Deleted Added
sdiff udiff text old ( 201689 ) new ( 208047 )
full compact
1/*-
2 * Copyright (c) 2002 McAfee, Inc.
3 * All rights reserved.
4 *
5 * This software was developed for the FreeBSD Project by Marshall
6 * Kirk McKusick and McAfee Research,, the Security Research Division of
7 * McAfee, Inc. under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as
8 * part of the DARPA CHATS research program
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31/*
32 * CDDL HEADER START
33 *
34 * The contents of this file are subject to the terms of the
35 * Common Development and Distribution License (the "License").
36 * You may not use this file except in compliance with the License.
37 *
38 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
39 * or http://www.opensolaris.org/os/licensing.
40 * See the License for the specific language governing permissions
41 * and limitations under the License.
42 *
43 * When distributing Covered Code, include this CDDL HEADER in each
44 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
45 * If applicable, add the following below this CDDL HEADER, with the
46 * fields enclosed by brackets "[]" replaced with your own identifying
47 * information: Portions Copyright [yyyy] [name of copyright owner]
48 *
49 * CDDL HEADER END
50 */
51/*
52 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
53 * Use is subject to license terms.
54 */
55
56/* CRC64 table */
57#define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */
58
59/*
60 * Macros for various sorts of alignment and rounding when the alignment
61 * is known to be a power of 2.
62 */
63#define P2ALIGN(x, align) ((x) & -(align))
64#define P2PHASE(x, align) ((x) & ((align) - 1))
65#define P2NPHASE(x, align) (-(x) & ((align) - 1))
66#define P2ROUNDUP(x, align) (-(-(x) & -(align)))
67#define P2END(x, align) (-(~(x) & -(align)))
68#define P2PHASEUP(x, align, phase) ((phase) - (((phase) - (x)) & -(align)))
69#define P2CROSS(x, y, align) (((x) ^ (y)) > (align) - 1)
70
71/*
72 * General-purpose 32-bit and 64-bit bitfield encodings.
73 */
74#define BF32_DECODE(x, low, len) P2PHASE((x) >> (low), 1U << (len))
75#define BF64_DECODE(x, low, len) P2PHASE((x) >> (low), 1ULL << (len))
76#define BF32_ENCODE(x, low, len) (P2PHASE((x), 1U << (len)) << (low))
77#define BF64_ENCODE(x, low, len) (P2PHASE((x), 1ULL << (len)) << (low))
78
79#define BF32_GET(x, low, len) BF32_DECODE(x, low, len)
80#define BF64_GET(x, low, len) BF64_DECODE(x, low, len)
81
82#define BF32_SET(x, low, len, val) \
83 ((x) ^= BF32_ENCODE((x >> low) ^ (val), low, len))
84#define BF64_SET(x, low, len, val) \
85 ((x) ^= BF64_ENCODE((x >> low) ^ (val), low, len))
86
87#define BF32_GET_SB(x, low, len, shift, bias) \
88 ((BF32_GET(x, low, len) + (bias)) << (shift))
89#define BF64_GET_SB(x, low, len, shift, bias) \
90 ((BF64_GET(x, low, len) + (bias)) << (shift))
91
92#define BF32_SET_SB(x, low, len, shift, bias, val) \
93 BF32_SET(x, low, len, ((val) >> (shift)) - (bias))
94#define BF64_SET_SB(x, low, len, shift, bias, val) \
95 BF64_SET(x, low, len, ((val) >> (shift)) - (bias))
96
97/*
98 * We currently support nine block sizes, from 512 bytes to 128K.
99 * We could go higher, but the benefits are near-zero and the cost
100 * of COWing a giant block to modify one byte would become excessive.
101 */
102#define SPA_MINBLOCKSHIFT 9
103#define SPA_MAXBLOCKSHIFT 17
104#define SPA_MINBLOCKSIZE (1ULL << SPA_MINBLOCKSHIFT)
105#define SPA_MAXBLOCKSIZE (1ULL << SPA_MAXBLOCKSHIFT)
106
107#define SPA_BLOCKSIZES (SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1)
108
109/*
110 * The DVA size encodings for LSIZE and PSIZE support blocks up to 32MB.
111 * The ASIZE encoding should be at least 64 times larger (6 more bits)
112 * to support up to 4-way RAID-Z mirror mode with worst-case gang block
113 * overhead, three DVAs per bp, plus one more bit in case we do anything
114 * else that expands the ASIZE.
115 */
116#define SPA_LSIZEBITS 16 /* LSIZE up to 32M (2^16 * 512) */
117#define SPA_PSIZEBITS 16 /* PSIZE up to 32M (2^16 * 512) */
118#define SPA_ASIZEBITS 24 /* ASIZE up to 64 times larger */
119
120/*
121 * All SPA data is represented by 128-bit data virtual addresses (DVAs).
122 * The members of the dva_t should be considered opaque outside the SPA.
123 */
124typedef struct dva {
125 uint64_t dva_word[2];
126} dva_t;
127
128/*
129 * Each block has a 256-bit checksum -- strong enough for cryptographic hashes.
130 */
131typedef struct zio_cksum {
132 uint64_t zc_word[4];
133} zio_cksum_t;
134
135/*
136 * Each block is described by its DVAs, time of birth, checksum, etc.
137 * The word-by-word, bit-by-bit layout of the blkptr is as follows:
138 *
139 * 64 56 48 40 32 24 16 8 0
140 * +-------+-------+-------+-------+-------+-------+-------+-------+
141 * 0 | vdev1 | GRID | ASIZE |
142 * +-------+-------+-------+-------+-------+-------+-------+-------+
143 * 1 |G| offset1 |
144 * +-------+-------+-------+-------+-------+-------+-------+-------+
145 * 2 | vdev2 | GRID | ASIZE |
146 * +-------+-------+-------+-------+-------+-------+-------+-------+
147 * 3 |G| offset2 |
148 * +-------+-------+-------+-------+-------+-------+-------+-------+
149 * 4 | vdev3 | GRID | ASIZE |
150 * +-------+-------+-------+-------+-------+-------+-------+-------+
151 * 5 |G| offset3 |
152 * +-------+-------+-------+-------+-------+-------+-------+-------+
153 * 6 |E| lvl | type | cksum | comp | PSIZE | LSIZE |
154 * +-------+-------+-------+-------+-------+-------+-------+-------+
155 * 7 | padding |
156 * +-------+-------+-------+-------+-------+-------+-------+-------+
157 * 8 | padding |
158 * +-------+-------+-------+-------+-------+-------+-------+-------+
159 * 9 | padding |
160 * +-------+-------+-------+-------+-------+-------+-------+-------+
161 * a | birth txg |
162 * +-------+-------+-------+-------+-------+-------+-------+-------+
163 * b | fill count |
164 * +-------+-------+-------+-------+-------+-------+-------+-------+
165 * c | checksum[0] |
166 * +-------+-------+-------+-------+-------+-------+-------+-------+
167 * d | checksum[1] |
168 * +-------+-------+-------+-------+-------+-------+-------+-------+
169 * e | checksum[2] |
170 * +-------+-------+-------+-------+-------+-------+-------+-------+
171 * f | checksum[3] |
172 * +-------+-------+-------+-------+-------+-------+-------+-------+
173 *
174 * Legend:
175 *
176 * vdev virtual device ID
177 * offset offset into virtual device
178 * LSIZE logical size
179 * PSIZE physical size (after compression)
180 * ASIZE allocated size (including RAID-Z parity and gang block headers)
181 * GRID RAID-Z layout information (reserved for future use)
182 * cksum checksum function
183 * comp compression function
184 * G gang block indicator
185 * E endianness
186 * type DMU object type
187 * lvl level of indirection
188 * birth txg transaction group in which the block was born
189 * fill count number of non-zero blocks under this bp
190 * checksum[4] 256-bit checksum of the data this bp describes
191 */
192typedef struct blkptr {
193 dva_t blk_dva[3]; /* 128-bit Data Virtual Address */
194 uint64_t blk_prop; /* size, compression, type, etc */
195 uint64_t blk_pad[3]; /* Extra space for the future */
196 uint64_t blk_birth; /* transaction group at birth */
197 uint64_t blk_fill; /* fill count */
198 zio_cksum_t blk_cksum; /* 256-bit checksum */
199} blkptr_t;
200
201#define SPA_BLKPTRSHIFT 7 /* blkptr_t is 128 bytes */
202#define SPA_DVAS_PER_BP 3 /* Number of DVAs in a bp */
203
204/*
205 * Macros to get and set fields in a bp or DVA.
