Deleted Added
sdiff udiff text old ( 256281 ) new ( 259453 )
full compact
1/* $OpenBSD: if_upgt.c,v 1.35 2008/04/16 18:32:15 damien Exp $ */
2/* $FreeBSD: stable/10/sys/dev/usb/wlan/if_upgt.c 259453 2013-12-16 08:10:38Z hselasky $ */
3
4/*
5 * Copyright (c) 2007 Marcus Glocker <mglocker@openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20#include <sys/param.h>
21#include <sys/systm.h>
22#include <sys/kernel.h>
23#include <sys/endian.h>
24#include <sys/firmware.h>
25#include <sys/linker.h>
26#include <sys/mbuf.h>
27#include <sys/malloc.h>
28#include <sys/module.h>
29#include <sys/socket.h>
30#include <sys/sockio.h>
31#include <sys/sysctl.h>
32
33#include <net/if.h>
34#include <net/if_arp.h>
35#include <net/ethernet.h>
36#include <net/if_dl.h>
37#include <net/if_media.h>
38#include <net/if_types.h>
39
40#include <sys/bus.h>
41#include <machine/bus.h>
42
43#include <net80211/ieee80211_var.h>
44#include <net80211/ieee80211_phy.h>
45#include <net80211/ieee80211_radiotap.h>
46#include <net80211/ieee80211_regdomain.h>
47
48#include <net/bpf.h>
49
50#include <dev/usb/usb.h>
51#include <dev/usb/usbdi.h>
52#include "usbdevs.h"
53
54#include <dev/usb/wlan/if_upgtvar.h>
55
56/*
57 * Driver for the USB PrismGT devices.
58 *
59 * For now just USB 2.0 devices with the GW3887 chipset are supported.
60 * The driver has been written based on the firmware version 2.13.1.0_LM87.
61 *
62 * TODO's:
63 * - MONITOR mode test.
64 * - Add HOSTAP mode.
65 * - Add IBSS mode.
66 * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets).
67 *
68 * Parts of this driver has been influenced by reading the p54u driver
69 * written by Jean-Baptiste Note <jean-baptiste.note@m4x.org> and
70 * Sebastien Bourdeauducq <lekernel@prism54.org>.
71 */
72
73static SYSCTL_NODE(_hw, OID_AUTO, upgt, CTLFLAG_RD, 0,
74 "USB PrismGT GW3887 driver parameters");
75
76#ifdef UPGT_DEBUG
77int upgt_debug = 0;
78SYSCTL_INT(_hw_upgt, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_TUN, &upgt_debug,
79 0, "control debugging printfs");
80TUNABLE_INT("hw.upgt.debug", &upgt_debug);
81enum {
82 UPGT_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
83 UPGT_DEBUG_RECV = 0x00000002, /* basic recv operation */
84 UPGT_DEBUG_RESET = 0x00000004, /* reset processing */
85 UPGT_DEBUG_INTR = 0x00000008, /* INTR */
86 UPGT_DEBUG_TX_PROC = 0x00000010, /* tx ISR proc */
87 UPGT_DEBUG_RX_PROC = 0x00000020, /* rx ISR proc */
88 UPGT_DEBUG_STATE = 0x00000040, /* 802.11 state transitions */
89 UPGT_DEBUG_STAT = 0x00000080, /* statistic */
90 UPGT_DEBUG_FW = 0x00000100, /* firmware */
91 UPGT_DEBUG_ANY = 0xffffffff
92};
93#define DPRINTF(sc, m, fmt, ...) do { \
94 if (sc->sc_debug & (m)) \
95 printf(fmt, __VA_ARGS__); \
96} while (0)
97#else
98#define DPRINTF(sc, m, fmt, ...) do { \
99 (void) sc; \
100} while (0)
101#endif
102
103/*
104 * Prototypes.
105 */
106static device_probe_t upgt_match;
107static device_attach_t upgt_attach;
108static device_detach_t upgt_detach;
109static int upgt_alloc_tx(struct upgt_softc *);
110static int upgt_alloc_rx(struct upgt_softc *);
111static int upgt_device_reset(struct upgt_softc *);
112static void upgt_bulk_tx(struct upgt_softc *, struct upgt_data *);
113static int upgt_fw_verify(struct upgt_softc *);
114static int upgt_mem_init(struct upgt_softc *);
115static int upgt_fw_load(struct upgt_softc *);
116static int upgt_fw_copy(const uint8_t *, char *, int);
117static uint32_t upgt_crc32_le(const void *, size_t);
118static struct mbuf *
119 upgt_rxeof(struct usb_xfer *, struct upgt_data *, int *);
120static struct mbuf *
121 upgt_rx(struct upgt_softc *, uint8_t *, int, int *);
122static void upgt_txeof(struct usb_xfer *, struct upgt_data *);
123static int upgt_eeprom_read(struct upgt_softc *);
124static int upgt_eeprom_parse(struct upgt_softc *);
125static void upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *);
126static void upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int);
127static void upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int);
128static void upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int);
129static uint32_t upgt_chksum_le(const uint32_t *, size_t);
130static void upgt_tx_done(struct upgt_softc *, uint8_t *);
131static void upgt_init(void *);
132static void upgt_init_locked(struct upgt_softc *);
133static int upgt_ioctl(struct ifnet *, u_long, caddr_t);
134static void upgt_start(struct ifnet *);
135static int upgt_raw_xmit(struct ieee80211_node *, struct mbuf *,
136 const struct ieee80211_bpf_params *);
137static void upgt_scan_start(struct ieee80211com *);
138static void upgt_scan_end(struct ieee80211com *);
139static void upgt_set_channel(struct ieee80211com *);
140static struct ieee80211vap *upgt_vap_create(struct ieee80211com *,
141 const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
142 const uint8_t [IEEE80211_ADDR_LEN],
143 const uint8_t [IEEE80211_ADDR_LEN]);
144static void upgt_vap_delete(struct ieee80211vap *);
145static void upgt_update_mcast(struct ifnet *);
146static uint8_t upgt_rx_rate(struct upgt_softc *, const int);
147static void upgt_set_multi(void *);
148static void upgt_stop(struct upgt_softc *);
149static void upgt_setup_rates(struct ieee80211vap *, struct ieee80211com *);
150static int upgt_set_macfilter(struct upgt_softc *, uint8_t);
151static int upgt_newstate(struct ieee80211vap *, enum ieee80211_state, int);
152static void upgt_set_chan(struct upgt_softc *, struct ieee80211_channel *);
153static void upgt_set_led(struct upgt_softc *, int);
154static void upgt_set_led_blink(void *);
155static void upgt_get_stats(struct upgt_softc *);
156static void upgt_mem_free(struct upgt_softc *, uint32_t);
157static uint32_t upgt_mem_alloc(struct upgt_softc *);
158static void upgt_free_tx(struct upgt_softc *);
159static void upgt_free_rx(struct upgt_softc *);
160static void upgt_watchdog(void *);
161static void upgt_abort_xfers(struct upgt_softc *);
162static void upgt_abort_xfers_locked(struct upgt_softc *);
163static void upgt_sysctl_node(struct upgt_softc *);
164static struct upgt_data *
165 upgt_getbuf(struct upgt_softc *);
166static struct upgt_data *
167 upgt_gettxbuf(struct upgt_softc *);
168static int upgt_tx_start(struct upgt_softc *, struct mbuf *,
169 struct ieee80211_node *, struct upgt_data *);
170
171static const char *upgt_fwname = "upgt-gw3887";
172
173static const STRUCT_USB_HOST_ID upgt_devs[] = {
174#define UPGT_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
175 /* version 2 devices */
176 UPGT_DEV(ACCTON, PRISM_GT),
177 UPGT_DEV(BELKIN, F5D7050),
178 UPGT_DEV(CISCOLINKSYS, WUSB54AG),
179 UPGT_DEV(CONCEPTRONIC, PRISM_GT),
180 UPGT_DEV(DELL, PRISM_GT_1),
181 UPGT_DEV(DELL, PRISM_GT_2),
182 UPGT_DEV(FSC, E5400),
183 UPGT_DEV(GLOBESPAN, PRISM_GT_1),
184 UPGT_DEV(GLOBESPAN, PRISM_GT_2),
185 UPGT_DEV(NETGEAR, WG111V2_2),
186 UPGT_DEV(INTERSIL, PRISM_GT),
187 UPGT_DEV(SMC, 2862WG),
188 UPGT_DEV(USR, USR5422),
189 UPGT_DEV(WISTRONNEWEB, UR045G),
190 UPGT_DEV(XYRATEX, PRISM_GT_1),
191 UPGT_DEV(XYRATEX, PRISM_GT_2),
192 UPGT_DEV(ZCOM, XG703A),
193 UPGT_DEV(ZCOM, XM142)
194};
195
196static usb_callback_t upgt_bulk_rx_callback;
197static usb_callback_t upgt_bulk_tx_callback;
198
199static const struct usb_config upgt_config[UPGT_N_XFERS] = {
200 [UPGT_BULK_TX] = {
201 .type = UE_BULK,
202 .endpoint = UE_ADDR_ANY,
203 .direction = UE_DIR_OUT,
204 .bufsize = MCLBYTES * UPGT_TX_MAXCOUNT,
205 .flags = {
206 .force_short_xfer = 1,
207 .pipe_bof = 1
208 },
209 .callback = upgt_bulk_tx_callback,
210 .timeout = UPGT_USB_TIMEOUT, /* ms */
211 },
212 [UPGT_BULK_RX] = {
213 .type = UE_BULK,
214 .endpoint = UE_ADDR_ANY,
215 .direction = UE_DIR_IN,
216 .bufsize = MCLBYTES * UPGT_RX_MAXCOUNT,
217 .flags = {
218 .pipe_bof = 1,
219 .short_xfer_ok = 1
220 },
221 .callback = upgt_bulk_rx_callback,
222 },
223};
224
225static int
226upgt_match(device_t dev)
227{
228 struct usb_attach_arg *uaa = device_get_ivars(dev);
229
230 if (uaa->usb_mode != USB_MODE_HOST)
231 return (ENXIO);
232 if (uaa->info.bConfigIndex != UPGT_CONFIG_INDEX)
233 return (ENXIO);
234 if (uaa->info.bIfaceIndex != UPGT_IFACE_INDEX)
235 return (ENXIO);
236
237 return (usbd_lookup_id_by_uaa(upgt_devs, sizeof(upgt_devs), uaa));
238}
239
240static int
241upgt_attach(device_t dev)
242{
243 int error;
