Deleted Added
sdiff udiff text old ( 256281 ) new ( 259453 )
full compact
1/* $OpenBSD: if_upgt.c,v 1.35 2008/04/16 18:32:15 damien Exp $ */
2/* $FreeBSD: stable/10/sys/dev/usb/wlan/if_upgt.c 253340 2013-07-14 18:26:47Z rpaulo $ */
3
4/*
5 * Copyright (c) 2007 Marcus Glocker <mglocker@openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20#include <sys/param.h>
21#include <sys/systm.h>
22#include <sys/kernel.h>
23#include <sys/endian.h>
24#include <sys/firmware.h>
25#include <sys/linker.h>
26#include <sys/mbuf.h>
27#include <sys/malloc.h>
28#include <sys/module.h>
29#include <sys/socket.h>
30#include <sys/sockio.h>
31#include <sys/sysctl.h>
32
33#include <net/if.h>
34#include <net/if_arp.h>
35#include <net/ethernet.h>
36#include <net/if_dl.h>
37#include <net/if_media.h>
38#include <net/if_types.h>
39
40#include <sys/bus.h>
41#include <machine/bus.h>
42
43#include <net80211/ieee80211_var.h>
44#include <net80211/ieee80211_phy.h>
45#include <net80211/ieee80211_radiotap.h>
46#include <net80211/ieee80211_regdomain.h>
47
48#include <net/bpf.h>
49
50#include <dev/usb/usb.h>
51#include <dev/usb/usbdi.h>
52#include "usbdevs.h"
53
54#include <dev/usb/wlan/if_upgtvar.h>
55
56/*
57 * Driver for the USB PrismGT devices.
58 *
59 * For now just USB 2.0 devices with the GW3887 chipset are supported.
60 * The driver has been written based on the firmware version 2.13.1.0_LM87.
61 *
62 * TODO's:
63 * - MONITOR mode test.
64 * - Add HOSTAP mode.
65 * - Add IBSS mode.
66 * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets).
67 *
68 * Parts of this driver has been influenced by reading the p54u driver
69 * written by Jean-Baptiste Note <jean-baptiste.note@m4x.org> and
70 * Sebastien Bourdeauducq <lekernel@prism54.org>.
71 */
72
73static SYSCTL_NODE(_hw, OID_AUTO, upgt, CTLFLAG_RD, 0,
74 "USB PrismGT GW3887 driver parameters");
75
76#ifdef UPGT_DEBUG
77int upgt_debug = 0;
78SYSCTL_INT(_hw_upgt, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_TUN, &upgt_debug,
79 0, "control debugging printfs");
80TUNABLE_INT("hw.upgt.debug", &upgt_debug);
81enum {
82 UPGT_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
83 UPGT_DEBUG_RECV = 0x00000002, /* basic recv operation */
84 UPGT_DEBUG_RESET = 0x00000004, /* reset processing */
85 UPGT_DEBUG_INTR = 0x00000008, /* INTR */
86 UPGT_DEBUG_TX_PROC = 0x00000010, /* tx ISR proc */
87 UPGT_DEBUG_RX_PROC = 0x00000020, /* rx ISR proc */
88 UPGT_DEBUG_STATE = 0x00000040, /* 802.11 state transitions */
89 UPGT_DEBUG_STAT = 0x00000080, /* statistic */
90 UPGT_DEBUG_FW = 0x00000100, /* firmware */
91 UPGT_DEBUG_ANY = 0xffffffff
92};
93#define DPRINTF(sc, m, fmt, ...) do { \
94 if (sc->sc_debug & (m)) \
95 printf(fmt, __VA_ARGS__); \
96} while (0)
97#else
98#define DPRINTF(sc, m, fmt, ...) do { \
99 (void) sc; \
100} while (0)
101#endif
102
103/*
104 * Prototypes.
105 */
106static device_probe_t upgt_match;
107static device_attach_t upgt_attach;
108static device_detach_t upgt_detach;
109static int upgt_alloc_tx(struct upgt_softc *);
110static int upgt_alloc_rx(struct upgt_softc *);
111static int upgt_device_reset(struct upgt_softc *);
112static void upgt_bulk_tx(struct upgt_softc *, struct upgt_data *);
113static int upgt_fw_verify(struct upgt_softc *);
114static int upgt_mem_init(struct upgt_softc *);
115static int upgt_fw_load(struct upgt_softc *);
116static int upgt_fw_copy(const uint8_t *, char *, int);
117static uint32_t upgt_crc32_le(const void *, size_t);
118static struct mbuf *
119 upgt_rxeof(struct usb_xfer *, struct upgt_data *, int *);
120static struct mbuf *
121 upgt_rx(struct upgt_softc *, uint8_t *, int, int *);
122static void upgt_txeof(struct usb_xfer *, struct upgt_data *);
123static int upgt_eeprom_read(struct upgt_softc *);
124static int upgt_eeprom_parse(struct upgt_softc *);
125static void upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *);
126static void upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int);
127static void upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int);
128static void upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int);
129static uint32_t upgt_chksum_le(const uint32_t *, size_t);
130static void upgt_tx_done(struct upgt_softc *, uint8_t *);
131static void upgt_init(void *);
132static void upgt_init_locked(struct upgt_softc *);
133static int upgt_ioctl(struct ifnet *, u_long, caddr_t);
134static void upgt_start(struct ifnet *);
135static int upgt_raw_xmit(struct ieee80211_node *, struct mbuf *,
136 const struct ieee80211_bpf_params *);
137static void upgt_scan_start(struct ieee80211com *);
138static void upgt_scan_end(struct ieee80211com *);
139static void upgt_set_channel(struct ieee80211com *);
140static struct ieee80211vap *upgt_vap_create(struct ieee80211com *,
141 const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
142 const uint8_t [IEEE80211_ADDR_LEN],
143 const uint8_t [IEEE80211_ADDR_LEN]);
144static void upgt_vap_delete(struct ieee80211vap *);
145static void upgt_update_mcast(struct ifnet *);
146static uint8_t upgt_rx_rate(struct upgt_softc *, const int);
147static void upgt_set_multi(void *);
148static void upgt_stop(struct upgt_softc *);
149static void upgt_setup_rates(struct ieee80211vap *, struct ieee80211com *);
150static int upgt_set_macfilter(struct upgt_softc *, uint8_t);
151static int upgt_newstate(struct ieee80211vap *, enum ieee80211_state, int);
152static void upgt_set_chan(struct upgt_softc *, struct ieee80211_channel *);
153static void upgt_set_led(struct upgt_softc *, int);
154static void upgt_set_led_blink(void *);
155static void upgt_get_stats(struct upgt_softc *);
156static void upgt_mem_free(struct upgt_softc *, uint32_t);
157static uint32_t upgt_mem_alloc(struct upgt_softc *);
158static void upgt_free_tx(struct upgt_softc *);
159static void upgt_free_rx(struct upgt_softc *);
160static void upgt_watchdog(void *);
161static void upgt_abort_xfers(struct upgt_softc *);
162static void upgt_abort_xfers_locked(struct upgt_softc *);
163static void upgt_sysctl_node(struct upgt_softc *);
164static struct upgt_data *
165 upgt_getbuf(struct upgt_softc *);
166static struct upgt_data *
167 upgt_gettxbuf(struct upgt_softc *);
168static int upgt_tx_start(struct upgt_softc *, struct mbuf *,
169 struct ieee80211_node *, struct upgt_data *);
170
171static const char *upgt_fwname = "upgt-gw3887";
172
173static const STRUCT_USB_HOST_ID upgt_devs[] = {
174#define UPGT_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
175 /* version 2 devices */
176 UPGT_DEV(ACCTON, PRISM_GT),
177 UPGT_DEV(BELKIN, F5D7050),
178 UPGT_DEV(CISCOLINKSYS, WUSB54AG),
179 UPGT_DEV(CONCEPTRONIC, PRISM_GT),
180 UPGT_DEV(DELL, PRISM_GT_1),
181 UPGT_DEV(DELL, PRISM_GT_2),
182 UPGT_DEV(FSC, E5400),
183 UPGT_DEV(GLOBESPAN, PRISM_GT_1),
184 UPGT_DEV(GLOBESPAN, PRISM_GT_2),
185 UPGT_DEV(NETGEAR, WG111V2_2),
186 UPGT_DEV(INTERSIL, PRISM_GT),
187 UPGT_DEV(SMC, 2862WG),
188 UPGT_DEV(USR, USR5422),
189 UPGT_DEV(WISTRONNEWEB, UR045G),
190 UPGT_DEV(XYRATEX, PRISM_GT_1),
191 UPGT_DEV(XYRATEX, PRISM_GT_2),
192 UPGT_DEV(ZCOM, XG703A),
193 UPGT_DEV(ZCOM, XM142)
194};
195
196static usb_callback_t upgt_bulk_rx_callback;
197static usb_callback_t upgt_bulk_tx_callback;
198
199static const struct usb_config upgt_config[UPGT_N_XFERS] = {
200 [UPGT_BULK_TX] = {
201 .type = UE_BULK,
202 .endpoint = UE_ADDR_ANY,
203 .direction = UE_DIR_OUT,
204 .bufsize = MCLBYTES * UPGT_TX_MAXCOUNT,
205 .flags = {
206 .force_short_xfer = 1,
207 .pipe_bof = 1
208 },
209 .callback = upgt_bulk_tx_callback,
210 .timeout = UPGT_USB_TIMEOUT, /* ms */
211 },
212 [UPGT_BULK_RX] = {
213 .type = UE_BULK,
214 .endpoint = UE_ADDR_ANY,
215 .direction = UE_DIR_IN,
216 .bufsize = MCLBYTES * UPGT_RX_MAXCOUNT,
217 .flags = {
218 .pipe_bof = 1,
219 .short_xfer_ok = 1
220 },
221 .callback = upgt_bulk_rx_callback,
222 },
223};
224
225static int
226upgt_match(device_t dev)
227{
228 struct usb_attach_arg *uaa = device_get_ivars(dev);
229
230 if (uaa->usb_mode != USB_MODE_HOST)
231 return (ENXIO);
232 if (uaa->info.bConfigIndex != UPGT_CONFIG_INDEX)
233 return (ENXIO);
234 if (uaa->info.bIfaceIndex != UPGT_IFACE_INDEX)
235 return (ENXIO);
236
237 return (usbd_lookup_id_by_uaa(upgt_devs, sizeof(upgt_devs), uaa));
238}
239
240static int
241upgt_attach(device_t dev)
242{
243 int error;
