Deleted Added
full compact
ip_output.c (150594) ip_output.c (151967)
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
30 * $FreeBSD: head/sys/netinet/ip_output.c 150594 2005-09-26 20:25:16Z andre $
30 * $FreeBSD: head/sys/netinet/ip_output.c 151967 2005-11-02 13:46:32Z andre $
31 */
32
33#include "opt_ipfw.h"
34#include "opt_ipsec.h"
35#include "opt_mac.h"
36#include "opt_mbuf_stress_test.h"
37
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/kernel.h>
41#include <sys/mac.h>
42#include <sys/malloc.h>
43#include <sys/mbuf.h>
44#include <sys/protosw.h>
45#include <sys/socket.h>
46#include <sys/socketvar.h>
47#include <sys/sysctl.h>
48
49#include <net/if.h>
50#include <net/netisr.h>
51#include <net/pfil.h>
52#include <net/route.h>
53
54#include <netinet/in.h>
55#include <netinet/in_systm.h>
56#include <netinet/ip.h>
57#include <netinet/in_pcb.h>
58#include <netinet/in_var.h>
59#include <netinet/ip_var.h>
60
61#include <machine/in_cksum.h>
62
63static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "internet multicast options");
64
65#ifdef IPSEC
66#include <netinet6/ipsec.h>
67#include <netkey/key.h>
68#ifdef IPSEC_DEBUG
69#include <netkey/key_debug.h>
70#else
71#define KEYDEBUG(lev,arg)
72#endif
73#endif /*IPSEC*/
74
75#ifdef FAST_IPSEC
76#include <netipsec/ipsec.h>
77#include <netipsec/xform.h>
78#include <netipsec/key.h>
79#endif /*FAST_IPSEC*/
80
81#define print_ip(x, a, y) printf("%s %d.%d.%d.%d%s",\
82 x, (ntohl(a.s_addr)>>24)&0xFF,\
83 (ntohl(a.s_addr)>>16)&0xFF,\
84 (ntohl(a.s_addr)>>8)&0xFF,\
85 (ntohl(a.s_addr))&0xFF, y);
86
87u_short ip_id;
88
89#ifdef MBUF_STRESS_TEST
90int mbuf_frag_size = 0;
91SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
92 &mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
93#endif
94
95static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
96static struct ifnet *ip_multicast_if(struct in_addr *, int *);
97static void ip_mloopback
98 (struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
99static int ip_getmoptions(struct inpcb *, struct sockopt *);
100static int ip_pcbopts(struct inpcb *, int, struct mbuf *);
101static int ip_setmoptions(struct inpcb *, struct sockopt *);
102static struct ip_moptions *ip_findmoptions(struct inpcb *inp);
103
104int ip_optcopy(struct ip *, struct ip *);
105
106
107extern struct protosw inetsw[];
108
109/*
110 * IP output. The packet in mbuf chain m contains a skeletal IP
111 * header (with len, off, ttl, proto, tos, src, dst).
112 * The mbuf chain containing the packet will be freed.
113 * The mbuf opt, if present, will not be freed.
114 * In the IP forwarding case, the packet will arrive with options already
115 * inserted, so must have a NULL opt pointer.
116 */
117int
118ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro,
119 int flags, struct ip_moptions *imo, struct inpcb *inp)
120{
121 struct ip *ip;
122 struct ifnet *ifp = NULL; /* keep compiler happy */
123 struct mbuf *m0;
124 int hlen = sizeof (struct ip);
125 int len, error = 0;
126 struct sockaddr_in *dst = NULL; /* keep compiler happy */
127 struct in_ifaddr *ia = NULL;
128 int isbroadcast, sw_csum;
129 struct route iproute;
130 struct in_addr odst;
131#ifdef IPFIREWALL_FORWARD
132 struct m_tag *fwd_tag = NULL;
133#endif
134#ifdef IPSEC
135 struct secpolicy *sp = NULL;
136#endif
137#ifdef FAST_IPSEC
138 struct secpolicy *sp = NULL;
139 struct tdb_ident *tdbi;
140 struct m_tag *mtag;
141 int s;
142#endif /* FAST_IPSEC */
143
144 M_ASSERTPKTHDR(m);
145
146 if (ro == NULL) {
147 ro = &iproute;
148 bzero(ro, sizeof (*ro));
149 }
150
151 if (inp != NULL)
152 INP_LOCK_ASSERT(inp);
153
154 if (opt) {
155 len = 0;
156 m = ip_insertoptions(m, opt, &len);
157 if (len != 0)
158 hlen = len;
159 }
160 ip = mtod(m, struct ip *);
161
162 /*
163 * Fill in IP header. If we are not allowing fragmentation,
164 * then the ip_id field is meaningless, but we don't set it
165 * to zero. Doing so causes various problems when devices along
166 * the path (routers, load balancers, firewalls, etc.) illegally
167 * disable DF on our packet. Note that a 16-bit counter
168 * will wrap around in less than 10 seconds at 100 Mbit/s on a
169 * medium with MTU 1500. See Steven M. Bellovin, "A Technique
170 * for Counting NATted Hosts", Proc. IMW'02, available at
171 * <http://www.research.att.com/~smb/papers/fnat.pdf>.
172 */
173 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
174 ip->ip_v = IPVERSION;
175 ip->ip_hl = hlen >> 2;
176 ip->ip_id = ip_newid();
177 ipstat.ips_localout++;
178 } else {
179 hlen = ip->ip_hl << 2;
180 }
181
182 dst = (struct sockaddr_in *)&ro->ro_dst;
183again:
184 /*
185 * If there is a cached route,
186 * check that it is to the same destination
187 * and is still up. If not, free it and try again.
188 * The address family should also be checked in case of sharing the
189 * cache with IPv6.
190 */
191 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
192 dst->sin_family != AF_INET ||
193 dst->sin_addr.s_addr != ip->ip_dst.s_addr)) {
194 RTFREE(ro->ro_rt);
195 ro->ro_rt = (struct rtentry *)0;
196 }
197#ifdef IPFIREWALL_FORWARD
198 if (ro->ro_rt == NULL && fwd_tag == NULL) {
199#else
200 if (ro->ro_rt == NULL) {
201#endif
202 bzero(dst, sizeof(*dst));
203 dst->sin_family = AF_INET;
204 dst->sin_len = sizeof(*dst);
205 dst->sin_addr = ip->ip_dst;
206 }
207 /*
208 * If routing to interface only,
209 * short circuit routing lookup.
210 */
211 if (flags & IP_ROUTETOIF) {
212 if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL &&
213 (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == NULL) {
214 ipstat.ips_noroute++;
215 error = ENETUNREACH;
216 goto bad;
217 }
218 ifp = ia->ia_ifp;
219 ip->ip_ttl = 1;
220 isbroadcast = in_broadcast(dst->sin_addr, ifp);
221 } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
222 imo != NULL && imo->imo_multicast_ifp != NULL) {
223 /*
224 * Bypass the normal routing lookup for multicast
225 * packets if the interface is specified.
226 */
227 ifp = imo->imo_multicast_ifp;
228 IFP_TO_IA(ifp, ia);
229 isbroadcast = 0; /* fool gcc */
230 } else {
231 /*
232 * We want to do any cloning requested by the link layer,
233 * as this is probably required in all cases for correct
234 * operation (as it is for ARP).
235 */
236 if (ro->ro_rt == NULL)
237 rtalloc_ign(ro, 0);
238 if (ro->ro_rt == NULL) {
239 ipstat.ips_noroute++;
240 error = EHOSTUNREACH;
241 goto bad;
242 }
243 ia = ifatoia(ro->ro_rt->rt_ifa);
244 ifp = ro->ro_rt->rt_ifp;
245 ro->ro_rt->rt_rmx.rmx_pksent++;
246 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
247 dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
248 if (ro->ro_rt->rt_flags & RTF_HOST)
249 isbroadcast = (ro->ro_rt->rt_flags & RTF_BROADCAST);
250 else
251 isbroadcast = in_broadcast(dst->sin_addr, ifp);
252 }
253 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
254 struct in_multi *inm;
255
256 m->m_flags |= M_MCAST;
257 /*
258 * IP destination address is multicast. Make sure "dst"
259 * still points to the address in "ro". (It may have been
260 * changed to point to a gateway address, above.)
261 */
262 dst = (struct sockaddr_in *)&ro->ro_dst;
263 /*
264 * See if the caller provided any multicast options
265 */
266 if (imo != NULL) {
267 ip->ip_ttl = imo->imo_multicast_ttl;
268 if (imo->imo_multicast_vif != -1)
269 ip->ip_src.s_addr =
270 ip_mcast_src ?
271 ip_mcast_src(imo->imo_multicast_vif) :
272 INADDR_ANY;
273 } else
274 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
275 /*
276 * Confirm that the outgoing interface supports multicast.
277 */
278 if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
279 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
280 ipstat.ips_noroute++;
281 error = ENETUNREACH;
282 goto bad;
283 }
284 }
285 /*
286 * If source address not specified yet, use address
287 * of outgoing interface.
288 */
289 if (ip->ip_src.s_addr == INADDR_ANY) {
290 /* Interface may have no addresses. */
291 if (ia != NULL)
292 ip->ip_src = IA_SIN(ia)->sin_addr;
293 }
294
295 IN_MULTI_LOCK();
296 IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
297 if (inm != NULL &&
298 (imo == NULL || imo->imo_multicast_loop)) {
299 IN_MULTI_UNLOCK();
300 /*
301 * If we belong to the destination multicast group
302 * on the outgoing interface, and the caller did not
303 * forbid loopback, loop back a copy.
304 */
305 ip_mloopback(ifp, m, dst, hlen);
306 }
307 else {
308 IN_MULTI_UNLOCK();
309 /*
310 * If we are acting as a multicast router, perform
311 * multicast forwarding as if the packet had just
312 * arrived on the interface to which we are about
313 * to send. The multicast forwarding function
314 * recursively calls this function, using the
315 * IP_FORWARDING flag to prevent infinite recursion.
316 *
317 * Multicasts that are looped back by ip_mloopback(),
318 * above, will be forwarded by the ip_input() routine,
319 * if necessary.
320 */
321 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
322 /*
323 * If rsvp daemon is not running, do not
324 * set ip_moptions. This ensures that the packet
325 * is multicast and not just sent down one link
326 * as prescribed by rsvpd.
327 */
328 if (!rsvp_on)
329 imo = NULL;
330 if (ip_mforward &&
331 ip_mforward(ip, ifp, m, imo) != 0) {
332 m_freem(m);
333 goto done;
334 }
335 }
336 }
337
338 /*
339 * Multicasts with a time-to-live of zero may be looped-
340 * back, above, but must not be transmitted on a network.
341 * Also, multicasts addressed to the loopback interface
342 * are not sent -- the above call to ip_mloopback() will
343 * loop back a copy if this host actually belongs to the
344 * destination group on the loopback interface.
345 */
346 if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
347 m_freem(m);
348 goto done;
349 }
350
351 goto sendit;
352 }
353#ifndef notdef
354 /*
355 * If the source address is not specified yet, use the address
356 * of the outoing interface.
357 */
358 if (ip->ip_src.s_addr == INADDR_ANY) {
359 /* Interface may have no addresses. */
360 if (ia != NULL) {
361 ip->ip_src = IA_SIN(ia)->sin_addr;
362 }
363 }
364#endif /* notdef */
365 /*
366 * Verify that we have any chance at all of being able to queue the
367 * packet or packet fragments, unless ALTQ is enabled on the given
368 * interface in which case packetdrop should be done by queueing.
369 */
370#ifdef ALTQ
371 if ((!ALTQ_IS_ENABLED(&ifp->if_snd)) &&
372 ((ifp->if_snd.ifq_len + ip->ip_len / ifp->if_mtu + 1) >=
373 ifp->if_snd.ifq_maxlen))
374#else
375 if ((ifp->if_snd.ifq_len + ip->ip_len / ifp->if_mtu + 1) >=
376 ifp->if_snd.ifq_maxlen)
377#endif /* ALTQ */
378 {
379 error = ENOBUFS;
380 ipstat.ips_odropped++;
381 goto bad;
382 }
383
384 /*
385 * Look for broadcast address and
386 * verify user is allowed to send
387 * such a packet.
388 */
389 if (isbroadcast) {
390 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
391 error = EADDRNOTAVAIL;
392 goto bad;
393 }
394 if ((flags & IP_ALLOWBROADCAST) == 0) {
395 error = EACCES;
396 goto bad;
397 }
398 /* don't allow broadcast messages to be fragmented */
399 if (ip->ip_len > ifp->if_mtu) {
400 error = EMSGSIZE;
401 goto bad;
402 }
403 if (flags & IP_SENDONES)
404 ip->ip_dst.s_addr = INADDR_BROADCAST;
405 m->m_flags |= M_BCAST;
406 } else {
407 m->m_flags &= ~M_BCAST;
408 }
409
410sendit:
411#ifdef IPSEC
412 /* get SP for this packet */
413 if (inp == NULL)
414 sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
415 flags, &error);
416 else
417 sp = ipsec4_getpolicybypcb(m, IPSEC_DIR_OUTBOUND, inp, &error);
418
419 if (sp == NULL) {
420 ipsecstat.out_inval++;
421 goto bad;
422 }
423
424 error = 0;
425
426 /* check policy */
427 switch (sp->policy) {
428 case IPSEC_POLICY_DISCARD:
429 /*
430 * This packet is just discarded.
431 */
432 ipsecstat.out_polvio++;
433 goto bad;
434
435 case IPSEC_POLICY_BYPASS:
436 case IPSEC_POLICY_NONE:
437 case IPSEC_POLICY_TCP:
438 /* no need to do IPsec. */
439 goto skip_ipsec;
440
441 case IPSEC_POLICY_IPSEC:
442 if (sp->req == NULL) {
443 /* acquire a policy */
444 error = key_spdacquire(sp);
445 goto bad;
446 }
447 break;
448
449 case IPSEC_POLICY_ENTRUST:
450 default:
451 printf("ip_output: Invalid policy found. %d\n", sp->policy);
452 }
453 {
454 struct ipsec_output_state state;
455 bzero(&state, sizeof(state));
456 state.m = m;
457 if (flags & IP_ROUTETOIF) {
458 state.ro = &iproute;
459 bzero(&iproute, sizeof(iproute));
460 } else
461 state.ro = ro;
462 state.dst = (struct sockaddr *)dst;
463
464 ip->ip_sum = 0;
465
466 /*
467 * XXX
468 * delayed checksums are not currently compatible with IPsec
469 */
470 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
471 in_delayed_cksum(m);
472 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
473 }
474
475 ip->ip_len = htons(ip->ip_len);
476 ip->ip_off = htons(ip->ip_off);
477
478 error = ipsec4_output(&state, sp, flags);
479
480 m = state.m;
481 if (flags & IP_ROUTETOIF) {
482 /*
483 * if we have tunnel mode SA, we may need to ignore
484 * IP_ROUTETOIF.
485 */
486 if (state.ro != &iproute || state.ro->ro_rt != NULL) {
487 flags &= ~IP_ROUTETOIF;
488 ro = state.ro;
489 }
490 } else
491 ro = state.ro;
492 dst = (struct sockaddr_in *)state.dst;
493 if (error) {
494 /* mbuf is already reclaimed in ipsec4_output. */
495 m = NULL;
496 switch (error) {
497 case EHOSTUNREACH:
498 case ENETUNREACH:
499 case EMSGSIZE:
500 case ENOBUFS:
501 case ENOMEM:
502 break;
503 default:
504 printf("ip4_output (ipsec): error code %d\n", error);
505 /*fall through*/
506 case ENOENT:
507 /* don't show these error codes to the user */
508 error = 0;
509 break;
510 }
511 goto bad;
512 }
513
514 /* be sure to update variables that are affected by ipsec4_output() */
515 ip = mtod(m, struct ip *);
516 hlen = ip->ip_hl << 2;
517 if (ro->ro_rt == NULL) {
518 if ((flags & IP_ROUTETOIF) == 0) {
519 printf("ip_output: "
520 "can't update route after IPsec processing\n");
521 error = EHOSTUNREACH; /*XXX*/
522 goto bad;
523 }
524 } else {
525 if (state.encap) {
526 ia = ifatoia(ro->ro_rt->rt_ifa);
527 ifp = ro->ro_rt->rt_ifp;
528 }
529 }
530 }
531
532 /* make it flipped, again. */
533 ip->ip_len = ntohs(ip->ip_len);
534 ip->ip_off = ntohs(ip->ip_off);
535skip_ipsec:
536#endif /*IPSEC*/
537#ifdef FAST_IPSEC
538 /*
539 * Check the security policy (SP) for the packet and, if
540 * required, do IPsec-related processing. There are two
541 * cases here; the first time a packet is sent through
542 * it will be untagged and handled by ipsec4_checkpolicy.
