Deleted Added
full compact
1/*
2 * Copyright �� 2008,2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Chris Wilson <chris@chris-wilson.co.uk>
26 *
27 */
28
29#include <sys/cdefs.h>
30__FBSDID("$FreeBSD: stable/10/sys/dev/drm2/i915/i915_gem_execbuffer.c 282199 2015-04-28 19:35:05Z dumbbell $");
30__FBSDID("$FreeBSD: stable/10/sys/dev/drm2/i915/i915_gem_execbuffer.c 290454 2015-11-06 16:48:33Z jhb $");
31
32#include <dev/drm2/drmP.h>
33#include <dev/drm2/drm.h>
34#include <dev/drm2/i915/i915_drm.h>
35#include <dev/drm2/i915/i915_drv.h>
36#include <dev/drm2/i915/intel_drv.h>
37#include <sys/limits.h>
38#include <sys/sf_buf.h>
39
40struct change_domains {
41 uint32_t invalidate_domains;
42 uint32_t flush_domains;
43 uint32_t flush_rings;
44 uint32_t flips;
45};
46
47/*
48 * Set the next domain for the specified object. This
49 * may not actually perform the necessary flushing/invaliding though,
50 * as that may want to be batched with other set_domain operations
51 *
52 * This is (we hope) the only really tricky part of gem. The goal
53 * is fairly simple -- track which caches hold bits of the object
54 * and make sure they remain coherent. A few concrete examples may
55 * help to explain how it works. For shorthand, we use the notation
56 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
57 * a pair of read and write domain masks.
58 *
59 * Case 1: the batch buffer
60 *
61 * 1. Allocated
62 * 2. Written by CPU
63 * 3. Mapped to GTT
64 * 4. Read by GPU
65 * 5. Unmapped from GTT
66 * 6. Freed
67 *
68 * Let's take these a step at a time
69 *
70 * 1. Allocated
71 * Pages allocated from the kernel may still have
72 * cache contents, so we set them to (CPU, CPU) always.
73 * 2. Written by CPU (using pwrite)
74 * The pwrite function calls set_domain (CPU, CPU) and
75 * this function does nothing (as nothing changes)
76 * 3. Mapped by GTT
77 * This function asserts that the object is not
78 * currently in any GPU-based read or write domains
79 * 4. Read by GPU
80 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
81 * As write_domain is zero, this function adds in the
82 * current read domains (CPU+COMMAND, 0).
83 * flush_domains is set to CPU.
84 * invalidate_domains is set to COMMAND
85 * clflush is run to get data out of the CPU caches
86 * then i915_dev_set_domain calls i915_gem_flush to
87 * emit an MI_FLUSH and drm_agp_chipset_flush
88 * 5. Unmapped from GTT
89 * i915_gem_object_unbind calls set_domain (CPU, CPU)
90 * flush_domains and invalidate_domains end up both zero
91 * so no flushing/invalidating happens
92 * 6. Freed
93 * yay, done
94 *
95 * Case 2: The shared render buffer
96 *
97 * 1. Allocated
98 * 2. Mapped to GTT
99 * 3. Read/written by GPU
100 * 4. set_domain to (CPU,CPU)
101 * 5. Read/written by CPU
102 * 6. Read/written by GPU
103 *
104 * 1. Allocated
105 * Same as last example, (CPU, CPU)
106 * 2. Mapped to GTT
107 * Nothing changes (assertions find that it is not in the GPU)
108 * 3. Read/written by GPU
109 * execbuffer calls set_domain (RENDER, RENDER)
110 * flush_domains gets CPU
111 * invalidate_domains gets GPU
112 * clflush (obj)
113 * MI_FLUSH and drm_agp_chipset_flush
114 * 4. set_domain (CPU, CPU)
115 * flush_domains gets GPU
116 * invalidate_domains gets CPU
117 * wait_rendering (obj) to make sure all drawing is complete.
118 * This will include an MI_FLUSH to get the data from GPU
119 * to memory
120 * clflush (obj) to invalidate the CPU cache
121 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
122 * 5. Read/written by CPU
123 * cache lines are loaded and dirtied
124 * 6. Read written by GPU
125 * Same as last GPU access
126 *
127 * Case 3: The constant buffer
128 *
129 * 1. Allocated
130 * 2. Written by CPU
131 * 3. Read by GPU
132 * 4. Updated (written) by CPU again
133 * 5. Read by GPU
134 *
135 * 1. Allocated
136 * (CPU, CPU)
137 * 2. Written by CPU
138 * (CPU, CPU)
139 * 3. Read by GPU
140 * (CPU+RENDER, 0)
141 * flush_domains = CPU
142 * invalidate_domains = RENDER
143 * clflush (obj)
144 * MI_FLUSH
145 * drm_agp_chipset_flush
146 * 4. Updated (written) by CPU again
147 * (CPU, CPU)
148 * flush_domains = 0 (no previous write domain)
149 * invalidate_domains = 0 (no new read domains)
150 * 5. Read by GPU
151 * (CPU+RENDER, 0)
152 * flush_domains = CPU
153 * invalidate_domains = RENDER
154 * clflush (obj)
155 * MI_FLUSH
156 * drm_agp_chipset_flush
157 */
158static void
159i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj,
160 struct intel_ring_buffer *ring,
161 struct change_domains *cd)
162{
163 uint32_t invalidate_domains = 0, flush_domains = 0;
164
165 /*
166 * If the object isn't moving to a new write domain,
167 * let the object stay in multiple read domains
168 */
169 if (obj->base.pending_write_domain == 0)
170 obj->base.pending_read_domains |= obj->base.read_domains;
171
172 /*
173 * Flush the current write domain if
174 * the new read domains don't match. Invalidate
175 * any read domains which differ from the old
176 * write domain
177 */
178 if (obj->base.write_domain &&
179 (((obj->base.write_domain != obj->base.pending_read_domains ||
180 obj->ring != ring)) ||
181 (obj->fenced_gpu_access && !obj->pending_fenced_gpu_access))) {
182 flush_domains |= obj->base.write_domain;
183 invalidate_domains |=
184 obj->base.pending_read_domains & ~obj->base.write_domain;
185 }
186 /*
187 * Invalidate any read caches which may have
188 * stale data. That is, any new read domains.
189 */
190 invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains;
191 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
192 i915_gem_clflush_object(obj);
193
194 if (obj->base.pending_write_domain)
195 cd->flips |= atomic_load_acq_int(&obj->pending_flip);
196
197 /* The actual obj->write_domain will be updated with
198 * pending_write_domain after we emit the accumulated flush for all
199 * of our domain changes in execbuffers (which clears objects'
200 * write_domains). So if we have a current write domain that we
201 * aren't changing, set pending_write_domain to that.