206 */
207#define DVA_GET_ASIZE(dva) \
208 BF64_GET_SB((dva)->dva_word[0], 0, 24, SPA_MINBLOCKSHIFT, 0)
209#define DVA_SET_ASIZE(dva, x) \
210 BF64_SET_SB((dva)->dva_word[0], 0, 24, SPA_MINBLOCKSHIFT, 0, x)
211
212#define DVA_GET_GRID(dva) BF64_GET((dva)->dva_word[0], 24, 8)
213#define DVA_SET_GRID(dva, x) BF64_SET((dva)->dva_word[0], 24, 8, x)
214
215#define DVA_GET_VDEV(dva) BF64_GET((dva)->dva_word[0], 32, 32)
216#define DVA_SET_VDEV(dva, x) BF64_SET((dva)->dva_word[0], 32, 32, x)
217
218#define DVA_GET_OFFSET(dva) \
219 BF64_GET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0)
220#define DVA_SET_OFFSET(dva, x) \
221 BF64_SET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0, x)
222
223#define DVA_GET_GANG(dva) BF64_GET((dva)->dva_word[1], 63, 1)
224#define DVA_SET_GANG(dva, x) BF64_SET((dva)->dva_word[1], 63, 1, x)
225
226#define BP_GET_LSIZE(bp) \
227 (BP_IS_HOLE(bp) ? 0 : \
228 BF64_GET_SB((bp)->blk_prop, 0, 16, SPA_MINBLOCKSHIFT, 1))
229#define BP_SET_LSIZE(bp, x) \
230 BF64_SET_SB((bp)->blk_prop, 0, 16, SPA_MINBLOCKSHIFT, 1, x)
231
232#define BP_GET_PSIZE(bp) \
233 BF64_GET_SB((bp)->blk_prop, 16, 16, SPA_MINBLOCKSHIFT, 1)
234#define BP_SET_PSIZE(bp, x) \
235 BF64_SET_SB((bp)->blk_prop, 16, 16, SPA_MINBLOCKSHIFT, 1, x)
236
237#define BP_GET_COMPRESS(bp) BF64_GET((bp)->blk_prop, 32, 8)
238#define BP_SET_COMPRESS(bp, x) BF64_SET((bp)->blk_prop, 32, 8, x)
239
240#define BP_GET_CHECKSUM(bp) BF64_GET((bp)->blk_prop, 40, 8)
241#define BP_SET_CHECKSUM(bp, x) BF64_SET((bp)->blk_prop, 40, 8, x)
242
243#define BP_GET_TYPE(bp) BF64_GET((bp)->blk_prop, 48, 8)
244#define BP_SET_TYPE(bp, x) BF64_SET((bp)->blk_prop, 48, 8, x)
245
246#define BP_GET_LEVEL(bp) BF64_GET((bp)->blk_prop, 56, 5)
247#define BP_SET_LEVEL(bp, x) BF64_SET((bp)->blk_prop, 56, 5, x)
248
249#define BP_GET_BYTEORDER(bp) (0 - BF64_GET((bp)->blk_prop, 63, 1))
250#define BP_SET_BYTEORDER(bp, x) BF64_SET((bp)->blk_prop, 63, 1, x)
251
252#define BP_GET_ASIZE(bp) \
253 (DVA_GET_ASIZE(&(bp)->blk_dva[0]) + DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \
254 DVA_GET_ASIZE(&(bp)->blk_dva[2]))
255
256#define BP_GET_UCSIZE(bp) \
257 ((BP_GET_LEVEL(bp) > 0 || dmu_ot[BP_GET_TYPE(bp)].ot_metadata) ? \
258 BP_GET_PSIZE(bp) : BP_GET_LSIZE(bp));
259
260#define BP_GET_NDVAS(bp) \
261 (!!DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \
262 !!DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \
263 !!DVA_GET_ASIZE(&(bp)->blk_dva[2]))
264
265#define BP_COUNT_GANG(bp) \
266 (DVA_GET_GANG(&(bp)->blk_dva[0]) + \
267 DVA_GET_GANG(&(bp)->blk_dva[1]) + \
268 DVA_GET_GANG(&(bp)->blk_dva[2]))
269
270#define DVA_EQUAL(dva1, dva2) \
271 ((dva1)->dva_word[1] == (dva2)->dva_word[1] && \
272 (dva1)->dva_word[0] == (dva2)->dva_word[0])
273
274#define ZIO_CHECKSUM_EQUAL(zc1, zc2) \
275 (0 == (((zc1).zc_word[0] - (zc2).zc_word[0]) | \
276 ((zc1).zc_word[1] - (zc2).zc_word[1]) | \
277 ((zc1).zc_word[2] - (zc2).zc_word[2]) | \
278 ((zc1).zc_word[3] - (zc2).zc_word[3])))
279
280
281#define DVA_IS_VALID(dva) (DVA_GET_ASIZE(dva) != 0)
282
283#define ZIO_SET_CHECKSUM(zcp, w0, w1, w2, w3) \
284{ \
285 (zcp)->zc_word[0] = w0; \
286 (zcp)->zc_word[1] = w1; \
287 (zcp)->zc_word[2] = w2; \
288 (zcp)->zc_word[3] = w3; \
289}
290
291#define BP_IDENTITY(bp) (&(bp)->blk_dva[0])
292#define BP_IS_GANG(bp) DVA_GET_GANG(BP_IDENTITY(bp))
293#define BP_IS_HOLE(bp) ((bp)->blk_birth == 0)
294#define BP_IS_OLDER(bp, txg) (!BP_IS_HOLE(bp) && (bp)->blk_birth < (txg))
295
296#define BP_ZERO(bp) \
297{ \
298 (bp)->blk_dva[0].dva_word[0] = 0; \
299 (bp)->blk_dva[0].dva_word[1] = 0; \
300 (bp)->blk_dva[1].dva_word[0] = 0; \
301 (bp)->blk_dva[1].dva_word[1] = 0; \
302 (bp)->blk_dva[2].dva_word[0] = 0; \
303 (bp)->blk_dva[2].dva_word[1] = 0; \
304 (bp)->blk_prop = 0; \
305 (bp)->blk_pad[0] = 0; \
306 (bp)->blk_pad[1] = 0; \
307 (bp)->blk_pad[2] = 0; \
308 (bp)->blk_birth = 0; \
309 (bp)->blk_fill = 0; \
310 ZIO_SET_CHECKSUM(&(bp)->blk_cksum, 0, 0, 0, 0); \
311}
312
313#define ZBT_MAGIC 0x210da7ab10c7a11ULL /* zio data bloc tail */
314
315typedef struct zio_block_tail {
316 uint64_t zbt_magic; /* for validation, endianness */
317 zio_cksum_t zbt_cksum; /* 256-bit checksum */
318} zio_block_tail_t;
319
320#define VDEV_SKIP_SIZE (8 << 10)
