Deleted Added
full compact
mpt.c (227001) mpt.c (231228)
1/*-
2 * Generic routines for LSI Fusion adapters.
3 * FreeBSD Version.
4 *
5 * Copyright (c) 2000, 2001 by Greg Ansley
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice immediately at the beginning of the file, without modification,
12 * this list of conditions, and the following disclaimer.
13 * 2. The name of the author may not be used to endorse or promote products
14 * derived from this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
20 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28/*-
29 * Copyright (c) 2002, 2006 by Matthew Jacob
30 * All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions are
34 * met:
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
38 * substantially similar to the "NO WARRANTY" disclaimer below
39 * ("Disclaimer") and any redistribution must be conditioned upon including
40 * a substantially similar Disclaimer requirement for further binary
41 * redistribution.
42 * 3. Neither the names of the above listed copyright holders nor the names
43 * of any contributors may be used to endorse or promote products derived
44 * from this software without specific prior written permission.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
47 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
50 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
51 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
52 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
53 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
54 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
55 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
56 * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
57 *
58 * Support from Chris Ellsworth in order to make SAS adapters work
59 * is gratefully acknowledged.
60 *
61 *
62 * Support from LSI-Logic has also gone a great deal toward making this a
63 * workable subsystem and is gratefully acknowledged.
64 */
65/*-
66 * Copyright (c) 2004, Avid Technology, Inc. and its contributors.
67 * Copyright (c) 2005, WHEEL Sp. z o.o.
68 * Copyright (c) 2004, 2005 Justin T. Gibbs
69 * All rights reserved.
70 *
71 * Redistribution and use in source and binary forms, with or without
72 * modification, are permitted provided that the following conditions are
73 * met:
74 * 1. Redistributions of source code must retain the above copyright
75 * notice, this list of conditions and the following disclaimer.
76 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
77 * substantially similar to the "NO WARRANTY" disclaimer below
78 * ("Disclaimer") and any redistribution must be conditioned upon including
79 * a substantially similar Disclaimer requirement for further binary
80 * redistribution.
81 * 3. Neither the names of the above listed copyright holders nor the names
82 * of any contributors may be used to endorse or promote products derived
83 * from this software without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
86 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
89 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
90 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
91 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
92 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
93 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
94 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
95 * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
96 */
97
98#include <sys/cdefs.h>
1/*-
2 * Generic routines for LSI Fusion adapters.
3 * FreeBSD Version.
4 *
5 * Copyright (c) 2000, 2001 by Greg Ansley
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice immediately at the beginning of the file, without modification,
12 * this list of conditions, and the following disclaimer.
13 * 2. The name of the author may not be used to endorse or promote products
14 * derived from this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
20 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28/*-
29 * Copyright (c) 2002, 2006 by Matthew Jacob
30 * All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions are
34 * met:
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
38 * substantially similar to the "NO WARRANTY" disclaimer below
39 * ("Disclaimer") and any redistribution must be conditioned upon including
40 * a substantially similar Disclaimer requirement for further binary
41 * redistribution.
42 * 3. Neither the names of the above listed copyright holders nor the names
43 * of any contributors may be used to endorse or promote products derived
44 * from this software without specific prior written permission.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
47 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
50 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
51 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
52 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
53 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
54 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
55 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
56 * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
57 *
58 * Support from Chris Ellsworth in order to make SAS adapters work
59 * is gratefully acknowledged.
60 *
61 *
62 * Support from LSI-Logic has also gone a great deal toward making this a
63 * workable subsystem and is gratefully acknowledged.
64 */
65/*-
66 * Copyright (c) 2004, Avid Technology, Inc. and its contributors.
67 * Copyright (c) 2005, WHEEL Sp. z o.o.
68 * Copyright (c) 2004, 2005 Justin T. Gibbs
69 * All rights reserved.
70 *
71 * Redistribution and use in source and binary forms, with or without
72 * modification, are permitted provided that the following conditions are
73 * met:
74 * 1. Redistributions of source code must retain the above copyright
75 * notice, this list of conditions and the following disclaimer.
76 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
77 * substantially similar to the "NO WARRANTY" disclaimer below
78 * ("Disclaimer") and any redistribution must be conditioned upon including
79 * a substantially similar Disclaimer requirement for further binary
80 * redistribution.
81 * 3. Neither the names of the above listed copyright holders nor the names
82 * of any contributors may be used to endorse or promote products derived
83 * from this software without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
86 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
89 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
90 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
91 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
92 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
93 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
94 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
95 * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
96 */
97
98#include <sys/cdefs.h>
99__FBSDID("$FreeBSD: head/sys/dev/mpt/mpt.c 227001 2011-11-01 18:28:33Z marius $");
99__FBSDID("$FreeBSD: head/sys/dev/mpt/mpt.c 231228 2012-02-08 21:40:54Z marius $");
100
101#include <dev/mpt/mpt.h>
102#include <dev/mpt/mpt_cam.h> /* XXX For static handler registration */
103#include <dev/mpt/mpt_raid.h> /* XXX For static handler registration */
104
105#include <dev/mpt/mpilib/mpi.h>
106#include <dev/mpt/mpilib/mpi_ioc.h>
107#include <dev/mpt/mpilib/mpi_fc.h>
108#include <dev/mpt/mpilib/mpi_targ.h>
109
110#include <sys/sysctl.h>
111
112#define MPT_MAX_TRYS 3
113#define MPT_MAX_WAIT 300000
114
115static int maxwait_ack = 0;
116static int maxwait_int = 0;
117static int maxwait_state = 0;
118
119static TAILQ_HEAD(, mpt_softc) mpt_tailq = TAILQ_HEAD_INITIALIZER(mpt_tailq);
120mpt_reply_handler_t *mpt_reply_handlers[MPT_NUM_REPLY_HANDLERS];
121
122static mpt_reply_handler_t mpt_default_reply_handler;
123static mpt_reply_handler_t mpt_config_reply_handler;
124static mpt_reply_handler_t mpt_handshake_reply_handler;
125static mpt_reply_handler_t mpt_event_reply_handler;
126static void mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req,
127 MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context);
128static int mpt_send_event_request(struct mpt_softc *mpt, int onoff);
129static int mpt_soft_reset(struct mpt_softc *mpt);
130static void mpt_hard_reset(struct mpt_softc *mpt);
131static int mpt_dma_buf_alloc(struct mpt_softc *mpt);
132static void mpt_dma_buf_free(struct mpt_softc *mpt);
133static int mpt_configure_ioc(struct mpt_softc *mpt, int, int);
134static int mpt_enable_ioc(struct mpt_softc *mpt, int);
135
136/************************* Personality Module Support *************************/
137/*
138 * We include one extra entry that is guaranteed to be NULL
139 * to simplify our itterator.
140 */
141static struct mpt_personality *mpt_personalities[MPT_MAX_PERSONALITIES + 1];
142static __inline struct mpt_personality*
143 mpt_pers_find(struct mpt_softc *, u_int);
144static __inline struct mpt_personality*
145 mpt_pers_find_reverse(struct mpt_softc *, u_int);
146
147static __inline struct mpt_personality *
148mpt_pers_find(struct mpt_softc *mpt, u_int start_at)
149{
150 KASSERT(start_at <= MPT_MAX_PERSONALITIES,
100
101#include <dev/mpt/mpt.h>
102#include <dev/mpt/mpt_cam.h> /* XXX For static handler registration */
103#include <dev/mpt/mpt_raid.h> /* XXX For static handler registration */
104
105#include <dev/mpt/mpilib/mpi.h>
106#include <dev/mpt/mpilib/mpi_ioc.h>
107#include <dev/mpt/mpilib/mpi_fc.h>
108#include <dev/mpt/mpilib/mpi_targ.h>
109
110#include <sys/sysctl.h>
111
112#define MPT_MAX_TRYS 3
113#define MPT_MAX_WAIT 300000
114
115static int maxwait_ack = 0;
116static int maxwait_int = 0;
117static int maxwait_state = 0;
118
119static TAILQ_HEAD(, mpt_softc) mpt_tailq = TAILQ_HEAD_INITIALIZER(mpt_tailq);
120mpt_reply_handler_t *mpt_reply_handlers[MPT_NUM_REPLY_HANDLERS];
121
122static mpt_reply_handler_t mpt_default_reply_handler;
123static mpt_reply_handler_t mpt_config_reply_handler;
124static mpt_reply_handler_t mpt_handshake_reply_handler;
125static mpt_reply_handler_t mpt_event_reply_handler;
126static void mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req,
127 MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context);
128static int mpt_send_event_request(struct mpt_softc *mpt, int onoff);
129static int mpt_soft_reset(struct mpt_softc *mpt);
130static void mpt_hard_reset(struct mpt_softc *mpt);
131static int mpt_dma_buf_alloc(struct mpt_softc *mpt);
132static void mpt_dma_buf_free(struct mpt_softc *mpt);
133static int mpt_configure_ioc(struct mpt_softc *mpt, int, int);
134static int mpt_enable_ioc(struct mpt_softc *mpt, int);
135
136/************************* Personality Module Support *************************/
137/*
138 * We include one extra entry that is guaranteed to be NULL
139 * to simplify our itterator.
140 */
141static struct mpt_personality *mpt_personalities[MPT_MAX_PERSONALITIES + 1];
142static __inline struct mpt_personality*
143 mpt_pers_find(struct mpt_softc *, u_int);
144static __inline struct mpt_personality*
145 mpt_pers_find_reverse(struct mpt_softc *, u_int);
146
147static __inline struct mpt_personality *
148mpt_pers_find(struct mpt_softc *mpt, u_int start_at)
149{
150 KASSERT(start_at <= MPT_MAX_PERSONALITIES,
151 ("mpt_pers_find: starting position out of range\n"));
151 ("mpt_pers_find: starting position out of range"));
152
153 while (start_at < MPT_MAX_PERSONALITIES
154 && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) {
155 start_at++;
156 }
157 return (mpt_personalities[start_at]);
158}
159
160/*
161 * Used infrequently, so no need to optimize like a forward
162 * traversal where we use the MAX+1 is guaranteed to be NULL
163 * trick.
164 */
165static __inline struct mpt_personality *
166mpt_pers_find_reverse(struct mpt_softc *mpt, u_int start_at)
167{
168 while (start_at < MPT_MAX_PERSONALITIES
169 && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) {
170 start_at--;
171 }
172 if (start_at < MPT_MAX_PERSONALITIES)
173 return (mpt_personalities[start_at]);
174 return (NULL);
175}
176
177#define MPT_PERS_FOREACH(mpt, pers) \
178 for (pers = mpt_pers_find(mpt, /*start_at*/0); \
179 pers != NULL; \
180 pers = mpt_pers_find(mpt, /*start_at*/pers->id+1))
181
182#define MPT_PERS_FOREACH_REVERSE(mpt, pers) \
183 for (pers = mpt_pers_find_reverse(mpt, MPT_MAX_PERSONALITIES-1);\
184 pers != NULL; \
185 pers = mpt_pers_find_reverse(mpt, /*start_at*/pers->id-1))
186
187static mpt_load_handler_t mpt_stdload;
188static mpt_probe_handler_t mpt_stdprobe;
189static mpt_attach_handler_t mpt_stdattach;
190static mpt_enable_handler_t mpt_stdenable;
191static mpt_ready_handler_t mpt_stdready;
192static mpt_event_handler_t mpt_stdevent;
193static mpt_reset_handler_t mpt_stdreset;
194static mpt_shutdown_handler_t mpt_stdshutdown;
195static mpt_detach_handler_t mpt_stddetach;
196static mpt_unload_handler_t mpt_stdunload;
197static struct mpt_personality mpt_default_personality =
198{
199 .load = mpt_stdload,
200 .probe = mpt_stdprobe,
201 .attach = mpt_stdattach,
202 .enable = mpt_stdenable,
203 .ready = mpt_stdready,
204 .event = mpt_stdevent,
205 .reset = mpt_stdreset,
206 .shutdown = mpt_stdshutdown,
207 .detach = mpt_stddetach,
208 .unload = mpt_stdunload
209};
210
211static mpt_load_handler_t mpt_core_load;
212static mpt_attach_handler_t mpt_core_attach;
213static mpt_enable_handler_t mpt_core_enable;
214static mpt_reset_handler_t mpt_core_ioc_reset;
215static mpt_event_handler_t mpt_core_event;
216static mpt_shutdown_handler_t mpt_core_shutdown;
217static mpt_shutdown_handler_t mpt_core_detach;
218static mpt_unload_handler_t mpt_core_unload;
219static struct mpt_personality mpt_core_personality =
220{
221 .name = "mpt_core",
222 .load = mpt_core_load,
223// .attach = mpt_core_attach,
224// .enable = mpt_core_enable,
225 .event = mpt_core_event,
226 .reset = mpt_core_ioc_reset,
227 .shutdown = mpt_core_shutdown,
228 .detach = mpt_core_detach,
229 .unload = mpt_core_unload,
230};
231
232/*
233 * Manual declaration so that DECLARE_MPT_PERSONALITY doesn't need
234 * ordering information. We want the core to always register FIRST.
235 * other modules are set to SI_ORDER_SECOND.
236 */
237static moduledata_t mpt_core_mod = {
238 "mpt_core", mpt_modevent, &mpt_core_personality
239};
240DECLARE_MODULE(mpt_core, mpt_core_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
241MODULE_VERSION(mpt_core, 1);
242
243#define MPT_PERS_ATTACHED(pers, mpt) ((mpt)->mpt_pers_mask & (0x1 << pers->id))
244
245int
246mpt_modevent(module_t mod, int type, void *data)
247{
248 struct mpt_personality *pers;
249 int error;
250
251 pers = (struct mpt_personality *)data;
252
253 error = 0;
254 switch (type) {
255 case MOD_LOAD:
256 {
257 mpt_load_handler_t **def_handler;
258 mpt_load_handler_t **pers_handler;
259 int i;
260
261 for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
262 if (mpt_personalities[i] == NULL)
263 break;
264 }
265 if (i >= MPT_MAX_PERSONALITIES) {
266 error = ENOMEM;
267 break;
268 }
269 pers->id = i;
270 mpt_personalities[i] = pers;
271
272 /* Install standard/noop handlers for any NULL entries. */
273 def_handler = MPT_PERS_FIRST_HANDLER(&mpt_default_personality);
274 pers_handler = MPT_PERS_FIRST_HANDLER(pers);
275 while (pers_handler <= MPT_PERS_LAST_HANDLER(pers)) {
276 if (*pers_handler == NULL)
277 *pers_handler = *def_handler;
278 pers_handler++;
279 def_handler++;
280 }
281
282 error = (pers->load(pers));
283 if (error != 0)
284 mpt_personalities[i] = NULL;
285 break;
286 }
287 case MOD_SHUTDOWN:
288 break;
289#if __FreeBSD_version >= 500000
290 case MOD_QUIESCE:
291 break;
292#endif
293 case MOD_UNLOAD:
294 error = pers->unload(pers);
295 mpt_personalities[pers->id] = NULL;
296 break;
297 default:
298 error = EINVAL;
299 break;
300 }
301 return (error);
302}
303
304static int
305mpt_stdload(struct mpt_personality *pers)
306{
307
308 /* Load is always successful. */
309 return (0);
310}
311
312static int
313mpt_stdprobe(struct mpt_softc *mpt)
314{
315
316 /* Probe is always successful. */
317 return (0);
318}
319
320static int
321mpt_stdattach(struct mpt_softc *mpt)
322{
323
324 /* Attach is always successful. */
325 return (0);
326}
327
328static int
329mpt_stdenable(struct mpt_softc *mpt)
330{
331
332 /* Enable is always successful. */
333 return (0);
334}
335
336static void
337mpt_stdready(struct mpt_softc *mpt)
338{
339
340}
341
342static int
343mpt_stdevent(struct mpt_softc *mpt, request_t *req, MSG_EVENT_NOTIFY_REPLY *msg)
344{
345
346 mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_stdevent: 0x%x\n", msg->Event & 0xFF);
347 /* Event was not for us. */
348 return (0);
349}
350
351static void
352mpt_stdreset(struct mpt_softc *mpt, int type)
353{
354
355}
356
357static void
358mpt_stdshutdown(struct mpt_softc *mpt)
359{
360
361}
362
363static void
364mpt_stddetach(struct mpt_softc *mpt)
365{
366
367}
368
369static int
370mpt_stdunload(struct mpt_personality *pers)
371{
372
373 /* Unload is always successful. */
374 return (0);
375}
376
377/*
378 * Post driver attachment, we may want to perform some global actions.
379 * Here is the hook to do so.
380 */
381
382static void
383mpt_postattach(void *unused)
384{
385 struct mpt_softc *mpt;
386 struct mpt_personality *pers;
387
388 TAILQ_FOREACH(mpt, &mpt_tailq, links) {
389 MPT_PERS_FOREACH(mpt, pers)
390 pers->ready(mpt);
391 }
392}
393SYSINIT(mptdev, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE, mpt_postattach, NULL);
394
395/******************************* Bus DMA Support ******************************/
396void
397mpt_map_rquest(void *arg, bus_dma_segment_t *segs, int nseg, int error)
398{
399 struct mpt_map_info *map_info;
400
401 map_info = (struct mpt_map_info *)arg;
402 map_info->error = error;
403 map_info->phys = segs->ds_addr;
404}
405
406/**************************** Reply/Event Handling ****************************/
407int
408mpt_register_handler(struct mpt_softc *mpt, mpt_handler_type type,
409 mpt_handler_t handler, uint32_t *phandler_id)
410{
411
412 switch (type) {
413 case MPT_HANDLER_REPLY:
414 {
415 u_int cbi;
416 u_int free_cbi;
417
418 if (phandler_id == NULL)
419 return (EINVAL);
420
421 free_cbi = MPT_HANDLER_ID_NONE;
422 for (cbi = 0; cbi < MPT_NUM_REPLY_HANDLERS; cbi++) {
423 /*
424 * If the same handler is registered multiple
425 * times, don't error out. Just return the
426 * index of the original registration.
427 */
428 if (mpt_reply_handlers[cbi] == handler.reply_handler) {
429 *phandler_id = MPT_CBI_TO_HID(cbi);
430 return (0);
431 }
432
433 /*
434 * Fill from the front in the hope that
435 * all registered handlers consume only a
436 * single cache line.
437 *
438 * We don't break on the first empty slot so
439 * that the full table is checked to see if
440 * this handler was previously registered.
441 */
442 if (free_cbi == MPT_HANDLER_ID_NONE &&
443 (mpt_reply_handlers[cbi]
444 == mpt_default_reply_handler))
445 free_cbi = cbi;
446 }
447 if (free_cbi == MPT_HANDLER_ID_NONE) {
448 return (ENOMEM);
449 }
450 mpt_reply_handlers[free_cbi] = handler.reply_handler;
451 *phandler_id = MPT_CBI_TO_HID(free_cbi);
452 break;
453 }
454 default:
455 mpt_prt(mpt, "mpt_register_handler unknown type %d\n", type);
456 return (EINVAL);
457 }
458 return (0);
459}
460
461int
462mpt_deregister_handler(struct mpt_softc *mpt, mpt_handler_type type,
463 mpt_handler_t handler, uint32_t handler_id)
464{
465
466 switch (type) {
467 case MPT_HANDLER_REPLY:
468 {
469 u_int cbi;
470
471 cbi = MPT_CBI(handler_id);
472 if (cbi >= MPT_NUM_REPLY_HANDLERS
473 || mpt_reply_handlers[cbi] != handler.reply_handler)
474 return (ENOENT);
475 mpt_reply_handlers[cbi] = mpt_default_reply_handler;
476 break;
477 }
478 default:
479 mpt_prt(mpt, "mpt_deregister_handler unknown type %d\n", type);
480 return (EINVAL);
481 }
482 return (0);
483}
484
485static int
486mpt_default_reply_handler(struct mpt_softc *mpt, request_t *req,
487 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
488{
489
490 mpt_prt(mpt,
491 "Default Handler Called: req=%p:%u reply_descriptor=%x frame=%p\n",
492 req, req->serno, reply_desc, reply_frame);
493
494 if (reply_frame != NULL)
495 mpt_dump_reply_frame(mpt, reply_frame);
496
497 mpt_prt(mpt, "Reply Frame Ignored\n");
498
499 return (/*free_reply*/TRUE);
500}
501
502static int
503mpt_config_reply_handler(struct mpt_softc *mpt, request_t *req,
504 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
505{
506
507 if (req != NULL) {
508 if (reply_frame != NULL) {
509 MSG_CONFIG *cfgp;
510 MSG_CONFIG_REPLY *reply;
511
512 cfgp = (MSG_CONFIG *)req->req_vbuf;
513 reply = (MSG_CONFIG_REPLY *)reply_frame;
514 req->IOCStatus = le16toh(reply_frame->IOCStatus);
515 bcopy(&reply->Header, &cfgp->Header,
516 sizeof(cfgp->Header));
517 cfgp->ExtPageLength = reply->ExtPageLength;
518 cfgp->ExtPageType = reply->ExtPageType;
519 }
520 req->state &= ~REQ_STATE_QUEUED;
521 req->state |= REQ_STATE_DONE;
522 TAILQ_REMOVE(&mpt->request_pending_list, req, links);
523 if ((req->state & REQ_STATE_NEED_WAKEUP) != 0) {
524 wakeup(req);
525 } else if ((req->state & REQ_STATE_TIMEDOUT) != 0) {
526 /*
527 * Whew- we can free this request (late completion)
528 */
529 mpt_free_request(mpt, req);
530 }
531 }
532
533 return (TRUE);
534}
535
536static int
537mpt_handshake_reply_handler(struct mpt_softc *mpt, request_t *req,
538 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
539{
540
541 /* Nothing to be done. */
542 return (TRUE);
543}
544
545static int
546mpt_event_reply_handler(struct mpt_softc *mpt, request_t *req,
547 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
548{
549 int free_reply;
550
551 KASSERT(reply_frame != NULL, ("null reply in mpt_event_reply_handler"));
552 KASSERT(req != NULL, ("null request in mpt_event_reply_handler"));
553
554 free_reply = TRUE;
555 switch (reply_frame->Function) {
556 case MPI_FUNCTION_EVENT_NOTIFICATION:
557 {
558 MSG_EVENT_NOTIFY_REPLY *msg;
559 struct mpt_personality *pers;
560 u_int handled;
561
562 handled = 0;
563 msg = (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
564 msg->EventDataLength = le16toh(msg->EventDataLength);
565 msg->IOCStatus = le16toh(msg->IOCStatus);
566 msg->IOCLogInfo = le32toh(msg->IOCLogInfo);
567 msg->Event = le32toh(msg->Event);
568 MPT_PERS_FOREACH(mpt, pers)
569 handled += pers->event(mpt, req, msg);
570
571 if (handled == 0 && mpt->mpt_pers_mask == 0) {
572 mpt_lprt(mpt, MPT_PRT_INFO,
573 "No Handlers For Any Event Notify Frames. "
574 "Event %#x (ACK %sequired).\n",
575 msg->Event, msg->AckRequired? "r" : "not r");
576 } else if (handled == 0) {
577 mpt_lprt(mpt,
578 msg->AckRequired? MPT_PRT_WARN : MPT_PRT_INFO,
579 "Unhandled Event Notify Frame. Event %#x "
580 "(ACK %sequired).\n",
581 msg->Event, msg->AckRequired? "r" : "not r");
582 }
583
584 if (msg->AckRequired) {
585 request_t *ack_req;
586 uint32_t context;
587
588 context = req->index | MPT_REPLY_HANDLER_EVENTS;
589 ack_req = mpt_get_request(mpt, FALSE);
590 if (ack_req == NULL) {
591 struct mpt_evtf_record *evtf;
592
593 evtf = (struct mpt_evtf_record *)reply_frame;
594 evtf->context = context;
595 LIST_INSERT_HEAD(&mpt->ack_frames, evtf, links);
596 free_reply = FALSE;
597 break;
598 }
599 mpt_send_event_ack(mpt, ack_req, msg, context);
600 /*
601 * Don't check for CONTINUATION_REPLY here
602 */
603 return (free_reply);
604 }
605 break;
606 }
607 case MPI_FUNCTION_PORT_ENABLE:
608 mpt_lprt(mpt, MPT_PRT_DEBUG , "enable port reply\n");
609 break;
610 case MPI_FUNCTION_EVENT_ACK:
611 break;
612 default:
613 mpt_prt(mpt, "unknown event function: %x\n",
614 reply_frame->Function);
615 break;
616 }
617
618 /*
619 * I'm not sure that this continuation stuff works as it should.
620 *
621 * I've had FC async events occur that free the frame up because
622 * the continuation bit isn't set, and then additional async events
623 * then occur using the same context. As you might imagine, this
624 * leads to Very Bad Thing.
625 *
626 * Let's just be safe for now and not free them up until we figure
627 * out what's actually happening here.
628 */
629#if 0
630 if ((reply_frame->MsgFlags & MPI_MSGFLAGS_CONTINUATION_REPLY) == 0) {
631 TAILQ_REMOVE(&mpt->request_pending_list, req, links);
632 mpt_free_request(mpt, req);
633 mpt_prt(mpt, "event_reply %x for req %p:%u NOT a continuation",
634 reply_frame->Function, req, req->serno);
635 if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) {
636 MSG_EVENT_NOTIFY_REPLY *msg =
637 (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
638 mpt_prtc(mpt, " Event=0x%x AckReq=%d",
639 msg->Event, msg->AckRequired);
640 }
641 } else {
642 mpt_prt(mpt, "event_reply %x for %p:%u IS a continuation",
643 reply_frame->Function, req, req->serno);
644 if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) {
645 MSG_EVENT_NOTIFY_REPLY *msg =
646 (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
647 mpt_prtc(mpt, " Event=0x%x AckReq=%d",
648 msg->Event, msg->AckRequired);
649 }
650 mpt_prtc(mpt, "\n");
651 }
652#endif
653 return (free_reply);
654}
655
656/*
657 * Process an asynchronous event from the IOC.
658 */
659static int
660mpt_core_event(struct mpt_softc *mpt, request_t *req,
661 MSG_EVENT_NOTIFY_REPLY *msg)
662{
663
664 mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_core_event: 0x%x\n",
665 msg->Event & 0xFF);
666 switch(msg->Event & 0xFF) {
667 case MPI_EVENT_NONE:
668 break;
669 case MPI_EVENT_LOG_DATA:
670 {
671 int i;
672
673 /* Some error occurred that LSI wants logged */
674 mpt_prt(mpt, "EvtLogData: IOCLogInfo: 0x%08x\n",
675 msg->IOCLogInfo);
676 mpt_prt(mpt, "\tEvtLogData: Event Data:");
677 for (i = 0; i < msg->EventDataLength; i++)
678 mpt_prtc(mpt, " %08x", msg->Data[i]);
679 mpt_prtc(mpt, "\n");
680 break;
681 }
682 case MPI_EVENT_EVENT_CHANGE:
683 /*
684 * This is just an acknowledgement
685 * of our mpt_send_event_request.
686 */
687 break;
688 case MPI_EVENT_SAS_DEVICE_STATUS_CHANGE:
689 break;
690 default:
691 return (0);
692 break;
693 }
694 return (1);
695}
696
697static void
698mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req,
699 MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context)
700{
701 MSG_EVENT_ACK *ackp;
702
703 ackp = (MSG_EVENT_ACK *)ack_req->req_vbuf;
704 memset(ackp, 0, sizeof (*ackp));
705 ackp->Function = MPI_FUNCTION_EVENT_ACK;
706 ackp->Event = htole32(msg->Event);
707 ackp->EventContext = htole32(msg->EventContext);
708 ackp->MsgContext = htole32(context);
709 mpt_check_doorbell(mpt);
710 mpt_send_cmd(mpt, ack_req);
711}
712
713/***************************** Interrupt Handling *****************************/
714void
715mpt_intr(void *arg)
716{
717 struct mpt_softc *mpt;
718 uint32_t reply_desc;
719 int ntrips = 0;
720
721 mpt = (struct mpt_softc *)arg;
722 mpt_lprt(mpt, MPT_PRT_DEBUG2, "enter mpt_intr\n");
723 MPT_LOCK_ASSERT(mpt);
724
725 while ((reply_desc = mpt_pop_reply_queue(mpt)) != MPT_REPLY_EMPTY) {
726 request_t *req;
727 MSG_DEFAULT_REPLY *reply_frame;
728 uint32_t reply_baddr;
729 uint32_t ctxt_idx;
730 u_int cb_index;
731 u_int req_index;
732 u_int offset;
733 int free_rf;
734
735 req = NULL;
736 reply_frame = NULL;
737 reply_baddr = 0;
738 offset = 0;
739 if ((reply_desc & MPI_ADDRESS_REPLY_A_BIT) != 0) {
740 /*
741 * Ensure that the reply frame is coherent.