244 struct ieee80211com *ic;
245 struct ifnet *ifp;
246 struct upgt_softc *sc = device_get_softc(dev);
247 struct usb_attach_arg *uaa = device_get_ivars(dev);
248 uint8_t bands, iface_index = UPGT_IFACE_INDEX;
249
250 sc->sc_dev = dev;
251 sc->sc_udev = uaa->device;
252#ifdef UPGT_DEBUG
253 sc->sc_debug = upgt_debug;
254#endif
255 device_set_usb_desc(dev);
256
257 mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), MTX_NETWORK_LOCK,
258 MTX_DEF);
259 callout_init(&sc->sc_led_ch, 0);
260 callout_init(&sc->sc_watchdog_ch, 0);
261
262 error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer,
263 upgt_config, UPGT_N_XFERS, sc, &sc->sc_mtx);
264 if (error) {
265 device_printf(dev, "could not allocate USB transfers, "
266 "err=%s\n", usbd_errstr(error));
267 goto fail1;
268 }
269
270 sc->sc_rx_dma_buf = usbd_xfer_get_frame_buffer(
271 sc->sc_xfer[UPGT_BULK_RX], 0);
272 sc->sc_tx_dma_buf = usbd_xfer_get_frame_buffer(
273 sc->sc_xfer[UPGT_BULK_TX], 0);
274
275 /* Setup TX and RX buffers */
276 error = upgt_alloc_tx(sc);
277 if (error)
278 goto fail2;
279 error = upgt_alloc_rx(sc);
280 if (error)
281 goto fail3;
282
283 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
284 if (ifp == NULL) {
285 device_printf(dev, "can not if_alloc()\n");
286 goto fail4;
287 }
288
289 /* Initialize the device. */
290 error = upgt_device_reset(sc);
291 if (error)
292 goto fail5;
293 /* Verify the firmware. */
294 error = upgt_fw_verify(sc);
295 if (error)
296 goto fail5;
297 /* Calculate device memory space. */
298 if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) {
299 device_printf(dev,
300 "could not find memory space addresses on FW\n");
301 error = EIO;
302 goto fail5;
303 }
304 sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1;
305 sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1;
306
307 DPRINTF(sc, UPGT_DEBUG_FW, "memory address frame start=0x%08x\n",
308 sc->sc_memaddr_frame_start);
309 DPRINTF(sc, UPGT_DEBUG_FW, "memory address frame end=0x%08x\n",
310 sc->sc_memaddr_frame_end);
311 DPRINTF(sc, UPGT_DEBUG_FW, "memory address rx start=0x%08x\n",
312 sc->sc_memaddr_rx_start);
313
314 upgt_mem_init(sc);
315
316 /* Load the firmware. */
317 error = upgt_fw_load(sc);
318 if (error)
319 goto fail5;
320
321 /* Read the whole EEPROM content and parse it. */
322 error = upgt_eeprom_read(sc);
323 if (error)
324 goto fail5;
325 error = upgt_eeprom_parse(sc);
326 if (error)
327 goto fail5;
328
329 /* all works related with the device have done here. */
330 upgt_abort_xfers(sc);
331
332 /* Setup the 802.11 device. */
333 ifp->if_softc = sc;
334 if_initname(ifp, "upgt", device_get_unit(sc->sc_dev));
335 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
336 ifp->if_init = upgt_init;
337 ifp->if_ioctl = upgt_ioctl;
338 ifp->if_start = upgt_start;
339 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
340 IFQ_SET_READY(&ifp->if_snd);
341
342 ic = ifp->if_l2com;
343 ic->ic_ifp = ifp;
344 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
345 ic->ic_opmode = IEEE80211_M_STA;
346 /* set device capabilities */
347 ic->ic_caps =
348 IEEE80211_C_STA /* station mode */
349 | IEEE80211_C_MONITOR /* monitor mode */
350 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
351 | IEEE80211_C_SHSLOT /* short slot time supported */
352 | IEEE80211_C_BGSCAN /* capable of bg scanning */
353 | IEEE80211_C_WPA /* 802.11i */
354 ;
355
356 bands = 0;
357 setbit(&bands, IEEE80211_MODE_11B);
358 setbit(&bands, IEEE80211_MODE_11G);
359 ieee80211_init_channels(ic, NULL, &bands);
360
361 ieee80211_ifattach(ic, sc->sc_myaddr);
362 ic->ic_raw_xmit = upgt_raw_xmit;
363 ic->ic_scan_start = upgt_scan_start;
364 ic->ic_scan_end = upgt_scan_end;
365 ic->ic_set_channel = upgt_set_channel;
366
367 ic->ic_vap_create = upgt_vap_create;
368 ic->ic_vap_delete = upgt_vap_delete;
369 ic->ic_update_mcast = upgt_update_mcast;
370
371 ieee80211_radiotap_attach(ic,
372 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
373 UPGT_TX_RADIOTAP_PRESENT,
374 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
375 UPGT_RX_RADIOTAP_PRESENT);
376
377 upgt_sysctl_node(sc);
378
379 if (bootverbose)
380 ieee80211_announce(ic);
381
382 return (0);
383
384fail5: if_free(ifp);
385fail4: upgt_free_rx(sc);
386fail3: upgt_free_tx(sc);
387fail2: usbd_transfer_unsetup(sc->sc_xfer, UPGT_N_XFERS);
388fail1: mtx_destroy(&sc->sc_mtx);
389
390 return (error);
391}
392
393static void
394upgt_txeof(struct usb_xfer *xfer, struct upgt_data *data)
395{
396 struct upgt_softc *sc = usbd_xfer_softc(xfer);
397 struct ifnet *ifp = sc->sc_ifp;
398 struct mbuf *m;
399
400 UPGT_ASSERT_LOCKED(sc);
401
402 /*
403 * Do any tx complete callback. Note this must be done before releasing
404 * the node reference.
405 */
406 if (data->m) {
407 m = data->m;
408 if (m->m_flags & M_TXCB) {
409 /* XXX status? */
410 ieee80211_process_callback(data->ni, m, 0);
411 }
412 m_freem(m);
413 data->m = NULL;
414 }
415 if (data->ni) {
416 ieee80211_free_node(data->ni);
417 data->ni = NULL;
418 }
419 ifp->if_opackets++;
420}
421
422static void
423upgt_get_stats(struct upgt_softc *sc)
424{
425 struct upgt_data *data_cmd;
426 struct upgt_lmac_mem *mem;
427 struct upgt_lmac_stats *stats;
428
429 data_cmd = upgt_getbuf(sc);
430 if (data_cmd == NULL) {
431 device_printf(sc->sc_dev, "%s: out of buffer.\n", __func__);
432 return;
433 }
434
435 /*
436 * Transmit the URB containing the CMD data.
437 */
438 memset(data_cmd->buf, 0, MCLBYTES);
439
440 mem = (struct upgt_lmac_mem *)data_cmd->buf;
441 mem->addr = htole32(sc->sc_memaddr_frame_start +
442 UPGT_MEMSIZE_FRAME_HEAD);
443
444 stats = (struct upgt_lmac_stats *)(mem + 1);
445
446 stats->header1.flags = 0;
447 stats->header1.type = UPGT_H1_TYPE_CTRL;
448 stats->header1.len = htole16(
449 sizeof(struct upgt_lmac_stats) - sizeof(struct upgt_lmac_header));
450
451 stats->header2.reqid = htole32(sc->sc_memaddr_frame_start);
452 stats->header2.type = htole16(UPGT_H2_TYPE_STATS);
453 stats->header2.flags = 0;
454
455 data_cmd->buflen = sizeof(*mem) + sizeof(*stats);
456
457 mem->chksum = upgt_chksum_le((uint32_t *)stats,
458 data_cmd->buflen - sizeof(*mem));
459
460 upgt_bulk_tx(sc, data_cmd);
461}
462
463static int
464upgt_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
465{
466 struct upgt_softc *sc = ifp->if_softc;
467 struct ieee80211com *ic = ifp->if_l2com;
468 struct ifreq *ifr = (struct ifreq *) data;
469 int error;
470 int startall = 0;
471
472 UPGT_LOCK(sc);
473 error = (sc->sc_flags & UPGT_FLAG_DETACHED) ? ENXIO : 0;
474 UPGT_UNLOCK(sc);
475 if (error)
476 return (error);
477
478 switch (cmd) {
479 case SIOCSIFFLAGS:
480 if (ifp->if_flags & IFF_UP) {
481 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
482 if ((ifp->if_flags ^ sc->sc_if_flags) &
483 (IFF_ALLMULTI | IFF_PROMISC))
484 upgt_set_multi(sc);
485 } else {
486 upgt_init(sc);
487 startall = 1;
488 }
489 } else {
490 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
491 upgt_stop(sc);
492 }
493 sc->sc_if_flags = ifp->if_flags;
494 if (startall)
495 ieee80211_start_all(ic);
496 break;
497 case SIOCGIFMEDIA:
498 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
499 break;
500 case SIOCGIFADDR:
501 error = ether_ioctl(ifp, cmd, data);
502 break;
503 default:
504 error = EINVAL;
505 break;
506 }
507 return error;
508}
509
510static void
511upgt_stop_locked(struct upgt_softc *sc)
512{
513 struct ifnet *ifp = sc->sc_ifp;
514
515 UPGT_ASSERT_LOCKED(sc);
516
517 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
518 upgt_set_macfilter(sc, IEEE80211_S_INIT);
519 upgt_abort_xfers_locked(sc);
520}
521
522static void
523upgt_stop(struct upgt_softc *sc)
524{
525 struct ifnet *ifp = sc->sc_ifp;
526
527 UPGT_LOCK(sc);
528 upgt_stop_locked(sc);
529 UPGT_UNLOCK(sc);
530
531 /* device down */
532 sc->sc_tx_timer = 0;
533 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
534 sc->sc_flags &= ~UPGT_FLAG_INITDONE;
535}
536
537static void
538upgt_set_led(struct upgt_softc *sc, int action)
539{
540 struct upgt_data *data_cmd;
541 struct upgt_lmac_mem *mem;
542 struct upgt_lmac_led *led;
543
544 data_cmd = upgt_getbuf(sc);
545 if (data_cmd == NULL) {
546 device_printf(sc->sc_dev, "%s: out of buffers.\n", __func__);
547 return;
548 }
549
550 /*
551 * Transmit the URB containing the CMD data.
