Deleted Added
full compact
1/*-
2 * Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010
3 * PCI-SCSI controllers.
4 *
5 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
6 *
7 * This driver also supports the following Symbios/LSI PCI-SCSI chips:
8 * 53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895,
9 * 53C810, 53C815, 53C825 and the 53C1510D is 53C8XX mode.
10 *
11 *
12 * This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver.
13 * Copyright (C) 1998-1999 Gerard Roudier
14 *
15 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
16 * a port of the FreeBSD ncr driver to Linux-1.2.13.
17 *
18 * The original ncr driver has been written for 386bsd and FreeBSD by
19 * Wolfgang Stanglmeier <wolf@cologne.de>
20 * Stefan Esser <se@mi.Uni-Koeln.de>
21 * Copyright (C) 1994 Wolfgang Stanglmeier
22 *
23 * The initialisation code, and part of the code that addresses
24 * FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM
25 * written by Justin T. Gibbs.
26 *
27 * Other major contributions:
28 *
29 * NVRAM detection and reading.
30 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
31 *
32 *-----------------------------------------------------------------------------
33 *
34 * Redistribution and use in source and binary forms, with or without
35 * modification, are permitted provided that the following conditions
36 * are met:
37 * 1. Redistributions of source code must retain the above copyright
38 * notice, this list of conditions and the following disclaimer.
39 * 2. Redistributions in binary form must reproduce the above copyright
40 * notice, this list of conditions and the following disclaimer in the
41 * documentation and/or other materials provided with the distribution.
42 * 3. The name of the author may not be used to endorse or promote products
43 * derived from this software without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
49 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 */
57
58#include <sys/cdefs.h>
59__FBSDID("$FreeBSD: head/sys/dev/sym/sym_hipd.c 170872 2007-06-17 05:55:54Z scottl $");
59__FBSDID("$FreeBSD: head/sys/dev/sym/sym_hipd.c 170996 2007-06-23 00:02:20Z mjacob $");
60
61#define SYM_DRIVER_NAME "sym-1.6.5-20000902"
62
63/* #define SYM_DEBUG_GENERIC_SUPPORT */
64
65#include <sys/param.h>
66
67/*
68 * Driver configuration options.
69 */
70#include "opt_sym.h"
71#include <dev/sym/sym_conf.h>
72
73
74#include <sys/systm.h>
75#include <sys/malloc.h>
76#include <sys/endian.h>
77#include <sys/kernel.h>
78#include <sys/lock.h>
79#include <sys/mutex.h>
80#include <sys/module.h>
81#include <sys/bus.h>
82
83#include <sys/proc.h>
84
85#include <dev/pci/pcireg.h>
86#include <dev/pci/pcivar.h>
87
88#include <machine/bus.h>
89#include <machine/resource.h>
90#include <sys/rman.h>
91
92#include <cam/cam.h>
93#include <cam/cam_ccb.h>
94#include <cam/cam_sim.h>
95#include <cam/cam_xpt_sim.h>
96#include <cam/cam_debug.h>
97
98#include <cam/scsi/scsi_all.h>
99#include <cam/scsi/scsi_message.h>
100
101#include <vm/vm.h>
102#include <vm/vm_param.h>
103#include <vm/pmap.h>
104
105/* Short and quite clear integer types */
106typedef int8_t s8;
107typedef int16_t s16;
108typedef int32_t s32;
109typedef u_int8_t u8;
110typedef u_int16_t u16;
111typedef u_int32_t u32;
112
113/*
114 * Driver definitions.
115 */
116#include <dev/sym/sym_defs.h>
117#include <dev/sym/sym_fw.h>
118
119/*
120 * IA32 architecture does not reorder STORES and prevents
121 * LOADS from passing STORES. It is called `program order'
122 * by Intel and allows device drivers to deal with memory
123 * ordering by only ensuring that the code is not reordered
124 * by the compiler when ordering is required.
125 * Other architectures implement a weaker ordering that
126 * requires memory barriers (and also IO barriers when they
127 * make sense) to be used.
128 */
129
130#if defined __i386__ || defined __amd64__
131#define MEMORY_BARRIER() do { ; } while(0)
132#elif defined __powerpc__
133#define MEMORY_BARRIER() __asm__ volatile("eieio; sync" : : : "memory")
134#elif defined __ia64__
135#define MEMORY_BARRIER() __asm__ volatile("mf.a; mf" : : : "memory")
136#elif defined __sparc64__
137#define MEMORY_BARRIER() __asm__ volatile("membar #Sync" : : : "memory")
138#else
139#error "Not supported platform"
140#endif
141
142/*
143 * A la VMS/CAM-3 queue management.
144 */
145
146typedef struct sym_quehead {
147 struct sym_quehead *flink; /* Forward pointer */
148 struct sym_quehead *blink; /* Backward pointer */
149} SYM_QUEHEAD;
150
151#define sym_que_init(ptr) do { \
152 (ptr)->flink = (ptr); (ptr)->blink = (ptr); \
153} while (0)
154
155static __inline struct sym_quehead *sym_que_first(struct sym_quehead *head)
156{
157 return (head->flink == head) ? 0 : head->flink;
158}
159
160static __inline struct sym_quehead *sym_que_last(struct sym_quehead *head)
161{
162 return (head->blink == head) ? 0 : head->blink;
163}
164
165static __inline void __sym_que_add(struct sym_quehead * new,
166 struct sym_quehead * blink,
167 struct sym_quehead * flink)
168{
169 flink->blink = new;
170 new->flink = flink;
171 new->blink = blink;
172 blink->flink = new;
173}
174
175static __inline void __sym_que_del(struct sym_quehead * blink,
176 struct sym_quehead * flink)
177{
178 flink->blink = blink;
179 blink->flink = flink;
180}
181
182static __inline int sym_que_empty(struct sym_quehead *head)
183{
184 return head->flink == head;
185}
186
187static __inline void sym_que_splice(struct sym_quehead *list,
188 struct sym_quehead *head)
189{
190 struct sym_quehead *first = list->flink;
191
192 if (first != list) {
193 struct sym_quehead *last = list->blink;
194 struct sym_quehead *at = head->flink;
195
196 first->blink = head;
197 head->flink = first;
198
199 last->flink = at;
200 at->blink = last;
201 }
202}
203
204#define sym_que_entry(ptr, type, member) \
205 ((type *)((char *)(ptr)-(unsigned int)(&((type *)0)->member)))
205 ((type *)((char *)(ptr)-(size_t)(&((type *)0)->member)))
206
207
208#define sym_insque(new, pos) __sym_que_add(new, pos, (pos)->flink)
209
210#define sym_remque(el) __sym_que_del((el)->blink, (el)->flink)
211
212#define sym_insque_head(new, head) __sym_que_add(new, head, (head)->flink)
213
214static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head)
215{
216 struct sym_quehead *elem = head->flink;
217
218 if (elem != head)
219 __sym_que_del(head, elem->flink);
220 else
221 elem = 0;
222 return elem;
223}
224
225#define sym_insque_tail(new, head) __sym_que_add(new, (head)->blink, head)
226
227static __inline struct sym_quehead *sym_remque_tail(struct sym_quehead *head)
228{
229 struct sym_quehead *elem = head->blink;
230
231 if (elem != head)
232 __sym_que_del(elem->blink, head);
233 else
234 elem = 0;
235 return elem;
236}
237
238/*
239 * This one may be useful.
240 */
241#define FOR_EACH_QUEUED_ELEMENT(head, qp) \
242 for (qp = (head)->flink; qp != (head); qp = qp->flink)
243/*
244 * FreeBSD does not offer our kind of queue in the CAM CCB.
245 * So, we have to cast.
246 */
247#define sym_qptr(p) ((struct sym_quehead *) (p))
248
249/*
250 * Simple bitmap operations.
251 */
252#define sym_set_bit(p, n) (((u32 *)(p))[(n)>>5] |= (1<<((n)&0x1f)))
253#define sym_clr_bit(p, n) (((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f)))
254#define sym_is_bit(p, n) (((u32 *)(p))[(n)>>5] & (1<<((n)&0x1f)))
255
256/*
257 * Number of tasks per device we want to handle.
258 */
259#if SYM_CONF_MAX_TAG_ORDER > 8
260#error "more than 256 tags per logical unit not allowed."
261#endif
262#define SYM_CONF_MAX_TASK (1<<SYM_CONF_MAX_TAG_ORDER)
263
264/*
265 * Donnot use more tasks that we can handle.
266 */
267#ifndef SYM_CONF_MAX_TAG
268#define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK
269#endif
270#if SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK
271#undef SYM_CONF_MAX_TAG
272#define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK
273#endif
274
275/*
276 * This one means 'NO TAG for this job'
277 */
278#define NO_TAG (256)
279
280/*
281 * Number of SCSI targets.
282 */
283#if SYM_CONF_MAX_TARGET > 16
284#error "more than 16 targets not allowed."
285#endif
286
287/*
288 * Number of logical units per target.
289 */
290#if SYM_CONF_MAX_LUN > 64
291#error "more than 64 logical units per target not allowed."
292#endif
293
294/*
295 * Asynchronous pre-scaler (ns). Shall be 40 for
296 * the SCSI timings to be compliant.
297 */
298#define SYM_CONF_MIN_ASYNC (40)
299
300/*
301 * Number of entries in the START and DONE queues.
302 *
303 * We limit to 1 PAGE in order to succeed allocation of
304 * these queues. Each entry is 8 bytes long (2 DWORDS).
305 */
306#ifdef SYM_CONF_MAX_START
307#define SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2)
308#else
309#define SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2)
310#define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
311#endif
312
313#if SYM_CONF_MAX_QUEUE > PAGE_SIZE/8
314#undef SYM_CONF_MAX_QUEUE
315#define SYM_CONF_MAX_QUEUE PAGE_SIZE/8
316#undef SYM_CONF_MAX_START
317#define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
318#endif
319
320/*
321 * For this one, we want a short name :-)
322 */
323#define MAX_QUEUE SYM_CONF_MAX_QUEUE
324
325/*
326 * Active debugging tags and verbosity.
327 */
328#define DEBUG_ALLOC (0x0001)
329#define DEBUG_PHASE (0x0002)
330#define DEBUG_POLL (0x0004)
331#define DEBUG_QUEUE (0x0008)
332#define DEBUG_RESULT (0x0010)
333#define DEBUG_SCATTER (0x0020)
334#define DEBUG_SCRIPT (0x0040)
335#define DEBUG_TINY (0x0080)
336#define DEBUG_TIMING (0x0100)
337#define DEBUG_NEGO (0x0200)
338#define DEBUG_TAGS (0x0400)
339#define DEBUG_POINTER (0x0800)
340
341#if 0
342static int sym_debug = 0;
343 #define DEBUG_FLAGS sym_debug
344#else
345/* #define DEBUG_FLAGS (0x0631) */
346 #define DEBUG_FLAGS (0x0000)
347
348#endif
349#define sym_verbose (np->verbose)
350
351/*
352 * Insert a delay in micro-seconds and milli-seconds.
353 */
354static void UDELAY(int us) { DELAY(us); }
355static void MDELAY(int ms) { while (ms--) UDELAY(1000); }
356
357/*
358 * Simple power of two buddy-like allocator.
359 *
360 * This simple code is not intended to be fast, but to
361 * provide power of 2 aligned memory allocations.
362 * Since the SCRIPTS processor only supplies 8 bit arithmetic,
363 * this allocator allows simple and fast address calculations
364 * from the SCRIPTS code. In addition, cache line alignment
365 * is guaranteed for power of 2 cache line size.
366 *
367 * This allocator has been developped for the Linux sym53c8xx
368 * driver, since this O/S does not provide naturally aligned
369 * allocations.
370 * It has the advantage of allowing the driver to use private
371 * pages of memory that will be useful if we ever need to deal
372 * with IO MMUs for PCI.
373 */
374
375#define MEMO_SHIFT 4 /* 16 bytes minimum memory chunk */
376#ifndef __amd64__
377#define MEMO_PAGE_ORDER 0 /* 1 PAGE maximum */
378#else
379#define MEMO_PAGE_ORDER 1 /* 2 PAGEs maximum on amd64 */
380#endif
381#if 0
382#define MEMO_FREE_UNUSED /* Free unused pages immediately */
383#endif
384#define MEMO_WARN 1
385#define MEMO_CLUSTER_SHIFT (PAGE_SHIFT+MEMO_PAGE_ORDER)
386#define MEMO_CLUSTER_SIZE (1UL << MEMO_CLUSTER_SHIFT)
387#define MEMO_CLUSTER_MASK (MEMO_CLUSTER_SIZE-1)
388
389#ifndef __amd64__
390#define get_pages() malloc(MEMO_CLUSTER_SIZE, M_DEVBUF, M_NOWAIT)
391#define free_pages(p) free((p), M_DEVBUF)
392#else
393#define get_pages() contigmalloc(MEMO_CLUSTER_SIZE, M_DEVBUF, \
394 0, 0, 1LL << 32, PAGE_SIZE, 1LL << 32)
395#define free_pages(p) contigfree((p), MEMO_CLUSTER_SIZE, M_DEVBUF)
396#endif
397
398typedef u_long m_addr_t; /* Enough bits to bit-hack addresses */
399
400typedef struct m_link { /* Link between free memory chunks */
401 struct m_link *next;
402} m_link_s;
403
404typedef struct m_vtob { /* Virtual to Bus address translation */
405 struct m_vtob *next;
406 bus_dmamap_t dmamap; /* Map for this chunk */
407 m_addr_t vaddr; /* Virtual address */
408 m_addr_t baddr; /* Bus physical address */
409} m_vtob_s;
410/* Hash this stuff a bit to speed up translations */
411#define VTOB_HASH_SHIFT 5
412#define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT)
413#define VTOB_HASH_MASK (VTOB_HASH_SIZE-1)
414#define VTOB_HASH_CODE(m) \
415 ((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK)
416
417typedef struct m_pool { /* Memory pool of a given kind */
418 bus_dma_tag_t dev_dmat; /* Identifies the pool */
419 bus_dma_tag_t dmat; /* Tag for our fixed allocations */
420 m_addr_t (*getp)(struct m_pool *);
421#ifdef MEMO_FREE_UNUSED
422 void (*freep)(struct m_pool *, m_addr_t);
423#endif
424#define M_GETP() mp->getp(mp)
425#define M_FREEP(p) mp->freep(mp, p)
426 int nump;
427 m_vtob_s *(vtob[VTOB_HASH_SIZE]);
428 struct m_pool *next;
429 struct m_link h[MEMO_CLUSTER_SHIFT - MEMO_SHIFT + 1];
430} m_pool_s;
431
432static void *___sym_malloc(m_pool_s *mp, int size)
433{
434 int i = 0;
435 int s = (1 << MEMO_SHIFT);
436 int j;
437 m_addr_t a;
438 m_link_s *h = mp->h;
439
440 if (size > MEMO_CLUSTER_SIZE)
441 return 0;
442
443 while (size > s) {
444 s <<= 1;
445 ++i;
446 }
447
448 j = i;
449 while (!h[j].next) {
450 if (s == MEMO_CLUSTER_SIZE) {
451 h[j].next = (m_link_s *) M_GETP();
452 if (h[j].next)
453 h[j].next->next = 0;
454 break;
455 }
456 ++j;
457 s <<= 1;
458 }
459 a = (m_addr_t) h[j].next;
460 if (a) {
461 h[j].next = h[j].next->next;
462 while (j > i) {
463 j -= 1;
464 s >>= 1;
465 h[j].next = (m_link_s *) (a+s);
466 h[j].next->next = 0;
467 }
468 }
469#ifdef DEBUG
470 printf("___sym_malloc(%d) = %p\n", size, (void *) a);
471#endif
472 return (void *) a;
473}
474
475static void ___sym_mfree(m_pool_s *mp, void *ptr, int size)
476{
477 int i = 0;
478 int s = (1 << MEMO_SHIFT);
479 m_link_s *q;
480 m_addr_t a, b;
481 m_link_s *h = mp->h;
482
483#ifdef DEBUG
484 printf("___sym_mfree(%p, %d)\n", ptr, size);
485#endif
486
487 if (size > MEMO_CLUSTER_SIZE)
488 return;
489
490 while (size > s) {
491 s <<= 1;
492 ++i;
493 }
494
495 a = (m_addr_t) ptr;
496
497 while (1) {
498#ifdef MEMO_FREE_UNUSED
499 if (s == MEMO_CLUSTER_SIZE) {
500 M_FREEP(a);
501 break;
502 }
503#endif
504 b = a ^ s;
505 q = &h[i];
506 while (q->next && q->next != (m_link_s *) b) {
507 q = q->next;
508 }
509 if (!q->next) {
510 ((m_link_s *) a)->next = h[i].next;
511 h[i].next = (m_link_s *) a;
512 break;
513 }
514 q->next = q->next->next;
515 a = a & b;
516 s <<= 1;
517 ++i;
518 }
519}
520
521static void *__sym_calloc2(m_pool_s *mp, int size, char *name, int uflags)
522{
523 void *p;
524
525 p = ___sym_malloc(mp, size);
526
527 if (DEBUG_FLAGS & DEBUG_ALLOC)
528 printf ("new %-10s[%4d] @%p.\n", name, size, p);
529
530 if (p)
531 bzero(p, size);
532 else if (uflags & MEMO_WARN)
533 printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size);
534
535 return p;
536}
537
538#define __sym_calloc(mp, s, n) __sym_calloc2(mp, s, n, MEMO_WARN)
539
540static void __sym_mfree(m_pool_s *mp, void *ptr, int size, char *name)
541{
542 if (DEBUG_FLAGS & DEBUG_ALLOC)
543 printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
544
545 ___sym_mfree(mp, ptr, size);
546
547}
548
549/*
550 * Default memory pool we donnot need to involve in DMA.
551 */
552/*
553 * With the `bus dma abstraction', we use a separate pool for
554 * memory we donnot need to involve in DMA.
555 */
556static m_addr_t ___mp0_getp(m_pool_s *mp)
557{
558 m_addr_t m = (m_addr_t) get_pages();
559 if (m)
560 ++mp->nump;
561 return m;
562}
563
564#ifdef MEMO_FREE_UNUSED
565static void ___mp0_freep(m_pool_s *mp, m_addr_t m)
566{
567 free_pages(m);
568 --mp->nump;
569}
570#endif
571
572#ifdef MEMO_FREE_UNUSED
573static m_pool_s mp0 = {0, 0, ___mp0_getp, ___mp0_freep};
574#else
575static m_pool_s mp0 = {0, 0, ___mp0_getp};
576#endif
577
578
579/*
580 * Actual memory allocation routine for non-DMAed memory.
581 */
582static void *sym_calloc(int size, char *name)
583{
584 void *m;
585 /* Lock */
586 m = __sym_calloc(&mp0, size, name);
587 /* Unlock */
588 return m;
589}
590
591/*
592 * Actual memory allocation routine for non-DMAed memory.
593 */
594static void sym_mfree(void *ptr, int size, char *name)
595{
596 /* Lock */
597 __sym_mfree(&mp0, ptr, size, name);
598 /* Unlock */
599}
600
601/*
602 * DMAable pools.
603 */
604/*
605 * With `bus dma abstraction', we use a separate pool per parent
606 * BUS handle. A reverse table (hashed) is maintained for virtual
607 * to BUS address translation.
608 */
609static void getbaddrcb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
610{
611 bus_addr_t *baddr;
612 baddr = (bus_addr_t *)arg;
613 *baddr = segs->ds_addr;
614}
615
616static m_addr_t ___dma_getp(m_pool_s *mp)
617{
618 m_vtob_s *vbp;
619 void *vaddr = 0;
620 bus_addr_t baddr = 0;
621
622 vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB");
623 if (!vbp)
624 goto out_err;
625
626 if (bus_dmamem_alloc(mp->dmat, &vaddr,
627 BUS_DMA_NOWAIT, &vbp->dmamap))
628 goto out_err;
629 bus_dmamap_load(mp->dmat, vbp->dmamap, vaddr,
630 MEMO_CLUSTER_SIZE, getbaddrcb, &baddr, 0);
631 if (baddr) {
632 int hc = VTOB_HASH_CODE(vaddr);
633 vbp->vaddr = (m_addr_t) vaddr;
634 vbp->baddr = (m_addr_t) baddr;
635 vbp->next = mp->vtob[hc];
636 mp->vtob[hc] = vbp;
637 ++mp->nump;
638 return (m_addr_t) vaddr;
639 }
640out_err:
641 if (baddr)
642 bus_dmamap_unload(mp->dmat, vbp->dmamap);
643 if (vaddr)
644 bus_dmamem_free(mp->dmat, vaddr, vbp->dmamap);
645 if (vbp) {
646 if (vbp->dmamap)
647 bus_dmamap_destroy(mp->dmat, vbp->dmamap);
648 __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
649 }
650 return 0;
651}
652
653#ifdef MEMO_FREE_UNUSED
654static void ___dma_freep(m_pool_s *mp, m_addr_t m)
655{
656 m_vtob_s **vbpp, *vbp;
657 int hc = VTOB_HASH_CODE(m);
658
659 vbpp = &mp->vtob[hc];
660 while (*vbpp && (*vbpp)->vaddr != m)
661 vbpp = &(*vbpp)->next;
662 if (*vbpp) {
663 vbp = *vbpp;
664 *vbpp = (*vbpp)->next;
665 bus_dmamap_unload(mp->dmat, vbp->dmamap);
666 bus_dmamem_free(mp->dmat, (void *) vbp->vaddr, vbp->dmamap);
667 bus_dmamap_destroy(mp->dmat, vbp->dmamap);
668 __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
669 --mp->nump;
670 }
671}
672#endif
673
674static __inline m_pool_s *___get_dma_pool(bus_dma_tag_t dev_dmat)
675{
676 m_pool_s *mp;
677 for (mp = mp0.next; mp && mp->dev_dmat != dev_dmat; mp = mp->next);
678 return mp;
679}
680
681static m_pool_s *___cre_dma_pool(bus_dma_tag_t dev_dmat)
682{
683 m_pool_s *mp = 0;
684
685 mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL");
686 if (mp) {
687 mp->dev_dmat = dev_dmat;
688 if (!bus_dma_tag_create(dev_dmat, 1, MEMO_CLUSTER_SIZE,
689 BUS_SPACE_MAXADDR_32BIT,
690 BUS_SPACE_MAXADDR_32BIT,
691 NULL, NULL, MEMO_CLUSTER_SIZE, 1,
692 MEMO_CLUSTER_SIZE, 0,
693 busdma_lock_mutex, &Giant, &mp->dmat)) {
694 mp->getp = ___dma_getp;
695#ifdef MEMO_FREE_UNUSED
696 mp->freep = ___dma_freep;
697#endif
698 mp->next = mp0.next;
699 mp0.next = mp;
700 return mp;
701 }
702 }
703 if (mp)
704 __sym_mfree(&mp0, mp, sizeof(*mp), "MPOOL");
705 return 0;
706}
707
708#ifdef MEMO_FREE_UNUSED
709static void ___del_dma_pool(m_pool_s *p)
710{
711 struct m_pool **pp = &mp0.next;
712
713 while (*pp && *pp != p)
714 pp = &(*pp)->next;
715 if (*pp) {
716 *pp = (*pp)->next;
717 bus_dma_tag_destroy(p->dmat);
718 __sym_mfree(&mp0, p, sizeof(*p), "MPOOL");
719 }
720}
721#endif
722
723static void *__sym_calloc_dma(bus_dma_tag_t dev_dmat, int size, char *name)
724{
725 struct m_pool *mp;
726 void *m = 0;
727
728 /* Lock */
729 mp = ___get_dma_pool(dev_dmat);
730 if (!mp)
731 mp = ___cre_dma_pool(dev_dmat);
732 if (mp)
733 m = __sym_calloc(mp, size, name);
734#ifdef MEMO_FREE_UNUSED
735 if (mp && !mp->nump)
736 ___del_dma_pool(mp);
737#endif
738 /* Unlock */
739
740 return m;
741}
742
743static void
744__sym_mfree_dma(bus_dma_tag_t dev_dmat, void *m, int size, char *name)
745{
746 struct m_pool *mp;
747
748 /* Lock */
749 mp = ___get_dma_pool(dev_dmat);
750 if (mp)
751 __sym_mfree(mp, m, size, name);
752#ifdef MEMO_FREE_UNUSED
753 if (mp && !mp->nump)
754 ___del_dma_pool(mp);
755#endif
756 /* Unlock */
757}
758
759static m_addr_t __vtobus(bus_dma_tag_t dev_dmat, void *m)
760{
761 m_pool_s *mp;
762 int hc = VTOB_HASH_CODE(m);
763 m_vtob_s *vp = 0;
764 m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK;
765
766 /* Lock */
767 mp = ___get_dma_pool(dev_dmat);
768 if (mp) {
769 vp = mp->vtob[hc];
770 while (vp && (m_addr_t) vp->vaddr != a)
771 vp = vp->next;
772 }
773 /* Unlock */
774 if (!vp)
775 panic("sym: VTOBUS FAILED!\n");
776 return vp ? vp->baddr + (((m_addr_t) m) - a) : 0;
777}
778
779
780/*
781 * Verbs for DMAable memory handling.
782 * The _uvptv_ macro avoids a nasty warning about pointer to volatile
783 * being discarded.
784 */
785#define _uvptv_(p) ((void *)((vm_offset_t)(p)))
786#define _sym_calloc_dma(np, s, n) __sym_calloc_dma(np->bus_dmat, s, n)
787#define _sym_mfree_dma(np, p, s, n) \
788 __sym_mfree_dma(np->bus_dmat, _uvptv_(p), s, n)
789#define sym_calloc_dma(s, n) _sym_calloc_dma(np, s, n)
790#define sym_mfree_dma(p, s, n) _sym_mfree_dma(np, p, s, n)
791#define _vtobus(np, p) __vtobus(np->bus_dmat, _uvptv_(p))
792#define vtobus(p) _vtobus(np, p)
793
794
795/*
796 * Print a buffer in hexadecimal format.
797 */
798static void sym_printb_hex (u_char *p, int n)
799{
800 while (n-- > 0)
801 printf (" %x", *p++);
802}
803
804/*
805 * Same with a label at beginning and .\n at end.
806 */
807static void sym_printl_hex (char *label, u_char *p, int n)
808{
809 printf ("%s", label);
810 sym_printb_hex (p, n);
811 printf (".\n");
812}
813
814/*
815 * Return a string for SCSI BUS mode.
816 */
817static char *sym_scsi_bus_mode(int mode)
818{
819 switch(mode) {
820 case SMODE_HVD: return "HVD";
821 case SMODE_SE: return "SE";
822 case SMODE_LVD: return "LVD";
823 }
824 return "??";
825}
826
827/*
828 * Some poor and bogus sync table that refers to Tekram NVRAM layout.
829 */
830#ifdef SYM_CONF_NVRAM_SUPPORT
831static u_char Tekram_sync[16] =
832 {25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10};
833#endif
834
835/*
836 * Union of supported NVRAM formats.
837 */
838struct sym_nvram {
839 int type;
840#define SYM_SYMBIOS_NVRAM (1)
841#define SYM_TEKRAM_NVRAM (2)
842#ifdef SYM_CONF_NVRAM_SUPPORT
843 union {
844 Symbios_nvram Symbios;
845 Tekram_nvram Tekram;
846 } data;
847#endif
848};
849
850/*
851 * This one is hopefully useless, but actually useful. :-)
852 */
853#ifndef assert
854#define assert(expression) { \
855 if (!(expression)) { \
856 (void)panic( \
857 "assertion \"%s\" failed: file \"%s\", line %d\n", \
858 #expression, \
859 __FILE__, __LINE__); \
860 } \
861}
862#endif
863
864/*
865 * Some provision for a possible big endian mode supported by
866 * Symbios chips (never seen, by the way).
867 * For now, this stuff does not deserve any comments. :)
868 */
869
870#define sym_offb(o) (o)
871#define sym_offw(o) (o)
872
873/*
874 * Some provision for support for BIG ENDIAN CPU.
875 */
876
877#define cpu_to_scr(dw) htole32(dw)
878#define scr_to_cpu(dw) le32toh(dw)
879
880/*
881 * Access to the chip IO registers and on-chip RAM.
882 * We use the `bus space' interface under FreeBSD-4 and
883 * later kernel versions.
884 */
885
886
887#if defined(SYM_CONF_IOMAPPED)
888
889#define INB_OFF(o) bus_space_read_1(np->io_tag, np->io_bsh, o)
890#define INW_OFF(o) bus_space_read_2(np->io_tag, np->io_bsh, o)
891#define INL_OFF(o) bus_space_read_4(np->io_tag, np->io_bsh, o)
892
893#define OUTB_OFF(o, v) bus_space_write_1(np->io_tag, np->io_bsh, o, (v))
894#define OUTW_OFF(o, v) bus_space_write_2(np->io_tag, np->io_bsh, o, (v))
895#define OUTL_OFF(o, v) bus_space_write_4(np->io_tag, np->io_bsh, o, (v))
896
897#else /* Memory mapped IO */
898
899#define INB_OFF(o) bus_space_read_1(np->mmio_tag, np->mmio_bsh, o)
900#define INW_OFF(o) bus_space_read_2(np->mmio_tag, np->mmio_bsh, o)
901#define INL_OFF(o) bus_space_read_4(np->mmio_tag, np->mmio_bsh, o)
902
903#define OUTB_OFF(o, v) bus_space_write_1(np->mmio_tag, np->mmio_bsh, o, (v))
904#define OUTW_OFF(o, v) bus_space_write_2(np->mmio_tag, np->mmio_bsh, o, (v))
905#define OUTL_OFF(o, v) bus_space_write_4(np->mmio_tag, np->mmio_bsh, o, (v))
906
907#endif /* SYM_CONF_IOMAPPED */
908
909#define OUTRAM_OFF(o, a, l) \
910 bus_space_write_region_1(np->ram_tag, np->ram_bsh, o, (a), (l))
911
912
913/*
914 * Common definitions for both bus space and legacy IO methods.
915 */
916#define INB(r) INB_OFF(offsetof(struct sym_reg,r))
917#define INW(r) INW_OFF(offsetof(struct sym_reg,r))
918#define INL(r) INL_OFF(offsetof(struct sym_reg,r))
919
920#define OUTB(r, v) OUTB_OFF(offsetof(struct sym_reg,r), (v))
921#define OUTW(r, v) OUTW_OFF(offsetof(struct sym_reg,r), (v))
922#define OUTL(r, v) OUTL_OFF(offsetof(struct sym_reg,r), (v))
923
924#define OUTONB(r, m) OUTB(r, INB(r) | (m))
925#define OUTOFFB(r, m) OUTB(r, INB(r) & ~(m))
926#define OUTONW(r, m) OUTW(r, INW(r) | (m))
927#define OUTOFFW(r, m) OUTW(r, INW(r) & ~(m))
928#define OUTONL(r, m) OUTL(r, INL(r) | (m))
929#define OUTOFFL(r, m) OUTL(r, INL(r) & ~(m))
930
931/*
932 * We normally want the chip to have a consistent view
933 * of driver internal data structures when we restart it.
934 * Thus these macros.
935 */
936#define OUTL_DSP(v) \
937 do { \
938 MEMORY_BARRIER(); \
939 OUTL (nc_dsp, (v)); \
940 } while (0)
941
942#define OUTONB_STD() \
943 do { \
944 MEMORY_BARRIER(); \
945 OUTONB (nc_dcntl, (STD|NOCOM)); \
946 } while (0)
947
948/*
949 * Command control block states.
950 */
951#define HS_IDLE (0)
952#define HS_BUSY (1)
953#define HS_NEGOTIATE (2) /* sync/wide data transfer*/
954#define HS_DISCONNECT (3) /* Disconnected by target */
955#define HS_WAIT (4) /* waiting for resource */
956
957#define HS_DONEMASK (0x80)
958#define HS_COMPLETE (4|HS_DONEMASK)
959#define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */
960#define HS_UNEXPECTED (6|HS_DONEMASK) /* Unexpected disconnect */
961#define HS_COMP_ERR (7|HS_DONEMASK) /* Completed with error */
962
963/*
964 * Software Interrupt Codes
965 */
966#define SIR_BAD_SCSI_STATUS (1)
967#define SIR_SEL_ATN_NO_MSG_OUT (2)
968#define SIR_MSG_RECEIVED (3)
969#define SIR_MSG_WEIRD (4)
970#define SIR_NEGO_FAILED (5)
971#define SIR_NEGO_PROTO (6)
972#define SIR_SCRIPT_STOPPED (7)
973#define SIR_REJECT_TO_SEND (8)
974#define SIR_SWIDE_OVERRUN (9)
975#define SIR_SODL_UNDERRUN (10)
976#define SIR_RESEL_NO_MSG_IN (11)
977#define SIR_RESEL_NO_IDENTIFY (12)
978#define SIR_RESEL_BAD_LUN (13)
979#define SIR_TARGET_SELECTED (14)
980#define SIR_RESEL_BAD_I_T_L (15)
981#define SIR_RESEL_BAD_I_T_L_Q (16)
982#define SIR_ABORT_SENT (17)
983#define SIR_RESEL_ABORTED (18)
984#define SIR_MSG_OUT_DONE (19)
985#define SIR_COMPLETE_ERROR (20)
986#define SIR_DATA_OVERRUN (21)
987#define SIR_BAD_PHASE (22)
988#define SIR_MAX (22)
989
990/*
991 * Extended error bit codes.
992 * xerr_status field of struct sym_ccb.
993 */
994#define XE_EXTRA_DATA (1) /* unexpected data phase */
995#define XE_BAD_PHASE (1<<1) /* illegal phase (4/5) */
996#define XE_PARITY_ERR (1<<2) /* unrecovered SCSI parity error */
997#define XE_SODL_UNRUN (1<<3) /* ODD transfer in DATA OUT phase */
998#define XE_SWIDE_OVRUN (1<<4) /* ODD transfer in DATA IN phase */
999
1000/*
1001 * Negotiation status.
1002 * nego_status field of struct sym_ccb.
1003 */
1004#define NS_SYNC (1)
1005#define NS_WIDE (2)
1006#define NS_PPR (3)
1007
1008/*
1009 * A CCB hashed table is used to retrieve CCB address
1010 * from DSA value.
1011 */
1012#define CCB_HASH_SHIFT 8
1013#define CCB_HASH_SIZE (1UL << CCB_HASH_SHIFT)
1014#define CCB_HASH_MASK (CCB_HASH_SIZE-1)
1015#define CCB_HASH_CODE(dsa) (((dsa) >> 9) & CCB_HASH_MASK)
1016
1017/*
1018 * Device flags.
1019 */
1020#define SYM_DISC_ENABLED (1)
1021#define SYM_TAGS_ENABLED (1<<1)
1022#define SYM_SCAN_BOOT_DISABLED (1<<2)
1023#define SYM_SCAN_LUNS_DISABLED (1<<3)
1024
1025/*
1026 * Host adapter miscellaneous flags.
1027 */
1028#define SYM_AVOID_BUS_RESET (1)
1029#define SYM_SCAN_TARGETS_HILO (1<<1)
1030
1031/*
1032 * Device quirks.
1033 * Some devices, for example the CHEETAH 2 LVD, disconnects without
1034 * saving the DATA POINTER then reselects and terminates the IO.
1035 * On reselection, the automatic RESTORE DATA POINTER makes the
1036 * CURRENT DATA POINTER not point at the end of the IO.
1037 * This behaviour just breaks our calculation of the residual.
1038 * For now, we just force an AUTO SAVE on disconnection and will
1039 * fix that in a further driver version.
1040 */
1041#define SYM_QUIRK_AUTOSAVE 1
1042
1043/*
1044 * Misc.
1045 */
1046#define SYM_SNOOP_TIMEOUT (10000000)
1047#define SYM_PCI_IO PCIR_BAR(0)
1048#define SYM_PCI_MMIO PCIR_BAR(1)
1049#define SYM_PCI_RAM PCIR_BAR(2)
1050#define SYM_PCI_RAM64 PCIR_BAR(3)
1051
1052/*
1053 * Back-pointer from the CAM CCB to our data structures.
1054 */
1055#define sym_hcb_ptr spriv_ptr0
1056/* #define sym_ccb_ptr spriv_ptr1 */
1057
1058/*
1059 * We mostly have to deal with pointers.
1060 * Thus these typedef's.
1061 */
1062typedef struct sym_tcb *tcb_p;
1063typedef struct sym_lcb *lcb_p;
1064typedef struct sym_ccb *ccb_p;
1065typedef struct sym_hcb *hcb_p;
1066
1067/*
1068 * Gather negotiable parameters value
1069 */
1070struct sym_trans {
1071 u8 scsi_version;
1072 u8 spi_version;
1073 u8 period;
1074 u8 offset;
1075 u8 width;
1076 u8 options; /* PPR options */
1077};
1078
1079struct sym_tinfo {
1080 struct sym_trans current;
1081 struct sym_trans goal;
1082 struct sym_trans user;
1083};
1084
1085#define BUS_8_BIT MSG_EXT_WDTR_BUS_8_BIT
1086#define BUS_16_BIT MSG_EXT_WDTR_BUS_16_BIT
1087
1088/*
1089 * Global TCB HEADER.
1090 *
1091 * Due to lack of indirect addressing on earlier NCR chips,
1092 * this substructure is copied from the TCB to a global
1093 * address after selection.
1094 * For SYMBIOS chips that support LOAD/STORE this copy is
1095 * not needed and thus not performed.
1096 */
1097struct sym_tcbh {
1098 /*
1099 * Scripts bus addresses of LUN table accessed from scripts.
1100 * LUN #0 is a special case, since multi-lun devices are rare,
1101 * and we we want to speed-up the general case and not waste
1102 * resources.
1103 */
1104 u32 luntbl_sa; /* bus address of this table */
1105 u32 lun0_sa; /* bus address of LCB #0 */
1106 /*
1107 * Actual SYNC/WIDE IO registers value for this target.
1108 * 'sval', 'wval' and 'uval' are read from SCRIPTS and
1109 * so have alignment constraints.
1110 */
1111/*0*/ u_char uval; /* -> SCNTL4 register */
1112/*1*/ u_char sval; /* -> SXFER io register */
1113/*2*/ u_char filler1;
1114/*3*/ u_char wval; /* -> SCNTL3 io register */
1115};
1116
1117/*
1118 * Target Control Block
1119 */
1120struct sym_tcb {
1121 /*
1122 * TCB header.
1123 * Assumed at offset 0.
1124 */
1125/*0*/ struct sym_tcbh head;
1126
1127 /*
1128 * LUN table used by the SCRIPTS processor.
1129 * An array of bus addresses is used on reselection.
1130 */
1131 u32 *luntbl; /* LCBs bus address table */
1132
1133 /*
1134 * LUN table used by the C code.
1135 */
1136 lcb_p lun0p; /* LCB of LUN #0 (usual case) */
1137#if SYM_CONF_MAX_LUN > 1
1138 lcb_p *lunmp; /* Other LCBs [1..MAX_LUN] */
1139#endif
1140
1141 /*
1142 * Bitmap that tells about LUNs that succeeded at least
1143 * 1 IO and therefore assumed to be a real device.
1144 * Avoid useless allocation of the LCB structure.
1145 */
1146 u32 lun_map[(SYM_CONF_MAX_LUN+31)/32];
1147
1148 /*
1149 * Bitmap that tells about LUNs that haven't yet an LCB
1150 * allocated (not discovered or LCB allocation failed).
1151 */
1152 u32 busy0_map[(SYM_CONF_MAX_LUN+31)/32];
1153
1154 /*
1155 * Transfer capabilities (SIP)
1156 */
1157 struct sym_tinfo tinfo;
1158
1159 /*
1160 * Keep track of the CCB used for the negotiation in order
1161 * to ensure that only 1 negotiation is queued at a time.
1162 */
1163 ccb_p nego_cp; /* CCB used for the nego */
1164
1165 /*
1166 * Set when we want to reset the device.
1167 */
1168 u_char to_reset;
1169
1170 /*
1171 * Other user settable limits and options.
1172 * These limits are read from the NVRAM if present.
1173 */
1174 u_char usrflags;
1175 u_short usrtags;
1176};
1177
1178/*
1179 * Global LCB HEADER.
1180 *
1181 * Due to lack of indirect addressing on earlier NCR chips,
1182 * this substructure is copied from the LCB to a global
1183 * address after selection.
1184 * For SYMBIOS chips that support LOAD/STORE this copy is
1185 * not needed and thus not performed.
1186 */
1187struct sym_lcbh {
1188 /*
1189 * SCRIPTS address jumped by SCRIPTS on reselection.