244 struct ieee80211com *ic;
245 struct ifnet *ifp;
246 struct upgt_softc *sc = device_get_softc(dev);
247 struct usb_attach_arg *uaa = device_get_ivars(dev);
248 uint8_t bands, iface_index = UPGT_IFACE_INDEX;
249
250 sc->sc_dev = dev;
251 sc->sc_udev = uaa->device;
252#ifdef UPGT_DEBUG
253 sc->sc_debug = upgt_debug;
254#endif
255 device_set_usb_desc(dev);
256
257 mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), MTX_NETWORK_LOCK,
258 MTX_DEF);
259 callout_init(&sc->sc_led_ch, 0);
260 callout_init(&sc->sc_watchdog_ch, 0);
261
262 error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer,
263 upgt_config, UPGT_N_XFERS, sc, &sc->sc_mtx);
264 if (error) {
265 device_printf(dev, "could not allocate USB transfers, "
266 "err=%s\n", usbd_errstr(error));
267 goto fail1;
268 }
269
270 sc->sc_rx_dma_buf = usbd_xfer_get_frame_buffer(
271 sc->sc_xfer[UPGT_BULK_RX], 0);
272 sc->sc_tx_dma_buf = usbd_xfer_get_frame_buffer(
273 sc->sc_xfer[UPGT_BULK_TX], 0);
274
275 /* Setup TX and RX buffers */
276 error = upgt_alloc_tx(sc);
277 if (error)
278 goto fail2;
279 error = upgt_alloc_rx(sc);
280 if (error)
281 goto fail3;
282
283 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
284 if (ifp == NULL) {
285 device_printf(dev, "can not if_alloc()\n");
286 goto fail4;
287 }
288
289 /* Initialize the device. */
290 error = upgt_device_reset(sc);
291 if (error)
292 goto fail5;
293 /* Verify the firmware. */
294 error = upgt_fw_verify(sc);
295 if (error)
296 goto fail5;
297 /* Calculate device memory space. */
298 if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) {
299 device_printf(dev,
300 "could not find memory space addresses on FW\n");
301 error = EIO;
302 goto fail5;
303 }
304 sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1;
305 sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1;
306
307 DPRINTF(sc, UPGT_DEBUG_FW, "memory address frame start=0x%08x\n",
308 sc->sc_memaddr_frame_start);
309 DPRINTF(sc, UPGT_DEBUG_FW, "memory address frame end=0x%08x\n",
310 sc->sc_memaddr_frame_end);
311 DPRINTF(sc, UPGT_DEBUG_FW, "memory address rx start=0x%08x\n",
312 sc->sc_memaddr_rx_start);
313
314 upgt_mem_init(sc);
315
316 /* Load the firmware. */
317 error = upgt_fw_load(sc);
318 if (error)
319 goto fail5;
320
321 /* Read the whole EEPROM content and parse it. */
322 error = upgt_eeprom_read(sc);
323 if (error)
324 goto fail5;
325 error = upgt_eeprom_parse(sc);
326 if (error)
327 goto fail5;
328
329 /* all works related with the device have done here. */
330 upgt_abort_xfers(sc);
331
332 /* Setup the 802.11 device. */
333 ifp->if_softc = sc;
334 if_initname(ifp, "upgt", device_get_unit(sc->sc_dev));
335 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
336 ifp->if_init = upgt_init;
337 ifp->if_ioctl = upgt_ioctl;
338 ifp->if_start = upgt_start;
339 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
340 IFQ_SET_READY(&ifp->if_snd);
341
342 ic = ifp->if_l2com;
343 ic->ic_ifp = ifp;
344 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
345 ic->ic_opmode = IEEE80211_M_STA;
346 /* set device capabilities */
347 ic->ic_caps =
348 IEEE80211_C_STA /* station mode */
349 | IEEE80211_C_MONITOR /* monitor mode */
350 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
351 | IEEE80211_C_SHSLOT /* short slot time supported */
352 | IEEE80211_C_BGSCAN /* capable of bg scanning */
353 | IEEE80211_C_WPA /* 802.11i */
354 ;
355
356 bands = 0;
357 setbit(&bands, IEEE80211_MODE_11B);
358 setbit(&bands, IEEE80211_MODE_11G);
359 ieee80211_init_channels(ic, NULL, &bands);
360
361 ieee80211_ifattach(ic, sc->sc_myaddr);
362 ic->ic_raw_xmit = upgt_raw_xmit;
363 ic->ic_scan_start = upgt_scan_start;
364 ic->ic_scan_end = upgt_scan_end;
365 ic->ic_set_channel = upgt_set_channel;
366
367 ic->ic_vap_create = upgt_vap_create;
368 ic->ic_vap_delete = upgt_vap_delete;
369 ic->ic_update_mcast = upgt_update_mcast;
370
371 ieee80211_radiotap_attach(ic,
372 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
373 UPGT_TX_RADIOTAP_PRESENT,
374 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
375 UPGT_RX_RADIOTAP_PRESENT);
376
377 upgt_sysctl_node(sc);
378
379 if (bootverbose)
380 ieee80211_announce(ic);
381
382 return (0);
383
384fail5: if_free(ifp);
385fail4: upgt_free_rx(sc);
386fail3: upgt_free_tx(sc);
387fail2: usbd_transfer_unsetup(sc->sc_xfer, UPGT_N_XFERS);
388fail1: mtx_destroy(&sc->sc_mtx);
389
390 return (error);
391}
392
393static void
394upgt_txeof(struct usb_xfer *xfer, struct upgt_data *data)
395{
396 struct upgt_softc *sc = usbd_xfer_softc(xfer);
397 struct ifnet *ifp = sc->sc_ifp;
398 struct mbuf *m;
399
400 UPGT_ASSERT_LOCKED(sc);
401
402 /*
403 * Do any tx complete callback. Note this must be done before releasing
404 * the node reference.
405 */
406 if (data->m) {
407 m = data->m;
408 if (m->m_flags & M_TXCB) {
409 /* XXX status? */
410 ieee80211_process_callback(data->ni, m, 0);
411 }
412 m_freem(m);
413 data->m = NULL;
414 }
415 if (data->ni) {
416 ieee80211_free_node(data->ni);
417 data->ni = NULL;
418 }
419 ifp->if_opackets++;
420}
421
422static void
423upgt_get_stats(struct upgt_softc *sc)
424{
425 struct upgt_data *data_cmd;
426 struct upgt_lmac_mem *mem;
427 struct upgt_lmac_stats *stats;
428
429 data_cmd = upgt_getbuf(sc);
430 if (data_cmd == NULL) {
431 device_printf(sc->sc_dev, "%s: out of buffer.\n", __func__);
432 return;
433 }
434
435 /*
436 * Transmit the URB containing the CMD data.
437 */
438 memset(data_cmd->buf, 0, MCLBYTES);
439
440 mem = (struct upgt_lmac_mem *)data_cmd->buf;
441 mem->addr = htole32(sc->sc_memaddr_frame_start +
442 UPGT_MEMSIZE_FRAME_HEAD);
443
444 stats = (struct upgt_lmac_stats *)(mem + 1);
445
446 stats->header1.flags = 0;
447 stats->header1.type = UPGT_H1_TYPE_CTRL;
448 stats->header1.len = htole16(
449 sizeof(struct upgt_lmac_stats) - sizeof(struct upgt_lmac_header));
450
451 stats->header2.reqid = htole32(sc->sc_memaddr_frame_start);
452 stats->header2.type = htole16(UPGT_H2_TYPE_STATS);
453 stats->header2.flags = 0;
454
455 data_cmd->buflen = sizeof(*mem) + sizeof(*stats);
456
457 mem->chksum = upgt_chksum_le((uint32_t *)stats,
458 data_cmd->buflen - sizeof(*mem));
459
460 upgt_bulk_tx(sc, data_cmd);
461}
462
463static int
464upgt_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
465{
466 struct upgt_softc *sc = ifp->if_softc;
467 struct ieee80211com *ic = ifp->if_l2com;
468 struct ifreq *ifr = (struct ifreq *) data;
469 int error;
470 int startall = 0;
471
472 UPGT_LOCK(sc);
473 error = (sc->sc_flags & UPGT_FLAG_DETACHED) ? ENXIO : 0;
474 UPGT_UNLOCK(sc);
475 if (error)
476 return (error);
477
478 switch (cmd) {
479 case SIOCSIFFLAGS:
480 if (ifp->if_flags & IFF_UP) {
481 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
482 if ((ifp->if_flags ^ sc->sc_if_flags) &
483 (IFF_ALLMULTI | IFF_PROMISC))
484 upgt_set_multi(sc);
485 } else {
486 upgt_init(sc);
487 startall = 1;
488 }
489 } else {
490 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
491 upgt_stop(sc);
492 }
493 sc->sc_if_flags = ifp->if_flags;
494 if (startall)
495 ieee80211_start_all(ic);
496 break;
497 case SIOCGIFMEDIA:
498 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
499 break;
500 case SIOCGIFADDR:
501 error = ether_ioctl(ifp, cmd, data);
502 break;
503 default:
504 error = EINVAL;
505 break;
506 }
507 return error;
508}
509
510static void
511upgt_stop_locked(struct upgt_softc *sc)
512{
513 struct ifnet *ifp = sc->sc_ifp;
514
515 UPGT_ASSERT_LOCKED(sc);
516
517 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
518 upgt_set_macfilter(sc, IEEE80211_S_INIT);
519 upgt_abort_xfers_locked(sc);
520}
521
522static void
523upgt_stop(struct upgt_softc *sc)
524{
525 struct ifnet *ifp = sc->sc_ifp;
526
527 UPGT_LOCK(sc);
528 upgt_stop_locked(sc);
529 UPGT_UNLOCK(sc);
530
531 /* device down */
532 sc->sc_tx_timer = 0;
533 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
534 sc->sc_flags &= ~UPGT_FLAG_INITDONE;
535}
536
537static void
538upgt_set_led(struct upgt_softc *sc, int action)
539{
540 struct upgt_data *data_cmd;
541 struct upgt_lmac_mem *mem;
542 struct upgt_lmac_led *led;
543
544 data_cmd = upgt_getbuf(sc);
545 if (data_cmd == NULL) {
546 device_printf(sc->sc_dev, "%s: out of buffers.\n", __func__);
547 return;
548 }
549
550 /*
551 * Transmit the URB containing the CMD data.
