Deleted Added
full compact
vm_page.h (228156) vm_page.h (230623)
1/*-
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * from: @(#)vm_page.h 8.2 (Berkeley) 12/13/93
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
53 * School of Computer Science
54 * Carnegie Mellon University
55 * Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 *
1/*-
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * from: @(#)vm_page.h 8.2 (Berkeley) 12/13/93
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
53 * School of Computer Science
54 * Carnegie Mellon University
55 * Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 *
60 * $FreeBSD: head/sys/vm/vm_page.h 228156 2011-11-30 17:39:00Z kib $
60 * $FreeBSD: head/sys/vm/vm_page.h 230623 2012-01-27 20:18:31Z kmacy $
61 */
62
63/*
64 * Resident memory system definitions.
65 */
66
67#ifndef _VM_PAGE_
68#define _VM_PAGE_
69
70#include <vm/pmap.h>
71
72/*
73 * Management of resident (logical) pages.
74 *
75 * A small structure is kept for each resident
76 * page, indexed by page number. Each structure
77 * is an element of several lists:
78 *
79 * A hash table bucket used to quickly
80 * perform object/offset lookups
81 *
82 * A list of all pages for a given object,
83 * so they can be quickly deactivated at
84 * time of deallocation.
85 *
86 * An ordered list of pages due for pageout.
87 *
88 * In addition, the structure contains the object
89 * and offset to which this page belongs (for pageout),
90 * and sundry status bits.
91 *
92 * In general, operations on this structure's mutable fields are
93 * synchronized using either one of or a combination of the lock on the
94 * object that the page belongs to (O), the pool lock for the page (P),
95 * or the lock for either the free or paging queues (Q). If a field is
96 * annotated below with two of these locks, then holding either lock is
97 * sufficient for read access, but both locks are required for write
98 * access.
99 *
100 * In contrast, the synchronization of accesses to the page's
101 * dirty field is machine dependent (M). In the
102 * machine-independent layer, the lock on the object that the
103 * page belongs to must be held in order to operate on the field.
104 * However, the pmap layer is permitted to set all bits within
105 * the field without holding that lock. If the underlying
106 * architecture does not support atomic read-modify-write
107 * operations on the field's type, then the machine-independent
108 * layer uses a 32-bit atomic on the aligned 32-bit word that
109 * contains the dirty field. In the machine-independent layer,
110 * the implementation of read-modify-write operations on the
111 * field is encapsulated in vm_page_clear_dirty_mask().
112 */
113
114TAILQ_HEAD(pglist, vm_page);
115
116#if PAGE_SIZE == 4096
117#define VM_PAGE_BITS_ALL 0xffu
118typedef uint8_t vm_page_bits_t;
119#elif PAGE_SIZE == 8192
120#define VM_PAGE_BITS_ALL 0xffffu
121typedef uint16_t vm_page_bits_t;
122#elif PAGE_SIZE == 16384
123#define VM_PAGE_BITS_ALL 0xffffffffu
124typedef uint32_t vm_page_bits_t;
125#elif PAGE_SIZE == 32768
126#define VM_PAGE_BITS_ALL 0xfffffffffffffffflu
127typedef uint64_t vm_page_bits_t;
128#endif
129
130struct vm_page {
131 TAILQ_ENTRY(vm_page) pageq; /* queue info for FIFO queue or free list (Q) */
132 TAILQ_ENTRY(vm_page) listq; /* pages in same object (O) */
133 struct vm_page *left; /* splay tree link (O) */
134 struct vm_page *right; /* splay tree link (O) */
135
136 vm_object_t object; /* which object am I in (O,P)*/
137 vm_pindex_t pindex; /* offset into object (O,P) */
138 vm_paddr_t phys_addr; /* physical address of page */
139 struct md_page md; /* machine dependant stuff */
140 uint8_t queue; /* page queue index (P,Q) */
141 int8_t segind;
142 short hold_count; /* page hold count (P) */
143 uint8_t order; /* index of the buddy queue */
144 uint8_t pool;
145 u_short cow; /* page cow mapping count (P) */
146 u_int wire_count; /* wired down maps refs (P) */
147 uint8_t aflags; /* access is atomic */
148 uint8_t flags; /* see below, often immutable after alloc */
149 u_short oflags; /* page flags (O) */
150 u_char act_count; /* page usage count (O) */
151 u_char busy; /* page busy count (O) */
152 /* NOTE that these must support one bit per DEV_BSIZE in a page!!! */
153 /* so, on normal X86 kernels, they must be at least 8 bits wide */
154 vm_page_bits_t valid; /* map of valid DEV_BSIZE chunks (O) */
155 vm_page_bits_t dirty; /* map of dirty DEV_BSIZE chunks (M) */
156};
157
158/*
159 * Page flags stored in oflags:
160 *
161 * Access to these page flags is synchronized by the lock on the object
162 * containing the page (O).