321#define VDEV_BOOT_HEADER_SIZE (8 << 10)
322#define VDEV_PHYS_SIZE (112 << 10)
323#define VDEV_UBERBLOCK_RING (128 << 10)
324
325#define VDEV_UBERBLOCK_SHIFT(vd) \
326 MAX((vd)->vdev_top->vdev_ashift, UBERBLOCK_SHIFT)
327#define VDEV_UBERBLOCK_COUNT(vd) \
328 (VDEV_UBERBLOCK_RING >> VDEV_UBERBLOCK_SHIFT(vd))
329#define VDEV_UBERBLOCK_OFFSET(vd, n) \
330 offsetof(vdev_label_t, vl_uberblock[(n) << VDEV_UBERBLOCK_SHIFT(vd)])
331#define VDEV_UBERBLOCK_SIZE(vd) (1ULL << VDEV_UBERBLOCK_SHIFT(vd))
332
333/* ZFS boot block */
334#define VDEV_BOOT_MAGIC 0x2f5b007b10cULL
335#define VDEV_BOOT_VERSION 1 /* version number */
336
337typedef struct vdev_boot_header {
338 uint64_t vb_magic; /* VDEV_BOOT_MAGIC */
339 uint64_t vb_version; /* VDEV_BOOT_VERSION */
340 uint64_t vb_offset; /* start offset (bytes) */
341 uint64_t vb_size; /* size (bytes) */
342 char vb_pad[VDEV_BOOT_HEADER_SIZE - 4 * sizeof (uint64_t)];
343} vdev_boot_header_t;
344
345typedef struct vdev_phys {
346 char vp_nvlist[VDEV_PHYS_SIZE - sizeof (zio_block_tail_t)];
347 zio_block_tail_t vp_zbt;
348} vdev_phys_t;
349
350typedef struct vdev_label {
351 char vl_pad[VDEV_SKIP_SIZE]; /* 8K */
352 vdev_boot_header_t vl_boot_header; /* 8K */
353 vdev_phys_t vl_vdev_phys; /* 112K */
354 char vl_uberblock[VDEV_UBERBLOCK_RING]; /* 128K */
355} vdev_label_t; /* 256K total */
356
357/*
358 * vdev_dirty() flags
359 */
360#define VDD_METASLAB 0x01
361#define VDD_DTL 0x02
362
363/*
364 * Size and offset of embedded boot loader region on each label.
365 * The total size of the first two labels plus the boot area is 4MB.
366 */
367#define VDEV_BOOT_OFFSET (2 * sizeof (vdev_label_t))
368#define VDEV_BOOT_SIZE (7ULL << 19) /* 3.5M */
369
370/*
371 * Size of label regions at the start and end of each leaf device.
372 */
373#define VDEV_LABEL_START_SIZE (2 * sizeof (vdev_label_t) + VDEV_BOOT_SIZE)
374#define VDEV_LABEL_END_SIZE (2 * sizeof (vdev_label_t))
375#define VDEV_LABELS 4
376
377/*
378 * Gang block headers are self-checksumming and contain an array
379 * of block pointers.
380 */
381#define SPA_GANGBLOCKSIZE SPA_MINBLOCKSIZE
382#define SPA_GBH_NBLKPTRS ((SPA_GANGBLOCKSIZE - \
383 sizeof (zio_block_tail_t)) / sizeof (blkptr_t))
384#define SPA_GBH_FILLER ((SPA_GANGBLOCKSIZE - \
385 sizeof (zio_block_tail_t) - \
386 (SPA_GBH_NBLKPTRS * sizeof (blkptr_t))) /\
387 sizeof (uint64_t))
388
389typedef struct zio_gbh {
390 blkptr_t zg_blkptr[SPA_GBH_NBLKPTRS];
391 uint64_t zg_filler[SPA_GBH_FILLER];
392 zio_block_tail_t zg_tail;
393} zio_gbh_phys_t;
394
395enum zio_checksum {
396 ZIO_CHECKSUM_INHERIT = 0,
397 ZIO_CHECKSUM_ON,
398 ZIO_CHECKSUM_OFF,
399 ZIO_CHECKSUM_LABEL,
400 ZIO_CHECKSUM_GANG_HEADER,
401 ZIO_CHECKSUM_ZILOG,
402 ZIO_CHECKSUM_FLETCHER_2,
403 ZIO_CHECKSUM_FLETCHER_4,
404 ZIO_CHECKSUM_SHA256,
405 ZIO_CHECKSUM_FUNCTIONS
406};
407
408#define ZIO_CHECKSUM_ON_VALUE ZIO_CHECKSUM_FLETCHER_2
409#define ZIO_CHECKSUM_DEFAULT ZIO_CHECKSUM_ON
410
411enum zio_compress {
412 ZIO_COMPRESS_INHERIT = 0,
413 ZIO_COMPRESS_ON,
414 ZIO_COMPRESS_OFF,
415 ZIO_COMPRESS_LZJB,
416 ZIO_COMPRESS_EMPTY,
417 ZIO_COMPRESS_GZIP_1,
418 ZIO_COMPRESS_GZIP_2,
419 ZIO_COMPRESS_GZIP_3,
420 ZIO_COMPRESS_GZIP_4,
421 ZIO_COMPRESS_GZIP_5,
422 ZIO_COMPRESS_GZIP_6,
423 ZIO_COMPRESS_GZIP_7,
424 ZIO_COMPRESS_GZIP_8,
425 ZIO_COMPRESS_GZIP_9,
426 ZIO_COMPRESS_FUNCTIONS
427};
428
429#define ZIO_COMPRESS_ON_VALUE ZIO_COMPRESS_LZJB
430#define ZIO_COMPRESS_DEFAULT ZIO_COMPRESS_OFF
431
432/* nvlist pack encoding */
433#define NV_ENCODE_NATIVE 0
434#define NV_ENCODE_XDR 1
435
436typedef enum {
437 DATA_TYPE_UNKNOWN = 0,
438 DATA_TYPE_BOOLEAN,
439 DATA_TYPE_BYTE,
440 DATA_TYPE_INT16,
441 DATA_TYPE_UINT16,
442 DATA_TYPE_INT32,
443 DATA_TYPE_UINT32,
444 DATA_TYPE_INT64,
445 DATA_TYPE_UINT64,
446 DATA_TYPE_STRING,
447 DATA_TYPE_BYTE_ARRAY,
448 DATA_TYPE_INT16_ARRAY,
449 DATA_TYPE_UINT16_ARRAY,
450 DATA_TYPE_INT32_ARRAY,
451 DATA_TYPE_UINT32_ARRAY,
452 DATA_TYPE_INT64_ARRAY,
453 DATA_TYPE_UINT64_ARRAY,
454 DATA_TYPE_STRING_ARRAY,
455 DATA_TYPE_HRTIME,
456 DATA_TYPE_NVLIST,
457 DATA_TYPE_NVLIST_ARRAY,
458 DATA_TYPE_BOOLEAN_VALUE,
459 DATA_TYPE_INT8,
460 DATA_TYPE_UINT8,
461 DATA_TYPE_BOOLEAN_ARRAY,
462 DATA_TYPE_INT8_ARRAY,
463 DATA_TYPE_UINT8_ARRAY
464} data_type_t;
465
466/*
467 * On-disk version number.