552 */
553 memset(data_cmd->buf, 0, MCLBYTES);
554
555 mem = (struct upgt_lmac_mem *)data_cmd->buf;
556 mem->addr = htole32(sc->sc_memaddr_frame_start +
557 UPGT_MEMSIZE_FRAME_HEAD);
558
559 led = (struct upgt_lmac_led *)(mem + 1);
560
561 led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
562 led->header1.type = UPGT_H1_TYPE_CTRL;
563 led->header1.len = htole16(
564 sizeof(struct upgt_lmac_led) -
565 sizeof(struct upgt_lmac_header));
566
567 led->header2.reqid = htole32(sc->sc_memaddr_frame_start);
568 led->header2.type = htole16(UPGT_H2_TYPE_LED);
569 led->header2.flags = 0;
570
571 switch (action) {
572 case UPGT_LED_OFF:
573 led->mode = htole16(UPGT_LED_MODE_SET);
574 led->action_fix = 0;
575 led->action_tmp = htole16(UPGT_LED_ACTION_OFF);
576 led->action_tmp_dur = 0;
577 break;
578 case UPGT_LED_ON:
579 led->mode = htole16(UPGT_LED_MODE_SET);
580 led->action_fix = 0;
581 led->action_tmp = htole16(UPGT_LED_ACTION_ON);
582 led->action_tmp_dur = 0;
583 break;
584 case UPGT_LED_BLINK:
585 if (sc->sc_state != IEEE80211_S_RUN) {
586 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next);
587 return;
588 }
589 if (sc->sc_led_blink) {
590 /* previous blink was not finished */
591 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next);
592 return;
593 }
594 led->mode = htole16(UPGT_LED_MODE_SET);
595 led->action_fix = htole16(UPGT_LED_ACTION_OFF);
596 led->action_tmp = htole16(UPGT_LED_ACTION_ON);
597 led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR);
598 /* lock blink */
599 sc->sc_led_blink = 1;
600 callout_reset(&sc->sc_led_ch, hz, upgt_set_led_blink, sc);
601 break;
602 default:
603 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next);
604 return;
605 }
606
607 data_cmd->buflen = sizeof(*mem) + sizeof(*led);
608
609 mem->chksum = upgt_chksum_le((uint32_t *)led,
610 data_cmd->buflen - sizeof(*mem));
611
612 upgt_bulk_tx(sc, data_cmd);
613}
614
615static void
616upgt_set_led_blink(void *arg)
617{
618 struct upgt_softc *sc = arg;
619
620 /* blink finished, we are ready for a next one */
621 sc->sc_led_blink = 0;
622}
623
624static void
625upgt_init(void *priv)
626{
627 struct upgt_softc *sc = priv;
628 struct ifnet *ifp = sc->sc_ifp;
629 struct ieee80211com *ic = ifp->if_l2com;
630
631 UPGT_LOCK(sc);
632 upgt_init_locked(sc);
633 UPGT_UNLOCK(sc);
634
635 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
636 ieee80211_start_all(ic); /* start all vap's */
637}
638
639static void
640upgt_init_locked(struct upgt_softc *sc)
641{
642 struct ifnet *ifp = sc->sc_ifp;
643
644 UPGT_ASSERT_LOCKED(sc);
645
646 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
647 upgt_stop_locked(sc);
648
649 usbd_transfer_start(sc->sc_xfer[UPGT_BULK_RX]);
650
651 (void)upgt_set_macfilter(sc, IEEE80211_S_SCAN);
652
653 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
654 ifp->if_drv_flags |= IFF_DRV_RUNNING;
655 sc->sc_flags |= UPGT_FLAG_INITDONE;
656
657 callout_reset(&sc->sc_watchdog_ch, hz, upgt_watchdog, sc);
658}
659
660static int
661upgt_set_macfilter(struct upgt_softc *sc, uint8_t state)
662{
663 struct ifnet *ifp = sc->sc_ifp;
664 struct ieee80211com *ic = ifp->if_l2com;
665 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
666 struct ieee80211_node *ni;
667 struct upgt_data *data_cmd;
668 struct upgt_lmac_mem *mem;
669 struct upgt_lmac_filter *filter;
670 uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
671
672 UPGT_ASSERT_LOCKED(sc);
673
674 data_cmd = upgt_getbuf(sc);
675 if (data_cmd == NULL) {
676 device_printf(sc->sc_dev, "out of TX buffers.\n");
677 return (ENOBUFS);
678 }
679
680 /*
681 * Transmit the URB containing the CMD data.
682 */
683 memset(data_cmd->buf, 0, MCLBYTES);
684
685 mem = (struct upgt_lmac_mem *)data_cmd->buf;
686 mem->addr = htole32(sc->sc_memaddr_frame_start +
687 UPGT_MEMSIZE_FRAME_HEAD);
688
689 filter = (struct upgt_lmac_filter *)(mem + 1);
690
691 filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
692 filter->header1.type = UPGT_H1_TYPE_CTRL;
693 filter->header1.len = htole16(
694 sizeof(struct upgt_lmac_filter) -
695 sizeof(struct upgt_lmac_header));
696
697 filter->header2.reqid = htole32(sc->sc_memaddr_frame_start);
698 filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER);
699 filter->header2.flags = 0;
700
701 switch (state) {
702 case IEEE80211_S_INIT:
703 DPRINTF(sc, UPGT_DEBUG_STATE, "%s: set MAC filter to INIT\n",
704 __func__);
705 filter->type = htole16(UPGT_FILTER_TYPE_RESET);
706 break;
707 case IEEE80211_S_SCAN:
708 DPRINTF(sc, UPGT_DEBUG_STATE,
709 "set MAC filter to SCAN (bssid %s)\n",
710 ether_sprintf(broadcast));
711 filter->type = htole16(UPGT_FILTER_TYPE_NONE);
712 IEEE80211_ADDR_COPY(filter->dst, sc->sc_myaddr);
713 IEEE80211_ADDR_COPY(filter->src, broadcast);
714 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
715 filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
716 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
717 filter->rxhw = htole32(sc->sc_eeprom_hwrx);
718 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
719 break;
720 case IEEE80211_S_RUN:
721 ni = ieee80211_ref_node(vap->iv_bss);
722 /* XXX monitor mode isn't tested yet. */
723 if (vap->iv_opmode == IEEE80211_M_MONITOR) {
724 filter->type = htole16(UPGT_FILTER_TYPE_MONITOR);
725 IEEE80211_ADDR_COPY(filter->dst, sc->sc_myaddr);
726 IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
727 filter->unknown1 = htole16(UPGT_FILTER_MONITOR_UNKNOWN1);
728 filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
729 filter->unknown2 = htole16(UPGT_FILTER_MONITOR_UNKNOWN2);
730 filter->rxhw = htole32(sc->sc_eeprom_hwrx);
731 filter->unknown3 = htole16(UPGT_FILTER_MONITOR_UNKNOWN3);
732 } else {
733 DPRINTF(sc, UPGT_DEBUG_STATE,
734 "set MAC filter to RUN (bssid %s)\n",
735 ether_sprintf(ni->ni_bssid));
736 filter->type = htole16(UPGT_FILTER_TYPE_STA);
737 IEEE80211_ADDR_COPY(filter->dst, sc->sc_myaddr);
738 IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
739 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
740 filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
741 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
742 filter->rxhw = htole32(sc->sc_eeprom_hwrx);
743 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
744 }
745 ieee80211_free_node(ni);
746 break;
747 default:
748 device_printf(sc->sc_dev,
749 "MAC filter does not know that state\n");
750 break;
751 }
752
753 data_cmd->buflen = sizeof(*mem) + sizeof(*filter);
754
755 mem->chksum = upgt_chksum_le((uint32_t *)filter,
756 data_cmd->buflen - sizeof(*mem));
757
758 upgt_bulk_tx(sc, data_cmd);
759
760 return (0);
761}
762
763static void
764upgt_setup_rates(struct ieee80211vap *vap, struct ieee80211com *ic)
765{
766 struct ifnet *ifp = ic->ic_ifp;
767 struct upgt_softc *sc = ifp->if_softc;
768 const struct ieee80211_txparam *tp;
769
770 /*
771 * 0x01 = OFMD6 0x10 = DS1
772 * 0x04 = OFDM9 0x11 = DS2
773 * 0x06 = OFDM12 0x12 = DS5
774 * 0x07 = OFDM18 0x13 = DS11
775 * 0x08 = OFDM24
776 * 0x09 = OFDM36
777 * 0x0a = OFDM48
778 * 0x0b = OFDM54
779 */
780 const uint8_t rateset_auto_11b[] =
781 { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 };
782 const uint8_t rateset_auto_11g[] =
783 { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 };
784 const uint8_t rateset_fix_11bg[] =
785 { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07,
786 0x08, 0x09, 0x0a, 0x0b };
787
788 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
789
790 /* XXX */
791 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) {
792 /*
793 * Automatic rate control is done by the device.
794 * We just pass the rateset from which the device
795 * will pickup a rate.
796 */
797 if (ic->ic_curmode == IEEE80211_MODE_11B)
798 memcpy(sc->sc_cur_rateset, rateset_auto_11b,
799 sizeof(sc->sc_cur_rateset));
800 if (ic->ic_curmode == IEEE80211_MODE_11G ||
801 ic->ic_curmode == IEEE80211_MODE_AUTO)
802 memcpy(sc->sc_cur_rateset, rateset_auto_11g,
803 sizeof(sc->sc_cur_rateset));
804 } else {
805 /* set a fixed rate */
806 memset(sc->sc_cur_rateset, rateset_fix_11bg[tp->ucastrate],
807 sizeof(sc->sc_cur_rateset));
808 }
809}
810
811static void
812upgt_set_multi(void *arg)
813{
814 struct upgt_softc *sc = arg;
815 struct ifnet *ifp = sc->sc_ifp;
816
817 if (!(ifp->if_flags & IFF_UP))
818 return;
819
820 /*
821 * XXX don't know how to set a device. Lack of docs. Just try to set
822 * IFF_ALLMULTI flag here.
823 */
824 ifp->if_flags |= IFF_ALLMULTI;
825}
826
827static void
828upgt_start(struct ifnet *ifp)
829{
830 struct upgt_softc *sc = ifp->if_softc;
831 struct upgt_data *data_tx;
832 struct ieee80211_node *ni;
833 struct mbuf *m;
834
835 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
836 return;
837
838 UPGT_LOCK(sc);
839 for (;;) {
840 IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
841 if (m == NULL)
842 break;
843
844 data_tx = upgt_gettxbuf(sc);
845 if (data_tx == NULL) {
846 IFQ_DRV_PREPEND(&ifp->if_snd, m);
847 break;
848 }
849
850 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
851 m->m_pkthdr.rcvif = NULL;
852
853 if (upgt_tx_start(sc, m, ni, data_tx) != 0) {
854 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, data_tx, next);
855 UPGT_STAT_INC(sc, st_tx_inactive);
856 ieee80211_free_node(ni);
857 ifp->if_oerrors++;
858 continue;
859 }
860 sc->sc_tx_timer = 5;
861 }
862 UPGT_UNLOCK(sc);
863}
864
865static int
866upgt_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
867 const struct ieee80211_bpf_params *params)
868{
869 struct ieee80211com *ic = ni->ni_ic;
870 struct ifnet *ifp = ic->ic_ifp;
871 struct upgt_softc *sc = ifp->if_softc;
872 struct upgt_data *data_tx = NULL;
873
874 /* prevent management frames from being sent if we're not ready */
875 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
876 m_freem(m);
877 ieee80211_free_node(ni);
878 return ENETDOWN;
879 }
880
881 UPGT_LOCK(sc);
882 data_tx = upgt_gettxbuf(sc);
883 if (data_tx == NULL) {
884 ieee80211_free_node(ni);
885 m_freem(m);
886 UPGT_UNLOCK(sc);
887 return (ENOBUFS);
888 }
889
890 if (upgt_tx_start(sc, m, ni, data_tx) != 0) {
891 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, data_tx, next);
892 UPGT_STAT_INC(sc, st_tx_inactive);
893 ieee80211_free_node(ni);
894 ifp->if_oerrors++;
895 UPGT_UNLOCK(sc);
896 return (EIO);
897 }
898 UPGT_UNLOCK(sc);
899
900 sc->sc_tx_timer = 5;
901 return (0);
902}
903
904static void
905upgt_watchdog(void *arg)
906{
907 struct upgt_softc *sc = arg;
908 struct ifnet *ifp = sc->sc_ifp;
909
910 if (sc->sc_tx_timer > 0) {
911 if (--sc->sc_tx_timer == 0) {
912 device_printf(sc->sc_dev, "watchdog timeout\n");
913 /* upgt_init(ifp); XXX needs a process context ? */
914 ifp->if_oerrors++;
915 return;
916 }
917 callout_reset(&sc->sc_watchdog_ch, hz, upgt_watchdog, sc);
918 }
919}
920
921static uint32_t
922upgt_mem_alloc(struct upgt_softc *sc)
923{
924 int i;
925
926 for (i = 0; i < sc->sc_memory.pages; i++) {
927 if (sc->sc_memory.page[i].used == 0) {
928 sc->sc_memory.page[i].used = 1;
929 return (sc->sc_memory.page[i].addr);
930 }
931 }
932
933 return (0);
934}
935
936static void
937upgt_scan_start(struct ieee80211com *ic)
938{
939 /* do nothing. */
940}
941
942static void
943upgt_scan_end(struct ieee80211com *ic)
944{
945 /* do nothing. */
946}
947
948static void
949upgt_set_channel(struct ieee80211com *ic)
950{
951 struct upgt_softc *sc = ic->ic_ifp->if_softc;
952
953 UPGT_LOCK(sc);
954 upgt_set_chan(sc, ic->ic_curchan);
955 UPGT_UNLOCK(sc);
956}
957
958static void
959upgt_set_chan(struct upgt_softc *sc, struct ieee80211_channel *c)
960{
961 struct ifnet *ifp = sc->sc_ifp;
962 struct ieee80211com *ic = ifp->if_l2com;
963 struct upgt_data *data_cmd;
964 struct upgt_lmac_mem *mem;
965 struct upgt_lmac_channel *chan;
966 int channel;
967
968 UPGT_ASSERT_LOCKED(sc);
969
970 channel = ieee80211_chan2ieee(ic, c);
971 if (channel == 0 || channel == IEEE80211_CHAN_ANY) {
972 /* XXX should NEVER happen */
973 device_printf(sc->sc_dev,
974 "%s: invalid channel %x\n", __func__, channel);
975 return;
976 }
977
978 DPRINTF(sc, UPGT_DEBUG_STATE, "%s: channel %d\n", __func__, channel);
979
980 data_cmd = upgt_getbuf(sc);
981 if (data_cmd == NULL) {
982 device_printf(sc->sc_dev, "%s: out of buffers.\n", __func__);
983 return;
984 }
985 /*
986 * Transmit the URB containing the CMD data.