163 *
164 * Note: VPO_UNMANAGED (used by OBJT_DEVICE, OBJT_PHYS and OBJT_SG)
165 * indicates that the page is not under PV management but
166 * otherwise should be treated as a normal page. Pages not
167 * under PV management cannot be paged out via the
168 * object/vm_page_t because there is no knowledge of their pte
169 * mappings, and such pages are also not on any PQ queue.
170 *
171 */
172#define VPO_BUSY 0x0001 /* page is in transit */
173#define VPO_WANTED 0x0002 /* someone is waiting for page */
174#define VPO_UNMANAGED 0x0004 /* No PV management for page */
175#define VPO_SWAPINPROG 0x0200 /* swap I/O in progress on page */
176#define VPO_NOSYNC 0x0400 /* do not collect for syncer */
177
178#define PQ_NONE 255
179#define PQ_INACTIVE 0
180#define PQ_ACTIVE 1
181#define PQ_HOLD 2
182#define PQ_COUNT 3
183
184struct vpgqueues {
185 struct pglist pl;
186 int *cnt;
187};
188
189extern struct vpgqueues vm_page_queues[PQ_COUNT];
190
191struct vpglocks {
192 struct mtx data;
193 char pad[CACHE_LINE_SIZE - sizeof(struct mtx)];
194} __aligned(CACHE_LINE_SIZE);
195
196extern struct vpglocks vm_page_queue_free_lock;
197extern struct vpglocks pa_lock[];
198
199#if defined(__arm__)
200#define PDRSHIFT PDR_SHIFT
201#elif !defined(PDRSHIFT)
202#define PDRSHIFT 21
203#endif
204
205#define pa_index(pa) ((pa) >> PDRSHIFT)
206#define PA_LOCKPTR(pa) &pa_lock[pa_index((pa)) % PA_LOCK_COUNT].data
207#define PA_LOCKOBJPTR(pa) ((struct lock_object *)PA_LOCKPTR((pa)))
208#define PA_LOCK(pa) mtx_lock(PA_LOCKPTR(pa))
209#define PA_TRYLOCK(pa) mtx_trylock(PA_LOCKPTR(pa))
210#define PA_UNLOCK(pa) mtx_unlock(PA_LOCKPTR(pa))
211#define PA_UNLOCK_COND(pa) \
212 do { \
213 if ((pa) != 0) { \
214 PA_UNLOCK((pa)); \
215 (pa) = 0; \
216 } \
217 } while (0)
218
219#define PA_LOCK_ASSERT(pa, a) mtx_assert(PA_LOCKPTR(pa), (a))
220
221#ifdef KLD_MODULE
222#define vm_page_lock(m) vm_page_lock_KBI((m), LOCK_FILE, LOCK_LINE)
223#define vm_page_unlock(m) vm_page_unlock_KBI((m), LOCK_FILE, LOCK_LINE)
224#define vm_page_trylock(m) vm_page_trylock_KBI((m), LOCK_FILE, LOCK_LINE)
225#if defined(INVARIANTS)
226#define vm_page_lock_assert(m, a) \
227 vm_page_lock_assert_KBI((m), (a), __FILE__, __LINE__)
228#else
229#define vm_page_lock_assert(m, a)
230#endif
231#else /* !KLD_MODULE */
232#define vm_page_lockptr(m) (PA_LOCKPTR(VM_PAGE_TO_PHYS((m))))
233#define vm_page_lock(m) mtx_lock(vm_page_lockptr((m)))
234#define vm_page_unlock(m) mtx_unlock(vm_page_lockptr((m)))
235#define vm_page_trylock(m) mtx_trylock(vm_page_lockptr((m)))
236#define vm_page_lock_assert(m, a) mtx_assert(vm_page_lockptr((m)), (a))
237#endif
238
239#define vm_page_queue_free_mtx vm_page_queue_free_lock.data
240/*
241 * These are the flags defined for vm_page.
242 *
243 * aflags are updated by atomic accesses. Use the vm_page_aflag_set()
244 * and vm_page_aflag_clear() functions to set and clear the flags.
245 *
246 * PGA_REFERENCED may be cleared only if the object containing the page is
247 * locked.
248 *
249 * PGA_WRITEABLE is set exclusively on managed pages by pmap_enter(). When it
250 * does so, the page must be VPO_BUSY.