552 */
553 memset(data_cmd->buf, 0, MCLBYTES);
554
555 mem = (struct upgt_lmac_mem *)data_cmd->buf;
556 mem->addr = htole32(sc->sc_memaddr_frame_start +
557 UPGT_MEMSIZE_FRAME_HEAD);
558
559 led = (struct upgt_lmac_led *)(mem + 1);
560
561 led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
562 led->header1.type = UPGT_H1_TYPE_CTRL;
563 led->header1.len = htole16(
564 sizeof(struct upgt_lmac_led) -
565 sizeof(struct upgt_lmac_header));
566
567 led->header2.reqid = htole32(sc->sc_memaddr_frame_start);
568 led->header2.type = htole16(UPGT_H2_TYPE_LED);
569 led->header2.flags = 0;
570
571 switch (action) {
572 case UPGT_LED_OFF:
573 led->mode = htole16(UPGT_LED_MODE_SET);
574 led->action_fix = 0;
575 led->action_tmp = htole16(UPGT_LED_ACTION_OFF);
576 led->action_tmp_dur = 0;
577 break;
578 case UPGT_LED_ON:
579 led->mode = htole16(UPGT_LED_MODE_SET);
580 led->action_fix = 0;
581 led->action_tmp = htole16(UPGT_LED_ACTION_ON);
582 led->action_tmp_dur = 0;
583 break;
584 case UPGT_LED_BLINK:
585 if (sc->sc_state != IEEE80211_S_RUN) {
586 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next);
587 return;
588 }
589 if (sc->sc_led_blink) {
590 /* previous blink was not finished */
591 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next);
592 return;
593 }
594 led->mode = htole16(UPGT_LED_MODE_SET);
595 led->action_fix = htole16(UPGT_LED_ACTION_OFF);
596 led->action_tmp = htole16(UPGT_LED_ACTION_ON);
597 led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR);
598 /* lock blink */
599 sc->sc_led_blink = 1;
600 callout_reset(&sc->sc_led_ch, hz, upgt_set_led_blink, sc);
601 break;
602 default:
603 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next);
604 return;
605 }
606
607 data_cmd->buflen = sizeof(*mem) + sizeof(*led);
608
609 mem->chksum = upgt_chksum_le((uint32_t *)led,
610 data_cmd->buflen - sizeof(*mem));
611
612 upgt_bulk_tx(sc, data_cmd);
613}
614
615static void
616upgt_set_led_blink(void *arg)
617{
618 struct upgt_softc *sc = arg;
619
620 /* blink finished, we are ready for a next one */
621 sc->sc_led_blink = 0;
622}
623
624static void
625upgt_init(void *priv)
626{
627 struct upgt_softc *sc = priv;
628 struct ifnet *ifp = sc->sc_ifp;
629 struct ieee80211com *ic = ifp->if_l2com;
630
631 UPGT_LOCK(sc);
632 upgt_init_locked(sc);
633 UPGT_UNLOCK(sc);
634
635 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
636 ieee80211_start_all(ic); /* start all vap's */
637}
638
639static void
640upgt_init_locked(struct upgt_softc *sc)
641{
642 struct ifnet *ifp = sc->sc_ifp;
643
644 UPGT_ASSERT_LOCKED(sc);
645
646 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
647 upgt_stop_locked(sc);
648
649 usbd_transfer_start(sc->sc_xfer[UPGT_BULK_RX]);
650
651 (void)upgt_set_macfilter(sc, IEEE80211_S_SCAN);
652
653 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
654 ifp->if_drv_flags |= IFF_DRV_RUNNING;
655 sc->sc_flags |= UPGT_FLAG_INITDONE;
656
657 callout_reset(&sc->sc_watchdog_ch, hz, upgt_watchdog, sc);
658}
659
660static int
661upgt_set_macfilter(struct upgt_softc *sc, uint8_t state)
662{
663 struct ifnet *ifp = sc->sc_ifp;
664 struct ieee80211com *ic = ifp->if_l2com;
665 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
666 struct ieee80211_node *ni;
667 struct upgt_data *data_cmd;
668 struct upgt_lmac_mem *mem;
669 struct upgt_lmac_filter *filter;
670 uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
671
672 UPGT_ASSERT_LOCKED(sc);
673
674 data_cmd = upgt_getbuf(sc);
675 if (data_cmd == NULL) {
676 device_printf(sc->sc_dev, "out of TX buffers.\n");
677 return (ENOBUFS);
678 }
679
680 /*
681 * Transmit the URB containing the CMD data.
682 */
683 memset(data_cmd->buf, 0, MCLBYTES);
684
685 mem = (struct upgt_lmac_mem *)data_cmd->buf;
686 mem->addr = htole32(sc->sc_memaddr_frame_start +
687 UPGT_MEMSIZE_FRAME_HEAD);
688
689 filter = (struct upgt_lmac_filter *)(mem + 1);
690
691 filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
692 filter->header1.type = UPGT_H1_TYPE_CTRL;
693 filter->header1.len = htole16(
694 sizeof(struct upgt_lmac_filter) -
695 sizeof(struct upgt_lmac_header));
696
697 filter->header2.reqid = htole32(sc->sc_memaddr_frame_start);
698 filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER);
699 filter->header2.flags = 0;
700
701 switch (state) {
702 case IEEE80211_S_INIT:
703 DPRINTF(sc, UPGT_DEBUG_STATE, "%s: set MAC filter to INIT\n",
704 __func__);
705 filter->type = htole16(UPGT_FILTER_TYPE_RESET);
706 break;
707 case IEEE80211_S_SCAN:
708 DPRINTF(sc, UPGT_DEBUG_STATE,
709 "set MAC filter to SCAN (bssid %s)\n",
710 ether_sprintf(broadcast));
711 filter->type = htole16(UPGT_FILTER_TYPE_NONE);
712 IEEE80211_ADDR_COPY(filter->dst, sc->sc_myaddr);
713 IEEE80211_ADDR_COPY(filter->src, broadcast);
714 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
715 filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
716 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
717 filter->rxhw = htole32(sc->sc_eeprom_hwrx);
718 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
719 break;
720 case IEEE80211_S_RUN:
721 ni = ieee80211_ref_node(vap->iv_bss);
722 /* XXX monitor mode isn't tested yet. */
723 if (vap->iv_opmode == IEEE80211_M_MONITOR) {
724 filter->type = htole16(UPGT_FILTER_TYPE_MONITOR);
725 IEEE80211_ADDR_COPY(filter->dst, sc->sc_myaddr);
726 IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
727 filter->unknown1 = htole16(UPGT_FILTER_MONITOR_UNKNOWN1);
728 filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
729 filter->unknown2 = htole16(UPGT_FILTER_MONITOR_UNKNOWN2);
730 filter->rxhw = htole32(sc->sc_eeprom_hwrx);
731 filter->unknown3 = htole16(UPGT_FILTER_MONITOR_UNKNOWN3);
732 } else {
733 DPRINTF(sc, UPGT_DEBUG_STATE,
734 "set MAC filter to RUN (bssid %s)\n",
735 ether_sprintf(ni->ni_bssid));
736 filter->type = htole16(UPGT_FILTER_TYPE_STA);
737 IEEE80211_ADDR_COPY(filter->dst, sc->sc_myaddr);
738 IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
739 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
740 filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
741 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
742 filter->rxhw = htole32(sc->sc_eeprom_hwrx);
743 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
744 }
745 ieee80211_free_node(ni);
746 break;
747 default:
748 device_printf(sc->sc_dev,
749 "MAC filter does not know that state\n");
750 break;
751 }
752
753 data_cmd->buflen = sizeof(*mem) + sizeof(*filter);
754
755 mem->chksum = upgt_chksum_le((uint32_t *)filter,
756 data_cmd->buflen - sizeof(*mem));
757
758 upgt_bulk_tx(sc, data_cmd);
759
760 return (0);
761}
762
763static void
764upgt_setup_rates(struct ieee80211vap *vap, struct ieee80211com *ic)
765{
766 struct ifnet *ifp = ic->ic_ifp;
767 struct upgt_softc *sc = ifp->if_softc;
768 const struct ieee80211_txparam *tp;
769
770 /*
771 * 0x01 = OFMD6 0x10 = DS1
772 * 0x04 = OFDM9 0x11 = DS2
773 * 0x06 = OFDM12 0x12 = DS5
774 * 0x07 = OFDM18 0x13 = DS11
775 * 0x08 = OFDM24
776 * 0x09 = OFDM36
777 * 0x0a = OFDM48
778 * 0x0b = OFDM54
779 */
780 const uint8_t rateset_auto_11b[] =
781 { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 };
782 const uint8_t rateset_auto_11g[] =
783 { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 };
784 const uint8_t rateset_fix_11bg[] =
785 { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07,
786 0x08, 0x09, 0x0a, 0x0b };
787
788 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
789
790 /* XXX */
791 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) {
792 /*
793 * Automatic rate control is done by the device.
794 * We just pass the rateset from which the device
795 * will pickup a rate.
796 */
797 if (ic->ic_curmode == IEEE80211_MODE_11B)
798 memcpy(sc->sc_cur_rateset, rateset_auto_11b,
799 sizeof(sc->sc_cur_rateset));
800 if (ic->ic_curmode == IEEE80211_MODE_11G ||
801 ic->ic_curmode == IEEE80211_MODE_AUTO)
802 memcpy(sc->sc_cur_rateset, rateset_auto_11g,
803 sizeof(sc->sc_cur_rateset));
804 } else {
805 /* set a fixed rate */
806 memset(sc->sc_cur_rateset, rateset_fix_11bg[tp->ucastrate],
807 sizeof(sc->sc_cur_rateset));
808 }
809}
810
811static void
812upgt_set_multi(void *arg)
813{
814 struct upgt_softc *sc = arg;
815 struct ifnet *ifp = sc->sc_ifp;
816
817 if (!(ifp->if_flags & IFF_UP))
818 return;
819
820 /*
821 * XXX don't know how to set a device. Lack of docs. Just try to set
822 * IFF_ALLMULTI flag here.
823 */
824 ifp->if_flags |= IFF_ALLMULTI;
825}
826
827static void
828upgt_start(struct ifnet *ifp)
829{
830 struct upgt_softc *sc = ifp->if_softc;
831 struct upgt_data *data_tx;
832 struct ieee80211_node *ni;
833 struct mbuf *m;
834
835 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
836 return;
837
838 UPGT_LOCK(sc);
839 for (;;) {
840 IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
841 if (m == NULL)
842 break;
843
844 data_tx = upgt_gettxbuf(sc);
845 if (data_tx == NULL) {
846 IFQ_DRV_PREPEND(&ifp->if_snd, m);
847 break;
848 }
849
850 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
851 m->m_pkthdr.rcvif = NULL;
852
853 if (upgt_tx_start(sc, m, ni, data_tx) != 0) {
854 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, data_tx, next);
855 UPGT_STAT_INC(sc, st_tx_inactive);
856 ieee80211_free_node(ni);
857 ifp->if_oerrors++;
858 continue;
859 }
860 sc->sc_tx_timer = 5;
861 }
862 UPGT_UNLOCK(sc);
863}
864
865static int
866upgt_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
867 const struct ieee80211_bpf_params *params)
868{
869 struct ieee80211com *ic = ni->ni_ic;
870 struct ifnet *ifp = ic->ic_ifp;
871 struct upgt_softc *sc = ifp->if_softc;
872 struct upgt_data *data_tx = NULL;
873
874 /* prevent management frames from being sent if we're not ready */
875 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
876 m_freem(m);
877 ieee80211_free_node(ni);
878 return ENETDOWN;
879 }
880
881 UPGT_LOCK(sc);
882 data_tx = upgt_gettxbuf(sc);
883 if (data_tx == NULL) {
884 ieee80211_free_node(ni);
885 m_freem(m);
886 UPGT_UNLOCK(sc);
887 return (ENOBUFS);
888 }
889
890 if (upgt_tx_start(sc, m, ni, data_tx) != 0) {
891 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, data_tx, next);
892 UPGT_STAT_INC(sc, st_tx_inactive);
893 ieee80211_free_node(ni);
894 ifp->if_oerrors++;
895 UPGT_UNLOCK(sc);
896 return (EIO);
897 }
898 UPGT_UNLOCK(sc);
899
900 sc->sc_tx_timer = 5;
901 return (0);
902}
903
904static void
905upgt_watchdog(void *arg)
906{
907 struct upgt_softc *sc = arg;
908 struct ifnet *ifp = sc->sc_ifp;
909
910 if (sc->sc_tx_timer > 0) {
911 if (--sc->sc_tx_timer == 0) {
912 device_printf(sc->sc_dev, "watchdog timeout\n");
913 /* upgt_init(ifp); XXX needs a process context ? */
914 ifp->if_oerrors++;
915 return;
916 }
917 callout_reset(&sc->sc_watchdog_ch, hz, upgt_watchdog, sc);
918 }
919}
920
921static uint32_t
922upgt_mem_alloc(struct upgt_softc *sc)
923{
924 int i;
925
926 for (i = 0; i < sc->sc_memory.pages; i++) {
927 if (sc->sc_memory.page[i].used == 0) {
928 sc->sc_memory.page[i].used = 1;
929 return (sc->sc_memory.page[i].addr);
930 }
931 }
932
933 return (0);
934}
935
936static void
937upgt_scan_start(struct ieee80211com *ic)
938{
939 /* do nothing. */
940}
941
942static void
943upgt_scan_end(struct ieee80211com *ic)
944{
945 /* do nothing. */
946}
947
948static void
949upgt_set_channel(struct ieee80211com *ic)
950{
951 struct upgt_softc *sc = ic->ic_ifp->if_softc;
952
953 UPGT_LOCK(sc);
954 upgt_set_chan(sc, ic->ic_curchan);
955 UPGT_UNLOCK(sc);
956}
957
958static void
959upgt_set_chan(struct upgt_softc *sc, struct ieee80211_channel *c)
960{
961 struct ifnet *ifp = sc->sc_ifp;
962 struct ieee80211com *ic = ifp->if_l2com;
963 struct upgt_data *data_cmd;
964 struct upgt_lmac_mem *mem;
965 struct upgt_lmac_channel *chan;
966 int channel;
967
968 UPGT_ASSERT_LOCKED(sc);
969
970 channel = ieee80211_chan2ieee(ic, c);
971 if (channel == 0 || channel == IEEE80211_CHAN_ANY) {
972 /* XXX should NEVER happen */
973 device_printf(sc->sc_dev,
974 "%s: invalid channel %x\n", __func__, channel);
975 return;
976 }
977
978 DPRINTF(sc, UPGT_DEBUG_STATE, "%s: channel %d\n", __func__, channel);
979
980 data_cmd = upgt_getbuf(sc);
981 if (data_cmd == NULL) {
982 device_printf(sc->sc_dev, "%s: out of buffers.\n", __func__);
983 return;
984 }
985 /*
986 * Transmit the URB containing the CMD data.
