Deleted Added
full compact
vm_map.c (245421) vm_map.c (247360)
1/*-
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
53 * School of Computer Science
54 * Carnegie Mellon University
55 * Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61/*
62 * Virtual memory mapping module.
63 */
64
65#include <sys/cdefs.h>
1/*-
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
53 * School of Computer Science
54 * Carnegie Mellon University
55 * Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61/*
62 * Virtual memory mapping module.
63 */
64
65#include <sys/cdefs.h>
66__FBSDID("$FreeBSD: head/sys/vm/vm_map.c 245421 2013-01-14 12:12:56Z zont $");
66__FBSDID("$FreeBSD: head/sys/vm/vm_map.c 247360 2013-02-26 23:35:27Z attilio $");
67
68#include <sys/param.h>
69#include <sys/systm.h>
70#include <sys/kernel.h>
71#include <sys/ktr.h>
72#include <sys/lock.h>
73#include <sys/mutex.h>
74#include <sys/proc.h>
75#include <sys/vmmeter.h>
76#include <sys/mman.h>
77#include <sys/vnode.h>
78#include <sys/racct.h>
79#include <sys/resourcevar.h>
80#include <sys/file.h>
81#include <sys/sysctl.h>
82#include <sys/sysent.h>
83#include <sys/shm.h>
84
85#include <vm/vm.h>
86#include <vm/vm_param.h>
87#include <vm/pmap.h>
88#include <vm/vm_map.h>
89#include <vm/vm_page.h>
90#include <vm/vm_object.h>
91#include <vm/vm_pager.h>
92#include <vm/vm_kern.h>
93#include <vm/vm_extern.h>
94#include <vm/vnode_pager.h>
95#include <vm/swap_pager.h>
96#include <vm/uma.h>
97
98/*
99 * Virtual memory maps provide for the mapping, protection,
100 * and sharing of virtual memory objects. In addition,
101 * this module provides for an efficient virtual copy of
102 * memory from one map to another.
103 *
104 * Synchronization is required prior to most operations.
105 *
106 * Maps consist of an ordered doubly-linked list of simple
107 * entries; a self-adjusting binary search tree of these
108 * entries is used to speed up lookups.
109 *
110 * Since portions of maps are specified by start/end addresses,
111 * which may not align with existing map entries, all
112 * routines merely "clip" entries to these start/end values.
113 * [That is, an entry is split into two, bordering at a
114 * start or end value.] Note that these clippings may not
115 * always be necessary (as the two resulting entries are then
116 * not changed); however, the clipping is done for convenience.
117 *
118 * As mentioned above, virtual copy operations are performed
119 * by copying VM object references from one map to
120 * another, and then marking both regions as copy-on-write.
121 */
122
123static struct mtx map_sleep_mtx;
124static uma_zone_t mapentzone;
125static uma_zone_t kmapentzone;
126static uma_zone_t mapzone;
127static uma_zone_t vmspace_zone;
67
68#include <sys/param.h>
69#include <sys/systm.h>
70#include <sys/kernel.h>
71#include <sys/ktr.h>
72#include <sys/lock.h>
73#include <sys/mutex.h>
74#include <sys/proc.h>
75#include <sys/vmmeter.h>
76#include <sys/mman.h>
77#include <sys/vnode.h>
78#include <sys/racct.h>
79#include <sys/resourcevar.h>
80#include <sys/file.h>
81#include <sys/sysctl.h>
82#include <sys/sysent.h>
83#include <sys/shm.h>
84
85#include <vm/vm.h>
86#include <vm/vm_param.h>
87#include <vm/pmap.h>
88#include <vm/vm_map.h>
89#include <vm/vm_page.h>
90#include <vm/vm_object.h>
91#include <vm/vm_pager.h>
92#include <vm/vm_kern.h>
93#include <vm/vm_extern.h>
94#include <vm/vnode_pager.h>
95#include <vm/swap_pager.h>
96#include <vm/uma.h>
97
98/*
99 * Virtual memory maps provide for the mapping, protection,
100 * and sharing of virtual memory objects. In addition,
101 * this module provides for an efficient virtual copy of
102 * memory from one map to another.
103 *
104 * Synchronization is required prior to most operations.
105 *
106 * Maps consist of an ordered doubly-linked list of simple
107 * entries; a self-adjusting binary search tree of these
108 * entries is used to speed up lookups.
109 *
110 * Since portions of maps are specified by start/end addresses,
111 * which may not align with existing map entries, all
112 * routines merely "clip" entries to these start/end values.
113 * [That is, an entry is split into two, bordering at a
114 * start or end value.] Note that these clippings may not
115 * always be necessary (as the two resulting entries are then
116 * not changed); however, the clipping is done for convenience.
117 *
118 * As mentioned above, virtual copy operations are performed
119 * by copying VM object references from one map to
120 * another, and then marking both regions as copy-on-write.
121 */
122
123static struct mtx map_sleep_mtx;
124static uma_zone_t mapentzone;
125static uma_zone_t kmapentzone;
126static uma_zone_t mapzone;
127static uma_zone_t vmspace_zone;
128static struct vm_object kmapentobj;
129static int vmspace_zinit(void *mem, int size, int flags);
130static void vmspace_zfini(void *mem, int size);
131static int vm_map_zinit(void *mem, int ize, int flags);
132static void vm_map_zfini(void *mem, int size);
133static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
134 vm_offset_t max);
135static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
136static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
137#ifdef INVARIANTS
138static void vm_map_zdtor(void *mem, int size, void *arg);
139static void vmspace_zdtor(void *mem, int size, void *arg);
140#endif
141
142#define ENTRY_CHARGED(e) ((e)->cred != NULL || \
143 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
144 !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
145
146/*
147 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
148 * stable.
149 */
150#define PROC_VMSPACE_LOCK(p) do { } while (0)
151#define PROC_VMSPACE_UNLOCK(p) do { } while (0)
152
153/*
154 * VM_MAP_RANGE_CHECK: [ internal use only ]
155 *
156 * Asserts that the starting and ending region
157 * addresses fall within the valid range of the map.
158 */
159#define VM_MAP_RANGE_CHECK(map, start, end) \
160 { \
161 if (start < vm_map_min(map)) \
162 start = vm_map_min(map); \
163 if (end > vm_map_max(map)) \
164 end = vm_map_max(map); \
165 if (start > end) \
166 start = end; \
167 }
168
169/*
170 * vm_map_startup:
171 *
172 * Initialize the vm_map module. Must be called before
173 * any other vm_map routines.
174 *
175 * Map and entry structures are allocated from the general
176 * purpose memory pool with some exceptions:
177 *
178 * - The kernel map and kmem submap are allocated statically.
179 * - Kernel map entries are allocated out of a static pool.
180 *
181 * These restrictions are necessary since malloc() uses the
182 * maps and requires map entries.
183 */
184
185void
186vm_map_startup(void)
187{
188 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
189 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
190#ifdef INVARIANTS
191 vm_map_zdtor,
192#else
193 NULL,
194#endif
195 vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
196 uma_prealloc(mapzone, MAX_KMAP);
197 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
198 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
199 UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
200 uma_prealloc(kmapentzone, MAX_KMAPENT);
201 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
202 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
203}
204
205static void
206vmspace_zfini(void *mem, int size)
207{
208 struct vmspace *vm;
209
210 vm = (struct vmspace *)mem;
211 vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map));
212}
213
214static int
215vmspace_zinit(void *mem, int size, int flags)
216{
217 struct vmspace *vm;
218
219 vm = (struct vmspace *)mem;
220
221 vm->vm_map.pmap = NULL;
222 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
223 return (0);
224}
225
226static void
227vm_map_zfini(void *mem, int size)
228{
229 vm_map_t map;
230
231 map = (vm_map_t)mem;
232 mtx_destroy(&map->system_mtx);
233 sx_destroy(&map->lock);
234}
235
236static int
237vm_map_zinit(void *mem, int size, int flags)
238{
239 vm_map_t map;
240
241 map = (vm_map_t)mem;
242 map->nentries = 0;
243 map->size = 0;
244 mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
245 sx_init(&map->lock, "vm map (user)");
246 return (0);
247}
248
249#ifdef INVARIANTS
250static void
251vmspace_zdtor(void *mem, int size, void *arg)
252{
253 struct vmspace *vm;
254
255 vm = (struct vmspace *)mem;
256
257 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
258}
259static void
260vm_map_zdtor(void *mem, int size, void *arg)
261{
262 vm_map_t map;
263
264 map = (vm_map_t)mem;
265 KASSERT(map->nentries == 0,
266 ("map %p nentries == %d on free.",
267 map, map->nentries));
268 KASSERT(map->size == 0,
269 ("map %p size == %lu on free.",
270 map, (unsigned long)map->size));
271}
272#endif /* INVARIANTS */
273
274/*
275 * Allocate a vmspace structure, including a vm_map and pmap,
276 * and initialize those structures. The refcnt is set to 1.
277 */
278struct vmspace *
279vmspace_alloc(min, max)
280 vm_offset_t min, max;
281{
282 struct vmspace *vm;
283
284 vm = uma_zalloc(vmspace_zone, M_WAITOK);
285 if (vm->vm_map.pmap == NULL && !pmap_pinit(vmspace_pmap(vm))) {
286 uma_zfree(vmspace_zone, vm);
287 return (NULL);
288 }
289 CTR1(KTR_VM, "vmspace_alloc: %p", vm);
290 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
291 vm->vm_refcnt = 1;
292 vm->vm_shm = NULL;
293 vm->vm_swrss = 0;
294 vm->vm_tsize = 0;
295 vm->vm_dsize = 0;
296 vm->vm_ssize = 0;
297 vm->vm_taddr = 0;
298 vm->vm_daddr = 0;
299 vm->vm_maxsaddr = 0;
300 return (vm);
301}
302
303void
304vm_init2(void)
305{
128static int vmspace_zinit(void *mem, int size, int flags);
129static void vmspace_zfini(void *mem, int size);
130static int vm_map_zinit(void *mem, int ize, int flags);
131static void vm_map_zfini(void *mem, int size);
132static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
133 vm_offset_t max);
134static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
135static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
136#ifdef INVARIANTS
137static void vm_map_zdtor(void *mem, int size, void *arg);
138static void vmspace_zdtor(void *mem, int size, void *arg);
139#endif
140
141#define ENTRY_CHARGED(e) ((e)->cred != NULL || \
142 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
143 !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
144
145/*
146 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
147 * stable.
148 */
149#define PROC_VMSPACE_LOCK(p) do { } while (0)
150#define PROC_VMSPACE_UNLOCK(p) do { } while (0)
151
152/*
153 * VM_MAP_RANGE_CHECK: [ internal use only ]
154 *
155 * Asserts that the starting and ending region
156 * addresses fall within the valid range of the map.
157 */
158#define VM_MAP_RANGE_CHECK(map, start, end) \
159 { \
160 if (start < vm_map_min(map)) \
161 start = vm_map_min(map); \
162 if (end > vm_map_max(map)) \
163 end = vm_map_max(map); \
164 if (start > end) \
165 start = end; \
166 }
167
168/*
169 * vm_map_startup:
170 *
171 * Initialize the vm_map module. Must be called before
172 * any other vm_map routines.
173 *
174 * Map and entry structures are allocated from the general
175 * purpose memory pool with some exceptions:
176 *
177 * - The kernel map and kmem submap are allocated statically.
178 * - Kernel map entries are allocated out of a static pool.
179 *
180 * These restrictions are necessary since malloc() uses the
181 * maps and requires map entries.
182 */
183
184void
185vm_map_startup(void)
186{
187 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
188 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
189#ifdef INVARIANTS
190 vm_map_zdtor,
191#else
192 NULL,
193#endif
194 vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
195 uma_prealloc(mapzone, MAX_KMAP);
196 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
197 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
198 UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
199 uma_prealloc(kmapentzone, MAX_KMAPENT);
200 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
201 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
202}
203
204static void
205vmspace_zfini(void *mem, int size)
206{
207 struct vmspace *vm;
208
209 vm = (struct vmspace *)mem;
210 vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map));
211}
212
213static int
214vmspace_zinit(void *mem, int size, int flags)
215{
216 struct vmspace *vm;
217
218 vm = (struct vmspace *)mem;
219
220 vm->vm_map.pmap = NULL;
221 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
222 return (0);
223}
224
225static void
226vm_map_zfini(void *mem, int size)
227{
228 vm_map_t map;
229
230 map = (vm_map_t)mem;
231 mtx_destroy(&map->system_mtx);
232 sx_destroy(&map->lock);
233}
234
235static int
236vm_map_zinit(void *mem, int size, int flags)
237{
238 vm_map_t map;
239
240 map = (vm_map_t)mem;
241 map->nentries = 0;
242 map->size = 0;
243 mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
244 sx_init(&map->lock, "vm map (user)");
245 return (0);
246}
247
248#ifdef INVARIANTS
249static void
250vmspace_zdtor(void *mem, int size, void *arg)
251{
252 struct vmspace *vm;
253
254 vm = (struct vmspace *)mem;
255
256 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
257}
258static void
259vm_map_zdtor(void *mem, int size, void *arg)
260{
261 vm_map_t map;
262
263 map = (vm_map_t)mem;
264 KASSERT(map->nentries == 0,
265 ("map %p nentries == %d on free.",
266 map, map->nentries));
267 KASSERT(map->size == 0,
268 ("map %p size == %lu on free.",
269 map, (unsigned long)map->size));
270}
271#endif /* INVARIANTS */
272
273/*
274 * Allocate a vmspace structure, including a vm_map and pmap,
275 * and initialize those structures. The refcnt is set to 1.
276 */
277struct vmspace *
278vmspace_alloc(min, max)
279 vm_offset_t min, max;
280{
281 struct vmspace *vm;
282
283 vm = uma_zalloc(vmspace_zone, M_WAITOK);
284 if (vm->vm_map.pmap == NULL && !pmap_pinit(vmspace_pmap(vm))) {
285 uma_zfree(vmspace_zone, vm);
286 return (NULL);
287 }
288 CTR1(KTR_VM, "vmspace_alloc: %p", vm);
289 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
290 vm->vm_refcnt = 1;
291 vm->vm_shm = NULL;
292 vm->vm_swrss = 0;
293 vm->vm_tsize = 0;
294 vm->vm_dsize = 0;
295 vm->vm_ssize = 0;
296 vm->vm_taddr = 0;
297 vm->vm_daddr = 0;
298 vm->vm_maxsaddr = 0;
299 return (vm);
300}
301
302void
303vm_init2(void)
304{
306 uma_zone_set_obj(kmapentzone, &kmapentobj, lmin(cnt.v_page_count,
305 uma_zone_reserve_kva(kmapentzone, lmin(cnt.v_page_count,
307 (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / PAGE_SIZE) / 8 +
308 maxproc * 2 + maxfiles);
309 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
310#ifdef INVARIANTS
311 vmspace_zdtor,
312#else
313 NULL,
314#endif
315 vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
316}
317
318static void
319vmspace_container_reset(struct proc *p)
320{
321
322#ifdef RACCT
323 PROC_LOCK(p);
324 racct_set(p, RACCT_DATA, 0);
325 racct_set(p, RACCT_STACK, 0);
326 racct_set(p, RACCT_RSS, 0);
327 racct_set(p, RACCT_MEMLOCK, 0);
328 racct_set(p, RACCT_VMEM, 0);
329 PROC_UNLOCK(p);
330#endif
331}
332
333static inline void
334vmspace_dofree(struct vmspace *vm)
335{
336
337 CTR1(KTR_VM, "vmspace_free: %p", vm);
338
339 /*
340 * Make sure any SysV shm is freed, it might not have been in
341 * exit1().
342 */
343 shmexit(vm);
344
345 /*
346 * Lock the map, to wait out all other references to it.
347 * Delete all of the mappings and pages they hold, then call
348 * the pmap module to reclaim anything left.
349 */
350 (void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
351 vm->vm_map.max_offset);
352
353 pmap_release(vmspace_pmap(vm));
354 vm->vm_map.pmap = NULL;
355 uma_zfree(vmspace_zone, vm);
356}
357
358void
359vmspace_free(struct vmspace *vm)
360{
361
362 if (vm->vm_refcnt == 0)
363 panic("vmspace_free: attempt to free already freed vmspace");
364
365 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
366 vmspace_dofree(vm);
367}
368
369void
370vmspace_exitfree(struct proc *p)
371{
372 struct vmspace *vm;
373
374 PROC_VMSPACE_LOCK(p);
375 vm = p->p_vmspace;
376 p->p_vmspace = NULL;
377 PROC_VMSPACE_UNLOCK(p);
378 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
379 vmspace_free(vm);
380}
381
382void
383vmspace_exit(struct thread *td)
384{
385 int refcnt;
386 struct vmspace *vm;
387 struct proc *p;
388
389 /*
390 * Release user portion of address space.
391 * This releases references to vnodes,
392 * which could cause I/O if the file has been unlinked.
393 * Need to do this early enough that we can still sleep.
394 *
395 * The last exiting process to reach this point releases as
396 * much of the environment as it can. vmspace_dofree() is the
397 * slower fallback in case another process had a temporary
398 * reference to the vmspace.
399 */
400
401 p = td->td_proc;
402 vm = p->p_vmspace;
403 atomic_add_int(&vmspace0.vm_refcnt, 1);
404 do {
405 refcnt = vm->vm_refcnt;
406 if (refcnt > 1 && p->p_vmspace != &vmspace0) {
407 /* Switch now since other proc might free vmspace */
408 PROC_VMSPACE_LOCK(p);
409 p->p_vmspace = &vmspace0;
410 PROC_VMSPACE_UNLOCK(p);
411 pmap_activate(td);
412 }
413 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
414 if (refcnt == 1) {
415 if (p->p_vmspace != vm) {
416 /* vmspace not yet freed, switch back */
417 PROC_VMSPACE_LOCK(p);
418 p->p_vmspace = vm;
419 PROC_VMSPACE_UNLOCK(p);
420 pmap_activate(td);
421 }
422 pmap_remove_pages(vmspace_pmap(vm));
423 /* Switch now since this proc will free vmspace */
424 PROC_VMSPACE_LOCK(p);
425 p->p_vmspace = &vmspace0;
426 PROC_VMSPACE_UNLOCK(p);
427 pmap_activate(td);
428 vmspace_dofree(vm);
429 }
430 vmspace_container_reset(p);
431}
432
433/* Acquire reference to vmspace owned by another process. */
434
435struct vmspace *
436vmspace_acquire_ref(struct proc *p)
437{
438 struct vmspace *vm;
439 int refcnt;
440
441 PROC_VMSPACE_LOCK(p);
442 vm = p->p_vmspace;
443 if (vm == NULL) {
444 PROC_VMSPACE_UNLOCK(p);
445 return (NULL);
446 }
447 do {
448 refcnt = vm->vm_refcnt;
449 if (refcnt <= 0) { /* Avoid 0->1 transition */
450 PROC_VMSPACE_UNLOCK(p);
451 return (NULL);
452 }
453 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
454 if (vm != p->p_vmspace) {
455 PROC_VMSPACE_UNLOCK(p);
456 vmspace_free(vm);
457 return (NULL);
458 }
459 PROC_VMSPACE_UNLOCK(p);
460 return (vm);
461}
462
463void
464_vm_map_lock(vm_map_t map, const char *file, int line)
465{
466
467 if (map->system_map)
468 mtx_lock_flags_(&map->system_mtx, 0, file, line);
469 else
470 sx_xlock_(&map->lock, file, line);
471 map->timestamp++;
472}
473
474static void
475vm_map_process_deferred(void)
476{
477 struct thread *td;
478 vm_map_entry_t entry, next;
479 vm_object_t object;
480
481 td = curthread;
482 entry = td->td_map_def_user;
483 td->td_map_def_user = NULL;
484 while (entry != NULL) {
485 next = entry->next;
486 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
487 /*
488 * Decrement the object's writemappings and
489 * possibly the vnode's v_writecount.
490 */
491 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
492 ("Submap with writecount"));
493 object = entry->object.vm_object;
494 KASSERT(object != NULL, ("No object for writecount"));
495 vnode_pager_release_writecount(object, entry->start,
496 entry->end);
497 }
498 vm_map_entry_deallocate(entry, FALSE);
499 entry = next;
500 }
501}
502
503void
504_vm_map_unlock(vm_map_t map, const char *file, int line)
505{
506
507 if (map->system_map)
508 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
509 else {
510 sx_xunlock_(&map->lock, file, line);
511 vm_map_process_deferred();
512 }
513}
514
515void
516_vm_map_lock_read(vm_map_t map, const char *file, int line)
517{
518
519 if (map->system_map)
520 mtx_lock_flags_(&map->system_mtx, 0, file, line);
521 else
522 sx_slock_(&map->lock, file, line);
523}
524
525void
526_vm_map_unlock_read(vm_map_t map, const char *file, int line)
527{
528
529 if (map->system_map)
530 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
531 else {
532 sx_sunlock_(&map->lock, file, line);
533 vm_map_process_deferred();
534 }
535}
536
537int
538_vm_map_trylock(vm_map_t map, const char *file, int line)
539{
540 int error;
541
542 error = map->system_map ?
543 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
544 !sx_try_xlock_(&map->lock, file, line);
545 if (error == 0)
546 map->timestamp++;
547 return (error == 0);
548}
549
550int
551_vm_map_trylock_read(vm_map_t map, const char *file, int line)
552{
553 int error;
554
555 error = map->system_map ?
556 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
557 !sx_try_slock_(&map->lock, file, line);
558 return (error == 0);
559}
560
561/*
562 * _vm_map_lock_upgrade: [ internal use only ]
563 *
564 * Tries to upgrade a read (shared) lock on the specified map to a write
565 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a
566 * non-zero value if the upgrade fails. If the upgrade fails, the map is
567 * returned without a read or write lock held.
568 *
569 * Requires that the map be read locked.
570 */
571int
572_vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
573{
574 unsigned int last_timestamp;
575
576 if (map->system_map) {
577 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
578 } else {
579 if (!sx_try_upgrade_(&map->lock, file, line)) {
580 last_timestamp = map->timestamp;
581 sx_sunlock_(&map->lock, file, line);
582 vm_map_process_deferred();
583 /*
584 * If the map's timestamp does not change while the
585 * map is unlocked, then the upgrade succeeds.
586 */
587 sx_xlock_(&map->lock, file, line);
588 if (last_timestamp != map->timestamp) {
589 sx_xunlock_(&map->lock, file, line);
590 return (1);
591 }
592 }
593 }
594 map->timestamp++;
595 return (0);
596}
597
598void
599_vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
600{
601
602 if (map->system_map) {
603 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
604 } else
605 sx_downgrade_(&map->lock, file, line);
606}
607
608/*
609 * vm_map_locked:
610 *
611 * Returns a non-zero value if the caller holds a write (exclusive) lock
612 * on the specified map and the value "0" otherwise.
613 */
614int
615vm_map_locked(vm_map_t map)
616{
617
618 if (map->system_map)
619 return (mtx_owned(&map->system_mtx));
620 else
621 return (sx_xlocked(&map->lock));
622}
623
624#ifdef INVARIANTS
625static void
626_vm_map_assert_locked(vm_map_t map, const char *file, int line)
627{
628
629 if (map->system_map)
630 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
631 else
632 sx_assert_(&map->lock, SA_XLOCKED, file, line);
633}
634
635#define VM_MAP_ASSERT_LOCKED(map) \
636 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
637#else
638#define VM_MAP_ASSERT_LOCKED(map)
639#endif
640
641/*
642 * _vm_map_unlock_and_wait:
643 *
644 * Atomically releases the lock on the specified map and puts the calling
645 * thread to sleep. The calling thread will remain asleep until either
646 * vm_map_wakeup() is performed on the map or the specified timeout is
647 * exceeded.
648 *
649 * WARNING! This function does not perform deferred deallocations of
650 * objects and map entries. Therefore, the calling thread is expected to
651 * reacquire the map lock after reawakening and later perform an ordinary
652 * unlock operation, such as vm_map_unlock(), before completing its
653 * operation on the map.
654 */
655int
656_vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
657{
658
659 mtx_lock(&map_sleep_mtx);
660 if (map->system_map)
661 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
662 else
663 sx_xunlock_(&map->lock, file, line);
664 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
665 timo));
666}
667
668/*
669 * vm_map_wakeup:
670 *
671 * Awaken any threads that have slept on the map using
672 * vm_map_unlock_and_wait().
673 */
674void
675vm_map_wakeup(vm_map_t map)
676{
677
678 /*
679 * Acquire and release map_sleep_mtx to prevent a wakeup()
680 * from being performed (and lost) between the map unlock
681 * and the msleep() in _vm_map_unlock_and_wait().
682 */
683 mtx_lock(&map_sleep_mtx);
684 mtx_unlock(&map_sleep_mtx);
685 wakeup(&map->root);
686}
687
688void
689vm_map_busy(vm_map_t map)
690{
691
692 VM_MAP_ASSERT_LOCKED(map);
693 map->busy++;
694}
695
696void
697vm_map_unbusy(vm_map_t map)
698{
699
700 VM_MAP_ASSERT_LOCKED(map);
701 KASSERT(map->busy, ("vm_map_unbusy: not busy"));
702 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
703 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
704 wakeup(&map->busy);
705 }
706}
707
708void
709vm_map_wait_busy(vm_map_t map)
710{
711
712 VM_MAP_ASSERT_LOCKED(map);
713 while (map->busy) {
714 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
715 if (map->system_map)
716 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
717 else
718 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
719 }
720 map->timestamp++;
721}
722
723long
724vmspace_resident_count(struct vmspace *vmspace)
725{
726 return pmap_resident_count(vmspace_pmap(vmspace));
727}
728
729/*
730 * vm_map_create:
731 *
732 * Creates and returns a new empty VM map with
733 * the given physical map structure, and having
734 * the given lower and upper address bounds.
735 */
736vm_map_t
737vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
738{
739 vm_map_t result;
740
741 result = uma_zalloc(mapzone, M_WAITOK);
742 CTR1(KTR_VM, "vm_map_create: %p", result);
743 _vm_map_init(result, pmap, min, max);
744 return (result);
745}
746
747/*
748 * Initialize an existing vm_map structure
749 * such as that in the vmspace structure.
750 */
751static void
752_vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
753{
754
755 map->header.next = map->header.prev = &map->header;
756 map->needs_wakeup = FALSE;
757 map->system_map = 0;
758 map->pmap = pmap;
759 map->min_offset = min;
760 map->max_offset = max;
761 map->flags = 0;
762 map->root = NULL;
763 map->timestamp = 0;
764 map->busy = 0;
765}
766
767void
768vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
769{
770
771 _vm_map_init(map, pmap, min, max);
772 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
773 sx_init(&map->lock, "user map");
774}
775
776/*
777 * vm_map_entry_dispose: [ internal use only ]
778 *
779 * Inverse of vm_map_entry_create.
780 */
781static void
782vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
783{
784 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
785}
786
787/*
788 * vm_map_entry_create: [ internal use only ]
789 *
790 * Allocates a VM map entry for insertion.
791 * No entry fields are filled in.
792 */
793static vm_map_entry_t
794vm_map_entry_create(vm_map_t map)
795{
796 vm_map_entry_t new_entry;
797
798 if (map->system_map)
799 new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
800 else
801 new_entry = uma_zalloc(mapentzone, M_WAITOK);
802 if (new_entry == NULL)
803 panic("vm_map_entry_create: kernel resources exhausted");
804 return (new_entry);
805}
806
807/*
808 * vm_map_entry_set_behavior:
809 *
810 * Set the expected access behavior, either normal, random, or
811 * sequential.
812 */
813static inline void
814vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
815{
816 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
817 (behavior & MAP_ENTRY_BEHAV_MASK);
818}
819
820/*
821 * vm_map_entry_set_max_free:
822 *
823 * Set the max_free field in a vm_map_entry.
824 */
825static inline void
826vm_map_entry_set_max_free(vm_map_entry_t entry)
827{
828
829 entry->max_free = entry->adj_free;
830 if (entry->left != NULL && entry->left->max_free > entry->max_free)
831 entry->max_free = entry->left->max_free;
832 if (entry->right != NULL && entry->right->max_free > entry->max_free)
833 entry->max_free = entry->right->max_free;
834}
835
836/*
837 * vm_map_entry_splay:
838 *
839 * The Sleator and Tarjan top-down splay algorithm with the
840 * following variation. Max_free must be computed bottom-up, so
841 * on the downward pass, maintain the left and right spines in
842 * reverse order. Then, make a second pass up each side to fix
843 * the pointers and compute max_free. The time bound is O(log n)
844 * amortized.
845 *
846 * The new root is the vm_map_entry containing "addr", or else an
847 * adjacent entry (lower or higher) if addr is not in the tree.
848 *
849 * The map must be locked, and leaves it so.
850 *
851 * Returns: the new root.