1190 * For not probed logical units, this address points to
1191 * SCRIPTS that deal with bad LU handling (must be at
1192 * offset zero of the LCB for that reason).
1193 */
1194/*0*/ u32 resel_sa;
1195
1196 /*
1197 * Task (bus address of a CCB) read from SCRIPTS that points
1198 * to the unique ITL nexus allowed to be disconnected.
1199 */
1200 u32 itl_task_sa;
1201
1202 /*
1203 * Task table bus address (read from SCRIPTS).
1204 */
1205 u32 itlq_tbl_sa;
1206};
1207
1208/*
1209 * Logical Unit Control Block
1210 */
1211struct sym_lcb {
1212 /*
1213 * TCB header.
1214 * Assumed at offset 0.
1215 */
1216/*0*/ struct sym_lcbh head;
1217
1218 /*
1219 * Task table read from SCRIPTS that contains pointers to
1220 * ITLQ nexuses. The bus address read from SCRIPTS is
1221 * inside the header.
1222 */
1223 u32 *itlq_tbl; /* Kernel virtual address */
1224
1225 /*
1226 * Busy CCBs management.
1227 */
1228 u_short busy_itlq; /* Number of busy tagged CCBs */
1229 u_short busy_itl; /* Number of busy untagged CCBs */
1230
1231 /*
1232 * Circular tag allocation buffer.
1233 */
1234 u_short ia_tag; /* Tag allocation index */
1235 u_short if_tag; /* Tag release index */
1236 u_char *cb_tags; /* Circular tags buffer */
1237
1238 /*
1239 * Set when we want to clear all tasks.
1240 */
1241 u_char to_clear;
1242
1243 /*
1244 * Capabilities.
1245 */
1246 u_char user_flags;
1247 u_char current_flags;
1248};
1249
1250/*
1251 * Action from SCRIPTS on a task.
1252 * Is part of the CCB, but is also used separately to plug
1253 * error handling action to perform from SCRIPTS.
1254 */
1255struct sym_actscr {
1256 u32 start; /* Jumped by SCRIPTS after selection */
1257 u32 restart; /* Jumped by SCRIPTS on relection */
1258};
1259
1260/*
1261 * Phase mismatch context.
1262 *
1263 * It is part of the CCB and is used as parameters for the
1264 * DATA pointer. We need two contexts to handle correctly the
1265 * SAVED DATA POINTER.
1266 */
1267struct sym_pmc {
1268 struct sym_tblmove sg; /* Updated interrupted SG block */
1269 u32 ret; /* SCRIPT return address */
1270};
1271
1272/*
1273 * LUN control block lookup.
1274 * We use a direct pointer for LUN #0, and a table of
1275 * pointers which is only allocated for devices that support
1276 * LUN(s) > 0.
1277 */
1278#if SYM_CONF_MAX_LUN <= 1
1279#define sym_lp(np, tp, lun) (!lun) ? (tp)->lun0p : 0
1280#else
1281#define sym_lp(np, tp, lun) \
1282 (!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0
1283#endif
1284
1285/*
1286 * Status are used by the host and the script processor.
1287 *
1288 * The last four bytes (status[4]) are copied to the
1289 * scratchb register (declared as scr0..scr3) just after the
1290 * select/reselect, and copied back just after disconnecting.
1291 * Inside the script the XX_REG are used.
1292 */
1293
1294/*
1295 * Last four bytes (script)
1296 */
1297#define QU_REG scr0
1298#define HS_REG scr1
1299#define HS_PRT nc_scr1
1300#define SS_REG scr2
1301#define SS_PRT nc_scr2
1302#define HF_REG scr3
1303#define HF_PRT nc_scr3
1304
1305/*
1306 * Last four bytes (host)
1307 */
1308#define actualquirks phys.head.status[0]
1309#define host_status phys.head.status[1]
1310#define ssss_status phys.head.status[2]
1311#define host_flags phys.head.status[3]
1312
1313/*
1314 * Host flags
1315 */
1316#define HF_IN_PM0 1u
1317#define HF_IN_PM1 (1u<<1)
1318#define HF_ACT_PM (1u<<2)
1319#define HF_DP_SAVED (1u<<3)
1320#define HF_SENSE (1u<<4)
1321#define HF_EXT_ERR (1u<<5)
1322#define HF_DATA_IN (1u<<6)
1323#ifdef SYM_CONF_IARB_SUPPORT
1324#define HF_HINT_IARB (1u<<7)
1325#endif
1326
1327/*
1328 * Global CCB HEADER.
1329 *
1330 * Due to lack of indirect addressing on earlier NCR chips,
1331 * this substructure is copied from the ccb to a global
1332 * address after selection (or reselection) and copied back
1333 * before disconnect.
1334 * For SYMBIOS chips that support LOAD/STORE this copy is
1335 * not needed and thus not performed.
1336 */
1337
1338struct sym_ccbh {
1339 /*
1340 * Start and restart SCRIPTS addresses (must be at 0).
1341 */
1342/*0*/ struct sym_actscr go;
1343
1344 /*
1345 * SCRIPTS jump address that deal with data pointers.
1346 * 'savep' points to the position in the script responsible
1347 * for the actual transfer of data.
1348 * It's written on reception of a SAVE_DATA_POINTER message.
1349 */
1350 u32 savep; /* Jump address to saved data pointer */
1351 u32 lastp; /* SCRIPTS address at end of data */
1352 u32 goalp; /* Not accessed for now from SCRIPTS */
1353
1354 /*
1355 * Status fields.
1356 */
1357 u8 status[4];
1358};
1359
1360/*
1361 * Data Structure Block
1362 *
1363 * During execution of a ccb by the script processor, the
1364 * DSA (data structure address) register points to this
1365 * substructure of the ccb.
1366 */
1367struct sym_dsb {
1368 /*
1369 * CCB header.
1370 * Also assumed at offset 0 of the sym_ccb structure.
1371 */
1372/*0*/ struct sym_ccbh head;
1373
1374 /*
1375 * Phase mismatch contexts.
1376 * We need two to handle correctly the SAVED DATA POINTER.
1377 * MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic
1378 * for address calculation from SCRIPTS.
1379 */
1380 struct sym_pmc pm0;
1381 struct sym_pmc pm1;
1382
1383 /*
1384 * Table data for Script
1385 */
1386 struct sym_tblsel select;
1387 struct sym_tblmove smsg;
1388 struct sym_tblmove smsg_ext;
1389 struct sym_tblmove cmd;
1390 struct sym_tblmove sense;
1391 struct sym_tblmove wresid;
1392 struct sym_tblmove data [SYM_CONF_MAX_SG];
1393};
1394
1395/*
1396 * Our Command Control Block
1397 */
1398struct sym_ccb {
1399 /*
1400 * This is the data structure which is pointed by the DSA
1401 * register when it is executed by the script processor.
1402 * It must be the first entry.
1403 */
1404 struct sym_dsb phys;
1405
1406 /*
1407 * Pointer to CAM ccb and related stuff.
1408 */
1409 union ccb *cam_ccb; /* CAM scsiio ccb */
1410 u8 cdb_buf[16]; /* Copy of CDB */
1411 u8 *sns_bbuf; /* Bounce buffer for sense data */
1412#define SYM_SNS_BBUF_LEN sizeof(struct scsi_sense_data)
1413 int data_len; /* Total data length */
1414 int segments; /* Number of SG segments */
1415
1416 /*
1417 * Miscellaneous status'.
1418 */
1419 u_char nego_status; /* Negotiation status */
1420 u_char xerr_status; /* Extended error flags */
1421 u32 extra_bytes; /* Extraneous bytes transferred */
1422
1423 /*
1424 * Message areas.
1425 * We prepare a message to be sent after selection.
1426 * We may use a second one if the command is rescheduled
1427 * due to CHECK_CONDITION or COMMAND TERMINATED.
1428 * Contents are IDENTIFY and SIMPLE_TAG.
1429 * While negotiating sync or wide transfer,
1430 * a SDTR or WDTR message is appended.
1431 */
1432 u_char scsi_smsg [12];
1433 u_char scsi_smsg2[12];
1434
1435 /*
1436 * Auto request sense related fields.
1437 */
1438 u_char sensecmd[6]; /* Request Sense command */
1439 u_char sv_scsi_status; /* Saved SCSI status */
1440 u_char sv_xerr_status; /* Saved extended status */
1441 int sv_resid; /* Saved residual */
1442
1443 /*
1444 * Map for the DMA of user data.
1445 */
1446 void *arg; /* Argument for some callback */
1447 bus_dmamap_t dmamap; /* DMA map for user data */
1448 u_char dmamapped;
1449#define SYM_DMA_NONE 0
1450#define SYM_DMA_READ 1
1451#define SYM_DMA_WRITE 2
1452 /*
1453 * Other fields.
1454 */
1455 u32 ccb_ba; /* BUS address of this CCB */
1456 u_short tag; /* Tag for this transfer */
1457 /* NO_TAG means no tag */
1458 u_char target;
1459 u_char lun;
1460 ccb_p link_ccbh; /* Host adapter CCB hash chain */
1461 SYM_QUEHEAD
1462 link_ccbq; /* Link to free/busy CCB queue */
1463 u32 startp; /* Initial data pointer */
1464 int ext_sg; /* Extreme data pointer, used */
1465 int ext_ofs; /* to calculate the residual. */
1466 u_char to_abort; /* Want this IO to be aborted */
1467};
1468
1469#define CCB_BA(cp,lbl) (cp->ccb_ba + offsetof(struct sym_ccb, lbl))
1470
1471/*
1472 * Host Control Block
1473 */
1474struct sym_hcb {
1475 /*
1476 * Global headers.
1477 * Due to poorness of addressing capabilities, earlier
1478 * chips (810, 815, 825) copy part of the data structures
1479 * (CCB, TCB and LCB) in fixed areas.
1480 */
1481#ifdef SYM_CONF_GENERIC_SUPPORT
1482 struct sym_ccbh ccb_head;
1483 struct sym_tcbh tcb_head;
1484 struct sym_lcbh lcb_head;
1485#endif
1486 /*
1487 * Idle task and invalid task actions and
1488 * their bus addresses.
1489 */
1490 struct sym_actscr idletask, notask, bad_itl, bad_itlq;
1491 vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba;
1492
1493 /*
1494 * Dummy lun table to protect us against target
1495 * returning bad lun number on reselection.
1496 */
1497 u32 *badluntbl; /* Table physical address */
1498 u32 badlun_sa; /* SCRIPT handler BUS address */
1499
1500 /*
1501 * Bus address of this host control block.
1502 */
1503 u32 hcb_ba;
1504
1505 /*
1506 * Bit 32-63 of the on-chip RAM bus address in LE format.
1507 * The START_RAM64 script loads the MMRS and MMWS from this
1508 * field.
1509 */
1510 u32 scr_ram_seg;
1511
1512 /*
1513 * Chip and controller indentification.
1514 */
1515 device_t device;
1516 int unit;
1517 char inst_name[8];
1518
1519 /*
1520 * Initial value of some IO register bits.
1521 * These values are assumed to have been set by BIOS, and may
1522 * be used to probe adapter implementation differences.
1523 */
1524 u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4,
1525 sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4,
1526 sv_stest1;
1527
1528 /*
1529 * Actual initial value of IO register bits used by the
1530 * driver. They are loaded at initialisation according to
1531 * features that are to be enabled/disabled.
1532 */
1533 u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4,
1534 rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4;
1535
1536 /*
1537 * Target data.
1538 */
1539 struct sym_tcb target[SYM_CONF_MAX_TARGET];
1540
1541 /*
1542 * Target control block bus address array used by the SCRIPT
1543 * on reselection.
1544 */
1545 u32 *targtbl;
1546 u32 targtbl_ba;
1547
1548 /*
1549 * CAM SIM information for this instance.
1550 */
1551 struct cam_sim *sim;
1552 struct cam_path *path;
1553
1554 /*
1555 * Allocated hardware resources.
1556 */
1557 struct resource *irq_res;
1558 struct resource *io_res;
1559 struct resource *mmio_res;
1560 struct resource *ram_res;
1561 int ram_id;
1562 void *intr;
1563
1564 /*
1565 * Bus stuff.
1566 *
1567 * My understanding of PCI is that all agents must share the
1568 * same addressing range and model.
1569 * But some hardware architecture guys provide complex and
1570 * brain-deaded stuff that makes shit.
1571 * This driver only support PCI compliant implementations and
1572 * deals with part of the BUS stuff complexity only to fit O/S
1573 * requirements.
1574 */
1575 bus_space_handle_t io_bsh;
1576 bus_space_tag_t io_tag;
1577 bus_space_handle_t mmio_bsh;
1578 bus_space_tag_t mmio_tag;
1579 bus_space_handle_t ram_bsh;
1580 bus_space_tag_t ram_tag;
1581
1582 /*
1583 * DMA stuff.
1584 */
1585 bus_dma_tag_t bus_dmat; /* DMA tag from parent BUS */
1586 bus_dma_tag_t data_dmat; /* DMA tag for user data */
1587 /*
1588 * Virtual and physical bus addresses of the chip.
1589 */
1590 vm_offset_t mmio_va; /* MMIO kernel virtual address */
1591 vm_offset_t mmio_pa; /* MMIO CPU physical address */
1592 vm_offset_t mmio_ba; /* MMIO BUS address */
1593 int mmio_ws; /* MMIO Window size */
1594
1595 vm_offset_t ram_va; /* RAM kernel virtual address */
1596 vm_offset_t ram_pa; /* RAM CPU physical address */
1597 vm_offset_t ram_ba; /* RAM BUS address */
1598 int ram_ws; /* RAM window size */
1599 u32 io_port; /* IO port address */
1600
1601 /*
1602 * SCRIPTS virtual and physical bus addresses.
1603 * 'script' is loaded in the on-chip RAM if present.
1604 * 'scripth' stays in main memory for all chips except the
1605 * 53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM.
1606 */
1607 u_char *scripta0; /* Copies of script and scripth */
1608 u_char *scriptb0; /* Copies of script and scripth */
1609 vm_offset_t scripta_ba; /* Actual script and scripth */
1610 vm_offset_t scriptb_ba; /* bus addresses. */
1611 vm_offset_t scriptb0_ba;
1612 u_short scripta_sz; /* Actual size of script A */
1613 u_short scriptb_sz; /* Actual size of script B */
1614
1615 /*
1616 * Bus addresses, setup and patch methods for
1617 * the selected firmware.
1618 */
1619 struct sym_fwa_ba fwa_bas; /* Useful SCRIPTA bus addresses */
1620 struct sym_fwb_ba fwb_bas; /* Useful SCRIPTB bus addresses */
1621 void (*fw_setup)(hcb_p np, struct sym_fw *fw);
1622 void (*fw_patch)(hcb_p np);
1623 char *fw_name;
1624
1625 /*
1626 * General controller parameters and configuration.
1627 */
1628 u_short device_id; /* PCI device id */
1629 u_char revision_id; /* PCI device revision id */
1630 u_int features; /* Chip features map */
1631 u_char myaddr; /* SCSI id of the adapter */
1632 u_char maxburst; /* log base 2 of dwords burst */
1633 u_char maxwide; /* Maximum transfer width */
1634 u_char minsync; /* Min sync period factor (ST) */
1635 u_char maxsync; /* Max sync period factor (ST) */
1636 u_char maxoffs; /* Max scsi offset (ST) */
1637 u_char minsync_dt; /* Min sync period factor (DT) */
1638 u_char maxsync_dt; /* Max sync period factor (DT) */
1639 u_char maxoffs_dt; /* Max scsi offset (DT) */
1640 u_char multiplier; /* Clock multiplier (1,2,4) */
1641 u_char clock_divn; /* Number of clock divisors */
1642 u32 clock_khz; /* SCSI clock frequency in KHz */
1643 u32 pciclk_khz; /* Estimated PCI clock in KHz */
1644 /*
1645 * Start queue management.
1646 * It is filled up by the host processor and accessed by the
1647 * SCRIPTS processor in order to start SCSI commands.
1648 */
1649 volatile /* Prevent code optimizations */
1650 u32 *squeue; /* Start queue virtual address */
1651 u32 squeue_ba; /* Start queue BUS address */
1652 u_short squeueput; /* Next free slot of the queue */
1653 u_short actccbs; /* Number of allocated CCBs */
1654
1655 /*
1656 * Command completion queue.
1657 * It is the same size as the start queue to avoid overflow.
1658 */
1659 u_short dqueueget; /* Next position to scan */
1660 volatile /* Prevent code optimizations */
1661 u32 *dqueue; /* Completion (done) queue */
1662 u32 dqueue_ba; /* Done queue BUS address */
1663
1664 /*
1665 * Miscellaneous buffers accessed by the scripts-processor.
1666 * They shall be DWORD aligned, because they may be read or
1667 * written with a script command.
1668 */
1669 u_char msgout[8]; /* Buffer for MESSAGE OUT */
1670 u_char msgin [8]; /* Buffer for MESSAGE IN */
1671 u32 lastmsg; /* Last SCSI message sent */
1672 u_char scratch; /* Scratch for SCSI receive */
1673
1674 /*
1675 * Miscellaneous configuration and status parameters.
1676 */
1677 u_char usrflags; /* Miscellaneous user flags */
1678 u_char scsi_mode; /* Current SCSI BUS mode */
1679 u_char verbose; /* Verbosity for this controller*/
1680 u32 cache; /* Used for cache test at init. */
1681
1682 /*
1683 * CCB lists and queue.
1684 */
1685 ccb_p ccbh[CCB_HASH_SIZE]; /* CCB hashed by DSA value */
1686 SYM_QUEHEAD free_ccbq; /* Queue of available CCBs */
1687 SYM_QUEHEAD busy_ccbq; /* Queue of busy CCBs */
1688
1689 /*
1690 * During error handling and/or recovery,
1691 * active CCBs that are to be completed with
1692 * error or requeued are moved from the busy_ccbq
1693 * to the comp_ccbq prior to completion.
1694 */
1695 SYM_QUEHEAD comp_ccbq;
1696
1697 /*
1698 * CAM CCB pending queue.
1699 */
1700 SYM_QUEHEAD cam_ccbq;
1701
1702 /*
1703 * IMMEDIATE ARBITRATION (IARB) control.
1704 *
1705 * We keep track in 'last_cp' of the last CCB that has been
1706 * queued to the SCRIPTS processor and clear 'last_cp' when
1707 * this CCB completes. If last_cp is not zero at the moment
1708 * we queue a new CCB, we set a flag in 'last_cp' that is
1709 * used by the SCRIPTS as a hint for setting IARB.
1710 * We donnot set more than 'iarb_max' consecutive hints for
1711 * IARB in order to leave devices a chance to reselect.
1712 * By the way, any non zero value of 'iarb_max' is unfair. :)
1713 */
1714#ifdef SYM_CONF_IARB_SUPPORT
1715 u_short iarb_max; /* Max. # consecutive IARB hints*/
1716 u_short iarb_count; /* Actual # of these hints */
1717 ccb_p last_cp;
1718#endif
1719
1720 /*
1721 * Command abort handling.
1722 * We need to synchronize tightly with the SCRIPTS
1723 * processor in order to handle things correctly.
1724 */
1725 u_char abrt_msg[4]; /* Message to send buffer */
1726 struct sym_tblmove abrt_tbl; /* Table for the MOV of it */
1727 struct sym_tblsel abrt_sel; /* Sync params for selection */
1728 u_char istat_sem; /* Tells the chip to stop (SEM) */
1729};
1730
1731#define HCB_BA(np, lbl) (np->hcb_ba + offsetof(struct sym_hcb, lbl))
1732
1733/*
1734 * Return the name of the controller.
1735 */
1736static __inline char *sym_name(hcb_p np)
1737{
1738 return np->inst_name;
1739}
1740
1741/*--------------------------------------------------------------------------*/
1742/*------------------------------ FIRMWARES ---------------------------------*/
1743/*--------------------------------------------------------------------------*/
1744
1745/*
1746 * This stuff will be moved to a separate source file when
1747 * the driver will be broken into several source modules.
1748 */
1749
1750/*
1751 * Macros used for all firmwares.
1752 */
1753#define SYM_GEN_A(s, label) ((short) offsetof(s, label)),
1754#define SYM_GEN_B(s, label) ((short) offsetof(s, label)),
1755#define PADDR_A(label) SYM_GEN_PADDR_A(struct SYM_FWA_SCR, label)
1756#define PADDR_B(label) SYM_GEN_PADDR_B(struct SYM_FWB_SCR, label)
1757
1758
1759#ifdef SYM_CONF_GENERIC_SUPPORT
1760/*
1761 * Allocate firmware #1 script area.
1762 */
1763#define SYM_FWA_SCR sym_fw1a_scr
1764#define SYM_FWB_SCR sym_fw1b_scr
1765#include <dev/sym/sym_fw1.h>
1766struct sym_fwa_ofs sym_fw1a_ofs = {
1767 SYM_GEN_FW_A(struct SYM_FWA_SCR)
1768};
1769struct sym_fwb_ofs sym_fw1b_ofs = {
1770 SYM_GEN_FW_B(struct SYM_FWB_SCR)
1771};
1772#undef SYM_FWA_SCR
1773#undef SYM_FWB_SCR
1774#endif /* SYM_CONF_GENERIC_SUPPORT */
1775
1776/*
1777 * Allocate firmware #2 script area.
1778 */
1779#define SYM_FWA_SCR sym_fw2a_scr
1780#define SYM_FWB_SCR sym_fw2b_scr
1781#include <dev/sym/sym_fw2.h>
1782struct sym_fwa_ofs sym_fw2a_ofs = {
1783 SYM_GEN_FW_A(struct SYM_FWA_SCR)
1784};
1785struct sym_fwb_ofs sym_fw2b_ofs = {
1786 SYM_GEN_FW_B(struct SYM_FWB_SCR)
1787 SYM_GEN_B(struct SYM_FWB_SCR, start64)
1788 SYM_GEN_B(struct SYM_FWB_SCR, pm_handle)
1789};
1790#undef SYM_FWA_SCR
1791#undef SYM_FWB_SCR
1792
1793#undef SYM_GEN_A
1794#undef SYM_GEN_B
1795#undef PADDR_A
1796#undef PADDR_B
1797
1798#ifdef SYM_CONF_GENERIC_SUPPORT
1799/*
1800 * Patch routine for firmware #1.
1801 */
1802static void
1803sym_fw1_patch(hcb_p np)
1804{
1805 struct sym_fw1a_scr *scripta0;
1806 struct sym_fw1b_scr *scriptb0;
1807
1808 scripta0 = (struct sym_fw1a_scr *) np->scripta0;
1809 scriptb0 = (struct sym_fw1b_scr *) np->scriptb0;
1810
1811 /*
1812 * Remove LED support if not needed.
1813 */
1814 if (!(np->features & FE_LED0)) {
1815 scripta0->idle[0] = cpu_to_scr(SCR_NO_OP);
1816 scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP);
1817 scripta0->start[0] = cpu_to_scr(SCR_NO_OP);
1818 }
1819
1820#ifdef SYM_CONF_IARB_SUPPORT
1821 /*
1822 * If user does not want to use IMMEDIATE ARBITRATION
1823 * when we are reselected while attempting to arbitrate,
1824 * patch the SCRIPTS accordingly with a SCRIPT NO_OP.
1825 */
1826 if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
1827 scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
1828#endif
1829 /*
1830 * Patch some data in SCRIPTS.
1831 * - start and done queue initial bus address.
1832 * - target bus address table bus address.
1833 */
1834 scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba);
1835 scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba);
1836 scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba);
1837}
1838#endif /* SYM_CONF_GENERIC_SUPPORT */
1839
1840/*
1841 * Patch routine for firmware #2.
1842 */
1843static void
1844sym_fw2_patch(hcb_p np)
1845{
1846 struct sym_fw2a_scr *scripta0;
1847 struct sym_fw2b_scr *scriptb0;
1848
1849 scripta0 = (struct sym_fw2a_scr *) np->scripta0;
1850 scriptb0 = (struct sym_fw2b_scr *) np->scriptb0;
1851
1852 /*
1853 * Remove LED support if not needed.
1854 */
1855 if (!(np->features & FE_LED0)) {
1856 scripta0->idle[0] = cpu_to_scr(SCR_NO_OP);
1857 scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP);
1858 scripta0->start[0] = cpu_to_scr(SCR_NO_OP);
1859 }
1860
1861#ifdef SYM_CONF_IARB_SUPPORT
1862 /*
1863 * If user does not want to use IMMEDIATE ARBITRATION
1864 * when we are reselected while attempting to arbitrate,
1865 * patch the SCRIPTS accordingly with a SCRIPT NO_OP.
1866 */
1867 if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
1868 scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
1869#endif
1870 /*
1871 * Patch some variable in SCRIPTS.
1872 * - start and done queue initial bus address.
1873 * - target bus address table bus address.
1874 */
1875 scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba);
1876 scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba);
1877 scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba);
1878
1879 /*
1880 * Remove the load of SCNTL4 on reselection if not a C10.
1881 */
1882 if (!(np->features & FE_C10)) {
1883 scripta0->resel_scntl4[0] = cpu_to_scr(SCR_NO_OP);
1884 scripta0->resel_scntl4[1] = cpu_to_scr(0);
1885 }
1886
1887 /*
1888 * Remove a couple of work-arounds specific to C1010 if
1889 * they are not desirable. See `sym_fw2.h' for more details.
1890 */
1891 if (!(np->device_id == PCI_ID_LSI53C1010_2 &&
1892 np->revision_id < 0x1 &&
1893 np->pciclk_khz < 60000)) {
1894 scripta0->datao_phase[0] = cpu_to_scr(SCR_NO_OP);
1895 scripta0->datao_phase[1] = cpu_to_scr(0);
1896 }
1897 if (!(np->device_id == PCI_ID_LSI53C1010 &&
1898 /* np->revision_id < 0xff */ 1)) {
1899 scripta0->sel_done[0] = cpu_to_scr(SCR_NO_OP);
1900 scripta0->sel_done[1] = cpu_to_scr(0);
1901 }
1902
1903 /*
1904 * Patch some other variables in SCRIPTS.
1905 * These ones are loaded by the SCRIPTS processor.
1906 */
1907 scriptb0->pm0_data_addr[0] =
1908 cpu_to_scr(np->scripta_ba +
1909 offsetof(struct sym_fw2a_scr, pm0_data));
1910 scriptb0->pm1_data_addr[0] =
1911 cpu_to_scr(np->scripta_ba +
1912 offsetof(struct sym_fw2a_scr, pm1_data));
1913}
1914
1915/*
1916 * Fill the data area in scripts.
1917 * To be done for all firmwares.
1918 */
1919static void
1920sym_fw_fill_data (u32 *in, u32 *out)
1921{
1922 int i;
1923
1924 for (i = 0; i < SYM_CONF_MAX_SG; i++) {
1925 *in++ = SCR_CHMOV_TBL ^ SCR_DATA_IN;
1926 *in++ = offsetof (struct sym_dsb, data[i]);
1927 *out++ = SCR_CHMOV_TBL ^ SCR_DATA_OUT;
1928 *out++ = offsetof (struct sym_dsb, data[i]);
1929 }
1930}
1931
1932/*
1933 * Setup useful script bus addresses.
1934 * To be done for all firmwares.
1935 */
1936static void
1937sym_fw_setup_bus_addresses(hcb_p np, struct sym_fw *fw)
1938{
1939 u32 *pa;
1940 u_short *po;
1941 int i;
1942
1943 /*
1944 * Build the bus address table for script A
1945 * from the script A offset table.
1946 */
1947 po = (u_short *) fw->a_ofs;
1948 pa = (u32 *) &np->fwa_bas;
1949 for (i = 0 ; i < sizeof(np->fwa_bas)/sizeof(u32) ; i++)
1950 pa[i] = np->scripta_ba + po[i];
1951
1952 /*
1953 * Same for script B.
1954 */
1955 po = (u_short *) fw->b_ofs;
1956 pa = (u32 *) &np->fwb_bas;
1957 for (i = 0 ; i < sizeof(np->fwb_bas)/sizeof(u32) ; i++)
1958 pa[i] = np->scriptb_ba + po[i];
1959}
1960
1961#ifdef SYM_CONF_GENERIC_SUPPORT
1962/*
1963 * Setup routine for firmware #1.
1964 */
1965static void
1966sym_fw1_setup(hcb_p np, struct sym_fw *fw)
1967{
1968 struct sym_fw1a_scr *scripta0;
1969 struct sym_fw1b_scr *scriptb0;
1970
1971 scripta0 = (struct sym_fw1a_scr *) np->scripta0;
1972 scriptb0 = (struct sym_fw1b_scr *) np->scriptb0;
1973
1974 /*
1975 * Fill variable parts in scripts.
1976 */
1977 sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
1978
1979 /*
1980 * Setup bus addresses used from the C code..
1981 */
1982 sym_fw_setup_bus_addresses(np, fw);
1983}
1984#endif /* SYM_CONF_GENERIC_SUPPORT */
1985
1986/*
1987 * Setup routine for firmware #2.
1988 */
1989static void
1990sym_fw2_setup(hcb_p np, struct sym_fw *fw)
1991{
1992 struct sym_fw2a_scr *scripta0;
1993 struct sym_fw2b_scr *scriptb0;
1994
1995 scripta0 = (struct sym_fw2a_scr *) np->scripta0;
1996 scriptb0 = (struct sym_fw2b_scr *) np->scriptb0;
1997
1998 /*
1999 * Fill variable parts in scripts.
2000 */
2001 sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
2002
2003 /*
2004 * Setup bus addresses used from the C code..
2005 */
2006 sym_fw_setup_bus_addresses(np, fw);
2007}
2008
2009/*
2010 * Allocate firmware descriptors.
2011 */
2012#ifdef SYM_CONF_GENERIC_SUPPORT
2013static struct sym_fw sym_fw1 = SYM_FW_ENTRY(sym_fw1, "NCR-generic");
2014#endif /* SYM_CONF_GENERIC_SUPPORT */
2015static struct sym_fw sym_fw2 = SYM_FW_ENTRY(sym_fw2, "LOAD/STORE-based");
2016
2017/*
2018 * Find the most appropriate firmware for a chip.
2019 */
2020static struct sym_fw *
2021sym_find_firmware(struct sym_pci_chip *chip)
2022{
2023 if (chip->features & FE_LDSTR)
2024 return &sym_fw2;
2025#ifdef SYM_CONF_GENERIC_SUPPORT
2026 else if (!(chip->features & (FE_PFEN|FE_NOPM|FE_DAC)))
2027 return &sym_fw1;
2028#endif
2029 else
2030 return 0;
2031}
2032
2033/*
2034 * Bind a script to physical addresses.
2035 */
2036static void sym_fw_bind_script (hcb_p np, u32 *start, int len)
2037{
2038 u32 opcode, new, old, tmp1, tmp2;
2039 u32 *end, *cur;
2040 int relocs;
2041
2042 cur = start;
2043 end = start + len/4;
2044
2045 while (cur < end) {
2046
2047 opcode = *cur;
2048
2049 /*
2050 * If we forget to change the length
2051 * in scripts, a field will be
2052 * padded with 0. This is an illegal
2053 * command.
2054 */
2055 if (opcode == 0) {
2056 printf ("%s: ERROR0 IN SCRIPT at %d.\n",
2057 sym_name(np), (int) (cur-start));
2058 MDELAY (10000);
2059 ++cur;
2060 continue;
2061 };
2062
2063 /*
2064 * We use the bogus value 0xf00ff00f ;-)
2065 * to reserve data area in SCRIPTS.
2066 */
2067 if (opcode == SCR_DATA_ZERO) {
2068 *cur++ = 0;
2069 continue;
2070 }
2071
2072 if (DEBUG_FLAGS & DEBUG_SCRIPT)
2073 printf ("%d: <%x>\n", (int) (cur-start),
2074 (unsigned)opcode);
2075
2076 /*
2077 * We don't have to decode ALL commands
2078 */
2079 switch (opcode >> 28) {
2080 case 0xf:
2081 /*
2082 * LOAD / STORE DSA relative, don't relocate.
2083 */
2084 relocs = 0;
2085 break;
2086 case 0xe:
2087 /*
2088 * LOAD / STORE absolute.
2089 */
2090 relocs = 1;
2091 break;
2092 case 0xc:
2093 /*
2094 * COPY has TWO arguments.
2095 */
2096 relocs = 2;
2097 tmp1 = cur[1];
2098 tmp2 = cur[2];
2099 if ((tmp1 ^ tmp2) & 3) {
2100 printf ("%s: ERROR1 IN SCRIPT at %d.\n",
2101 sym_name(np), (int) (cur-start));
2102 MDELAY (10000);
2103 }
2104 /*
2105 * If PREFETCH feature not enabled, remove
2106 * the NO FLUSH bit if present.
2107 */
2108 if ((opcode & SCR_NO_FLUSH) &&
2109 !(np->features & FE_PFEN)) {
2110 opcode = (opcode & ~SCR_NO_FLUSH);
2111 }
2112 break;
2113 case 0x0:
2114 /*
2115 * MOVE/CHMOV (absolute address)
2116 */
2117 if (!(np->features & FE_WIDE))
2118 opcode = (opcode | OPC_MOVE);
2119 relocs = 1;
2120 break;
2121 case 0x1:
2122 /*
2123 * MOVE/CHMOV (table indirect)
2124 */
2125 if (!(np->features & FE_WIDE))
2126 opcode = (opcode | OPC_MOVE);
2127 relocs = 0;
2128 break;
2129 case 0x8:
2130 /*
2131 * JUMP / CALL
2132 * dont't relocate if relative :-)
2133 */
2134 if (opcode & 0x00800000)
2135 relocs = 0;
2136 else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/
2137 relocs = 2;
2138 else
2139 relocs = 1;
2140 break;
2141 case 0x4:
2142 case 0x5:
2143 case 0x6:
2144 case 0x7:
2145 relocs = 1;
2146 break;
2147 default:
2148 relocs = 0;
2149 break;
2150 };
2151
2152 /*
2153 * Scriptify:) the opcode.
2154 */
2155 *cur++ = cpu_to_scr(opcode);
2156
2157 /*
2158 * If no relocation, assume 1 argument
2159 * and just scriptize:) it.
2160 */
2161 if (!relocs) {
2162 *cur = cpu_to_scr(*cur);
2163 ++cur;
2164 continue;
2165 }
2166
2167 /*
2168 * Otherwise performs all needed relocations.
2169 */
2170 while (relocs--) {
2171 old = *cur;
2172
2173 switch (old & RELOC_MASK) {
2174 case RELOC_REGISTER:
2175 new = (old & ~RELOC_MASK) + np->mmio_ba;
2176 break;
2177 case RELOC_LABEL_A:
2178 new = (old & ~RELOC_MASK) + np->scripta_ba;
2179 break;
2180 case RELOC_LABEL_B:
2181 new = (old & ~RELOC_MASK) + np->scriptb_ba;
2182 break;
2183 case RELOC_SOFTC:
2184 new = (old & ~RELOC_MASK) + np->hcb_ba;
2185 break;
2186 case 0:
2187 /*
2188 * Don't relocate a 0 address.
2189 * They are mostly used for patched or
2190 * script self-modified areas.
2191 */
2192 if (old == 0) {
2193 new = old;
2194 break;
2195 }
2196 /* fall through */
2197 default:
2198 new = 0;
2199 panic("sym_fw_bind_script: "
2200 "weird relocation %x\n", old);
2201 break;
2202 }
2203
2204 *cur++ = cpu_to_scr(new);
2205 }
2206 };
2207}
2208
2209/*---------------------------------------------------------------------------*/
2210/*--------------------------- END OF FIRMWARES -----------------------------*/
2211/*---------------------------------------------------------------------------*/
2212
2213/*
2214 * Function prototypes.
2215 */
2216static void sym_save_initial_setting (hcb_p np);
2217static int sym_prepare_setting (hcb_p np, struct sym_nvram *nvram);
2218static int sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr);
2219static void sym_put_start_queue (hcb_p np, ccb_p cp);
2220static void sym_chip_reset (hcb_p np);
2221static void sym_soft_reset (hcb_p np);
2222static void sym_start_reset (hcb_p np);
2223static int sym_reset_scsi_bus (hcb_p np, int enab_int);
2224static int sym_wakeup_done (hcb_p np);
2225static void sym_flush_busy_queue (hcb_p np, int cam_status);
2226static void sym_flush_comp_queue (hcb_p np, int cam_status);
2227static void sym_init (hcb_p np, int reason);
2228static int sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp,
2229 u_char *fakp);
2230static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per,
2231 u_char div, u_char fak);
2232static void sym_setwide (hcb_p np, ccb_p cp, u_char wide);
2233static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
2234 u_char per, u_char wide, u_char div, u_char fak);
2235static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
2236 u_char per, u_char wide, u_char div, u_char fak);
2237static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat);
2238static void sym_intr (void *arg);
2239static void sym_poll (struct cam_sim *sim);
2240static void sym_recover_scsi_int (hcb_p np, u_char hsts);
2241static void sym_int_sto (hcb_p np);
2242static void sym_int_udc (hcb_p np);
2243static void sym_int_sbmc (hcb_p np);
2244static void sym_int_par (hcb_p np, u_short sist);
2245static void sym_int_ma (hcb_p np);
2246static int sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun,
2247 int task);
2248static void sym_sir_bad_scsi_status (hcb_p np, int num, ccb_p cp);
2249static int sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task);
2250static void sym_sir_task_recovery (hcb_p np, int num);
2251static int sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs);
2252static void sym_modify_dp (hcb_p np, tcb_p tp, ccb_p cp, int ofs);
2253static int sym_compute_residual (hcb_p np, ccb_p cp);
2254static int sym_show_msg (u_char * msg);
2255static void sym_print_msg (ccb_p cp, char *label, u_char *msg);
2256static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp);
2257static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp);
2258static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp);
2259static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp);
2260static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp);
2261static void sym_int_sir (hcb_p np);
2262static void sym_free_ccb (hcb_p np, ccb_p cp);
2263static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order);
2264static ccb_p sym_alloc_ccb (hcb_p np);
2265static ccb_p sym_ccb_from_dsa (hcb_p np, u32 dsa);
2266static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln);
2267static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln);
2268static int sym_snooptest (hcb_p np);
2269static void sym_selectclock(hcb_p np, u_char scntl3);
2270static void sym_getclock (hcb_p np, int mult);
2271static int sym_getpciclock (hcb_p np);
2272static void sym_complete_ok (hcb_p np, ccb_p cp);
2273static void sym_complete_error (hcb_p np, ccb_p cp);
2274static void sym_timeout (void *arg);
2275static int sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out);
2276static void sym_reset_dev (hcb_p np, union ccb *ccb);
2277static void sym_action (struct cam_sim *sim, union ccb *ccb);
2278static void sym_action1 (struct cam_sim *sim, union ccb *ccb);
2279static int sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp);
2280static void sym_setup_data_and_start (hcb_p np, struct ccb_scsiio *csio,
2281 ccb_p cp);
2282static int sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
2283 bus_dma_segment_t *psegs, int nsegs);
2284static int sym_scatter_sg_physical (hcb_p np, ccb_p cp,
2285 bus_dma_segment_t *psegs, int nsegs);
2286static void sym_action2 (struct cam_sim *sim, union ccb *ccb);
2287static void sym_update_trans (hcb_p np, tcb_p tp, struct sym_trans *tip,
2288 struct ccb_trans_settings *cts);
2289static void sym_update_dflags(hcb_p np, u_char *flags,
2290 struct ccb_trans_settings *cts);
2291
2292static struct sym_pci_chip *sym_find_pci_chip (device_t dev);
2293static int sym_pci_probe (device_t dev);
2294static int sym_pci_attach (device_t dev);
2295
2296static void sym_pci_free (hcb_p np);
2297static int sym_cam_attach (hcb_p np);
2298static void sym_cam_free (hcb_p np);
2299
2300static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram);
2301static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp);
2302static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp);
2303
2304/*
2305 * Print something which allows to retrieve the controler type,
2306 * unit, target, lun concerned by a kernel message.
2307 */
2308static void PRINT_TARGET (hcb_p np, int target)
2309{
2310 printf ("%s:%d:", sym_name(np), target);
2311}
2312
2313static void PRINT_LUN(hcb_p np, int target, int lun)
2314{
2315 printf ("%s:%d:%d:", sym_name(np), target, lun);
2316}
2317
2318static void PRINT_ADDR (ccb_p cp)
2319{
2320 if (cp && cp->cam_ccb)
2321 xpt_print_path(cp->cam_ccb->ccb_h.path);
2322}
2323
2324/*
2325 * Take into account this ccb in the freeze count.
