret);
836 ret = NULL;
837 }
838
839 return (ret);
840
841nomem:
842 (void) no_memory(hdl);
843error:
844 nvlist_free(config);
845 nvlist_free(ret);
846 for (c = 0; c < children; c++)
847 nvlist_free(child[c]);
848 free(child);
849
850 return (NULL);
851}
852
853/*
854 * Return the offset of the given label.
855 */
856static uint64_t
857label_offset(uint64_t size, int l)
858{
859 ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0);
860 return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
861 0 : size - VDEV_LABELS * sizeof (vdev_label_t)));
862}
863
864/*
865 * Given a file descriptor, read the label information and return an nvlist
866 * describing the configuration, if there is one.
867 */
868int
869zpool_read_label(int fd, nvlist_t **config)
870{
871 struct stat64 statbuf;
872 int l;
873 vdev_label_t *label;
874 uint64_t state, txg, size;
875
876 *config = NULL;
877
878 if (fstat64(fd, &statbuf) == -1)
879 return (0);
880 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
881
882 if ((label = malloc(sizeof (vdev_label_t))) == NULL)
883 return (-1);
884
885 for (l = 0; l < VDEV_LABELS; l++) {
886 if (pread64(fd, label, sizeof (vdev_label_t),
887 label_offset(size, l)) != sizeof (vdev_label_t))
888 continue;
889
890 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
891 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0)
892 continue;
893
894 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
895 &state) != 0 || state > POOL_STATE_L2CACHE) {
896 nvlist_free(*config);
897 continue;
898 }
899
900 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
901 (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
902 &txg) != 0 || txg == 0)) {
903 nvlist_free(*config);
904 continue;
905 }
906
907 free(label);
908 return (0);
909 }
910
911 free(label);
912 *config = NULL;
913 return (0);
914}
915
916typedef struct rdsk_node {
917 char *rn_name;
918 int rn_dfd;
919 libzfs_handle_t *rn_hdl;
920 nvlist_t *rn_config;
921 avl_tree_t *rn_avl;
922 avl_node_t rn_node;
923 boolean_t rn_nozpool;
924} rdsk_node_t;
925
926static int
927slice_cache_compare(const void *arg1, const void *arg2)
928{
929 const char *nm1 = ((rdsk_node_t *)arg1)->rn_name;
930 const char *nm2 = ((rdsk_node_t *)arg2)->rn_name;
931 char *nm1slice, *nm2slice;
932 int rv;
933
934 /*
935 * slices zero and two are the most likely to provide results,
936 * so put those first
937 */
938 nm1slice = strstr(nm1, "s0");
939 nm2slice = strstr(nm2, "s0");
940 if (nm1slice && !nm2slice) {
941 return (-1);
942 }
943 if (!nm1slice && nm2slice) {
944 return (1);
945 }
946 nm1slice = strstr(nm1, "s2");
947 nm2slice = strstr(nm2, "s2");
948 if (nm1slice && !nm2slice) {
949 return (-1);
950 }
951 if (!nm1slice && nm2slice) {
952 return (1);
953 }
954
955 rv = strcmp(nm1, nm2);
956 if (rv == 0)
957 return (0);
958 return (rv > 0 ? 1 : -1);
959}
960
961#ifdef illumos
962static void
963check_one_slice(avl_tree_t *r, char *diskname, uint_t partno,
964 diskaddr_t size, uint_t blksz)
965{
966 rdsk_node_t tmpnode;
967 rdsk_node_t *node;
968 char sname[MAXNAMELEN];
969
970 tmpnode.rn_name = &sname[0];
971 (void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u",
972 diskname, partno);
973 /*
974 * protect against division by zero for disk labels that
975 * contain a bogus sector size
976 */
977 if (blksz == 0)
978 blksz = DEV_BSIZE;
979 /* too small to contain a zpool? */