742 */
743 reply_baddr = MPT_REPLY_BADDR(reply_desc);
744 offset = reply_baddr - (mpt->reply_phys & 0xFFFFFFFF);
745 bus_dmamap_sync_range(mpt->reply_dmat,
746 mpt->reply_dmap, offset, MPT_REPLY_SIZE,
747 BUS_DMASYNC_POSTREAD);
748 reply_frame = MPT_REPLY_OTOV(mpt, offset);
749 ctxt_idx = le32toh(reply_frame->MsgContext);
750 } else {
751 uint32_t type;
752
753 type = MPI_GET_CONTEXT_REPLY_TYPE(reply_desc);
754 ctxt_idx = reply_desc;
755 mpt_lprt(mpt, MPT_PRT_DEBUG1, "Context Reply: 0x%08x\n",
756 reply_desc);
757
758 switch (type) {
759 case MPI_CONTEXT_REPLY_TYPE_SCSI_INIT:
760 ctxt_idx &= MPI_CONTEXT_REPLY_CONTEXT_MASK;
761 break;
762 case MPI_CONTEXT_REPLY_TYPE_SCSI_TARGET:
763 ctxt_idx = GET_IO_INDEX(reply_desc);
764 if (mpt->tgt_cmd_ptrs == NULL) {
765 mpt_prt(mpt,
766 "mpt_intr: no target cmd ptrs\n");
767 reply_desc = MPT_REPLY_EMPTY;
768 break;
769 }
770 if (ctxt_idx >= mpt->tgt_cmds_allocated) {
771 mpt_prt(mpt,
772 "mpt_intr: bad tgt cmd ctxt %u\n",
773 ctxt_idx);
774 reply_desc = MPT_REPLY_EMPTY;
775 ntrips = 1000;
776 break;
777 }
778 req = mpt->tgt_cmd_ptrs[ctxt_idx];
779 if (req == NULL) {
780 mpt_prt(mpt, "no request backpointer "
781 "at index %u", ctxt_idx);
782 reply_desc = MPT_REPLY_EMPTY;
783 ntrips = 1000;
784 break;
785 }
786 /*
787 * Reformulate ctxt_idx to be just as if
788 * it were another type of context reply
789 * so the code below will find the request
790 * via indexing into the pool.
791 */
792 ctxt_idx =
793 req->index | mpt->scsi_tgt_handler_id;
794 req = NULL;
795 break;
796 case MPI_CONTEXT_REPLY_TYPE_LAN:
797 mpt_prt(mpt, "LAN CONTEXT REPLY: 0x%08x\n",
798 reply_desc);
799 reply_desc = MPT_REPLY_EMPTY;
800 break;
801 default:
802 mpt_prt(mpt, "Context Reply 0x%08x?\n", type);
803 reply_desc = MPT_REPLY_EMPTY;
804 break;
805 }
806 if (reply_desc == MPT_REPLY_EMPTY) {
807 if (ntrips++ > 1000) {
808 break;
809 }
810 continue;
811 }
812 }
813
814 cb_index = MPT_CONTEXT_TO_CBI(ctxt_idx);
815 req_index = MPT_CONTEXT_TO_REQI(ctxt_idx);
816 if (req_index < MPT_MAX_REQUESTS(mpt)) {
817 req = &mpt->request_pool[req_index];
818 } else {
819 mpt_prt(mpt, "WARN: mpt_intr index == %d (reply_desc =="
820 " 0x%x)\n", req_index, reply_desc);
821 }
822
823 bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
824 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
825 free_rf = mpt_reply_handlers[cb_index](mpt, req,
826 reply_desc, reply_frame);
827
828 if (reply_frame != NULL && free_rf) {
829 bus_dmamap_sync_range(mpt->reply_dmat,
830 mpt->reply_dmap, offset, MPT_REPLY_SIZE,
831 BUS_DMASYNC_PREREAD);
832 mpt_free_reply(mpt, reply_baddr);
833 }
834
835 /*
836 * If we got ourselves disabled, don't get stuck in a loop
837 */
838 if (mpt->disabled) {
839 mpt_disable_ints(mpt);
840 break;
841 }
842 if (ntrips++ > 1000) {
843 break;
844 }
845 }
846 mpt_lprt(mpt, MPT_PRT_DEBUG2, "exit mpt_intr\n");
847}
848
849/******************************* Error Recovery *******************************/
850void
851mpt_complete_request_chain(struct mpt_softc *mpt, struct req_queue *chain,
852 u_int iocstatus)
853{
854 MSG_DEFAULT_REPLY ioc_status_frame;
855 request_t *req;
856
857 memset(&ioc_status_frame, 0, sizeof(ioc_status_frame));
858 ioc_status_frame.MsgLength = roundup2(sizeof(ioc_status_frame), 4);
859 ioc_status_frame.IOCStatus = iocstatus;
860 while((req = TAILQ_FIRST(chain)) != NULL) {
861 MSG_REQUEST_HEADER *msg_hdr;
862 u_int cb_index;
863
864 bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
865 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
866 msg_hdr = (MSG_REQUEST_HEADER *)req->req_vbuf;
867 ioc_status_frame.Function = msg_hdr->Function;
868 ioc_status_frame.MsgContext = msg_hdr->MsgContext;
869 cb_index = MPT_CONTEXT_TO_CBI(le32toh(msg_hdr->MsgContext));
870 mpt_reply_handlers[cb_index](mpt, req, msg_hdr->MsgContext,
871 &ioc_status_frame);
872 if (mpt_req_on_pending_list(mpt, req) != 0)
873 TAILQ_REMOVE(chain, req, links);
874 }
875}
876
877/********************************* Diagnostics ********************************/
878/*
879 * Perform a diagnostic dump of a reply frame.
880 */
881void
882mpt_dump_reply_frame(struct mpt_softc *mpt, MSG_DEFAULT_REPLY *reply_frame)
883{
884
885 mpt_prt(mpt, "Address Reply:\n");
886 mpt_print_reply(reply_frame);
887}
888
889/******************************* Doorbell Access ******************************/
890static __inline uint32_t mpt_rd_db(struct mpt_softc *mpt);
891static __inline uint32_t mpt_rd_intr(struct mpt_softc *mpt);
892
893static __inline uint32_t
894mpt_rd_db(struct mpt_softc *mpt)
895{
896
897 return mpt_read(mpt, MPT_OFFSET_DOORBELL);
898}
899
900static __inline uint32_t
901mpt_rd_intr(struct mpt_softc *mpt)
902{
903
904 return mpt_read(mpt, MPT_OFFSET_INTR_STATUS);
905}
906
907/* Busy wait for a door bell to be read by IOC */
908static int
909mpt_wait_db_ack(struct mpt_softc *mpt)
910{
911 int i;
912
913 for (i=0; i < MPT_MAX_WAIT; i++) {
914 if (!MPT_DB_IS_BUSY(mpt_rd_intr(mpt))) {
915 maxwait_ack = i > maxwait_ack ? i : maxwait_ack;
916 return (MPT_OK);
917 }
918 DELAY(200);
919 }
920 return (MPT_FAIL);
921}
922
923/* Busy wait for a door bell interrupt */
924static int
925mpt_wait_db_int(struct mpt_softc *mpt)
926{
927 int i;
928
929 for (i = 0; i < MPT_MAX_WAIT; i++) {
930 if (MPT_DB_INTR(mpt_rd_intr(mpt))) {
931 maxwait_int = i > maxwait_int ? i : maxwait_int;
932 return MPT_OK;
933 }
934 DELAY(100);
935 }
936 return (MPT_FAIL);
937}
938
939/* Wait for IOC to transition to a give state */
940void
941mpt_check_doorbell(struct mpt_softc *mpt)
942{
943 uint32_t db = mpt_rd_db(mpt);
944
945 if (MPT_STATE(db) != MPT_DB_STATE_RUNNING) {
946 mpt_prt(mpt, "Device not running\n");
947 mpt_print_db(db);
948 }
949}
950
951/* Wait for IOC to transition to a give state */
952static int
953mpt_wait_state(struct mpt_softc *mpt, enum DB_STATE_BITS state)
954{
955 int i;
956
957 for (i = 0; i < MPT_MAX_WAIT; i++) {
958 uint32_t db = mpt_rd_db(mpt);
959 if (MPT_STATE(db) == state) {
960 maxwait_state = i > maxwait_state ? i : maxwait_state;
961 return (MPT_OK);
962 }
963 DELAY(100);
964 }
965 return (MPT_FAIL);
966}
967
968
969/************************* Intialization/Configuration ************************/
970static int mpt_download_fw(struct mpt_softc *mpt);
971
972/* Issue the reset COMMAND to the IOC */
973static int
974mpt_soft_reset(struct mpt_softc *mpt)
975{
976
977 mpt_lprt(mpt, MPT_PRT_DEBUG, "soft reset\n");
978
979 /* Have to use hard reset if we are not in Running state */
980 if (MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_RUNNING) {
981 mpt_prt(mpt, "soft reset failed: device not running\n");
982 return (MPT_FAIL);
983 }
984
985 /* If door bell is in use we don't have a chance of getting
986 * a word in since the IOC probably crashed in message
987 * processing. So don't waste our time.
988 */
989 if (MPT_DB_IS_IN_USE(mpt_rd_db(mpt))) {
990 mpt_prt(mpt, "soft reset failed: doorbell wedged\n");
991 return (MPT_FAIL);
992 }
993
994 /* Send the reset request to the IOC */
995 mpt_write(mpt, MPT_OFFSET_DOORBELL,
996 MPI_FUNCTION_IOC_MESSAGE_UNIT_RESET << MPI_DOORBELL_FUNCTION_SHIFT);
997 if (mpt_wait_db_ack(mpt) != MPT_OK) {
998 mpt_prt(mpt, "soft reset failed: ack timeout\n");
999 return (MPT_FAIL);
1000 }
1001
1002 /* Wait for the IOC to reload and come out of reset state */
1003 if (mpt_wait_state(mpt, MPT_DB_STATE_READY) != MPT_OK) {
1004 mpt_prt(mpt, "soft reset failed: device did not restart\n");
1005 return (MPT_FAIL);
1006 }
1007
1008 return MPT_OK;
1009}
1010
1011static int
1012mpt_enable_diag_mode(struct mpt_softc *mpt)
1013{
1014 int try;
1015
1016 try = 20;
1017 while (--try) {
1018
1019 if ((mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC) & MPI_DIAG_DRWE) != 0)
1020 break;
1021
1022 /* Enable diagnostic registers */
1023 mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFF);
1024 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_1ST_KEY_VALUE);
1025 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_2ND_KEY_VALUE);
1026 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_3RD_KEY_VALUE);
1027 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_4TH_KEY_VALUE);
1028 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_5TH_KEY_VALUE);
1029
1030 DELAY(100000);
1031 }
1032 if (try == 0)
1033 return (EIO);
1034 return (0);
1035}
1036
1037static void
1038mpt_disable_diag_mode(struct mpt_softc *mpt)
1039{
1040
1041 mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFFFFFFFF);
1042}
1043
1044/* This is a magic diagnostic reset that resets all the ARM
1045 * processors in the chip.
1046 */
1047static void
1048mpt_hard_reset(struct mpt_softc *mpt)
1049{
1050 int error;
1051 int wait;
1052 uint32_t diagreg;
1053
1054 mpt_lprt(mpt, MPT_PRT_DEBUG, "hard reset\n");
1055
1056 error = mpt_enable_diag_mode(mpt);
1057 if (error) {
1058 mpt_prt(mpt, "WARNING - Could not enter diagnostic mode !\n");
1059 mpt_prt(mpt, "Trying to reset anyway.\n");
1060 }
1061
1062 diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
1063
1064 /*
1065 * This appears to be a workaround required for some
1066 * firmware or hardware revs.
1067 */
1068 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_DISABLE_ARM);
1069 DELAY(1000);
1070
1071 /* Diag. port is now active so we can now hit the reset bit */
1072 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_RESET_ADAPTER);
1073
1074 /*
1075 * Ensure that the reset has finished. We delay 1ms
1076 * prior to reading the register to make sure the chip
1077 * has sufficiently completed its reset to handle register
1078 * accesses.
1079 */
1080 wait = 5000;
1081 do {
1082 DELAY(1000);
1083 diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
1084 } while (--wait && (diagreg & MPI_DIAG_RESET_ADAPTER) == 0);
1085
1086 if (wait == 0) {
1087 mpt_prt(mpt, "WARNING - Failed hard reset! "
1088 "Trying to initialize anyway.\n");
1089 }
1090
1091 /*
1092 * If we have firmware to download, it must be loaded before
1093 * the controller will become operational. Do so now.
1094 */
1095 if (mpt->fw_image != NULL) {
1096
1097 error = mpt_download_fw(mpt);
1098
1099 if (error) {
1100 mpt_prt(mpt, "WARNING - Firmware Download Failed!\n");
1101 mpt_prt(mpt, "Trying to initialize anyway.\n");
1102 }
1103 }
1104
1105 /*
1106 * Reseting the controller should have disabled write
1107 * access to the diagnostic registers, but disable
1108 * manually to be sure.
1109 */
1110 mpt_disable_diag_mode(mpt);
1111}
1112
1113static void
1114mpt_core_ioc_reset(struct mpt_softc *mpt, int type)
1115{
1116
1117 /*
1118 * Complete all pending requests with a status
1119 * appropriate for an IOC reset.
1120 */
1121 mpt_complete_request_chain(mpt, &mpt->request_pending_list,
1122 MPI_IOCSTATUS_INVALID_STATE);
1123}
1124
1125/*
1126 * Reset the IOC when needed. Try software command first then if needed
1127 * poke at the magic diagnostic reset. Note that a hard reset resets
1128 * *both* IOCs on dual function chips (FC929 && LSI1030) as well as
1129 * fouls up the PCI configuration registers.
1130 */
1131int
1132mpt_reset(struct mpt_softc *mpt, int reinit)
1133{
1134 struct mpt_personality *pers;
1135 int ret;
1136 int retry_cnt = 0;
1137
1138 /*
1139 * Try a soft reset. If that fails, get out the big hammer.
1140 */
1141 again:
1142 if ((ret = mpt_soft_reset(mpt)) != MPT_OK) {
1143 int cnt;
1144 for (cnt = 0; cnt < 5; cnt++) {
1145 /* Failed; do a hard reset */
1146 mpt_hard_reset(mpt);
1147
1148 /*
1149 * Wait for the IOC to reload
1150 * and come out of reset state
1151 */
1152 ret = mpt_wait_state(mpt, MPT_DB_STATE_READY);
1153 if (ret == MPT_OK) {
1154 break;
1155 }
1156 /*
1157 * Okay- try to check again...
1158 */
1159 ret = mpt_wait_state(mpt, MPT_DB_STATE_READY);
1160 if (ret == MPT_OK) {
1161 break;
1162 }
1163 mpt_prt(mpt, "mpt_reset: failed hard reset (%d:%d)\n",
1164 retry_cnt, cnt);
1165 }
1166 }
1167
1168 if (retry_cnt == 0) {
1169 /*
1170 * Invoke reset handlers. We bump the reset count so
1171 * that mpt_wait_req() understands that regardless of
1172 * the specified wait condition, it should stop its wait.
1173 */
1174 mpt->reset_cnt++;
1175 MPT_PERS_FOREACH(mpt, pers)
1176 pers->reset(mpt, ret);
1177 }
1178
1179 if (reinit) {
1180 ret = mpt_enable_ioc(mpt, 1);
1181 if (ret == MPT_OK) {
1182 mpt_enable_ints(mpt);
1183 }
1184 }
1185 if (ret != MPT_OK && retry_cnt++ < 2) {
1186 goto again;
1187 }
1188 return ret;
1189}
1190
1191/* Return a command buffer to the free queue */
1192void
1193mpt_free_request(struct mpt_softc *mpt, request_t *req)
1194{
1195 request_t *nxt;
1196 struct mpt_evtf_record *record;
1197 uint32_t offset, reply_baddr;
1198
1199 if (req == NULL || req != &mpt->request_pool[req->index]) {
152
153 while (start_at < MPT_MAX_PERSONALITIES
154 && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) {
155 start_at++;
156 }
157 return (mpt_personalities[start_at]);
158}
159
160/*
161 * Used infrequently, so no need to optimize like a forward
162 * traversal where we use the MAX+1 is guaranteed to be NULL
163 * trick.
164 */
165static __inline struct mpt_personality *
166mpt_pers_find_reverse(struct mpt_softc *mpt, u_int start_at)
167{
168 while (start_at < MPT_MAX_PERSONALITIES
169 && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) {
170 start_at--;
171 }
172 if (start_at < MPT_MAX_PERSONALITIES)
173 return (mpt_personalities[start_at]);
174 return (NULL);
175}
176
177#define MPT_PERS_FOREACH(mpt, pers) \
178 for (pers = mpt_pers_find(mpt, /*start_at*/0); \
179 pers != NULL; \
180 pers = mpt_pers_find(mpt, /*start_at*/pers->id+1))
181
182#define MPT_PERS_FOREACH_REVERSE(mpt, pers) \
183 for (pers = mpt_pers_find_reverse(mpt, MPT_MAX_PERSONALITIES-1);\
184 pers != NULL; \
185 pers = mpt_pers_find_reverse(mpt, /*start_at*/pers->id-1))
186
187static mpt_load_handler_t mpt_stdload;
188static mpt_probe_handler_t mpt_stdprobe;
189static mpt_attach_handler_t mpt_stdattach;
190static mpt_enable_handler_t mpt_stdenable;
191static mpt_ready_handler_t mpt_stdready;
192static mpt_event_handler_t mpt_stdevent;
193static mpt_reset_handler_t mpt_stdreset;
194static mpt_shutdown_handler_t mpt_stdshutdown;
195static mpt_detach_handler_t mpt_stddetach;
196static mpt_unload_handler_t mpt_stdunload;
197static struct mpt_personality mpt_default_personality =
198{
199 .load = mpt_stdload,
200 .probe = mpt_stdprobe,
201 .attach = mpt_stdattach,
202 .enable = mpt_stdenable,
203 .ready = mpt_stdready,
204 .event = mpt_stdevent,
205 .reset = mpt_stdreset,
206 .shutdown = mpt_stdshutdown,
207 .detach = mpt_stddetach,
208 .unload = mpt_stdunload
209};
210
211static mpt_load_handler_t mpt_core_load;
212static mpt_attach_handler_t mpt_core_attach;
213static mpt_enable_handler_t mpt_core_enable;
214static mpt_reset_handler_t mpt_core_ioc_reset;
215static mpt_event_handler_t mpt_core_event;
216static mpt_shutdown_handler_t mpt_core_shutdown;
217static mpt_shutdown_handler_t mpt_core_detach;
218static mpt_unload_handler_t mpt_core_unload;
219static struct mpt_personality mpt_core_personality =
220{
221 .name = "mpt_core",
222 .load = mpt_core_load,
223// .attach = mpt_core_attach,
224// .enable = mpt_core_enable,
225 .event = mpt_core_event,
226 .reset = mpt_core_ioc_reset,
227 .shutdown = mpt_core_shutdown,
228 .detach = mpt_core_detach,
229 .unload = mpt_core_unload,
230};
231
232/*
233 * Manual declaration so that DECLARE_MPT_PERSONALITY doesn't need
234 * ordering information. We want the core to always register FIRST.
235 * other modules are set to SI_ORDER_SECOND.
236 */
237static moduledata_t mpt_core_mod = {
238 "mpt_core", mpt_modevent, &mpt_core_personality
239};
240DECLARE_MODULE(mpt_core, mpt_core_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
241MODULE_VERSION(mpt_core, 1);
242
243#define MPT_PERS_ATTACHED(pers, mpt) ((mpt)->mpt_pers_mask & (0x1 << pers->id))
244
245int
246mpt_modevent(module_t mod, int type, void *data)
247{
248 struct mpt_personality *pers;
249 int error;
250
251 pers = (struct mpt_personality *)data;
252
253 error = 0;
254 switch (type) {
255 case MOD_LOAD:
256 {
257 mpt_load_handler_t **def_handler;
258 mpt_load_handler_t **pers_handler;
259 int i;
260
261 for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
262 if (mpt_personalities[i] == NULL)
263 break;
264 }
265 if (i >= MPT_MAX_PERSONALITIES) {
266 error = ENOMEM;
267 break;
268 }
269 pers->id = i;
270 mpt_personalities[i] = pers;
271
272 /* Install standard/noop handlers for any NULL entries. */
273 def_handler = MPT_PERS_FIRST_HANDLER(&mpt_default_personality);
274 pers_handler = MPT_PERS_FIRST_HANDLER(pers);
275 while (pers_handler <= MPT_PERS_LAST_HANDLER(pers)) {
276 if (*pers_handler == NULL)
277 *pers_handler = *def_handler;
278 pers_handler++;
279 def_handler++;
280 }
281
282 error = (pers->load(pers));
283 if (error != 0)
284 mpt_personalities[i] = NULL;
285 break;
286 }
287 case MOD_SHUTDOWN:
288 break;
289#if __FreeBSD_version >= 500000
290 case MOD_QUIESCE:
291 break;
292#endif
293 case MOD_UNLOAD:
294 error = pers->unload(pers);
295 mpt_personalities[pers->id] = NULL;
296 break;
297 default:
298 error = EINVAL;
299 break;
300 }
301 return (error);
302}
303
304static int
305mpt_stdload(struct mpt_personality *pers)
306{
307
308 /* Load is always successful. */
309 return (0);
310}
311
312static int
313mpt_stdprobe(struct mpt_softc *mpt)
314{
315
316 /* Probe is always successful. */
317 return (0);
318}
319
320static int
321mpt_stdattach(struct mpt_softc *mpt)
322{
323
324 /* Attach is always successful. */
325 return (0);
326}
327
328static int
329mpt_stdenable(struct mpt_softc *mpt)
330{
331
332 /* Enable is always successful. */
333 return (0);
334}
335
336static void
337mpt_stdready(struct mpt_softc *mpt)
338{
339
340}
341
342static int
343mpt_stdevent(struct mpt_softc *mpt, request_t *req, MSG_EVENT_NOTIFY_REPLY *msg)
344{
345
346 mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_stdevent: 0x%x\n", msg->Event & 0xFF);
347 /* Event was not for us. */
348 return (0);
349}
350
351static void
352mpt_stdreset(struct mpt_softc *mpt, int type)
353{
354
355}
356
357static void
358mpt_stdshutdown(struct mpt_softc *mpt)
359{
360
361}
362
363static void
364mpt_stddetach(struct mpt_softc *mpt)
365{
366
367}
368
369static int
370mpt_stdunload(struct mpt_personality *pers)
371{
372
373 /* Unload is always successful. */
374 return (0);
375}
376
377/*
378 * Post driver attachment, we may want to perform some global actions.
379 * Here is the hook to do so.
380 */
381
382static void
383mpt_postattach(void *unused)
384{
385 struct mpt_softc *mpt;
386 struct mpt_personality *pers;
387
388 TAILQ_FOREACH(mpt, &mpt_tailq, links) {
389 MPT_PERS_FOREACH(mpt, pers)
390 pers->ready(mpt);
391 }
392}
393SYSINIT(mptdev, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE, mpt_postattach, NULL);
394
395/******************************* Bus DMA Support ******************************/
396void
397mpt_map_rquest(void *arg, bus_dma_segment_t *segs, int nseg, int error)
398{
399 struct mpt_map_info *map_info;
400
401 map_info = (struct mpt_map_info *)arg;
402 map_info->error = error;
403 map_info->phys = segs->ds_addr;
404}
405
406/**************************** Reply/Event Handling ****************************/
407int
408mpt_register_handler(struct mpt_softc *mpt, mpt_handler_type type,
409 mpt_handler_t handler, uint32_t *phandler_id)
410{
411
412 switch (type) {
413 case MPT_HANDLER_REPLY:
414 {
415 u_int cbi;
416 u_int free_cbi;
417
418 if (phandler_id == NULL)
419 return (EINVAL);
420
421 free_cbi = MPT_HANDLER_ID_NONE;
422 for (cbi = 0; cbi < MPT_NUM_REPLY_HANDLERS; cbi++) {
423 /*
424 * If the same handler is registered multiple
425 * times, don't error out. Just return the
426 * index of the original registration.
427 */
428 if (mpt_reply_handlers[cbi] == handler.reply_handler) {
429 *phandler_id = MPT_CBI_TO_HID(cbi);
430 return (0);
431 }
432
433 /*
434 * Fill from the front in the hope that
435 * all registered handlers consume only a
436 * single cache line.
437 *
438 * We don't break on the first empty slot so
439 * that the full table is checked to see if
440 * this handler was previously registered.
441 */
442 if (free_cbi == MPT_HANDLER_ID_NONE &&
443 (mpt_reply_handlers[cbi]
444 == mpt_default_reply_handler))
445 free_cbi = cbi;
446 }
447 if (free_cbi == MPT_HANDLER_ID_NONE) {
448 return (ENOMEM);
449 }
450 mpt_reply_handlers[free_cbi] = handler.reply_handler;
451 *phandler_id = MPT_CBI_TO_HID(free_cbi);
452 break;
453 }
454 default:
455 mpt_prt(mpt, "mpt_register_handler unknown type %d\n", type);
456 return (EINVAL);
457 }
458 return (0);
459}
460
461int
462mpt_deregister_handler(struct mpt_softc *mpt, mpt_handler_type type,
463 mpt_handler_t handler, uint32_t handler_id)
464{
465
466 switch (type) {
467 case MPT_HANDLER_REPLY:
468 {
469 u_int cbi;
470
471 cbi = MPT_CBI(handler_id);
472 if (cbi >= MPT_NUM_REPLY_HANDLERS
473 || mpt_reply_handlers[cbi] != handler.reply_handler)
474 return (ENOENT);
475 mpt_reply_handlers[cbi] = mpt_default_reply_handler;
476 break;
477 }
478 default:
479 mpt_prt(mpt, "mpt_deregister_handler unknown type %d\n", type);
480 return (EINVAL);
481 }
482 return (0);
483}
484
485static int
486mpt_default_reply_handler(struct mpt_softc *mpt, request_t *req,
487 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
488{
489
490 mpt_prt(mpt,
491 "Default Handler Called: req=%p:%u reply_descriptor=%x frame=%p\n",
492 req, req->serno, reply_desc, reply_frame);
493
494 if (reply_frame != NULL)
495 mpt_dump_reply_frame(mpt, reply_frame);
496
497 mpt_prt(mpt, "Reply Frame Ignored\n");
498
499 return (/*free_reply*/TRUE);
500}
501
502static int
503mpt_config_reply_handler(struct mpt_softc *mpt, request_t *req,
504 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
505{
506
507 if (req != NULL) {
508 if (reply_frame != NULL) {
509 MSG_CONFIG *cfgp;
510 MSG_CONFIG_REPLY *reply;
511
512 cfgp = (MSG_CONFIG *)req->req_vbuf;
513 reply = (MSG_CONFIG_REPLY *)reply_frame;
514 req->IOCStatus = le16toh(reply_frame->IOCStatus);
515 bcopy(&reply->Header, &cfgp->Header,
516 sizeof(cfgp->Header));
517 cfgp->ExtPageLength = reply->ExtPageLength;
518 cfgp->ExtPageType = reply->ExtPageType;
519 }
520 req->state &= ~REQ_STATE_QUEUED;
521 req->state |= REQ_STATE_DONE;
522 TAILQ_REMOVE(&mpt->request_pending_list, req, links);
523 if ((req->state & REQ_STATE_NEED_WAKEUP) != 0) {
524 wakeup(req);
525 } else if ((req->state & REQ_STATE_TIMEDOUT) != 0) {
526 /*
527 * Whew- we can free this request (late completion)
528 */
529 mpt_free_request(mpt, req);
530 }
531 }
532
533 return (TRUE);
534}
535
536static int
537mpt_handshake_reply_handler(struct mpt_softc *mpt, request_t *req,
538 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
539{
540
541 /* Nothing to be done. */
542 return (TRUE);
543}
544
545static int
546mpt_event_reply_handler(struct mpt_softc *mpt, request_t *req,
547 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
548{
549 int free_reply;
550
551 KASSERT(reply_frame != NULL, ("null reply in mpt_event_reply_handler"));
552 KASSERT(req != NULL, ("null request in mpt_event_reply_handler"));
553
554 free_reply = TRUE;
555 switch (reply_frame->Function) {
556 case MPI_FUNCTION_EVENT_NOTIFICATION:
557 {
558 MSG_EVENT_NOTIFY_REPLY *msg;
559 struct mpt_personality *pers;
560 u_int handled;
561
562 handled = 0;
563 msg = (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
564 msg->EventDataLength = le16toh(msg->EventDataLength);
565 msg->IOCStatus = le16toh(msg->IOCStatus);
566 msg->IOCLogInfo = le32toh(msg->IOCLogInfo);
567 msg->Event = le32toh(msg->Event);
568 MPT_PERS_FOREACH(mpt, pers)
569 handled += pers->event(mpt, req, msg);
570
571 if (handled == 0 && mpt->mpt_pers_mask == 0) {
572 mpt_lprt(mpt, MPT_PRT_INFO,
573 "No Handlers For Any Event Notify Frames. "
574 "Event %#x (ACK %sequired).\n",
575 msg->Event, msg->AckRequired? "r" : "not r");
576 } else if (handled == 0) {
577 mpt_lprt(mpt,
578 msg->AckRequired? MPT_PRT_WARN : MPT_PRT_INFO,
579 "Unhandled Event Notify Frame. Event %#x "
580 "(ACK %sequired).\n",
581 msg->Event, msg->AckRequired? "r" : "not r");
582 }
583
584 if (msg->AckRequired) {
585 request_t *ack_req;
586 uint32_t context;
587
588 context = req->index | MPT_REPLY_HANDLER_EVENTS;
589 ack_req = mpt_get_request(mpt, FALSE);
590 if (ack_req == NULL) {
591 struct mpt_evtf_record *evtf;
592
593 evtf = (struct mpt_evtf_record *)reply_frame;
594 evtf->context = context;
595 LIST_INSERT_HEAD(&mpt->ack_frames, evtf, links);
596 free_reply = FALSE;
597 break;
598 }
599 mpt_send_event_ack(mpt, ack_req, msg, context);
600 /*
601 * Don't check for CONTINUATION_REPLY here
602 */
603 return (free_reply);
604 }
605 break;
606 }
607 case MPI_FUNCTION_PORT_ENABLE:
608 mpt_lprt(mpt, MPT_PRT_DEBUG , "enable port reply\n");
609 break;
610 case MPI_FUNCTION_EVENT_ACK:
611 break;
612 default:
613 mpt_prt(mpt, "unknown event function: %x\n",
614 reply_frame->Function);
615 break;
616 }
617
618 /*
619 * I'm not sure that this continuation stuff works as it should.