2326 */
2327static void sym_freeze_cam_ccb(union ccb *ccb)
2328{
2329 if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) {
2330 if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) {
2331 ccb->ccb_h.status |= CAM_DEV_QFRZN;
2332 xpt_freeze_devq(ccb->ccb_h.path, 1);
2333 }
2334 }
2335}
2336
2337/*
2338 * Set the status field of a CAM CCB.
2339 */
2340static __inline void sym_set_cam_status(union ccb *ccb, cam_status status)
2341{
2342 ccb->ccb_h.status &= ~CAM_STATUS_MASK;
2343 ccb->ccb_h.status |= status;
2344}
2345
2346/*
2347 * Get the status field of a CAM CCB.
2348 */
2349static __inline int sym_get_cam_status(union ccb *ccb)
2350{
2351 return ccb->ccb_h.status & CAM_STATUS_MASK;
2352}
2353
2354/*
2355 * Enqueue a CAM CCB.
2356 */
2357static void sym_enqueue_cam_ccb(hcb_p np, union ccb *ccb)
2358{
2359 assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED));
2360 ccb->ccb_h.status = CAM_REQ_INPROG;
2361
2362 ccb->ccb_h.timeout_ch = timeout(sym_timeout, (caddr_t) ccb,
2363 ccb->ccb_h.timeout*hz/1000);
2364 ccb->ccb_h.status |= CAM_SIM_QUEUED;
2365 ccb->ccb_h.sym_hcb_ptr = np;
2366
2367 sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq);
2368}
2369
2370/*
2371 * Complete a pending CAM CCB.
2372 */
2373static void sym_xpt_done(hcb_p np, union ccb *ccb)
2374{
2375 if (ccb->ccb_h.status & CAM_SIM_QUEUED) {
2376 untimeout(sym_timeout, (caddr_t) ccb, ccb->ccb_h.timeout_ch);
2377 sym_remque(sym_qptr(&ccb->ccb_h.sim_links));
2378 ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
2379 ccb->ccb_h.sym_hcb_ptr = 0;
2380 }
2381 if (ccb->ccb_h.flags & CAM_DEV_QFREEZE)
2382 sym_freeze_cam_ccb(ccb);
2383 xpt_done(ccb);
2384}
2385
2386static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status)
2387{
2388 sym_set_cam_status(ccb, cam_status);
2389 sym_xpt_done(np, ccb);
2390}
2391
2392/*
2393 * SYMBIOS chip clock divisor table.
2394 *
2395 * Divisors are multiplied by 10,000,000 in order to make
2396 * calculations more simple.
2397 */
2398#define _5M 5000000
2399static u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
2400
2401/*
2402 * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
2403 * 128 transfers. All chips support at least 16 transfers
2404 * bursts. The 825A, 875 and 895 chips support bursts of up
2405 * to 128 transfers and the 895A and 896 support bursts of up
2406 * to 64 transfers. All other chips support up to 16
2407 * transfers bursts.
2408 *
2409 * For PCI 32 bit data transfers each transfer is a DWORD.
2410 * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
2411 *
2412 * We use log base 2 (burst length) as internal code, with
2413 * value 0 meaning "burst disabled".
2414 */
2415
2416/*
2417 * Burst length from burst code.
2418 */
2419#define burst_length(bc) (!(bc))? 0 : 1 << (bc)
2420
2421/*
2422 * Burst code from io register bits.
2423 */
2424#define burst_code(dmode, ctest4, ctest5) \
2425 (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
2426
2427/*
2428 * Set initial io register bits from burst code.
2429 */
2430static __inline void sym_init_burst(hcb_p np, u_char bc)
2431{
2432 np->rv_ctest4 &= ~0x80;
2433 np->rv_dmode &= ~(0x3 << 6);
2434 np->rv_ctest5 &= ~0x4;
2435
2436 if (!bc) {
2437 np->rv_ctest4 |= 0x80;
2438 }
2439 else {
2440 --bc;
2441 np->rv_dmode |= ((bc & 0x3) << 6);
2442 np->rv_ctest5 |= (bc & 0x4);
2443 }
2444}
2445
2446
2447/*
2448 * Print out the list of targets that have some flag disabled by user.
2449 */
2450static void sym_print_targets_flag(hcb_p np, int mask, char *msg)
2451{
2452 int cnt;
2453 int i;
2454
2455 for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
2456 if (i == np->myaddr)
2457 continue;
2458 if (np->target[i].usrflags & mask) {
2459 if (!cnt++)
2460 printf("%s: %s disabled for targets",
2461 sym_name(np), msg);
2462 printf(" %d", i);
2463 }
2464 }
2465 if (cnt)
2466 printf(".\n");
2467}
2468
2469/*
2470 * Save initial settings of some IO registers.
2471 * Assumed to have been set by BIOS.
2472 * We cannot reset the chip prior to reading the
2473 * IO registers, since informations will be lost.
2474 * Since the SCRIPTS processor may be running, this
2475 * is not safe on paper, but it seems to work quite
2476 * well. :)
2477 */
2478static void sym_save_initial_setting (hcb_p np)
2479{
2480 np->sv_scntl0 = INB(nc_scntl0) & 0x0a;
2481 np->sv_scntl3 = INB(nc_scntl3) & 0x07;
2482 np->sv_dmode = INB(nc_dmode) & 0xce;
2483 np->sv_dcntl = INB(nc_dcntl) & 0xa8;
2484 np->sv_ctest3 = INB(nc_ctest3) & 0x01;
2485 np->sv_ctest4 = INB(nc_ctest4) & 0x80;
2486 np->sv_gpcntl = INB(nc_gpcntl);
2487 np->sv_stest1 = INB(nc_stest1);
2488 np->sv_stest2 = INB(nc_stest2) & 0x20;
2489 np->sv_stest4 = INB(nc_stest4);
2490 if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */
2491 np->sv_scntl4 = INB(nc_scntl4);
2492 np->sv_ctest5 = INB(nc_ctest5) & 0x04;
2493 }
2494 else
2495 np->sv_ctest5 = INB(nc_ctest5) & 0x24;
2496}
2497
2498/*
2499 * Prepare io register values used by sym_init() according
2500 * to selected and supported features.
2501 */
2502static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram)
2503{
2504 u_char burst_max;
2505 u32 period;
2506 int i;
2507
2508 /*
2509 * Wide ?
2510 */
2511 np->maxwide = (np->features & FE_WIDE)? 1 : 0;
2512
2513 /*
2514 * Get the frequency of the chip's clock.
2515 */
2516 if (np->features & FE_QUAD)
2517 np->multiplier = 4;
2518 else if (np->features & FE_DBLR)
2519 np->multiplier = 2;
2520 else
2521 np->multiplier = 1;
2522
2523 np->clock_khz = (np->features & FE_CLK80)? 80000 : 40000;
2524 np->clock_khz *= np->multiplier;
2525
2526 if (np->clock_khz != 40000)
2527 sym_getclock(np, np->multiplier);
2528
2529 /*
2530 * Divisor to be used for async (timer pre-scaler).
2531 */
2532 i = np->clock_divn - 1;
2533 while (--i >= 0) {
2534 if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
2535 ++i;
2536 break;
2537 }
2538 }
2539 np->rv_scntl3 = i+1;
2540
2541 /*
2542 * The C1010 uses hardwired divisors for async.
2543 * So, we just throw away, the async. divisor.:-)
2544 */
2545 if (np->features & FE_C10)
2546 np->rv_scntl3 = 0;
2547
2548 /*
2549 * Minimum synchronous period factor supported by the chip.
2550 * Btw, 'period' is in tenths of nanoseconds.
2551 */
2552 period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
2553 if (period <= 250) np->minsync = 10;
2554 else if (period <= 303) np->minsync = 11;
2555 else if (period <= 500) np->minsync = 12;
2556 else np->minsync = (period + 40 - 1) / 40;
2557
2558 /*
2559 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
2560 */
2561 if (np->minsync < 25 &&
2562 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
2563 np->minsync = 25;
2564 else if (np->minsync < 12 &&
2565 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
2566 np->minsync = 12;
2567
2568 /*
2569 * Maximum synchronous period factor supported by the chip.
2570 */
2571 period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
2572 np->maxsync = period > 2540 ? 254 : period / 10;
2573
2574 /*
2575 * If chip is a C1010, guess the sync limits in DT mode.
2576 */
2577 if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
2578 if (np->clock_khz == 160000) {
2579 np->minsync_dt = 9;
2580 np->maxsync_dt = 50;
2581 np->maxoffs_dt = 62;
2582 }
2583 }
2584
2585 /*
2586 * 64 bit addressing (895A/896/1010) ?
2587 */
2588 if (np->features & FE_DAC)
2589#ifdef __LP64__
2590 np->rv_ccntl1 |= (XTIMOD | EXTIBMV);
2591#else
2592 np->rv_ccntl1 |= (DDAC);
2593#endif
2594
2595 /*
2596 * Phase mismatch handled by SCRIPTS (895A/896/1010) ?
2597 */
2598 if (np->features & FE_NOPM)
2599 np->rv_ccntl0 |= (ENPMJ);
2600
2601 /*
2602 * C1010 Errata.
2603 * In dual channel mode, contention occurs if internal cycles
2604 * are used. Disable internal cycles.
2605 */
2606 if (np->device_id == PCI_ID_LSI53C1010 &&
2607 np->revision_id < 0x2)
2608 np->rv_ccntl0 |= DILS;
2609
2610 /*
2611 * Select burst length (dwords)
2612 */
2613 burst_max = SYM_SETUP_BURST_ORDER;
2614 if (burst_max == 255)
2615 burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
2616 np->sv_ctest5);
2617 if (burst_max > 7)
2618 burst_max = 7;
2619 if (burst_max > np->maxburst)
2620 burst_max = np->maxburst;
2621
2622 /*
2623 * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
2624 * This chip and the 860 Rev 1 may wrongly use PCI cache line
2625 * based transactions on LOAD/STORE instructions. So we have
2626 * to prevent these chips from using such PCI transactions in
2627 * this driver. The generic ncr driver that does not use
2628 * LOAD/STORE instructions does not need this work-around.
2629 */
2630 if ((np->device_id == PCI_ID_SYM53C810 &&
2631 np->revision_id >= 0x10 && np->revision_id <= 0x11) ||
2632 (np->device_id == PCI_ID_SYM53C860 &&
2633 np->revision_id <= 0x1))
2634 np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
2635
2636 /*
2637 * Select all supported special features.
2638 * If we are using on-board RAM for scripts, prefetch (PFEN)
2639 * does not help, but burst op fetch (BOF) does.
2640 * Disabling PFEN makes sure BOF will be used.
2641 */
2642 if (np->features & FE_ERL)
2643 np->rv_dmode |= ERL; /* Enable Read Line */
2644 if (np->features & FE_BOF)
2645 np->rv_dmode |= BOF; /* Burst Opcode Fetch */
2646 if (np->features & FE_ERMP)
2647 np->rv_dmode |= ERMP; /* Enable Read Multiple */
2648#if 1
2649 if ((np->features & FE_PFEN) && !np->ram_ba)
2650#else
2651 if (np->features & FE_PFEN)
2652#endif
2653 np->rv_dcntl |= PFEN; /* Prefetch Enable */
2654 if (np->features & FE_CLSE)
2655 np->rv_dcntl |= CLSE; /* Cache Line Size Enable */
2656 if (np->features & FE_WRIE)
2657 np->rv_ctest3 |= WRIE; /* Write and Invalidate */
2658 if (np->features & FE_DFS)
2659 np->rv_ctest5 |= DFS; /* Dma Fifo Size */
2660
2661 /*
2662 * Select some other
2663 */
2664 if (SYM_SETUP_PCI_PARITY)
2665 np->rv_ctest4 |= MPEE; /* Master parity checking */
2666 if (SYM_SETUP_SCSI_PARITY)
2667 np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */
2668
2669 /*
2670 * Get parity checking, host ID and verbose mode from NVRAM
2671 */
2672 np->myaddr = 255;
2673 sym_nvram_setup_host (np, nvram);
2674
2675 /*
2676 * Get SCSI addr of host adapter (set by bios?).
2677 */
2678 if (np->myaddr == 255) {
2679 np->myaddr = INB(nc_scid) & 0x07;
2680 if (!np->myaddr)
2681 np->myaddr = SYM_SETUP_HOST_ID;
2682 }
2683
2684 /*
2685 * Prepare initial io register bits for burst length
2686 */
2687 sym_init_burst(np, burst_max);
2688
2689 /*
2690 * Set SCSI BUS mode.
2691 * - LVD capable chips (895/895A/896/1010) report the
2692 * current BUS mode through the STEST4 IO register.
2693 * - For previous generation chips (825/825A/875),
2694 * user has to tell us how to check against HVD,
2695 * since a 100% safe algorithm is not possible.
2696 */
2697 np->scsi_mode = SMODE_SE;
2698 if (np->features & (FE_ULTRA2|FE_ULTRA3))
2699 np->scsi_mode = (np->sv_stest4 & SMODE);
2700 else if (np->features & FE_DIFF) {
2701 if (SYM_SETUP_SCSI_DIFF == 1) {
2702 if (np->sv_scntl3) {
2703 if (np->sv_stest2 & 0x20)
2704 np->scsi_mode = SMODE_HVD;
2705 }
2706 else if (nvram->type == SYM_SYMBIOS_NVRAM) {
2707 if (!(INB(nc_gpreg) & 0x08))
2708 np->scsi_mode = SMODE_HVD;
2709 }
2710 }
2711 else if (SYM_SETUP_SCSI_DIFF == 2)
2712 np->scsi_mode = SMODE_HVD;
2713 }
2714 if (np->scsi_mode == SMODE_HVD)
2715 np->rv_stest2 |= 0x20;
2716
2717 /*
2718 * Set LED support from SCRIPTS.
2719 * Ignore this feature for boards known to use a
2720 * specific GPIO wiring and for the 895A, 896
2721 * and 1010 that drive the LED directly.
2722 */
2723 if ((SYM_SETUP_SCSI_LED ||
2724 (nvram->type == SYM_SYMBIOS_NVRAM ||
2725 (nvram->type == SYM_TEKRAM_NVRAM &&
2726 np->device_id == PCI_ID_SYM53C895))) &&
2727 !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
2728 np->features |= FE_LED0;
2729
2730 /*
2731 * Set irq mode.
2732 */
2733 switch(SYM_SETUP_IRQ_MODE & 3) {
2734 case 2:
2735 np->rv_dcntl |= IRQM;
2736 break;
2737 case 1:
2738 np->rv_dcntl |= (np->sv_dcntl & IRQM);
2739 break;
2740 default:
2741 break;
2742 }
2743
2744 /*
2745 * Configure targets according to driver setup.
2746 * If NVRAM present get targets setup from NVRAM.
2747 */
2748 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
2749 tcb_p tp = &np->target[i];
2750
2751 tp->tinfo.user.scsi_version = tp->tinfo.current.scsi_version= 2;
2752 tp->tinfo.user.spi_version = tp->tinfo.current.spi_version = 2;
2753 tp->tinfo.user.period = np->minsync;
2754 tp->tinfo.user.offset = np->maxoffs;
2755 tp->tinfo.user.width = np->maxwide ? BUS_16_BIT : BUS_8_BIT;
2756 tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
2757 tp->usrtags = SYM_SETUP_MAX_TAG;
2758
2759 sym_nvram_setup_target (np, i, nvram);
2760
2761 /*
2762 * For now, guess PPR/DT support from the period
2763 * and BUS width.
2764 */
2765 if (np->features & FE_ULTRA3) {
2766 if (tp->tinfo.user.period <= 9 &&
2767 tp->tinfo.user.width == BUS_16_BIT) {
2768 tp->tinfo.user.options |= PPR_OPT_DT;
2769 tp->tinfo.user.offset = np->maxoffs_dt;
2770 tp->tinfo.user.spi_version = 3;
2771 }
2772 }
2773
2774 if (!tp->usrtags)
2775 tp->usrflags &= ~SYM_TAGS_ENABLED;
2776 }
2777
2778 /*
2779 * Let user know about the settings.
2780 */
2781 i = nvram->type;
2782 printf("%s: %s NVRAM, ID %d, Fast-%d, %s, %s\n", sym_name(np),
2783 i == SYM_SYMBIOS_NVRAM ? "Symbios" :
2784 (i == SYM_TEKRAM_NVRAM ? "Tekram" : "No"),
2785 np->myaddr,
2786 (np->features & FE_ULTRA3) ? 80 :
2787 (np->features & FE_ULTRA2) ? 40 :
2788 (np->features & FE_ULTRA) ? 20 : 10,
2789 sym_scsi_bus_mode(np->scsi_mode),
2790 (np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity");
2791 /*
2792 * Tell him more on demand.
2793 */
2794 if (sym_verbose) {
2795 printf("%s: %s IRQ line driver%s\n",
2796 sym_name(np),
2797 np->rv_dcntl & IRQM ? "totem pole" : "open drain",
2798 np->ram_ba ? ", using on-chip SRAM" : "");
2799 printf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
2800 if (np->features & FE_NOPM)
2801 printf("%s: handling phase mismatch from SCRIPTS.\n",
2802 sym_name(np));
2803 }
2804 /*
2805 * And still more.
2806 */
2807 if (sym_verbose > 1) {
2808 printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
2809 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
2810 sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
2811 np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
2812
2813 printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
2814 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
2815 sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
2816 np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
2817 }
2818 /*
2819 * Let user be aware of targets that have some disable flags set.
2820 */
2821 sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT");
2822 if (sym_verbose)
2823 sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED,
2824 "SCAN FOR LUNS");
2825
2826 return 0;
2827}
2828
2829/*
2830 * Prepare the next negotiation message if needed.
2831 *
2832 * Fill in the part of message buffer that contains the
2833 * negotiation and the nego_status field of the CCB.
2834 * Returns the size of the message in bytes.
2835 */
2836
2837static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr)
2838{
2839 tcb_p tp = &np->target[cp->target];
2840 int msglen = 0;
2841
2842 /*
2843 * Early C1010 chips need a work-around for DT
2844 * data transfer to work.
2845 */
2846 if (!(np->features & FE_U3EN))
2847 tp->tinfo.goal.options = 0;
2848 /*
2849 * negotiate using PPR ?
2850 */
2851 if (tp->tinfo.goal.options & PPR_OPT_MASK)
2852 nego = NS_PPR;
2853 /*
2854 * negotiate wide transfers ?
2855 */
2856 else if (tp->tinfo.current.width != tp->tinfo.goal.width)
2857 nego = NS_WIDE;
2858 /*
2859 * negotiate synchronous transfers?
2860 */
2861 else if (tp->tinfo.current.period != tp->tinfo.goal.period ||
2862 tp->tinfo.current.offset != tp->tinfo.goal.offset)
2863 nego = NS_SYNC;
2864
2865 switch (nego) {
2866 case NS_SYNC:
2867 msgptr[msglen++] = M_EXTENDED;
2868 msgptr[msglen++] = 3;
2869 msgptr[msglen++] = M_X_SYNC_REQ;
2870 msgptr[msglen++] = tp->tinfo.goal.period;
2871 msgptr[msglen++] = tp->tinfo.goal.offset;
2872 break;
2873 case NS_WIDE:
2874 msgptr[msglen++] = M_EXTENDED;
2875 msgptr[msglen++] = 2;
2876 msgptr[msglen++] = M_X_WIDE_REQ;
2877 msgptr[msglen++] = tp->tinfo.goal.width;
2878 break;
2879 case NS_PPR:
2880 msgptr[msglen++] = M_EXTENDED;
2881 msgptr[msglen++] = 6;
2882 msgptr[msglen++] = M_X_PPR_REQ;
2883 msgptr[msglen++] = tp->tinfo.goal.period;
2884 msgptr[msglen++] = 0;
2885 msgptr[msglen++] = tp->tinfo.goal.offset;
2886 msgptr[msglen++] = tp->tinfo.goal.width;
2887 msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT;
2888 break;
2889 };
2890
2891 cp->nego_status = nego;
2892
2893 if (nego) {
2894 tp->nego_cp = cp; /* Keep track a nego will be performed */
2895 if (DEBUG_FLAGS & DEBUG_NEGO) {
2896 sym_print_msg(cp, nego == NS_SYNC ? "sync msgout" :
2897 nego == NS_WIDE ? "wide msgout" :
2898 "ppr msgout", msgptr);
2899 };
2900 };
2901
2902 return msglen;
2903}
2904
2905/*
2906 * Insert a job into the start queue.
2907 */
2908static void sym_put_start_queue(hcb_p np, ccb_p cp)
2909{
2910 u_short qidx;
2911
2912#ifdef SYM_CONF_IARB_SUPPORT
2913 /*
2914 * If the previously queued CCB is not yet done,
2915 * set the IARB hint. The SCRIPTS will go with IARB
2916 * for this job when starting the previous one.
2917 * We leave devices a chance to win arbitration by
2918 * not using more than 'iarb_max' consecutive
2919 * immediate arbitrations.
2920 */
2921 if (np->last_cp && np->iarb_count < np->iarb_max) {
2922 np->last_cp->host_flags |= HF_HINT_IARB;
2923 ++np->iarb_count;
2924 }
2925 else
2926 np->iarb_count = 0;
2927 np->last_cp = cp;
2928#endif
2929
2930 /*
2931 * Insert first the idle task and then our job.
2932 * The MB should ensure proper ordering.
2933 */
2934 qidx = np->squeueput + 2;
2935 if (qidx >= MAX_QUEUE*2) qidx = 0;
2936
2937 np->squeue [qidx] = cpu_to_scr(np->idletask_ba);
2938 MEMORY_BARRIER();
2939 np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
2940
2941 np->squeueput = qidx;
2942
2943 if (DEBUG_FLAGS & DEBUG_QUEUE)
2944 printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput);
2945
2946 /*
2947 * Script processor may be waiting for reselect.
2948 * Wake it up.
2949 */
2950 MEMORY_BARRIER();
2951 OUTB (nc_istat, SIGP|np->istat_sem);
2952}
2953
2954
2955/*
2956 * Soft reset the chip.
2957 *
2958 * Raising SRST when the chip is running may cause
2959 * problems on dual function chips (see below).
2960 * On the other hand, LVD devices need some delay
2961 * to settle and report actual BUS mode in STEST4.
2962 */
2963static void sym_chip_reset (hcb_p np)
2964{
2965 OUTB (nc_istat, SRST);
2966 UDELAY (10);
2967 OUTB (nc_istat, 0);
2968 UDELAY(2000); /* For BUS MODE to settle */
2969}
2970
2971/*
2972 * Soft reset the chip.
2973 *
2974 * Some 896 and 876 chip revisions may hang-up if we set
2975 * the SRST (soft reset) bit at the wrong time when SCRIPTS
2976 * are running.
2977 * So, we need to abort the current operation prior to
2978 * soft resetting the chip.
2979 */
2980static void sym_soft_reset (hcb_p np)
2981{
2982 u_char istat;
2983 int i;
2984
2985 OUTB (nc_istat, CABRT);
2986 for (i = 1000000 ; i ; --i) {
2987 istat = INB (nc_istat);
2988 if (istat & SIP) {
2989 INW (nc_sist);
2990 continue;
2991 }
2992 if (istat & DIP) {
2993 OUTB (nc_istat, 0);
2994 INB (nc_dstat);
2995 break;
2996 }
2997 }
2998 if (!i)
2999 printf("%s: unable to abort current chip operation.\n",
3000 sym_name(np));
3001 sym_chip_reset (np);
3002}
3003
3004/*
3005 * Start reset process.
3006 *
3007 * The interrupt handler will reinitialize the chip.
3008 */
3009static void sym_start_reset(hcb_p np)
3010{
3011 (void) sym_reset_scsi_bus(np, 1);
3012}
3013
3014static int sym_reset_scsi_bus(hcb_p np, int enab_int)
3015{
3016 u32 term;
3017 int retv = 0;
3018
3019 sym_soft_reset(np); /* Soft reset the chip */
3020 if (enab_int)
3021 OUTW (nc_sien, RST);
3022 /*
3023 * Enable Tolerant, reset IRQD if present and
3024 * properly set IRQ mode, prior to resetting the bus.
3025 */
3026 OUTB (nc_stest3, TE);
3027 OUTB (nc_dcntl, (np->rv_dcntl & IRQM));
3028 OUTB (nc_scntl1, CRST);
3029 UDELAY (200);
3030
3031 if (!SYM_SETUP_SCSI_BUS_CHECK)
3032 goto out;
3033 /*
3034 * Check for no terminators or SCSI bus shorts to ground.
3035 * Read SCSI data bus, data parity bits and control signals.
3036 * We are expecting RESET to be TRUE and other signals to be
3037 * FALSE.
3038 */
3039 term = INB(nc_sstat0);
3040 term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */
3041 term |= ((INB(nc_sstat2) & 0x01) << 26) | /* sdp1 */
3042 ((INW(nc_sbdl) & 0xff) << 9) | /* d7-0 */
3043 ((INW(nc_sbdl) & 0xff00) << 10) | /* d15-8 */
3044 INB(nc_sbcl); /* req ack bsy sel atn msg cd io */
3045
3046 if (!(np->features & FE_WIDE))
3047 term &= 0x3ffff;
3048
3049 if (term != (2<<7)) {
3050 printf("%s: suspicious SCSI data while resetting the BUS.\n",
3051 sym_name(np));
3052 printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
3053 "0x%lx, expecting 0x%lx\n",
3054 sym_name(np),
3055 (np->features & FE_WIDE) ? "dp1,d15-8," : "",
3056 (u_long)term, (u_long)(2<<7));
3057 if (SYM_SETUP_SCSI_BUS_CHECK == 1)
3058 retv = 1;
3059 }
3060out:
3061 OUTB (nc_scntl1, 0);
3062 /* MDELAY(100); */
3063 return retv;
3064}
3065
3066/*
3067 * The chip may have completed jobs. Look at the DONE QUEUE.
3068 *
3069 * On architectures that may reorder LOAD/STORE operations,
3070 * a memory barrier may be needed after the reading of the
3071 * so-called `flag' and prior to dealing with the data.
3072 */
3073static int sym_wakeup_done (hcb_p np)
3074{
3075 ccb_p cp;
3076 int i, n;
3077 u32 dsa;
3078
3079 n = 0;
3080 i = np->dqueueget;
3081 while (1) {
3082 dsa = scr_to_cpu(np->dqueue[i]);
3083 if (!dsa)
3084 break;
3085 np->dqueue[i] = 0;
3086 if ((i = i+2) >= MAX_QUEUE*2)
3087 i = 0;
3088
3089 cp = sym_ccb_from_dsa(np, dsa);
3090 if (cp) {
3091 MEMORY_BARRIER();
3092 sym_complete_ok (np, cp);
3093 ++n;
3094 }
3095 else
3096 printf ("%s: bad DSA (%x) in done queue.\n",
3097 sym_name(np), (u_int) dsa);
3098 }
3099 np->dqueueget = i;
3100
3101 return n;
3102}
3103
3104/*
3105 * Complete all active CCBs with error.
3106 * Used on CHIP/SCSI RESET.
3107 */
3108static void sym_flush_busy_queue (hcb_p np, int cam_status)
3109{
3110 /*
3111 * Move all active CCBs to the COMP queue
3112 * and flush this queue.
3113 */
3114 sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
3115 sym_que_init(&np->busy_ccbq);
3116 sym_flush_comp_queue(np, cam_status);
3117}
3118
3119/*
3120 * Start chip.
3121 *
3122 * 'reason' means:
3123 * 0: initialisation.
3124 * 1: SCSI BUS RESET delivered or received.
3125 * 2: SCSI BUS MODE changed.
3126 */
3127static void sym_init (hcb_p np, int reason)
3128{
3129 int i;
3130 u32 phys;
3131
3132 /*
3133 * Reset chip if asked, otherwise just clear fifos.
3134 */
3135 if (reason == 1)
3136 sym_soft_reset(np);
3137 else {
3138 OUTB (nc_stest3, TE|CSF);
3139 OUTONB (nc_ctest3, CLF);
3140 }
3141
3142 /*
3143 * Clear Start Queue
3144 */
3145 phys = np->squeue_ba;
3146 for (i = 0; i < MAX_QUEUE*2; i += 2) {
3147 np->squeue[i] = cpu_to_scr(np->idletask_ba);
3148 np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
3149 }
3150 np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
3151
3152 /*
3153 * Start at first entry.
3154 */
3155 np->squeueput = 0;
3156
3157 /*
3158 * Clear Done Queue
3159 */
3160 phys = np->dqueue_ba;
3161 for (i = 0; i < MAX_QUEUE*2; i += 2) {
3162 np->dqueue[i] = 0;
3163 np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
3164 }
3165 np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
3166
3167 /*
3168 * Start at first entry.
3169 */
3170 np->dqueueget = 0;
3171
3172 /*
3173 * Install patches in scripts.
3174 * This also let point to first position the start
3175 * and done queue pointers used from SCRIPTS.
3176 */
3177 np->fw_patch(np);
3178
3179 /*
3180 * Wakeup all pending jobs.
3181 */
3182 sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET);
3183
3184 /*
3185 * Init chip.
3186 */
3187 OUTB (nc_istat, 0x00 ); /* Remove Reset, abort */
3188 UDELAY (2000); /* The 895 needs time for the bus mode to settle */
3189
3190 OUTB (nc_scntl0, np->rv_scntl0 | 0xc0);
3191 /* full arb., ena parity, par->ATN */
3192 OUTB (nc_scntl1, 0x00); /* odd parity, and remove CRST!! */
3193
3194 sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */
3195
3196 OUTB (nc_scid , RRE|np->myaddr); /* Adapter SCSI address */
3197 OUTW (nc_respid, 1ul<<np->myaddr); /* Id to respond to */
3198 OUTB (nc_istat , SIGP ); /* Signal Process */
3199 OUTB (nc_dmode , np->rv_dmode); /* Burst length, dma mode */
3200 OUTB (nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */
3201
3202 OUTB (nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */
3203 OUTB (nc_ctest3, np->rv_ctest3); /* Write and invalidate */
3204 OUTB (nc_ctest4, np->rv_ctest4); /* Master parity checking */
3205
3206 /* Extended Sreq/Sack filtering not supported on the C10 */
3207 if (np->features & FE_C10)
3208 OUTB (nc_stest2, np->rv_stest2);
3209 else
3210 OUTB (nc_stest2, EXT|np->rv_stest2);
3211
3212 OUTB (nc_stest3, TE); /* TolerANT enable */
3213 OUTB (nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */
3214
3215 /*
3216 * For now, disable AIP generation on C1010-66.
3217 */
3218 if (np->device_id == PCI_ID_LSI53C1010_2)
3219 OUTB (nc_aipcntl1, DISAIP);
3220
3221 /*
3222 * C10101 Errata.
3223 * Errant SGE's when in narrow. Write bits 4 & 5 of
3224 * STEST1 register to disable SGE. We probably should do
3225 * that from SCRIPTS for each selection/reselection, but
3226 * I just don't want. :)
3227 */
3228 if (np->device_id == PCI_ID_LSI53C1010 &&
3229 /* np->revision_id < 0xff */ 1)
3230 OUTB (nc_stest1, INB(nc_stest1) | 0x30);
3231
3232 /*
3233 * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
3234 * Disable overlapped arbitration for some dual function devices,
3235 * regardless revision id (kind of post-chip-design feature. ;-))
3236 */
3237 if (np->device_id == PCI_ID_SYM53C875)
3238 OUTB (nc_ctest0, (1<<5));
3239 else if (np->device_id == PCI_ID_SYM53C896)
3240 np->rv_ccntl0 |= DPR;
3241
3242 /*
3243 * Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
3244 * and/or hardware phase mismatch, since only such chips
3245 * seem to support those IO registers.
3246 */
3247 if (np->features & (FE_DAC|FE_NOPM)) {
3248 OUTB (nc_ccntl0, np->rv_ccntl0);
3249 OUTB (nc_ccntl1, np->rv_ccntl1);
3250 }
3251
3252 /*
3253 * If phase mismatch handled by scripts (895A/896/1010),
3254 * set PM jump addresses.
3255 */
3256 if (np->features & FE_NOPM) {
3257 OUTL (nc_pmjad1, SCRIPTB_BA (np, pm_handle));
3258 OUTL (nc_pmjad2, SCRIPTB_BA (np, pm_handle));
3259 }
3260
3261 /*
3262 * Enable GPIO0 pin for writing if LED support from SCRIPTS.
3263 * Also set GPIO5 and clear GPIO6 if hardware LED control.
3264 */
3265 if (np->features & FE_LED0)
3266 OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01);
3267 else if (np->features & FE_LEDC)
3268 OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20);
3269
3270 /*
3271 * enable ints
3272 */
3273 OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
3274 OUTB (nc_dien , MDPE|BF|SSI|SIR|IID);
3275
3276 /*
3277 * For 895/6 enable SBMC interrupt and save current SCSI bus mode.
3278 * Try to eat the spurious SBMC interrupt that may occur when
3279 * we reset the chip but not the SCSI BUS (at initialization).
3280 */
3281 if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
3282 OUTONW (nc_sien, SBMC);
3283 if (reason == 0) {
3284 MDELAY(100);
3285 INW (nc_sist);
3286 }
3287 np->scsi_mode = INB (nc_stest4) & SMODE;
3288 }
3289
3290 /*
3291 * Fill in target structure.
3292 * Reinitialize usrsync.
3293 * Reinitialize usrwide.
3294 * Prepare sync negotiation according to actual SCSI bus mode.
3295 */
3296 for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
3297 tcb_p tp = &np->target[i];
3298
3299 tp->to_reset = 0;
3300 tp->head.sval = 0;
3301 tp->head.wval = np->rv_scntl3;
3302 tp->head.uval = 0;
3303
3304 tp->tinfo.current.period = 0;
3305 tp->tinfo.current.offset = 0;
3306 tp->tinfo.current.width = BUS_8_BIT;
3307 tp->tinfo.current.options = 0;
3308 }
3309
3310 /*
3311 * Download SCSI SCRIPTS to on-chip RAM if present,
3312 * and start script processor.
3313 */
3314 if (np->ram_ba) {
3315 if (sym_verbose > 1)
3316 printf ("%s: Downloading SCSI SCRIPTS.\n",
3317 sym_name(np));
3318 if (np->ram_ws == 8192) {
3319 OUTRAM_OFF(4096, np->scriptb0, np->scriptb_sz);
3320 OUTL (nc_mmws, np->scr_ram_seg);
3321 OUTL (nc_mmrs, np->scr_ram_seg);
3322 OUTL (nc_sfs, np->scr_ram_seg);
3323 phys = SCRIPTB_BA (np, start64);
3324 }
3325 else
3326 phys = SCRIPTA_BA (np, init);
3327 OUTRAM_OFF(0, np->scripta0, np->scripta_sz);
3328 }
3329 else
3330 phys = SCRIPTA_BA (np, init);
3331
3332 np->istat_sem = 0;
3333
3334 OUTL (nc_dsa, np->hcb_ba);
3335 OUTL_DSP (phys);
3336
3337 /*
3338 * Notify the XPT about the RESET condition.
3339 */
3340 if (reason != 0)
3341 xpt_async(AC_BUS_RESET, np->path, NULL);
3342}
3343
3344/*
3345 * Get clock factor and sync divisor for a given
3346 * synchronous factor period.
3347 */
3348static int
3349sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
3350{
3351 u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */
3352 int div = np->clock_divn; /* Number of divisors supported */
3353 u32 fak; /* Sync factor in sxfer */
3354 u32 per; /* Period in tenths of ns */
3355 u32 kpc; /* (per * clk) */
3356 int ret;
3357
3358 /*
3359 * Compute the synchronous period in tenths of nano-seconds
3360 */
3361 if (dt && sfac <= 9) per = 125;
3362 else if (sfac <= 10) per = 250;
3363 else if (sfac == 11) per = 303;
3364 else if (sfac == 12) per = 500;
3365 else per = 40 * sfac;
3366 ret = per;
3367
3368 kpc = per * clk;
3369 if (dt)
3370 kpc <<= 1;
3371
3372 /*
3373 * For earliest C10 revision 0, we cannot use extra
3374 * clocks for the setting of the SCSI clocking.
3375 * Note that this limits the lowest sync data transfer
3376 * to 5 Mega-transfers per second and may result in
3377 * using higher clock divisors.
3378 */
3379#if 1
3380 if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
3381 /*
3382 * Look for the lowest clock divisor that allows an
3383 * output speed not faster than the period.
3384 */
3385 while (div > 0) {
3386 --div;
3387 if (kpc > (div_10M[div] << 2)) {
3388 ++div;
3389 break;
3390 }
3391 }
3392 fak = 0; /* No extra clocks */
3393 if (div == np->clock_divn) { /* Are we too fast ? */
3394 ret = -1;
3395 }
3396 *divp = div;
3397 *fakp = fak;
3398 return ret;
3399 }
3400#endif
3401
3402 /*
3403 * Look for the greatest clock divisor that allows an
3404 * input speed faster than the period.
3405 */
3406 while (div-- > 0)
3407 if (kpc >= (div_10M[div] << 2)) break;
3408
3409 /*
3410 * Calculate the lowest clock factor that allows an output
3411 * speed not faster than the period, and the max output speed.
3412 * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
3413 * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
3414 */
3415 if (dt) {
3416 fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
3417 /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
3418 }
3419 else {
3420 fak = (kpc - 1) / div_10M[div] + 1 - 4;
3421 /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
3422 }
3423
3424 /*
3425 * Check against our hardware limits, or bugs :).
3426 */
3427 if (fak < 0) {fak = 0; ret = -1;}
3428 if (fak > 2) {fak = 2; ret = -1;}
3429
3430 /*
3431 * Compute and return sync parameters.
3432 */
3433 *divp = div;
3434 *fakp = fak;
3435
3436 return ret;
3437}
3438
3439/*
3440 * Tell the SCSI layer about the new transfer parameters.
3441 */
3442static void
3443sym_xpt_async_transfer_neg(hcb_p np, int target, u_int spi_valid)
3444{
3445 struct ccb_trans_settings cts;
3446 struct cam_path *path;
3447 int sts;
3448 tcb_p tp = &np->target[target];
3449
3450 sts = xpt_create_path(&path, NULL, cam_sim_path(np->sim), target,
3451 CAM_LUN_WILDCARD);
3452 if (sts != CAM_REQ_CMP)
3453 return;
3454
3455 bzero(&cts, sizeof(cts));
3456
3457#define cts__scsi (cts.proto_specific.scsi)
3458#define cts__spi (cts.xport_specific.spi)
3459
3460 cts.type = CTS_TYPE_CURRENT_SETTINGS;
3461 cts.protocol = PROTO_SCSI;
3462 cts.transport = XPORT_SPI;
3463 cts.protocol_version = tp->tinfo.current.scsi_version;
3464 cts.transport_version = tp->tinfo.current.spi_version;
3465
3466 cts__spi.valid = spi_valid;
3467 if (spi_valid & CTS_SPI_VALID_SYNC_RATE)
3468 cts__spi.sync_period = tp->tinfo.current.period;
3469 if (spi_valid & CTS_SPI_VALID_SYNC_OFFSET)
3470 cts__spi.sync_offset = tp->tinfo.current.offset;
3471 if (spi_valid & CTS_SPI_VALID_BUS_WIDTH)
3472 cts__spi.bus_width = tp->tinfo.current.width;
3473 if (spi_valid & CTS_SPI_VALID_PPR_OPTIONS)
3474 cts__spi.ppr_options = tp->tinfo.current.options;
3475#undef cts__spi
3476#undef cts__scsi
3477 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
3478 xpt_async(AC_TRANSFER_NEG, path, &cts);
3479 xpt_free_path(path);
3480}
3481
3482#define SYM_SPI_VALID_WDTR \
3483 CTS_SPI_VALID_BUS_WIDTH | \
3484 CTS_SPI_VALID_SYNC_RATE | \
3485 CTS_SPI_VALID_SYNC_OFFSET
3486#define SYM_SPI_VALID_SDTR \
3487 CTS_SPI_VALID_SYNC_RATE | \
3488 CTS_SPI_VALID_SYNC_OFFSET
3489#define SYM_SPI_VALID_PPR \
3490 CTS_SPI_VALID_PPR_OPTIONS | \
3491 CTS_SPI_VALID_BUS_WIDTH | \
3492 CTS_SPI_VALID_SYNC_RATE | \
3493 CTS_SPI_VALID_SYNC_OFFSET
3494
3495/*
3496 * We received a WDTR.