987 */
988 memset(data_cmd->buf, 0, MCLBYTES);
989
990 mem = (struct upgt_lmac_mem *)data_cmd->buf;
991 mem->addr = htole32(sc->sc_memaddr_frame_start +
992 UPGT_MEMSIZE_FRAME_HEAD);
993
994 chan = (struct upgt_lmac_channel *)(mem + 1);
995
996 chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
997 chan->header1.type = UPGT_H1_TYPE_CTRL;
998 chan->header1.len = htole16(
999 sizeof(struct upgt_lmac_channel) - sizeof(struct upgt_lmac_header));
1000
1001 chan->header2.reqid = htole32(sc->sc_memaddr_frame_start);
1002 chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL);
1003 chan->header2.flags = 0;
1004
1005 chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1);
1006 chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2);
1007 chan->freq6 = sc->sc_eeprom_freq6[channel];
1008 chan->settings = sc->sc_eeprom_freq6_settings;
1009 chan->unknown3 = UPGT_CHANNEL_UNKNOWN3;
1010
1011 memcpy(chan->freq3_1, &sc->sc_eeprom_freq3[channel].data,
1012 sizeof(chan->freq3_1));
1013 memcpy(chan->freq4, &sc->sc_eeprom_freq4[channel],
1014 sizeof(sc->sc_eeprom_freq4[channel]));
1015 memcpy(chan->freq3_2, &sc->sc_eeprom_freq3[channel].data,
1016 sizeof(chan->freq3_2));
1017
1018 data_cmd->buflen = sizeof(*mem) + sizeof(*chan);
1019
1020 mem->chksum = upgt_chksum_le((uint32_t *)chan,
1021 data_cmd->buflen - sizeof(*mem));
1022
1023 upgt_bulk_tx(sc, data_cmd);
1024}
1025
1026static struct ieee80211vap *
1027upgt_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1028 enum ieee80211_opmode opmode, int flags,
1029 const uint8_t bssid[IEEE80211_ADDR_LEN],
1030 const uint8_t mac[IEEE80211_ADDR_LEN])
1031{
1032 struct upgt_vap *uvp;
1033 struct ieee80211vap *vap;
1034
1035 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */
1036 return NULL;
1037 uvp = (struct upgt_vap *) malloc(sizeof(struct upgt_vap),
1038 M_80211_VAP, M_NOWAIT | M_ZERO);
1039 if (uvp == NULL)
1040 return NULL;
1041 vap = &uvp->vap;
1042 /* enable s/w bmiss handling for sta mode */
1043 ieee80211_vap_setup(ic, vap, name, unit, opmode,
1044 flags | IEEE80211_CLONE_NOBEACONS, bssid, mac);
1045
1046 /* override state transition machine */
1047 uvp->newstate = vap->iv_newstate;
1048 vap->iv_newstate = upgt_newstate;
1049
1050 /* setup device rates */
1051 upgt_setup_rates(vap, ic);
1052
1053 /* complete setup */
1054 ieee80211_vap_attach(vap, ieee80211_media_change,
1055 ieee80211_media_status);
1056 ic->ic_opmode = opmode;
1057 return vap;
1058}
1059
1060static int
1061upgt_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1062{
1063 struct upgt_vap *uvp = UPGT_VAP(vap);
1064 struct ieee80211com *ic = vap->iv_ic;
1065 struct upgt_softc *sc = ic->ic_ifp->if_softc;
1066
1067 /* do it in a process context */
1068 sc->sc_state = nstate;
1069
1070 IEEE80211_UNLOCK(ic);
1071 UPGT_LOCK(sc);
1072 callout_stop(&sc->sc_led_ch);
1073 callout_stop(&sc->sc_watchdog_ch);
1074
1075 switch (nstate) {
1076 case IEEE80211_S_INIT:
1077 /* do not accept any frames if the device is down */
1078 (void)upgt_set_macfilter(sc, sc->sc_state);
1079 upgt_set_led(sc, UPGT_LED_OFF);
1080 break;
1081 case IEEE80211_S_SCAN:
1082 upgt_set_chan(sc, ic->ic_curchan);
1083 break;
1084 case IEEE80211_S_AUTH:
1085 upgt_set_chan(sc, ic->ic_curchan);
1086 break;
1087 case IEEE80211_S_ASSOC:
1088 break;
1089 case IEEE80211_S_RUN:
1090 upgt_set_macfilter(sc, sc->sc_state);
1091 upgt_set_led(sc, UPGT_LED_ON);
1092 break;
1093 default:
1094 break;
1095 }
1096 UPGT_UNLOCK(sc);
1097 IEEE80211_LOCK(ic);
1098 return (uvp->newstate(vap, nstate, arg));
1099}
1100
1101static void
1102upgt_vap_delete(struct ieee80211vap *vap)
1103{
1104 struct upgt_vap *uvp = UPGT_VAP(vap);
1105
1106 ieee80211_vap_detach(vap);
1107 free(uvp, M_80211_VAP);
1108}
1109
1110static void
1111upgt_update_mcast(struct ifnet *ifp)
1112{
1113 struct upgt_softc *sc = ifp->if_softc;
1114
1115 upgt_set_multi(sc);
1116}
1117
1118static int
1119upgt_eeprom_parse(struct upgt_softc *sc)
1120{
1121 struct upgt_eeprom_header *eeprom_header;
1122 struct upgt_eeprom_option *eeprom_option;
1123 uint16_t option_len;
1124 uint16_t option_type;
1125 uint16_t preamble_len;
1126 int option_end = 0;
1127
1128 /* calculate eeprom options start offset */
1129 eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom;
1130 preamble_len = le16toh(eeprom_header->preamble_len);
1131 eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom +
1132 (sizeof(struct upgt_eeprom_header) + preamble_len));
1133
1134 while (!option_end) {
1135
1136 /* sanity check */
1137 if (eeprom_option >= (struct upgt_eeprom_option *)
1138 (sc->sc_eeprom + UPGT_EEPROM_SIZE)) {
1139 return (EINVAL);
1140 }
1141
1142 /* the eeprom option length is stored in words */
1143 option_len =
1144 (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t);
1145 option_type =
1146 le16toh(eeprom_option->type);
1147
1148 /* sanity check */
1149 if (option_len == 0 || option_len >= UPGT_EEPROM_SIZE)
1150 return (EINVAL);
1151
1152 switch (option_type) {
1153 case UPGT_EEPROM_TYPE_NAME:
1154 DPRINTF(sc, UPGT_DEBUG_FW,
1155 "EEPROM name len=%d\n", option_len);
1156 break;
1157 case UPGT_EEPROM_TYPE_SERIAL:
1158 DPRINTF(sc, UPGT_DEBUG_FW,
1159 "EEPROM serial len=%d\n", option_len);
1160 break;
1161 case UPGT_EEPROM_TYPE_MAC:
1162 DPRINTF(sc, UPGT_DEBUG_FW,
1163 "EEPROM mac len=%d\n", option_len);
1164
1165 IEEE80211_ADDR_COPY(sc->sc_myaddr, eeprom_option->data);
1166 break;
1167 case UPGT_EEPROM_TYPE_HWRX:
1168 DPRINTF(sc, UPGT_DEBUG_FW,
1169 "EEPROM hwrx len=%d\n", option_len);
1170
1171 upgt_eeprom_parse_hwrx(sc, eeprom_option->data);
1172 break;
1173 case UPGT_EEPROM_TYPE_CHIP:
1174 DPRINTF(sc, UPGT_DEBUG_FW,
1175 "EEPROM chip len=%d\n", option_len);
1176 break;
1177 case UPGT_EEPROM_TYPE_FREQ3:
1178 DPRINTF(sc, UPGT_DEBUG_FW,
1179 "EEPROM freq3 len=%d\n", option_len);
1180
1181 upgt_eeprom_parse_freq3(sc, eeprom_option->data,
1182 option_len);
1183 break;
1184 case UPGT_EEPROM_TYPE_FREQ4:
1185 DPRINTF(sc, UPGT_DEBUG_FW,
1186 "EEPROM freq4 len=%d\n", option_len);
1187
1188 upgt_eeprom_parse_freq4(sc, eeprom_option->data,
1189 option_len);
1190 break;
1191 case UPGT_EEPROM_TYPE_FREQ5:
1192 DPRINTF(sc, UPGT_DEBUG_FW,
1193 "EEPROM freq5 len=%d\n", option_len);
1194 break;
1195 case UPGT_EEPROM_TYPE_FREQ6:
1196 DPRINTF(sc, UPGT_DEBUG_FW,
1197 "EEPROM freq6 len=%d\n", option_len);
1198
1199 upgt_eeprom_parse_freq6(sc, eeprom_option->data,
1200 option_len);
1201 break;
1202 case UPGT_EEPROM_TYPE_END:
1203 DPRINTF(sc, UPGT_DEBUG_FW,
1204 "EEPROM end len=%d\n", option_len);
1205 option_end = 1;
1206 break;
1207 case UPGT_EEPROM_TYPE_OFF:
1208 DPRINTF(sc, UPGT_DEBUG_FW,
1209 "%s: EEPROM off without end option\n", __func__);
1210 return (EIO);
1211 default:
1212 DPRINTF(sc, UPGT_DEBUG_FW,
1213 "EEPROM unknown type 0x%04x len=%d\n",
1214 option_type, option_len);
1215 break;
1216 }
1217
1218 /* jump to next EEPROM option */
1219 eeprom_option = (struct upgt_eeprom_option *)
1220 (eeprom_option->data + option_len);
1221 }
1222 return (0);
1223}
1224
1225static void
1226upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len)
1227{
1228 struct upgt_eeprom_freq3_header *freq3_header;
1229 struct upgt_lmac_freq3 *freq3;
1230 int i;
1231 int elements;
1232 int flags;
1233 unsigned channel;
1234
1235 freq3_header = (struct upgt_eeprom_freq3_header *)data;
1236 freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1);
1237
1238 flags = freq3_header->flags;
1239 elements = freq3_header->elements;
1240
1241 DPRINTF(sc, UPGT_DEBUG_FW, "flags=0x%02x elements=%d\n",
1242 flags, elements);
1243
1244 if (elements >= (int)(UPGT_EEPROM_SIZE / sizeof(freq3[0])))
1245 return;
1246
1247 for (i = 0; i < elements; i++) {
1248 channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0);
1249 if (channel >= IEEE80211_CHAN_MAX)
1250 continue;
1251
1252 sc->sc_eeprom_freq3[channel] = freq3[i];
1253
1254 DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n",