620 *
621 * I've had FC async events occur that free the frame up because
622 * the continuation bit isn't set, and then additional async events
623 * then occur using the same context. As you might imagine, this
624 * leads to Very Bad Thing.
625 *
626 * Let's just be safe for now and not free them up until we figure
627 * out what's actually happening here.
628 */
629#if 0
630 if ((reply_frame->MsgFlags & MPI_MSGFLAGS_CONTINUATION_REPLY) == 0) {
631 TAILQ_REMOVE(&mpt->request_pending_list, req, links);
632 mpt_free_request(mpt, req);
633 mpt_prt(mpt, "event_reply %x for req %p:%u NOT a continuation",
634 reply_frame->Function, req, req->serno);
635 if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) {
636 MSG_EVENT_NOTIFY_REPLY *msg =
637 (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
638 mpt_prtc(mpt, " Event=0x%x AckReq=%d",
639 msg->Event, msg->AckRequired);
640 }
641 } else {
642 mpt_prt(mpt, "event_reply %x for %p:%u IS a continuation",
643 reply_frame->Function, req, req->serno);
644 if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) {
645 MSG_EVENT_NOTIFY_REPLY *msg =
646 (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
647 mpt_prtc(mpt, " Event=0x%x AckReq=%d",
648 msg->Event, msg->AckRequired);
649 }
650 mpt_prtc(mpt, "\n");
651 }
652#endif
653 return (free_reply);
654}
655
656/*
657 * Process an asynchronous event from the IOC.
658 */
659static int
660mpt_core_event(struct mpt_softc *mpt, request_t *req,
661 MSG_EVENT_NOTIFY_REPLY *msg)
662{
663
664 mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_core_event: 0x%x\n",
665 msg->Event & 0xFF);
666 switch(msg->Event & 0xFF) {
667 case MPI_EVENT_NONE:
668 break;
669 case MPI_EVENT_LOG_DATA:
670 {
671 int i;
672
673 /* Some error occurred that LSI wants logged */
674 mpt_prt(mpt, "EvtLogData: IOCLogInfo: 0x%08x\n",
675 msg->IOCLogInfo);
676 mpt_prt(mpt, "\tEvtLogData: Event Data:");
677 for (i = 0; i < msg->EventDataLength; i++)
678 mpt_prtc(mpt, " %08x", msg->Data[i]);
679 mpt_prtc(mpt, "\n");
680 break;
681 }
682 case MPI_EVENT_EVENT_CHANGE:
683 /*
684 * This is just an acknowledgement
685 * of our mpt_send_event_request.
686 */
687 break;
688 case MPI_EVENT_SAS_DEVICE_STATUS_CHANGE:
689 break;
690 default:
691 return (0);
692 break;
693 }
694 return (1);
695}
696
697static void
698mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req,
699 MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context)
700{
701 MSG_EVENT_ACK *ackp;
702
703 ackp = (MSG_EVENT_ACK *)ack_req->req_vbuf;
704 memset(ackp, 0, sizeof (*ackp));
705 ackp->Function = MPI_FUNCTION_EVENT_ACK;
706 ackp->Event = htole32(msg->Event);
707 ackp->EventContext = htole32(msg->EventContext);
708 ackp->MsgContext = htole32(context);
709 mpt_check_doorbell(mpt);
710 mpt_send_cmd(mpt, ack_req);
711}
712
713/***************************** Interrupt Handling *****************************/
714void
715mpt_intr(void *arg)
716{
717 struct mpt_softc *mpt;
718 uint32_t reply_desc;
719 int ntrips = 0;
720
721 mpt = (struct mpt_softc *)arg;
722 mpt_lprt(mpt, MPT_PRT_DEBUG2, "enter mpt_intr\n");
723 MPT_LOCK_ASSERT(mpt);
724
725 while ((reply_desc = mpt_pop_reply_queue(mpt)) != MPT_REPLY_EMPTY) {
726 request_t *req;
727 MSG_DEFAULT_REPLY *reply_frame;
728 uint32_t reply_baddr;
729 uint32_t ctxt_idx;
730 u_int cb_index;
731 u_int req_index;
732 u_int offset;
733 int free_rf;
734
735 req = NULL;
736 reply_frame = NULL;
737 reply_baddr = 0;
738 offset = 0;
739 if ((reply_desc & MPI_ADDRESS_REPLY_A_BIT) != 0) {
740 /*
741 * Ensure that the reply frame is coherent.
742 */
743 reply_baddr = MPT_REPLY_BADDR(reply_desc);
744 offset = reply_baddr - (mpt->reply_phys & 0xFFFFFFFF);
745 bus_dmamap_sync_range(mpt->reply_dmat,
746 mpt->reply_dmap, offset, MPT_REPLY_SIZE,
747 BUS_DMASYNC_POSTREAD);
748 reply_frame = MPT_REPLY_OTOV(mpt, offset);
749 ctxt_idx = le32toh(reply_frame->MsgContext);
750 } else {
751 uint32_t type;
752
753 type = MPI_GET_CONTEXT_REPLY_TYPE(reply_desc);
754 ctxt_idx = reply_desc;
755 mpt_lprt(mpt, MPT_PRT_DEBUG1, "Context Reply: 0x%08x\n",
756 reply_desc);
757
758 switch (type) {
759 case MPI_CONTEXT_REPLY_TYPE_SCSI_INIT:
760 ctxt_idx &= MPI_CONTEXT_REPLY_CONTEXT_MASK;
761 break;
762 case MPI_CONTEXT_REPLY_TYPE_SCSI_TARGET:
763 ctxt_idx = GET_IO_INDEX(reply_desc);
764 if (mpt->tgt_cmd_ptrs == NULL) {
765 mpt_prt(mpt,
766 "mpt_intr: no target cmd ptrs\n");
767 reply_desc = MPT_REPLY_EMPTY;
768 break;
769 }
770 if (ctxt_idx >= mpt->tgt_cmds_allocated) {
771 mpt_prt(mpt,
772 "mpt_intr: bad tgt cmd ctxt %u\n",
773 ctxt_idx);
774 reply_desc = MPT_REPLY_EMPTY;
775 ntrips = 1000;
776 break;
777 }
778 req = mpt->tgt_cmd_ptrs[ctxt_idx];
779 if (req == NULL) {
780 mpt_prt(mpt, "no request backpointer "
781 "at index %u", ctxt_idx);
782 reply_desc = MPT_REPLY_EMPTY;
783 ntrips = 1000;
784 break;
785 }
786 /*
787 * Reformulate ctxt_idx to be just as if
788 * it were another type of context reply
789 * so the code below will find the request
790 * via indexing into the pool.
791 */
792 ctxt_idx =
793 req->index | mpt->scsi_tgt_handler_id;
794 req = NULL;
795 break;
796 case MPI_CONTEXT_REPLY_TYPE_LAN:
797 mpt_prt(mpt, "LAN CONTEXT REPLY: 0x%08x\n",
798 reply_desc);
799 reply_desc = MPT_REPLY_EMPTY;
800 break;
801 default:
802 mpt_prt(mpt, "Context Reply 0x%08x?\n", type);
803 reply_desc = MPT_REPLY_EMPTY;
804 break;
805 }
806 if (reply_desc == MPT_REPLY_EMPTY) {
807 if (ntrips++ > 1000) {
808 break;
809 }
810 continue;
811 }
812 }
813
814 cb_index = MPT_CONTEXT_TO_CBI(ctxt_idx);
815 req_index = MPT_CONTEXT_TO_REQI(ctxt_idx);
816 if (req_index < MPT_MAX_REQUESTS(mpt)) {
817 req = &mpt->request_pool[req_index];
818 } else {
819 mpt_prt(mpt, "WARN: mpt_intr index == %d (reply_desc =="
820 " 0x%x)\n", req_index, reply_desc);
821 }
822
823 bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
824 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
825 free_rf = mpt_reply_handlers[cb_index](mpt, req,
826 reply_desc, reply_frame);
827
828 if (reply_frame != NULL && free_rf) {
829 bus_dmamap_sync_range(mpt->reply_dmat,
830 mpt->reply_dmap, offset, MPT_REPLY_SIZE,
831 BUS_DMASYNC_PREREAD);
832 mpt_free_reply(mpt, reply_baddr);
833 }
834
835 /*
836 * If we got ourselves disabled, don't get stuck in a loop
837 */
838 if (mpt->disabled) {
839 mpt_disable_ints(mpt);
840 break;
841 }
842 if (ntrips++ > 1000) {
843 break;
844 }
845 }
846 mpt_lprt(mpt, MPT_PRT_DEBUG2, "exit mpt_intr\n");
847}
848
849/******************************* Error Recovery *******************************/
850void
851mpt_complete_request_chain(struct mpt_softc *mpt, struct req_queue *chain,
852 u_int iocstatus)
853{
854 MSG_DEFAULT_REPLY ioc_status_frame;
855 request_t *req;
856
857 memset(&ioc_status_frame, 0, sizeof(ioc_status_frame));
858 ioc_status_frame.MsgLength = roundup2(sizeof(ioc_status_frame), 4);
859 ioc_status_frame.IOCStatus = iocstatus;
860 while((req = TAILQ_FIRST(chain)) != NULL) {
861 MSG_REQUEST_HEADER *msg_hdr;
862 u_int cb_index;
863
864 bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
865 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
866 msg_hdr = (MSG_REQUEST_HEADER *)req->req_vbuf;
867 ioc_status_frame.Function = msg_hdr->Function;
868 ioc_status_frame.MsgContext = msg_hdr->MsgContext;
869 cb_index = MPT_CONTEXT_TO_CBI(le32toh(msg_hdr->MsgContext));
870 mpt_reply_handlers[cb_index](mpt, req, msg_hdr->MsgContext,
871 &ioc_status_frame);
872 if (mpt_req_on_pending_list(mpt, req) != 0)
873 TAILQ_REMOVE(chain, req, links);
874 }
875}
876
877/********************************* Diagnostics ********************************/
878/*
879 * Perform a diagnostic dump of a reply frame.
880 */
881void
882mpt_dump_reply_frame(struct mpt_softc *mpt, MSG_DEFAULT_REPLY *reply_frame)
883{
884
885 mpt_prt(mpt, "Address Reply:\n");
886 mpt_print_reply(reply_frame);
887}
888
889/******************************* Doorbell Access ******************************/
890static __inline uint32_t mpt_rd_db(struct mpt_softc *mpt);
891static __inline uint32_t mpt_rd_intr(struct mpt_softc *mpt);
892
893static __inline uint32_t
894mpt_rd_db(struct mpt_softc *mpt)
895{
896
897 return mpt_read(mpt, MPT_OFFSET_DOORBELL);
898}
899
900static __inline uint32_t
901mpt_rd_intr(struct mpt_softc *mpt)
902{
903
904 return mpt_read(mpt, MPT_OFFSET_INTR_STATUS);
905}
906
907/* Busy wait for a door bell to be read by IOC */
908static int
909mpt_wait_db_ack(struct mpt_softc *mpt)
910{
911 int i;
912
913 for (i=0; i < MPT_MAX_WAIT; i++) {
914 if (!MPT_DB_IS_BUSY(mpt_rd_intr(mpt))) {
915 maxwait_ack = i > maxwait_ack ? i : maxwait_ack;
916 return (MPT_OK);
917 }
918 DELAY(200);
919 }
920 return (MPT_FAIL);
921}
922
923/* Busy wait for a door bell interrupt */
924static int
925mpt_wait_db_int(struct mpt_softc *mpt)
926{
927 int i;
928
929 for (i = 0; i < MPT_MAX_WAIT; i++) {
930 if (MPT_DB_INTR(mpt_rd_intr(mpt))) {
931 maxwait_int = i > maxwait_int ? i : maxwait_int;
932 return MPT_OK;
933 }
934 DELAY(100);
935 }
936 return (MPT_FAIL);
937}
938
939/* Wait for IOC to transition to a give state */
940void
941mpt_check_doorbell(struct mpt_softc *mpt)
942{
943 uint32_t db = mpt_rd_db(mpt);
944
945 if (MPT_STATE(db) != MPT_DB_STATE_RUNNING) {
946 mpt_prt(mpt, "Device not running\n");
947 mpt_print_db(db);
948 }
949}
950
951/* Wait for IOC to transition to a give state */
952static int
953mpt_wait_state(struct mpt_softc *mpt, enum DB_STATE_BITS state)
954{
955 int i;
956
957 for (i = 0; i < MPT_MAX_WAIT; i++) {
958 uint32_t db = mpt_rd_db(mpt);
959 if (MPT_STATE(db) == state) {
960 maxwait_state = i > maxwait_state ? i : maxwait_state;
961 return (MPT_OK);
962 }
963 DELAY(100);
964 }
965 return (MPT_FAIL);
966}
967
968
969/************************* Intialization/Configuration ************************/
970static int mpt_download_fw(struct mpt_softc *mpt);
971
972/* Issue the reset COMMAND to the IOC */
973static int
974mpt_soft_reset(struct mpt_softc *mpt)
975{
976
977 mpt_lprt(mpt, MPT_PRT_DEBUG, "soft reset\n");
978
979 /* Have to use hard reset if we are not in Running state */
980 if (MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_RUNNING) {
981 mpt_prt(mpt, "soft reset failed: device not running\n");
982 return (MPT_FAIL);
983 }
984
985 /* If door bell is in use we don't have a chance of getting
986 * a word in since the IOC probably crashed in message
987 * processing. So don't waste our time.
988 */
989 if (MPT_DB_IS_IN_USE(mpt_rd_db(mpt))) {
990 mpt_prt(mpt, "soft reset failed: doorbell wedged\n");
991 return (MPT_FAIL);
992 }
993
994 /* Send the reset request to the IOC */
995 mpt_write(mpt, MPT_OFFSET_DOORBELL,
996 MPI_FUNCTION_IOC_MESSAGE_UNIT_RESET << MPI_DOORBELL_FUNCTION_SHIFT);
997 if (mpt_wait_db_ack(mpt) != MPT_OK) {
998 mpt_prt(mpt, "soft reset failed: ack timeout\n");
999 return (MPT_FAIL);
1000 }
1001
1002 /* Wait for the IOC to reload and come out of reset state */
1003 if (mpt_wait_state(mpt, MPT_DB_STATE_READY) != MPT_OK) {
1004 mpt_prt(mpt, "soft reset failed: device did not restart\n");
1005 return (MPT_FAIL);
1006 }
1007
1008 return MPT_OK;
1009}
1010
1011static int
1012mpt_enable_diag_mode(struct mpt_softc *mpt)
1013{
1014 int try;
1015
1016 try = 20;
1017 while (--try) {
1018
1019 if ((mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC) & MPI_DIAG_DRWE) != 0)
1020 break;
1021
1022 /* Enable diagnostic registers */
1023 mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFF);
1024 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_1ST_KEY_VALUE);
1025 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_2ND_KEY_VALUE);
1026 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_3RD_KEY_VALUE);
1027 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_4TH_KEY_VALUE);
1028 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_5TH_KEY_VALUE);
1029
1030 DELAY(100000);
1031 }
1032 if (try == 0)
1033 return (EIO);
1034 return (0);
1035}
1036
1037static void
1038mpt_disable_diag_mode(struct mpt_softc *mpt)
1039{
1040
1041 mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFFFFFFFF);
1042}
1043
1044/* This is a magic diagnostic reset that resets all the ARM
1045 * processors in the chip.
1046 */
1047static void
1048mpt_hard_reset(struct mpt_softc *mpt)
1049{
1050 int error;
1051 int wait;
1052 uint32_t diagreg;
1053
1054 mpt_lprt(mpt, MPT_PRT_DEBUG, "hard reset\n");
1055
1056 error = mpt_enable_diag_mode(mpt);
1057 if (error) {
1058 mpt_prt(mpt, "WARNING - Could not enter diagnostic mode !\n");
1059 mpt_prt(mpt, "Trying to reset anyway.\n");
1060 }
1061
1062 diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
1063
1064 /*
1065 * This appears to be a workaround required for some
1066 * firmware or hardware revs.
1067 */
1068 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_DISABLE_ARM);
1069 DELAY(1000);
1070
1071 /* Diag. port is now active so we can now hit the reset bit */
1072 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_RESET_ADAPTER);
1073
1074 /*
1075 * Ensure that the reset has finished. We delay 1ms
1076 * prior to reading the register to make sure the chip
1077 * has sufficiently completed its reset to handle register
1078 * accesses.
1079 */
1080 wait = 5000;
1081 do {
1082 DELAY(1000);
1083 diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
1084 } while (--wait && (diagreg & MPI_DIAG_RESET_ADAPTER) == 0);
1085
1086 if (wait == 0) {
1087 mpt_prt(mpt, "WARNING - Failed hard reset! "
1088 "Trying to initialize anyway.\n");
1089 }
1090
1091 /*
1092 * If we have firmware to download, it must be loaded before
1093 * the controller will become operational. Do so now.
1094 */
1095 if (mpt->fw_image != NULL) {
1096
1097 error = mpt_download_fw(mpt);
1098
1099 if (error) {
1100 mpt_prt(mpt, "WARNING - Firmware Download Failed!\n");
1101 mpt_prt(mpt, "Trying to initialize anyway.\n");
1102 }
1103 }
1104
1105 /*
1106 * Reseting the controller should have disabled write
1107 * access to the diagnostic registers, but disable
1108 * manually to be sure.
1109 */
1110 mpt_disable_diag_mode(mpt);
1111}
1112
1113static void
1114mpt_core_ioc_reset(struct mpt_softc *mpt, int type)
1115{
1116
1117 /*
1118 * Complete all pending requests with a status
1119 * appropriate for an IOC reset.
1120 */
1121 mpt_complete_request_chain(mpt, &mpt->request_pending_list,
1122 MPI_IOCSTATUS_INVALID_STATE);
1123}
1124
1125/*
1126 * Reset the IOC when needed. Try software command first then if needed
1127 * poke at the magic diagnostic reset. Note that a hard reset resets
1128 * *both* IOCs on dual function chips (FC929 && LSI1030) as well as
1129 * fouls up the PCI configuration registers.
1130 */
1131int
1132mpt_reset(struct mpt_softc *mpt, int reinit)
1133{
1134 struct mpt_personality *pers;
1135 int ret;
1136 int retry_cnt = 0;
1137
1138 /*
1139 * Try a soft reset. If that fails, get out the big hammer.
1140 */
1141 again:
1142 if ((ret = mpt_soft_reset(mpt)) != MPT_OK) {
1143 int cnt;
1144 for (cnt = 0; cnt < 5; cnt++) {
1145 /* Failed; do a hard reset */
1146 mpt_hard_reset(mpt);
1147
1148 /*
1149 * Wait for the IOC to reload
1150 * and come out of reset state
1151 */
1152 ret = mpt_wait_state(mpt, MPT_DB_STATE_READY);
1153 if (ret == MPT_OK) {
1154 break;
1155 }
1156 /*
1157 * Okay- try to check again...
1158 */
1159 ret = mpt_wait_state(mpt, MPT_DB_STATE_READY);
1160 if (ret == MPT_OK) {
1161 break;
1162 }
1163 mpt_prt(mpt, "mpt_reset: failed hard reset (%d:%d)\n",
1164 retry_cnt, cnt);
1165 }
1166 }
1167
1168 if (retry_cnt == 0) {
1169 /*
1170 * Invoke reset handlers. We bump the reset count so
1171 * that mpt_wait_req() understands that regardless of
1172 * the specified wait condition, it should stop its wait.
1173 */
1174 mpt->reset_cnt++;
1175 MPT_PERS_FOREACH(mpt, pers)
1176 pers->reset(mpt, ret);
1177 }
1178
1179 if (reinit) {
1180 ret = mpt_enable_ioc(mpt, 1);
1181 if (ret == MPT_OK) {
1182 mpt_enable_ints(mpt);
1183 }
1184 }
1185 if (ret != MPT_OK && retry_cnt++ < 2) {
1186 goto again;
1187 }
1188 return ret;
1189}
1190
1191/* Return a command buffer to the free queue */
1192void
1193mpt_free_request(struct mpt_softc *mpt, request_t *req)
1194{
1195 request_t *nxt;
1196 struct mpt_evtf_record *record;
1197 uint32_t offset, reply_baddr;
1198
1199 if (req == NULL || req != &mpt->request_pool[req->index]) {
1200 panic("mpt_free_request bad req ptr\n");
1201 return;
1200 panic("mpt_free_request: bad req ptr");
1202 }
1203 if ((nxt = req->chain) != NULL) {
1204 req->chain = NULL;
1205 mpt_free_request(mpt, nxt); /* NB: recursion */
1206 }
1207 KASSERT(req->state != REQ_STATE_FREE, ("freeing free request"));
1208 KASSERT(!(req->state & REQ_STATE_LOCKED), ("freeing locked request"));
1209 MPT_LOCK_ASSERT(mpt);
1210 KASSERT(mpt_req_on_free_list(mpt, req) == 0,
1211 ("mpt_free_request: req %p:%u func %x already on freelist",
1212 req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1213 KASSERT(mpt_req_on_pending_list(mpt, req) == 0,
1214 ("mpt_free_request: req %p:%u func %x on pending list",
1215 req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1216#ifdef INVARIANTS
1217 mpt_req_not_spcl(mpt, req, "mpt_free_request", __LINE__);
1218#endif
1219
1220 req->ccb = NULL;
1221 if (LIST_EMPTY(&mpt->ack_frames)) {
1222 /*
1223 * Insert free ones at the tail
1224 */
1225 req->serno = 0;
1226 req->state = REQ_STATE_FREE;
1227#ifdef INVARIANTS
1228 memset(req->req_vbuf, 0xff, sizeof (MSG_REQUEST_HEADER));
1229#endif
1230 TAILQ_INSERT_TAIL(&mpt->request_free_list, req, links);
1231 if (mpt->getreqwaiter != 0) {
1232 mpt->getreqwaiter = 0;
1233 wakeup(&mpt->request_free_list);
1234 }
1235 return;
1236 }
1237
1238 /*
1239 * Process an ack frame deferred due to resource shortage.
1240 */
1241 record = LIST_FIRST(&mpt->ack_frames);
1242 LIST_REMOVE(record, links);
1243 req->state = REQ_STATE_ALLOCATED;
1244 mpt_assign_serno(mpt, req);
1245 mpt_send_event_ack(mpt, req, &record->reply, record->context);
1246 offset = (uint32_t)((uint8_t *)record - mpt->reply);
1247 reply_baddr = offset + (mpt->reply_phys & 0xFFFFFFFF);
1248 bus_dmamap_sync_range(mpt->reply_dmat, mpt->reply_dmap, offset,
1249 MPT_REPLY_SIZE, BUS_DMASYNC_PREREAD);
1250 mpt_free_reply(mpt, reply_baddr);
1251}
1252
1253/* Get a command buffer from the free queue */
1254request_t *
1255mpt_get_request(struct mpt_softc *mpt, int sleep_ok)
1256{
1257 request_t *req;
1258
1259retry:
1260 MPT_LOCK_ASSERT(mpt);
1261 req = TAILQ_FIRST(&mpt->request_free_list);
1262 if (req != NULL) {
1263 KASSERT(req == &mpt->request_pool[req->index],
1201 }
1202 if ((nxt = req->chain) != NULL) {
1203 req->chain = NULL;
1204 mpt_free_request(mpt, nxt); /* NB: recursion */
1205 }
1206 KASSERT(req->state != REQ_STATE_FREE, ("freeing free request"));
1207 KASSERT(!(req->state & REQ_STATE_LOCKED), ("freeing locked request"));
1208 MPT_LOCK_ASSERT(mpt);
1209 KASSERT(mpt_req_on_free_list(mpt, req) == 0,
1210 ("mpt_free_request: req %p:%u func %x already on freelist",
1211 req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1212 KASSERT(mpt_req_on_pending_list(mpt, req) == 0,
1213 ("mpt_free_request: req %p:%u func %x on pending list",
1214 req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1215#ifdef INVARIANTS
1216 mpt_req_not_spcl(mpt, req, "mpt_free_request", __LINE__);
1217#endif
1218
1219 req->ccb = NULL;
1220 if (LIST_EMPTY(&mpt->ack_frames)) {
1221 /*
1222 * Insert free ones at the tail
1223 */
1224 req->serno = 0;
1225 req->state = REQ_STATE_FREE;
1226#ifdef INVARIANTS
1227 memset(req->req_vbuf, 0xff, sizeof (MSG_REQUEST_HEADER));
1228#endif
1229 TAILQ_INSERT_TAIL(&mpt->request_free_list, req, links);
1230 if (mpt->getreqwaiter != 0) {
1231 mpt->getreqwaiter = 0;
1232 wakeup(&mpt->request_free_list);
1233 }
1234 return;
1235 }
1236
1237 /*
1238 * Process an ack frame deferred due to resource shortage.
1239 */
1240 record = LIST_FIRST(&mpt->ack_frames);
1241 LIST_REMOVE(record, links);
1242 req->state = REQ_STATE_ALLOCATED;
1243 mpt_assign_serno(mpt, req);
1244 mpt_send_event_ack(mpt, req, &record->reply, record->context);
1245 offset = (uint32_t)((uint8_t *)record - mpt->reply);
1246 reply_baddr = offset + (mpt->reply_phys & 0xFFFFFFFF);
1247 bus_dmamap_sync_range(mpt->reply_dmat, mpt->reply_dmap, offset,
1248 MPT_REPLY_SIZE, BUS_DMASYNC_PREREAD);
1249 mpt_free_reply(mpt, reply_baddr);
1250}
1251
1252/* Get a command buffer from the free queue */
1253request_t *
1254mpt_get_request(struct mpt_softc *mpt, int sleep_ok)
1255{
1256 request_t *req;
1257
1258retry:
1259 MPT_LOCK_ASSERT(mpt);
1260 req = TAILQ_FIRST(&mpt->request_free_list);
1261 if (req != NULL) {
1262 KASSERT(req == &mpt->request_pool[req->index],
1264 ("mpt_get_request: corrupted request free list\n"));
1263 ("mpt_get_request: corrupted request free list"));
1265 KASSERT(req->state == REQ_STATE_FREE,
1266 ("req %p:%u not free on free list %x index %d function %x",
1267 req, req->serno, req->state, req->index,
1268 ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1269 TAILQ_REMOVE(&mpt->request_free_list, req, links);
1270 req->state = REQ_STATE_ALLOCATED;
1271 req->chain = NULL;
1272 mpt_assign_serno(mpt, req);
1273 } else if (sleep_ok != 0) {
1274 mpt->getreqwaiter = 1;
1275 mpt_sleep(mpt, &mpt->request_free_list, PUSER, "mptgreq", 0);
1276 goto retry;
1277 }
1278 return (req);
1279}
1280
1281/* Pass the command to the IOC */
1282void
1283mpt_send_cmd(struct mpt_softc *mpt, request_t *req)
1284{
1285
1286 if (mpt->verbose > MPT_PRT_DEBUG2) {
1287 mpt_dump_request(mpt, req);
1288 }
1289 bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
1290 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1291 req->state |= REQ_STATE_QUEUED;
1292 KASSERT(mpt_req_on_free_list(mpt, req) == 0,
1293 ("req %p:%u func %x on freelist list in mpt_send_cmd",
1294 req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1295 KASSERT(mpt_req_on_pending_list(mpt, req) == 0,
1296 ("req %p:%u func %x already on pending list in mpt_send_cmd",
1297 req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1298 TAILQ_INSERT_HEAD(&mpt->request_pending_list, req, links);
1299 mpt_write(mpt, MPT_OFFSET_REQUEST_Q, (uint32_t) req->req_pbuf);
1300}
1301
1302/*
1303 * Wait for a request to complete.
1304 *
1305 * Inputs:
1306 * mpt softc of controller executing request
1307 * req request to wait for
1308 * sleep_ok nonzero implies may sleep in this context
1309 * time_ms timeout in ms. 0 implies no timeout.
1310 *
1311 * Return Values:
1312 * 0 Request completed
1313 * non-0 Timeout fired before request completion.