3497 * Let everything be aware of the changes.
3498 */
3499static void sym_setwide(hcb_p np, ccb_p cp, u_char wide)
3500{
3501 tcb_p tp = &np->target[cp->target];
3502
3503 sym_settrans(np, cp, 0, 0, 0, wide, 0, 0);
3504
3505 /*
3506 * Tell the SCSI layer about the new transfer parameters.
3507 */
3508 tp->tinfo.goal.width = tp->tinfo.current.width = wide;
3509 tp->tinfo.current.offset = 0;
3510 tp->tinfo.current.period = 0;
3511 tp->tinfo.current.options = 0;
3512
3513 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_WDTR);
3514}
3515
3516/*
3517 * We received a SDTR.
3518 * Let everything be aware of the changes.
3519 */
3520static void
3521sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak)
3522{
3523 tcb_p tp = &np->target[cp->target];
3524 u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0;
3525
3526 sym_settrans(np, cp, 0, ofs, per, wide, div, fak);
3527
3528 /*
3529 * Tell the SCSI layer about the new transfer parameters.
3530 */
3531 tp->tinfo.goal.period = tp->tinfo.current.period = per;
3532 tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs;
3533 tp->tinfo.goal.options = tp->tinfo.current.options = 0;
3534
3535 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_SDTR);
3536}
3537
3538/*
3539 * We received a PPR.
3540 * Let everything be aware of the changes.
3541 */
3542static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
3543 u_char per, u_char wide, u_char div, u_char fak)
3544{
3545 tcb_p tp = &np->target[cp->target];
3546
3547 sym_settrans(np, cp, dt, ofs, per, wide, div, fak);
3548
3549 /*
3550 * Tell the SCSI layer about the new transfer parameters.
3551 */
3552 tp->tinfo.goal.width = tp->tinfo.current.width = wide;
3553 tp->tinfo.goal.period = tp->tinfo.current.period = per;
3554 tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs;
3555 tp->tinfo.goal.options = tp->tinfo.current.options = dt;
3556
3557 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_PPR);
3558}
3559
3560/*
3561 * Switch trans mode for current job and it's target.
3562 */
3563static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
3564 u_char per, u_char wide, u_char div, u_char fak)
3565{
3566 SYM_QUEHEAD *qp;
3567 union ccb *ccb;
3568 tcb_p tp;
3569 u_char target = INB (nc_sdid) & 0x0f;
3570 u_char sval, wval, uval;
3571
3572 assert (cp);
3573 if (!cp) return;
3574 ccb = cp->cam_ccb;
3575 assert (ccb);
3576 if (!ccb) return;
3577 assert (target == (cp->target & 0xf));
3578 tp = &np->target[target];
3579
3580 sval = tp->head.sval;
3581 wval = tp->head.wval;
3582 uval = tp->head.uval;
3583
3584#if 0
3585 printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
3586 sval, wval, uval, np->rv_scntl3);
3587#endif
3588 /*
3589 * Set the offset.
3590 */
3591 if (!(np->features & FE_C10))
3592 sval = (sval & ~0x1f) | ofs;
3593 else
3594 sval = (sval & ~0x3f) | ofs;
3595
3596 /*
3597 * Set the sync divisor and extra clock factor.
3598 */
3599 if (ofs != 0) {
3600 wval = (wval & ~0x70) | ((div+1) << 4);
3601 if (!(np->features & FE_C10))
3602 sval = (sval & ~0xe0) | (fak << 5);
3603 else {
3604 uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
3605 if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
3606 if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
3607 }
3608 }
3609
3610 /*
3611 * Set the bus width.
3612 */
3613 wval = wval & ~EWS;
3614 if (wide != 0)
3615 wval |= EWS;
3616
3617 /*
3618 * Set misc. ultra enable bits.
3619 */
3620 if (np->features & FE_C10) {
3621 uval = uval & ~(U3EN|AIPCKEN);
3622 if (dt) {
3623 assert(np->features & FE_U3EN);
3624 uval |= U3EN;
3625 }
3626 }
3627 else {
3628 wval = wval & ~ULTRA;
3629 if (per <= 12) wval |= ULTRA;
3630 }
3631
3632 /*
3633 * Stop there if sync parameters are unchanged.
3634 */
3635 if (tp->head.sval == sval &&
3636 tp->head.wval == wval &&
3637 tp->head.uval == uval)
3638 return;
3639 tp->head.sval = sval;
3640 tp->head.wval = wval;
3641 tp->head.uval = uval;
3642
3643 /*
3644 * Disable extended Sreq/Sack filtering if per < 50.
3645 * Not supported on the C1010.
3646 */
3647 if (per < 50 && !(np->features & FE_C10))
3648 OUTOFFB (nc_stest2, EXT);
3649
3650 /*
3651 * set actual value and sync_status
3652 */
3653 OUTB (nc_sxfer, tp->head.sval);
3654 OUTB (nc_scntl3, tp->head.wval);
3655
3656 if (np->features & FE_C10) {
3657 OUTB (nc_scntl4, tp->head.uval);
3658 }
3659
3660 /*
3661 * patch ALL busy ccbs of this target.
3662 */
3663 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3664 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3665 if (cp->target != target)
3666 continue;
3667 cp->phys.select.sel_scntl3 = tp->head.wval;
3668 cp->phys.select.sel_sxfer = tp->head.sval;
3669 if (np->features & FE_C10) {
3670 cp->phys.select.sel_scntl4 = tp->head.uval;
3671 }
3672 }
3673}
3674
3675/*
3676 * log message for real hard errors
3677 *
3678 * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc).
3679 * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
3680 *
3681 * exception register:
3682 * ds: dstat
3683 * si: sist
3684 *
3685 * SCSI bus lines:
3686 * so: control lines as driven by chip.
3687 * si: control lines as seen by chip.
3688 * sd: scsi data lines as seen by chip.
3689 *
3690 * wide/fastmode:
3691 * sxfer: (see the manual)
3692 * scntl3: (see the manual)
3693 *
3694 * current script command:
3695 * dsp: script address (relative to start of script).
3696 * dbc: first word of script command.
3697 *
3698 * First 24 register of the chip:
3699 * r0..rf
3700 */
3701static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat)
3702{
3703 u32 dsp;
3704 int script_ofs;
3705 int script_size;
3706 char *script_name;
3707 u_char *script_base;
3708 int i;
3709
3710 dsp = INL (nc_dsp);
3711
3712 if (dsp > np->scripta_ba &&
3713 dsp <= np->scripta_ba + np->scripta_sz) {
3714 script_ofs = dsp - np->scripta_ba;
3715 script_size = np->scripta_sz;
3716 script_base = (u_char *) np->scripta0;
3717 script_name = "scripta";
3718 }
3719 else if (np->scriptb_ba < dsp &&
3720 dsp <= np->scriptb_ba + np->scriptb_sz) {
3721 script_ofs = dsp - np->scriptb_ba;
3722 script_size = np->scriptb_sz;
3723 script_base = (u_char *) np->scriptb0;
3724 script_name = "scriptb";
3725 } else {
3726 script_ofs = dsp;
3727 script_size = 0;
3728 script_base = 0;
3729 script_name = "mem";
3730 }
3731
3732 printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n",
3733 sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist,
3734 (unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl),
3735 (unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer),
3736 (unsigned)INB (nc_scntl3), script_name, script_ofs,
3737 (unsigned)INL (nc_dbc));
3738
3739 if (((script_ofs & 3) == 0) &&
3740 (unsigned)script_ofs < script_size) {
3741 printf ("%s: script cmd = %08x\n", sym_name(np),
3742 scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
3743 }
3744
3745 printf ("%s: regdump:", sym_name(np));
3746 for (i=0; i<24;i++)
3747 printf (" %02x", (unsigned)INB_OFF(i));
3748 printf (".\n");
3749
3750 /*
3751 * PCI BUS error, read the PCI ststus register.
3752 */
3753 if (dstat & (MDPE|BF)) {
3754 u_short pci_sts;
3755 pci_sts = pci_read_config(np->device, PCIR_STATUS, 2);
3756 if (pci_sts & 0xf900) {
3757 pci_write_config(np->device, PCIR_STATUS, pci_sts, 2);
3758 printf("%s: PCI STATUS = 0x%04x\n",
3759 sym_name(np), pci_sts & 0xf900);
3760 }
3761 }
3762}
3763
3764/*
3765 * chip interrupt handler
3766 *
3767 * In normal situations, interrupt conditions occur one at
3768 * a time. But when something bad happens on the SCSI BUS,
3769 * the chip may raise several interrupt flags before
3770 * stopping and interrupting the CPU. The additionnal
3771 * interrupt flags are stacked in some extra registers
3772 * after the SIP and/or DIP flag has been raised in the
3773 * ISTAT. After the CPU has read the interrupt condition
3774 * flag from SIST or DSTAT, the chip unstacks the other
3775 * interrupt flags and sets the corresponding bits in
3776 * SIST or DSTAT. Since the chip starts stacking once the
3777 * SIP or DIP flag is set, there is a small window of time
3778 * where the stacking does not occur.
3779 *
3780 * Typically, multiple interrupt conditions may happen in
3781 * the following situations:
3782 *
3783 * - SCSI parity error + Phase mismatch (PAR|MA)
3784 * When a parity error is detected in input phase
3785 * and the device switches to msg-in phase inside a
3786 * block MOV.
3787 * - SCSI parity error + Unexpected disconnect (PAR|UDC)
3788 * When a stupid device does not want to handle the
3789 * recovery of an SCSI parity error.
3790 * - Some combinations of STO, PAR, UDC, ...
3791 * When using non compliant SCSI stuff, when user is
3792 * doing non compliant hot tampering on the BUS, when
3793 * something really bad happens to a device, etc ...
3794 *
3795 * The heuristic suggested by SYMBIOS to handle
3796 * multiple interrupts is to try unstacking all
3797 * interrupts conditions and to handle them on some
3798 * priority based on error severity.
3799 * This will work when the unstacking has been
3800 * successful, but we cannot be 100 % sure of that,
3801 * since the CPU may have been faster to unstack than
3802 * the chip is able to stack. Hmmm ... But it seems that
3803 * such a situation is very unlikely to happen.
3804 *
3805 * If this happen, for example STO caught by the CPU
3806 * then UDC happenning before the CPU have restarted
3807 * the SCRIPTS, the driver may wrongly complete the
3808 * same command on UDC, since the SCRIPTS didn't restart
3809 * and the DSA still points to the same command.
3810 * We avoid this situation by setting the DSA to an
3811 * invalid value when the CCB is completed and before
3812 * restarting the SCRIPTS.
3813 *
3814 * Another issue is that we need some section of our
3815 * recovery procedures to be somehow uninterruptible but
3816 * the SCRIPTS processor does not provides such a
3817 * feature. For this reason, we handle recovery preferently
3818 * from the C code and check against some SCRIPTS critical
3819 * sections from the C code.
3820 *
3821 * Hopefully, the interrupt handling of the driver is now
3822 * able to resist to weird BUS error conditions, but donnot
3823 * ask me for any guarantee that it will never fail. :-)
3824 * Use at your own decision and risk.
3825 */
3826
3827static void sym_intr1 (hcb_p np)
3828{
3829 u_char istat, istatc;
3830 u_char dstat;
3831 u_short sist;
3832
3833 /*
3834 * interrupt on the fly ?
3835 *
3836 * A `dummy read' is needed to ensure that the
3837 * clear of the INTF flag reaches the device
3838 * before the scanning of the DONE queue.
3839 */
3840 istat = INB (nc_istat);
3841 if (istat & INTF) {
3842 OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem);
3843 istat = INB (nc_istat); /* DUMMY READ */
3844 if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
3845 (void)sym_wakeup_done (np);
3846 };
3847
3848 if (!(istat & (SIP|DIP)))
3849 return;
3850
3851#if 0 /* We should never get this one */
3852 if (istat & CABRT)
3853 OUTB (nc_istat, CABRT);
3854#endif
3855
3856 /*
3857 * PAR and MA interrupts may occur at the same time,
3858 * and we need to know of both in order to handle
3859 * this situation properly. We try to unstack SCSI
3860 * interrupts for that reason. BTW, I dislike a LOT
3861 * such a loop inside the interrupt routine.
3862 * Even if DMA interrupt stacking is very unlikely to
3863 * happen, we also try unstacking these ones, since
3864 * this has no performance impact.
3865 */
3866 sist = 0;
3867 dstat = 0;
3868 istatc = istat;
3869 do {
3870 if (istatc & SIP)
3871 sist |= INW (nc_sist);
3872 if (istatc & DIP)
3873 dstat |= INB (nc_dstat);
3874 istatc = INB (nc_istat);
3875 istat |= istatc;
3876 } while (istatc & (SIP|DIP));
3877
3878 if (DEBUG_FLAGS & DEBUG_TINY)
3879 printf ("<%d|%x:%x|%x:%x>",
3880 (int)INB(nc_scr0),
3881 dstat,sist,
3882 (unsigned)INL(nc_dsp),
3883 (unsigned)INL(nc_dbc));
3884 /*
3885 * On paper, a memory barrier may be needed here.
3886 * And since we are paranoid ... :)
3887 */
3888 MEMORY_BARRIER();
3889
3890 /*
3891 * First, interrupts we want to service cleanly.
3892 *
3893 * Phase mismatch (MA) is the most frequent interrupt
3894 * for chip earlier than the 896 and so we have to service
3895 * it as quickly as possible.
3896 * A SCSI parity error (PAR) may be combined with a phase
3897 * mismatch condition (MA).
3898 * Programmed interrupts (SIR) are used to call the C code
3899 * from SCRIPTS.
3900 * The single step interrupt (SSI) is not used in this
3901 * driver.
3902 */
3903 if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
3904 !(dstat & (MDPE|BF|ABRT|IID))) {
3905 if (sist & PAR) sym_int_par (np, sist);
3906 else if (sist & MA) sym_int_ma (np);
3907 else if (dstat & SIR) sym_int_sir (np);
3908 else if (dstat & SSI) OUTONB_STD ();
3909 else goto unknown_int;
3910 return;
3911 };
3912
3913 /*
3914 * Now, interrupts that donnot happen in normal
3915 * situations and that we may need to recover from.
3916 *
3917 * On SCSI RESET (RST), we reset everything.
3918 * On SCSI BUS MODE CHANGE (SBMC), we complete all
3919 * active CCBs with RESET status, prepare all devices
3920 * for negotiating again and restart the SCRIPTS.
3921 * On STO and UDC, we complete the CCB with the corres-
3922 * ponding status and restart the SCRIPTS.
3923 */
3924 if (sist & RST) {
3925 xpt_print_path(np->path);
3926 printf("SCSI BUS reset detected.\n");
3927 sym_init (np, 1);
3928 return;
3929 };
3930
3931 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */
3932 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */
3933
3934 if (!(sist & (GEN|HTH|SGE)) &&
3935 !(dstat & (MDPE|BF|ABRT|IID))) {
3936 if (sist & SBMC) sym_int_sbmc (np);
3937 else if (sist & STO) sym_int_sto (np);
3938 else if (sist & UDC) sym_int_udc (np);
3939 else goto unknown_int;
3940 return;
3941 };
3942
3943 /*
3944 * Now, interrupts we are not able to recover cleanly.
3945 *
3946 * Log message for hard errors.
3947 * Reset everything.
3948 */
3949
3950 sym_log_hard_error(np, sist, dstat);
3951
3952 if ((sist & (GEN|HTH|SGE)) ||
3953 (dstat & (MDPE|BF|ABRT|IID))) {
3954 sym_start_reset(np);
3955 return;
3956 };
3957
3958unknown_int:
3959 /*
3960 * We just miss the cause of the interrupt. :(
3961 * Print a message. The timeout will do the real work.
3962 */
3963 printf( "%s: unknown interrupt(s) ignored, "
3964 "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
3965 sym_name(np), istat, dstat, sist);
3966}
3967
3968static void sym_intr(void *arg)
3969{
3970 if (DEBUG_FLAGS & DEBUG_TINY) printf ("[");
3971 sym_intr1((hcb_p) arg);
3972 if (DEBUG_FLAGS & DEBUG_TINY) printf ("]");
3973 return;
3974}
3975
3976static void sym_poll(struct cam_sim *sim)
3977{
3978 int s = splcam();
3979 sym_intr(cam_sim_softc(sim));
3980 splx(s);
3981}
3982
3983
3984/*
3985 * generic recovery from scsi interrupt
3986 *
3987 * The doc says that when the chip gets an SCSI interrupt,
3988 * it tries to stop in an orderly fashion, by completing
3989 * an instruction fetch that had started or by flushing
3990 * the DMA fifo for a write to memory that was executing.
3991 * Such a fashion is not enough to know if the instruction
3992 * that was just before the current DSP value has been
3993 * executed or not.
3994 *
3995 * There are some small SCRIPTS sections that deal with
3996 * the start queue and the done queue that may break any
3997 * assomption from the C code if we are interrupted
3998 * inside, so we reset if this happens. Btw, since these
3999 * SCRIPTS sections are executed while the SCRIPTS hasn't
4000 * started SCSI operations, it is very unlikely to happen.
4001 *
4002 * All the driver data structures are supposed to be
4003 * allocated from the same 4 GB memory window, so there
4004 * is a 1 to 1 relationship between DSA and driver data
4005 * structures. Since we are careful :) to invalidate the
4006 * DSA when we complete a command or when the SCRIPTS
4007 * pushes a DSA into a queue, we can trust it when it
4008 * points to a CCB.
4009 */
4010static void sym_recover_scsi_int (hcb_p np, u_char hsts)
4011{
4012 u32 dsp = INL (nc_dsp);
4013 u32 dsa = INL (nc_dsa);
4014 ccb_p cp = sym_ccb_from_dsa(np, dsa);
4015
4016 /*
4017 * If we haven't been interrupted inside the SCRIPTS
4018 * critical pathes, we can safely restart the SCRIPTS
4019 * and trust the DSA value if it matches a CCB.
4020 */
4021 if ((!(dsp > SCRIPTA_BA (np, getjob_begin) &&
4022 dsp < SCRIPTA_BA (np, getjob_end) + 1)) &&
4023 (!(dsp > SCRIPTA_BA (np, ungetjob) &&
4024 dsp < SCRIPTA_BA (np, reselect) + 1)) &&
4025 (!(dsp > SCRIPTB_BA (np, sel_for_abort) &&
4026 dsp < SCRIPTB_BA (np, sel_for_abort_1) + 1)) &&
4027 (!(dsp > SCRIPTA_BA (np, done) &&
4028 dsp < SCRIPTA_BA (np, done_end) + 1))) {
4029 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */
4030 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */
4031 /*
4032 * If we have a CCB, let the SCRIPTS call us back for
4033 * the handling of the error with SCRATCHA filled with
4034 * STARTPOS. This way, we will be able to freeze the
4035 * device queue and requeue awaiting IOs.
4036 */
4037 if (cp) {
4038 cp->host_status = hsts;
4039 OUTL_DSP (SCRIPTA_BA (np, complete_error));
4040 }
4041 /*
4042 * Otherwise just restart the SCRIPTS.
4043 */
4044 else {
4045 OUTL (nc_dsa, 0xffffff);
4046 OUTL_DSP (SCRIPTA_BA (np, start));
4047 }
4048 }
4049 else
4050 goto reset_all;
4051
4052 return;
4053
4054reset_all:
4055 sym_start_reset(np);
4056}
4057
4058/*
4059 * chip exception handler for selection timeout
4060 */
4061static void sym_int_sto (hcb_p np)
4062{
4063 u32 dsp = INL (nc_dsp);
4064
4065 if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
4066
4067 if (dsp == SCRIPTA_BA (np, wf_sel_done) + 8)
4068 sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
4069 else
4070 sym_start_reset(np);
4071}
4072
4073/*
4074 * chip exception handler for unexpected disconnect
4075 */
4076static void sym_int_udc (hcb_p np)
4077{
4078 printf ("%s: unexpected disconnect\n", sym_name(np));
4079 sym_recover_scsi_int(np, HS_UNEXPECTED);
4080}
4081
4082/*
4083 * chip exception handler for SCSI bus mode change
4084 *
4085 * spi2-r12 11.2.3 says a transceiver mode change must
4086 * generate a reset event and a device that detects a reset
4087 * event shall initiate a hard reset. It says also that a
4088 * device that detects a mode change shall set data transfer
4089 * mode to eight bit asynchronous, etc...
4090 * So, just reinitializing all except chip should be enough.
4091 */
4092static void sym_int_sbmc (hcb_p np)
4093{
4094 u_char scsi_mode = INB (nc_stest4) & SMODE;
4095
4096 /*
4097 * Notify user.
4098 */
4099 xpt_print_path(np->path);
4100 printf("SCSI BUS mode change from %s to %s.\n",
4101 sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
4102
4103 /*
4104 * Should suspend command processing for a few seconds and
4105 * reinitialize all except the chip.
4106 */
4107 sym_init (np, 2);
4108}
4109
4110/*
4111 * chip exception handler for SCSI parity error.
4112 *
4113 * When the chip detects a SCSI parity error and is
4114 * currently executing a (CH)MOV instruction, it does
4115 * not interrupt immediately, but tries to finish the
4116 * transfer of the current scatter entry before
4117 * interrupting. The following situations may occur:
4118 *
4119 * - The complete scatter entry has been transferred
4120 * without the device having changed phase.
4121 * The chip will then interrupt with the DSP pointing
4122 * to the instruction that follows the MOV.
4123 *
4124 * - A phase mismatch occurs before the MOV finished
4125 * and phase errors are to be handled by the C code.
4126 * The chip will then interrupt with both PAR and MA
4127 * conditions set.
4128 *
4129 * - A phase mismatch occurs before the MOV finished and
4130 * phase errors are to be handled by SCRIPTS.
4131 * The chip will load the DSP with the phase mismatch
4132 * JUMP address and interrupt the host processor.
4133 */
4134static void sym_int_par (hcb_p np, u_short sist)
4135{
4136 u_char hsts = INB (HS_PRT);
4137 u32 dsp = INL (nc_dsp);
4138 u32 dbc = INL (nc_dbc);
4139 u32 dsa = INL (nc_dsa);
4140 u_char sbcl = INB (nc_sbcl);
4141 u_char cmd = dbc >> 24;
4142 int phase = cmd & 7;
4143 ccb_p cp = sym_ccb_from_dsa(np, dsa);
4144
4145 printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
4146 sym_name(np), hsts, dbc, sbcl);
4147
4148 /*
4149 * Check that the chip is connected to the SCSI BUS.
4150 */
4151 if (!(INB (nc_scntl1) & ISCON)) {
4152 sym_recover_scsi_int(np, HS_UNEXPECTED);
4153 return;
4154 }
4155
4156 /*
4157 * If the nexus is not clearly identified, reset the bus.
4158 * We will try to do better later.
4159 */
4160 if (!cp)
4161 goto reset_all;
4162
4163 /*
4164 * Check instruction was a MOV, direction was INPUT and
4165 * ATN is asserted.
4166 */
4167 if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
4168 goto reset_all;
4169
4170 /*
4171 * Keep track of the parity error.
4172 */
4173 OUTONB (HF_PRT, HF_EXT_ERR);
4174 cp->xerr_status |= XE_PARITY_ERR;
4175
4176 /*
4177 * Prepare the message to send to the device.
4178 */
4179 np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
4180
4181 /*
4182 * If the old phase was DATA IN phase, we have to deal with
4183 * the 3 situations described above.
4184 * For other input phases (MSG IN and STATUS), the device
4185 * must resend the whole thing that failed parity checking
4186 * or signal error. So, jumping to dispatcher should be OK.
4187 */
4188 if (phase == 1 || phase == 5) {
4189 /* Phase mismatch handled by SCRIPTS */
4190 if (dsp == SCRIPTB_BA (np, pm_handle))
4191 OUTL_DSP (dsp);
4192 /* Phase mismatch handled by the C code */
4193 else if (sist & MA)
4194 sym_int_ma (np);
4195 /* No phase mismatch occurred */
4196 else {
4197 OUTL (nc_temp, dsp);
4198 OUTL_DSP (SCRIPTA_BA (np, dispatch));
4199 }
4200 }
4201 else
4202 OUTL_DSP (SCRIPTA_BA (np, clrack));
4203 return;
4204
4205reset_all:
4206 sym_start_reset(np);
4207 return;
4208}
4209
4210/*
4211 * chip exception handler for phase errors.
4212 *
4213 * We have to construct a new transfer descriptor,
4214 * to transfer the rest of the current block.
4215 */
4216static void sym_int_ma (hcb_p np)
4217{
4218 u32 dbc;
4219 u32 rest;
4220 u32 dsp;
4221 u32 dsa;
4222 u32 nxtdsp;
4223 u32 *vdsp;
4224 u32 oadr, olen;
4225 u32 *tblp;
4226 u32 newcmd;
4227 u_int delta;
4228 u_char cmd;
4229 u_char hflags, hflags0;
4230 struct sym_pmc *pm;
4231 ccb_p cp;
4232
4233 dsp = INL (nc_dsp);
4234 dbc = INL (nc_dbc);
4235 dsa = INL (nc_dsa);
4236
4237 cmd = dbc >> 24;
4238 rest = dbc & 0xffffff;
4239 delta = 0;
4240
4241 /*
4242 * locate matching cp if any.
4243 */
4244 cp = sym_ccb_from_dsa(np, dsa);
4245
4246 /*
4247 * Donnot take into account dma fifo and various buffers in
4248 * INPUT phase since the chip flushes everything before
4249 * raising the MA interrupt for interrupted INPUT phases.
4250 * For DATA IN phase, we will check for the SWIDE later.
4251 */
4252 if ((cmd & 7) != 1 && (cmd & 7) != 5) {
4253 u_char ss0, ss2;
4254
4255 if (np->features & FE_DFBC)
4256 delta = INW (nc_dfbc);
4257 else {
4258 u32 dfifo;
4259
4260 /*
4261 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
4262 */
4263 dfifo = INL(nc_dfifo);
4264
4265 /*
4266 * Calculate remaining bytes in DMA fifo.
4267 * (CTEST5 = dfifo >> 16)
4268 */
4269 if (dfifo & (DFS << 16))
4270 delta = ((((dfifo >> 8) & 0x300) |
4271 (dfifo & 0xff)) - rest) & 0x3ff;
4272 else
4273 delta = ((dfifo & 0xff) - rest) & 0x7f;
4274 }
4275
4276 /*
4277 * The data in the dma fifo has not been transfered to
4278 * the target -> add the amount to the rest
4279 * and clear the data.
4280 * Check the sstat2 register in case of wide transfer.
4281 */
4282 rest += delta;
4283 ss0 = INB (nc_sstat0);
4284 if (ss0 & OLF) rest++;
4285 if (!(np->features & FE_C10))
4286 if (ss0 & ORF) rest++;
4287 if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
4288 ss2 = INB (nc_sstat2);
4289 if (ss2 & OLF1) rest++;
4290 if (!(np->features & FE_C10))
4291 if (ss2 & ORF1) rest++;
4292 };
4293
4294 /*
4295 * Clear fifos.
4296 */
4297 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */
4298 OUTB (nc_stest3, TE|CSF); /* scsi fifo */
4299 }
4300
4301 /*
4302 * log the information
4303 */
4304 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
4305 printf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7,
4306 (unsigned) rest, (unsigned) delta);
4307
4308 /*
4309 * try to find the interrupted script command,
4310 * and the address at which to continue.
4311 */
4312 vdsp = 0;
4313 nxtdsp = 0;
4314 if (dsp > np->scripta_ba &&
4315 dsp <= np->scripta_ba + np->scripta_sz) {
4316 vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
4317 nxtdsp = dsp;
4318 }
4319 else if (dsp > np->scriptb_ba &&
4320 dsp <= np->scriptb_ba + np->scriptb_sz) {
4321 vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
4322 nxtdsp = dsp;
4323 }
4324
4325 /*
4326 * log the information
4327 */
4328 if (DEBUG_FLAGS & DEBUG_PHASE) {
4329 printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
4330 cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
4331 };
4332
4333 if (!vdsp) {
4334 printf ("%s: interrupted SCRIPT address not found.\n",
4335 sym_name (np));
4336 goto reset_all;
4337 }
4338
4339 if (!cp) {
4340 printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
4341 sym_name (np));
4342 goto reset_all;
4343 }
4344
4345 /*
4346 * get old startaddress and old length.
4347 */
4348 oadr = scr_to_cpu(vdsp[1]);
4349
4350 if (cmd & 0x10) { /* Table indirect */
4351 tblp = (u32 *) ((char*) &cp->phys + oadr);
4352 olen = scr_to_cpu(tblp[0]);
4353 oadr = scr_to_cpu(tblp[1]);
4354 } else {
4355 tblp = (u32 *) 0;
4356 olen = scr_to_cpu(vdsp[0]) & 0xffffff;
4357 };
4358
4359 if (DEBUG_FLAGS & DEBUG_PHASE) {
4360 printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
4361 (unsigned) (scr_to_cpu(vdsp[0]) >> 24),
4362 tblp,
4363 (unsigned) olen,
4364 (unsigned) oadr);
4365 };
4366
4367 /*
4368 * check cmd against assumed interrupted script command.
4369 * If dt data phase, the MOVE instruction hasn't bit 4 of
4370 * the phase.
4371 */
4372 if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
4373 PRINT_ADDR(cp);
4374 printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
4375 (unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24);
4376
4377 goto reset_all;
4378 };
4379
4380 /*
4381 * if old phase not dataphase, leave here.
4382 */
4383 if (cmd & 2) {
4384 PRINT_ADDR(cp);
4385 printf ("phase change %x-%x %d@%08x resid=%d.\n",
4386 cmd&7, INB(nc_sbcl)&7, (unsigned)olen,
4387 (unsigned)oadr, (unsigned)rest);
4388 goto unexpected_phase;
4389 };
4390
4391 /*
4392 * Choose the correct PM save area.
4393 *
4394 * Look at the PM_SAVE SCRIPT if you want to understand
4395 * this stuff. The equivalent code is implemented in
4396 * SCRIPTS for the 895A, 896 and 1010 that are able to
4397 * handle PM from the SCRIPTS processor.
4398 */
4399 hflags0 = INB (HF_PRT);
4400 hflags = hflags0;
4401
4402 if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
4403 if (hflags & HF_IN_PM0)
4404 nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
4405 else if (hflags & HF_IN_PM1)
4406 nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
4407
4408 if (hflags & HF_DP_SAVED)
4409 hflags ^= HF_ACT_PM;
4410 }
4411
4412 if (!(hflags & HF_ACT_PM)) {
4413 pm = &cp->phys.pm0;
4414 newcmd = SCRIPTA_BA (np, pm0_data);
4415 }
4416 else {
4417 pm = &cp->phys.pm1;
4418 newcmd = SCRIPTA_BA (np, pm1_data);
4419 }
4420
4421 hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
4422 if (hflags != hflags0)
4423 OUTB (HF_PRT, hflags);
4424
4425 /*
4426 * fillin the phase mismatch context
4427 */
4428 pm->sg.addr = cpu_to_scr(oadr + olen - rest);
4429 pm->sg.size = cpu_to_scr(rest);
4430 pm->ret = cpu_to_scr(nxtdsp);
4431
4432 /*
4433 * If we have a SWIDE,
4434 * - prepare the address to write the SWIDE from SCRIPTS,
4435 * - compute the SCRIPTS address to restart from,
4436 * - move current data pointer context by one byte.
4437 */
4438 nxtdsp = SCRIPTA_BA (np, dispatch);
4439 if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
4440 (INB (nc_scntl2) & WSR)) {
4441 u32 tmp;
4442
4443 /*
4444 * Set up the table indirect for the MOVE
4445 * of the residual byte and adjust the data
4446 * pointer context.
4447 */
4448 tmp = scr_to_cpu(pm->sg.addr);
4449 cp->phys.wresid.addr = cpu_to_scr(tmp);
4450 pm->sg.addr = cpu_to_scr(tmp + 1);
4451 tmp = scr_to_cpu(pm->sg.size);
4452 cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
4453 pm->sg.size = cpu_to_scr(tmp - 1);
4454
4455 /*
4456 * If only the residual byte is to be moved,
4457 * no PM context is needed.
4458 */
4459 if ((tmp&0xffffff) == 1)
4460 newcmd = pm->ret;
4461
4462 /*
4463 * Prepare the address of SCRIPTS that will
4464 * move the residual byte to memory.
4465 */
4466 nxtdsp = SCRIPTB_BA (np, wsr_ma_helper);
4467 }
4468
4469 if (DEBUG_FLAGS & DEBUG_PHASE) {
4470 PRINT_ADDR(cp);
4471 printf ("PM %x %x %x / %x %x %x.\n",
4472 hflags0, hflags, newcmd,
4473 (unsigned)scr_to_cpu(pm->sg.addr),
4474 (unsigned)scr_to_cpu(pm->sg.size),
4475 (unsigned)scr_to_cpu(pm->ret));
4476 }
4477
4478 /*
4479 * Restart the SCRIPTS processor.
4480 */
4481 OUTL (nc_temp, newcmd);
4482 OUTL_DSP (nxtdsp);
4483 return;
4484
4485 /*
4486 * Unexpected phase changes that occurs when the current phase
4487 * is not a DATA IN or DATA OUT phase are due to error conditions.
4488 * Such event may only happen when the SCRIPTS is using a
4489 * multibyte SCSI MOVE.
4490 *
4491 * Phase change Some possible cause
4492 *
4493 * COMMAND --> MSG IN SCSI parity error detected by target.
4494 * COMMAND --> STATUS Bad command or refused by target.
4495 * MSG OUT --> MSG IN Message rejected by target.
4496 * MSG OUT --> COMMAND Bogus target that discards extended
4497 * negotiation messages.
4498 *
4499 * The code below does not care of the new phase and so
4500 * trusts the target. Why to annoy it ?
4501 * If the interrupted phase is COMMAND phase, we restart at
4502 * dispatcher.
4503 * If a target does not get all the messages after selection,
4504 * the code assumes blindly that the target discards extended
4505 * messages and clears the negotiation status.
4506 * If the target does not want all our response to negotiation,
4507 * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
4508 * bloat for such a should_not_happen situation).
4509 * In all other situation, we reset the BUS.
4510 * Are these assumptions reasonnable ? (Wait and see ...)
4511 */
4512unexpected_phase:
4513 dsp -= 8;
4514 nxtdsp = 0;
4515
4516 switch (cmd & 7) {
4517 case 2: /* COMMAND phase */
4518 nxtdsp = SCRIPTA_BA (np, dispatch);
4519 break;
4520#if 0
4521 case 3: /* STATUS phase */
4522 nxtdsp = SCRIPTA_BA (np, dispatch);
4523 break;
4524#endif
4525 case 6: /* MSG OUT phase */
4526 /*
4527 * If the device may want to use untagged when we want
4528 * tagged, we prepare an IDENTIFY without disc. granted,
4529 * since we will not be able to handle reselect.
4530 * Otherwise, we just don't care.
4531 */
4532 if (dsp == SCRIPTA_BA (np, send_ident)) {
4533 if (cp->tag != NO_TAG && olen - rest <= 3) {
4534 cp->host_status = HS_BUSY;
4535 np->msgout[0] = M_IDENTIFY | cp->lun;
4536 nxtdsp = SCRIPTB_BA (np, ident_break_atn);
4537 }
4538 else
4539 nxtdsp = SCRIPTB_BA (np, ident_break);
4540 }
4541 else if (dsp == SCRIPTB_BA (np, send_wdtr) ||
4542 dsp == SCRIPTB_BA (np, send_sdtr) ||
4543 dsp == SCRIPTB_BA (np, send_ppr)) {
4544 nxtdsp = SCRIPTB_BA (np, nego_bad_phase);
4545 }
4546 break;
4547#if 0
4548 case 7: /* MSG IN phase */
4549 nxtdsp = SCRIPTA_BA (np, clrack);
4550 break;
4551#endif
4552 }
4553
4554 if (nxtdsp) {
4555 OUTL_DSP (nxtdsp);
4556 return;
4557 }
4558
4559reset_all:
4560 sym_start_reset(np);
4561}
4562
4563/*
4564 * Dequeue from the START queue all CCBs that match
4565 * a given target/lun/task condition (-1 means all),
4566 * and move them from the BUSY queue to the COMP queue
4567 * with CAM_REQUEUE_REQ status condition.
4568 * This function is used during error handling/recovery.
4569 * It is called with SCRIPTS not running.
4570 */
4571static int
4572sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task)
4573{
4574 int j;
4575 ccb_p cp;
4576
4577 /*
4578 * Make sure the starting index is within range.
4579 */
4580 assert((i >= 0) && (i < 2*MAX_QUEUE));
4581
4582 /*
4583 * Walk until end of START queue and dequeue every job
4584 * that matches the target/lun/task condition.
4585 */
4586 j = i;
4587 while (i != np->squeueput) {
4588 cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
4589 assert(cp);
4590#ifdef SYM_CONF_IARB_SUPPORT
4591 /* Forget hints for IARB, they may be no longer relevant */
4592 cp->host_flags &= ~HF_HINT_IARB;
4593#endif
4594 if ((target == -1 || cp->target == target) &&
4595 (lun == -1 || cp->lun == lun) &&
4596 (task == -1 || cp->tag == task)) {
4597 sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ);
4598 sym_remque(&cp->link_ccbq);
4599 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
4600 }
4601 else {
4602 if (i != j)
4603 np->squeue[j] = np->squeue[i];
4604 if ((j += 2) >= MAX_QUEUE*2) j = 0;
4605 }
4606 if ((i += 2) >= MAX_QUEUE*2) i = 0;
4607 }
4608 if (i != j) /* Copy back the idle task if needed */
4609 np->squeue[j] = np->squeue[i];
4610 np->squeueput = j; /* Update our current start queue pointer */
4611
4612 return (i - j) / 2;
4613}
4614
4615/*
4616 * Complete all CCBs queued to the COMP queue.
4617 *
4618 * These CCBs are assumed:
4619 * - Not to be referenced either by devices or
4620 * SCRIPTS-related queues and datas.
4621 * - To have to be completed with an error condition
4622 * or requeued.
4623 *
4624 * The device queue freeze count is incremented
4625 * for each CCB that does not prevent this.
4626 * This function is called when all CCBs involved
4627 * in error handling/recovery have been reaped.
4628 */
4629static void
4630sym_flush_comp_queue(hcb_p np, int cam_status)
4631{
4632 SYM_QUEHEAD *qp;
4633 ccb_p cp;
4634
4635 while ((qp = sym_remque_head(&np->comp_ccbq)) != 0) {
4636 union ccb *ccb;
4637 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4638 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4639 /* Leave quiet CCBs waiting for resources */
4640 if (cp->host_status == HS_WAIT)
4641 continue;
4642 ccb = cp->cam_ccb;
4643 if (cam_status)
4644 sym_set_cam_status(ccb, cam_status);
4645 sym_free_ccb(np, cp);
4646 sym_freeze_cam_ccb(ccb);
4647 sym_xpt_done(np, ccb);
4648 }
4649}
4650
4651/*
4652 * chip handler for bad SCSI status condition
4653 *
4654 * In case of bad SCSI status, we unqueue all the tasks
4655 * currently queued to the controller but not yet started
4656 * and then restart the SCRIPTS processor immediately.
4657 *
4658 * QUEUE FULL and BUSY conditions are handled the same way.
4659 * Basically all the not yet started tasks are requeued in
4660 * device queue and the queue is frozen until a completion.
4661 *
4662 * For CHECK CONDITION and COMMAND TERMINATED status, we use
4663 * the CCB of the failed command to prepare a REQUEST SENSE
4664 * SCSI command and queue it to the controller queue.
4665 *
4666 * SCRATCHA is assumed to have been loaded with STARTPOS
4667 * before the SCRIPTS called the C code.
4668 */
4669static void sym_sir_bad_scsi_status(hcb_p np, int num, ccb_p cp)
4670{
4671 tcb_p tp = &np->target[cp->target];
4672 u32 startp;
4673 u_char s_status = cp->ssss_status;
4674 u_char h_flags = cp->host_flags;
4675 int msglen;
4676 int nego;
4677 int i;
4678
4679 /*
4680 * Compute the index of the next job to start from SCRIPTS.
4681 */
4682 i = (INL (nc_scratcha) - np->squeue_ba) / 4;
4683
4684 /*
4685 * The last CCB queued used for IARB hint may be
4686 * no longer relevant. Forget it.