1255 le16toh(sc->sc_eeprom_freq3[channel].freq), channel);
1256 }
1257}
1258
1259void
1260upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len)
1261{
1262 struct upgt_eeprom_freq4_header *freq4_header;
1263 struct upgt_eeprom_freq4_1 *freq4_1;
1264 struct upgt_eeprom_freq4_2 *freq4_2;
1265 int i;
1266 int j;
1267 int elements;
1268 int settings;
1269 int flags;
1270 unsigned channel;
1271
1272 freq4_header = (struct upgt_eeprom_freq4_header *)data;
1273 freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1);
1274 flags = freq4_header->flags;
1275 elements = freq4_header->elements;
1276 settings = freq4_header->settings;
1277
1278 /* we need this value later */
1279 sc->sc_eeprom_freq6_settings = freq4_header->settings;
1280
1281 DPRINTF(sc, UPGT_DEBUG_FW, "flags=0x%02x elements=%d settings=%d\n",
1282 flags, elements, settings);
1283
1284 if (elements >= (int)(UPGT_EEPROM_SIZE / sizeof(freq4_1[0])))
1285 return;
1286
1287 for (i = 0; i < elements; i++) {
1288 channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0);
1289 if (channel >= IEEE80211_CHAN_MAX)
1290 continue;
1291
1292 freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data;
1293 for (j = 0; j < settings; j++) {
1294 sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j];
1295 sc->sc_eeprom_freq4[channel][j].pad = 0;
1296 }
1297
1298 DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n",
1299 le16toh(freq4_1[i].freq), channel);
1300 }
1301}
1302
1303void
1304upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len)
1305{
1306 struct upgt_lmac_freq6 *freq6;
1307 int i;
1308 int elements;
1309 unsigned channel;
1310
1311 freq6 = (struct upgt_lmac_freq6 *)data;
1312 elements = len / sizeof(struct upgt_lmac_freq6);
1313
1314 DPRINTF(sc, UPGT_DEBUG_FW, "elements=%d\n", elements);
1315
1316 if (elements >= (int)(UPGT_EEPROM_SIZE / sizeof(freq6[0])))
1317 return;
1318
1319 for (i = 0; i < elements; i++) {
1320 channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0);
1321 if (channel >= IEEE80211_CHAN_MAX)
1322 continue;
1323
1324 sc->sc_eeprom_freq6[channel] = freq6[i];
1325
1326 DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n",
1327 le16toh(sc->sc_eeprom_freq6[channel].freq), channel);
1328 }
1329}
1330
1331static void
1332upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data)
1333{
1334 struct upgt_eeprom_option_hwrx *option_hwrx;
1335
1336 option_hwrx = (struct upgt_eeprom_option_hwrx *)data;
1337
1338 sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST;
1339
1340 DPRINTF(sc, UPGT_DEBUG_FW, "hwrx option value=0x%04x\n",
1341 sc->sc_eeprom_hwrx);
1342}
1343
1344static int
1345upgt_eeprom_read(struct upgt_softc *sc)
1346{
1347 struct upgt_data *data_cmd;
1348 struct upgt_lmac_mem *mem;
1349 struct upgt_lmac_eeprom *eeprom;
1350 int block, error, offset;
1351
1352 UPGT_LOCK(sc);
1353 usb_pause_mtx(&sc->sc_mtx, 100);
1354
1355 offset = 0;
1356 block = UPGT_EEPROM_BLOCK_SIZE;
1357 while (offset < UPGT_EEPROM_SIZE) {
1358 DPRINTF(sc, UPGT_DEBUG_FW,
1359 "request EEPROM block (offset=%d, len=%d)\n", offset, block);
1360
1361 data_cmd = upgt_getbuf(sc);
1362 if (data_cmd == NULL) {
1363 UPGT_UNLOCK(sc);
1364 return (ENOBUFS);
1365 }
1366
1367 /*
1368 * Transmit the URB containing the CMD data.
1369 */
1370 memset(data_cmd->buf, 0, MCLBYTES);
1371
1372 mem = (struct upgt_lmac_mem *)data_cmd->buf;
1373 mem->addr = htole32(sc->sc_memaddr_frame_start +
1374 UPGT_MEMSIZE_FRAME_HEAD);
1375
1376 eeprom = (struct upgt_lmac_eeprom *)(mem + 1);
1377 eeprom->header1.flags = 0;
1378 eeprom->header1.type = UPGT_H1_TYPE_CTRL;
1379 eeprom->header1.len = htole16((
1380 sizeof(struct upgt_lmac_eeprom) -
1381 sizeof(struct upgt_lmac_header)) + block);
1382
1383 eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start);
1384 eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM);
1385 eeprom->header2.flags = 0;
1386
1387 eeprom->offset = htole16(offset);
1388 eeprom->len = htole16(block);
1389
1390 data_cmd->buflen = sizeof(*mem) + sizeof(*eeprom) + block;
1391
1392 mem->chksum = upgt_chksum_le((uint32_t *)eeprom,
1393 data_cmd->buflen - sizeof(*mem));
1394 upgt_bulk_tx(sc, data_cmd);
1395
1396 error = mtx_sleep(sc, &sc->sc_mtx, 0, "eeprom_request", hz);
1397 if (error != 0) {
1398 device_printf(sc->sc_dev,
1399 "timeout while waiting for EEPROM data\n");
1400 UPGT_UNLOCK(sc);
1401 return (EIO);
1402 }
1403
1404 offset += block;
1405 if (UPGT_EEPROM_SIZE - offset < block)
1406 block = UPGT_EEPROM_SIZE - offset;
1407 }
1408
1409 UPGT_UNLOCK(sc);
1410 return (0);
1411}
1412
1413/*
1414 * When a rx data came in the function returns a mbuf and a rssi values.
1415 */
1416static struct mbuf *
1417upgt_rxeof(struct usb_xfer *xfer, struct upgt_data *data, int *rssi)
1418{
1419 struct mbuf *m = NULL;
1420 struct upgt_softc *sc = usbd_xfer_softc(xfer);
1421 struct upgt_lmac_header *header;
1422 struct upgt_lmac_eeprom *eeprom;
1423 uint8_t h1_type;
1424 uint16_t h2_type;
1425 int actlen, sumlen;
1426
1427 usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL);
1428
1429 UPGT_ASSERT_LOCKED(sc);
1430
1431 if (actlen < 1)
1432 return (NULL);
1433
1434 /* Check only at the very beginning. */
1435 if (!(sc->sc_flags & UPGT_FLAG_FWLOADED) &&
1436 (memcmp(data->buf, "OK", 2) == 0)) {
1437 sc->sc_flags |= UPGT_FLAG_FWLOADED;
1438 wakeup_one(sc);
1439 return (NULL);
1440 }
1441
1442 if (actlen < (int)UPGT_RX_MINSZ)
1443 return (NULL);
1444
1445 /*
1446 * Check what type of frame came in.
1447 */
1448 header = (struct upgt_lmac_header *)(data->buf + 4);
1449
1450 h1_type = header->header1.type;
1451 h2_type = le16toh(header->header2.type);
1452
1453 if (h1_type == UPGT_H1_TYPE_CTRL && h2_type == UPGT_H2_TYPE_EEPROM) {
1454 eeprom = (struct upgt_lmac_eeprom *)(data->buf + 4);
1455 uint16_t eeprom_offset = le16toh(eeprom->offset);
1456 uint16_t eeprom_len = le16toh(eeprom->len);
1457
1458 DPRINTF(sc, UPGT_DEBUG_FW,
1459 "received EEPROM block (offset=%d, len=%d)\n",
1460 eeprom_offset, eeprom_len);
1461
1462 memcpy(sc->sc_eeprom + eeprom_offset,
1463 data->buf + sizeof(struct upgt_lmac_eeprom) + 4,
1464 eeprom_len);
1465
1466 /* EEPROM data has arrived in time, wakeup. */
1467 wakeup(sc);
1468 } else if (h1_type == UPGT_H1_TYPE_CTRL &&
1469 h2_type == UPGT_H2_TYPE_TX_DONE) {
1470 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: received 802.11 TX done\n",
1471 __func__);
1472 upgt_tx_done(sc, data->buf + 4);
1473 } else if (h1_type == UPGT_H1_TYPE_RX_DATA ||
1474 h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) {
1475 DPRINTF(sc, UPGT_DEBUG_RECV, "%s: received 802.11 RX data\n",
1476 __func__);
1477 m = upgt_rx(sc, data->buf + 4, le16toh(header->header1.len),
1478 rssi);
1479 } else if (h1_type == UPGT_H1_TYPE_CTRL &&
1480 h2_type == UPGT_H2_TYPE_STATS) {
1481 DPRINTF(sc, UPGT_DEBUG_STAT, "%s: received statistic data\n",
1482 __func__);
1483 /* TODO: what could we do with the statistic data? */
1484 } else {
1485 /* ignore unknown frame types */
1486 DPRINTF(sc, UPGT_DEBUG_INTR,
1487 "received unknown frame type 0x%02x\n",
1488 header->header1.type);
1489 }
1490 return (m);
1491}
1492
1493/*
1494 * The firmware awaits a checksum for each frame we send to it.
1495 * The algorithm used therefor is uncommon but somehow similar to CRC32.
1496 */
1497static uint32_t
1498upgt_chksum_le(const uint32_t *buf, size_t size)
1499{
1500 size_t i;
1501 uint32_t crc = 0;
1502
1503 for (i = 0; i < size; i += sizeof(uint32_t)) {
1504 crc = htole32(crc ^ *buf++);
1505 crc = htole32((crc >> 5) ^ (crc << 3));
1506 }
1507
1508 return (crc);
1509}
1510
1511static struct mbuf *
1512upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen, int *rssi)
1513{
1514 struct ifnet *ifp = sc->sc_ifp;
1515 struct ieee80211com *ic = ifp->if_l2com;
1516 struct upgt_lmac_rx_desc *rxdesc;
1517 struct mbuf *m;
1518
1519 /*
1520 * don't pass packets to the ieee80211 framework if the driver isn't
1521 * RUNNING.
