Deleted Added
sdiff udiff text old ( 50808 ) new ( 50852 )
full compact
1/*
2 * Copyright (c) 1995, David Greenman
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice unmodified, this list of conditions, and the following
10 * disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 *
27 * $FreeBSD: head/sys/dev/ed/if_ed.c 50808 1999-09-02 15:06:23Z kato $
28 */
29
30/*
31 * Device driver for National Semiconductor DS8390/WD83C690 based ethernet
32 * adapters. By David Greenman, 29-April-1993
33 *
34 * Currently supports the Western Digital/SMC 8003 and 8013 series,
35 * the SMC Elite Ultra (8216), the 3Com 3c503, the NE1000 and NE2000,
36 * and a variety of similar clones.
37 *
38 */
39
40#include "ed.h"
41#include "bpf.h"
42#include "pnp.h"
43
44#ifndef EXTRA_ED
45# if NPNP > 0
46# define EXTRA_ED 8
47# else
48# define EXTRA_ED 0
49# endif
50#endif
51
52#define NEDTOT (NED + EXTRA_ED)
53
54#include <sys/param.h>
55#include <sys/systm.h>
56#include <sys/sockio.h>
57#include <sys/malloc.h>
58#include <sys/mbuf.h>
59#include <sys/socket.h>
60#include <sys/syslog.h>
61
62#include <net/ethernet.h>
63#include <net/if.h>
64#include <net/if_arp.h>
65#include <net/if_dl.h>
66#include <net/if_mib.h>
67
68#if NBPF > 0
69#include <net/bpf.h>
70#endif
71#include "opt_bdg.h"
72#ifdef BRIDGE
73#include <net/bridge.h>
74#endif
75
76#include <machine/clock.h>
77#include <machine/md_var.h>
78
79#include <i386/isa/isa_device.h>
80#include <i386/isa/icu.h>
81#include <i386/isa/if_edreg.h>
82
83#if NPNP > 0
84#include <i386/isa/pnp.h>
85#endif
86
87/*
88 * ed_softc: per line info and status
89 */
90struct ed_softc {
91 struct arpcom arpcom; /* ethernet common */
92
93 char *type_str; /* pointer to type string */
94 u_char vendor; /* interface vendor */
95 u_char type; /* interface type code */
96 u_char gone; /* HW missing, presumed having a good time */
97
98 u_short asic_addr; /* ASIC I/O bus address */
99 u_short nic_addr; /* NIC (DS8390) I/O bus address */
100
101/*
102 * The following 'proto' variable is part of a work-around for 8013EBT asics
103 * being write-only. It's sort of a prototype/shadow of the real thing.
104 */
105 u_char wd_laar_proto;
106 u_char cr_proto;
107 u_char isa16bit; /* width of access to card 0=8 or 1=16 */
108 int is790; /* set by the probe code if the card is 790
109 * based */
110
111/*
112 * HP PC LAN PLUS card support.
113 */
114
115 u_short hpp_options; /* flags controlling behaviour of the HP card */
116 u_short hpp_id; /* software revision and other fields */
117 caddr_t hpp_mem_start; /* Memory-mapped IO register address */
118
119 caddr_t mem_start; /* NIC memory start address */
120 caddr_t mem_end; /* NIC memory end address */
121 u_long mem_size; /* total NIC memory size */
122 caddr_t mem_ring; /* start of RX ring-buffer (in NIC mem) */
123
124 u_char mem_shared; /* NIC memory is shared with host */
125 u_char xmit_busy; /* transmitter is busy */
126 u_char txb_cnt; /* number of transmit buffers */
127 u_char txb_inuse; /* number of TX buffers currently in-use */
128
129 u_char txb_new; /* pointer to where new buffer will be added */
130 u_char txb_next_tx; /* pointer to next buffer ready to xmit */
131 u_short txb_len[8]; /* buffered xmit buffer lengths */
132 u_char tx_page_start; /* first page of TX buffer area */
133 u_char rec_page_start; /* first page of RX ring-buffer */
134 u_char rec_page_stop; /* last page of RX ring-buffer */
135 u_char next_packet; /* pointer to next unread RX packet */
136 struct ifmib_iso_8802_3 mibdata; /* stuff for network mgmt */
137};
138
139static struct ed_softc ed_softc[NEDTOT];
140
141static int ed_attach __P((struct ed_softc *, int, int));
142static int ed_attach_isa __P((struct isa_device *));
143
144static void ed_init __P((void *));
145static ointhand2_t edintr;
146static int ed_ioctl __P((struct ifnet *, u_long, caddr_t));
147static int ed_probe __P((struct isa_device *));
148static void ed_start __P((struct ifnet *));
149static void ed_reset __P((struct ifnet *));
150static void ed_watchdog __P((struct ifnet *));
151
152static void ed_stop __P((struct ed_softc *));
153static int ed_probe_generic8390 __P((struct ed_softc *));
154static int ed_probe_WD80x3 __P((struct isa_device *));
155static int ed_probe_3Com __P((struct isa_device *));
156static int ed_probe_Novell __P((struct isa_device *));
157static int ed_probe_Novell_generic __P((struct ed_softc *, int, int, int));
158static int ed_probe_HP_pclanp __P((struct isa_device *));
159
160#include "pci.h"
161#if NPCI > 0
162void *ed_attach_NE2000_pci __P((int, int));
163#endif
164
165#include "card.h"
166#if NCARD > 0
167static int ed_probe_pccard __P((struct isa_device *, u_char *));
168#endif
169
170static void ds_getmcaf __P((struct ed_softc *, u_long *));
171
172static void ed_get_packet __P((struct ed_softc *, char *, /* u_short */ int, int));
173
174static __inline void ed_rint __P((struct ed_softc *));
175static __inline void ed_xmit __P((struct ed_softc *));
176static __inline char * ed_ring_copy __P((struct ed_softc *, char *, char *,
177 /* u_short */ int));
178static void ed_hpp_set_physical_link __P((struct ed_softc *));
179static void ed_hpp_readmem __P((struct ed_softc *, int, unsigned char *,
180 /* u_short */ int));
181static u_short ed_hpp_write_mbufs __P((struct ed_softc *, struct mbuf *,
182 int));
183
184static void ed_pio_readmem __P((struct ed_softc *, int, unsigned char *,
185 /* u_short */ int));
186static void ed_pio_writemem __P((struct ed_softc *, char *,
187 /* u_short */ int, /* u_short */ int));
188static u_short ed_pio_write_mbufs __P((struct ed_softc *, struct mbuf *,
189 int));
190void edintr_sc __P((struct ed_softc *));
191
192static void ed_setrcr __P((struct ed_softc *));
193
194static u_long ds_crc __P((u_char *ep));
195
196#if (NCARD > 0) || (NPNP > 0)
197#include <sys/kernel.h>
198#endif
199#if NCARD > 0
200#include <sys/select.h>
201#include <sys/module.h>
202#include <pccard/cardinfo.h>
203#include <pccard/slot.h>
204
205/*
206 * PC-Card (PCMCIA) specific code.
207 */
208static int edinit __P((struct pccard_devinfo *));
209static void edunload __P((struct pccard_devinfo *));
210static int card_intr __P((struct pccard_devinfo *));
211
212PCCARD_MODULE(ed, edinit, edunload, card_intr, 0, net_imask);
213
214/*
215 * Initialize the device - called from Slot manager.
216 */
217static int
218edinit(struct pccard_devinfo *devi)
219{
220 int i;
221 u_char e;
222 struct ed_softc *sc = &ed_softc[devi->isahd.id_unit];
223
224 /* validate unit number. */
225 if (devi->isahd.id_unit >= NEDTOT)
226 return(ENODEV);
227 /*
228 * Probe the device. If a value is returned, the
229 * device was found at the location.
230 */
231 sc->gone = 0;
232 if (ed_probe_pccard(&devi->isahd, devi->misc) == 0)
233 return(ENXIO);
234 e = 0;
235 for (i = 0; i < ETHER_ADDR_LEN; ++i)
236 e |= devi->misc[i];
237 if (e)
238 for (i = 0; i < ETHER_ADDR_LEN; ++i)
239 sc->arpcom.ac_enaddr[i] = devi->misc[i];
240 if (ed_attach_isa(&devi->isahd) == 0)
241 return(ENXIO);
242
243 return(0);
244}
245
246/*
247 * edunload - unload the driver and clear the table.
248 * XXX TODO:
249 * This is usually called when the card is ejected, but
250 * can be caused by a modunload of a controller driver.
251 * The idea is to reset the driver's view of the device
252 * and ensure that any driver entry points such as
253 * read and write do not hang.
254 */
255static void
256edunload(struct pccard_devinfo *devi)
257{
258 struct ed_softc *sc = &ed_softc[devi->isahd.id_unit];
259 struct ifnet *ifp = &sc->arpcom.ac_if;
260
261 if (sc->gone) {
262 printf("ed%d: already unloaded\n", devi->isahd.id_unit);
263 return;
264 }
265 ifp->if_flags &= ~IFF_RUNNING;
266 if_down(ifp);
267 sc->gone = 1;
268 printf("ed%d: unload\n", devi->isahd.id_unit);
269}
270
271/*
272 * card_intr - Shared interrupt called from
273 * front end of PC-Card handler.
274 */
275static int
276card_intr(struct pccard_devinfo *devi)
277{
278 edintr_sc(&ed_softc[devi->isahd.id_unit]);
279 return(1);
280}
281#endif /* NCARD > 0 */
282
283struct isa_driver eddriver = {
284 ed_probe,
285 ed_attach_isa,
286 "ed",
287 1 /* We are ultra sensitive */
288};
289
290/*
291 * Interrupt conversion table for WD/SMC ASIC/83C584
292 * (IRQ* are defined in icu.h)
293 */
294static unsigned short ed_intr_mask[] = {
295 IRQ9,
296 IRQ3,
297 IRQ5,
298 IRQ7,
299 IRQ10,
300 IRQ11,
301 IRQ15,
302 IRQ4
303};
304
305/*
306 * Interrupt conversion table for 83C790
307 */
308static unsigned short ed_790_intr_mask[] = {
309 0,
310 IRQ9,
311 IRQ3,
312 IRQ5,
313 IRQ7,
314 IRQ10,
315 IRQ11,
316 IRQ15
317};
318
319/*
320 * Interrupt conversion table for the HP PC LAN+
321 */
322
323static unsigned short ed_hpp_intr_mask[] = {
324 0, /* 0 */
325 0, /* 1 */
326 0, /* 2 */
327 IRQ3, /* 3 */
328 IRQ4, /* 4 */
329 IRQ5, /* 5 */
330 IRQ6, /* 6 */
331 IRQ7, /* 7 */
332 0, /* 8 */
333 IRQ9, /* 9 */
334 IRQ10, /* 10 */
335 IRQ11, /* 11 */
336 IRQ12, /* 12 */
337 0, /* 13 */
338 0, /* 14 */
339 IRQ15 /* 15 */
340};
341
342/*
343 * Determine if the device is present
344 *
345 * on entry:
346 * a pointer to an isa_device struct
347 * on exit:
348 * NULL if device not found
349 * or # of i/o addresses used (if found)
350 */
351static int
352ed_probe(isa_dev)
353 struct isa_device *isa_dev;
354{
355 int nports;
356
357 nports = ed_probe_WD80x3(isa_dev);
358 if (nports)
359 return (nports);
360
361 nports = ed_probe_3Com(isa_dev);
362 if (nports)
363 return (nports);
364
365 nports = ed_probe_Novell(isa_dev);
366 if (nports)
367 return (nports);
368
369 nports = ed_probe_HP_pclanp(isa_dev);
370 if (nports)
371 return (nports);
372
373 return (0);
374}
375
376/*
377 * Generic probe routine for testing for the existance of a DS8390.
378 * Must be called after the NIC has just been reset. This routine
379 * works by looking at certain register values that are guaranteed
380 * to be initialized a certain way after power-up or reset. Seems
381 * not to currently work on the 83C690.
382 *
383 * Specifically:
384 *
385 * Register reset bits set bits
386 * Command Register (CR) TXP, STA RD2, STP
387 * Interrupt Status (ISR) RST
388 * Interrupt Mask (IMR) All bits
389 * Data Control (DCR) LAS
390 * Transmit Config. (TCR) LB1, LB0
391 *
392 * We only look at the CR and ISR registers, however, because looking at
393 * the others would require changing register pages (which would be
394 * intrusive if this isn't an 8390).
395 *
396 * Return 1 if 8390 was found, 0 if not.
397 */
398
399static int
400ed_probe_generic8390(sc)
401 struct ed_softc *sc;
402{
403 if ((inb(sc->nic_addr + ED_P0_CR) &
404 (ED_CR_RD2 | ED_CR_TXP | ED_CR_STA | ED_CR_STP)) !=
405 (ED_CR_RD2 | ED_CR_STP))
406 return (0);
407 if ((inb(sc->nic_addr + ED_P0_ISR) & ED_ISR_RST) != ED_ISR_RST)
408 return (0);
409
410 return (1);
411}
412
413/*
414 * Probe and vendor-specific initialization routine for SMC/WD80x3 boards
415 */
416static int
417ed_probe_WD80x3(isa_dev)
418 struct isa_device *isa_dev;
419{
420 struct ed_softc *sc = &ed_softc[isa_dev->id_unit];
421 int i;
422 u_int memsize, maddr;
423 u_char iptr, isa16bit, sum;
424
425 sc->asic_addr = isa_dev->id_iobase;
426 sc->nic_addr = sc->asic_addr + ED_WD_NIC_OFFSET;
427 sc->is790 = 0;
428
429#ifdef TOSH_ETHER
430 outb(sc->asic_addr + ED_WD_MSR, ED_WD_MSR_POW);
431 DELAY(10000);
432#endif
433
434 /*
435 * Attempt to do a checksum over the station address PROM. If it
436 * fails, it's probably not a SMC/WD board. There is a problem with
437 * this, though: some clone WD boards don't pass the checksum test.
438 * Danpex boards for one.
439 */
440 for (sum = 0, i = 0; i < 8; ++i)
441 sum += inb(sc->asic_addr + ED_WD_PROM + i);
442
443 if (sum != ED_WD_ROM_CHECKSUM_TOTAL) {
444
445 /*
446 * Checksum is invalid. This often happens with cheap WD8003E
447 * clones. In this case, the checksum byte (the eighth byte)
448 * seems to always be zero.
449 */
450 if (inb(sc->asic_addr + ED_WD_CARD_ID) != ED_TYPE_WD8003E ||
451 inb(sc->asic_addr + ED_WD_PROM + 7) != 0)
452 return (0);
453 }
454 /* reset card to force it into a known state. */
455#ifdef TOSH_ETHER
456 outb(sc->asic_addr + ED_WD_MSR, ED_WD_MSR_RST | ED_WD_MSR_POW);
457#else
458 outb(sc->asic_addr + ED_WD_MSR, ED_WD_MSR_RST);
459#endif
460 DELAY(100);
461 outb(sc->asic_addr + ED_WD_MSR, inb(sc->asic_addr + ED_WD_MSR) & ~ED_WD_MSR_RST);
462 /* wait in the case this card is reading its EEROM */
463 DELAY(5000);
464
465 sc->vendor = ED_VENDOR_WD_SMC;
466 sc->type = inb(sc->asic_addr + ED_WD_CARD_ID);
467
468 /*
469 * Set initial values for width/size.