4687 */
4688#ifdef SYM_CONF_IARB_SUPPORT
4689 if (np->last_cp)
4690 np->last_cp = 0;
4691#endif
4692
4693 /*
4694 * Now deal with the SCSI status.
4695 */
4696 switch(s_status) {
4697 case S_BUSY:
4698 case S_QUEUE_FULL:
4699 if (sym_verbose >= 2) {
4700 PRINT_ADDR(cp);
4701 printf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
4702 }
4703 default: /* S_INT, S_INT_COND_MET, S_CONFLICT */
4704 sym_complete_error (np, cp);
4705 break;
4706 case S_TERMINATED:
4707 case S_CHECK_COND:
4708 /*
4709 * If we get an SCSI error when requesting sense, give up.
4710 */
4711 if (h_flags & HF_SENSE) {
4712 sym_complete_error (np, cp);
4713 break;
4714 }
4715
4716 /*
4717 * Dequeue all queued CCBs for that device not yet started,
4718 * and restart the SCRIPTS processor immediately.
4719 */
4720 (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
4721 OUTL_DSP (SCRIPTA_BA (np, start));
4722
4723 /*
4724 * Save some info of the actual IO.
4725 * Compute the data residual.
4726 */
4727 cp->sv_scsi_status = cp->ssss_status;
4728 cp->sv_xerr_status = cp->xerr_status;
4729 cp->sv_resid = sym_compute_residual(np, cp);
4730
4731 /*
4732 * Prepare all needed data structures for
4733 * requesting sense data.
4734 */
4735
4736 /*
4737 * identify message
4738 */
4739 cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun;
4740 msglen = 1;
4741
4742 /*
4743 * If we are currently using anything different from
4744 * async. 8 bit data transfers with that target,
4745 * start a negotiation, since the device may want
4746 * to report us a UNIT ATTENTION condition due to
4747 * a cause we currently ignore, and we donnot want
4748 * to be stuck with WIDE and/or SYNC data transfer.
4749 *
4750 * cp->nego_status is filled by sym_prepare_nego().
4751 */
4752 cp->nego_status = 0;
4753 nego = 0;
4754 if (tp->tinfo.current.options & PPR_OPT_MASK)
4755 nego = NS_PPR;
4756 else if (tp->tinfo.current.width != BUS_8_BIT)
4757 nego = NS_WIDE;
4758 else if (tp->tinfo.current.offset != 0)
4759 nego = NS_SYNC;
4760 if (nego)
4761 msglen +=
4762 sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]);
4763 /*
4764 * Message table indirect structure.
4765 */
4766 cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg2));
4767 cp->phys.smsg.size = cpu_to_scr(msglen);
4768
4769 /*
4770 * sense command
4771 */
4772 cp->phys.cmd.addr = cpu_to_scr(CCB_BA (cp, sensecmd));
4773 cp->phys.cmd.size = cpu_to_scr(6);
4774
4775 /*
4776 * patch requested size into sense command
4777 */
4778 cp->sensecmd[0] = 0x03;
4779 cp->sensecmd[1] = cp->lun << 5;
4780 if (tp->tinfo.current.scsi_version > 2 || cp->lun > 7)
4781 cp->sensecmd[1] = 0;
4782 cp->sensecmd[4] = SYM_SNS_BBUF_LEN;
4783 cp->data_len = SYM_SNS_BBUF_LEN;
4784
4785 /*
4786 * sense data
4787 */
4788 bzero(cp->sns_bbuf, SYM_SNS_BBUF_LEN);
4789 cp->phys.sense.addr = cpu_to_scr(vtobus(cp->sns_bbuf));
4790 cp->phys.sense.size = cpu_to_scr(SYM_SNS_BBUF_LEN);
4791
4792 /*
4793 * requeue the command.
4794 */
4795 startp = SCRIPTB_BA (np, sdata_in);
4796
4797 cp->phys.head.savep = cpu_to_scr(startp);
4798 cp->phys.head.goalp = cpu_to_scr(startp + 16);
4799 cp->phys.head.lastp = cpu_to_scr(startp);
4800 cp->startp = cpu_to_scr(startp);
4801
4802 cp->actualquirks = SYM_QUIRK_AUTOSAVE;
4803 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
4804 cp->ssss_status = S_ILLEGAL;
4805 cp->host_flags = (HF_SENSE|HF_DATA_IN);
4806 cp->xerr_status = 0;
4807 cp->extra_bytes = 0;
4808
4809 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select));
4810
4811 /*
4812 * Requeue the command.
4813 */
4814 sym_put_start_queue(np, cp);
4815
4816 /*
4817 * Give back to upper layer everything we have dequeued.
4818 */
4819 sym_flush_comp_queue(np, 0);
4820 break;
4821 }
4822}
4823
4824/*
4825 * After a device has accepted some management message
4826 * as BUS DEVICE RESET, ABORT TASK, etc ..., or when
4827 * a device signals a UNIT ATTENTION condition, some
4828 * tasks are thrown away by the device. We are required
4829 * to reflect that on our tasks list since the device
4830 * will never complete these tasks.
4831 *
4832 * This function move from the BUSY queue to the COMP
4833 * queue all disconnected CCBs for a given target that
4834 * match the following criteria:
4835 * - lun=-1 means any logical UNIT otherwise a given one.
4836 * - task=-1 means any task, otherwise a given one.
4837 */
4838static int
4839sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task)
4840{
4841 SYM_QUEHEAD qtmp, *qp;
4842 int i = 0;
4843 ccb_p cp;
4844
4845 /*
4846 * Move the entire BUSY queue to our temporary queue.
4847 */
4848 sym_que_init(&qtmp);
4849 sym_que_splice(&np->busy_ccbq, &qtmp);
4850 sym_que_init(&np->busy_ccbq);
4851
4852 /*
4853 * Put all CCBs that matches our criteria into
4854 * the COMP queue and put back other ones into
4855 * the BUSY queue.
4856 */
4857 while ((qp = sym_remque_head(&qtmp)) != 0) {
4858 union ccb *ccb;
4859 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4860 ccb = cp->cam_ccb;
4861 if (cp->host_status != HS_DISCONNECT ||
4862 cp->target != target ||
4863 (lun != -1 && cp->lun != lun) ||
4864 (task != -1 &&
4865 (cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
4866 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4867 continue;
4868 }
4869 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
4870
4871 /* Preserve the software timeout condition */
4872 if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT)
4873 sym_set_cam_status(ccb, cam_status);
4874 ++i;
4875#if 0
4876printf("XXXX TASK @%p CLEARED\n", cp);
4877#endif
4878 }
4879 return i;
4880}
4881
4882/*
4883 * chip handler for TASKS recovery
4884 *
4885 * We cannot safely abort a command, while the SCRIPTS
4886 * processor is running, since we just would be in race
4887 * with it.
4888 *
4889 * As long as we have tasks to abort, we keep the SEM
4890 * bit set in the ISTAT. When this bit is set, the
4891 * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
4892 * each time it enters the scheduler.
4893 *
4894 * If we have to reset a target, clear tasks of a unit,
4895 * or to perform the abort of a disconnected job, we
4896 * restart the SCRIPTS for selecting the target. Once
4897 * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
4898 * If it loses arbitration, the SCRIPTS will interrupt again
4899 * the next time it will enter its scheduler, and so on ...
4900 *
4901 * On SIR_TARGET_SELECTED, we scan for the more
4902 * appropriate thing to do:
4903 *
4904 * - If nothing, we just sent a M_ABORT message to the
4905 * target to get rid of the useless SCSI bus ownership.
4906 * According to the specs, no tasks shall be affected.
4907 * - If the target is to be reset, we send it a M_RESET
4908 * message.
4909 * - If a logical UNIT is to be cleared , we send the
4910 * IDENTIFY(lun) + M_ABORT.
4911 * - If an untagged task is to be aborted, we send the
4912 * IDENTIFY(lun) + M_ABORT.
4913 * - If a tagged task is to be aborted, we send the
4914 * IDENTIFY(lun) + task attributes + M_ABORT_TAG.
4915 *
4916 * Once our 'kiss of death' :) message has been accepted
4917 * by the target, the SCRIPTS interrupts again
4918 * (SIR_ABORT_SENT). On this interrupt, we complete
4919 * all the CCBs that should have been aborted by the
4920 * target according to our message.
4921 */
4922static void sym_sir_task_recovery(hcb_p np, int num)
4923{
4924 SYM_QUEHEAD *qp;
4925 ccb_p cp;
4926 tcb_p tp;
4927 int target=-1, lun=-1, task;
4928 int i, k;
4929
4930 switch(num) {
4931 /*
4932 * The SCRIPTS processor stopped before starting
4933 * the next command in order to allow us to perform
4934 * some task recovery.
4935 */
4936 case SIR_SCRIPT_STOPPED:
4937 /*
4938 * Do we have any target to reset or unit to clear ?
4939 */
4940 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
4941 tp = &np->target[i];
4942 if (tp->to_reset ||
4943 (tp->lun0p && tp->lun0p->to_clear)) {
4944 target = i;
4945 break;
4946 }
4947 if (!tp->lunmp)
4948 continue;
4949 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
4950 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
4951 target = i;
4952 break;
4953 }
4954 }
4955 if (target != -1)
4956 break;
4957 }
4958
4959 /*
4960 * If not, walk the busy queue for any
4961 * disconnected CCB to be aborted.
4962 */
4963 if (target == -1) {
4964 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
4965 cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
4966 if (cp->host_status != HS_DISCONNECT)
4967 continue;
4968 if (cp->to_abort) {
4969 target = cp->target;
4970 break;
4971 }
4972 }
4973 }
4974
4975 /*
4976 * If some target is to be selected,
4977 * prepare and start the selection.
4978 */
4979 if (target != -1) {
4980 tp = &np->target[target];
4981 np->abrt_sel.sel_id = target;
4982 np->abrt_sel.sel_scntl3 = tp->head.wval;
4983 np->abrt_sel.sel_sxfer = tp->head.sval;
4984 OUTL(nc_dsa, np->hcb_ba);
4985 OUTL_DSP (SCRIPTB_BA (np, sel_for_abort));
4986 return;
4987 }
4988
4989 /*
4990 * Now look for a CCB to abort that haven't started yet.
4991 * Btw, the SCRIPTS processor is still stopped, so
4992 * we are not in race.
4993 */
4994 i = 0;
4995 cp = 0;
4996 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
4997 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4998 if (cp->host_status != HS_BUSY &&
4999 cp->host_status != HS_NEGOTIATE)
5000 continue;
5001 if (!cp->to_abort)
5002 continue;
5003#ifdef SYM_CONF_IARB_SUPPORT
5004 /*
5005 * If we are using IMMEDIATE ARBITRATION, we donnot
5006 * want to cancel the last queued CCB, since the
5007 * SCRIPTS may have anticipated the selection.
5008 */
5009 if (cp == np->last_cp) {
5010 cp->to_abort = 0;
5011 continue;
5012 }
5013#endif
5014 i = 1; /* Means we have found some */
5015 break;
5016 }
5017 if (!i) {
5018 /*
5019 * We are done, so we donnot need
5020 * to synchronize with the SCRIPTS anylonger.
5021 * Remove the SEM flag from the ISTAT.
5022 */
5023 np->istat_sem = 0;
5024 OUTB (nc_istat, SIGP);
5025 break;
5026 }
5027 /*
5028 * Compute index of next position in the start
5029 * queue the SCRIPTS intends to start and dequeue
5030 * all CCBs for that device that haven't been started.
5031 */
5032 i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5033 i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
5034
5035 /*
5036 * Make sure at least our IO to abort has been dequeued.
5037 */
5038 assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ);
5039
5040 /*
5041 * Keep track in cam status of the reason of the abort.
5042 */
5043 if (cp->to_abort == 2)
5044 sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
5045 else
5046 sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
5047
5048 /*
5049 * Complete with error everything that we have dequeued.
5050 */
5051 sym_flush_comp_queue(np, 0);
5052 break;
5053 /*
5054 * The SCRIPTS processor has selected a target
5055 * we may have some manual recovery to perform for.
5056 */
5057 case SIR_TARGET_SELECTED:
5058 target = (INB (nc_sdid) & 0xf);
5059 tp = &np->target[target];
5060
5061 np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
5062
5063 /*
5064 * If the target is to be reset, prepare a
5065 * M_RESET message and clear the to_reset flag
5066 * since we donnot expect this operation to fail.
5067 */
5068 if (tp->to_reset) {
5069 np->abrt_msg[0] = M_RESET;
5070 np->abrt_tbl.size = 1;
5071 tp->to_reset = 0;
5072 break;
5073 }
5074
5075 /*
5076 * Otherwise, look for some logical unit to be cleared.
5077 */
5078 if (tp->lun0p && tp->lun0p->to_clear)
5079 lun = 0;
5080 else if (tp->lunmp) {
5081 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
5082 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
5083 lun = k;
5084 break;
5085 }
5086 }
5087 }
5088
5089 /*
5090 * If a logical unit is to be cleared, prepare
5091 * an IDENTIFY(lun) + ABORT MESSAGE.
5092 */
5093 if (lun != -1) {
5094 lcb_p lp = sym_lp(np, tp, lun);
5095 lp->to_clear = 0; /* We donnot expect to fail here */
5096 np->abrt_msg[0] = M_IDENTIFY | lun;
5097 np->abrt_msg[1] = M_ABORT;
5098 np->abrt_tbl.size = 2;
5099 break;
5100 }
5101
5102 /*
5103 * Otherwise, look for some disconnected job to
5104 * abort for this target.
5105 */
5106 i = 0;
5107 cp = 0;
5108 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5109 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5110 if (cp->host_status != HS_DISCONNECT)
5111 continue;
5112 if (cp->target != target)
5113 continue;
5114 if (!cp->to_abort)
5115 continue;
5116 i = 1; /* Means we have some */
5117 break;
5118 }
5119
5120 /*
5121 * If we have none, probably since the device has
5122 * completed the command before we won abitration,
5123 * send a M_ABORT message without IDENTIFY.
5124 * According to the specs, the device must just
5125 * disconnect the BUS and not abort any task.
5126 */
5127 if (!i) {
5128 np->abrt_msg[0] = M_ABORT;
5129 np->abrt_tbl.size = 1;
5130 break;
5131 }
5132
5133 /*
5134 * We have some task to abort.
5135 * Set the IDENTIFY(lun)
5136 */
5137 np->abrt_msg[0] = M_IDENTIFY | cp->lun;
5138
5139 /*
5140 * If we want to abort an untagged command, we
5141 * will send an IDENTIFY + M_ABORT.
5142 * Otherwise (tagged command), we will send
5143 * an IDENTIFY + task attributes + ABORT TAG.
5144 */
5145 if (cp->tag == NO_TAG) {
5146 np->abrt_msg[1] = M_ABORT;
5147 np->abrt_tbl.size = 2;
5148 }
5149 else {
5150 np->abrt_msg[1] = cp->scsi_smsg[1];
5151 np->abrt_msg[2] = cp->scsi_smsg[2];
5152 np->abrt_msg[3] = M_ABORT_TAG;
5153 np->abrt_tbl.size = 4;
5154 }
5155 /*
5156 * Keep track of software timeout condition, since the
5157 * peripheral driver may not count retries on abort
5158 * conditions not due to timeout.
5159 */
5160 if (cp->to_abort == 2)
5161 sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
5162 cp->to_abort = 0; /* We donnot expect to fail here */
5163 break;
5164
5165 /*
5166 * The target has accepted our message and switched
5167 * to BUS FREE phase as we expected.
5168 */
5169 case SIR_ABORT_SENT:
5170 target = (INB (nc_sdid) & 0xf);
5171 tp = &np->target[target];
5172
5173 /*
5174 ** If we didn't abort anything, leave here.
5175 */
5176 if (np->abrt_msg[0] == M_ABORT)
5177 break;
5178
5179 /*
5180 * If we sent a M_RESET, then a hardware reset has
5181 * been performed by the target.
5182 * - Reset everything to async 8 bit
5183 * - Tell ourself to negotiate next time :-)
5184 * - Prepare to clear all disconnected CCBs for
5185 * this target from our task list (lun=task=-1)
5186 */
5187 lun = -1;
5188 task = -1;
5189 if (np->abrt_msg[0] == M_RESET) {
5190 tp->head.sval = 0;
5191 tp->head.wval = np->rv_scntl3;
5192 tp->head.uval = 0;
5193 tp->tinfo.current.period = 0;
5194 tp->tinfo.current.offset = 0;
5195 tp->tinfo.current.width = BUS_8_BIT;
5196 tp->tinfo.current.options = 0;
5197 }
5198
5199 /*
5200 * Otherwise, check for the LUN and TASK(s)
5201 * concerned by the cancelation.
5202 * If it is not ABORT_TAG then it is CLEAR_QUEUE
5203 * or an ABORT message :-)
5204 */
5205 else {
5206 lun = np->abrt_msg[0] & 0x3f;
5207 if (np->abrt_msg[1] == M_ABORT_TAG)
5208 task = np->abrt_msg[2];
5209 }
5210
5211 /*
5212 * Complete all the CCBs the device should have
5213 * aborted due to our 'kiss of death' message.
5214 */
5215 i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5216 (void) sym_dequeue_from_squeue(np, i, target, lun, -1);
5217 (void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task);
5218 sym_flush_comp_queue(np, 0);
5219
5220 /*
5221 * If we sent a BDR, make uper layer aware of that.
5222 */
5223 if (np->abrt_msg[0] == M_RESET)
5224 xpt_async(AC_SENT_BDR, np->path, NULL);
5225 break;
5226 }
5227
5228 /*
5229 * Print to the log the message we intend to send.
5230 */
5231 if (num == SIR_TARGET_SELECTED) {
5232 PRINT_TARGET(np, target);
5233 sym_printl_hex("control msgout:", np->abrt_msg,
5234 np->abrt_tbl.size);
5235 np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
5236 }
5237
5238 /*
5239 * Let the SCRIPTS processor continue.
5240 */
5241 OUTONB_STD ();
5242}
5243
5244/*
5245 * Gerard's alchemy:) that deals with with the data
5246 * pointer for both MDP and the residual calculation.
5247 *
5248 * I didn't want to bloat the code by more than 200
5249 * lignes for the handling of both MDP and the residual.
5250 * This has been achieved by using a data pointer
5251 * representation consisting in an index in the data
5252 * array (dp_sg) and a negative offset (dp_ofs) that
5253 * have the following meaning:
5254 *
5255 * - dp_sg = SYM_CONF_MAX_SG
5256 * we are at the end of the data script.
5257 * - dp_sg < SYM_CONF_MAX_SG
5258 * dp_sg points to the next entry of the scatter array
5259 * we want to transfer.
5260 * - dp_ofs < 0
5261 * dp_ofs represents the residual of bytes of the
5262 * previous entry scatter entry we will send first.
5263 * - dp_ofs = 0
5264 * no residual to send first.
5265 *
5266 * The function sym_evaluate_dp() accepts an arbitray
5267 * offset (basically from the MDP message) and returns
5268 * the corresponding values of dp_sg and dp_ofs.
5269 */
5270
5271static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs)
5272{
5273 u32 dp_scr;
5274 int dp_ofs, dp_sg, dp_sgmin;
5275 int tmp;
5276 struct sym_pmc *pm;
5277
5278 /*
5279 * Compute the resulted data pointer in term of a script
5280 * address within some DATA script and a signed byte offset.
5281 */
5282 dp_scr = scr;
5283 dp_ofs = *ofs;
5284 if (dp_scr == SCRIPTA_BA (np, pm0_data))
5285 pm = &cp->phys.pm0;
5286 else if (dp_scr == SCRIPTA_BA (np, pm1_data))
5287 pm = &cp->phys.pm1;
5288 else
5289 pm = 0;
5290
5291 if (pm) {
5292 dp_scr = scr_to_cpu(pm->ret);
5293 dp_ofs -= scr_to_cpu(pm->sg.size);
5294 }
5295
5296 /*
5297 * If we are auto-sensing, then we are done.
5298 */
5299 if (cp->host_flags & HF_SENSE) {
5300 *ofs = dp_ofs;
5301 return 0;
5302 }
5303
5304 /*
5305 * Deduce the index of the sg entry.
5306 * Keep track of the index of the first valid entry.
5307 * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
5308 * end of the data.
5309 */
5310 tmp = scr_to_cpu(cp->phys.head.goalp);
5311 dp_sg = SYM_CONF_MAX_SG;
5312 if (dp_scr != tmp)
5313 dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
5314 dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
5315
5316 /*
5317 * Move to the sg entry the data pointer belongs to.
5318 *
5319 * If we are inside the data area, we expect result to be:
5320 *
5321 * Either,
5322 * dp_ofs = 0 and dp_sg is the index of the sg entry
5323 * the data pointer belongs to (or the end of the data)
5324 * Or,
5325 * dp_ofs < 0 and dp_sg is the index of the sg entry
5326 * the data pointer belongs to + 1.
5327 */
5328 if (dp_ofs < 0) {
5329 int n;
5330 while (dp_sg > dp_sgmin) {
5331 --dp_sg;
5332 tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5333 n = dp_ofs + (tmp & 0xffffff);
5334 if (n > 0) {
5335 ++dp_sg;
5336 break;
5337 }
5338 dp_ofs = n;
5339 }
5340 }
5341 else if (dp_ofs > 0) {
5342 while (dp_sg < SYM_CONF_MAX_SG) {
5343 tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5344 dp_ofs -= (tmp & 0xffffff);
5345 ++dp_sg;
5346 if (dp_ofs <= 0)
5347 break;
5348 }
5349 }
5350
5351 /*
5352 * Make sure the data pointer is inside the data area.
5353 * If not, return some error.
5354 */
5355 if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
5356 goto out_err;
5357 else if (dp_sg > SYM_CONF_MAX_SG ||
5358 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
5359 goto out_err;
5360
5361 /*
5362 * Save the extreme pointer if needed.
5363 */
5364 if (dp_sg > cp->ext_sg ||
5365 (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
5366 cp->ext_sg = dp_sg;
5367 cp->ext_ofs = dp_ofs;
5368 }
5369
5370 /*
5371 * Return data.
5372 */
5373 *ofs = dp_ofs;
5374 return dp_sg;
5375
5376out_err:
5377 return -1;
5378}
5379
5380/*
5381 * chip handler for MODIFY DATA POINTER MESSAGE
5382 *
5383 * We also call this function on IGNORE WIDE RESIDUE
5384 * messages that do not match a SWIDE full condition.
5385 * Btw, we assume in that situation that such a message
5386 * is equivalent to a MODIFY DATA POINTER (offset=-1).
5387 */
5388
5389static void sym_modify_dp(hcb_p np, tcb_p tp, ccb_p cp, int ofs)
5390{
5391 int dp_ofs = ofs;
5392 u32 dp_scr = INL (nc_temp);
5393 u32 dp_ret;
5394 u32 tmp;
5395 u_char hflags;
5396 int dp_sg;
5397 struct sym_pmc *pm;
5398
5399 /*
5400 * Not supported for auto-sense.
5401 */
5402 if (cp->host_flags & HF_SENSE)
5403 goto out_reject;
5404
5405 /*
5406 * Apply our alchemy:) (see comments in sym_evaluate_dp()),
5407 * to the resulted data pointer.
5408 */
5409 dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
5410 if (dp_sg < 0)
5411 goto out_reject;
5412
5413 /*
5414 * And our alchemy:) allows to easily calculate the data
5415 * script address we want to return for the next data phase.
5416 */
5417 dp_ret = cpu_to_scr(cp->phys.head.goalp);
5418 dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
5419
5420 /*
5421 * If offset / scatter entry is zero we donnot need
5422 * a context for the new current data pointer.
5423 */
5424 if (dp_ofs == 0) {
5425 dp_scr = dp_ret;
5426 goto out_ok;
5427 }
5428
5429 /*
5430 * Get a context for the new current data pointer.
5431 */
5432 hflags = INB (HF_PRT);
5433
5434 if (hflags & HF_DP_SAVED)
5435 hflags ^= HF_ACT_PM;
5436
5437 if (!(hflags & HF_ACT_PM)) {
5438 pm = &cp->phys.pm0;
5439 dp_scr = SCRIPTA_BA (np, pm0_data);
5440 }
5441 else {
5442 pm = &cp->phys.pm1;
5443 dp_scr = SCRIPTA_BA (np, pm1_data);
5444 }
5445
5446 hflags &= ~(HF_DP_SAVED);
5447
5448 OUTB (HF_PRT, hflags);
5449
5450 /*
5451 * Set up the new current data pointer.
5452 * ofs < 0 there, and for the next data phase, we
5453 * want to transfer part of the data of the sg entry
5454 * corresponding to index dp_sg-1 prior to returning
5455 * to the main data script.
5456 */
5457 pm->ret = cpu_to_scr(dp_ret);
5458 tmp = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
5459 tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
5460 pm->sg.addr = cpu_to_scr(tmp);
5461 pm->sg.size = cpu_to_scr(-dp_ofs);
5462
5463out_ok:
5464 OUTL (nc_temp, dp_scr);
5465 OUTL_DSP (SCRIPTA_BA (np, clrack));
5466 return;
5467
5468out_reject:
5469 OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5470}
5471
5472
5473/*
5474 * chip calculation of the data residual.
5475 *
5476 * As I used to say, the requirement of data residual
5477 * in SCSI is broken, useless and cannot be achieved
5478 * without huge complexity.
5479 * But most OSes and even the official CAM require it.
5480 * When stupidity happens to be so widely spread inside
5481 * a community, it gets hard to convince.
5482 *
5483 * Anyway, I don't care, since I am not going to use
5484 * any software that considers this data residual as
5485 * a relevant information. :)
5486 */
5487
5488static int sym_compute_residual(hcb_p np, ccb_p cp)
5489{
5490 int dp_sg, dp_sgmin, resid = 0;
5491 int dp_ofs = 0;
5492
5493 /*
5494 * Check for some data lost or just thrown away.
5495 * We are not required to be quite accurate in this
5496 * situation. Btw, if we are odd for output and the
5497 * device claims some more data, it may well happen
5498 * than our residual be zero. :-)
5499 */
5500 if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
5501 if (cp->xerr_status & XE_EXTRA_DATA)
5502 resid -= cp->extra_bytes;
5503 if (cp->xerr_status & XE_SODL_UNRUN)
5504 ++resid;
5505 if (cp->xerr_status & XE_SWIDE_OVRUN)
5506 --resid;
5507 }
5508
5509 /*
5510 * If all data has been transferred,
5511 * there is no residual.
5512 */
5513 if (cp->phys.head.lastp == cp->phys.head.goalp)
5514 return resid;
5515
5516 /*
5517 * If no data transfer occurs, or if the data
5518 * pointer is weird, return full residual.
5519 */
5520 if (cp->startp == cp->phys.head.lastp ||
5521 sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
5522 &dp_ofs) < 0) {
5523 return cp->data_len;
5524 }
5525
5526 /*
5527 * If we were auto-sensing, then we are done.
5528 */
5529 if (cp->host_flags & HF_SENSE) {
5530 return -dp_ofs;
5531 }
5532
5533 /*
5534 * We are now full comfortable in the computation
5535 * of the data residual (2's complement).
5536 */
5537 dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
5538 resid = -cp->ext_ofs;
5539 for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
5540 u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5541 resid += (tmp & 0xffffff);
5542 }
5543
5544 /*
5545 * Hopefully, the result is not too wrong.
5546 */
5547 return resid;
5548}
5549
5550/*
5551 * Print out the content of a SCSI message.
5552 */
5553
5554static int sym_show_msg (u_char * msg)
5555{
5556 u_char i;
5557 printf ("%x",*msg);
5558 if (*msg==M_EXTENDED) {
5559 for (i=1;i<8;i++) {
5560 if (i-1>msg[1]) break;
5561 printf ("-%x",msg[i]);
5562 };
5563 return (i+1);
5564 } else if ((*msg & 0xf0) == 0x20) {
5565 printf ("-%x",msg[1]);
5566 return (2);
5567 };
5568 return (1);
5569}
5570
5571static void sym_print_msg (ccb_p cp, char *label, u_char *msg)
5572{
5573 PRINT_ADDR(cp);
5574 if (label)
5575 printf ("%s: ", label);
5576
5577 (void) sym_show_msg (msg);
5578 printf (".\n");
5579}
5580
5581/*
5582 * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
5583 *
5584 * When we try to negotiate, we append the negotiation message
5585 * to the identify and (maybe) simple tag message.
5586 * The host status field is set to HS_NEGOTIATE to mark this
5587 * situation.
5588 *
5589 * If the target doesn't answer this message immediately
5590 * (as required by the standard), the SIR_NEGO_FAILED interrupt
5591 * will be raised eventually.
5592 * The handler removes the HS_NEGOTIATE status, and sets the
5593 * negotiated value to the default (async / nowide).
5594 *
5595 * If we receive a matching answer immediately, we check it
5596 * for validity, and set the values.
5597 *
5598 * If we receive a Reject message immediately, we assume the
5599 * negotiation has failed, and fall back to standard values.
5600 *
5601 * If we receive a negotiation message while not in HS_NEGOTIATE
5602 * state, it's a target initiated negotiation. We prepare a
5603 * (hopefully) valid answer, set our parameters, and send back
5604 * this answer to the target.
5605 *
5606 * If the target doesn't fetch the answer (no message out phase),
5607 * we assume the negotiation has failed, and fall back to default
5608 * settings (SIR_NEGO_PROTO interrupt).
5609 *
5610 * When we set the values, we adjust them in all ccbs belonging
5611 * to this target, in the controller's register, and in the "phys"
5612 * field of the controller's struct sym_hcb.
5613 */
5614
5615/*
5616 * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
5617 */
5618static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp)
5619{
5620 u_char chg, ofs, per, fak, div;
5621 int req = 1;
5622
5623 /*
5624 * Synchronous request message received.
5625 */
5626 if (DEBUG_FLAGS & DEBUG_NEGO) {
5627 sym_print_msg(cp, "sync msgin", np->msgin);
5628 };
5629
5630 /*
5631 * request or answer ?
5632 */
5633 if (INB (HS_PRT) == HS_NEGOTIATE) {
5634 OUTB (HS_PRT, HS_BUSY);
5635 if (cp->nego_status && cp->nego_status != NS_SYNC)
5636 goto reject_it;
5637 req = 0;
5638 }
5639
5640 /*
5641 * get requested values.
5642 */
5643 chg = 0;
5644 per = np->msgin[3];
5645 ofs = np->msgin[4];
5646
5647 /*
5648 * check values against our limits.
5649 */
5650 if (ofs) {
5651 if (ofs > np->maxoffs)
5652 {chg = 1; ofs = np->maxoffs;}
5653 if (req) {
5654 if (ofs > tp->tinfo.user.offset)
5655 {chg = 1; ofs = tp->tinfo.user.offset;}
5656 }
5657 }
5658
5659 if (ofs) {
5660 if (per < np->minsync)
5661 {chg = 1; per = np->minsync;}
5662 if (req) {
5663 if (per < tp->tinfo.user.period)
5664 {chg = 1; per = tp->tinfo.user.period;}
5665 }
5666 }
5667
5668 div = fak = 0;
5669 if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
5670 goto reject_it;
5671
5672 if (DEBUG_FLAGS & DEBUG_NEGO) {
5673 PRINT_ADDR(cp);
5674 printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
5675 ofs, per, div, fak, chg);
5676 }
5677
5678 /*
5679 * This was an answer message
5680 */
5681 if (req == 0) {
5682 if (chg) /* Answer wasn't acceptable. */
5683 goto reject_it;
5684 sym_setsync (np, cp, ofs, per, div, fak);
5685 OUTL_DSP (SCRIPTA_BA (np, clrack));
5686 return;
5687 }
5688
5689 /*
5690 * It was a request. Set value and
5691 * prepare an answer message
5692 */
5693 sym_setsync (np, cp, ofs, per, div, fak);
5694
5695 np->msgout[0] = M_EXTENDED;
5696 np->msgout[1] = 3;
5697 np->msgout[2] = M_X_SYNC_REQ;
5698 np->msgout[3] = per;
5699 np->msgout[4] = ofs;
5700
5701 cp->nego_status = NS_SYNC;
5702
5703 if (DEBUG_FLAGS & DEBUG_NEGO) {
5704 sym_print_msg(cp, "sync msgout", np->msgout);
5705 }
5706
5707 np->msgin [0] = M_NOOP;
5708
5709 OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
5710 return;
5711reject_it:
5712 sym_setsync (np, cp, 0, 0, 0, 0);
5713 OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5714}
5715
5716/*
5717 * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
5718 */
5719static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp)
5720{
5721 u_char chg, ofs, per, fak, dt, div, wide;
5722 int req = 1;
5723
5724 /*
5725 * Synchronous request message received.
5726 */
5727 if (DEBUG_FLAGS & DEBUG_NEGO) {
5728 sym_print_msg(cp, "ppr msgin", np->msgin);
5729 };
5730
5731 /*
5732 * get requested values.
5733 */
5734 chg = 0;
5735 per = np->msgin[3];
5736 ofs = np->msgin[5];
5737 wide = np->msgin[6];
5738 dt = np->msgin[7] & PPR_OPT_DT;
5739
5740 /*
5741 * request or answer ?
5742 */
5743 if (INB (HS_PRT) == HS_NEGOTIATE) {
5744 OUTB (HS_PRT, HS_BUSY);
5745 if (cp->nego_status && cp->nego_status != NS_PPR)
5746 goto reject_it;
5747 req = 0;
5748 }
5749
5750 /*
5751 * check values against our limits.
5752 */
5753 if (wide > np->maxwide)
5754 {chg = 1; wide = np->maxwide;}
5755 if (!wide || !(np->features & FE_ULTRA3))
5756 dt &= ~PPR_OPT_DT;
5757 if (req) {
5758 if (wide > tp->tinfo.user.width)
5759 {chg = 1; wide = tp->tinfo.user.width;}
5760 }
5761
5762 if (!(np->features & FE_U3EN)) /* Broken U3EN bit not supported */
5763 dt &= ~PPR_OPT_DT;
5764
5765 if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1;
5766
5767 if (ofs) {
5768 if (dt) {
5769 if (ofs > np->maxoffs_dt)
5770 {chg = 1; ofs = np->maxoffs_dt;}
5771 }
5772 else if (ofs > np->maxoffs)
5773 {chg = 1; ofs = np->maxoffs;}
5774 if (req) {
5775 if (ofs > tp->tinfo.user.offset)
5776 {chg = 1; ofs = tp->tinfo.user.offset;}
5777 }
5778 }
5779
5780 if (ofs) {
5781 if (dt) {
5782 if (per < np->minsync_dt)
5783 {chg = 1; per = np->minsync_dt;}
5784 }
5785 else if (per < np->minsync)
5786 {chg = 1; per = np->minsync;}
5787 if (req) {
5788 if (per < tp->tinfo.user.period)
5789 {chg = 1; per = tp->tinfo.user.period;}
5790 }
5791 }
5792
5793 div = fak = 0;
5794 if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
5795 goto reject_it;
5796
5797 if (DEBUG_FLAGS & DEBUG_NEGO) {
5798 PRINT_ADDR(cp);
5799 printf ("ppr: "
5800 "dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n",
5801 dt, ofs, per, wide, div, fak, chg);
5802 }
5803
5804 /*
5805 * It was an answer.
5806 */
5807 if (req == 0) {
5808 if (chg) /* Answer wasn't acceptable */
5809 goto reject_it;
5810 sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
5811 OUTL_DSP (SCRIPTA_BA (np, clrack));
5812 return;
5813 }
5814
5815 /*
5816 * It was a request. Set value and
5817 * prepare an answer message
5818 */
5819 sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
5820
5821 np->msgout[0] = M_EXTENDED;
5822 np->msgout[1] = 6;
5823 np->msgout[2] = M_X_PPR_REQ;
5824 np->msgout[3] = per;
5825 np->msgout[4] = 0;
5826 np->msgout[5] = ofs;
5827 np->msgout[6] = wide;
5828 np->msgout[7] = dt;
5829
5830 cp->nego_status = NS_PPR;
5831
5832 if (DEBUG_FLAGS & DEBUG_NEGO) {
5833 sym_print_msg(cp, "ppr msgout", np->msgout);
5834 }
5835
5836 np->msgin [0] = M_NOOP;
5837
5838 OUTL_DSP (SCRIPTB_BA (np, ppr_resp));
5839 return;
5840reject_it:
5841 sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
5842 OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5843 /*
5844 * If it was a device response that should result in
5845 * ST, we may want to try a legacy negotiation later.
5846 */
5847 if (!req && !dt) {
5848 tp->tinfo.goal.options = 0;
5849 tp->tinfo.goal.width = wide;
5850 tp->tinfo.goal.period = per;
5851 tp->tinfo.goal.offset = ofs;
5852 }
5853 return;
5854}
5855
5856/*
5857 * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
5858 */
5859static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp)
5860{
5861 u_char chg, wide;
5862 int req = 1;
5863
5864 /*
5865 * Wide request message received.
5866 */
5867 if (DEBUG_FLAGS & DEBUG_NEGO) {
5868 sym_print_msg(cp, "wide msgin", np->msgin);
5869 };
5870
5871 /*
5872 * Is it a request from the device?
5873 */
5874 if (INB (HS_PRT) == HS_NEGOTIATE) {
5875 OUTB (HS_PRT, HS_BUSY);
5876 if (cp->nego_status && cp->nego_status != NS_WIDE)
5877 goto reject_it;
5878 req = 0;
5879 }
5880
5881 /*
5882 * get requested values.
5883 */
5884 chg = 0;
5885 wide = np->msgin[3];
5886
5887 /*
5888 * check values against driver limits.
5889 */
5890 if (wide > np->maxwide)
5891 {chg = 1; wide = np->maxwide;}
5892 if (req) {
5893 if (wide > tp->tinfo.user.width)
5894 {chg = 1; wide = tp->tinfo.user.width;}
5895 }
5896
5897 if (DEBUG_FLAGS & DEBUG_NEGO) {
5898 PRINT_ADDR(cp);
5899 printf ("wdtr: wide=%d chg=%d.\n", wide, chg);
5900 }
5901
5902 /*
5903 * This was an answer message
5904 */
5905 if (req == 0) {
5906 if (chg) /* Answer wasn't acceptable. */
5907 goto reject_it;
5908 sym_setwide (np, cp, wide);
5909
5910 /*
5911 * Negotiate for SYNC immediately after WIDE response.
5912 * This allows to negotiate for both WIDE and SYNC on
5913 * a single SCSI command (Suggested by Justin Gibbs).
5914 */
5915 if (tp->tinfo.goal.offset) {
5916 np->msgout[0] = M_EXTENDED;
5917 np->msgout[1] = 3;
5918 np->msgout[2] = M_X_SYNC_REQ;
5919 np->msgout[3] = tp->tinfo.goal.period;
5920 np->msgout[4] = tp->tinfo.goal.offset;
5921
5922 if (DEBUG_FLAGS & DEBUG_NEGO) {
5923 sym_print_msg(cp, "sync msgout", np->msgout);
5924 }
5925
5926 cp->nego_status = NS_SYNC;
5927 OUTB (HS_PRT, HS_NEGOTIATE);
5928 OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
5929 return;
5930 }
5931
5932 OUTL_DSP (SCRIPTA_BA (np, clrack));
5933 return;
5934 };
5935
5936 /*
5937 * It was a request, set value and
5938 * prepare an answer message
5939 */
5940 sym_setwide (np, cp, wide);
5941
5942 np->msgout[0] = M_EXTENDED;
5943 np->msgout[1] = 2;
5944 np->msgout[2] = M_X_WIDE_REQ;
5945 np->msgout[3] = wide;
5946
5947 np->msgin [0] = M_NOOP;
5948
5949 cp->nego_status = NS_WIDE;
5950
5951 if (DEBUG_FLAGS & DEBUG_NEGO) {
5952 sym_print_msg(cp, "wide msgout", np->msgout);
5953 }
5954
5955 OUTL_DSP (SCRIPTB_BA (np, wdtr_resp));
5956 return;
5957reject_it:
5958 OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5959}
5960
5961/*
5962 * Reset SYNC or WIDE to default settings.
5963 *
5964 * Called when a negotiation does not succeed either
5965 * on rejection or on protocol error.
5966 *
5967 * If it was a PPR that made problems, we may want to
5968 * try a legacy negotiation later.
5969 */
5970static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp)
5971{
5972 /*
5973 * any error in negotiation:
5974 * fall back to default mode.