980 if ((size < (SPA_MINDEVSIZE / blksz)) &&
981 (node = avl_find(r, &tmpnode, NULL)))
982 node->rn_nozpool = B_TRUE;
983}
984#endif /* illumos */
985
986static void
987nozpool_all_slices(avl_tree_t *r, const char *sname)
988{
989#ifdef illumos
990 char diskname[MAXNAMELEN];
991 char *ptr;
992 int i;
993
994 (void) strncpy(diskname, sname, MAXNAMELEN);
995 if (((ptr = strrchr(diskname, 's')) == NULL) &&
996 ((ptr = strrchr(diskname, 'p')) == NULL))
997 return;
998 ptr[0] = 's';
999 ptr[1] = '\0';
1000 for (i = 0; i < NDKMAP; i++)
1001 check_one_slice(r, diskname, i, 0, 1);
1002 ptr[0] = 'p';
1003 for (i = 0; i <= FD_NUMPART; i++)
1004 check_one_slice(r, diskname, i, 0, 1);
1005#endif /* illumos */
1006}
1007
1008#ifdef illumos
1009static void
1010check_slices(avl_tree_t *r, int fd, const char *sname)
1011{
1012 struct extvtoc vtoc;
1013 struct dk_gpt *gpt;
1014 char diskname[MAXNAMELEN];
1015 char *ptr;
1016 int i;
1017
1018 (void) strncpy(diskname, sname, MAXNAMELEN);
1019 if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1]))
1020 return;
1021 ptr[1] = '\0';
1022
1023 if (read_extvtoc(fd, &vtoc) >= 0) {
1024 for (i = 0; i < NDKMAP; i++)
1025 check_one_slice(r, diskname, i,
1026 vtoc.v_part[i].p_size, vtoc.v_sectorsz);
1027 } else if (efi_alloc_and_read(fd, &gpt) >= 0) {
1028 /*
1029 * on x86 we'll still have leftover links that point
1030 * to slices s[9-15], so use NDKMAP instead
1031 */
1032 for (i = 0; i < NDKMAP; i++)
1033 check_one_slice(r, diskname, i,
1034 gpt->efi_parts[i].p_size, gpt->efi_lbasize);
1035 /* nodes p[1-4] are never used with EFI labels */
1036 ptr[0] = 'p';
1037 for (i = 1; i <= FD_NUMPART; i++)
1038 check_one_slice(r, diskname, i, 0, 1);
1039 efi_free(gpt);
1040 }
1041}
1042#endif /* illumos */
1043
1044static void
1045zpool_open_func(void *arg)
1046{
1047 rdsk_node_t *rn = arg;
1048 struct stat64 statbuf;
1049 nvlist_t *config;
1050 int fd;
1051
1052 if (rn->rn_nozpool)
1053 return;
1054 if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) {
1055 /* symlink to a device that's no longer there */
1056 if (errno == ENOENT)
1057 nozpool_all_slices(rn->rn_avl, rn->rn_name);
1058 return;
1059 }
1060 /*
1061 * Ignore failed stats. We only want regular
1062 * files, character devs and block devs.
1063 */
1064 if (fstat64(fd, &statbuf) != 0 ||
1065 (!S_ISREG(statbuf.st_mode) &&
1066 !S_ISCHR(statbuf.st_mode) &&
1067 !S_ISBLK(statbuf.st_mode))) {
1068 (void) close(fd);
1069 return;
1070 }
1071 /* this file is too small to hold a zpool */
1072#ifdef illumos
1073 if (S_ISREG(statbuf.st_mode) &&
1074 statbuf.st_size < SPA_MINDEVSIZE) {
1075 (void) close(fd);
1076 return;
1077 } else if (!S_ISREG(statbuf.st_mode)) {
1078 /*
1079 * Try to read the disk label first so we don't have to
1080 * open a bunch of minor nodes that can't have a zpool.
1081 */
1082 check_slices(rn->rn_avl, fd, rn->rn_name);
1083 }
1084#else /* !illumos */
1085 if (statbuf.st_size < SPA_MINDEVSIZE) {
1086 (void) close(fd);
1087 return;
1088 }
1089#endif /* illumos */
1090
1091 if ((zpool_read_label(fd, &config)) != 0) {
1092 (void) close(fd);
1093 (void) no_memory(rn->rn_hdl);
1094 return;
1095 }
1096 (void) close(fd);
1097
1098 rn->rn_config = config;
1099}
1100
1101/*
1102 * Given a file descriptor, clear (zero) the label information. This function
1103 * is used in the appliance stack as part of the ZFS sysevent module and
1104 * to implement the "zpool labelclear" command.