543 * If the packet is resubmitted to ip_output (e.g. after
544 * AH, ESP, etc. processing), there will be a tag to bypass
545 * the lookup and related policy checking.
546 */
547 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
548 s = splnet();
549 if (mtag != NULL) {
550 tdbi = (struct tdb_ident *)(mtag + 1);
551 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
552 if (sp == NULL)
553 error = -EINVAL; /* force silent drop */
554 m_tag_delete(m, mtag);
555 } else {
556 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
557 &error, inp);
558 }
559 /*
560 * There are four return cases:
561 * sp != NULL apply IPsec policy
562 * sp == NULL, error == 0 no IPsec handling needed
563 * sp == NULL, error == -EINVAL discard packet w/o error
564 * sp == NULL, error != 0 discard packet, report error
565 */
566 if (sp != NULL) {
567 /* Loop detection, check if ipsec processing already done */
568 KASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
569 for (mtag = m_tag_first(m); mtag != NULL;
570 mtag = m_tag_next(m, mtag)) {
571 if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
572 continue;
573 if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
574 mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
575 continue;
576 /*
577 * Check if policy has an SA associated with it.
578 * This can happen when an SP has yet to acquire
579 * an SA; e.g. on first reference. If it occurs,
580 * then we let ipsec4_process_packet do its thing.
581 */
582 if (sp->req->sav == NULL)
583 break;
584 tdbi = (struct tdb_ident *)(mtag + 1);
585 if (tdbi->spi == sp->req->sav->spi &&
586 tdbi->proto == sp->req->sav->sah->saidx.proto &&
587 bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
588 sizeof (union sockaddr_union)) == 0) {
589 /*
590 * No IPsec processing is needed, free
591 * reference to SP.
592 *
593 * NB: null pointer to avoid free at
594 * done: below.
595 */
596 KEY_FREESP(&sp), sp = NULL;
597 splx(s);
598 goto spd_done;
599 }
600 }
601
602 /*
603 * Do delayed checksums now because we send before
604 * this is done in the normal processing path.
605 */
606 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
607 in_delayed_cksum(m);
608 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
609 }
610
611 ip->ip_len = htons(ip->ip_len);
612 ip->ip_off = htons(ip->ip_off);
613
614 /* NB: callee frees mbuf */
615 error = ipsec4_process_packet(m, sp->req, flags, 0);
616 /*
617 * Preserve KAME behaviour: ENOENT can be returned
618 * when an SA acquire is in progress. Don't propagate
619 * this to user-level; it confuses applications.
620 *
621 * XXX this will go away when the SADB is redone.
622 */
623 if (error == ENOENT)
624 error = 0;
625 splx(s);
626 goto done;
627 } else {
628 splx(s);
629
630 if (error != 0) {
631 /*
632 * Hack: -EINVAL is used to signal that a packet
633 * should be silently discarded. This is typically
634 * because we asked key management for an SA and
635 * it was delayed (e.g. kicked up to IKE).
636 */
637 if (error == -EINVAL)
638 error = 0;
639 goto bad;
640 } else {
641 /* No IPsec processing for this packet. */
642 }
643#ifdef notyet
644 /*
645 * If deferred crypto processing is needed, check that
646 * the interface supports it.
647 */
648 mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
649 if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
650 /* notify IPsec to do its own crypto */
651 ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
652 error = EHOSTUNREACH;
653 goto bad;
654 }
655#endif
656 }
657spd_done:
658#endif /* FAST_IPSEC */
659
660 /* Jump over all PFIL processing if hooks are not active. */
661 if (inet_pfil_hook.ph_busy_count == -1)
662 goto passout;
663
664 /* Run through list of hooks for output packets. */
665 odst.s_addr = ip->ip_dst.s_addr;
666 error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT, inp);
667 if (error != 0 || m == NULL)
668 goto done;
669
670 ip = mtod(m, struct ip *);
671
672 /* See if destination IP address was changed by packet filter. */
673 if (odst.s_addr != ip->ip_dst.s_addr) {
674 m->m_flags |= M_SKIP_FIREWALL;
675 /* If destination is now ourself drop to ip_input(). */
676 if (in_localip(ip->ip_dst)) {
677 m->m_flags |= M_FASTFWD_OURS;
678 if (m->m_pkthdr.rcvif == NULL)
679 m->m_pkthdr.rcvif = loif;
680 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
681 m->m_pkthdr.csum_flags |=
682 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
683 m->m_pkthdr.csum_data = 0xffff;
684 }
685 m->m_pkthdr.csum_flags |=
686 CSUM_IP_CHECKED | CSUM_IP_VALID;
687
688 error = netisr_queue(NETISR_IP, m);
689 goto done;
690 } else
691 goto again; /* Redo the routing table lookup. */
692 }
693
694#ifdef IPFIREWALL_FORWARD
695 /* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */
696 if (m->m_flags & M_FASTFWD_OURS) {
697 if (m->m_pkthdr.rcvif == NULL)
698 m->m_pkthdr.rcvif = loif;
699 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
700 m->m_pkthdr.csum_flags |=
701 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
702 m->m_pkthdr.csum_data = 0xffff;
703 }
704 m->m_pkthdr.csum_flags |=
705 CSUM_IP_CHECKED | CSUM_IP_VALID;
706
707 error = netisr_queue(NETISR_IP, m);
708 goto done;
709 }
710 /* Or forward to some other address? */
711 fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
712 if (fwd_tag) {
713#ifndef IPFIREWALL_FORWARD_EXTENDED
714 if (!in_localip(ip->ip_src) && !in_localaddr(ip->ip_dst)) {
715#endif
716 dst = (struct sockaddr_in *)&ro->ro_dst;
717 bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in));
718 m->m_flags |= M_SKIP_FIREWALL;
719 m_tag_delete(m, fwd_tag);
720 goto again;
721#ifndef IPFIREWALL_FORWARD_EXTENDED
722 } else {
723 m_tag_delete(m, fwd_tag);
724 /* Continue. */
725 }
726#endif
727 }
728#endif /* IPFIREWALL_FORWARD */
729
730passout:
731 /* 127/8 must not appear on wire - RFC1122. */
732 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
733 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
734 if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
735 ipstat.ips_badaddr++;
736 error = EADDRNOTAVAIL;
737 goto bad;
738 }
739 }
740
741 m->m_pkthdr.csum_flags |= CSUM_IP;
742 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
743 if (sw_csum & CSUM_DELAY_DATA) {
744 in_delayed_cksum(m);
745 sw_csum &= ~CSUM_DELAY_DATA;
746 }
747 m->m_pkthdr.csum_flags &= ifp->if_hwassist;
748
749 /*
750 * If small enough for interface, or the interface will take
751 * care of the fragmentation for us, can just send directly.
752 */
753 if (ip->ip_len <= ifp->if_mtu || (ifp->if_hwassist & CSUM_FRAGMENT &&
754 ((ip->ip_off & IP_DF) == 0))) {
755 ip->ip_len = htons(ip->ip_len);
756 ip->ip_off = htons(ip->ip_off);
757 ip->ip_sum = 0;
758 if (sw_csum & CSUM_DELAY_IP)
759 ip->ip_sum = in_cksum(m, hlen);
760
761 /* Record statistics for this interface address. */
762 if (!(flags & IP_FORWARDING) && ia) {
763 ia->ia_ifa.if_opackets++;
764 ia->ia_ifa.if_obytes += m->m_pkthdr.len;
765 }
766
767#ifdef IPSEC
768 /* clean ipsec history once it goes out of the node */
769 ipsec_delaux(m);
770#endif
771
772#ifdef MBUF_STRESS_TEST
773 if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
774 m = m_fragment(m, M_DONTWAIT, mbuf_frag_size);
775#endif
776 error = (*ifp->if_output)(ifp, m,
777 (struct sockaddr *)dst, ro->ro_rt);
778 goto done;
779 }
780
781 if (ip->ip_off & IP_DF) {
782 error = EMSGSIZE;
783 /*
784 * This case can happen if the user changed the MTU
785 * of an interface after enabling IP on it. Because
786 * most netifs don't keep track of routes pointing to
787 * them, there is no way for one to update all its
788 * routes when the MTU is changed.
789 */
790 if ((ro->ro_rt->rt_flags & (RTF_UP | RTF_HOST)) &&
791 (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)) {
792 ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
793 }
794 ipstat.ips_cantfrag++;
795 goto bad;
796 }
797
798 /*
799 * Too large for interface; fragment if possible. If successful,
800 * on return, m will point to a list of packets to be sent.
801 */
802 error = ip_fragment(ip, &m, ifp->if_mtu, ifp->if_hwassist, sw_csum);
803 if (error)
804 goto bad;
805 for (; m; m = m0) {
806 m0 = m->m_nextpkt;
807 m->m_nextpkt = 0;
808#ifdef IPSEC
809 /* clean ipsec history once it goes out of the node */
810 ipsec_delaux(m);
811#endif
812 if (error == 0) {
813 /* Record statistics for this interface address. */
814 if (ia != NULL) {
815 ia->ia_ifa.if_opackets++;
816 ia->ia_ifa.if_obytes += m->m_pkthdr.len;
817 }
818
819 error = (*ifp->if_output)(ifp, m,
820 (struct sockaddr *)dst, ro->ro_rt);
821 } else
822 m_freem(m);
823 }
824
825 if (error == 0)
826 ipstat.ips_fragmented++;
827
828done:
829 if (ro == &iproute && ro->ro_rt) {
830 RTFREE(ro->ro_rt);
831 }
832#ifdef IPSEC
833 if (sp != NULL) {
834 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
835 printf("DP ip_output call free SP:%p\n", sp));
836 key_freesp(sp);
837 }
838#endif
839#ifdef FAST_IPSEC
840 if (sp != NULL)
841 KEY_FREESP(&sp);
842#endif
843 return (error);
844bad:
845 m_freem(m);
846 goto done;
847}
848
849/*
850 * Create a chain of fragments which fit the given mtu. m_frag points to the
851 * mbuf to be fragmented; on return it points to the chain with the fragments.
852 * Return 0 if no error. If error, m_frag may contain a partially built
853 * chain of fragments that should be freed by the caller.
854 *
855 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
856 * sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP).
857 */
858int
859ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
860 u_long if_hwassist_flags, int sw_csum)
861{
862 int error = 0;
863 int hlen = ip->ip_hl << 2;
864 int len = (mtu - hlen) & ~7; /* size of payload in each fragment */
865 int off;
866 struct mbuf *m0 = *m_frag; /* the original packet */
867 int firstlen;
868 struct mbuf **mnext;
869 int nfrags;
870
871 if (ip->ip_off & IP_DF) { /* Fragmentation not allowed */
872 ipstat.ips_cantfrag++;
873 return EMSGSIZE;
874 }
875
876 /*
877 * Must be able to put at least 8 bytes per fragment.
878 */
879 if (len < 8)
880 return EMSGSIZE;
881
882 /*
883 * If the interface will not calculate checksums on
884 * fragmented packets, then do it here.
885 */
886 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA &&
887 (if_hwassist_flags & CSUM_IP_FRAGS) == 0) {
888 in_delayed_cksum(m0);
889 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
890 }
891
892 if (len > PAGE_SIZE) {
893 /*
894 * Fragment large datagrams such that each segment
895 * contains a multiple of PAGE_SIZE amount of data,
896 * plus headers. This enables a receiver to perform
897 * page-flipping zero-copy optimizations.
898 *
899 * XXX When does this help given that sender and receiver
900 * could have different page sizes, and also mtu could
901 * be less than the receiver's page size ?
902 */
903 int newlen;
904 struct mbuf *m;
905
906 for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
907 off += m->m_len;
908
909 /*
910 * firstlen (off - hlen) must be aligned on an
911 * 8-byte boundary
912 */
913 if (off < hlen)
914 goto smart_frag_failure;
915 off = ((off - hlen) & ~7) + hlen;
916 newlen = (~PAGE_MASK) & mtu;
917 if ((newlen + sizeof (struct ip)) > mtu) {
918 /* we failed, go back the default */
919smart_frag_failure:
920 newlen = len;
921 off = hlen + len;
922 }
923 len = newlen;
924
925 } else {
926 off = hlen + len;
927 }
928
929 firstlen = off - hlen;
930 mnext = &m0->m_nextpkt; /* pointer to next packet */
931
932 /*
933 * Loop through length of segment after first fragment,
934 * make new header and copy data of each part and link onto chain.
935 * Here, m0 is the original packet, m is the fragment being created.
936 * The fragments are linked off the m_nextpkt of the original
937 * packet, which after processing serves as the first fragment.
938 */
939 for (nfrags = 1; off < ip->ip_len; off += len, nfrags++) {
940 struct ip *mhip; /* ip header on the fragment */
941 struct mbuf *m;
942 int mhlen = sizeof (struct ip);
943
31 */
32
33#include "opt_ipfw.h"
34#include "opt_ipsec.h"
35#include "opt_mac.h"
36#include "opt_mbuf_stress_test.h"
37
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/kernel.h>
41#include <sys/mac.h>
42#include <sys/malloc.h>
43#include <sys/mbuf.h>
44#include <sys/protosw.h>
45#include <sys/socket.h>
46#include <sys/socketvar.h>
47#include <sys/sysctl.h>
48
49#include <net/if.h>
50#include <net/netisr.h>
51#include <net/pfil.h>
52#include <net/route.h>
53
54#include <netinet/in.h>
55#include <netinet/in_systm.h>
56#include <netinet/ip.h>
57#include <netinet/in_pcb.h>
58#include <netinet/in_var.h>
59#include <netinet/ip_var.h>
60
61#include <machine/in_cksum.h>
62
63static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "internet multicast options");
64
65#ifdef IPSEC
66#include <netinet6/ipsec.h>
67#include <netkey/key.h>
68#ifdef IPSEC_DEBUG
69#include <netkey/key_debug.h>
70#else
71#define KEYDEBUG(lev,arg)
72#endif
73#endif /*IPSEC*/
74
75#ifdef FAST_IPSEC
76#include <netipsec/ipsec.h>
77#include <netipsec/xform.h>
78#include <netipsec/key.h>
79#endif /*FAST_IPSEC*/
80
81#define print_ip(x, a, y) printf("%s %d.%d.%d.%d%s",\
82 x, (ntohl(a.s_addr)>>24)&0xFF,\
83 (ntohl(a.s_addr)>>16)&0xFF,\
84 (ntohl(a.s_addr)>>8)&0xFF,\
85 (ntohl(a.s_addr))&0xFF, y);
86
87u_short ip_id;
88
89#ifdef MBUF_STRESS_TEST
90int mbuf_frag_size = 0;
91SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
92 &mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
93#endif
94
95static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
96static struct ifnet *ip_multicast_if(struct in_addr *, int *);
97static void ip_mloopback
98 (struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
99static int ip_getmoptions(struct inpcb *, struct sockopt *);
100static int ip_pcbopts(struct inpcb *, int, struct mbuf *);
101static int ip_setmoptions(struct inpcb *, struct sockopt *);
102static struct ip_moptions *ip_findmoptions(struct inpcb *inp);
103
104int ip_optcopy(struct ip *, struct ip *);
105
106
107extern struct protosw inetsw[];
108
109/*
110 * IP output. The packet in mbuf chain m contains a skeletal IP
111 * header (with len, off, ttl, proto, tos, src, dst).
112 * The mbuf chain containing the packet will be freed.
113 * The mbuf opt, if present, will not be freed.
114 * In the IP forwarding case, the packet will arrive with options already
115 * inserted, so must have a NULL opt pointer.