5975 */
5976 switch (cp->nego_status) {
5977 case NS_PPR:
5978#if 0
5979 sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
5980#else
5981 tp->tinfo.goal.options = 0;
5982 if (tp->tinfo.goal.period < np->minsync)
5983 tp->tinfo.goal.period = np->minsync;
5984 if (tp->tinfo.goal.offset > np->maxoffs)
5985 tp->tinfo.goal.offset = np->maxoffs;
5986#endif
5987 break;
5988 case NS_SYNC:
5989 sym_setsync (np, cp, 0, 0, 0, 0);
5990 break;
5991 case NS_WIDE:
5992 sym_setwide (np, cp, 0);
5993 break;
5994 };
5995 np->msgin [0] = M_NOOP;
5996 np->msgout[0] = M_NOOP;
5997 cp->nego_status = 0;
5998}
5999
6000/*
6001 * chip handler for MESSAGE REJECT received in response to
6002 * a WIDE or SYNCHRONOUS negotiation.
6003 */
6004static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp)
6005{
6006 sym_nego_default(np, tp, cp);
6007 OUTB (HS_PRT, HS_BUSY);
6008}
6009
6010/*
6011 * chip exception handler for programmed interrupts.
6012 */
6013static void sym_int_sir (hcb_p np)
6014{
6015 u_char num = INB (nc_dsps);
6016 u32 dsa = INL (nc_dsa);
6017 ccb_p cp = sym_ccb_from_dsa(np, dsa);
6018 u_char target = INB (nc_sdid) & 0x0f;
6019 tcb_p tp = &np->target[target];
6020 int tmp;
6021
6022 if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
6023
6024 switch (num) {
6025 /*
6026 * Command has been completed with error condition
6027 * or has been auto-sensed.
6028 */
6029 case SIR_COMPLETE_ERROR:
6030 sym_complete_error(np, cp);
6031 return;
6032 /*
6033 * The C code is currently trying to recover from something.
6034 * Typically, user want to abort some command.
6035 */
6036 case SIR_SCRIPT_STOPPED:
6037 case SIR_TARGET_SELECTED:
6038 case SIR_ABORT_SENT:
6039 sym_sir_task_recovery(np, num);
6040 return;
6041 /*
6042 * The device didn't go to MSG OUT phase after having
6043 * been selected with ATN. We donnot want to handle
6044 * that.
6045 */
6046 case SIR_SEL_ATN_NO_MSG_OUT:
6047 printf ("%s:%d: No MSG OUT phase after selection with ATN.\n",
6048 sym_name (np), target);
6049 goto out_stuck;
6050 /*
6051 * The device didn't switch to MSG IN phase after
6052 * having reseleted the initiator.
6053 */
6054 case SIR_RESEL_NO_MSG_IN:
6055 printf ("%s:%d: No MSG IN phase after reselection.\n",
6056 sym_name (np), target);
6057 goto out_stuck;
6058 /*
6059 * After reselection, the device sent a message that wasn't
6060 * an IDENTIFY.
6061 */
6062 case SIR_RESEL_NO_IDENTIFY:
6063 printf ("%s:%d: No IDENTIFY after reselection.\n",
6064 sym_name (np), target);
6065 goto out_stuck;
6066 /*
6067 * The device reselected a LUN we donnot know about.
6068 */
6069 case SIR_RESEL_BAD_LUN:
6070 np->msgout[0] = M_RESET;
6071 goto out;
6072 /*
6073 * The device reselected for an untagged nexus and we
6074 * haven't any.
6075 */
6076 case SIR_RESEL_BAD_I_T_L:
6077 np->msgout[0] = M_ABORT;
6078 goto out;
6079 /*
6080 * The device reselected for a tagged nexus that we donnot
6081 * have.
6082 */
6083 case SIR_RESEL_BAD_I_T_L_Q:
6084 np->msgout[0] = M_ABORT_TAG;
6085 goto out;
6086 /*
6087 * The SCRIPTS let us know that the device has grabbed
6088 * our message and will abort the job.
6089 */
6090 case SIR_RESEL_ABORTED:
6091 np->lastmsg = np->msgout[0];
6092 np->msgout[0] = M_NOOP;
6093 printf ("%s:%d: message %x sent on bad reselection.\n",
6094 sym_name (np), target, np->lastmsg);
6095 goto out;
6096 /*
6097 * The SCRIPTS let us know that a message has been
6098 * successfully sent to the device.
6099 */
6100 case SIR_MSG_OUT_DONE:
6101 np->lastmsg = np->msgout[0];
6102 np->msgout[0] = M_NOOP;
6103 /* Should we really care of that */
6104 if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
6105 if (cp) {
6106 cp->xerr_status &= ~XE_PARITY_ERR;
6107 if (!cp->xerr_status)
6108 OUTOFFB (HF_PRT, HF_EXT_ERR);
6109 }
6110 }
6111 goto out;
6112 /*
6113 * The device didn't send a GOOD SCSI status.
6114 * We may have some work to do prior to allow
6115 * the SCRIPTS processor to continue.
6116 */
6117 case SIR_BAD_SCSI_STATUS:
6118 if (!cp)
6119 goto out;
6120 sym_sir_bad_scsi_status(np, num, cp);
6121 return;
6122 /*
6123 * We are asked by the SCRIPTS to prepare a
6124 * REJECT message.
6125 */
6126 case SIR_REJECT_TO_SEND:
6127 sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
6128 np->msgout[0] = M_REJECT;
6129 goto out;
6130 /*
6131 * We have been ODD at the end of a DATA IN
6132 * transfer and the device didn't send a
6133 * IGNORE WIDE RESIDUE message.
6134 * It is a data overrun condition.
6135 */
6136 case SIR_SWIDE_OVERRUN:
6137 if (cp) {
6138 OUTONB (HF_PRT, HF_EXT_ERR);
6139 cp->xerr_status |= XE_SWIDE_OVRUN;
6140 }
6141 goto out;
6142 /*
6143 * We have been ODD at the end of a DATA OUT
6144 * transfer.
6145 * It is a data underrun condition.
6146 */
6147 case SIR_SODL_UNDERRUN:
6148 if (cp) {
6149 OUTONB (HF_PRT, HF_EXT_ERR);
6150 cp->xerr_status |= XE_SODL_UNRUN;
6151 }
6152 goto out;
6153 /*
6154 * The device wants us to tranfer more data than
6155 * expected or in the wrong direction.
6156 * The number of extra bytes is in scratcha.
6157 * It is a data overrun condition.
6158 */
6159 case SIR_DATA_OVERRUN:
6160 if (cp) {
6161 OUTONB (HF_PRT, HF_EXT_ERR);
6162 cp->xerr_status |= XE_EXTRA_DATA;
6163 cp->extra_bytes += INL (nc_scratcha);
6164 }
6165 goto out;
6166 /*
6167 * The device switched to an illegal phase (4/5).
6168 */
6169 case SIR_BAD_PHASE:
6170 if (cp) {
6171 OUTONB (HF_PRT, HF_EXT_ERR);
6172 cp->xerr_status |= XE_BAD_PHASE;
6173 }
6174 goto out;
6175 /*
6176 * We received a message.
6177 */
6178 case SIR_MSG_RECEIVED:
6179 if (!cp)
6180 goto out_stuck;
6181 switch (np->msgin [0]) {
6182 /*
6183 * We received an extended message.
6184 * We handle MODIFY DATA POINTER, SDTR, WDTR
6185 * and reject all other extended messages.
6186 */
6187 case M_EXTENDED:
6188 switch (np->msgin [2]) {
6189 case M_X_MODIFY_DP:
6190 if (DEBUG_FLAGS & DEBUG_POINTER)
6191 sym_print_msg(cp,"modify DP",np->msgin);
6192 tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
6193 (np->msgin[5]<<8) + (np->msgin[6]);
6194 sym_modify_dp(np, tp, cp, tmp);
6195 return;
6196 case M_X_SYNC_REQ:
6197 sym_sync_nego(np, tp, cp);
6198 return;
6199 case M_X_PPR_REQ:
6200 sym_ppr_nego(np, tp, cp);
6201 return;
6202 case M_X_WIDE_REQ:
6203 sym_wide_nego(np, tp, cp);
6204 return;
6205 default:
6206 goto out_reject;
6207 }
6208 break;
6209 /*
6210 * We received a 1/2 byte message not handled from SCRIPTS.
6211 * We are only expecting MESSAGE REJECT and IGNORE WIDE
6212 * RESIDUE messages that haven't been anticipated by
6213 * SCRIPTS on SWIDE full condition. Unanticipated IGNORE
6214 * WIDE RESIDUE messages are aliased as MODIFY DP (-1).
6215 */
6216 case M_IGN_RESIDUE:
6217 if (DEBUG_FLAGS & DEBUG_POINTER)
6218 sym_print_msg(cp,"ign wide residue", np->msgin);
6219 sym_modify_dp(np, tp, cp, -1);
6220 return;
6221 case M_REJECT:
6222 if (INB (HS_PRT) == HS_NEGOTIATE)
6223 sym_nego_rejected(np, tp, cp);
6224 else {
6225 PRINT_ADDR(cp);
6226 printf ("M_REJECT received (%x:%x).\n",
6227 scr_to_cpu(np->lastmsg), np->msgout[0]);
6228 }
6229 goto out_clrack;
6230 break;
6231 default:
6232 goto out_reject;
6233 }
6234 break;
6235 /*
6236 * We received an unknown message.
6237 * Ignore all MSG IN phases and reject it.
6238 */
6239 case SIR_MSG_WEIRD:
6240 sym_print_msg(cp, "WEIRD message received", np->msgin);
6241 OUTL_DSP (SCRIPTB_BA (np, msg_weird));
6242 return;
6243 /*
6244 * Negotiation failed.
6245 * Target does not send us the reply.
6246 * Remove the HS_NEGOTIATE status.
6247 */
6248 case SIR_NEGO_FAILED:
6249 OUTB (HS_PRT, HS_BUSY);
6250 /*
6251 * Negotiation failed.
6252 * Target does not want answer message.
6253 */
6254 case SIR_NEGO_PROTO:
6255 sym_nego_default(np, tp, cp);
6256 goto out;
6257 };
6258
6259out:
6260 OUTONB_STD ();
6261 return;
6262out_reject:
6263 OUTL_DSP (SCRIPTB_BA (np, msg_bad));
6264 return;
6265out_clrack:
6266 OUTL_DSP (SCRIPTA_BA (np, clrack));
6267 return;
6268out_stuck:
6269 return;
6270}
6271
6272/*
6273 * Acquire a control block
6274 */
6275static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order)
6276{
6277 tcb_p tp = &np->target[tn];
6278 lcb_p lp = sym_lp(np, tp, ln);
6279 u_short tag = NO_TAG;
6280 SYM_QUEHEAD *qp;
6281 ccb_p cp = (ccb_p) 0;
6282
6283 /*
6284 * Look for a free CCB
6285 */
6286 if (sym_que_empty(&np->free_ccbq))
6287 (void) sym_alloc_ccb(np);
6288 qp = sym_remque_head(&np->free_ccbq);
6289 if (!qp)
6290 goto out;
6291 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
6292
6293 /*
6294 * If the LCB is not yet available and the LUN
6295 * has been probed ok, try to allocate the LCB.
6296 */
6297 if (!lp && sym_is_bit(tp->lun_map, ln)) {
6298 lp = sym_alloc_lcb(np, tn, ln);
6299 if (!lp)
6300 goto out_free;
6301 }
6302
6303 /*
6304 * If the LCB is not available here, then the
6305 * logical unit is not yet discovered. For those
6306 * ones only accept 1 SCSI IO per logical unit,
6307 * since we cannot allow disconnections.
6308 */
6309 if (!lp) {
6310 if (!sym_is_bit(tp->busy0_map, ln))
6311 sym_set_bit(tp->busy0_map, ln);
6312 else
6313 goto out_free;
6314 } else {
6315 /*
6316 * If we have been asked for a tagged command.
6317 */
6318 if (tag_order) {
6319 /*
6320 * Debugging purpose.
6321 */
6322 assert(lp->busy_itl == 0);
6323 /*
6324 * Allocate resources for tags if not yet.
6325 */
6326 if (!lp->cb_tags) {
6327 sym_alloc_lcb_tags(np, tn, ln);
6328 if (!lp->cb_tags)
6329 goto out_free;
6330 }
6331 /*
6332 * Get a tag for this SCSI IO and set up
6333 * the CCB bus address for reselection,
6334 * and count it for this LUN.
6335 * Toggle reselect path to tagged.
6336 */
6337 if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
6338 tag = lp->cb_tags[lp->ia_tag];
6339 if (++lp->ia_tag == SYM_CONF_MAX_TASK)
6340 lp->ia_tag = 0;
6341 lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
6342 ++lp->busy_itlq;
6343 lp->head.resel_sa =
6344 cpu_to_scr(SCRIPTA_BA (np, resel_tag));
6345 }
6346 else
6347 goto out_free;
6348 }
6349 /*
6350 * This command will not be tagged.
6351 * If we already have either a tagged or untagged
6352 * one, refuse to overlap this untagged one.
6353 */
6354 else {
6355 /*
6356 * Debugging purpose.
6357 */
6358 assert(lp->busy_itl == 0 && lp->busy_itlq == 0);
6359 /*
6360 * Count this nexus for this LUN.
6361 * Set up the CCB bus address for reselection.
6362 * Toggle reselect path to untagged.
6363 */
6364 if (++lp->busy_itl == 1) {
6365 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
6366 lp->head.resel_sa =
6367 cpu_to_scr(SCRIPTA_BA (np, resel_no_tag));
6368 }
6369 else
6370 goto out_free;
6371 }
6372 }
6373 /*
6374 * Put the CCB into the busy queue.
6375 */
6376 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
6377
6378 /*
6379 * Remember all informations needed to free this CCB.
6380 */
6381 cp->to_abort = 0;
6382 cp->tag = tag;
6383 cp->target = tn;
6384 cp->lun = ln;
6385
6386 if (DEBUG_FLAGS & DEBUG_TAGS) {
6387 PRINT_LUN(np, tn, ln);
6388 printf ("ccb @%p using tag %d.\n", cp, tag);
6389 }
6390
6391out:
6392 return cp;
6393out_free:
6394 sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6395 return (ccb_p) 0;
6396}
6397
6398/*
6399 * Release one control block
6400 */
6401static void sym_free_ccb (hcb_p np, ccb_p cp)
6402{
6403 tcb_p tp = &np->target[cp->target];
6404 lcb_p lp = sym_lp(np, tp, cp->lun);
6405
6406 if (DEBUG_FLAGS & DEBUG_TAGS) {
6407 PRINT_LUN(np, cp->target, cp->lun);
6408 printf ("ccb @%p freeing tag %d.\n", cp, cp->tag);
6409 }
6410
6411 /*
6412 * If LCB available,
6413 */
6414 if (lp) {
6415 /*
6416 * If tagged, release the tag, set the relect path
6417 */
6418 if (cp->tag != NO_TAG) {
6419 /*
6420 * Free the tag value.
6421 */
6422 lp->cb_tags[lp->if_tag] = cp->tag;
6423 if (++lp->if_tag == SYM_CONF_MAX_TASK)
6424 lp->if_tag = 0;
6425 /*
6426 * Make the reselect path invalid,
6427 * and uncount this CCB.
6428 */
6429 lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
6430 --lp->busy_itlq;
6431 } else { /* Untagged */
6432 /*
6433 * Make the reselect path invalid,
6434 * and uncount this CCB.
6435 */
6436 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
6437 --lp->busy_itl;
6438 }
6439 /*
6440 * If no JOB active, make the LUN reselect path invalid.
6441 */
6442 if (lp->busy_itlq == 0 && lp->busy_itl == 0)
6443 lp->head.resel_sa =
6444 cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
6445 }
6446 /*
6447 * Otherwise, we only accept 1 IO per LUN.
6448 * Clear the bit that keeps track of this IO.
6449 */
6450 else
6451 sym_clr_bit(tp->busy0_map, cp->lun);
6452
6453 /*
6454 * We donnot queue more than 1 ccb per target
6455 * with negotiation at any time. If this ccb was
6456 * used for negotiation, clear this info in the tcb.
6457 */
6458 if (cp == tp->nego_cp)
6459 tp->nego_cp = 0;
6460
6461#ifdef SYM_CONF_IARB_SUPPORT
6462 /*
6463 * If we just complete the last queued CCB,
6464 * clear this info that is no longer relevant.
6465 */
6466 if (cp == np->last_cp)
6467 np->last_cp = 0;
6468#endif
6469
6470 /*
6471 * Unmap user data from DMA map if needed.
6472 */
6473 if (cp->dmamapped) {
6474 bus_dmamap_unload(np->data_dmat, cp->dmamap);
6475 cp->dmamapped = 0;
6476 }
6477
6478 /*
6479 * Make this CCB available.
6480 */
6481 cp->cam_ccb = 0;
6482 cp->host_status = HS_IDLE;
6483 sym_remque(&cp->link_ccbq);
6484 sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6485}
6486
6487/*
6488 * Allocate a CCB from memory and initialize its fixed part.
6489 */
6490static ccb_p sym_alloc_ccb(hcb_p np)
6491{
6492 ccb_p cp = 0;
6493 int hcode;
6494
6495 /*
6496 * Prevent from allocating more CCBs than we can
6497 * queue to the controller.
6498 */
6499 if (np->actccbs >= SYM_CONF_MAX_START)
6500 return 0;
6501
6502 /*
6503 * Allocate memory for this CCB.
6504 */
6505 cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
6506 if (!cp)
6507 goto out_free;
6508
6509 /*
6510 * Allocate a bounce buffer for sense data.
6511 */
6512 cp->sns_bbuf = sym_calloc_dma(SYM_SNS_BBUF_LEN, "SNS_BBUF");
6513 if (!cp->sns_bbuf)
6514 goto out_free;
6515
6516 /*
6517 * Allocate a map for the DMA of user data.
6518 */
6519 if (bus_dmamap_create(np->data_dmat, 0, &cp->dmamap))
6520 goto out_free;
6521 /*
6522 * Count it.
6523 */
6524 np->actccbs++;
6525
6526 /*
6527 * Compute the bus address of this ccb.
6528 */
6529 cp->ccb_ba = vtobus(cp);
6530
6531 /*
6532 * Insert this ccb into the hashed list.
6533 */
6534 hcode = CCB_HASH_CODE(cp->ccb_ba);
6535 cp->link_ccbh = np->ccbh[hcode];
6536 np->ccbh[hcode] = cp;
6537
6538 /*
6539 * Initialyze the start and restart actions.
6540 */
6541 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, idle));
6542 cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
6543
6544 /*
6545 * Initilialyze some other fields.
6546 */
6547 cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
6548
6549 /*
6550 * Chain into free ccb queue.
6551 */
6552 sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6553
6554 return cp;
6555out_free:
6556 if (cp) {
6557 if (cp->sns_bbuf)
6558 sym_mfree_dma(cp->sns_bbuf,SYM_SNS_BBUF_LEN,"SNS_BBUF");
6559 sym_mfree_dma(cp, sizeof(*cp), "CCB");
6560 }
6561 return 0;
6562}
6563
6564/*
6565 * Look up a CCB from a DSA value.
6566 */
6567static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa)
6568{
6569 int hcode;
6570 ccb_p cp;
6571
6572 hcode = CCB_HASH_CODE(dsa);
6573 cp = np->ccbh[hcode];
6574 while (cp) {
6575 if (cp->ccb_ba == dsa)
6576 break;
6577 cp = cp->link_ccbh;
6578 }
6579
6580 return cp;
6581}
6582
6583/*
6584 * Target control block initialisation.
6585 * Nothing important to do at the moment.
6586 */
6587static void sym_init_tcb (hcb_p np, u_char tn)
6588{
6589 /*
6590 * Check some alignments required by the chip.
6591 */
6592 assert (((offsetof(struct sym_reg, nc_sxfer) ^
6593 offsetof(struct sym_tcb, head.sval)) &3) == 0);
6594 assert (((offsetof(struct sym_reg, nc_scntl3) ^
6595 offsetof(struct sym_tcb, head.wval)) &3) == 0);
6596}
6597
6598/*
6599 * Lun control block allocation and initialization.
6600 */
6601static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln)
6602{
6603 tcb_p tp = &np->target[tn];
6604 lcb_p lp = sym_lp(np, tp, ln);
6605
6606 /*
6607 * Already done, just return.
6608 */
6609 if (lp)
6610 return lp;
6611 /*
6612 * Check against some race.
6613 */
6614 assert(!sym_is_bit(tp->busy0_map, ln));
6615
6616 /*
6617 * Initialize the target control block if not yet.
6618 */
6619 sym_init_tcb (np, tn);
6620
6621 /*
6622 * Allocate the LCB bus address array.
6623 * Compute the bus address of this table.
6624 */
6625 if (ln && !tp->luntbl) {
6626 int i;
6627
6628 tp->luntbl = sym_calloc_dma(256, "LUNTBL");
6629 if (!tp->luntbl)
6630 goto fail;
6631 for (i = 0 ; i < 64 ; i++)
6632 tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
6633 tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
6634 }
6635
6636 /*
6637 * Allocate the table of pointers for LUN(s) > 0, if needed.
6638 */
6639 if (ln && !tp->lunmp) {
6640 tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p),
6641 "LUNMP");
6642 if (!tp->lunmp)
6643 goto fail;
6644 }
6645
6646 /*
6647 * Allocate the lcb.
6648 * Make it available to the chip.
6649 */
6650 lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
6651 if (!lp)
6652 goto fail;
6653 if (ln) {
6654 tp->lunmp[ln] = lp;
6655 tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
6656 }
6657 else {
6658 tp->lun0p = lp;
6659 tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
6660 }
6661
6662 /*
6663 * Let the itl task point to error handling.
6664 */
6665 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
6666
6667 /*
6668 * Set the reselect pattern to our default. :)
6669 */
6670 lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
6671
6672 /*
6673 * Set user capabilities.
6674 */
6675 lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
6676
6677fail:
6678 return lp;
6679}
6680
6681/*
6682 * Allocate LCB resources for tagged command queuing.
6683 */
6684static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln)
6685{
6686 tcb_p tp = &np->target[tn];
6687 lcb_p lp = sym_lp(np, tp, ln);
6688 int i;
6689
6690 /*
6691 * If LCB not available, try to allocate it.
6692 */
6693 if (!lp && !(lp = sym_alloc_lcb(np, tn, ln)))
6694 goto fail;
6695
6696 /*
6697 * Allocate the task table and and the tag allocation
6698 * circular buffer. We want both or none.
6699 */
6700 lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
6701 if (!lp->itlq_tbl)
6702 goto fail;
6703 lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS");
6704 if (!lp->cb_tags) {
6705 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
6706 lp->itlq_tbl = 0;
6707 goto fail;
6708 }
6709
6710 /*
6711 * Initialize the task table with invalid entries.
6712 */
6713 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
6714 lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
6715
6716 /*
6717 * Fill up the tag buffer with tag numbers.
6718 */
6719 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
6720 lp->cb_tags[i] = i;
6721
6722 /*
6723 * Make the task table available to SCRIPTS,
6724 * And accept tagged commands now.
6725 */
6726 lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
6727
6728 return;
6729fail:
6730 return;
6731}
6732
6733/*
6734 * Test the pci bus snoop logic :-(
6735 *
6736 * Has to be called with interrupts disabled.
6737 */
6738#ifndef SYM_CONF_IOMAPPED
6739static int sym_regtest (hcb_p np)
6740{
6741 register volatile u32 data;
6742 /*
6743 * chip registers may NOT be cached.
6744 * write 0xffffffff to a read only register area,
6745 * and try to read it back.
6746 */
6747 data = 0xffffffff;
6748 OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data);
6749 data = INL_OFF(offsetof(struct sym_reg, nc_dstat));
6750#if 1
6751 if (data == 0xffffffff) {
6752#else
6753 if ((data & 0xe2f0fffd) != 0x02000080) {
6754#endif
6755 printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
6756 (unsigned) data);
6757 return (0x10);
6758 };
6759 return (0);
6760}
6761#endif
6762
6763static int sym_snooptest (hcb_p np)
6764{
6765 u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
6766 int i, err=0;
6767#ifndef SYM_CONF_IOMAPPED
6768 err |= sym_regtest (np);
6769 if (err) return (err);
6770#endif
6771restart_test:
6772 /*
6773 * Enable Master Parity Checking as we intend
6774 * to enable it for normal operations.
6775 */
6776 OUTB (nc_ctest4, (np->rv_ctest4 & MPEE));
6777 /*
6778 * init
6779 */
6780 pc = SCRIPTB0_BA (np, snooptest);
6781 host_wr = 1;
6782 sym_wr = 2;
6783 /*
6784 * Set memory and register.
6785 */
6786 np->cache = cpu_to_scr(host_wr);
6787 OUTL (nc_temp, sym_wr);
6788 /*
6789 * Start script (exchange values)
6790 */
6791 OUTL (nc_dsa, np->hcb_ba);
6792 OUTL_DSP (pc);
6793 /*
6794 * Wait 'til done (with timeout)
6795 */
6796 for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
6797 if (INB(nc_istat) & (INTF|SIP|DIP))
6798 break;
6799 if (i>=SYM_SNOOP_TIMEOUT) {
6800 printf ("CACHE TEST FAILED: timeout.\n");
6801 return (0x20);
6802 };
6803 /*
6804 * Check for fatal DMA errors.
6805 */
6806 dstat = INB (nc_dstat);
6807#if 1 /* Band aiding for broken hardwares that fail PCI parity */
6808 if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
6809 printf ("%s: PCI DATA PARITY ERROR DETECTED - "
6810 "DISABLING MASTER DATA PARITY CHECKING.\n",
6811 sym_name(np));
6812 np->rv_ctest4 &= ~MPEE;
6813 goto restart_test;
6814 }
6815#endif
6816 if (dstat & (MDPE|BF|IID)) {
6817 printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
6818 return (0x80);
6819 }
6820 /*
6821 * Save termination position.
6822 */
6823 pc = INL (nc_dsp);
6824 /*
6825 * Read memory and register.
6826 */
6827 host_rd = scr_to_cpu(np->cache);
6828 sym_rd = INL (nc_scratcha);
6829 sym_bk = INL (nc_temp);
6830
6831 /*
6832 * Check termination position.
6833 */
6834 if (pc != SCRIPTB0_BA (np, snoopend)+8) {
6835 printf ("CACHE TEST FAILED: script execution failed.\n");
6836 printf ("start=%08lx, pc=%08lx, end=%08lx\n",
6837 (u_long) SCRIPTB0_BA (np, snooptest), (u_long) pc,
6838 (u_long) SCRIPTB0_BA (np, snoopend) +8);
6839 return (0x40);
6840 };
6841 /*
6842 * Show results.
6843 */
6844 if (host_wr != sym_rd) {
6845 printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
6846 (int) host_wr, (int) sym_rd);
6847 err |= 1;
6848 };
6849 if (host_rd != sym_wr) {
6850 printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
6851 (int) sym_wr, (int) host_rd);
6852 err |= 2;
6853 };
6854 if (sym_bk != sym_wr) {
6855 printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
6856 (int) sym_wr, (int) sym_bk);
6857 err |= 4;
6858 };
6859
6860 return (err);
6861}
6862
6863/*
6864 * Determine the chip's clock frequency.
6865 *
6866 * This is essential for the negotiation of the synchronous
6867 * transfer rate.
6868 *
6869 * Note: we have to return the correct value.
6870 * THERE IS NO SAFE DEFAULT VALUE.
6871 *
6872 * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
6873 * 53C860 and 53C875 rev. 1 support fast20 transfers but
6874 * do not have a clock doubler and so are provided with a
6875 * 80 MHz clock. All other fast20 boards incorporate a doubler
6876 * and so should be delivered with a 40 MHz clock.
6877 * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
6878 * clock and provide a clock quadrupler (160 Mhz).
6879 */
6880
6881/*
6882 * Select SCSI clock frequency
6883 */
6884static void sym_selectclock(hcb_p np, u_char scntl3)
6885{
6886 /*
6887 * If multiplier not present or not selected, leave here.
6888 */
6889 if (np->multiplier <= 1) {
6890 OUTB(nc_scntl3, scntl3);
6891 return;
6892 }
6893
6894 if (sym_verbose >= 2)
6895 printf ("%s: enabling clock multiplier\n", sym_name(np));
6896
6897 OUTB(nc_stest1, DBLEN); /* Enable clock multiplier */
6898 /*
6899 * Wait for the LCKFRQ bit to be set if supported by the chip.
6900 * Otherwise wait 20 micro-seconds.
6901 */
6902 if (np->features & FE_LCKFRQ) {
6903 int i = 20;
6904 while (!(INB(nc_stest4) & LCKFRQ) && --i > 0)
6905 UDELAY (20);
6906 if (!i)
6907 printf("%s: the chip cannot lock the frequency\n",
6908 sym_name(np));
6909 } else
6910 UDELAY (20);
6911 OUTB(nc_stest3, HSC); /* Halt the scsi clock */
6912 OUTB(nc_scntl3, scntl3);
6913 OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */
6914 OUTB(nc_stest3, 0x00); /* Restart scsi clock */
6915}
6916
6917/*
6918 * calculate SCSI clock frequency (in KHz)
6919 */
6920static unsigned getfreq (hcb_p np, int gen)
6921{
6922 unsigned int ms = 0;
6923 unsigned int f;
6924
6925 /*
6926 * Measure GEN timer delay in order
6927 * to calculate SCSI clock frequency
6928 *
6929 * This code will never execute too
6930 * many loop iterations (if DELAY is
6931 * reasonably correct). It could get
6932 * too low a delay (too high a freq.)
6933 * if the CPU is slow executing the
6934 * loop for some reason (an NMI, for
6935 * example). For this reason we will
6936 * if multiple measurements are to be
6937 * performed trust the higher delay
6938 * (lower frequency returned).
6939 */
6940 OUTW (nc_sien , 0); /* mask all scsi interrupts */
6941 (void) INW (nc_sist); /* clear pending scsi interrupt */
6942 OUTB (nc_dien , 0); /* mask all dma interrupts */
6943 (void) INW (nc_sist); /* another one, just to be sure :) */
6944 OUTB (nc_scntl3, 4); /* set pre-scaler to divide by 3 */
6945 OUTB (nc_stime1, 0); /* disable general purpose timer */
6946 OUTB (nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */
6947 while (!(INW(nc_sist) & GEN) && ms++ < 100000)
6948 UDELAY (1000); /* count ms */
6949 OUTB (nc_stime1, 0); /* disable general purpose timer */
6950 /*
6951 * set prescaler to divide by whatever 0 means
6952 * 0 ought to choose divide by 2, but appears
6953 * to set divide by 3.5 mode in my 53c810 ...
6954 */
6955 OUTB (nc_scntl3, 0);
6956
6957 /*
6958 * adjust for prescaler, and convert into KHz
6959 */
6960 f = ms ? ((1 << gen) * 4340) / ms : 0;
6961
6962 if (sym_verbose >= 2)
6963 printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
6964 sym_name(np), gen, ms, f);
6965
6966 return f;
6967}
6968
6969static unsigned sym_getfreq (hcb_p np)
6970{
6971 u_int f1, f2;
6972 int gen = 11;
6973
6974 (void) getfreq (np, gen); /* throw away first result */
6975 f1 = getfreq (np, gen);
6976 f2 = getfreq (np, gen);
6977 if (f1 > f2) f1 = f2; /* trust lower result */
6978 return f1;
6979}
6980
6981/*
6982 * Get/probe chip SCSI clock frequency
6983 */
6984static void sym_getclock (hcb_p np, int mult)
6985{
6986 unsigned char scntl3 = np->sv_scntl3;
6987 unsigned char stest1 = np->sv_stest1;
6988 unsigned f1;
6989
6990 /*
6991 * For the C10 core, assume 40 MHz.
6992 */
6993 if (np->features & FE_C10) {
6994 np->multiplier = mult;
6995 np->clock_khz = 40000 * mult;
6996 return;
6997 }
6998
6999 np->multiplier = 1;
7000 f1 = 40000;
7001 /*
7002 * True with 875/895/896/895A with clock multiplier selected
7003 */
7004 if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
7005 if (sym_verbose >= 2)
7006 printf ("%s: clock multiplier found\n", sym_name(np));
7007 np->multiplier = mult;
7008 }
7009
7010 /*
7011 * If multiplier not found or scntl3 not 7,5,3,
7012 * reset chip and get frequency from general purpose timer.
7013 * Otherwise trust scntl3 BIOS setting.
7014 */
7015 if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
7016 OUTB (nc_stest1, 0); /* make sure doubler is OFF */
7017 f1 = sym_getfreq (np);
7018
7019 if (sym_verbose)
7020 printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
7021
7022 if (f1 < 45000) f1 = 40000;
7023 else if (f1 < 55000) f1 = 50000;
7024 else f1 = 80000;
7025
7026 if (f1 < 80000 && mult > 1) {
7027 if (sym_verbose >= 2)
7028 printf ("%s: clock multiplier assumed\n",
7029 sym_name(np));
7030 np->multiplier = mult;
7031 }
7032 } else {
7033 if ((scntl3 & 7) == 3) f1 = 40000;
7034 else if ((scntl3 & 7) == 5) f1 = 80000;
7035 else f1 = 160000;
7036
7037 f1 /= np->multiplier;
7038 }
7039
7040 /*
7041 * Compute controller synchronous parameters.
7042 */
7043 f1 *= np->multiplier;
7044 np->clock_khz = f1;
7045}
7046
7047/*
7048 * Get/probe PCI clock frequency
7049 */
7050static int sym_getpciclock (hcb_p np)
7051{
7052 int f = 0;
7053
7054 /*
7055 * For the C1010-33, this doesn't work.
7056 * For the C1010-66, this will be tested when I'll have
7057 * such a beast to play with.
7058 */
7059 if (!(np->features & FE_C10)) {
7060 OUTB (nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */
7061 f = (int) sym_getfreq (np);
7062 OUTB (nc_stest1, 0);
7063 }
7064 np->pciclk_khz = f;
7065
7066 return f;
7067}
7068
7069/*============= DRIVER ACTION/COMPLETION ====================*/
7070
7071/*
7072 * Print something that tells about extended errors.
7073 */
7074static void sym_print_xerr(ccb_p cp, int x_status)
7075{
7076 if (x_status & XE_PARITY_ERR) {
7077 PRINT_ADDR(cp);
7078 printf ("unrecovered SCSI parity error.\n");
7079 }
7080 if (x_status & XE_EXTRA_DATA) {
7081 PRINT_ADDR(cp);
7082 printf ("extraneous data discarded.\n");
7083 }
7084 if (x_status & XE_BAD_PHASE) {
7085 PRINT_ADDR(cp);
7086 printf ("illegal scsi phase (4/5).\n");
7087 }
7088 if (x_status & XE_SODL_UNRUN) {
7089 PRINT_ADDR(cp);
7090 printf ("ODD transfer in DATA OUT phase.\n");
7091 }
7092 if (x_status & XE_SWIDE_OVRUN) {
7093 PRINT_ADDR(cp);
7094 printf ("ODD transfer in DATA IN phase.\n");
7095 }
7096}
7097
7098/*
7099 * Choose the more appropriate CAM status if
7100 * the IO encountered an extended error.
7101 */
7102static int sym_xerr_cam_status(int cam_status, int x_status)
7103{
7104 if (x_status) {
7105 if (x_status & XE_PARITY_ERR)
7106 cam_status = CAM_UNCOR_PARITY;
7107 else if (x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN))
7108 cam_status = CAM_DATA_RUN_ERR;
7109 else if (x_status & XE_BAD_PHASE)
7110 cam_status = CAM_REQ_CMP_ERR;
7111 else
7112 cam_status = CAM_REQ_CMP_ERR;
7113 }
7114 return cam_status;
7115}
7116
7117/*
7118 * Complete execution of a SCSI command with extented
7119 * error, SCSI status error, or having been auto-sensed.
7120 *
7121 * The SCRIPTS processor is not running there, so we
7122 * can safely access IO registers and remove JOBs from
7123 * the START queue.
7124 * SCRATCHA is assumed to have been loaded with STARTPOS
7125 * before the SCRIPTS called the C code.
7126 */
7127static void sym_complete_error (hcb_p np, ccb_p cp)
7128{
7129 struct ccb_scsiio *csio;
7130 u_int cam_status;
7131 int i;
7132
7133 /*
7134 * Paranoid check. :)
7135 */
7136 if (!cp || !cp->cam_ccb)
7137 return;
7138
7139 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
7140 printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp,
7141 cp->host_status, cp->ssss_status, cp->host_flags,
7142 cp->target, cp->lun);
7143 MDELAY(100);
7144 }
7145
7146 /*
7147 * Get CAM command pointer.
7148 */
7149 csio = &cp->cam_ccb->csio;
7150
7151 /*
7152 * Check for extended errors.
7153 */
7154 if (cp->xerr_status) {
7155 if (sym_verbose)
7156 sym_print_xerr(cp, cp->xerr_status);
7157 if (cp->host_status == HS_COMPLETE)
7158 cp->host_status = HS_COMP_ERR;
7159 }
7160
7161 /*
7162 * Calculate the residual.
7163 */
7164 csio->sense_resid = 0;
7165 csio->resid = sym_compute_residual(np, cp);
7166
7167 if (!SYM_CONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */
7168 csio->resid = 0; /* throw them away. :) */
7169 cp->sv_resid = 0;
7170 }
7171
7172 if (cp->host_flags & HF_SENSE) { /* Auto sense */
7173 csio->scsi_status = cp->sv_scsi_status; /* Restore status */
7174 csio->sense_resid = csio->resid; /* Swap residuals */
7175 csio->resid = cp->sv_resid;
7176 cp->sv_resid = 0;
7177 if (sym_verbose && cp->sv_xerr_status)
7178 sym_print_xerr(cp, cp->sv_xerr_status);
7179 if (cp->host_status == HS_COMPLETE &&
7180 cp->ssss_status == S_GOOD &&
7181 cp->xerr_status == 0) {
7182 cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR,
7183 cp->sv_xerr_status);
7184 cam_status |= CAM_AUTOSNS_VALID;
7185 /*
7186 * Bounce back the sense data to user and
7187 * fix the residual.
7188 */
7189 bzero(&csio->sense_data, csio->sense_len);
7190 bcopy(cp->sns_bbuf, &csio->sense_data,
7191 MIN(csio->sense_len, SYM_SNS_BBUF_LEN));
7192 csio->sense_resid += csio->sense_len;
7193 csio->sense_resid -= SYM_SNS_BBUF_LEN;
7194#if 0
7195 /*
7196 * If the device reports a UNIT ATTENTION condition
7197 * due to a RESET condition, we should consider all
7198 * disconnect CCBs for this unit as aborted.
7199 */
7200 if (1) {
7201 u_char *p;
7202 p = (u_char *) csio->sense_data;
7203 if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29)
7204 sym_clear_tasks(np, CAM_REQ_ABORTED,
7205 cp->target,cp->lun, -1);
7206 }
7207#endif
7208 }
7209 else
7210 cam_status = CAM_AUTOSENSE_FAIL;
7211 }
7212 else if (cp->host_status == HS_COMPLETE) { /* Bad SCSI status */
7213 csio->scsi_status = cp->ssss_status;
7214 cam_status = CAM_SCSI_STATUS_ERROR;
7215 }
7216 else if (cp->host_status == HS_SEL_TIMEOUT) /* Selection timeout */
7217 cam_status = CAM_SEL_TIMEOUT;
7218 else if (cp->host_status == HS_UNEXPECTED) /* Unexpected BUS FREE*/
7219 cam_status = CAM_UNEXP_BUSFREE;
7220 else { /* Extended error */
7221 if (sym_verbose) {
7222 PRINT_ADDR(cp);
7223 printf ("COMMAND FAILED (%x %x %x).\n",
7224 cp->host_status, cp->ssss_status,
7225 cp->xerr_status);
7226 }
7227 csio->scsi_status = cp->ssss_status;
7228 /*
7229 * Set the most appropriate value for CAM status.
7230 */
7231 cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR,
7232 cp->xerr_status);
7233 }
7234
7235 /*
7236 * Dequeue all queued CCBs for that device
7237 * not yet started by SCRIPTS.
7238 */
7239 i = (INL (nc_scratcha) - np->squeue_ba) / 4;
7240 (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
7241
7242 /*
7243 * Restart the SCRIPTS processor.
7244 */
7245 OUTL_DSP (SCRIPTA_BA (np, start));
7246
7247 /*
7248 * Synchronize DMA map if needed.