987 */
988 memset(data_cmd->buf, 0, MCLBYTES);
989
990 mem = (struct upgt_lmac_mem *)data_cmd->buf;
991 mem->addr = htole32(sc->sc_memaddr_frame_start +
992 UPGT_MEMSIZE_FRAME_HEAD);
993
994 chan = (struct upgt_lmac_channel *)(mem + 1);
995
996 chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
997 chan->header1.type = UPGT_H1_TYPE_CTRL;
998 chan->header1.len = htole16(
999 sizeof(struct upgt_lmac_channel) - sizeof(struct upgt_lmac_header));
1000
1001 chan->header2.reqid = htole32(sc->sc_memaddr_frame_start);
1002 chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL);
1003 chan->header2.flags = 0;
1004
1005 chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1);
1006 chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2);
1007 chan->freq6 = sc->sc_eeprom_freq6[channel];
1008 chan->settings = sc->sc_eeprom_freq6_settings;
1009 chan->unknown3 = UPGT_CHANNEL_UNKNOWN3;
1010
1011 memcpy(chan->freq3_1, &sc->sc_eeprom_freq3[channel].data,
1012 sizeof(chan->freq3_1));
1013 memcpy(chan->freq4, &sc->sc_eeprom_freq4[channel],
1014 sizeof(sc->sc_eeprom_freq4[channel]));
1015 memcpy(chan->freq3_2, &sc->sc_eeprom_freq3[channel].data,
1016 sizeof(chan->freq3_2));
1017
1018 data_cmd->buflen = sizeof(*mem) + sizeof(*chan);
1019
1020 mem->chksum = upgt_chksum_le((uint32_t *)chan,
1021 data_cmd->buflen - sizeof(*mem));
1022
1023 upgt_bulk_tx(sc, data_cmd);
1024}
1025
1026static struct ieee80211vap *
1027upgt_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1028 enum ieee80211_opmode opmode, int flags,
1029 const uint8_t bssid[IEEE80211_ADDR_LEN],
1030 const uint8_t mac[IEEE80211_ADDR_LEN])
1031{
1032 struct upgt_vap *uvp;
1033 struct ieee80211vap *vap;
1034
1035 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */
1036 return NULL;
1037 uvp = (struct upgt_vap *) malloc(sizeof(struct upgt_vap),
1038 M_80211_VAP, M_NOWAIT | M_ZERO);
1039 if (uvp == NULL)
1040 return NULL;
1041 vap = &uvp->vap;
1042 /* enable s/w bmiss handling for sta mode */
1043
1044 if (ieee80211_vap_setup(ic, vap, name, unit, opmode,
1045 flags | IEEE80211_CLONE_NOBEACONS, bssid, mac) != 0) {
1046 /* out of memory */
1047 free(uvp, M_80211_VAP);
1048 return (NULL);
1049 }
1050
1051 /* override state transition machine */
1052 uvp->newstate = vap->iv_newstate;
1053 vap->iv_newstate = upgt_newstate;
1054
1055 /* setup device rates */
1056 upgt_setup_rates(vap, ic);
1057
1058 /* complete setup */
1059 ieee80211_vap_attach(vap, ieee80211_media_change,
1060 ieee80211_media_status);
1061 ic->ic_opmode = opmode;
1062 return vap;
1063}
1064
1065static int
1066upgt_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1067{
1068 struct upgt_vap *uvp = UPGT_VAP(vap);
1069 struct ieee80211com *ic = vap->iv_ic;
1070 struct upgt_softc *sc = ic->ic_ifp->if_softc;
1071
1072 /* do it in a process context */
1073 sc->sc_state = nstate;
1074
1075 IEEE80211_UNLOCK(ic);
1076 UPGT_LOCK(sc);
1077 callout_stop(&sc->sc_led_ch);
1078 callout_stop(&sc->sc_watchdog_ch);
1079
1080 switch (nstate) {
1081 case IEEE80211_S_INIT:
1082 /* do not accept any frames if the device is down */
1083 (void)upgt_set_macfilter(sc, sc->sc_state);
1084 upgt_set_led(sc, UPGT_LED_OFF);
1085 break;
1086 case IEEE80211_S_SCAN:
1087 upgt_set_chan(sc, ic->ic_curchan);
1088 break;
1089 case IEEE80211_S_AUTH:
1090 upgt_set_chan(sc, ic->ic_curchan);
1091 break;
1092 case IEEE80211_S_ASSOC:
1093 break;
1094 case IEEE80211_S_RUN:
1095 upgt_set_macfilter(sc, sc->sc_state);
1096 upgt_set_led(sc, UPGT_LED_ON);
1097 break;
1098 default:
1099 break;
1100 }
1101 UPGT_UNLOCK(sc);
1102 IEEE80211_LOCK(ic);
1103 return (uvp->newstate(vap, nstate, arg));
1104}
1105
1106static void
1107upgt_vap_delete(struct ieee80211vap *vap)
1108{
1109 struct upgt_vap *uvp = UPGT_VAP(vap);
1110
1111 ieee80211_vap_detach(vap);
1112 free(uvp, M_80211_VAP);
1113}
1114
1115static void
1116upgt_update_mcast(struct ifnet *ifp)
1117{
1118 struct upgt_softc *sc = ifp->if_softc;
1119
1120 upgt_set_multi(sc);
1121}
1122
1123static int
1124upgt_eeprom_parse(struct upgt_softc *sc)
1125{
1126 struct upgt_eeprom_header *eeprom_header;
1127 struct upgt_eeprom_option *eeprom_option;
1128 uint16_t option_len;
1129 uint16_t option_type;
1130 uint16_t preamble_len;
1131 int option_end = 0;
1132
1133 /* calculate eeprom options start offset */
1134 eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom;
1135 preamble_len = le16toh(eeprom_header->preamble_len);
1136 eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom +
1137 (sizeof(struct upgt_eeprom_header) + preamble_len));
1138
1139 while (!option_end) {
1140
1141 /* sanity check */
1142 if (eeprom_option >= (struct upgt_eeprom_option *)
1143 (sc->sc_eeprom + UPGT_EEPROM_SIZE)) {
1144 return (EINVAL);
1145 }
1146
1147 /* the eeprom option length is stored in words */
1148 option_len =
1149 (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t);
1150 option_type =
1151 le16toh(eeprom_option->type);
1152
1153 /* sanity check */
1154 if (option_len == 0 || option_len >= UPGT_EEPROM_SIZE)
1155 return (EINVAL);
1156
1157 switch (option_type) {
1158 case UPGT_EEPROM_TYPE_NAME:
1159 DPRINTF(sc, UPGT_DEBUG_FW,
1160 "EEPROM name len=%d\n", option_len);
1161 break;
1162 case UPGT_EEPROM_TYPE_SERIAL:
1163 DPRINTF(sc, UPGT_DEBUG_FW,
1164 "EEPROM serial len=%d\n", option_len);
1165 break;
1166 case UPGT_EEPROM_TYPE_MAC:
1167 DPRINTF(sc, UPGT_DEBUG_FW,
1168 "EEPROM mac len=%d\n", option_len);
1169
1170 IEEE80211_ADDR_COPY(sc->sc_myaddr, eeprom_option->data);
1171 break;
1172 case UPGT_EEPROM_TYPE_HWRX:
1173 DPRINTF(sc, UPGT_DEBUG_FW,
1174 "EEPROM hwrx len=%d\n", option_len);
1175
1176 upgt_eeprom_parse_hwrx(sc, eeprom_option->data);
1177 break;
1178 case UPGT_EEPROM_TYPE_CHIP:
1179 DPRINTF(sc, UPGT_DEBUG_FW,
1180 "EEPROM chip len=%d\n", option_len);
1181 break;
1182 case UPGT_EEPROM_TYPE_FREQ3:
1183 DPRINTF(sc, UPGT_DEBUG_FW,
1184 "EEPROM freq3 len=%d\n", option_len);
1185
1186 upgt_eeprom_parse_freq3(sc, eeprom_option->data,
1187 option_len);
1188 break;
1189 case UPGT_EEPROM_TYPE_FREQ4:
1190 DPRINTF(sc, UPGT_DEBUG_FW,
1191 "EEPROM freq4 len=%d\n", option_len);
1192
1193 upgt_eeprom_parse_freq4(sc, eeprom_option->data,
1194 option_len);
1195 break;
1196 case UPGT_EEPROM_TYPE_FREQ5:
1197 DPRINTF(sc, UPGT_DEBUG_FW,
1198 "EEPROM freq5 len=%d\n", option_len);
1199 break;
1200 case UPGT_EEPROM_TYPE_FREQ6:
1201 DPRINTF(sc, UPGT_DEBUG_FW,
1202 "EEPROM freq6 len=%d\n", option_len);
1203
1204 upgt_eeprom_parse_freq6(sc, eeprom_option->data,
1205 option_len);
1206 break;
1207 case UPGT_EEPROM_TYPE_END:
1208 DPRINTF(sc, UPGT_DEBUG_FW,
1209 "EEPROM end len=%d\n", option_len);
1210 option_end = 1;
1211 break;
1212 case UPGT_EEPROM_TYPE_OFF:
1213 DPRINTF(sc, UPGT_DEBUG_FW,
1214 "%s: EEPROM off without end option\n", __func__);
1215 return (EIO);
1216 default:
1217 DPRINTF(sc, UPGT_DEBUG_FW,
1218 "EEPROM unknown type 0x%04x len=%d\n",
1219 option_type, option_len);
1220 break;
1221 }
1222
1223 /* jump to next EEPROM option */
1224 eeprom_option = (struct upgt_eeprom_option *)
1225 (eeprom_option->data + option_len);
1226 }
1227 return (0);
1228}
1229
1230static void
1231upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len)
1232{
1233 struct upgt_eeprom_freq3_header *freq3_header;
1234 struct upgt_lmac_freq3 *freq3;
1235 int i;
1236 int elements;
1237 int flags;
1238 unsigned channel;
1239
1240 freq3_header = (struct upgt_eeprom_freq3_header *)data;
1241 freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1);
1242
1243 flags = freq3_header->flags;
1244 elements = freq3_header->elements;
1245
1246 DPRINTF(sc, UPGT_DEBUG_FW, "flags=0x%02x elements=%d\n",
1247 flags, elements);
1248
1249 if (elements >= (int)(UPGT_EEPROM_SIZE / sizeof(freq3[0])))
1250 return;
1251
1252 for (i = 0; i < elements; i++) {
1253 channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0);
1254 if (channel >= IEEE80211_CHAN_MAX)
1255 continue;
1256
1257 sc->sc_eeprom_freq3[channel] = freq3[i];
1258