470 */
471 memsize = 8192;
472 isa16bit = 0;
473 switch (sc->type) {
474 case ED_TYPE_WD8003S:
475 sc->type_str = "WD8003S";
476 break;
477 case ED_TYPE_WD8003E:
478 sc->type_str = "WD8003E";
479 break;
480 case ED_TYPE_WD8003EB:
481 sc->type_str = "WD8003EB";
482 break;
483 case ED_TYPE_WD8003W:
484 sc->type_str = "WD8003W";
485 break;
486 case ED_TYPE_WD8013EBT:
487 sc->type_str = "WD8013EBT";
488 memsize = 16384;
489 isa16bit = 1;
490 break;
491 case ED_TYPE_WD8013W:
492 sc->type_str = "WD8013W";
493 memsize = 16384;
494 isa16bit = 1;
495 break;
496 case ED_TYPE_WD8013EP: /* also WD8003EP */
497 if (inb(sc->asic_addr + ED_WD_ICR)
498 & ED_WD_ICR_16BIT) {
499 isa16bit = 1;
500 memsize = 16384;
501 sc->type_str = "WD8013EP";
502 } else {
503 sc->type_str = "WD8003EP";
504 }
505 break;
506 case ED_TYPE_WD8013WC:
507 sc->type_str = "WD8013WC";
508 memsize = 16384;
509 isa16bit = 1;
510 break;
511 case ED_TYPE_WD8013EBP:
512 sc->type_str = "WD8013EBP";
513 memsize = 16384;
514 isa16bit = 1;
515 break;
516 case ED_TYPE_WD8013EPC:
517 sc->type_str = "WD8013EPC";
518 memsize = 16384;
519 isa16bit = 1;
520 break;
521 case ED_TYPE_SMC8216C: /* 8216 has 16K shared mem -- 8416 has 8K */
522 case ED_TYPE_SMC8216T:
523 if (sc->type == ED_TYPE_SMC8216C) {
524 sc->type_str = "SMC8216/SMC8216C";
525 } else {
526 sc->type_str = "SMC8216T";
527 }
528
529 outb(sc->asic_addr + ED_WD790_HWR,
530 inb(sc->asic_addr + ED_WD790_HWR) | ED_WD790_HWR_SWH);
531 switch (inb(sc->asic_addr + ED_WD790_RAR) & ED_WD790_RAR_SZ64) {
532 case ED_WD790_RAR_SZ64:
533 memsize = 65536;
534 break;
535 case ED_WD790_RAR_SZ32:
536 memsize = 32768;
537 break;
538 case ED_WD790_RAR_SZ16:
539 memsize = 16384;
540 break;
541 case ED_WD790_RAR_SZ8:
542 /* 8216 has 16K shared mem -- 8416 has 8K */
543 if (sc->type == ED_TYPE_SMC8216C) {
544 sc->type_str = "SMC8416C/SMC8416BT";
545 } else {
546 sc->type_str = "SMC8416T";
547 }
548 memsize = 8192;
549 break;
550 }
551 outb(sc->asic_addr + ED_WD790_HWR,
552 inb(sc->asic_addr + ED_WD790_HWR) & ~ED_WD790_HWR_SWH);
553
554 isa16bit = 1;
555 sc->is790 = 1;
556 break;
557#ifdef TOSH_ETHER
558 case ED_TYPE_TOSHIBA1:
559 sc->type_str = "Toshiba1";
560 memsize = 32768;
561 isa16bit = 1;
562 break;
563 case ED_TYPE_TOSHIBA4:
564 sc->type_str = "Toshiba4";
565 memsize = 32768;
566 isa16bit = 1;
567 break;
568#endif
569 default:
570 sc->type_str = "";
571 break;
572 }
573
574 /*
575 * Make some adjustments to initial values depending on what is found
576 * in the ICR.
577 */
578 if (isa16bit && (sc->type != ED_TYPE_WD8013EBT)
579#ifdef TOSH_ETHER
580 && (sc->type != ED_TYPE_TOSHIBA1) && (sc->type != ED_TYPE_TOSHIBA4)
581#endif
582 && ((inb(sc->asic_addr + ED_WD_ICR) & ED_WD_ICR_16BIT) == 0)) {
583 isa16bit = 0;
584 memsize = 8192;
585 }
586
587#if ED_DEBUG
588 printf("type = %x type_str=%s isa16bit=%d memsize=%d id_msize=%d\n",
589 sc->type, sc->type_str, isa16bit, memsize, isa_dev->id_msize);
590 for (i = 0; i < 8; i++)
591 printf("%x -> %x\n", i, inb(sc->asic_addr + i));
592#endif
593
594 /*
595 * Allow the user to override the autoconfiguration
596 */
597 if (isa_dev->id_msize)
598 memsize = isa_dev->id_msize;
599
600 maddr = (u_int) isa_dev->id_maddr & 0xffffff;
601 if (maddr < 0xa0000 || maddr + memsize > 0x1000000) {
602 printf("ed%d: Invalid ISA memory address range configured: 0x%x - 0x%x\n",
603 isa_dev->id_unit, maddr, maddr + memsize);
604 return 0;
605 }
606
607 /*
608 * (note that if the user specifies both of the following flags that
609 * '8bit' mode intentionally has precedence)
610 */
611 if (isa_dev->id_flags & ED_FLAGS_FORCE_16BIT_MODE)
612 isa16bit = 1;
613 if (isa_dev->id_flags & ED_FLAGS_FORCE_8BIT_MODE)
614 isa16bit = 0;
615
616 /*
617 * If possible, get the assigned interrupt number from the card and
618 * use it.
619 */
620 if ((sc->type & ED_WD_SOFTCONFIG) && (!sc->is790)) {
621
622 /*
623 * Assemble together the encoded interrupt number.
624 */
625 iptr = (inb(isa_dev->id_iobase + ED_WD_ICR) & ED_WD_ICR_IR2) |
626 ((inb(isa_dev->id_iobase + ED_WD_IRR) &
627 (ED_WD_IRR_IR0 | ED_WD_IRR_IR1)) >> 5);
628
629 /*
630 * If no interrupt specified (or "?"), use what the board tells us.
631 */
632 if (isa_dev->id_irq <= 0)
633 isa_dev->id_irq = ed_intr_mask[iptr];
634
635 /*
636 * Enable the interrupt.
637 */
638 outb(isa_dev->id_iobase + ED_WD_IRR,
639 inb(isa_dev->id_iobase + ED_WD_IRR) | ED_WD_IRR_IEN);
640 }
641 if (sc->is790) {
642 outb(isa_dev->id_iobase + ED_WD790_HWR,
643 inb(isa_dev->id_iobase + ED_WD790_HWR) | ED_WD790_HWR_SWH);
644 iptr = (((inb(isa_dev->id_iobase + ED_WD790_GCR) & ED_WD790_GCR_IR2) >> 4) |
645 (inb(isa_dev->id_iobase + ED_WD790_GCR) &
646 (ED_WD790_GCR_IR1 | ED_WD790_GCR_IR0)) >> 2);
647 outb(isa_dev->id_iobase + ED_WD790_HWR,
648 inb(isa_dev->id_iobase + ED_WD790_HWR) & ~ED_WD790_HWR_SWH);
649
650 /*
651 * If no interrupt specified (or "?"), use what the board tells us.
652 */
653 if (isa_dev->id_irq <= 0)
654 isa_dev->id_irq = ed_790_intr_mask[iptr];
655
656 /*
657 * Enable interrupts.
658 */
659 outb(isa_dev->id_iobase + ED_WD790_ICR,
660 inb(isa_dev->id_iobase + ED_WD790_ICR) | ED_WD790_ICR_EIL);
661 }
662 if (isa_dev->id_irq <= 0) {
663 printf("ed%d: %s cards don't support auto-detected/assigned interrupts.\n",
664 isa_dev->id_unit, sc->type_str);
665 return (0);
666 }
667 sc->isa16bit = isa16bit;
668 sc->mem_shared = 1;
669 isa_dev->id_msize = memsize;
670 sc->mem_start = (caddr_t) isa_dev->id_maddr;
671
672 /*
673 * allocate one xmit buffer if < 16k, two buffers otherwise
674 */
675 if ((memsize < 16384) ||
676 (isa_dev->id_flags & ED_FLAGS_NO_MULTI_BUFFERING)) {
677 sc->txb_cnt = 1;
678 } else {
679 sc->txb_cnt = 2;
680 }
681 sc->tx_page_start = ED_WD_PAGE_OFFSET;
682 sc->rec_page_start = ED_WD_PAGE_OFFSET + ED_TXBUF_SIZE * sc->txb_cnt;
683 sc->rec_page_stop = ED_WD_PAGE_OFFSET + memsize / ED_PAGE_SIZE;
684 sc->mem_ring = sc->mem_start + (ED_PAGE_SIZE * sc->rec_page_start);
685 sc->mem_size = memsize;
686 sc->mem_end = sc->mem_start + memsize;
687
688 /*
689 * Get station address from on-board ROM
690 */
691 for (i = 0; i < ETHER_ADDR_LEN; ++i)
692 sc->arpcom.ac_enaddr[i] = inb(sc->asic_addr + ED_WD_PROM + i);
693
694 /*
695 * Set upper address bits and 8/16 bit access to shared memory.
696 */
697 if (isa16bit) {
698 if (sc->is790) {
699 sc->wd_laar_proto = inb(sc->asic_addr + ED_WD_LAAR);
700 } else {
701 sc->wd_laar_proto = ED_WD_LAAR_L16EN |
702 ((kvtop(sc->mem_start) >> 19) & ED_WD_LAAR_ADDRHI);
703 }
704 /*
705 * Enable 16bit access
706 */
707 outb(sc->asic_addr + ED_WD_LAAR, sc->wd_laar_proto |
708 ED_WD_LAAR_M16EN);
709 } else {
710 if (((sc->type & ED_WD_SOFTCONFIG) ||
711#ifdef TOSH_ETHER
712 (sc->type == ED_TYPE_TOSHIBA1) || (sc->type == ED_TYPE_TOSHIBA4) ||
713#endif
714 (sc->type == ED_TYPE_WD8013EBT)) && (!sc->is790)) {
715 sc->wd_laar_proto = (kvtop(sc->mem_start) >> 19) &
716 ED_WD_LAAR_ADDRHI;
717 outb(sc->asic_addr + ED_WD_LAAR, sc->wd_laar_proto);
718 }
719 }
720
721 /*
722 * Set address and enable interface shared memory.
723 */
724 if (!sc->is790) {
725#ifdef TOSH_ETHER
726 outb(sc->asic_addr + ED_WD_MSR + 1, ((kvtop(sc->mem_start) >> 8) & 0xe0) | 4);
727 outb(sc->asic_addr + ED_WD_MSR + 2, ((kvtop(sc->mem_start) >> 16) & 0x0f));
728 outb(sc->asic_addr + ED_WD_MSR, ED_WD_MSR_MENB | ED_WD_MSR_POW);
729
730#else
731 outb(sc->asic_addr + ED_WD_MSR, ((kvtop(sc->mem_start) >> 13) &
732 ED_WD_MSR_ADDR) | ED_WD_MSR_MENB);
733#endif
734 sc->cr_proto = ED_CR_RD2;
735 } else {
736 outb(sc->asic_addr + ED_WD_MSR, ED_WD_MSR_MENB);
737 outb(sc->asic_addr + ED_WD790_HWR, (inb(sc->asic_addr + ED_WD790_HWR) | ED_WD790_HWR_SWH));
738 outb(sc->asic_addr + ED_WD790_RAR, ((kvtop(sc->mem_start) >> 13) & 0x0f) |
739 ((kvtop(sc->mem_start) >> 11) & 0x40) |
740 (inb(sc->asic_addr + ED_WD790_RAR) & 0xb0));
741 outb(sc->asic_addr + ED_WD790_HWR, (inb(sc->asic_addr + ED_WD790_HWR) & ~ED_WD790_HWR_SWH));
742 sc->cr_proto = 0;
743 }
744
745#if 0
746 printf("starting memory performance test at 0x%x, size %d...\n",
747 sc->mem_start, memsize*16384);
748 for (i = 0; i < 16384; i++)
749 bzero(sc->mem_start, memsize);
750 printf("***DONE***\n");
751#endif
752
753 /*
754 * Now zero memory and verify that it is clear
755 */
756 bzero(sc->mem_start, memsize);
757
758 for (i = 0; i < memsize; ++i) {
759 if (sc->mem_start[i]) {
760 printf("ed%d: failed to clear shared memory at %lx - check configuration\n",
761 isa_dev->id_unit, kvtop(sc->mem_start + i));
762
763 /*
764 * Disable 16 bit access to shared memory
765 */
766 if (isa16bit) {
767 if (sc->is790) {
768 outb(sc->asic_addr + ED_WD_MSR, 0x00);
769 }
770 outb(sc->asic_addr + ED_WD_LAAR, sc->wd_laar_proto &
771 ~ED_WD_LAAR_M16EN);
772 }
773 return (0);
774 }
775 }
776
777 /*
778 * Disable 16bit access to shared memory - we leave it
779 * disabled so that 1) machines reboot properly when the board
780 * is set 16 bit mode and there are conflicting 8bit
781 * devices/ROMS in the same 128k address space as this boards
782 * shared memory. and 2) so that other 8 bit devices with
783 * shared memory can be used in this 128k region, too.
784 */
785 if (isa16bit) {
786 if (sc->is790) {
787 outb(sc->asic_addr + ED_WD_MSR, 0x00);
788 }
789 outb(sc->asic_addr + ED_WD_LAAR, sc->wd_laar_proto &
790 ~ED_WD_LAAR_M16EN);
791 }
792 return (ED_WD_IO_PORTS);
793}
794
795/*
796 * Probe and vendor-specific initialization routine for 3Com 3c503 boards
797 */
798static int
799ed_probe_3Com(isa_dev)
800 struct isa_device *isa_dev;
801{
802 struct ed_softc *sc = &ed_softc[isa_dev->id_unit];
803 int i;
804 u_int memsize;
805 u_char isa16bit;
806
807 sc->asic_addr = isa_dev->id_iobase + ED_3COM_ASIC_OFFSET;
808 sc->nic_addr = isa_dev->id_iobase + ED_3COM_NIC_OFFSET;
809
810 /*
811 * Verify that the kernel configured I/O address matches the board
812 * configured address
813 */
814 switch (inb(sc->asic_addr + ED_3COM_BCFR)) {
815 case ED_3COM_BCFR_300:
816 if (isa_dev->id_iobase != 0x300)
817 return (0);
818 break;
819 case ED_3COM_BCFR_310:
820 if (isa_dev->id_iobase != 0x310)
821 return (0);
822 break;
823 case ED_3COM_BCFR_330:
824 if (isa_dev->id_iobase != 0x330)
825 return (0);
826 break;
827 case ED_3COM_BCFR_350:
828 if (isa_dev->id_iobase != 0x350)
829 return (0);
830 break;
831 case ED_3COM_BCFR_250:
832 if (isa_dev->id_iobase != 0x250)
833 return (0);
834 break;
835 case ED_3COM_BCFR_280:
836 if (isa_dev->id_iobase != 0x280)
837 return (0);
838 break;
839 case ED_3COM_BCFR_2A0:
840 if (isa_dev->id_iobase != 0x2a0)
841 return (0);
842 break;
843 case ED_3COM_BCFR_2E0:
844 if (isa_dev->id_iobase != 0x2e0)
845 return (0);
846 break;
847 default:
848 return (0);
849 }
850
851 /*
852 * Verify that the kernel shared memory address matches the board
853 * configured address.
854 */
855 switch (inb(sc->asic_addr + ED_3COM_PCFR)) {
856 case ED_3COM_PCFR_DC000:
857 if (kvtop(isa_dev->id_maddr) != 0xdc000)
858 return (0);
859 break;
860 case ED_3COM_PCFR_D8000:
861 if (kvtop(isa_dev->id_maddr) != 0xd8000)
862 return (0);
863 break;
864 case ED_3COM_PCFR_CC000:
865 if (kvtop(isa_dev->id_maddr) != 0xcc000)
866 return (0);
867 break;
868 case ED_3COM_PCFR_C8000:
869 if (kvtop(isa_dev->id_maddr) != 0xc8000)
870 return (0);
871 break;
872 default:
873 return (0);
874 }
875
876
877 /*
878 * Reset NIC and ASIC. Enable on-board transceiver throughout reset
879 * sequence because it'll lock up if the cable isn't connected if we
880 * don't.