202 */
203 if (flush_domains == 0 && obj->base.pending_write_domain == 0)
204 obj->base.pending_write_domain = obj->base.write_domain;
205
206 cd->invalidate_domains |= invalidate_domains;
207 cd->flush_domains |= flush_domains;
208 if (flush_domains & I915_GEM_GPU_DOMAINS)
209 cd->flush_rings |= intel_ring_flag(obj->ring);
210 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
211 cd->flush_rings |= intel_ring_flag(ring);
212}
213
214struct eb_objects {
215 u_long hashmask;
216 LIST_HEAD(, drm_i915_gem_object) *buckets;
217};
218
219static struct eb_objects *
220eb_create(int size)
221{
222 struct eb_objects *eb;
223
224 eb = malloc(sizeof(*eb), DRM_I915_GEM, M_WAITOK | M_ZERO);
225 eb->buckets = hashinit(size, DRM_I915_GEM, &eb->hashmask);
226 return (eb);
227}
228
229static void
230eb_reset(struct eb_objects *eb)
231{
232 int i;
233
234 for (i = 0; i <= eb->hashmask; i++)
235 LIST_INIT(&eb->buckets[i]);
236}
237
238static void
239eb_add_object(struct eb_objects *eb, struct drm_i915_gem_object *obj)
240{
241
242 LIST_INSERT_HEAD(&eb->buckets[obj->exec_handle & eb->hashmask],
243 obj, exec_node);
244}
245
246static struct drm_i915_gem_object *
247eb_get_object(struct eb_objects *eb, unsigned long handle)
248{
249 struct drm_i915_gem_object *obj;
250
251 LIST_FOREACH(obj, &eb->buckets[handle & eb->hashmask], exec_node) {
252 if (obj->exec_handle == handle)
253 return (obj);
254 }
255 return (NULL);
256}
257
258static void
259eb_destroy(struct eb_objects *eb)
260{
261
262 free(eb->buckets, DRM_I915_GEM);
263 free(eb, DRM_I915_GEM);
264}
265
266static inline int use_cpu_reloc(struct drm_i915_gem_object *obj)
267{
268 return (obj->base.write_domain == I915_GEM_DOMAIN_CPU ||
269 obj->cache_level != I915_CACHE_NONE);
270}
271
272static int
273i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
274 struct eb_objects *eb,
275 struct drm_i915_gem_relocation_entry *reloc)
276{
277 struct drm_device *dev = obj->base.dev;
278 struct drm_gem_object *target_obj;
279 struct drm_i915_gem_object *target_i915_obj;
280 uint32_t target_offset;
281 int ret = -EINVAL;
282
283 /* we've already hold a reference to all valid objects */
284 target_obj = &eb_get_object(eb, reloc->target_handle)->base;
285 if (unlikely(target_obj == NULL))
286 return -ENOENT;
287
288 target_i915_obj = to_intel_bo(target_obj);
289 target_offset = target_i915_obj->gtt_offset;
290
291#if WATCH_RELOC
292 DRM_INFO("%s: obj %p offset %08x target %d "
293 "read %08x write %08x gtt %08x "
294 "presumed %08x delta %08x\n",
295 __func__,
296 obj,
297 (int) reloc->offset,
298 (int) reloc->target_handle,
299 (int) reloc->read_domains,
300 (int) reloc->write_domain,
301 (int) target_offset,
302 (int) reloc->presumed_offset,
303 reloc->delta);
304#endif
305
306 /* The target buffer should have appeared before us in the
307 * exec_object list, so it should have a GTT space bound by now.
308 */
309 if (unlikely(target_offset == 0)) {
310 DRM_DEBUG("No GTT space found for object %d\n",
311 reloc->target_handle);
312 return ret;
313 }
314
315 /* Validate that the target is in a valid r/w GPU domain */
316 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
317 DRM_DEBUG("reloc with multiple write domains: "
318 "obj %p target %d offset %d "
319 "read %08x write %08x",
320 obj, reloc->target_handle,
321 (int) reloc->offset,
322 reloc->read_domains,
323 reloc->write_domain);
324 return ret;
325 }
326 if (unlikely((reloc->write_domain | reloc->read_domains)
327 & ~I915_GEM_GPU_DOMAINS)) {
328 DRM_DEBUG("reloc with read/write non-GPU domains: "
329 "obj %p target %d offset %d "
330 "read %08x write %08x",
331 obj, reloc->target_handle,
332 (int) reloc->offset,
333 reloc->read_domains,
334 reloc->write_domain);
335 return ret;
336 }
337 if (unlikely(reloc->write_domain && target_obj->pending_write_domain &&
338 reloc->write_domain != target_obj->pending_write_domain)) {
339 DRM_DEBUG("Write domain conflict: "
340 "obj %p target %d offset %d "
341 "new %08x old %08x\n",
342 obj, reloc->target_handle,
343 (int) reloc->offset,
344 reloc->write_domain,
345 target_obj->pending_write_domain);
346 return ret;
347 }
348
349 target_obj->pending_read_domains |= reloc->read_domains;
350 target_obj->pending_write_domain |= reloc->write_domain;
351
352 /* If the relocation already has the right value in it, no
353 * more work needs to be done.
354 */
355 if (target_offset == reloc->presumed_offset)
356 return 0;
357
358 /* Check that the relocation address is valid... */
359 if (unlikely(reloc->offset > obj->base.size - 4)) {
360 DRM_DEBUG("Relocation beyond object bounds: "
361 "obj %p target %d offset %d size %d.\n",
362 obj, reloc->target_handle,
363 (int) reloc->offset,
364 (int) obj->base.size);
365 return ret;
366 }
367 if (unlikely(reloc->offset & 3)) {
368 DRM_DEBUG("Relocation not 4-byte aligned: "
369 "obj %p target %d offset %d.\n",
370 obj, reloc->target_handle,
371 (int) reloc->offset);
372 return ret;
373 }
374
375 /* We can't wait for rendering with pagefaults disabled */
376 if (obj->active && (curthread->td_pflags & TDP_NOFAULTING) != 0)
377 return (-EFAULT);
378
379 reloc->delta += target_offset;
380 if (use_cpu_reloc(obj)) {
381 uint32_t page_offset = reloc->offset & PAGE_MASK;
382 char *vaddr;
383 struct sf_buf *sf;
384
385 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
386 if (ret)
387 return ret;
388
389 sf = sf_buf_alloc(obj->pages[OFF_TO_IDX(reloc->offset)],
390 SFB_NOWAIT);
391 if (sf == NULL)
392 return (-ENOMEM);
393 vaddr = (void *)sf_buf_kva(sf);
394 *(uint32_t *)(vaddr + page_offset) = reloc->delta;
395 sf_buf_free(sf);
396 } else {
397 uint32_t *reloc_entry;
398 char *reloc_page;
399
400 ret = i915_gem_object_set_to_gtt_domain(obj, true);
401 if (ret)
402 return ret;
403
404 ret = i915_gem_object_put_fence(obj);
405 if (ret)
406 return ret;
407
408 /*
409 * Map the page containing the relocation we're going
410 * to perform.