116 */
117int
118ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro,
119 int flags, struct ip_moptions *imo, struct inpcb *inp)
120{
121 struct ip *ip;
122 struct ifnet *ifp = NULL; /* keep compiler happy */
123 struct mbuf *m0;
124 int hlen = sizeof (struct ip);
125 int len, error = 0;
126 struct sockaddr_in *dst = NULL; /* keep compiler happy */
127 struct in_ifaddr *ia = NULL;
128 int isbroadcast, sw_csum;
129 struct route iproute;
130 struct in_addr odst;
131#ifdef IPFIREWALL_FORWARD
132 struct m_tag *fwd_tag = NULL;
133#endif
134#ifdef IPSEC
135 struct secpolicy *sp = NULL;
136#endif
137#ifdef FAST_IPSEC
138 struct secpolicy *sp = NULL;
139 struct tdb_ident *tdbi;
140 struct m_tag *mtag;
141 int s;
142#endif /* FAST_IPSEC */
143
144 M_ASSERTPKTHDR(m);
145
146 if (ro == NULL) {
147 ro = &iproute;
148 bzero(ro, sizeof (*ro));
149 }
150
151 if (inp != NULL)
152 INP_LOCK_ASSERT(inp);
153
154 if (opt) {
155 len = 0;
156 m = ip_insertoptions(m, opt, &len);
157 if (len != 0)
158 hlen = len;
159 }
160 ip = mtod(m, struct ip *);
161
162 /*
163 * Fill in IP header. If we are not allowing fragmentation,
164 * then the ip_id field is meaningless, but we don't set it
165 * to zero. Doing so causes various problems when devices along
166 * the path (routers, load balancers, firewalls, etc.) illegally
167 * disable DF on our packet. Note that a 16-bit counter
168 * will wrap around in less than 10 seconds at 100 Mbit/s on a
169 * medium with MTU 1500. See Steven M. Bellovin, "A Technique
170 * for Counting NATted Hosts", Proc. IMW'02, available at
171 * <http://www.research.att.com/~smb/papers/fnat.pdf>.
172 */
173 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
174 ip->ip_v = IPVERSION;
175 ip->ip_hl = hlen >> 2;
176 ip->ip_id = ip_newid();
177 ipstat.ips_localout++;
178 } else {
179 hlen = ip->ip_hl << 2;
180 }
181
182 dst = (struct sockaddr_in *)&ro->ro_dst;
183again:
184 /*
185 * If there is a cached route,
186 * check that it is to the same destination
187 * and is still up. If not, free it and try again.
188 * The address family should also be checked in case of sharing the
189 * cache with IPv6.
190 */
191 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
192 dst->sin_family != AF_INET ||
193 dst->sin_addr.s_addr != ip->ip_dst.s_addr)) {
194 RTFREE(ro->ro_rt);
195 ro->ro_rt = (struct rtentry *)0;
196 }
197#ifdef IPFIREWALL_FORWARD
198 if (ro->ro_rt == NULL && fwd_tag == NULL) {
199#else
200 if (ro->ro_rt == NULL) {
201#endif
202 bzero(dst, sizeof(*dst));
203 dst->sin_family = AF_INET;
204 dst->sin_len = sizeof(*dst);
205 dst->sin_addr = ip->ip_dst;
206 }
207 /*
208 * If routing to interface only,
209 * short circuit routing lookup.
210 */
211 if (flags & IP_ROUTETOIF) {
212 if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL &&
213 (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == NULL) {
214 ipstat.ips_noroute++;
215 error = ENETUNREACH;
216 goto bad;
217 }
218 ifp = ia->ia_ifp;
219 ip->ip_ttl = 1;
220 isbroadcast = in_broadcast(dst->sin_addr, ifp);
221 } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
222 imo != NULL && imo->imo_multicast_ifp != NULL) {
223 /*
224 * Bypass the normal routing lookup for multicast
225 * packets if the interface is specified.
226 */
227 ifp = imo->imo_multicast_ifp;
228 IFP_TO_IA(ifp, ia);
229 isbroadcast = 0; /* fool gcc */
230 } else {
231 /*
232 * We want to do any cloning requested by the link layer,
233 * as this is probably required in all cases for correct
234 * operation (as it is for ARP).
235 */
236 if (ro->ro_rt == NULL)
237 rtalloc_ign(ro, 0);
238 if (ro->ro_rt == NULL) {
239 ipstat.ips_noroute++;
240 error = EHOSTUNREACH;
241 goto bad;
242 }
243 ia = ifatoia(ro->ro_rt->rt_ifa);
244 ifp = ro->ro_rt->rt_ifp;
245 ro->ro_rt->rt_rmx.rmx_pksent++;
246 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
247 dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
248 if (ro->ro_rt->rt_flags & RTF_HOST)
249 isbroadcast = (ro->ro_rt->rt_flags & RTF_BROADCAST);
250 else
251 isbroadcast = in_broadcast(dst->sin_addr, ifp);
252 }
253 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
254 struct in_multi *inm;
255
256 m->m_flags |= M_MCAST;
257 /*
258 * IP destination address is multicast. Make sure "dst"
259 * still points to the address in "ro". (It may have been
260 * changed to point to a gateway address, above.)
261 */
262 dst = (struct sockaddr_in *)&ro->ro_dst;
263 /*
264 * See if the caller provided any multicast options
265 */
266 if (imo != NULL) {
267 ip->ip_ttl = imo->imo_multicast_ttl;
268 if (imo->imo_multicast_vif != -1)
269 ip->ip_src.s_addr =
270 ip_mcast_src ?
271 ip_mcast_src(imo->imo_multicast_vif) :
272 INADDR_ANY;
273 } else
274 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
275 /*
276 * Confirm that the outgoing interface supports multicast.
277 */
278 if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
279 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
280 ipstat.ips_noroute++;
281 error = ENETUNREACH;
282 goto bad;
283 }
284 }
285 /*
286 * If source address not specified yet, use address
287 * of outgoing interface.
288 */
289 if (ip->ip_src.s_addr == INADDR_ANY) {
290 /* Interface may have no addresses. */
291 if (ia != NULL)
292 ip->ip_src = IA_SIN(ia)->sin_addr;
293 }
294
295 IN_MULTI_LOCK();
296 IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
297 if (inm != NULL &&
298 (imo == NULL || imo->imo_multicast_loop)) {
299 IN_MULTI_UNLOCK();
300 /*
301 * If we belong to the destination multicast group
302 * on the outgoing interface, and the caller did not
303 * forbid loopback, loop back a copy.
304 */
305 ip_mloopback(ifp, m, dst, hlen);
306 }
307 else {
308 IN_MULTI_UNLOCK();
309 /*
310 * If we are acting as a multicast router, perform
311 * multicast forwarding as if the packet had just
312 * arrived on the interface to which we are about
313 * to send. The multicast forwarding function
314 * recursively calls this function, using the
315 * IP_FORWARDING flag to prevent infinite recursion.
316 *
317 * Multicasts that are looped back by ip_mloopback(),
318 * above, will be forwarded by the ip_input() routine,
319 * if necessary.
320 */
321 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
322 /*
323 * If rsvp daemon is not running, do not
324 * set ip_moptions. This ensures that the packet
325 * is multicast and not just sent down one link
326 * as prescribed by rsvpd.
327 */
328 if (!rsvp_on)
329 imo = NULL;
330 if (ip_mforward &&
331 ip_mforward(ip, ifp, m, imo) != 0) {
332 m_freem(m);
333 goto done;
334 }
335 }
336 }
337
338 /*
339 * Multicasts with a time-to-live of zero may be looped-
340 * back, above, but must not be transmitted on a network.
341 * Also, multicasts addressed to the loopback interface
342 * are not sent -- the above call to ip_mloopback() will
343 * loop back a copy if this host actually belongs to the
344 * destination group on the loopback interface.
345 */
346 if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
347 m_freem(m);
348 goto done;
349 }
350
351 goto sendit;
352 }
353#ifndef notdef
354 /*
355 * If the source address is not specified yet, use the address
356 * of the outoing interface.
357 */
358 if (ip->ip_src.s_addr == INADDR_ANY) {
359 /* Interface may have no addresses. */
360 if (ia != NULL) {
361 ip->ip_src = IA_SIN(ia)->sin_addr;
362 }
363 }
364#endif /* notdef */
365 /*
366 * Verify that we have any chance at all of being able to queue the
367 * packet or packet fragments, unless ALTQ is enabled on the given
368 * interface in which case packetdrop should be done by queueing.
369 */
370#ifdef ALTQ
371 if ((!ALTQ_IS_ENABLED(&ifp->if_snd)) &&
372 ((ifp->if_snd.ifq_len + ip->ip_len / ifp->if_mtu + 1) >=
373 ifp->if_snd.ifq_maxlen))
374#else
375 if ((ifp->if_snd.ifq_len + ip->ip_len / ifp->if_mtu + 1) >=
376 ifp->if_snd.ifq_maxlen)
377#endif /* ALTQ */
378 {
379 error = ENOBUFS;
380 ipstat.ips_odropped++;
381 goto bad;
382 }
383
384 /*
385 * Look for broadcast address and
386 * verify user is allowed to send
387 * such a packet.
388 */
389 if (isbroadcast) {
390 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
391 error = EADDRNOTAVAIL;
392 goto bad;
393 }
394 if ((flags & IP_ALLOWBROADCAST) == 0) {
395 error = EACCES;
396 goto bad;
397 }
398 /* don't allow broadcast messages to be fragmented */
399 if (ip->ip_len > ifp->if_mtu) {
400 error = EMSGSIZE;
401 goto bad;
402 }
403 if (flags & IP_SENDONES)
404 ip->ip_dst.s_addr = INADDR_BROADCAST;
405 m->m_flags |= M_BCAST;
406 } else {
407 m->m_flags &= ~M_BCAST;
408 }
409
410sendit:
411#ifdef IPSEC
412 /* get SP for this packet */
413 if (inp == NULL)
414 sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
415 flags, &error);
416 else
417 sp = ipsec4_getpolicybypcb(m, IPSEC_DIR_OUTBOUND, inp, &error);
418
419 if (sp == NULL) {
420 ipsecstat.out_inval++;
421 goto bad;
422 }
423
424 error = 0;
425
426 /* check policy */
427 switch (sp->policy) {
428 case IPSEC_POLICY_DISCARD:
429 /*
430 * This packet is just discarded.
431 */
432 ipsecstat.out_polvio++;
433 goto bad;
434
435 case IPSEC_POLICY_BYPASS:
436 case IPSEC_POLICY_NONE:
437 case IPSEC_POLICY_TCP:
438 /* no need to do IPsec. */
439 goto skip_ipsec;
440
441 case IPSEC_POLICY_IPSEC:
442 if (sp->req == NULL) {
443 /* acquire a policy */
444 error = key_spdacquire(sp);
445 goto bad;
446 }
447 break;
448
449 case IPSEC_POLICY_ENTRUST:
450 default:
451 printf("ip_output: Invalid policy found. %d\n", sp->policy);
452 }
453 {
454 struct ipsec_output_state state;
455 bzero(&state, sizeof(state));
456 state.m = m;
457 if (flags & IP_ROUTETOIF) {
458 state.ro = &iproute;
459 bzero(&iproute, sizeof(iproute));
460 } else
461 state.ro = ro;
462 state.dst = (struct sockaddr *)dst;
463
464 ip->ip_sum = 0;
465
466 /*
467 * XXX
468 * delayed checksums are not currently compatible with IPsec
469 */
470 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
471 in_delayed_cksum(m);
472 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
473 }
474
475 ip->ip_len = htons(ip->ip_len);
476 ip->ip_off = htons(ip->ip_off);
477
478 error = ipsec4_output(&state, sp, flags);
479
480 m = state.m;
481 if (flags & IP_ROUTETOIF) {
482 /*
483 * if we have tunnel mode SA, we may need to ignore
484 * IP_ROUTETOIF.
485 */
486 if (state.ro != &iproute || state.ro->ro_rt != NULL) {
487 flags &= ~IP_ROUTETOIF;
488 ro = state.ro;
489 }
490 } else
491 ro = state.ro;
492 dst = (struct sockaddr_in *)state.dst;
493 if (error) {
494 /* mbuf is already reclaimed in ipsec4_output. */
495 m = NULL;
496 switch (error) {
497 case EHOSTUNREACH:
498 case ENETUNREACH:
499 case EMSGSIZE:
500 case ENOBUFS:
501 case ENOMEM:
502 break;
503 default:
504 printf("ip4_output (ipsec): error code %d\n", error);
505 /*fall through*/
506 case ENOENT:
507 /* don't show these error codes to the user */
508 error = 0;
509 break;
510 }
511 goto bad;
512 }
513
514 /* be sure to update variables that are affected by ipsec4_output() */
515 ip = mtod(m, struct ip *);
516 hlen = ip->ip_hl << 2;
517 if (ro->ro_rt == NULL) {
518 if ((flags & IP_ROUTETOIF) == 0) {
519 printf("ip_output: "
520 "can't update route after IPsec processing\n");
521 error = EHOSTUNREACH; /*XXX*/
522 goto bad;
523 }
524 } else {
525 if (state.encap) {
526 ia = ifatoia(ro->ro_rt->rt_ifa);
527 ifp = ro->ro_rt->rt_ifp;
528 }
529 }
530 }
531
532 /* make it flipped, again. */
533 ip->ip_len = ntohs(ip->ip_len);
534 ip->ip_off = ntohs(ip->ip_off);
535skip_ipsec:
536#endif /*IPSEC*/
537#ifdef FAST_IPSEC
538 /*
539 * Check the security policy (SP) for the packet and, if
540 * required, do IPsec-related processing. There are two
541 * cases here; the first time a packet is sent through
542 * it will be untagged and handled by ipsec4_checkpolicy.
543 * If the packet is resubmitted to ip_output (e.g. after
544 * AH, ESP, etc. processing), there will be a tag to bypass
545 * the lookup and related policy checking.
546 */
547 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
548 s = splnet();
549 if (mtag != NULL) {
550 tdbi = (struct tdb_ident *)(mtag + 1);
551 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
552 if (sp == NULL)
553 error = -EINVAL; /* force silent drop */
554 m_tag_delete(m, mtag);
555 } else {
556 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
557 &error, inp);
558 }
559 /*
560 * There are four return cases:
561 * sp != NULL apply IPsec policy
562 * sp == NULL, error == 0 no IPsec handling needed
563 * sp == NULL, error == -EINVAL discard packet w/o error
564 * sp == NULL, error != 0 discard packet, report error
565 */
566 if (sp != NULL) {
567 /* Loop detection, check if ipsec processing already done */
568 KASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
569 for (mtag = m_tag_first(m); mtag != NULL;
570 mtag = m_tag_next(m, mtag)) {
571 if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
572 continue;
573 if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
574 mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
575 continue;
576 /*
577 * Check if policy has an SA associated with it.
578 * This can happen when an SP has yet to acquire
579 * an SA; e.g. on first reference. If it occurs,
580 * then we let ipsec4_process_packet do its thing.
581 */
582 if (sp->req->sav == NULL)
583 break;
584 tdbi = (struct tdb_ident *)(mtag + 1);
585 if (tdbi->spi == sp->req->sav->spi &&
586 tdbi->proto == sp->req->sav->sah->saidx.proto &&
587 bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
588 sizeof (union sockaddr_union)) == 0) {
589 /*
590 * No IPsec processing is needed, free
591 * reference to SP.
592 *
593 * NB: null pointer to avoid free at
594 * done: below.
595 */
596 KEY_FREESP(&sp), sp = NULL;
597 splx(s);
598 goto spd_done;
599 }
600 }
601
602 /*
603 * Do delayed checksums now because we send before
604 * this is done in the normal processing path.
605 */
606 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
607 in_delayed_cksum(m);
608 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
609 }
610
611 ip->ip_len = htons(ip->ip_len);
612 ip->ip_off = htons(ip->ip_off);
613
614 /* NB: callee frees mbuf */
615 error = ipsec4_process_packet(m, sp->req, flags, 0);
616 /*
617 * Preserve KAME behaviour: ENOENT can be returned
618 * when an SA acquire is in progress. Don't propagate
619 * this to user-level; it confuses applications.
620 *
621 * XXX this will go away when the SADB is redone.
622 */
623 if (error == ENOENT)
624 error = 0;
625 splx(s);
626 goto done;
627 } else {
628 splx(s);
629
630 if (error != 0) {
631 /*
632 * Hack: -EINVAL is used to signal that a packet
633 * should be silently discarded. This is typically
634 * because we asked key management for an SA and
635 * it was delayed (e.g. kicked up to IKE).
636 */
637 if (error == -EINVAL)
638 error = 0;
639 goto bad;
640 } else {
641 /* No IPsec processing for this packet. */
642 }
643#ifdef notyet
644 /*
645 * If deferred crypto processing is needed, check that
646 * the interface supports it.