881 */
882 outb(sc->asic_addr + ED_3COM_CR, ED_3COM_CR_RST | ED_3COM_CR_XSEL);
883
884 /*
885 * Wait for a while, then un-reset it
886 */
887 DELAY(50);
888
889 /*
890 * The 3Com ASIC defaults to rather strange settings for the CR after
891 * a reset - it's important to set it again after the following outb
892 * (this is done when we map the PROM below).
893 */
894 outb(sc->asic_addr + ED_3COM_CR, ED_3COM_CR_XSEL);
895
896 /*
897 * Wait a bit for the NIC to recover from the reset
898 */
899 DELAY(5000);
900
901 sc->vendor = ED_VENDOR_3COM;
902 sc->type_str = "3c503";
903 sc->mem_shared = 1;
904 sc->cr_proto = ED_CR_RD2;
905
906 /*
907 * Hmmm...a 16bit 3Com board has 16k of memory, but only an 8k window
908 * to it.
909 */
910 memsize = 8192;
911
912 /*
913 * Get station address from on-board ROM
914 */
915
916 /*
917 * First, map ethernet address PROM over the top of where the NIC
918 * registers normally appear.
919 */
920 outb(sc->asic_addr + ED_3COM_CR, ED_3COM_CR_EALO | ED_3COM_CR_XSEL);
921
922 for (i = 0; i < ETHER_ADDR_LEN; ++i)
923 sc->arpcom.ac_enaddr[i] = inb(sc->nic_addr + i);
924
925 /*
926 * Unmap PROM - select NIC registers. The proper setting of the
927 * tranceiver is set in ed_init so that the attach code is given a
928 * chance to set the default based on a compile-time config option
929 */
930 outb(sc->asic_addr + ED_3COM_CR, ED_3COM_CR_XSEL);
931
932 /*
933 * Determine if this is an 8bit or 16bit board
934 */
935
936 /*
937 * select page 0 registers
938 */
939 outb(sc->nic_addr + ED_P0_CR, ED_CR_RD2 | ED_CR_STP);
940
941 /*
942 * Attempt to clear WTS bit. If it doesn't clear, then this is a 16bit
943 * board.
944 */
945 outb(sc->nic_addr + ED_P0_DCR, 0);
946
947 /*
948 * select page 2 registers
949 */
950 outb(sc->nic_addr + ED_P0_CR, ED_CR_PAGE_2 | ED_CR_RD2 | ED_CR_STP);
951
952 /*
953 * The 3c503 forces the WTS bit to a one if this is a 16bit board
954 */
955 if (inb(sc->nic_addr + ED_P2_DCR) & ED_DCR_WTS)
956 isa16bit = 1;
957 else
958 isa16bit = 0;
959
960 /*
961 * select page 0 registers
962 */
963 outb(sc->nic_addr + ED_P2_CR, ED_CR_RD2 | ED_CR_STP);
964
965 sc->mem_start = (caddr_t) isa_dev->id_maddr;
966 sc->mem_size = memsize;
967 sc->mem_end = sc->mem_start + memsize;
968
969 /*
970 * We have an entire 8k window to put the transmit buffers on the
971 * 16bit boards. But since the 16bit 3c503's shared memory is only
972 * fast enough to overlap the loading of one full-size packet, trying
973 * to load more than 2 buffers can actually leave the transmitter idle
974 * during the load. So 2 seems the best value. (Although a mix of
975 * variable-sized packets might change this assumption. Nonetheless,
976 * we optimize for linear transfers of same-size packets.)
977 */
978 if (isa16bit) {
979 if (isa_dev->id_flags & ED_FLAGS_NO_MULTI_BUFFERING)
980 sc->txb_cnt = 1;
981 else
982 sc->txb_cnt = 2;
983
984 sc->tx_page_start = ED_3COM_TX_PAGE_OFFSET_16BIT;
985 sc->rec_page_start = ED_3COM_RX_PAGE_OFFSET_16BIT;
986 sc->rec_page_stop = memsize / ED_PAGE_SIZE +
987 ED_3COM_RX_PAGE_OFFSET_16BIT;
988 sc->mem_ring = sc->mem_start;
989 } else {
990 sc->txb_cnt = 1;
991 sc->tx_page_start = ED_3COM_TX_PAGE_OFFSET_8BIT;
992 sc->rec_page_start = ED_TXBUF_SIZE + ED_3COM_TX_PAGE_OFFSET_8BIT;
993 sc->rec_page_stop = memsize / ED_PAGE_SIZE +
994 ED_3COM_TX_PAGE_OFFSET_8BIT;
995 sc->mem_ring = sc->mem_start + (ED_PAGE_SIZE * ED_TXBUF_SIZE);
996 }
997
998 sc->isa16bit = isa16bit;
999
1000 /*
1001 * Initialize GA page start/stop registers. Probably only needed if
1002 * doing DMA, but what the hell.
1003 */
1004 outb(sc->asic_addr + ED_3COM_PSTR, sc->rec_page_start);
1005 outb(sc->asic_addr + ED_3COM_PSPR, sc->rec_page_stop);
1006
1007 /*
1008 * Set IRQ. 3c503 only allows a choice of irq 2-5.
1009 */
1010 switch (isa_dev->id_irq) {
1011 case IRQ2:
1012 outb(sc->asic_addr + ED_3COM_IDCFR, ED_3COM_IDCFR_IRQ2);
1013 break;
1014 case IRQ3:
1015 outb(sc->asic_addr + ED_3COM_IDCFR, ED_3COM_IDCFR_IRQ3);
1016 break;
1017 case IRQ4:
1018 outb(sc->asic_addr + ED_3COM_IDCFR, ED_3COM_IDCFR_IRQ4);
1019 break;
1020 case IRQ5:
1021 outb(sc->asic_addr + ED_3COM_IDCFR, ED_3COM_IDCFR_IRQ5);
1022 break;
1023 default:
1024 printf("ed%d: Invalid irq configuration (%d) must be 3-5,9 for 3c503\n",
1025 isa_dev->id_unit, ffs(isa_dev->id_irq) - 1);
1026 return (0);
1027 }
1028
1029 /*
1030 * Initialize GA configuration register. Set bank and enable shared
1031 * mem.
1032 */
1033 outb(sc->asic_addr + ED_3COM_GACFR, ED_3COM_GACFR_RSEL |
1034 ED_3COM_GACFR_MBS0);
1035
1036 /*
1037 * Initialize "Vector Pointer" registers. These gawd-awful things are
1038 * compared to 20 bits of the address on ISA, and if they match, the
1039 * shared memory is disabled. We set them to 0xffff0...allegedly the
1040 * reset vector.
1041 */
1042 outb(sc->asic_addr + ED_3COM_VPTR2, 0xff);
1043 outb(sc->asic_addr + ED_3COM_VPTR1, 0xff);
1044 outb(sc->asic_addr + ED_3COM_VPTR0, 0x00);
1045
1046 /*
1047 * Zero memory and verify that it is clear
1048 */
1049 bzero(sc->mem_start, memsize);
1050
1051 for (i = 0; i < memsize; ++i)
1052 if (sc->mem_start[i]) {
1053 printf("ed%d: failed to clear shared memory at %lx - check configuration\n",
1054 isa_dev->id_unit, kvtop(sc->mem_start + i));
1055 return (0);
1056 }
1057 isa_dev->id_msize = memsize;
1058 return (ED_3COM_IO_PORTS);
1059}
1060
1061/*
1062 * Probe and vendor-specific initialization routine for NE1000/2000 boards
1063 */
1064static int
1065ed_probe_Novell_generic(sc, port, unit, flags)
1066 struct ed_softc *sc;
1067 int port;
1068 int unit;
1069 int flags;
1070{
1071 u_int memsize, n;
1072 u_char romdata[16], tmp;
1073 static char test_pattern[32] = "THIS is A memory TEST pattern";
1074 char test_buffer[32];
1075
1076 sc->asic_addr = port + ED_NOVELL_ASIC_OFFSET;
1077 sc->nic_addr = port + ED_NOVELL_NIC_OFFSET;
1078
1079 /* XXX - do Novell-specific probe here */
1080
1081 /* Reset the board */
1082#ifdef GWETHER
1083 outb(sc->asic_addr + ED_NOVELL_RESET, 0);
1084 DELAY(200);
1085#endif /* GWETHER */
1086 tmp = inb(sc->asic_addr + ED_NOVELL_RESET);
1087
1088 /*
1089 * I don't know if this is necessary; probably cruft leftover from
1090 * Clarkson packet driver code. Doesn't do a thing on the boards I've
1091 * tested. -DG [note that a outb(0x84, 0) seems to work here, and is
1092 * non-invasive...but some boards don't seem to reset and I don't have
1093 * complete documentation on what the 'right' thing to do is...so we
1094 * do the invasive thing for now. Yuck.]
1095 */
1096 outb(sc->asic_addr + ED_NOVELL_RESET, tmp);
1097 DELAY(5000);
1098
1099 /*
1100 * This is needed because some NE clones apparently don't reset the
1101 * NIC properly (or the NIC chip doesn't reset fully on power-up) XXX
1102 * - this makes the probe invasive! ...Done against my better
1103 * judgement. -DLG
1104 */
1105 outb(sc->nic_addr + ED_P0_CR, ED_CR_RD2 | ED_CR_STP);
1106
1107 DELAY(5000);
1108
1109 /* Make sure that we really have an 8390 based board */
1110 if (!ed_probe_generic8390(sc))
1111 return (0);
1112
1113 sc->vendor = ED_VENDOR_NOVELL;
1114 sc->mem_shared = 0;
1115 sc->cr_proto = ED_CR_RD2;
1116
1117 /*
1118 * Test the ability to read and write to the NIC memory. This has the
1119 * side affect of determining if this is an NE1000 or an NE2000.
1120 */
1121
1122 /*
1123 * This prevents packets from being stored in the NIC memory when the
1124 * readmem routine turns on the start bit in the CR.
1125 */
1126 outb(sc->nic_addr + ED_P0_RCR, ED_RCR_MON);
1127
1128 /* Temporarily initialize DCR for byte operations */
1129 outb(sc->nic_addr + ED_P0_DCR, ED_DCR_FT1 | ED_DCR_LS);
1130
1131 outb(sc->nic_addr + ED_P0_PSTART, 8192 / ED_PAGE_SIZE);
1132 outb(sc->nic_addr + ED_P0_PSTOP, 16384 / ED_PAGE_SIZE);
1133
1134 sc->isa16bit = 0;
1135
1136 /*
1137 * Write a test pattern in byte mode. If this fails, then there
1138 * probably isn't any memory at 8k - which likely means that the board
1139 * is an NE2000.
1140 */
1141 ed_pio_writemem(sc, test_pattern, 8192, sizeof(test_pattern));
1142 ed_pio_readmem(sc, 8192, test_buffer, sizeof(test_pattern));
1143
1144 if (bcmp(test_pattern, test_buffer, sizeof(test_pattern))) {
1145 /* not an NE1000 - try NE2000 */
1146
1147 outb(sc->nic_addr + ED_P0_DCR, ED_DCR_WTS | ED_DCR_FT1 | ED_DCR_LS);
1148 outb(sc->nic_addr + ED_P0_PSTART, 16384 / ED_PAGE_SIZE);
1149 outb(sc->nic_addr + ED_P0_PSTOP, 32768 / ED_PAGE_SIZE);
1150
1151 sc->isa16bit = 1;
1152
1153 /*
1154 * Write a test pattern in word mode. If this also fails, then
1155 * we don't know what this board is.
1156 */
1157 ed_pio_writemem(sc, test_pattern, 16384, sizeof(test_pattern));
1158 ed_pio_readmem(sc, 16384, test_buffer, sizeof(test_pattern));
1159
1160 if (bcmp(test_pattern, test_buffer, sizeof(test_pattern)))
1161 return (0); /* not an NE2000 either */
1162
1163 sc->type = ED_TYPE_NE2000;
1164 sc->type_str = "NE2000";
1165 } else {
1166 sc->type = ED_TYPE_NE1000;
1167 sc->type_str = "NE1000";
1168 }
1169
1170 /* 8k of memory plus an additional 8k if 16bit */
1171 memsize = 8192 + sc->isa16bit * 8192;
1172
1173#if 0 /* probably not useful - NE boards only come two ways */
1174 /* allow kernel config file overrides */
1175 if (isa_dev->id_msize)
1176 memsize = isa_dev->id_msize;
1177#endif
1178
1179 sc->mem_size = memsize;
1180
1181 /* NIC memory doesn't start at zero on an NE board */
1182 /* The start address is tied to the bus width */
1183 sc->mem_start = (char *) 8192 + sc->isa16bit * 8192;
1184 sc->mem_end = sc->mem_start + memsize;
1185 sc->tx_page_start = memsize / ED_PAGE_SIZE;
1186
1187#ifdef GWETHER
1188 {
1189 int x, i, mstart = 0, msize = 0;
1190 char pbuf0[ED_PAGE_SIZE], pbuf[ED_PAGE_SIZE], tbuf[ED_PAGE_SIZE];
1191
1192 for (i = 0; i < ED_PAGE_SIZE; i++)
1193 pbuf0[i] = 0;
1194
1195 /* Clear all the memory. */
1196 for (x = 1; x < 256; x++)
1197 ed_pio_writemem(sc, pbuf0, x * 256, ED_PAGE_SIZE);
1198
1199 /* Search for the start of RAM. */
1200 for (x = 1; x < 256; x++) {
1201 ed_pio_readmem(sc, x * 256, tbuf, ED_PAGE_SIZE);
1202 if (bcmp(pbuf0, tbuf, ED_PAGE_SIZE) == 0) {
1203 for (i = 0; i < ED_PAGE_SIZE; i++)
1204 pbuf[i] = 255 - x;
1205 ed_pio_writemem(sc, pbuf, x * 256, ED_PAGE_SIZE);
1206 ed_pio_readmem(sc, x * 256, tbuf, ED_PAGE_SIZE);
1207 if (bcmp(pbuf, tbuf, ED_PAGE_SIZE) == 0) {
1208 mstart = x * ED_PAGE_SIZE;
1209 msize = ED_PAGE_SIZE;
1210 break;
1211 }
1212 }
1213 }
1214
1215 if (mstart == 0) {
1216 printf("ed%d: Cannot find start of RAM.\n", unit);
1217 return 0;
1218 }
1219 /* Search for the start of RAM. */
1220 for (x = (mstart / ED_PAGE_SIZE) + 1; x < 256; x++) {
1221 ed_pio_readmem(sc, x * 256, tbuf, ED_PAGE_SIZE);
1222 if (bcmp(pbuf0, tbuf, ED_PAGE_SIZE) == 0) {
1223 for (i = 0; i < ED_PAGE_SIZE; i++)
1224 pbuf[i] = 255 - x;
1225 ed_pio_writemem(sc, pbuf, x * 256, ED_PAGE_SIZE);
1226 ed_pio_readmem(sc, x * 256, tbuf, ED_PAGE_SIZE);
1227 if (bcmp(pbuf, tbuf, ED_PAGE_SIZE) == 0)
1228 msize += ED_PAGE_SIZE;
1229 else {
1230 break;
1231 }
1232 } else {
1233 break;
1234 }
1235 }
1236
1237 if (msize == 0) {
1238 printf("ed%d: Cannot find any RAM, start : %d, x = %d.\n", unit, mstart, x);
1239 return 0;
1240 }
1241 printf("ed%d: RAM start at %d, size : %d.\n", unit, mstart, msize);
1242
1243 sc->mem_size = msize;
1244 sc->mem_start = (char *) mstart;
1245 sc->mem_end = (char *) (msize + mstart);
1246 sc->tx_page_start = mstart / ED_PAGE_SIZE;
1247 }
1248#endif /* GWETHER */
1249
1250 /*
1251 * Use one xmit buffer if < 16k, two buffers otherwise (if not told
1252 * otherwise).