1105 */
1106int
1107zpool_clear_label(int fd)
1108{
1109 struct stat64 statbuf;
1110 int l;
1111 vdev_label_t *label;
1112 uint64_t size;
1113
1114 if (fstat64(fd, &statbuf) == -1)
1115 return (0);
1116 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
1117
1118 if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL)
1119 return (-1);
1120
1121 for (l = 0; l < VDEV_LABELS; l++) {
1122 if (pwrite64(fd, label, sizeof (vdev_label_t),
1123 label_offset(size, l)) != sizeof (vdev_label_t)) {
1124 free(label);
1125 return (-1);
1126 }
1127 }
1128
1129 free(label);
1130 return (0);
1131}
1132
1133/*
1134 * Given a list of directories to search, find all pools stored on disk. This
1135 * includes partial pools which are not available to import. If no args are
1136 * given (argc is 0), then the default directory (/dev/dsk) is searched.
1137 * poolname or guid (but not both) are provided by the caller when trying
1138 * to import a specific pool.
1139 */
1140static nvlist_t *
1141zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg)
1142{
1143 int i, dirs = iarg->paths;
1144 struct dirent64 *dp;
1145 char path[MAXPATHLEN];
1146 char *end, **dir = iarg->path;
1147 size_t pathleft;
1148 nvlist_t *ret = NULL;
1149 static char *default_dir = "/dev";
1150 pool_list_t pools = { 0 };
1151 pool_entry_t *pe, *penext;
1152 vdev_entry_t *ve, *venext;
1153 config_entry_t *ce, *cenext;
1154 name_entry_t *ne, *nenext;
1155 avl_tree_t slice_cache;
1156 rdsk_node_t *slice;
1157 void *cookie;
1158
1159 if (dirs == 0) {
1160 dirs = 1;
1161 dir = &default_dir;
1162 }
1163
1164 /*
1165 * Go through and read the label configuration information from every
1166 * possible device, organizing the information according to pool GUID
1167 * and toplevel GUID.
1168 */
1169 for (i = 0; i < dirs; i++) {
1170 tpool_t *t;
1171 char *rdsk;
1172 int dfd;
1173 boolean_t config_failed = B_FALSE;
1174 DIR *dirp;
1175
1176 /* use realpath to normalize the path */
1177 if (realpath(dir[i], path) == 0) {
1178 (void) zfs_error_fmt(hdl, EZFS_BADPATH,
1179 dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]);
1180 goto error;
1181 }
1182 end = &path[strlen(path)];
1183 *end++ = '/';
1184 *end = 0;
1185 pathleft = &path[sizeof (path)] - end;
1186
1187 /*
1188 * Using raw devices instead of block devices when we're
1189 * reading the labels skips a bunch of slow operations during
1190 * close(2) processing, so we replace /dev/dsk with /dev/rdsk.
1191 */
1192 if (strcmp(path, "/dev/dsk/") == 0)
1193 rdsk = "/dev/";
1194 else
1195 rdsk = path;
1196
1197 if ((dfd = open64(rdsk, O_RDONLY)) < 0 ||
1198 (dirp = fdopendir(dfd)) == NULL) {
1199 if (dfd >= 0)
1200 (void) close(dfd);
1201 zfs_error_aux(hdl, strerror(errno));
1202 (void) zfs_error_fmt(hdl, EZFS_BADPATH,
1203 dgettext(TEXT_DOMAIN, "cannot open '%s'"),
1204 rdsk);
1205 goto error;
1206 }
1207
1208 avl_create(&slice_cache, slice_cache_compare,
1209 sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node));
1210
1211 if (strcmp(rdsk, "/dev/") == 0) {
1212 struct gmesh mesh;
1213 struct gclass *mp;
1214 struct ggeom *gp;
1215 struct gprovider *pp;
1216
1217 errno = geom_gettree(&mesh);
1218 if (errno != 0) {
1219 zfs_error_aux(hdl, strerror(errno));
1220 (void) zfs_error_fmt(hdl, EZFS_BADPATH,
1221 dgettext(TEXT_DOMAIN, "cannot get GEOM tree"));
1222 goto error;
1223 }
1224
1225 LIST_FOREACH(mp, &mesh.lg_class, lg_class) {
1226 LIST_FOREACH(gp, &mp->lg_geom, lg_geom) {
1227 LIST_FOREACH(pp, &gp->lg_provider, lg_provider) {
1228 slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