647 */
648 mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
649 if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
650 /* notify IPsec to do its own crypto */
651 ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
652 error = EHOSTUNREACH;
653 goto bad;
654 }
655#endif
656 }
657spd_done:
658#endif /* FAST_IPSEC */
659
660 /* Jump over all PFIL processing if hooks are not active. */
661 if (inet_pfil_hook.ph_busy_count == -1)
662 goto passout;
663
664 /* Run through list of hooks for output packets. */
665 odst.s_addr = ip->ip_dst.s_addr;
666 error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT, inp);
667 if (error != 0 || m == NULL)
668 goto done;
669
670 ip = mtod(m, struct ip *);
671
672 /* See if destination IP address was changed by packet filter. */
673 if (odst.s_addr != ip->ip_dst.s_addr) {
674 m->m_flags |= M_SKIP_FIREWALL;
675 /* If destination is now ourself drop to ip_input(). */
676 if (in_localip(ip->ip_dst)) {
677 m->m_flags |= M_FASTFWD_OURS;
678 if (m->m_pkthdr.rcvif == NULL)
679 m->m_pkthdr.rcvif = loif;
680 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
681 m->m_pkthdr.csum_flags |=
682 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
683 m->m_pkthdr.csum_data = 0xffff;
684 }
685 m->m_pkthdr.csum_flags |=
686 CSUM_IP_CHECKED | CSUM_IP_VALID;
687
688 error = netisr_queue(NETISR_IP, m);
689 goto done;
690 } else
691 goto again; /* Redo the routing table lookup. */
692 }
693
694#ifdef IPFIREWALL_FORWARD
695 /* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */
696 if (m->m_flags & M_FASTFWD_OURS) {
697 if (m->m_pkthdr.rcvif == NULL)
698 m->m_pkthdr.rcvif = loif;
699 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
700 m->m_pkthdr.csum_flags |=
701 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
702 m->m_pkthdr.csum_data = 0xffff;
703 }
704 m->m_pkthdr.csum_flags |=
705 CSUM_IP_CHECKED | CSUM_IP_VALID;
706
707 error = netisr_queue(NETISR_IP, m);
708 goto done;
709 }
710 /* Or forward to some other address? */
711 fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
712 if (fwd_tag) {
713#ifndef IPFIREWALL_FORWARD_EXTENDED
714 if (!in_localip(ip->ip_src) && !in_localaddr(ip->ip_dst)) {
715#endif
716 dst = (struct sockaddr_in *)&ro->ro_dst;
717 bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in));
718 m->m_flags |= M_SKIP_FIREWALL;
719 m_tag_delete(m, fwd_tag);
720 goto again;
721#ifndef IPFIREWALL_FORWARD_EXTENDED
722 } else {
723 m_tag_delete(m, fwd_tag);
724 /* Continue. */
725 }
726#endif
727 }
728#endif /* IPFIREWALL_FORWARD */
729
730passout:
731 /* 127/8 must not appear on wire - RFC1122. */
732 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
733 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
734 if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
735 ipstat.ips_badaddr++;
736 error = EADDRNOTAVAIL;
737 goto bad;
738 }
739 }
740
741 m->m_pkthdr.csum_flags |= CSUM_IP;
742 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
743 if (sw_csum & CSUM_DELAY_DATA) {
744 in_delayed_cksum(m);
745 sw_csum &= ~CSUM_DELAY_DATA;
746 }
747 m->m_pkthdr.csum_flags &= ifp->if_hwassist;
748
749 /*
750 * If small enough for interface, or the interface will take
751 * care of the fragmentation for us, can just send directly.
752 */
753 if (ip->ip_len <= ifp->if_mtu || (ifp->if_hwassist & CSUM_FRAGMENT &&
754 ((ip->ip_off & IP_DF) == 0))) {
755 ip->ip_len = htons(ip->ip_len);
756 ip->ip_off = htons(ip->ip_off);
757 ip->ip_sum = 0;
758 if (sw_csum & CSUM_DELAY_IP)
759 ip->ip_sum = in_cksum(m, hlen);
760
761 /* Record statistics for this interface address. */
762 if (!(flags & IP_FORWARDING) && ia) {
763 ia->ia_ifa.if_opackets++;
764 ia->ia_ifa.if_obytes += m->m_pkthdr.len;
765 }
766
767#ifdef IPSEC
768 /* clean ipsec history once it goes out of the node */
769 ipsec_delaux(m);
770#endif
771
772#ifdef MBUF_STRESS_TEST
773 if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
774 m = m_fragment(m, M_DONTWAIT, mbuf_frag_size);
775#endif
776 error = (*ifp->if_output)(ifp, m,
777 (struct sockaddr *)dst, ro->ro_rt);
778 goto done;
779 }
780
781 if (ip->ip_off & IP_DF) {
782 error = EMSGSIZE;
783 /*
784 * This case can happen if the user changed the MTU
785 * of an interface after enabling IP on it. Because
786 * most netifs don't keep track of routes pointing to
787 * them, there is no way for one to update all its
788 * routes when the MTU is changed.
789 */
790 if ((ro->ro_rt->rt_flags & (RTF_UP | RTF_HOST)) &&
791 (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)) {
792 ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
793 }
794 ipstat.ips_cantfrag++;
795 goto bad;
796 }
797
798 /*
799 * Too large for interface; fragment if possible. If successful,
800 * on return, m will point to a list of packets to be sent.
801 */
802 error = ip_fragment(ip, &m, ifp->if_mtu, ifp->if_hwassist, sw_csum);
803 if (error)
804 goto bad;
805 for (; m; m = m0) {
806 m0 = m->m_nextpkt;
807 m->m_nextpkt = 0;
808#ifdef IPSEC
809 /* clean ipsec history once it goes out of the node */
810 ipsec_delaux(m);
811#endif
812 if (error == 0) {
813 /* Record statistics for this interface address. */
814 if (ia != NULL) {
815 ia->ia_ifa.if_opackets++;
816 ia->ia_ifa.if_obytes += m->m_pkthdr.len;
817 }
818
819 error = (*ifp->if_output)(ifp, m,
820 (struct sockaddr *)dst, ro->ro_rt);
821 } else
822 m_freem(m);
823 }
824
825 if (error == 0)
826 ipstat.ips_fragmented++;
827
828done:
829 if (ro == &iproute && ro->ro_rt) {
830 RTFREE(ro->ro_rt);
831 }
832#ifdef IPSEC
833 if (sp != NULL) {
834 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
835 printf("DP ip_output call free SP:%p\n", sp));
836 key_freesp(sp);
837 }
838#endif
839#ifdef FAST_IPSEC
840 if (sp != NULL)
841 KEY_FREESP(&sp);
842#endif
843 return (error);
844bad:
845 m_freem(m);
846 goto done;
847}
848
849/*
850 * Create a chain of fragments which fit the given mtu. m_frag points to the
851 * mbuf to be fragmented; on return it points to the chain with the fragments.
852 * Return 0 if no error. If error, m_frag may contain a partially built
853 * chain of fragments that should be freed by the caller.
854 *
855 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
856 * sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP).
857 */
858int
859ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
860 u_long if_hwassist_flags, int sw_csum)
861{
862 int error = 0;
863 int hlen = ip->ip_hl << 2;
864 int len = (mtu - hlen) & ~7; /* size of payload in each fragment */
865 int off;
866 struct mbuf *m0 = *m_frag; /* the original packet */
867 int firstlen;
868 struct mbuf **mnext;
869 int nfrags;
870
871 if (ip->ip_off & IP_DF) { /* Fragmentation not allowed */
872 ipstat.ips_cantfrag++;
873 return EMSGSIZE;
874 }
875
876 /*
877 * Must be able to put at least 8 bytes per fragment.
878 */
879 if (len < 8)
880 return EMSGSIZE;
881
882 /*
883 * If the interface will not calculate checksums on
884 * fragmented packets, then do it here.
885 */
886 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA &&
887 (if_hwassist_flags & CSUM_IP_FRAGS) == 0) {
888 in_delayed_cksum(m0);
889 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
890 }
891
892 if (len > PAGE_SIZE) {
893 /*
894 * Fragment large datagrams such that each segment
895 * contains a multiple of PAGE_SIZE amount of data,
896 * plus headers. This enables a receiver to perform
897 * page-flipping zero-copy optimizations.
898 *
899 * XXX When does this help given that sender and receiver
900 * could have different page sizes, and also mtu could
901 * be less than the receiver's page size ?
902 */
903 int newlen;
904 struct mbuf *m;
905
906 for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
907 off += m->m_len;
908
909 /*
910 * firstlen (off - hlen) must be aligned on an
911 * 8-byte boundary
912 */
913 if (off < hlen)
914 goto smart_frag_failure;
915 off = ((off - hlen) & ~7) + hlen;
916 newlen = (~PAGE_MASK) & mtu;
917 if ((newlen + sizeof (struct ip)) > mtu) {
918 /* we failed, go back the default */
919smart_frag_failure:
920 newlen = len;
921 off = hlen + len;
922 }
923 len = newlen;
924
925 } else {
926 off = hlen + len;
927 }
928
929 firstlen = off - hlen;
930 mnext = &m0->m_nextpkt; /* pointer to next packet */
931
932 /*
933 * Loop through length of segment after first fragment,
934 * make new header and copy data of each part and link onto chain.
935 * Here, m0 is the original packet, m is the fragment being created.
936 * The fragments are linked off the m_nextpkt of the original
937 * packet, which after processing serves as the first fragment.
938 */
939 for (nfrags = 1; off < ip->ip_len; off += len, nfrags++) {
940 struct ip *mhip; /* ip header on the fragment */
941 struct mbuf *m;
942 int mhlen = sizeof (struct ip);
943
944 MGETHDR(m, M_DONTWAIT, MT_HEADER);
944 MGETHDR(m, M_DONTWAIT, MT_DATA);
945 if (m == NULL) {
946 error = ENOBUFS;
947 ipstat.ips_odropped++;
948 goto done;
949 }
950 m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
951 /*
952 * In the first mbuf, leave room for the link header, then
953 * copy the original IP header including options. The payload
954 * goes into an additional mbuf chain returned by m_copy().
955 */
956 m->m_data += max_linkhdr;
957 mhip = mtod(m, struct ip *);
958 *mhip = *ip;
959 if (hlen > sizeof (struct ip)) {
960 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
961 mhip->ip_v = IPVERSION;
962 mhip->ip_hl = mhlen >> 2;
963 }
964 m->m_len = mhlen;
965 /* XXX do we need to add ip->ip_off below ? */
966 mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
967 if (off + len >= ip->ip_len) { /* last fragment */
968 len = ip->ip_len - off;
969 m->m_flags |= M_LASTFRAG;
970 } else
971 mhip->ip_off |= IP_MF;
972 mhip->ip_len = htons((u_short)(len + mhlen));
973 m->m_next = m_copy(m0, off, len);
974 if (m->m_next == NULL) { /* copy failed */
975 m_free(m);
976 error = ENOBUFS; /* ??? */
977 ipstat.ips_odropped++;
978 goto done;
979 }
980 m->m_pkthdr.len = mhlen + len;
981 m->m_pkthdr.rcvif = NULL;
982#ifdef MAC
983 mac_create_fragment(m0, m);
984#endif
985 m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
986 mhip->ip_off = htons(mhip->ip_off);
987 mhip->ip_sum = 0;
988 if (sw_csum & CSUM_DELAY_IP)
989 mhip->ip_sum = in_cksum(m, mhlen);
990 *mnext = m;
991 mnext = &m->m_nextpkt;
992 }
993 ipstat.ips_ofragments += nfrags;
994
995 /* set first marker for fragment chain */
996 m0->m_flags |= M_FIRSTFRAG | M_FRAG;
997 m0->m_pkthdr.csum_data = nfrags;
998
999 /*
1000 * Update first fragment by trimming what's been copied out
1001 * and updating header.
1002 */
1003 m_adj(m0, hlen + firstlen - ip->ip_len);
1004 m0->m_pkthdr.len = hlen + firstlen;
1005 ip->ip_len = htons((u_short)m0->m_pkthdr.len);
1006 ip->ip_off |= IP_MF;
1007 ip->ip_off = htons(ip->ip_off);
1008 ip->ip_sum = 0;
1009 if (sw_csum & CSUM_DELAY_IP)
1010 ip->ip_sum = in_cksum(m0, hlen);
1011
1012done:
1013 *m_frag = m0;
1014 return error;
1015}
1016
1017void
1018in_delayed_cksum(struct mbuf *m)
1019{
1020 struct ip *ip;
1021 u_short csum, offset;
1022
1023 ip = mtod(m, struct ip *);
1024 offset = ip->ip_hl << 2 ;
1025 csum = in_cksum_skip(m, ip->ip_len, offset);
1026 if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
1027 csum = 0xffff;
1028 offset += m->m_pkthdr.csum_data; /* checksum offset */
1029
1030 if (offset + sizeof(u_short) > m->m_len) {
1031 printf("delayed m_pullup, m->len: %d off: %d p: %d\n",
1032 m->m_len, offset, ip->ip_p);
1033 /*
1034 * XXX
1035 * this shouldn't happen, but if it does, the
1036 * correct behavior may be to insert the checksum
1037 * in the existing chain instead of rearranging it.
1038 */
1039 m = m_pullup(m, offset + sizeof(u_short));
1040 }
1041 *(u_short *)(m->m_data + offset) = csum;
1042}
1043
1044/*
1045 * Insert IP options into preformed packet.
1046 * Adjust IP destination as required for IP source routing,
1047 * as indicated by a non-zero in_addr at the start of the options.
1048 *
1049 * XXX This routine assumes that the packet has no options in place.
1050 */
1051static struct mbuf *
1052ip_insertoptions(m, opt, phlen)
1053 register struct mbuf *m;
1054 struct mbuf *opt;
1055 int *phlen;
1056{
1057 register struct ipoption *p = mtod(opt, struct ipoption *);
1058 struct mbuf *n;
1059 register struct ip *ip = mtod(m, struct ip *);
1060 unsigned optlen;
1061
1062 optlen = opt->m_len - sizeof(p->ipopt_dst);
1063 if (optlen + ip->ip_len > IP_MAXPACKET) {
1064 *phlen = 0;
1065 return (m); /* XXX should fail */
1066 }
1067 if (p->ipopt_dst.s_addr)
1068 ip->ip_dst = p->ipopt_dst;
1069 if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) {
945 if (m == NULL) {
946 error = ENOBUFS;
947 ipstat.ips_odropped++;
948 goto done;
949 }
950 m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
951 /*
952 * In the first mbuf, leave room for the link header, then
953 * copy the original IP header including options. The payload
954 * goes into an additional mbuf chain returned by m_copy().
955 */
956 m->m_data += max_linkhdr;
957 mhip = mtod(m, struct ip *);
958 *mhip = *ip;
959 if (hlen > sizeof (struct ip)) {
960 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
961 mhip->ip_v = IPVERSION;
962 mhip->ip_hl = mhlen >> 2;
963 }
964 m->m_len = mhlen;
965 /* XXX do we need to add ip->ip_off below ? */
966 mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
967 if (off + len >= ip->ip_len) { /* last fragment */
968 len = ip->ip_len - off;
969 m->m_flags |= M_LASTFRAG;
970 } else
971 mhip->ip_off |= IP_MF;
972 mhip->ip_len = htons((u_short)(len + mhlen));
973 m->m_next = m_copy(m0, off, len);
974 if (m->m_next == NULL) { /* copy failed */
975 m_free(m);
976 error = ENOBUFS; /* ??? */
977 ipstat.ips_odropped++;
978 goto done;
979 }
980 m->m_pkthdr.len = mhlen + len;
981 m->m_pkthdr.rcvif = NULL;
982#ifdef MAC
983 mac_create_fragment(m0, m);
984#endif
985 m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
986 mhip->ip_off = htons(mhip->ip_off);
987 mhip->ip_sum = 0;
988 if (sw_csum & CSUM_DELAY_IP)
989 mhip->ip_sum = in_cksum(m, mhlen);
990 *mnext = m;
991 mnext = &m->m_nextpkt;
992 }
993 ipstat.ips_ofragments += nfrags;
994
995 /* set first marker for fragment chain */
996 m0->m_flags |= M_FIRSTFRAG | M_FRAG;
997 m0->m_pkthdr.csum_data = nfrags;
998
999 /*
1000 * Update first fragment by trimming what's been copied out
1001 * and updating header.