1314 */
1315int
1316mpt_wait_req(struct mpt_softc *mpt, request_t *req,
1317 mpt_req_state_t state, mpt_req_state_t mask,
1318 int sleep_ok, int time_ms)
1319{
1320 int error;
1321 int timeout;
1322 u_int saved_cnt;
1323
1324 /*
1325 * timeout is in ms. 0 indicates infinite wait.
1326 * Convert to ticks or 500us units depending on
1327 * our sleep mode.
1328 */
1329 if (sleep_ok != 0) {
1330 timeout = (time_ms * hz) / 1000;
1331 } else {
1332 timeout = time_ms * 2;
1333 }
1334 req->state |= REQ_STATE_NEED_WAKEUP;
1335 mask &= ~REQ_STATE_NEED_WAKEUP;
1336 saved_cnt = mpt->reset_cnt;
1337 while ((req->state & mask) != state && mpt->reset_cnt == saved_cnt) {
1338 if (sleep_ok != 0) {
1339 error = mpt_sleep(mpt, req, PUSER, "mptreq", timeout);
1340 if (error == EWOULDBLOCK) {
1341 timeout = 0;
1342 break;
1343 }
1344 } else {
1345 if (time_ms != 0 && --timeout == 0) {
1346 break;
1347 }
1348 DELAY(500);
1349 mpt_intr(mpt);
1350 }
1351 }
1352 req->state &= ~REQ_STATE_NEED_WAKEUP;
1353 if (mpt->reset_cnt != saved_cnt) {
1354 return (EIO);
1355 }
1356 if (time_ms && timeout <= 0) {
1357 MSG_REQUEST_HEADER *msg_hdr = req->req_vbuf;
1358 req->state |= REQ_STATE_TIMEDOUT;
1359 mpt_prt(mpt, "mpt_wait_req(%x) timed out\n", msg_hdr->Function);
1360 return (ETIMEDOUT);
1361 }
1362 return (0);
1363}
1364
1365/*
1366 * Send a command to the IOC via the handshake register.
1367 *
1368 * Only done at initialization time and for certain unusual
1369 * commands such as device/bus reset as specified by LSI.
1370 */
1371int
1372mpt_send_handshake_cmd(struct mpt_softc *mpt, size_t len, void *cmd)
1373{
1374 int i;
1375 uint32_t data, *data32;
1376
1377 /* Check condition of the IOC */
1378 data = mpt_rd_db(mpt);
1379 if ((MPT_STATE(data) != MPT_DB_STATE_READY
1380 && MPT_STATE(data) != MPT_DB_STATE_RUNNING
1381 && MPT_STATE(data) != MPT_DB_STATE_FAULT)
1382 || MPT_DB_IS_IN_USE(data)) {
1383 mpt_prt(mpt, "handshake aborted - invalid doorbell state\n");
1384 mpt_print_db(data);
1385 return (EBUSY);
1386 }
1387
1388 /* We move things in 32 bit chunks */
1389 len = (len + 3) >> 2;
1390 data32 = cmd;
1391
1392 /* Clear any left over pending doorbell interrupts */
1393 if (MPT_DB_INTR(mpt_rd_intr(mpt)))
1394 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1395
1396 /*
1397 * Tell the handshake reg. we are going to send a command
1398 * and how long it is going to be.
1399 */
1400 data = (MPI_FUNCTION_HANDSHAKE << MPI_DOORBELL_FUNCTION_SHIFT) |
1401 (len << MPI_DOORBELL_ADD_DWORDS_SHIFT);
1402 mpt_write(mpt, MPT_OFFSET_DOORBELL, data);
1403
1404 /* Wait for the chip to notice */
1405 if (mpt_wait_db_int(mpt) != MPT_OK) {
1406 mpt_prt(mpt, "mpt_send_handshake_cmd: db ignored\n");
1407 return (ETIMEDOUT);
1408 }
1409
1410 /* Clear the interrupt */
1411 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1412
1413 if (mpt_wait_db_ack(mpt) != MPT_OK) {
1414 mpt_prt(mpt, "mpt_send_handshake_cmd: db ack timed out\n");
1415 return (ETIMEDOUT);
1416 }
1417
1418 /* Send the command */
1419 for (i = 0; i < len; i++) {
1420 mpt_write(mpt, MPT_OFFSET_DOORBELL, htole32(*data32++));
1421 if (mpt_wait_db_ack(mpt) != MPT_OK) {
1422 mpt_prt(mpt,
1423 "mpt_send_handshake_cmd: timeout @ index %d\n", i);
1424 return (ETIMEDOUT);
1425 }
1426 }
1427 return MPT_OK;
1428}
1429
1430/* Get the response from the handshake register */
1431int
1432mpt_recv_handshake_reply(struct mpt_softc *mpt, size_t reply_len, void *reply)
1433{
1434 int left, reply_left;
1435 u_int16_t *data16;
1436 uint32_t data;
1437 MSG_DEFAULT_REPLY *hdr;
1438
1439 /* We move things out in 16 bit chunks */
1440 reply_len >>= 1;
1441 data16 = (u_int16_t *)reply;
1442
1443 hdr = (MSG_DEFAULT_REPLY *)reply;
1444
1445 /* Get first word */
1446 if (mpt_wait_db_int(mpt) != MPT_OK) {
1447 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout1\n");
1448 return ETIMEDOUT;
1449 }
1450 data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1451 *data16++ = le16toh(data & MPT_DB_DATA_MASK);
1452 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1453
1454 /* Get Second Word */
1455 if (mpt_wait_db_int(mpt) != MPT_OK) {
1456 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout2\n");
1457 return ETIMEDOUT;
1458 }
1459 data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1460 *data16++ = le16toh(data & MPT_DB_DATA_MASK);
1461 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1462
1463 /*
1464 * With the second word, we can now look at the length.
1465 * Warn about a reply that's too short (except for IOC FACTS REPLY)
1466 */
1467 if ((reply_len >> 1) != hdr->MsgLength &&
1468 (hdr->Function != MPI_FUNCTION_IOC_FACTS)){
1469#if __FreeBSD_version >= 500000
1470 mpt_prt(mpt, "reply length does not match message length: "
1471 "got %x; expected %zx for function %x\n",
1472 hdr->MsgLength << 2, reply_len << 1, hdr->Function);
1473#else
1474 mpt_prt(mpt, "reply length does not match message length: "
1475 "got %x; expected %x for function %x\n",
1476 hdr->MsgLength << 2, reply_len << 1, hdr->Function);
1477#endif
1478 }
1479
1480 /* Get rest of the reply; but don't overflow the provided buffer */
1481 left = (hdr->MsgLength << 1) - 2;
1482 reply_left = reply_len - 2;
1483 while (left--) {
1484 u_int16_t datum;
1485
1486 if (mpt_wait_db_int(mpt) != MPT_OK) {
1487 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout3\n");
1488 return ETIMEDOUT;
1489 }
1490 data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1491 datum = le16toh(data & MPT_DB_DATA_MASK);
1492
1493 if (reply_left-- > 0)
1494 *data16++ = datum;
1495
1496 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1497 }
1498
1499 /* One more wait & clear at the end */
1500 if (mpt_wait_db_int(mpt) != MPT_OK) {
1501 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout4\n");
1502 return ETIMEDOUT;
1503 }
1504 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1505
1506 if ((hdr->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1507 if (mpt->verbose >= MPT_PRT_TRACE)
1508 mpt_print_reply(hdr);
1509 return (MPT_FAIL | hdr->IOCStatus);
1510 }
1511
1512 return (0);
1513}
1514
1515static int
1516mpt_get_iocfacts(struct mpt_softc *mpt, MSG_IOC_FACTS_REPLY *freplp)
1517{
1518 MSG_IOC_FACTS f_req;
1519 int error;
1520
1521 memset(&f_req, 0, sizeof f_req);
1522 f_req.Function = MPI_FUNCTION_IOC_FACTS;
1523 f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1524 error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req);
1525 if (error) {
1526 return(error);
1527 }
1528 error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp);
1529 return (error);
1530}
1531
1532static int
1533mpt_get_portfacts(struct mpt_softc *mpt, U8 port, MSG_PORT_FACTS_REPLY *freplp)
1534{
1535 MSG_PORT_FACTS f_req;
1536 int error;
1537
1538 memset(&f_req, 0, sizeof f_req);
1539 f_req.Function = MPI_FUNCTION_PORT_FACTS;
1540 f_req.PortNumber = port;
1541 f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1542 error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req);
1543 if (error) {
1544 return(error);
1545 }
1546 error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp);
1547 return (error);
1548}
1549
1550/*
1551 * Send the initialization request. This is where we specify how many
1552 * SCSI busses and how many devices per bus we wish to emulate.
1553 * This is also the command that specifies the max size of the reply
1554 * frames from the IOC that we will be allocating.
1555 */
1556static int
1557mpt_send_ioc_init(struct mpt_softc *mpt, uint32_t who)
1558{
1559 int error = 0;
1560 MSG_IOC_INIT init;
1561 MSG_IOC_INIT_REPLY reply;
1562
1563 memset(&init, 0, sizeof init);
1564 init.WhoInit = who;
1565 init.Function = MPI_FUNCTION_IOC_INIT;
1566 init.MaxDevices = 0; /* at least 256 devices per bus */
1567 init.MaxBuses = 16; /* at least 16 busses */
1568
1569 init.MsgVersion = htole16(MPI_VERSION);
1570 init.HeaderVersion = htole16(MPI_HEADER_VERSION);
1571 init.ReplyFrameSize = htole16(MPT_REPLY_SIZE);
1572 init.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1573
1574 if ((error = mpt_send_handshake_cmd(mpt, sizeof init, &init)) != 0) {
1575 return(error);
1576 }
1577
1578 error = mpt_recv_handshake_reply(mpt, sizeof reply, &reply);
1579 return (error);
1580}
1581
1582
1583/*
1584 * Utiltity routine to read configuration headers and pages
1585 */
1586int
1587mpt_issue_cfg_req(struct mpt_softc *mpt, request_t *req, cfgparms_t *params,
1588 bus_addr_t addr, bus_size_t len, int sleep_ok, int timeout_ms)
1589{
1590 MSG_CONFIG *cfgp;
1591 SGE_SIMPLE32 *se;
1592
1593 cfgp = req->req_vbuf;
1594 memset(cfgp, 0, sizeof *cfgp);
1595 cfgp->Action = params->Action;
1596 cfgp->Function = MPI_FUNCTION_CONFIG;
1597 cfgp->Header.PageVersion = params->PageVersion;
1598 cfgp->Header.PageNumber = params->PageNumber;
1599 cfgp->PageAddress = htole32(params->PageAddress);
1600 if ((params->PageType & MPI_CONFIG_PAGETYPE_MASK) ==
1601 MPI_CONFIG_PAGETYPE_EXTENDED) {
1602 cfgp->Header.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1603 cfgp->Header.PageLength = 0;
1604 cfgp->ExtPageLength = htole16(params->ExtPageLength);
1605 cfgp->ExtPageType = params->ExtPageType;
1606 } else {
1607 cfgp->Header.PageType = params->PageType;
1608 cfgp->Header.PageLength = params->PageLength;
1609 }
1610 se = (SGE_SIMPLE32 *)&cfgp->PageBufferSGE;
1611 se->Address = htole32(addr);
1612 MPI_pSGE_SET_LENGTH(se, len);
1613 MPI_pSGE_SET_FLAGS(se, (MPI_SGE_FLAGS_SIMPLE_ELEMENT |
1614 MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER |
1615 MPI_SGE_FLAGS_END_OF_LIST |
1616 ((params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_CURRENT
1617 || params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_NVRAM)
1618 ? MPI_SGE_FLAGS_HOST_TO_IOC : MPI_SGE_FLAGS_IOC_TO_HOST)));
1619 se->FlagsLength = htole32(se->FlagsLength);
1620 cfgp->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG);
1621
1622 mpt_check_doorbell(mpt);
1623 mpt_send_cmd(mpt, req);
1624 return (mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE,
1625 sleep_ok, timeout_ms));
1626}
1627
1628int
1629mpt_read_extcfg_header(struct mpt_softc *mpt, int PageVersion, int PageNumber,
1630 uint32_t PageAddress, int ExtPageType,
1631 CONFIG_EXTENDED_PAGE_HEADER *rslt,
1632 int sleep_ok, int timeout_ms)
1633{
1634 request_t *req;
1635 cfgparms_t params;
1636 MSG_CONFIG_REPLY *cfgp;
1637 int error;
1638
1639 req = mpt_get_request(mpt, sleep_ok);
1640 if (req == NULL) {
1641 mpt_prt(mpt, "mpt_extread_cfg_header: Get request failed!\n");
1642 return (ENOMEM);
1643 }
1644
1645 params.Action = MPI_CONFIG_ACTION_PAGE_HEADER;
1646 params.PageVersion = PageVersion;
1647 params.PageLength = 0;
1648 params.PageNumber = PageNumber;
1649 params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1650 params.PageAddress = PageAddress;
1651 params.ExtPageType = ExtPageType;
1652 params.ExtPageLength = 0;
1653 error = mpt_issue_cfg_req(mpt, req, &params, /*addr*/0, /*len*/0,
1654 sleep_ok, timeout_ms);
1655 if (error != 0) {
1656 /*
1657 * Leave the request. Without resetting the chip, it's
1658 * still owned by it and we'll just get into trouble
1659 * freeing it now. Mark it as abandoned so that if it
1660 * shows up later it can be freed.
1661 */
1662 mpt_prt(mpt, "read_extcfg_header timed out\n");
1663 return (ETIMEDOUT);
1664 }
1665
1666 switch (req->IOCStatus & MPI_IOCSTATUS_MASK) {
1667 case MPI_IOCSTATUS_SUCCESS:
1668 cfgp = req->req_vbuf;
1669 rslt->PageVersion = cfgp->Header.PageVersion;
1670 rslt->PageNumber = cfgp->Header.PageNumber;
1671 rslt->PageType = cfgp->Header.PageType;
1672 rslt->ExtPageLength = le16toh(cfgp->ExtPageLength);
1673 rslt->ExtPageType = cfgp->ExtPageType;
1674 error = 0;
1675 break;
1676 case MPI_IOCSTATUS_CONFIG_INVALID_PAGE:
1677 mpt_lprt(mpt, MPT_PRT_DEBUG,
1678 "Invalid Page Type %d Number %d Addr 0x%0x\n",
1679 MPI_CONFIG_PAGETYPE_EXTENDED, PageNumber, PageAddress);
1680 error = EINVAL;
1681 break;
1682 default:
1683 mpt_prt(mpt, "mpt_read_extcfg_header: Config Info Status %x\n",
1684 req->IOCStatus);
1685 error = EIO;
1686 break;
1687 }
1688 mpt_free_request(mpt, req);
1689 return (error);
1690}
1691
1692int
1693mpt_read_extcfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1694 CONFIG_EXTENDED_PAGE_HEADER *hdr, void *buf, size_t len,
1695 int sleep_ok, int timeout_ms)
1696{
1697 request_t *req;
1698 cfgparms_t params;
1699 int error;
1700
1701 req = mpt_get_request(mpt, sleep_ok);
1702 if (req == NULL) {
1703 mpt_prt(mpt, "mpt_read_extcfg_page: Get request failed!\n");
1704 return (-1);
1705 }
1706
1707 params.Action = Action;
1708 params.PageVersion = hdr->PageVersion;
1709 params.PageLength = 0;
1710 params.PageNumber = hdr->PageNumber;
1711 params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1712 params.PageAddress = PageAddress;
1713 params.ExtPageType = hdr->ExtPageType;
1714 params.ExtPageLength = hdr->ExtPageLength;
1715 error = mpt_issue_cfg_req(mpt, req, &params,
1716 req->req_pbuf + MPT_RQSL(mpt),
1717 len, sleep_ok, timeout_ms);
1718 if (error != 0) {
1719 mpt_prt(mpt, "read_extcfg_page(%d) timed out\n", Action);
1720 return (-1);
1721 }
1722
1723 if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1724 mpt_prt(mpt, "mpt_read_extcfg_page: Config Info Status %x\n",
1725 req->IOCStatus);
1726 mpt_free_request(mpt, req);
1727 return (-1);
1728 }
1729 memcpy(buf, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len);
1730 mpt_free_request(mpt, req);
1731 return (0);
1732}
1733
1734int
1735mpt_read_cfg_header(struct mpt_softc *mpt, int PageType, int PageNumber,
1736 uint32_t PageAddress, CONFIG_PAGE_HEADER *rslt,
1737 int sleep_ok, int timeout_ms)
1738{
1739 request_t *req;
1740 cfgparms_t params;
1741 MSG_CONFIG *cfgp;
1742 int error;
1743
1744 req = mpt_get_request(mpt, sleep_ok);
1745 if (req == NULL) {
1746 mpt_prt(mpt, "mpt_read_cfg_header: Get request failed!\n");
1747 return (ENOMEM);
1748 }
1749
1750 params.Action = MPI_CONFIG_ACTION_PAGE_HEADER;
1751 params.PageVersion = 0;
1752 params.PageLength = 0;
1753 params.PageNumber = PageNumber;
1754 params.PageType = PageType;
1755 params.PageAddress = PageAddress;
1756 error = mpt_issue_cfg_req(mpt, req, &params, /*addr*/0, /*len*/0,
1757 sleep_ok, timeout_ms);
1758 if (error != 0) {
1759 /*
1760 * Leave the request. Without resetting the chip, it's
1761 * still owned by it and we'll just get into trouble
1762 * freeing it now. Mark it as abandoned so that if it
1763 * shows up later it can be freed.
1764 */
1765 mpt_prt(mpt, "read_cfg_header timed out\n");
1766 return (ETIMEDOUT);
1767 }
1768
1769 switch (req->IOCStatus & MPI_IOCSTATUS_MASK) {
1770 case MPI_IOCSTATUS_SUCCESS:
1771 cfgp = req->req_vbuf;
1772 bcopy(&cfgp->Header, rslt, sizeof(*rslt));
1773 error = 0;
1774 break;
1775 case MPI_IOCSTATUS_CONFIG_INVALID_PAGE:
1776 mpt_lprt(mpt, MPT_PRT_DEBUG,
1777 "Invalid Page Type %d Number %d Addr 0x%0x\n",
1778 PageType, PageNumber, PageAddress);
1779 error = EINVAL;
1780 break;
1781 default:
1782 mpt_prt(mpt, "mpt_read_cfg_header: Config Info Status %x\n",
1783 req->IOCStatus);
1784 error = EIO;
1785 break;
1786 }
1787 mpt_free_request(mpt, req);
1788 return (error);
1789}
1790
1791int
1792mpt_read_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1793 CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok,
1794 int timeout_ms)
1795{
1796 request_t *req;
1797 cfgparms_t params;
1798 int error;
1799
1800 req = mpt_get_request(mpt, sleep_ok);
1801 if (req == NULL) {
1802 mpt_prt(mpt, "mpt_read_cfg_page: Get request failed!\n");
1803 return (-1);
1804 }
1805
1806 params.Action = Action;
1807 params.PageVersion = hdr->PageVersion;
1808 params.PageLength = hdr->PageLength;
1809 params.PageNumber = hdr->PageNumber;
1810 params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK;
1811 params.PageAddress = PageAddress;
1812 error = mpt_issue_cfg_req(mpt, req, &params,
1813 req->req_pbuf + MPT_RQSL(mpt),
1814 len, sleep_ok, timeout_ms);
1815 if (error != 0) {
1816 mpt_prt(mpt, "read_cfg_page(%d) timed out\n", Action);
1817 return (-1);
1818 }
1819
1820 if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1821 mpt_prt(mpt, "mpt_read_cfg_page: Config Info Status %x\n",
1822 req->IOCStatus);
1823 mpt_free_request(mpt, req);
1824 return (-1);
1825 }
1826 memcpy(hdr, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len);
1827 mpt_free_request(mpt, req);
1828 return (0);
1829}
1830
1831int
1832mpt_write_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1833 CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok,
1834 int timeout_ms)
1835{
1836 request_t *req;
1837 cfgparms_t params;
1838 u_int hdr_attr;
1839 int error;
1840
1841 hdr_attr = hdr->PageType & MPI_CONFIG_PAGEATTR_MASK;
1842 if (hdr_attr != MPI_CONFIG_PAGEATTR_CHANGEABLE &&
1843 hdr_attr != MPI_CONFIG_PAGEATTR_PERSISTENT) {
1844 mpt_prt(mpt, "page type 0x%x not changeable\n",
1845 hdr->PageType & MPI_CONFIG_PAGETYPE_MASK);
1846 return (-1);
1847 }
1848
1849#if 0
1850 /*
1851 * We shouldn't mask off other bits here.
1852 */
1853 hdr->PageType &= MPI_CONFIG_PAGETYPE_MASK;
1854#endif
1855
1856 req = mpt_get_request(mpt, sleep_ok);
1857 if (req == NULL)
1858 return (-1);
1859
1860 memcpy(((caddr_t)req->req_vbuf) + MPT_RQSL(mpt), hdr, len);
1861
1862 /*
1863 * There isn't any point in restoring stripped out attributes
1864 * if you then mask them going down to issue the request.
1865 */
1866
1867 params.Action = Action;
1868 params.PageVersion = hdr->PageVersion;
1869 params.PageLength = hdr->PageLength;
1870 params.PageNumber = hdr->PageNumber;
1871 params.PageAddress = PageAddress;
1872#if 0
1873 /* Restore stripped out attributes */
1874 hdr->PageType |= hdr_attr;
1875 params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK;
1876#else
1877 params.PageType = hdr->PageType;
1878#endif
1879 error = mpt_issue_cfg_req(mpt, req, &params,
1880 req->req_pbuf + MPT_RQSL(mpt),
1881 len, sleep_ok, timeout_ms);
1882 if (error != 0) {
1883 mpt_prt(mpt, "mpt_write_cfg_page timed out\n");
1884 return (-1);
1885 }
1886
1887 if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1888 mpt_prt(mpt, "mpt_write_cfg_page: Config Info Status %x\n",
1889 req->IOCStatus);
1890 mpt_free_request(mpt, req);
1891 return (-1);
1892 }
1893 mpt_free_request(mpt, req);
1894 return (0);
1895}
1896
1897/*
1898 * Read IOC configuration information
1899 */
1900static int
1901mpt_read_config_info_ioc(struct mpt_softc *mpt)
1902{
1903 CONFIG_PAGE_HEADER hdr;
1904 struct mpt_raid_volume *mpt_raid;
1905 int rv;
1906 int i;
1907 size_t len;
1908
1909 rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC,
1910 2, 0, &hdr, FALSE, 5000);
1911 /*
1912 * If it's an invalid page, so what? Not a supported function....
1913 */
1914 if (rv == EINVAL) {
1915 return (0);
1916 }
1917 if (rv) {
1918 return (rv);
1919 }
1920
1921 mpt_lprt(mpt, MPT_PRT_DEBUG,
1922 "IOC Page 2 Header: Version %x len %x PageNumber %x PageType %x\n",
1923 hdr.PageVersion, hdr.PageLength << 2,
1924 hdr.PageNumber, hdr.PageType);
1925
1926 len = hdr.PageLength * sizeof(uint32_t);
1927 mpt->ioc_page2 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
1928 if (mpt->ioc_page2 == NULL) {
1929 mpt_prt(mpt, "unable to allocate memory for IOC page 2\n");
1930 mpt_raid_free_mem(mpt);
1931 return (ENOMEM);
1932 }
1933 memcpy(&mpt->ioc_page2->Header, &hdr, sizeof(hdr));
1934 rv = mpt_read_cur_cfg_page(mpt, 0,
1935 &mpt->ioc_page2->Header, len, FALSE, 5000);
1936 if (rv) {
1937 mpt_prt(mpt, "failed to read IOC Page 2\n");
1938 mpt_raid_free_mem(mpt);
1939 return (EIO);
1940 }
1941 mpt2host_config_page_ioc2(mpt->ioc_page2);
1942
1943 if (mpt->ioc_page2->CapabilitiesFlags != 0) {
1944 uint32_t mask;
1945
1946 mpt_prt(mpt, "Capabilities: (");
1947 for (mask = 1; mask != 0; mask <<= 1) {
1948 if ((mpt->ioc_page2->CapabilitiesFlags & mask) == 0) {
1949 continue;
1950 }
1951 switch (mask) {
1952 case MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT:
1953 mpt_prtc(mpt, " RAID-0");
1954 break;
1955 case MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT:
1956 mpt_prtc(mpt, " RAID-1E");
1957 break;
1958 case MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT:
1959 mpt_prtc(mpt, " RAID-1");
1960 break;
1961 case MPI_IOCPAGE2_CAP_FLAGS_SES_SUPPORT:
1962 mpt_prtc(mpt, " SES");
1963 break;
1964 case MPI_IOCPAGE2_CAP_FLAGS_SAFTE_SUPPORT:
1965 mpt_prtc(mpt, " SAFTE");
1966 break;
1967 case MPI_IOCPAGE2_CAP_FLAGS_CROSS_CHANNEL_SUPPORT:
1968 mpt_prtc(mpt, " Multi-Channel-Arrays");
1969 default:
1970 break;
1971 }
1972 }
1973 mpt_prtc(mpt, " )\n");
1974 if ((mpt->ioc_page2->CapabilitiesFlags
1975 & (MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT
1976 | MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT
1977 | MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT)) != 0) {
1978 mpt_prt(mpt, "%d Active Volume%s(%d Max)\n",
1979 mpt->ioc_page2->NumActiveVolumes,
1980 mpt->ioc_page2->NumActiveVolumes != 1
1981 ? "s " : " ",
1982 mpt->ioc_page2->MaxVolumes);
1983 mpt_prt(mpt, "%d Hidden Drive Member%s(%d Max)\n",
1984 mpt->ioc_page2->NumActivePhysDisks,
1985 mpt->ioc_page2->NumActivePhysDisks != 1
1986 ? "s " : " ",
1987 mpt->ioc_page2->MaxPhysDisks);
1988 }
1989 }
1990
1991 len = mpt->ioc_page2->MaxVolumes * sizeof(struct mpt_raid_volume);
1992 mpt->raid_volumes = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
1993 if (mpt->raid_volumes == NULL) {
1994 mpt_prt(mpt, "Could not allocate RAID volume data\n");
1995 mpt_raid_free_mem(mpt);
1996 return (ENOMEM);
1997 }
1998
1999 /*
2000 * Copy critical data out of ioc_page2 so that we can
2001 * safely refresh the page without windows of unreliable
2002 * data.
2003 */
2004 mpt->raid_max_volumes = mpt->ioc_page2->MaxVolumes;
2005
2006 len = sizeof(*mpt->raid_volumes->config_page) +
2007 (sizeof (RAID_VOL0_PHYS_DISK) * (mpt->ioc_page2->MaxPhysDisks - 1));
2008 for (i = 0; i < mpt->ioc_page2->MaxVolumes; i++) {
2009 mpt_raid = &mpt->raid_volumes[i];
2010 mpt_raid->config_page =
2011 malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2012 if (mpt_raid->config_page == NULL) {
2013 mpt_prt(mpt, "Could not allocate RAID page data\n");
2014 mpt_raid_free_mem(mpt);
2015 return (ENOMEM);
2016 }
2017 }
2018 mpt->raid_page0_len = len;
2019
2020 len = mpt->ioc_page2->MaxPhysDisks * sizeof(struct mpt_raid_disk);
2021 mpt->raid_disks = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2022 if (mpt->raid_disks == NULL) {
2023 mpt_prt(mpt, "Could not allocate RAID disk data\n");
2024 mpt_raid_free_mem(mpt);
2025 return (ENOMEM);
2026 }
2027 mpt->raid_max_disks = mpt->ioc_page2->MaxPhysDisks;
2028
2029 /*
2030 * Load page 3.
2031 */
2032 rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC,
2033 3, 0, &hdr, FALSE, 5000);
2034 if (rv) {
2035 mpt_raid_free_mem(mpt);
2036 return (EIO);
2037 }
2038
2039 mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC Page 3 Header: %x %x %x %x\n",
2040 hdr.PageVersion, hdr.PageLength, hdr.PageNumber, hdr.PageType);
2041
2042 len = hdr.PageLength * sizeof(uint32_t);
2043 mpt->ioc_page3 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2044 if (mpt->ioc_page3 == NULL) {
2045 mpt_prt(mpt, "unable to allocate memory for IOC page 3\n");
2046 mpt_raid_free_mem(mpt);
2047 return (ENOMEM);
2048 }
2049 memcpy(&mpt->ioc_page3->Header, &hdr, sizeof(hdr));
2050 rv = mpt_read_cur_cfg_page(mpt, 0,
2051 &mpt->ioc_page3->Header, len, FALSE, 5000);
2052 if (rv) {
2053 mpt_raid_free_mem(mpt);
2054 return (EIO);
2055 }
2056 mpt2host_config_page_ioc3(mpt->ioc_page3);
2057 mpt_raid_wakeup(mpt);
2058 return (0);
2059}
2060
2061/*
2062 * Enable IOC port
2063 */
2064static int
2065mpt_send_port_enable(struct mpt_softc *mpt, int port)
2066{
2067 request_t *req;
2068 MSG_PORT_ENABLE *enable_req;
2069 int error;
2070
2071 req = mpt_get_request(mpt, /*sleep_ok*/FALSE);
2072 if (req == NULL)
2073 return (-1);
2074
2075 enable_req = req->req_vbuf;
2076 memset(enable_req, 0, MPT_RQSL(mpt));
2077
2078 enable_req->Function = MPI_FUNCTION_PORT_ENABLE;
2079 enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG);
2080 enable_req->PortNumber = port;
2081
2082 mpt_check_doorbell(mpt);
2083 mpt_lprt(mpt, MPT_PRT_DEBUG, "enabling port %d\n", port);
2084
2085 mpt_send_cmd(mpt, req);
2086 error = mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE,
2087 FALSE, (mpt->is_sas || mpt->is_fc)? 300000 : 30000);
2088 if (error != 0) {
2089 mpt_prt(mpt, "port %d enable timed out\n", port);
2090 return (-1);
2091 }
2092 mpt_free_request(mpt, req);
2093 mpt_lprt(mpt, MPT_PRT_DEBUG, "enabled port %d\n", port);
2094 return (0);
2095}
2096
2097/*
2098 * Enable/Disable asynchronous event reporting.