411 */
412 reloc->offset += obj->gtt_offset;
413 reloc_page = pmap_mapdev_attr(dev->agp->base + (reloc->offset &
414 ~PAGE_MASK), PAGE_SIZE, PAT_WRITE_COMBINING);
415 reloc_entry = (uint32_t *)(reloc_page + (reloc->offset &
416 PAGE_MASK));
417 *(volatile uint32_t *)reloc_entry = reloc->delta;
418 pmap_unmapdev((vm_offset_t)reloc_page, PAGE_SIZE);
419 }
420
421 /* Sandybridge PPGTT errata: We need a global gtt mapping for MI and
422 * pipe_control writes because the gpu doesn't properly redirect them
423 * through the ppgtt for non_secure batchbuffers. */
424 if (unlikely(IS_GEN6(dev) &&
425 reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
426 !target_i915_obj->has_global_gtt_mapping)) {
427 i915_gem_gtt_bind_object(target_i915_obj,
428 target_i915_obj->cache_level);
429 }
430
431 /* and update the user's relocation entry */
432 reloc->presumed_offset = target_offset;
433
434 return 0;
435}
436
437static int
438i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
439 struct eb_objects *eb)
440{
441#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
442 struct drm_i915_gem_relocation_entry stack_reloc[N_RELOC(512)];
443 struct drm_i915_gem_relocation_entry *user_relocs;
444 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
445 int remain, ret;
446
447 user_relocs = (void *)(uintptr_t)entry->relocs_ptr;
448 remain = entry->relocation_count;
449 while (remain) {
450 struct drm_i915_gem_relocation_entry *r = stack_reloc;
451 int count = remain;
452 if (count > DRM_ARRAY_SIZE(stack_reloc))
453 count = DRM_ARRAY_SIZE(stack_reloc);
454 remain -= count;
455
456 ret = -copyin_nofault(user_relocs, r, count*sizeof(r[0]));
457 if (ret != 0)
458 return (ret);
459
460 do {
461 u64 offset = r->presumed_offset;
462
463 ret = i915_gem_execbuffer_relocate_entry(obj, eb, r);
464 if (ret)
465 return ret;
466
467 if (r->presumed_offset != offset &&
468 copyout_nofault(&r->presumed_offset,
469 &user_relocs->presumed_offset,
470 sizeof(r->presumed_offset))) {
471 return -EFAULT;
472 }
473
474 user_relocs++;
475 r++;
476 } while (--count);
477 }
478#undef N_RELOC
479 return (0);
480}
481
482static int
483i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
484 struct eb_objects *eb, struct drm_i915_gem_relocation_entry *relocs)
485{
486 const struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
487 int i, ret;
488
489 for (i = 0; i < entry->relocation_count; i++) {
490 ret = i915_gem_execbuffer_relocate_entry(obj, eb, &relocs[i]);
491 if (ret)
492 return ret;
493 }
494
495 return 0;
496}
497
498static int
499i915_gem_execbuffer_relocate(struct drm_device *dev,
500 struct eb_objects *eb,
501 struct list_head *objects)
502{
503 struct drm_i915_gem_object *obj;
504 int ret, pflags;
505
506 /* Try to move as many of the relocation targets off the active list
507 * to avoid unnecessary fallbacks to the slow path, as we cannot wait
508 * for the retirement with pagefaults disabled.
509 */
510 i915_gem_retire_requests(dev);
511
512 ret = 0;
513 pflags = vm_fault_disable_pagefaults();
514 /* This is the fast path and we cannot handle a pagefault whilst
515 * holding the device lock lest the user pass in the relocations
516 * contained within a mmaped bo. For in such a case we, the page
517 * fault handler would call i915_gem_fault() and we would try to
518 * acquire the device lock again. Obviously this is bad.
519 */
520
521 list_for_each_entry(obj, objects, exec_list) {
522 ret = i915_gem_execbuffer_relocate_object(obj, eb);
523 if (ret != 0)
524 break;
525 }
526 vm_fault_enable_pagefaults(pflags);
527 return (ret);
528}
529
530#define __EXEC_OBJECT_HAS_FENCE (1<<31)
531
532static int
533need_reloc_mappable(struct drm_i915_gem_object *obj)
534{
535 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
536 return entry->relocation_count && !use_cpu_reloc(obj);
537}
538
539static int
540pin_and_fence_object(struct drm_i915_gem_object *obj,
541 struct intel_ring_buffer *ring)
542{
543 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
544 bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
545 bool need_fence, need_mappable;
546 int ret;
547
548 need_fence =
549 has_fenced_gpu_access &&
550 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
551 obj->tiling_mode != I915_TILING_NONE;
552 need_mappable = need_fence || need_reloc_mappable(obj);
553
554 ret = i915_gem_object_pin(obj, entry->alignment, need_mappable);
555 if (ret)
556 return ret;
557
558 if (has_fenced_gpu_access) {
559 if (entry->flags & EXEC_OBJECT_NEEDS_FENCE) {
560 ret = i915_gem_object_get_fence(obj);
561 if (ret)
562 goto err_unpin;
563
564 if (i915_gem_object_pin_fence(obj))
565 entry->flags |= __EXEC_OBJECT_HAS_FENCE;
566
567 obj->pending_fenced_gpu_access = true;
568 }
569 }
570
571 entry->offset = obj->gtt_offset;
572 return 0;
573
574err_unpin:
575 i915_gem_object_unpin(obj);
576 return ret;
577}
578
579static int
580i915_gem_execbuffer_reserve(struct intel_ring_buffer *ring,
581 struct drm_file *file,
582 struct list_head *objects)
583{
584 drm_i915_private_t *dev_priv;
585 struct drm_i915_gem_object *obj;
586 int ret, retry;
587 bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
588 struct list_head ordered_objects;
589
590 dev_priv = ring->dev->dev_private;
591 INIT_LIST_HEAD(&ordered_objects);
592 while (!list_empty(objects)) {
593 struct drm_i915_gem_exec_object2 *entry;
594 bool need_fence, need_mappable;
595
596 obj = list_first_entry(objects,
597 struct drm_i915_gem_object,
598 exec_list);
599 entry = obj->exec_entry;
600
601 need_fence =
602 has_fenced_gpu_access &&
603 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
604 obj->tiling_mode != I915_TILING_NONE;
605 need_mappable = need_fence || need_reloc_mappable(obj);
606
607 if (need_mappable)
608 list_move(&obj->exec_list, &ordered_objects);
609 else
610 list_move_tail(&obj->exec_list, &ordered_objects);
611
612 obj->base.pending_read_domains = 0;
613 obj->base.pending_write_domain = 0;
614 }
615 list_splice(&ordered_objects, objects);
616
617 /* Attempt to pin all of the buffers into the GTT.