1253 */
1254 if ((memsize < 16384) || (flags & ED_FLAGS_NO_MULTI_BUFFERING))
1255 sc->txb_cnt = 1;
1256 else
1257 sc->txb_cnt = 2;
1258
1259 sc->rec_page_start = sc->tx_page_start + sc->txb_cnt * ED_TXBUF_SIZE;
1260 sc->rec_page_stop = sc->tx_page_start + memsize / ED_PAGE_SIZE;
1261
1262 sc->mem_ring = sc->mem_start + sc->txb_cnt * ED_PAGE_SIZE * ED_TXBUF_SIZE;
1263
1264 ed_pio_readmem(sc, 0, romdata, 16);
1265 for (n = 0; n < ETHER_ADDR_LEN; n++)
1266 sc->arpcom.ac_enaddr[n] = romdata[n * (sc->isa16bit + 1)];
1267
1268#ifdef GWETHER
1269 if (sc->arpcom.ac_enaddr[2] == 0x86) {
1270 sc->type_str = "Gateway AT";
1271 }
1272#endif /* GWETHER */
1273
1274 /* clear any pending interrupts that might have occurred above */
1275 outb(sc->nic_addr + ED_P0_ISR, 0xff);
1276
1277 return (ED_NOVELL_IO_PORTS);
1278}
1279
1280static int
1281ed_probe_Novell(isa_dev)
1282 struct isa_device *isa_dev;
1283{
1284 struct ed_softc *sc = &ed_softc[isa_dev->id_unit];
1285 int nports;
1286
1287 nports = ed_probe_Novell_generic(sc, isa_dev->id_iobase,
1288 isa_dev->id_unit, isa_dev->id_flags);
1289 if (nports)
1290 isa_dev->id_maddr = 0;
1291
1292 return (nports);
1293}
1294
1295#if NCARD > 0
1296/*
1297 * Probe framework for pccards. Replicates the standard framework,
1298 * minus the pccard driver registration and ignores the ether address
1299 * supplied (from the CIS), relying on the probe to find it instead.
1300 */
1301static int
1302ed_probe_pccard(isa_dev, ether)
1303 struct isa_device *isa_dev;
1304 u_char *ether;
1305{
1306 int nports;
1307
1308 nports = ed_probe_WD80x3(isa_dev);
1309 if (nports)
1310 return (nports);
1311
1312 nports = ed_probe_Novell(isa_dev);
1313 if (nports)
1314 return (nports);
1315
1316 return (0);
1317}
1318
1319#endif /* NCARD > 0 */
1320
1321#define ED_HPP_TEST_SIZE 16
1322
1323/*
1324 * Probe and vendor specific initialization for the HP PC Lan+ Cards.
1325 * (HP Part nos: 27247B and 27252A).
1326 *
1327 * The card has an asic wrapper around a DS8390 core. The asic handles
1328 * host accesses and offers both standard register IO and memory mapped
1329 * IO. Memory mapped I/O allows better performance at the expense of greater
1330 * chance of an incompatibility with existing ISA cards.
1331 *
1332 * The card has a few caveats: it isn't tolerant of byte wide accesses, only
1333 * short (16 bit) or word (32 bit) accesses are allowed. Some card revisions
1334 * don't allow 32 bit accesses; these are indicated by a bit in the software
1335 * ID register (see if_edreg.h).
1336 *
1337 * Other caveats are: we should read the MAC address only when the card
1338 * is inactive.
1339 *
1340 * For more information; please consult the CRYNWR packet driver.
1341 *
1342 * The AUI port is turned on using the "link2" option on the ifconfig
1343 * command line.
1344 */
1345static int
1346ed_probe_HP_pclanp(isa_dev)
1347 struct isa_device *isa_dev;
1348{
1349 struct ed_softc *sc = &ed_softc[isa_dev->id_unit];
1350 int n; /* temp var */
1351 int memsize; /* mem on board */
1352 u_char checksum; /* checksum of board address */
1353 u_char irq; /* board configured IRQ */
1354 char test_pattern[ED_HPP_TEST_SIZE]; /* read/write areas for */
1355 char test_buffer[ED_HPP_TEST_SIZE]; /* probing card */
1356
1357
1358 /* Fill in basic information */
1359 sc->asic_addr = isa_dev->id_iobase + ED_HPP_ASIC_OFFSET;
1360 sc->nic_addr = isa_dev->id_iobase + ED_HPP_NIC_OFFSET;
1361 sc->is790 = 0;
1362 sc->isa16bit = 0; /* the 8390 core needs to be in byte mode */
1363
1364 /*
1365 * Look for the HP PCLAN+ signature: "0x50,0x48,0x00,0x53"
1366 */
1367
1368 if ((inb(sc->asic_addr + ED_HPP_ID) != 0x50) ||
1369 (inb(sc->asic_addr + ED_HPP_ID + 1) != 0x48) ||
1370 ((inb(sc->asic_addr + ED_HPP_ID + 2) & 0xF0) != 0) ||
1371 (inb(sc->asic_addr + ED_HPP_ID + 3) != 0x53))
1372 return 0;
1373
1374 /*
1375 * Read the MAC address and verify checksum on the address.
1376 */
1377
1378 outw(sc->asic_addr + ED_HPP_PAGING, ED_HPP_PAGE_MAC);
1379 for (n = 0, checksum = 0; n < ETHER_ADDR_LEN; n++)
1380 checksum += (sc->arpcom.ac_enaddr[n] =
1381 inb(sc->asic_addr + ED_HPP_MAC_ADDR + n));
1382
1383 checksum += inb(sc->asic_addr + ED_HPP_MAC_ADDR + ETHER_ADDR_LEN);
1384
1385 if (checksum != 0xFF)
1386 return 0;
1387
1388 /*
1389 * Verify that the software model number is 0.
1390 */
1391
1392 outw(sc->asic_addr + ED_HPP_PAGING, ED_HPP_PAGE_ID);
1393 if (((sc->hpp_id = inw(sc->asic_addr + ED_HPP_PAGE_4)) &
1394 ED_HPP_ID_SOFT_MODEL_MASK) != 0x0000)
1395 return 0;
1396
1397 /*
1398 * Read in and save the current options configured on card.
1399 */
1400
1401 sc->hpp_options = inw(sc->asic_addr + ED_HPP_OPTION);
1402
1403 sc->hpp_options |= (ED_HPP_OPTION_NIC_RESET |
1404 ED_HPP_OPTION_CHIP_RESET |
1405 ED_HPP_OPTION_ENABLE_IRQ);
1406
1407 /*
1408 * Reset the chip. This requires writing to the option register
1409 * so take care to preserve the other bits.
1410 */
1411
1412 outw(sc->asic_addr + ED_HPP_OPTION,
1413 (sc->hpp_options & ~(ED_HPP_OPTION_NIC_RESET |
1414 ED_HPP_OPTION_CHIP_RESET)));
1415
1416 DELAY(5000); /* wait for chip reset to complete */
1417
1418 outw(sc->asic_addr + ED_HPP_OPTION,
1419 (sc->hpp_options | (ED_HPP_OPTION_NIC_RESET |
1420 ED_HPP_OPTION_CHIP_RESET |
1421 ED_HPP_OPTION_ENABLE_IRQ)));
1422
1423 DELAY(5000);
1424
1425 if (!(inb(sc->nic_addr + ED_P0_ISR) & ED_ISR_RST))
1426 return 0; /* reset did not complete */
1427
1428 /*
1429 * Read out configuration information.
1430 */
1431
1432 outw(sc->asic_addr + ED_HPP_PAGING, ED_HPP_PAGE_HW);
1433
1434 irq = inb(sc->asic_addr + ED_HPP_HW_IRQ);
1435
1436 /*
1437 * Check for impossible IRQ.
1438 */
1439
1440 if (irq >= (sizeof(ed_hpp_intr_mask) / sizeof(ed_hpp_intr_mask[0])))
1441 return 0;
1442
1443 /*
1444 * If the kernel IRQ was specified with a '?' use the cards idea
1445 * of the IRQ. If the kernel IRQ was explicitly specified, it
1446 * should match that of the hardware.
1447 */
1448
1449 if (isa_dev->id_irq <= 0)
1450 isa_dev->id_irq = ed_hpp_intr_mask[irq];
1451 else if (isa_dev->id_irq != ed_hpp_intr_mask[irq])
1452 return 0;
1453
1454 /*
1455 * Fill in softconfig info.
1456 */
1457
1458 sc->vendor = ED_VENDOR_HP;
1459 sc->type = ED_TYPE_HP_PCLANPLUS;
1460 sc->type_str = "HP-PCLAN+";
1461
1462 sc->mem_shared = 0; /* we DON'T have dual ported RAM */
1463 sc->mem_start = 0; /* we use offsets inside the card RAM */
1464
1465 sc->hpp_mem_start = NULL;/* no memory mapped I/O by default */
1466
1467 /*
1468 * Check if memory mapping of the I/O registers possible.
1469 */
1470
1471 if (sc->hpp_options & ED_HPP_OPTION_MEM_ENABLE)
1472 {
1473 u_long mem_addr;
1474
1475 /*
1476 * determine the memory address from the board.
1477 */
1478
1479 outw(sc->asic_addr + ED_HPP_PAGING, ED_HPP_PAGE_HW);
1480 mem_addr = (inw(sc->asic_addr + ED_HPP_HW_MEM_MAP) << 8);
1481
1482 /*
1483 * Check that the kernel specified start of memory and
1484 * hardware's idea of it match.
1485 */
1486
1487 if (mem_addr != kvtop(isa_dev->id_maddr))
1488 return 0;
1489
1490 sc->hpp_mem_start = isa_dev->id_maddr;
1491 }
1492
1493 /*
1494 * The board has 32KB of memory. Is there a way to determine
1495 * this programmatically?
1496 */
1497
1498 memsize = 32768;
1499
1500 /*
1501 * Fill in the rest of the soft config structure.
1502 */
1503
1504 /*
1505 * The transmit page index.
1506 */
1507
1508 sc->tx_page_start = ED_HPP_TX_PAGE_OFFSET;
1509
1510 if (isa_dev->id_flags & ED_FLAGS_NO_MULTI_BUFFERING)
1511 sc->txb_cnt = 1;
1512 else
1513 sc->txb_cnt = 2;
1514
1515 /*
1516 * Memory description
1517 */
1518
1519 sc->mem_size = memsize;
1520 sc->mem_ring = sc->mem_start +
1521 (sc->txb_cnt * ED_PAGE_SIZE * ED_TXBUF_SIZE);
1522 sc->mem_end = sc->mem_start + sc->mem_size;
1523
1524 /*
1525 * Receive area starts after the transmit area and
1526 * continues till the end of memory.
1527 */
1528
1529 sc->rec_page_start = sc->tx_page_start +
1530 (sc->txb_cnt * ED_TXBUF_SIZE);
1531 sc->rec_page_stop = (sc->mem_size / ED_PAGE_SIZE);
1532
1533
1534 sc->cr_proto = 0; /* value works */
1535
1536 /*
1537 * Set the wrap registers for string I/O reads.
1538 */
1539
1540 outw(sc->asic_addr + ED_HPP_PAGING, ED_HPP_PAGE_HW);
1541 outw(sc->asic_addr + ED_HPP_HW_WRAP,
1542 ((sc->rec_page_start / ED_PAGE_SIZE) |
1543 (((sc->rec_page_stop / ED_PAGE_SIZE) - 1) << 8)));
1544
1545 /*
1546 * Reset the register page to normal operation.
1547 */
1548
1549 outw(sc->asic_addr + ED_HPP_PAGING, ED_HPP_PAGE_PERF);
1550
1551 /*
1552 * Verify that we can read/write from adapter memory.
1553 * Create test pattern.
1554 */
1555
1556 for (n = 0; n < ED_HPP_TEST_SIZE; n++)
1557 {
1558 test_pattern[n] = (n*n) ^ ~n;
1559 }
1560
1561#undef ED_HPP_TEST_SIZE
1562
1563 /*
1564 * Check that the memory is accessible thru the I/O ports.
1565 * Write out the contents of "test_pattern", read back
1566 * into "test_buffer" and compare the two for any
1567 * mismatch.
1568 */
1569
1570 for (n = 0; n < (32768 / ED_PAGE_SIZE); n ++) {
1571
1572 ed_pio_writemem(sc, test_pattern, (n * ED_PAGE_SIZE),
1573 sizeof(test_pattern));
1574 ed_pio_readmem(sc, (n * ED_PAGE_SIZE),
1575 test_buffer, sizeof(test_pattern));
1576
1577 if (bcmp(test_pattern, test_buffer,
1578 sizeof(test_pattern)))
1579 return 0;
1580 }
1581
1582 return (ED_HPP_IO_PORTS);
1583
1584}
1585
1586/*
1587 * HP PC Lan+ : Set the physical link to use AUI or TP/TL.
1588 */
1589
1590void
1591ed_hpp_set_physical_link(struct ed_softc *sc)
1592{
1593 struct ifnet *ifp = &sc->arpcom.ac_if;
1594 int lan_page;
1595
1596 outw(sc->asic_addr + ED_HPP_PAGING, ED_HPP_PAGE_LAN);
1597 lan_page = inw(sc->asic_addr + ED_HPP_PAGE_0);
1598
1599 if (ifp->if_flags & IFF_ALTPHYS) {
1600
1601 /*
1602 * Use the AUI port.
1603 */
1604
1605 lan_page |= ED_HPP_LAN_AUI;
1606
1607 outw(sc->asic_addr + ED_HPP_PAGING, ED_HPP_PAGE_LAN);
1608 outw(sc->asic_addr + ED_HPP_PAGE_0, lan_page);
1609
1610
1611 } else {
1612
1613 /*
1614 * Use the ThinLan interface
1615 */
1616
1617 lan_page &= ~ED_HPP_LAN_AUI;
1618
1619 outw(sc->asic_addr + ED_HPP_PAGING, ED_HPP_PAGE_LAN);
1620 outw(sc->asic_addr + ED_HPP_PAGE_0, lan_page);
1621
1622 }
1623
1624 /*
1625 * Wait for the lan card to re-initialize itself
1626 */
1627
1628 DELAY(150000); /* wait 150 ms */
1629
1630 /*
1631 * Restore normal pages.
1632 */
1633
1634 outw(sc->asic_addr + ED_HPP_PAGING, ED_HPP_PAGE_PERF);
1635
1636}
1637
1638
1639/*
1640 * Install interface into kernel networking data structures
1641 */
1642static int
1643ed_attach(sc, unit, flags)
1644 struct ed_softc *sc;
1645 int unit;
1646 int flags;
1647{
1648 struct ifnet *ifp = &sc->arpcom.ac_if;
1649
1650 /*
1651 * Set interface to stopped condition (reset)
1652 */
1653 ed_stop(sc);
1654
1655 if (!ifp->if_name) {
1656 /*
1657 * Initialize ifnet structure
1658 */
1659 ifp->if_softc = sc;
1660 ifp->if_unit = unit;
1661 ifp->if_name = "ed";
1662 ifp->if_output = ether_output;
1663 ifp->if_start = ed_start;
1664 ifp->if_ioctl = ed_ioctl;
1665 ifp->if_watchdog = ed_watchdog;
1666 ifp->if_init = ed_init;
1667 ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
1668 ifp->if_linkmib = &sc->mibdata;
1669 ifp->if_linkmiblen = sizeof sc->mibdata;
1670 /*
1671 * XXX - should do a better job.