7249 */
7250 if (cp->dmamapped) {
7251 bus_dmamap_sync(np->data_dmat, cp->dmamap,
7252 (cp->dmamapped == SYM_DMA_READ ?
7253 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
7254 }
7255 /*
7256 * Add this one to the COMP queue.
7257 * Complete all those commands with either error
7258 * or requeue condition.
7259 */
7260 sym_set_cam_status((union ccb *) csio, cam_status);
7261 sym_remque(&cp->link_ccbq);
7262 sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
7263 sym_flush_comp_queue(np, 0);
7264}
7265
7266/*
7267 * Complete execution of a successful SCSI command.
7268 *
7269 * Only successful commands go to the DONE queue,
7270 * since we need to have the SCRIPTS processor
7271 * stopped on any error condition.
7272 * The SCRIPTS processor is running while we are
7273 * completing successful commands.
7274 */
7275static void sym_complete_ok (hcb_p np, ccb_p cp)
7276{
7277 struct ccb_scsiio *csio;
7278 tcb_p tp;
7279 lcb_p lp;
7280
7281 /*
7282 * Paranoid check. :)
7283 */
7284 if (!cp || !cp->cam_ccb)
7285 return;
7286 assert (cp->host_status == HS_COMPLETE);
7287
7288 /*
7289 * Get command, target and lun pointers.
7290 */
7291 csio = &cp->cam_ccb->csio;
7292 tp = &np->target[cp->target];
7293 lp = sym_lp(np, tp, cp->lun);
7294
7295 /*
7296 * Assume device discovered on first success.
7297 */
7298 if (!lp)
7299 sym_set_bit(tp->lun_map, cp->lun);
7300
7301 /*
7302 * If all data have been transferred, given than no
7303 * extended error did occur, there is no residual.
7304 */
7305 csio->resid = 0;
7306 if (cp->phys.head.lastp != cp->phys.head.goalp)
7307 csio->resid = sym_compute_residual(np, cp);
7308
7309 /*
7310 * Wrong transfer residuals may be worse than just always
7311 * returning zero. User can disable this feature from
7312 * sym_conf.h. Residual support is enabled by default.
7313 */
7314 if (!SYM_CONF_RESIDUAL_SUPPORT)
7315 csio->resid = 0;
7316
7317 /*
7318 * Synchronize DMA map if needed.
7319 */
7320 if (cp->dmamapped) {
7321 bus_dmamap_sync(np->data_dmat, cp->dmamap,
7322 (cp->dmamapped == SYM_DMA_READ ?
7323 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
7324 }
7325 /*
7326 * Set status and complete the command.
7327 */
7328 csio->scsi_status = cp->ssss_status;
7329 sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP);
7330 sym_free_ccb (np, cp);
7331 sym_xpt_done(np, (union ccb *) csio);
7332}
7333
7334/*
7335 * Our timeout handler.
7336 */
7337static void sym_timeout1(void *arg)
7338{
7339 union ccb *ccb = (union ccb *) arg;
7340 hcb_p np = ccb->ccb_h.sym_hcb_ptr;
7341
7342 /*
7343 * Check that the CAM CCB is still queued.
7344 */
7345 if (!np)
7346 return;
7347
7348 switch(ccb->ccb_h.func_code) {
7349 case XPT_SCSI_IO:
7350 (void) sym_abort_scsiio(np, ccb, 1);
7351 break;
7352 default:
7353 break;
7354 }
7355}
7356
7357static void sym_timeout(void *arg)
7358{
7359 int s = splcam();
7360 sym_timeout1(arg);
7361 splx(s);
7362}
7363
7364/*
7365 * Abort an SCSI IO.
7366 */
7367static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out)
7368{
7369 ccb_p cp;
7370 SYM_QUEHEAD *qp;
7371
7372 /*
7373 * Look up our CCB control block.
7374 */
7375 cp = 0;
7376 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
7377 ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
7378 if (cp2->cam_ccb == ccb) {
7379 cp = cp2;
7380 break;
7381 }
7382 }
7383 if (!cp || cp->host_status == HS_WAIT)
7384 return -1;
7385
7386 /*
7387 * If a previous abort didn't succeed in time,
7388 * perform a BUS reset.
7389 */
7390 if (cp->to_abort) {
7391 sym_reset_scsi_bus(np, 1);
7392 return 0;
7393 }
7394
7395 /*
7396 * Mark the CCB for abort and allow time for.
7397 */
7398 cp->to_abort = timed_out ? 2 : 1;
7399 ccb->ccb_h.timeout_ch = timeout(sym_timeout, (caddr_t) ccb, 10*hz);
7400
7401 /*
7402 * Tell the SCRIPTS processor to stop and synchronize with us.
7403 */
7404 np->istat_sem = SEM;
7405 OUTB (nc_istat, SIGP|SEM);
7406 return 0;
7407}
7408
7409/*
7410 * Reset a SCSI device (all LUNs of a target).
7411 */
7412static void sym_reset_dev(hcb_p np, union ccb *ccb)
7413{
7414 tcb_p tp;
7415 struct ccb_hdr *ccb_h = &ccb->ccb_h;
7416
7417 if (ccb_h->target_id == np->myaddr ||
7418 ccb_h->target_id >= SYM_CONF_MAX_TARGET ||
7419 ccb_h->target_lun >= SYM_CONF_MAX_LUN) {
7420 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7421 return;
7422 }
7423
7424 tp = &np->target[ccb_h->target_id];
7425
7426 tp->to_reset = 1;
7427 sym_xpt_done2(np, ccb, CAM_REQ_CMP);
7428
7429 np->istat_sem = SEM;
7430 OUTB (nc_istat, SIGP|SEM);
7431 return;
7432}
7433
7434/*
7435 * SIM action entry point.
7436 */
7437static void sym_action(struct cam_sim *sim, union ccb *ccb)
7438{
7439 int s = splcam();
7440 sym_action1(sim, ccb);
7441 splx(s);
7442}
7443
7444static void sym_action1(struct cam_sim *sim, union ccb *ccb)
7445{
7446 hcb_p np;
7447 tcb_p tp;
7448 lcb_p lp;
7449 ccb_p cp;
7450 int tmp;
7451 u_char idmsg, *msgptr;
7452 u_int msglen;
7453 struct ccb_scsiio *csio;
7454 struct ccb_hdr *ccb_h;
7455
7456 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n"));
7457
7458 /*
7459 * Retrieve our controller data structure.
7460 */
7461 np = (hcb_p) cam_sim_softc(sim);
7462
7463 /*
7464 * The common case is SCSI IO.
7465 * We deal with other ones elsewhere.
7466 */
7467 if (ccb->ccb_h.func_code != XPT_SCSI_IO) {
7468 sym_action2(sim, ccb);
7469 return;
7470 }
7471 csio = &ccb->csio;
7472 ccb_h = &csio->ccb_h;
7473
7474 /*
7475 * Work around races.
7476 */
7477 if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
7478 xpt_done(ccb);
7479 return;
7480 }
7481
7482 /*
7483 * Minimal checkings, so that we will not
7484 * go outside our tables.
7485 */
7486 if (ccb_h->target_id == np->myaddr ||
7487 ccb_h->target_id >= SYM_CONF_MAX_TARGET ||
7488 ccb_h->target_lun >= SYM_CONF_MAX_LUN) {
7489 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7490 return;
7491 }
7492
7493 /*
7494 * Retreive the target and lun descriptors.
7495 */
7496 tp = &np->target[ccb_h->target_id];
7497 lp = sym_lp(np, tp, ccb_h->target_lun);
7498
7499 /*
7500 * Complete the 1st INQUIRY command with error
7501 * condition if the device is flagged NOSCAN
7502 * at BOOT in the NVRAM. This may speed up
7503 * the boot and maintain coherency with BIOS
7504 * device numbering. Clearing the flag allows
7505 * user to rescan skipped devices later.
7506 * We also return error for devices not flagged
7507 * for SCAN LUNS in the NVRAM since some mono-lun
7508 * devices behave badly when asked for some non
7509 * zero LUN. Btw, this is an absolute hack.:-)
7510 */
7511 if (!(ccb_h->flags & CAM_CDB_PHYS) &&
7512 (0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ?
7513 csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) {
7514 if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) ||
7515 ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) &&
7516 ccb_h->target_lun != 0)) {
7517 tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED;
7518 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7519 return;
7520 }
7521 }
7522
7523 /*
7524 * Get a control block for this IO.
7525 */
7526 tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0);
7527 cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp);
7528 if (!cp) {
7529 sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL);
7530 return;
7531 }
7532
7533 /*
7534 * Keep track of the IO in our CCB.
7535 */
7536 cp->cam_ccb = ccb;
7537
7538 /*
7539 * Build the IDENTIFY message.
7540 */
7541 idmsg = M_IDENTIFY | cp->lun;
7542 if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED)))
7543 idmsg |= 0x40;
7544
7545 msgptr = cp->scsi_smsg;
7546 msglen = 0;
7547 msgptr[msglen++] = idmsg;
7548
7549 /*
7550 * Build the tag message if present.
7551 */
7552 if (cp->tag != NO_TAG) {
7553 u_char order = csio->tag_action;
7554
7555 switch(order) {
7556 case M_ORDERED_TAG:
7557 break;
7558 case M_HEAD_TAG:
7559 break;
7560 default:
7561 order = M_SIMPLE_TAG;
7562 }
7563 msgptr[msglen++] = order;
7564
7565 /*
7566 * For less than 128 tags, actual tags are numbered
7567 * 1,3,5,..2*MAXTAGS+1,since we may have to deal
7568 * with devices that have problems with #TAG 0 or too
7569 * great #TAG numbers. For more tags (up to 256),
7570 * we use directly our tag number.
7571 */
7572#if SYM_CONF_MAX_TASK > (512/4)
7573 msgptr[msglen++] = cp->tag;
7574#else
7575 msgptr[msglen++] = (cp->tag << 1) + 1;
7576#endif
7577 }
7578
7579 /*
7580 * Build a negotiation message if needed.
7581 * (nego_status is filled by sym_prepare_nego())
7582 */
7583 cp->nego_status = 0;
7584 if (tp->tinfo.current.width != tp->tinfo.goal.width ||
7585 tp->tinfo.current.period != tp->tinfo.goal.period ||
7586 tp->tinfo.current.offset != tp->tinfo.goal.offset ||
7587 tp->tinfo.current.options != tp->tinfo.goal.options) {
7588 if (!tp->nego_cp && lp)
7589 msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen);
7590 }
7591
7592 /*
7593 * Fill in our ccb
7594 */
7595
7596 /*
7597 * Startqueue
7598 */
7599 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select));
7600 cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA (np, resel_dsa));
7601
7602 /*
7603 * select
7604 */
7605 cp->phys.select.sel_id = cp->target;
7606 cp->phys.select.sel_scntl3 = tp->head.wval;
7607 cp->phys.select.sel_sxfer = tp->head.sval;
7608 cp->phys.select.sel_scntl4 = tp->head.uval;
7609
7610 /*
7611 * message
7612 */
7613 cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg));
7614 cp->phys.smsg.size = cpu_to_scr(msglen);
7615
7616 /*
7617 * command
7618 */
7619 if (sym_setup_cdb(np, csio, cp) < 0) {
7620 sym_free_ccb(np, cp);
7621 sym_xpt_done(np, ccb);
7622 return;
7623 }
7624
7625 /*
7626 * status
7627 */
7628#if 0 /* Provision */
7629 cp->actualquirks = tp->quirks;
7630#endif
7631 cp->actualquirks = SYM_QUIRK_AUTOSAVE;
7632 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
7633 cp->ssss_status = S_ILLEGAL;
7634 cp->xerr_status = 0;
7635 cp->host_flags = 0;
7636 cp->extra_bytes = 0;
7637
7638 /*
7639 * extreme data pointer.
7640 * shall be positive, so -1 is lower than lowest.:)
7641 */
7642 cp->ext_sg = -1;
7643 cp->ext_ofs = 0;
7644
7645 /*
7646 * Build the data descriptor block
7647 * and start the IO.
7648 */
7649 sym_setup_data_and_start(np, csio, cp);
7650}
7651
7652/*
7653 * Setup buffers and pointers that address the CDB.
7654 * I bet, physical CDBs will never be used on the planet,
7655 * since they can be bounced without significant overhead.
7656 */
7657static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
7658{
7659 struct ccb_hdr *ccb_h;
7660 u32 cmd_ba;
7661 int cmd_len;
7662
7663 ccb_h = &csio->ccb_h;
7664
7665 /*
7666 * CDB is 16 bytes max.
7667 */
7668 if (csio->cdb_len > sizeof(cp->cdb_buf)) {
7669 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7670 return -1;
7671 }
7672 cmd_len = csio->cdb_len;
7673
7674 if (ccb_h->flags & CAM_CDB_POINTER) {
7675 /* CDB is a pointer */
7676 if (!(ccb_h->flags & CAM_CDB_PHYS)) {
7677 /* CDB pointer is virtual */
7678 bcopy(csio->cdb_io.cdb_ptr, cp->cdb_buf, cmd_len);
7679 cmd_ba = CCB_BA (cp, cdb_buf[0]);
7680 } else {
7681 /* CDB pointer is physical */
7682#if 0
7683 cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff;
7684#else
7685 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7686 return -1;
7687#endif
7688 }
7689 } else {
7690 /* CDB is in the CAM ccb (buffer) */
7691 bcopy(csio->cdb_io.cdb_bytes, cp->cdb_buf, cmd_len);
7692 cmd_ba = CCB_BA (cp, cdb_buf[0]);
7693 }
7694
7695 cp->phys.cmd.addr = cpu_to_scr(cmd_ba);
7696 cp->phys.cmd.size = cpu_to_scr(cmd_len);
7697
7698 return 0;
7699}
7700
7701/*
7702 * Set up data pointers used by SCRIPTS.
7703 */
7704static void __inline
7705sym_setup_data_pointers(hcb_p np, ccb_p cp, int dir)
7706{
7707 u32 lastp, goalp;
7708
7709 /*
7710 * No segments means no data.
7711 */
7712 if (!cp->segments)
7713 dir = CAM_DIR_NONE;
7714
7715 /*
7716 * Set the data pointer.
7717 */
7718 switch(dir) {
7719 case CAM_DIR_OUT:
7720 goalp = SCRIPTA_BA (np, data_out2) + 8;
7721 lastp = goalp - 8 - (cp->segments * (2*4));
7722 break;
7723 case CAM_DIR_IN:
7724 cp->host_flags |= HF_DATA_IN;
7725 goalp = SCRIPTA_BA (np, data_in2) + 8;
7726 lastp = goalp - 8 - (cp->segments * (2*4));
7727 break;
7728 case CAM_DIR_NONE:
7729 default:
7730 lastp = goalp = SCRIPTB_BA (np, no_data);
7731 break;
7732 }
7733
7734 cp->phys.head.lastp = cpu_to_scr(lastp);
7735 cp->phys.head.goalp = cpu_to_scr(goalp);
7736 cp->phys.head.savep = cpu_to_scr(lastp);
7737 cp->startp = cp->phys.head.savep;
7738}
7739
7740
7741/*
7742 * Call back routine for the DMA map service.
7743 * If bounce buffers are used (why ?), we may sleep and then
7744 * be called there in another context.
7745 */
7746static void
7747sym_execute_ccb(void *arg, bus_dma_segment_t *psegs, int nsegs, int error)
7748{
7749 ccb_p cp;
7750 hcb_p np;
7751 union ccb *ccb;
7752 int s;
7753
7754 s = splcam();
7755
7756 cp = (ccb_p) arg;
7757 ccb = cp->cam_ccb;
7758 np = (hcb_p) cp->arg;
7759
7760 /*
7761 * Deal with weird races.
7762 */
7763 if (sym_get_cam_status(ccb) != CAM_REQ_INPROG)
7764 goto out_abort;
7765
7766 /*
7767 * Deal with weird errors.
7768 */
7769 if (error) {
7770 cp->dmamapped = 0;
7771 sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
7772 goto out_abort;
7773 }
7774
7775 /*
7776 * Build the data descriptor for the chip.
7777 */
7778 if (nsegs) {
7779 int retv;
7780 /* 896 rev 1 requires to be careful about boundaries */
7781 if (np->device_id == PCI_ID_SYM53C896 && np->revision_id <= 1)
7782 retv = sym_scatter_sg_physical(np, cp, psegs, nsegs);
7783 else
7784 retv = sym_fast_scatter_sg_physical(np,cp, psegs,nsegs);
7785 if (retv < 0) {
7786 sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG);
7787 goto out_abort;
7788 }
7789 }
7790
7791 /*
7792 * Synchronize the DMA map only if we have
7793 * actually mapped the data.
7794 */
7795 if (cp->dmamapped) {
7796 bus_dmamap_sync(np->data_dmat, cp->dmamap,
7797 (cp->dmamapped == SYM_DMA_READ ?
7798 BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE));
7799 }
7800
7801 /*
7802 * Set host status to busy state.
7803 * May have been set back to HS_WAIT to avoid a race.
7804 */
7805 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
7806
7807 /*
7808 * Set data pointers.
7809 */
7810 sym_setup_data_pointers(np, cp, (ccb->ccb_h.flags & CAM_DIR_MASK));
7811
7812 /*
7813 * Enqueue this IO in our pending queue.
7814 */
7815 sym_enqueue_cam_ccb(np, ccb);
7816
7817 /*
7818 * When `#ifed 1', the code below makes the driver
7819 * panic on the first attempt to write to a SCSI device.
7820 * It is the first test we want to do after a driver
7821 * change that does not seem obviously safe. :)
7822 */
7823#if 0
7824 switch (cp->cdb_buf[0]) {
7825 case 0x0A: case 0x2A: case 0xAA:
7826 panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n");
7827 MDELAY(10000);
7828 break;
7829 default:
7830 break;
7831 }
7832#endif
7833 /*
7834 * Activate this job.
7835 */
7836 sym_put_start_queue(np, cp);
7837out:
7838 splx(s);
7839 return;
7840out_abort:
7841 sym_free_ccb(np, cp);
7842 sym_xpt_done(np, ccb);
7843 goto out;
7844}
7845
7846/*
7847 * How complex it gets to deal with the data in CAM.
7848 * The Bus Dma stuff makes things still more complex.
7849 */
7850static void
7851sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
7852{
7853 struct ccb_hdr *ccb_h;
7854 int dir, retv;
7855
7856 ccb_h = &csio->ccb_h;
7857
7858 /*
7859 * Now deal with the data.
7860 */
7861 cp->data_len = csio->dxfer_len;
7862 cp->arg = np;
7863
7864 /*
7865 * No direction means no data.
7866 */
7867 dir = (ccb_h->flags & CAM_DIR_MASK);
7868 if (dir == CAM_DIR_NONE) {
7869 sym_execute_ccb(cp, NULL, 0, 0);
7870 return;
7871 }
7872
7873 if (!(ccb_h->flags & CAM_SCATTER_VALID)) {
7874 /* Single buffer */
7875 if (!(ccb_h->flags & CAM_DATA_PHYS)) {
7876 /* Buffer is virtual */
7877 int s;
7878
7879 cp->dmamapped = (dir == CAM_DIR_IN) ?
7880 SYM_DMA_READ : SYM_DMA_WRITE;
7881 s = splsoftvm();
7882 retv = bus_dmamap_load(np->data_dmat, cp->dmamap,
7883 csio->data_ptr, csio->dxfer_len,
7884 sym_execute_ccb, cp, 0);
7885 if (retv == EINPROGRESS) {
7886 cp->host_status = HS_WAIT;
7887 xpt_freeze_simq(np->sim, 1);
7888 csio->ccb_h.status |= CAM_RELEASE_SIMQ;
7889 }
7890 splx(s);
7891 } else {
7892 /* Buffer is physical */
7893 struct bus_dma_segment seg;
7894
7895 seg.ds_addr = (bus_addr_t) csio->data_ptr;
7896 sym_execute_ccb(cp, &seg, 1, 0);
7897 }
7898 } else {
7899 /* Scatter/gather list */
7900 struct bus_dma_segment *segs;
7901
7902 if ((ccb_h->flags & CAM_SG_LIST_PHYS) != 0) {
7903 /* The SG list pointer is physical */
7904 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7905 goto out_abort;
7906 }
7907
7908 if (!(ccb_h->flags & CAM_DATA_PHYS)) {
7909 /* SG buffer pointers are virtual */
7910 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7911 goto out_abort;
7912 }
7913
7914 /* SG buffer pointers are physical */
7915 segs = (struct bus_dma_segment *)csio->data_ptr;
7916 sym_execute_ccb(cp, segs, csio->sglist_cnt, 0);
7917 }
7918 return;
7919out_abort:
7920 sym_free_ccb(np, cp);
7921 sym_xpt_done(np, (union ccb *) csio);
7922}
7923
7924/*
7925 * Move the scatter list to our data block.
7926 */
7927static int
7928sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
7929 bus_dma_segment_t *psegs, int nsegs)
7930{
7931 struct sym_tblmove *data;
7932 bus_dma_segment_t *psegs2;
7933
7934 if (nsegs > SYM_CONF_MAX_SG)
7935 return -1;
7936
7937 data = &cp->phys.data[SYM_CONF_MAX_SG-1];
7938 psegs2 = &psegs[nsegs-1];
7939 cp->segments = nsegs;
7940
7941 while (1) {
7942 data->addr = cpu_to_scr(psegs2->ds_addr);
7943 data->size = cpu_to_scr(psegs2->ds_len);
7944 if (DEBUG_FLAGS & DEBUG_SCATTER) {
7945 printf ("%s scatter: paddr=%lx len=%ld\n",
7946 sym_name(np), (long) psegs2->ds_addr,
7947 (long) psegs2->ds_len);
7948 }
7949 if (psegs2 != psegs) {
7950 --data;
7951 --psegs2;
7952 continue;
7953 }
7954 break;
7955 }
7956 return 0;
7957}
7958
7959
7960/*
7961 * Scatter a SG list with physical addresses into bus addressable chunks.
7962 * We need to ensure 16MB boundaries not to be crossed during DMA of
7963 * each segment, due to some chips being flawed.
7964 */
7965#define BOUND_MASK ((1UL<<24)-1)
7966static int
7967sym_scatter_sg_physical(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs)
7968{
7969 u_long ps, pe, pn;
7970 u_long k;
7971 int s, t;
7972
7973 s = SYM_CONF_MAX_SG - 1;
7974 t = nsegs - 1;
7975 ps = psegs[t].ds_addr;
7976 pe = ps + psegs[t].ds_len;
7977
7978 while (s >= 0) {
7979 pn = (pe - 1) & ~BOUND_MASK;
7980 if (pn <= ps)
7981 pn = ps;
7982 k = pe - pn;
7983 if (DEBUG_FLAGS & DEBUG_SCATTER) {
7984 printf ("%s scatter: paddr=%lx len=%ld\n",
7985 sym_name(np), pn, k);
7986 }
7987 cp->phys.data[s].addr = cpu_to_scr(pn);
7988 cp->phys.data[s].size = cpu_to_scr(k);
7989 --s;
7990 if (pn == ps) {
7991 if (--t < 0)
7992 break;
7993 ps = psegs[t].ds_addr;
7994 pe = ps + psegs[t].ds_len;
7995 }
7996 else
7997 pe = pn;
7998 }
7999
8000 cp->segments = SYM_CONF_MAX_SG - 1 - s;
8001
8002 return t >= 0 ? -1 : 0;
8003}
8004#undef BOUND_MASK
8005
8006/*
8007 * SIM action for non performance critical stuff.
8008 */
8009static void sym_action2(struct cam_sim *sim, union ccb *ccb)
8010{
8011 hcb_p np;
8012 tcb_p tp;
8013 lcb_p lp;
8014 struct ccb_hdr *ccb_h;
8015
8016 /*
8017 * Retrieve our controller data structure.
8018 */
8019 np = (hcb_p) cam_sim_softc(sim);
8020
8021 ccb_h = &ccb->ccb_h;
8022
8023 switch (ccb_h->func_code) {
8024 case XPT_SET_TRAN_SETTINGS:
8025 {
8026 struct ccb_trans_settings *cts;
8027
8028 cts = &ccb->cts;
8029 tp = &np->target[ccb_h->target_id];
8030
8031 /*
8032 * Update SPI transport settings in TARGET control block.
8033 * Update SCSI device settings in LUN control block.
8034 */
8035 lp = sym_lp(np, tp, ccb_h->target_lun);
8036 if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
8037 sym_update_trans(np, tp, &tp->tinfo.goal, cts);
8038 if (lp)
8039 sym_update_dflags(np, &lp->current_flags, cts);
8040 }
8041 if (cts->type == CTS_TYPE_USER_SETTINGS) {
8042 sym_update_trans(np, tp, &tp->tinfo.user, cts);
8043 if (lp)
8044 sym_update_dflags(np, &lp->user_flags, cts);
8045 }
8046
8047 sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8048 break;
8049 }
8050 case XPT_GET_TRAN_SETTINGS:
8051 {
8052 struct ccb_trans_settings *cts;
8053 struct sym_trans *tip;
8054 u_char dflags;
8055
8056 cts = &ccb->cts;
8057 tp = &np->target[ccb_h->target_id];
8058 lp = sym_lp(np, tp, ccb_h->target_lun);
8059
8060#define cts__scsi (&cts->proto_specific.scsi)
8061#define cts__spi (&cts->xport_specific.spi)
8062 if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
8063 tip = &tp->tinfo.current;
8064 dflags = lp ? lp->current_flags : 0;
8065 }
8066 else {
8067 tip = &tp->tinfo.user;
8068 dflags = lp ? lp->user_flags : tp->usrflags;
8069 }
8070
8071 cts->protocol = PROTO_SCSI;
8072 cts->transport = XPORT_SPI;
8073 cts->protocol_version = tip->scsi_version;
8074 cts->transport_version = tip->spi_version;
8075
8076 cts__spi->sync_period = tip->period;
8077 cts__spi->sync_offset = tip->offset;
8078 cts__spi->bus_width = tip->width;
8079 cts__spi->ppr_options = tip->options;
8080
8081 cts__spi->valid = CTS_SPI_VALID_SYNC_RATE
8082 | CTS_SPI_VALID_SYNC_OFFSET
8083 | CTS_SPI_VALID_BUS_WIDTH
8084 | CTS_SPI_VALID_PPR_OPTIONS;
8085
8086 cts__spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
8087 if (dflags & SYM_DISC_ENABLED)
8088 cts__spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
8089 cts__spi->valid |= CTS_SPI_VALID_DISC;
8090
8091 cts__scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
8092 if (dflags & SYM_TAGS_ENABLED)
8093 cts__scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
8094 cts__scsi->valid |= CTS_SCSI_VALID_TQ;
8095#undef cts__spi
8096#undef cts__scsi
8097 sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8098 break;
8099 }
8100 case XPT_CALC_GEOMETRY:
8101 {
8102 cam_calc_geometry(&ccb->ccg, /*extended*/1);
8103 sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8104 break;
8105 }
8106 case XPT_PATH_INQ:
8107 {
8108 struct ccb_pathinq *cpi = &ccb->cpi;
8109 cpi->version_num = 1;
8110 cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE;
8111 if ((np->features & FE_WIDE) != 0)
8112 cpi->hba_inquiry |= PI_WIDE_16;
8113 cpi->target_sprt = 0;
8114 cpi->hba_misc = 0;
8115 if (np->usrflags & SYM_SCAN_TARGETS_HILO)
8116 cpi->hba_misc |= PIM_SCANHILO;
8117 if (np->usrflags & SYM_AVOID_BUS_RESET)
8118 cpi->hba_misc |= PIM_NOBUSRESET;
8119 cpi->hba_eng_cnt = 0;
8120 cpi->max_target = (np->features & FE_WIDE) ? 15 : 7;
8121 /* Semantic problem:)LUN number max = max number of LUNs - 1 */
8122 cpi->max_lun = SYM_CONF_MAX_LUN-1;
8123 if (SYM_SETUP_MAX_LUN < SYM_CONF_MAX_LUN)
8124 cpi->max_lun = SYM_SETUP_MAX_LUN-1;
8125 cpi->bus_id = cam_sim_bus(sim);
8126 cpi->initiator_id = np->myaddr;
8127 cpi->base_transfer_speed = 3300;
8128 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
8129 strncpy(cpi->hba_vid, "Symbios", HBA_IDLEN);
8130 strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
8131 cpi->unit_number = cam_sim_unit(sim);
8132
8133 cpi->protocol = PROTO_SCSI;
8134 cpi->protocol_version = SCSI_REV_2;
8135 cpi->transport = XPORT_SPI;
8136 cpi->transport_version = 2;
8137 cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_ST;
8138 if (np->features & FE_ULTRA3) {
8139 cpi->transport_version = 3;
8140 cpi->xport_specific.spi.ppr_options =
8141 SID_SPI_CLOCK_DT_ST;
8142 }
8143 sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8144 break;
8145 }
8146 case XPT_ABORT:
8147 {
8148 union ccb *abort_ccb = ccb->cab.abort_ccb;
8149 switch(abort_ccb->ccb_h.func_code) {
8150 case XPT_SCSI_IO:
8151 if (sym_abort_scsiio(np, abort_ccb, 0) == 0) {
8152 sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8153 break;
8154 }
8155 default:
8156 sym_xpt_done2(np, ccb, CAM_UA_ABORT);
8157 break;
8158 }
8159 break;
8160 }
8161 case XPT_RESET_DEV:
8162 {
8163 sym_reset_dev(np, ccb);
8164 break;
8165 }
8166 case XPT_RESET_BUS:
8167 {
8168 sym_reset_scsi_bus(np, 0);
8169 if (sym_verbose) {
8170 xpt_print_path(np->path);
8171 printf("SCSI BUS reset delivered.\n");
8172 }
8173 sym_init (np, 1);
8174 sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8175 break;
8176 }
8177 case XPT_ACCEPT_TARGET_IO:
8178 case XPT_CONT_TARGET_IO:
8179 case XPT_EN_LUN:
8180 case XPT_NOTIFY_ACK:
8181 case XPT_IMMED_NOTIFY:
8182 case XPT_TERM_IO:
8183 default:
8184 sym_xpt_done2(np, ccb, CAM_REQ_INVALID);
8185 break;
8186 }
8187}
8188
8189/*
8190 * Asynchronous notification handler.
8191 */
8192static void
8193sym_async(void *cb_arg, u32 code, struct cam_path *path, void *arg)
8194{
8195 hcb_p np;
8196 struct cam_sim *sim;
8197 u_int tn;
8198 tcb_p tp;
8199 int s;
8200
8201 s = splcam();
8202
8203 sim = (struct cam_sim *) cb_arg;
8204 np = (hcb_p) cam_sim_softc(sim);
8205
8206 switch (code) {
8207 case AC_LOST_DEVICE:
8208 tn = xpt_path_target_id(path);
8209 if (tn >= SYM_CONF_MAX_TARGET)
8210 break;
8211
8212 tp = &np->target[tn];
8213
8214 tp->to_reset = 0;
8215 tp->head.sval = 0;
8216 tp->head.wval = np->rv_scntl3;
8217 tp->head.uval = 0;
8218
8219 tp->tinfo.current.period = tp->tinfo.goal.period = 0;
8220 tp->tinfo.current.offset = tp->tinfo.goal.offset = 0;
8221 tp->tinfo.current.width = tp->tinfo.goal.width = BUS_8_BIT;
8222 tp->tinfo.current.options = tp->tinfo.goal.options = 0;
8223
8224 break;
8225 default:
8226 break;
8227 }
8228
8229 splx(s);
8230}
8231
8232/*
8233 * Update transfer settings of a target.
8234 */
8235static void sym_update_trans(hcb_p np, tcb_p tp, struct sym_trans *tip,
8236 struct ccb_trans_settings *cts)
8237{
8238 /*
8239 * Update the infos.
8240 */
8241#define cts__spi (&cts->xport_specific.spi)
8242 if ((cts__spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
8243 tip->width = cts__spi->bus_width;
8244 if ((cts__spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0)
8245 tip->offset = cts__spi->sync_offset;
8246 if ((cts__spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0)
8247 tip->period = cts__spi->sync_period;
8248 if ((cts__spi->valid & CTS_SPI_VALID_PPR_OPTIONS) != 0)
8249 tip->options = (cts__spi->ppr_options & PPR_OPT_DT);
8250 if (cts->protocol_version != PROTO_VERSION_UNSPECIFIED &&
8251 cts->protocol_version != PROTO_VERSION_UNKNOWN)
8252 tip->scsi_version = cts->protocol_version;
8253 if (cts->transport_version != XPORT_VERSION_UNSPECIFIED &&
8254 cts->transport_version != XPORT_VERSION_UNKNOWN)
8255 tip->spi_version = cts->transport_version;
8256#undef cts__spi
8257 /*
8258 * Scale against driver configuration limits.
8259 */
8260 if (tip->width > SYM_SETUP_MAX_WIDE) tip->width = SYM_SETUP_MAX_WIDE;
8261 if (tip->offset > SYM_SETUP_MAX_OFFS) tip->offset = SYM_SETUP_MAX_OFFS;
8262 if (tip->period < SYM_SETUP_MIN_SYNC) tip->period = SYM_SETUP_MIN_SYNC;
8263
8264 /*
8265 * Scale against actual controller BUS width.
8266 */
8267 if (tip->width > np->maxwide)
8268 tip->width = np->maxwide;
8269
8270 /*
8271 * Only accept DT if controller supports and SYNC/WIDE asked.
8272 */
8273 if (!((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) ||
8274 !(tip->width == BUS_16_BIT && tip->offset)) {
8275 tip->options &= ~PPR_OPT_DT;
8276 }
8277
8278 /*
8279 * Scale period factor and offset against controller limits.
8280 */
8281 if (tip->options & PPR_OPT_DT) {
8282 if (tip->period < np->minsync_dt)
8283 tip->period = np->minsync_dt;
8284 if (tip->period > np->maxsync_dt)
8285 tip->period = np->maxsync_dt;
8286 if (tip->offset > np->maxoffs_dt)
8287 tip->offset = np->maxoffs_dt;
8288 }
8289 else {
8290 if (tip->period < np->minsync)
8291 tip->period = np->minsync;
8292 if (tip->period > np->maxsync)
8293 tip->period = np->maxsync;
8294 if (tip->offset > np->maxoffs)
8295 tip->offset = np->maxoffs;
8296 }
8297}
8298
8299/*
8300 * Update flags for a device (logical unit).
8301 */
8302static void
8303sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts)
8304{
8305#define cts__scsi (&cts->proto_specific.scsi)
8306#define cts__spi (&cts->xport_specific.spi)
8307 if ((cts__spi->valid & CTS_SPI_VALID_DISC) != 0) {
8308 if ((cts__spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0)
8309 *flags |= SYM_DISC_ENABLED;
8310 else
8311 *flags &= ~SYM_DISC_ENABLED;
8312 }
8313
8314 if ((cts__scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
8315 if ((cts__scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0)
8316 *flags |= SYM_TAGS_ENABLED;
8317 else
8318 *flags &= ~SYM_TAGS_ENABLED;
8319 }
8320#undef cts__spi
8321#undef cts__scsi
8322}
8323
8324
8325/*============= DRIVER INITIALISATION ==================*/
8326
8327
8328static device_method_t sym_pci_methods[] = {
8329 DEVMETHOD(device_probe, sym_pci_probe),
8330 DEVMETHOD(device_attach, sym_pci_attach),
8331 { 0, 0 }
8332};
8333
8334static driver_t sym_pci_driver = {
8335 "sym",
8336 sym_pci_methods,
8337 sizeof(struct sym_hcb)
8338};
8339
8340static devclass_t sym_devclass;
8341
8342DRIVER_MODULE(sym, pci, sym_pci_driver, sym_devclass, 0, 0);
8343MODULE_DEPEND(sym, cam, 1, 1, 1);
8344MODULE_DEPEND(sym, pci, 1, 1, 1);
8345
8346
8347static struct sym_pci_chip sym_pci_dev_table[] = {
8348 {PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 64,
8349 FE_ERL}
8350 ,
8351#ifdef SYM_DEBUG_GENERIC_SUPPORT
8352 {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1,
8353 FE_BOF}
8354 ,
8355#else
8356 {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1,
8357 FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
8358 ,
8359#endif
8360 {PCI_ID_SYM53C815, 0xff, "815", 4, 8, 4, 64,
8361 FE_BOF|FE_ERL}
8362 ,
8363 {PCI_ID_SYM53C825, 0x0f, "825", 6, 8, 4, 64,
8364 FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
8365 ,
8366 {PCI_ID_SYM53C825, 0xff, "825a", 6, 8, 4, 2,
8367 FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
8368 ,
8369 {PCI_ID_SYM53C860, 0xff, "860", 4, 8, 5, 1,
8370 FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
8371 ,
8372 {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2,
8373 FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8374 FE_RAM|FE_DIFF}
8375 ,
8376 {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2,
8377 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8378 FE_RAM|FE_DIFF}
8379 ,
8380 {PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2,
8381 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8382 FE_RAM|FE_DIFF}
8383 ,
8384 {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2,
8385 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8386 FE_RAM|FE_DIFF}
8387 ,
8388#ifdef SYM_DEBUG_GENERIC_SUPPORT
8389 {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
8390 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
8391 FE_RAM|FE_LCKFRQ}
8392 ,
8393#else
8394 {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
8395 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8396 FE_RAM|FE_LCKFRQ}
8397 ,
8398#endif
8399 {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4,
8400 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8401 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
8402 ,
8403 {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4,
8404 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8405 FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
8406 ,
8407 {PCI_ID_LSI53C1010, 0x00, "1010-33", 6, 31, 7, 8,
8408 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8409 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
8410 FE_C10}
8411 ,
8412 {PCI_ID_LSI53C1010, 0xff, "1010-33", 6, 31, 7, 8,
8413 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8414 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
8415 FE_C10|FE_U3EN}
8416 ,
8417 {PCI_ID_LSI53C1010_2, 0xff, "1010-66", 6, 31, 7, 8,
8418 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8419 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
8420 FE_C10|FE_U3EN}
8421 ,
8422 {PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4,
8423 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8424 FE_RAM|FE_IO256|FE_LEDC}
8425};
8426
8427#define sym_pci_num_devs \
8428 (sizeof(sym_pci_dev_table) / sizeof(sym_pci_dev_table[0]))
8429
8430/*
8431 * Look up the chip table.
8432 *
8433 * Return a pointer to the chip entry if found,
8434 * zero otherwise.
8435 */
8436static struct sym_pci_chip *
8437sym_find_pci_chip(device_t dev)
8438{
8439 struct sym_pci_chip *chip;
8440 int i;
8441 u_short device_id;
8442 u_char revision;
8443
8444 if (pci_get_vendor(dev) != PCI_VENDOR_NCR)
8445 return 0;
8446
8447 device_id = pci_get_device(dev);
8448 revision = pci_get_revid(dev);
8449
8450 for (i = 0; i < sym_pci_num_devs; i++) {
8451 chip = &sym_pci_dev_table[i];
8452 if (device_id != chip->device_id)
8453 continue;
8454 if (revision > chip->revision_id)
8455 continue;
8456 return chip;
8457 }
8458
8459 return 0;
8460}
8461
8462/*
8463 * Tell upper layer if the chip is supported.
8464 */
8465static int
8466sym_pci_probe(device_t dev)
8467{
8468 struct sym_pci_chip *chip;
8469
8470 chip = sym_find_pci_chip(dev);
8471 if (chip && sym_find_firmware(chip)) {
8472 device_set_desc(dev, chip->name);
8473 return (chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP)?
8474 BUS_PROBE_LOW_PRIORITY : BUS_PROBE_DEFAULT;
8475 }
8476 return ENXIO;
8477}
8478
8479/*
8480 * Attach a sym53c8xx device.
8481 */
8482static int
8483sym_pci_attach(device_t dev)
8484{
8485 struct sym_pci_chip *chip;
8486 u_short command;
8487 u_char cachelnsz;
8488 struct sym_hcb *np = 0;
8489 struct sym_nvram nvram;
8490 struct sym_fw *fw = 0;
8491 int i;
8492 bus_dma_tag_t bus_dmat;
8493
8494 bus_dmat = bus_get_dma_tag(dev);
8495
8496 /*
8497 * Only probed devices should be attached.
8498 * We just enjoy being paranoid. :)
8499 */
8500 chip = sym_find_pci_chip(dev);
8501 if (chip == NULL || (fw = sym_find_firmware(chip)) == NULL)
8502 return (ENXIO);
8503
8504 /*
8505 * Allocate immediately the host control block,
8506 * since we are only expecting to succeed. :)
8507 * We keep track in the HCB of all the resources that
8508 * are to be released on error.