1229 slice->rn_name = zfs_strdup(hdl, pp->lg_name);
1230 slice->rn_avl = &slice_cache;
1231 slice->rn_dfd = dfd;
1232 slice->rn_hdl = hdl;
1233 slice->rn_nozpool = B_FALSE;
1234 avl_add(&slice_cache, slice);
1235 }
1236 }
1237 }
1238
1239 geom_deletetree(&mesh);
1240 goto skipdir;
1241 }
1242
1243 /*
1244 * This is not MT-safe, but we have no MT consumers of libzfs
1245 */
1246 while ((dp = readdir64(dirp)) != NULL) {
1247 const char *name = dp->d_name;
1248 if (name[0] == '.' &&
1249 (name[1] == 0 || (name[1] == '.' && name[2] == 0)))
1250 continue;
1251
1252 slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
1253 slice->rn_name = zfs_strdup(hdl, name);
1254 slice->rn_avl = &slice_cache;
1255 slice->rn_dfd = dfd;
1256 slice->rn_hdl = hdl;
1257 slice->rn_nozpool = B_FALSE;
1258 avl_add(&slice_cache, slice);
1259 }
1260skipdir:
1261 /*
1262 * create a thread pool to do all of this in parallel;
1263 * rn_nozpool is not protected, so this is racy in that
1264 * multiple tasks could decide that the same slice can
1265 * not hold a zpool, which is benign. Also choose
1266 * double the number of processors; we hold a lot of
1267 * locks in the kernel, so going beyond this doesn't
1268 * buy us much.
1269 */
1270 t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN),
1271 0, NULL);
1272 for (slice = avl_first(&slice_cache); slice;
1273 (slice = avl_walk(&slice_cache, slice,
1274 AVL_AFTER)))
1275 (void) tpool_dispatch(t, zpool_open_func, slice);
1276 tpool_wait(t);
1277 tpool_destroy(t);
1278
1279 cookie = NULL;
1280 while ((slice = avl_destroy_nodes(&slice_cache,
1281 &cookie)) != NULL) {
1282 if (slice->rn_config != NULL && !config_failed) {
1283 nvlist_t *config = slice->rn_config;
1284 boolean_t matched = B_TRUE;
1285
1286 if (iarg->poolname != NULL) {
1287 char *pname;
1288
1289 matched = nvlist_lookup_string(config,
1290 ZPOOL_CONFIG_POOL_NAME,
1291 &pname) == 0 &&
1292 strcmp(iarg->poolname, pname) == 0;
1293 } else if (iarg->guid != 0) {
1294 uint64_t this_guid;
1295
1296 matched = nvlist_lookup_uint64(config,
1297 ZPOOL_CONFIG_POOL_GUID,
1298 &this_guid) == 0 &&
1299 iarg->guid == this_guid;
1300 }
1301 if (!matched) {
1302 nvlist_free(config);
1303 } else {
1304 /*
1305 * use the non-raw path for the config
1306 */
1307 (void) strlcpy(end, slice->rn_name,
1308 pathleft);
1309 if (add_config(hdl, &pools, path,
1310 config) != 0)
1311 config_failed = B_TRUE;
1312 }
1313 }
1314 free(slice->rn_name);
1315 free(slice);
1316 }
1317 avl_destroy(&slice_cache);
1318
1319 (void) closedir(dirp);
1320
1321 if (config_failed)
1322 goto error;
1323 }
1324
1325 ret = get_configs(hdl, &pools, iarg->can_be_active);
1326
1327error:
1328 for (pe = pools.pools; pe != NULL; pe = penext) {
1329 penext = pe->pe_next;
1330 for (ve = pe->pe_vdevs; ve != NULL; ve = venext) {
1331 venext = ve->ve_next;
1332 for (ce = ve->ve_configs; ce != NULL; ce = cenext) {
1333 cenext = ce->ce_next;
1334 nvlist_free(ce->ce_config);
1335 free(ce);
1336 }
1337 free(ve);
1338 }
1339 free(pe);
1340 }
1341
1342 for (ne = pools.names; ne != NULL; ne = nenext) {
1343 nenext = ne->ne_next;
1344 free(ne->ne_name);
1345 free(ne);
1346 }
1347
1348 return (ret);
1349}
1350
1351nvlist_t *
1352zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv)
1353{
1354 importargs_t iarg = { 0 };
1355
1356 iarg.paths = argc;
1357 iarg.path = argv;
1358
1359 return (zpool_find_import_impl(hdl, &iarg));
1360}
1361
1362/*
1363 * Given a cache file, return the contents as a list of importable pools.