1672 */
1673 if (sc->is790)
1674 sc->mibdata.dot3StatsEtherChipSet =
1675 DOT3CHIPSET(dot3VendorWesternDigital,
1676 dot3ChipSetWesternDigital83C790);
1677 else
1678 sc->mibdata.dot3StatsEtherChipSet =
1679 DOT3CHIPSET(dot3VendorNational,
1680 dot3ChipSetNational8390);
1681 sc->mibdata.dot3Compliance = DOT3COMPLIANCE_COLLS;
1682
1683 /*
1684 * Set default state for ALTPHYS flag (used to disable the
1685 * tranceiver for AUI operation), based on compile-time
1686 * config option.
1687 */
1688 if (flags & ED_FLAGS_DISABLE_TRANCEIVER)
1689 ifp->if_flags = (IFF_BROADCAST | IFF_SIMPLEX |
1690 IFF_MULTICAST | IFF_ALTPHYS);
1691 else
1692 ifp->if_flags = (IFF_BROADCAST | IFF_SIMPLEX |
1693 IFF_MULTICAST);
1694
1695 /*
1696 * Attach the interface
1697 */
1698 if_attach(ifp);
1699 ether_ifattach(ifp);
1700 }
1701 /* device attach does transition from UNCONFIGURED to IDLE state */
1702
1703 /*
1704 * Print additional info when attached
1705 */
1706 printf("%s%d: address %6D, ", ifp->if_name, ifp->if_unit,
1707 sc->arpcom.ac_enaddr, ":");
1708
1709 if (sc->type_str && (*sc->type_str != 0))
1710 printf("type %s ", sc->type_str);
1711 else
1712 printf("type unknown (0x%x) ", sc->type);
1713
1714 if (sc->vendor == ED_VENDOR_HP)
1715 printf("(%s %s IO)", (sc->hpp_id & ED_HPP_ID_16_BIT_ACCESS) ?
1716 "16-bit" : "32-bit",
1717 sc->hpp_mem_start ? "memory mapped" : "regular");
1718 else
1719 printf("%s ", sc->isa16bit ? "(16 bit)" : "(8 bit)");
1720
1721 printf("%s\n", (((sc->vendor == ED_VENDOR_3COM) ||
1722 (sc->vendor == ED_VENDOR_HP)) &&
1723 (ifp->if_flags & IFF_ALTPHYS)) ? " tranceiver disabled" : "");
1724
1725 /*
1726 * If BPF is in the kernel, call the attach for it
1727 */
1728#if NBPF > 0
1729 bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
1730#endif
1731 return 1;
1732}
1733
1734static int
1735ed_attach_isa(isa_dev)
1736 struct isa_device *isa_dev;
1737{
1738 int unit = isa_dev->id_unit;
1739 struct ed_softc *sc = &ed_softc[unit];
1740 int flags = isa_dev->id_flags;
1741
1742 isa_dev->id_ointr = edintr;
1743 return ed_attach(sc, unit, flags);
1744}
1745
1746#if NPCI > 0
1747void *
1748ed_attach_NE2000_pci(unit, port)
1749 int unit;
1750 int port;
1751{
1752 struct ed_softc *sc = malloc(sizeof *sc, M_DEVBUF, M_NOWAIT);
1753 int isa_flags = 0;
1754
1755 if (!sc)
1756 return sc;
1757
1758 bzero(sc, sizeof *sc);
1759 if (ed_probe_Novell_generic(sc, port, unit, isa_flags) == 0
1760 || ed_attach(sc, unit, isa_flags) == 0) {
1761 free(sc, M_DEVBUF);
1762 return NULL;
1763 }
1764 return sc;
1765}
1766#endif
1767
1768/*
1769 * Reset interface.
1770 */
1771static void
1772ed_reset(ifp)
1773 struct ifnet *ifp;
1774{
1775 struct ed_softc *sc = ifp->if_softc;
1776 int s;
1777
1778 if (sc->gone)
1779 return;
1780 s = splimp();
1781
1782 /*
1783 * Stop interface and re-initialize.
1784 */
1785 ed_stop(sc);
1786 ed_init(sc);
1787
1788 (void) splx(s);
1789}
1790
1791/*
1792 * Take interface offline.
1793 */
1794static void
1795ed_stop(sc)
1796 struct ed_softc *sc;
1797{
1798 int n = 5000;
1799
1800 if (sc->gone)
1801 return;
1802 /*
1803 * Stop everything on the interface, and select page 0 registers.
1804 */
1805 outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_STP);
1806
1807 /*
1808 * Wait for interface to enter stopped state, but limit # of checks to
1809 * 'n' (about 5ms). It shouldn't even take 5us on modern DS8390's, but
1810 * just in case it's an old one.
1811 */
1812 while (((inb(sc->nic_addr + ED_P0_ISR) & ED_ISR_RST) == 0) && --n);
1813}
1814
1815/*
1816 * Device timeout/watchdog routine. Entered if the device neglects to
1817 * generate an interrupt after a transmit has been started on it.
1818 */
1819static void
1820ed_watchdog(ifp)
1821 struct ifnet *ifp;
1822{
1823 struct ed_softc *sc = ifp->if_softc;
1824
1825 if (sc->gone)
1826 return;
1827 log(LOG_ERR, "ed%d: device timeout\n", ifp->if_unit);
1828 ifp->if_oerrors++;
1829
1830 ed_reset(ifp);
1831}
1832
1833/*
1834 * Initialize device.
1835 */
1836static void
1837ed_init(xsc)
1838 void *xsc;
1839{
1840 struct ed_softc *sc = xsc;
1841 struct ifnet *ifp = &sc->arpcom.ac_if;
1842 int i, s;
1843
1844 if (sc->gone)
1845 return;
1846
1847 /* address not known */
1848 if (TAILQ_EMPTY(&ifp->if_addrhead)) /* unlikely? XXX */
1849 return;
1850
1851 /*
1852 * Initialize the NIC in the exact order outlined in the NS manual.
1853 * This init procedure is "mandatory"...don't change what or when
1854 * things happen.
1855 */
1856 s = splimp();
1857
1858 /* reset transmitter flags */
1859 sc->xmit_busy = 0;
1860 ifp->if_timer = 0;
1861
1862 sc->txb_inuse = 0;
1863 sc->txb_new = 0;
1864 sc->txb_next_tx = 0;
1865
1866 /* This variable is used below - don't move this assignment */
1867 sc->next_packet = sc->rec_page_start + 1;
1868
1869 /*
1870 * Set interface for page 0, Remote DMA complete, Stopped
1871 */
1872 outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_STP);
1873
1874 if (sc->isa16bit) {
1875
1876 /*
1877 * Set FIFO threshold to 8, No auto-init Remote DMA, byte
1878 * order=80x86, word-wide DMA xfers,
1879 */
1880 outb(sc->nic_addr + ED_P0_DCR, ED_DCR_FT1 | ED_DCR_WTS | ED_DCR_LS);
1881 } else {
1882
1883 /*
1884 * Same as above, but byte-wide DMA xfers
1885 */
1886 outb(sc->nic_addr + ED_P0_DCR, ED_DCR_FT1 | ED_DCR_LS);
1887 }
1888
1889 /*
1890 * Clear Remote Byte Count Registers
1891 */
1892 outb(sc->nic_addr + ED_P0_RBCR0, 0);
1893 outb(sc->nic_addr + ED_P0_RBCR1, 0);
1894
1895 /*
1896 * For the moment, don't store incoming packets in memory.
1897 */
1898 outb(sc->nic_addr + ED_P0_RCR, ED_RCR_MON);
1899
1900 /*
1901 * Place NIC in internal loopback mode
1902 */
1903 outb(sc->nic_addr + ED_P0_TCR, ED_TCR_LB0);
1904
1905 /*
1906 * Initialize transmit/receive (ring-buffer) Page Start
1907 */
1908 outb(sc->nic_addr + ED_P0_TPSR, sc->tx_page_start);
1909 outb(sc->nic_addr + ED_P0_PSTART, sc->rec_page_start);
1910 /* Set lower bits of byte addressable framing to 0 */
1911 if (sc->is790)
1912 outb(sc->nic_addr + 0x09, 0);
1913
1914 /*
1915 * Initialize Receiver (ring-buffer) Page Stop and Boundry
1916 */
1917 outb(sc->nic_addr + ED_P0_PSTOP, sc->rec_page_stop);
1918 outb(sc->nic_addr + ED_P0_BNRY, sc->rec_page_start);
1919
1920 /*
1921 * Clear all interrupts. A '1' in each bit position clears the
1922 * corresponding flag.
1923 */
1924 outb(sc->nic_addr + ED_P0_ISR, 0xff);
1925
1926 /*
1927 * Enable the following interrupts: receive/transmit complete,
1928 * receive/transmit error, and Receiver OverWrite.
1929 *
1930 * Counter overflow and Remote DMA complete are *not* enabled.
1931 */
1932 outb(sc->nic_addr + ED_P0_IMR,
1933 ED_IMR_PRXE | ED_IMR_PTXE | ED_IMR_RXEE | ED_IMR_TXEE | ED_IMR_OVWE);
1934
1935 /*
1936 * Program Command Register for page 1
1937 */
1938 outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STP);
1939
1940 /*
1941 * Copy out our station address
1942 */
1943 for (i = 0; i < ETHER_ADDR_LEN; ++i)
1944 outb(sc->nic_addr + ED_P1_PAR(i), sc->arpcom.ac_enaddr[i]);
1945
1946 /*
1947 * Set Current Page pointer to next_packet (initialized above)
1948 */
1949 outb(sc->nic_addr + ED_P1_CURR, sc->next_packet);
1950
1951 /*
1952 * Program Receiver Configuration Register and multicast filter. CR is
1953 * set to page 0 on return.
1954 */
1955 ed_setrcr(sc);
1956
1957 /*
1958 * Take interface out of loopback
1959 */
1960 outb(sc->nic_addr + ED_P0_TCR, 0);
1961
1962 /*
1963 * If this is a 3Com board, the tranceiver must be software enabled
1964 * (there is no settable hardware default).
1965 */
1966 if (sc->vendor == ED_VENDOR_3COM) {
1967 if (ifp->if_flags & IFF_ALTPHYS) {
1968 outb(sc->asic_addr + ED_3COM_CR, 0);
1969 } else {
1970 outb(sc->asic_addr + ED_3COM_CR, ED_3COM_CR_XSEL);
1971 }
1972 }
1973
1974 /*
1975 * Set 'running' flag, and clear output active flag.
1976 */
1977 ifp->if_flags |= IFF_RUNNING;
1978 ifp->if_flags &= ~IFF_OACTIVE;
1979
1980 /*
1981 * ...and attempt to start output
1982 */
1983 ed_start(ifp);
1984
1985 (void) splx(s);
1986}
1987
1988/*
1989 * This routine actually starts the transmission on the interface
1990 */
1991static __inline void
1992ed_xmit(sc)
1993 struct ed_softc *sc;
1994{
1995 struct ifnet *ifp = (struct ifnet *)sc;
1996 unsigned short len;
1997
1998 if (sc->gone)
1999 return;
2000 len = sc->txb_len[sc->txb_next_tx];
2001
2002 /*
2003 * Set NIC for page 0 register access
2004 */
2005 outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_STA);
2006
2007 /*
2008 * Set TX buffer start page
2009 */
2010 outb(sc->nic_addr + ED_P0_TPSR, sc->tx_page_start +
2011 sc->txb_next_tx * ED_TXBUF_SIZE);
2012
2013 /*
2014 * Set TX length
2015 */
2016 outb(sc->nic_addr + ED_P0_TBCR0, len);
2017 outb(sc->nic_addr + ED_P0_TBCR1, len >> 8);
2018
2019 /*
2020 * Set page 0, Remote DMA complete, Transmit Packet, and *Start*
2021 */
2022 outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_TXP | ED_CR_STA);
2023 sc->xmit_busy = 1;
2024
2025 /*
2026 * Point to next transmit buffer slot and wrap if necessary.
2027 */
2028 sc->txb_next_tx++;
2029 if (sc->txb_next_tx == sc->txb_cnt)
2030 sc->txb_next_tx = 0;
2031
2032 /*
2033 * Set a timer just in case we never hear from the board again
2034 */
2035 ifp->if_timer = 2;
2036}
2037
2038/*
2039 * Start output on interface.
2040 * We make two assumptions here:
2041 * 1) that the current priority is set to splimp _before_ this code
2042 * is called *and* is returned to the appropriate priority after
2043 * return
2044 * 2) that the IFF_OACTIVE flag is checked before this code is called
2045 * (i.e. that the output part of the interface is idle)
2046 */
2047static void
2048ed_start(ifp)
2049 struct ifnet *ifp;
2050{
2051 struct ed_softc *sc = ifp->if_softc;
2052 struct mbuf *m0, *m;
2053 caddr_t buffer;
2054 int len;
2055
2056 if (sc->gone) {
2057 printf("ed_start(%p) GONE\n",ifp);
2058 return;
2059 }
2060outloop:
2061
2062 /*
2063 * First, see if there are buffered packets and an idle transmitter -
2064 * should never happen at this point.
2065 */
2066 if (sc->txb_inuse && (sc->xmit_busy == 0)) {
2067 printf("ed: packets buffered, but transmitter idle\n");
2068 ed_xmit(sc);
2069 }
2070
2071 /*
2072 * See if there is room to put another packet in the buffer.
2073 */
2074 if (sc->txb_inuse == sc->txb_cnt) {
2075
2076 /*
2077 * No room. Indicate this to the outside world and exit.
2078 */
2079 ifp->if_flags |= IFF_OACTIVE;
2080 return;
2081 }
2082 IF_DEQUEUE(&ifp->if_snd, m);
2083 if (m == 0) {
2084
2085 /*
2086 * We are using the !OACTIVE flag to indicate to the outside
2087 * world that we can accept an additional packet rather than
2088 * that the transmitter is _actually_ active. Indeed, the
2089 * transmitter may be active, but if we haven't filled all the
2090 * buffers with data then we still want to accept more.
2091 */
2092 ifp->if_flags &= ~IFF_OACTIVE;
2093 return;
2094 }
2095
2096 /*
2097 * Copy the mbuf chain into the transmit buffer
2098 */
2099
2100 m0 = m;
2101
2102 /* txb_new points to next open buffer slot */
2103 buffer = sc->mem_start + (sc->txb_new * ED_TXBUF_SIZE * ED_PAGE_SIZE);
2104
2105 if (sc->mem_shared) {
2106
2107 /*
2108 * Special case setup for 16 bit boards...
2109 */
2110 if (sc->isa16bit) {
2111 switch (sc->vendor) {
2112
2113 /*
2114 * For 16bit 3Com boards (which have 16k of
2115 * memory), we have the xmit buffers in a
2116 * different page of memory ('page 0') - so
2117 * change pages.
2118 */
2119 case ED_VENDOR_3COM:
2120 outb(sc->asic_addr + ED_3COM_GACFR,
2121 ED_3COM_GACFR_RSEL);
2122 break;
2123
2124 /*
2125 * Enable 16bit access to shared memory on
2126 * WD/SMC boards.
2127 */
2128 case ED_VENDOR_WD_SMC:{
2129 outb(sc->asic_addr + ED_WD_LAAR,
2130 sc->wd_laar_proto | ED_WD_LAAR_M16EN);
2131 if (sc->is790) {
2132 outb(sc->asic_addr + ED_WD_MSR, ED_WD_MSR_MENB);
2133 }
2134 break;
2135 }
2136 }
2137 }
2138 for (len = 0; m != 0; m = m->m_next) {
2139 bcopy(mtod(m, caddr_t), buffer, m->m_len);
2140 buffer += m->m_len;
2141 len += m->m_len;
2142 }
2143
2144 /*
2145 * Restore previous shared memory access
2146 */
2147 if (sc->isa16bit) {
2148 switch (sc->vendor) {
2149 case ED_VENDOR_3COM:
2150 outb(sc->asic_addr + ED_3COM_GACFR,
2151 ED_3COM_GACFR_RSEL | ED_3COM_GACFR_MBS0);
2152 break;
2153 case ED_VENDOR_WD_SMC:{
2154 if (sc->is790) {
2155 outb(sc->asic_addr + ED_WD_MSR, 0x00);
2156 }
2157 outb(sc->asic_addr + ED_WD_LAAR,
2158 sc->wd_laar_proto & ~ED_WD_LAAR_M16EN);
2159 break;
2160 }
2161 }
2162 }
2163 } else {
2164 len = ed_pio_write_mbufs(sc, m, (int)buffer);
2165 if (len == 0)
2166 goto outloop;
2167 }
2168
2169 sc->txb_len[sc->txb_new] = max(len, (ETHER_MIN_LEN-ETHER_CRC_LEN));
2170
2171 sc->txb_inuse++;
2172
2173 /*
2174 * Point to next buffer slot and wrap if necessary.