852 */
853static vm_map_entry_t
854vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
855{
856 vm_map_entry_t llist, rlist;
857 vm_map_entry_t ltree, rtree;
858 vm_map_entry_t y;
859
860 /* Special case of empty tree. */
861 if (root == NULL)
862 return (root);
863
864 /*
865 * Pass One: Splay down the tree until we find addr or a NULL
866 * pointer where addr would go. llist and rlist are the two
867 * sides in reverse order (bottom-up), with llist linked by
868 * the right pointer and rlist linked by the left pointer in
869 * the vm_map_entry. Wait until Pass Two to set max_free on
870 * the two spines.
871 */
872 llist = NULL;
873 rlist = NULL;
874 for (;;) {
875 /* root is never NULL in here. */
876 if (addr < root->start) {
877 y = root->left;
878 if (y == NULL)
879 break;
880 if (addr < y->start && y->left != NULL) {
881 /* Rotate right and put y on rlist. */
882 root->left = y->right;
883 y->right = root;
884 vm_map_entry_set_max_free(root);
885 root = y->left;
886 y->left = rlist;
887 rlist = y;
888 } else {
889 /* Put root on rlist. */
890 root->left = rlist;
891 rlist = root;
892 root = y;
893 }
894 } else if (addr >= root->end) {
895 y = root->right;
896 if (y == NULL)
897 break;
898 if (addr >= y->end && y->right != NULL) {
899 /* Rotate left and put y on llist. */
900 root->right = y->left;
901 y->left = root;
902 vm_map_entry_set_max_free(root);
903 root = y->right;
904 y->right = llist;
905 llist = y;
906 } else {
907 /* Put root on llist. */
908 root->right = llist;
909 llist = root;
910 root = y;
911 }
912 } else
913 break;
914 }
915
916 /*
917 * Pass Two: Walk back up the two spines, flip the pointers
918 * and set max_free. The subtrees of the root go at the
919 * bottom of llist and rlist.
920 */
921 ltree = root->left;
922 while (llist != NULL) {
923 y = llist->right;
924 llist->right = ltree;
925 vm_map_entry_set_max_free(llist);
926 ltree = llist;
927 llist = y;
928 }
929 rtree = root->right;
930 while (rlist != NULL) {
931 y = rlist->left;
932 rlist->left = rtree;
933 vm_map_entry_set_max_free(rlist);
934 rtree = rlist;
935 rlist = y;
936 }
937
938 /*
939 * Final assembly: add ltree and rtree as subtrees of root.
940 */
941 root->left = ltree;
942 root->right = rtree;
943 vm_map_entry_set_max_free(root);
944
945 return (root);
946}
947
948/*
949 * vm_map_entry_{un,}link:
950 *
951 * Insert/remove entries from maps.
952 */
953static void
954vm_map_entry_link(vm_map_t map,
955 vm_map_entry_t after_where,
956 vm_map_entry_t entry)
957{
958
959 CTR4(KTR_VM,
960 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
961 map->nentries, entry, after_where);
962 VM_MAP_ASSERT_LOCKED(map);
963 map->nentries++;
964 entry->prev = after_where;
965 entry->next = after_where->next;
966 entry->next->prev = entry;
967 after_where->next = entry;
968
969 if (after_where != &map->header) {
970 if (after_where != map->root)
971 vm_map_entry_splay(after_where->start, map->root);
972 entry->right = after_where->right;
973 entry->left = after_where;
974 after_where->right = NULL;
975 after_where->adj_free = entry->start - after_where->end;
976 vm_map_entry_set_max_free(after_where);
977 } else {
978 entry->right = map->root;
979 entry->left = NULL;
980 }
981 entry->adj_free = (entry->next == &map->header ? map->max_offset :
982 entry->next->start) - entry->end;
983 vm_map_entry_set_max_free(entry);
984 map->root = entry;
985}
986
987static void
988vm_map_entry_unlink(vm_map_t map,
989 vm_map_entry_t entry)
990{
991 vm_map_entry_t next, prev, root;
992
993 VM_MAP_ASSERT_LOCKED(map);
994 if (entry != map->root)
995 vm_map_entry_splay(entry->start, map->root);
996 if (entry->left == NULL)
997 root = entry->right;
998 else {
999 root = vm_map_entry_splay(entry->start, entry->left);
1000 root->right = entry->right;
1001 root->adj_free = (entry->next == &map->header ? map->max_offset :
1002 entry->next->start) - root->end;
1003 vm_map_entry_set_max_free(root);
1004 }
1005 map->root = root;
1006
1007 prev = entry->prev;
1008 next = entry->next;
1009 next->prev = prev;
1010 prev->next = next;
1011 map->nentries--;
1012 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1013 map->nentries, entry);
1014}
1015
1016/*
1017 * vm_map_entry_resize_free:
1018 *
1019 * Recompute the amount of free space following a vm_map_entry
1020 * and propagate that value up the tree. Call this function after
1021 * resizing a map entry in-place, that is, without a call to
1022 * vm_map_entry_link() or _unlink().
1023 *
1024 * The map must be locked, and leaves it so.
1025 */
1026static void
1027vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1028{
1029
1030 /*
1031 * Using splay trees without parent pointers, propagating
1032 * max_free up the tree is done by moving the entry to the
1033 * root and making the change there.
1034 */
1035 if (entry != map->root)
1036 map->root = vm_map_entry_splay(entry->start, map->root);
1037
1038 entry->adj_free = (entry->next == &map->header ? map->max_offset :
1039 entry->next->start) - entry->end;
1040 vm_map_entry_set_max_free(entry);
1041}
1042
1043/*
1044 * vm_map_lookup_entry: [ internal use only ]
1045 *
1046 * Finds the map entry containing (or
1047 * immediately preceding) the specified address
1048 * in the given map; the entry is returned
1049 * in the "entry" parameter. The boolean
1050 * result indicates whether the address is
1051 * actually contained in the map.
1052 */
1053boolean_t
1054vm_map_lookup_entry(
1055 vm_map_t map,
1056 vm_offset_t address,
1057 vm_map_entry_t *entry) /* OUT */
1058{
1059 vm_map_entry_t cur;
1060 boolean_t locked;
1061
1062 /*
1063 * If the map is empty, then the map entry immediately preceding
1064 * "address" is the map's header.
1065 */
1066 cur = map->root;
1067 if (cur == NULL)
1068 *entry = &map->header;
1069 else if (address >= cur->start && cur->end > address) {
1070 *entry = cur;
1071 return (TRUE);
1072 } else if ((locked = vm_map_locked(map)) ||
1073 sx_try_upgrade(&map->lock)) {
1074 /*
1075 * Splay requires a write lock on the map. However, it only
1076 * restructures the binary search tree; it does not otherwise
1077 * change the map. Thus, the map's timestamp need not change
1078 * on a temporary upgrade.
1079 */
1080 map->root = cur = vm_map_entry_splay(address, cur);
1081 if (!locked)
1082 sx_downgrade(&map->lock);
1083
1084 /*
1085 * If "address" is contained within a map entry, the new root
1086 * is that map entry. Otherwise, the new root is a map entry
1087 * immediately before or after "address".
1088 */
1089 if (address >= cur->start) {
1090 *entry = cur;
1091 if (cur->end > address)
1092 return (TRUE);
1093 } else
1094 *entry = cur->prev;
1095 } else
1096 /*
1097 * Since the map is only locked for read access, perform a
1098 * standard binary search tree lookup for "address".
1099 */
1100 for (;;) {
1101 if (address < cur->start) {
1102 if (cur->left == NULL) {
1103 *entry = cur->prev;
1104 break;
1105 }
1106 cur = cur->left;
1107 } else if (cur->end > address) {
1108 *entry = cur;
1109 return (TRUE);
1110 } else {
1111 if (cur->right == NULL) {
1112 *entry = cur;
1113 break;
1114 }
1115 cur = cur->right;
1116 }
1117 }
1118 return (FALSE);
1119}
1120
1121/*
1122 * vm_map_insert:
1123 *
1124 * Inserts the given whole VM object into the target
1125 * map at the specified address range. The object's
1126 * size should match that of the address range.
1127 *
1128 * Requires that the map be locked, and leaves it so.
1129 *
1130 * If object is non-NULL, ref count must be bumped by caller
1131 * prior to making call to account for the new entry.
1132 */
1133int
1134vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1135 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
1136 int cow)
1137{
1138 vm_map_entry_t new_entry;
1139 vm_map_entry_t prev_entry;
1140 vm_map_entry_t temp_entry;
1141 vm_eflags_t protoeflags;
1142 struct ucred *cred;
1143 vm_inherit_t inheritance;
1144 boolean_t charge_prev_obj;
1145
1146 VM_MAP_ASSERT_LOCKED(map);
1147
1148 /*
1149 * Check that the start and end points are not bogus.
1150 */
1151 if ((start < map->min_offset) || (end > map->max_offset) ||
1152 (start >= end))
1153 return (KERN_INVALID_ADDRESS);
1154
1155 /*
1156 * Find the entry prior to the proposed starting address; if it's part
1157 * of an existing entry, this range is bogus.
1158 */
1159 if (vm_map_lookup_entry(map, start, &temp_entry))
1160 return (KERN_NO_SPACE);
1161
1162 prev_entry = temp_entry;
1163
1164 /*
1165 * Assert that the next entry doesn't overlap the end point.
1166 */
1167 if ((prev_entry->next != &map->header) &&
1168 (prev_entry->next->start < end))
1169 return (KERN_NO_SPACE);
1170
1171 protoeflags = 0;
1172 charge_prev_obj = FALSE;
1173
1174 if (cow & MAP_COPY_ON_WRITE)
1175 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1176
1177 if (cow & MAP_NOFAULT) {
1178 protoeflags |= MAP_ENTRY_NOFAULT;
1179
1180 KASSERT(object == NULL,
1181 ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1182 }
1183 if (cow & MAP_DISABLE_SYNCER)
1184 protoeflags |= MAP_ENTRY_NOSYNC;
1185 if (cow & MAP_DISABLE_COREDUMP)
1186 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1187 if (cow & MAP_VN_WRITECOUNT)
1188 protoeflags |= MAP_ENTRY_VN_WRITECNT;
1189 if (cow & MAP_INHERIT_SHARE)
1190 inheritance = VM_INHERIT_SHARE;
1191 else
1192 inheritance = VM_INHERIT_DEFAULT;
1193
1194 cred = NULL;
1195 KASSERT((object != kmem_object && object != kernel_object) ||
1196 ((object == kmem_object || object == kernel_object) &&
1197 !(protoeflags & MAP_ENTRY_NEEDS_COPY)),
1198 ("kmem or kernel object and cow"));
1199 if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT))
1200 goto charged;
1201 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1202 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1203 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1204 return (KERN_RESOURCE_SHORTAGE);
1205 KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) ||
1206 object->cred == NULL,
1207 ("OVERCOMMIT: vm_map_insert o %p", object));
1208 cred = curthread->td_ucred;
1209 crhold(cred);
1210 if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY))
1211 charge_prev_obj = TRUE;
1212 }
1213
1214charged:
1215 /* Expand the kernel pmap, if necessary. */
1216 if (map == kernel_map && end > kernel_vm_end)
1217 pmap_growkernel(end);
1218 if (object != NULL) {
1219 /*
1220 * OBJ_ONEMAPPING must be cleared unless this mapping
1221 * is trivially proven to be the only mapping for any
1222 * of the object's pages. (Object granularity
1223 * reference counting is insufficient to recognize
1224 * aliases with precision.)
1225 */
1226 VM_OBJECT_LOCK(object);
1227 if (object->ref_count > 1 || object->shadow_count != 0)
1228 vm_object_clear_flag(object, OBJ_ONEMAPPING);
1229 VM_OBJECT_UNLOCK(object);
1230 }
1231 else if ((prev_entry != &map->header) &&
1232 (prev_entry->eflags == protoeflags) &&
1233 (prev_entry->end == start) &&
1234 (prev_entry->wired_count == 0) &&
1235 (prev_entry->cred == cred ||
1236 (prev_entry->object.vm_object != NULL &&
1237 (prev_entry->object.vm_object->cred == cred))) &&
1238 vm_object_coalesce(prev_entry->object.vm_object,
1239 prev_entry->offset,
1240 (vm_size_t)(prev_entry->end - prev_entry->start),
1241 (vm_size_t)(end - prev_entry->end), charge_prev_obj)) {
1242 /*
1243 * We were able to extend the object. Determine if we
1244 * can extend the previous map entry to include the
1245 * new range as well.
1246 */
1247 if ((prev_entry->inheritance == inheritance) &&
1248 (prev_entry->protection == prot) &&
1249 (prev_entry->max_protection == max)) {
1250 map->size += (end - prev_entry->end);
1251 prev_entry->end = end;
1252 vm_map_entry_resize_free(map, prev_entry);
1253 vm_map_simplify_entry(map, prev_entry);
1254 if (cred != NULL)
1255 crfree(cred);
1256 return (KERN_SUCCESS);
1257 }
1258
1259 /*
1260 * If we can extend the object but cannot extend the
1261 * map entry, we have to create a new map entry. We
1262 * must bump the ref count on the extended object to
1263 * account for it. object may be NULL.
1264 */
1265 object = prev_entry->object.vm_object;
1266 offset = prev_entry->offset +
1267 (prev_entry->end - prev_entry->start);
1268 vm_object_reference(object);
1269 if (cred != NULL && object != NULL && object->cred != NULL &&
1270 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1271 /* Object already accounts for this uid. */
1272 crfree(cred);
1273 cred = NULL;
1274 }
1275 }
1276
1277 /*
1278 * NOTE: if conditionals fail, object can be NULL here. This occurs
1279 * in things like the buffer map where we manage kva but do not manage
1280 * backing objects.
1281 */
1282
1283 /*
1284 * Create a new entry
1285 */
1286 new_entry = vm_map_entry_create(map);
1287 new_entry->start = start;
1288 new_entry->end = end;
1289 new_entry->cred = NULL;
1290
1291 new_entry->eflags = protoeflags;
1292 new_entry->object.vm_object = object;
1293 new_entry->offset = offset;
1294 new_entry->avail_ssize = 0;
1295
1296 new_entry->inheritance = inheritance;
1297 new_entry->protection = prot;
1298 new_entry->max_protection = max;
1299 new_entry->wired_count = 0;
1300 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1301 new_entry->next_read = OFF_TO_IDX(offset);
1302
1303 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1304 ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry));
1305 new_entry->cred = cred;
1306
1307 /*
1308 * Insert the new entry into the list
1309 */
1310 vm_map_entry_link(map, prev_entry, new_entry);
1311 map->size += new_entry->end - new_entry->start;
1312
1313 /*
1314 * It may be possible to merge the new entry with the next and/or
1315 * previous entries. However, due to MAP_STACK_* being a hack, a
1316 * panic can result from merging such entries.
1317 */
1318 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)
1319 vm_map_simplify_entry(map, new_entry);
1320
1321 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
1322 vm_map_pmap_enter(map, start, prot,
1323 object, OFF_TO_IDX(offset), end - start,
1324 cow & MAP_PREFAULT_PARTIAL);
1325 }
1326
1327 return (KERN_SUCCESS);
1328}
1329
1330/*
1331 * vm_map_findspace:
1332 *
1333 * Find the first fit (lowest VM address) for "length" free bytes
1334 * beginning at address >= start in the given map.
1335 *
1336 * In a vm_map_entry, "adj_free" is the amount of free space
1337 * adjacent (higher address) to this entry, and "max_free" is the
1338 * maximum amount of contiguous free space in its subtree. This
1339 * allows finding a free region in one path down the tree, so
1340 * O(log n) amortized with splay trees.
1341 *
1342 * The map must be locked, and leaves it so.
1343 *
1344 * Returns: 0 on success, and starting address in *addr,
1345 * 1 if insufficient space.
1346 */
1347int
1348vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1349 vm_offset_t *addr) /* OUT */
1350{
1351 vm_map_entry_t entry;
1352 vm_offset_t st;
1353
1354 /*
1355 * Request must fit within min/max VM address and must avoid
1356 * address wrap.
1357 */
1358 if (start < map->min_offset)
1359 start = map->min_offset;
1360 if (start + length > map->max_offset || start + length < start)
1361 return (1);
1362
1363 /* Empty tree means wide open address space. */
1364 if (map->root == NULL) {
1365 *addr = start;
1366 return (0);
1367 }
1368
1369 /*
1370 * After splay, if start comes before root node, then there
1371 * must be a gap from start to the root.
1372 */
1373 map->root = vm_map_entry_splay(start, map->root);
1374 if (start + length <= map->root->start) {
1375 *addr = start;
1376 return (0);
1377 }
1378
1379 /*
1380 * Root is the last node that might begin its gap before
1381 * start, and this is the last comparison where address
1382 * wrap might be a problem.
1383 */
1384 st = (start > map->root->end) ? start : map->root->end;
1385 if (length <= map->root->end + map->root->adj_free - st) {
1386 *addr = st;
1387 return (0);
1388 }
1389
1390 /* With max_free, can immediately tell if no solution. */
1391 entry = map->root->right;
1392 if (entry == NULL || length > entry->max_free)
1393 return (1);
1394
1395 /*
1396 * Search the right subtree in the order: left subtree, root,
1397 * right subtree (first fit). The previous splay implies that
1398 * all regions in the right subtree have addresses > start.
1399 */
1400 while (entry != NULL) {
1401 if (entry->left != NULL && entry->left->max_free >= length)
1402 entry = entry->left;
1403 else if (entry->adj_free >= length) {
1404 *addr = entry->end;
1405 return (0);
1406 } else
1407 entry = entry->right;
1408 }
1409
1410 /* Can't get here, so panic if we do. */
1411 panic("vm_map_findspace: max_free corrupt");
1412}
1413
1414int
1415vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1416 vm_offset_t start, vm_size_t length, vm_prot_t prot,
1417 vm_prot_t max, int cow)
1418{
1419 vm_offset_t end;
1420 int result;
1421
1422 end = start + length;
1423 vm_map_lock(map);
1424 VM_MAP_RANGE_CHECK(map, start, end);
1425 (void) vm_map_delete(map, start, end);
1426 result = vm_map_insert(map, object, offset, start, end, prot,
1427 max, cow);
1428 vm_map_unlock(map);
1429 return (result);
1430}
1431
1432/*
1433 * vm_map_find finds an unallocated region in the target address
1434 * map with the given length. The search is defined to be
1435 * first-fit from the specified address; the region found is
1436 * returned in the same parameter.
1437 *
1438 * If object is non-NULL, ref count must be bumped by caller
1439 * prior to making call to account for the new entry.
1440 */
1441int
1442vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1443 vm_offset_t *addr, /* IN/OUT */
1444 vm_size_t length, int find_space, vm_prot_t prot,
1445 vm_prot_t max, int cow)
1446{
1447 vm_offset_t start;
1448 int result;
1449
1450 start = *addr;
1451 vm_map_lock(map);
1452 do {
1453 if (find_space != VMFS_NO_SPACE) {
1454 if (vm_map_findspace(map, start, length, addr)) {
1455 vm_map_unlock(map);
1456 return (KERN_NO_SPACE);
1457 }
1458 switch (find_space) {
1459 case VMFS_ALIGNED_SPACE:
1460 pmap_align_superpage(object, offset, addr,
1461 length);
1462 break;
1463#ifdef VMFS_TLB_ALIGNED_SPACE
1464 case VMFS_TLB_ALIGNED_SPACE:
1465 pmap_align_tlb(addr);
1466 break;
1467#endif
1468 default:
1469 break;
1470 }
1471
1472 start = *addr;
1473 }
1474 result = vm_map_insert(map, object, offset, start, start +
1475 length, prot, max, cow);
1476 } while (result == KERN_NO_SPACE && (find_space == VMFS_ALIGNED_SPACE
1477#ifdef VMFS_TLB_ALIGNED_SPACE
1478 || find_space == VMFS_TLB_ALIGNED_SPACE
1479#endif
1480 ));
1481 vm_map_unlock(map);
1482 return (result);
1483}
1484
1485/*
1486 * vm_map_simplify_entry:
1487 *
1488 * Simplify the given map entry by merging with either neighbor. This
1489 * routine also has the ability to merge with both neighbors.
1490 *
1491 * The map must be locked.
1492 *
1493 * This routine guarentees that the passed entry remains valid (though
1494 * possibly extended). When merging, this routine may delete one or
1495 * both neighbors.
1496 */
1497void
1498vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1499{
1500 vm_map_entry_t next, prev;
1501 vm_size_t prevsize, esize;
1502
1503 if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP))
1504 return;
1505
1506 prev = entry->prev;
1507 if (prev != &map->header) {
1508 prevsize = prev->end - prev->start;
1509 if ( (prev->end == entry->start) &&
1510 (prev->object.vm_object == entry->object.vm_object) &&
1511 (!prev->object.vm_object ||
1512 (prev->offset + prevsize == entry->offset)) &&
1513 (prev->eflags == entry->eflags) &&
1514 (prev->protection == entry->protection) &&
1515 (prev->max_protection == entry->max_protection) &&
1516 (prev->inheritance == entry->inheritance) &&
1517 (prev->wired_count == entry->wired_count) &&
1518 (prev->cred == entry->cred)) {
1519 vm_map_entry_unlink(map, prev);
1520 entry->start = prev->start;
1521 entry->offset = prev->offset;
1522 if (entry->prev != &map->header)
1523 vm_map_entry_resize_free(map, entry->prev);
1524
1525 /*
1526 * If the backing object is a vnode object,
1527 * vm_object_deallocate() calls vrele().
1528 * However, vrele() does not lock the vnode
1529 * because the vnode has additional
1530 * references. Thus, the map lock can be kept
1531 * without causing a lock-order reversal with
1532 * the vnode lock.
1533 *
1534 * Since we count the number of virtual page
1535 * mappings in object->un_pager.vnp.writemappings,
1536 * the writemappings value should not be adjusted
1537 * when the entry is disposed of.
1538 */
1539 if (prev->object.vm_object)
1540 vm_object_deallocate(prev->object.vm_object);
1541 if (prev->cred != NULL)
1542 crfree(prev->cred);
1543 vm_map_entry_dispose(map, prev);
1544 }
1545 }
1546
1547 next = entry->next;
1548 if (next != &map->header) {
1549 esize = entry->end - entry->start;
1550 if ((entry->end == next->start) &&
1551 (next->object.vm_object == entry->object.vm_object) &&
1552 (!entry->object.vm_object ||
1553 (entry->offset + esize == next->offset)) &&
1554 (next->eflags == entry->eflags) &&
1555 (next->protection == entry->protection) &&
1556 (next->max_protection == entry->max_protection) &&
1557 (next->inheritance == entry->inheritance) &&
1558 (next->wired_count == entry->wired_count) &&
1559 (next->cred == entry->cred)) {
1560 vm_map_entry_unlink(map, next);
1561 entry->end = next->end;
1562 vm_map_entry_resize_free(map, entry);
1563
1564 /*
1565 * See comment above.
1566 */
1567 if (next->object.vm_object)
1568 vm_object_deallocate(next->object.vm_object);
1569 if (next->cred != NULL)
1570 crfree(next->cred);
1571 vm_map_entry_dispose(map, next);
1572 }
1573 }
1574}
1575/*
1576 * vm_map_clip_start: [ internal use only ]
1577 *
1578 * Asserts that the given entry begins at or after
1579 * the specified address; if necessary,
1580 * it splits the entry into two.
1581 */
1582#define vm_map_clip_start(map, entry, startaddr) \
1583{ \
1584 if (startaddr > entry->start) \
1585 _vm_map_clip_start(map, entry, startaddr); \
1586}
1587
1588/*
1589 * This routine is called only when it is known that
1590 * the entry must be split.
1591 */
1592static void
1593_vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1594{
1595 vm_map_entry_t new_entry;
1596
1597 VM_MAP_ASSERT_LOCKED(map);
1598
1599 /*
1600 * Split off the front portion -- note that we must insert the new
1601 * entry BEFORE this one, so that this entry has the specified
1602 * starting address.
1603 */
1604 vm_map_simplify_entry(map, entry);
1605
1606 /*
1607 * If there is no object backing this entry, we might as well create
1608 * one now. If we defer it, an object can get created after the map
1609 * is clipped, and individual objects will be created for the split-up
1610 * map. This is a bit of a hack, but is also about the best place to
1611 * put this improvement.
1612 */
1613 if (entry->object.vm_object == NULL && !map->system_map) {
1614 vm_object_t object;
1615 object = vm_object_allocate(OBJT_DEFAULT,
1616 atop(entry->end - entry->start));
1617 entry->object.vm_object = object;
1618 entry->offset = 0;
1619 if (entry->cred != NULL) {
1620 object->cred = entry->cred;
1621 object->charge = entry->end - entry->start;
1622 entry->cred = NULL;
1623 }
1624 } else if (entry->object.vm_object != NULL &&
1625 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1626 entry->cred != NULL) {
1627 VM_OBJECT_LOCK(entry->object.vm_object);
1628 KASSERT(entry->object.vm_object->cred == NULL,
1629 ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1630 entry->object.vm_object->cred = entry->cred;
1631 entry->object.vm_object->charge = entry->end - entry->start;
1632 VM_OBJECT_UNLOCK(entry->object.vm_object);
1633 entry->cred = NULL;
1634 }
1635
1636 new_entry = vm_map_entry_create(map);
1637 *new_entry = *entry;
1638
1639 new_entry->end = start;
1640 entry->offset += (start - entry->start);
1641 entry->start = start;
1642 if (new_entry->cred != NULL)
1643 crhold(entry->cred);
1644
1645 vm_map_entry_link(map, entry->prev, new_entry);
1646
1647 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1648 vm_object_reference(new_entry->object.vm_object);
1649 /*
1650 * The object->un_pager.vnp.writemappings for the
1651 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1652 * kept as is here. The virtual pages are
1653 * re-distributed among the clipped entries, so the sum is
1654 * left the same.
1655 */
1656 }
1657}
1658
1659/*
1660 * vm_map_clip_end: [ internal use only ]
1661 *
1662 * Asserts that the given entry ends at or before
1663 * the specified address; if necessary,
1664 * it splits the entry into two.
1665 */
1666#define vm_map_clip_end(map, entry, endaddr) \
1667{ \
1668 if ((endaddr) < (entry->end)) \
1669 _vm_map_clip_end((map), (entry), (endaddr)); \
1670}
1671
1672/*
1673 * This routine is called only when it is known that
1674 * the entry must be split.
1675 */
1676static void
1677_vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1678{
1679 vm_map_entry_t new_entry;
1680
1681 VM_MAP_ASSERT_LOCKED(map);
1682
1683 /*
1684 * If there is no object backing this entry, we might as well create
1685 * one now. If we defer it, an object can get created after the map
1686 * is clipped, and individual objects will be created for the split-up
1687 * map. This is a bit of a hack, but is also about the best place to
1688 * put this improvement.
1689 */
1690 if (entry->object.vm_object == NULL && !map->system_map) {
1691 vm_object_t object;
1692 object = vm_object_allocate(OBJT_DEFAULT,
1693 atop(entry->end - entry->start));
1694 entry->object.vm_object = object;
1695 entry->offset = 0;
1696 if (entry->cred != NULL) {
1697 object->cred = entry->cred;
1698 object->charge = entry->end - entry->start;
1699 entry->cred = NULL;
1700 }
1701 } else if (entry->object.vm_object != NULL &&
1702 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1703 entry->cred != NULL) {
1704 VM_OBJECT_LOCK(entry->object.vm_object);
1705 KASSERT(entry->object.vm_object->cred == NULL,
1706 ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1707 entry->object.vm_object->cred = entry->cred;
1708 entry->object.vm_object->charge = entry->end - entry->start;
1709 VM_OBJECT_UNLOCK(entry->object.vm_object);
1710 entry->cred = NULL;
1711 }
1712
1713 /*
1714 * Create a new entry and insert it AFTER the specified entry
1715 */
1716 new_entry = vm_map_entry_create(map);
1717 *new_entry = *entry;
1718
1719 new_entry->start = entry->end = end;
1720 new_entry->offset += (end - entry->start);
1721 if (new_entry->cred != NULL)
1722 crhold(entry->cred);
1723
1724 vm_map_entry_link(map, entry, new_entry);
1725
1726 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1727 vm_object_reference(new_entry->object.vm_object);
1728 }
1729}
1730
1731/*
1732 * vm_map_submap: [ kernel use only ]
1733 *
1734 * Mark the given range as handled by a subordinate map.
1735 *
1736 * This range must have been created with vm_map_find,
1737 * and no other operations may have been performed on this
1738 * range prior to calling vm_map_submap.
1739 *
1740 * Only a limited number of operations can be performed
1741 * within this rage after calling vm_map_submap:
1742 * vm_fault
1743 * [Don't try vm_map_copy!]
1744 *
1745 * To remove a submapping, one must first remove the
1746 * range from the superior map, and then destroy the
1747 * submap (if desired). [Better yet, don't try it.]