468 */
469#define SPA_VERSION_1 1ULL
470#define SPA_VERSION_2 2ULL
471#define SPA_VERSION_3 3ULL
472#define SPA_VERSION_4 4ULL
473#define SPA_VERSION_5 5ULL
474#define SPA_VERSION_6 6ULL
475#define SPA_VERSION_7 7ULL
476#define SPA_VERSION_8 8ULL
477#define SPA_VERSION_9 9ULL
478#define SPA_VERSION_10 10ULL
479#define SPA_VERSION_11 11ULL
480#define SPA_VERSION_12 12ULL
481#define SPA_VERSION_13 13ULL
482#define SPA_VERSION_14 14ULL
483/*
484 * When bumping up SPA_VERSION, make sure GRUB ZFS understand the on-disk
485 * format change. Go to usr/src/grub/grub-0.95/stage2/{zfs-include/, fsys_zfs*},
486 * and do the appropriate changes.
487 */
488#define SPA_VERSION SPA_VERSION_14
489#define SPA_VERSION_STRING "14"
490
491/*
492 * Symbolic names for the changes that caused a SPA_VERSION switch.
493 * Used in the code when checking for presence or absence of a feature.
494 * Feel free to define multiple symbolic names for each version if there
495 * were multiple changes to on-disk structures during that version.
496 *
497 * NOTE: When checking the current SPA_VERSION in your code, be sure
498 * to use spa_version() since it reports the version of the
499 * last synced uberblock. Checking the in-flight version can
500 * be dangerous in some cases.
501 */
502#define SPA_VERSION_INITIAL SPA_VERSION_1
503#define SPA_VERSION_DITTO_BLOCKS SPA_VERSION_2
504#define SPA_VERSION_SPARES SPA_VERSION_3
505#define SPA_VERSION_RAID6 SPA_VERSION_3
506#define SPA_VERSION_BPLIST_ACCOUNT SPA_VERSION_3
507#define SPA_VERSION_RAIDZ_DEFLATE SPA_VERSION_3
508#define SPA_VERSION_DNODE_BYTES SPA_VERSION_3
509#define SPA_VERSION_ZPOOL_HISTORY SPA_VERSION_4
510#define SPA_VERSION_GZIP_COMPRESSION SPA_VERSION_5
511#define SPA_VERSION_BOOTFS SPA_VERSION_6
512#define SPA_VERSION_SLOGS SPA_VERSION_7
513#define SPA_VERSION_DELEGATED_PERMS SPA_VERSION_8
514#define SPA_VERSION_FUID SPA_VERSION_9
515#define SPA_VERSION_REFRESERVATION SPA_VERSION_9
516#define SPA_VERSION_REFQUOTA SPA_VERSION_9
517#define SPA_VERSION_UNIQUE_ACCURATE SPA_VERSION_9
518#define SPA_VERSION_L2CACHE SPA_VERSION_10
519#define SPA_VERSION_NEXT_CLONES SPA_VERSION_11
520#define SPA_VERSION_ORIGIN SPA_VERSION_11
521#define SPA_VERSION_DSL_SCRUB SPA_VERSION_11
522#define SPA_VERSION_SNAP_PROPS SPA_VERSION_12
523#define SPA_VERSION_USED_BREAKDOWN SPA_VERSION_13
524#define SPA_VERSION_PASSTHROUGH_X SPA_VERSION_14
525
526/*
527 * The following are configuration names used in the nvlist describing a pool's
528 * configuration.
529 */
530#define ZPOOL_CONFIG_VERSION "version"
531#define ZPOOL_CONFIG_POOL_NAME "name"
532#define ZPOOL_CONFIG_POOL_STATE "state"
533#define ZPOOL_CONFIG_POOL_TXG "txg"
534#define ZPOOL_CONFIG_POOL_GUID "pool_guid"
535#define ZPOOL_CONFIG_CREATE_TXG "create_txg"
536#define ZPOOL_CONFIG_TOP_GUID "top_guid"
537#define ZPOOL_CONFIG_VDEV_TREE "vdev_tree"
538#define ZPOOL_CONFIG_TYPE "type"
539#define ZPOOL_CONFIG_CHILDREN "children"
540#define ZPOOL_CONFIG_ID "id"
541#define ZPOOL_CONFIG_GUID "guid"
542#define ZPOOL_CONFIG_PATH "path"
543#define ZPOOL_CONFIG_DEVID "devid"
544#define ZPOOL_CONFIG_METASLAB_ARRAY "metaslab_array"
545#define ZPOOL_CONFIG_METASLAB_SHIFT "metaslab_shift"
546#define ZPOOL_CONFIG_ASHIFT "ashift"
547#define ZPOOL_CONFIG_ASIZE "asize"
548#define ZPOOL_CONFIG_DTL "DTL"
549#define ZPOOL_CONFIG_STATS "stats"
550#define ZPOOL_CONFIG_WHOLE_DISK "whole_disk"
551#define ZPOOL_CONFIG_ERRCOUNT "error_count"
552#define ZPOOL_CONFIG_NOT_PRESENT "not_present"
553#define ZPOOL_CONFIG_SPARES "spares"
554#define ZPOOL_CONFIG_IS_SPARE "is_spare"
555#define ZPOOL_CONFIG_NPARITY "nparity"
556#define ZPOOL_CONFIG_HOSTID "hostid"
557#define ZPOOL_CONFIG_HOSTNAME "hostname"
558#define ZPOOL_CONFIG_TIMESTAMP "timestamp" /* not stored on disk */
559
560/*
561 * The persistent vdev state is stored as separate values rather than a single
562 * 'vdev_state' entry. This is because a device can be in multiple states, such
563 * as offline and degraded.
564 */
565#define ZPOOL_CONFIG_OFFLINE "offline"
566#define ZPOOL_CONFIG_FAULTED "faulted"
567#define ZPOOL_CONFIG_DEGRADED "degraded"
568#define ZPOOL_CONFIG_REMOVED "removed"
569
570#define VDEV_TYPE_ROOT "root"
571#define VDEV_TYPE_MIRROR "mirror"
572#define VDEV_TYPE_REPLACING "replacing"
573#define VDEV_TYPE_RAIDZ "raidz"
574#define VDEV_TYPE_DISK "disk"
575#define VDEV_TYPE_FILE "file"
576#define VDEV_TYPE_MISSING "missing"
577#define VDEV_TYPE_SPARE "spare"
578
579/*
580 * This is needed in userland to report the minimum necessary device size.
581 */
582#define SPA_MINDEVSIZE (64ULL << 20)
583
584/*
585 * The location of the pool configuration repository, shared between kernel and
586 * userland.
587 */
588#define ZPOOL_CACHE_DIR "/boot/zfs"
589#define ZPOOL_CACHE_FILE "zpool.cache"
590#define ZPOOL_CACHE_TMP ".zpool.cache"
591
592#define ZPOOL_CACHE ZPOOL_CACHE_DIR "/" ZPOOL_CACHE_FILE
593
594/*
595 * vdev states are ordered from least to most healthy.
596 * A vdev that's CANT_OPEN or below is considered unusable.