1259 DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n",
1260 le16toh(sc->sc_eeprom_freq3[channel].freq), channel);
1261 }
1262}
1263
1264void
1265upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len)
1266{
1267 struct upgt_eeprom_freq4_header *freq4_header;
1268 struct upgt_eeprom_freq4_1 *freq4_1;
1269 struct upgt_eeprom_freq4_2 *freq4_2;
1270 int i;
1271 int j;
1272 int elements;
1273 int settings;
1274 int flags;
1275 unsigned channel;
1276
1277 freq4_header = (struct upgt_eeprom_freq4_header *)data;
1278 freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1);
1279 flags = freq4_header->flags;
1280 elements = freq4_header->elements;
1281 settings = freq4_header->settings;
1282
1283 /* we need this value later */
1284 sc->sc_eeprom_freq6_settings = freq4_header->settings;
1285
1286 DPRINTF(sc, UPGT_DEBUG_FW, "flags=0x%02x elements=%d settings=%d\n",
1287 flags, elements, settings);
1288
1289 if (elements >= (int)(UPGT_EEPROM_SIZE / sizeof(freq4_1[0])))
1290 return;
1291
1292 for (i = 0; i < elements; i++) {
1293 channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0);
1294 if (channel >= IEEE80211_CHAN_MAX)
1295 continue;
1296
1297 freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data;
1298 for (j = 0; j < settings; j++) {
1299 sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j];
1300 sc->sc_eeprom_freq4[channel][j].pad = 0;
1301 }
1302
1303 DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n",
1304 le16toh(freq4_1[i].freq), channel);
1305 }
1306}
1307
1308void
1309upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len)
1310{
1311 struct upgt_lmac_freq6 *freq6;
1312 int i;
1313 int elements;
1314 unsigned channel;
1315
1316 freq6 = (struct upgt_lmac_freq6 *)data;
1317 elements = len / sizeof(struct upgt_lmac_freq6);
1318
1319 DPRINTF(sc, UPGT_DEBUG_FW, "elements=%d\n", elements);
1320
1321 if (elements >= (int)(UPGT_EEPROM_SIZE / sizeof(freq6[0])))
1322 return;
1323
1324 for (i = 0; i < elements; i++) {
1325 channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0);
1326 if (channel >= IEEE80211_CHAN_MAX)
1327 continue;
1328
1329 sc->sc_eeprom_freq6[channel] = freq6[i];
1330
1331 DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n",
1332 le16toh(sc->sc_eeprom_freq6[channel].freq), channel);
1333 }
1334}
1335
1336static void
1337upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data)
1338{
1339 struct upgt_eeprom_option_hwrx *option_hwrx;
1340
1341 option_hwrx = (struct upgt_eeprom_option_hwrx *)data;
1342
1343 sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST;
1344
1345 DPRINTF(sc, UPGT_DEBUG_FW, "hwrx option value=0x%04x\n",
1346 sc->sc_eeprom_hwrx);
1347}
1348
1349static int
1350upgt_eeprom_read(struct upgt_softc *sc)
1351{
1352 struct upgt_data *data_cmd;
1353 struct upgt_lmac_mem *mem;
1354 struct upgt_lmac_eeprom *eeprom;
1355 int block, error, offset;
1356
1357 UPGT_LOCK(sc);
1358 usb_pause_mtx(&sc->sc_mtx, 100);
1359
1360 offset = 0;
1361 block = UPGT_EEPROM_BLOCK_SIZE;
1362 while (offset < UPGT_EEPROM_SIZE) {
1363 DPRINTF(sc, UPGT_DEBUG_FW,
1364 "request EEPROM block (offset=%d, len=%d)\n", offset, block);
1365
1366 data_cmd = upgt_getbuf(sc);
1367 if (data_cmd == NULL) {
1368 UPGT_UNLOCK(sc);
1369 return (ENOBUFS);
1370 }
1371
1372 /*
1373 * Transmit the URB containing the CMD data.
1374 */
1375 memset(data_cmd->buf, 0, MCLBYTES);
1376
1377 mem = (struct upgt_lmac_mem *)data_cmd->buf;
1378 mem->addr = htole32(sc->sc_memaddr_frame_start +
1379 UPGT_MEMSIZE_FRAME_HEAD);
1380
1381 eeprom = (struct upgt_lmac_eeprom *)(mem + 1);
1382 eeprom->header1.flags = 0;
1383 eeprom->header1.type = UPGT_H1_TYPE_CTRL;
1384 eeprom->header1.len = htole16((
1385 sizeof(struct upgt_lmac_eeprom) -
1386 sizeof(struct upgt_lmac_header)) + block);
1387
1388 eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start);
1389 eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM);
1390 eeprom->header2.flags = 0;
1391
1392 eeprom->offset = htole16(offset);
1393 eeprom->len = htole16(block);
1394
1395 data_cmd->buflen = sizeof(*mem) + sizeof(*eeprom) + block;
1396
1397 mem->chksum = upgt_chksum_le((uint32_t *)eeprom,
1398 data_cmd->buflen - sizeof(*mem));
1399 upgt_bulk_tx(sc, data_cmd);
1400
1401 error = mtx_sleep(sc, &sc->sc_mtx, 0, "eeprom_request", hz);
1402 if (error != 0) {
1403 device_printf(sc->sc_dev,
1404 "timeout while waiting for EEPROM data\n");
1405 UPGT_UNLOCK(sc);
1406 return (EIO);
1407 }
1408
1409 offset += block;
1410 if (UPGT_EEPROM_SIZE - offset < block)
1411 block = UPGT_EEPROM_SIZE - offset;
1412 }
1413
1414 UPGT_UNLOCK(sc);
1415 return (0);
1416}
1417
1418/*
1419 * When a rx data came in the function returns a mbuf and a rssi values.
1420 */
1421static struct mbuf *
1422upgt_rxeof(struct usb_xfer *xfer, struct upgt_data *data, int *rssi)
1423{
1424 struct mbuf *m = NULL;
1425 struct upgt_softc *sc = usbd_xfer_softc(xfer);
1426 struct upgt_lmac_header *header;
1427 struct upgt_lmac_eeprom *eeprom;
1428 uint8_t h1_type;
1429 uint16_t h2_type;
1430 int actlen, sumlen;
1431
1432 usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL);
1433
1434 UPGT_ASSERT_LOCKED(sc);
1435
1436 if (actlen < 1)
1437 return (NULL);
1438
1439 /* Check only at the very beginning. */
1440 if (!(sc->sc_flags & UPGT_FLAG_FWLOADED) &&
1441 (memcmp(data->buf, "OK", 2) == 0)) {
1442 sc->sc_flags |= UPGT_FLAG_FWLOADED;
1443 wakeup_one(sc);
1444 return (NULL);
1445 }
1446
1447 if (actlen < (int)UPGT_RX_MINSZ)
1448 return (NULL);
1449
1450 /*
1451 * Check what type of frame came in.
1452 */
1453 header = (struct upgt_lmac_header *)(data->buf + 4);
1454
1455 h1_type = header->header1.type;
1456 h2_type = le16toh(header->header2.type);
1457
1458 if (h1_type == UPGT_H1_TYPE_CTRL && h2_type == UPGT_H2_TYPE_EEPROM) {
1459 eeprom = (struct upgt_lmac_eeprom *)(data->buf + 4);
1460 uint16_t eeprom_offset = le16toh(eeprom->offset);
1461 uint16_t eeprom_len = le16toh(eeprom->len);
1462
1463 DPRINTF(sc, UPGT_DEBUG_FW,
1464 "received EEPROM block (offset=%d, len=%d)\n",
1465 eeprom_offset, eeprom_len);
1466
1467 memcpy(sc->sc_eeprom + eeprom_offset,
1468 data->buf + sizeof(struct upgt_lmac_eeprom) + 4,
1469 eeprom_len);
1470
1471 /* EEPROM data has arrived in time, wakeup. */
1472 wakeup(sc);
1473 } else if (h1_type == UPGT_H1_TYPE_CTRL &&
1474 h2_type == UPGT_H2_TYPE_TX_DONE) {
1475 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: received 802.11 TX done\n",
1476 __func__);
1477 upgt_tx_done(sc, data->buf + 4);
1478 } else if (h1_type == UPGT_H1_TYPE_RX_DATA ||
1479 h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) {
1480 DPRINTF(sc, UPGT_DEBUG_RECV, "%s: received 802.11 RX data\n",
1481 __func__);
1482 m = upgt_rx(sc, data->buf + 4, le16toh(header->header1.len),
1483 rssi);
1484 } else if (h1_type == UPGT_H1_TYPE_CTRL &&
1485 h2_type == UPGT_H2_TYPE_STATS) {
1486 DPRINTF(sc, UPGT_DEBUG_STAT, "%s: received statistic data\n",
1487 __func__);
1488 /* TODO: what could we do with the statistic data? */
1489 } else {
1490 /* ignore unknown frame types */
1491 DPRINTF(sc, UPGT_DEBUG_INTR,
1492 "received unknown frame type 0x%02x\n",
1493 header->header1.type);
1494 }
1495 return (m);
1496}
1497
1498/*
1499 * The firmware awaits a checksum for each frame we send to it.
1500 * The algorithm used therefor is uncommon but somehow similar to CRC32.
1501 */
1502static uint32_t
1503upgt_chksum_le(const uint32_t *buf, size_t size)
1504{
1505 size_t i;
1506 uint32_t crc = 0;
1507
1508 for (i = 0; i < size; i += sizeof(uint32_t)) {
1509 crc = htole32(crc ^ *buf++);
1510 crc = htole32((crc >> 5) ^ (crc << 3));
1511 }
1512
1513 return (crc);
1514}
1515
1516static struct mbuf *
1517upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen, int *rssi)
1518{
1519 struct ifnet *ifp = sc->sc_ifp;
1520 struct ieee80211com *ic = ifp->if_l2com;
1521 struct upgt_lmac_rx_desc *rxdesc;
1522 struct mbuf *m;
1523
1524 /*
1525 * don't pass packets to the ieee80211 framework if the driver isn't
1526 * RUNNING.