1522 */
1523 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1524 return (NULL);
1525
1526 /* access RX packet descriptor */
1527 rxdesc = (struct upgt_lmac_rx_desc *)data;
1528
1529 /* create mbuf which is suitable for strict alignment archs */
1530 KASSERT((pkglen + ETHER_ALIGN) < MCLBYTES,
1531 ("A current mbuf storage is small (%d)", pkglen + ETHER_ALIGN));
1532 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1533 if (m == NULL) {
1534 device_printf(sc->sc_dev, "could not create RX mbuf\n");
1535 return (NULL);
1536 }
1537 m_adj(m, ETHER_ALIGN);
1538 memcpy(mtod(m, char *), rxdesc->data, pkglen);
1539 /* trim FCS */
1540 m->m_len = m->m_pkthdr.len = pkglen - IEEE80211_CRC_LEN;
1541 m->m_pkthdr.rcvif = ifp;
1542
1543 if (ieee80211_radiotap_active(ic)) {
1544 struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap;
1545
1546 tap->wr_flags = 0;
1547 tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate);
1548 tap->wr_antsignal = rxdesc->rssi;
1549 }
1550 ifp->if_ipackets++;
1551
1552 DPRINTF(sc, UPGT_DEBUG_RX_PROC, "%s: RX done\n", __func__);
1553 *rssi = rxdesc->rssi;
1554 return (m);
1555}
1556
1557static uint8_t
1558upgt_rx_rate(struct upgt_softc *sc, const int rate)
1559{
1560 struct ifnet *ifp = sc->sc_ifp;
1561 struct ieee80211com *ic = ifp->if_l2com;
1562 static const uint8_t cck_upgt2rate[4] = { 2, 4, 11, 22 };
1563 static const uint8_t ofdm_upgt2rate[12] =
1564 { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 };
1565
1566 if (ic->ic_curmode == IEEE80211_MODE_11B &&
1567 !(rate < 0 || rate > 3))
1568 return cck_upgt2rate[rate & 0xf];
1569
1570 if (ic->ic_curmode == IEEE80211_MODE_11G &&
1571 !(rate < 0 || rate > 11))
1572 return ofdm_upgt2rate[rate & 0xf];
1573
1574 return (0);
1575}
1576
1577static void
1578upgt_tx_done(struct upgt_softc *sc, uint8_t *data)
1579{
1580 struct ifnet *ifp = sc->sc_ifp;
1581 struct upgt_lmac_tx_done_desc *desc;
1582 int i, freed = 0;
1583
1584 UPGT_ASSERT_LOCKED(sc);
1585
1586 desc = (struct upgt_lmac_tx_done_desc *)data;
1587
1588 for (i = 0; i < UPGT_TX_MAXCOUNT; i++) {
1589 struct upgt_data *data_tx = &sc->sc_tx_data[i];
1590
1591 if (data_tx->addr == le32toh(desc->header2.reqid)) {
1592 upgt_mem_free(sc, data_tx->addr);
1593 data_tx->ni = NULL;
1594 data_tx->addr = 0;
1595 data_tx->m = NULL;
1596
1597 DPRINTF(sc, UPGT_DEBUG_TX_PROC,
1598 "TX done: memaddr=0x%08x, status=0x%04x, rssi=%d, ",
1599 le32toh(desc->header2.reqid),
1600 le16toh(desc->status), le16toh(desc->rssi));
1601 DPRINTF(sc, UPGT_DEBUG_TX_PROC, "seq=%d\n",
1602 le16toh(desc->seq));
1603
1604 freed++;
1605 }
1606 }
1607
1608 if (freed != 0) {
1609 sc->sc_tx_timer = 0;
1610 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1611 UPGT_UNLOCK(sc);
1612 upgt_start(ifp);
1613 UPGT_LOCK(sc);
1614 }
1615}
1616
1617static void
1618upgt_mem_free(struct upgt_softc *sc, uint32_t addr)
1619{
1620 int i;
1621
1622 for (i = 0; i < sc->sc_memory.pages; i++) {
1623 if (sc->sc_memory.page[i].addr == addr) {
1624 sc->sc_memory.page[i].used = 0;
1625 return;
1626 }
1627 }
1628
1629 device_printf(sc->sc_dev,
1630 "could not free memory address 0x%08x\n", addr);
1631}
1632
1633static int
1634upgt_fw_load(struct upgt_softc *sc)
1635{
1636 const struct firmware *fw;
1637 struct upgt_data *data_cmd;
1638 struct upgt_fw_x2_header *x2;
1639 char start_fwload_cmd[] = { 0x3c, 0x0d };
1640 int error = 0;
1641 size_t offset;
1642 int bsize;
1643 int n;
1644 uint32_t crc32;
1645
1646 fw = firmware_get(upgt_fwname);
1647 if (fw == NULL) {
1648 device_printf(sc->sc_dev, "could not read microcode %s\n",
1649 upgt_fwname);
1650 return (EIO);
1651 }
1652
1653 UPGT_LOCK(sc);
1654
1655 /* send firmware start load command */
1656 data_cmd = upgt_getbuf(sc);
1657 if (data_cmd == NULL) {
1658 error = ENOBUFS;
1659 goto fail;
1660 }
1661 data_cmd->buflen = sizeof(start_fwload_cmd);
1662 memcpy(data_cmd->buf, start_fwload_cmd, data_cmd->buflen);
1663 upgt_bulk_tx(sc, data_cmd);
1664
1665 /* send X2 header */
1666 data_cmd = upgt_getbuf(sc);
1667 if (data_cmd == NULL) {
1668 error = ENOBUFS;
1669 goto fail;
1670 }
1671 data_cmd->buflen = sizeof(struct upgt_fw_x2_header);
1672 x2 = (struct upgt_fw_x2_header *)data_cmd->buf;
1673 memcpy(x2->signature, UPGT_X2_SIGNATURE, UPGT_X2_SIGNATURE_SIZE);
1674 x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START);
1675 x2->len = htole32(fw->datasize);
1676 x2->crc = upgt_crc32_le((uint8_t *)data_cmd->buf +
1677 UPGT_X2_SIGNATURE_SIZE,
1678 sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE -
1679 sizeof(uint32_t));
1680 upgt_bulk_tx(sc, data_cmd);
1681
1682 /* download firmware */
1683 for (offset = 0; offset < fw->datasize; offset += bsize) {
1684 if (fw->datasize - offset > UPGT_FW_BLOCK_SIZE)
1685 bsize = UPGT_FW_BLOCK_SIZE;
1686 else
1687 bsize = fw->datasize - offset;
1688
1689 data_cmd = upgt_getbuf(sc);
1690 if (data_cmd == NULL) {
1691 error = ENOBUFS;
1692 goto fail;
1693 }
1694 n = upgt_fw_copy((const uint8_t *)fw->data + offset,
1695 data_cmd->buf, bsize);
1696 data_cmd->buflen = bsize;
1697 upgt_bulk_tx(sc, data_cmd);
1698
1699 DPRINTF(sc, UPGT_DEBUG_FW, "FW offset=%d, read=%d, sent=%d\n",
1700 offset, n, bsize);
1701 bsize = n;
1702 }
1703 DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware downloaded\n", __func__);
1704
1705 /* load firmware */
1706 data_cmd = upgt_getbuf(sc);
1707 if (data_cmd == NULL) {
1708 error = ENOBUFS;
1709 goto fail;
1710 }
1711 crc32 = upgt_crc32_le(fw->data, fw->datasize);
1712 *((uint32_t *)(data_cmd->buf) ) = crc32;
1713 *((uint8_t *)(data_cmd->buf) + 4) = 'g';
1714 *((uint8_t *)(data_cmd->buf) + 5) = '\r';
1715 data_cmd->buflen = 6;
1716 upgt_bulk_tx(sc, data_cmd);
1717
1718 /* waiting 'OK' response. */
1719 usbd_transfer_start(sc->sc_xfer[UPGT_BULK_RX]);
1720 error = mtx_sleep(sc, &sc->sc_mtx, 0, "upgtfw", 2 * hz);
1721 if (error != 0) {
1722 device_printf(sc->sc_dev, "firmware load failed\n");
1723 error = EIO;
1724 }
1725
1726 DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware loaded\n", __func__);
1727fail:
1728 UPGT_UNLOCK(sc);
1729 firmware_put(fw, FIRMWARE_UNLOAD);
1730 return (error);
1731}
1732
1733static uint32_t
1734upgt_crc32_le(const void *buf, size_t size)
1735{
1736 uint32_t crc;
1737
1738 crc = ether_crc32_le(buf, size);
1739
1740 /* apply final XOR value as common for CRC-32 */
1741 crc = htole32(crc ^ 0xffffffffU);
1742
1743 return (crc);
1744}
1745
1746/*
1747 * While copying the version 2 firmware, we need to replace two characters:
1748 *
1749 * 0x7e -> 0x7d 0x5e
1750 * 0x7d -> 0x7d 0x5d
1751 */
1752static int
1753upgt_fw_copy(const uint8_t *src, char *dst, int size)
1754{
1755 int i, j;
1756
1757 for (i = 0, j = 0; i < size && j < size; i++) {
1758 switch (src[i]) {
1759 case 0x7e:
1760 dst[j] = 0x7d;
1761 j++;
1762 dst[j] = 0x5e;
1763 j++;
1764 break;
1765 case 0x7d:
1766 dst[j] = 0x7d;
1767 j++;
1768 dst[j] = 0x5d;
1769 j++;
1770 break;
1771 default:
1772 dst[j] = src[i];
1773 j++;
1774 break;
1775 }
1776 }
1777
1778 return (i);
1779}
1780
1781static int
1782upgt_mem_init(struct upgt_softc *sc)
1783{
1784 int i;
1785
1786 for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) {
1787 sc->sc_memory.page[i].used = 0;
1788
1789 if (i == 0) {
1790 /*
1791 * The first memory page is always reserved for
1792 * command data.
1793 */
1794 sc->sc_memory.page[i].addr =
1795 sc->sc_memaddr_frame_start + MCLBYTES;
1796 } else {
1797 sc->sc_memory.page[i].addr =
1798 sc->sc_memory.page[i - 1].addr + MCLBYTES;
1799 }
1800
1801 if (sc->sc_memory.page[i].addr + MCLBYTES >=
1802 sc->sc_memaddr_frame_end)
1803 break;
1804
1805 DPRINTF(sc, UPGT_DEBUG_FW, "memory address page %d=0x%08x\n",
1806 i, sc->sc_memory.page[i].addr);
1807 }
1808
1809 sc->sc_memory.pages = i;
1810
1811 DPRINTF(sc, UPGT_DEBUG_FW, "memory pages=%d\n", sc->sc_memory.pages);
1812 return (0);
1813}
1814
1815static int
1816upgt_fw_verify(struct upgt_softc *sc)
1817{
1818 const struct firmware *fw;
1819 const struct upgt_fw_bra_option *bra_opt;
1820 const struct upgt_fw_bra_descr *descr;
1821 const uint8_t *p;
1822 const uint32_t *uc;
1823 uint32_t bra_option_type, bra_option_len;
1824 size_t offset;
1825 int bra_end = 0;
1826 int error = 0;
1827
1828 fw = firmware_get(upgt_fwname);
1829 if (fw == NULL) {
1830 device_printf(sc->sc_dev, "could not read microcode %s\n",
1831 upgt_fwname);
1832 return EIO;
1833 }
1834
1835 /*
1836 * Seek to beginning of Boot Record Area (BRA).