597 */
598typedef enum vdev_state {
599 VDEV_STATE_UNKNOWN = 0, /* Uninitialized vdev */
600 VDEV_STATE_CLOSED, /* Not currently open */
601 VDEV_STATE_OFFLINE, /* Not allowed to open */
602 VDEV_STATE_REMOVED, /* Explicitly removed from system */
603 VDEV_STATE_CANT_OPEN, /* Tried to open, but failed */
604 VDEV_STATE_FAULTED, /* External request to fault device */
605 VDEV_STATE_DEGRADED, /* Replicated vdev with unhealthy kids */
606 VDEV_STATE_HEALTHY /* Presumed good */
607} vdev_state_t;
608
609/*
610 * vdev aux states. When a vdev is in the CANT_OPEN state, the aux field
611 * of the vdev stats structure uses these constants to distinguish why.
612 */
613typedef enum vdev_aux {
614 VDEV_AUX_NONE, /* no error */
615 VDEV_AUX_OPEN_FAILED, /* ldi_open_*() or vn_open() failed */
616 VDEV_AUX_CORRUPT_DATA, /* bad label or disk contents */
617 VDEV_AUX_NO_REPLICAS, /* insufficient number of replicas */
618 VDEV_AUX_BAD_GUID_SUM, /* vdev guid sum doesn't match */
619 VDEV_AUX_TOO_SMALL, /* vdev size is too small */
620 VDEV_AUX_BAD_LABEL, /* the label is OK but invalid */
621 VDEV_AUX_VERSION_NEWER, /* on-disk version is too new */
622 VDEV_AUX_VERSION_OLDER, /* on-disk version is too old */
623 VDEV_AUX_SPARED /* hot spare used in another pool */
624} vdev_aux_t;
625
626/*
627 * pool state. The following states are written to disk as part of the normal
628 * SPA lifecycle: ACTIVE, EXPORTED, DESTROYED, SPARE. The remaining states are
629 * software abstractions used at various levels to communicate pool state.
630 */
631typedef enum pool_state {
632 POOL_STATE_ACTIVE = 0, /* In active use */
633 POOL_STATE_EXPORTED, /* Explicitly exported */
634 POOL_STATE_DESTROYED, /* Explicitly destroyed */
635 POOL_STATE_SPARE, /* Reserved for hot spare use */
636 POOL_STATE_UNINITIALIZED, /* Internal spa_t state */
637 POOL_STATE_UNAVAIL, /* Internal libzfs state */
638 POOL_STATE_POTENTIALLY_ACTIVE /* Internal libzfs state */
639} pool_state_t;
640
641/*
642 * The uberblock version is incremented whenever an incompatible on-disk
643 * format change is made to the SPA, DMU, or ZAP.
644 *
645 * Note: the first two fields should never be moved. When a storage pool
646 * is opened, the uberblock must be read off the disk before the version
647 * can be checked. If the ub_version field is moved, we may not detect
648 * version mismatch. If the ub_magic field is moved, applications that
649 * expect the magic number in the first word won't work.
650 */
651#define UBERBLOCK_MAGIC 0x00bab10c /* oo-ba-bloc! */
652#define UBERBLOCK_SHIFT 10 /* up to 1K */
653
654struct uberblock {
655 uint64_t ub_magic; /* UBERBLOCK_MAGIC */
656 uint64_t ub_version; /* SPA_VERSION */
657 uint64_t ub_txg; /* txg of last sync */
658 uint64_t ub_guid_sum; /* sum of all vdev guids */
659 uint64_t ub_timestamp; /* UTC time of last sync */
660 blkptr_t ub_rootbp; /* MOS objset_phys_t */
661};
662
663/*
664 * Flags.
665 */
666#define DNODE_MUST_BE_ALLOCATED 1
667#define DNODE_MUST_BE_FREE 2
668
669/*
670 * Fixed constants.
671 */
672#define DNODE_SHIFT 9 /* 512 bytes */
673#define DN_MIN_INDBLKSHIFT 10 /* 1k */
674#define DN_MAX_INDBLKSHIFT 14 /* 16k */
675#define DNODE_BLOCK_SHIFT 14 /* 16k */
676#define DNODE_CORE_SIZE 64 /* 64 bytes for dnode sans blkptrs */
677#define DN_MAX_OBJECT_SHIFT 48 /* 256 trillion (zfs_fid_t limit) */
678#define DN_MAX_OFFSET_SHIFT 64 /* 2^64 bytes in a dnode */
679
680/*
681 * Derived constants.
682 */
683#define DNODE_SIZE (1 << DNODE_SHIFT)
684#define DN_MAX_NBLKPTR ((DNODE_SIZE - DNODE_CORE_SIZE) >> SPA_BLKPTRSHIFT)
685#define DN_MAX_BONUSLEN (DNODE_SIZE - DNODE_CORE_SIZE - (1 << SPA_BLKPTRSHIFT))
686#define DN_MAX_OBJECT (1ULL << DN_MAX_OBJECT_SHIFT)
687
688#define DNODES_PER_BLOCK_SHIFT (DNODE_BLOCK_SHIFT - DNODE_SHIFT)
689#define DNODES_PER_BLOCK (1ULL << DNODES_PER_BLOCK_SHIFT)
690#define DNODES_PER_LEVEL_SHIFT (DN_MAX_INDBLKSHIFT - SPA_BLKPTRSHIFT)
691
692/* The +2 here is a cheesy way to round up */
693#define DN_MAX_LEVELS (2 + ((DN_MAX_OFFSET_SHIFT - SPA_MINBLOCKSHIFT) / \
694 (DN_MIN_INDBLKSHIFT - SPA_BLKPTRSHIFT)))
695
696#define DN_BONUS(dnp) ((void*)((dnp)->dn_bonus + \
697 (((dnp)->dn_nblkptr - 1) * sizeof (blkptr_t))))
698
699#define DN_USED_BYTES(dnp) (((dnp)->dn_flags & DNODE_FLAG_USED_BYTES) ? \
700 (dnp)->dn_used : (dnp)->dn_used << SPA_MINBLOCKSHIFT)
701
702#define EPB(blkshift, typeshift) (1 << (blkshift - typeshift))
703
704/* Is dn_used in bytes? if not, it's in multiples of SPA_MINBLOCKSIZE */
705#define DNODE_FLAG_USED_BYTES (1<<0)
706
707typedef struct dnode_phys {
708 uint8_t dn_type; /* dmu_object_type_t */
709 uint8_t dn_indblkshift; /* ln2(indirect block size) */
710 uint8_t dn_nlevels; /* 1=dn_blkptr->data blocks */
711 uint8_t dn_nblkptr; /* length of dn_blkptr */
712 uint8_t dn_bonustype; /* type of data in bonus buffer */
713 uint8_t dn_checksum; /* ZIO_CHECKSUM type */
714 uint8_t dn_compress; /* ZIO_COMPRESS type */
715 uint8_t dn_flags; /* DNODE_FLAG_* */
716 uint16_t dn_datablkszsec; /* data block size in 512b sectors */
717 uint16_t dn_bonuslen; /* length of dn_bonus */
718 uint8_t dn_pad2[4];
719
720 /* accounting is protected by dn_dirty_mtx */
721 uint64_t dn_maxblkid; /* largest allocated block ID */
722 uint64_t dn_used; /* bytes (or sectors) of disk space */
723
724 uint64_t dn_pad3[4];
725
726 blkptr_t dn_blkptr[1];
727 uint8_t dn_bonus[DN_MAX_BONUSLEN];
728} dnode_phys_t;
729
730typedef enum dmu_object_type {
731 DMU_OT_NONE,
732 /* general: */