1527 */
1528 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1529 return (NULL);
1530
1531 /* access RX packet descriptor */
1532 rxdesc = (struct upgt_lmac_rx_desc *)data;
1533
1534 /* create mbuf which is suitable for strict alignment archs */
1535 KASSERT((pkglen + ETHER_ALIGN) < MCLBYTES,
1536 ("A current mbuf storage is small (%d)", pkglen + ETHER_ALIGN));
1537 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1538 if (m == NULL) {
1539 device_printf(sc->sc_dev, "could not create RX mbuf\n");
1540 return (NULL);
1541 }
1542 m_adj(m, ETHER_ALIGN);
1543 memcpy(mtod(m, char *), rxdesc->data, pkglen);
1544 /* trim FCS */
1545 m->m_len = m->m_pkthdr.len = pkglen - IEEE80211_CRC_LEN;
1546 m->m_pkthdr.rcvif = ifp;
1547
1548 if (ieee80211_radiotap_active(ic)) {
1549 struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap;
1550
1551 tap->wr_flags = 0;
1552 tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate);
1553 tap->wr_antsignal = rxdesc->rssi;
1554 }
1555 ifp->if_ipackets++;
1556
1557 DPRINTF(sc, UPGT_DEBUG_RX_PROC, "%s: RX done\n", __func__);
1558 *rssi = rxdesc->rssi;
1559 return (m);
1560}
1561
1562static uint8_t
1563upgt_rx_rate(struct upgt_softc *sc, const int rate)
1564{
1565 struct ifnet *ifp = sc->sc_ifp;
1566 struct ieee80211com *ic = ifp->if_l2com;
1567 static const uint8_t cck_upgt2rate[4] = { 2, 4, 11, 22 };
1568 static const uint8_t ofdm_upgt2rate[12] =
1569 { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 };
1570
1571 if (ic->ic_curmode == IEEE80211_MODE_11B &&
1572 !(rate < 0 || rate > 3))
1573 return cck_upgt2rate[rate & 0xf];
1574
1575 if (ic->ic_curmode == IEEE80211_MODE_11G &&
1576 !(rate < 0 || rate > 11))
1577 return ofdm_upgt2rate[rate & 0xf];
1578
1579 return (0);
1580}
1581
1582static void
1583upgt_tx_done(struct upgt_softc *sc, uint8_t *data)
1584{
1585 struct ifnet *ifp = sc->sc_ifp;
1586 struct upgt_lmac_tx_done_desc *desc;
1587 int i, freed = 0;
1588
1589 UPGT_ASSERT_LOCKED(sc);
1590
1591 desc = (struct upgt_lmac_tx_done_desc *)data;
1592
1593 for (i = 0; i < UPGT_TX_MAXCOUNT; i++) {
1594 struct upgt_data *data_tx = &sc->sc_tx_data[i];
1595
1596 if (data_tx->addr == le32toh(desc->header2.reqid)) {
1597 upgt_mem_free(sc, data_tx->addr);
1598 data_tx->ni = NULL;
1599 data_tx->addr = 0;
1600 data_tx->m = NULL;
1601
1602 DPRINTF(sc, UPGT_DEBUG_TX_PROC,
1603 "TX done: memaddr=0x%08x, status=0x%04x, rssi=%d, ",
1604 le32toh(desc->header2.reqid),
1605 le16toh(desc->status), le16toh(desc->rssi));
1606 DPRINTF(sc, UPGT_DEBUG_TX_PROC, "seq=%d\n",
1607 le16toh(desc->seq));
1608
1609 freed++;
1610 }
1611 }
1612
1613 if (freed != 0) {
1614 sc->sc_tx_timer = 0;
1615 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1616 UPGT_UNLOCK(sc);
1617 upgt_start(ifp);
1618 UPGT_LOCK(sc);
1619 }
1620}
1621
1622static void
1623upgt_mem_free(struct upgt_softc *sc, uint32_t addr)
1624{
1625 int i;
1626
1627 for (i = 0; i < sc->sc_memory.pages; i++) {
1628 if (sc->sc_memory.page[i].addr == addr) {
1629 sc->sc_memory.page[i].used = 0;
1630 return;
1631 }
1632 }
1633
1634 device_printf(sc->sc_dev,
1635 "could not free memory address 0x%08x\n", addr);
1636}
1637
1638static int
1639upgt_fw_load(struct upgt_softc *sc)
1640{
1641 const struct firmware *fw;
1642 struct upgt_data *data_cmd;
1643 struct upgt_fw_x2_header *x2;
1644 char start_fwload_cmd[] = { 0x3c, 0x0d };
1645 int error = 0;
1646 size_t offset;
1647 int bsize;
1648 int n;
1649 uint32_t crc32;
1650
1651 fw = firmware_get(upgt_fwname);
1652 if (fw == NULL) {
1653 device_printf(sc->sc_dev, "could not read microcode %s\n",
1654 upgt_fwname);
1655 return (EIO);
1656 }
1657
1658 UPGT_LOCK(sc);
1659
1660 /* send firmware start load command */
1661 data_cmd = upgt_getbuf(sc);
1662 if (data_cmd == NULL) {
1663 error = ENOBUFS;
1664 goto fail;
1665 }
1666 data_cmd->buflen = sizeof(start_fwload_cmd);
1667 memcpy(data_cmd->buf, start_fwload_cmd, data_cmd->buflen);
1668 upgt_bulk_tx(sc, data_cmd);
1669
1670 /* send X2 header */
1671 data_cmd = upgt_getbuf(sc);
1672 if (data_cmd == NULL) {
1673 error = ENOBUFS;
1674 goto fail;
1675 }
1676 data_cmd->buflen = sizeof(struct upgt_fw_x2_header);
1677 x2 = (struct upgt_fw_x2_header *)data_cmd->buf;
1678 memcpy(x2->signature, UPGT_X2_SIGNATURE, UPGT_X2_SIGNATURE_SIZE);
1679 x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START);
1680 x2->len = htole32(fw->datasize);
1681 x2->crc = upgt_crc32_le((uint8_t *)data_cmd->buf +
1682 UPGT_X2_SIGNATURE_SIZE,
1683 sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE -
1684 sizeof(uint32_t));
1685 upgt_bulk_tx(sc, data_cmd);
1686
1687 /* download firmware */
1688 for (offset = 0; offset < fw->datasize; offset += bsize) {
1689 if (fw->datasize - offset > UPGT_FW_BLOCK_SIZE)
1690 bsize = UPGT_FW_BLOCK_SIZE;
1691 else
1692 bsize = fw->datasize - offset;
1693
1694 data_cmd = upgt_getbuf(sc);
1695 if (data_cmd == NULL) {
1696 error = ENOBUFS;
1697 goto fail;
1698 }
1699 n = upgt_fw_copy((const uint8_t *)fw->data + offset,
1700 data_cmd->buf, bsize);
1701 data_cmd->buflen = bsize;
1702 upgt_bulk_tx(sc, data_cmd);
1703
1704 DPRINTF(sc, UPGT_DEBUG_FW, "FW offset=%d, read=%d, sent=%d\n",
1705 offset, n, bsize);
1706 bsize = n;
1707 }
1708 DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware downloaded\n", __func__);
1709
1710 /* load firmware */
1711 data_cmd = upgt_getbuf(sc);
1712 if (data_cmd == NULL) {
1713 error = ENOBUFS;
1714 goto fail;
1715 }
1716 crc32 = upgt_crc32_le(fw->data, fw->datasize);
1717 *((uint32_t *)(data_cmd->buf) ) = crc32;
1718 *((uint8_t *)(data_cmd->buf) + 4) = 'g';
1719 *((uint8_t *)(data_cmd->buf) + 5) = '\r';
1720 data_cmd->buflen = 6;
1721 upgt_bulk_tx(sc, data_cmd);
1722
1723 /* waiting 'OK' response. */
1724 usbd_transfer_start(sc->sc_xfer[UPGT_BULK_RX]);
1725 error = mtx_sleep(sc, &sc->sc_mtx, 0, "upgtfw", 2 * hz);
1726 if (error != 0) {
1727 device_printf(sc->sc_dev, "firmware load failed\n");
1728 error = EIO;
1729 }
1730
1731 DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware loaded\n", __func__);
1732fail:
1733 UPGT_UNLOCK(sc);
1734 firmware_put(fw, FIRMWARE_UNLOAD);
1735 return (error);
1736}
1737
1738static uint32_t
1739upgt_crc32_le(const void *buf, size_t size)
1740{
1741 uint32_t crc;
1742
1743 crc = ether_crc32_le(buf, size);
1744
1745 /* apply final XOR value as common for CRC-32 */
1746 crc = htole32(crc ^ 0xffffffffU);
1747
1748 return (crc);
1749}
1750
1751/*
1752 * While copying the version 2 firmware, we need to replace two characters:
1753 *
1754 * 0x7e -> 0x7d 0x5e
1755 * 0x7d -> 0x7d 0x5d
1756 */
1757static int
1758upgt_fw_copy(const uint8_t *src, char *dst, int size)
1759{
1760 int i, j;
1761
1762 for (i = 0, j = 0; i < size && j < size; i++) {
1763 switch (src[i]) {
1764 case 0x7e:
1765 dst[j] = 0x7d;
1766 j++;
1767 dst[j] = 0x5e;
1768 j++;
1769 break;
1770 case 0x7d:
1771 dst[j] = 0x7d;
1772 j++;
1773 dst[j] = 0x5d;
1774 j++;
1775 break;
1776 default:
1777 dst[j] = src[i];
1778 j++;
1779 break;
1780 }
1781 }
1782
1783 return (i);
1784}
1785
1786static int
1787upgt_mem_init(struct upgt_softc *sc)
1788{
1789 int i;
1790
1791 for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) {
1792 sc->sc_memory.page[i].used = 0;
1793
1794 if (i == 0) {
1795 /*
1796 * The first memory page is always reserved for
1797 * command data.
1798 */
1799 sc->sc_memory.page[i].addr =
1800 sc->sc_memaddr_frame_start + MCLBYTES;
1801 } else {
1802 sc->sc_memory.page[i].addr =
1803 sc->sc_memory.page[i - 1].addr + MCLBYTES;
1804 }
1805
1806 if (sc->sc_memory.page[i].addr + MCLBYTES >=
1807 sc->sc_memaddr_frame_end)
1808 break;
1809
1810 DPRINTF(sc, UPGT_DEBUG_FW, "memory address page %d=0x%08x\n",
1811 i, sc->sc_memory.page[i].addr);
1812 }
1813
1814 sc->sc_memory.pages = i;
1815
1816 DPRINTF(sc, UPGT_DEBUG_FW, "memory pages=%d\n", sc->sc_memory.pages);
1817 return (0);
1818}
1819
1820static int
1821upgt_fw_verify(struct upgt_softc *sc)
1822{
1823 const struct firmware *fw;
1824 const struct upgt_fw_bra_option *bra_opt;
1825 const struct upgt_fw_bra_descr *descr;
1826 const uint8_t *p;
1827 const uint32_t *uc;
1828 uint32_t bra_option_type, bra_option_len;
1829 size_t offset;
1830 int bra_end = 0;
1831 int error = 0;
1832
1833 fw = firmware_get(upgt_fwname);
1834 if (fw == NULL) {
1835 device_printf(sc->sc_dev, "could not read microcode %s\n",
1836 upgt_fwname);
1837 return EIO;
1838 }
1839
1840 /*
1841 * Seek to beginning of Boot Record Area (BRA).