1748 */
1749int
1750vm_map_submap(
1751 vm_map_t map,
1752 vm_offset_t start,
1753 vm_offset_t end,
1754 vm_map_t submap)
1755{
1756 vm_map_entry_t entry;
1757 int result = KERN_INVALID_ARGUMENT;
1758
1759 vm_map_lock(map);
1760
1761 VM_MAP_RANGE_CHECK(map, start, end);
1762
1763 if (vm_map_lookup_entry(map, start, &entry)) {
1764 vm_map_clip_start(map, entry, start);
1765 } else
1766 entry = entry->next;
1767
1768 vm_map_clip_end(map, entry, end);
1769
1770 if ((entry->start == start) && (entry->end == end) &&
1771 ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1772 (entry->object.vm_object == NULL)) {
1773 entry->object.sub_map = submap;
1774 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1775 result = KERN_SUCCESS;
1776 }
1777 vm_map_unlock(map);
1778
1779 return (result);
1780}
1781
1782/*
1783 * The maximum number of pages to map
1784 */
1785#define MAX_INIT_PT 96
1786
1787/*
1788 * vm_map_pmap_enter:
1789 *
1790 * Preload read-only mappings for the specified object's resident pages
1791 * into the target map. If "flags" is MAP_PREFAULT_PARTIAL, then only
1792 * the resident pages within the address range [addr, addr + ulmin(size,
1793 * ptoa(MAX_INIT_PT))) are mapped. Otherwise, all resident pages within
1794 * the specified address range are mapped. This eliminates many soft
1795 * faults on process startup and immediately after an mmap(2). Because
1796 * these are speculative mappings, cached pages are not reactivated and
1797 * mapped.
1798 */
1799void
1800vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1801 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1802{
1803 vm_offset_t start;
1804 vm_page_t p, p_start;
1805 vm_pindex_t psize, tmpidx;
1806
1807 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1808 return;
1809 VM_OBJECT_LOCK(object);
1810 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1811 pmap_object_init_pt(map->pmap, addr, object, pindex, size);
1812 goto unlock_return;
1813 }
1814
1815 psize = atop(size);
1816 if (psize > MAX_INIT_PT && (flags & MAP_PREFAULT_PARTIAL) != 0)
1817 psize = MAX_INIT_PT;
1818 if (psize + pindex > object->size) {
1819 if (object->size < pindex)
1820 goto unlock_return;
1821 psize = object->size - pindex;
1822 }
1823
1824 start = 0;
1825 p_start = NULL;
1826
1827 p = vm_page_find_least(object, pindex);
1828 /*
1829 * Assert: the variable p is either (1) the page with the
1830 * least pindex greater than or equal to the parameter pindex
1831 * or (2) NULL.
1832 */
1833 for (;
1834 p != NULL && (tmpidx = p->pindex - pindex) < psize;
1835 p = TAILQ_NEXT(p, listq)) {
1836 /*
1837 * don't allow an madvise to blow away our really
1838 * free pages allocating pv entries.
1839 */
1840 if ((flags & MAP_PREFAULT_MADVISE) &&
1841 cnt.v_free_count < cnt.v_free_reserved) {
1842 psize = tmpidx;
1843 break;
1844 }
1845 if (p->valid == VM_PAGE_BITS_ALL) {
1846 if (p_start == NULL) {
1847 start = addr + ptoa(tmpidx);
1848 p_start = p;
1849 }
1850 } else if (p_start != NULL) {
1851 pmap_enter_object(map->pmap, start, addr +
1852 ptoa(tmpidx), p_start, prot);
1853 p_start = NULL;
1854 }
1855 }
1856 if (p_start != NULL)
1857 pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1858 p_start, prot);
1859unlock_return:
1860 VM_OBJECT_UNLOCK(object);
1861}
1862
1863/*
1864 * vm_map_protect:
1865 *
1866 * Sets the protection of the specified address
1867 * region in the target map. If "set_max" is
1868 * specified, the maximum protection is to be set;
1869 * otherwise, only the current protection is affected.
1870 */
1871int
1872vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1873 vm_prot_t new_prot, boolean_t set_max)
1874{
1875 vm_map_entry_t current, entry;
1876 vm_object_t obj;
1877 struct ucred *cred;
1878 vm_prot_t old_prot;
1879
1880 vm_map_lock(map);
1881
1882 VM_MAP_RANGE_CHECK(map, start, end);
1883
1884 if (vm_map_lookup_entry(map, start, &entry)) {
1885 vm_map_clip_start(map, entry, start);
1886 } else {
1887 entry = entry->next;
1888 }
1889
1890 /*
1891 * Make a first pass to check for protection violations.
1892 */
1893 current = entry;
1894 while ((current != &map->header) && (current->start < end)) {
1895 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1896 vm_map_unlock(map);
1897 return (KERN_INVALID_ARGUMENT);
1898 }
1899 if ((new_prot & current->max_protection) != new_prot) {
1900 vm_map_unlock(map);
1901 return (KERN_PROTECTION_FAILURE);
1902 }
1903 current = current->next;
1904 }
1905
1906
1907 /*
1908 * Do an accounting pass for private read-only mappings that
1909 * now will do cow due to allowed write (e.g. debugger sets
1910 * breakpoint on text segment)
1911 */
1912 for (current = entry; (current != &map->header) &&
1913 (current->start < end); current = current->next) {
1914
1915 vm_map_clip_end(map, current, end);
1916
1917 if (set_max ||
1918 ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
1919 ENTRY_CHARGED(current)) {
1920 continue;
1921 }
1922
1923 cred = curthread->td_ucred;
1924 obj = current->object.vm_object;
1925
1926 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
1927 if (!swap_reserve(current->end - current->start)) {
1928 vm_map_unlock(map);
1929 return (KERN_RESOURCE_SHORTAGE);
1930 }
1931 crhold(cred);
1932 current->cred = cred;
1933 continue;
1934 }
1935
1936 VM_OBJECT_LOCK(obj);
1937 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
1938 VM_OBJECT_UNLOCK(obj);
1939 continue;
1940 }
1941
1942 /*
1943 * Charge for the whole object allocation now, since
1944 * we cannot distinguish between non-charged and
1945 * charged clipped mapping of the same object later.
1946 */
1947 KASSERT(obj->charge == 0,
1948 ("vm_map_protect: object %p overcharged\n", obj));
1949 if (!swap_reserve(ptoa(obj->size))) {
1950 VM_OBJECT_UNLOCK(obj);
1951 vm_map_unlock(map);
1952 return (KERN_RESOURCE_SHORTAGE);
1953 }
1954
1955 crhold(cred);
1956 obj->cred = cred;
1957 obj->charge = ptoa(obj->size);
1958 VM_OBJECT_UNLOCK(obj);
1959 }
1960
1961 /*
1962 * Go back and fix up protections. [Note that clipping is not
1963 * necessary the second time.]
1964 */
1965 current = entry;
1966 while ((current != &map->header) && (current->start < end)) {
1967 old_prot = current->protection;
1968
1969 if (set_max)
1970 current->protection =
1971 (current->max_protection = new_prot) &
1972 old_prot;
1973 else
1974 current->protection = new_prot;
1975
1976 if ((current->eflags & (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED))
1977 == (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED) &&
1978 (current->protection & VM_PROT_WRITE) != 0 &&
1979 (old_prot & VM_PROT_WRITE) == 0) {
1980 vm_fault_copy_entry(map, map, current, current, NULL);
1981 }
1982
1983 /*
1984 * When restricting access, update the physical map. Worry
1985 * about copy-on-write here.
1986 */
1987 if ((old_prot & ~current->protection) != 0) {
1988#define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1989 VM_PROT_ALL)
1990 pmap_protect(map->pmap, current->start,
1991 current->end,
1992 current->protection & MASK(current));
1993#undef MASK
1994 }
1995 vm_map_simplify_entry(map, current);
1996 current = current->next;
1997 }
1998 vm_map_unlock(map);
1999 return (KERN_SUCCESS);
2000}
2001
2002/*
2003 * vm_map_madvise:
2004 *
2005 * This routine traverses a processes map handling the madvise
2006 * system call. Advisories are classified as either those effecting
2007 * the vm_map_entry structure, or those effecting the underlying
2008 * objects.
2009 */
2010int
2011vm_map_madvise(
2012 vm_map_t map,
2013 vm_offset_t start,
2014 vm_offset_t end,
2015 int behav)
2016{
2017 vm_map_entry_t current, entry;
2018 int modify_map = 0;
2019
2020 /*
2021 * Some madvise calls directly modify the vm_map_entry, in which case
2022 * we need to use an exclusive lock on the map and we need to perform
2023 * various clipping operations. Otherwise we only need a read-lock
2024 * on the map.
2025 */
2026 switch(behav) {
2027 case MADV_NORMAL:
2028 case MADV_SEQUENTIAL:
2029 case MADV_RANDOM:
2030 case MADV_NOSYNC:
2031 case MADV_AUTOSYNC:
2032 case MADV_NOCORE:
2033 case MADV_CORE:
2034 modify_map = 1;
2035 vm_map_lock(map);
2036 break;
2037 case MADV_WILLNEED:
2038 case MADV_DONTNEED:
2039 case MADV_FREE:
2040 vm_map_lock_read(map);
2041 break;
2042 default:
2043 return (KERN_INVALID_ARGUMENT);
2044 }
2045
2046 /*
2047 * Locate starting entry and clip if necessary.
2048 */
2049 VM_MAP_RANGE_CHECK(map, start, end);
2050
2051 if (vm_map_lookup_entry(map, start, &entry)) {
2052 if (modify_map)
2053 vm_map_clip_start(map, entry, start);
2054 } else {
2055 entry = entry->next;
2056 }
2057
2058 if (modify_map) {
2059 /*
2060 * madvise behaviors that are implemented in the vm_map_entry.
2061 *
2062 * We clip the vm_map_entry so that behavioral changes are
2063 * limited to the specified address range.
2064 */
2065 for (current = entry;
2066 (current != &map->header) && (current->start < end);
2067 current = current->next
2068 ) {
2069 if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2070 continue;
2071
2072 vm_map_clip_end(map, current, end);
2073
2074 switch (behav) {
2075 case MADV_NORMAL:
2076 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2077 break;
2078 case MADV_SEQUENTIAL:
2079 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2080 break;
2081 case MADV_RANDOM:
2082 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2083 break;
2084 case MADV_NOSYNC:
2085 current->eflags |= MAP_ENTRY_NOSYNC;
2086 break;
2087 case MADV_AUTOSYNC:
2088 current->eflags &= ~MAP_ENTRY_NOSYNC;
2089 break;
2090 case MADV_NOCORE:
2091 current->eflags |= MAP_ENTRY_NOCOREDUMP;
2092 break;
2093 case MADV_CORE:
2094 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2095 break;
2096 default:
2097 break;
2098 }
2099 vm_map_simplify_entry(map, current);
2100 }
2101 vm_map_unlock(map);
2102 } else {
2103 vm_pindex_t pstart, pend;
2104
2105 /*
2106 * madvise behaviors that are implemented in the underlying
2107 * vm_object.
2108 *
2109 * Since we don't clip the vm_map_entry, we have to clip
2110 * the vm_object pindex and count.
2111 */
2112 for (current = entry;
2113 (current != &map->header) && (current->start < end);
2114 current = current->next
2115 ) {
2116 vm_offset_t useStart;
2117
2118 if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2119 continue;
2120
2121 pstart = OFF_TO_IDX(current->offset);
2122 pend = pstart + atop(current->end - current->start);
2123 useStart = current->start;
2124
2125 if (current->start < start) {
2126 pstart += atop(start - current->start);
2127 useStart = start;
2128 }
2129 if (current->end > end)
2130 pend -= atop(current->end - end);
2131
2132 if (pstart >= pend)
2133 continue;
2134
2135 vm_object_madvise(current->object.vm_object, pstart,
2136 pend, behav);
2137 if (behav == MADV_WILLNEED) {
2138 vm_map_pmap_enter(map,
2139 useStart,
2140 current->protection,
2141 current->object.vm_object,
2142 pstart,
2143 ptoa(pend - pstart),
2144 MAP_PREFAULT_MADVISE
2145 );
2146 }
2147 }
2148 vm_map_unlock_read(map);
2149 }
2150 return (0);
2151}
2152
2153
2154/*
2155 * vm_map_inherit:
2156 *
2157 * Sets the inheritance of the specified address
2158 * range in the target map. Inheritance
2159 * affects how the map will be shared with
2160 * child maps at the time of vmspace_fork.
2161 */
2162int
2163vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2164 vm_inherit_t new_inheritance)
2165{
2166 vm_map_entry_t entry;
2167 vm_map_entry_t temp_entry;
2168
2169 switch (new_inheritance) {
2170 case VM_INHERIT_NONE:
2171 case VM_INHERIT_COPY:
2172 case VM_INHERIT_SHARE:
2173 break;
2174 default:
2175 return (KERN_INVALID_ARGUMENT);
2176 }
2177 vm_map_lock(map);
2178 VM_MAP_RANGE_CHECK(map, start, end);
2179 if (vm_map_lookup_entry(map, start, &temp_entry)) {
2180 entry = temp_entry;
2181 vm_map_clip_start(map, entry, start);
2182 } else
2183 entry = temp_entry->next;
2184 while ((entry != &map->header) && (entry->start < end)) {
2185 vm_map_clip_end(map, entry, end);
2186 entry->inheritance = new_inheritance;
2187 vm_map_simplify_entry(map, entry);
2188 entry = entry->next;
2189 }
2190 vm_map_unlock(map);
2191 return (KERN_SUCCESS);
2192}
2193
2194/*
2195 * vm_map_unwire:
2196 *
2197 * Implements both kernel and user unwiring.
2198 */
2199int
2200vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2201 int flags)
2202{
2203 vm_map_entry_t entry, first_entry, tmp_entry;
2204 vm_offset_t saved_start;
2205 unsigned int last_timestamp;
2206 int rv;
2207 boolean_t need_wakeup, result, user_unwire;
2208
2209 user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2210 vm_map_lock(map);
2211 VM_MAP_RANGE_CHECK(map, start, end);
2212 if (!vm_map_lookup_entry(map, start, &first_entry)) {
2213 if (flags & VM_MAP_WIRE_HOLESOK)
2214 first_entry = first_entry->next;
2215 else {
2216 vm_map_unlock(map);
2217 return (KERN_INVALID_ADDRESS);
2218 }
2219 }
2220 last_timestamp = map->timestamp;
2221 entry = first_entry;
2222 while (entry != &map->header && entry->start < end) {
2223 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2224 /*
2225 * We have not yet clipped the entry.
2226 */
2227 saved_start = (start >= entry->start) ? start :
2228 entry->start;
2229 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2230 if (vm_map_unlock_and_wait(map, 0)) {
2231 /*
2232 * Allow interruption of user unwiring?
2233 */
2234 }
2235 vm_map_lock(map);
2236 if (last_timestamp+1 != map->timestamp) {
2237 /*
2238 * Look again for the entry because the map was
2239 * modified while it was unlocked.
2240 * Specifically, the entry may have been
2241 * clipped, merged, or deleted.
2242 */
2243 if (!vm_map_lookup_entry(map, saved_start,
2244 &tmp_entry)) {
2245 if (flags & VM_MAP_WIRE_HOLESOK)
2246 tmp_entry = tmp_entry->next;
2247 else {
2248 if (saved_start == start) {
2249 /*
2250 * First_entry has been deleted.
2251 */
2252 vm_map_unlock(map);
2253 return (KERN_INVALID_ADDRESS);
2254 }
2255 end = saved_start;
2256 rv = KERN_INVALID_ADDRESS;
2257 goto done;
2258 }
2259 }
2260 if (entry == first_entry)
2261 first_entry = tmp_entry;
2262 else
2263 first_entry = NULL;
2264 entry = tmp_entry;
2265 }
2266 last_timestamp = map->timestamp;
2267 continue;
2268 }
2269 vm_map_clip_start(map, entry, start);
2270 vm_map_clip_end(map, entry, end);
2271 /*
2272 * Mark the entry in case the map lock is released. (See
2273 * above.)
2274 */
2275 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2276 /*
2277 * Check the map for holes in the specified region.
2278 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2279 */
2280 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2281 (entry->end < end && (entry->next == &map->header ||
2282 entry->next->start > entry->end))) {
2283 end = entry->end;
2284 rv = KERN_INVALID_ADDRESS;
2285 goto done;
2286 }
2287 /*
2288 * If system unwiring, require that the entry is system wired.
2289 */
2290 if (!user_unwire &&
2291 vm_map_entry_system_wired_count(entry) == 0) {
2292 end = entry->end;
2293 rv = KERN_INVALID_ARGUMENT;
2294 goto done;
2295 }
2296 entry = entry->next;
2297 }
2298 rv = KERN_SUCCESS;
2299done:
2300 need_wakeup = FALSE;
2301 if (first_entry == NULL) {
2302 result = vm_map_lookup_entry(map, start, &first_entry);
2303 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2304 first_entry = first_entry->next;
2305 else
2306 KASSERT(result, ("vm_map_unwire: lookup failed"));
2307 }
2308 entry = first_entry;
2309 while (entry != &map->header && entry->start < end) {
2310 if (rv == KERN_SUCCESS && (!user_unwire ||
2311 (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2312 if (user_unwire)
2313 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2314 entry->wired_count--;
2315 if (entry->wired_count == 0) {
2316 /*
2317 * Retain the map lock.
2318 */
2319 vm_fault_unwire(map, entry->start, entry->end,
2320 entry->object.vm_object != NULL &&
2321 (entry->object.vm_object->flags &
2322 OBJ_FICTITIOUS) != 0);
2323 }
2324 }
2325 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
2326 ("vm_map_unwire: in-transition flag missing"));
2327 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2328 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2329 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2330 need_wakeup = TRUE;
2331 }
2332 vm_map_simplify_entry(map, entry);
2333 entry = entry->next;
2334 }
2335 vm_map_unlock(map);
2336 if (need_wakeup)
2337 vm_map_wakeup(map);
2338 return (rv);
2339}
2340
2341/*
2342 * vm_map_wire:
2343 *
2344 * Implements both kernel and user wiring.
2345 */
2346int
2347vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2348 int flags)
2349{
2350 vm_map_entry_t entry, first_entry, tmp_entry;
2351 vm_offset_t saved_end, saved_start;
2352 unsigned int last_timestamp;
2353 int rv;
2354 boolean_t fictitious, need_wakeup, result, user_wire;
2355 vm_prot_t prot;
2356
2357 prot = 0;
2358 if (flags & VM_MAP_WIRE_WRITE)
2359 prot |= VM_PROT_WRITE;
2360 user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2361 vm_map_lock(map);
2362 VM_MAP_RANGE_CHECK(map, start, end);
2363 if (!vm_map_lookup_entry(map, start, &first_entry)) {
2364 if (flags & VM_MAP_WIRE_HOLESOK)
2365 first_entry = first_entry->next;
2366 else {
2367 vm_map_unlock(map);
2368 return (KERN_INVALID_ADDRESS);
2369 }
2370 }
2371 last_timestamp = map->timestamp;
2372 entry = first_entry;
2373 while (entry != &map->header && entry->start < end) {
2374 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2375 /*
2376 * We have not yet clipped the entry.
2377 */
2378 saved_start = (start >= entry->start) ? start :
2379 entry->start;
2380 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2381 if (vm_map_unlock_and_wait(map, 0)) {
2382 /*
2383 * Allow interruption of user wiring?
2384 */
2385 }
2386 vm_map_lock(map);
2387 if (last_timestamp + 1 != map->timestamp) {
2388 /*
2389 * Look again for the entry because the map was
2390 * modified while it was unlocked.
2391 * Specifically, the entry may have been
2392 * clipped, merged, or deleted.
2393 */
2394 if (!vm_map_lookup_entry(map, saved_start,
2395 &tmp_entry)) {
2396 if (flags & VM_MAP_WIRE_HOLESOK)
2397 tmp_entry = tmp_entry->next;
2398 else {
2399 if (saved_start == start) {
2400 /*
2401 * first_entry has been deleted.
2402 */
2403 vm_map_unlock(map);
2404 return (KERN_INVALID_ADDRESS);
2405 }
2406 end = saved_start;
2407 rv = KERN_INVALID_ADDRESS;
2408 goto done;
2409 }
2410 }
2411 if (entry == first_entry)
2412 first_entry = tmp_entry;
2413 else
2414 first_entry = NULL;
2415 entry = tmp_entry;
2416 }
2417 last_timestamp = map->timestamp;
2418 continue;
2419 }
2420 vm_map_clip_start(map, entry, start);
2421 vm_map_clip_end(map, entry, end);
2422 /*
2423 * Mark the entry in case the map lock is released. (See
2424 * above.)
2425 */
2426 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2427 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2428 || (entry->protection & prot) != prot) {
2429 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2430 if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2431 end = entry->end;
2432 rv = KERN_INVALID_ADDRESS;
2433 goto done;
2434 }
2435 goto next_entry;
2436 }
2437 if (entry->wired_count == 0) {
2438 entry->wired_count++;
2439 saved_start = entry->start;
2440 saved_end = entry->end;
2441 fictitious = entry->object.vm_object != NULL &&
2442 (entry->object.vm_object->flags &
2443 OBJ_FICTITIOUS) != 0;
2444 /*
2445 * Release the map lock, relying on the in-transition
2446 * mark. Mark the map busy for fork.
2447 */
2448 vm_map_busy(map);
2449 vm_map_unlock(map);
2450 rv = vm_fault_wire(map, saved_start, saved_end,
2451 fictitious);
2452 vm_map_lock(map);
2453 vm_map_unbusy(map);
2454 if (last_timestamp + 1 != map->timestamp) {
2455 /*
2456 * Look again for the entry because the map was
2457 * modified while it was unlocked. The entry
2458 * may have been clipped, but NOT merged or
2459 * deleted.
2460 */
2461 result = vm_map_lookup_entry(map, saved_start,
2462 &tmp_entry);
2463 KASSERT(result, ("vm_map_wire: lookup failed"));
2464 if (entry == first_entry)
2465 first_entry = tmp_entry;
2466 else
2467 first_entry = NULL;
2468 entry = tmp_entry;
2469 while (entry->end < saved_end) {
2470 if (rv != KERN_SUCCESS) {
2471 KASSERT(entry->wired_count == 1,
2472 ("vm_map_wire: bad count"));
2473 entry->wired_count = -1;
2474 }
2475 entry = entry->next;
2476 }
2477 }
2478 last_timestamp = map->timestamp;
2479 if (rv != KERN_SUCCESS) {
2480 KASSERT(entry->wired_count == 1,
2481 ("vm_map_wire: bad count"));
2482 /*
2483 * Assign an out-of-range value to represent
2484 * the failure to wire this entry.
2485 */
2486 entry->wired_count = -1;
2487 end = entry->end;
2488 goto done;
2489 }
2490 } else if (!user_wire ||
2491 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2492 entry->wired_count++;
2493 }
2494 /*
2495 * Check the map for holes in the specified region.
2496 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2497 */
2498 next_entry:
2499 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2500 (entry->end < end && (entry->next == &map->header ||
2501 entry->next->start > entry->end))) {
2502 end = entry->end;
2503 rv = KERN_INVALID_ADDRESS;
2504 goto done;
2505 }
2506 entry = entry->next;
2507 }
2508 rv = KERN_SUCCESS;
2509done:
2510 need_wakeup = FALSE;
2511 if (first_entry == NULL) {
2512 result = vm_map_lookup_entry(map, start, &first_entry);
2513 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2514 first_entry = first_entry->next;
2515 else
2516 KASSERT(result, ("vm_map_wire: lookup failed"));
2517 }
2518 entry = first_entry;
2519 while (entry != &map->header && entry->start < end) {
2520 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2521 goto next_entry_done;
2522 if (rv == KERN_SUCCESS) {
2523 if (user_wire)
2524 entry->eflags |= MAP_ENTRY_USER_WIRED;
2525 } else if (entry->wired_count == -1) {
2526 /*
2527 * Wiring failed on this entry. Thus, unwiring is
2528 * unnecessary.
2529 */
2530 entry->wired_count = 0;
2531 } else {
2532 if (!user_wire ||
2533 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)
2534 entry->wired_count--;
2535 if (entry->wired_count == 0) {
2536 /*
2537 * Retain the map lock.
2538 */
2539 vm_fault_unwire(map, entry->start, entry->end,
2540 entry->object.vm_object != NULL &&
2541 (entry->object.vm_object->flags &
2542 OBJ_FICTITIOUS) != 0);
2543 }
2544 }
2545 next_entry_done:
2546 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
2547 ("vm_map_wire: in-transition flag missing"));
2548 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION|MAP_ENTRY_WIRE_SKIPPED);
2549 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2550 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2551 need_wakeup = TRUE;
2552 }
2553 vm_map_simplify_entry(map, entry);
2554 entry = entry->next;
2555 }
2556 vm_map_unlock(map);
2557 if (need_wakeup)
2558 vm_map_wakeup(map);
2559 return (rv);
2560}
2561
2562/*
2563 * vm_map_sync
2564 *
2565 * Push any dirty cached pages in the address range to their pager.
2566 * If syncio is TRUE, dirty pages are written synchronously.
2567 * If invalidate is TRUE, any cached pages are freed as well.
2568 *
2569 * If the size of the region from start to end is zero, we are
2570 * supposed to flush all modified pages within the region containing
2571 * start. Unfortunately, a region can be split or coalesced with
2572 * neighboring regions, making it difficult to determine what the
2573 * original region was. Therefore, we approximate this requirement by
2574 * flushing the current region containing start.
2575 *
2576 * Returns an error if any part of the specified range is not mapped.
2577 */
2578int
2579vm_map_sync(
2580 vm_map_t map,
2581 vm_offset_t start,
2582 vm_offset_t end,
2583 boolean_t syncio,
2584 boolean_t invalidate)
2585{
2586 vm_map_entry_t current;
2587 vm_map_entry_t entry;
2588 vm_size_t size;
2589 vm_object_t object;
2590 vm_ooffset_t offset;
2591 unsigned int last_timestamp;
2592 boolean_t failed;
2593
2594 vm_map_lock_read(map);
2595 VM_MAP_RANGE_CHECK(map, start, end);
2596 if (!vm_map_lookup_entry(map, start, &entry)) {
2597 vm_map_unlock_read(map);
2598 return (KERN_INVALID_ADDRESS);
2599 } else if (start == end) {
2600 start = entry->start;
2601 end = entry->end;
2602 }
2603 /*
2604 * Make a first pass to check for user-wired memory and holes.
2605 */
2606 for (current = entry; current != &map->header && current->start < end;
2607 current = current->next) {
2608 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2609 vm_map_unlock_read(map);
2610 return (KERN_INVALID_ARGUMENT);
2611 }
2612 if (end > current->end &&
2613 (current->next == &map->header ||
2614 current->end != current->next->start)) {
2615 vm_map_unlock_read(map);
2616 return (KERN_INVALID_ADDRESS);
2617 }
2618 }
2619
2620 if (invalidate)
2621 pmap_remove(map->pmap, start, end);
2622 failed = FALSE;
2623
2624 /*
2625 * Make a second pass, cleaning/uncaching pages from the indicated
2626 * objects as we go.
2627 */
2628 for (current = entry; current != &map->header && current->start < end;) {
2629 offset = current->offset + (start - current->start);
2630 size = (end <= current->end ? end : current->end) - start;
2631 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2632 vm_map_t smap;
2633 vm_map_entry_t tentry;
2634 vm_size_t tsize;
2635
2636 smap = current->object.sub_map;
2637 vm_map_lock_read(smap);
2638 (void) vm_map_lookup_entry(smap, offset, &tentry);
2639 tsize = tentry->end - offset;
2640 if (tsize < size)
2641 size = tsize;
2642 object = tentry->object.vm_object;
2643 offset = tentry->offset + (offset - tentry->start);
2644 vm_map_unlock_read(smap);
2645 } else {
2646 object = current->object.vm_object;
2647 }
2648 vm_object_reference(object);
2649 last_timestamp = map->timestamp;
2650 vm_map_unlock_read(map);
2651 if (!vm_object_sync(object, offset, size, syncio, invalidate))
2652 failed = TRUE;
2653 start += size;
2654 vm_object_deallocate(object);
2655 vm_map_lock_read(map);
2656 if (last_timestamp == map->timestamp ||
2657 !vm_map_lookup_entry(map, start, &current))
2658 current = current->next;
2659 }
2660
2661 vm_map_unlock_read(map);
2662 return (failed ? KERN_FAILURE : KERN_SUCCESS);
2663}
2664
2665/*
2666 * vm_map_entry_unwire: [ internal use only ]
2667 *
2668 * Make the region specified by this entry pageable.
2669 *
2670 * The map in question should be locked.
2671 * [This is the reason for this routine's existence.]
2672 */
2673static void
2674vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2675{
2676 vm_fault_unwire(map, entry->start, entry->end,
2677 entry->object.vm_object != NULL &&
2678 (entry->object.vm_object->flags & OBJ_FICTITIOUS) != 0);
2679 entry->wired_count = 0;
2680}
2681
2682static void
2683vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2684{
2685
2686 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2687 vm_object_deallocate(entry->object.vm_object);
2688 uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2689}
2690
2691/*
2692 * vm_map_entry_delete: [ internal use only ]
2693 *
2694 * Deallocate the given entry from the target map.