618 * This is done in 3 phases:
619 *
620 * 1a. Unbind all objects that do not match the GTT constraints for
621 * the execbuffer (fenceable, mappable, alignment etc).
622 * 1b. Increment pin count for already bound objects and obtain
623 * a fence register if required.
624 * 2. Bind new objects.
625 * 3. Decrement pin count.
626 *
627 * This avoid unnecessary unbinding of later objects in order to makr
628 * room for the earlier objects *unless* we need to defragment.
629 */
630 retry = 0;
631 do {
632 ret = 0;
633
634 /* Unbind any ill-fitting objects or pin. */
635 list_for_each_entry(obj, objects, exec_list) {
636 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
637 bool need_fence, need_mappable;
638
639 if (!obj->gtt_space)
640 continue;
641
642 need_fence =
643 has_fenced_gpu_access &&
644 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
645 obj->tiling_mode != I915_TILING_NONE;
646 need_mappable = need_fence || need_reloc_mappable(obj);
647
648 if ((entry->alignment && obj->gtt_offset & (entry->alignment - 1)) ||
649 (need_mappable && !obj->map_and_fenceable))
650 ret = i915_gem_object_unbind(obj);
651 else
652 ret = pin_and_fence_object(obj, ring);
653 if (ret)
654 goto err;
655 }
656
657 /* Bind fresh objects */
658 list_for_each_entry(obj, objects, exec_list) {
659 if (obj->gtt_space)
660 continue;
661
662 ret = pin_and_fence_object(obj, ring);
663 if (ret) {
664 int ret_ignore;
665
666 /* This can potentially raise a harmless
667 * -EINVAL if we failed to bind in the above
668 * call. It cannot raise -EINTR since we know
669 * that the bo is freshly bound and so will
670 * not need to be flushed or waited upon.
671 */
672 ret_ignore = i915_gem_object_unbind(obj);
673 (void)ret_ignore;
674 if (obj->gtt_space != NULL)
675 printf("%s: gtt_space\n", __func__);
676 break;
677 }
678 }
679
680 /* Decrement pin count for bound objects */
681 list_for_each_entry(obj, objects, exec_list) {
682 struct drm_i915_gem_exec_object2 *entry;
683
684 if (!obj->gtt_space)
685 continue;
686
687 entry = obj->exec_entry;
688 if (entry->flags & __EXEC_OBJECT_HAS_FENCE) {
689 i915_gem_object_unpin_fence(obj);
690 entry->flags &= ~__EXEC_OBJECT_HAS_FENCE;
691 }
692
693 i915_gem_object_unpin(obj);
694
695 /* ... and ensure ppgtt mapping exist if needed. */
696 if (dev_priv->mm.aliasing_ppgtt && !obj->has_aliasing_ppgtt_mapping) {
697 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
698 obj, obj->cache_level);
699
700 obj->has_aliasing_ppgtt_mapping = 1;
701 }
702 }
703
704 if (ret != -ENOSPC || retry > 1)
705 return ret;
706
707 /* First attempt, just clear anything that is purgeable.
708 * Second attempt, clear the entire GTT.
709 */
710 ret = i915_gem_evict_everything(ring->dev, retry == 0);
711 if (ret)
712 return ret;
713
714 retry++;
715 } while (1);
716
717err:
718 list_for_each_entry_continue_reverse(obj, objects, exec_list) {
719 struct drm_i915_gem_exec_object2 *entry;
720
721 if (!obj->gtt_space)
722 continue;
723
724 entry = obj->exec_entry;
725 if (entry->flags & __EXEC_OBJECT_HAS_FENCE) {
726 i915_gem_object_unpin_fence(obj);
727 entry->flags &= ~__EXEC_OBJECT_HAS_FENCE;
728 }
729
730 i915_gem_object_unpin(obj);
731 }
732
733 return ret;
734}
735
736static int
737i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
738 struct drm_file *file, struct intel_ring_buffer *ring,
739 struct list_head *objects, struct eb_objects *eb,
740 struct drm_i915_gem_exec_object2 *exec, int count)
741{
742 struct drm_i915_gem_relocation_entry *reloc;
743 struct drm_i915_gem_object *obj;
744 int *reloc_offset;
745 int i, total, ret;
746
747 /* We may process another execbuffer during the unlock... */
748 while (!list_empty(objects)) {
749 obj = list_first_entry(objects,
750 struct drm_i915_gem_object,
751 exec_list);
752 list_del_init(&obj->exec_list);
753 drm_gem_object_unreference(&obj->base);
754 }
755
756 DRM_UNLOCK(dev);
757
758 total = 0;
759 for (i = 0; i < count; i++)
760 total += exec[i].relocation_count;
761
762 reloc_offset = malloc(count * sizeof(*reloc_offset), DRM_I915_GEM,
763 M_WAITOK | M_ZERO);
764 reloc = malloc(total * sizeof(*reloc), DRM_I915_GEM, M_WAITOK | M_ZERO);
765
766 total = 0;
767 for (i = 0; i < count; i++) {
768 struct drm_i915_gem_relocation_entry *user_relocs;
769
770 user_relocs = (void *)(uintptr_t)exec[i].relocs_ptr;
771 ret = -copyin(user_relocs, reloc + total,
772 exec[i].relocation_count * sizeof(*reloc));
773 if (ret != 0) {
774 DRM_LOCK(dev);
775 goto err;
776 }
777
778 reloc_offset[i] = total;
779 total += exec[i].relocation_count;
780 }
781
782 ret = i915_mutex_lock_interruptible(dev);
783 if (ret) {
784 DRM_LOCK(dev);
785 goto err;
786 }
787
788 /* reacquire the objects */
789 eb_reset(eb);
790 for (i = 0; i < count; i++) {
791 struct drm_i915_gem_object *obj;
792
793 obj = to_intel_bo(drm_gem_object_lookup(dev, file,
794 exec[i].handle));
795 if (&obj->base == NULL) {
796 DRM_DEBUG("Invalid object handle %d at index %d\n",
797 exec[i].handle, i);
798 ret = -ENOENT;
799 goto err;
800 }
801
802 list_add_tail(&obj->exec_list, objects);
803 obj->exec_handle = exec[i].handle;
804 obj->exec_entry = &exec[i];
805 eb_add_object(eb, obj);
806 }
807
808 ret = i915_gem_execbuffer_reserve(ring, file, objects);
809 if (ret)
810 goto err;
811
812 list_for_each_entry(obj, objects, exec_list) {
813 int offset = obj->exec_entry - exec;
814 ret = i915_gem_execbuffer_relocate_object_slow(obj, eb,
815 reloc + reloc_offset[offset]);
816 if (ret)
817 goto err;
818 }
819
820 /* Leave the user relocations as are, this is the painfully slow path,
821 * and we want to avoid the complication of dropping the lock whilst
822 * having buffers reserved in the aperture and so causing spurious
823 * ENOSPC for random operations.