251 */
252#define PGA_WRITEABLE 0x01 /* page may be mapped writeable */
253#define PGA_REFERENCED 0x02 /* page has been referenced */
254
255/*
256 * Page flags. If changed at any other time than page allocation or
257 * freeing, the modification must be protected by the vm_page lock.
258 */
259#define PG_CACHED 0x01 /* page is cached */
260#define PG_FREE 0x02 /* page is free */
261#define PG_FICTITIOUS 0x04 /* physical page doesn't exist (O) */
262#define PG_ZERO 0x08 /* page is zeroed */
263#define PG_MARKER 0x10 /* special queue marker page */
264#define PG_SLAB 0x20 /* object pointer is actually a slab */
265#define PG_WINATCFLS 0x40 /* flush dirty page on inactive q */
61 */
62
63/*
64 * Resident memory system definitions.
65 */
66
67#ifndef _VM_PAGE_
68#define _VM_PAGE_
69
70#include <vm/pmap.h>
71
72/*
73 * Management of resident (logical) pages.
74 *
75 * A small structure is kept for each resident
76 * page, indexed by page number. Each structure
77 * is an element of several lists:
78 *
79 * A hash table bucket used to quickly
80 * perform object/offset lookups
81 *
82 * A list of all pages for a given object,
83 * so they can be quickly deactivated at
84 * time of deallocation.
85 *
86 * An ordered list of pages due for pageout.
87 *
88 * In addition, the structure contains the object
89 * and offset to which this page belongs (for pageout),
90 * and sundry status bits.
91 *
92 * In general, operations on this structure's mutable fields are
93 * synchronized using either one of or a combination of the lock on the
94 * object that the page belongs to (O), the pool lock for the page (P),
95 * or the lock for either the free or paging queues (Q). If a field is
96 * annotated below with two of these locks, then holding either lock is
97 * sufficient for read access, but both locks are required for write
98 * access.
99 *
100 * In contrast, the synchronization of accesses to the page's
101 * dirty field is machine dependent (M). In the
102 * machine-independent layer, the lock on the object that the
103 * page belongs to must be held in order to operate on the field.
104 * However, the pmap layer is permitted to set all bits within
105 * the field without holding that lock. If the underlying
106 * architecture does not support atomic read-modify-write
107 * operations on the field's type, then the machine-independent
108 * layer uses a 32-bit atomic on the aligned 32-bit word that
109 * contains the dirty field. In the machine-independent layer,
110 * the implementation of read-modify-write operations on the
111 * field is encapsulated in vm_page_clear_dirty_mask().
112 */
113
114TAILQ_HEAD(pglist, vm_page);
115
116#if PAGE_SIZE == 4096
117#define VM_PAGE_BITS_ALL 0xffu
118typedef uint8_t vm_page_bits_t;
119#elif PAGE_SIZE == 8192
120#define VM_PAGE_BITS_ALL 0xffffu
121typedef uint16_t vm_page_bits_t;
122#elif PAGE_SIZE == 16384
123#define VM_PAGE_BITS_ALL 0xffffffffu
124typedef uint32_t vm_page_bits_t;
125#elif PAGE_SIZE == 32768
126#define VM_PAGE_BITS_ALL 0xfffffffffffffffflu
127typedef uint64_t vm_page_bits_t;
128#endif
129
130struct vm_page {
131 TAILQ_ENTRY(vm_page) pageq; /* queue info for FIFO queue or free list (Q) */
132 TAILQ_ENTRY(vm_page) listq; /* pages in same object (O) */
133 struct vm_page *left; /* splay tree link (O) */
134 struct vm_page *right; /* splay tree link (O) */
135
136 vm_object_t object; /* which object am I in (O,P)*/
137 vm_pindex_t pindex; /* offset into object (O,P) */
138 vm_paddr_t phys_addr; /* physical address of page */
139 struct md_page md; /* machine dependant stuff */
140 uint8_t queue; /* page queue index (P,Q) */
141 int8_t segind;
142 short hold_count; /* page hold count (P) */
143 uint8_t order; /* index of the buddy queue */
144 uint8_t pool;
145 u_short cow; /* page cow mapping count (P) */
146 u_int wire_count; /* wired down maps refs (P) */
147 uint8_t aflags; /* access is atomic */
148 uint8_t flags; /* see below, often immutable after alloc */
149 u_short oflags; /* page flags (O) */
150 u_char act_count; /* page usage count (O) */
151 u_char busy; /* page busy count (O) */
152 /* NOTE that these must support one bit per DEV_BSIZE in a page!!! */
153 /* so, on normal X86 kernels, they must be at least 8 bits wide */
154 vm_page_bits_t valid; /* map of valid DEV_BSIZE chunks (O) */
155 vm_page_bits_t dirty; /* map of dirty DEV_BSIZE chunks (M) */
156};
157
158/*
159 * Page flags stored in oflags:
160 *
161 * Access to these page flags is synchronized by the lock on the object
162 * containing the page (O).