2695 */
2696static void
2697vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2698{
2699 vm_object_t object;
2700 vm_pindex_t offidxstart, offidxend, count, size1;
2701 vm_ooffset_t size;
2702
2703 vm_map_entry_unlink(map, entry);
2704 object = entry->object.vm_object;
2705 size = entry->end - entry->start;
2706 map->size -= size;
2707
2708 if (entry->cred != NULL) {
2709 swap_release_by_cred(size, entry->cred);
2710 crfree(entry->cred);
2711 }
2712
2713 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2714 (object != NULL)) {
2715 KASSERT(entry->cred == NULL || object->cred == NULL ||
2716 (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2717 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2718 count = OFF_TO_IDX(size);
2719 offidxstart = OFF_TO_IDX(entry->offset);
2720 offidxend = offidxstart + count;
2721 VM_OBJECT_LOCK(object);
2722 if (object->ref_count != 1 &&
2723 ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2724 object == kernel_object || object == kmem_object)) {
2725 vm_object_collapse(object);
2726
2727 /*
2728 * The option OBJPR_NOTMAPPED can be passed here
2729 * because vm_map_delete() already performed
2730 * pmap_remove() on the only mapping to this range
2731 * of pages.
2732 */
2733 vm_object_page_remove(object, offidxstart, offidxend,
2734 OBJPR_NOTMAPPED);
2735 if (object->type == OBJT_SWAP)
2736 swap_pager_freespace(object, offidxstart, count);
2737 if (offidxend >= object->size &&
2738 offidxstart < object->size) {
2739 size1 = object->size;
2740 object->size = offidxstart;
2741 if (object->cred != NULL) {
2742 size1 -= object->size;
2743 KASSERT(object->charge >= ptoa(size1),
2744 ("vm_map_entry_delete: object->charge < 0"));
2745 swap_release_by_cred(ptoa(size1), object->cred);
2746 object->charge -= ptoa(size1);
2747 }
2748 }
2749 }
2750 VM_OBJECT_UNLOCK(object);
2751 } else
2752 entry->object.vm_object = NULL;
2753 if (map->system_map)
2754 vm_map_entry_deallocate(entry, TRUE);
2755 else {
2756 entry->next = curthread->td_map_def_user;
2757 curthread->td_map_def_user = entry;
2758 }
2759}
2760
2761/*
2762 * vm_map_delete: [ internal use only ]
2763 *
2764 * Deallocates the given address range from the target
2765 * map.
2766 */
2767int
2768vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2769{
2770 vm_map_entry_t entry;
2771 vm_map_entry_t first_entry;
2772
2773 VM_MAP_ASSERT_LOCKED(map);
2774
2775 /*
2776 * Find the start of the region, and clip it
2777 */
2778 if (!vm_map_lookup_entry(map, start, &first_entry))
2779 entry = first_entry->next;
2780 else {
2781 entry = first_entry;
2782 vm_map_clip_start(map, entry, start);
2783 }
2784
2785 /*
2786 * Step through all entries in this region
2787 */
2788 while ((entry != &map->header) && (entry->start < end)) {
2789 vm_map_entry_t next;
2790
2791 /*
2792 * Wait for wiring or unwiring of an entry to complete.
2793 * Also wait for any system wirings to disappear on
2794 * user maps.
2795 */
2796 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
2797 (vm_map_pmap(map) != kernel_pmap &&
2798 vm_map_entry_system_wired_count(entry) != 0)) {
2799 unsigned int last_timestamp;
2800 vm_offset_t saved_start;
2801 vm_map_entry_t tmp_entry;
2802
2803 saved_start = entry->start;
2804 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2805 last_timestamp = map->timestamp;
2806 (void) vm_map_unlock_and_wait(map, 0);
2807 vm_map_lock(map);
2808 if (last_timestamp + 1 != map->timestamp) {
2809 /*
2810 * Look again for the entry because the map was
2811 * modified while it was unlocked.
2812 * Specifically, the entry may have been
2813 * clipped, merged, or deleted.
2814 */
2815 if (!vm_map_lookup_entry(map, saved_start,
2816 &tmp_entry))
2817 entry = tmp_entry->next;
2818 else {
2819 entry = tmp_entry;
2820 vm_map_clip_start(map, entry,
2821 saved_start);
2822 }
2823 }
2824 continue;
2825 }
2826 vm_map_clip_end(map, entry, end);
2827
2828 next = entry->next;
2829
2830 /*
2831 * Unwire before removing addresses from the pmap; otherwise,
2832 * unwiring will put the entries back in the pmap.
2833 */
2834 if (entry->wired_count != 0) {
2835 vm_map_entry_unwire(map, entry);
2836 }
2837
2838 pmap_remove(map->pmap, entry->start, entry->end);
2839
2840 /*
2841 * Delete the entry only after removing all pmap
2842 * entries pointing to its pages. (Otherwise, its
2843 * page frames may be reallocated, and any modify bits
2844 * will be set in the wrong object!)
2845 */
2846 vm_map_entry_delete(map, entry);
2847 entry = next;
2848 }
2849 return (KERN_SUCCESS);
2850}
2851
2852/*
2853 * vm_map_remove:
2854 *
2855 * Remove the given address range from the target map.
2856 * This is the exported form of vm_map_delete.
2857 */
2858int
2859vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2860{
2861 int result;
2862
2863 vm_map_lock(map);
2864 VM_MAP_RANGE_CHECK(map, start, end);
2865 result = vm_map_delete(map, start, end);
2866 vm_map_unlock(map);
2867 return (result);
2868}
2869
2870/*
2871 * vm_map_check_protection:
2872 *
2873 * Assert that the target map allows the specified privilege on the
2874 * entire address region given. The entire region must be allocated.
2875 *
2876 * WARNING! This code does not and should not check whether the
2877 * contents of the region is accessible. For example a smaller file
2878 * might be mapped into a larger address space.
2879 *
2880 * NOTE! This code is also called by munmap().
2881 *
2882 * The map must be locked. A read lock is sufficient.
2883 */
2884boolean_t
2885vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2886 vm_prot_t protection)
2887{
2888 vm_map_entry_t entry;
2889 vm_map_entry_t tmp_entry;
2890
2891 if (!vm_map_lookup_entry(map, start, &tmp_entry))
2892 return (FALSE);
2893 entry = tmp_entry;
2894
2895 while (start < end) {
2896 if (entry == &map->header)
2897 return (FALSE);
2898 /*
2899 * No holes allowed!
2900 */
2901 if (start < entry->start)
2902 return (FALSE);
2903 /*
2904 * Check protection associated with entry.
2905 */
2906 if ((entry->protection & protection) != protection)
2907 return (FALSE);
2908 /* go to next entry */
2909 start = entry->end;
2910 entry = entry->next;
2911 }
2912 return (TRUE);
2913}
2914
2915/*
2916 * vm_map_copy_entry:
2917 *
2918 * Copies the contents of the source entry to the destination
2919 * entry. The entries *must* be aligned properly.
2920 */
2921static void
2922vm_map_copy_entry(
2923 vm_map_t src_map,
2924 vm_map_t dst_map,
2925 vm_map_entry_t src_entry,
2926 vm_map_entry_t dst_entry,
2927 vm_ooffset_t *fork_charge)
2928{
2929 vm_object_t src_object;
2930 vm_map_entry_t fake_entry;
2931 vm_offset_t size;
2932 struct ucred *cred;
2933 int charged;
2934
2935 VM_MAP_ASSERT_LOCKED(dst_map);
2936
2937 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2938 return;
2939
2940 if (src_entry->wired_count == 0) {
2941
2942 /*
2943 * If the source entry is marked needs_copy, it is already
2944 * write-protected.
2945 */
2946 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2947 pmap_protect(src_map->pmap,
2948 src_entry->start,
2949 src_entry->end,
2950 src_entry->protection & ~VM_PROT_WRITE);
2951 }
2952
2953 /*
2954 * Make a copy of the object.
2955 */
2956 size = src_entry->end - src_entry->start;
2957 if ((src_object = src_entry->object.vm_object) != NULL) {
2958 VM_OBJECT_LOCK(src_object);
2959 charged = ENTRY_CHARGED(src_entry);
2960 if ((src_object->handle == NULL) &&
2961 (src_object->type == OBJT_DEFAULT ||
2962 src_object->type == OBJT_SWAP)) {
2963 vm_object_collapse(src_object);
2964 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2965 vm_object_split(src_entry);
2966 src_object = src_entry->object.vm_object;
2967 }
2968 }
2969 vm_object_reference_locked(src_object);
2970 vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2971 if (src_entry->cred != NULL &&
2972 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
2973 KASSERT(src_object->cred == NULL,
2974 ("OVERCOMMIT: vm_map_copy_entry: cred %p",
2975 src_object));
2976 src_object->cred = src_entry->cred;
2977 src_object->charge = size;
2978 }
2979 VM_OBJECT_UNLOCK(src_object);
2980 dst_entry->object.vm_object = src_object;
2981 if (charged) {
2982 cred = curthread->td_ucred;
2983 crhold(cred);
2984 dst_entry->cred = cred;
2985 *fork_charge += size;
2986 if (!(src_entry->eflags &
2987 MAP_ENTRY_NEEDS_COPY)) {
2988 crhold(cred);
2989 src_entry->cred = cred;
2990 *fork_charge += size;
2991 }
2992 }
2993 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2994 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2995 dst_entry->offset = src_entry->offset;
2996 if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
2997 /*
2998 * MAP_ENTRY_VN_WRITECNT cannot
2999 * indicate write reference from
3000 * src_entry, since the entry is
3001 * marked as needs copy. Allocate a
3002 * fake entry that is used to
3003 * decrement object->un_pager.vnp.writecount
3004 * at the appropriate time. Attach
3005 * fake_entry to the deferred list.
3006 */
3007 fake_entry = vm_map_entry_create(dst_map);
3008 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3009 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3010 vm_object_reference(src_object);
3011 fake_entry->object.vm_object = src_object;
3012 fake_entry->start = src_entry->start;
3013 fake_entry->end = src_entry->end;
3014 fake_entry->next = curthread->td_map_def_user;
3015 curthread->td_map_def_user = fake_entry;
3016 }
3017 } else {
3018 dst_entry->object.vm_object = NULL;
3019 dst_entry->offset = 0;
3020 if (src_entry->cred != NULL) {
3021 dst_entry->cred = curthread->td_ucred;
3022 crhold(dst_entry->cred);
3023 *fork_charge += size;
3024 }
3025 }
3026
3027 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3028 dst_entry->end - dst_entry->start, src_entry->start);
3029 } else {
3030 /*
3031 * Of course, wired down pages can't be set copy-on-write.
3032 * Cause wired pages to be copied into the new map by
3033 * simulating faults (the new pages are pageable)
3034 */
3035 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3036 fork_charge);
3037 }
3038}
3039
3040/*
3041 * vmspace_map_entry_forked:
3042 * Update the newly-forked vmspace each time a map entry is inherited
3043 * or copied. The values for vm_dsize and vm_tsize are approximate
3044 * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3045 */
3046static void
3047vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3048 vm_map_entry_t entry)
3049{
3050 vm_size_t entrysize;
3051 vm_offset_t newend;
3052
3053 entrysize = entry->end - entry->start;
3054 vm2->vm_map.size += entrysize;
3055 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3056 vm2->vm_ssize += btoc(entrysize);
3057 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3058 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3059 newend = MIN(entry->end,
3060 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3061 vm2->vm_dsize += btoc(newend - entry->start);
3062 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3063 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3064 newend = MIN(entry->end,
3065 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3066 vm2->vm_tsize += btoc(newend - entry->start);
3067 }
3068}
3069
3070/*
3071 * vmspace_fork:
3072 * Create a new process vmspace structure and vm_map
3073 * based on those of an existing process. The new map
3074 * is based on the old map, according to the inheritance
3075 * values on the regions in that map.
3076 *
3077 * XXX It might be worth coalescing the entries added to the new vmspace.
3078 *
3079 * The source map must not be locked.
3080 */
3081struct vmspace *
3082vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3083{
3084 struct vmspace *vm2;
3085 vm_map_t new_map, old_map;
3086 vm_map_entry_t new_entry, old_entry;
3087 vm_object_t object;
3088 int locked;
3089
3090 old_map = &vm1->vm_map;
3091 /* Copy immutable fields of vm1 to vm2. */
3092 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
3093 if (vm2 == NULL)
3094 return (NULL);
3095 vm2->vm_taddr = vm1->vm_taddr;
3096 vm2->vm_daddr = vm1->vm_daddr;
3097 vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3098 vm_map_lock(old_map);
3099 if (old_map->busy)
3100 vm_map_wait_busy(old_map);
3101 new_map = &vm2->vm_map;
3102 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3103 KASSERT(locked, ("vmspace_fork: lock failed"));
3104
3105 old_entry = old_map->header.next;
3106
3107 while (old_entry != &old_map->header) {
3108 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3109 panic("vm_map_fork: encountered a submap");
3110
3111 switch (old_entry->inheritance) {
3112 case VM_INHERIT_NONE:
3113 break;
3114
3115 case VM_INHERIT_SHARE:
3116 /*
3117 * Clone the entry, creating the shared object if necessary.
3118 */
3119 object = old_entry->object.vm_object;
3120 if (object == NULL) {
3121 object = vm_object_allocate(OBJT_DEFAULT,
3122 atop(old_entry->end - old_entry->start));
3123 old_entry->object.vm_object = object;
3124 old_entry->offset = 0;
3125 if (old_entry->cred != NULL) {
3126 object->cred = old_entry->cred;
3127 object->charge = old_entry->end -
3128 old_entry->start;
3129 old_entry->cred = NULL;
3130 }
3131 }
3132
3133 /*
3134 * Add the reference before calling vm_object_shadow
3135 * to insure that a shadow object is created.
3136 */
3137 vm_object_reference(object);
3138 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3139 vm_object_shadow(&old_entry->object.vm_object,
3140 &old_entry->offset,
3141 old_entry->end - old_entry->start);
3142 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3143 /* Transfer the second reference too. */
3144 vm_object_reference(
3145 old_entry->object.vm_object);
3146
3147 /*
3148 * As in vm_map_simplify_entry(), the
3149 * vnode lock will not be acquired in
3150 * this call to vm_object_deallocate().
3151 */
3152 vm_object_deallocate(object);
3153 object = old_entry->object.vm_object;
3154 }
3155 VM_OBJECT_LOCK(object);
3156 vm_object_clear_flag(object, OBJ_ONEMAPPING);
3157 if (old_entry->cred != NULL) {
3158 KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3159 object->cred = old_entry->cred;
3160 object->charge = old_entry->end - old_entry->start;
3161 old_entry->cred = NULL;
3162 }
3163 VM_OBJECT_UNLOCK(object);
3164
3165 /*
3166 * Clone the entry, referencing the shared object.
3167 */
3168 new_entry = vm_map_entry_create(new_map);
3169 *new_entry = *old_entry;
3170 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3171 MAP_ENTRY_IN_TRANSITION);
3172 new_entry->wired_count = 0;
3173 if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3174 object = new_entry->object.vm_object;
3175 KASSERT(((struct vnode *)object->handle)->
3176 v_writecount > 0,
3177 ("vmspace_fork: v_writecount"));
3178 KASSERT(object->un_pager.vnp.writemappings > 0,
3179 ("vmspace_fork: vnp.writecount"));
3180 vnode_pager_update_writecount(object,
3181 new_entry->start, new_entry->end);
3182 }
3183
3184 /*
3185 * Insert the entry into the new map -- we know we're
3186 * inserting at the end of the new map.
3187 */
3188 vm_map_entry_link(new_map, new_map->header.prev,
3189 new_entry);
3190 vmspace_map_entry_forked(vm1, vm2, new_entry);
3191
3192 /*
3193 * Update the physical map
3194 */
3195 pmap_copy(new_map->pmap, old_map->pmap,
3196 new_entry->start,
3197 (old_entry->end - old_entry->start),
3198 old_entry->start);
3199 break;
3200
3201 case VM_INHERIT_COPY:
3202 /*
3203 * Clone the entry and link into the map.
3204 */
3205 new_entry = vm_map_entry_create(new_map);
3206 *new_entry = *old_entry;
3207 /*
3208 * Copied entry is COW over the old object.
3209 */
3210 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3211 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3212 new_entry->wired_count = 0;
3213 new_entry->object.vm_object = NULL;
3214 new_entry->cred = NULL;
3215 vm_map_entry_link(new_map, new_map->header.prev,
3216 new_entry);
3217 vmspace_map_entry_forked(vm1, vm2, new_entry);
3218 vm_map_copy_entry(old_map, new_map, old_entry,
3219 new_entry, fork_charge);
3220 break;
3221 }
3222 old_entry = old_entry->next;
3223 }
3224 /*
3225 * Use inlined vm_map_unlock() to postpone handling the deferred
3226 * map entries, which cannot be done until both old_map and
3227 * new_map locks are released.
3228 */
3229 sx_xunlock(&old_map->lock);
3230 sx_xunlock(&new_map->lock);
3231 vm_map_process_deferred();
3232
3233 return (vm2);
3234}
3235
3236int
3237vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3238 vm_prot_t prot, vm_prot_t max, int cow)
3239{
3240 vm_map_entry_t new_entry, prev_entry;
3241 vm_offset_t bot, top;
3242 vm_size_t growsize, init_ssize;
3243 int orient, rv;
3244 rlim_t lmemlim, vmemlim;
3245
3246 /*
3247 * The stack orientation is piggybacked with the cow argument.
3248 * Extract it into orient and mask the cow argument so that we
3249 * don't pass it around further.
3250 * NOTE: We explicitly allow bi-directional stacks.
3251 */
3252 orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
3253 cow &= ~orient;
3254 KASSERT(orient != 0, ("No stack grow direction"));
3255
3256 if (addrbos < vm_map_min(map) ||
3257 addrbos > vm_map_max(map) ||
3258 addrbos + max_ssize < addrbos)
3259 return (KERN_NO_SPACE);
3260
3261 growsize = sgrowsiz;
3262 init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3263
3264 PROC_LOCK(curproc);
3265 lmemlim = lim_cur(curproc, RLIMIT_MEMLOCK);
3266 vmemlim = lim_cur(curproc, RLIMIT_VMEM);
3267 PROC_UNLOCK(curproc);
3268
3269 vm_map_lock(map);
3270
3271 /* If addr is already mapped, no go */
3272 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3273 vm_map_unlock(map);
3274 return (KERN_NO_SPACE);
3275 }
3276
3277 if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3278 if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) {
3279 vm_map_unlock(map);
3280 return (KERN_NO_SPACE);
3281 }
3282 }
3283
3284 /* If we would blow our VMEM resource limit, no go */
3285 if (map->size + init_ssize > vmemlim) {
3286 vm_map_unlock(map);
3287 return (KERN_NO_SPACE);
3288 }
3289
3290 /*
3291 * If we can't accomodate max_ssize in the current mapping, no go.
3292 * However, we need to be aware that subsequent user mappings might
3293 * map into the space we have reserved for stack, and currently this
3294 * space is not protected.
3295 *
3296 * Hopefully we will at least detect this condition when we try to
3297 * grow the stack.
3298 */
3299 if ((prev_entry->next != &map->header) &&
3300 (prev_entry->next->start < addrbos + max_ssize)) {
3301 vm_map_unlock(map);
3302 return (KERN_NO_SPACE);
3303 }
3304
3305 /*
3306 * We initially map a stack of only init_ssize. We will grow as
3307 * needed later. Depending on the orientation of the stack (i.e.
3308 * the grow direction) we either map at the top of the range, the
3309 * bottom of the range or in the middle.
3310 *
3311 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3312 * and cow to be 0. Possibly we should eliminate these as input
3313 * parameters, and just pass these values here in the insert call.
3314 */
3315 if (orient == MAP_STACK_GROWS_DOWN)
3316 bot = addrbos + max_ssize - init_ssize;
3317 else if (orient == MAP_STACK_GROWS_UP)
3318 bot = addrbos;
3319 else
3320 bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
3321 top = bot + init_ssize;
3322 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3323
3324 /* Now set the avail_ssize amount. */
3325 if (rv == KERN_SUCCESS) {
3326 if (prev_entry != &map->header)
3327 vm_map_clip_end(map, prev_entry, bot);
3328 new_entry = prev_entry->next;
3329 if (new_entry->end != top || new_entry->start != bot)
3330 panic("Bad entry start/end for new stack entry");
3331
3332 new_entry->avail_ssize = max_ssize - init_ssize;
3333 if (orient & MAP_STACK_GROWS_DOWN)
3334 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3335 if (orient & MAP_STACK_GROWS_UP)
3336 new_entry->eflags |= MAP_ENTRY_GROWS_UP;
3337 }
3338
3339 vm_map_unlock(map);
3340 return (rv);
3341}
3342
3343static int stack_guard_page = 0;
3344TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page);
3345SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW,
3346 &stack_guard_page, 0,
3347 "Insert stack guard page ahead of the growable segments.");
3348
3349/* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the
3350 * desired address is already mapped, or if we successfully grow
3351 * the stack. Also returns KERN_SUCCESS if addr is outside the
3352 * stack range (this is strange, but preserves compatibility with
3353 * the grow function in vm_machdep.c).
3354 */
3355int
3356vm_map_growstack(struct proc *p, vm_offset_t addr)
3357{
3358 vm_map_entry_t next_entry, prev_entry;
3359 vm_map_entry_t new_entry, stack_entry;
3360 struct vmspace *vm = p->p_vmspace;
3361 vm_map_t map = &vm->vm_map;
3362 vm_offset_t end;
3363 vm_size_t growsize;
3364 size_t grow_amount, max_grow;
3365 rlim_t lmemlim, stacklim, vmemlim;
3366 int is_procstack, rv;
3367 struct ucred *cred;
3368#ifdef notyet
3369 uint64_t limit;
3370#endif
3371#ifdef RACCT
3372 int error;
3373#endif
3374
3375Retry:
3376 PROC_LOCK(p);
3377 lmemlim = lim_cur(p, RLIMIT_MEMLOCK);
3378 stacklim = lim_cur(p, RLIMIT_STACK);
3379 vmemlim = lim_cur(p, RLIMIT_VMEM);
3380 PROC_UNLOCK(p);
3381
3382 vm_map_lock_read(map);
3383
3384 /* If addr is already in the entry range, no need to grow.*/
3385 if (vm_map_lookup_entry(map, addr, &prev_entry)) {
3386 vm_map_unlock_read(map);
3387 return (KERN_SUCCESS);
3388 }
3389
3390 next_entry = prev_entry->next;
3391 if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
3392 /*
3393 * This entry does not grow upwards. Since the address lies
3394 * beyond this entry, the next entry (if one exists) has to
3395 * be a downward growable entry. The entry list header is
3396 * never a growable entry, so it suffices to check the flags.
3397 */
3398 if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
3399 vm_map_unlock_read(map);
3400 return (KERN_SUCCESS);
3401 }
3402 stack_entry = next_entry;
3403 } else {
3404 /*
3405 * This entry grows upward. If the next entry does not at
3406 * least grow downwards, this is the entry we need to grow.
3407 * otherwise we have two possible choices and we have to
3408 * select one.
3409 */
3410 if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
3411 /*
3412 * We have two choices; grow the entry closest to
3413 * the address to minimize the amount of growth.
3414 */
3415 if (addr - prev_entry->end <= next_entry->start - addr)
3416 stack_entry = prev_entry;
3417 else
3418 stack_entry = next_entry;
3419 } else
3420 stack_entry = prev_entry;
3421 }
3422
3423 if (stack_entry == next_entry) {
3424 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
3425 KASSERT(addr < stack_entry->start, ("foo"));
3426 end = (prev_entry != &map->header) ? prev_entry->end :
3427 stack_entry->start - stack_entry->avail_ssize;
3428 grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
3429 max_grow = stack_entry->start - end;
3430 } else {
3431 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
3432 KASSERT(addr >= stack_entry->end, ("foo"));
3433 end = (next_entry != &map->header) ? next_entry->start :
3434 stack_entry->end + stack_entry->avail_ssize;
3435 grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
3436 max_grow = end - stack_entry->end;
3437 }
3438
3439 if (grow_amount > stack_entry->avail_ssize) {
3440 vm_map_unlock_read(map);
3441 return (KERN_NO_SPACE);
3442 }
3443
3444 /*
3445 * If there is no longer enough space between the entries nogo, and
3446 * adjust the available space. Note: this should only happen if the
3447 * user has mapped into the stack area after the stack was created,
3448 * and is probably an error.
3449 *
3450 * This also effectively destroys any guard page the user might have
3451 * intended by limiting the stack size.
3452 */
3453 if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) {
3454 if (vm_map_lock_upgrade(map))
3455 goto Retry;
3456
3457 stack_entry->avail_ssize = max_grow;
3458
3459 vm_map_unlock(map);
3460 return (KERN_NO_SPACE);
3461 }
3462
3463 is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0;
3464
3465 /*
3466 * If this is the main process stack, see if we're over the stack
3467 * limit.
3468 */
3469 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3470 vm_map_unlock_read(map);
3471 return (KERN_NO_SPACE);
3472 }
3473#ifdef RACCT
3474 PROC_LOCK(p);
3475 if (is_procstack &&
3476 racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) {
3477 PROC_UNLOCK(p);
3478 vm_map_unlock_read(map);
3479 return (KERN_NO_SPACE);
3480 }
3481 PROC_UNLOCK(p);
3482#endif
3483
3484 /* Round up the grow amount modulo sgrowsiz */
3485 growsize = sgrowsiz;
3486 grow_amount = roundup(grow_amount, growsize);
3487 if (grow_amount > stack_entry->avail_ssize)
3488 grow_amount = stack_entry->avail_ssize;
3489 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3490 grow_amount = trunc_page((vm_size_t)stacklim) -
3491 ctob(vm->vm_ssize);
3492 }
3493#ifdef notyet
3494 PROC_LOCK(p);
3495 limit = racct_get_available(p, RACCT_STACK);
3496 PROC_UNLOCK(p);
3497 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3498 grow_amount = limit - ctob(vm->vm_ssize);
3499#endif
3500 if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3501 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3502 vm_map_unlock_read(map);
3503 rv = KERN_NO_SPACE;
3504 goto out;
3505 }
3506#ifdef RACCT
3507 PROC_LOCK(p);
3508 if (racct_set(p, RACCT_MEMLOCK,
3509 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3510 PROC_UNLOCK(p);
3511 vm_map_unlock_read(map);
3512 rv = KERN_NO_SPACE;
3513 goto out;
3514 }
3515 PROC_UNLOCK(p);
3516#endif
3517 }
3518 /* If we would blow our VMEM resource limit, no go */
3519 if (map->size + grow_amount > vmemlim) {
3520 vm_map_unlock_read(map);
3521 rv = KERN_NO_SPACE;
3522 goto out;
3523 }
3524#ifdef RACCT
3525 PROC_LOCK(p);
3526 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3527 PROC_UNLOCK(p);
3528 vm_map_unlock_read(map);
3529 rv = KERN_NO_SPACE;
3530 goto out;
3531 }
3532 PROC_UNLOCK(p);
3533#endif
3534
3535 if (vm_map_lock_upgrade(map))
3536 goto Retry;
3537
3538 if (stack_entry == next_entry) {
3539 /*
3540 * Growing downward.
3541 */
3542 /* Get the preliminary new entry start value */
3543 addr = stack_entry->start - grow_amount;
3544
3545 /*
3546 * If this puts us into the previous entry, cut back our
3547 * growth to the available space. Also, see the note above.
3548 */
3549 if (addr < end) {
3550 stack_entry->avail_ssize = max_grow;
3551 addr = end;
3552 if (stack_guard_page)
3553 addr += PAGE_SIZE;
3554 }
3555
3556 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
3557 next_entry->protection, next_entry->max_protection, 0);
3558
3559 /* Adjust the available stack space by the amount we grew. */
3560 if (rv == KERN_SUCCESS) {
3561 if (prev_entry != &map->header)
3562 vm_map_clip_end(map, prev_entry, addr);
3563 new_entry = prev_entry->next;
3564 KASSERT(new_entry == stack_entry->prev, ("foo"));
3565 KASSERT(new_entry->end == stack_entry->start, ("foo"));
3566 KASSERT(new_entry->start == addr, ("foo"));
3567 grow_amount = new_entry->end - new_entry->start;
3568 new_entry->avail_ssize = stack_entry->avail_ssize -
3569 grow_amount;
3570 stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
3571 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3572 }
3573 } else {
3574 /*
3575 * Growing upward.
3576 */
3577 addr = stack_entry->end + grow_amount;
3578
3579 /*
3580 * If this puts us into the next entry, cut back our growth
3581 * to the available space. Also, see the note above.