1002 */
1003 m_adj(m0, hlen + firstlen - ip->ip_len);
1004 m0->m_pkthdr.len = hlen + firstlen;
1005 ip->ip_len = htons((u_short)m0->m_pkthdr.len);
1006 ip->ip_off |= IP_MF;
1007 ip->ip_off = htons(ip->ip_off);
1008 ip->ip_sum = 0;
1009 if (sw_csum & CSUM_DELAY_IP)
1010 ip->ip_sum = in_cksum(m0, hlen);
1011
1012done:
1013 *m_frag = m0;
1014 return error;
1015}
1016
1017void
1018in_delayed_cksum(struct mbuf *m)
1019{
1020 struct ip *ip;
1021 u_short csum, offset;
1022
1023 ip = mtod(m, struct ip *);
1024 offset = ip->ip_hl << 2 ;
1025 csum = in_cksum_skip(m, ip->ip_len, offset);
1026 if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
1027 csum = 0xffff;
1028 offset += m->m_pkthdr.csum_data; /* checksum offset */
1029
1030 if (offset + sizeof(u_short) > m->m_len) {
1031 printf("delayed m_pullup, m->len: %d off: %d p: %d\n",
1032 m->m_len, offset, ip->ip_p);
1033 /*
1034 * XXX
1035 * this shouldn't happen, but if it does, the
1036 * correct behavior may be to insert the checksum
1037 * in the existing chain instead of rearranging it.
1038 */
1039 m = m_pullup(m, offset + sizeof(u_short));
1040 }
1041 *(u_short *)(m->m_data + offset) = csum;
1042}
1043
1044/*
1045 * Insert IP options into preformed packet.
1046 * Adjust IP destination as required for IP source routing,
1047 * as indicated by a non-zero in_addr at the start of the options.
1048 *
1049 * XXX This routine assumes that the packet has no options in place.
1050 */
1051static struct mbuf *
1052ip_insertoptions(m, opt, phlen)
1053 register struct mbuf *m;
1054 struct mbuf *opt;
1055 int *phlen;
1056{
1057 register struct ipoption *p = mtod(opt, struct ipoption *);
1058 struct mbuf *n;
1059 register struct ip *ip = mtod(m, struct ip *);
1060 unsigned optlen;
1061
1062 optlen = opt->m_len - sizeof(p->ipopt_dst);
1063 if (optlen + ip->ip_len > IP_MAXPACKET) {
1064 *phlen = 0;
1065 return (m); /* XXX should fail */
1066 }
1067 if (p->ipopt_dst.s_addr)
1068 ip->ip_dst = p->ipopt_dst;
1069 if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) {
1070 MGETHDR(n, M_DONTWAIT, MT_HEADER);
1070 MGETHDR(n, M_DONTWAIT, MT_DATA);
1071 if (n == NULL) {
1072 *phlen = 0;
1073 return (m);
1074 }
1075 M_MOVE_PKTHDR(n, m);
1076 n->m_pkthdr.rcvif = NULL;
1077#ifdef MAC
1078 mac_copy_mbuf(m, n);
1079#endif
1080 n->m_pkthdr.len += optlen;
1081 m->m_len -= sizeof(struct ip);
1082 m->m_data += sizeof(struct ip);
1083 n->m_next = m;
1084 m = n;
1085 m->m_len = optlen + sizeof(struct ip);
1086 m->m_data += max_linkhdr;
1087 bcopy(ip, mtod(m, void *), sizeof(struct ip));
1088 } else {
1089 m->m_data -= optlen;
1090 m->m_len += optlen;
1091 m->m_pkthdr.len += optlen;
1092 bcopy(ip, mtod(m, void *), sizeof(struct ip));
1093 }
1094 ip = mtod(m, struct ip *);
1095 bcopy(p->ipopt_list, ip + 1, optlen);
1096 *phlen = sizeof(struct ip) + optlen;
1097 ip->ip_v = IPVERSION;
1098 ip->ip_hl = *phlen >> 2;
1099 ip->ip_len += optlen;
1100 return (m);
1101}
1102
1103/*
1104 * Copy options from ip to jp,
1105 * omitting those not copied during fragmentation.
1106 */
1107int
1108ip_optcopy(ip, jp)
1109 struct ip *ip, *jp;
1110{
1111 register u_char *cp, *dp;
1112 int opt, optlen, cnt;
1113
1114 cp = (u_char *)(ip + 1);
1115 dp = (u_char *)(jp + 1);
1116 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1117 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1118 opt = cp[0];
1119 if (opt == IPOPT_EOL)
1120 break;
1121 if (opt == IPOPT_NOP) {
1122 /* Preserve for IP mcast tunnel's LSRR alignment. */
1123 *dp++ = IPOPT_NOP;
1124 optlen = 1;
1125 continue;
1126 }
1127
1128 KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp),
1129 ("ip_optcopy: malformed ipv4 option"));
1130 optlen = cp[IPOPT_OLEN];
1131 KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen <= cnt,
1132 ("ip_optcopy: malformed ipv4 option"));
1133
1134 /* bogus lengths should have been caught by ip_dooptions */
1135 if (optlen > cnt)
1136 optlen = cnt;
1137 if (IPOPT_COPIED(opt)) {
1138 bcopy(cp, dp, optlen);
1139 dp += optlen;
1140 }
1141 }
1142 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1143 *dp++ = IPOPT_EOL;
1144 return (optlen);
1145}
1146
1147/*
1148 * IP socket option processing.
1149 */
1150int
1151ip_ctloutput(so, sopt)
1152 struct socket *so;
1153 struct sockopt *sopt;
1154{
1155 struct inpcb *inp = sotoinpcb(so);
1156 int error, optval;
1157
1158 error = optval = 0;
1159 if (sopt->sopt_level != IPPROTO_IP) {
1160 return (EINVAL);
1161 }
1162
1163 switch (sopt->sopt_dir) {
1164 case SOPT_SET:
1165 switch (sopt->sopt_name) {
1166 case IP_OPTIONS:
1167#ifdef notyet
1168 case IP_RETOPTS:
1169#endif
1170 {
1171 struct mbuf *m;
1172 if (sopt->sopt_valsize > MLEN) {
1173 error = EMSGSIZE;
1174 break;
1175 }
1176 MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA);
1177 if (m == NULL) {
1178 error = ENOBUFS;
1179 break;
1180 }
1181 m->m_len = sopt->sopt_valsize;
1182 error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
1183 m->m_len);
1184 INP_LOCK(inp);
1185 error = ip_pcbopts(inp, sopt->sopt_name, m);
1186 INP_UNLOCK(inp);
1187 return (error);
1188 }
1189
1190 case IP_TOS:
1191 case IP_TTL:
1192 case IP_MINTTL:
1193 case IP_RECVOPTS:
1194 case IP_RECVRETOPTS:
1195 case IP_RECVDSTADDR:
1196 case IP_RECVTTL:
1197 case IP_RECVIF:
1198 case IP_FAITH:
1199 case IP_ONESBCAST:
1200 case IP_DONTFRAG:
1201 error = sooptcopyin(sopt, &optval, sizeof optval,
1202 sizeof optval);
1203 if (error)
1204 break;
1205
1206 switch (sopt->sopt_name) {
1207 case IP_TOS:
1208 inp->inp_ip_tos = optval;
1209 break;
1210
1211 case IP_TTL:
1212 inp->inp_ip_ttl = optval;
1213 break;
1214
1215 case IP_MINTTL:
1216 if (optval > 0 && optval <= MAXTTL)
1217 inp->inp_ip_minttl = optval;
1218 else
1219 error = EINVAL;
1220 break;
1221
1222#define OPTSET(bit) do { \
1223 INP_LOCK(inp); \
1224 if (optval) \
1225 inp->inp_flags |= bit; \
1226 else \
1227 inp->inp_flags &= ~bit; \
1228 INP_UNLOCK(inp); \
1229} while (0)
1230
1231 case IP_RECVOPTS:
1232 OPTSET(INP_RECVOPTS);
1233 break;
1234
1235 case IP_RECVRETOPTS:
1236 OPTSET(INP_RECVRETOPTS);
1237 break;
1238
1239 case IP_RECVDSTADDR:
1240 OPTSET(INP_RECVDSTADDR);
1241 break;
1242
1243 case IP_RECVTTL:
1244 OPTSET(INP_RECVTTL);
1245 break;
1246
1247 case IP_RECVIF:
1248 OPTSET(INP_RECVIF);
1249 break;
1250
1251 case IP_FAITH:
1252 OPTSET(INP_FAITH);
1253 break;
1254
1255 case IP_ONESBCAST:
1256 OPTSET(INP_ONESBCAST);
1257 break;
1258 case IP_DONTFRAG:
1259 OPTSET(INP_DONTFRAG);
1260 break;
1261 }
1262 break;
1263#undef OPTSET
1264
1265 case IP_MULTICAST_IF:
1266 case IP_MULTICAST_VIF:
1267 case IP_MULTICAST_TTL:
1268 case IP_MULTICAST_LOOP:
1269 case IP_ADD_MEMBERSHIP:
1270 case IP_DROP_MEMBERSHIP:
1271 error = ip_setmoptions(inp, sopt);
1272 break;
1273
1274 case IP_PORTRANGE:
1275 error = sooptcopyin(sopt, &optval, sizeof optval,
1276 sizeof optval);
1277 if (error)
1278 break;
1279
1280 INP_LOCK(inp);
1281 switch (optval) {
1282 case IP_PORTRANGE_DEFAULT:
1283 inp->inp_flags &= ~(INP_LOWPORT);
1284 inp->inp_flags &= ~(INP_HIGHPORT);
1285 break;
1286
1287 case IP_PORTRANGE_HIGH:
1288 inp->inp_flags &= ~(INP_LOWPORT);
1289 inp->inp_flags |= INP_HIGHPORT;
1290 break;
1291
1292 case IP_PORTRANGE_LOW:
1293 inp->inp_flags &= ~(INP_HIGHPORT);
1294 inp->inp_flags |= INP_LOWPORT;
1295 break;
1296
1297 default:
1298 error = EINVAL;
1299 break;
1300 }
1301 INP_UNLOCK(inp);
1302 break;
1303
1304#if defined(IPSEC) || defined(FAST_IPSEC)
1305 case IP_IPSEC_POLICY:
1306 {
1307 caddr_t req;
1308 size_t len = 0;
1309 int priv;
1310 struct mbuf *m;
1311 int optname;
1312
1313 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1314 break;
1315 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1316 break;
1317 priv = (sopt->sopt_td != NULL &&
1318 suser(sopt->sopt_td) != 0) ? 0 : 1;
1319 req = mtod(m, caddr_t);
1320 len = m->m_len;
1321 optname = sopt->sopt_name;
1322 error = ipsec4_set_policy(inp, optname, req, len, priv);
1323 m_freem(m);
1324 break;
1325 }
1326#endif /*IPSEC*/
1327
1328 default:
1329 error = ENOPROTOOPT;
1330 break;
1331 }
1332 break;
1333
1334 case SOPT_GET:
1335 switch (sopt->sopt_name) {
1336 case IP_OPTIONS:
1337 case IP_RETOPTS:
1338 if (inp->inp_options)
1339 error = sooptcopyout(sopt,
1340 mtod(inp->inp_options,
1341 char *),
1342 inp->inp_options->m_len);
1343 else
1344 sopt->sopt_valsize = 0;
1345 break;
1346
1347 case IP_TOS:
1348 case IP_TTL:
1349 case IP_MINTTL:
1350 case IP_RECVOPTS:
1351 case IP_RECVRETOPTS:
1352 case IP_RECVDSTADDR:
1353 case IP_RECVTTL:
1354 case IP_RECVIF:
1355 case IP_PORTRANGE:
1356 case IP_FAITH:
1357 case IP_ONESBCAST:
1358 case IP_DONTFRAG:
1359 switch (sopt->sopt_name) {
1360
1361 case IP_TOS:
1362 optval = inp->inp_ip_tos;
1363 break;
1364
1365 case IP_TTL:
1366 optval = inp->inp_ip_ttl;
1367 break;
1368
1369 case IP_MINTTL:
1370 optval = inp->inp_ip_minttl;
1371 break;
1372
1373#define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
1374
1375 case IP_RECVOPTS:
1376 optval = OPTBIT(INP_RECVOPTS);
1377 break;
1378
1379 case IP_RECVRETOPTS:
1380 optval = OPTBIT(INP_RECVRETOPTS);
1381 break;
1382
1383 case IP_RECVDSTADDR:
1384 optval = OPTBIT(INP_RECVDSTADDR);
1385 break;
1386
1387 case IP_RECVTTL:
1388 optval = OPTBIT(INP_RECVTTL);
1389 break;
1390
1391 case IP_RECVIF:
1392 optval = OPTBIT(INP_RECVIF);
1393 break;
1394
1395 case IP_PORTRANGE:
1396 if (inp->inp_flags & INP_HIGHPORT)
1397 optval = IP_PORTRANGE_HIGH;
1398 else if (inp->inp_flags & INP_LOWPORT)
1399 optval = IP_PORTRANGE_LOW;
1400 else
1401 optval = 0;
1402 break;
1403
1404 case IP_FAITH:
1405 optval = OPTBIT(INP_FAITH);
1406 break;
1407
1408 case IP_ONESBCAST:
1409 optval = OPTBIT(INP_ONESBCAST);
1410 break;
1411 case IP_DONTFRAG:
1412 optval = OPTBIT(INP_DONTFRAG);
1413 break;
1414 }
1415 error = sooptcopyout(sopt, &optval, sizeof optval);
1416 break;
1417
1418 case IP_MULTICAST_IF:
1419 case IP_MULTICAST_VIF:
1420 case IP_MULTICAST_TTL:
1421 case IP_MULTICAST_LOOP:
1422 case IP_ADD_MEMBERSHIP:
1423 case IP_DROP_MEMBERSHIP:
1424 error = ip_getmoptions(inp, sopt);
1425 break;
1426
1427#if defined(IPSEC) || defined(FAST_IPSEC)
1428 case IP_IPSEC_POLICY:
1429 {
1430 struct mbuf *m = NULL;
1431 caddr_t req = NULL;
1432 size_t len = 0;
1433
1434 if (m != 0) {
1435 req = mtod(m, caddr_t);
1436 len = m->m_len;
1437 }
1438 error = ipsec4_get_policy(sotoinpcb(so), req, len, &m);
1439 if (error == 0)
1440 error = soopt_mcopyout(sopt, m); /* XXX */
1441 if (error == 0)
1442 m_freem(m);
1443 break;
1444 }
1445#endif /*IPSEC*/
1446
1447 default:
1448 error = ENOPROTOOPT;
1449 break;
1450 }
1451 break;
1452 }
1453 return (error);
1454}
1455
1456/*
1457 * Set up IP options in pcb for insertion in output packets.
1458 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1459 * with destination address if source routed.
1460 */
1461static int
1462ip_pcbopts(struct inpcb *inp, int optname, struct mbuf *m)
1463{
1464 register int cnt, optlen;
1465 register u_char *cp;
1466 struct mbuf **pcbopt;
1467 u_char opt;
1468
1469 INP_LOCK_ASSERT(inp);
1470
1471 pcbopt = &inp->inp_options;
1472
1473 /* turn off any old options */
1474 if (*pcbopt)
1475 (void)m_free(*pcbopt);
1476 *pcbopt = 0;
1477 if (m == NULL || m->m_len == 0) {
1478 /*
1479 * Only turning off any previous options.
1480 */
1481 if (m != NULL)
1482 (void)m_free(m);
1483 return (0);
1484 }
1485
1486 if (m->m_len % sizeof(int32_t))
1487 goto bad;
1488 /*
1489 * IP first-hop destination address will be stored before
1490 * actual options; move other options back
1491 * and clear it when none present.
1492 */
1493 if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1494 goto bad;
1495 cnt = m->m_len;
1496 m->m_len += sizeof(struct in_addr);
1497 cp = mtod(m, u_char *) + sizeof(struct in_addr);
1498 bcopy(mtod(m, void *), cp, (unsigned)cnt);
1499 bzero(mtod(m, void *), sizeof(struct in_addr));
1500
1501 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1502 opt = cp[IPOPT_OPTVAL];
1503 if (opt == IPOPT_EOL)
1504 break;
1505 if (opt == IPOPT_NOP)
1506 optlen = 1;
1507 else {
1508 if (cnt < IPOPT_OLEN + sizeof(*cp))
1509 goto bad;
1510 optlen = cp[IPOPT_OLEN];
1511 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1512 goto bad;
1513 }
1514 switch (opt) {
1515
1516 default:
1517 break;
1518
1519 case IPOPT_LSRR:
1520 case IPOPT_SSRR:
1521 /*
1522 * user process specifies route as:
1523 * ->A->B->C->D
1524 * D must be our final destination (but we can't
1525 * check that since we may not have connected yet).