1837 */
1838 for (offset = 0; offset < fw->datasize; offset += sizeof(*uc)) {
1839 uc = (const uint32_t *)((const uint8_t *)fw->data + offset);
1840 if (*uc == 0)
1841 break;
1842 }
1843 for (; offset < fw->datasize; offset += sizeof(*uc)) {
1844 uc = (const uint32_t *)((const uint8_t *)fw->data + offset);
1845 if (*uc != 0)
1846 break;
1847 }
1848 if (offset == fw->datasize) {
1849 device_printf(sc->sc_dev,
1850 "firmware Boot Record Area not found\n");
1851 error = EIO;
1852 goto fail;
1853 }
1854
1855 DPRINTF(sc, UPGT_DEBUG_FW,
1856 "firmware Boot Record Area found at offset %d\n", offset);
1857
1858 /*
1859 * Parse Boot Record Area (BRA) options.
1860 */
1861 while (offset < fw->datasize && bra_end == 0) {
1862 /* get current BRA option */
1863 p = (const uint8_t *)fw->data + offset;
1864 bra_opt = (const struct upgt_fw_bra_option *)p;
1865 bra_option_type = le32toh(bra_opt->type);
1866 bra_option_len = le32toh(bra_opt->len) * sizeof(*uc);
1867
1868 switch (bra_option_type) {
1869 case UPGT_BRA_TYPE_FW:
1870 DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_FW len=%d\n",
1871 bra_option_len);
1872
1873 if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) {
1874 device_printf(sc->sc_dev,
1875 "wrong UPGT_BRA_TYPE_FW len\n");
1876 error = EIO;
1877 goto fail;
1878 }
1879 if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_opt->data,
1880 bra_option_len) == 0) {
1881 sc->sc_fw_type = UPGT_FWTYPE_LM86;
1882 break;
1883 }
1884 if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_opt->data,
1885 bra_option_len) == 0) {
1886 sc->sc_fw_type = UPGT_FWTYPE_LM87;
1887 break;
1888 }
1889 device_printf(sc->sc_dev,
1890 "unsupported firmware type\n");
1891 error = EIO;
1892 goto fail;
1893 case UPGT_BRA_TYPE_VERSION:
1894 DPRINTF(sc, UPGT_DEBUG_FW,
1895 "UPGT_BRA_TYPE_VERSION len=%d\n", bra_option_len);
1896 break;
1897 case UPGT_BRA_TYPE_DEPIF:
1898 DPRINTF(sc, UPGT_DEBUG_FW,
1899 "UPGT_BRA_TYPE_DEPIF len=%d\n", bra_option_len);
1900 break;
1901 case UPGT_BRA_TYPE_EXPIF:
1902 DPRINTF(sc, UPGT_DEBUG_FW,
1903 "UPGT_BRA_TYPE_EXPIF len=%d\n", bra_option_len);
1904 break;
1905 case UPGT_BRA_TYPE_DESCR:
1906 DPRINTF(sc, UPGT_DEBUG_FW,
1907 "UPGT_BRA_TYPE_DESCR len=%d\n", bra_option_len);
1908
1909 descr = (const struct upgt_fw_bra_descr *)bra_opt->data;
1910
1911 sc->sc_memaddr_frame_start =
1912 le32toh(descr->memaddr_space_start);
1913 sc->sc_memaddr_frame_end =
1914 le32toh(descr->memaddr_space_end);
1915
1916 DPRINTF(sc, UPGT_DEBUG_FW,
1917 "memory address space start=0x%08x\n",
1918 sc->sc_memaddr_frame_start);
1919 DPRINTF(sc, UPGT_DEBUG_FW,
1920 "memory address space end=0x%08x\n",
1921 sc->sc_memaddr_frame_end);
1922 break;
1923 case UPGT_BRA_TYPE_END:
1924 DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_END len=%d\n",
1925 bra_option_len);
1926 bra_end = 1;
1927 break;
1928 default:
1929 DPRINTF(sc, UPGT_DEBUG_FW, "unknown BRA option len=%d\n",
1930 bra_option_len);
1931 error = EIO;
1932 goto fail;
1933 }
1934
1935 /* jump to next BRA option */
1936 offset += sizeof(struct upgt_fw_bra_option) + bra_option_len;
1937 }
1938
1939 DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware verified", __func__);
1940fail:
1941 firmware_put(fw, FIRMWARE_UNLOAD);
1942 return (error);
1943}
1944
1945static void
1946upgt_bulk_tx(struct upgt_softc *sc, struct upgt_data *data)
1947{
1948
1949 UPGT_ASSERT_LOCKED(sc);
1950
1951 STAILQ_INSERT_TAIL(&sc->sc_tx_pending, data, next);
1952 UPGT_STAT_INC(sc, st_tx_pending);
1953 usbd_transfer_start(sc->sc_xfer[UPGT_BULK_TX]);
1954}
1955
1956static int
1957upgt_device_reset(struct upgt_softc *sc)
1958{
1959 struct upgt_data *data;
1960 char init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e };
1961
1962 UPGT_LOCK(sc);
1963
1964 data = upgt_getbuf(sc);
1965 if (data == NULL) {
1966 UPGT_UNLOCK(sc);
1967 return (ENOBUFS);
1968 }
1969 memcpy(data->buf, init_cmd, sizeof(init_cmd));
1970 data->buflen = sizeof(init_cmd);
1971 upgt_bulk_tx(sc, data);
1972 usb_pause_mtx(&sc->sc_mtx, 100);
1973
1974 UPGT_UNLOCK(sc);
1975 DPRINTF(sc, UPGT_DEBUG_FW, "%s: device initialized\n", __func__);
1976 return (0);
1977}
1978
1979static int
1980upgt_alloc_tx(struct upgt_softc *sc)
1981{
1982 int i;
1983
1984 STAILQ_INIT(&sc->sc_tx_active);
1985 STAILQ_INIT(&sc->sc_tx_inactive);
1986 STAILQ_INIT(&sc->sc_tx_pending);
1987
1988 for (i = 0; i < UPGT_TX_MAXCOUNT; i++) {
1989 struct upgt_data *data = &sc->sc_tx_data[i];
1990 data->buf = ((uint8_t *)sc->sc_tx_dma_buf) + (i * MCLBYTES);
1991 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next);
1992 UPGT_STAT_INC(sc, st_tx_inactive);
1993 }
1994
1995 return (0);
1996}
1997
1998static int
1999upgt_alloc_rx(struct upgt_softc *sc)
2000{
2001 int i;
2002
2003 STAILQ_INIT(&sc->sc_rx_active);
2004 STAILQ_INIT(&sc->sc_rx_inactive);
2005
2006 for (i = 0; i < UPGT_RX_MAXCOUNT; i++) {
2007 struct upgt_data *data = &sc->sc_rx_data[i];
2008 data->buf = ((uint8_t *)sc->sc_rx_dma_buf) + (i * MCLBYTES);
2009 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
2010 }
2011 return (0);
2012}
2013
2014static int
2015upgt_detach(device_t dev)
2016{
2017 struct upgt_softc *sc = device_get_softc(dev);
2018 struct ifnet *ifp = sc->sc_ifp;
2019 struct ieee80211com *ic = ifp->if_l2com;
2020 unsigned int x;
2021
2022 /*
2023 * Prevent further allocations from RX/TX/CMD
2024 * data lists and ioctls
2025 */
2026 UPGT_LOCK(sc);
2027 sc->sc_flags |= UPGT_FLAG_DETACHED;
2028
2029 STAILQ_INIT(&sc->sc_tx_active);
2030 STAILQ_INIT(&sc->sc_tx_inactive);
2031 STAILQ_INIT(&sc->sc_tx_pending);
2032
2033 STAILQ_INIT(&sc->sc_rx_active);
2034 STAILQ_INIT(&sc->sc_rx_inactive);
2035 UPGT_UNLOCK(sc);
2036
2037 upgt_stop(sc);
2038
2039 callout_drain(&sc->sc_led_ch);
2040 callout_drain(&sc->sc_watchdog_ch);
2041
2042 /* drain USB transfers */
2043 for (x = 0; x != UPGT_N_XFERS; x++)
2044 usbd_transfer_drain(sc->sc_xfer[x]);
2045
2046 /* free data buffers */
2047 UPGT_LOCK(sc);
2048 upgt_free_rx(sc);
2049 upgt_free_tx(sc);
2050 UPGT_UNLOCK(sc);
2051
2052 /* free USB transfers and some data buffers */
2053 usbd_transfer_unsetup(sc->sc_xfer, UPGT_N_XFERS);
2054
2055 ieee80211_ifdetach(ic);
2056 if_free(ifp);
2057 mtx_destroy(&sc->sc_mtx);
2058
2059 return (0);
2060}
2061
2062static void
2063upgt_free_rx(struct upgt_softc *sc)
2064{
2065 int i;
2066
2067 for (i = 0; i < UPGT_RX_MAXCOUNT; i++) {
2068 struct upgt_data *data = &sc->sc_rx_data[i];
2069
2070 data->buf = NULL;
2071 data->ni = NULL;
2072 }
2073}
2074
2075static void
2076upgt_free_tx(struct upgt_softc *sc)
2077{
2078 int i;
2079
2080 for (i = 0; i < UPGT_TX_MAXCOUNT; i++) {
2081 struct upgt_data *data = &sc->sc_tx_data[i];
2082
2083 if (data->ni != NULL)
2084 ieee80211_free_node(data->ni);
2085
2086 data->buf = NULL;
2087 data->ni = NULL;
2088 }
2089}
2090
2091static void
2092upgt_abort_xfers_locked(struct upgt_softc *sc)
2093{
2094 int i;
2095
2096 UPGT_ASSERT_LOCKED(sc);
2097 /* abort any pending transfers */
2098 for (i = 0; i < UPGT_N_XFERS; i++)
2099 usbd_transfer_stop(sc->sc_xfer[i]);
2100}
2101
2102static void
2103upgt_abort_xfers(struct upgt_softc *sc)
2104{
2105
2106 UPGT_LOCK(sc);
2107 upgt_abort_xfers_locked(sc);
2108 UPGT_UNLOCK(sc);
2109}
2110
2111#define UPGT_SYSCTL_STAT_ADD32(c, h, n, p, d) \
2112 SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2113
2114static void
2115upgt_sysctl_node(struct upgt_softc *sc)
2116{
2117 struct sysctl_ctx_list *ctx;
2118 struct sysctl_oid_list *child;
2119 struct sysctl_oid *tree;
2120 struct upgt_stat *stats;
2121
2122 stats = &sc->sc_stat;
2123 ctx = device_get_sysctl_ctx(sc->sc_dev);
2124 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->sc_dev));
2125
2126 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2127 NULL, "UPGT statistics");
2128 child = SYSCTL_CHILDREN(tree);
2129 UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_active",
2130 &stats->st_tx_active, "Active numbers in TX queue");
2131 UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_inactive",
2132 &stats->st_tx_inactive, "Inactive numbers in TX queue");
2133 UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_pending",
2134 &stats->st_tx_pending, "Pending numbers in TX queue");
2135}
2136
2137#undef UPGT_SYSCTL_STAT_ADD32
2138
2139static struct upgt_data *
2140_upgt_getbuf(struct upgt_softc *sc)
2141{
2142 struct upgt_data *bf;
2143
2144 bf = STAILQ_FIRST(&sc->sc_tx_inactive);
2145 if (bf != NULL) {
2146 STAILQ_REMOVE_HEAD(&sc->sc_tx_inactive, next);
2147 UPGT_STAT_DEC(sc, st_tx_inactive);
2148 } else
2149 bf = NULL;
2150 if (bf == NULL)
2151 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: %s\n", __func__,
2152 "out of xmit buffers");
2153 return (bf);
2154}
2155
2156static struct upgt_data *
2157upgt_getbuf(struct upgt_softc *sc)
2158{
2159 struct upgt_data *bf;
2160
2161 UPGT_ASSERT_LOCKED(sc);
2162
2163 bf = _upgt_getbuf(sc);
2164 if (bf == NULL) {
2165 struct ifnet *ifp = sc->sc_ifp;
2166
2167 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: stop queue\n", __func__);
2168 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2169 }
2170
2171 return (bf);
2172}
2173
2174static struct upgt_data *
2175upgt_gettxbuf(struct upgt_softc *sc)
2176{
2177 struct upgt_data *bf;
2178
2179 UPGT_ASSERT_LOCKED(sc);
2180
2181 bf = upgt_getbuf(sc);
2182 if (bf == NULL)
2183 return (NULL);
2184
2185 bf->addr = upgt_mem_alloc(sc);
2186 if (bf->addr == 0) {
2187 struct ifnet *ifp = sc->sc_ifp;
2188
2189 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: no free prism memory!\n",
2190 __func__);
2191 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next);
2192 UPGT_STAT_INC(sc, st_tx_inactive);
2193 if (!(ifp->if_drv_flags & IFF_DRV_OACTIVE))
2194 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2195 return (NULL);
2196 }
2197 return (bf);
2198}
2199
2200static int
2201upgt_tx_start(struct upgt_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
2202 struct upgt_data *data)
2203{
2204 struct ieee80211vap *vap = ni->ni_vap;
2205 int error = 0, len;
2206 struct ieee80211_frame *wh;
2207 struct ieee80211_key *k;
2208 struct ifnet *ifp = sc->sc_ifp;
2209 struct upgt_lmac_mem *mem;
2210 struct upgt_lmac_tx_desc *txdesc;
2211
2212 UPGT_ASSERT_LOCKED(sc);
2213
2214 upgt_set_led(sc, UPGT_LED_BLINK);
2215
2216 /*
2217 * Software crypto.