2099 */
2100static int
2101mpt_send_event_request(struct mpt_softc *mpt, int onoff)
2102{
2103 request_t *req;
2104 MSG_EVENT_NOTIFY *enable_req;
2105
2106 req = mpt_get_request(mpt, FALSE);
2107 if (req == NULL) {
2108 return (ENOMEM);
2109 }
2110 enable_req = req->req_vbuf;
2111 memset(enable_req, 0, sizeof *enable_req);
2112
2113 enable_req->Function = MPI_FUNCTION_EVENT_NOTIFICATION;
2114 enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_EVENTS);
2115 enable_req->Switch = onoff;
2116
2117 mpt_check_doorbell(mpt);
2118 mpt_lprt(mpt, MPT_PRT_DEBUG, "%sabling async events\n",
2119 onoff ? "en" : "dis");
2120 /*
2121 * Send the command off, but don't wait for it.
2122 */
2123 mpt_send_cmd(mpt, req);
2124 return (0);
2125}
2126
2127/*
2128 * Un-mask the interrupts on the chip.
2129 */
2130void
2131mpt_enable_ints(struct mpt_softc *mpt)
2132{
2133
2134 /* Unmask every thing except door bell int */
2135 mpt_write(mpt, MPT_OFFSET_INTR_MASK, MPT_INTR_DB_MASK);
2136}
2137
2138/*
2139 * Mask the interrupts on the chip.
2140 */
2141void
2142mpt_disable_ints(struct mpt_softc *mpt)
2143{
2144
2145 /* Mask all interrupts */
2146 mpt_write(mpt, MPT_OFFSET_INTR_MASK,
2147 MPT_INTR_REPLY_MASK | MPT_INTR_DB_MASK);
2148}
2149
2150static void
2151mpt_sysctl_attach(struct mpt_softc *mpt)
2152{
2153#if __FreeBSD_version >= 500000
2154 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(mpt->dev);
2155 struct sysctl_oid *tree = device_get_sysctl_tree(mpt->dev);
2156
2157 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2158 "debug", CTLFLAG_RW, &mpt->verbose, 0,
2159 "Debugging/Verbose level");
2160 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2161 "role", CTLFLAG_RD, &mpt->role, 0,
2162 "HBA role");
2163#ifdef MPT_TEST_MULTIPATH
2164 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2165 "failure_id", CTLFLAG_RW, &mpt->failure_id, -1,
2166 "Next Target to Fail");
2167#endif
2168#endif
2169}
2170
2171int
2172mpt_attach(struct mpt_softc *mpt)
2173{
2174 struct mpt_personality *pers;
2175 int i;
2176 int error;
2177
2178 mpt_core_attach(mpt);
2179 mpt_core_enable(mpt);
2180
2181 TAILQ_INSERT_TAIL(&mpt_tailq, mpt, links);
2182 for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
2183 pers = mpt_personalities[i];
2184 if (pers == NULL) {
2185 continue;
2186 }
2187 if (pers->probe(mpt) == 0) {
2188 error = pers->attach(mpt);
2189 if (error != 0) {
2190 mpt_detach(mpt);
2191 return (error);
2192 }
2193 mpt->mpt_pers_mask |= (0x1 << pers->id);
2194 pers->use_count++;
2195 }
2196 }
2197
2198 /*
2199 * Now that we've attached everything, do the enable function
2200 * for all of the personalities. This allows the personalities
2201 * to do setups that are appropriate for them prior to enabling
2202 * any ports.
2203 */
2204 for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
2205 pers = mpt_personalities[i];
2206 if (pers != NULL && MPT_PERS_ATTACHED(pers, mpt) != 0) {
2207 error = pers->enable(mpt);
2208 if (error != 0) {
2209 mpt_prt(mpt, "personality %s attached but would"
2210 " not enable (%d)\n", pers->name, error);
2211 mpt_detach(mpt);
2212 return (error);
2213 }
2214 }
2215 }
2216 return (0);
2217}
2218
2219int
2220mpt_shutdown(struct mpt_softc *mpt)
2221{
2222 struct mpt_personality *pers;
2223
2224 MPT_PERS_FOREACH_REVERSE(mpt, pers) {
2225 pers->shutdown(mpt);
2226 }
2227 return (0);
2228}
2229
2230int
2231mpt_detach(struct mpt_softc *mpt)
2232{
2233 struct mpt_personality *pers;
2234
2235 MPT_PERS_FOREACH_REVERSE(mpt, pers) {
2236 pers->detach(mpt);
2237 mpt->mpt_pers_mask &= ~(0x1 << pers->id);
2238 pers->use_count--;
2239 }
2240 TAILQ_REMOVE(&mpt_tailq, mpt, links);
2241 return (0);
2242}
2243
2244static int
2245mpt_core_load(struct mpt_personality *pers)
2246{
2247 int i;
2248
2249 /*
2250 * Setup core handlers and insert the default handler
2251 * into all "empty slots".
2252 */
2253 for (i = 0; i < MPT_NUM_REPLY_HANDLERS; i++) {
2254 mpt_reply_handlers[i] = mpt_default_reply_handler;
2255 }
2256
2257 mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_EVENTS)] =
2258 mpt_event_reply_handler;
2259 mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_CONFIG)] =
2260 mpt_config_reply_handler;
2261 mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_HANDSHAKE)] =
2262 mpt_handshake_reply_handler;
2263 return (0);
2264}
2265
2266/*
2267 * Initialize per-instance driver data and perform
2268 * initial controller configuration.
2269 */
2270static int
2271mpt_core_attach(struct mpt_softc *mpt)
2272{
2273 int val, error;
2274
2275 LIST_INIT(&mpt->ack_frames);
2276 /* Put all request buffers on the free list */
2277 TAILQ_INIT(&mpt->request_pending_list);
2278 TAILQ_INIT(&mpt->request_free_list);
2279 TAILQ_INIT(&mpt->request_timeout_list);
2280 for (val = 0; val < MPT_MAX_LUNS; val++) {
2281 STAILQ_INIT(&mpt->trt[val].atios);
2282 STAILQ_INIT(&mpt->trt[val].inots);
2283 }
2284 STAILQ_INIT(&mpt->trt_wildcard.atios);
2285 STAILQ_INIT(&mpt->trt_wildcard.inots);
2286#ifdef MPT_TEST_MULTIPATH
2287 mpt->failure_id = -1;
2288#endif
2289 mpt->scsi_tgt_handler_id = MPT_HANDLER_ID_NONE;
2290 mpt_sysctl_attach(mpt);
2291 mpt_lprt(mpt, MPT_PRT_DEBUG, "doorbell req = %s\n",
2292 mpt_ioc_diag(mpt_read(mpt, MPT_OFFSET_DOORBELL)));
2293
2294 MPT_LOCK(mpt);
2295 error = mpt_configure_ioc(mpt, 0, 0);
2296 MPT_UNLOCK(mpt);
2297
2298 return (error);
2299}
2300
2301static int
2302mpt_core_enable(struct mpt_softc *mpt)
2303{
2304
2305 /*
2306 * We enter with the IOC enabled, but async events
2307 * not enabled, ports not enabled and interrupts
2308 * not enabled.
2309 */
2310 MPT_LOCK(mpt);
2311
2312 /*
2313 * Enable asynchronous event reporting- all personalities
2314 * have attached so that they should be able to now field
2315 * async events.
2316 */
2317 mpt_send_event_request(mpt, 1);
2318
2319 /*
2320 * Catch any pending interrupts
2321 *
2322 * This seems to be crucial- otherwise
2323 * the portenable below times out.
2324 */
2325 mpt_intr(mpt);
2326
2327 /*
2328 * Enable Interrupts
2329 */
2330 mpt_enable_ints(mpt);
2331
2332 /*
2333 * Catch any pending interrupts
2334 *
2335 * This seems to be crucial- otherwise
2336 * the portenable below times out.
2337 */
2338 mpt_intr(mpt);
2339
2340 /*
2341 * Enable the port.
2342 */
2343 if (mpt_send_port_enable(mpt, 0) != MPT_OK) {
2344 mpt_prt(mpt, "failed to enable port 0\n");
2345 MPT_UNLOCK(mpt);
2346 return (ENXIO);
2347 }
2348 MPT_UNLOCK(mpt);
2349 return (0);
2350}
2351
2352static void
2353mpt_core_shutdown(struct mpt_softc *mpt)
2354{
2355
2356 mpt_disable_ints(mpt);
2357}
2358
2359static void
2360mpt_core_detach(struct mpt_softc *mpt)
2361{
2362 int val;
2363
2364 /*
2365 * XXX: FREE MEMORY
2366 */
2367 mpt_disable_ints(mpt);
2368
2369 /* Make sure no request has pending timeouts. */
2370 for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) {
2371 request_t *req = &mpt->request_pool[val];
2372 mpt_callout_drain(mpt, &req->callout);
2373 }
2374
2375 mpt_dma_buf_free(mpt);
2376}
2377
2378static int
2379mpt_core_unload(struct mpt_personality *pers)
2380{
2381
2382 /* Unload is always successful. */
2383 return (0);
2384}
2385
2386#define FW_UPLOAD_REQ_SIZE \
2387 (sizeof(MSG_FW_UPLOAD) - sizeof(SGE_MPI_UNION) \
2388 + sizeof(FW_UPLOAD_TCSGE) + sizeof(SGE_SIMPLE32))
2389
2390static int
2391mpt_upload_fw(struct mpt_softc *mpt)
2392{
2393 uint8_t fw_req_buf[FW_UPLOAD_REQ_SIZE];
2394 MSG_FW_UPLOAD_REPLY fw_reply;
2395 MSG_FW_UPLOAD *fw_req;
2396 FW_UPLOAD_TCSGE *tsge;
2397 SGE_SIMPLE32 *sge;
2398 uint32_t flags;
2399 int error;
2400
2401 memset(&fw_req_buf, 0, sizeof(fw_req_buf));
2402 fw_req = (MSG_FW_UPLOAD *)fw_req_buf;
2403 fw_req->ImageType = MPI_FW_UPLOAD_ITYPE_FW_IOC_MEM;
2404 fw_req->Function = MPI_FUNCTION_FW_UPLOAD;
2405 fw_req->MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
2406 tsge = (FW_UPLOAD_TCSGE *)&fw_req->SGL;
2407 tsge->DetailsLength = 12;
2408 tsge->Flags = MPI_SGE_FLAGS_TRANSACTION_ELEMENT;
2409 tsge->ImageSize = htole32(mpt->fw_image_size);
2410 sge = (SGE_SIMPLE32 *)(tsge + 1);
2411 flags = (MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER
2412 | MPI_SGE_FLAGS_END_OF_LIST | MPI_SGE_FLAGS_SIMPLE_ELEMENT
2413 | MPI_SGE_FLAGS_32_BIT_ADDRESSING | MPI_SGE_FLAGS_IOC_TO_HOST);
2414 flags <<= MPI_SGE_FLAGS_SHIFT;
2415 sge->FlagsLength = htole32(flags | mpt->fw_image_size);
2416 sge->Address = htole32(mpt->fw_phys);
2417 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_PREREAD);
2418 error = mpt_send_handshake_cmd(mpt, sizeof(fw_req_buf), &fw_req_buf);
2419 if (error)
2420 return(error);
2421 error = mpt_recv_handshake_reply(mpt, sizeof(fw_reply), &fw_reply);
2422 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_POSTREAD);
2423 return (error);
2424}
2425
2426static void
2427mpt_diag_outsl(struct mpt_softc *mpt, uint32_t addr,
2428 uint32_t *data, bus_size_t len)
2429{
2430 uint32_t *data_end;
2431
2432 data_end = data + (roundup2(len, sizeof(uint32_t)) / 4);
2433 if (mpt->is_sas) {
2434 pci_enable_io(mpt->dev, SYS_RES_IOPORT);
2435 }
2436 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, addr);
2437 while (data != data_end) {
2438 mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, *data);
2439 data++;
2440 }
2441 if (mpt->is_sas) {
2442 pci_disable_io(mpt->dev, SYS_RES_IOPORT);
2443 }
2444}
2445
2446static int
2447mpt_download_fw(struct mpt_softc *mpt)
2448{
2449 MpiFwHeader_t *fw_hdr;
2450 int error;
2451 uint32_t ext_offset;
2452 uint32_t data;
2453
2454 mpt_prt(mpt, "Downloading Firmware - Image Size %d\n",
2455 mpt->fw_image_size);
2456
2457 error = mpt_enable_diag_mode(mpt);
2458 if (error != 0) {
2459 mpt_prt(mpt, "Could not enter diagnostic mode!\n");
2460 return (EIO);
2461 }
2462
2463 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC,
2464 MPI_DIAG_RW_ENABLE|MPI_DIAG_DISABLE_ARM);
2465
2466 fw_hdr = (MpiFwHeader_t *)mpt->fw_image;
2467 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_PREWRITE);
2468 mpt_diag_outsl(mpt, fw_hdr->LoadStartAddress, (uint32_t*)fw_hdr,
2469 fw_hdr->ImageSize);
2470 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_POSTWRITE);
2471
2472 ext_offset = fw_hdr->NextImageHeaderOffset;
2473 while (ext_offset != 0) {
2474 MpiExtImageHeader_t *ext;
2475
2476 ext = (MpiExtImageHeader_t *)((uintptr_t)fw_hdr + ext_offset);
2477 ext_offset = ext->NextImageHeaderOffset;
2478 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap,
2479 BUS_DMASYNC_PREWRITE);
2480 mpt_diag_outsl(mpt, ext->LoadStartAddress, (uint32_t*)ext,
2481 ext->ImageSize);
2482 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap,
2483 BUS_DMASYNC_POSTWRITE);
2484 }
2485
2486 if (mpt->is_sas) {
2487 pci_enable_io(mpt->dev, SYS_RES_IOPORT);
2488 }
2489 /* Setup the address to jump to on reset. */
2490 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, fw_hdr->IopResetRegAddr);
2491 mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, fw_hdr->IopResetVectorValue);
2492
2493 /*
2494 * The controller sets the "flash bad" status after attempting
2495 * to auto-boot from flash. Clear the status so that the controller
2496 * will continue the boot process with our newly installed firmware.
2497 */
2498 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE);
2499 data = mpt_pio_read(mpt, MPT_OFFSET_DIAG_DATA) | MPT_DIAG_MEM_CFG_BADFL;
2500 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE);
2501 mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, data);
2502
2503 if (mpt->is_sas) {
2504 pci_disable_io(mpt->dev, SYS_RES_IOPORT);
2505 }
2506
2507 /*
2508 * Re-enable the processor and clear the boot halt flag.
2509 */
2510 data = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
2511 data &= ~(MPI_DIAG_PREVENT_IOC_BOOT|MPI_DIAG_DISABLE_ARM);
2512 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, data);
2513
2514 mpt_disable_diag_mode(mpt);
2515 return (0);
2516}
2517
2518static int
2519mpt_dma_buf_alloc(struct mpt_softc *mpt)
2520{
2521 struct mpt_map_info mi;
2522 uint8_t *vptr;
2523 uint32_t pptr, end;
2524 int i, error;
2525
2526 /* Create a child tag for data buffers */
2527 if (mpt_dma_tag_create(mpt, mpt->parent_dmat, 1,
2528 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
2529 NULL, NULL, (mpt->max_cam_seg_cnt - 1) * PAGE_SIZE,
2530 mpt->max_cam_seg_cnt, BUS_SPACE_MAXSIZE_32BIT, 0,
2531 &mpt->buffer_dmat) != 0) {
2532 mpt_prt(mpt, "cannot create a dma tag for data buffers\n");
2533 return (1);
2534 }
2535
2536 /* Create a child tag for request buffers */
2537 if (mpt_dma_tag_create(mpt, mpt->parent_dmat, PAGE_SIZE, 0,
2538 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
2539 NULL, NULL, MPT_REQ_MEM_SIZE(mpt), 1, BUS_SPACE_MAXSIZE_32BIT, 0,
2540 &mpt->request_dmat) != 0) {
2541 mpt_prt(mpt, "cannot create a dma tag for requests\n");
2542 return (1);
2543 }
2544
2545 /* Allocate some DMA accessible memory for requests */
2546 if (bus_dmamem_alloc(mpt->request_dmat, (void **)&mpt->request,
2547 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &mpt->request_dmap) != 0) {
2548 mpt_prt(mpt, "cannot allocate %d bytes of request memory\n",
2549 MPT_REQ_MEM_SIZE(mpt));
2550 return (1);
2551 }
2552
2553 mi.mpt = mpt;
2554 mi.error = 0;
2555
2556 /* Load and lock it into "bus space" */
2557 bus_dmamap_load(mpt->request_dmat, mpt->request_dmap, mpt->request,
2558 MPT_REQ_MEM_SIZE(mpt), mpt_map_rquest, &mi, 0);
2559
2560 if (mi.error) {
2561 mpt_prt(mpt, "error %d loading dma map for DMA request queue\n",
2562 mi.error);
2563 return (1);
2564 }
2565 mpt->request_phys = mi.phys;
2566
2567 /*
2568 * Now create per-request dma maps
2569 */
2570 i = 0;
2571 pptr = mpt->request_phys;
2572 vptr = mpt->request;
2573 end = pptr + MPT_REQ_MEM_SIZE(mpt);
2574 while(pptr < end) {
2575 request_t *req = &mpt->request_pool[i];
2576 req->index = i++;
2577
2578 /* Store location of Request Data */
2579 req->req_pbuf = pptr;
2580 req->req_vbuf = vptr;
2581
2582 pptr += MPT_REQUEST_AREA;
2583 vptr += MPT_REQUEST_AREA;
2584
2585 req->sense_pbuf = (pptr - MPT_SENSE_SIZE);
2586 req->sense_vbuf = (vptr - MPT_SENSE_SIZE);
2587
2588 error = bus_dmamap_create(mpt->buffer_dmat, 0, &req->dmap);
2589 if (error) {
2590 mpt_prt(mpt, "error %d creating per-cmd DMA maps\n",
2591 error);
2592 return (1);
2593 }
2594 }
2595
2596 return (0);
2597}
2598
2599static void
2600mpt_dma_buf_free(struct mpt_softc *mpt)
2601{
2602 int i;
2603
2604 if (mpt->request_dmat == 0) {
2605 mpt_lprt(mpt, MPT_PRT_DEBUG, "already released dma memory\n");
2606 return;
2607 }
2608 for (i = 0; i < MPT_MAX_REQUESTS(mpt); i++) {
2609 bus_dmamap_destroy(mpt->buffer_dmat, mpt->request_pool[i].dmap);
2610 }
2611 bus_dmamap_unload(mpt->request_dmat, mpt->request_dmap);
2612 bus_dmamem_free(mpt->request_dmat, mpt->request, mpt->request_dmap);
2613 bus_dma_tag_destroy(mpt->request_dmat);
2614 mpt->request_dmat = 0;
2615 bus_dma_tag_destroy(mpt->buffer_dmat);
2616}
2617
2618/*
2619 * Allocate/Initialize data structures for the controller. Called
2620 * once at instance startup.
2621 */
2622static int
2623mpt_configure_ioc(struct mpt_softc *mpt, int tn, int needreset)
2624{
2625 PTR_MSG_PORT_FACTS_REPLY pfp;
2626 int error, port, val;
2627 size_t len;
2628
2629 if (tn == MPT_MAX_TRYS) {
2630 return (-1);
2631 }
2632
2633 /*
2634 * No need to reset if the IOC is already in the READY state.
2635 *
2636 * Force reset if initialization failed previously.
2637 * Note that a hard_reset of the second channel of a '929
2638 * will stop operation of the first channel. Hopefully, if the
2639 * first channel is ok, the second will not require a hard
2640 * reset.
2641 */
2642 if (needreset || MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_READY) {
2643 if (mpt_reset(mpt, FALSE) != MPT_OK) {
2644 return (mpt_configure_ioc(mpt, tn++, 1));
2645 }
2646 needreset = 0;
2647 }
2648
2649 if (mpt_get_iocfacts(mpt, &mpt->ioc_facts) != MPT_OK) {
2650 mpt_prt(mpt, "mpt_get_iocfacts failed\n");
2651 return (mpt_configure_ioc(mpt, tn++, 1));
2652 }
2653 mpt2host_iocfacts_reply(&mpt->ioc_facts);
2654
2655 mpt_prt(mpt, "MPI Version=%d.%d.%d.%d\n",
2656 mpt->ioc_facts.MsgVersion >> 8,
2657 mpt->ioc_facts.MsgVersion & 0xFF,
2658 mpt->ioc_facts.HeaderVersion >> 8,
2659 mpt->ioc_facts.HeaderVersion & 0xFF);
2660
2661 /*
2662 * Now that we know request frame size, we can calculate
2663 * the actual (reasonable) segment limit for read/write I/O.
2664 *
2665 * This limit is constrained by:
2666 *
2667 * + The size of each area we allocate per command (and how
2668 * many chain segments we can fit into it).
2669 * + The total number of areas we've set up.
2670 * + The actual chain depth the card will allow.
2671 *
2672 * The first area's segment count is limited by the I/O request
2673 * at the head of it. We cannot allocate realistically more
2674 * than MPT_MAX_REQUESTS areas. Therefore, to account for both
2675 * conditions, we'll just start out with MPT_MAX_REQUESTS-2.
2676 *
2677 */
2678 /* total number of request areas we (can) allocate */
2679 mpt->max_seg_cnt = MPT_MAX_REQUESTS(mpt) - 2;
2680
2681 /* converted to the number of chain areas possible */
2682 mpt->max_seg_cnt *= MPT_NRFM(mpt);
2683
2684 /* limited by the number of chain areas the card will support */
2685 if (mpt->max_seg_cnt > mpt->ioc_facts.MaxChainDepth) {
2686 mpt_lprt(mpt, MPT_PRT_INFO,
2687 "chain depth limited to %u (from %u)\n",
2688 mpt->ioc_facts.MaxChainDepth, mpt->max_seg_cnt);
2689 mpt->max_seg_cnt = mpt->ioc_facts.MaxChainDepth;
2690 }
2691
2692 /* converted to the number of simple sges in chain segments. */
2693 mpt->max_seg_cnt *= (MPT_NSGL(mpt) - 1);
2694
2695 /*
2696 * Use this as the basis for reporting the maximum I/O size to CAM.
2697 */
2698 mpt->max_cam_seg_cnt = min(mpt->max_seg_cnt, (MAXPHYS / PAGE_SIZE) + 1);
2699
2700 error = mpt_dma_buf_alloc(mpt);
2701 if (error != 0) {
2702 mpt_prt(mpt, "mpt_dma_buf_alloc() failed!\n");
2703 return (EIO);
2704 }
2705
2706 for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) {
2707 request_t *req = &mpt->request_pool[val];
2708 req->state = REQ_STATE_ALLOCATED;
2709 mpt_callout_init(mpt, &req->callout);
2710 mpt_free_request(mpt, req);
2711 }
2712
2713 mpt_lprt(mpt, MPT_PRT_INFO, "Maximum Segment Count: %u, Maximum "
2714 "CAM Segment Count: %u\n", mpt->max_seg_cnt,
2715 mpt->max_cam_seg_cnt);
2716
2717 mpt_lprt(mpt, MPT_PRT_INFO, "MsgLength=%u IOCNumber = %d\n",
2718 mpt->ioc_facts.MsgLength, mpt->ioc_facts.IOCNumber);
2719 mpt_lprt(mpt, MPT_PRT_INFO,
2720 "IOCFACTS: GlobalCredits=%d BlockSize=%u bytes "
2721 "Request Frame Size %u bytes Max Chain Depth %u\n",
2722 mpt->ioc_facts.GlobalCredits, mpt->ioc_facts.BlockSize,
2723 mpt->ioc_facts.RequestFrameSize << 2,
2724 mpt->ioc_facts.MaxChainDepth);
2725 mpt_lprt(mpt, MPT_PRT_INFO, "IOCFACTS: Num Ports %d, FWImageSize %d, "
2726 "Flags=%#x\n", mpt->ioc_facts.NumberOfPorts,
2727 mpt->ioc_facts.FWImageSize, mpt->ioc_facts.Flags);
2728
2729 len = mpt->ioc_facts.NumberOfPorts * sizeof (MSG_PORT_FACTS_REPLY);
2730 mpt->port_facts = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2731 if (mpt->port_facts == NULL) {
2732 mpt_prt(mpt, "unable to allocate memory for port facts\n");
2733 return (ENOMEM);
2734 }
2735
2736
2737 if ((mpt->ioc_facts.Flags & MPI_IOCFACTS_FLAGS_FW_DOWNLOAD_BOOT) &&
2738 (mpt->fw_uploaded == 0)) {
2739 struct mpt_map_info mi;
2740
2741 /*
2742 * In some configurations, the IOC's firmware is
2743 * stored in a shared piece of system NVRAM that
2744 * is only accessible via the BIOS. In this
2745 * case, the firmware keeps a copy of firmware in
2746 * RAM until the OS driver retrieves it. Once
2747 * retrieved, we are responsible for re-downloading
2748 * the firmware after any hard-reset.
2749 */
2750 mpt->fw_image_size = mpt->ioc_facts.FWImageSize;
2751 error = mpt_dma_tag_create(mpt, mpt->parent_dmat, 1, 0,
2752 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
2753 mpt->fw_image_size, 1, mpt->fw_image_size, 0,
2754 &mpt->fw_dmat);
2755 if (error != 0) {
2756 mpt_prt(mpt, "cannot create firmware dma tag\n");
2757 return (ENOMEM);
2758 }
2759 error = bus_dmamem_alloc(mpt->fw_dmat,
2760 (void **)&mpt->fw_image, BUS_DMA_NOWAIT |
2761 BUS_DMA_COHERENT, &mpt->fw_dmap);
2762 if (error != 0) {
2763 mpt_prt(mpt, "cannot allocate firmware memory\n");
2764 bus_dma_tag_destroy(mpt->fw_dmat);
2765 return (ENOMEM);
2766 }
2767 mi.mpt = mpt;
2768 mi.error = 0;
2769 bus_dmamap_load(mpt->fw_dmat, mpt->fw_dmap,
2770 mpt->fw_image, mpt->fw_image_size, mpt_map_rquest, &mi, 0);
2771 mpt->fw_phys = mi.phys;
2772
2773 error = mpt_upload_fw(mpt);
2774 if (error != 0) {
2775 mpt_prt(mpt, "firmware upload failed.\n");
2776 bus_dmamap_unload(mpt->fw_dmat, mpt->fw_dmap);
2777 bus_dmamem_free(mpt->fw_dmat, mpt->fw_image,
2778 mpt->fw_dmap);
2779 bus_dma_tag_destroy(mpt->fw_dmat);
2780 mpt->fw_image = NULL;
2781 return (EIO);
2782 }
2783 mpt->fw_uploaded = 1;
2784 }
2785
2786 for (port = 0; port < mpt->ioc_facts.NumberOfPorts; port++) {
2787 pfp = &mpt->port_facts[port];
2788 error = mpt_get_portfacts(mpt, 0, pfp);
2789 if (error != MPT_OK) {
2790 mpt_prt(mpt,
2791 "mpt_get_portfacts on port %d failed\n", port);
2792 free(mpt->port_facts, M_DEVBUF);
2793 mpt->port_facts = NULL;
2794 return (mpt_configure_ioc(mpt, tn++, 1));
2795 }
2796 mpt2host_portfacts_reply(pfp);
2797
2798 if (port > 0) {
2799 error = MPT_PRT_INFO;
2800 } else {
2801 error = MPT_PRT_DEBUG;
2802 }
2803 mpt_lprt(mpt, error,
2804 "PORTFACTS[%d]: Type %x PFlags %x IID %d MaxDev %d\n",
2805 port, pfp->PortType, pfp->ProtocolFlags, pfp->PortSCSIID,
2806 pfp->MaxDevices);
2807
2808 }
2809
2810 /*
2811 * XXX: Not yet supporting more than port 0
2812 */
2813 pfp = &mpt->port_facts[0];
2814 if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_FC) {
2815 mpt->is_fc = 1;
2816 mpt->is_sas = 0;
2817 mpt->is_spi = 0;
2818 } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SAS) {
2819 mpt->is_fc = 0;
2820 mpt->is_sas = 1;
2821 mpt->is_spi = 0;
2822 } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SCSI) {
2823 mpt->is_fc = 0;
2824 mpt->is_sas = 0;
2825 mpt->is_spi = 1;
2826 if (mpt->mpt_ini_id == MPT_INI_ID_NONE)
2827 mpt->mpt_ini_id = pfp->PortSCSIID;
2828 } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_ISCSI) {
2829 mpt_prt(mpt, "iSCSI not supported yet\n");
2830 return (ENXIO);
2831 } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_INACTIVE) {
2832 mpt_prt(mpt, "Inactive Port\n");
2833 return (ENXIO);
2834 } else {
2835 mpt_prt(mpt, "unknown Port Type %#x\n", pfp->PortType);
2836 return (ENXIO);
2837 }
2838
2839 /*
2840 * Set our role with what this port supports.