1526 * A is first hop destination, which doesn't appear in
1527 * actual IP option, but is stored before the options.
1528 */
1529 if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1530 goto bad;
1531 m->m_len -= sizeof(struct in_addr);
1532 cnt -= sizeof(struct in_addr);
1533 optlen -= sizeof(struct in_addr);
1534 cp[IPOPT_OLEN] = optlen;
1535 /*
1536 * Move first hop before start of options.
1537 */
1538 bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1539 sizeof(struct in_addr));
1540 /*
1541 * Then copy rest of options back
1542 * to close up the deleted entry.
1543 */
1544 bcopy((&cp[IPOPT_OFFSET+1] + sizeof(struct in_addr)),
1545 &cp[IPOPT_OFFSET+1],
1546 (unsigned)cnt - (IPOPT_MINOFF - 1));
1547 break;
1548 }
1549 }
1550 if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1551 goto bad;
1552 *pcbopt = m;
1553 return (0);
1554
1555bad:
1556 (void)m_free(m);
1557 return (EINVAL);
1558}
1559
1560/*
1561 * XXX
1562 * The whole multicast option thing needs to be re-thought.
1563 * Several of these options are equally applicable to non-multicast
1564 * transmission, and one (IP_MULTICAST_TTL) totally duplicates a
1565 * standard option (IP_TTL).
1566 */
1567
1568/*
1569 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1570 */
1571static struct ifnet *
1572ip_multicast_if(a, ifindexp)
1573 struct in_addr *a;
1574 int *ifindexp;
1575{
1576 int ifindex;
1577 struct ifnet *ifp;
1578
1579 if (ifindexp)
1580 *ifindexp = 0;
1581 if (ntohl(a->s_addr) >> 24 == 0) {
1582 ifindex = ntohl(a->s_addr) & 0xffffff;
1583 if (ifindex < 0 || if_index < ifindex)
1584 return NULL;
1585 ifp = ifnet_byindex(ifindex);
1586 if (ifindexp)
1587 *ifindexp = ifindex;
1588 } else {
1589 INADDR_TO_IFP(*a, ifp);
1590 }
1591 return ifp;
1592}
1593
1594/*
1595 * Given an inpcb, return its multicast options structure pointer. Accepts
1596 * an unlocked inpcb pointer, but will return it locked. May sleep.
1597 */
1598static struct ip_moptions *
1599ip_findmoptions(struct inpcb *inp)
1600{
1601 struct ip_moptions *imo;
1602
1603 INP_LOCK(inp);
1604 if (inp->inp_moptions != NULL)
1605 return (inp->inp_moptions);
1606
1607 INP_UNLOCK(inp);
1608
1609 imo = (struct ip_moptions*)malloc(sizeof(*imo), M_IPMOPTS, M_WAITOK);
1610
1611 imo->imo_multicast_ifp = NULL;
1612 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1613 imo->imo_multicast_vif = -1;
1614 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1615 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1616 imo->imo_num_memberships = 0;
1617
1618 INP_LOCK(inp);
1619 if (inp->inp_moptions != NULL) {
1620 free(imo, M_IPMOPTS);
1621 return (inp->inp_moptions);
1622 }
1623 inp->inp_moptions = imo;
1624 return (imo);
1625}
1626
1627/*
1628 * Set the IP multicast options in response to user setsockopt().
1629 */
1630static int
1631ip_setmoptions(struct inpcb *inp, struct sockopt *sopt)
1632{
1633 int error = 0;
1634 int i;
1635 struct in_addr addr;
1636 struct ip_mreq mreq;
1637 struct ifnet *ifp;
1638 struct ip_moptions *imo;
1639 struct route ro;
1640 struct sockaddr_in *dst;
1641 int ifindex;
1642 int s;
1643
1644 switch (sopt->sopt_name) {
1645 /* store an index number for the vif you wanna use in the send */
1646 case IP_MULTICAST_VIF:
1647 if (legal_vif_num == 0) {
1648 error = EOPNOTSUPP;
1649 break;
1650 }
1651 error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
1652 if (error)
1653 break;
1654 if (!legal_vif_num(i) && (i != -1)) {
1655 error = EINVAL;
1656 break;
1657 }
1658 imo = ip_findmoptions(inp);
1659 imo->imo_multicast_vif = i;
1660 INP_UNLOCK(inp);
1661 break;
1662
1663 case IP_MULTICAST_IF:
1664 /*
1665 * Select the interface for outgoing multicast packets.
1666 */
1667 error = sooptcopyin(sopt, &addr, sizeof addr, sizeof addr);
1668 if (error)
1669 break;
1670 /*
1671 * INADDR_ANY is used to remove a previous selection.
1672 * When no interface is selected, a default one is
1673 * chosen every time a multicast packet is sent.
1674 */
1675 imo = ip_findmoptions(inp);
1676 if (addr.s_addr == INADDR_ANY) {
1677 imo->imo_multicast_ifp = NULL;
1678 INP_UNLOCK(inp);
1679 break;
1680 }
1681 /*
1682 * The selected interface is identified by its local
1683 * IP address. Find the interface and confirm that
1684 * it supports multicasting.
1685 */
1686 s = splimp();
1687 ifp = ip_multicast_if(&addr, &ifindex);
1688 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1689 INP_UNLOCK(inp);
1690 splx(s);
1691 error = EADDRNOTAVAIL;
1692 break;
1693 }
1694 imo->imo_multicast_ifp = ifp;
1695 if (ifindex)
1696 imo->imo_multicast_addr = addr;
1697 else
1698 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1699 INP_UNLOCK(inp);
1700 splx(s);
1701 break;
1702
1703 case IP_MULTICAST_TTL:
1704 /*
1705 * Set the IP time-to-live for outgoing multicast packets.
1706 * The original multicast API required a char argument,
1707 * which is inconsistent with the rest of the socket API.
1708 * We allow either a char or an int.
1709 */
1710 if (sopt->sopt_valsize == 1) {
1711 u_char ttl;
1712 error = sooptcopyin(sopt, &ttl, 1, 1);
1713 if (error)
1714 break;
1715 imo = ip_findmoptions(inp);
1716 imo->imo_multicast_ttl = ttl;
1717 INP_UNLOCK(inp);
1718 } else {
1719 u_int ttl;
1720 error = sooptcopyin(sopt, &ttl, sizeof ttl,
1721 sizeof ttl);
1722 if (error)
1723 break;
1724 if (ttl > 255)
1725 error = EINVAL;
1726 else {
1727 imo = ip_findmoptions(inp);
1728 imo->imo_multicast_ttl = ttl;
1729 INP_UNLOCK(inp);
1730 }
1731 }
1732 break;
1733
1734 case IP_MULTICAST_LOOP:
1735 /*
1736 * Set the loopback flag for outgoing multicast packets.
1737 * Must be zero or one. The original multicast API required a
1738 * char argument, which is inconsistent with the rest
1739 * of the socket API. We allow either a char or an int.
1740 */
1741 if (sopt->sopt_valsize == 1) {
1742 u_char loop;
1743 error = sooptcopyin(sopt, &loop, 1, 1);
1744 if (error)
1745 break;
1746 imo = ip_findmoptions(inp);
1747 imo->imo_multicast_loop = !!loop;
1748 INP_UNLOCK(inp);
1749 } else {
1750 u_int loop;
1751 error = sooptcopyin(sopt, &loop, sizeof loop,
1752 sizeof loop);
1753 if (error)
1754 break;
1755 imo = ip_findmoptions(inp);
1756 imo->imo_multicast_loop = !!loop;
1757 INP_UNLOCK(inp);
1758 }
1759 break;
1760
1761 case IP_ADD_MEMBERSHIP:
1762 /*
1763 * Add a multicast group membership.
1764 * Group must be a valid IP multicast address.
1765 */
1766 error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
1767 if (error)
1768 break;
1769
1770 if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1771 error = EINVAL;
1772 break;
1773 }
1774 s = splimp();
1775 /*
1776 * If no interface address was provided, use the interface of
1777 * the route to the given multicast address.
1778 */
1779 if (mreq.imr_interface.s_addr == INADDR_ANY) {
1780 bzero((caddr_t)&ro, sizeof(ro));
1781 dst = (struct sockaddr_in *)&ro.ro_dst;
1782 dst->sin_len = sizeof(*dst);
1783 dst->sin_family = AF_INET;
1784 dst->sin_addr = mreq.imr_multiaddr;
1785 rtalloc_ign(&ro, RTF_CLONING);
1786 if (ro.ro_rt == NULL) {
1787 error = EADDRNOTAVAIL;
1788 splx(s);
1789 break;
1790 }
1791 ifp = ro.ro_rt->rt_ifp;
1792 RTFREE(ro.ro_rt);
1793 }
1794 else {
1795 ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1796 }
1797
1798 /*
1799 * See if we found an interface, and confirm that it
1800 * supports multicast.
1801 */
1802 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1803 error = EADDRNOTAVAIL;
1804 splx(s);
1805 break;
1806 }
1807 /*
1808 * See if the membership already exists or if all the
1809 * membership slots are full.
1810 */
1811 imo = ip_findmoptions(inp);
1812 for (i = 0; i < imo->imo_num_memberships; ++i) {
1813 if (imo->imo_membership[i]->inm_ifp == ifp &&
1814 imo->imo_membership[i]->inm_addr.s_addr
1815 == mreq.imr_multiaddr.s_addr)
1816 break;
1817 }
1818 if (i < imo->imo_num_memberships) {
1819 INP_UNLOCK(inp);
1820 error = EADDRINUSE;
1821 splx(s);
1822 break;
1823 }
1824 if (i == IP_MAX_MEMBERSHIPS) {
1825 INP_UNLOCK(inp);
1826 error = ETOOMANYREFS;
1827 splx(s);
1828 break;
1829 }
1830 /*
1831 * Everything looks good; add a new record to the multicast
1832 * address list for the given interface.
1833 */
1834 if ((imo->imo_membership[i] =
1835 in_addmulti(&mreq.imr_multiaddr, ifp)) == NULL) {
1836 INP_UNLOCK(inp);
1837 error = ENOBUFS;
1838 splx(s);
1839 break;
1840 }
1841 ++imo->imo_num_memberships;
1842 INP_UNLOCK(inp);
1843 splx(s);
1844 break;
1845
1846 case IP_DROP_MEMBERSHIP:
1847 /*
1848 * Drop a multicast group membership.
1849 * Group must be a valid IP multicast address.
1850 */
1851 error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
1852 if (error)
1853 break;
1854
1855 if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1856 error = EINVAL;
1857 break;
1858 }
1859
1860 s = splimp();
1861 /*
1862 * If an interface address was specified, get a pointer
1863 * to its ifnet structure.
1864 */
1865 if (mreq.imr_interface.s_addr == INADDR_ANY)
1866 ifp = NULL;
1867 else {
1868 ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1869 if (ifp == NULL) {
1870 error = EADDRNOTAVAIL;
1871 splx(s);
1872 break;
1873 }
1874 }
1875 /*
1876 * Find the membership in the membership array.
1877 */
1878 imo = ip_findmoptions(inp);
1879 for (i = 0; i < imo->imo_num_memberships; ++i) {
1880 if ((ifp == NULL ||
1881 imo->imo_membership[i]->inm_ifp == ifp) &&
1882 imo->imo_membership[i]->inm_addr.s_addr ==
1883 mreq.imr_multiaddr.s_addr)
1884 break;
1885 }
1886 if (i == imo->imo_num_memberships) {
1887 INP_UNLOCK(inp);
1888 error = EADDRNOTAVAIL;
1889 splx(s);
1890 break;
1891 }
1892 /*
1893 * Give up the multicast address record to which the
1894 * membership points.
1895 */
1896 in_delmulti(imo->imo_membership[i]);
1897 /*
1898 * Remove the gap in the membership array.
1899 */
1900 for (++i; i < imo->imo_num_memberships; ++i)
1901 imo->imo_membership[i-1] = imo->imo_membership[i];
1902 --imo->imo_num_memberships;
1903 INP_UNLOCK(inp);
1904 splx(s);
1905 break;
1906
1907 default:
1908 error = EOPNOTSUPP;
1909 break;
1910 }
1911
1912 return (error);
1913}
1914
1915/*
1916 * Return the IP multicast options in response to user getsockopt().
1917 */
1918static int
1919ip_getmoptions(struct inpcb *inp, struct sockopt *sopt)
1920{
1921 struct ip_moptions *imo;
1922 struct in_addr addr;
1923 struct in_ifaddr *ia;
1924 int error, optval;
1925 u_char coptval;
1926
1927 INP_LOCK(inp);
1928 imo = inp->inp_moptions;
1929
1930 error = 0;
1931 switch (sopt->sopt_name) {
1932 case IP_MULTICAST_VIF:
1933 if (imo != NULL)
1934 optval = imo->imo_multicast_vif;
1935 else
1936 optval = -1;
1937 INP_UNLOCK(inp);
1938 error = sooptcopyout(sopt, &optval, sizeof optval);
1939 break;
1940
1941 case IP_MULTICAST_IF:
1942 if (imo == NULL || imo->imo_multicast_ifp == NULL)
1943 addr.s_addr = INADDR_ANY;
1944 else if (imo->imo_multicast_addr.s_addr) {
1945 /* return the value user has set */
1946 addr = imo->imo_multicast_addr;
1947 } else {
1948 IFP_TO_IA(imo->imo_multicast_ifp, ia);
1949 addr.s_addr = (ia == NULL) ? INADDR_ANY
1950 : IA_SIN(ia)->sin_addr.s_addr;
1951 }
1952 INP_UNLOCK(inp);
1953 error = sooptcopyout(sopt, &addr, sizeof addr);
1954 break;
1955
1956 case IP_MULTICAST_TTL:
1957 if (imo == 0)
1958 optval = coptval = IP_DEFAULT_MULTICAST_TTL;
1959 else
1960 optval = coptval = imo->imo_multicast_ttl;
1961 INP_UNLOCK(inp);
1962 if (sopt->sopt_valsize == 1)
1963 error = sooptcopyout(sopt, &coptval, 1);
1964 else
1965 error = sooptcopyout(sopt, &optval, sizeof optval);
1966 break;
1967
1968 case IP_MULTICAST_LOOP:
1969 if (imo == 0)
1970 optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
1971 else
1972 optval = coptval = imo->imo_multicast_loop;
1973 INP_UNLOCK(inp);
1974 if (sopt->sopt_valsize == 1)
1975 error = sooptcopyout(sopt, &coptval, 1);
1976 else
1977 error = sooptcopyout(sopt, &optval, sizeof optval);
1978 break;
1979
1980 default:
1981 INP_UNLOCK(inp);
1982 error = ENOPROTOOPT;
1983 break;
1984 }
1985 INP_UNLOCK_ASSERT(inp);
1986
1987 return (error);
1988}
1989
1990/*
1991 * Discard the IP multicast options.
1992 */
1993void
1994ip_freemoptions(imo)
1995 register struct ip_moptions *imo;
1996{
1997 register int i;
1998
1999 if (imo != NULL) {
2000 for (i = 0; i < imo->imo_num_memberships; ++i)
2001 in_delmulti(imo->imo_membership[i]);
2002 free(imo, M_IPMOPTS);
2003 }
2004}
2005
2006/*
2007 * Routine called from ip_output() to loop back a copy of an IP multicast
2008 * packet to the input queue of a specified interface. Note that this
2009 * calls the output routine of the loopback "driver", but with an interface
2010 * pointer that might NOT be a loopback interface -- evil, but easier than
2011 * replicating that code here.
2012 */
2013static void
2014ip_mloopback(ifp, m, dst, hlen)
2015 struct ifnet *ifp;
2016 register struct mbuf *m;
2017 register struct sockaddr_in *dst;
2018 int hlen;
2019{
2020 register struct ip *ip;
2021 struct mbuf *copym;
2022
2023 copym = m_copy(m, 0, M_COPYALL);
2024 if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
2025 copym = m_pullup(copym, hlen);
2026 if (copym != NULL) {
2027 /* If needed, compute the checksum and mark it as valid. */
2028 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2029 in_delayed_cksum(copym);
2030 copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2031 copym->m_pkthdr.csum_flags |=
2032 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2033 copym->m_pkthdr.csum_data = 0xffff;
2034 }
2035 /*
2036 * We don't bother to fragment if the IP length is greater
2037 * than the interface's MTU. Can this possibly matter?