3582 */
3583 if (addr > end) {
3584 stack_entry->avail_ssize = end - stack_entry->end;
3585 addr = end;
3586 if (stack_guard_page)
3587 addr -= PAGE_SIZE;
3588 }
3589
3590 grow_amount = addr - stack_entry->end;
3591 cred = stack_entry->cred;
3592 if (cred == NULL && stack_entry->object.vm_object != NULL)
3593 cred = stack_entry->object.vm_object->cred;
3594 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3595 rv = KERN_NO_SPACE;
3596 /* Grow the underlying object if applicable. */
3597 else if (stack_entry->object.vm_object == NULL ||
3598 vm_object_coalesce(stack_entry->object.vm_object,
3599 stack_entry->offset,
3600 (vm_size_t)(stack_entry->end - stack_entry->start),
3601 (vm_size_t)grow_amount, cred != NULL)) {
3602 map->size += (addr - stack_entry->end);
3603 /* Update the current entry. */
3604 stack_entry->end = addr;
3605 stack_entry->avail_ssize -= grow_amount;
3606 vm_map_entry_resize_free(map, stack_entry);
3607 rv = KERN_SUCCESS;
3608
3609 if (next_entry != &map->header)
3610 vm_map_clip_start(map, next_entry, addr);
3611 } else
3612 rv = KERN_FAILURE;
3613 }
3614
3615 if (rv == KERN_SUCCESS && is_procstack)
3616 vm->vm_ssize += btoc(grow_amount);
3617
3618 vm_map_unlock(map);
3619
3620 /*
3621 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3622 */
3623 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3624 vm_map_wire(map,
3625 (stack_entry == next_entry) ? addr : addr - grow_amount,
3626 (stack_entry == next_entry) ? stack_entry->start : addr,
3627 (p->p_flag & P_SYSTEM)
3628 ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3629 : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3630 }
3631
3632out:
3633#ifdef RACCT
3634 if (rv != KERN_SUCCESS) {
3635 PROC_LOCK(p);
3636 error = racct_set(p, RACCT_VMEM, map->size);
3637 KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3638 if (!old_mlock) {
3639 error = racct_set(p, RACCT_MEMLOCK,
3640 ptoa(pmap_wired_count(map->pmap)));
3641 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3642 }
3643 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3644 KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3645 PROC_UNLOCK(p);
3646 }
3647#endif
3648
3649 return (rv);
3650}
3651
3652/*
3653 * Unshare the specified VM space for exec. If other processes are
3654 * mapped to it, then create a new one. The new vmspace is null.
3655 */
3656int
3657vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3658{
3659 struct vmspace *oldvmspace = p->p_vmspace;
3660 struct vmspace *newvmspace;
3661
3662 newvmspace = vmspace_alloc(minuser, maxuser);
3663 if (newvmspace == NULL)
3664 return (ENOMEM);
3665 newvmspace->vm_swrss = oldvmspace->vm_swrss;
3666 /*
3667 * This code is written like this for prototype purposes. The
3668 * goal is to avoid running down the vmspace here, but let the
3669 * other process's that are still using the vmspace to finally
3670 * run it down. Even though there is little or no chance of blocking
3671 * here, it is a good idea to keep this form for future mods.
3672 */
3673 PROC_VMSPACE_LOCK(p);
3674 p->p_vmspace = newvmspace;
3675 PROC_VMSPACE_UNLOCK(p);
3676 if (p == curthread->td_proc)
3677 pmap_activate(curthread);
3678 vmspace_free(oldvmspace);
3679 return (0);
3680}
3681
3682/*
3683 * Unshare the specified VM space for forcing COW. This
3684 * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3685 */
3686int
3687vmspace_unshare(struct proc *p)
3688{
3689 struct vmspace *oldvmspace = p->p_vmspace;
3690 struct vmspace *newvmspace;
3691 vm_ooffset_t fork_charge;
3692
3693 if (oldvmspace->vm_refcnt == 1)
3694 return (0);
3695 fork_charge = 0;
3696 newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3697 if (newvmspace == NULL)
3698 return (ENOMEM);
3699 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3700 vmspace_free(newvmspace);
3701 return (ENOMEM);
3702 }
3703 PROC_VMSPACE_LOCK(p);
3704 p->p_vmspace = newvmspace;
3705 PROC_VMSPACE_UNLOCK(p);
3706 if (p == curthread->td_proc)
3707 pmap_activate(curthread);
3708 vmspace_free(oldvmspace);
3709 return (0);
3710}
3711
3712/*
3713 * vm_map_lookup:
3714 *
3715 * Finds the VM object, offset, and
3716 * protection for a given virtual address in the
3717 * specified map, assuming a page fault of the
3718 * type specified.
3719 *
3720 * Leaves the map in question locked for read; return
3721 * values are guaranteed until a vm_map_lookup_done
3722 * call is performed. Note that the map argument
3723 * is in/out; the returned map must be used in
3724 * the call to vm_map_lookup_done.
3725 *
3726 * A handle (out_entry) is returned for use in
3727 * vm_map_lookup_done, to make that fast.
3728 *
3729 * If a lookup is requested with "write protection"
3730 * specified, the map may be changed to perform virtual
3731 * copying operations, although the data referenced will
3732 * remain the same.
3733 */
3734int
3735vm_map_lookup(vm_map_t *var_map, /* IN/OUT */
3736 vm_offset_t vaddr,
3737 vm_prot_t fault_typea,
3738 vm_map_entry_t *out_entry, /* OUT */
3739 vm_object_t *object, /* OUT */
3740 vm_pindex_t *pindex, /* OUT */
3741 vm_prot_t *out_prot, /* OUT */
3742 boolean_t *wired) /* OUT */
3743{
3744 vm_map_entry_t entry;
3745 vm_map_t map = *var_map;
3746 vm_prot_t prot;
3747 vm_prot_t fault_type = fault_typea;
3748 vm_object_t eobject;
3749 vm_size_t size;
3750 struct ucred *cred;
3751
3752RetryLookup:;
3753
3754 vm_map_lock_read(map);
3755
3756 /*
3757 * Lookup the faulting address.
3758 */
3759 if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
3760 vm_map_unlock_read(map);
3761 return (KERN_INVALID_ADDRESS);
3762 }
3763
3764 entry = *out_entry;
3765
3766 /*
3767 * Handle submaps.
3768 */
3769 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3770 vm_map_t old_map = map;
3771
3772 *var_map = map = entry->object.sub_map;
3773 vm_map_unlock_read(old_map);
3774 goto RetryLookup;
3775 }
3776
3777 /*
3778 * Check whether this task is allowed to have this page.
3779 */
3780 prot = entry->protection;
3781 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3782 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
3783 vm_map_unlock_read(map);
3784 return (KERN_PROTECTION_FAILURE);
3785 }
3786 if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3787 (entry->eflags & MAP_ENTRY_COW) &&
3788 (fault_type & VM_PROT_WRITE)) {
3789 vm_map_unlock_read(map);
3790 return (KERN_PROTECTION_FAILURE);
3791 }
3792
3793 /*
3794 * If this page is not pageable, we have to get it for all possible
3795 * accesses.
3796 */
3797 *wired = (entry->wired_count != 0);
3798 if (*wired)
3799 fault_type = entry->protection;
3800 size = entry->end - entry->start;
3801 /*
3802 * If the entry was copy-on-write, we either ...
3803 */
3804 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3805 /*
3806 * If we want to write the page, we may as well handle that
3807 * now since we've got the map locked.
3808 *
3809 * If we don't need to write the page, we just demote the
3810 * permissions allowed.
3811 */
3812 if ((fault_type & VM_PROT_WRITE) != 0 ||
3813 (fault_typea & VM_PROT_COPY) != 0) {
3814 /*
3815 * Make a new object, and place it in the object
3816 * chain. Note that no new references have appeared
3817 * -- one just moved from the map to the new
3818 * object.
3819 */
3820 if (vm_map_lock_upgrade(map))
3821 goto RetryLookup;
3822
3823 if (entry->cred == NULL) {
3824 /*
3825 * The debugger owner is charged for
3826 * the memory.
3827 */
3828 cred = curthread->td_ucred;
3829 crhold(cred);
3830 if (!swap_reserve_by_cred(size, cred)) {
3831 crfree(cred);
3832 vm_map_unlock(map);
3833 return (KERN_RESOURCE_SHORTAGE);
3834 }
3835 entry->cred = cred;
3836 }
3837 vm_object_shadow(&entry->object.vm_object,
3838 &entry->offset, size);
3839 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3840 eobject = entry->object.vm_object;
3841 if (eobject->cred != NULL) {
3842 /*
3843 * The object was not shadowed.
3844 */
3845 swap_release_by_cred(size, entry->cred);
3846 crfree(entry->cred);
3847 entry->cred = NULL;
3848 } else if (entry->cred != NULL) {
3849 VM_OBJECT_LOCK(eobject);
3850 eobject->cred = entry->cred;
3851 eobject->charge = size;
3852 VM_OBJECT_UNLOCK(eobject);
3853 entry->cred = NULL;
3854 }
3855
3856 vm_map_lock_downgrade(map);
3857 } else {
3858 /*
3859 * We're attempting to read a copy-on-write page --
3860 * don't allow writes.
3861 */
3862 prot &= ~VM_PROT_WRITE;
3863 }
3864 }
3865
3866 /*
3867 * Create an object if necessary.
3868 */
3869 if (entry->object.vm_object == NULL &&
3870 !map->system_map) {
3871 if (vm_map_lock_upgrade(map))
3872 goto RetryLookup;
3873 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3874 atop(size));
3875 entry->offset = 0;
3876 if (entry->cred != NULL) {
3877 VM_OBJECT_LOCK(entry->object.vm_object);
3878 entry->object.vm_object->cred = entry->cred;
3879 entry->object.vm_object->charge = size;
3880 VM_OBJECT_UNLOCK(entry->object.vm_object);
3881 entry->cred = NULL;
3882 }
3883 vm_map_lock_downgrade(map);
3884 }
3885
3886 /*
3887 * Return the object/offset from this entry. If the entry was
3888 * copy-on-write or empty, it has been fixed up.
3889 */
3890 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3891 *object = entry->object.vm_object;
3892
3893 *out_prot = prot;
3894 return (KERN_SUCCESS);
3895}
3896
3897/*
3898 * vm_map_lookup_locked:
3899 *
3900 * Lookup the faulting address. A version of vm_map_lookup that returns
3901 * KERN_FAILURE instead of blocking on map lock or memory allocation.
3902 */
3903int
3904vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */
3905 vm_offset_t vaddr,
3906 vm_prot_t fault_typea,
3907 vm_map_entry_t *out_entry, /* OUT */
3908 vm_object_t *object, /* OUT */
3909 vm_pindex_t *pindex, /* OUT */
3910 vm_prot_t *out_prot, /* OUT */
3911 boolean_t *wired) /* OUT */
3912{
3913 vm_map_entry_t entry;
3914 vm_map_t map = *var_map;
3915 vm_prot_t prot;
3916 vm_prot_t fault_type = fault_typea;
3917
3918 /*
3919 * Lookup the faulting address.
3920 */
3921 if (!vm_map_lookup_entry(map, vaddr, out_entry))
3922 return (KERN_INVALID_ADDRESS);
3923
3924 entry = *out_entry;
3925
3926 /*
3927 * Fail if the entry refers to a submap.
3928 */
3929 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3930 return (KERN_FAILURE);
3931
3932 /*
3933 * Check whether this task is allowed to have this page.
3934 */
3935 prot = entry->protection;
3936 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
3937 if ((fault_type & prot) != fault_type)
3938 return (KERN_PROTECTION_FAILURE);
3939 if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3940 (entry->eflags & MAP_ENTRY_COW) &&
3941 (fault_type & VM_PROT_WRITE))
3942 return (KERN_PROTECTION_FAILURE);
3943
3944 /*
3945 * If this page is not pageable, we have to get it for all possible
3946 * accesses.
3947 */
3948 *wired = (entry->wired_count != 0);
3949 if (*wired)
3950 fault_type = entry->protection;
3951
3952 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3953 /*
3954 * Fail if the entry was copy-on-write for a write fault.
3955 */
3956 if (fault_type & VM_PROT_WRITE)
3957 return (KERN_FAILURE);
3958 /*
3959 * We're attempting to read a copy-on-write page --
3960 * don't allow writes.
3961 */
3962 prot &= ~VM_PROT_WRITE;
3963 }
3964
3965 /*
3966 * Fail if an object should be created.
3967 */
3968 if (entry->object.vm_object == NULL && !map->system_map)
3969 return (KERN_FAILURE);
3970
3971 /*
3972 * Return the object/offset from this entry. If the entry was
3973 * copy-on-write or empty, it has been fixed up.
3974 */
3975 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3976 *object = entry->object.vm_object;
3977
3978 *out_prot = prot;
3979 return (KERN_SUCCESS);
3980}
3981
3982/*
3983 * vm_map_lookup_done:
3984 *
3985 * Releases locks acquired by a vm_map_lookup
3986 * (according to the handle returned by that lookup).
3987 */
3988void
3989vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
3990{
3991 /*
3992 * Unlock the main-level map
3993 */
3994 vm_map_unlock_read(map);
3995}
3996
3997#include "opt_ddb.h"
3998#ifdef DDB
3999#include <sys/kernel.h>
4000
4001#include <ddb/ddb.h>
4002
4003static void
4004vm_map_print(vm_map_t map)
4005{
4006 vm_map_entry_t entry;
4007
4008 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4009 (void *)map,
4010 (void *)map->pmap, map->nentries, map->timestamp);
4011
4012 db_indent += 2;
4013 for (entry = map->header.next; entry != &map->header;
4014 entry = entry->next) {
4015 db_iprintf("map entry %p: start=%p, end=%p\n",
4016 (void *)entry, (void *)entry->start, (void *)entry->end);
4017 {
4018 static char *inheritance_name[4] =
4019 {"share", "copy", "none", "donate_copy"};
4020
4021 db_iprintf(" prot=%x/%x/%s",
4022 entry->protection,
4023 entry->max_protection,
4024 inheritance_name[(int)(unsigned char)entry->inheritance]);
4025 if (entry->wired_count != 0)
4026 db_printf(", wired");
4027 }
4028 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4029 db_printf(", share=%p, offset=0x%jx\n",
4030 (void *)entry->object.sub_map,
4031 (uintmax_t)entry->offset);
4032 if ((entry->prev == &map->header) ||
4033 (entry->prev->object.sub_map !=
4034 entry->object.sub_map)) {
4035 db_indent += 2;
4036 vm_map_print((vm_map_t)entry->object.sub_map);
4037 db_indent -= 2;
4038 }
4039 } else {
4040 if (entry->cred != NULL)
4041 db_printf(", ruid %d", entry->cred->cr_ruid);
4042 db_printf(", object=%p, offset=0x%jx",
4043 (void *)entry->object.vm_object,
4044 (uintmax_t)entry->offset);
4045 if (entry->object.vm_object && entry->object.vm_object->cred)
4046 db_printf(", obj ruid %d charge %jx",
4047 entry->object.vm_object->cred->cr_ruid,
4048 (uintmax_t)entry->object.vm_object->charge);
4049 if (entry->eflags & MAP_ENTRY_COW)
4050 db_printf(", copy (%s)",
4051 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4052 db_printf("\n");
4053
4054 if ((entry->prev == &map->header) ||
4055 (entry->prev->object.vm_object !=
4056 entry->object.vm_object)) {
4057 db_indent += 2;
4058 vm_object_print((db_expr_t)(intptr_t)
4059 entry->object.vm_object,
4060 1, 0, (char *)0);
4061 db_indent -= 2;
4062 }
4063 }
4064 }
4065 db_indent -= 2;
4066}
4067
4068DB_SHOW_COMMAND(map, map)
4069{
4070
4071 if (!have_addr) {
4072 db_printf("usage: show map <addr>\n");
4073 return;
4074 }
4075 vm_map_print((vm_map_t)addr);
4076}
4077
4078DB_SHOW_COMMAND(procvm, procvm)
4079{
4080 struct proc *p;
4081
4082 if (have_addr) {
4083 p = (struct proc *) addr;
4084 } else {
4085 p = curproc;
4086 }
4087
4088 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4089 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4090 (void *)vmspace_pmap(p->p_vmspace));
4091
4092 vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4093}
4094
4095#endif /* DDB */
306 (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / PAGE_SIZE) / 8 +
307 maxproc * 2 + maxfiles);
308 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
309#ifdef INVARIANTS
310 vmspace_zdtor,
311#else
312 NULL,
313#endif
314 vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
315}
316
317static void
318vmspace_container_reset(struct proc *p)
319{
320
321#ifdef RACCT
322 PROC_LOCK(p);
323 racct_set(p, RACCT_DATA, 0);
324 racct_set(p, RACCT_STACK, 0);
325 racct_set(p, RACCT_RSS, 0);
326 racct_set(p, RACCT_MEMLOCK, 0);
327 racct_set(p, RACCT_VMEM, 0);
328 PROC_UNLOCK(p);
329#endif
330}
331
332static inline void
333vmspace_dofree(struct vmspace *vm)
334{
335
336 CTR1(KTR_VM, "vmspace_free: %p", vm);
337
338 /*
339 * Make sure any SysV shm is freed, it might not have been in
340 * exit1().
341 */
342 shmexit(vm);
343
344 /*
345 * Lock the map, to wait out all other references to it.
346 * Delete all of the mappings and pages they hold, then call
347 * the pmap module to reclaim anything left.
348 */
349 (void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
350 vm->vm_map.max_offset);
351
352 pmap_release(vmspace_pmap(vm));
353 vm->vm_map.pmap = NULL;
354 uma_zfree(vmspace_zone, vm);
355}
356
357void
358vmspace_free(struct vmspace *vm)
359{
360
361 if (vm->vm_refcnt == 0)
362 panic("vmspace_free: attempt to free already freed vmspace");
363
364 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
365 vmspace_dofree(vm);
366}
367
368void
369vmspace_exitfree(struct proc *p)
370{
371 struct vmspace *vm;
372
373 PROC_VMSPACE_LOCK(p);
374 vm = p->p_vmspace;
375 p->p_vmspace = NULL;
376 PROC_VMSPACE_UNLOCK(p);
377 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
378 vmspace_free(vm);
379}
380
381void
382vmspace_exit(struct thread *td)
383{
384 int refcnt;
385 struct vmspace *vm;
386 struct proc *p;
387
388 /*
389 * Release user portion of address space.
390 * This releases references to vnodes,
391 * which could cause I/O if the file has been unlinked.
392 * Need to do this early enough that we can still sleep.
393 *
394 * The last exiting process to reach this point releases as
395 * much of the environment as it can. vmspace_dofree() is the
396 * slower fallback in case another process had a temporary
397 * reference to the vmspace.
398 */
399
400 p = td->td_proc;
401 vm = p->p_vmspace;
402 atomic_add_int(&vmspace0.vm_refcnt, 1);
403 do {
404 refcnt = vm->vm_refcnt;
405 if (refcnt > 1 && p->p_vmspace != &vmspace0) {
406 /* Switch now since other proc might free vmspace */
407 PROC_VMSPACE_LOCK(p);
408 p->p_vmspace = &vmspace0;
409 PROC_VMSPACE_UNLOCK(p);
410 pmap_activate(td);
411 }
412 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
413 if (refcnt == 1) {
414 if (p->p_vmspace != vm) {
415 /* vmspace not yet freed, switch back */
416 PROC_VMSPACE_LOCK(p);
417 p->p_vmspace = vm;
418 PROC_VMSPACE_UNLOCK(p);
419 pmap_activate(td);
420 }
421 pmap_remove_pages(vmspace_pmap(vm));
422 /* Switch now since this proc will free vmspace */
423 PROC_VMSPACE_LOCK(p);
424 p->p_vmspace = &vmspace0;
425 PROC_VMSPACE_UNLOCK(p);
426 pmap_activate(td);
427 vmspace_dofree(vm);
428 }
429 vmspace_container_reset(p);
430}
431
432/* Acquire reference to vmspace owned by another process. */
433
434struct vmspace *
435vmspace_acquire_ref(struct proc *p)
436{
437 struct vmspace *vm;
438 int refcnt;
439
440 PROC_VMSPACE_LOCK(p);
441 vm = p->p_vmspace;
442 if (vm == NULL) {
443 PROC_VMSPACE_UNLOCK(p);
444 return (NULL);
445 }
446 do {
447 refcnt = vm->vm_refcnt;
448 if (refcnt <= 0) { /* Avoid 0->1 transition */
449 PROC_VMSPACE_UNLOCK(p);
450 return (NULL);
451 }
452 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
453 if (vm != p->p_vmspace) {
454 PROC_VMSPACE_UNLOCK(p);
455 vmspace_free(vm);
456 return (NULL);
457 }
458 PROC_VMSPACE_UNLOCK(p);
459 return (vm);
460}
461
462void
463_vm_map_lock(vm_map_t map, const char *file, int line)
464{
465
466 if (map->system_map)
467 mtx_lock_flags_(&map->system_mtx, 0, file, line);
468 else
469 sx_xlock_(&map->lock, file, line);
470 map->timestamp++;
471}
472
473static void
474vm_map_process_deferred(void)
475{
476 struct thread *td;
477 vm_map_entry_t entry, next;
478 vm_object_t object;
479
480 td = curthread;
481 entry = td->td_map_def_user;
482 td->td_map_def_user = NULL;
483 while (entry != NULL) {
484 next = entry->next;
485 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
486 /*
487 * Decrement the object's writemappings and
488 * possibly the vnode's v_writecount.
489 */
490 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
491 ("Submap with writecount"));
492 object = entry->object.vm_object;
493 KASSERT(object != NULL, ("No object for writecount"));
494 vnode_pager_release_writecount(object, entry->start,
495 entry->end);
496 }
497 vm_map_entry_deallocate(entry, FALSE);
498 entry = next;
499 }
500}
501
502void
503_vm_map_unlock(vm_map_t map, const char *file, int line)
504{
505
506 if (map->system_map)
507 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
508 else {
509 sx_xunlock_(&map->lock, file, line);
510 vm_map_process_deferred();
511 }
512}
513
514void
515_vm_map_lock_read(vm_map_t map, const char *file, int line)
516{
517
518 if (map->system_map)
519 mtx_lock_flags_(&map->system_mtx, 0, file, line);
520 else
521 sx_slock_(&map->lock, file, line);
522}
523
524void
525_vm_map_unlock_read(vm_map_t map, const char *file, int line)
526{
527
528 if (map->system_map)
529 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
530 else {
531 sx_sunlock_(&map->lock, file, line);
532 vm_map_process_deferred();
533 }
534}
535
536int
537_vm_map_trylock(vm_map_t map, const char *file, int line)
538{
539 int error;
540
541 error = map->system_map ?
542 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
543 !sx_try_xlock_(&map->lock, file, line);
544 if (error == 0)
545 map->timestamp++;
546 return (error == 0);
547}
548
549int
550_vm_map_trylock_read(vm_map_t map, const char *file, int line)
551{
552 int error;
553
554 error = map->system_map ?
555 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
556 !sx_try_slock_(&map->lock, file, line);
557 return (error == 0);
558}
559
560/*
561 * _vm_map_lock_upgrade: [ internal use only ]
562 *
563 * Tries to upgrade a read (shared) lock on the specified map to a write
564 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a
565 * non-zero value if the upgrade fails. If the upgrade fails, the map is
566 * returned without a read or write lock held.
567 *
568 * Requires that the map be read locked.
569 */
570int
571_vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
572{
573 unsigned int last_timestamp;
574
575 if (map->system_map) {
576 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
577 } else {
578 if (!sx_try_upgrade_(&map->lock, file, line)) {
579 last_timestamp = map->timestamp;
580 sx_sunlock_(&map->lock, file, line);
581 vm_map_process_deferred();
582 /*
583 * If the map's timestamp does not change while the
584 * map is unlocked, then the upgrade succeeds.
585 */
586 sx_xlock_(&map->lock, file, line);
587 if (last_timestamp != map->timestamp) {
588 sx_xunlock_(&map->lock, file, line);
589 return (1);
590 }
591 }
592 }
593 map->timestamp++;
594 return (0);
595}
596
597void
598_vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
599{
600
601 if (map->system_map) {
602 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
603 } else
604 sx_downgrade_(&map->lock, file, line);
605}
606
607/*
608 * vm_map_locked:
609 *
610 * Returns a non-zero value if the caller holds a write (exclusive) lock
611 * on the specified map and the value "0" otherwise.
612 */
613int
614vm_map_locked(vm_map_t map)
615{
616
617 if (map->system_map)
618 return (mtx_owned(&map->system_mtx));
619 else
620 return (sx_xlocked(&map->lock));
621}
622
623#ifdef INVARIANTS
624static void
625_vm_map_assert_locked(vm_map_t map, const char *file, int line)
626{
627
628 if (map->system_map)
629 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
630 else
631 sx_assert_(&map->lock, SA_XLOCKED, file, line);
632}
633
634#define VM_MAP_ASSERT_LOCKED(map) \
635 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
636#else
637#define VM_MAP_ASSERT_LOCKED(map)
638#endif
639
640/*
641 * _vm_map_unlock_and_wait:
642 *
643 * Atomically releases the lock on the specified map and puts the calling
644 * thread to sleep. The calling thread will remain asleep until either
645 * vm_map_wakeup() is performed on the map or the specified timeout is
646 * exceeded.
647 *
648 * WARNING! This function does not perform deferred deallocations of
649 * objects and map entries. Therefore, the calling thread is expected to
650 * reacquire the map lock after reawakening and later perform an ordinary
651 * unlock operation, such as vm_map_unlock(), before completing its
652 * operation on the map.
653 */
654int
655_vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
656{
657
658 mtx_lock(&map_sleep_mtx);
659 if (map->system_map)
660 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
661 else
662 sx_xunlock_(&map->lock, file, line);
663 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
664 timo));
665}
666
667/*
668 * vm_map_wakeup:
669 *
670 * Awaken any threads that have slept on the map using
671 * vm_map_unlock_and_wait().
672 */
673void
674vm_map_wakeup(vm_map_t map)
675{
676
677 /*
678 * Acquire and release map_sleep_mtx to prevent a wakeup()
679 * from being performed (and lost) between the map unlock
680 * and the msleep() in _vm_map_unlock_and_wait().
681 */
682 mtx_lock(&map_sleep_mtx);
683 mtx_unlock(&map_sleep_mtx);
684 wakeup(&map->root);
685}
686
687void
688vm_map_busy(vm_map_t map)
689{
690
691 VM_MAP_ASSERT_LOCKED(map);
692 map->busy++;
693}
694
695void
696vm_map_unbusy(vm_map_t map)
697{
698
699 VM_MAP_ASSERT_LOCKED(map);
700 KASSERT(map->busy, ("vm_map_unbusy: not busy"));
701 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
702 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
703 wakeup(&map->busy);
704 }
705}
706
707void
708vm_map_wait_busy(vm_map_t map)
709{
710
711 VM_MAP_ASSERT_LOCKED(map);
712 while (map->busy) {
713 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
714 if (map->system_map)
715 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
716 else
717 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
718 }
719 map->timestamp++;
720}
721
722long
723vmspace_resident_count(struct vmspace *vmspace)
724{
725 return pmap_resident_count(vmspace_pmap(vmspace));
726}
727
728/*
729 * vm_map_create:
730 *
731 * Creates and returns a new empty VM map with
732 * the given physical map structure, and having
733 * the given lower and upper address bounds.
734 */
735vm_map_t
736vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
737{
738 vm_map_t result;
739
740 result = uma_zalloc(mapzone, M_WAITOK);
741 CTR1(KTR_VM, "vm_map_create: %p", result);
742 _vm_map_init(result, pmap, min, max);
743 return (result);
744}
745
746/*
747 * Initialize an existing vm_map structure
748 * such as that in the vmspace structure.
749 */
750static void
751_vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
752{
753
754 map->header.next = map->header.prev = &map->header;
755 map->needs_wakeup = FALSE;
756 map->system_map = 0;
757 map->pmap = pmap;
758 map->min_offset = min;
759 map->max_offset = max;
760 map->flags = 0;
761 map->root = NULL;
762 map->timestamp = 0;
763 map->busy = 0;
764}
765
766void
767vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
768{
769
770 _vm_map_init(map, pmap, min, max);
771 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
772 sx_init(&map->lock, "user map");
773}
774
775/*
776 * vm_map_entry_dispose: [ internal use only ]
777 *
778 * Inverse of vm_map_entry_create.
779 */
780static void
781vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
782{
783 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
784}
785
786/*
787 * vm_map_entry_create: [ internal use only ]
788 *
789 * Allocates a VM map entry for insertion.
790 * No entry fields are filled in.
791 */
792static vm_map_entry_t
793vm_map_entry_create(vm_map_t map)
794{
795 vm_map_entry_t new_entry;
796
797 if (map->system_map)
798 new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
799 else
800 new_entry = uma_zalloc(mapentzone, M_WAITOK);
801 if (new_entry == NULL)
802 panic("vm_map_entry_create: kernel resources exhausted");
803 return (new_entry);
804}
805
806/*
807 * vm_map_entry_set_behavior:
808 *
809 * Set the expected access behavior, either normal, random, or
810 * sequential.