2841 *
2842 * Note this might be changed later in different modules
2843 * if this is different from what is wanted.
2844 */
2845 mpt->role = MPT_ROLE_NONE;
2846 if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_INITIATOR) {
2847 mpt->role |= MPT_ROLE_INITIATOR;
2848 }
2849 if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_TARGET) {
2850 mpt->role |= MPT_ROLE_TARGET;
2851 }
2852
2853 /*
2854 * Enable the IOC
2855 */
2856 if (mpt_enable_ioc(mpt, 1) != MPT_OK) {
2857 mpt_prt(mpt, "unable to initialize IOC\n");
2858 return (ENXIO);
2859 }
2860
2861 /*
2862 * Read IOC configuration information.
2863 *
2864 * We need this to determine whether or not we have certain
2865 * settings for Integrated Mirroring (e.g.).
2866 */
2867 mpt_read_config_info_ioc(mpt);
2868
2869 return (0);
2870}
2871
2872static int
2873mpt_enable_ioc(struct mpt_softc *mpt, int portenable)
2874{
2875 uint32_t pptr;
2876 int val;
2877
2878 if (mpt_send_ioc_init(mpt, MPI_WHOINIT_HOST_DRIVER) != MPT_OK) {
2879 mpt_prt(mpt, "mpt_send_ioc_init failed\n");
2880 return (EIO);
2881 }
2882
2883 mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_send_ioc_init ok\n");
2884
2885 if (mpt_wait_state(mpt, MPT_DB_STATE_RUNNING) != MPT_OK) {
2886 mpt_prt(mpt, "IOC failed to go to run state\n");
2887 return (ENXIO);
2888 }
2889 mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC now at RUNSTATE\n");
2890
2891 /*
2892 * Give it reply buffers
2893 *
2894 * Do *not* exceed global credits.
2895 */
2896 for (val = 0, pptr = mpt->reply_phys;
2897 (pptr + MPT_REPLY_SIZE) < (mpt->reply_phys + PAGE_SIZE);
2898 pptr += MPT_REPLY_SIZE) {
2899 mpt_free_reply(mpt, pptr);
2900 if (++val == mpt->ioc_facts.GlobalCredits - 1)
2901 break;
2902 }
2903
2904
2905 /*
2906 * Enable the port if asked. This is only done if we're resetting
2907 * the IOC after initial startup.
2908 */
2909 if (portenable) {
2910 /*
2911 * Enable asynchronous event reporting
2912 */
2913 mpt_send_event_request(mpt, 1);
2914
2915 if (mpt_send_port_enable(mpt, 0) != MPT_OK) {
2916 mpt_prt(mpt, "%s: failed to enable port 0\n", __func__);
2917 return (ENXIO);
2918 }
2919 }
2920 return (MPT_OK);
2921}
2922
2923/*
2924 * Endian Conversion Functions- only used on Big Endian machines
2925 */
2926#if _BYTE_ORDER == _BIG_ENDIAN
2927void
2928mpt2host_sge_simple_union(SGE_SIMPLE_UNION *sge)
2929{
2930
2931 MPT_2_HOST32(sge, FlagsLength);
2932 MPT_2_HOST32(sge, u.Address64.Low);
2933 MPT_2_HOST32(sge, u.Address64.High);
2934}
2935
2936void
2937mpt2host_iocfacts_reply(MSG_IOC_FACTS_REPLY *rp)
2938{
2939
2940 MPT_2_HOST16(rp, MsgVersion);
2941 MPT_2_HOST16(rp, HeaderVersion);
2942 MPT_2_HOST32(rp, MsgContext);
2943 MPT_2_HOST16(rp, IOCExceptions);
2944 MPT_2_HOST16(rp, IOCStatus);
2945 MPT_2_HOST32(rp, IOCLogInfo);
2946 MPT_2_HOST16(rp, ReplyQueueDepth);
2947 MPT_2_HOST16(rp, RequestFrameSize);
2948 MPT_2_HOST16(rp, Reserved_0101_FWVersion);
2949 MPT_2_HOST16(rp, ProductID);
2950 MPT_2_HOST32(rp, CurrentHostMfaHighAddr);
2951 MPT_2_HOST16(rp, GlobalCredits);
2952 MPT_2_HOST32(rp, CurrentSenseBufferHighAddr);
2953 MPT_2_HOST16(rp, CurReplyFrameSize);
2954 MPT_2_HOST32(rp, FWImageSize);
2955 MPT_2_HOST32(rp, IOCCapabilities);
2956 MPT_2_HOST32(rp, FWVersion.Word);
2957 MPT_2_HOST16(rp, HighPriorityQueueDepth);
2958 MPT_2_HOST16(rp, Reserved2);
2959 mpt2host_sge_simple_union(&rp->HostPageBufferSGE);
2960 MPT_2_HOST32(rp, ReplyFifoHostSignalingAddr);
2961}
2962
2963void
2964mpt2host_portfacts_reply(MSG_PORT_FACTS_REPLY *pfp)
2965{
2966
2967 MPT_2_HOST16(pfp, Reserved);
2968 MPT_2_HOST16(pfp, Reserved1);
2969 MPT_2_HOST32(pfp, MsgContext);
2970 MPT_2_HOST16(pfp, Reserved2);
2971 MPT_2_HOST16(pfp, IOCStatus);
2972 MPT_2_HOST32(pfp, IOCLogInfo);
2973 MPT_2_HOST16(pfp, MaxDevices);
2974 MPT_2_HOST16(pfp, PortSCSIID);
2975 MPT_2_HOST16(pfp, ProtocolFlags);
2976 MPT_2_HOST16(pfp, MaxPostedCmdBuffers);
2977 MPT_2_HOST16(pfp, MaxPersistentIDs);
2978 MPT_2_HOST16(pfp, MaxLanBuckets);
2979 MPT_2_HOST16(pfp, Reserved4);
2980 MPT_2_HOST32(pfp, Reserved5);
2981}
2982
2983void
2984mpt2host_config_page_ioc2(CONFIG_PAGE_IOC_2 *ioc2)
2985{
2986 int i;
2987
2988 MPT_2_HOST32(ioc2, CapabilitiesFlags);
2989 for (i = 0; i < MPI_IOC_PAGE_2_RAID_VOLUME_MAX; i++) {
2990 MPT_2_HOST16(ioc2, RaidVolume[i].Reserved3);
2991 }
2992}
2993
2994void
2995mpt2host_config_page_ioc3(CONFIG_PAGE_IOC_3 *ioc3)
2996{
2997
2998 MPT_2_HOST16(ioc3, Reserved2);
2999}
3000
3001void
3002mpt2host_config_page_scsi_port_0(CONFIG_PAGE_SCSI_PORT_0 *sp0)
3003{
3004
3005 MPT_2_HOST32(sp0, Capabilities);
3006 MPT_2_HOST32(sp0, PhysicalInterface);
3007}
3008
3009void
3010mpt2host_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1)
3011{
3012
3013 MPT_2_HOST32(sp1, Configuration);
3014 MPT_2_HOST32(sp1, OnBusTimerValue);
3015 MPT_2_HOST16(sp1, IDConfig);
3016}
3017
3018void
3019host2mpt_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1)
3020{
3021
3022 HOST_2_MPT32(sp1, Configuration);
3023 HOST_2_MPT32(sp1, OnBusTimerValue);
3024 HOST_2_MPT16(sp1, IDConfig);
3025}
3026
3027void
3028mpt2host_config_page_scsi_port_2(CONFIG_PAGE_SCSI_PORT_2 *sp2)
3029{
3030 int i;
3031
3032 MPT_2_HOST32(sp2, PortFlags);
3033 MPT_2_HOST32(sp2, PortSettings);
3034 for (i = 0; i < sizeof(sp2->DeviceSettings) /
3035 sizeof(*sp2->DeviceSettings); i++) {
3036 MPT_2_HOST16(sp2, DeviceSettings[i].DeviceFlags);
3037 }
3038}
3039
3040void
3041mpt2host_config_page_scsi_device_0(CONFIG_PAGE_SCSI_DEVICE_0 *sd0)
3042{
3043
3044 MPT_2_HOST32(sd0, NegotiatedParameters);
3045 MPT_2_HOST32(sd0, Information);
3046}
3047
3048void
3049mpt2host_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1)
3050{
3051
3052 MPT_2_HOST32(sd1, RequestedParameters);
3053 MPT_2_HOST32(sd1, Reserved);
3054 MPT_2_HOST32(sd1, Configuration);
3055}
3056
3057void
3058host2mpt_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1)
3059{
3060
3061 HOST_2_MPT32(sd1, RequestedParameters);
3062 HOST_2_MPT32(sd1, Reserved);
3063 HOST_2_MPT32(sd1, Configuration);
3064}
3065
3066void
3067mpt2host_config_page_fc_port_0(CONFIG_PAGE_FC_PORT_0 *fp0)
3068{
3069
3070 MPT_2_HOST32(fp0, Flags);
3071 MPT_2_HOST32(fp0, PortIdentifier);
3072 MPT_2_HOST32(fp0, WWNN.Low);
3073 MPT_2_HOST32(fp0, WWNN.High);
3074 MPT_2_HOST32(fp0, WWPN.Low);
3075 MPT_2_HOST32(fp0, WWPN.High);
3076 MPT_2_HOST32(fp0, SupportedServiceClass);
3077 MPT_2_HOST32(fp0, SupportedSpeeds);
3078 MPT_2_HOST32(fp0, CurrentSpeed);
3079 MPT_2_HOST32(fp0, MaxFrameSize);
3080 MPT_2_HOST32(fp0, FabricWWNN.Low);
3081 MPT_2_HOST32(fp0, FabricWWNN.High);
3082 MPT_2_HOST32(fp0, FabricWWPN.Low);
3083 MPT_2_HOST32(fp0, FabricWWPN.High);
3084 MPT_2_HOST32(fp0, DiscoveredPortsCount);
3085 MPT_2_HOST32(fp0, MaxInitiators);
3086}
3087
3088void
3089mpt2host_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1)
3090{
3091
3092 MPT_2_HOST32(fp1, Flags);
3093 MPT_2_HOST32(fp1, NoSEEPROMWWNN.Low);
3094 MPT_2_HOST32(fp1, NoSEEPROMWWNN.High);
3095 MPT_2_HOST32(fp1, NoSEEPROMWWPN.Low);
3096 MPT_2_HOST32(fp1, NoSEEPROMWWPN.High);
3097}
3098
3099void
3100host2mpt_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1)
3101{
3102
3103 HOST_2_MPT32(fp1, Flags);
3104 HOST_2_MPT32(fp1, NoSEEPROMWWNN.Low);
3105 HOST_2_MPT32(fp1, NoSEEPROMWWNN.High);
3106 HOST_2_MPT32(fp1, NoSEEPROMWWPN.Low);
3107 HOST_2_MPT32(fp1, NoSEEPROMWWPN.High);
3108}
3109
3110void
3111mpt2host_config_page_raid_vol_0(CONFIG_PAGE_RAID_VOL_0 *volp)
3112{
3113 int i;
3114
3115 MPT_2_HOST16(volp, VolumeStatus.Reserved);
3116 MPT_2_HOST16(volp, VolumeSettings.Settings);
3117 MPT_2_HOST32(volp, MaxLBA);
3118 MPT_2_HOST32(volp, MaxLBAHigh);
3119 MPT_2_HOST32(volp, StripeSize);
3120 MPT_2_HOST32(volp, Reserved2);
3121 MPT_2_HOST32(volp, Reserved3);
3122 for (i = 0; i < MPI_RAID_VOL_PAGE_0_PHYSDISK_MAX; i++) {
3123 MPT_2_HOST16(volp, PhysDisk[i].Reserved);
3124 }
3125}
3126
3127void
3128mpt2host_config_page_raid_phys_disk_0(CONFIG_PAGE_RAID_PHYS_DISK_0 *rpd0)
3129{
3130
3131 MPT_2_HOST32(rpd0, Reserved1);
3132 MPT_2_HOST16(rpd0, PhysDiskStatus.Reserved);
3133 MPT_2_HOST32(rpd0, MaxLBA);
3134 MPT_2_HOST16(rpd0, ErrorData.Reserved);
3135 MPT_2_HOST16(rpd0, ErrorData.ErrorCount);
3136 MPT_2_HOST16(rpd0, ErrorData.SmartCount);
3137}
3138
3139void
3140mpt2host_mpi_raid_vol_indicator(MPI_RAID_VOL_INDICATOR *vi)
3141{
3142
3143 MPT_2_HOST16(vi, TotalBlocks.High);
3144 MPT_2_HOST16(vi, TotalBlocks.Low);
3145 MPT_2_HOST16(vi, BlocksRemaining.High);
3146 MPT_2_HOST16(vi, BlocksRemaining.Low);
3147}
3148#endif
1264 KASSERT(req->state == REQ_STATE_FREE,
1265 ("req %p:%u not free on free list %x index %d function %x",
1266 req, req->serno, req->state, req->index,
1267 ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1268 TAILQ_REMOVE(&mpt->request_free_list, req, links);
1269 req->state = REQ_STATE_ALLOCATED;
1270 req->chain = NULL;
1271 mpt_assign_serno(mpt, req);
1272 } else if (sleep_ok != 0) {
1273 mpt->getreqwaiter = 1;
1274 mpt_sleep(mpt, &mpt->request_free_list, PUSER, "mptgreq", 0);
1275 goto retry;
1276 }
1277 return (req);
1278}
1279
1280/* Pass the command to the IOC */
1281void
1282mpt_send_cmd(struct mpt_softc *mpt, request_t *req)
1283{
1284
1285 if (mpt->verbose > MPT_PRT_DEBUG2) {
1286 mpt_dump_request(mpt, req);
1287 }
1288 bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
1289 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1290 req->state |= REQ_STATE_QUEUED;
1291 KASSERT(mpt_req_on_free_list(mpt, req) == 0,
1292 ("req %p:%u func %x on freelist list in mpt_send_cmd",
1293 req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1294 KASSERT(mpt_req_on_pending_list(mpt, req) == 0,
1295 ("req %p:%u func %x already on pending list in mpt_send_cmd",
1296 req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1297 TAILQ_INSERT_HEAD(&mpt->request_pending_list, req, links);
1298 mpt_write(mpt, MPT_OFFSET_REQUEST_Q, (uint32_t) req->req_pbuf);
1299}
1300
1301/*
1302 * Wait for a request to complete.
1303 *
1304 * Inputs:
1305 * mpt softc of controller executing request
1306 * req request to wait for
1307 * sleep_ok nonzero implies may sleep in this context
1308 * time_ms timeout in ms. 0 implies no timeout.
1309 *
1310 * Return Values:
1311 * 0 Request completed
1312 * non-0 Timeout fired before request completion.
1313 */
1314int
1315mpt_wait_req(struct mpt_softc *mpt, request_t *req,
1316 mpt_req_state_t state, mpt_req_state_t mask,
1317 int sleep_ok, int time_ms)
1318{
1319 int error;
1320 int timeout;
1321 u_int saved_cnt;
1322
1323 /*
1324 * timeout is in ms. 0 indicates infinite wait.
1325 * Convert to ticks or 500us units depending on
1326 * our sleep mode.
1327 */
1328 if (sleep_ok != 0) {
1329 timeout = (time_ms * hz) / 1000;
1330 } else {
1331 timeout = time_ms * 2;
1332 }
1333 req->state |= REQ_STATE_NEED_WAKEUP;
1334 mask &= ~REQ_STATE_NEED_WAKEUP;
1335 saved_cnt = mpt->reset_cnt;
1336 while ((req->state & mask) != state && mpt->reset_cnt == saved_cnt) {
1337 if (sleep_ok != 0) {
1338 error = mpt_sleep(mpt, req, PUSER, "mptreq", timeout);
1339 if (error == EWOULDBLOCK) {
1340 timeout = 0;
1341 break;
1342 }
1343 } else {
1344 if (time_ms != 0 && --timeout == 0) {
1345 break;
1346 }
1347 DELAY(500);
1348 mpt_intr(mpt);
1349 }
1350 }
1351 req->state &= ~REQ_STATE_NEED_WAKEUP;
1352 if (mpt->reset_cnt != saved_cnt) {
1353 return (EIO);
1354 }
1355 if (time_ms && timeout <= 0) {
1356 MSG_REQUEST_HEADER *msg_hdr = req->req_vbuf;
1357 req->state |= REQ_STATE_TIMEDOUT;
1358 mpt_prt(mpt, "mpt_wait_req(%x) timed out\n", msg_hdr->Function);
1359 return (ETIMEDOUT);
1360 }
1361 return (0);
1362}
1363
1364/*
1365 * Send a command to the IOC via the handshake register.
1366 *
1367 * Only done at initialization time and for certain unusual
1368 * commands such as device/bus reset as specified by LSI.
1369 */
1370int
1371mpt_send_handshake_cmd(struct mpt_softc *mpt, size_t len, void *cmd)
1372{
1373 int i;
1374 uint32_t data, *data32;
1375
1376 /* Check condition of the IOC */
1377 data = mpt_rd_db(mpt);
1378 if ((MPT_STATE(data) != MPT_DB_STATE_READY
1379 && MPT_STATE(data) != MPT_DB_STATE_RUNNING
1380 && MPT_STATE(data) != MPT_DB_STATE_FAULT)
1381 || MPT_DB_IS_IN_USE(data)) {
1382 mpt_prt(mpt, "handshake aborted - invalid doorbell state\n");
1383 mpt_print_db(data);
1384 return (EBUSY);
1385 }
1386
1387 /* We move things in 32 bit chunks */
1388 len = (len + 3) >> 2;
1389 data32 = cmd;
1390
1391 /* Clear any left over pending doorbell interrupts */
1392 if (MPT_DB_INTR(mpt_rd_intr(mpt)))
1393 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1394
1395 /*
1396 * Tell the handshake reg. we are going to send a command
1397 * and how long it is going to be.
1398 */
1399 data = (MPI_FUNCTION_HANDSHAKE << MPI_DOORBELL_FUNCTION_SHIFT) |
1400 (len << MPI_DOORBELL_ADD_DWORDS_SHIFT);
1401 mpt_write(mpt, MPT_OFFSET_DOORBELL, data);
1402
1403 /* Wait for the chip to notice */
1404 if (mpt_wait_db_int(mpt) != MPT_OK) {
1405 mpt_prt(mpt, "mpt_send_handshake_cmd: db ignored\n");
1406 return (ETIMEDOUT);
1407 }
1408
1409 /* Clear the interrupt */
1410 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1411
1412 if (mpt_wait_db_ack(mpt) != MPT_OK) {
1413 mpt_prt(mpt, "mpt_send_handshake_cmd: db ack timed out\n");
1414 return (ETIMEDOUT);
1415 }
1416
1417 /* Send the command */
1418 for (i = 0; i < len; i++) {
1419 mpt_write(mpt, MPT_OFFSET_DOORBELL, htole32(*data32++));
1420 if (mpt_wait_db_ack(mpt) != MPT_OK) {
1421 mpt_prt(mpt,
1422 "mpt_send_handshake_cmd: timeout @ index %d\n", i);
1423 return (ETIMEDOUT);
1424 }
1425 }
1426 return MPT_OK;
1427}
1428
1429/* Get the response from the handshake register */
1430int
1431mpt_recv_handshake_reply(struct mpt_softc *mpt, size_t reply_len, void *reply)
1432{
1433 int left, reply_left;
1434 u_int16_t *data16;
1435 uint32_t data;
1436 MSG_DEFAULT_REPLY *hdr;
1437
1438 /* We move things out in 16 bit chunks */
1439 reply_len >>= 1;
1440 data16 = (u_int16_t *)reply;
1441
1442 hdr = (MSG_DEFAULT_REPLY *)reply;
1443
1444 /* Get first word */
1445 if (mpt_wait_db_int(mpt) != MPT_OK) {
1446 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout1\n");
1447 return ETIMEDOUT;
1448 }
1449 data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1450 *data16++ = le16toh(data & MPT_DB_DATA_MASK);
1451 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1452
1453 /* Get Second Word */
1454 if (mpt_wait_db_int(mpt) != MPT_OK) {
1455 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout2\n");
1456 return ETIMEDOUT;
1457 }
1458 data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1459 *data16++ = le16toh(data & MPT_DB_DATA_MASK);
1460 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1461
1462 /*
1463 * With the second word, we can now look at the length.
1464 * Warn about a reply that's too short (except for IOC FACTS REPLY)
1465 */
1466 if ((reply_len >> 1) != hdr->MsgLength &&
1467 (hdr->Function != MPI_FUNCTION_IOC_FACTS)){
1468#if __FreeBSD_version >= 500000
1469 mpt_prt(mpt, "reply length does not match message length: "
1470 "got %x; expected %zx for function %x\n",
1471 hdr->MsgLength << 2, reply_len << 1, hdr->Function);
1472#else
1473 mpt_prt(mpt, "reply length does not match message length: "
1474 "got %x; expected %x for function %x\n",
1475 hdr->MsgLength << 2, reply_len << 1, hdr->Function);
1476#endif
1477 }
1478
1479 /* Get rest of the reply; but don't overflow the provided buffer */
1480 left = (hdr->MsgLength << 1) - 2;
1481 reply_left = reply_len - 2;
1482 while (left--) {
1483 u_int16_t datum;
1484
1485 if (mpt_wait_db_int(mpt) != MPT_OK) {
1486 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout3\n");
1487 return ETIMEDOUT;
1488 }
1489 data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1490 datum = le16toh(data & MPT_DB_DATA_MASK);
1491
1492 if (reply_left-- > 0)
1493 *data16++ = datum;
1494
1495 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1496 }
1497
1498 /* One more wait & clear at the end */
1499 if (mpt_wait_db_int(mpt) != MPT_OK) {
1500 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout4\n");
1501 return ETIMEDOUT;
1502 }
1503 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1504
1505 if ((hdr->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1506 if (mpt->verbose >= MPT_PRT_TRACE)
1507 mpt_print_reply(hdr);
1508 return (MPT_FAIL | hdr->IOCStatus);
1509 }
1510
1511 return (0);
1512}
1513
1514static int
1515mpt_get_iocfacts(struct mpt_softc *mpt, MSG_IOC_FACTS_REPLY *freplp)
1516{
1517 MSG_IOC_FACTS f_req;
1518 int error;
1519
1520 memset(&f_req, 0, sizeof f_req);
1521 f_req.Function = MPI_FUNCTION_IOC_FACTS;
1522 f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1523 error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req);
1524 if (error) {
1525 return(error);
1526 }
1527 error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp);
1528 return (error);
1529}
1530
1531static int
1532mpt_get_portfacts(struct mpt_softc *mpt, U8 port, MSG_PORT_FACTS_REPLY *freplp)
1533{
1534 MSG_PORT_FACTS f_req;
1535 int error;
1536
1537 memset(&f_req, 0, sizeof f_req);
1538 f_req.Function = MPI_FUNCTION_PORT_FACTS;
1539 f_req.PortNumber = port;
1540 f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1541 error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req);
1542 if (error) {
1543 return(error);
1544 }
1545 error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp);
1546 return (error);
1547}
1548
1549/*
1550 * Send the initialization request. This is where we specify how many
1551 * SCSI busses and how many devices per bus we wish to emulate.
1552 * This is also the command that specifies the max size of the reply
1553 * frames from the IOC that we will be allocating.
1554 */
1555static int
1556mpt_send_ioc_init(struct mpt_softc *mpt, uint32_t who)
1557{
1558 int error = 0;
1559 MSG_IOC_INIT init;
1560 MSG_IOC_INIT_REPLY reply;
1561
1562 memset(&init, 0, sizeof init);
1563 init.WhoInit = who;
1564 init.Function = MPI_FUNCTION_IOC_INIT;
1565 init.MaxDevices = 0; /* at least 256 devices per bus */
1566 init.MaxBuses = 16; /* at least 16 busses */
1567
1568 init.MsgVersion = htole16(MPI_VERSION);
1569 init.HeaderVersion = htole16(MPI_HEADER_VERSION);
1570 init.ReplyFrameSize = htole16(MPT_REPLY_SIZE);
1571 init.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1572
1573 if ((error = mpt_send_handshake_cmd(mpt, sizeof init, &init)) != 0) {
1574 return(error);
1575 }
1576
1577 error = mpt_recv_handshake_reply(mpt, sizeof reply, &reply);
1578 return (error);
1579}
1580
1581
1582/*
1583 * Utiltity routine to read configuration headers and pages
1584 */
1585int
1586mpt_issue_cfg_req(struct mpt_softc *mpt, request_t *req, cfgparms_t *params,
1587 bus_addr_t addr, bus_size_t len, int sleep_ok, int timeout_ms)
1588{
1589 MSG_CONFIG *cfgp;
1590 SGE_SIMPLE32 *se;
1591
1592 cfgp = req->req_vbuf;
1593 memset(cfgp, 0, sizeof *cfgp);
1594 cfgp->Action = params->Action;
1595 cfgp->Function = MPI_FUNCTION_CONFIG;
1596 cfgp->Header.PageVersion = params->PageVersion;
1597 cfgp->Header.PageNumber = params->PageNumber;
1598 cfgp->PageAddress = htole32(params->PageAddress);
1599 if ((params->PageType & MPI_CONFIG_PAGETYPE_MASK) ==
1600 MPI_CONFIG_PAGETYPE_EXTENDED) {
1601 cfgp->Header.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1602 cfgp->Header.PageLength = 0;
1603 cfgp->ExtPageLength = htole16(params->ExtPageLength);
1604 cfgp->ExtPageType = params->ExtPageType;
1605 } else {
1606 cfgp->Header.PageType = params->PageType;
1607 cfgp->Header.PageLength = params->PageLength;
1608 }
1609 se = (SGE_SIMPLE32 *)&cfgp->PageBufferSGE;
1610 se->Address = htole32(addr);
1611 MPI_pSGE_SET_LENGTH(se, len);
1612 MPI_pSGE_SET_FLAGS(se, (MPI_SGE_FLAGS_SIMPLE_ELEMENT |
1613 MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER |
1614 MPI_SGE_FLAGS_END_OF_LIST |
1615 ((params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_CURRENT
1616 || params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_NVRAM)
1617 ? MPI_SGE_FLAGS_HOST_TO_IOC : MPI_SGE_FLAGS_IOC_TO_HOST)));
1618 se->FlagsLength = htole32(se->FlagsLength);
1619 cfgp->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG);
1620
1621 mpt_check_doorbell(mpt);
1622 mpt_send_cmd(mpt, req);
1623 return (mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE,
1624 sleep_ok, timeout_ms));
1625}
1626
1627int
1628mpt_read_extcfg_header(struct mpt_softc *mpt, int PageVersion, int PageNumber,
1629 uint32_t PageAddress, int ExtPageType,
1630 CONFIG_EXTENDED_PAGE_HEADER *rslt,
1631 int sleep_ok, int timeout_ms)
1632{
1633 request_t *req;
1634 cfgparms_t params;
1635 MSG_CONFIG_REPLY *cfgp;
1636 int error;
1637
1638 req = mpt_get_request(mpt, sleep_ok);
1639 if (req == NULL) {
1640 mpt_prt(mpt, "mpt_extread_cfg_header: Get request failed!\n");
1641 return (ENOMEM);
1642 }
1643
1644 params.Action = MPI_CONFIG_ACTION_PAGE_HEADER;
1645 params.PageVersion = PageVersion;
1646 params.PageLength = 0;
1647 params.PageNumber = PageNumber;
1648 params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1649 params.PageAddress = PageAddress;
1650 params.ExtPageType = ExtPageType;
1651 params.ExtPageLength = 0;
1652 error = mpt_issue_cfg_req(mpt, req, &params, /*addr*/0, /*len*/0,
1653 sleep_ok, timeout_ms);
1654 if (error != 0) {
1655 /*
1656 * Leave the request. Without resetting the chip, it's
1657 * still owned by it and we'll just get into trouble
1658 * freeing it now. Mark it as abandoned so that if it
1659 * shows up later it can be freed.