163 *
164 * Note: VPO_UNMANAGED (used by OBJT_DEVICE, OBJT_PHYS and OBJT_SG)
165 * indicates that the page is not under PV management but
166 * otherwise should be treated as a normal page. Pages not
167 * under PV management cannot be paged out via the
168 * object/vm_page_t because there is no knowledge of their pte
169 * mappings, and such pages are also not on any PQ queue.
170 *
171 */
172#define VPO_BUSY 0x0001 /* page is in transit */
173#define VPO_WANTED 0x0002 /* someone is waiting for page */
174#define VPO_UNMANAGED 0x0004 /* No PV management for page */
175#define VPO_SWAPINPROG 0x0200 /* swap I/O in progress on page */
176#define VPO_NOSYNC 0x0400 /* do not collect for syncer */
177
178#define PQ_NONE 255
179#define PQ_INACTIVE 0
180#define PQ_ACTIVE 1
181#define PQ_HOLD 2
182#define PQ_COUNT 3
183
184struct vpgqueues {
185 struct pglist pl;
186 int *cnt;
187};
188
189extern struct vpgqueues vm_page_queues[PQ_COUNT];
190
191struct vpglocks {
192 struct mtx data;
193 char pad[CACHE_LINE_SIZE - sizeof(struct mtx)];
194} __aligned(CACHE_LINE_SIZE);
195
196extern struct vpglocks vm_page_queue_free_lock;
197extern struct vpglocks pa_lock[];
198
199#if defined(__arm__)
200#define PDRSHIFT PDR_SHIFT
201#elif !defined(PDRSHIFT)
202#define PDRSHIFT 21
203#endif
204
205#define pa_index(pa) ((pa) >> PDRSHIFT)
206#define PA_LOCKPTR(pa) &pa_lock[pa_index((pa)) % PA_LOCK_COUNT].data
207#define PA_LOCKOBJPTR(pa) ((struct lock_object *)PA_LOCKPTR((pa)))
208#define PA_LOCK(pa) mtx_lock(PA_LOCKPTR(pa))
209#define PA_TRYLOCK(pa) mtx_trylock(PA_LOCKPTR(pa))
210#define PA_UNLOCK(pa) mtx_unlock(PA_LOCKPTR(pa))
211#define PA_UNLOCK_COND(pa) \
212 do { \
213 if ((pa) != 0) { \
214 PA_UNLOCK((pa)); \
215 (pa) = 0; \
216 } \
217 } while (0)
218
219#define PA_LOCK_ASSERT(pa, a) mtx_assert(PA_LOCKPTR(pa), (a))
220
221#ifdef KLD_MODULE
222#define vm_page_lock(m) vm_page_lock_KBI((m), LOCK_FILE, LOCK_LINE)
223#define vm_page_unlock(m) vm_page_unlock_KBI((m), LOCK_FILE, LOCK_LINE)
224#define vm_page_trylock(m) vm_page_trylock_KBI((m), LOCK_FILE, LOCK_LINE)
225#if defined(INVARIANTS)
226#define vm_page_lock_assert(m, a) \
227 vm_page_lock_assert_KBI((m), (a), __FILE__, __LINE__)
228#else
229#define vm_page_lock_assert(m, a)
230#endif
231#else /* !KLD_MODULE */
232#define vm_page_lockptr(m) (PA_LOCKPTR(VM_PAGE_TO_PHYS((m))))
233#define vm_page_lock(m) mtx_lock(vm_page_lockptr((m)))
234#define vm_page_unlock(m) mtx_unlock(vm_page_lockptr((m)))
235#define vm_page_trylock(m) mtx_trylock(vm_page_lockptr((m)))
236#define vm_page_lock_assert(m, a) mtx_assert(vm_page_lockptr((m)), (a))
237#endif
238
239#define vm_page_queue_free_mtx vm_page_queue_free_lock.data
240/*
241 * These are the flags defined for vm_page.
242 *
243 * aflags are updated by atomic accesses. Use the vm_page_aflag_set()
244 * and vm_page_aflag_clear() functions to set and clear the flags.
245 *
246 * PGA_REFERENCED may be cleared only if the object containing the page is
247 * locked.
248 *
249 * PGA_WRITEABLE is set exclusively on managed pages by pmap_enter(). When it
250 * does so, the page must be VPO_BUSY.