811 */
812static inline void
813vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
814{
815 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
816 (behavior & MAP_ENTRY_BEHAV_MASK);
817}
818
819/*
820 * vm_map_entry_set_max_free:
821 *
822 * Set the max_free field in a vm_map_entry.
823 */
824static inline void
825vm_map_entry_set_max_free(vm_map_entry_t entry)
826{
827
828 entry->max_free = entry->adj_free;
829 if (entry->left != NULL && entry->left->max_free > entry->max_free)
830 entry->max_free = entry->left->max_free;
831 if (entry->right != NULL && entry->right->max_free > entry->max_free)
832 entry->max_free = entry->right->max_free;
833}
834
835/*
836 * vm_map_entry_splay:
837 *
838 * The Sleator and Tarjan top-down splay algorithm with the
839 * following variation. Max_free must be computed bottom-up, so
840 * on the downward pass, maintain the left and right spines in
841 * reverse order. Then, make a second pass up each side to fix
842 * the pointers and compute max_free. The time bound is O(log n)
843 * amortized.
844 *
845 * The new root is the vm_map_entry containing "addr", or else an
846 * adjacent entry (lower or higher) if addr is not in the tree.
847 *
848 * The map must be locked, and leaves it so.
849 *
850 * Returns: the new root.
851 */
852static vm_map_entry_t
853vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
854{
855 vm_map_entry_t llist, rlist;
856 vm_map_entry_t ltree, rtree;
857 vm_map_entry_t y;
858
859 /* Special case of empty tree. */
860 if (root == NULL)
861 return (root);
862
863 /*
864 * Pass One: Splay down the tree until we find addr or a NULL
865 * pointer where addr would go. llist and rlist are the two
866 * sides in reverse order (bottom-up), with llist linked by
867 * the right pointer and rlist linked by the left pointer in
868 * the vm_map_entry. Wait until Pass Two to set max_free on
869 * the two spines.
870 */
871 llist = NULL;
872 rlist = NULL;
873 for (;;) {
874 /* root is never NULL in here. */
875 if (addr < root->start) {
876 y = root->left;
877 if (y == NULL)
878 break;
879 if (addr < y->start && y->left != NULL) {
880 /* Rotate right and put y on rlist. */
881 root->left = y->right;
882 y->right = root;
883 vm_map_entry_set_max_free(root);
884 root = y->left;
885 y->left = rlist;
886 rlist = y;
887 } else {
888 /* Put root on rlist. */
889 root->left = rlist;
890 rlist = root;
891 root = y;
892 }
893 } else if (addr >= root->end) {
894 y = root->right;
895 if (y == NULL)
896 break;
897 if (addr >= y->end && y->right != NULL) {
898 /* Rotate left and put y on llist. */
899 root->right = y->left;
900 y->left = root;
901 vm_map_entry_set_max_free(root);
902 root = y->right;
903 y->right = llist;
904 llist = y;
905 } else {
906 /* Put root on llist. */
907 root->right = llist;
908 llist = root;
909 root = y;
910 }
911 } else
912 break;
913 }
914
915 /*
916 * Pass Two: Walk back up the two spines, flip the pointers
917 * and set max_free. The subtrees of the root go at the
918 * bottom of llist and rlist.
919 */
920 ltree = root->left;
921 while (llist != NULL) {
922 y = llist->right;
923 llist->right = ltree;
924 vm_map_entry_set_max_free(llist);
925 ltree = llist;
926 llist = y;
927 }
928 rtree = root->right;
929 while (rlist != NULL) {
930 y = rlist->left;
931 rlist->left = rtree;
932 vm_map_entry_set_max_free(rlist);
933 rtree = rlist;
934 rlist = y;
935 }
936
937 /*
938 * Final assembly: add ltree and rtree as subtrees of root.
939 */
940 root->left = ltree;
941 root->right = rtree;
942 vm_map_entry_set_max_free(root);
943
944 return (root);
945}
946
947/*
948 * vm_map_entry_{un,}link:
949 *
950 * Insert/remove entries from maps.
951 */
952static void
953vm_map_entry_link(vm_map_t map,
954 vm_map_entry_t after_where,
955 vm_map_entry_t entry)
956{
957
958 CTR4(KTR_VM,
959 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
960 map->nentries, entry, after_where);
961 VM_MAP_ASSERT_LOCKED(map);
962 map->nentries++;
963 entry->prev = after_where;
964 entry->next = after_where->next;
965 entry->next->prev = entry;
966 after_where->next = entry;
967
968 if (after_where != &map->header) {
969 if (after_where != map->root)
970 vm_map_entry_splay(after_where->start, map->root);
971 entry->right = after_where->right;
972 entry->left = after_where;
973 after_where->right = NULL;
974 after_where->adj_free = entry->start - after_where->end;
975 vm_map_entry_set_max_free(after_where);
976 } else {
977 entry->right = map->root;
978 entry->left = NULL;
979 }
980 entry->adj_free = (entry->next == &map->header ? map->max_offset :
981 entry->next->start) - entry->end;
982 vm_map_entry_set_max_free(entry);
983 map->root = entry;
984}
985
986static void
987vm_map_entry_unlink(vm_map_t map,
988 vm_map_entry_t entry)
989{
990 vm_map_entry_t next, prev, root;
991
992 VM_MAP_ASSERT_LOCKED(map);
993 if (entry != map->root)
994 vm_map_entry_splay(entry->start, map->root);
995 if (entry->left == NULL)
996 root = entry->right;
997 else {
998 root = vm_map_entry_splay(entry->start, entry->left);
999 root->right = entry->right;
1000 root->adj_free = (entry->next == &map->header ? map->max_offset :
1001 entry->next->start) - root->end;
1002 vm_map_entry_set_max_free(root);
1003 }
1004 map->root = root;
1005
1006 prev = entry->prev;
1007 next = entry->next;
1008 next->prev = prev;
1009 prev->next = next;
1010 map->nentries--;
1011 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1012 map->nentries, entry);
1013}
1014
1015/*
1016 * vm_map_entry_resize_free:
1017 *
1018 * Recompute the amount of free space following a vm_map_entry
1019 * and propagate that value up the tree. Call this function after
1020 * resizing a map entry in-place, that is, without a call to
1021 * vm_map_entry_link() or _unlink().
1022 *
1023 * The map must be locked, and leaves it so.
1024 */
1025static void
1026vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1027{
1028
1029 /*
1030 * Using splay trees without parent pointers, propagating
1031 * max_free up the tree is done by moving the entry to the
1032 * root and making the change there.
1033 */
1034 if (entry != map->root)
1035 map->root = vm_map_entry_splay(entry->start, map->root);
1036
1037 entry->adj_free = (entry->next == &map->header ? map->max_offset :
1038 entry->next->start) - entry->end;
1039 vm_map_entry_set_max_free(entry);
1040}
1041
1042/*
1043 * vm_map_lookup_entry: [ internal use only ]
1044 *
1045 * Finds the map entry containing (or
1046 * immediately preceding) the specified address
1047 * in the given map; the entry is returned
1048 * in the "entry" parameter. The boolean
1049 * result indicates whether the address is
1050 * actually contained in the map.
1051 */
1052boolean_t
1053vm_map_lookup_entry(
1054 vm_map_t map,
1055 vm_offset_t address,
1056 vm_map_entry_t *entry) /* OUT */
1057{
1058 vm_map_entry_t cur;
1059 boolean_t locked;
1060
1061 /*
1062 * If the map is empty, then the map entry immediately preceding
1063 * "address" is the map's header.
1064 */
1065 cur = map->root;
1066 if (cur == NULL)
1067 *entry = &map->header;
1068 else if (address >= cur->start && cur->end > address) {
1069 *entry = cur;
1070 return (TRUE);
1071 } else if ((locked = vm_map_locked(map)) ||
1072 sx_try_upgrade(&map->lock)) {
1073 /*
1074 * Splay requires a write lock on the map. However, it only
1075 * restructures the binary search tree; it does not otherwise
1076 * change the map. Thus, the map's timestamp need not change
1077 * on a temporary upgrade.
1078 */
1079 map->root = cur = vm_map_entry_splay(address, cur);
1080 if (!locked)
1081 sx_downgrade(&map->lock);
1082
1083 /*
1084 * If "address" is contained within a map entry, the new root
1085 * is that map entry. Otherwise, the new root is a map entry
1086 * immediately before or after "address".
1087 */
1088 if (address >= cur->start) {
1089 *entry = cur;
1090 if (cur->end > address)
1091 return (TRUE);
1092 } else
1093 *entry = cur->prev;
1094 } else
1095 /*
1096 * Since the map is only locked for read access, perform a
1097 * standard binary search tree lookup for "address".
1098 */
1099 for (;;) {
1100 if (address < cur->start) {
1101 if (cur->left == NULL) {
1102 *entry = cur->prev;
1103 break;
1104 }
1105 cur = cur->left;
1106 } else if (cur->end > address) {
1107 *entry = cur;
1108 return (TRUE);
1109 } else {
1110 if (cur->right == NULL) {
1111 *entry = cur;
1112 break;
1113 }
1114 cur = cur->right;
1115 }
1116 }
1117 return (FALSE);
1118}
1119
1120/*
1121 * vm_map_insert:
1122 *
1123 * Inserts the given whole VM object into the target
1124 * map at the specified address range. The object's
1125 * size should match that of the address range.
1126 *
1127 * Requires that the map be locked, and leaves it so.
1128 *
1129 * If object is non-NULL, ref count must be bumped by caller
1130 * prior to making call to account for the new entry.
1131 */
1132int
1133vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1134 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
1135 int cow)
1136{
1137 vm_map_entry_t new_entry;
1138 vm_map_entry_t prev_entry;
1139 vm_map_entry_t temp_entry;
1140 vm_eflags_t protoeflags;
1141 struct ucred *cred;
1142 vm_inherit_t inheritance;
1143 boolean_t charge_prev_obj;
1144
1145 VM_MAP_ASSERT_LOCKED(map);
1146
1147 /*
1148 * Check that the start and end points are not bogus.
1149 */
1150 if ((start < map->min_offset) || (end > map->max_offset) ||
1151 (start >= end))
1152 return (KERN_INVALID_ADDRESS);
1153
1154 /*
1155 * Find the entry prior to the proposed starting address; if it's part
1156 * of an existing entry, this range is bogus.
1157 */
1158 if (vm_map_lookup_entry(map, start, &temp_entry))
1159 return (KERN_NO_SPACE);
1160
1161 prev_entry = temp_entry;
1162
1163 /*
1164 * Assert that the next entry doesn't overlap the end point.
1165 */
1166 if ((prev_entry->next != &map->header) &&
1167 (prev_entry->next->start < end))
1168 return (KERN_NO_SPACE);
1169
1170 protoeflags = 0;
1171 charge_prev_obj = FALSE;
1172
1173 if (cow & MAP_COPY_ON_WRITE)
1174 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1175
1176 if (cow & MAP_NOFAULT) {
1177 protoeflags |= MAP_ENTRY_NOFAULT;
1178
1179 KASSERT(object == NULL,
1180 ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1181 }
1182 if (cow & MAP_DISABLE_SYNCER)
1183 protoeflags |= MAP_ENTRY_NOSYNC;
1184 if (cow & MAP_DISABLE_COREDUMP)
1185 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1186 if (cow & MAP_VN_WRITECOUNT)
1187 protoeflags |= MAP_ENTRY_VN_WRITECNT;
1188 if (cow & MAP_INHERIT_SHARE)
1189 inheritance = VM_INHERIT_SHARE;
1190 else
1191 inheritance = VM_INHERIT_DEFAULT;
1192
1193 cred = NULL;
1194 KASSERT((object != kmem_object && object != kernel_object) ||
1195 ((object == kmem_object || object == kernel_object) &&
1196 !(protoeflags & MAP_ENTRY_NEEDS_COPY)),
1197 ("kmem or kernel object and cow"));
1198 if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT))
1199 goto charged;
1200 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1201 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1202 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1203 return (KERN_RESOURCE_SHORTAGE);
1204 KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) ||
1205 object->cred == NULL,
1206 ("OVERCOMMIT: vm_map_insert o %p", object));
1207 cred = curthread->td_ucred;
1208 crhold(cred);
1209 if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY))
1210 charge_prev_obj = TRUE;
1211 }
1212
1213charged:
1214 /* Expand the kernel pmap, if necessary. */
1215 if (map == kernel_map && end > kernel_vm_end)
1216 pmap_growkernel(end);
1217 if (object != NULL) {
1218 /*
1219 * OBJ_ONEMAPPING must be cleared unless this mapping
1220 * is trivially proven to be the only mapping for any
1221 * of the object's pages. (Object granularity
1222 * reference counting is insufficient to recognize
1223 * aliases with precision.)
1224 */
1225 VM_OBJECT_LOCK(object);
1226 if (object->ref_count > 1 || object->shadow_count != 0)
1227 vm_object_clear_flag(object, OBJ_ONEMAPPING);
1228 VM_OBJECT_UNLOCK(object);
1229 }
1230 else if ((prev_entry != &map->header) &&
1231 (prev_entry->eflags == protoeflags) &&
1232 (prev_entry->end == start) &&
1233 (prev_entry->wired_count == 0) &&
1234 (prev_entry->cred == cred ||
1235 (prev_entry->object.vm_object != NULL &&
1236 (prev_entry->object.vm_object->cred == cred))) &&
1237 vm_object_coalesce(prev_entry->object.vm_object,
1238 prev_entry->offset,
1239 (vm_size_t)(prev_entry->end - prev_entry->start),
1240 (vm_size_t)(end - prev_entry->end), charge_prev_obj)) {
1241 /*
1242 * We were able to extend the object. Determine if we
1243 * can extend the previous map entry to include the
1244 * new range as well.
1245 */
1246 if ((prev_entry->inheritance == inheritance) &&
1247 (prev_entry->protection == prot) &&
1248 (prev_entry->max_protection == max)) {
1249 map->size += (end - prev_entry->end);
1250 prev_entry->end = end;
1251 vm_map_entry_resize_free(map, prev_entry);
1252 vm_map_simplify_entry(map, prev_entry);
1253 if (cred != NULL)
1254 crfree(cred);
1255 return (KERN_SUCCESS);
1256 }
1257
1258 /*
1259 * If we can extend the object but cannot extend the
1260 * map entry, we have to create a new map entry. We
1261 * must bump the ref count on the extended object to
1262 * account for it. object may be NULL.
1263 */
1264 object = prev_entry->object.vm_object;
1265 offset = prev_entry->offset +
1266 (prev_entry->end - prev_entry->start);
1267 vm_object_reference(object);
1268 if (cred != NULL && object != NULL && object->cred != NULL &&
1269 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1270 /* Object already accounts for this uid. */
1271 crfree(cred);
1272 cred = NULL;
1273 }
1274 }
1275
1276 /*
1277 * NOTE: if conditionals fail, object can be NULL here. This occurs
1278 * in things like the buffer map where we manage kva but do not manage
1279 * backing objects.
1280 */
1281
1282 /*
1283 * Create a new entry
1284 */
1285 new_entry = vm_map_entry_create(map);
1286 new_entry->start = start;
1287 new_entry->end = end;
1288 new_entry->cred = NULL;
1289
1290 new_entry->eflags = protoeflags;
1291 new_entry->object.vm_object = object;
1292 new_entry->offset = offset;
1293 new_entry->avail_ssize = 0;
1294
1295 new_entry->inheritance = inheritance;
1296 new_entry->protection = prot;
1297 new_entry->max_protection = max;
1298 new_entry->wired_count = 0;
1299 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1300 new_entry->next_read = OFF_TO_IDX(offset);
1301
1302 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1303 ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry));
1304 new_entry->cred = cred;
1305
1306 /*
1307 * Insert the new entry into the list
1308 */
1309 vm_map_entry_link(map, prev_entry, new_entry);
1310 map->size += new_entry->end - new_entry->start;
1311
1312 /*
1313 * It may be possible to merge the new entry with the next and/or
1314 * previous entries. However, due to MAP_STACK_* being a hack, a
1315 * panic can result from merging such entries.
1316 */
1317 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)
1318 vm_map_simplify_entry(map, new_entry);
1319
1320 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
1321 vm_map_pmap_enter(map, start, prot,
1322 object, OFF_TO_IDX(offset), end - start,
1323 cow & MAP_PREFAULT_PARTIAL);
1324 }
1325
1326 return (KERN_SUCCESS);
1327}
1328
1329/*
1330 * vm_map_findspace:
1331 *
1332 * Find the first fit (lowest VM address) for "length" free bytes
1333 * beginning at address >= start in the given map.
1334 *
1335 * In a vm_map_entry, "adj_free" is the amount of free space
1336 * adjacent (higher address) to this entry, and "max_free" is the
1337 * maximum amount of contiguous free space in its subtree. This
1338 * allows finding a free region in one path down the tree, so
1339 * O(log n) amortized with splay trees.
1340 *
1341 * The map must be locked, and leaves it so.
1342 *
1343 * Returns: 0 on success, and starting address in *addr,
1344 * 1 if insufficient space.
1345 */
1346int
1347vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1348 vm_offset_t *addr) /* OUT */
1349{
1350 vm_map_entry_t entry;
1351 vm_offset_t st;
1352
1353 /*
1354 * Request must fit within min/max VM address and must avoid
1355 * address wrap.
1356 */
1357 if (start < map->min_offset)
1358 start = map->min_offset;
1359 if (start + length > map->max_offset || start + length < start)
1360 return (1);
1361
1362 /* Empty tree means wide open address space. */
1363 if (map->root == NULL) {
1364 *addr = start;
1365 return (0);
1366 }
1367
1368 /*
1369 * After splay, if start comes before root node, then there
1370 * must be a gap from start to the root.
1371 */
1372 map->root = vm_map_entry_splay(start, map->root);
1373 if (start + length <= map->root->start) {
1374 *addr = start;
1375 return (0);
1376 }
1377
1378 /*
1379 * Root is the last node that might begin its gap before
1380 * start, and this is the last comparison where address
1381 * wrap might be a problem.
1382 */
1383 st = (start > map->root->end) ? start : map->root->end;
1384 if (length <= map->root->end + map->root->adj_free - st) {
1385 *addr = st;
1386 return (0);
1387 }
1388
1389 /* With max_free, can immediately tell if no solution. */
1390 entry = map->root->right;
1391 if (entry == NULL || length > entry->max_free)
1392 return (1);
1393
1394 /*
1395 * Search the right subtree in the order: left subtree, root,
1396 * right subtree (first fit). The previous splay implies that
1397 * all regions in the right subtree have addresses > start.
1398 */
1399 while (entry != NULL) {
1400 if (entry->left != NULL && entry->left->max_free >= length)
1401 entry = entry->left;
1402 else if (entry->adj_free >= length) {
1403 *addr = entry->end;
1404 return (0);
1405 } else
1406 entry = entry->right;
1407 }
1408
1409 /* Can't get here, so panic if we do. */
1410 panic("vm_map_findspace: max_free corrupt");
1411}
1412
1413int
1414vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1415 vm_offset_t start, vm_size_t length, vm_prot_t prot,
1416 vm_prot_t max, int cow)
1417{
1418 vm_offset_t end;
1419 int result;
1420
1421 end = start + length;
1422 vm_map_lock(map);
1423 VM_MAP_RANGE_CHECK(map, start, end);
1424 (void) vm_map_delete(map, start, end);
1425 result = vm_map_insert(map, object, offset, start, end, prot,
1426 max, cow);
1427 vm_map_unlock(map);
1428 return (result);
1429}
1430
1431/*
1432 * vm_map_find finds an unallocated region in the target address
1433 * map with the given length. The search is defined to be
1434 * first-fit from the specified address; the region found is
1435 * returned in the same parameter.
1436 *
1437 * If object is non-NULL, ref count must be bumped by caller
1438 * prior to making call to account for the new entry.
1439 */
1440int
1441vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1442 vm_offset_t *addr, /* IN/OUT */
1443 vm_size_t length, int find_space, vm_prot_t prot,
1444 vm_prot_t max, int cow)
1445{
1446 vm_offset_t start;
1447 int result;
1448
1449 start = *addr;
1450 vm_map_lock(map);
1451 do {
1452 if (find_space != VMFS_NO_SPACE) {
1453 if (vm_map_findspace(map, start, length, addr)) {
1454 vm_map_unlock(map);
1455 return (KERN_NO_SPACE);
1456 }
1457 switch (find_space) {
1458 case VMFS_ALIGNED_SPACE:
1459 pmap_align_superpage(object, offset, addr,
1460 length);
1461 break;
1462#ifdef VMFS_TLB_ALIGNED_SPACE
1463 case VMFS_TLB_ALIGNED_SPACE:
1464 pmap_align_tlb(addr);
1465 break;
1466#endif
1467 default:
1468 break;
1469 }
1470
1471 start = *addr;
1472 }
1473 result = vm_map_insert(map, object, offset, start, start +
1474 length, prot, max, cow);
1475 } while (result == KERN_NO_SPACE && (find_space == VMFS_ALIGNED_SPACE
1476#ifdef VMFS_TLB_ALIGNED_SPACE
1477 || find_space == VMFS_TLB_ALIGNED_SPACE
1478#endif
1479 ));
1480 vm_map_unlock(map);
1481 return (result);
1482}
1483
1484/*
1485 * vm_map_simplify_entry:
1486 *
1487 * Simplify the given map entry by merging with either neighbor. This
1488 * routine also has the ability to merge with both neighbors.
1489 *
1490 * The map must be locked.
1491 *
1492 * This routine guarentees that the passed entry remains valid (though
1493 * possibly extended). When merging, this routine may delete one or
1494 * both neighbors.
1495 */
1496void
1497vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1498{
1499 vm_map_entry_t next, prev;
1500 vm_size_t prevsize, esize;
1501
1502 if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP))
1503 return;
1504
1505 prev = entry->prev;
1506 if (prev != &map->header) {
1507 prevsize = prev->end - prev->start;
1508 if ( (prev->end == entry->start) &&
1509 (prev->object.vm_object == entry->object.vm_object) &&
1510 (!prev->object.vm_object ||
1511 (prev->offset + prevsize == entry->offset)) &&
1512 (prev->eflags == entry->eflags) &&
1513 (prev->protection == entry->protection) &&
1514 (prev->max_protection == entry->max_protection) &&
1515 (prev->inheritance == entry->inheritance) &&
1516 (prev->wired_count == entry->wired_count) &&
1517 (prev->cred == entry->cred)) {
1518 vm_map_entry_unlink(map, prev);
1519 entry->start = prev->start;
1520 entry->offset = prev->offset;
1521 if (entry->prev != &map->header)
1522 vm_map_entry_resize_free(map, entry->prev);
1523
1524 /*
1525 * If the backing object is a vnode object,
1526 * vm_object_deallocate() calls vrele().
1527 * However, vrele() does not lock the vnode
1528 * because the vnode has additional
1529 * references. Thus, the map lock can be kept
1530 * without causing a lock-order reversal with
1531 * the vnode lock.
1532 *
1533 * Since we count the number of virtual page
1534 * mappings in object->un_pager.vnp.writemappings,
1535 * the writemappings value should not be adjusted
1536 * when the entry is disposed of.
1537 */
1538 if (prev->object.vm_object)
1539 vm_object_deallocate(prev->object.vm_object);
1540 if (prev->cred != NULL)
1541 crfree(prev->cred);
1542 vm_map_entry_dispose(map, prev);
1543 }
1544 }
1545
1546 next = entry->next;
1547 if (next != &map->header) {
1548 esize = entry->end - entry->start;
1549 if ((entry->end == next->start) &&
1550 (next->object.vm_object == entry->object.vm_object) &&
1551 (!entry->object.vm_object ||
1552 (entry->offset + esize == next->offset)) &&
1553 (next->eflags == entry->eflags) &&
1554 (next->protection == entry->protection) &&
1555 (next->max_protection == entry->max_protection) &&
1556 (next->inheritance == entry->inheritance) &&
1557 (next->wired_count == entry->wired_count) &&
1558 (next->cred == entry->cred)) {
1559 vm_map_entry_unlink(map, next);
1560 entry->end = next->end;
1561 vm_map_entry_resize_free(map, entry);
1562
1563 /*
1564 * See comment above.
1565 */
1566 if (next->object.vm_object)
1567 vm_object_deallocate(next->object.vm_object);
1568 if (next->cred != NULL)
1569 crfree(next->cred);
1570 vm_map_entry_dispose(map, next);
1571 }
1572 }
1573}
1574/*
1575 * vm_map_clip_start: [ internal use only ]
1576 *
1577 * Asserts that the given entry begins at or after
1578 * the specified address; if necessary,
1579 * it splits the entry into two.
1580 */
1581#define vm_map_clip_start(map, entry, startaddr) \
1582{ \
1583 if (startaddr > entry->start) \
1584 _vm_map_clip_start(map, entry, startaddr); \
1585}
1586
1587/*
1588 * This routine is called only when it is known that
1589 * the entry must be split.
1590 */
1591static void
1592_vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1593{
1594 vm_map_entry_t new_entry;
1595
1596 VM_MAP_ASSERT_LOCKED(map);
1597
1598 /*
1599 * Split off the front portion -- note that we must insert the new
1600 * entry BEFORE this one, so that this entry has the specified
1601 * starting address.
1602 */
1603 vm_map_simplify_entry(map, entry);
1604
1605 /*
1606 * If there is no object backing this entry, we might as well create
1607 * one now. If we defer it, an object can get created after the map
1608 * is clipped, and individual objects will be created for the split-up
1609 * map. This is a bit of a hack, but is also about the best place to
1610 * put this improvement.
1611 */
1612 if (entry->object.vm_object == NULL && !map->system_map) {
1613 vm_object_t object;
1614 object = vm_object_allocate(OBJT_DEFAULT,
1615 atop(entry->end - entry->start));
1616 entry->object.vm_object = object;
1617 entry->offset = 0;
1618 if (entry->cred != NULL) {
1619 object->cred = entry->cred;
1620 object->charge = entry->end - entry->start;
1621 entry->cred = NULL;
1622 }
1623 } else if (entry->object.vm_object != NULL &&
1624 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1625 entry->cred != NULL) {
1626 VM_OBJECT_LOCK(entry->object.vm_object);
1627 KASSERT(entry->object.vm_object->cred == NULL,
1628 ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1629 entry->object.vm_object->cred = entry->cred;
1630 entry->object.vm_object->charge = entry->end - entry->start;
1631 VM_OBJECT_UNLOCK(entry->object.vm_object);
1632 entry->cred = NULL;
1633 }
1634
1635 new_entry = vm_map_entry_create(map);
1636 *new_entry = *entry;
1637
1638 new_entry->end = start;
1639 entry->offset += (start - entry->start);
1640 entry->start = start;
1641 if (new_entry->cred != NULL)
1642 crhold(entry->cred);
1643
1644 vm_map_entry_link(map, entry->prev, new_entry);
1645
1646 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1647 vm_object_reference(new_entry->object.vm_object);
1648 /*
1649 * The object->un_pager.vnp.writemappings for the
1650 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1651 * kept as is here. The virtual pages are
1652 * re-distributed among the clipped entries, so the sum is
1653 * left the same.
1654 */
1655 }
1656}
1657
1658/*
1659 * vm_map_clip_end: [ internal use only ]
1660 *
1661 * Asserts that the given entry ends at or before
1662 * the specified address; if necessary,
1663 * it splits the entry into two.
1664 */
1665#define vm_map_clip_end(map, entry, endaddr) \
1666{ \
1667 if ((endaddr) < (entry->end)) \
1668 _vm_map_clip_end((map), (entry), (endaddr)); \
1669}
1670
1671/*
1672 * This routine is called only when it is known that
1673 * the entry must be split.
1674 */
1675static void
1676_vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1677{
1678 vm_map_entry_t new_entry;
1679
1680 VM_MAP_ASSERT_LOCKED(map);
1681
1682 /*
1683 * If there is no object backing this entry, we might as well create
1684 * one now. If we defer it, an object can get created after the map
1685 * is clipped, and individual objects will be created for the split-up
1686 * map. This is a bit of a hack, but is also about the best place to
1687 * put this improvement.