1364 * poolname or guid (but not both) are provided by the caller when trying
1365 * to import a specific pool.
1366 */
1367nvlist_t *
1368zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile,
1369 char *poolname, uint64_t guid)
1370{
1371 char *buf;
1372 int fd;
1373 struct stat64 statbuf;
1374 nvlist_t *raw, *src, *dst;
1375 nvlist_t *pools;
1376 nvpair_t *elem;
1377 char *name;
1378 uint64_t this_guid;
1379 boolean_t active;
1380
1381 verify(poolname == NULL || guid == 0);
1382
1383 if ((fd = open(cachefile, O_RDONLY)) < 0) {
1384 zfs_error_aux(hdl, "%s", strerror(errno));
1385 (void) zfs_error(hdl, EZFS_BADCACHE,
1386 dgettext(TEXT_DOMAIN, "failed to open cache file"));
1387 return (NULL);
1388 }
1389
1390 if (fstat64(fd, &statbuf) != 0) {
1391 zfs_error_aux(hdl, "%s", strerror(errno));
1392 (void) close(fd);
1393 (void) zfs_error(hdl, EZFS_BADCACHE,
1394 dgettext(TEXT_DOMAIN, "failed to get size of cache file"));
1395 return (NULL);
1396 }
1397
1398 if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) {
1399 (void) close(fd);
1400 return (NULL);
1401 }
1402
1403 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
1404 (void) close(fd);
1405 free(buf);
1406 (void) zfs_error(hdl, EZFS_BADCACHE,
1407 dgettext(TEXT_DOMAIN,
1408 "failed to read cache file contents"));
1409 return (NULL);
1410 }
1411
1412 (void) close(fd);
1413
1414 if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) {
1415 free(buf);
1416 (void) zfs_error(hdl, EZFS_BADCACHE,
1417 dgettext(TEXT_DOMAIN,
1418 "invalid or corrupt cache file contents"));
1419 return (NULL);
1420 }
1421
1422 free(buf);
1423
1424 /*
1425 * Go through and get the current state of the pools and refresh their
1426 * state.
1427 */
1428 if (nvlist_alloc(&pools, 0, 0) != 0) {
1429 (void) no_memory(hdl);
1430 nvlist_free(raw);
1431 return (NULL);
1432 }
1433
1434 elem = NULL;
1435 while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) {
1436 src = fnvpair_value_nvlist(elem);
1437
1438 name = fnvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME);
1439 if (poolname != NULL && strcmp(poolname, name) != 0)
1440 continue;
1441
1442 this_guid = fnvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID);
1443 if (guid != 0 && guid != this_guid)
1444 continue;
1445
1446 if (pool_active(hdl, name, this_guid, &active) != 0) {
1447 nvlist_free(raw);
1448 nvlist_free(pools);
1449 return (NULL);
1450 }
1451
1452 if (active)
1453 continue;
1454
1455 if ((dst = refresh_config(hdl, src)) == NULL) {
1456 nvlist_free(raw);
1457 nvlist_free(pools);
1458 return (NULL);
1459 }
1460
1461 if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) {
1462 (void) no_memory(hdl);
1463 nvlist_free(dst);
1464 nvlist_free(raw);
1465 nvlist_free(pools);
1466 return (NULL);
1467 }
1468 nvlist_free(dst);
1469 }
1470
1471 nvlist_free(raw);
1472 return (pools);
1473}
1474
1475static int
1476name_or_guid_exists(zpool_handle_t *zhp, void *data)
1477{
1478 importargs_t *import = data;
1479 int found = 0;
1480
1481 if (import->poolname != NULL) {
1482 char *pool_name;
1483
1484 verify(nvlist_lookup_string(zhp->zpool_config,
1485 ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0);
1486 if (strcmp(pool_name, import->poolname) == 0)
1487 found = 1;
1488 } else {
1489 uint64_t pool_guid;
1490
1491 verify(nvlist_lookup_uint64(zhp->zpool_config,
1492 ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0);
1493 if (pool_guid == import->guid)
1494 found = 1;
1495 }
1496