1660 */
1661 mpt_prt(mpt, "read_extcfg_header timed out\n");
1662 return (ETIMEDOUT);
1663 }
1664
1665 switch (req->IOCStatus & MPI_IOCSTATUS_MASK) {
1666 case MPI_IOCSTATUS_SUCCESS:
1667 cfgp = req->req_vbuf;
1668 rslt->PageVersion = cfgp->Header.PageVersion;
1669 rslt->PageNumber = cfgp->Header.PageNumber;
1670 rslt->PageType = cfgp->Header.PageType;
1671 rslt->ExtPageLength = le16toh(cfgp->ExtPageLength);
1672 rslt->ExtPageType = cfgp->ExtPageType;
1673 error = 0;
1674 break;
1675 case MPI_IOCSTATUS_CONFIG_INVALID_PAGE:
1676 mpt_lprt(mpt, MPT_PRT_DEBUG,
1677 "Invalid Page Type %d Number %d Addr 0x%0x\n",
1678 MPI_CONFIG_PAGETYPE_EXTENDED, PageNumber, PageAddress);
1679 error = EINVAL;
1680 break;
1681 default:
1682 mpt_prt(mpt, "mpt_read_extcfg_header: Config Info Status %x\n",
1683 req->IOCStatus);
1684 error = EIO;
1685 break;
1686 }
1687 mpt_free_request(mpt, req);
1688 return (error);
1689}
1690
1691int
1692mpt_read_extcfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1693 CONFIG_EXTENDED_PAGE_HEADER *hdr, void *buf, size_t len,
1694 int sleep_ok, int timeout_ms)
1695{
1696 request_t *req;
1697 cfgparms_t params;
1698 int error;
1699
1700 req = mpt_get_request(mpt, sleep_ok);
1701 if (req == NULL) {
1702 mpt_prt(mpt, "mpt_read_extcfg_page: Get request failed!\n");
1703 return (-1);
1704 }
1705
1706 params.Action = Action;
1707 params.PageVersion = hdr->PageVersion;
1708 params.PageLength = 0;
1709 params.PageNumber = hdr->PageNumber;
1710 params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1711 params.PageAddress = PageAddress;
1712 params.ExtPageType = hdr->ExtPageType;
1713 params.ExtPageLength = hdr->ExtPageLength;
1714 error = mpt_issue_cfg_req(mpt, req, &params,
1715 req->req_pbuf + MPT_RQSL(mpt),
1716 len, sleep_ok, timeout_ms);
1717 if (error != 0) {
1718 mpt_prt(mpt, "read_extcfg_page(%d) timed out\n", Action);
1719 return (-1);
1720 }
1721
1722 if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1723 mpt_prt(mpt, "mpt_read_extcfg_page: Config Info Status %x\n",
1724 req->IOCStatus);
1725 mpt_free_request(mpt, req);
1726 return (-1);
1727 }
1728 memcpy(buf, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len);
1729 mpt_free_request(mpt, req);
1730 return (0);
1731}
1732
1733int
1734mpt_read_cfg_header(struct mpt_softc *mpt, int PageType, int PageNumber,
1735 uint32_t PageAddress, CONFIG_PAGE_HEADER *rslt,
1736 int sleep_ok, int timeout_ms)
1737{
1738 request_t *req;
1739 cfgparms_t params;
1740 MSG_CONFIG *cfgp;
1741 int error;
1742
1743 req = mpt_get_request(mpt, sleep_ok);
1744 if (req == NULL) {
1745 mpt_prt(mpt, "mpt_read_cfg_header: Get request failed!\n");
1746 return (ENOMEM);
1747 }
1748
1749 params.Action = MPI_CONFIG_ACTION_PAGE_HEADER;
1750 params.PageVersion = 0;
1751 params.PageLength = 0;
1752 params.PageNumber = PageNumber;
1753 params.PageType = PageType;
1754 params.PageAddress = PageAddress;
1755 error = mpt_issue_cfg_req(mpt, req, &params, /*addr*/0, /*len*/0,
1756 sleep_ok, timeout_ms);
1757 if (error != 0) {
1758 /*
1759 * Leave the request. Without resetting the chip, it's
1760 * still owned by it and we'll just get into trouble
1761 * freeing it now. Mark it as abandoned so that if it
1762 * shows up later it can be freed.
1763 */
1764 mpt_prt(mpt, "read_cfg_header timed out\n");
1765 return (ETIMEDOUT);
1766 }
1767
1768 switch (req->IOCStatus & MPI_IOCSTATUS_MASK) {
1769 case MPI_IOCSTATUS_SUCCESS:
1770 cfgp = req->req_vbuf;
1771 bcopy(&cfgp->Header, rslt, sizeof(*rslt));
1772 error = 0;
1773 break;
1774 case MPI_IOCSTATUS_CONFIG_INVALID_PAGE:
1775 mpt_lprt(mpt, MPT_PRT_DEBUG,
1776 "Invalid Page Type %d Number %d Addr 0x%0x\n",
1777 PageType, PageNumber, PageAddress);
1778 error = EINVAL;
1779 break;
1780 default:
1781 mpt_prt(mpt, "mpt_read_cfg_header: Config Info Status %x\n",
1782 req->IOCStatus);
1783 error = EIO;
1784 break;
1785 }
1786 mpt_free_request(mpt, req);
1787 return (error);
1788}
1789
1790int
1791mpt_read_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1792 CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok,
1793 int timeout_ms)
1794{
1795 request_t *req;
1796 cfgparms_t params;
1797 int error;
1798
1799 req = mpt_get_request(mpt, sleep_ok);
1800 if (req == NULL) {
1801 mpt_prt(mpt, "mpt_read_cfg_page: Get request failed!\n");
1802 return (-1);
1803 }
1804
1805 params.Action = Action;
1806 params.PageVersion = hdr->PageVersion;
1807 params.PageLength = hdr->PageLength;
1808 params.PageNumber = hdr->PageNumber;
1809 params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK;
1810 params.PageAddress = PageAddress;
1811 error = mpt_issue_cfg_req(mpt, req, &params,
1812 req->req_pbuf + MPT_RQSL(mpt),
1813 len, sleep_ok, timeout_ms);
1814 if (error != 0) {
1815 mpt_prt(mpt, "read_cfg_page(%d) timed out\n", Action);
1816 return (-1);
1817 }
1818
1819 if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1820 mpt_prt(mpt, "mpt_read_cfg_page: Config Info Status %x\n",
1821 req->IOCStatus);
1822 mpt_free_request(mpt, req);
1823 return (-1);
1824 }
1825 memcpy(hdr, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len);
1826 mpt_free_request(mpt, req);
1827 return (0);
1828}
1829
1830int
1831mpt_write_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1832 CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok,
1833 int timeout_ms)
1834{
1835 request_t *req;
1836 cfgparms_t params;
1837 u_int hdr_attr;
1838 int error;
1839
1840 hdr_attr = hdr->PageType & MPI_CONFIG_PAGEATTR_MASK;
1841 if (hdr_attr != MPI_CONFIG_PAGEATTR_CHANGEABLE &&
1842 hdr_attr != MPI_CONFIG_PAGEATTR_PERSISTENT) {
1843 mpt_prt(mpt, "page type 0x%x not changeable\n",
1844 hdr->PageType & MPI_CONFIG_PAGETYPE_MASK);
1845 return (-1);
1846 }
1847
1848#if 0
1849 /*
1850 * We shouldn't mask off other bits here.
1851 */
1852 hdr->PageType &= MPI_CONFIG_PAGETYPE_MASK;
1853#endif
1854
1855 req = mpt_get_request(mpt, sleep_ok);
1856 if (req == NULL)
1857 return (-1);
1858
1859 memcpy(((caddr_t)req->req_vbuf) + MPT_RQSL(mpt), hdr, len);
1860
1861 /*
1862 * There isn't any point in restoring stripped out attributes
1863 * if you then mask them going down to issue the request.
1864 */
1865
1866 params.Action = Action;
1867 params.PageVersion = hdr->PageVersion;
1868 params.PageLength = hdr->PageLength;
1869 params.PageNumber = hdr->PageNumber;
1870 params.PageAddress = PageAddress;
1871#if 0
1872 /* Restore stripped out attributes */
1873 hdr->PageType |= hdr_attr;
1874 params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK;
1875#else
1876 params.PageType = hdr->PageType;
1877#endif
1878 error = mpt_issue_cfg_req(mpt, req, &params,
1879 req->req_pbuf + MPT_RQSL(mpt),
1880 len, sleep_ok, timeout_ms);
1881 if (error != 0) {
1882 mpt_prt(mpt, "mpt_write_cfg_page timed out\n");
1883 return (-1);
1884 }
1885
1886 if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1887 mpt_prt(mpt, "mpt_write_cfg_page: Config Info Status %x\n",
1888 req->IOCStatus);
1889 mpt_free_request(mpt, req);
1890 return (-1);
1891 }
1892 mpt_free_request(mpt, req);
1893 return (0);
1894}
1895
1896/*
1897 * Read IOC configuration information
1898 */
1899static int
1900mpt_read_config_info_ioc(struct mpt_softc *mpt)
1901{
1902 CONFIG_PAGE_HEADER hdr;
1903 struct mpt_raid_volume *mpt_raid;
1904 int rv;
1905 int i;
1906 size_t len;
1907
1908 rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC,
1909 2, 0, &hdr, FALSE, 5000);
1910 /*
1911 * If it's an invalid page, so what? Not a supported function....
1912 */
1913 if (rv == EINVAL) {
1914 return (0);
1915 }
1916 if (rv) {
1917 return (rv);
1918 }
1919
1920 mpt_lprt(mpt, MPT_PRT_DEBUG,
1921 "IOC Page 2 Header: Version %x len %x PageNumber %x PageType %x\n",
1922 hdr.PageVersion, hdr.PageLength << 2,
1923 hdr.PageNumber, hdr.PageType);
1924
1925 len = hdr.PageLength * sizeof(uint32_t);
1926 mpt->ioc_page2 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
1927 if (mpt->ioc_page2 == NULL) {
1928 mpt_prt(mpt, "unable to allocate memory for IOC page 2\n");
1929 mpt_raid_free_mem(mpt);
1930 return (ENOMEM);
1931 }
1932 memcpy(&mpt->ioc_page2->Header, &hdr, sizeof(hdr));
1933 rv = mpt_read_cur_cfg_page(mpt, 0,
1934 &mpt->ioc_page2->Header, len, FALSE, 5000);
1935 if (rv) {
1936 mpt_prt(mpt, "failed to read IOC Page 2\n");
1937 mpt_raid_free_mem(mpt);
1938 return (EIO);
1939 }
1940 mpt2host_config_page_ioc2(mpt->ioc_page2);
1941
1942 if (mpt->ioc_page2->CapabilitiesFlags != 0) {
1943 uint32_t mask;
1944
1945 mpt_prt(mpt, "Capabilities: (");
1946 for (mask = 1; mask != 0; mask <<= 1) {
1947 if ((mpt->ioc_page2->CapabilitiesFlags & mask) == 0) {
1948 continue;
1949 }
1950 switch (mask) {
1951 case MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT:
1952 mpt_prtc(mpt, " RAID-0");
1953 break;
1954 case MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT:
1955 mpt_prtc(mpt, " RAID-1E");
1956 break;
1957 case MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT:
1958 mpt_prtc(mpt, " RAID-1");
1959 break;
1960 case MPI_IOCPAGE2_CAP_FLAGS_SES_SUPPORT:
1961 mpt_prtc(mpt, " SES");
1962 break;
1963 case MPI_IOCPAGE2_CAP_FLAGS_SAFTE_SUPPORT:
1964 mpt_prtc(mpt, " SAFTE");
1965 break;
1966 case MPI_IOCPAGE2_CAP_FLAGS_CROSS_CHANNEL_SUPPORT:
1967 mpt_prtc(mpt, " Multi-Channel-Arrays");
1968 default:
1969 break;
1970 }
1971 }
1972 mpt_prtc(mpt, " )\n");
1973 if ((mpt->ioc_page2->CapabilitiesFlags
1974 & (MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT
1975 | MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT
1976 | MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT)) != 0) {
1977 mpt_prt(mpt, "%d Active Volume%s(%d Max)\n",
1978 mpt->ioc_page2->NumActiveVolumes,
1979 mpt->ioc_page2->NumActiveVolumes != 1
1980 ? "s " : " ",
1981 mpt->ioc_page2->MaxVolumes);
1982 mpt_prt(mpt, "%d Hidden Drive Member%s(%d Max)\n",
1983 mpt->ioc_page2->NumActivePhysDisks,
1984 mpt->ioc_page2->NumActivePhysDisks != 1
1985 ? "s " : " ",
1986 mpt->ioc_page2->MaxPhysDisks);
1987 }
1988 }
1989
1990 len = mpt->ioc_page2->MaxVolumes * sizeof(struct mpt_raid_volume);
1991 mpt->raid_volumes = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
1992 if (mpt->raid_volumes == NULL) {
1993 mpt_prt(mpt, "Could not allocate RAID volume data\n");
1994 mpt_raid_free_mem(mpt);
1995 return (ENOMEM);
1996 }
1997
1998 /*
1999 * Copy critical data out of ioc_page2 so that we can
2000 * safely refresh the page without windows of unreliable
2001 * data.
2002 */
2003 mpt->raid_max_volumes = mpt->ioc_page2->MaxVolumes;
2004
2005 len = sizeof(*mpt->raid_volumes->config_page) +
2006 (sizeof (RAID_VOL0_PHYS_DISK) * (mpt->ioc_page2->MaxPhysDisks - 1));
2007 for (i = 0; i < mpt->ioc_page2->MaxVolumes; i++) {
2008 mpt_raid = &mpt->raid_volumes[i];
2009 mpt_raid->config_page =
2010 malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2011 if (mpt_raid->config_page == NULL) {
2012 mpt_prt(mpt, "Could not allocate RAID page data\n");
2013 mpt_raid_free_mem(mpt);
2014 return (ENOMEM);
2015 }
2016 }
2017 mpt->raid_page0_len = len;
2018
2019 len = mpt->ioc_page2->MaxPhysDisks * sizeof(struct mpt_raid_disk);
2020 mpt->raid_disks = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2021 if (mpt->raid_disks == NULL) {
2022 mpt_prt(mpt, "Could not allocate RAID disk data\n");
2023 mpt_raid_free_mem(mpt);
2024 return (ENOMEM);
2025 }
2026 mpt->raid_max_disks = mpt->ioc_page2->MaxPhysDisks;
2027
2028 /*
2029 * Load page 3.
2030 */
2031 rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC,
2032 3, 0, &hdr, FALSE, 5000);
2033 if (rv) {
2034 mpt_raid_free_mem(mpt);
2035 return (EIO);
2036 }
2037
2038 mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC Page 3 Header: %x %x %x %x\n",
2039 hdr.PageVersion, hdr.PageLength, hdr.PageNumber, hdr.PageType);
2040
2041 len = hdr.PageLength * sizeof(uint32_t);
2042 mpt->ioc_page3 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2043 if (mpt->ioc_page3 == NULL) {
2044 mpt_prt(mpt, "unable to allocate memory for IOC page 3\n");
2045 mpt_raid_free_mem(mpt);
2046 return (ENOMEM);
2047 }
2048 memcpy(&mpt->ioc_page3->Header, &hdr, sizeof(hdr));
2049 rv = mpt_read_cur_cfg_page(mpt, 0,
2050 &mpt->ioc_page3->Header, len, FALSE, 5000);
2051 if (rv) {
2052 mpt_raid_free_mem(mpt);
2053 return (EIO);
2054 }
2055 mpt2host_config_page_ioc3(mpt->ioc_page3);
2056 mpt_raid_wakeup(mpt);
2057 return (0);
2058}
2059
2060/*
2061 * Enable IOC port
2062 */
2063static int
2064mpt_send_port_enable(struct mpt_softc *mpt, int port)
2065{
2066 request_t *req;
2067 MSG_PORT_ENABLE *enable_req;
2068 int error;
2069
2070 req = mpt_get_request(mpt, /*sleep_ok*/FALSE);
2071 if (req == NULL)
2072 return (-1);
2073
2074 enable_req = req->req_vbuf;
2075 memset(enable_req, 0, MPT_RQSL(mpt));
2076
2077 enable_req->Function = MPI_FUNCTION_PORT_ENABLE;
2078 enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG);
2079 enable_req->PortNumber = port;
2080
2081 mpt_check_doorbell(mpt);
2082 mpt_lprt(mpt, MPT_PRT_DEBUG, "enabling port %d\n", port);
2083
2084 mpt_send_cmd(mpt, req);
2085 error = mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE,
2086 FALSE, (mpt->is_sas || mpt->is_fc)? 300000 : 30000);
2087 if (error != 0) {
2088 mpt_prt(mpt, "port %d enable timed out\n", port);
2089 return (-1);
2090 }
2091 mpt_free_request(mpt, req);
2092 mpt_lprt(mpt, MPT_PRT_DEBUG, "enabled port %d\n", port);
2093 return (0);
2094}
2095
2096/*
2097 * Enable/Disable asynchronous event reporting.
2098 */
2099static int
2100mpt_send_event_request(struct mpt_softc *mpt, int onoff)
2101{
2102 request_t *req;
2103 MSG_EVENT_NOTIFY *enable_req;
2104
2105 req = mpt_get_request(mpt, FALSE);
2106 if (req == NULL) {
2107 return (ENOMEM);
2108 }
2109 enable_req = req->req_vbuf;
2110 memset(enable_req, 0, sizeof *enable_req);
2111
2112 enable_req->Function = MPI_FUNCTION_EVENT_NOTIFICATION;
2113 enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_EVENTS);
2114 enable_req->Switch = onoff;
2115
2116 mpt_check_doorbell(mpt);
2117 mpt_lprt(mpt, MPT_PRT_DEBUG, "%sabling async events\n",
2118 onoff ? "en" : "dis");
2119 /*
2120 * Send the command off, but don't wait for it.
2121 */
2122 mpt_send_cmd(mpt, req);
2123 return (0);
2124}
2125
2126/*
2127 * Un-mask the interrupts on the chip.
2128 */
2129void
2130mpt_enable_ints(struct mpt_softc *mpt)
2131{
2132
2133 /* Unmask every thing except door bell int */
2134 mpt_write(mpt, MPT_OFFSET_INTR_MASK, MPT_INTR_DB_MASK);
2135}
2136
2137/*
2138 * Mask the interrupts on the chip.
2139 */
2140void
2141mpt_disable_ints(struct mpt_softc *mpt)
2142{
2143
2144 /* Mask all interrupts */
2145 mpt_write(mpt, MPT_OFFSET_INTR_MASK,
2146 MPT_INTR_REPLY_MASK | MPT_INTR_DB_MASK);
2147}
2148
2149static void
2150mpt_sysctl_attach(struct mpt_softc *mpt)
2151{
2152#if __FreeBSD_version >= 500000
2153 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(mpt->dev);
2154 struct sysctl_oid *tree = device_get_sysctl_tree(mpt->dev);
2155
2156 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2157 "debug", CTLFLAG_RW, &mpt->verbose, 0,
2158 "Debugging/Verbose level");
2159 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2160 "role", CTLFLAG_RD, &mpt->role, 0,
2161 "HBA role");
2162#ifdef MPT_TEST_MULTIPATH
2163 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2164 "failure_id", CTLFLAG_RW, &mpt->failure_id, -1,
2165 "Next Target to Fail");
2166#endif
2167#endif
2168}
2169
2170int
2171mpt_attach(struct mpt_softc *mpt)
2172{
2173 struct mpt_personality *pers;
2174 int i;
2175 int error;
2176
2177 mpt_core_attach(mpt);
2178 mpt_core_enable(mpt);
2179
2180 TAILQ_INSERT_TAIL(&mpt_tailq, mpt, links);
2181 for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
2182 pers = mpt_personalities[i];
2183 if (pers == NULL) {
2184 continue;
2185 }
2186 if (pers->probe(mpt) == 0) {
2187 error = pers->attach(mpt);
2188 if (error != 0) {
2189 mpt_detach(mpt);
2190 return (error);
2191 }
2192 mpt->mpt_pers_mask |= (0x1 << pers->id);
2193 pers->use_count++;
2194 }
2195 }
2196
2197 /*
2198 * Now that we've attached everything, do the enable function
2199 * for all of the personalities. This allows the personalities
2200 * to do setups that are appropriate for them prior to enabling
2201 * any ports.
2202 */
2203 for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
2204 pers = mpt_personalities[i];
2205 if (pers != NULL && MPT_PERS_ATTACHED(pers, mpt) != 0) {
2206 error = pers->enable(mpt);
2207 if (error != 0) {
2208 mpt_prt(mpt, "personality %s attached but would"
2209 " not enable (%d)\n", pers->name, error);
2210 mpt_detach(mpt);
2211 return (error);
2212 }
2213 }
2214 }
2215 return (0);
2216}
2217
2218int
2219mpt_shutdown(struct mpt_softc *mpt)
2220{
2221 struct mpt_personality *pers;
2222
2223 MPT_PERS_FOREACH_REVERSE(mpt, pers) {
2224 pers->shutdown(mpt);
2225 }
2226 return (0);
2227}
2228
2229int
2230mpt_detach(struct mpt_softc *mpt)
2231{
2232 struct mpt_personality *pers;
2233
2234 MPT_PERS_FOREACH_REVERSE(mpt, pers) {
2235 pers->detach(mpt);
2236 mpt->mpt_pers_mask &= ~(0x1 << pers->id);
2237 pers->use_count--;
2238 }
2239 TAILQ_REMOVE(&mpt_tailq, mpt, links);
2240 return (0);
2241}
2242
2243static int
2244mpt_core_load(struct mpt_personality *pers)
2245{
2246 int i;
2247
2248 /*
2249 * Setup core handlers and insert the default handler
2250 * into all "empty slots".
2251 */
2252 for (i = 0; i < MPT_NUM_REPLY_HANDLERS; i++) {
2253 mpt_reply_handlers[i] = mpt_default_reply_handler;
2254 }
2255
2256 mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_EVENTS)] =
2257 mpt_event_reply_handler;
2258 mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_CONFIG)] =
2259 mpt_config_reply_handler;
2260 mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_HANDSHAKE)] =
2261 mpt_handshake_reply_handler;
2262 return (0);
2263}
2264
2265/*
2266 * Initialize per-instance driver data and perform
2267 * initial controller configuration.
2268 */
2269static int
2270mpt_core_attach(struct mpt_softc *mpt)
2271{
2272 int val, error;
2273
2274 LIST_INIT(&mpt->ack_frames);
2275 /* Put all request buffers on the free list */
2276 TAILQ_INIT(&mpt->request_pending_list);
2277 TAILQ_INIT(&mpt->request_free_list);
2278 TAILQ_INIT(&mpt->request_timeout_list);
2279 for (val = 0; val < MPT_MAX_LUNS; val++) {
2280 STAILQ_INIT(&mpt->trt[val].atios);
2281 STAILQ_INIT(&mpt->trt[val].inots);
2282 }
2283 STAILQ_INIT(&mpt->trt_wildcard.atios);
2284 STAILQ_INIT(&mpt->trt_wildcard.inots);
2285#ifdef MPT_TEST_MULTIPATH
2286 mpt->failure_id = -1;
2287#endif
2288 mpt->scsi_tgt_handler_id = MPT_HANDLER_ID_NONE;
2289 mpt_sysctl_attach(mpt);
2290 mpt_lprt(mpt, MPT_PRT_DEBUG, "doorbell req = %s\n",
2291 mpt_ioc_diag(mpt_read(mpt, MPT_OFFSET_DOORBELL)));
2292
2293 MPT_LOCK(mpt);
2294 error = mpt_configure_ioc(mpt, 0, 0);
2295 MPT_UNLOCK(mpt);
2296
2297 return (error);
2298}
2299
2300static int
2301mpt_core_enable(struct mpt_softc *mpt)
2302{
2303
2304 /*
2305 * We enter with the IOC enabled, but async events
2306 * not enabled, ports not enabled and interrupts
2307 * not enabled.
2308 */
2309 MPT_LOCK(mpt);
2310
2311 /*
2312 * Enable asynchronous event reporting- all personalities
2313 * have attached so that they should be able to now field
2314 * async events.
2315 */
2316 mpt_send_event_request(mpt, 1);
2317
2318 /*
2319 * Catch any pending interrupts
2320 *
2321 * This seems to be crucial- otherwise
2322 * the portenable below times out.
2323 */
2324 mpt_intr(mpt);
2325
2326 /*
2327 * Enable Interrupts
2328 */
2329 mpt_enable_ints(mpt);
2330
2331 /*
2332 * Catch any pending interrupts
2333 *
2334 * This seems to be crucial- otherwise
2335 * the portenable below times out.
2336 */
2337 mpt_intr(mpt);
2338
2339 /*
2340 * Enable the port.
2341 */
2342 if (mpt_send_port_enable(mpt, 0) != MPT_OK) {
2343 mpt_prt(mpt, "failed to enable port 0\n");
2344 MPT_UNLOCK(mpt);
2345 return (ENXIO);
2346 }
2347 MPT_UNLOCK(mpt);
2348 return (0);
2349}
2350
2351static void
2352mpt_core_shutdown(struct mpt_softc *mpt)
2353{
2354
2355 mpt_disable_ints(mpt);
2356}
2357
2358static void
2359mpt_core_detach(struct mpt_softc *mpt)
2360{
2361 int val;
2362
2363 /*
2364 * XXX: FREE MEMORY
2365 */
2366 mpt_disable_ints(mpt);
2367
2368 /* Make sure no request has pending timeouts. */
2369 for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) {
2370 request_t *req = &mpt->request_pool[val];
2371 mpt_callout_drain(mpt, &req->callout);
2372 }
2373
2374 mpt_dma_buf_free(mpt);
2375}
2376
2377static int
2378mpt_core_unload(struct mpt_personality *pers)
2379{
2380
2381 /* Unload is always successful. */
2382 return (0);
2383}
2384
2385#define FW_UPLOAD_REQ_SIZE \
2386 (sizeof(MSG_FW_UPLOAD) - sizeof(SGE_MPI_UNION) \
2387 + sizeof(FW_UPLOAD_TCSGE) + sizeof(SGE_SIMPLE32))
2388
2389static int
2390mpt_upload_fw(struct mpt_softc *mpt)
2391{
2392 uint8_t fw_req_buf[FW_UPLOAD_REQ_SIZE];
2393 MSG_FW_UPLOAD_REPLY fw_reply;
2394 MSG_FW_UPLOAD *fw_req;
2395 FW_UPLOAD_TCSGE *tsge;
2396 SGE_SIMPLE32 *sge;
2397 uint32_t flags;
2398 int error;
2399
2400 memset(&fw_req_buf, 0, sizeof(fw_req_buf));
2401 fw_req = (MSG_FW_UPLOAD *)fw_req_buf;
2402 fw_req->ImageType = MPI_FW_UPLOAD_ITYPE_FW_IOC_MEM;
2403 fw_req->Function = MPI_FUNCTION_FW_UPLOAD;
2404 fw_req->MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
2405 tsge = (FW_UPLOAD_TCSGE *)&fw_req->SGL;
2406 tsge->DetailsLength = 12;
2407 tsge->Flags = MPI_SGE_FLAGS_TRANSACTION_ELEMENT;
2408 tsge->ImageSize = htole32(mpt->fw_image_size);
2409 sge = (SGE_SIMPLE32 *)(tsge + 1);
2410 flags = (MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER
2411 | MPI_SGE_FLAGS_END_OF_LIST | MPI_SGE_FLAGS_SIMPLE_ELEMENT
2412 | MPI_SGE_FLAGS_32_BIT_ADDRESSING | MPI_SGE_FLAGS_IOC_TO_HOST);
2413 flags <<= MPI_SGE_FLAGS_SHIFT;
2414 sge->FlagsLength = htole32(flags | mpt->fw_image_size);
2415 sge->Address = htole32(mpt->fw_phys);
2416 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_PREREAD);
2417 error = mpt_send_handshake_cmd(mpt, sizeof(fw_req_buf), &fw_req_buf);
2418 if (error)
2419 return(error);
2420 error = mpt_recv_handshake_reply(mpt, sizeof(fw_reply), &fw_reply);
2421 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_POSTREAD);
2422 return (error);
2423}
2424
2425static void
2426mpt_diag_outsl(struct mpt_softc *mpt, uint32_t addr,
2427 uint32_t *data, bus_size_t len)
2428{
2429 uint32_t *data_end;
2430
2431 data_end = data + (roundup2(len, sizeof(uint32_t)) / 4);
2432 if (mpt->is_sas) {
2433 pci_enable_io(mpt->dev, SYS_RES_IOPORT);
2434 }
2435 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, addr);
2436 while (data != data_end) {
2437 mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, *data);
2438 data++;
2439 }
2440 if (mpt->is_sas) {
2441 pci_disable_io(mpt->dev, SYS_RES_IOPORT);
2442 }
2443}
2444
2445static int
2446mpt_download_fw(struct mpt_softc *mpt)
2447{
2448 MpiFwHeader_t *fw_hdr;
2449 int error;
2450 uint32_t ext_offset;
2451 uint32_t data;
2452
2453 mpt_prt(mpt, "Downloading Firmware - Image Size %d\n",
2454 mpt->fw_image_size);
2455
2456 error = mpt_enable_diag_mode(mpt);
2457 if (error != 0) {
2458 mpt_prt(mpt, "Could not enter diagnostic mode!\n");
2459 return (EIO);
2460 }
2461
2462 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC,
2463 MPI_DIAG_RW_ENABLE|MPI_DIAG_DISABLE_ARM);
2464
2465 fw_hdr = (MpiFwHeader_t *)mpt->fw_image;
2466 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_PREWRITE);
2467 mpt_diag_outsl(mpt, fw_hdr->LoadStartAddress, (uint32_t*)fw_hdr,
2468 fw_hdr->ImageSize);
2469 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_POSTWRITE);
2470
2471 ext_offset = fw_hdr->NextImageHeaderOffset;
2472 while (ext_offset != 0) {
2473 MpiExtImageHeader_t *ext;
2474
2475 ext = (MpiExtImageHeader_t *)((uintptr_t)fw_hdr + ext_offset);
2476 ext_offset = ext->NextImageHeaderOffset;
2477 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap,
2478 BUS_DMASYNC_PREWRITE);
2479 mpt_diag_outsl(mpt, ext->LoadStartAddress, (uint32_t*)ext,
2480 ext->ImageSize);
2481 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap,
2482 BUS_DMASYNC_POSTWRITE);
2483 }
2484
2485 if (mpt->is_sas) {
2486 pci_enable_io(mpt->dev, SYS_RES_IOPORT);
2487 }
2488 /* Setup the address to jump to on reset. */
2489 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, fw_hdr->IopResetRegAddr);
2490 mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, fw_hdr->IopResetVectorValue);
2491
2492 /*
2493 * The controller sets the "flash bad" status after attempting
2494 * to auto-boot from flash. Clear the status so that the controller
2495 * will continue the boot process with our newly installed firmware.