1688 */
1689 if (entry->object.vm_object == NULL && !map->system_map) {
1690 vm_object_t object;
1691 object = vm_object_allocate(OBJT_DEFAULT,
1692 atop(entry->end - entry->start));
1693 entry->object.vm_object = object;
1694 entry->offset = 0;
1695 if (entry->cred != NULL) {
1696 object->cred = entry->cred;
1697 object->charge = entry->end - entry->start;
1698 entry->cred = NULL;
1699 }
1700 } else if (entry->object.vm_object != NULL &&
1701 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1702 entry->cred != NULL) {
1703 VM_OBJECT_LOCK(entry->object.vm_object);
1704 KASSERT(entry->object.vm_object->cred == NULL,
1705 ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1706 entry->object.vm_object->cred = entry->cred;
1707 entry->object.vm_object->charge = entry->end - entry->start;
1708 VM_OBJECT_UNLOCK(entry->object.vm_object);
1709 entry->cred = NULL;
1710 }
1711
1712 /*
1713 * Create a new entry and insert it AFTER the specified entry
1714 */
1715 new_entry = vm_map_entry_create(map);
1716 *new_entry = *entry;
1717
1718 new_entry->start = entry->end = end;
1719 new_entry->offset += (end - entry->start);
1720 if (new_entry->cred != NULL)
1721 crhold(entry->cred);
1722
1723 vm_map_entry_link(map, entry, new_entry);
1724
1725 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1726 vm_object_reference(new_entry->object.vm_object);
1727 }
1728}
1729
1730/*
1731 * vm_map_submap: [ kernel use only ]
1732 *
1733 * Mark the given range as handled by a subordinate map.
1734 *
1735 * This range must have been created with vm_map_find,
1736 * and no other operations may have been performed on this
1737 * range prior to calling vm_map_submap.
1738 *
1739 * Only a limited number of operations can be performed
1740 * within this rage after calling vm_map_submap:
1741 * vm_fault
1742 * [Don't try vm_map_copy!]
1743 *
1744 * To remove a submapping, one must first remove the
1745 * range from the superior map, and then destroy the
1746 * submap (if desired). [Better yet, don't try it.]
1747 */
1748int
1749vm_map_submap(
1750 vm_map_t map,
1751 vm_offset_t start,
1752 vm_offset_t end,
1753 vm_map_t submap)
1754{
1755 vm_map_entry_t entry;
1756 int result = KERN_INVALID_ARGUMENT;
1757
1758 vm_map_lock(map);
1759
1760 VM_MAP_RANGE_CHECK(map, start, end);
1761
1762 if (vm_map_lookup_entry(map, start, &entry)) {
1763 vm_map_clip_start(map, entry, start);
1764 } else
1765 entry = entry->next;
1766
1767 vm_map_clip_end(map, entry, end);
1768
1769 if ((entry->start == start) && (entry->end == end) &&
1770 ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1771 (entry->object.vm_object == NULL)) {
1772 entry->object.sub_map = submap;
1773 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1774 result = KERN_SUCCESS;
1775 }
1776 vm_map_unlock(map);
1777
1778 return (result);
1779}
1780
1781/*
1782 * The maximum number of pages to map
1783 */
1784#define MAX_INIT_PT 96
1785
1786/*
1787 * vm_map_pmap_enter:
1788 *
1789 * Preload read-only mappings for the specified object's resident pages
1790 * into the target map. If "flags" is MAP_PREFAULT_PARTIAL, then only
1791 * the resident pages within the address range [addr, addr + ulmin(size,
1792 * ptoa(MAX_INIT_PT))) are mapped. Otherwise, all resident pages within
1793 * the specified address range are mapped. This eliminates many soft
1794 * faults on process startup and immediately after an mmap(2). Because
1795 * these are speculative mappings, cached pages are not reactivated and
1796 * mapped.
1797 */
1798void
1799vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1800 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1801{
1802 vm_offset_t start;
1803 vm_page_t p, p_start;
1804 vm_pindex_t psize, tmpidx;
1805
1806 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1807 return;
1808 VM_OBJECT_LOCK(object);
1809 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1810 pmap_object_init_pt(map->pmap, addr, object, pindex, size);
1811 goto unlock_return;
1812 }
1813
1814 psize = atop(size);
1815 if (psize > MAX_INIT_PT && (flags & MAP_PREFAULT_PARTIAL) != 0)
1816 psize = MAX_INIT_PT;
1817 if (psize + pindex > object->size) {
1818 if (object->size < pindex)
1819 goto unlock_return;
1820 psize = object->size - pindex;
1821 }
1822
1823 start = 0;
1824 p_start = NULL;
1825
1826 p = vm_page_find_least(object, pindex);
1827 /*
1828 * Assert: the variable p is either (1) the page with the
1829 * least pindex greater than or equal to the parameter pindex
1830 * or (2) NULL.
1831 */
1832 for (;
1833 p != NULL && (tmpidx = p->pindex - pindex) < psize;
1834 p = TAILQ_NEXT(p, listq)) {
1835 /*
1836 * don't allow an madvise to blow away our really
1837 * free pages allocating pv entries.
1838 */
1839 if ((flags & MAP_PREFAULT_MADVISE) &&
1840 cnt.v_free_count < cnt.v_free_reserved) {
1841 psize = tmpidx;
1842 break;
1843 }
1844 if (p->valid == VM_PAGE_BITS_ALL) {
1845 if (p_start == NULL) {
1846 start = addr + ptoa(tmpidx);
1847 p_start = p;
1848 }
1849 } else if (p_start != NULL) {
1850 pmap_enter_object(map->pmap, start, addr +
1851 ptoa(tmpidx), p_start, prot);
1852 p_start = NULL;
1853 }
1854 }
1855 if (p_start != NULL)
1856 pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1857 p_start, prot);
1858unlock_return:
1859 VM_OBJECT_UNLOCK(object);
1860}
1861
1862/*
1863 * vm_map_protect:
1864 *
1865 * Sets the protection of the specified address
1866 * region in the target map. If "set_max" is
1867 * specified, the maximum protection is to be set;
1868 * otherwise, only the current protection is affected.
1869 */
1870int
1871vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1872 vm_prot_t new_prot, boolean_t set_max)
1873{
1874 vm_map_entry_t current, entry;
1875 vm_object_t obj;
1876 struct ucred *cred;
1877 vm_prot_t old_prot;
1878
1879 vm_map_lock(map);
1880
1881 VM_MAP_RANGE_CHECK(map, start, end);
1882
1883 if (vm_map_lookup_entry(map, start, &entry)) {
1884 vm_map_clip_start(map, entry, start);
1885 } else {
1886 entry = entry->next;
1887 }
1888
1889 /*
1890 * Make a first pass to check for protection violations.
1891 */
1892 current = entry;
1893 while ((current != &map->header) && (current->start < end)) {
1894 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1895 vm_map_unlock(map);
1896 return (KERN_INVALID_ARGUMENT);
1897 }
1898 if ((new_prot & current->max_protection) != new_prot) {
1899 vm_map_unlock(map);
1900 return (KERN_PROTECTION_FAILURE);
1901 }
1902 current = current->next;
1903 }
1904
1905
1906 /*
1907 * Do an accounting pass for private read-only mappings that
1908 * now will do cow due to allowed write (e.g. debugger sets
1909 * breakpoint on text segment)
1910 */
1911 for (current = entry; (current != &map->header) &&
1912 (current->start < end); current = current->next) {
1913
1914 vm_map_clip_end(map, current, end);
1915
1916 if (set_max ||
1917 ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
1918 ENTRY_CHARGED(current)) {
1919 continue;
1920 }
1921
1922 cred = curthread->td_ucred;
1923 obj = current->object.vm_object;
1924
1925 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
1926 if (!swap_reserve(current->end - current->start)) {
1927 vm_map_unlock(map);
1928 return (KERN_RESOURCE_SHORTAGE);
1929 }
1930 crhold(cred);
1931 current->cred = cred;
1932 continue;
1933 }
1934
1935 VM_OBJECT_LOCK(obj);
1936 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
1937 VM_OBJECT_UNLOCK(obj);
1938 continue;
1939 }
1940
1941 /*
1942 * Charge for the whole object allocation now, since
1943 * we cannot distinguish between non-charged and
1944 * charged clipped mapping of the same object later.
1945 */
1946 KASSERT(obj->charge == 0,
1947 ("vm_map_protect: object %p overcharged\n", obj));
1948 if (!swap_reserve(ptoa(obj->size))) {
1949 VM_OBJECT_UNLOCK(obj);
1950 vm_map_unlock(map);
1951 return (KERN_RESOURCE_SHORTAGE);
1952 }
1953
1954 crhold(cred);
1955 obj->cred = cred;
1956 obj->charge = ptoa(obj->size);
1957 VM_OBJECT_UNLOCK(obj);
1958 }
1959
1960 /*
1961 * Go back and fix up protections. [Note that clipping is not
1962 * necessary the second time.]
1963 */
1964 current = entry;
1965 while ((current != &map->header) && (current->start < end)) {
1966 old_prot = current->protection;
1967
1968 if (set_max)
1969 current->protection =
1970 (current->max_protection = new_prot) &
1971 old_prot;
1972 else
1973 current->protection = new_prot;
1974
1975 if ((current->eflags & (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED))
1976 == (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED) &&
1977 (current->protection & VM_PROT_WRITE) != 0 &&
1978 (old_prot & VM_PROT_WRITE) == 0) {
1979 vm_fault_copy_entry(map, map, current, current, NULL);
1980 }
1981
1982 /*
1983 * When restricting access, update the physical map. Worry
1984 * about copy-on-write here.
1985 */
1986 if ((old_prot & ~current->protection) != 0) {
1987#define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1988 VM_PROT_ALL)
1989 pmap_protect(map->pmap, current->start,
1990 current->end,
1991 current->protection & MASK(current));
1992#undef MASK
1993 }
1994 vm_map_simplify_entry(map, current);
1995 current = current->next;
1996 }
1997 vm_map_unlock(map);
1998 return (KERN_SUCCESS);
1999}
2000
2001/*
2002 * vm_map_madvise:
2003 *
2004 * This routine traverses a processes map handling the madvise
2005 * system call. Advisories are classified as either those effecting
2006 * the vm_map_entry structure, or those effecting the underlying
2007 * objects.
2008 */
2009int
2010vm_map_madvise(
2011 vm_map_t map,
2012 vm_offset_t start,
2013 vm_offset_t end,
2014 int behav)
2015{
2016 vm_map_entry_t current, entry;
2017 int modify_map = 0;
2018
2019 /*
2020 * Some madvise calls directly modify the vm_map_entry, in which case
2021 * we need to use an exclusive lock on the map and we need to perform
2022 * various clipping operations. Otherwise we only need a read-lock
2023 * on the map.
2024 */
2025 switch(behav) {
2026 case MADV_NORMAL:
2027 case MADV_SEQUENTIAL:
2028 case MADV_RANDOM:
2029 case MADV_NOSYNC:
2030 case MADV_AUTOSYNC:
2031 case MADV_NOCORE:
2032 case MADV_CORE:
2033 modify_map = 1;
2034 vm_map_lock(map);
2035 break;
2036 case MADV_WILLNEED:
2037 case MADV_DONTNEED:
2038 case MADV_FREE:
2039 vm_map_lock_read(map);
2040 break;
2041 default:
2042 return (KERN_INVALID_ARGUMENT);
2043 }
2044
2045 /*
2046 * Locate starting entry and clip if necessary.
2047 */
2048 VM_MAP_RANGE_CHECK(map, start, end);
2049
2050 if (vm_map_lookup_entry(map, start, &entry)) {
2051 if (modify_map)
2052 vm_map_clip_start(map, entry, start);
2053 } else {
2054 entry = entry->next;
2055 }
2056
2057 if (modify_map) {
2058 /*
2059 * madvise behaviors that are implemented in the vm_map_entry.
2060 *
2061 * We clip the vm_map_entry so that behavioral changes are
2062 * limited to the specified address range.
2063 */
2064 for (current = entry;
2065 (current != &map->header) && (current->start < end);
2066 current = current->next
2067 ) {
2068 if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2069 continue;
2070
2071 vm_map_clip_end(map, current, end);
2072
2073 switch (behav) {
2074 case MADV_NORMAL:
2075 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2076 break;
2077 case MADV_SEQUENTIAL:
2078 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2079 break;
2080 case MADV_RANDOM:
2081 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2082 break;
2083 case MADV_NOSYNC:
2084 current->eflags |= MAP_ENTRY_NOSYNC;
2085 break;
2086 case MADV_AUTOSYNC:
2087 current->eflags &= ~MAP_ENTRY_NOSYNC;
2088 break;
2089 case MADV_NOCORE:
2090 current->eflags |= MAP_ENTRY_NOCOREDUMP;
2091 break;
2092 case MADV_CORE:
2093 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2094 break;
2095 default:
2096 break;
2097 }
2098 vm_map_simplify_entry(map, current);
2099 }
2100 vm_map_unlock(map);
2101 } else {
2102 vm_pindex_t pstart, pend;
2103
2104 /*
2105 * madvise behaviors that are implemented in the underlying
2106 * vm_object.
2107 *
2108 * Since we don't clip the vm_map_entry, we have to clip
2109 * the vm_object pindex and count.
2110 */
2111 for (current = entry;
2112 (current != &map->header) && (current->start < end);
2113 current = current->next
2114 ) {
2115 vm_offset_t useStart;
2116
2117 if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2118 continue;
2119
2120 pstart = OFF_TO_IDX(current->offset);
2121 pend = pstart + atop(current->end - current->start);
2122 useStart = current->start;
2123
2124 if (current->start < start) {
2125 pstart += atop(start - current->start);
2126 useStart = start;
2127 }
2128 if (current->end > end)
2129 pend -= atop(current->end - end);
2130
2131 if (pstart >= pend)
2132 continue;
2133
2134 vm_object_madvise(current->object.vm_object, pstart,
2135 pend, behav);
2136 if (behav == MADV_WILLNEED) {
2137 vm_map_pmap_enter(map,
2138 useStart,
2139 current->protection,
2140 current->object.vm_object,
2141 pstart,
2142 ptoa(pend - pstart),
2143 MAP_PREFAULT_MADVISE
2144 );
2145 }
2146 }
2147 vm_map_unlock_read(map);
2148 }
2149 return (0);
2150}
2151
2152
2153/*
2154 * vm_map_inherit:
2155 *
2156 * Sets the inheritance of the specified address
2157 * range in the target map. Inheritance
2158 * affects how the map will be shared with
2159 * child maps at the time of vmspace_fork.
2160 */
2161int
2162vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2163 vm_inherit_t new_inheritance)
2164{
2165 vm_map_entry_t entry;
2166 vm_map_entry_t temp_entry;
2167
2168 switch (new_inheritance) {
2169 case VM_INHERIT_NONE:
2170 case VM_INHERIT_COPY:
2171 case VM_INHERIT_SHARE:
2172 break;
2173 default:
2174 return (KERN_INVALID_ARGUMENT);
2175 }
2176 vm_map_lock(map);
2177 VM_MAP_RANGE_CHECK(map, start, end);
2178 if (vm_map_lookup_entry(map, start, &temp_entry)) {
2179 entry = temp_entry;
2180 vm_map_clip_start(map, entry, start);
2181 } else
2182 entry = temp_entry->next;
2183 while ((entry != &map->header) && (entry->start < end)) {
2184 vm_map_clip_end(map, entry, end);
2185 entry->inheritance = new_inheritance;
2186 vm_map_simplify_entry(map, entry);
2187 entry = entry->next;
2188 }
2189 vm_map_unlock(map);
2190 return (KERN_SUCCESS);
2191}
2192
2193/*
2194 * vm_map_unwire:
2195 *
2196 * Implements both kernel and user unwiring.
2197 */
2198int
2199vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2200 int flags)
2201{
2202 vm_map_entry_t entry, first_entry, tmp_entry;
2203 vm_offset_t saved_start;
2204 unsigned int last_timestamp;
2205 int rv;
2206 boolean_t need_wakeup, result, user_unwire;
2207
2208 user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2209 vm_map_lock(map);
2210 VM_MAP_RANGE_CHECK(map, start, end);
2211 if (!vm_map_lookup_entry(map, start, &first_entry)) {
2212 if (flags & VM_MAP_WIRE_HOLESOK)
2213 first_entry = first_entry->next;
2214 else {
2215 vm_map_unlock(map);
2216 return (KERN_INVALID_ADDRESS);
2217 }
2218 }
2219 last_timestamp = map->timestamp;
2220 entry = first_entry;
2221 while (entry != &map->header && entry->start < end) {
2222 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2223 /*
2224 * We have not yet clipped the entry.
2225 */
2226 saved_start = (start >= entry->start) ? start :
2227 entry->start;
2228 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2229 if (vm_map_unlock_and_wait(map, 0)) {
2230 /*
2231 * Allow interruption of user unwiring?
2232 */
2233 }
2234 vm_map_lock(map);
2235 if (last_timestamp+1 != map->timestamp) {
2236 /*
2237 * Look again for the entry because the map was
2238 * modified while it was unlocked.
2239 * Specifically, the entry may have been
2240 * clipped, merged, or deleted.
2241 */
2242 if (!vm_map_lookup_entry(map, saved_start,
2243 &tmp_entry)) {
2244 if (flags & VM_MAP_WIRE_HOLESOK)
2245 tmp_entry = tmp_entry->next;
2246 else {
2247 if (saved_start == start) {
2248 /*
2249 * First_entry has been deleted.
2250 */
2251 vm_map_unlock(map);
2252 return (KERN_INVALID_ADDRESS);
2253 }
2254 end = saved_start;
2255 rv = KERN_INVALID_ADDRESS;
2256 goto done;
2257 }
2258 }
2259 if (entry == first_entry)
2260 first_entry = tmp_entry;
2261 else
2262 first_entry = NULL;
2263 entry = tmp_entry;
2264 }
2265 last_timestamp = map->timestamp;
2266 continue;
2267 }
2268 vm_map_clip_start(map, entry, start);
2269 vm_map_clip_end(map, entry, end);
2270 /*
2271 * Mark the entry in case the map lock is released. (See
2272 * above.)
2273 */
2274 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2275 /*
2276 * Check the map for holes in the specified region.
2277 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2278 */
2279 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2280 (entry->end < end && (entry->next == &map->header ||
2281 entry->next->start > entry->end))) {
2282 end = entry->end;
2283 rv = KERN_INVALID_ADDRESS;
2284 goto done;
2285 }
2286 /*
2287 * If system unwiring, require that the entry is system wired.
2288 */
2289 if (!user_unwire &&
2290 vm_map_entry_system_wired_count(entry) == 0) {
2291 end = entry->end;
2292 rv = KERN_INVALID_ARGUMENT;
2293 goto done;
2294 }
2295 entry = entry->next;
2296 }
2297 rv = KERN_SUCCESS;
2298done:
2299 need_wakeup = FALSE;
2300 if (first_entry == NULL) {
2301 result = vm_map_lookup_entry(map, start, &first_entry);
2302 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2303 first_entry = first_entry->next;
2304 else
2305 KASSERT(result, ("vm_map_unwire: lookup failed"));
2306 }
2307 entry = first_entry;
2308 while (entry != &map->header && entry->start < end) {
2309 if (rv == KERN_SUCCESS && (!user_unwire ||
2310 (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2311 if (user_unwire)
2312 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2313 entry->wired_count--;
2314 if (entry->wired_count == 0) {
2315 /*
2316 * Retain the map lock.
2317 */
2318 vm_fault_unwire(map, entry->start, entry->end,
2319 entry->object.vm_object != NULL &&
2320 (entry->object.vm_object->flags &
2321 OBJ_FICTITIOUS) != 0);
2322 }
2323 }
2324 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
2325 ("vm_map_unwire: in-transition flag missing"));
2326 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2327 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2328 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2329 need_wakeup = TRUE;
2330 }
2331 vm_map_simplify_entry(map, entry);
2332 entry = entry->next;
2333 }
2334 vm_map_unlock(map);
2335 if (need_wakeup)
2336 vm_map_wakeup(map);
2337 return (rv);
2338}
2339
2340/*
2341 * vm_map_wire:
2342 *
2343 * Implements both kernel and user wiring.
2344 */
2345int
2346vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2347 int flags)
2348{
2349 vm_map_entry_t entry, first_entry, tmp_entry;
2350 vm_offset_t saved_end, saved_start;
2351 unsigned int last_timestamp;
2352 int rv;
2353 boolean_t fictitious, need_wakeup, result, user_wire;
2354 vm_prot_t prot;
2355
2356 prot = 0;
2357 if (flags & VM_MAP_WIRE_WRITE)
2358 prot |= VM_PROT_WRITE;
2359 user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2360 vm_map_lock(map);
2361 VM_MAP_RANGE_CHECK(map, start, end);
2362 if (!vm_map_lookup_entry(map, start, &first_entry)) {
2363 if (flags & VM_MAP_WIRE_HOLESOK)
2364 first_entry = first_entry->next;
2365 else {
2366 vm_map_unlock(map);
2367 return (KERN_INVALID_ADDRESS);
2368 }
2369 }
2370 last_timestamp = map->timestamp;
2371 entry = first_entry;
2372 while (entry != &map->header && entry->start < end) {
2373 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2374 /*
2375 * We have not yet clipped the entry.
2376 */
2377 saved_start = (start >= entry->start) ? start :
2378 entry->start;
2379 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2380 if (vm_map_unlock_and_wait(map, 0)) {
2381 /*
2382 * Allow interruption of user wiring?
2383 */
2384 }
2385 vm_map_lock(map);
2386 if (last_timestamp + 1 != map->timestamp) {
2387 /*
2388 * Look again for the entry because the map was
2389 * modified while it was unlocked.
2390 * Specifically, the entry may have been
2391 * clipped, merged, or deleted.
2392 */
2393 if (!vm_map_lookup_entry(map, saved_start,
2394 &tmp_entry)) {
2395 if (flags & VM_MAP_WIRE_HOLESOK)
2396 tmp_entry = tmp_entry->next;
2397 else {
2398 if (saved_start == start) {
2399 /*
2400 * first_entry has been deleted.
2401 */
2402 vm_map_unlock(map);
2403 return (KERN_INVALID_ADDRESS);
2404 }
2405 end = saved_start;
2406 rv = KERN_INVALID_ADDRESS;
2407 goto done;
2408 }
2409 }
2410 if (entry == first_entry)
2411 first_entry = tmp_entry;
2412 else
2413 first_entry = NULL;
2414 entry = tmp_entry;
2415 }
2416 last_timestamp = map->timestamp;
2417 continue;
2418 }
2419 vm_map_clip_start(map, entry, start);
2420 vm_map_clip_end(map, entry, end);
2421 /*
2422 * Mark the entry in case the map lock is released. (See
2423 * above.)
2424 */
2425 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2426 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2427 || (entry->protection & prot) != prot) {
2428 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2429 if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2430 end = entry->end;
2431 rv = KERN_INVALID_ADDRESS;
2432 goto done;
2433 }
2434 goto next_entry;
2435 }
2436 if (entry->wired_count == 0) {
2437 entry->wired_count++;
2438 saved_start = entry->start;
2439 saved_end = entry->end;
2440 fictitious = entry->object.vm_object != NULL &&
2441 (entry->object.vm_object->flags &
2442 OBJ_FICTITIOUS) != 0;
2443 /*
2444 * Release the map lock, relying on the in-transition
2445 * mark. Mark the map busy for fork.
2446 */
2447 vm_map_busy(map);
2448 vm_map_unlock(map);
2449 rv = vm_fault_wire(map, saved_start, saved_end,
2450 fictitious);
2451 vm_map_lock(map);
2452 vm_map_unbusy(map);
2453 if (last_timestamp + 1 != map->timestamp) {
2454 /*
2455 * Look again for the entry because the map was
2456 * modified while it was unlocked. The entry
2457 * may have been clipped, but NOT merged or
2458 * deleted.
2459 */
2460 result = vm_map_lookup_entry(map, saved_start,
2461 &tmp_entry);
2462 KASSERT(result, ("vm_map_wire: lookup failed"));
2463 if (entry == first_entry)
2464 first_entry = tmp_entry;
2465 else
2466 first_entry = NULL;
2467 entry = tmp_entry;
2468 while (entry->end < saved_end) {
2469 if (rv != KERN_SUCCESS) {
2470 KASSERT(entry->wired_count == 1,
2471 ("vm_map_wire: bad count"));
2472 entry->wired_count = -1;
2473 }
2474 entry = entry->next;
2475 }
2476 }
2477 last_timestamp = map->timestamp;
2478 if (rv != KERN_SUCCESS) {
2479 KASSERT(entry->wired_count == 1,
2480 ("vm_map_wire: bad count"));
2481 /*
2482 * Assign an out-of-range value to represent
2483 * the failure to wire this entry.
2484 */
2485 entry->wired_count = -1;
2486 end = entry->end;
2487 goto done;
2488 }
2489 } else if (!user_wire ||
2490 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2491 entry->wired_count++;
2492 }
2493 /*
2494 * Check the map for holes in the specified region.
2495 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2496 */
2497 next_entry:
2498 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2499 (entry->end < end && (entry->next == &map->header ||
2500 entry->next->start > entry->end))) {
2501 end = entry->end;
2502 rv = KERN_INVALID_ADDRESS;
2503 goto done;
2504 }
2505 entry = entry->next;
2506 }
2507 rv = KERN_SUCCESS;
2508done:
2509 need_wakeup = FALSE;
2510 if (first_entry == NULL) {
2511 result = vm_map_lookup_entry(map, start, &first_entry);
2512 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2513 first_entry = first_entry->next;
2514 else
2515 KASSERT(result, ("vm_map_wire: lookup failed"));
2516 }
2517 entry = first_entry;
2518 while (entry != &map->header && entry->start < end) {
2519 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2520 goto next_entry_done;
2521 if (rv == KERN_SUCCESS) {
2522 if (user_wire)
2523 entry->eflags |= MAP_ENTRY_USER_WIRED;
2524 } else if (entry->wired_count == -1) {
2525 /*
2526 * Wiring failed on this entry. Thus, unwiring is
2527 * unnecessary.
2528 */
2529 entry->wired_count = 0;
2530 } else {
2531 if (!user_wire ||
2532 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)
2533 entry->wired_count--;
2534 if (entry->wired_count == 0) {
2535 /*
2536 * Retain the map lock.
2537 */
2538 vm_fault_unwire(map, entry->start, entry->end,
2539 entry->object.vm_object != NULL &&
2540 (entry->object.vm_object->flags &
2541 OBJ_FICTITIOUS) != 0);
2542 }
2543 }
2544 next_entry_done:
2545 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
2546 ("vm_map_wire: in-transition flag missing"));
2547 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION|MAP_ENTRY_WIRE_SKIPPED);
2548 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2549 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2550 need_wakeup = TRUE;
2551 }
2552 vm_map_simplify_entry(map, entry);
2553 entry = entry->next;
2554 }
2555 vm_map_unlock(map);
2556 if (need_wakeup)
2557 vm_map_wakeup(map);
2558 return (rv);
2559}
2560
2561/*
2562 * vm_map_sync
2563 *
2564 * Push any dirty cached pages in the address range to their pager.
2565 * If syncio is TRUE, dirty pages are written synchronously.
2566 * If invalidate is TRUE, any cached pages are freed as well.
2567 *
2568 * If the size of the region from start to end is zero, we are
2569 * supposed to flush all modified pages within the region containing
2570 * start. Unfortunately, a region can be split or coalesced with
2571 * neighboring regions, making it difficult to determine what the
2572 * original region was. Therefore, we approximate this requirement by
2573 * flushing the current region containing start.
2574 *
2575 * Returns an error if any part of the specified range is not mapped.
2576 */
2577int
2578vm_map_sync(
2579 vm_map_t map,
2580 vm_offset_t start,
2581 vm_offset_t end,
2582 boolean_t syncio,
2583 boolean_t invalidate)
2584{
2585 vm_map_entry_t current;
2586 vm_map_entry_t entry;
2587 vm_size_t size;
2588 vm_object_t object;
2589 vm_ooffset_t offset;
2590 unsigned int last_timestamp;
2591 boolean_t failed;
2592
2593 vm_map_lock_read(map);
2594 VM_MAP_RANGE_CHECK(map, start, end);
2595 if (!vm_map_lookup_entry(map, start, &entry)) {
2596 vm_map_unlock_read(map);
2597 return (KERN_INVALID_ADDRESS);
2598 } else if (start == end) {
2599 start = entry->start;
2600 end = entry->end;
2601 }
2602 /*
2603 * Make a first pass to check for user-wired memory and holes.
2604 */
2605 for (current = entry; current != &map->header && current->start < end;
2606 current = current->next) {
2607 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2608 vm_map_unlock_read(map);
2609 return (KERN_INVALID_ARGUMENT);
2610 }
2611 if (end > current->end &&
2612 (current->next == &map->header ||
2613 current->end != current->next->start)) {
2614 vm_map_unlock_read(map);
2615 return (KERN_INVALID_ADDRESS);
2616 }
2617 }
2618
2619 if (invalidate)
2620 pmap_remove(map->pmap, start, end);
2621 failed = FALSE;
2622
2623 /*
2624 * Make a second pass, cleaning/uncaching pages from the indicated
2625 * objects as we go.