1497 zpool_close(zhp);
1498 return (found);
1499}
1500
1501nvlist_t *
1502zpool_search_import(libzfs_handle_t *hdl, importargs_t *import)
1503{
1504 verify(import->poolname == NULL || import->guid == 0);
1505
1506 if (import->unique)
1507 import->exists = zpool_iter(hdl, name_or_guid_exists, import);
1508
1509 if (import->cachefile != NULL)
1510 return (zpool_find_import_cached(hdl, import->cachefile,
1511 import->poolname, import->guid));
1512
1513 return (zpool_find_import_impl(hdl, import));
1514}
1515
1516boolean_t
1517find_guid(nvlist_t *nv, uint64_t guid)
1518{
1519 uint64_t tmp;
1520 nvlist_t **child;
1521 uint_t c, children;
1522
1523 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0);
1524 if (tmp == guid)
1525 return (B_TRUE);
1526
1527 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1528 &child, &children) == 0) {
1529 for (c = 0; c < children; c++)
1530 if (find_guid(child[c], guid))
1531 return (B_TRUE);
1532 }
1533
1534 return (B_FALSE);
1535}
1536
1537typedef struct aux_cbdata {
1538 const char *cb_type;
1539 uint64_t cb_guid;
1540 zpool_handle_t *cb_zhp;
1541} aux_cbdata_t;
1542
1543static int
1544find_aux(zpool_handle_t *zhp, void *data)
1545{
1546 aux_cbdata_t *cbp = data;
1547 nvlist_t **list;
1548 uint_t i, count;
1549 uint64_t guid;
1550 nvlist_t *nvroot;
1551
1552 verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE,
1553 &nvroot) == 0);
1554
1555 if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type,
1556 &list, &count) == 0) {
1557 for (i = 0; i < count; i++) {
1558 verify(nvlist_lookup_uint64(list[i],
1559 ZPOOL_CONFIG_GUID, &guid) == 0);
1560 if (guid == cbp->cb_guid) {
1561 cbp->cb_zhp = zhp;
1562 return (1);
1563 }
1564 }
1565 }
1566
1567 zpool_close(zhp);
1568 return (0);
1569}
1570
1571/*
1572 * Determines if the pool is in use. If so, it returns true and the state of
1573 * the pool as well as the name of the pool. Both strings are allocated and
1574 * must be freed by the caller.
1575 */
1576int
1577zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr,
1578 boolean_t *inuse)
1579{
1580 nvlist_t *config;
1581 char *name;
1582 boolean_t ret;
1583 uint64_t guid, vdev_guid;
1584 zpool_handle_t *zhp;
1585 nvlist_t *pool_config;
1586 uint64_t stateval, isspare;
1587 aux_cbdata_t cb = { 0 };
1588 boolean_t isactive;
1589
1590 *inuse = B_FALSE;
1591
1592 if (zpool_read_label(fd, &config) != 0) {
1593 (void) no_memory(hdl);
1594 return (-1);
1595 }
1596
1597 if (config == NULL)
1598 return (0);
1599
1600 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
1601 &stateval) == 0);
1602 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
1603 &vdev_guid) == 0);
1604
1605 if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) {
1606 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
1607 &name) == 0);
1608 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
1609 &guid) == 0);
1610 }
1611
1612 switch (stateval) {
1613 case POOL_STATE_EXPORTED:
1614 /*
1615 * A pool with an exported state may in fact be imported
1616 * read-only, so check the in-core state to see if it's
1617 * active and imported read-only. If it is, set
1618 * its state to active.
1619 */
1620 if (pool_active(hdl, name, guid, &isactive) == 0 && isactive &&
1621 (zhp = zpool_open_canfail(hdl, name)) != NULL) {
1622 if (zpool_get_prop_int(zhp, ZPOOL_PROP_READONLY, NULL))
1623 stateval = POOL_STATE_ACTIVE;
1624
1625 /*
1626 * All we needed the zpool handle for is the
1627 * readonly prop check.