824 */
825
826err:
827 free(reloc, DRM_I915_GEM);
828 free(reloc_offset, DRM_I915_GEM);
829 return ret;
830}
831
832static int
833i915_gem_execbuffer_flush(struct drm_device *dev,
834 uint32_t invalidate_domains,
835 uint32_t flush_domains,
836 uint32_t flush_rings)
837{
838 drm_i915_private_t *dev_priv = dev->dev_private;
839 int i, ret;
840
841 if (flush_domains & I915_GEM_DOMAIN_CPU)
842 intel_gtt_chipset_flush();
843
844 if (flush_domains & I915_GEM_DOMAIN_GTT)
845 wmb();
846
847 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
848 for (i = 0; i < I915_NUM_RINGS; i++)
849 if (flush_rings & (1 << i)) {
850 ret = i915_gem_flush_ring(&dev_priv->rings[i],
851 invalidate_domains, flush_domains);
852 if (ret)
853 return ret;
854 }
855 }
856
857 return 0;
858}
859
860static int
861i915_gem_execbuffer_wait_for_flips(struct intel_ring_buffer *ring, u32 flips)
862{
863 u32 plane, flip_mask;
864 int ret;
865
866 /* Check for any pending flips. As we only maintain a flip queue depth
867 * of 1, we can simply insert a WAIT for the next display flip prior
868 * to executing the batch and avoid stalling the CPU.
869 */
870
871 for (plane = 0; flips >> plane; plane++) {
872 if (((flips >> plane) & 1) == 0)
873 continue;
874
875 if (plane)
876 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
877 else
878 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
879
880 ret = intel_ring_begin(ring, 2);
881 if (ret)
882 return ret;
883
884 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
885 intel_ring_emit(ring, MI_NOOP);
886 intel_ring_advance(ring);
887 }
888
889 return 0;
890}
891
892static int
893i915_gem_execbuffer_move_to_gpu(struct intel_ring_buffer *ring,
894 struct list_head *objects)
895{
896 struct drm_i915_gem_object *obj;
897 struct change_domains cd;
898 int ret;
899
900 memset(&cd, 0, sizeof(cd));
901 list_for_each_entry(obj, objects, exec_list)
902 i915_gem_object_set_to_gpu_domain(obj, ring, &cd);
903
904 if (cd.invalidate_domains | cd.flush_domains) {
905#if WATCH_EXEC
906 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
907 __func__,
908 cd.invalidate_domains,
909 cd.flush_domains);
910#endif
911 ret = i915_gem_execbuffer_flush(ring->dev,
912 cd.invalidate_domains,
913 cd.flush_domains,
914 cd.flush_rings);
915 if (ret)
916 return ret;
917 }
918
919 if (cd.flips) {
920 ret = i915_gem_execbuffer_wait_for_flips(ring, cd.flips);
921 if (ret)
922 return ret;
923 }
924
925 list_for_each_entry(obj, objects, exec_list) {
926 ret = i915_gem_object_sync(obj, ring);
927 if (ret)
928 return ret;
929 }
930
931 return 0;
932}
933
934static bool
935i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
936{
937 return ((exec->batch_start_offset | exec->batch_len) & 0x7) == 0;
938}
939
940static int
941validate_exec_list(struct drm_i915_gem_exec_object2 *exec, int count,
942 vm_page_t ***map)
942 vm_page_t ***map, int **maplen)
943{
944 vm_page_t *ma;
945 int i, length, page_count;
946
947 /* XXXKIB various limits checking is missing there */
948 *map = malloc(count * sizeof(*ma), DRM_I915_GEM, M_WAITOK | M_ZERO);
949 *maplen = malloc(count * sizeof(*maplen), DRM_I915_GEM, M_WAITOK |
950 M_ZERO);
951 for (i = 0; i < count; i++) {
952 /* First check for malicious input causing overflow */
953 if (exec[i].relocation_count >
954 INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
955 return -EINVAL;
956
957 length = exec[i].relocation_count *
958 sizeof(struct drm_i915_gem_relocation_entry);
959 if (length == 0) {
960 (*map)[i] = NULL;
961 continue;
962 }
963 /*
964 * Since both start and end of the relocation region
965 * may be not aligned on the page boundary, be
966 * conservative and request a page slot for each
967 * partial page. Thus +2.
968 */
969 page_count = howmany(length, PAGE_SIZE) + 2;
970 ma = (*map)[i] = malloc(page_count * sizeof(vm_page_t),
971 DRM_I915_GEM, M_WAITOK | M_ZERO);
970 if (vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
971 exec[i].relocs_ptr, length, VM_PROT_READ | VM_PROT_WRITE,
972 ma, page_count) == -1) {
972 (*maplen)[i] = vm_fault_quick_hold_pages(
973 &curproc->p_vmspace->vm_map, exec[i].relocs_ptr, length,
974 VM_PROT_READ | VM_PROT_WRITE, ma, page_count);
975 if ((*maplen)[i] == -1) {
976 free(ma, DRM_I915_GEM);
977 (*map)[i] = NULL;
978 return (-EFAULT);
979 }
980 }
981
982 return 0;
983}
984
985static void
986i915_gem_execbuffer_move_to_active(struct list_head *objects,
987 struct intel_ring_buffer *ring,
988 u32 seqno)
989{
990 struct drm_i915_gem_object *obj;
991 uint32_t old_read, old_write;
992
993 list_for_each_entry(obj, objects, exec_list) {
994 old_read = obj->base.read_domains;
995 old_write = obj->base.write_domain;
996
997 obj->base.read_domains = obj->base.pending_read_domains;
998 obj->base.write_domain = obj->base.pending_write_domain;
999 obj->fenced_gpu_access = obj->pending_fenced_gpu_access;
1000
1001 i915_gem_object_move_to_active(obj, ring, seqno);
1002 if (obj->base.write_domain) {
1003 obj->dirty = 1;
1004 obj->pending_gpu_write = true;
1005 list_move_tail(&obj->gpu_write_list,
1006 &ring->gpu_write_list);
1007 if (obj->pin_count) /* check for potential scanout */
1008 intel_mark_busy(ring->dev, obj);
1009 }
1010 CTR3(KTR_DRM, "object_change_domain move_to_active %p %x %x",
1011 obj, old_read, old_write);
1012 }
1013
1014 intel_mark_busy(ring->dev, NULL);
1015}
1016
1017int i915_gem_sync_exec_requests;
1018
1019static void
1020i915_gem_execbuffer_retire_commands(struct drm_device *dev,
1021 struct drm_file *file,
1022 struct intel_ring_buffer *ring)
1023{
1024 struct drm_i915_gem_request *request;
1025 u32 invalidate;
1026
1027 /*
1028 * Ensure that the commands in the batch buffer are
1029 * finished before the interrupt fires.
1030 *
1031 * The sampler always gets flushed on i965 (sigh).