251 */
252#define PGA_WRITEABLE 0x01 /* page may be mapped writeable */
253#define PGA_REFERENCED 0x02 /* page has been referenced */
254
255/*
256 * Page flags. If changed at any other time than page allocation or
257 * freeing, the modification must be protected by the vm_page lock.
258 */
259#define PG_CACHED 0x01 /* page is cached */
260#define PG_FREE 0x02 /* page is free */
261#define PG_FICTITIOUS 0x04 /* physical page doesn't exist (O) */
262#define PG_ZERO 0x08 /* page is zeroed */
263#define PG_MARKER 0x10 /* special queue marker page */
264#define PG_SLAB 0x20 /* object pointer is actually a slab */
265#define PG_WINATCFLS 0x40 /* flush dirty page on inactive q */
266#define PG_NODUMP 0x80 /* don't include this page in the dump */
266
267/*
268 * Misc constants.
269 */
270#define ACT_DECLINE 1
271#define ACT_ADVANCE 3
272#define ACT_INIT 5
273#define ACT_MAX 64
274
275#ifdef _KERNEL
276
277#include <vm/vm_param.h>
278
279/*
280 * Each pageable resident page falls into one of five lists:
281 *
282 * free
283 * Available for allocation now.
284 *
285 * cache
286 * Almost available for allocation. Still associated with
287 * an object, but clean and immediately freeable.
288 *
289 * hold
290 * Will become free after a pending I/O operation
291 * completes.
292 *
293 * The following lists are LRU sorted:
294 *
295 * inactive
296 * Low activity, candidates for reclamation.
297 * This is the list of pages that should be
298 * paged out next.
299 *
300 * active
301 * Pages that are "active" i.e. they have been
302 * recently referenced.
303 *
304 */
305
306struct vnode;
307extern int vm_page_zero_count;
308
309extern vm_page_t vm_page_array; /* First resident page in table */
310extern int vm_page_array_size; /* number of vm_page_t's */
311extern long first_page; /* first physical page number */
312
313#define VM_PAGE_IS_FREE(m) (((m)->flags & PG_FREE) != 0)
314
315#define VM_PAGE_TO_PHYS(entry) ((entry)->phys_addr)
316
317vm_page_t vm_phys_paddr_to_vm_page(vm_paddr_t pa);
318
319static __inline vm_page_t PHYS_TO_VM_PAGE(vm_paddr_t pa);
320
321static __inline vm_page_t
322PHYS_TO_VM_PAGE(vm_paddr_t pa)
323{
324#ifdef VM_PHYSSEG_SPARSE
325 return (vm_phys_paddr_to_vm_page(pa));
326#elif defined(VM_PHYSSEG_DENSE)
327 return (&vm_page_array[atop(pa) - first_page]);
328#else
329#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
330#endif
331}
332
333extern struct vpglocks vm_page_queue_lock;
334
335#define vm_page_queue_mtx vm_page_queue_lock.data
336#define vm_page_lock_queues() mtx_lock(&vm_page_queue_mtx)
337#define vm_page_unlock_queues() mtx_unlock(&vm_page_queue_mtx)
338
339/* page allocation classes: */
340#define VM_ALLOC_NORMAL 0
341#define VM_ALLOC_INTERRUPT 1
342#define VM_ALLOC_SYSTEM 2
343#define VM_ALLOC_CLASS_MASK 3
344/* page allocation flags: */
345#define VM_ALLOC_WIRED 0x0020 /* non pageable */
346#define VM_ALLOC_ZERO 0x0040 /* Try to obtain a zeroed page */
347#define VM_ALLOC_RETRY 0x0080 /* Mandatory with vm_page_grab() */
348#define VM_ALLOC_NOOBJ 0x0100 /* No associated object */
349#define VM_ALLOC_NOBUSY 0x0200 /* Do not busy the page */
350#define VM_ALLOC_IFCACHED 0x0400 /* Fail if the page is not cached */
351#define VM_ALLOC_IFNOTCACHED 0x0800 /* Fail if the page is cached */
352#define VM_ALLOC_IGN_SBUSY 0x1000 /* vm_page_grab() only */
267
268/*
269 * Misc constants.
270 */
271#define ACT_DECLINE 1
272#define ACT_ADVANCE 3
273#define ACT_INIT 5
274#define ACT_MAX 64
275
276#ifdef _KERNEL
277
278#include <vm/vm_param.h>
279
280/*
281 * Each pageable resident page falls into one of five lists:
282 *
283 * free
284 * Available for allocation now.