2038 */
2039 ip = mtod(copym, struct ip *);
2040 ip->ip_len = htons(ip->ip_len);
2041 ip->ip_off = htons(ip->ip_off);
2042 ip->ip_sum = 0;
2043 ip->ip_sum = in_cksum(copym, hlen);
2044 /*
2045 * NB:
2046 * It's not clear whether there are any lingering
2047 * reentrancy problems in other areas which might
2048 * be exposed by using ip_input directly (in
2049 * particular, everything which modifies the packet
2050 * in-place). Yet another option is using the
2051 * protosw directly to deliver the looped back
2052 * packet. For the moment, we'll err on the side
2053 * of safety by using if_simloop().
2054 */
2055#if 1 /* XXX */
2056 if (dst->sin_family != AF_INET) {
2057 printf("ip_mloopback: bad address family %d\n",
2058 dst->sin_family);
2059 dst->sin_family = AF_INET;
2060 }
2061#endif
2062
2063#ifdef notdef
2064 copym->m_pkthdr.rcvif = ifp;
2065 ip_input(copym);
2066#else
2067 if_simloop(ifp, copym, dst->sin_family, 0);
2068#endif
2069 }
2070}
1071 if (n == NULL) {
1072 *phlen = 0;
1073 return (m);
1074 }
1075 M_MOVE_PKTHDR(n, m);
1076 n->m_pkthdr.rcvif = NULL;
1077#ifdef MAC
1078 mac_copy_mbuf(m, n);
1079#endif
1080 n->m_pkthdr.len += optlen;
1081 m->m_len -= sizeof(struct ip);
1082 m->m_data += sizeof(struct ip);
1083 n->m_next = m;
1084 m = n;
1085 m->m_len = optlen + sizeof(struct ip);
1086 m->m_data += max_linkhdr;
1087 bcopy(ip, mtod(m, void *), sizeof(struct ip));
1088 } else {
1089 m->m_data -= optlen;
1090 m->m_len += optlen;
1091 m->m_pkthdr.len += optlen;
1092 bcopy(ip, mtod(m, void *), sizeof(struct ip));
1093 }
1094 ip = mtod(m, struct ip *);
1095 bcopy(p->ipopt_list, ip + 1, optlen);
1096 *phlen = sizeof(struct ip) + optlen;
1097 ip->ip_v = IPVERSION;
1098 ip->ip_hl = *phlen >> 2;
1099 ip->ip_len += optlen;
1100 return (m);
1101}
1102
1103/*
1104 * Copy options from ip to jp,
1105 * omitting those not copied during fragmentation.
1106 */
1107int
1108ip_optcopy(ip, jp)
1109 struct ip *ip, *jp;
1110{
1111 register u_char *cp, *dp;
1112 int opt, optlen, cnt;
1113
1114 cp = (u_char *)(ip + 1);
1115 dp = (u_char *)(jp + 1);
1116 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1117 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1118 opt = cp[0];
1119 if (opt == IPOPT_EOL)
1120 break;
1121 if (opt == IPOPT_NOP) {
1122 /* Preserve for IP mcast tunnel's LSRR alignment. */
1123 *dp++ = IPOPT_NOP;
1124 optlen = 1;
1125 continue;
1126 }
1127
1128 KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp),
1129 ("ip_optcopy: malformed ipv4 option"));
1130 optlen = cp[IPOPT_OLEN];
1131 KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen <= cnt,
1132 ("ip_optcopy: malformed ipv4 option"));
1133
1134 /* bogus lengths should have been caught by ip_dooptions */
1135 if (optlen > cnt)
1136 optlen = cnt;
1137 if (IPOPT_COPIED(opt)) {
1138 bcopy(cp, dp, optlen);
1139 dp += optlen;
1140 }
1141 }
1142 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1143 *dp++ = IPOPT_EOL;
1144 return (optlen);
1145}
1146
1147/*
1148 * IP socket option processing.
1149 */
1150int
1151ip_ctloutput(so, sopt)
1152 struct socket *so;
1153 struct sockopt *sopt;
1154{
1155 struct inpcb *inp = sotoinpcb(so);
1156 int error, optval;
1157
1158 error = optval = 0;
1159 if (sopt->sopt_level != IPPROTO_IP) {
1160 return (EINVAL);
1161 }
1162
1163 switch (sopt->sopt_dir) {
1164 case SOPT_SET:
1165 switch (sopt->sopt_name) {
1166 case IP_OPTIONS:
1167#ifdef notyet
1168 case IP_RETOPTS:
1169#endif
1170 {
1171 struct mbuf *m;
1172 if (sopt->sopt_valsize > MLEN) {
1173 error = EMSGSIZE;
1174 break;
1175 }
1176 MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA);
1177 if (m == NULL) {
1178 error = ENOBUFS;
1179 break;
1180 }
1181 m->m_len = sopt->sopt_valsize;
1182 error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
1183 m->m_len);
1184 INP_LOCK(inp);
1185 error = ip_pcbopts(inp, sopt->sopt_name, m);
1186 INP_UNLOCK(inp);
1187 return (error);
1188 }
1189
1190 case IP_TOS:
1191 case IP_TTL:
1192 case IP_MINTTL:
1193 case IP_RECVOPTS:
1194 case IP_RECVRETOPTS:
1195 case IP_RECVDSTADDR:
1196 case IP_RECVTTL:
1197 case IP_RECVIF:
1198 case IP_FAITH:
1199 case IP_ONESBCAST:
1200 case IP_DONTFRAG:
1201 error = sooptcopyin(sopt, &optval, sizeof optval,
1202 sizeof optval);
1203 if (error)
1204 break;
1205
1206 switch (sopt->sopt_name) {
1207 case IP_TOS:
1208 inp->inp_ip_tos = optval;
1209 break;
1210
1211 case IP_TTL:
1212 inp->inp_ip_ttl = optval;
1213 break;
1214
1215 case IP_MINTTL:
1216 if (optval > 0 && optval <= MAXTTL)
1217 inp->inp_ip_minttl = optval;
1218 else
1219 error = EINVAL;
1220 break;
1221
1222#define OPTSET(bit) do { \
1223 INP_LOCK(inp); \
1224 if (optval) \
1225 inp->inp_flags |= bit; \
1226 else \
1227 inp->inp_flags &= ~bit; \
1228 INP_UNLOCK(inp); \
1229} while (0)
1230
1231 case IP_RECVOPTS:
1232 OPTSET(INP_RECVOPTS);
1233 break;
1234
1235 case IP_RECVRETOPTS:
1236 OPTSET(INP_RECVRETOPTS);
1237 break;
1238
1239 case IP_RECVDSTADDR:
1240 OPTSET(INP_RECVDSTADDR);
1241 break;
1242
1243 case IP_RECVTTL:
1244 OPTSET(INP_RECVTTL);
1245 break;
1246
1247 case IP_RECVIF:
1248 OPTSET(INP_RECVIF);
1249 break;
1250
1251 case IP_FAITH:
1252 OPTSET(INP_FAITH);
1253 break;
1254
1255 case IP_ONESBCAST:
1256 OPTSET(INP_ONESBCAST);
1257 break;
1258 case IP_DONTFRAG:
1259 OPTSET(INP_DONTFRAG);
1260 break;
1261 }
1262 break;
1263#undef OPTSET
1264
1265 case IP_MULTICAST_IF:
1266 case IP_MULTICAST_VIF:
1267 case IP_MULTICAST_TTL:
1268 case IP_MULTICAST_LOOP:
1269 case IP_ADD_MEMBERSHIP:
1270 case IP_DROP_MEMBERSHIP:
1271 error = ip_setmoptions(inp, sopt);
1272 break;
1273
1274 case IP_PORTRANGE:
1275 error = sooptcopyin(sopt, &optval, sizeof optval,
1276 sizeof optval);
1277 if (error)
1278 break;
1279
1280 INP_LOCK(inp);
1281 switch (optval) {
1282 case IP_PORTRANGE_DEFAULT:
1283 inp->inp_flags &= ~(INP_LOWPORT);
1284 inp->inp_flags &= ~(INP_HIGHPORT);
1285 break;
1286
1287 case IP_PORTRANGE_HIGH:
1288 inp->inp_flags &= ~(INP_LOWPORT);
1289 inp->inp_flags |= INP_HIGHPORT;
1290 break;
1291
1292 case IP_PORTRANGE_LOW:
1293 inp->inp_flags &= ~(INP_HIGHPORT);
1294 inp->inp_flags |= INP_LOWPORT;
1295 break;
1296
1297 default:
1298 error = EINVAL;
1299 break;
1300 }
1301 INP_UNLOCK(inp);
1302 break;
1303
1304#if defined(IPSEC) || defined(FAST_IPSEC)
1305 case IP_IPSEC_POLICY:
1306 {
1307 caddr_t req;
1308 size_t len = 0;
1309 int priv;
1310 struct mbuf *m;
1311 int optname;
1312
1313 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1314 break;
1315 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1316 break;
1317 priv = (sopt->sopt_td != NULL &&
1318 suser(sopt->sopt_td) != 0) ? 0 : 1;
1319 req = mtod(m, caddr_t);
1320 len = m->m_len;
1321 optname = sopt->sopt_name;
1322 error = ipsec4_set_policy(inp, optname, req, len, priv);
1323 m_freem(m);
1324 break;
1325 }
1326#endif /*IPSEC*/
1327
1328 default:
1329 error = ENOPROTOOPT;
1330 break;
1331 }
1332 break;
1333
1334 case SOPT_GET:
1335 switch (sopt->sopt_name) {
1336 case IP_OPTIONS:
1337 case IP_RETOPTS:
1338 if (inp->inp_options)
1339 error = sooptcopyout(sopt,
1340 mtod(inp->inp_options,
1341 char *),
1342 inp->inp_options->m_len);
1343 else
1344 sopt->sopt_valsize = 0;
1345 break;
1346
1347 case IP_TOS:
1348 case IP_TTL:
1349 case IP_MINTTL:
1350 case IP_RECVOPTS:
1351 case IP_RECVRETOPTS:
1352 case IP_RECVDSTADDR:
1353 case IP_RECVTTL:
1354 case IP_RECVIF:
1355 case IP_PORTRANGE:
1356 case IP_FAITH:
1357 case IP_ONESBCAST:
1358 case IP_DONTFRAG:
1359 switch (sopt->sopt_name) {
1360
1361 case IP_TOS:
1362 optval = inp->inp_ip_tos;
1363 break;
1364
1365 case IP_TTL:
1366 optval = inp->inp_ip_ttl;
1367 break;
1368
1369 case IP_MINTTL:
1370 optval = inp->inp_ip_minttl;
1371 break;
1372
1373#define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
1374
1375 case IP_RECVOPTS:
1376 optval = OPTBIT(INP_RECVOPTS);
1377 break;
1378
1379 case IP_RECVRETOPTS:
1380 optval = OPTBIT(INP_RECVRETOPTS);
1381 break;
1382
1383 case IP_RECVDSTADDR:
1384 optval = OPTBIT(INP_RECVDSTADDR);
1385 break;
1386
1387 case IP_RECVTTL:
1388 optval = OPTBIT(INP_RECVTTL);
1389 break;
1390
1391 case IP_RECVIF:
1392 optval = OPTBIT(INP_RECVIF);
1393 break;
1394
1395 case IP_PORTRANGE:
1396 if (inp->inp_flags & INP_HIGHPORT)
1397 optval = IP_PORTRANGE_HIGH;
1398 else if (inp->inp_flags & INP_LOWPORT)
1399 optval = IP_PORTRANGE_LOW;
1400 else
1401 optval = 0;
1402 break;
1403
1404 case IP_FAITH:
1405 optval = OPTBIT(INP_FAITH);
1406 break;
1407
1408 case IP_ONESBCAST:
1409 optval = OPTBIT(INP_ONESBCAST);
1410 break;
1411 case IP_DONTFRAG:
1412 optval = OPTBIT(INP_DONTFRAG);
1413 break;
1414 }
1415 error = sooptcopyout(sopt, &optval, sizeof optval);
1416 break;
1417
1418 case IP_MULTICAST_IF:
1419 case IP_MULTICAST_VIF:
1420 case IP_MULTICAST_TTL:
1421 case IP_MULTICAST_LOOP:
1422 case IP_ADD_MEMBERSHIP:
1423 case IP_DROP_MEMBERSHIP:
1424 error = ip_getmoptions(inp, sopt);
1425 break;
1426
1427#if defined(IPSEC) || defined(FAST_IPSEC)
1428 case IP_IPSEC_POLICY:
1429 {
1430 struct mbuf *m = NULL;
1431 caddr_t req = NULL;
1432 size_t len = 0;
1433
1434 if (m != 0) {
1435 req = mtod(m, caddr_t);
1436 len = m->m_len;
1437 }
1438 error = ipsec4_get_policy(sotoinpcb(so), req, len, &m);
1439 if (error == 0)
1440 error = soopt_mcopyout(sopt, m); /* XXX */
1441 if (error == 0)
1442 m_freem(m);
1443 break;
1444 }
1445#endif /*IPSEC*/
1446
1447 default:
1448 error = ENOPROTOOPT;
1449 break;
1450 }
1451 break;
1452 }
1453 return (error);
1454}
1455
1456/*
1457 * Set up IP options in pcb for insertion in output packets.
1458 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1459 * with destination address if source routed.
1460 */
1461static int
1462ip_pcbopts(struct inpcb *inp, int optname, struct mbuf *m)
1463{
1464 register int cnt, optlen;
1465 register u_char *cp;
1466 struct mbuf **pcbopt;
1467 u_char opt;
1468
1469 INP_LOCK_ASSERT(inp);
1470
1471 pcbopt = &inp->inp_options;
1472
1473 /* turn off any old options */
1474 if (*pcbopt)
1475 (void)m_free(*pcbopt);
1476 *pcbopt = 0;
1477 if (m == NULL || m->m_len == 0) {
1478 /*
1479 * Only turning off any previous options.
1480 */
1481 if (m != NULL)
1482 (void)m_free(m);
1483 return (0);
1484 }
1485
1486 if (m->m_len % sizeof(int32_t))
1487 goto bad;
1488 /*
1489 * IP first-hop destination address will be stored before
1490 * actual options; move other options back
1491 * and clear it when none present.
1492 */
1493 if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1494 goto bad;
1495 cnt = m->m_len;
1496 m->m_len += sizeof(struct in_addr);
1497 cp = mtod(m, u_char *) + sizeof(struct in_addr);
1498 bcopy(mtod(m, void *), cp, (unsigned)cnt);
1499 bzero(mtod(m, void *), sizeof(struct in_addr));
1500
1501 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1502 opt = cp[IPOPT_OPTVAL];
1503 if (opt == IPOPT_EOL)
1504 break;
1505 if (opt == IPOPT_NOP)
1506 optlen = 1;
1507 else {
1508 if (cnt < IPOPT_OLEN + sizeof(*cp))
1509 goto bad;
1510 optlen = cp[IPOPT_OLEN];
1511 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1512 goto bad;
1513 }
1514 switch (opt) {
1515
1516 default:
1517 break;
1518
1519 case IPOPT_LSRR:
1520 case IPOPT_SSRR:
1521 /*
1522 * user process specifies route as:
1523 * ->A->B->C->D
1524 * D must be our final destination (but we can't
1525 * check that since we may not have connected yet).
1526 * A is first hop destination, which doesn't appear in
1527 * actual IP option, but is stored before the options.
1528 */
1529 if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1530 goto bad;
1531 m->m_len -= sizeof(struct in_addr);
1532 cnt -= sizeof(struct in_addr);
1533 optlen -= sizeof(struct in_addr);
1534 cp[IPOPT_OLEN] = optlen;
1535 /*
1536 * Move first hop before start of options.
1537 */
1538 bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1539 sizeof(struct in_addr));
1540 /*
1541 * Then copy rest of options back
1542 * to close up the deleted entry.
1543 */
1544 bcopy((&cp[IPOPT_OFFSET+1] + sizeof(struct in_addr)),
1545 &cp[IPOPT_OFFSET+1],
1546 (unsigned)cnt - (IPOPT_MINOFF - 1));
1547 break;
1548 }
1549 }
1550 if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1551 goto bad;
1552 *pcbopt = m;
1553 return (0);
1554
1555bad:
1556 (void)m_free(m);
1557 return (EINVAL);
1558}
1559
1560/*
1561 * XXX
1562 * The whole multicast option thing needs to be re-thought.