2218 */
2219 wh = mtod(m, struct ieee80211_frame *);
2220 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2221 k = ieee80211_crypto_encap(ni, m);
2222 if (k == NULL) {
2223 device_printf(sc->sc_dev,
2224 "ieee80211_crypto_encap returns NULL.\n");
2225 error = EIO;
2226 goto done;
2227 }
2228
2229 /* in case packet header moved, reset pointer */
2230 wh = mtod(m, struct ieee80211_frame *);
2231 }
2232
2233 /* Transmit the URB containing the TX data. */
2234 memset(data->buf, 0, MCLBYTES);
2235 mem = (struct upgt_lmac_mem *)data->buf;
2236 mem->addr = htole32(data->addr);
2237 txdesc = (struct upgt_lmac_tx_desc *)(mem + 1);
2238
2239 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
2240 IEEE80211_FC0_TYPE_MGT) {
2241 /* mgmt frames */
2242 txdesc->header1.flags = UPGT_H1_FLAGS_TX_MGMT;
2243 /* always send mgmt frames at lowest rate (DS1) */
2244 memset(txdesc->rates, 0x10, sizeof(txdesc->rates));
2245 } else {
2246 /* data frames */
2247 txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA;
2248 memcpy(txdesc->rates, sc->sc_cur_rateset, sizeof(txdesc->rates));
2249 }
2250 txdesc->header1.type = UPGT_H1_TYPE_TX_DATA;
2251 txdesc->header1.len = htole16(m->m_pkthdr.len);
2252 txdesc->header2.reqid = htole32(data->addr);
2253 txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES);
2254 txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES);
2255 txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA);
2256 txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE;
2257
2258 if (ieee80211_radiotap_active_vap(vap)) {
2259 struct upgt_tx_radiotap_header *tap = &sc->sc_txtap;
2260
2261 tap->wt_flags = 0;
2262 tap->wt_rate = 0; /* XXX where to get from? */
2263
2264 ieee80211_radiotap_tx(vap, m);
2265 }
2266
2267 /* copy frame below our TX descriptor header */
2268 m_copydata(m, 0, m->m_pkthdr.len,
2269 data->buf + (sizeof(*mem) + sizeof(*txdesc)));
2270 /* calculate frame size */
2271 len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len;
2272 /* we need to align the frame to a 4 byte boundary */
2273 len = (len + 3) & ~3;
2274 /* calculate frame checksum */
2275 mem->chksum = upgt_chksum_le((uint32_t *)txdesc, len - sizeof(*mem));
2276 data->ni = ni;
2277 data->m = m;
2278 data->buflen = len;
2279
2280 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: TX start data sending (%d bytes)\n",
2281 __func__, len);
2282 KASSERT(len <= MCLBYTES, ("mbuf is small for saving data"));
2283
2284 upgt_bulk_tx(sc, data);
2285done:
2286 /*
2287 * If we don't regulary read the device statistics, the RX queue
2288 * will stall. It's strange, but it works, so we keep reading
2289 * the statistics here. *shrug*
2290 */
2291 if (!(ifp->if_opackets % UPGT_TX_STAT_INTERVAL))
2292 upgt_get_stats(sc);
2293
2294 return (error);
2295}
2296
2297static void
2298upgt_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error)
2299{
2300 struct upgt_softc *sc = usbd_xfer_softc(xfer);
2301 struct ifnet *ifp = sc->sc_ifp;
2302 struct ieee80211com *ic = ifp->if_l2com;
2303 struct ieee80211_frame *wh;
2304 struct ieee80211_node *ni;
2305 struct mbuf *m = NULL;
2306 struct upgt_data *data;
2307 int8_t nf;
2308 int rssi = -1;
2309
2310 UPGT_ASSERT_LOCKED(sc);
2311
2312 switch (USB_GET_STATE(xfer)) {
2313 case USB_ST_TRANSFERRED:
2314 data = STAILQ_FIRST(&sc->sc_rx_active);
2315 if (data == NULL)
2316 goto setup;
2317 STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next);
2318 m = upgt_rxeof(xfer, data, &rssi);
2319 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
2320 /* FALLTHROUGH */
2321 case USB_ST_SETUP:
2322setup:
2323 data = STAILQ_FIRST(&sc->sc_rx_inactive);
2324 if (data == NULL)
2325 return;
2326 STAILQ_REMOVE_HEAD(&sc->sc_rx_inactive, next);
2327 STAILQ_INSERT_TAIL(&sc->sc_rx_active, data, next);
2328 usbd_xfer_set_frame_data(xfer, 0, data->buf, MCLBYTES);
2329 usbd_transfer_submit(xfer);
2330
2331 /*
2332 * To avoid LOR we should unlock our private mutex here to call
2333 * ieee80211_input() because here is at the end of a USB
2334 * callback and safe to unlock.
2335 */
2336 UPGT_UNLOCK(sc);
2337 if (m != NULL) {
2338 wh = mtod(m, struct ieee80211_frame *);
2339 ni = ieee80211_find_rxnode(ic,
2340 (struct ieee80211_frame_min *)wh);
2341 nf = -95; /* XXX */
2342 if (ni != NULL) {
2343 (void) ieee80211_input(ni, m, rssi, nf);
2344 /* node is no longer needed */
2345 ieee80211_free_node(ni);
2346 } else
2347 (void) ieee80211_input_all(ic, m, rssi, nf);
2348 m = NULL;
2349 }
2350 if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 &&
2351 !IFQ_IS_EMPTY(&ifp->if_snd))
2352 upgt_start(ifp);
2353 UPGT_LOCK(sc);
2354 break;
2355 default:
2356 /* needs it to the inactive queue due to a error. */
2357 data = STAILQ_FIRST(&sc->sc_rx_active);
2358 if (data != NULL) {
2359 STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next);
2360 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
2361 }
2362 if (error != USB_ERR_CANCELLED) {
2363 usbd_xfer_set_stall(xfer);
2364 ifp->if_ierrors++;
2365 goto setup;
2366 }
2367 break;
2368 }
2369}
2370
2371static void
2372upgt_bulk_tx_callback(struct usb_xfer *xfer, usb_error_t error)
2373{
2374 struct upgt_softc *sc = usbd_xfer_softc(xfer);
2375 struct ifnet *ifp = sc->sc_ifp;
2376 struct upgt_data *data;
2377
2378 UPGT_ASSERT_LOCKED(sc);
2379 switch (USB_GET_STATE(xfer)) {
2380 case USB_ST_TRANSFERRED:
2381 data = STAILQ_FIRST(&sc->sc_tx_active);
2382 if (data == NULL)
2383 goto setup;
2384 STAILQ_REMOVE_HEAD(&sc->sc_tx_active, next);
2385 UPGT_STAT_DEC(sc, st_tx_active);
2386 upgt_txeof(xfer, data);
2387 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next);
2388 UPGT_STAT_INC(sc, st_tx_inactive);
2389 /* FALLTHROUGH */
2390 case USB_ST_SETUP:
2391setup:
2392 data = STAILQ_FIRST(&sc->sc_tx_pending);
2393 if (data == NULL) {
2394 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: empty pending queue\n",
2395 __func__);
2396 return;
2397 }
2398 STAILQ_REMOVE_HEAD(&sc->sc_tx_pending, next);
2399 UPGT_STAT_DEC(sc, st_tx_pending);
2400 STAILQ_INSERT_TAIL(&sc->sc_tx_active, data, next);
2401 UPGT_STAT_INC(sc, st_tx_active);
2402
2403 usbd_xfer_set_frame_data(xfer, 0, data->buf, data->buflen);
2404 usbd_transfer_submit(xfer);
2405 UPGT_UNLOCK(sc);
2406 upgt_start(ifp);
2407 UPGT_LOCK(sc);
2408 break;
2409 default:
2410 data = STAILQ_FIRST(&sc->sc_tx_active);
2411 if (data == NULL)
2412 goto setup;
2413 if (data->ni != NULL) {
2414 ieee80211_free_node(data->ni);
2415 data->ni = NULL;
2416 ifp->if_oerrors++;
2417 }
2418 if (error != USB_ERR_CANCELLED) {
2419 usbd_xfer_set_stall(xfer);
2420 goto setup;
2421 }
2422 break;
2423 }
2424}
2425
2426static device_method_t upgt_methods[] = {
2427 /* Device interface */
2428 DEVMETHOD(device_probe, upgt_match),
2429 DEVMETHOD(device_attach, upgt_attach),
2430 DEVMETHOD(device_detach, upgt_detach),
2431 DEVMETHOD_END
2432};
2433
2434static driver_t upgt_driver = {
2435 .name = "upgt",
2436 .methods = upgt_methods,
2437 .size = sizeof(struct upgt_softc)
2438};
2439
2440static devclass_t upgt_devclass;
2441
2442DRIVER_MODULE(if_upgt, uhub, upgt_driver, upgt_devclass, NULL, 0);
2443MODULE_VERSION(if_upgt, 1);
2444MODULE_DEPEND(if_upgt, usb, 1, 1, 1);
2445MODULE_DEPEND(if_upgt, wlan, 1, 1, 1);
2446MODULE_DEPEND(if_upgt, upgtfw_fw, 1, 1, 1);