1032 */
1033 invalidate = I915_GEM_DOMAIN_COMMAND;
1034 if (INTEL_INFO(dev)->gen >= 4)
1035 invalidate |= I915_GEM_DOMAIN_SAMPLER;
1036 if (ring->flush(ring, invalidate, 0)) {
1037 i915_gem_next_request_seqno(ring);
1038 return;
1039 }
1040
1041 /* Add a breadcrumb for the completion of the batch buffer */
1042 request = malloc(sizeof(*request), DRM_I915_GEM, M_WAITOK | M_ZERO);
1043 if (request == NULL || i915_add_request(ring, file, request)) {
1044 i915_gem_next_request_seqno(ring);
1045 free(request, DRM_I915_GEM);
1046 } else if (i915_gem_sync_exec_requests) {
1047 i915_wait_request(ring, request->seqno);
1048 i915_gem_retire_requests(dev);
1049 }
1050}
1051
1052static void
1053i915_gem_fix_mi_batchbuffer_end(struct drm_i915_gem_object *batch_obj,
1054 uint32_t batch_start_offset, uint32_t batch_len)
1055{
1056 char *mkva;
1057 uint64_t po_r, po_w;
1058 uint32_t cmd;
1059
1060 po_r = batch_obj->base.dev->agp->base + batch_obj->gtt_offset +
1061 batch_start_offset + batch_len;
1062 if (batch_len > 0)
1063 po_r -= 4;
1064 mkva = pmap_mapdev_attr(trunc_page(po_r), 2 * PAGE_SIZE,
1065 PAT_WRITE_COMBINING);
1066 po_r &= PAGE_MASK;
1067 cmd = *(uint32_t *)(mkva + po_r);
1068
1069 if (cmd != MI_BATCH_BUFFER_END) {
1070 /*
1071 * batch_len != 0 due to the check at the start of
1072 * i915_gem_do_execbuffer
1073 */
1074 if (batch_obj->base.size > batch_start_offset + batch_len) {
1075 po_w = po_r + 4;
1076/* DRM_DEBUG("batchbuffer does not end by MI_BATCH_BUFFER_END !\n"); */
1077 } else {
1078 po_w = po_r;
1079DRM_DEBUG("batchbuffer does not end by MI_BATCH_BUFFER_END, overwriting last bo cmd !\n");
1080 }
1081 *(uint32_t *)(mkva + po_w) = MI_BATCH_BUFFER_END;
1082 }
1083
1084 pmap_unmapdev((vm_offset_t)mkva, 2 * PAGE_SIZE);
1085}
1086
1087int i915_fix_mi_batchbuffer_end = 0;
1088
1089 static int
1090i915_reset_gen7_sol_offsets(struct drm_device *dev,
1091 struct intel_ring_buffer *ring)
1092{
1093 drm_i915_private_t *dev_priv = dev->dev_private;
1094 int ret, i;
1095
1096 if (!IS_GEN7(dev) || ring != &dev_priv->rings[RCS])
1097 return 0;
1098
1099 ret = intel_ring_begin(ring, 4 * 3);
1100 if (ret)
1101 return ret;
1102
1103 for (i = 0; i < 4; i++) {
1104 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1105 intel_ring_emit(ring, GEN7_SO_WRITE_OFFSET(i));
1106 intel_ring_emit(ring, 0);
1107 }
1108
1109 intel_ring_advance(ring);
1110
1111 return 0;
1112}
1113
1114static int
1115i915_gem_do_execbuffer(struct drm_device *dev, void *data,
1116 struct drm_file *file,
1117 struct drm_i915_gem_execbuffer2 *args,
1118 struct drm_i915_gem_exec_object2 *exec)
1119{
1120 drm_i915_private_t *dev_priv = dev->dev_private;
1121 struct list_head objects;
1122 struct eb_objects *eb;
1123 struct drm_i915_gem_object *batch_obj;
1124 struct drm_clip_rect *cliprects = NULL;
1125 struct intel_ring_buffer *ring;
1126 vm_page_t **relocs_ma;
1127 int *relocs_len;
1128 u32 ctx_id = i915_execbuffer2_get_context_id(*args);
1129 u32 exec_start, exec_len;
1130 u32 seqno;
1131 u32 mask;
1132 int ret, mode, i;
1133
1134 if (!i915_gem_check_execbuffer(args)) {
1135 DRM_DEBUG("execbuf with invalid offset/length\n");
1136 return -EINVAL;
1137 }
1138
1139 if (args->batch_len == 0)
1140 return (0);
1141
1138 ret = validate_exec_list(exec, args->buffer_count, &relocs_ma);
1142 ret = validate_exec_list(exec, args->buffer_count, &relocs_ma,
1143 &relocs_len);
1144 if (ret != 0)
1145 goto pre_struct_lock_err;
1146
1147 switch (args->flags & I915_EXEC_RING_MASK) {
1148 case I915_EXEC_DEFAULT:
1149 case I915_EXEC_RENDER:
1150 ring = &dev_priv->rings[RCS];
1151 break;
1152 case I915_EXEC_BSD:
1153 ring = &dev_priv->rings[VCS];
1154 if (ctx_id != 0) {
1155 DRM_DEBUG("Ring %s doesn't support contexts\n",
1156 ring->name);
1152 return -EPERM;
1157 ret = -EPERM;
1158 goto pre_struct_lock_err;
1159 }
1160 break;
1161 case I915_EXEC_BLT:
1162 ring = &dev_priv->rings[BCS];
1163 if (ctx_id != 0) {
1164 DRM_DEBUG("Ring %s doesn't support contexts\n",
1165 ring->name);
1160 return -EPERM;
1166 ret = -EPERM;
1167 goto pre_struct_lock_err;
1168 }
1169 break;
1170 default:
1171 DRM_DEBUG("execbuf with unknown ring: %d\n",
1172 (int)(args->flags & I915_EXEC_RING_MASK));
1173 ret = -EINVAL;
1174 goto pre_struct_lock_err;
1175 }
1176 if (!intel_ring_initialized(ring)) {
1177 DRM_DEBUG("execbuf with invalid ring: %d\n",
1178 (int)(args->flags & I915_EXEC_RING_MASK));
1172 return -EINVAL;
1179 ret = -EINVAL;
1180 goto pre_struct_lock_err;
1181 }
1182
1183 mode = args->flags & I915_EXEC_CONSTANTS_MASK;