733 DMU_OT_OBJECT_DIRECTORY, /* ZAP */
734 DMU_OT_OBJECT_ARRAY, /* UINT64 */
735 DMU_OT_PACKED_NVLIST, /* UINT8 (XDR by nvlist_pack/unpack) */
736 DMU_OT_PACKED_NVLIST_SIZE, /* UINT64 */
737 DMU_OT_BPLIST, /* UINT64 */
738 DMU_OT_BPLIST_HDR, /* UINT64 */
739 /* spa: */
740 DMU_OT_SPACE_MAP_HEADER, /* UINT64 */
741 DMU_OT_SPACE_MAP, /* UINT64 */
742 /* zil: */
743 DMU_OT_INTENT_LOG, /* UINT64 */
744 /* dmu: */
745 DMU_OT_DNODE, /* DNODE */
746 DMU_OT_OBJSET, /* OBJSET */
747 /* dsl: */
748 DMU_OT_DSL_DIR, /* UINT64 */
749 DMU_OT_DSL_DIR_CHILD_MAP, /* ZAP */
750 DMU_OT_DSL_DS_SNAP_MAP, /* ZAP */
751 DMU_OT_DSL_PROPS, /* ZAP */
752 DMU_OT_DSL_DATASET, /* UINT64 */
753 /* zpl: */
754 DMU_OT_ZNODE, /* ZNODE */
755 DMU_OT_ACL, /* ACL */
756 DMU_OT_PLAIN_FILE_CONTENTS, /* UINT8 */
757 DMU_OT_DIRECTORY_CONTENTS, /* ZAP */
758 DMU_OT_MASTER_NODE, /* ZAP */
759 DMU_OT_UNLINKED_SET, /* ZAP */
760 /* zvol: */
761 DMU_OT_ZVOL, /* UINT8 */
762 DMU_OT_ZVOL_PROP, /* ZAP */
763 /* other; for testing only! */
764 DMU_OT_PLAIN_OTHER, /* UINT8 */
765 DMU_OT_UINT64_OTHER, /* UINT64 */
766 DMU_OT_ZAP_OTHER, /* ZAP */
767 /* new object types: */
768 DMU_OT_ERROR_LOG, /* ZAP */
769 DMU_OT_SPA_HISTORY, /* UINT8 */
770 DMU_OT_SPA_HISTORY_OFFSETS, /* spa_his_phys_t */
771 DMU_OT_POOL_PROPS, /* ZAP */
772
773 DMU_OT_NUMTYPES
774} dmu_object_type_t;
775
776typedef enum dmu_objset_type {
777 DMU_OST_NONE,
778 DMU_OST_META,
779 DMU_OST_ZFS,
780 DMU_OST_ZVOL,
781 DMU_OST_OTHER, /* For testing only! */
782 DMU_OST_ANY, /* Be careful! */
783 DMU_OST_NUMTYPES
784} dmu_objset_type_t;
785
786/*
787 * Intent log header - this on disk structure holds fields to manage
788 * the log. All fields are 64 bit to easily handle cross architectures.
789 */
790typedef struct zil_header {
791 uint64_t zh_claim_txg; /* txg in which log blocks were claimed */
792 uint64_t zh_replay_seq; /* highest replayed sequence number */
793 blkptr_t zh_log; /* log chain */
794 uint64_t zh_claim_seq; /* highest claimed sequence number */
795 uint64_t zh_pad[5];
796} zil_header_t;
797
798typedef struct objset_phys {
799 dnode_phys_t os_meta_dnode;
800 zil_header_t os_zil_header;
801 uint64_t os_type;
802 char os_pad[1024 - sizeof (dnode_phys_t) - sizeof (zil_header_t) -
803 sizeof (uint64_t)];
804} objset_phys_t;
805
806typedef struct dsl_dir_phys {
807 uint64_t dd_creation_time; /* not actually used */
808 uint64_t dd_head_dataset_obj;
809 uint64_t dd_parent_obj;
810 uint64_t dd_clone_parent_obj;
811 uint64_t dd_child_dir_zapobj;
812 /*
813 * how much space our children are accounting for; for leaf
814 * datasets, == physical space used by fs + snaps
815 */
816 uint64_t dd_used_bytes;
817 uint64_t dd_compressed_bytes;
818 uint64_t dd_uncompressed_bytes;
819 /* Administrative quota setting */
820 uint64_t dd_quota;
821 /* Administrative reservation setting */
822 uint64_t dd_reserved;
823 uint64_t dd_props_zapobj;
824 uint64_t dd_pad[21]; /* pad out to 256 bytes for good measure */
825} dsl_dir_phys_t;
826
827typedef struct dsl_dataset_phys {
828 uint64_t ds_dir_obj;
829 uint64_t ds_prev_snap_obj;
830 uint64_t ds_prev_snap_txg;
831 uint64_t ds_next_snap_obj;
832 uint64_t ds_snapnames_zapobj; /* zap obj of snaps; ==0 for snaps */
833 uint64_t ds_num_children; /* clone/snap children; ==0 for head */
834 uint64_t ds_creation_time; /* seconds since 1970 */
835 uint64_t ds_creation_txg;
836 uint64_t ds_deadlist_obj;
837 uint64_t ds_used_bytes;
838 uint64_t ds_compressed_bytes;
839 uint64_t ds_uncompressed_bytes;
840 uint64_t ds_unique_bytes; /* only relevant to snapshots */
841 /*
842 * The ds_fsid_guid is a 56-bit ID that can change to avoid
843 * collisions. The ds_guid is a 64-bit ID that will never
844 * change, so there is a small probability that it will collide.
845 */
846 uint64_t ds_fsid_guid;
847 uint64_t ds_guid;
848 uint64_t ds_flags;
849 blkptr_t ds_bp;
850 uint64_t ds_pad[8]; /* pad out to 320 bytes for good measure */
851} dsl_dataset_phys_t;
852
853/*
854 * The names of zap entries in the DIRECTORY_OBJECT of the MOS.
855 */
856#define DMU_POOL_DIRECTORY_OBJECT 1
857#define DMU_POOL_CONFIG "config"
858#define DMU_POOL_ROOT_DATASET "root_dataset"
859#define DMU_POOL_SYNC_BPLIST "sync_bplist"
860#define DMU_POOL_ERRLOG_SCRUB "errlog_scrub"
861#define DMU_POOL_ERRLOG_LAST "errlog_last"
862#define DMU_POOL_SPARES "spares"
863#define DMU_POOL_DEFLATE "deflate"
864#define DMU_POOL_HISTORY "history"
865#define DMU_POOL_PROPS "pool_props"
866
867#define ZAP_MAGIC 0x2F52AB2ABULL
868
869#define FZAP_BLOCK_SHIFT(zap) ((zap)->zap_block_shift)
870
871#define ZAP_MAXCD (uint32_t)(-1)
872#define ZAP_HASHBITS 28
873#define MZAP_ENT_LEN 64
874#define MZAP_NAME_LEN (MZAP_ENT_LEN - 8 - 4 - 2)
875#define MZAP_MAX_BLKSHIFT SPA_MAXBLOCKSHIFT
876#define MZAP_MAX_BLKSZ (1 << MZAP_MAX_BLKSHIFT)
877
878typedef struct mzap_ent_phys {
879 uint64_t mze_value;
880 uint32_t mze_cd;
881 uint16_t mze_pad; /* in case we want to chain them someday */
882 char mze_name[MZAP_NAME_LEN];
883} mzap_ent_phys_t;
884
885typedef struct mzap_phys {
886 uint64_t mz_block_type; /* ZBT_MICRO */
887 uint64_t mz_salt;
888 uint64_t mz_pad[6];
889 mzap_ent_phys_t mz_chunk[1];
890 /* actually variable size depending on block size */
891} mzap_phys_t;
892
893/*
894 * The (fat) zap is stored in one object. It is an array of
895 * 1<<FZAP_BLOCK_SHIFT byte blocks. The layout looks like one of:
896 *
897 * ptrtbl fits in first block:
898 * [zap_phys_t zap_ptrtbl_shift < 6] [zap_leaf_t] ...