1628 */
1629 zpool_close(zhp);
1630 }
1631
1632 ret = B_TRUE;
1633 break;
1634
1635 case POOL_STATE_ACTIVE:
1636 /*
1637 * For an active pool, we have to determine if it's really part
1638 * of a currently active pool (in which case the pool will exist
1639 * and the guid will be the same), or whether it's part of an
1640 * active pool that was disconnected without being explicitly
1641 * exported.
1642 */
1643 if (pool_active(hdl, name, guid, &isactive) != 0) {
1644 nvlist_free(config);
1645 return (-1);
1646 }
1647
1648 if (isactive) {
1649 /*
1650 * Because the device may have been removed while
1651 * offlined, we only report it as active if the vdev is
1652 * still present in the config. Otherwise, pretend like
1653 * it's not in use.
1654 */
1655 if ((zhp = zpool_open_canfail(hdl, name)) != NULL &&
1656 (pool_config = zpool_get_config(zhp, NULL))
1657 != NULL) {
1658 nvlist_t *nvroot;
1659
1660 verify(nvlist_lookup_nvlist(pool_config,
1661 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1662 ret = find_guid(nvroot, vdev_guid);
1663 } else {
1664 ret = B_FALSE;
1665 }
1666
1667 /*
1668 * If this is an active spare within another pool, we
1669 * treat it like an unused hot spare. This allows the
1670 * user to create a pool with a hot spare that currently
1671 * in use within another pool. Since we return B_TRUE,
1672 * libdiskmgt will continue to prevent generic consumers
1673 * from using the device.
1674 */
1675 if (ret && nvlist_lookup_uint64(config,
1676 ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare)
1677 stateval = POOL_STATE_SPARE;
1678
1679 if (zhp != NULL)
1680 zpool_close(zhp);
1681 } else {
1682 stateval = POOL_STATE_POTENTIALLY_ACTIVE;
1683 ret = B_TRUE;
1684 }
1685 break;
1686
1687 case POOL_STATE_SPARE:
1688 /*
1689 * For a hot spare, it can be either definitively in use, or
1690 * potentially active. To determine if it's in use, we iterate
1691 * over all pools in the system and search for one with a spare
1692 * with a matching guid.
1693 *
1694 * Due to the shared nature of spares, we don't actually report
1695 * the potentially active case as in use. This means the user
1696 * can freely create pools on the hot spares of exported pools,
1697 * but to do otherwise makes the resulting code complicated, and
1698 * we end up having to deal with this case anyway.
1699 */
1700 cb.cb_zhp = NULL;
1701 cb.cb_guid = vdev_guid;
1702 cb.cb_type = ZPOOL_CONFIG_SPARES;
1703 if (zpool_iter(hdl, find_aux, &cb) == 1) {
1704 name = (char *)zpool_get_name(cb.cb_zhp);
1705 ret = B_TRUE;
1706 } else {
1707 ret = B_FALSE;
1708 }
1709 break;
1710
1711 case POOL_STATE_L2CACHE:
1712
1713 /*
1714 * Check if any pool is currently using this l2cache device.
1715 */
1716 cb.cb_zhp = NULL;
1717 cb.cb_guid = vdev_guid;
1718 cb.cb_type = ZPOOL_CONFIG_L2CACHE;
1719 if (zpool_iter(hdl, find_aux, &cb) == 1) {
1720 name = (char *)zpool_get_name(cb.cb_zhp);
1721 ret = B_TRUE;
1722 } else {
1723 ret = B_FALSE;
1724 }
1725 break;
1726
1727 default:
1728 ret = B_FALSE;
1729 }
1730
1731
1732 if (ret) {
1733 if ((*namestr = zfs_strdup(hdl, name)) == NULL) {
1734 if (cb.cb_zhp)
1735 zpool_close(cb.cb_zhp);
1736 nvlist_free(config);
1737 return (-1);
1738 }
1739 *state = (pool_state_t)stateval;
1740 }
1741
1742 if (cb.cb_zhp)
1743 zpool_close(cb.cb_zhp);
1744
1745 nvlist_free(config);
1746 *inuse = ret;
1747 return (0);
1748}