1184 mask = I915_EXEC_CONSTANTS_MASK;
1185 switch (mode) {
1186 case I915_EXEC_CONSTANTS_REL_GENERAL:
1187 case I915_EXEC_CONSTANTS_ABSOLUTE:
1188 case I915_EXEC_CONSTANTS_REL_SURFACE:
1189 if (ring == &dev_priv->rings[RCS] &&
1190 mode != dev_priv->relative_constants_mode) {
1191 if (INTEL_INFO(dev)->gen < 4) {
1192 ret = -EINVAL;
1193 goto pre_struct_lock_err;
1194 }
1195
1196 if (INTEL_INFO(dev)->gen > 5 &&
1197 mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
1198 ret = -EINVAL;
1199 goto pre_struct_lock_err;
1200 }
1201
1202 /* The HW changed the meaning on this bit on gen6 */
1203 if (INTEL_INFO(dev)->gen >= 6)
1204 mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
1205 }
1206 break;
1207 default:
1208 DRM_DEBUG("execbuf with unknown constants: %d\n", mode);
1209 ret = -EINVAL;
1210 goto pre_struct_lock_err;
1211 }
1212
1213 if (args->buffer_count < 1) {
1214 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1215 ret = -EINVAL;
1216 goto pre_struct_lock_err;
1217 }
1218
1219 if (args->num_cliprects != 0) {
1220 if (ring != &dev_priv->rings[RCS]) {
1221 DRM_DEBUG("clip rectangles are only valid with the render ring\n");
1222 ret = -EINVAL;
1223 goto pre_struct_lock_err;
1224 }
1225
1226 if (INTEL_INFO(dev)->gen >= 5) {
1227 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
1228 ret = -EINVAL;
1229 goto pre_struct_lock_err;
1230 }
1231
1232 if (args->num_cliprects > UINT_MAX / sizeof(*cliprects)) {
1233 DRM_DEBUG("execbuf with %u cliprects\n",
1234 args->num_cliprects);
1235 ret = -EINVAL;
1236 goto pre_struct_lock_err;
1237 }
1238 cliprects = malloc( sizeof(*cliprects) * args->num_cliprects,
1239 DRM_I915_GEM, M_WAITOK | M_ZERO);
1240 ret = -copyin((void *)(uintptr_t)args->cliprects_ptr, cliprects,
1241 sizeof(*cliprects) * args->num_cliprects);
1242 if (ret != 0)
1243 goto pre_struct_lock_err;
1244 }
1245
1246 ret = i915_mutex_lock_interruptible(dev);
1247 if (ret)
1248 goto pre_struct_lock_err;
1249
1250 if (dev_priv->mm.suspended) {
1251 DRM_UNLOCK(dev);
1252 ret = -EBUSY;
1253 goto pre_struct_lock_err;
1254 }
1255
1256 eb = eb_create(args->buffer_count);
1257 if (eb == NULL) {
1258 DRM_UNLOCK(dev);
1259 ret = -ENOMEM;
1260 goto pre_struct_lock_err;
1261 }
1262
1263 /* Look up object handles */
1264 INIT_LIST_HEAD(&objects);
1265 for (i = 0; i < args->buffer_count; i++) {
1266 struct drm_i915_gem_object *obj;
1267 obj = to_intel_bo(drm_gem_object_lookup(dev, file,
1268 exec[i].handle));
1269 if (&obj->base == NULL) {
1270 DRM_DEBUG("Invalid object handle %d at index %d\n",
1271 exec[i].handle, i);
1272 /* prevent error path from reading uninitialized data */
1273 ret = -ENOENT;
1274 goto err;
1275 }
1276
1277 if (!list_empty(&obj->exec_list)) {
1278 DRM_DEBUG("Object %p [handle %d, index %d] appears more than once in object list\n",
1279 obj, exec[i].handle, i);
1280 ret = -EINVAL;
1281 goto err;
1282 }
1283
1284 list_add_tail(&obj->exec_list, &objects);
1285 obj->exec_handle = exec[i].handle;
1286 obj->exec_entry = &exec[i];
1287 eb_add_object(eb, obj);
1288 }
1289
1290 /* take note of the batch buffer before we might reorder the lists */
1291 batch_obj = list_entry(objects.prev,
1292 struct drm_i915_gem_object,
1293 exec_list);
1294
1295 /* Move the objects en-masse into the GTT, evicting if necessary. */
1296 ret = i915_gem_execbuffer_reserve(ring, file, &objects);
1297 if (ret)
1298 goto err;
1299
1300 /* The objects are in their final locations, apply the relocations. */
1301 ret = i915_gem_execbuffer_relocate(dev, eb, &objects);
1302 if (ret) {
1303 if (ret == -EFAULT) {
1304 ret = i915_gem_execbuffer_relocate_slow(dev, file, ring,
1305 &objects, eb, exec, args->buffer_count);
1306 DRM_LOCK_ASSERT(dev);
1307 }
1308 if (ret)
1309 goto err;
1310 }
1311
1312 /* Set the pending read domains for the batch buffer to COMMAND */
1313 if (batch_obj->base.pending_write_domain) {
1314 DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
1315 ret = -EINVAL;
1316 goto err;
1317 }
1318 batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
1319
1320 ret = i915_gem_execbuffer_move_to_gpu(ring, &objects);
1321 if (ret)
1322 goto err;
1323
1324 ret = i915_switch_context(ring, file, ctx_id);
1325 if (ret)
1326 goto err;
1327
1328 seqno = i915_gem_next_request_seqno(ring);
1329 for (i = 0; i < I915_NUM_RINGS - 1; i++) {
1330 if (seqno < ring->sync_seqno[i]) {
1331 /* The GPU can not handle its semaphore value wrapping,
1332 * so every billion or so execbuffers, we need to stall
1333 * the GPU in order to reset the counters.