899 *
900 * ptrtbl too big for first block:
901 * [zap_phys_t zap_ptrtbl_shift >= 6] [zap_leaf_t] [ptrtbl] ...
902 *
903 */
904
905#define ZBT_LEAF ((1ULL << 63) + 0)
906#define ZBT_HEADER ((1ULL << 63) + 1)
907#define ZBT_MICRO ((1ULL << 63) + 3)
908/* any other values are ptrtbl blocks */
909
910/*
911 * the embedded pointer table takes up half a block:
912 * block size / entry size (2^3) / 2
913 */
914#define ZAP_EMBEDDED_PTRTBL_SHIFT(zap) (FZAP_BLOCK_SHIFT(zap) - 3 - 1)
915
916/*
917 * The embedded pointer table starts half-way through the block. Since
918 * the pointer table itself is half the block, it starts at (64-bit)
919 * word number (1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)).
920 */
921#define ZAP_EMBEDDED_PTRTBL_ENT(zap, idx) \
922 ((uint64_t *)(zap)->zap_phys) \
923 [(idx) + (1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap))]
924
925/*
926 * TAKE NOTE:
927 * If zap_phys_t is modified, zap_byteswap() must be modified.
928 */
929typedef struct zap_phys {
930 uint64_t zap_block_type; /* ZBT_HEADER */
931 uint64_t zap_magic; /* ZAP_MAGIC */
932
933 struct zap_table_phys {
934 uint64_t zt_blk; /* starting block number */
935 uint64_t zt_numblks; /* number of blocks */
936 uint64_t zt_shift; /* bits to index it */
937 uint64_t zt_nextblk; /* next (larger) copy start block */
938 uint64_t zt_blks_copied; /* number source blocks copied */
939 } zap_ptrtbl;
940
941 uint64_t zap_freeblk; /* the next free block */
942 uint64_t zap_num_leafs; /* number of leafs */
943 uint64_t zap_num_entries; /* number of entries */
944 uint64_t zap_salt; /* salt to stir into hash function */
945 /*
946 * This structure is followed by padding, and then the embedded
947 * pointer table. The embedded pointer table takes up second
948 * half of the block. It is accessed using the
949 * ZAP_EMBEDDED_PTRTBL_ENT() macro.
950 */
951} zap_phys_t;
952
953typedef struct zap_table_phys zap_table_phys_t;
954
955typedef struct fat_zap {
956 int zap_block_shift; /* block size shift */
957 zap_phys_t *zap_phys;
958} fat_zap_t;
959
960#define ZAP_LEAF_MAGIC 0x2AB1EAF
961
962/* chunk size = 24 bytes */
963#define ZAP_LEAF_CHUNKSIZE 24
964
965/*
966 * The amount of space available for chunks is:
967 * block size (1<<l->l_bs) - hash entry size (2) * number of hash
968 * entries - header space (2*chunksize)
969 */
970#define ZAP_LEAF_NUMCHUNKS(l) \
971 (((1<<(l)->l_bs) - 2*ZAP_LEAF_HASH_NUMENTRIES(l)) / \
972 ZAP_LEAF_CHUNKSIZE - 2)
973
974/*
975 * The amount of space within the chunk available for the array is:
976 * chunk size - space for type (1) - space for next pointer (2)
977 */
978#define ZAP_LEAF_ARRAY_BYTES (ZAP_LEAF_CHUNKSIZE - 3)
979
980#define ZAP_LEAF_ARRAY_NCHUNKS(bytes) \
981 (((bytes)+ZAP_LEAF_ARRAY_BYTES-1)/ZAP_LEAF_ARRAY_BYTES)
982
983/*
984 * Low water mark: when there are only this many chunks free, start
985 * growing the ptrtbl. Ideally, this should be larger than a
986 * "reasonably-sized" entry. 20 chunks is more than enough for the
987 * largest directory entry (MAXNAMELEN (256) byte name, 8-byte value),
988 * while still being only around 3% for 16k blocks.
989 */
990#define ZAP_LEAF_LOW_WATER (20)
991
992/*
993 * The leaf hash table has block size / 2^5 (32) number of entries,
994 * which should be more than enough for the maximum number of entries,
995 * which is less than block size / CHUNKSIZE (24) / minimum number of
996 * chunks per entry (3).
997 */
998#define ZAP_LEAF_HASH_SHIFT(l) ((l)->l_bs - 5)
999#define ZAP_LEAF_HASH_NUMENTRIES(l) (1 << ZAP_LEAF_HASH_SHIFT(l))
1000
1001/*
1002 * The chunks start immediately after the hash table. The end of the
1003 * hash table is at l_hash + HASH_NUMENTRIES, which we simply cast to a
1004 * chunk_t.
1005 */
1006#define ZAP_LEAF_CHUNK(l, idx) \
1007 ((zap_leaf_chunk_t *) \
1008 ((l)->l_phys->l_hash + ZAP_LEAF_HASH_NUMENTRIES(l)))[idx]
1009#define ZAP_LEAF_ENTRY(l, idx) (&ZAP_LEAF_CHUNK(l, idx).l_entry)
1010
1011typedef enum zap_chunk_type {
1012 ZAP_CHUNK_FREE = 253,
1013 ZAP_CHUNK_ENTRY = 252,
1014 ZAP_CHUNK_ARRAY = 251,
1015 ZAP_CHUNK_TYPE_MAX = 250
1016} zap_chunk_type_t;
1017
1018/*
1019 * TAKE NOTE:
1020 * If zap_leaf_phys_t is modified, zap_leaf_byteswap() must be modified.
1021 */
1022typedef struct zap_leaf_phys {
1023 struct zap_leaf_header {
1024 uint64_t lh_block_type; /* ZBT_LEAF */
1025 uint64_t lh_pad1;
1026 uint64_t lh_prefix; /* hash prefix of this leaf */
1027 uint32_t lh_magic; /* ZAP_LEAF_MAGIC */
1028 uint16_t lh_nfree; /* number free chunks */
1029 uint16_t lh_nentries; /* number of entries */
1030 uint16_t lh_prefix_len; /* num bits used to id this */
1031
1032/* above is accessable to zap, below is zap_leaf private */
1033
1034 uint16_t lh_freelist; /* chunk head of free list */
1035 uint8_t lh_pad2[12];
1036 } l_hdr; /* 2 24-byte chunks */
1037
1038 /*
1039 * The header is followed by a hash table with
1040 * ZAP_LEAF_HASH_NUMENTRIES(zap) entries. The hash table is
1041 * followed by an array of ZAP_LEAF_NUMCHUNKS(zap)
1042 * zap_leaf_chunk structures. These structures are accessed
1043 * with the ZAP_LEAF_CHUNK() macro.