2175 */
2176 sc->txb_new++;
2177 if (sc->txb_new == sc->txb_cnt)
2178 sc->txb_new = 0;
2179
2180 if (sc->xmit_busy == 0)
2181 ed_xmit(sc);
2182
2183 /*
2184 * Tap off here if there is a bpf listener.
2185 */
2186#if NBPF > 0
2187 if (ifp->if_bpf) {
2188 bpf_mtap(ifp, m0);
2189 }
2190#endif
2191
2192 m_freem(m0);
2193
2194 /*
2195 * Loop back to the top to possibly buffer more packets
2196 */
2197 goto outloop;
2198}
2199
2200/*
2201 * Ethernet interface receiver interrupt.
2202 */
2203static __inline void
2204ed_rint(sc)
2205 struct ed_softc *sc;
2206{
2207 struct ifnet *ifp = &sc->arpcom.ac_if;
2208 u_char boundry;
2209 u_short len;
2210 struct ed_ring packet_hdr;
2211 char *packet_ptr;
2212
2213 if (sc->gone)
2214 return;
2215
2216 /*
2217 * Set NIC to page 1 registers to get 'current' pointer
2218 */
2219 outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STA);
2220
2221 /*
2222 * 'sc->next_packet' is the logical beginning of the ring-buffer -
2223 * i.e. it points to where new data has been buffered. The 'CURR'
2224 * (current) register points to the logical end of the ring-buffer -
2225 * i.e. it points to where additional new data will be added. We loop
2226 * here until the logical beginning equals the logical end (or in
2227 * other words, until the ring-buffer is empty).
2228 */
2229 while (sc->next_packet != inb(sc->nic_addr + ED_P1_CURR)) {
2230
2231 /* get pointer to this buffer's header structure */
2232 packet_ptr = sc->mem_ring +
2233 (sc->next_packet - sc->rec_page_start) * ED_PAGE_SIZE;
2234
2235 /*
2236 * The byte count includes a 4 byte header that was added by
2237 * the NIC.
2238 */
2239 if (sc->mem_shared)
2240 packet_hdr = *(struct ed_ring *) packet_ptr;
2241 else
2242 ed_pio_readmem(sc, (int)packet_ptr, (char *) &packet_hdr,
2243 sizeof(packet_hdr));
2244 len = packet_hdr.count;
2245 if (len > (ETHER_MAX_LEN - ETHER_CRC_LEN + sizeof(struct ed_ring)) ||
2246 len < (ETHER_MIN_LEN - ETHER_CRC_LEN + sizeof(struct ed_ring))) {
2247 /*
2248 * Length is a wild value. There's a good chance that
2249 * this was caused by the NIC being old and buggy.
2250 * The bug is that the length low byte is duplicated in
2251 * the high byte. Try to recalculate the length based on
2252 * the pointer to the next packet.
2253 */
2254 /*
2255 * NOTE: sc->next_packet is pointing at the current packet.
2256 */
2257 len &= ED_PAGE_SIZE - 1; /* preserve offset into page */
2258 if (packet_hdr.next_packet >= sc->next_packet) {
2259 len += (packet_hdr.next_packet - sc->next_packet) * ED_PAGE_SIZE;
2260 } else {
2261 len += ((packet_hdr.next_packet - sc->rec_page_start) +
2262 (sc->rec_page_stop - sc->next_packet)) * ED_PAGE_SIZE;
2263 }
2264 /*
2265 * because buffers are aligned on 256-byte boundary,
2266 * the length computed above is off by 256 in almost
2267 * all cases. Fix it...
2268 */
2269 if (len & 0xff)
2270 len -= 256 ;
2271 if (len > (ETHER_MAX_LEN - ETHER_CRC_LEN
2272 + sizeof(struct ed_ring)))
2273 sc->mibdata.dot3StatsFrameTooLongs++;
2274 }
2275 /*
2276 * Be fairly liberal about what we allow as a "reasonable" length
2277 * so that a [crufty] packet will make it to BPF (and can thus
2278 * be analyzed). Note that all that is really important is that
2279 * we have a length that will fit into one mbuf cluster or less;
2280 * the upper layer protocols can then figure out the length from
2281 * their own length field(s).
2282 */
2283 if ((len > sizeof(struct ed_ring)) &&
2284 (len <= MCLBYTES) &&
2285 (packet_hdr.next_packet >= sc->rec_page_start) &&
2286 (packet_hdr.next_packet < sc->rec_page_stop)) {
2287 /*
2288 * Go get packet.
2289 */
2290 ed_get_packet(sc, packet_ptr + sizeof(struct ed_ring),
2291 len - sizeof(struct ed_ring), packet_hdr.rsr & ED_RSR_PHY);
2292 ifp->if_ipackets++;
2293 } else {
2294 /*
2295 * Really BAD. The ring pointers are corrupted.
2296 */
2297 log(LOG_ERR,
2298 "ed%d: NIC memory corrupt - invalid packet length %d\n",
2299 ifp->if_unit, len);
2300 ifp->if_ierrors++;
2301 ed_reset(ifp);
2302 return;
2303 }
2304
2305 /*
2306 * Update next packet pointer
2307 */
2308 sc->next_packet = packet_hdr.next_packet;
2309
2310 /*
2311 * Update NIC boundry pointer - being careful to keep it one
2312 * buffer behind. (as recommended by NS databook)
2313 */
2314 boundry = sc->next_packet - 1;
2315 if (boundry < sc->rec_page_start)
2316 boundry = sc->rec_page_stop - 1;
2317
2318 /*
2319 * Set NIC to page 0 registers to update boundry register
2320 */
2321 outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_STA);
2322
2323 outb(sc->nic_addr + ED_P0_BNRY, boundry);
2324
2325 /*
2326 * Set NIC to page 1 registers before looping to top (prepare
2327 * to get 'CURR' current pointer)
2328 */
2329 outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STA);
2330 }
2331}
2332
2333/*
2334 * Ethernet interface interrupt processor
2335 */
2336void
2337edintr_sc(sc)
2338 struct ed_softc *sc;
2339{
2340 struct ifnet *ifp = (struct ifnet *)sc;
2341 u_char isr;
2342
2343 if (sc->gone)
2344 return;
2345 /*
2346 * Set NIC to page 0 registers
2347 */
2348 outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_STA);
2349
2350 /*
2351 * loop until there are no more new interrupts
2352 */
2353 while ((isr = inb(sc->nic_addr + ED_P0_ISR)) != 0) {
2354
2355 /*
2356 * reset all the bits that we are 'acknowledging' by writing a
2357 * '1' to each bit position that was set (writing a '1'
2358 * *clears* the bit)
2359 */
2360 outb(sc->nic_addr + ED_P0_ISR, isr);
2361
2362 /*
2363 * Handle transmitter interrupts. Handle these first because
2364 * the receiver will reset the board under some conditions.
2365 */
2366 if (isr & (ED_ISR_PTX | ED_ISR_TXE)) {
2367 u_char collisions = inb(sc->nic_addr + ED_P0_NCR) & 0x0f;
2368
2369 /*
2370 * Check for transmit error. If a TX completed with an
2371 * error, we end up throwing the packet away. Really
2372 * the only error that is possible is excessive
2373 * collisions, and in this case it is best to allow
2374 * the automatic mechanisms of TCP to backoff the
2375 * flow. Of course, with UDP we're screwed, but this
2376 * is expected when a network is heavily loaded.
2377 */
2378 (void) inb(sc->nic_addr + ED_P0_TSR);
2379 if (isr & ED_ISR_TXE) {
2380 u_char tsr;
2381
2382 /*
2383 * Excessive collisions (16)
2384 */
2385 tsr = inb(sc->nic_addr + ED_P0_TSR);
2386 if ((tsr & ED_TSR_ABT)
2387 && (collisions == 0)) {
2388
2389 /*
2390 * When collisions total 16, the
2391 * P0_NCR will indicate 0, and the
2392 * TSR_ABT is set.
2393 */
2394 collisions = 16;
2395 sc->mibdata.dot3StatsExcessiveCollisions++;
2396 sc->mibdata.dot3StatsCollFrequencies[15]++;
2397 }
2398 if (tsr & ED_TSR_OWC)
2399 sc->mibdata.dot3StatsLateCollisions++;
2400 if (tsr & ED_TSR_CDH)
2401 sc->mibdata.dot3StatsSQETestErrors++;
2402 if (tsr & ED_TSR_CRS)
2403 sc->mibdata.dot3StatsCarrierSenseErrors++;
2404 if (tsr & ED_TSR_FU)
2405 sc->mibdata.dot3StatsInternalMacTransmitErrors++;
2406
2407 /*
2408 * update output errors counter
2409 */
2410 ifp->if_oerrors++;
2411 } else {
2412
2413 /*
2414 * Update total number of successfully
2415 * transmitted packets.
2416 */
2417 ifp->if_opackets++;
2418 }
2419
2420 /*
2421 * reset tx busy and output active flags
2422 */
2423 sc->xmit_busy = 0;
2424 ifp->if_flags &= ~IFF_OACTIVE;
2425
2426 /*
2427 * clear watchdog timer
2428 */
2429 ifp->if_timer = 0;
2430
2431 /*
2432 * Add in total number of collisions on last
2433 * transmission.
2434 */
2435 ifp->if_collisions += collisions;
2436 switch(collisions) {
2437 case 0:
2438 case 16:
2439 break;
2440 case 1:
2441 sc->mibdata.dot3StatsSingleCollisionFrames++;
2442 sc->mibdata.dot3StatsCollFrequencies[0]++;
2443 break;
2444 default:
2445 sc->mibdata.dot3StatsMultipleCollisionFrames++;
2446 sc->mibdata.
2447 dot3StatsCollFrequencies[collisions-1]
2448 ++;
2449 break;
2450 }
2451
2452 /*
2453 * Decrement buffer in-use count if not zero (can only
2454 * be zero if a transmitter interrupt occured while
2455 * not actually transmitting). If data is ready to
2456 * transmit, start it transmitting, otherwise defer
2457 * until after handling receiver
2458 */
2459 if (sc->txb_inuse && --sc->txb_inuse)
2460 ed_xmit(sc);
2461 }
2462
2463 /*
2464 * Handle receiver interrupts
2465 */
2466 if (isr & (ED_ISR_PRX | ED_ISR_RXE | ED_ISR_OVW)) {
2467
2468 /*
2469 * Overwrite warning. In order to make sure that a
2470 * lockup of the local DMA hasn't occurred, we reset
2471 * and re-init the NIC. The NSC manual suggests only a
2472 * partial reset/re-init is necessary - but some chips
2473 * seem to want more. The DMA lockup has been seen
2474 * only with early rev chips - Methinks this bug was
2475 * fixed in later revs. -DG
2476 */
2477 if (isr & ED_ISR_OVW) {
2478 ifp->if_ierrors++;
2479#ifdef DIAGNOSTIC
2480 log(LOG_WARNING,
2481 "ed%d: warning - receiver ring buffer overrun\n",
2482 ifp->if_unit);
2483#endif
2484
2485 /*
2486 * Stop/reset/re-init NIC
2487 */
2488 ed_reset(ifp);
2489 } else {
2490
2491 /*
2492 * Receiver Error. One or more of: CRC error,
2493 * frame alignment error FIFO overrun, or
2494 * missed packet.
2495 */
2496 if (isr & ED_ISR_RXE) {
2497 u_char rsr;
2498 rsr = inb(sc->nic_addr + ED_P0_RSR);
2499 if (rsr & ED_RSR_CRC)
2500 sc->mibdata.dot3StatsFCSErrors++;
2501 if (rsr & ED_RSR_FAE)
2502 sc->mibdata.dot3StatsAlignmentErrors++;
2503 if (rsr & ED_RSR_FO)
2504 sc->mibdata.dot3StatsInternalMacReceiveErrors++;
2505 ifp->if_ierrors++;
2506#ifdef ED_DEBUG
2507 printf("ed%d: receive error %x\n", ifp->if_unit,
2508 inb(sc->nic_addr + ED_P0_RSR));
2509#endif
2510 }
2511
2512 /*
2513 * Go get the packet(s) XXX - Doing this on an
2514 * error is dubious because there shouldn't be
2515 * any data to get (we've configured the
2516 * interface to not accept packets with
2517 * errors).
2518 */
2519
2520 /*
2521 * Enable 16bit access to shared memory first
2522 * on WD/SMC boards.
2523 */
2524 if (sc->isa16bit &&
2525 (sc->vendor == ED_VENDOR_WD_SMC)) {
2526
2527 outb(sc->asic_addr + ED_WD_LAAR,
2528 sc->wd_laar_proto | ED_WD_LAAR_M16EN);
2529 if (sc->is790) {
2530 outb(sc->asic_addr + ED_WD_MSR,
2531 ED_WD_MSR_MENB);
2532 }
2533 }
2534 ed_rint(sc);
2535
2536 /* disable 16bit access */
2537 if (sc->isa16bit &&
2538 (sc->vendor == ED_VENDOR_WD_SMC)) {
2539
2540 if (sc->is790) {
2541 outb(sc->asic_addr + ED_WD_MSR, 0x00);
2542 }
2543 outb(sc->asic_addr + ED_WD_LAAR,
2544 sc->wd_laar_proto & ~ED_WD_LAAR_M16EN);
2545 }
2546 }
2547 }
2548
2549 /*
2550 * If it looks like the transmitter can take more data,
2551 * attempt to start output on the interface. This is done
2552 * after handling the receiver to give the receiver priority.
2553 */
2554 if ((ifp->if_flags & IFF_OACTIVE) == 0)
2555 ed_start(ifp);
2556
2557 /*
2558 * return NIC CR to standard state: page 0, remote DMA
2559 * complete, start (toggling the TXP bit off, even if was just
2560 * set in the transmit routine, is *okay* - it is 'edge'
2561 * triggered from low to high)
2562 */
2563 outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_STA);
2564
2565 /*
2566 * If the Network Talley Counters overflow, read them to reset
2567 * them. It appears that old 8390's won't clear the ISR flag
2568 * otherwise - resulting in an infinite loop.
2569 */
2570 if (isr & ED_ISR_CNT) {
2571 (void) inb(sc->nic_addr + ED_P0_CNTR0);
2572 (void) inb(sc->nic_addr + ED_P0_CNTR1);
2573 (void) inb(sc->nic_addr + ED_P0_CNTR2);
2574 }
2575 }
2576}
2577
2578static void
2579edintr(unit)
2580 int unit;
2581{
2582 edintr_sc (&ed_softc[unit]);
2583}
2584
2585/*
2586 * Process an ioctl request. This code needs some work - it looks
2587 * pretty ugly.