1563 * Several of these options are equally applicable to non-multicast
1564 * transmission, and one (IP_MULTICAST_TTL) totally duplicates a
1565 * standard option (IP_TTL).
1566 */
1567
1568/*
1569 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1570 */
1571static struct ifnet *
1572ip_multicast_if(a, ifindexp)
1573 struct in_addr *a;
1574 int *ifindexp;
1575{
1576 int ifindex;
1577 struct ifnet *ifp;
1578
1579 if (ifindexp)
1580 *ifindexp = 0;
1581 if (ntohl(a->s_addr) >> 24 == 0) {
1582 ifindex = ntohl(a->s_addr) & 0xffffff;
1583 if (ifindex < 0 || if_index < ifindex)
1584 return NULL;
1585 ifp = ifnet_byindex(ifindex);
1586 if (ifindexp)
1587 *ifindexp = ifindex;
1588 } else {
1589 INADDR_TO_IFP(*a, ifp);
1590 }
1591 return ifp;
1592}
1593
1594/*
1595 * Given an inpcb, return its multicast options structure pointer. Accepts
1596 * an unlocked inpcb pointer, but will return it locked. May sleep.
1597 */
1598static struct ip_moptions *
1599ip_findmoptions(struct inpcb *inp)
1600{
1601 struct ip_moptions *imo;
1602
1603 INP_LOCK(inp);
1604 if (inp->inp_moptions != NULL)
1605 return (inp->inp_moptions);
1606
1607 INP_UNLOCK(inp);
1608
1609 imo = (struct ip_moptions*)malloc(sizeof(*imo), M_IPMOPTS, M_WAITOK);
1610
1611 imo->imo_multicast_ifp = NULL;
1612 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1613 imo->imo_multicast_vif = -1;
1614 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1615 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1616 imo->imo_num_memberships = 0;
1617
1618 INP_LOCK(inp);
1619 if (inp->inp_moptions != NULL) {
1620 free(imo, M_IPMOPTS);
1621 return (inp->inp_moptions);
1622 }
1623 inp->inp_moptions = imo;
1624 return (imo);
1625}
1626
1627/*
1628 * Set the IP multicast options in response to user setsockopt().
1629 */
1630static int
1631ip_setmoptions(struct inpcb *inp, struct sockopt *sopt)
1632{
1633 int error = 0;
1634 int i;
1635 struct in_addr addr;
1636 struct ip_mreq mreq;
1637 struct ifnet *ifp;
1638 struct ip_moptions *imo;
1639 struct route ro;
1640 struct sockaddr_in *dst;
1641 int ifindex;
1642 int s;
1643
1644 switch (sopt->sopt_name) {
1645 /* store an index number for the vif you wanna use in the send */
1646 case IP_MULTICAST_VIF:
1647 if (legal_vif_num == 0) {
1648 error = EOPNOTSUPP;
1649 break;
1650 }
1651 error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
1652 if (error)
1653 break;
1654 if (!legal_vif_num(i) && (i != -1)) {
1655 error = EINVAL;
1656 break;
1657 }
1658 imo = ip_findmoptions(inp);
1659 imo->imo_multicast_vif = i;
1660 INP_UNLOCK(inp);
1661 break;
1662
1663 case IP_MULTICAST_IF:
1664 /*
1665 * Select the interface for outgoing multicast packets.
1666 */
1667 error = sooptcopyin(sopt, &addr, sizeof addr, sizeof addr);
1668 if (error)
1669 break;
1670 /*
1671 * INADDR_ANY is used to remove a previous selection.
1672 * When no interface is selected, a default one is
1673 * chosen every time a multicast packet is sent.
1674 */
1675 imo = ip_findmoptions(inp);
1676 if (addr.s_addr == INADDR_ANY) {
1677 imo->imo_multicast_ifp = NULL;
1678 INP_UNLOCK(inp);
1679 break;
1680 }
1681 /*
1682 * The selected interface is identified by its local
1683 * IP address. Find the interface and confirm that
1684 * it supports multicasting.
1685 */
1686 s = splimp();
1687 ifp = ip_multicast_if(&addr, &ifindex);
1688 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1689 INP_UNLOCK(inp);
1690 splx(s);
1691 error = EADDRNOTAVAIL;
1692 break;
1693 }
1694 imo->imo_multicast_ifp = ifp;
1695 if (ifindex)
1696 imo->imo_multicast_addr = addr;
1697 else
1698 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1699 INP_UNLOCK(inp);
1700 splx(s);
1701 break;
1702
1703 case IP_MULTICAST_TTL:
1704 /*
1705 * Set the IP time-to-live for outgoing multicast packets.
1706 * The original multicast API required a char argument,
1707 * which is inconsistent with the rest of the socket API.
1708 * We allow either a char or an int.
1709 */
1710 if (sopt->sopt_valsize == 1) {
1711 u_char ttl;
1712 error = sooptcopyin(sopt, &ttl, 1, 1);
1713 if (error)
1714 break;
1715 imo = ip_findmoptions(inp);
1716 imo->imo_multicast_ttl = ttl;
1717 INP_UNLOCK(inp);
1718 } else {
1719 u_int ttl;
1720 error = sooptcopyin(sopt, &ttl, sizeof ttl,
1721 sizeof ttl);
1722 if (error)
1723 break;
1724 if (ttl > 255)
1725 error = EINVAL;
1726 else {
1727 imo = ip_findmoptions(inp);
1728 imo->imo_multicast_ttl = ttl;
1729 INP_UNLOCK(inp);
1730 }
1731 }
1732 break;
1733
1734 case IP_MULTICAST_LOOP:
1735 /*
1736 * Set the loopback flag for outgoing multicast packets.
1737 * Must be zero or one. The original multicast API required a
1738 * char argument, which is inconsistent with the rest
1739 * of the socket API. We allow either a char or an int.
1740 */
1741 if (sopt->sopt_valsize == 1) {
1742 u_char loop;
1743 error = sooptcopyin(sopt, &loop, 1, 1);
1744 if (error)
1745 break;
1746 imo = ip_findmoptions(inp);
1747 imo->imo_multicast_loop = !!loop;
1748 INP_UNLOCK(inp);
1749 } else {
1750 u_int loop;
1751 error = sooptcopyin(sopt, &loop, sizeof loop,
1752 sizeof loop);
1753 if (error)
1754 break;
1755 imo = ip_findmoptions(inp);
1756 imo->imo_multicast_loop = !!loop;
1757 INP_UNLOCK(inp);
1758 }
1759 break;
1760
1761 case IP_ADD_MEMBERSHIP:
1762 /*
1763 * Add a multicast group membership.
1764 * Group must be a valid IP multicast address.
1765 */
1766 error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
1767 if (error)
1768 break;
1769
1770 if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1771 error = EINVAL;
1772 break;
1773 }
1774 s = splimp();
1775 /*
1776 * If no interface address was provided, use the interface of
1777 * the route to the given multicast address.
1778 */
1779 if (mreq.imr_interface.s_addr == INADDR_ANY) {
1780 bzero((caddr_t)&ro, sizeof(ro));
1781 dst = (struct sockaddr_in *)&ro.ro_dst;
1782 dst->sin_len = sizeof(*dst);
1783 dst->sin_family = AF_INET;
1784 dst->sin_addr = mreq.imr_multiaddr;
1785 rtalloc_ign(&ro, RTF_CLONING);
1786 if (ro.ro_rt == NULL) {
1787 error = EADDRNOTAVAIL;
1788 splx(s);
1789 break;
1790 }
1791 ifp = ro.ro_rt->rt_ifp;
1792 RTFREE(ro.ro_rt);
1793 }
1794 else {
1795 ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1796 }
1797
1798 /*
1799 * See if we found an interface, and confirm that it
1800 * supports multicast.
1801 */
1802 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1803 error = EADDRNOTAVAIL;
1804 splx(s);
1805 break;
1806 }
1807 /*
1808 * See if the membership already exists or if all the
1809 * membership slots are full.
1810 */
1811 imo = ip_findmoptions(inp);
1812 for (i = 0; i < imo->imo_num_memberships; ++i) {
1813 if (imo->imo_membership[i]->inm_ifp == ifp &&
1814 imo->imo_membership[i]->inm_addr.s_addr
1815 == mreq.imr_multiaddr.s_addr)
1816 break;
1817 }
1818 if (i < imo->imo_num_memberships) {
1819 INP_UNLOCK(inp);
1820 error = EADDRINUSE;
1821 splx(s);
1822 break;
1823 }
1824 if (i == IP_MAX_MEMBERSHIPS) {
1825 INP_UNLOCK(inp);
1826 error = ETOOMANYREFS;
1827 splx(s);
1828 break;
1829 }
1830 /*
1831 * Everything looks good; add a new record to the multicast
1832 * address list for the given interface.
1833 */
1834 if ((imo->imo_membership[i] =
1835 in_addmulti(&mreq.imr_multiaddr, ifp)) == NULL) {
1836 INP_UNLOCK(inp);
1837 error = ENOBUFS;
1838 splx(s);
1839 break;
1840 }
1841 ++imo->imo_num_memberships;
1842 INP_UNLOCK(inp);
1843 splx(s);
1844 break;
1845
1846 case IP_DROP_MEMBERSHIP:
1847 /*
1848 * Drop a multicast group membership.
1849 * Group must be a valid IP multicast address.
1850 */
1851 error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
1852 if (error)
1853 break;
1854
1855 if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1856 error = EINVAL;
1857 break;
1858 }
1859
1860 s = splimp();
1861 /*
1862 * If an interface address was specified, get a pointer
1863 * to its ifnet structure.
1864 */
1865 if (mreq.imr_interface.s_addr == INADDR_ANY)
1866 ifp = NULL;
1867 else {
1868 ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1869 if (ifp == NULL) {
1870 error = EADDRNOTAVAIL;
1871 splx(s);
1872 break;
1873 }
1874 }
1875 /*
1876 * Find the membership in the membership array.
1877 */
1878 imo = ip_findmoptions(inp);
1879 for (i = 0; i < imo->imo_num_memberships; ++i) {
1880 if ((ifp == NULL ||
1881 imo->imo_membership[i]->inm_ifp == ifp) &&
1882 imo->imo_membership[i]->inm_addr.s_addr ==
1883 mreq.imr_multiaddr.s_addr)
1884 break;
1885 }
1886 if (i == imo->imo_num_memberships) {
1887 INP_UNLOCK(inp);
1888 error = EADDRNOTAVAIL;
1889 splx(s);
1890 break;
1891 }
1892 /*
1893 * Give up the multicast address record to which the
1894 * membership points.
1895 */
1896 in_delmulti(imo->imo_membership[i]);
1897 /*
1898 * Remove the gap in the membership array.
1899 */
1900 for (++i; i < imo->imo_num_memberships; ++i)
1901 imo->imo_membership[i-1] = imo->imo_membership[i];
1902 --imo->imo_num_memberships;
1903 INP_UNLOCK(inp);
1904 splx(s);
1905 break;
1906
1907 default:
1908 error = EOPNOTSUPP;
1909 break;
1910 }
1911
1912 return (error);
1913}
1914
1915/*
1916 * Return the IP multicast options in response to user getsockopt().
1917 */
1918static int
1919ip_getmoptions(struct inpcb *inp, struct sockopt *sopt)
1920{
1921 struct ip_moptions *imo;
1922 struct in_addr addr;
1923 struct in_ifaddr *ia;
1924 int error, optval;
1925 u_char coptval;
1926
1927 INP_LOCK(inp);
1928 imo = inp->inp_moptions;
1929
1930 error = 0;
1931 switch (sopt->sopt_name) {
1932 case IP_MULTICAST_VIF:
1933 if (imo != NULL)
1934 optval = imo->imo_multicast_vif;
1935 else
1936 optval = -1;
1937 INP_UNLOCK(inp);
1938 error = sooptcopyout(sopt, &optval, sizeof optval);
1939 break;
1940
1941 case IP_MULTICAST_IF:
1942 if (imo == NULL || imo->imo_multicast_ifp == NULL)
1943 addr.s_addr = INADDR_ANY;
1944 else if (imo->imo_multicast_addr.s_addr) {
1945 /* return the value user has set */
1946 addr = imo->imo_multicast_addr;
1947 } else {
1948 IFP_TO_IA(imo->imo_multicast_ifp, ia);
1949 addr.s_addr = (ia == NULL) ? INADDR_ANY
1950 : IA_SIN(ia)->sin_addr.s_addr;
1951 }
1952 INP_UNLOCK(inp);
1953 error = sooptcopyout(sopt, &addr, sizeof addr);
1954 break;
1955
1956 case IP_MULTICAST_TTL:
1957 if (imo == 0)
1958 optval = coptval = IP_DEFAULT_MULTICAST_TTL;
1959 else
1960 optval = coptval = imo->imo_multicast_ttl;
1961 INP_UNLOCK(inp);
1962 if (sopt->sopt_valsize == 1)
1963 error = sooptcopyout(sopt, &coptval, 1);
1964 else
1965 error = sooptcopyout(sopt, &optval, sizeof optval);
1966 break;
1967
1968 case IP_MULTICAST_LOOP:
1969 if (imo == 0)
1970 optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
1971 else
1972 optval = coptval = imo->imo_multicast_loop;
1973 INP_UNLOCK(inp);
1974 if (sopt->sopt_valsize == 1)
1975 error = sooptcopyout(sopt, &coptval, 1);
1976 else
1977 error = sooptcopyout(sopt, &optval, sizeof optval);
1978 break;
1979
1980 default:
1981 INP_UNLOCK(inp);
1982 error = ENOPROTOOPT;
1983 break;
1984 }
1985 INP_UNLOCK_ASSERT(inp);
1986
1987 return (error);
1988}
1989
1990/*
1991 * Discard the IP multicast options.
1992 */
1993void
1994ip_freemoptions(imo)
1995 register struct ip_moptions *imo;
1996{
1997 register int i;
1998
1999 if (imo != NULL) {
2000 for (i = 0; i < imo->imo_num_memberships; ++i)
2001 in_delmulti(imo->imo_membership[i]);
2002 free(imo, M_IPMOPTS);
2003 }
2004}
2005
2006/*
2007 * Routine called from ip_output() to loop back a copy of an IP multicast
2008 * packet to the input queue of a specified interface. Note that this
2009 * calls the output routine of the loopback "driver", but with an interface
2010 * pointer that might NOT be a loopback interface -- evil, but easier than
2011 * replicating that code here.
2012 */
2013static void
2014ip_mloopback(ifp, m, dst, hlen)
2015 struct ifnet *ifp;
2016 register struct mbuf *m;
2017 register struct sockaddr_in *dst;
2018 int hlen;
2019{
2020 register struct ip *ip;
2021 struct mbuf *copym;
2022
2023 copym = m_copy(m, 0, M_COPYALL);
2024 if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
2025 copym = m_pullup(copym, hlen);
2026 if (copym != NULL) {
2027 /* If needed, compute the checksum and mark it as valid. */
2028 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2029 in_delayed_cksum(copym);
2030 copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2031 copym->m_pkthdr.csum_flags |=
2032 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2033 copym->m_pkthdr.csum_data = 0xffff;
2034 }
2035 /*
2036 * We don't bother to fragment if the IP length is greater
2037 * than the interface's MTU. Can this possibly matter?
2038 */
2039 ip = mtod(copym, struct ip *);
2040 ip->ip_len = htons(ip->ip_len);
2041 ip->ip_off = htons(ip->ip_off);
2042 ip->ip_sum = 0;
2043 ip->ip_sum = in_cksum(copym, hlen);
2044 /*
2045 * NB:
2046 * It's not clear whether there are any lingering
2047 * reentrancy problems in other areas which might
2048 * be exposed by using ip_input directly (in
2049 * particular, everything which modifies the packet
2050 * in-place). Yet another option is using the
2051 * protosw directly to deliver the looped back
2052 * packet. For the moment, we'll err on the side
2053 * of safety by using if_simloop().
2054 */
2055#if 1 /* XXX */
2056 if (dst->sin_family != AF_INET) {
2057 printf("ip_mloopback: bad address family %d\n",
2058 dst->sin_family);
2059 dst->sin_family = AF_INET;
2060 }
2061#endif
2062
2063#ifdef notdef
2064 copym->m_pkthdr.rcvif = ifp;
2065 ip_input(copym);
2066#else
2067 if_simloop(ifp, copym, dst->sin_family, 0);
2068#endif
2069 }
2070}