1044 */
1045
1046 uint16_t l_hash[1];
1047} zap_leaf_phys_t;
1048
1049typedef union zap_leaf_chunk {
1050 struct zap_leaf_entry {
1051 uint8_t le_type; /* always ZAP_CHUNK_ENTRY */
1052 uint8_t le_int_size; /* size of ints */
1053 uint16_t le_next; /* next entry in hash chain */
1054 uint16_t le_name_chunk; /* first chunk of the name */
1055 uint16_t le_name_length; /* bytes in name, incl null */
1056 uint16_t le_value_chunk; /* first chunk of the value */
1057 uint16_t le_value_length; /* value length in ints */
1058 uint32_t le_cd; /* collision differentiator */
1059 uint64_t le_hash; /* hash value of the name */
1060 } l_entry;
1061 struct zap_leaf_array {
1062 uint8_t la_type; /* always ZAP_CHUNK_ARRAY */
1063 uint8_t la_array[ZAP_LEAF_ARRAY_BYTES];
1064 uint16_t la_next; /* next blk or CHAIN_END */
1065 } l_array;
1066 struct zap_leaf_free {
1067 uint8_t lf_type; /* always ZAP_CHUNK_FREE */
1068 uint8_t lf_pad[ZAP_LEAF_ARRAY_BYTES];
1069 uint16_t lf_next; /* next in free list, or CHAIN_END */
1070 } l_free;
1071} zap_leaf_chunk_t;
1072
1073typedef struct zap_leaf {
1074 int l_bs; /* block size shift */
1075 zap_leaf_phys_t *l_phys;
1076} zap_leaf_t;
1077
1078/*
1079 * Define special zfs pflags
1080 */
1081#define ZFS_XATTR 0x1 /* is an extended attribute */
1082#define ZFS_INHERIT_ACE 0x2 /* ace has inheritable ACEs */
1083#define ZFS_ACL_TRIVIAL 0x4 /* files ACL is trivial */
1084
1085#define MASTER_NODE_OBJ 1
1086
1087/*
1088 * special attributes for master node.
1089 */
1090
1091#define ZFS_FSID "FSID"
1092#define ZFS_UNLINKED_SET "DELETE_QUEUE"
1093#define ZFS_ROOT_OBJ "ROOT"
1094#define ZPL_VERSION_OBJ "VERSION"
1095#define ZFS_PROP_BLOCKPERPAGE "BLOCKPERPAGE"
1096#define ZFS_PROP_NOGROWBLOCKS "NOGROWBLOCKS"
1097
1098#define ZFS_FLAG_BLOCKPERPAGE 0x1
1099#define ZFS_FLAG_NOGROWBLOCKS 0x2
1100
1101/*
1102 * ZPL version - rev'd whenever an incompatible on-disk format change
1103 * occurs. Independent of SPA/DMU/ZAP versioning.
1104 */
1105
1106#define ZPL_VERSION 1ULL
1107
1108/*
1109 * The directory entry has the type (currently unused on Solaris) in the
1110 * top 4 bits, and the object number in the low 48 bits. The "middle"
1111 * 12 bits are unused.
1112 */
1113#define ZFS_DIRENT_TYPE(de) BF64_GET(de, 60, 4)
1114#define ZFS_DIRENT_OBJ(de) BF64_GET(de, 0, 48)
1115#define ZFS_DIRENT_MAKE(type, obj) (((uint64_t)type << 60) | obj)
1116
1117typedef struct ace {
1118 uid_t a_who; /* uid or gid */
1119 uint32_t a_access_mask; /* read,write,... */
1120 uint16_t a_flags; /* see below */
1121 uint16_t a_type; /* allow or deny */
1122} ace_t;
1123
1124#define ACE_SLOT_CNT 6
1125
1126typedef struct zfs_znode_acl {
1127 uint64_t z_acl_extern_obj; /* ext acl pieces */
1128 uint32_t z_acl_count; /* Number of ACEs */
1129 uint16_t z_acl_version; /* acl version */
1130 uint16_t z_acl_pad; /* pad */
1131 ace_t z_ace_data[ACE_SLOT_CNT]; /* 6 standard ACEs */
1132} zfs_znode_acl_t;
1133
1134/*
1135 * This is the persistent portion of the znode. It is stored
1136 * in the "bonus buffer" of the file. Short symbolic links
1137 * are also stored in the bonus buffer.
1138 */
1139typedef struct znode_phys {
1140 uint64_t zp_atime[2]; /* 0 - last file access time */
1141 uint64_t zp_mtime[2]; /* 16 - last file modification time */
1142 uint64_t zp_ctime[2]; /* 32 - last file change time */
1143 uint64_t zp_crtime[2]; /* 48 - creation time */
1144 uint64_t zp_gen; /* 64 - generation (txg of creation) */
1145 uint64_t zp_mode; /* 72 - file mode bits */
1146 uint64_t zp_size; /* 80 - size of file */
1147 uint64_t zp_parent; /* 88 - directory parent (`..') */
1148 uint64_t zp_links; /* 96 - number of links to file */
1149 uint64_t zp_xattr; /* 104 - DMU object for xattrs */
1150 uint64_t zp_rdev; /* 112 - dev_t for VBLK & VCHR files */
1151 uint64_t zp_flags; /* 120 - persistent flags */
1152 uint64_t zp_uid; /* 128 - file owner */
1153 uint64_t zp_gid; /* 136 - owning group */
1154 uint64_t zp_pad[4]; /* 144 - future */
1155 zfs_znode_acl_t zp_acl; /* 176 - 263 ACL */
1156 /*
1157 * Data may pad out any remaining bytes in the znode buffer, eg:
1158 *
1159 * |<---------------------- dnode_phys (512) ------------------------>|
1160 * |<-- dnode (192) --->|<----------- "bonus" buffer (320) ---------->|
1161 * |<---- znode (264) ---->|<---- data (56) ---->|
1162 *
1163 * At present, we only use this space to store symbolic links.
1164 */
1165} znode_phys_t;
1166
1167/*
1168 * In-core vdev representation.
1169 */
1170struct vdev;
1171typedef int vdev_phys_read_t(struct vdev *vdev, void *priv,
1172 off_t offset, void *buf, size_t bytes);
1173typedef int vdev_read_t(struct vdev *vdev, const blkptr_t *bp,
1174 void *buf, off_t offset, size_t bytes);
1175
1176typedef STAILQ_HEAD(vdev_list, vdev) vdev_list_t;
1177
1178typedef struct vdev {
1179 STAILQ_ENTRY(vdev) v_childlink; /* link in parent's child list */
1180 STAILQ_ENTRY(vdev) v_alllink; /* link in global vdev list */
1181 vdev_list_t v_children; /* children of this vdev */
1182 char *v_name; /* vdev name */
1183 uint64_t v_guid; /* vdev guid */
1184 int v_id; /* index in parent */
1185 int v_ashift; /* offset to block shift */
1186 int v_nparity; /* # parity for raidz */
1187 int v_nchildren; /* # children */
1188 vdev_state_t v_state; /* current state */
1189 vdev_phys_read_t *v_phys_read; /* read from raw leaf vdev */
1190 vdev_read_t *v_read; /* read from vdev */
1191 void *v_read_priv; /* private data for read function */
1192} vdev_t;
1193
1194/*
1195 * In-core pool representation.
1196 */
1197typedef STAILQ_HEAD(spa_list, spa) spa_list_t;
1198
1199typedef struct spa {
1200 STAILQ_ENTRY(spa) spa_link; /* link in global pool list */
1201 char *spa_name; /* pool name */
1202 uint64_t spa_guid; /* pool guid */
1203 uint64_t spa_txg; /* most recent transaction */
1204 struct uberblock spa_uberblock; /* best uberblock so far */
1205 vdev_list_t spa_vdevs; /* list of all toplevel vdevs */
1206 objset_phys_t spa_mos; /* MOS for this pool */
1207 objset_phys_t spa_root_objset; /* current mounted ZPL objset */
1208} spa_t;