285 *
286 * cache
287 * Almost available for allocation. Still associated with
288 * an object, but clean and immediately freeable.
289 *
290 * hold
291 * Will become free after a pending I/O operation
292 * completes.
293 *
294 * The following lists are LRU sorted:
295 *
296 * inactive
297 * Low activity, candidates for reclamation.
298 * This is the list of pages that should be
299 * paged out next.
300 *
301 * active
302 * Pages that are "active" i.e. they have been
303 * recently referenced.
304 *
305 */
306
307struct vnode;
308extern int vm_page_zero_count;
309
310extern vm_page_t vm_page_array; /* First resident page in table */
311extern int vm_page_array_size; /* number of vm_page_t's */
312extern long first_page; /* first physical page number */
313
314#define VM_PAGE_IS_FREE(m) (((m)->flags & PG_FREE) != 0)
315
316#define VM_PAGE_TO_PHYS(entry) ((entry)->phys_addr)
317
318vm_page_t vm_phys_paddr_to_vm_page(vm_paddr_t pa);
319
320static __inline vm_page_t PHYS_TO_VM_PAGE(vm_paddr_t pa);
321
322static __inline vm_page_t
323PHYS_TO_VM_PAGE(vm_paddr_t pa)
324{
325#ifdef VM_PHYSSEG_SPARSE
326 return (vm_phys_paddr_to_vm_page(pa));
327#elif defined(VM_PHYSSEG_DENSE)
328 return (&vm_page_array[atop(pa) - first_page]);
329#else
330#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
331#endif
332}
333
334extern struct vpglocks vm_page_queue_lock;
335
336#define vm_page_queue_mtx vm_page_queue_lock.data
337#define vm_page_lock_queues() mtx_lock(&vm_page_queue_mtx)
338#define vm_page_unlock_queues() mtx_unlock(&vm_page_queue_mtx)
339
340/* page allocation classes: */
341#define VM_ALLOC_NORMAL 0
342#define VM_ALLOC_INTERRUPT 1
343#define VM_ALLOC_SYSTEM 2
344#define VM_ALLOC_CLASS_MASK 3
345/* page allocation flags: */
346#define VM_ALLOC_WIRED 0x0020 /* non pageable */
347#define VM_ALLOC_ZERO 0x0040 /* Try to obtain a zeroed page */
348#define VM_ALLOC_RETRY 0x0080 /* Mandatory with vm_page_grab() */
349#define VM_ALLOC_NOOBJ 0x0100 /* No associated object */
350#define VM_ALLOC_NOBUSY 0x0200 /* Do not busy the page */
351#define VM_ALLOC_IFCACHED 0x0400 /* Fail if the page is not cached */
352#define VM_ALLOC_IFNOTCACHED 0x0800 /* Fail if the page is cached */
353#define VM_ALLOC_IGN_SBUSY 0x1000 /* vm_page_grab() only */
354#define VM_ALLOC_NODUMP 0x2000 /* don't include in dump */
353
354#define VM_ALLOC_COUNT_SHIFT 16
355#define VM_ALLOC_COUNT(count) ((count) << VM_ALLOC_COUNT_SHIFT)
356
357void vm_page_aflag_set(vm_page_t m, uint8_t bits);
358void vm_page_aflag_clear(vm_page_t m, uint8_t bits);
359void vm_page_busy(vm_page_t m);
360void vm_page_flash(vm_page_t m);
361void vm_page_io_start(vm_page_t m);
362void vm_page_io_finish(vm_page_t m);
363void vm_page_hold(vm_page_t mem);
364void vm_page_unhold(vm_page_t mem);
365void vm_page_free(vm_page_t m);
366void vm_page_free_zero(vm_page_t m);
367void vm_page_dirty(vm_page_t m);
368void vm_page_wakeup(vm_page_t m);
369
370void vm_pageq_remove(vm_page_t m);
371
372void vm_page_activate (vm_page_t);
373vm_page_t vm_page_alloc (vm_object_t, vm_pindex_t, int);
374vm_page_t vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
375 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
376 vm_paddr_t boundary, vm_memattr_t memattr);
377vm_page_t vm_page_alloc_freelist(int, int);
378vm_page_t vm_page_grab (vm_object_t, vm_pindex_t, int);
379void vm_page_cache(vm_page_t);
380void vm_page_cache_free(vm_object_t, vm_pindex_t, vm_pindex_t);
381void vm_page_cache_remove(vm_page_t);
382void vm_page_cache_transfer(vm_object_t, vm_pindex_t, vm_object_t);
383int vm_page_try_to_cache (vm_page_t);
384int vm_page_try_to_free (vm_page_t);
385void vm_page_dontneed(vm_page_t);
386void vm_page_deactivate (vm_page_t);