1842 */
1843 for (offset = 0; offset < fw->datasize; offset += sizeof(*uc)) {
1844 uc = (const uint32_t *)((const uint8_t *)fw->data + offset);
1845 if (*uc == 0)
1846 break;
1847 }
1848 for (; offset < fw->datasize; offset += sizeof(*uc)) {
1849 uc = (const uint32_t *)((const uint8_t *)fw->data + offset);
1850 if (*uc != 0)
1851 break;
1852 }
1853 if (offset == fw->datasize) {
1854 device_printf(sc->sc_dev,
1855 "firmware Boot Record Area not found\n");
1856 error = EIO;
1857 goto fail;
1858 }
1859
1860 DPRINTF(sc, UPGT_DEBUG_FW,
1861 "firmware Boot Record Area found at offset %d\n", offset);
1862
1863 /*
1864 * Parse Boot Record Area (BRA) options.
1865 */
1866 while (offset < fw->datasize && bra_end == 0) {
1867 /* get current BRA option */
1868 p = (const uint8_t *)fw->data + offset;
1869 bra_opt = (const struct upgt_fw_bra_option *)p;
1870 bra_option_type = le32toh(bra_opt->type);
1871 bra_option_len = le32toh(bra_opt->len) * sizeof(*uc);
1872
1873 switch (bra_option_type) {
1874 case UPGT_BRA_TYPE_FW:
1875 DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_FW len=%d\n",
1876 bra_option_len);
1877
1878 if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) {
1879 device_printf(sc->sc_dev,
1880 "wrong UPGT_BRA_TYPE_FW len\n");
1881 error = EIO;
1882 goto fail;
1883 }
1884 if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_opt->data,
1885 bra_option_len) == 0) {
1886 sc->sc_fw_type = UPGT_FWTYPE_LM86;
1887 break;
1888 }
1889 if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_opt->data,
1890 bra_option_len) == 0) {
1891 sc->sc_fw_type = UPGT_FWTYPE_LM87;
1892 break;
1893 }
1894 device_printf(sc->sc_dev,
1895 "unsupported firmware type\n");
1896 error = EIO;
1897 goto fail;
1898 case UPGT_BRA_TYPE_VERSION:
1899 DPRINTF(sc, UPGT_DEBUG_FW,
1900 "UPGT_BRA_TYPE_VERSION len=%d\n", bra_option_len);
1901 break;
1902 case UPGT_BRA_TYPE_DEPIF:
1903 DPRINTF(sc, UPGT_DEBUG_FW,
1904 "UPGT_BRA_TYPE_DEPIF len=%d\n", bra_option_len);
1905 break;
1906 case UPGT_BRA_TYPE_EXPIF:
1907 DPRINTF(sc, UPGT_DEBUG_FW,
1908 "UPGT_BRA_TYPE_EXPIF len=%d\n", bra_option_len);
1909 break;
1910 case UPGT_BRA_TYPE_DESCR:
1911 DPRINTF(sc, UPGT_DEBUG_FW,
1912 "UPGT_BRA_TYPE_DESCR len=%d\n", bra_option_len);
1913
1914 descr = (const struct upgt_fw_bra_descr *)bra_opt->data;
1915
1916 sc->sc_memaddr_frame_start =
1917 le32toh(descr->memaddr_space_start);
1918 sc->sc_memaddr_frame_end =
1919 le32toh(descr->memaddr_space_end);
1920
1921 DPRINTF(sc, UPGT_DEBUG_FW,
1922 "memory address space start=0x%08x\n",
1923 sc->sc_memaddr_frame_start);
1924 DPRINTF(sc, UPGT_DEBUG_FW,
1925 "memory address space end=0x%08x\n",
1926 sc->sc_memaddr_frame_end);
1927 break;
1928 case UPGT_BRA_TYPE_END:
1929 DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_END len=%d\n",
1930 bra_option_len);
1931 bra_end = 1;
1932 break;
1933 default:
1934 DPRINTF(sc, UPGT_DEBUG_FW, "unknown BRA option len=%d\n",
1935 bra_option_len);
1936 error = EIO;
1937 goto fail;
1938 }
1939
1940 /* jump to next BRA option */
1941 offset += sizeof(struct upgt_fw_bra_option) + bra_option_len;
1942 }
1943
1944 DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware verified", __func__);
1945fail:
1946 firmware_put(fw, FIRMWARE_UNLOAD);
1947 return (error);
1948}
1949
1950static void
1951upgt_bulk_tx(struct upgt_softc *sc, struct upgt_data *data)
1952{
1953
1954 UPGT_ASSERT_LOCKED(sc);
1955
1956 STAILQ_INSERT_TAIL(&sc->sc_tx_pending, data, next);
1957 UPGT_STAT_INC(sc, st_tx_pending);
1958 usbd_transfer_start(sc->sc_xfer[UPGT_BULK_TX]);
1959}
1960
1961static int
1962upgt_device_reset(struct upgt_softc *sc)
1963{
1964 struct upgt_data *data;
1965 char init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e };
1966
1967 UPGT_LOCK(sc);
1968
1969 data = upgt_getbuf(sc);
1970 if (data == NULL) {
1971 UPGT_UNLOCK(sc);
1972 return (ENOBUFS);
1973 }
1974 memcpy(data->buf, init_cmd, sizeof(init_cmd));
1975 data->buflen = sizeof(init_cmd);
1976 upgt_bulk_tx(sc, data);
1977 usb_pause_mtx(&sc->sc_mtx, 100);
1978
1979 UPGT_UNLOCK(sc);
1980 DPRINTF(sc, UPGT_DEBUG_FW, "%s: device initialized\n", __func__);
1981 return (0);
1982}
1983
1984static int
1985upgt_alloc_tx(struct upgt_softc *sc)
1986{
1987 int i;
1988
1989 STAILQ_INIT(&sc->sc_tx_active);
1990 STAILQ_INIT(&sc->sc_tx_inactive);
1991 STAILQ_INIT(&sc->sc_tx_pending);
1992
1993 for (i = 0; i < UPGT_TX_MAXCOUNT; i++) {
1994 struct upgt_data *data = &sc->sc_tx_data[i];
1995 data->buf = ((uint8_t *)sc->sc_tx_dma_buf) + (i * MCLBYTES);
1996 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next);
1997 UPGT_STAT_INC(sc, st_tx_inactive);
1998 }
1999
2000 return (0);
2001}
2002
2003static int
2004upgt_alloc_rx(struct upgt_softc *sc)
2005{
2006 int i;
2007
2008 STAILQ_INIT(&sc->sc_rx_active);
2009 STAILQ_INIT(&sc->sc_rx_inactive);
2010
2011 for (i = 0; i < UPGT_RX_MAXCOUNT; i++) {
2012 struct upgt_data *data = &sc->sc_rx_data[i];
2013 data->buf = ((uint8_t *)sc->sc_rx_dma_buf) + (i * MCLBYTES);
2014 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
2015 }
2016 return (0);
2017}
2018
2019static int
2020upgt_detach(device_t dev)
2021{
2022 struct upgt_softc *sc = device_get_softc(dev);
2023 struct ifnet *ifp = sc->sc_ifp;
2024 struct ieee80211com *ic = ifp->if_l2com;
2025 unsigned int x;
2026
2027 /*
2028 * Prevent further allocations from RX/TX/CMD
2029 * data lists and ioctls
2030 */
2031 UPGT_LOCK(sc);
2032 sc->sc_flags |= UPGT_FLAG_DETACHED;
2033
2034 STAILQ_INIT(&sc->sc_tx_active);
2035 STAILQ_INIT(&sc->sc_tx_inactive);
2036 STAILQ_INIT(&sc->sc_tx_pending);
2037
2038 STAILQ_INIT(&sc->sc_rx_active);
2039 STAILQ_INIT(&sc->sc_rx_inactive);
2040 UPGT_UNLOCK(sc);
2041
2042 upgt_stop(sc);
2043
2044 callout_drain(&sc->sc_led_ch);
2045 callout_drain(&sc->sc_watchdog_ch);
2046
2047 /* drain USB transfers */
2048 for (x = 0; x != UPGT_N_XFERS; x++)
2049 usbd_transfer_drain(sc->sc_xfer[x]);
2050
2051 /* free data buffers */
2052 UPGT_LOCK(sc);
2053 upgt_free_rx(sc);
2054 upgt_free_tx(sc);
2055 UPGT_UNLOCK(sc);
2056
2057 /* free USB transfers and some data buffers */
2058 usbd_transfer_unsetup(sc->sc_xfer, UPGT_N_XFERS);
2059
2060 ieee80211_ifdetach(ic);
2061 if_free(ifp);
2062 mtx_destroy(&sc->sc_mtx);
2063
2064 return (0);
2065}
2066
2067static void
2068upgt_free_rx(struct upgt_softc *sc)
2069{
2070 int i;
2071
2072 for (i = 0; i < UPGT_RX_MAXCOUNT; i++) {
2073 struct upgt_data *data = &sc->sc_rx_data[i];
2074
2075 data->buf = NULL;
2076 data->ni = NULL;
2077 }
2078}
2079
2080static void
2081upgt_free_tx(struct upgt_softc *sc)
2082{
2083 int i;
2084
2085 for (i = 0; i < UPGT_TX_MAXCOUNT; i++) {
2086 struct upgt_data *data = &sc->sc_tx_data[i];
2087
2088 if (data->ni != NULL)
2089 ieee80211_free_node(data->ni);
2090
2091 data->buf = NULL;
2092 data->ni = NULL;
2093 }
2094}
2095
2096static void
2097upgt_abort_xfers_locked(struct upgt_softc *sc)
2098{
2099 int i;
2100
2101 UPGT_ASSERT_LOCKED(sc);
2102 /* abort any pending transfers */
2103 for (i = 0; i < UPGT_N_XFERS; i++)
2104 usbd_transfer_stop(sc->sc_xfer[i]);
2105}
2106
2107static void
2108upgt_abort_xfers(struct upgt_softc *sc)
2109{
2110
2111 UPGT_LOCK(sc);
2112 upgt_abort_xfers_locked(sc);
2113 UPGT_UNLOCK(sc);
2114}
2115
2116#define UPGT_SYSCTL_STAT_ADD32(c, h, n, p, d) \
2117 SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2118
2119static void
2120upgt_sysctl_node(struct upgt_softc *sc)
2121{
2122 struct sysctl_ctx_list *ctx;
2123 struct sysctl_oid_list *child;
2124 struct sysctl_oid *tree;
2125 struct upgt_stat *stats;
2126
2127 stats = &sc->sc_stat;
2128 ctx = device_get_sysctl_ctx(sc->sc_dev);
2129 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->sc_dev));
2130
2131 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2132 NULL, "UPGT statistics");
2133 child = SYSCTL_CHILDREN(tree);
2134 UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_active",
2135 &stats->st_tx_active, "Active numbers in TX queue");
2136 UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_inactive",
2137 &stats->st_tx_inactive, "Inactive numbers in TX queue");
2138 UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_pending",
2139 &stats->st_tx_pending, "Pending numbers in TX queue");
2140}
2141
2142#undef UPGT_SYSCTL_STAT_ADD32
2143
2144static struct upgt_data *
2145_upgt_getbuf(struct upgt_softc *sc)
2146{
2147 struct upgt_data *bf;
2148
2149 bf = STAILQ_FIRST(&sc->sc_tx_inactive);
2150 if (bf != NULL) {
2151 STAILQ_REMOVE_HEAD(&sc->sc_tx_inactive, next);
2152 UPGT_STAT_DEC(sc, st_tx_inactive);
2153 } else
2154 bf = NULL;
2155 if (bf == NULL)
2156 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: %s\n", __func__,
2157 "out of xmit buffers");
2158 return (bf);
2159}
2160
2161static struct upgt_data *
2162upgt_getbuf(struct upgt_softc *sc)
2163{
2164 struct upgt_data *bf;
2165
2166 UPGT_ASSERT_LOCKED(sc);
2167
2168 bf = _upgt_getbuf(sc);
2169 if (bf == NULL) {
2170 struct ifnet *ifp = sc->sc_ifp;
2171
2172 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: stop queue\n", __func__);
2173 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2174 }
2175
2176 return (bf);
2177}
2178
2179static struct upgt_data *
2180upgt_gettxbuf(struct upgt_softc *sc)
2181{
2182 struct upgt_data *bf;
2183
2184 UPGT_ASSERT_LOCKED(sc);
2185
2186 bf = upgt_getbuf(sc);
2187 if (bf == NULL)
2188 return (NULL);
2189
2190 bf->addr = upgt_mem_alloc(sc);
2191 if (bf->addr == 0) {
2192 struct ifnet *ifp = sc->sc_ifp;
2193
2194 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: no free prism memory!\n",
2195 __func__);
2196 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next);
2197 UPGT_STAT_INC(sc, st_tx_inactive);
2198 if (!(ifp->if_drv_flags & IFF_DRV_OACTIVE))
2199 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2200 return (NULL);
2201 }
2202 return (bf);
2203}
2204
2205static int
2206upgt_tx_start(struct upgt_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
2207 struct upgt_data *data)
2208{
2209 struct ieee80211vap *vap = ni->ni_vap;
2210 int error = 0, len;
2211 struct ieee80211_frame *wh;
2212 struct ieee80211_key *k;
2213 struct ifnet *ifp = sc->sc_ifp;
2214 struct upgt_lmac_mem *mem;
2215 struct upgt_lmac_tx_desc *txdesc;
2216
2217 UPGT_ASSERT_LOCKED(sc);
2218
2219 upgt_set_led(sc, UPGT_LED_BLINK);
2220
2221 /*
2222 * Software crypto.