2496 */
2497 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE);
2498 data = mpt_pio_read(mpt, MPT_OFFSET_DIAG_DATA) | MPT_DIAG_MEM_CFG_BADFL;
2499 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE);
2500 mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, data);
2501
2502 if (mpt->is_sas) {
2503 pci_disable_io(mpt->dev, SYS_RES_IOPORT);
2504 }
2505
2506 /*
2507 * Re-enable the processor and clear the boot halt flag.
2508 */
2509 data = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
2510 data &= ~(MPI_DIAG_PREVENT_IOC_BOOT|MPI_DIAG_DISABLE_ARM);
2511 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, data);
2512
2513 mpt_disable_diag_mode(mpt);
2514 return (0);
2515}
2516
2517static int
2518mpt_dma_buf_alloc(struct mpt_softc *mpt)
2519{
2520 struct mpt_map_info mi;
2521 uint8_t *vptr;
2522 uint32_t pptr, end;
2523 int i, error;
2524
2525 /* Create a child tag for data buffers */
2526 if (mpt_dma_tag_create(mpt, mpt->parent_dmat, 1,
2527 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
2528 NULL, NULL, (mpt->max_cam_seg_cnt - 1) * PAGE_SIZE,
2529 mpt->max_cam_seg_cnt, BUS_SPACE_MAXSIZE_32BIT, 0,
2530 &mpt->buffer_dmat) != 0) {
2531 mpt_prt(mpt, "cannot create a dma tag for data buffers\n");
2532 return (1);
2533 }
2534
2535 /* Create a child tag for request buffers */
2536 if (mpt_dma_tag_create(mpt, mpt->parent_dmat, PAGE_SIZE, 0,
2537 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
2538 NULL, NULL, MPT_REQ_MEM_SIZE(mpt), 1, BUS_SPACE_MAXSIZE_32BIT, 0,
2539 &mpt->request_dmat) != 0) {
2540 mpt_prt(mpt, "cannot create a dma tag for requests\n");
2541 return (1);
2542 }
2543
2544 /* Allocate some DMA accessible memory for requests */
2545 if (bus_dmamem_alloc(mpt->request_dmat, (void **)&mpt->request,
2546 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &mpt->request_dmap) != 0) {
2547 mpt_prt(mpt, "cannot allocate %d bytes of request memory\n",
2548 MPT_REQ_MEM_SIZE(mpt));
2549 return (1);
2550 }
2551
2552 mi.mpt = mpt;
2553 mi.error = 0;
2554
2555 /* Load and lock it into "bus space" */
2556 bus_dmamap_load(mpt->request_dmat, mpt->request_dmap, mpt->request,
2557 MPT_REQ_MEM_SIZE(mpt), mpt_map_rquest, &mi, 0);
2558
2559 if (mi.error) {
2560 mpt_prt(mpt, "error %d loading dma map for DMA request queue\n",
2561 mi.error);
2562 return (1);
2563 }
2564 mpt->request_phys = mi.phys;
2565
2566 /*
2567 * Now create per-request dma maps
2568 */
2569 i = 0;
2570 pptr = mpt->request_phys;
2571 vptr = mpt->request;
2572 end = pptr + MPT_REQ_MEM_SIZE(mpt);
2573 while(pptr < end) {
2574 request_t *req = &mpt->request_pool[i];
2575 req->index = i++;
2576
2577 /* Store location of Request Data */
2578 req->req_pbuf = pptr;
2579 req->req_vbuf = vptr;
2580
2581 pptr += MPT_REQUEST_AREA;
2582 vptr += MPT_REQUEST_AREA;
2583
2584 req->sense_pbuf = (pptr - MPT_SENSE_SIZE);
2585 req->sense_vbuf = (vptr - MPT_SENSE_SIZE);
2586
2587 error = bus_dmamap_create(mpt->buffer_dmat, 0, &req->dmap);
2588 if (error) {
2589 mpt_prt(mpt, "error %d creating per-cmd DMA maps\n",
2590 error);
2591 return (1);
2592 }
2593 }
2594
2595 return (0);
2596}
2597
2598static void
2599mpt_dma_buf_free(struct mpt_softc *mpt)
2600{
2601 int i;
2602
2603 if (mpt->request_dmat == 0) {
2604 mpt_lprt(mpt, MPT_PRT_DEBUG, "already released dma memory\n");
2605 return;
2606 }
2607 for (i = 0; i < MPT_MAX_REQUESTS(mpt); i++) {
2608 bus_dmamap_destroy(mpt->buffer_dmat, mpt->request_pool[i].dmap);
2609 }
2610 bus_dmamap_unload(mpt->request_dmat, mpt->request_dmap);
2611 bus_dmamem_free(mpt->request_dmat, mpt->request, mpt->request_dmap);
2612 bus_dma_tag_destroy(mpt->request_dmat);
2613 mpt->request_dmat = 0;
2614 bus_dma_tag_destroy(mpt->buffer_dmat);
2615}
2616
2617/*
2618 * Allocate/Initialize data structures for the controller. Called
2619 * once at instance startup.
2620 */
2621static int
2622mpt_configure_ioc(struct mpt_softc *mpt, int tn, int needreset)
2623{
2624 PTR_MSG_PORT_FACTS_REPLY pfp;
2625 int error, port, val;
2626 size_t len;
2627
2628 if (tn == MPT_MAX_TRYS) {
2629 return (-1);
2630 }
2631
2632 /*
2633 * No need to reset if the IOC is already in the READY state.
2634 *
2635 * Force reset if initialization failed previously.
2636 * Note that a hard_reset of the second channel of a '929
2637 * will stop operation of the first channel. Hopefully, if the
2638 * first channel is ok, the second will not require a hard
2639 * reset.
2640 */
2641 if (needreset || MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_READY) {
2642 if (mpt_reset(mpt, FALSE) != MPT_OK) {
2643 return (mpt_configure_ioc(mpt, tn++, 1));
2644 }
2645 needreset = 0;
2646 }
2647
2648 if (mpt_get_iocfacts(mpt, &mpt->ioc_facts) != MPT_OK) {
2649 mpt_prt(mpt, "mpt_get_iocfacts failed\n");
2650 return (mpt_configure_ioc(mpt, tn++, 1));
2651 }
2652 mpt2host_iocfacts_reply(&mpt->ioc_facts);
2653
2654 mpt_prt(mpt, "MPI Version=%d.%d.%d.%d\n",
2655 mpt->ioc_facts.MsgVersion >> 8,
2656 mpt->ioc_facts.MsgVersion & 0xFF,
2657 mpt->ioc_facts.HeaderVersion >> 8,
2658 mpt->ioc_facts.HeaderVersion & 0xFF);
2659
2660 /*
2661 * Now that we know request frame size, we can calculate
2662 * the actual (reasonable) segment limit for read/write I/O.
2663 *
2664 * This limit is constrained by:
2665 *
2666 * + The size of each area we allocate per command (and how
2667 * many chain segments we can fit into it).
2668 * + The total number of areas we've set up.
2669 * + The actual chain depth the card will allow.
2670 *
2671 * The first area's segment count is limited by the I/O request
2672 * at the head of it. We cannot allocate realistically more
2673 * than MPT_MAX_REQUESTS areas. Therefore, to account for both
2674 * conditions, we'll just start out with MPT_MAX_REQUESTS-2.
2675 *
2676 */
2677 /* total number of request areas we (can) allocate */
2678 mpt->max_seg_cnt = MPT_MAX_REQUESTS(mpt) - 2;
2679
2680 /* converted to the number of chain areas possible */
2681 mpt->max_seg_cnt *= MPT_NRFM(mpt);
2682
2683 /* limited by the number of chain areas the card will support */
2684 if (mpt->max_seg_cnt > mpt->ioc_facts.MaxChainDepth) {
2685 mpt_lprt(mpt, MPT_PRT_INFO,
2686 "chain depth limited to %u (from %u)\n",
2687 mpt->ioc_facts.MaxChainDepth, mpt->max_seg_cnt);
2688 mpt->max_seg_cnt = mpt->ioc_facts.MaxChainDepth;
2689 }
2690
2691 /* converted to the number of simple sges in chain segments. */
2692 mpt->max_seg_cnt *= (MPT_NSGL(mpt) - 1);
2693
2694 /*
2695 * Use this as the basis for reporting the maximum I/O size to CAM.
2696 */
2697 mpt->max_cam_seg_cnt = min(mpt->max_seg_cnt, (MAXPHYS / PAGE_SIZE) + 1);
2698
2699 error = mpt_dma_buf_alloc(mpt);
2700 if (error != 0) {
2701 mpt_prt(mpt, "mpt_dma_buf_alloc() failed!\n");
2702 return (EIO);
2703 }
2704
2705 for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) {
2706 request_t *req = &mpt->request_pool[val];
2707 req->state = REQ_STATE_ALLOCATED;
2708 mpt_callout_init(mpt, &req->callout);
2709 mpt_free_request(mpt, req);
2710 }
2711
2712 mpt_lprt(mpt, MPT_PRT_INFO, "Maximum Segment Count: %u, Maximum "
2713 "CAM Segment Count: %u\n", mpt->max_seg_cnt,
2714 mpt->max_cam_seg_cnt);
2715
2716 mpt_lprt(mpt, MPT_PRT_INFO, "MsgLength=%u IOCNumber = %d\n",
2717 mpt->ioc_facts.MsgLength, mpt->ioc_facts.IOCNumber);
2718 mpt_lprt(mpt, MPT_PRT_INFO,
2719 "IOCFACTS: GlobalCredits=%d BlockSize=%u bytes "
2720 "Request Frame Size %u bytes Max Chain Depth %u\n",
2721 mpt->ioc_facts.GlobalCredits, mpt->ioc_facts.BlockSize,
2722 mpt->ioc_facts.RequestFrameSize << 2,
2723 mpt->ioc_facts.MaxChainDepth);
2724 mpt_lprt(mpt, MPT_PRT_INFO, "IOCFACTS: Num Ports %d, FWImageSize %d, "
2725 "Flags=%#x\n", mpt->ioc_facts.NumberOfPorts,
2726 mpt->ioc_facts.FWImageSize, mpt->ioc_facts.Flags);
2727
2728 len = mpt->ioc_facts.NumberOfPorts * sizeof (MSG_PORT_FACTS_REPLY);
2729 mpt->port_facts = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2730 if (mpt->port_facts == NULL) {
2731 mpt_prt(mpt, "unable to allocate memory for port facts\n");
2732 return (ENOMEM);
2733 }
2734
2735
2736 if ((mpt->ioc_facts.Flags & MPI_IOCFACTS_FLAGS_FW_DOWNLOAD_BOOT) &&
2737 (mpt->fw_uploaded == 0)) {
2738 struct mpt_map_info mi;
2739
2740 /*
2741 * In some configurations, the IOC's firmware is
2742 * stored in a shared piece of system NVRAM that
2743 * is only accessible via the BIOS. In this
2744 * case, the firmware keeps a copy of firmware in
2745 * RAM until the OS driver retrieves it. Once
2746 * retrieved, we are responsible for re-downloading
2747 * the firmware after any hard-reset.
2748 */
2749 mpt->fw_image_size = mpt->ioc_facts.FWImageSize;
2750 error = mpt_dma_tag_create(mpt, mpt->parent_dmat, 1, 0,
2751 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
2752 mpt->fw_image_size, 1, mpt->fw_image_size, 0,
2753 &mpt->fw_dmat);
2754 if (error != 0) {
2755 mpt_prt(mpt, "cannot create firmware dma tag\n");
2756 return (ENOMEM);
2757 }
2758 error = bus_dmamem_alloc(mpt->fw_dmat,
2759 (void **)&mpt->fw_image, BUS_DMA_NOWAIT |
2760 BUS_DMA_COHERENT, &mpt->fw_dmap);
2761 if (error != 0) {
2762 mpt_prt(mpt, "cannot allocate firmware memory\n");
2763 bus_dma_tag_destroy(mpt->fw_dmat);
2764 return (ENOMEM);
2765 }
2766 mi.mpt = mpt;
2767 mi.error = 0;
2768 bus_dmamap_load(mpt->fw_dmat, mpt->fw_dmap,
2769 mpt->fw_image, mpt->fw_image_size, mpt_map_rquest, &mi, 0);
2770 mpt->fw_phys = mi.phys;
2771
2772 error = mpt_upload_fw(mpt);
2773 if (error != 0) {
2774 mpt_prt(mpt, "firmware upload failed.\n");
2775 bus_dmamap_unload(mpt->fw_dmat, mpt->fw_dmap);
2776 bus_dmamem_free(mpt->fw_dmat, mpt->fw_image,
2777 mpt->fw_dmap);
2778 bus_dma_tag_destroy(mpt->fw_dmat);
2779 mpt->fw_image = NULL;
2780 return (EIO);
2781 }
2782 mpt->fw_uploaded = 1;
2783 }
2784
2785 for (port = 0; port < mpt->ioc_facts.NumberOfPorts; port++) {
2786 pfp = &mpt->port_facts[port];
2787 error = mpt_get_portfacts(mpt, 0, pfp);
2788 if (error != MPT_OK) {
2789 mpt_prt(mpt,
2790 "mpt_get_portfacts on port %d failed\n", port);
2791 free(mpt->port_facts, M_DEVBUF);
2792 mpt->port_facts = NULL;
2793 return (mpt_configure_ioc(mpt, tn++, 1));
2794 }
2795 mpt2host_portfacts_reply(pfp);
2796
2797 if (port > 0) {
2798 error = MPT_PRT_INFO;
2799 } else {
2800 error = MPT_PRT_DEBUG;
2801 }
2802 mpt_lprt(mpt, error,
2803 "PORTFACTS[%d]: Type %x PFlags %x IID %d MaxDev %d\n",
2804 port, pfp->PortType, pfp->ProtocolFlags, pfp->PortSCSIID,
2805 pfp->MaxDevices);
2806
2807 }
2808
2809 /*
2810 * XXX: Not yet supporting more than port 0
2811 */
2812 pfp = &mpt->port_facts[0];
2813 if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_FC) {
2814 mpt->is_fc = 1;
2815 mpt->is_sas = 0;
2816 mpt->is_spi = 0;
2817 } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SAS) {
2818 mpt->is_fc = 0;
2819 mpt->is_sas = 1;
2820 mpt->is_spi = 0;
2821 } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SCSI) {
2822 mpt->is_fc = 0;
2823 mpt->is_sas = 0;
2824 mpt->is_spi = 1;
2825 if (mpt->mpt_ini_id == MPT_INI_ID_NONE)
2826 mpt->mpt_ini_id = pfp->PortSCSIID;
2827 } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_ISCSI) {
2828 mpt_prt(mpt, "iSCSI not supported yet\n");
2829 return (ENXIO);
2830 } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_INACTIVE) {
2831 mpt_prt(mpt, "Inactive Port\n");
2832 return (ENXIO);
2833 } else {
2834 mpt_prt(mpt, "unknown Port Type %#x\n", pfp->PortType);
2835 return (ENXIO);
2836 }
2837
2838 /*
2839 * Set our role with what this port supports.
2840 *
2841 * Note this might be changed later in different modules
2842 * if this is different from what is wanted.
2843 */
2844 mpt->role = MPT_ROLE_NONE;
2845 if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_INITIATOR) {
2846 mpt->role |= MPT_ROLE_INITIATOR;
2847 }
2848 if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_TARGET) {
2849 mpt->role |= MPT_ROLE_TARGET;
2850 }
2851
2852 /*
2853 * Enable the IOC
2854 */
2855 if (mpt_enable_ioc(mpt, 1) != MPT_OK) {
2856 mpt_prt(mpt, "unable to initialize IOC\n");
2857 return (ENXIO);
2858 }
2859
2860 /*
2861 * Read IOC configuration information.
2862 *
2863 * We need this to determine whether or not we have certain
2864 * settings for Integrated Mirroring (e.g.).
2865 */
2866 mpt_read_config_info_ioc(mpt);
2867
2868 return (0);
2869}
2870
2871static int
2872mpt_enable_ioc(struct mpt_softc *mpt, int portenable)
2873{
2874 uint32_t pptr;
2875 int val;
2876
2877 if (mpt_send_ioc_init(mpt, MPI_WHOINIT_HOST_DRIVER) != MPT_OK) {
2878 mpt_prt(mpt, "mpt_send_ioc_init failed\n");
2879 return (EIO);
2880 }
2881
2882 mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_send_ioc_init ok\n");
2883
2884 if (mpt_wait_state(mpt, MPT_DB_STATE_RUNNING) != MPT_OK) {
2885 mpt_prt(mpt, "IOC failed to go to run state\n");
2886 return (ENXIO);
2887 }
2888 mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC now at RUNSTATE\n");
2889
2890 /*
2891 * Give it reply buffers
2892 *
2893 * Do *not* exceed global credits.
2894 */
2895 for (val = 0, pptr = mpt->reply_phys;
2896 (pptr + MPT_REPLY_SIZE) < (mpt->reply_phys + PAGE_SIZE);
2897 pptr += MPT_REPLY_SIZE) {
2898 mpt_free_reply(mpt, pptr);
2899 if (++val == mpt->ioc_facts.GlobalCredits - 1)
2900 break;
2901 }
2902
2903
2904 /*
2905 * Enable the port if asked. This is only done if we're resetting
2906 * the IOC after initial startup.
2907 */
2908 if (portenable) {
2909 /*
2910 * Enable asynchronous event reporting
2911 */
2912 mpt_send_event_request(mpt, 1);
2913
2914 if (mpt_send_port_enable(mpt, 0) != MPT_OK) {
2915 mpt_prt(mpt, "%s: failed to enable port 0\n", __func__);
2916 return (ENXIO);
2917 }
2918 }
2919 return (MPT_OK);
2920}
2921
2922/*
2923 * Endian Conversion Functions- only used on Big Endian machines
2924 */
2925#if _BYTE_ORDER == _BIG_ENDIAN
2926void
2927mpt2host_sge_simple_union(SGE_SIMPLE_UNION *sge)
2928{
2929
2930 MPT_2_HOST32(sge, FlagsLength);
2931 MPT_2_HOST32(sge, u.Address64.Low);
2932 MPT_2_HOST32(sge, u.Address64.High);
2933}
2934
2935void
2936mpt2host_iocfacts_reply(MSG_IOC_FACTS_REPLY *rp)
2937{
2938
2939 MPT_2_HOST16(rp, MsgVersion);
2940 MPT_2_HOST16(rp, HeaderVersion);
2941 MPT_2_HOST32(rp, MsgContext);
2942 MPT_2_HOST16(rp, IOCExceptions);
2943 MPT_2_HOST16(rp, IOCStatus);
2944 MPT_2_HOST32(rp, IOCLogInfo);
2945 MPT_2_HOST16(rp, ReplyQueueDepth);
2946 MPT_2_HOST16(rp, RequestFrameSize);
2947 MPT_2_HOST16(rp, Reserved_0101_FWVersion);
2948 MPT_2_HOST16(rp, ProductID);
2949 MPT_2_HOST32(rp, CurrentHostMfaHighAddr);
2950 MPT_2_HOST16(rp, GlobalCredits);
2951 MPT_2_HOST32(rp, CurrentSenseBufferHighAddr);
2952 MPT_2_HOST16(rp, CurReplyFrameSize);
2953 MPT_2_HOST32(rp, FWImageSize);
2954 MPT_2_HOST32(rp, IOCCapabilities);
2955 MPT_2_HOST32(rp, FWVersion.Word);
2956 MPT_2_HOST16(rp, HighPriorityQueueDepth);
2957 MPT_2_HOST16(rp, Reserved2);
2958 mpt2host_sge_simple_union(&rp->HostPageBufferSGE);
2959 MPT_2_HOST32(rp, ReplyFifoHostSignalingAddr);
2960}
2961
2962void
2963mpt2host_portfacts_reply(MSG_PORT_FACTS_REPLY *pfp)
2964{
2965
2966 MPT_2_HOST16(pfp, Reserved);
2967 MPT_2_HOST16(pfp, Reserved1);
2968 MPT_2_HOST32(pfp, MsgContext);
2969 MPT_2_HOST16(pfp, Reserved2);
2970 MPT_2_HOST16(pfp, IOCStatus);
2971 MPT_2_HOST32(pfp, IOCLogInfo);
2972 MPT_2_HOST16(pfp, MaxDevices);
2973 MPT_2_HOST16(pfp, PortSCSIID);
2974 MPT_2_HOST16(pfp, ProtocolFlags);
2975 MPT_2_HOST16(pfp, MaxPostedCmdBuffers);
2976 MPT_2_HOST16(pfp, MaxPersistentIDs);
2977 MPT_2_HOST16(pfp, MaxLanBuckets);
2978 MPT_2_HOST16(pfp, Reserved4);
2979 MPT_2_HOST32(pfp, Reserved5);
2980}
2981
2982void
2983mpt2host_config_page_ioc2(CONFIG_PAGE_IOC_2 *ioc2)
2984{
2985 int i;
2986
2987 MPT_2_HOST32(ioc2, CapabilitiesFlags);
2988 for (i = 0; i < MPI_IOC_PAGE_2_RAID_VOLUME_MAX; i++) {
2989 MPT_2_HOST16(ioc2, RaidVolume[i].Reserved3);
2990 }
2991}
2992
2993void
2994mpt2host_config_page_ioc3(CONFIG_PAGE_IOC_3 *ioc3)
2995{
2996
2997 MPT_2_HOST16(ioc3, Reserved2);
2998}
2999
3000void
3001mpt2host_config_page_scsi_port_0(CONFIG_PAGE_SCSI_PORT_0 *sp0)
3002{
3003
3004 MPT_2_HOST32(sp0, Capabilities);
3005 MPT_2_HOST32(sp0, PhysicalInterface);
3006}
3007
3008void
3009mpt2host_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1)
3010{
3011
3012 MPT_2_HOST32(sp1, Configuration);
3013 MPT_2_HOST32(sp1, OnBusTimerValue);
3014 MPT_2_HOST16(sp1, IDConfig);
3015}
3016
3017void
3018host2mpt_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1)
3019{
3020
3021 HOST_2_MPT32(sp1, Configuration);
3022 HOST_2_MPT32(sp1, OnBusTimerValue);
3023 HOST_2_MPT16(sp1, IDConfig);
3024}
3025
3026void
3027mpt2host_config_page_scsi_port_2(CONFIG_PAGE_SCSI_PORT_2 *sp2)
3028{
3029 int i;
3030
3031 MPT_2_HOST32(sp2, PortFlags);
3032 MPT_2_HOST32(sp2, PortSettings);
3033 for (i = 0; i < sizeof(sp2->DeviceSettings) /
3034 sizeof(*sp2->DeviceSettings); i++) {
3035 MPT_2_HOST16(sp2, DeviceSettings[i].DeviceFlags);
3036 }
3037}
3038
3039void
3040mpt2host_config_page_scsi_device_0(CONFIG_PAGE_SCSI_DEVICE_0 *sd0)
3041{
3042
3043 MPT_2_HOST32(sd0, NegotiatedParameters);
3044 MPT_2_HOST32(sd0, Information);
3045}
3046
3047void
3048mpt2host_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1)
3049{
3050
3051 MPT_2_HOST32(sd1, RequestedParameters);
3052 MPT_2_HOST32(sd1, Reserved);
3053 MPT_2_HOST32(sd1, Configuration);
3054}
3055
3056void
3057host2mpt_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1)
3058{
3059
3060 HOST_2_MPT32(sd1, RequestedParameters);
3061 HOST_2_MPT32(sd1, Reserved);
3062 HOST_2_MPT32(sd1, Configuration);
3063}
3064
3065void
3066mpt2host_config_page_fc_port_0(CONFIG_PAGE_FC_PORT_0 *fp0)
3067{
3068
3069 MPT_2_HOST32(fp0, Flags);
3070 MPT_2_HOST32(fp0, PortIdentifier);
3071 MPT_2_HOST32(fp0, WWNN.Low);
3072 MPT_2_HOST32(fp0, WWNN.High);
3073 MPT_2_HOST32(fp0, WWPN.Low);
3074 MPT_2_HOST32(fp0, WWPN.High);
3075 MPT_2_HOST32(fp0, SupportedServiceClass);
3076 MPT_2_HOST32(fp0, SupportedSpeeds);
3077 MPT_2_HOST32(fp0, CurrentSpeed);
3078 MPT_2_HOST32(fp0, MaxFrameSize);
3079 MPT_2_HOST32(fp0, FabricWWNN.Low);
3080 MPT_2_HOST32(fp0, FabricWWNN.High);
3081 MPT_2_HOST32(fp0, FabricWWPN.Low);
3082 MPT_2_HOST32(fp0, FabricWWPN.High);
3083 MPT_2_HOST32(fp0, DiscoveredPortsCount);
3084 MPT_2_HOST32(fp0, MaxInitiators);
3085}
3086
3087void
3088mpt2host_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1)
3089{
3090
3091 MPT_2_HOST32(fp1, Flags);
3092 MPT_2_HOST32(fp1, NoSEEPROMWWNN.Low);
3093 MPT_2_HOST32(fp1, NoSEEPROMWWNN.High);
3094 MPT_2_HOST32(fp1, NoSEEPROMWWPN.Low);
3095 MPT_2_HOST32(fp1, NoSEEPROMWWPN.High);
3096}
3097
3098void
3099host2mpt_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1)
3100{
3101
3102 HOST_2_MPT32(fp1, Flags);
3103 HOST_2_MPT32(fp1, NoSEEPROMWWNN.Low);
3104 HOST_2_MPT32(fp1, NoSEEPROMWWNN.High);
3105 HOST_2_MPT32(fp1, NoSEEPROMWWPN.Low);
3106 HOST_2_MPT32(fp1, NoSEEPROMWWPN.High);
3107}
3108
3109void
3110mpt2host_config_page_raid_vol_0(CONFIG_PAGE_RAID_VOL_0 *volp)
3111{
3112 int i;
3113
3114 MPT_2_HOST16(volp, VolumeStatus.Reserved);
3115 MPT_2_HOST16(volp, VolumeSettings.Settings);
3116 MPT_2_HOST32(volp, MaxLBA);
3117 MPT_2_HOST32(volp, MaxLBAHigh);
3118 MPT_2_HOST32(volp, StripeSize);
3119 MPT_2_HOST32(volp, Reserved2);
3120 MPT_2_HOST32(volp, Reserved3);
3121 for (i = 0; i < MPI_RAID_VOL_PAGE_0_PHYSDISK_MAX; i++) {
3122 MPT_2_HOST16(volp, PhysDisk[i].Reserved);
3123 }
3124}
3125
3126void
3127mpt2host_config_page_raid_phys_disk_0(CONFIG_PAGE_RAID_PHYS_DISK_0 *rpd0)
3128{
3129
3130 MPT_2_HOST32(rpd0, Reserved1);
3131 MPT_2_HOST16(rpd0, PhysDiskStatus.Reserved);
3132 MPT_2_HOST32(rpd0, MaxLBA);
3133 MPT_2_HOST16(rpd0, ErrorData.Reserved);
3134 MPT_2_HOST16(rpd0, ErrorData.ErrorCount);
3135 MPT_2_HOST16(rpd0, ErrorData.SmartCount);
3136}
3137
3138void
3139mpt2host_mpi_raid_vol_indicator(MPI_RAID_VOL_INDICATOR *vi)
3140{
3141
3142 MPT_2_HOST16(vi, TotalBlocks.High);
3143 MPT_2_HOST16(vi, TotalBlocks.Low);
3144 MPT_2_HOST16(vi, BlocksRemaining.High);
3145 MPT_2_HOST16(vi, BlocksRemaining.Low);
3146}
3147#endif