387vm_page_t vm_page_find_least(vm_object_t, vm_pindex_t);
388vm_page_t vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr);
389void vm_page_insert (vm_page_t, vm_object_t, vm_pindex_t);
390vm_page_t vm_page_lookup (vm_object_t, vm_pindex_t);
391vm_page_t vm_page_next(vm_page_t m);
392int vm_page_pa_tryrelock(pmap_t, vm_paddr_t, vm_paddr_t *);
393vm_page_t vm_page_prev(vm_page_t m);
394void vm_page_putfake(vm_page_t m);
395void vm_page_reference(vm_page_t m);
396void vm_page_remove (vm_page_t);
397void vm_page_rename (vm_page_t, vm_object_t, vm_pindex_t);
398void vm_page_requeue(vm_page_t m);
399void vm_page_set_valid_range(vm_page_t m, int base, int size);
400void vm_page_sleep(vm_page_t m, const char *msg);
401vm_page_t vm_page_splay(vm_pindex_t, vm_page_t);
402vm_offset_t vm_page_startup(vm_offset_t vaddr);
403void vm_page_unhold_pages(vm_page_t *ma, int count);
404void vm_page_unwire (vm_page_t, int);
405void vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr);
406void vm_page_wire (vm_page_t);
407void vm_page_set_validclean (vm_page_t, int, int);
408void vm_page_clear_dirty (vm_page_t, int, int);
409void vm_page_set_invalid (vm_page_t, int, int);
410int vm_page_is_valid (vm_page_t, int, int);
411void vm_page_test_dirty (vm_page_t);
412vm_page_bits_t vm_page_bits(int base, int size);
413void vm_page_zero_invalid(vm_page_t m, boolean_t setvalid);
414void vm_page_free_toq(vm_page_t m);
415void vm_page_zero_idle_wakeup(void);
416void vm_page_cowfault (vm_page_t);
417int vm_page_cowsetup(vm_page_t);
418void vm_page_cowclear (vm_page_t);
419
420void vm_page_lock_KBI(vm_page_t m, const char *file, int line);
421void vm_page_unlock_KBI(vm_page_t m, const char *file, int line);
422int vm_page_trylock_KBI(vm_page_t m, const char *file, int line);
423#if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
424void vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line);
425#endif
426
427#ifdef INVARIANTS
428void vm_page_object_lock_assert(vm_page_t m);
429#define VM_PAGE_OBJECT_LOCK_ASSERT(m) vm_page_object_lock_assert(m)
430#else
431#define VM_PAGE_OBJECT_LOCK_ASSERT(m) (void)0
432#endif
433
434/*
435 * vm_page_sleep_if_busy:
436 *
437 * Sleep and release the page queues lock if VPO_BUSY is set or,
438 * if also_m_busy is TRUE, busy is non-zero. Returns TRUE if the
439 * thread slept and the page queues lock was released.
440 * Otherwise, retains the page queues lock and returns FALSE.
441 *
442 * The object containing the given page must be locked.
443 */
444static __inline int
445vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg)
446{
447
448 if ((m->oflags & VPO_BUSY) || (also_m_busy && m->busy)) {
449 vm_page_sleep(m, msg);
450 return (TRUE);
451 }
452 return (FALSE);
453}
454
455/*
456 * vm_page_undirty:
457 *
458 * Set page to not be dirty. Note: does not clear pmap modify bits
459 */
460static __inline void
461vm_page_undirty(vm_page_t m)
462{
463
464 VM_PAGE_OBJECT_LOCK_ASSERT(m);
465 m->dirty = 0;
466}
467
468#endif /* _KERNEL */
469#endif /* !_VM_PAGE_ */
355
356#define VM_ALLOC_COUNT_SHIFT 16
357#define VM_ALLOC_COUNT(count) ((count) << VM_ALLOC_COUNT_SHIFT)
358
359void vm_page_aflag_set(vm_page_t m, uint8_t bits);
360void vm_page_aflag_clear(vm_page_t m, uint8_t bits);
361void vm_page_busy(vm_page_t m);
362void vm_page_flash(vm_page_t m);
363void vm_page_io_start(vm_page_t m);
364void vm_page_io_finish(vm_page_t m);
365void vm_page_hold(vm_page_t mem);
366void vm_page_unhold(vm_page_t mem);
367void vm_page_free(vm_page_t m);
368void vm_page_free_zero(vm_page_t m);
369void vm_page_dirty(vm_page_t m);
370void vm_page_wakeup(vm_page_t m);
371
372void vm_pageq_remove(vm_page_t m);
373
374void vm_page_activate (vm_page_t);