2223 */
2224 wh = mtod(m, struct ieee80211_frame *);
2225 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2226 k = ieee80211_crypto_encap(ni, m);
2227 if (k == NULL) {
2228 device_printf(sc->sc_dev,
2229 "ieee80211_crypto_encap returns NULL.\n");
2230 error = EIO;
2231 goto done;
2232 }
2233
2234 /* in case packet header moved, reset pointer */
2235 wh = mtod(m, struct ieee80211_frame *);
2236 }
2237
2238 /* Transmit the URB containing the TX data. */
2239 memset(data->buf, 0, MCLBYTES);
2240 mem = (struct upgt_lmac_mem *)data->buf;
2241 mem->addr = htole32(data->addr);
2242 txdesc = (struct upgt_lmac_tx_desc *)(mem + 1);
2243
2244 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
2245 IEEE80211_FC0_TYPE_MGT) {
2246 /* mgmt frames */
2247 txdesc->header1.flags = UPGT_H1_FLAGS_TX_MGMT;
2248 /* always send mgmt frames at lowest rate (DS1) */
2249 memset(txdesc->rates, 0x10, sizeof(txdesc->rates));
2250 } else {
2251 /* data frames */
2252 txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA;
2253 memcpy(txdesc->rates, sc->sc_cur_rateset, sizeof(txdesc->rates));
2254 }
2255 txdesc->header1.type = UPGT_H1_TYPE_TX_DATA;
2256 txdesc->header1.len = htole16(m->m_pkthdr.len);
2257 txdesc->header2.reqid = htole32(data->addr);
2258 txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES);
2259 txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES);
2260 txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA);
2261 txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE;
2262
2263 if (ieee80211_radiotap_active_vap(vap)) {
2264 struct upgt_tx_radiotap_header *tap = &sc->sc_txtap;
2265
2266 tap->wt_flags = 0;
2267 tap->wt_rate = 0; /* XXX where to get from? */
2268
2269 ieee80211_radiotap_tx(vap, m);
2270 }
2271
2272 /* copy frame below our TX descriptor header */
2273 m_copydata(m, 0, m->m_pkthdr.len,
2274 data->buf + (sizeof(*mem) + sizeof(*txdesc)));
2275 /* calculate frame size */
2276 len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len;
2277 /* we need to align the frame to a 4 byte boundary */
2278 len = (len + 3) & ~3;
2279 /* calculate frame checksum */
2280 mem->chksum = upgt_chksum_le((uint32_t *)txdesc, len - sizeof(*mem));
2281 data->ni = ni;
2282 data->m = m;
2283 data->buflen = len;
2284
2285 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: TX start data sending (%d bytes)\n",
2286 __func__, len);
2287 KASSERT(len <= MCLBYTES, ("mbuf is small for saving data"));
2288
2289 upgt_bulk_tx(sc, data);
2290done:
2291 /*
2292 * If we don't regulary read the device statistics, the RX queue
2293 * will stall. It's strange, but it works, so we keep reading
2294 * the statistics here. *shrug*
2295 */
2296 if (!(ifp->if_opackets % UPGT_TX_STAT_INTERVAL))
2297 upgt_get_stats(sc);
2298
2299 return (error);
2300}
2301
2302static void
2303upgt_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error)
2304{
2305 struct upgt_softc *sc = usbd_xfer_softc(xfer);
2306 struct ifnet *ifp = sc->sc_ifp;
2307 struct ieee80211com *ic = ifp->if_l2com;
2308 struct ieee80211_frame *wh;
2309 struct ieee80211_node *ni;
2310 struct mbuf *m = NULL;
2311 struct upgt_data *data;
2312 int8_t nf;
2313 int rssi = -1;
2314
2315 UPGT_ASSERT_LOCKED(sc);
2316
2317 switch (USB_GET_STATE(xfer)) {
2318 case USB_ST_TRANSFERRED:
2319 data = STAILQ_FIRST(&sc->sc_rx_active);
2320 if (data == NULL)
2321 goto setup;
2322 STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next);
2323 m = upgt_rxeof(xfer, data, &rssi);
2324 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
2325 /* FALLTHROUGH */
2326 case USB_ST_SETUP:
2327setup:
2328 data = STAILQ_FIRST(&sc->sc_rx_inactive);
2329 if (data == NULL)
2330 return;
2331 STAILQ_REMOVE_HEAD(&sc->sc_rx_inactive, next);
2332 STAILQ_INSERT_TAIL(&sc->sc_rx_active, data, next);
2333 usbd_xfer_set_frame_data(xfer, 0, data->buf, MCLBYTES);
2334 usbd_transfer_submit(xfer);
2335
2336 /*
2337 * To avoid LOR we should unlock our private mutex here to call
2338 * ieee80211_input() because here is at the end of a USB
2339 * callback and safe to unlock.
2340 */
2341 UPGT_UNLOCK(sc);
2342 if (m != NULL) {
2343 wh = mtod(m, struct ieee80211_frame *);
2344 ni = ieee80211_find_rxnode(ic,
2345 (struct ieee80211_frame_min *)wh);
2346 nf = -95; /* XXX */
2347 if (ni != NULL) {
2348 (void) ieee80211_input(ni, m, rssi, nf);
2349 /* node is no longer needed */
2350 ieee80211_free_node(ni);
2351 } else
2352 (void) ieee80211_input_all(ic, m, rssi, nf);
2353 m = NULL;
2354 }
2355 if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 &&
2356 !IFQ_IS_EMPTY(&ifp->if_snd))
2357 upgt_start(ifp);
2358 UPGT_LOCK(sc);
2359 break;
2360 default:
2361 /* needs it to the inactive queue due to a error. */
2362 data = STAILQ_FIRST(&sc->sc_rx_active);
2363 if (data != NULL) {
2364 STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next);
2365 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
2366 }
2367 if (error != USB_ERR_CANCELLED) {
2368 usbd_xfer_set_stall(xfer);
2369 ifp->if_ierrors++;
2370 goto setup;
2371 }
2372 break;
2373 }
2374}
2375
2376static void
2377upgt_bulk_tx_callback(struct usb_xfer *xfer, usb_error_t error)
2378{
2379 struct upgt_softc *sc = usbd_xfer_softc(xfer);
2380 struct ifnet *ifp = sc->sc_ifp;
2381 struct upgt_data *data;
2382
2383 UPGT_ASSERT_LOCKED(sc);
2384 switch (USB_GET_STATE(xfer)) {
2385 case USB_ST_TRANSFERRED:
2386 data = STAILQ_FIRST(&sc->sc_tx_active);
2387 if (data == NULL)
2388 goto setup;
2389 STAILQ_REMOVE_HEAD(&sc->sc_tx_active, next);
2390 UPGT_STAT_DEC(sc, st_tx_active);
2391 upgt_txeof(xfer, data);
2392 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next);
2393 UPGT_STAT_INC(sc, st_tx_inactive);
2394 /* FALLTHROUGH */
2395 case USB_ST_SETUP:
2396setup:
2397 data = STAILQ_FIRST(&sc->sc_tx_pending);
2398 if (data == NULL) {
2399 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: empty pending queue\n",
2400 __func__);
2401 return;
2402 }
2403 STAILQ_REMOVE_HEAD(&sc->sc_tx_pending, next);
2404 UPGT_STAT_DEC(sc, st_tx_pending);
2405 STAILQ_INSERT_TAIL(&sc->sc_tx_active, data, next);
2406 UPGT_STAT_INC(sc, st_tx_active);
2407
2408 usbd_xfer_set_frame_data(xfer, 0, data->buf, data->buflen);
2409 usbd_transfer_submit(xfer);
2410 UPGT_UNLOCK(sc);
2411 upgt_start(ifp);
2412 UPGT_LOCK(sc);
2413 break;
2414 default:
2415 data = STAILQ_FIRST(&sc->sc_tx_active);
2416 if (data == NULL)
2417 goto setup;
2418 if (data->ni != NULL) {
2419 ieee80211_free_node(data->ni);
2420 data->ni = NULL;
2421 ifp->if_oerrors++;
2422 }
2423 if (error != USB_ERR_CANCELLED) {
2424 usbd_xfer_set_stall(xfer);
2425 goto setup;
2426 }
2427 break;
2428 }
2429}
2430
2431static device_method_t upgt_methods[] = {
2432 /* Device interface */
2433 DEVMETHOD(device_probe, upgt_match),
2434 DEVMETHOD(device_attach, upgt_attach),
2435 DEVMETHOD(device_detach, upgt_detach),
2436 DEVMETHOD_END
2437};
2438
2439static driver_t upgt_driver = {
2440 .name = "upgt",
2441 .methods = upgt_methods,
2442 .size = sizeof(struct upgt_softc)
2443};
2444
2445static devclass_t upgt_devclass;
2446
2447DRIVER_MODULE(if_upgt, uhub, upgt_driver, upgt_devclass, NULL, 0);
2448MODULE_VERSION(if_upgt, 1);
2449MODULE_DEPEND(if_upgt, usb, 1, 1, 1);
2450MODULE_DEPEND(if_upgt, wlan, 1, 1, 1);
2451MODULE_DEPEND(if_upgt, upgtfw_fw, 1, 1, 1);