2588 */
2589static int
2590ed_ioctl(ifp, command, data)
2591 register struct ifnet *ifp;
2592 u_long command;
2593 caddr_t data;
2594{
2595 struct ed_softc *sc = ifp->if_softc;
2596 int s, error = 0;
2597
2598 if (sc->gone) {
2599 ifp->if_flags &= ~IFF_RUNNING;
2600 return ENXIO;
2601 }
2602 s = splimp();
2603
2604 switch (command) {
2605
2606 case SIOCSIFADDR:
2607 case SIOCGIFADDR:
2608 case SIOCSIFMTU:
2609 error = ether_ioctl(ifp, command, data);
2610 break;
2611
2612 case SIOCSIFFLAGS:
2613
2614 /*
2615 * If the interface is marked up and stopped, then start it.
2616 * If it is marked down and running, then stop it.
2617 */
2618 if (ifp->if_flags & IFF_UP) {
2619 if ((ifp->if_flags & IFF_RUNNING) == 0)
2620 ed_init(sc);
2621 } else {
2622 if (ifp->if_flags & IFF_RUNNING) {
2623 ed_stop(sc);
2624 ifp->if_flags &= ~IFF_RUNNING;
2625 }
2626 }
2627
2628#if NBPF > 0
2629
2630 /*
2631 * Promiscuous flag may have changed, so reprogram the RCR.
2632 */
2633 ed_setrcr(sc);
2634#endif
2635
2636 /*
2637 * An unfortunate hack to provide the (required) software
2638 * control of the tranceiver for 3Com boards. The ALTPHYS flag
2639 * disables the tranceiver if set.
2640 */
2641 if (sc->vendor == ED_VENDOR_3COM) {
2642 if (ifp->if_flags & IFF_ALTPHYS) {
2643 outb(sc->asic_addr + ED_3COM_CR, 0);
2644 } else {
2645 outb(sc->asic_addr + ED_3COM_CR, ED_3COM_CR_XSEL);
2646 }
2647 } else if (sc->vendor == ED_VENDOR_HP)
2648 ed_hpp_set_physical_link(sc);
2649 break;
2650
2651 case SIOCADDMULTI:
2652 case SIOCDELMULTI:
2653 /*
2654 * Multicast list has changed; set the hardware filter
2655 * accordingly.
2656 */
2657 ed_setrcr(sc);
2658 error = 0;
2659 break;
2660
2661 default:
2662 error = EINVAL;
2663 }
2664 (void) splx(s);
2665 return (error);
2666}
2667
2668/*
2669 * Given a source and destination address, copy 'amount' of a packet from
2670 * the ring buffer into a linear destination buffer. Takes into account
2671 * ring-wrap.
2672 */
2673static __inline char *
2674ed_ring_copy(sc, src, dst, amount)
2675 struct ed_softc *sc;
2676 char *src;
2677 char *dst;
2678 u_short amount;
2679{
2680 u_short tmp_amount;
2681
2682 /* does copy wrap to lower addr in ring buffer? */
2683 if (src + amount > sc->mem_end) {
2684 tmp_amount = sc->mem_end - src;
2685
2686 /* copy amount up to end of NIC memory */
2687 if (sc->mem_shared)
2688 bcopy(src, dst, tmp_amount);
2689 else
2690 ed_pio_readmem(sc, (int)src, dst, tmp_amount);
2691
2692 amount -= tmp_amount;
2693 src = sc->mem_ring;
2694 dst += tmp_amount;
2695 }
2696 if (sc->mem_shared)
2697 bcopy(src, dst, amount);
2698 else
2699 ed_pio_readmem(sc, (int)src, dst, amount);
2700
2701 return (src + amount);
2702}
2703
2704/*
2705 * Retreive packet from shared memory and send to the next level up via
2706 * ether_input(). If there is a BPF listener, give a copy to BPF, too.
2707 */
2708static void
2709ed_get_packet(sc, buf, len, multicast)
2710 struct ed_softc *sc;
2711 char *buf;
2712 u_short len;
2713 int multicast;
2714{
2715 struct ether_header *eh;
2716 struct mbuf *m;
2717
2718 /* Allocate a header mbuf */
2719 MGETHDR(m, M_DONTWAIT, MT_DATA);
2720 if (m == NULL)
2721 return;
2722 m->m_pkthdr.rcvif = &sc->arpcom.ac_if;
2723 m->m_pkthdr.len = m->m_len = len;
2724
2725 /*
2726 * We always put the received packet in a single buffer -
2727 * either with just an mbuf header or in a cluster attached
2728 * to the header. The +2 is to compensate for the alignment
2729 * fixup below.
2730 */
2731 if ((len + 2) > MHLEN) {
2732 /* Attach an mbuf cluster */
2733 MCLGET(m, M_DONTWAIT);
2734
2735 /* Insist on getting a cluster */
2736 if ((m->m_flags & M_EXT) == 0) {
2737 m_freem(m);
2738 return;
2739 }
2740 }
2741
2742 /*
2743 * The +2 is to longword align the start of the real packet.
2744 * This is important for NFS.
2745 */
2746 m->m_data += 2;
2747 eh = mtod(m, struct ether_header *);
2748
2749#ifdef BRIDGE
2750 /*
2751 * Get link layer header, invoke brige_in, then
2752 * depending on the outcome of the test fetch the rest of the
2753 * packet and either pass up or call bdg_forward.
2754 */
2755 if (do_bridge) {
2756 struct ifnet *ifp ;
2757 int need_more = 1 ; /* in case not bpf */
2758
2759#if NBPF > 0
2760 if (sc->arpcom.ac_if.if_bpf) {
2761 need_more = 0 ;
2762 ed_ring_copy(sc, buf, (char *)eh, len);
2763 bpf_mtap(&sc->arpcom.ac_if, m);
2764 } else
2765#endif
2766 ed_ring_copy(sc, buf, (char *)eh, 14);
2767 ifp = bridge_in(m);
2768 if (ifp == BDG_DROP) {
2769 m_freem(m);
2770 return ;
2771 }
2772 /* else fetch rest of pkt and continue */
2773 if (need_more && len > 14)
2774 ed_ring_copy(sc, buf+14, (char *)(eh+1), len - 14);
2775 if (ifp != BDG_LOCAL )
2776 bdg_forward(&m, ifp); /* not local, need forwarding */
2777 if (ifp == BDG_LOCAL || ifp == BDG_BCAST || ifp == BDG_MCAST)
2778 goto getit ;
2779 /* not local and not multicast, just drop it */
2780 if (m)
2781 m_freem(m);
2782 return ;
2783 }
2784#endif
2785 /*
2786 * Get packet, including link layer address, from interface.
2787 */
2788 ed_ring_copy(sc, buf, (char *)eh, len);
2789
2790#if NBPF > 0
2791
2792 /*
2793 * Check if there's a BPF listener on this interface. If so, hand off
2794 * the raw packet to bpf.
2795 */
2796 if (sc->arpcom.ac_if.if_bpf)
2797 bpf_mtap(&sc->arpcom.ac_if, m);
2798#endif
2799 /*
2800 * If we are in promiscuous mode, we have to check whether
2801 * this packet is really for us.
2802 */
2803 if ((sc->arpcom.ac_if.if_flags & IFF_PROMISC) &&
2804 bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr,
2805 sizeof(eh->ether_dhost)) != 0 && multicast == 0) {
2806 m_freem(m);
2807 return;
2808 }
2809
2810#ifdef BRIDGE
2811getit:
2812#endif
2813 /*
2814 * Remove link layer address.
2815 */
2816 m->m_pkthdr.len = m->m_len = len - sizeof(struct ether_header);
2817 m->m_data += sizeof(struct ether_header);
2818
2819 ether_input(&sc->arpcom.ac_if, eh, m);
2820 return;
2821}
2822
2823/*
2824 * Supporting routines
2825 */
2826
2827/*
2828 * Given a NIC memory source address and a host memory destination
2829 * address, copy 'amount' from NIC to host using Programmed I/O.
2830 * The 'amount' is rounded up to a word - okay as long as mbufs
2831 * are word sized.
2832 * This routine is currently Novell-specific.
2833 */
2834static void
2835ed_pio_readmem(sc, src, dst, amount)
2836 struct ed_softc *sc;
2837 int src;
2838 unsigned char *dst;
2839 unsigned short amount;
2840{
2841 /* HP cards need special handling */
2842 if (sc->vendor == ED_VENDOR_HP && sc->type == ED_TYPE_HP_PCLANPLUS) {
2843 ed_hpp_readmem(sc, src, dst, amount);
2844 return;
2845 }
2846
2847 /* Regular Novell cards */
2848 /* select page 0 registers */
2849 outb(sc->nic_addr + ED_P0_CR, ED_CR_RD2 | ED_CR_STA);
2850
2851 /* round up to a word */
2852 if (amount & 1)
2853 ++amount;
2854
2855 /* set up DMA byte count */
2856 outb(sc->nic_addr + ED_P0_RBCR0, amount);
2857 outb(sc->nic_addr + ED_P0_RBCR1, amount >> 8);
2858
2859 /* set up source address in NIC mem */
2860 outb(sc->nic_addr + ED_P0_RSAR0, src);
2861 outb(sc->nic_addr + ED_P0_RSAR1, src >> 8);
2862
2863 outb(sc->nic_addr + ED_P0_CR, ED_CR_RD0 | ED_CR_STA);
2864
2865 if (sc->isa16bit) {
2866 insw(sc->asic_addr + ED_NOVELL_DATA, dst, amount / 2);
2867 } else
2868 insb(sc->asic_addr + ED_NOVELL_DATA, dst, amount);
2869
2870}
2871
2872/*
2873 * Stripped down routine for writing a linear buffer to NIC memory.
2874 * Only used in the probe routine to test the memory. 'len' must
2875 * be even.
2876 */
2877static void
2878ed_pio_writemem(sc, src, dst, len)
2879 struct ed_softc *sc;
2880 char *src;
2881 unsigned short dst;
2882 unsigned short len;
2883{
2884 int maxwait = 200; /* about 240us */
2885
2886 if (sc->vendor == ED_VENDOR_NOVELL) {
2887
2888 /* select page 0 registers */
2889 outb(sc->nic_addr + ED_P0_CR, ED_CR_RD2 | ED_CR_STA);
2890
2891 /* reset remote DMA complete flag */
2892 outb(sc->nic_addr + ED_P0_ISR, ED_ISR_RDC);
2893
2894 /* set up DMA byte count */
2895 outb(sc->nic_addr + ED_P0_RBCR0, len);
2896 outb(sc->nic_addr + ED_P0_RBCR1, len >> 8);
2897
2898 /* set up destination address in NIC mem */
2899 outb(sc->nic_addr + ED_P0_RSAR0, dst);
2900 outb(sc->nic_addr + ED_P0_RSAR1, dst >> 8);
2901
2902 /* set remote DMA write */
2903 outb(sc->nic_addr + ED_P0_CR, ED_CR_RD1 | ED_CR_STA);
2904
2905 if (sc->isa16bit)
2906 outsw(sc->asic_addr + ED_NOVELL_DATA, src, len / 2);
2907 else
2908 outsb(sc->asic_addr + ED_NOVELL_DATA, src, len);
2909
2910 /*
2911 * Wait for remote DMA complete. This is necessary because on the
2912 * transmit side, data is handled internally by the NIC in bursts and
2913 * we can't start another remote DMA until this one completes. Not
2914 * waiting causes really bad things to happen - like the NIC
2915 * irrecoverably jamming the ISA bus.
2916 */
2917 while (((inb(sc->nic_addr + ED_P0_ISR) & ED_ISR_RDC) != ED_ISR_RDC) && --maxwait);
2918
2919 } else if ((sc->vendor == ED_VENDOR_HP) &&
2920 (sc->type == ED_TYPE_HP_PCLANPLUS)) {
2921
2922 /* HP PCLAN+ */
2923
2924 /* reset remote DMA complete flag */
2925 outb(sc->nic_addr + ED_P0_ISR, ED_ISR_RDC);
2926
2927 /* program the write address in RAM */
2928 outw(sc->asic_addr + ED_HPP_PAGE_0, dst);
2929
2930 if (sc->hpp_mem_start) {
2931 u_short *s = (u_short *) src;
2932 volatile u_short *d = (u_short *) sc->hpp_mem_start;
2933 u_short *const fence = s + (len >> 1);
2934
2935 /*
2936 * Enable memory mapped access.
2937 */
2938
2939 outw(sc->asic_addr + ED_HPP_OPTION,
2940 sc->hpp_options &
2941 ~(ED_HPP_OPTION_MEM_DISABLE |
2942 ED_HPP_OPTION_BOOT_ROM_ENB));
2943
2944 /*
2945 * Copy to NIC memory.
2946 */
2947
2948 while (s < fence)
2949 *d = *s++;
2950
2951 /*
2952 * Restore Boot ROM access.
2953 */
2954
2955 outw(sc->asic_addr + ED_HPP_OPTION,
2956 sc->hpp_options);
2957
2958 } else {
2959 /* write data using I/O writes */
2960 outsw(sc->asic_addr + ED_HPP_PAGE_4, src, len / 2);
2961 }
2962
2963 }
2964}
2965
2966/*
2967 * Write an mbuf chain to the destination NIC memory address using
2968 * programmed I/O.
2969 */
2970static u_short
2971ed_pio_write_mbufs(sc, m, dst)
2972 struct ed_softc *sc;
2973 struct mbuf *m;
2974 int dst;
2975{
2976 struct ifnet *ifp = (struct ifnet *)sc;
2977 unsigned short total_len, dma_len;
2978 struct mbuf *mp;
2979 int maxwait = 200; /* about 240us */
2980
2981 /* HP PC Lan+ cards need special handling */
2982 if ((sc->vendor == ED_VENDOR_HP) &&
2983 (sc->type == ED_TYPE_HP_PCLANPLUS)) {
2984 return ed_hpp_write_mbufs(sc, m, dst);
2985 }
2986
2987 /* First, count up the total number of bytes to copy */
2988 for (total_len = 0, mp = m; mp; mp = mp->m_next)
2989 total_len += mp->m_len;
2990
2991 dma_len = total_len;
2992 if (sc->isa16bit && (dma_len & 1))
2993 dma_len++;
2994
2995 /* select page 0 registers */
2996 outb(sc->nic_addr + ED_P0_CR, ED_CR_RD2 | ED_CR_STA);
2997
2998 /* reset remote DMA complete flag */
2999 outb(sc->nic_addr + ED_P0_ISR, ED_ISR_RDC);
3000
3001 /* set up DMA byte count */
3002 outb(sc->nic_addr + ED_P0_RBCR0, dma_len);
3003 outb(sc->nic_addr + ED_P0_RBCR1, dma_len >> 8);
3004
3005 /* set up destination address in NIC mem */
3006 outb(sc->nic_addr + ED_P0_RSAR0, dst);
3007 outb(sc->nic_addr + ED_P0_RSAR1, dst >> 8);
3008
3009 /* set remote DMA write */
3010 outb(sc->nic_addr + ED_P0_CR, ED_CR_RD1 | ED_CR_STA);
3011
3012 /*
3013 * Transfer the mbuf chain to the NIC memory.
3014 * 16-bit cards require that data be transferred as words, and only words.
3015 * So that case requires some extra code to patch over odd-length mbufs.