375vm_page_t vm_page_alloc (vm_object_t, vm_pindex_t, int);
376vm_page_t vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
377 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
378 vm_paddr_t boundary, vm_memattr_t memattr);
379vm_page_t vm_page_alloc_freelist(int, int);
380vm_page_t vm_page_grab (vm_object_t, vm_pindex_t, int);
381void vm_page_cache(vm_page_t);
382void vm_page_cache_free(vm_object_t, vm_pindex_t, vm_pindex_t);
383void vm_page_cache_remove(vm_page_t);
384void vm_page_cache_transfer(vm_object_t, vm_pindex_t, vm_object_t);
385int vm_page_try_to_cache (vm_page_t);
386int vm_page_try_to_free (vm_page_t);
387void vm_page_dontneed(vm_page_t);
388void vm_page_deactivate (vm_page_t);
389vm_page_t vm_page_find_least(vm_object_t, vm_pindex_t);
390vm_page_t vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr);
391void vm_page_insert (vm_page_t, vm_object_t, vm_pindex_t);
392vm_page_t vm_page_lookup (vm_object_t, vm_pindex_t);
393vm_page_t vm_page_next(vm_page_t m);
394int vm_page_pa_tryrelock(pmap_t, vm_paddr_t, vm_paddr_t *);
395vm_page_t vm_page_prev(vm_page_t m);
396void vm_page_putfake(vm_page_t m);
397void vm_page_reference(vm_page_t m);
398void vm_page_remove (vm_page_t);
399void vm_page_rename (vm_page_t, vm_object_t, vm_pindex_t);
400void vm_page_requeue(vm_page_t m);
401void vm_page_set_valid_range(vm_page_t m, int base, int size);
402void vm_page_sleep(vm_page_t m, const char *msg);
403vm_page_t vm_page_splay(vm_pindex_t, vm_page_t);
404vm_offset_t vm_page_startup(vm_offset_t vaddr);
405void vm_page_unhold_pages(vm_page_t *ma, int count);
406void vm_page_unwire (vm_page_t, int);
407void vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr);
408void vm_page_wire (vm_page_t);
409void vm_page_set_validclean (vm_page_t, int, int);
410void vm_page_clear_dirty (vm_page_t, int, int);
411void vm_page_set_invalid (vm_page_t, int, int);
412int vm_page_is_valid (vm_page_t, int, int);
413void vm_page_test_dirty (vm_page_t);
414vm_page_bits_t vm_page_bits(int base, int size);
415void vm_page_zero_invalid(vm_page_t m, boolean_t setvalid);
416void vm_page_free_toq(vm_page_t m);
417void vm_page_zero_idle_wakeup(void);
418void vm_page_cowfault (vm_page_t);
419int vm_page_cowsetup(vm_page_t);
420void vm_page_cowclear (vm_page_t);
421
422void vm_page_lock_KBI(vm_page_t m, const char *file, int line);
423void vm_page_unlock_KBI(vm_page_t m, const char *file, int line);
424int vm_page_trylock_KBI(vm_page_t m, const char *file, int line);
425#if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
426void vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line);
427#endif
428
429#ifdef INVARIANTS
430void vm_page_object_lock_assert(vm_page_t m);
431#define VM_PAGE_OBJECT_LOCK_ASSERT(m) vm_page_object_lock_assert(m)
432#else
433#define VM_PAGE_OBJECT_LOCK_ASSERT(m) (void)0
434#endif
435
436/*
437 * vm_page_sleep_if_busy:
438 *
439 * Sleep and release the page queues lock if VPO_BUSY is set or,
440 * if also_m_busy is TRUE, busy is non-zero. Returns TRUE if the
441 * thread slept and the page queues lock was released.
442 * Otherwise, retains the page queues lock and returns FALSE.
443 *
444 * The object containing the given page must be locked.
445 */
446static __inline int
447vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg)
448{
449
450 if ((m->oflags & VPO_BUSY) || (also_m_busy && m->busy)) {
451 vm_page_sleep(m, msg);
452 return (TRUE);
453 }
454 return (FALSE);
455}
456
457/*
458 * vm_page_undirty:
459 *
460 * Set page to not be dirty. Note: does not clear pmap modify bits
461 */
462static __inline void
463vm_page_undirty(vm_page_t m)
464{
465
466 VM_PAGE_OBJECT_LOCK_ASSERT(m);
467 m->dirty = 0;
468}
469
470#endif /* _KERNEL */
471#endif /* !_VM_PAGE_ */