1334 */
1335 ret = i915_gpu_idle(dev);
1336 if (ret)
1337 goto err;
1338 i915_gem_retire_requests(dev);
1339
1340 KASSERT(ring->sync_seqno[i] == 0, ("Non-zero sync_seqno"));
1341 }
1342 }
1343
1344 if (ring == &dev_priv->rings[RCS] &&
1345 mode != dev_priv->relative_constants_mode) {
1346 ret = intel_ring_begin(ring, 4);
1347 if (ret)
1348 goto err;
1349
1350 intel_ring_emit(ring, MI_NOOP);
1351 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1352 intel_ring_emit(ring, INSTPM);
1353 intel_ring_emit(ring, mask << 16 | mode);
1354 intel_ring_advance(ring);
1355
1356 dev_priv->relative_constants_mode = mode;
1357 }
1358
1359 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
1360 ret = i915_reset_gen7_sol_offsets(dev, ring);
1361 if (ret)
1362 goto err;
1363 }
1364
1365 exec_start = batch_obj->gtt_offset + args->batch_start_offset;
1366 exec_len = args->batch_len;
1367
1368 if (i915_fix_mi_batchbuffer_end) {
1369 i915_gem_fix_mi_batchbuffer_end(batch_obj,
1370 args->batch_start_offset, args->batch_len);
1371 }
1372
1373 CTR4(KTR_DRM, "ring_dispatch %s %d exec %x %x", ring->name, seqno,
1374 exec_start, exec_len);
1375
1376 if (cliprects) {
1377 for (i = 0; i < args->num_cliprects; i++) {
1378 ret = i915_emit_box_p(dev, &cliprects[i],
1379 args->DR1, args->DR4);
1380 if (ret)
1381 goto err;
1382
1383 ret = ring->dispatch_execbuffer(ring, exec_start,
1384 exec_len);
1385 if (ret)
1386 goto err;
1387 }
1388 } else {
1389 ret = ring->dispatch_execbuffer(ring, exec_start, exec_len);
1390 if (ret)
1391 goto err;
1392 }
1393
1394 i915_gem_execbuffer_move_to_active(&objects, ring, seqno);
1395 i915_gem_execbuffer_retire_commands(dev, file, ring);
1396
1397err:
1398 eb_destroy(eb);
1399 while (!list_empty(&objects)) {
1400 struct drm_i915_gem_object *obj;
1401
1402 obj = list_first_entry(&objects, struct drm_i915_gem_object,
1403 exec_list);
1404 list_del_init(&obj->exec_list);
1405 drm_gem_object_unreference(&obj->base);
1406 }
1407 DRM_UNLOCK(dev);
1408
1409pre_struct_lock_err:
1410 for (i = 0; i < args->buffer_count; i++) {
1411 if (relocs_ma[i] != NULL) {
1404 vm_page_unhold_pages(relocs_ma[i], howmany(
1405 exec[i].relocation_count *
1406 sizeof(struct drm_i915_gem_relocation_entry),
1407 PAGE_SIZE));
1412 vm_page_unhold_pages(relocs_ma[i], relocs_len[i]);
1413 free(relocs_ma[i], DRM_I915_GEM);
1414 }
1415 }
1416 free(relocs_len, DRM_I915_GEM);
1417 free(relocs_ma, DRM_I915_GEM);
1418 free(cliprects, DRM_I915_GEM);
1419 return ret;
1420}
1421
1422/*
1423 * Legacy execbuffer just creates an exec2 list from the original exec object
1424 * list array and passes it to the real function.
1425 */
1426int
1427i915_gem_execbuffer(struct drm_device *dev, void *data,
1428 struct drm_file *file)
1429{
1430 struct drm_i915_gem_execbuffer *args = data;
1431 struct drm_i915_gem_execbuffer2 exec2;
1432 struct drm_i915_gem_exec_object *exec_list = NULL;
1433 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1434 int ret, i;
1435
1436 DRM_DEBUG("buffers_ptr %d buffer_count %d len %08x\n",
1437 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
1438
1439 if (args->buffer_count < 1) {
1440 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1441 return -EINVAL;
1442 }
1443
1444 /* Copy in the exec list from userland */
1445 /* XXXKIB user-controlled malloc size */
1446 exec_list = malloc(sizeof(*exec_list) * args->buffer_count,
1447 DRM_I915_GEM, M_WAITOK);
1448 exec2_list = malloc(sizeof(*exec2_list) * args->buffer_count,
1449 DRM_I915_GEM, M_WAITOK);
1450 ret = -copyin((void *)(uintptr_t)args->buffers_ptr, exec_list,
1451 sizeof(*exec_list) * args->buffer_count);
1452 if (ret != 0) {
1453 DRM_DEBUG("copy %d exec entries failed %d\n",
1454 args->buffer_count, ret);
1455 free(exec_list, DRM_I915_GEM);
1456 free(exec2_list, DRM_I915_GEM);
1457 return (ret);
1458 }
1459
1460 for (i = 0; i < args->buffer_count; i++) {
1461 exec2_list[i].handle = exec_list[i].handle;
1462 exec2_list[i].relocation_count = exec_list[i].relocation_count;
1463 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
1464 exec2_list[i].alignment = exec_list[i].alignment;
1465 exec2_list[i].offset = exec_list[i].offset;
1466 if (INTEL_INFO(dev)->gen < 4)
1467 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
1468 else
1469 exec2_list[i].flags = 0;
1470 }
1471
1472 exec2.buffers_ptr = args->buffers_ptr;
1473 exec2.buffer_count = args->buffer_count;
1474 exec2.batch_start_offset = args->batch_start_offset;
1475 exec2.batch_len = args->batch_len;
1476 exec2.DR1 = args->DR1;
1477 exec2.DR4 = args->DR4;
1478 exec2.num_cliprects = args->num_cliprects;
1479 exec2.cliprects_ptr = args->cliprects_ptr;
1480 exec2.flags = I915_EXEC_RENDER;
1481 i915_execbuffer2_set_context_id(exec2, 0);
1482
1483 ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
1484 if (!ret) {
1485 /* Copy the new buffer offsets back to the user's exec list. */
1486 for (i = 0; i < args->buffer_count; i++)
1487 exec_list[i].offset = exec2_list[i].offset;
1488 /* ... and back out to userspace */
1489 ret = -copyout(exec_list, (void *)(uintptr_t)args->buffers_ptr,
1490 sizeof(*exec_list) * args->buffer_count);
1491 if (ret != 0) {
1492 DRM_DEBUG("failed to copy %d exec entries "
1493 "back to user (%d)\n",
1494 args->buffer_count, ret);
1495 }
1496 }
1497
1498 free(exec_list, DRM_I915_GEM);
1499 free(exec2_list, DRM_I915_GEM);
1500 return ret;
1501}
1502
1503int
1504i915_gem_execbuffer2(struct drm_device *dev, void *data,
1505 struct drm_file *file)
1506{
1507 struct drm_i915_gem_execbuffer2 *args = data;
1508 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1509 int ret;
1510
1511 DRM_DEBUG("buffers_ptr %jx buffer_count %d len %08x\n",
1512 (uintmax_t)args->buffers_ptr, args->buffer_count, args->batch_len);
1513
1514 if (args->buffer_count < 1 ||
1515 args->buffer_count > UINT_MAX / sizeof(*exec2_list)) {
1516 DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
1517 return -EINVAL;
1518 }
1519
1520 /* XXXKIB user-controllable malloc size */
1521 exec2_list = malloc(sizeof(*exec2_list) * args->buffer_count,
1522 DRM_I915_GEM, M_WAITOK);
1523 ret = -copyin((void *)(uintptr_t)args->buffers_ptr, exec2_list,
1524 sizeof(*exec2_list) * args->buffer_count);
1525 if (ret != 0) {
1526 DRM_DEBUG("copy %d exec entries failed %d\n",
1527 args->buffer_count, ret);
1528 free(exec2_list, DRM_I915_GEM);
1529 return (ret);
1530 }
1531
1532 ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
1533 if (!ret) {
1534 /* Copy the new buffer offsets back to the user's exec list. */
1535 ret = -copyout(exec2_list, (void *)(uintptr_t)args->buffers_ptr,
1536 sizeof(*exec2_list) * args->buffer_count);
1537 if (ret) {
1538 DRM_DEBUG("failed to copy %d exec entries "
1539 "back to user (%d)\n",
1540 args->buffer_count, ret);
1541 }
1542 }
1543
1544 free(exec2_list, DRM_I915_GEM);
1545 return ret;
1546}