3016 */
3017
3018 if (!sc->isa16bit) {
3019 /* NE1000s are easy */
3020 while (m) {
3021 if (m->m_len) {
3022 outsb(sc->asic_addr + ED_NOVELL_DATA,
3023 m->m_data, m->m_len);
3024 }
3025 m = m->m_next;
3026 }
3027 } else {
3028 /* NE2000s are a pain */
3029 unsigned char *data;
3030 int len, wantbyte;
3031 unsigned char savebyte[2];
3032
3033 wantbyte = 0;
3034
3035 while (m) {
3036 len = m->m_len;
3037 if (len) {
3038 data = mtod(m, caddr_t);
3039 /* finish the last word */
3040 if (wantbyte) {
3041 savebyte[1] = *data;
3042 outw(sc->asic_addr + ED_NOVELL_DATA, *(u_short *)savebyte);
3043 data++;
3044 len--;
3045 wantbyte = 0;
3046 }
3047 /* output contiguous words */
3048 if (len > 1) {
3049 outsw(sc->asic_addr + ED_NOVELL_DATA,
3050 data, len >> 1);
3051 data += len & ~1;
3052 len &= 1;
3053 }
3054 /* save last byte, if necessary */
3055 if (len == 1) {
3056 savebyte[0] = *data;
3057 wantbyte = 1;
3058 }
3059 }
3060 m = m->m_next;
3061 }
3062 /* spit last byte */
3063 if (wantbyte) {
3064 outw(sc->asic_addr + ED_NOVELL_DATA, *(u_short *)savebyte);
3065 }
3066 }
3067
3068 /*
3069 * Wait for remote DMA complete. This is necessary because on the
3070 * transmit side, data is handled internally by the NIC in bursts and
3071 * we can't start another remote DMA until this one completes. Not
3072 * waiting causes really bad things to happen - like the NIC
3073 * irrecoverably jamming the ISA bus.
3074 */
3075 while (((inb(sc->nic_addr + ED_P0_ISR) & ED_ISR_RDC) != ED_ISR_RDC) && --maxwait);
3076
3077 if (!maxwait) {
3078 log(LOG_WARNING, "ed%d: remote transmit DMA failed to complete\n",
3079 ifp->if_unit);
3080 ed_reset(ifp);
3081 return(0);
3082 }
3083 return (total_len);
3084}
3085
3086/*
3087 * Support routines to handle the HP PC Lan+ card.
3088 */
3089
3090/*
3091 * HP PC Lan+: Read from NIC memory, using either PIO or memory mapped
3092 * IO.
3093 */
3094
3095static void
3096ed_hpp_readmem(sc, src, dst, amount)
3097 struct ed_softc *sc;
3098 unsigned short src;
3099 unsigned char *dst;
3100 unsigned short amount;
3101{
3102
3103 int use_32bit_access = !(sc->hpp_id & ED_HPP_ID_16_BIT_ACCESS);
3104
3105
3106 /* Program the source address in RAM */
3107 outw(sc->asic_addr + ED_HPP_PAGE_2, src);
3108
3109 /*
3110 * The HP PC Lan+ card supports word reads as well as
3111 * a memory mapped i/o port that is aliased to every
3112 * even address on the board.
3113 */
3114
3115 if (sc->hpp_mem_start) {
3116
3117 /* Enable memory mapped access. */
3118 outw(sc->asic_addr + ED_HPP_OPTION,
3119 sc->hpp_options &
3120 ~(ED_HPP_OPTION_MEM_DISABLE |
3121 ED_HPP_OPTION_BOOT_ROM_ENB));
3122
3123 if (use_32bit_access && (amount > 3)) {
3124 u_long *dl = (u_long *) dst;
3125 volatile u_long *const sl =
3126 (u_long *) sc->hpp_mem_start;
3127 u_long *const fence = dl + (amount >> 2);
3128
3129 /* Copy out NIC data. We could probably write this
3130 as a `movsl'. The currently generated code is lousy.
3131 */
3132
3133 while (dl < fence)
3134 *dl++ = *sl;
3135
3136 dst += (amount & ~3);
3137 amount &= 3;
3138
3139 }
3140
3141 /* Finish off any words left, as a series of short reads */
3142 if (amount > 1) {
3143 u_short *d = (u_short *) dst;
3144 volatile u_short *const s =
3145 (u_short *) sc->hpp_mem_start;
3146 u_short *const fence = d + (amount >> 1);
3147
3148 /* Copy out NIC data. */
3149
3150 while (d < fence)
3151 *d++ = *s;
3152
3153 dst += (amount & ~1);
3154 amount &= 1;
3155 }
3156
3157 /*
3158 * read in a byte; however we need to always read 16 bits
3159 * at a time or the hardware gets into a funny state
3160 */
3161
3162 if (amount == 1) {
3163 /* need to read in a short and copy LSB */
3164 volatile u_short *const s =
3165 (volatile u_short *) sc->hpp_mem_start;
3166
3167 *dst = (*s) & 0xFF;
3168 }
3169
3170 /* Restore Boot ROM access. */
3171
3172 outw(sc->asic_addr + ED_HPP_OPTION,
3173 sc->hpp_options);
3174
3175
3176 } else {
3177 /* Read in data using the I/O port */
3178 if (use_32bit_access && (amount > 3)) {
3179 insl(sc->asic_addr + ED_HPP_PAGE_4, dst, amount >> 2);
3180 dst += (amount & ~3);
3181 amount &= 3;
3182 }
3183 if (amount > 1) {
3184 insw(sc->asic_addr + ED_HPP_PAGE_4, dst, amount >> 1);
3185 dst += (amount & ~1);
3186 amount &= 1;
3187 }
3188 if (amount == 1) { /* read in a short and keep the LSB */
3189 *dst = inw(sc->asic_addr + ED_HPP_PAGE_4) & 0xFF;
3190 }
3191 }
3192}
3193
3194/*
3195 * Write to HP PC Lan+ NIC memory. Access to the NIC can be by using
3196 * outsw() or via the memory mapped interface to the same register.
3197 * Writes have to be in word units; byte accesses won't work and may cause
3198 * the NIC to behave wierdly. Long word accesses are permitted if the ASIC
3199 * allows it.
3200 */
3201
3202static u_short
3203ed_hpp_write_mbufs(struct ed_softc *sc, struct mbuf *m, int dst)
3204{
3205 int len, wantbyte;
3206 unsigned short total_len;
3207 unsigned char savebyte[2];
3208 volatile u_short * const d =
3209 (volatile u_short *) sc->hpp_mem_start;
3210 int use_32bit_accesses = !(sc->hpp_id & ED_HPP_ID_16_BIT_ACCESS);
3211
3212 /* select page 0 registers */
3213 outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_STA);
3214
3215 /* reset remote DMA complete flag */
3216 outb(sc->nic_addr + ED_P0_ISR, ED_ISR_RDC);
3217
3218 /* program the write address in RAM */
3219 outw(sc->asic_addr + ED_HPP_PAGE_0, dst);
3220
3221 if (sc->hpp_mem_start) /* enable memory mapped I/O */
3222 outw(sc->asic_addr + ED_HPP_OPTION, sc->hpp_options &
3223 ~(ED_HPP_OPTION_MEM_DISABLE |
3224 ED_HPP_OPTION_BOOT_ROM_ENB));
3225
3226 wantbyte = 0;
3227 total_len = 0;
3228
3229 if (sc->hpp_mem_start) { /* Memory mapped I/O port */
3230 while (m) {
3231 total_len += (len = m->m_len);
3232 if (len) {
3233 caddr_t data = mtod(m, caddr_t);
3234 /* finish the last word of the previous mbuf */
3235 if (wantbyte) {
3236 savebyte[1] = *data;
3237 *d = *((ushort *) savebyte);
3238 data++; len--; wantbyte = 0;
3239 }
3240 /* output contiguous words */
3241 if ((len > 3) && (use_32bit_accesses)) {
3242 volatile u_long *const dl =
3243 (volatile u_long *) d;
3244 u_long *sl = (u_long *) data;
3245 u_long *fence = sl + (len >> 2);
3246
3247 while (sl < fence)
3248 *dl = *sl++;
3249
3250 data += (len & ~3);
3251 len &= 3;
3252 }
3253 /* finish off remain 16 bit writes */
3254 if (len > 1) {
3255 u_short *s = (u_short *) data;
3256 u_short *fence = s + (len >> 1);
3257
3258 while (s < fence)
3259 *d = *s++;
3260
3261 data += (len & ~1);
3262 len &= 1;
3263 }
3264 /* save last byte if needed */
3265 if ((wantbyte = (len == 1)) != 0)
3266 savebyte[0] = *data;
3267 }
3268 m = m->m_next; /* to next mbuf */
3269 }
3270 if (wantbyte) /* write last byte */
3271 *d = *((u_short *) savebyte);
3272 } else {
3273 /* use programmed I/O */
3274 while (m) {
3275 total_len += (len = m->m_len);
3276 if (len) {
3277 caddr_t data = mtod(m, caddr_t);
3278 /* finish the last word of the previous mbuf */
3279 if (wantbyte) {
3280 savebyte[1] = *data;
3281 outw(sc->asic_addr + ED_HPP_PAGE_4,
3282 *((u_short *)savebyte));
3283 data++;
3284 len--;
3285 wantbyte = 0;
3286 }
3287 /* output contiguous words */
3288 if ((len > 3) && use_32bit_accesses) {
3289 outsl(sc->asic_addr + ED_HPP_PAGE_4,
3290 data, len >> 2);
3291 data += (len & ~3);
3292 len &= 3;
3293 }
3294 /* finish off remaining 16 bit accesses */
3295 if (len > 1) {
3296 outsw(sc->asic_addr + ED_HPP_PAGE_4,
3297 data, len >> 1);
3298 data += (len & ~1);
3299 len &= 1;
3300 }
3301 if ((wantbyte = (len == 1)) != 0)
3302 savebyte[0] = *data;
3303
3304 } /* if len != 0 */
3305 m = m->m_next;
3306 }
3307 if (wantbyte) /* spit last byte */
3308 outw(sc->asic_addr + ED_HPP_PAGE_4,
3309 *(u_short *)savebyte);
3310
3311 }
3312
3313 if (sc->hpp_mem_start) /* turn off memory mapped i/o */
3314 outw(sc->asic_addr + ED_HPP_OPTION,
3315 sc->hpp_options);
3316
3317 return (total_len);
3318}
3319
3320static void
3321ed_setrcr(sc)
3322 struct ed_softc *sc;
3323{
3324 struct ifnet *ifp = (struct ifnet *)sc;
3325 int i;
3326
3327 /* set page 1 registers */
3328 outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STP);
3329
3330 if (ifp->if_flags & IFF_PROMISC) {
3331
3332 /*
3333 * Reconfigure the multicast filter.
3334 */
3335 for (i = 0; i < 8; i++)
3336 outb(sc->nic_addr + ED_P1_MAR(i), 0xff);
3337
3338 /*
3339 * And turn on promiscuous mode. Also enable reception of
3340 * runts and packets with CRC & alignment errors.
3341 */
3342 /* Set page 0 registers */
3343 outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_STP);
3344
3345 outb(sc->nic_addr + ED_P0_RCR, ED_RCR_PRO | ED_RCR_AM |
3346 ED_RCR_AB | ED_RCR_AR | ED_RCR_SEP);
3347 } else {
3348 /* set up multicast addresses and filter modes */
3349 if (ifp->if_flags & IFF_MULTICAST) {
3350 u_long mcaf[2];
3351
3352 if (ifp->if_flags & IFF_ALLMULTI) {
3353 mcaf[0] = 0xffffffff;
3354 mcaf[1] = 0xffffffff;
3355 } else
3356 ds_getmcaf(sc, mcaf);
3357
3358 /*
3359 * Set multicast filter on chip.
3360 */
3361 for (i = 0; i < 8; i++)
3362 outb(sc->nic_addr + ED_P1_MAR(i), ((u_char *) mcaf)[i]);
3363
3364 /* Set page 0 registers */
3365 outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_STP);
3366
3367 outb(sc->nic_addr + ED_P0_RCR, ED_RCR_AM | ED_RCR_AB);
3368 } else {
3369
3370 /*
3371 * Initialize multicast address hashing registers to
3372 * not accept multicasts.
3373 */
3374 for (i = 0; i < 8; ++i)
3375 outb(sc->nic_addr + ED_P1_MAR(i), 0x00);
3376
3377 /* Set page 0 registers */
3378 outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_STP);
3379
3380 outb(sc->nic_addr + ED_P0_RCR, ED_RCR_AB);
3381 }
3382 }
3383
3384 /*
3385 * Start interface.
3386 */
3387 outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_STA);
3388}
3389
3390/*
3391 * Compute crc for ethernet address
3392 */
3393static u_long
3394ds_crc(ep)
3395 u_char *ep;
3396{
3397#define POLYNOMIAL 0x04c11db6
3398 register u_long crc = 0xffffffffL;
3399 register int carry, i, j;
3400 register u_char b;
3401
3402 for (i = 6; --i >= 0;) {
3403 b = *ep++;
3404 for (j = 8; --j >= 0;) {
3405 carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
3406 crc <<= 1;
3407 b >>= 1;
3408 if (carry)
3409 crc = ((crc ^ POLYNOMIAL) | carry);
3410 }
3411 }
3412 return crc;
3413#undef POLYNOMIAL
3414}
3415
3416/*
3417 * Compute the multicast address filter from the
3418 * list of multicast addresses we need to listen to.
3419 */
3420static void
3421ds_getmcaf(sc, mcaf)
3422 struct ed_softc *sc;
3423 u_long *mcaf;
3424{
3425 register u_int index;
3426 register u_char *af = (u_char *) mcaf;
3427 struct ifmultiaddr *ifma;
3428
3429 mcaf[0] = 0;
3430 mcaf[1] = 0;
3431
3432 for (ifma = sc->arpcom.ac_if.if_multiaddrs.lh_first; ifma;
3433 ifma = ifma->ifma_link.le_next) {
3434 if (ifma->ifma_addr->sa_family != AF_LINK)
3435 continue;
3436 index = ds_crc(LLADDR((struct sockaddr_dl *)ifma->ifma_addr))
3437 >> 26;
3438 af[index >> 3] |= 1 << (index & 7);
3439 }
3440}
3441
3442/*
3443 * support PnP cards if we are using 'em
3444 */
3445
3446#if NPNP > 0
3447
3448static pnpid_t edpnp_ids[] = {
3449 { 0xd680d041, "NE2000"},
3450 { 0 }
3451};
3452
3453static char *edpnp_probe(u_long csn, u_long vend_id);
3454static void edpnp_attach(u_long csn, u_long vend_id, char *name,
3455 struct isa_device *dev);
3456static u_long nedpnp = NED;
3457
3458static struct pnp_device edpnp = {
3459 "edpnp",
3460 edpnp_probe,
3461 edpnp_attach,
3462 &nedpnp,
3463 &net_imask
3464};
3465DATA_SET (pnpdevice_set, edpnp);
3466
3467static char *
3468edpnp_probe(u_long csn, u_long vend_id)
3469{
3470 pnpid_t *id;
3471 char *s = NULL;
3472
3473 for(id = edpnp_ids; id->vend_id != 0; id++) {
3474 if (vend_id == id->vend_id) {
3475 s = id->id_str;
3476 break;
3477 }
3478 }
3479
3480 if (s) {
3481 struct pnp_cinfo d;
3482 read_pnp_parms(&d, 0);
3483 if (d.enable == 0 || d.flags & 1) {
3484 printf("CSN %lu is disabled.\n", csn);
3485 return (NULL);
3486 }
3487
3488 }
3489
3490 return (s);
3491}
3492
3493static void
3494edpnp_attach(u_long csn, u_long vend_id, char *name, struct isa_device *dev)
3495{
3496 struct pnp_cinfo d;
3497
3498 if (dev->id_unit >= NEDTOT)
3499 return;
3500
3501 if (read_pnp_parms(&d, 0) == 0) {
3502 printf("failed to read pnp parms\n");
3503 return;
3504 }
3505
3506 write_pnp_parms(&d, 0);
3507
3508 enable_pnp_card();
3509
3510 dev->id_iobase = d.port[0];
3511 dev->id_irq = (1 << d.irq[0]);
3512 dev->id_ointr = edintr;
3513 dev->id_drq = -1;
3514
3515 if (dev->id_driver == NULL) {
3516 dev->id_driver = &eddriver;
3517 dev->id_id = isa_compat_nextid();
3518 }
3519
3520 if ((dev->id_alive = ed_probe(dev)) != 0)
3521 ed_attach_isa(dev);
3522 else
3523 printf("ed%d: probe failed\n", dev->id_unit);
3524}
3525#endif