8509 */
8510 np = __sym_calloc_dma(bus_dmat, sizeof(*np), "HCB");
8511 if (np)
8512 np->bus_dmat = bus_dmat;
8513 else
8514 goto attach_failed;
8515
8516 /*
8517 * Copy some useful infos to the HCB.
8518 */
8519 np->hcb_ba = vtobus(np);
8520 np->verbose = bootverbose;
8521 np->device = dev;
8522 np->unit = device_get_unit(dev);
8523 np->device_id = pci_get_device(dev);
8524 np->revision_id = pci_get_revid(dev);
8525 np->features = chip->features;
8526 np->clock_divn = chip->nr_divisor;
8527 np->maxoffs = chip->offset_max;
8528 np->maxburst = chip->burst_max;
8529 np->scripta_sz = fw->a_size;
8530 np->scriptb_sz = fw->b_size;
8531 np->fw_setup = fw->setup;
8532 np->fw_patch = fw->patch;
8533 np->fw_name = fw->name;
8534
8535 /*
8536 * Edit its name.
8537 */
8538 snprintf(np->inst_name, sizeof(np->inst_name), "sym%d", np->unit);
8539
8540 /*
8541 * Initialyze the CCB free and busy queues.
8542 */
8543 sym_que_init(&np->free_ccbq);
8544 sym_que_init(&np->busy_ccbq);
8545 sym_que_init(&np->comp_ccbq);
8546 sym_que_init(&np->cam_ccbq);
8547
8548 /*
8549 * Allocate a tag for the DMA of user data.
8550 */
8551 if (bus_dma_tag_create(np->bus_dmat, 1, (1<<24),
8552 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
8553 NULL, NULL,
8554 BUS_SPACE_MAXSIZE, SYM_CONF_MAX_SG,
8555 (1<<24), 0, busdma_lock_mutex, &Giant,
8556 &np->data_dmat)) {
8557 device_printf(dev, "failed to create DMA tag.\n");
8558 goto attach_failed;
8559 }
8560 /*
8561 * Read and apply some fix-ups to the PCI COMMAND
8562 * register. We want the chip to be enabled for:
8563 * - BUS mastering
8564 * - PCI parity checking (reporting would also be fine)
8565 * - Write And Invalidate.
8566 */
8567 command = pci_read_config(dev, PCIR_COMMAND, 2);
8568 command |= PCIM_CMD_BUSMASTEREN;
8569 command |= PCIM_CMD_PERRESPEN;
8570 command |= /* PCIM_CMD_MWIEN */ 0x0010;
8571 pci_write_config(dev, PCIR_COMMAND, command, 2);
8572
8573 /*
8574 * Let the device know about the cache line size,
8575 * if it doesn't yet.
8576 */
8577 cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
8578 if (!cachelnsz) {
8579 cachelnsz = 8;
8580 pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1);
8581 }
8582
8583 /*
8584 * Alloc/get/map/retrieve everything that deals with MMIO.
8585 */
8586 if ((command & PCIM_CMD_MEMEN) != 0) {
8587 int regs_id = SYM_PCI_MMIO;
8588 np->mmio_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
8589 &regs_id, RF_ACTIVE);
8590 }
8591 if (!np->mmio_res) {
8592 device_printf(dev, "failed to allocate MMIO resources\n");
8593 goto attach_failed;
8594 }
8595 np->mmio_bsh = rman_get_bushandle(np->mmio_res);
8596 np->mmio_tag = rman_get_bustag(np->mmio_res);
8597 np->mmio_pa = rman_get_start(np->mmio_res);
8598 np->mmio_va = (vm_offset_t) rman_get_virtual(np->mmio_res);
8599 np->mmio_ba = np->mmio_pa;
8600
8601 /*
8602 * Allocate the IRQ.
8603 */
8604 i = 0;
8605 np->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i,
8606 RF_ACTIVE | RF_SHAREABLE);
8607 if (!np->irq_res) {
8608 device_printf(dev, "failed to allocate IRQ resource\n");
8609 goto attach_failed;
8610 }
8611
8612#ifdef SYM_CONF_IOMAPPED
8613 /*
8614 * User want us to use normal IO with PCI.
8615 * Alloc/get/map/retrieve everything that deals with IO.
8616 */
8617 if ((command & PCI_COMMAND_IO_ENABLE) != 0) {
8618 int regs_id = SYM_PCI_IO;
8619 np->io_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
8620 &regs_id, RF_ACTIVE);
8621 }
8622 if (!np->io_res) {
8623 device_printf(dev, "failed to allocate IO resources\n");
8624 goto attach_failed;
8625 }
8626 np->io_bsh = rman_get_bushandle(np->io_res);
8627 np->io_tag = rman_get_bustag(np->io_res);
8628 np->io_port = rman_get_start(np->io_res);
8629
8630#endif /* SYM_CONF_IOMAPPED */
8631
8632 /*
8633 * If the chip has RAM.
8634 * Alloc/get/map/retrieve the corresponding resources.
8635 */
8636 if ((np->features & (FE_RAM|FE_RAM8K)) &&
8637 (command & PCIM_CMD_MEMEN) != 0) {
8638 int regs_id = SYM_PCI_RAM;
8639 if (np->features & FE_64BIT)
8640 regs_id = SYM_PCI_RAM64;
8641 np->ram_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
8642 &regs_id, RF_ACTIVE);
8643 if (!np->ram_res) {
8644 device_printf(dev,"failed to allocate RAM resources\n");
8645 goto attach_failed;
8646 }
8647 np->ram_id = regs_id;
8648 np->ram_bsh = rman_get_bushandle(np->ram_res);
8649 np->ram_tag = rman_get_bustag(np->ram_res);
8650 np->ram_pa = rman_get_start(np->ram_res);
8651 np->ram_va = (vm_offset_t) rman_get_virtual(np->ram_res);
8652 np->ram_ba = np->ram_pa;
8653 }
8654
8655 /*
8656 * Save setting of some IO registers, so we will
8657 * be able to probe specific implementations.
8658 */
8659 sym_save_initial_setting (np);
8660
8661 /*
8662 * Reset the chip now, since it has been reported
8663 * that SCSI clock calibration may not work properly
8664 * if the chip is currently active.
8665 */
8666 sym_chip_reset (np);
8667
8668 /*
8669 * Try to read the user set-up.
8670 */
8671 (void) sym_read_nvram(np, &nvram);
8672
8673 /*
8674 * Prepare controller and devices settings, according
8675 * to chip features, user set-up and driver set-up.
8676 */
8677 (void) sym_prepare_setting(np, &nvram);
8678
8679 /*
8680 * Check the PCI clock frequency.
8681 * Must be performed after prepare_setting since it destroys
8682 * STEST1 that is used to probe for the clock doubler.
8683 */
8684 i = sym_getpciclock(np);
8685 if (i > 37000)
8686 device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i);
8687
8688 /*
8689 * Allocate the start queue.
8690 */
8691 np->squeue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
8692 if (!np->squeue)
8693 goto attach_failed;
8694 np->squeue_ba = vtobus(np->squeue);
8695
8696 /*
8697 * Allocate the done queue.
8698 */
8699 np->dqueue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
8700 if (!np->dqueue)
8701 goto attach_failed;
8702 np->dqueue_ba = vtobus(np->dqueue);
8703
8704 /*
8705 * Allocate the target bus address array.
8706 */
8707 np->targtbl = (u32 *) sym_calloc_dma(256, "TARGTBL");
8708 if (!np->targtbl)
8709 goto attach_failed;
8710 np->targtbl_ba = vtobus(np->targtbl);
8711
8712 /*
8713 * Allocate SCRIPTS areas.
8714 */
8715 np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
8716 np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
8717 if (!np->scripta0 || !np->scriptb0)
8718 goto attach_failed;
8719
8720 /*
8721 * Allocate some CCB. We need at least ONE.
8722 */
8723 if (!sym_alloc_ccb(np))
8724 goto attach_failed;
8725
8726 /*
8727 * Calculate BUS addresses where we are going
8728 * to load the SCRIPTS.
8729 */
8730 np->scripta_ba = vtobus(np->scripta0);
8731 np->scriptb_ba = vtobus(np->scriptb0);
8732 np->scriptb0_ba = np->scriptb_ba;
8733
8734 if (np->ram_ba) {
8735 np->scripta_ba = np->ram_ba;
8736 if (np->features & FE_RAM8K) {
8737 np->ram_ws = 8192;
8738 np->scriptb_ba = np->scripta_ba + 4096;
8739#ifdef __LP64__
8740 np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
8741#endif
8742 }
8743 else
8744 np->ram_ws = 4096;
8745 }
8746
8747 /*
8748 * Copy scripts to controller instance.
8749 */
8750 bcopy(fw->a_base, np->scripta0, np->scripta_sz);
8751 bcopy(fw->b_base, np->scriptb0, np->scriptb_sz);
8752
8753 /*
8754 * Setup variable parts in scripts and compute
8755 * scripts bus addresses used from the C code.
8756 */
8757 np->fw_setup(np, fw);
8758
8759 /*
8760 * Bind SCRIPTS with physical addresses usable by the
8761 * SCRIPTS processor (as seen from the BUS = BUS addresses).
8762 */
8763 sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
8764 sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
8765
8766#ifdef SYM_CONF_IARB_SUPPORT
8767 /*
8768 * If user wants IARB to be set when we win arbitration
8769 * and have other jobs, compute the max number of consecutive
8770 * settings of IARB hints before we leave devices a chance to
8771 * arbitrate for reselection.
8772 */
8773#ifdef SYM_SETUP_IARB_MAX
8774 np->iarb_max = SYM_SETUP_IARB_MAX;
8775#else
8776 np->iarb_max = 4;
8777#endif
8778#endif
8779
8780 /*
8781 * Prepare the idle and invalid task actions.
8782 */
8783 np->idletask.start = cpu_to_scr(SCRIPTA_BA (np, idle));
8784 np->idletask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8785 np->idletask_ba = vtobus(&np->idletask);
8786
8787 np->notask.start = cpu_to_scr(SCRIPTA_BA (np, idle));
8788 np->notask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8789 np->notask_ba = vtobus(&np->notask);
8790
8791 np->bad_itl.start = cpu_to_scr(SCRIPTA_BA (np, idle));
8792 np->bad_itl.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8793 np->bad_itl_ba = vtobus(&np->bad_itl);
8794
8795 np->bad_itlq.start = cpu_to_scr(SCRIPTA_BA (np, idle));
8796 np->bad_itlq.restart = cpu_to_scr(SCRIPTB_BA (np,bad_i_t_l_q));
8797 np->bad_itlq_ba = vtobus(&np->bad_itlq);
8798
8799 /*
8800 * Allocate and prepare the lun JUMP table that is used
8801 * for a target prior the probing of devices (bad lun table).
8802 * A private table will be allocated for the target on the
8803 * first INQUIRY response received.
8804 */
8805 np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
8806 if (!np->badluntbl)
8807 goto attach_failed;
8808
8809 np->badlun_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
8810 for (i = 0 ; i < 64 ; i++) /* 64 luns/target, no less */
8811 np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
8812
8813 /*
8814 * Prepare the bus address array that contains the bus
8815 * address of each target control block.
8816 * For now, assume all logical units are wrong. :)
8817 */
8818 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
8819 np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
8820 np->target[i].head.luntbl_sa =
8821 cpu_to_scr(vtobus(np->badluntbl));
8822 np->target[i].head.lun0_sa =
8823 cpu_to_scr(vtobus(&np->badlun_sa));
8824 }
8825
8826 /*
8827 * Now check the cache handling of the pci chipset.
8828 */
8829 if (sym_snooptest (np)) {
8830 device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n");
8831 goto attach_failed;
8832 };
8833
8834 /*
8835 * Now deal with CAM.
8836 * Hopefully, we will succeed with that one.:)
8837 */
8838 if (!sym_cam_attach(np))
8839 goto attach_failed;
8840
8841 /*
8842 * Sigh! we are done.
8843 */
8844 return 0;
8845
8846 /*
8847 * We have failed.
8848 * We will try to free all the resources we have
8849 * allocated, but if we are a boot device, this
8850 * will not help that much.;)
8851 */
8852attach_failed:
8853 if (np)
8854 sym_pci_free(np);
8855 return ENXIO;
8856}
8857
8858/*
8859 * Free everything that have been allocated for this device.
8860 */
8861static void sym_pci_free(hcb_p np)
8862{
8863 SYM_QUEHEAD *qp;
8864 ccb_p cp;
8865 tcb_p tp;
8866 lcb_p lp;
8867 int target, lun;
8868 int s;
8869
8870 /*
8871 * First free CAM resources.
8872 */
8873 s = splcam();
8874 sym_cam_free(np);
8875 splx(s);
8876
8877 /*
8878 * Now every should be quiet for us to
8879 * free other resources.
8880 */
8881 if (np->ram_res)
8882 bus_release_resource(np->device, SYS_RES_MEMORY,
8883 np->ram_id, np->ram_res);
8884 if (np->mmio_res)
8885 bus_release_resource(np->device, SYS_RES_MEMORY,
8886 SYM_PCI_MMIO, np->mmio_res);
8887 if (np->io_res)
8888 bus_release_resource(np->device, SYS_RES_IOPORT,
8889 SYM_PCI_IO, np->io_res);
8890 if (np->irq_res)
8891 bus_release_resource(np->device, SYS_RES_IRQ,
8892 0, np->irq_res);
8893
8894 if (np->scriptb0)
8895 sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
8896 if (np->scripta0)
8897 sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
8898 if (np->squeue)
8899 sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
8900 if (np->dqueue)
8901 sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
8902
8903 while ((qp = sym_remque_head(&np->free_ccbq)) != 0) {
8904 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
8905 bus_dmamap_destroy(np->data_dmat, cp->dmamap);
8906 sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF");
8907 sym_mfree_dma(cp, sizeof(*cp), "CCB");
8908 }
8909
8910 if (np->badluntbl)
8911 sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
8912
8913 for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
8914 tp = &np->target[target];
8915 for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) {
8916 lp = sym_lp(np, tp, lun);
8917 if (!lp)
8918 continue;
8919 if (lp->itlq_tbl)
8920 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4,
8921 "ITLQ_TBL");
8922 if (lp->cb_tags)
8923 sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK,
8924 "CB_TAGS");
8925 sym_mfree_dma(lp, sizeof(*lp), "LCB");
8926 }
8927#if SYM_CONF_MAX_LUN > 1
8928 if (tp->lunmp)
8929 sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p),
8930 "LUNMP");
8931#endif
8932 }
8933 if (np->targtbl)
8934 sym_mfree_dma(np->targtbl, 256, "TARGTBL");
8935 if (np->data_dmat)
8936 bus_dma_tag_destroy(np->data_dmat);
8937 sym_mfree_dma(np, sizeof(*np), "HCB");
8938}
8939
8940/*
8941 * Allocate CAM resources and register a bus to CAM.
8942 */
8943static int sym_cam_attach(hcb_p np)
8944{
8945 struct cam_devq *devq = 0;
8946 struct cam_sim *sim = 0;
8947 struct cam_path *path = 0;
8948 struct ccb_setasync csa;
8949 int err, s;
8950
8951 s = splcam();
8952
8953 /*
8954 * Establish our interrupt handler.
8955 */
8956 err = bus_setup_intr(np->device, np->irq_res,
8957 INTR_TYPE_CAM | INTR_ENTROPY, NULL, sym_intr, np,
8958 &np->intr);
8959 if (err) {
8960 device_printf(np->device, "bus_setup_intr() failed: %d\n",
8961 err);
8962 goto fail;
8963 }
8964
8965 /*
8966 * Create the device queue for our sym SIM.
8967 */
8968 devq = cam_simq_alloc(SYM_CONF_MAX_START);
8969 if (!devq)
8970 goto fail;
8971
8972 /*
8973 * Construct our SIM entry.
8974 */
8975 sim = cam_sim_alloc(sym_action, sym_poll, "sym", np, np->unit,
8976 &Giant, 1, SYM_SETUP_MAX_TAG, devq);
8977 if (!sim)
8978 goto fail;
8979 devq = 0;
8980
8981 if (xpt_bus_register(sim, np->device, 0) != CAM_SUCCESS)
8982 goto fail;
8983 np->sim = sim;
8984 sim = 0;
8985
8986 if (xpt_create_path(&path, 0,
8987 cam_sim_path(np->sim), CAM_TARGET_WILDCARD,
8988 CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
8989 goto fail;
8990 }
8991 np->path = path;
8992
8993 /*
8994 * Establish our async notification handler.
8995 */
8996 xpt_setup_ccb(&csa.ccb_h, np->path, 5);
8997 csa.ccb_h.func_code = XPT_SASYNC_CB;
8998 csa.event_enable = AC_LOST_DEVICE;
8999 csa.callback = sym_async;
9000 csa.callback_arg = np->sim;
9001 xpt_action((union ccb *)&csa);
9002
9003 /*
9004 * Start the chip now, without resetting the BUS, since
9005 * it seems that this must stay under control of CAM.
9006 * With LVD/SE capable chips and BUS in SE mode, we may
9007 * get a spurious SMBC interrupt.
9008 */
9009 sym_init (np, 0);
9010
9011 splx(s);
9012 return 1;
9013fail:
9014 if (sim)
9015 cam_sim_free(sim, FALSE);
9016 if (devq)
9017 cam_simq_free(devq);
9018
9019 sym_cam_free(np);
9020
9021 splx(s);
9022 return 0;
9023}
9024
9025/*
9026 * Free everything that deals with CAM.
9027 */
9028static void sym_cam_free(hcb_p np)
9029{
9030 if (np->intr) {
9031 bus_teardown_intr(np->device, np->irq_res, np->intr);
9032 np->intr = NULL;
9033 }
9034
9035 if (np->sim) {
9036 xpt_bus_deregister(cam_sim_path(np->sim));
9037 cam_sim_free(np->sim, /*free_devq*/ TRUE);
9038 np->sim = NULL;
9039 }
9040 if (np->path) {
9041 xpt_free_path(np->path);
9042 np->path = NULL;
9043 }
9044}
9045
9046/*============ OPTIONNAL NVRAM SUPPORT =================*/
9047
9048/*
9049 * Get host setup from NVRAM.
9050 */
9051static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram)
9052{
9053#ifdef SYM_CONF_NVRAM_SUPPORT
9054 /*
9055 * Get parity checking, host ID, verbose mode
9056 * and miscellaneous host flags from NVRAM.
9057 */
9058 switch(nvram->type) {
9059 case SYM_SYMBIOS_NVRAM:
9060 if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE))
9061 np->rv_scntl0 &= ~0x0a;
9062 np->myaddr = nvram->data.Symbios.host_id & 0x0f;
9063 if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS)
9064 np->verbose += 1;
9065 if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO)
9066 np->usrflags |= SYM_SCAN_TARGETS_HILO;
9067 if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET)
9068 np->usrflags |= SYM_AVOID_BUS_RESET;
9069 break;
9070 case SYM_TEKRAM_NVRAM:
9071 np->myaddr = nvram->data.Tekram.host_id & 0x0f;
9072 break;
9073 default:
9074 break;
9075 }
9076#endif
9077}
9078
9079/*
9080 * Get target setup from NVRAM.
9081 */
9082#ifdef SYM_CONF_NVRAM_SUPPORT
9083static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram);
9084static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram);
9085#endif
9086
9087static void
9088sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp)
9089{
9090#ifdef SYM_CONF_NVRAM_SUPPORT
9091 switch(nvp->type) {
9092 case SYM_SYMBIOS_NVRAM:
9093 sym_Symbios_setup_target (np, target, &nvp->data.Symbios);
9094 break;
9095 case SYM_TEKRAM_NVRAM:
9096 sym_Tekram_setup_target (np, target, &nvp->data.Tekram);
9097 break;
9098 default:
9099 break;
9100 }
9101#endif
9102}
9103
9104#ifdef SYM_CONF_NVRAM_SUPPORT
9105/*
9106 * Get target set-up from Symbios format NVRAM.
9107 */
9108static void
9109sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram)
9110{
9111 tcb_p tp = &np->target[target];
9112 Symbios_target *tn = &nvram->target[target];
9113
9114 tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0;
9115 tp->tinfo.user.width = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT;
9116 tp->usrtags =
9117 (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0;
9118
9119 if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE))
9120 tp->usrflags &= ~SYM_DISC_ENABLED;
9121 if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME))
9122 tp->usrflags |= SYM_SCAN_BOOT_DISABLED;
9123 if (!(tn->flags & SYMBIOS_SCAN_LUNS))
9124 tp->usrflags |= SYM_SCAN_LUNS_DISABLED;
9125}
9126
9127/*
9128 * Get target set-up from Tekram format NVRAM.
9129 */
9130static void
9131sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram)
9132{
9133 tcb_p tp = &np->target[target];
9134 struct Tekram_target *tn = &nvram->target[target];
9135 int i;
9136
9137 if (tn->flags & TEKRAM_SYNC_NEGO) {
9138 i = tn->sync_index & 0xf;
9139 tp->tinfo.user.period = Tekram_sync[i];
9140 }
9141
9142 tp->tinfo.user.width =
9143 (tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT;
9144
9145 if (tn->flags & TEKRAM_TAGGED_COMMANDS) {
9146 tp->usrtags = 2 << nvram->max_tags_index;
9147 }
9148
9149 if (tn->flags & TEKRAM_DISCONNECT_ENABLE)
9150 tp->usrflags |= SYM_DISC_ENABLED;
9151
9152 /* If any device does not support parity, we will not use this option */
9153 if (!(tn->flags & TEKRAM_PARITY_CHECK))
9154 np->rv_scntl0 &= ~0x0a; /* SCSI parity checking disabled */
9155}
9156
9157#ifdef SYM_CONF_DEBUG_NVRAM
9158/*
9159 * Dump Symbios format NVRAM for debugging purpose.
9160 */
9161static void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram)
9162{
9163 int i;
9164
9165 /* display Symbios nvram host data */
9166 printf("%s: HOST ID=%d%s%s%s%s%s%s\n",
9167 sym_name(np), nvram->host_id & 0x0f,
9168 (nvram->flags & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"",
9169 (nvram->flags & SYMBIOS_PARITY_ENABLE) ? " PARITY" :"",
9170 (nvram->flags & SYMBIOS_VERBOSE_MSGS) ? " VERBOSE" :"",
9171 (nvram->flags & SYMBIOS_CHS_MAPPING) ? " CHS_ALT" :"",
9172 (nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)?" NO_RESET" :"",
9173 (nvram->flags1 & SYMBIOS_SCAN_HI_LO) ? " HI_LO" :"");
9174
9175 /* display Symbios nvram drive data */
9176 for (i = 0 ; i < 15 ; i++) {
9177 struct Symbios_target *tn = &nvram->target[i];
9178 printf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n",
9179 sym_name(np), i,
9180 (tn->flags & SYMBIOS_DISCONNECT_ENABLE) ? " DISC" : "",
9181 (tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME) ? " SCAN_BOOT" : "",
9182 (tn->flags & SYMBIOS_SCAN_LUNS) ? " SCAN_LUNS" : "",
9183 (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ" : "",
9184 tn->bus_width,
9185 tn->sync_period / 4,
9186 tn->timeout);
9187 }
9188}
9189
9190/*
9191 * Dump TEKRAM format NVRAM for debugging purpose.
9192 */
9193static u_char Tekram_boot_delay[7] = {3, 5, 10, 20, 30, 60, 120};
9194static void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram)
9195{
9196 int i, tags, boot_delay;
9197 char *rem;
9198
9199 /* display Tekram nvram host data */
9200 tags = 2 << nvram->max_tags_index;
9201 boot_delay = 0;
9202 if (nvram->boot_delay_index < 6)
9203 boot_delay = Tekram_boot_delay[nvram->boot_delay_index];
9204 switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) {
9205 default:
9206 case 0: rem = ""; break;
9207 case 1: rem = " REMOVABLE=boot device"; break;
9208 case 2: rem = " REMOVABLE=all"; break;
9209 }
9210
9211 printf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n",
9212 sym_name(np), nvram->host_id & 0x0f,
9213 (nvram->flags1 & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"",
9214 (nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES" :"",
9215 (nvram->flags & TEKRAM_DRIVES_SUP_1GB) ? " >1GB" :"",
9216 (nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET" :"",
9217 (nvram->flags & TEKRAM_ACTIVE_NEGATION) ? " ACT_NEG" :"",
9218 (nvram->flags & TEKRAM_IMMEDIATE_SEEK) ? " IMM_SEEK" :"",
9219 (nvram->flags & TEKRAM_SCAN_LUNS) ? " SCAN_LUNS" :"",
9220 (nvram->flags1 & TEKRAM_F2_F6_ENABLED) ? " F2_F6" :"",
9221 rem, boot_delay, tags);
9222
9223 /* display Tekram nvram drive data */
9224 for (i = 0; i <= 15; i++) {
9225 int sync, j;
9226 struct Tekram_target *tn = &nvram->target[i];
9227 j = tn->sync_index & 0xf;
9228 sync = Tekram_sync[j];
9229 printf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n",
9230 sym_name(np), i,
9231 (tn->flags & TEKRAM_PARITY_CHECK) ? " PARITY" : "",
9232 (tn->flags & TEKRAM_SYNC_NEGO) ? " SYNC" : "",
9233 (tn->flags & TEKRAM_DISCONNECT_ENABLE) ? " DISC" : "",
9234 (tn->flags & TEKRAM_START_CMD) ? " START" : "",
9235 (tn->flags & TEKRAM_TAGGED_COMMANDS) ? " TCQ" : "",
9236 (tn->flags & TEKRAM_WIDE_NEGO) ? " WIDE" : "",
9237 sync);
9238 }
9239}
9240#endif /* SYM_CONF_DEBUG_NVRAM */
9241#endif /* SYM_CONF_NVRAM_SUPPORT */
9242
9243
9244/*
9245 * Try reading Symbios or Tekram NVRAM
9246 */
9247#ifdef SYM_CONF_NVRAM_SUPPORT
9248static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram);
9249static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram);
9250#endif
9251
9252static int sym_read_nvram(hcb_p np, struct sym_nvram *nvp)
9253{
9254#ifdef SYM_CONF_NVRAM_SUPPORT
9255 /*
9256 * Try to read SYMBIOS nvram.
9257 * Try to read TEKRAM nvram if Symbios nvram not found.
9258 */
9259 if (SYM_SETUP_SYMBIOS_NVRAM &&
9260 !sym_read_Symbios_nvram (np, &nvp->data.Symbios)) {
9261 nvp->type = SYM_SYMBIOS_NVRAM;
9262#ifdef SYM_CONF_DEBUG_NVRAM
9263 sym_display_Symbios_nvram(np, &nvp->data.Symbios);
9264#endif
9265 }
9266 else if (SYM_SETUP_TEKRAM_NVRAM &&
9267 !sym_read_Tekram_nvram (np, &nvp->data.Tekram)) {
9268 nvp->type = SYM_TEKRAM_NVRAM;
9269#ifdef SYM_CONF_DEBUG_NVRAM
9270 sym_display_Tekram_nvram(np, &nvp->data.Tekram);
9271#endif
9272 }
9273 else
9274 nvp->type = 0;
9275#else
9276 nvp->type = 0;
9277#endif
9278 return nvp->type;
9279}
9280
9281
9282#ifdef SYM_CONF_NVRAM_SUPPORT
9283/*
9284 * 24C16 EEPROM reading.
9285 *
9286 * GPOI0 - data in/data out
9287 * GPIO1 - clock
9288 * Symbios NVRAM wiring now also used by Tekram.
9289 */
9290
9291#define SET_BIT 0
9292#define CLR_BIT 1
9293#define SET_CLK 2
9294#define CLR_CLK 3
9295
9296/*
9297 * Set/clear data/clock bit in GPIO0
9298 */
9299static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg,
9300 int bit_mode)
9301{
9302 UDELAY (5);
9303 switch (bit_mode){
9304 case SET_BIT:
9305 *gpreg |= write_bit;
9306 break;
9307 case CLR_BIT:
9308 *gpreg &= 0xfe;
9309 break;
9310 case SET_CLK:
9311 *gpreg |= 0x02;
9312 break;
9313 case CLR_CLK:
9314 *gpreg &= 0xfd;
9315 break;
9316
9317 }
9318 OUTB (nc_gpreg, *gpreg);
9319 UDELAY (5);
9320}
9321
9322/*
9323 * Send START condition to NVRAM to wake it up.
9324 */
9325static void S24C16_start(hcb_p np, u_char *gpreg)
9326{
9327 S24C16_set_bit(np, 1, gpreg, SET_BIT);
9328 S24C16_set_bit(np, 0, gpreg, SET_CLK);
9329 S24C16_set_bit(np, 0, gpreg, CLR_BIT);
9330 S24C16_set_bit(np, 0, gpreg, CLR_CLK);
9331}
9332
9333/*
9334 * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!!
9335 */
9336static void S24C16_stop(hcb_p np, u_char *gpreg)
9337{
9338 S24C16_set_bit(np, 0, gpreg, SET_CLK);
9339 S24C16_set_bit(np, 1, gpreg, SET_BIT);
9340}
9341
9342/*
9343 * Read or write a bit to the NVRAM,
9344 * read if GPIO0 input else write if GPIO0 output
9345 */
9346static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit,
9347 u_char *gpreg)
9348{
9349 S24C16_set_bit(np, write_bit, gpreg, SET_BIT);
9350 S24C16_set_bit(np, 0, gpreg, SET_CLK);
9351 if (read_bit)
9352 *read_bit = INB (nc_gpreg);
9353 S24C16_set_bit(np, 0, gpreg, CLR_CLK);
9354 S24C16_set_bit(np, 0, gpreg, CLR_BIT);
9355}
9356
9357/*
9358 * Output an ACK to the NVRAM after reading,
9359 * change GPIO0 to output and when done back to an input
9360 */
9361static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg,
9362 u_char *gpcntl)
9363{
9364 OUTB (nc_gpcntl, *gpcntl & 0xfe);
9365 S24C16_do_bit(np, 0, write_bit, gpreg);
9366 OUTB (nc_gpcntl, *gpcntl);
9367}
9368
9369/*
9370 * Input an ACK from NVRAM after writing,
9371 * change GPIO0 to input and when done back to an output
9372 */
9373static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg,
9374 u_char *gpcntl)
9375{
9376 OUTB (nc_gpcntl, *gpcntl | 0x01);
9377 S24C16_do_bit(np, read_bit, 1, gpreg);
9378 OUTB (nc_gpcntl, *gpcntl);
9379}
9380
9381/*
9382 * WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK,
9383 * GPIO0 must already be set as an output
9384 */
9385static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data,
9386 u_char *gpreg, u_char *gpcntl)
9387{
9388 int x;
9389
9390 for (x = 0; x < 8; x++)
9391 S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg);
9392
9393 S24C16_read_ack(np, ack_data, gpreg, gpcntl);
9394}
9395
9396/*
9397 * READ a byte from the NVRAM and then send an ACK to say we have got it,
9398 * GPIO0 must already be set as an input
9399 */
9400static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data,
9401 u_char *gpreg, u_char *gpcntl)
9402{
9403 int x;
9404 u_char read_bit;
9405
9406 *read_data = 0;
9407 for (x = 0; x < 8; x++) {
9408 S24C16_do_bit(np, &read_bit, 1, gpreg);
9409 *read_data |= ((read_bit & 0x01) << (7 - x));
9410 }
9411
9412 S24C16_write_ack(np, ack_data, gpreg, gpcntl);
9413}
9414
9415/*
9416 * Read 'len' bytes starting at 'offset'.
9417 */
9418static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len)
9419{
9420 u_char gpcntl, gpreg;
9421 u_char old_gpcntl, old_gpreg;
9422 u_char ack_data;
9423 int retv = 1;
9424 int x;
9425
9426 /* save current state of GPCNTL and GPREG */
9427 old_gpreg = INB (nc_gpreg);
9428 old_gpcntl = INB (nc_gpcntl);
9429 gpcntl = old_gpcntl & 0x1c;
9430
9431 /* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */
9432 OUTB (nc_gpreg, old_gpreg);
9433 OUTB (nc_gpcntl, gpcntl);
9434
9435 /* this is to set NVRAM into a known state with GPIO0/1 both low */
9436 gpreg = old_gpreg;
9437 S24C16_set_bit(np, 0, &gpreg, CLR_CLK);
9438 S24C16_set_bit(np, 0, &gpreg, CLR_BIT);
9439
9440 /* now set NVRAM inactive with GPIO0/1 both high */
9441 S24C16_stop(np, &gpreg);
9442
9443 /* activate NVRAM */
9444 S24C16_start(np, &gpreg);
9445
9446 /* write device code and random address MSB */
9447 S24C16_write_byte(np, &ack_data,
9448 0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
9449 if (ack_data & 0x01)
9450 goto out;
9451
9452 /* write random address LSB */
9453 S24C16_write_byte(np, &ack_data,
9454 offset & 0xff, &gpreg, &gpcntl);
9455 if (ack_data & 0x01)
9456 goto out;
9457
9458 /* regenerate START state to set up for reading */
9459 S24C16_start(np, &gpreg);
9460
9461 /* rewrite device code and address MSB with read bit set (lsb = 0x01) */
9462 S24C16_write_byte(np, &ack_data,
9463 0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
9464 if (ack_data & 0x01)
9465 goto out;
9466
9467 /* now set up GPIO0 for inputting data */
9468 gpcntl |= 0x01;
9469 OUTB (nc_gpcntl, gpcntl);
9470
9471 /* input all requested data - only part of total NVRAM */
9472 for (x = 0; x < len; x++)
9473 S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl);
9474
9475 /* finally put NVRAM back in inactive mode */
9476 gpcntl &= 0xfe;
9477 OUTB (nc_gpcntl, gpcntl);
9478 S24C16_stop(np, &gpreg);
9479 retv = 0;
9480out:
9481 /* return GPIO0/1 to original states after having accessed NVRAM */
9482 OUTB (nc_gpcntl, old_gpcntl);
9483 OUTB (nc_gpreg, old_gpreg);
9484
9485 return retv;
9486}
9487
9488#undef SET_BIT /* 0 */
9489#undef CLR_BIT /* 1 */
9490#undef SET_CLK /* 2 */
9491#undef CLR_CLK /* 3 */
9492
9493/*
9494 * Try reading Symbios NVRAM.
9495 * Return 0 if OK.
9496 */
9497static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram)
9498{
9499 static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0};
9500 u_char *data = (u_char *) nvram;
9501 int len = sizeof(*nvram);
9502 u_short csum;
9503 int x;
9504
9505 /* probe the 24c16 and read the SYMBIOS 24c16 area */
9506 if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len))
9507 return 1;
9508
9509 /* check valid NVRAM signature, verify byte count and checksum */
9510 if (nvram->type != 0 ||
9511 bcmp(nvram->trailer, Symbios_trailer, 6) ||
9512 nvram->byte_count != len - 12)
9513 return 1;
9514
9515 /* verify checksum */
9516 for (x = 6, csum = 0; x < len - 6; x++)
9517 csum += data[x];
9518 if (csum != nvram->checksum)
9519 return 1;
9520
9521 return 0;
9522}
9523
9524/*
9525 * 93C46 EEPROM reading.
9526 *
9527 * GPOI0 - data in
9528 * GPIO1 - data out
9529 * GPIO2 - clock
9530 * GPIO4 - chip select
9531 *
9532 * Used by Tekram.
9533 */
9534
9535/*
9536 * Pulse clock bit in GPIO0
9537 */
9538static void T93C46_Clk(hcb_p np, u_char *gpreg)
9539{
9540 OUTB (nc_gpreg, *gpreg | 0x04);
9541 UDELAY (2);
9542 OUTB (nc_gpreg, *gpreg);
9543}
9544
9545/*
9546 * Read bit from NVRAM
9547 */
9548static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg)
9549{
9550 UDELAY (2);
9551 T93C46_Clk(np, gpreg);
9552 *read_bit = INB (nc_gpreg);
9553}
9554
9555/*
9556 * Write bit to GPIO0
9557 */
9558static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg)
9559{
9560 if (write_bit & 0x01)
9561 *gpreg |= 0x02;
9562 else
9563 *gpreg &= 0xfd;
9564
9565 *gpreg |= 0x10;
9566
9567 OUTB (nc_gpreg, *gpreg);
9568 UDELAY (2);
9569
9570 T93C46_Clk(np, gpreg);
9571}
9572
9573/*
9574 * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!!
9575 */
9576static void T93C46_Stop(hcb_p np, u_char *gpreg)
9577{
9578 *gpreg &= 0xef;
9579 OUTB (nc_gpreg, *gpreg);
9580 UDELAY (2);
9581
9582 T93C46_Clk(np, gpreg);
9583}
9584
9585/*
9586 * Send read command and address to NVRAM
9587 */
9588static void T93C46_Send_Command(hcb_p np, u_short write_data,
9589 u_char *read_bit, u_char *gpreg)
9590{
9591 int x;
9592
9593 /* send 9 bits, start bit (1), command (2), address (6) */
9594 for (x = 0; x < 9; x++)
9595 T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg);
9596
9597 *read_bit = INB (nc_gpreg);
9598}
9599
9600/*
9601 * READ 2 bytes from the NVRAM
9602 */
9603static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg)
9604{
9605 int x;
9606 u_char read_bit;
9607
9608 *nvram_data = 0;
9609 for (x = 0; x < 16; x++) {
9610 T93C46_Read_Bit(np, &read_bit, gpreg);
9611
9612 if (read_bit & 0x01)
9613 *nvram_data |= (0x01 << (15 - x));
9614 else
9615 *nvram_data &= ~(0x01 << (15 - x));
9616 }
9617}
9618
9619/*
9620 * Read Tekram NvRAM data.
9621 */
9622static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg)
9623{
9624 u_char read_bit;
9625 int x;
9626
9627 for (x = 0; x < len; x++) {
9628
9629 /* output read command and address */
9630 T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg);
9631 if (read_bit & 0x01)
9632 return 1; /* Bad */
9633 T93C46_Read_Word(np, &data[x], gpreg);
9634 T93C46_Stop(np, gpreg);
9635 }
9636
9637 return 0;
9638}
9639
9640/*
9641 * Try reading 93C46 Tekram NVRAM.
9642 */
9643static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram)
9644{
9645 u_char gpcntl, gpreg;
9646 u_char old_gpcntl, old_gpreg;
9647 int retv = 1;
9648
9649 /* save current state of GPCNTL and GPREG */
9650 old_gpreg = INB (nc_gpreg);
9651 old_gpcntl = INB (nc_gpcntl);
9652
9653 /* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in,
9654 1/2/4 out */
9655 gpreg = old_gpreg & 0xe9;
9656 OUTB (nc_gpreg, gpreg);
9657 gpcntl = (old_gpcntl & 0xe9) | 0x09;
9658 OUTB (nc_gpcntl, gpcntl);
9659
9660 /* input all of NVRAM, 64 words */
9661 retv = T93C46_Read_Data(np, (u_short *) nvram,
9662 sizeof(*nvram) / sizeof(short), &gpreg);
9663
9664 /* return GPIO0/1/2/4 to original states after having accessed NVRAM */
9665 OUTB (nc_gpcntl, old_gpcntl);
9666 OUTB (nc_gpreg, old_gpreg);
9667
9668 return retv;
9669}
9670
9671/*
9672 * Try reading Tekram NVRAM.
9673 * Return 0 if OK.
9674 */
9675static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram)
9676{
9677 u_char *data = (u_char *) nvram;
9678 int len = sizeof(*nvram);
9679 u_short csum;
9680 int x;
9681
9682 switch (np->device_id) {
9683 case PCI_ID_SYM53C885:
9684 case PCI_ID_SYM53C895:
9685 case PCI_ID_SYM53C896:
9686 x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
9687 data, len);
9688 break;
9689 case PCI_ID_SYM53C875:
9690 x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
9691 data, len);
9692 if (!x)
9693 break;
9694 default:
9695 x = sym_read_T93C46_nvram(np, nvram);
9696 break;
9697 }
9698 if (x)
9699 return 1;
9700
9701 /* verify checksum */
9702 for (x = 0, csum = 0; x < len - 1; x += 2)
9703 csum += data[x] + (data[x+1] << 8);
9704 if (csum != 0x1234)
9705 return 1;
9706
9707 return 0;
9708}
9709
9710#endif /* SYM_CONF_NVRAM_SUPPORT */