2626 */
2627 for (current = entry; current != &map->header && current->start < end;) {
2628 offset = current->offset + (start - current->start);
2629 size = (end <= current->end ? end : current->end) - start;
2630 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2631 vm_map_t smap;
2632 vm_map_entry_t tentry;
2633 vm_size_t tsize;
2634
2635 smap = current->object.sub_map;
2636 vm_map_lock_read(smap);
2637 (void) vm_map_lookup_entry(smap, offset, &tentry);
2638 tsize = tentry->end - offset;
2639 if (tsize < size)
2640 size = tsize;
2641 object = tentry->object.vm_object;
2642 offset = tentry->offset + (offset - tentry->start);
2643 vm_map_unlock_read(smap);
2644 } else {
2645 object = current->object.vm_object;
2646 }
2647 vm_object_reference(object);
2648 last_timestamp = map->timestamp;
2649 vm_map_unlock_read(map);
2650 if (!vm_object_sync(object, offset, size, syncio, invalidate))
2651 failed = TRUE;
2652 start += size;
2653 vm_object_deallocate(object);
2654 vm_map_lock_read(map);
2655 if (last_timestamp == map->timestamp ||
2656 !vm_map_lookup_entry(map, start, &current))
2657 current = current->next;
2658 }
2659
2660 vm_map_unlock_read(map);
2661 return (failed ? KERN_FAILURE : KERN_SUCCESS);
2662}
2663
2664/*
2665 * vm_map_entry_unwire: [ internal use only ]
2666 *
2667 * Make the region specified by this entry pageable.
2668 *
2669 * The map in question should be locked.
2670 * [This is the reason for this routine's existence.]
2671 */
2672static void
2673vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2674{
2675 vm_fault_unwire(map, entry->start, entry->end,
2676 entry->object.vm_object != NULL &&
2677 (entry->object.vm_object->flags & OBJ_FICTITIOUS) != 0);
2678 entry->wired_count = 0;
2679}
2680
2681static void
2682vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2683{
2684
2685 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2686 vm_object_deallocate(entry->object.vm_object);
2687 uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2688}
2689
2690/*
2691 * vm_map_entry_delete: [ internal use only ]
2692 *
2693 * Deallocate the given entry from the target map.
2694 */
2695static void
2696vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2697{
2698 vm_object_t object;
2699 vm_pindex_t offidxstart, offidxend, count, size1;
2700 vm_ooffset_t size;
2701
2702 vm_map_entry_unlink(map, entry);
2703 object = entry->object.vm_object;
2704 size = entry->end - entry->start;
2705 map->size -= size;
2706
2707 if (entry->cred != NULL) {
2708 swap_release_by_cred(size, entry->cred);
2709 crfree(entry->cred);
2710 }
2711
2712 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2713 (object != NULL)) {
2714 KASSERT(entry->cred == NULL || object->cred == NULL ||
2715 (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2716 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2717 count = OFF_TO_IDX(size);
2718 offidxstart = OFF_TO_IDX(entry->offset);
2719 offidxend = offidxstart + count;
2720 VM_OBJECT_LOCK(object);
2721 if (object->ref_count != 1 &&
2722 ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2723 object == kernel_object || object == kmem_object)) {
2724 vm_object_collapse(object);
2725
2726 /*
2727 * The option OBJPR_NOTMAPPED can be passed here
2728 * because vm_map_delete() already performed
2729 * pmap_remove() on the only mapping to this range
2730 * of pages.
2731 */
2732 vm_object_page_remove(object, offidxstart, offidxend,
2733 OBJPR_NOTMAPPED);
2734 if (object->type == OBJT_SWAP)
2735 swap_pager_freespace(object, offidxstart, count);
2736 if (offidxend >= object->size &&
2737 offidxstart < object->size) {
2738 size1 = object->size;
2739 object->size = offidxstart;
2740 if (object->cred != NULL) {
2741 size1 -= object->size;
2742 KASSERT(object->charge >= ptoa(size1),
2743 ("vm_map_entry_delete: object->charge < 0"));
2744 swap_release_by_cred(ptoa(size1), object->cred);
2745 object->charge -= ptoa(size1);
2746 }
2747 }
2748 }
2749 VM_OBJECT_UNLOCK(object);
2750 } else
2751 entry->object.vm_object = NULL;
2752 if (map->system_map)
2753 vm_map_entry_deallocate(entry, TRUE);
2754 else {
2755 entry->next = curthread->td_map_def_user;
2756 curthread->td_map_def_user = entry;
2757 }
2758}
2759
2760/*
2761 * vm_map_delete: [ internal use only ]
2762 *
2763 * Deallocates the given address range from the target
2764 * map.
2765 */
2766int
2767vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2768{
2769 vm_map_entry_t entry;
2770 vm_map_entry_t first_entry;
2771
2772 VM_MAP_ASSERT_LOCKED(map);
2773
2774 /*
2775 * Find the start of the region, and clip it
2776 */
2777 if (!vm_map_lookup_entry(map, start, &first_entry))
2778 entry = first_entry->next;
2779 else {
2780 entry = first_entry;
2781 vm_map_clip_start(map, entry, start);
2782 }
2783
2784 /*
2785 * Step through all entries in this region
2786 */
2787 while ((entry != &map->header) && (entry->start < end)) {
2788 vm_map_entry_t next;
2789
2790 /*
2791 * Wait for wiring or unwiring of an entry to complete.
2792 * Also wait for any system wirings to disappear on
2793 * user maps.
2794 */
2795 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
2796 (vm_map_pmap(map) != kernel_pmap &&
2797 vm_map_entry_system_wired_count(entry) != 0)) {
2798 unsigned int last_timestamp;
2799 vm_offset_t saved_start;
2800 vm_map_entry_t tmp_entry;
2801
2802 saved_start = entry->start;
2803 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2804 last_timestamp = map->timestamp;
2805 (void) vm_map_unlock_and_wait(map, 0);
2806 vm_map_lock(map);
2807 if (last_timestamp + 1 != map->timestamp) {
2808 /*
2809 * Look again for the entry because the map was
2810 * modified while it was unlocked.
2811 * Specifically, the entry may have been
2812 * clipped, merged, or deleted.
2813 */
2814 if (!vm_map_lookup_entry(map, saved_start,
2815 &tmp_entry))
2816 entry = tmp_entry->next;
2817 else {
2818 entry = tmp_entry;
2819 vm_map_clip_start(map, entry,
2820 saved_start);
2821 }
2822 }
2823 continue;
2824 }
2825 vm_map_clip_end(map, entry, end);
2826
2827 next = entry->next;
2828
2829 /*
2830 * Unwire before removing addresses from the pmap; otherwise,
2831 * unwiring will put the entries back in the pmap.
2832 */
2833 if (entry->wired_count != 0) {
2834 vm_map_entry_unwire(map, entry);
2835 }
2836
2837 pmap_remove(map->pmap, entry->start, entry->end);
2838
2839 /*
2840 * Delete the entry only after removing all pmap
2841 * entries pointing to its pages. (Otherwise, its
2842 * page frames may be reallocated, and any modify bits
2843 * will be set in the wrong object!)
2844 */
2845 vm_map_entry_delete(map, entry);
2846 entry = next;
2847 }
2848 return (KERN_SUCCESS);
2849}
2850
2851/*
2852 * vm_map_remove:
2853 *
2854 * Remove the given address range from the target map.
2855 * This is the exported form of vm_map_delete.
2856 */
2857int
2858vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2859{
2860 int result;
2861
2862 vm_map_lock(map);
2863 VM_MAP_RANGE_CHECK(map, start, end);
2864 result = vm_map_delete(map, start, end);
2865 vm_map_unlock(map);
2866 return (result);
2867}
2868
2869/*
2870 * vm_map_check_protection:
2871 *
2872 * Assert that the target map allows the specified privilege on the
2873 * entire address region given. The entire region must be allocated.
2874 *
2875 * WARNING! This code does not and should not check whether the
2876 * contents of the region is accessible. For example a smaller file
2877 * might be mapped into a larger address space.
2878 *
2879 * NOTE! This code is also called by munmap().
2880 *
2881 * The map must be locked. A read lock is sufficient.
2882 */
2883boolean_t
2884vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2885 vm_prot_t protection)
2886{
2887 vm_map_entry_t entry;
2888 vm_map_entry_t tmp_entry;
2889
2890 if (!vm_map_lookup_entry(map, start, &tmp_entry))
2891 return (FALSE);
2892 entry = tmp_entry;
2893
2894 while (start < end) {
2895 if (entry == &map->header)
2896 return (FALSE);
2897 /*
2898 * No holes allowed!
2899 */
2900 if (start < entry->start)
2901 return (FALSE);
2902 /*
2903 * Check protection associated with entry.
2904 */
2905 if ((entry->protection & protection) != protection)
2906 return (FALSE);
2907 /* go to next entry */
2908 start = entry->end;
2909 entry = entry->next;
2910 }
2911 return (TRUE);
2912}
2913
2914/*
2915 * vm_map_copy_entry:
2916 *
2917 * Copies the contents of the source entry to the destination
2918 * entry. The entries *must* be aligned properly.
2919 */
2920static void
2921vm_map_copy_entry(
2922 vm_map_t src_map,
2923 vm_map_t dst_map,
2924 vm_map_entry_t src_entry,
2925 vm_map_entry_t dst_entry,
2926 vm_ooffset_t *fork_charge)
2927{
2928 vm_object_t src_object;
2929 vm_map_entry_t fake_entry;
2930 vm_offset_t size;
2931 struct ucred *cred;
2932 int charged;
2933
2934 VM_MAP_ASSERT_LOCKED(dst_map);
2935
2936 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2937 return;
2938
2939 if (src_entry->wired_count == 0) {
2940
2941 /*
2942 * If the source entry is marked needs_copy, it is already
2943 * write-protected.
2944 */
2945 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2946 pmap_protect(src_map->pmap,
2947 src_entry->start,
2948 src_entry->end,
2949 src_entry->protection & ~VM_PROT_WRITE);
2950 }
2951
2952 /*
2953 * Make a copy of the object.
2954 */
2955 size = src_entry->end - src_entry->start;
2956 if ((src_object = src_entry->object.vm_object) != NULL) {
2957 VM_OBJECT_LOCK(src_object);
2958 charged = ENTRY_CHARGED(src_entry);
2959 if ((src_object->handle == NULL) &&
2960 (src_object->type == OBJT_DEFAULT ||
2961 src_object->type == OBJT_SWAP)) {
2962 vm_object_collapse(src_object);
2963 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2964 vm_object_split(src_entry);
2965 src_object = src_entry->object.vm_object;
2966 }
2967 }
2968 vm_object_reference_locked(src_object);
2969 vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2970 if (src_entry->cred != NULL &&
2971 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
2972 KASSERT(src_object->cred == NULL,
2973 ("OVERCOMMIT: vm_map_copy_entry: cred %p",
2974 src_object));
2975 src_object->cred = src_entry->cred;
2976 src_object->charge = size;
2977 }
2978 VM_OBJECT_UNLOCK(src_object);
2979 dst_entry->object.vm_object = src_object;
2980 if (charged) {
2981 cred = curthread->td_ucred;
2982 crhold(cred);
2983 dst_entry->cred = cred;
2984 *fork_charge += size;
2985 if (!(src_entry->eflags &
2986 MAP_ENTRY_NEEDS_COPY)) {
2987 crhold(cred);
2988 src_entry->cred = cred;
2989 *fork_charge += size;
2990 }
2991 }
2992 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2993 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2994 dst_entry->offset = src_entry->offset;
2995 if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
2996 /*
2997 * MAP_ENTRY_VN_WRITECNT cannot
2998 * indicate write reference from
2999 * src_entry, since the entry is
3000 * marked as needs copy. Allocate a
3001 * fake entry that is used to
3002 * decrement object->un_pager.vnp.writecount
3003 * at the appropriate time. Attach
3004 * fake_entry to the deferred list.
3005 */
3006 fake_entry = vm_map_entry_create(dst_map);
3007 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3008 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3009 vm_object_reference(src_object);
3010 fake_entry->object.vm_object = src_object;
3011 fake_entry->start = src_entry->start;
3012 fake_entry->end = src_entry->end;
3013 fake_entry->next = curthread->td_map_def_user;
3014 curthread->td_map_def_user = fake_entry;
3015 }
3016 } else {
3017 dst_entry->object.vm_object = NULL;
3018 dst_entry->offset = 0;
3019 if (src_entry->cred != NULL) {
3020 dst_entry->cred = curthread->td_ucred;
3021 crhold(dst_entry->cred);
3022 *fork_charge += size;
3023 }
3024 }
3025
3026 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3027 dst_entry->end - dst_entry->start, src_entry->start);
3028 } else {
3029 /*
3030 * Of course, wired down pages can't be set copy-on-write.
3031 * Cause wired pages to be copied into the new map by
3032 * simulating faults (the new pages are pageable)
3033 */
3034 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3035 fork_charge);
3036 }
3037}
3038
3039/*
3040 * vmspace_map_entry_forked:
3041 * Update the newly-forked vmspace each time a map entry is inherited
3042 * or copied. The values for vm_dsize and vm_tsize are approximate
3043 * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3044 */
3045static void
3046vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3047 vm_map_entry_t entry)
3048{
3049 vm_size_t entrysize;
3050 vm_offset_t newend;
3051
3052 entrysize = entry->end - entry->start;
3053 vm2->vm_map.size += entrysize;
3054 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3055 vm2->vm_ssize += btoc(entrysize);
3056 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3057 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3058 newend = MIN(entry->end,
3059 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3060 vm2->vm_dsize += btoc(newend - entry->start);
3061 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3062 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3063 newend = MIN(entry->end,
3064 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3065 vm2->vm_tsize += btoc(newend - entry->start);
3066 }
3067}
3068
3069/*
3070 * vmspace_fork:
3071 * Create a new process vmspace structure and vm_map
3072 * based on those of an existing process. The new map
3073 * is based on the old map, according to the inheritance
3074 * values on the regions in that map.
3075 *
3076 * XXX It might be worth coalescing the entries added to the new vmspace.
3077 *
3078 * The source map must not be locked.
3079 */
3080struct vmspace *
3081vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3082{
3083 struct vmspace *vm2;
3084 vm_map_t new_map, old_map;
3085 vm_map_entry_t new_entry, old_entry;
3086 vm_object_t object;
3087 int locked;
3088
3089 old_map = &vm1->vm_map;
3090 /* Copy immutable fields of vm1 to vm2. */
3091 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
3092 if (vm2 == NULL)
3093 return (NULL);
3094 vm2->vm_taddr = vm1->vm_taddr;
3095 vm2->vm_daddr = vm1->vm_daddr;
3096 vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3097 vm_map_lock(old_map);
3098 if (old_map->busy)
3099 vm_map_wait_busy(old_map);
3100 new_map = &vm2->vm_map;
3101 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3102 KASSERT(locked, ("vmspace_fork: lock failed"));
3103
3104 old_entry = old_map->header.next;
3105
3106 while (old_entry != &old_map->header) {
3107 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3108 panic("vm_map_fork: encountered a submap");
3109
3110 switch (old_entry->inheritance) {
3111 case VM_INHERIT_NONE:
3112 break;
3113
3114 case VM_INHERIT_SHARE:
3115 /*
3116 * Clone the entry, creating the shared object if necessary.
3117 */
3118 object = old_entry->object.vm_object;
3119 if (object == NULL) {
3120 object = vm_object_allocate(OBJT_DEFAULT,
3121 atop(old_entry->end - old_entry->start));
3122 old_entry->object.vm_object = object;
3123 old_entry->offset = 0;
3124 if (old_entry->cred != NULL) {
3125 object->cred = old_entry->cred;
3126 object->charge = old_entry->end -
3127 old_entry->start;
3128 old_entry->cred = NULL;
3129 }
3130 }
3131
3132 /*
3133 * Add the reference before calling vm_object_shadow
3134 * to insure that a shadow object is created.
3135 */
3136 vm_object_reference(object);
3137 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3138 vm_object_shadow(&old_entry->object.vm_object,
3139 &old_entry->offset,
3140 old_entry->end - old_entry->start);
3141 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3142 /* Transfer the second reference too. */
3143 vm_object_reference(
3144 old_entry->object.vm_object);
3145
3146 /*
3147 * As in vm_map_simplify_entry(), the
3148 * vnode lock will not be acquired in
3149 * this call to vm_object_deallocate().
3150 */
3151 vm_object_deallocate(object);
3152 object = old_entry->object.vm_object;
3153 }
3154 VM_OBJECT_LOCK(object);
3155 vm_object_clear_flag(object, OBJ_ONEMAPPING);
3156 if (old_entry->cred != NULL) {
3157 KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3158 object->cred = old_entry->cred;
3159 object->charge = old_entry->end - old_entry->start;
3160 old_entry->cred = NULL;
3161 }
3162 VM_OBJECT_UNLOCK(object);
3163
3164 /*
3165 * Clone the entry, referencing the shared object.
3166 */
3167 new_entry = vm_map_entry_create(new_map);
3168 *new_entry = *old_entry;
3169 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3170 MAP_ENTRY_IN_TRANSITION);
3171 new_entry->wired_count = 0;
3172 if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3173 object = new_entry->object.vm_object;
3174 KASSERT(((struct vnode *)object->handle)->
3175 v_writecount > 0,
3176 ("vmspace_fork: v_writecount"));
3177 KASSERT(object->un_pager.vnp.writemappings > 0,
3178 ("vmspace_fork: vnp.writecount"));
3179 vnode_pager_update_writecount(object,
3180 new_entry->start, new_entry->end);
3181 }
3182
3183 /*
3184 * Insert the entry into the new map -- we know we're
3185 * inserting at the end of the new map.
3186 */
3187 vm_map_entry_link(new_map, new_map->header.prev,
3188 new_entry);
3189 vmspace_map_entry_forked(vm1, vm2, new_entry);
3190
3191 /*
3192 * Update the physical map
3193 */
3194 pmap_copy(new_map->pmap, old_map->pmap,
3195 new_entry->start,
3196 (old_entry->end - old_entry->start),
3197 old_entry->start);
3198 break;
3199
3200 case VM_INHERIT_COPY:
3201 /*
3202 * Clone the entry and link into the map.
3203 */
3204 new_entry = vm_map_entry_create(new_map);
3205 *new_entry = *old_entry;
3206 /*
3207 * Copied entry is COW over the old object.
3208 */
3209 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3210 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3211 new_entry->wired_count = 0;
3212 new_entry->object.vm_object = NULL;
3213 new_entry->cred = NULL;
3214 vm_map_entry_link(new_map, new_map->header.prev,
3215 new_entry);
3216 vmspace_map_entry_forked(vm1, vm2, new_entry);
3217 vm_map_copy_entry(old_map, new_map, old_entry,
3218 new_entry, fork_charge);
3219 break;
3220 }
3221 old_entry = old_entry->next;
3222 }
3223 /*
3224 * Use inlined vm_map_unlock() to postpone handling the deferred
3225 * map entries, which cannot be done until both old_map and
3226 * new_map locks are released.
3227 */
3228 sx_xunlock(&old_map->lock);
3229 sx_xunlock(&new_map->lock);
3230 vm_map_process_deferred();
3231
3232 return (vm2);
3233}
3234
3235int
3236vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3237 vm_prot_t prot, vm_prot_t max, int cow)
3238{
3239 vm_map_entry_t new_entry, prev_entry;
3240 vm_offset_t bot, top;
3241 vm_size_t growsize, init_ssize;
3242 int orient, rv;
3243 rlim_t lmemlim, vmemlim;
3244
3245 /*
3246 * The stack orientation is piggybacked with the cow argument.
3247 * Extract it into orient and mask the cow argument so that we
3248 * don't pass it around further.
3249 * NOTE: We explicitly allow bi-directional stacks.
3250 */
3251 orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
3252 cow &= ~orient;
3253 KASSERT(orient != 0, ("No stack grow direction"));
3254
3255 if (addrbos < vm_map_min(map) ||
3256 addrbos > vm_map_max(map) ||
3257 addrbos + max_ssize < addrbos)
3258 return (KERN_NO_SPACE);
3259
3260 growsize = sgrowsiz;
3261 init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3262
3263 PROC_LOCK(curproc);
3264 lmemlim = lim_cur(curproc, RLIMIT_MEMLOCK);
3265 vmemlim = lim_cur(curproc, RLIMIT_VMEM);
3266 PROC_UNLOCK(curproc);
3267
3268 vm_map_lock(map);
3269
3270 /* If addr is already mapped, no go */
3271 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3272 vm_map_unlock(map);
3273 return (KERN_NO_SPACE);
3274 }
3275
3276 if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3277 if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) {
3278 vm_map_unlock(map);
3279 return (KERN_NO_SPACE);
3280 }
3281 }
3282
3283 /* If we would blow our VMEM resource limit, no go */
3284 if (map->size + init_ssize > vmemlim) {
3285 vm_map_unlock(map);
3286 return (KERN_NO_SPACE);
3287 }
3288
3289 /*
3290 * If we can't accomodate max_ssize in the current mapping, no go.
3291 * However, we need to be aware that subsequent user mappings might
3292 * map into the space we have reserved for stack, and currently this
3293 * space is not protected.
3294 *
3295 * Hopefully we will at least detect this condition when we try to
3296 * grow the stack.
3297 */
3298 if ((prev_entry->next != &map->header) &&
3299 (prev_entry->next->start < addrbos + max_ssize)) {
3300 vm_map_unlock(map);
3301 return (KERN_NO_SPACE);
3302 }
3303
3304 /*
3305 * We initially map a stack of only init_ssize. We will grow as
3306 * needed later. Depending on the orientation of the stack (i.e.
3307 * the grow direction) we either map at the top of the range, the
3308 * bottom of the range or in the middle.
3309 *
3310 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3311 * and cow to be 0. Possibly we should eliminate these as input
3312 * parameters, and just pass these values here in the insert call.
3313 */
3314 if (orient == MAP_STACK_GROWS_DOWN)
3315 bot = addrbos + max_ssize - init_ssize;
3316 else if (orient == MAP_STACK_GROWS_UP)
3317 bot = addrbos;
3318 else
3319 bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
3320 top = bot + init_ssize;
3321 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3322
3323 /* Now set the avail_ssize amount. */
3324 if (rv == KERN_SUCCESS) {
3325 if (prev_entry != &map->header)
3326 vm_map_clip_end(map, prev_entry, bot);
3327 new_entry = prev_entry->next;
3328 if (new_entry->end != top || new_entry->start != bot)
3329 panic("Bad entry start/end for new stack entry");
3330
3331 new_entry->avail_ssize = max_ssize - init_ssize;
3332 if (orient & MAP_STACK_GROWS_DOWN)
3333 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3334 if (orient & MAP_STACK_GROWS_UP)
3335 new_entry->eflags |= MAP_ENTRY_GROWS_UP;
3336 }
3337
3338 vm_map_unlock(map);
3339 return (rv);
3340}
3341
3342static int stack_guard_page = 0;
3343TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page);
3344SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW,
3345 &stack_guard_page, 0,
3346 "Insert stack guard page ahead of the growable segments.");
3347
3348/* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the
3349 * desired address is already mapped, or if we successfully grow
3350 * the stack. Also returns KERN_SUCCESS if addr is outside the
3351 * stack range (this is strange, but preserves compatibility with
3352 * the grow function in vm_machdep.c).
3353 */
3354int
3355vm_map_growstack(struct proc *p, vm_offset_t addr)
3356{
3357 vm_map_entry_t next_entry, prev_entry;
3358 vm_map_entry_t new_entry, stack_entry;
3359 struct vmspace *vm = p->p_vmspace;
3360 vm_map_t map = &vm->vm_map;
3361 vm_offset_t end;
3362 vm_size_t growsize;
3363 size_t grow_amount, max_grow;
3364 rlim_t lmemlim, stacklim, vmemlim;
3365 int is_procstack, rv;
3366 struct ucred *cred;
3367#ifdef notyet
3368 uint64_t limit;
3369#endif
3370#ifdef RACCT
3371 int error;
3372#endif
3373
3374Retry:
3375 PROC_LOCK(p);
3376 lmemlim = lim_cur(p, RLIMIT_MEMLOCK);
3377 stacklim = lim_cur(p, RLIMIT_STACK);
3378 vmemlim = lim_cur(p, RLIMIT_VMEM);
3379 PROC_UNLOCK(p);
3380
3381 vm_map_lock_read(map);
3382
3383 /* If addr is already in the entry range, no need to grow.*/
3384 if (vm_map_lookup_entry(map, addr, &prev_entry)) {
3385 vm_map_unlock_read(map);
3386 return (KERN_SUCCESS);
3387 }
3388
3389 next_entry = prev_entry->next;
3390 if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
3391 /*
3392 * This entry does not grow upwards. Since the address lies
3393 * beyond this entry, the next entry (if one exists) has to
3394 * be a downward growable entry. The entry list header is
3395 * never a growable entry, so it suffices to check the flags.
3396 */
3397 if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
3398 vm_map_unlock_read(map);
3399 return (KERN_SUCCESS);
3400 }
3401 stack_entry = next_entry;
3402 } else {
3403 /*
3404 * This entry grows upward. If the next entry does not at
3405 * least grow downwards, this is the entry we need to grow.
3406 * otherwise we have two possible choices and we have to
3407 * select one.
3408 */
3409 if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
3410 /*
3411 * We have two choices; grow the entry closest to
3412 * the address to minimize the amount of growth.
3413 */
3414 if (addr - prev_entry->end <= next_entry->start - addr)
3415 stack_entry = prev_entry;
3416 else
3417 stack_entry = next_entry;
3418 } else
3419 stack_entry = prev_entry;
3420 }
3421
3422 if (stack_entry == next_entry) {
3423 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
3424 KASSERT(addr < stack_entry->start, ("foo"));
3425 end = (prev_entry != &map->header) ? prev_entry->end :
3426 stack_entry->start - stack_entry->avail_ssize;
3427 grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
3428 max_grow = stack_entry->start - end;
3429 } else {
3430 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
3431 KASSERT(addr >= stack_entry->end, ("foo"));
3432 end = (next_entry != &map->header) ? next_entry->start :
3433 stack_entry->end + stack_entry->avail_ssize;
3434 grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
3435 max_grow = end - stack_entry->end;
3436 }
3437
3438 if (grow_amount > stack_entry->avail_ssize) {
3439 vm_map_unlock_read(map);
3440 return (KERN_NO_SPACE);
3441 }
3442
3443 /*
3444 * If there is no longer enough space between the entries nogo, and
3445 * adjust the available space. Note: this should only happen if the
3446 * user has mapped into the stack area after the stack was created,
3447 * and is probably an error.
3448 *
3449 * This also effectively destroys any guard page the user might have
3450 * intended by limiting the stack size.
3451 */
3452 if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) {
3453 if (vm_map_lock_upgrade(map))
3454 goto Retry;
3455
3456 stack_entry->avail_ssize = max_grow;
3457
3458 vm_map_unlock(map);
3459 return (KERN_NO_SPACE);
3460 }
3461
3462 is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0;
3463
3464 /*
3465 * If this is the main process stack, see if we're over the stack
3466 * limit.
3467 */
3468 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3469 vm_map_unlock_read(map);
3470 return (KERN_NO_SPACE);
3471 }
3472#ifdef RACCT
3473 PROC_LOCK(p);
3474 if (is_procstack &&
3475 racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) {
3476 PROC_UNLOCK(p);
3477 vm_map_unlock_read(map);
3478 return (KERN_NO_SPACE);
3479 }
3480 PROC_UNLOCK(p);
3481#endif
3482
3483 /* Round up the grow amount modulo sgrowsiz */
3484 growsize = sgrowsiz;
3485 grow_amount = roundup(grow_amount, growsize);
3486 if (grow_amount > stack_entry->avail_ssize)
3487 grow_amount = stack_entry->avail_ssize;
3488 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3489 grow_amount = trunc_page((vm_size_t)stacklim) -
3490 ctob(vm->vm_ssize);
3491 }
3492#ifdef notyet
3493 PROC_LOCK(p);
3494 limit = racct_get_available(p, RACCT_STACK);
3495 PROC_UNLOCK(p);
3496 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3497 grow_amount = limit - ctob(vm->vm_ssize);
3498#endif
3499 if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3500 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3501 vm_map_unlock_read(map);
3502 rv = KERN_NO_SPACE;
3503 goto out;
3504 }
3505#ifdef RACCT
3506 PROC_LOCK(p);
3507 if (racct_set(p, RACCT_MEMLOCK,
3508 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3509 PROC_UNLOCK(p);
3510 vm_map_unlock_read(map);
3511 rv = KERN_NO_SPACE;
3512 goto out;
3513 }
3514 PROC_UNLOCK(p);
3515#endif
3516 }
3517 /* If we would blow our VMEM resource limit, no go */
3518 if (map->size + grow_amount > vmemlim) {
3519 vm_map_unlock_read(map);
3520 rv = KERN_NO_SPACE;
3521 goto out;
3522 }
3523#ifdef RACCT
3524 PROC_LOCK(p);
3525 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3526 PROC_UNLOCK(p);
3527 vm_map_unlock_read(map);
3528 rv = KERN_NO_SPACE;
3529 goto out;
3530 }
3531 PROC_UNLOCK(p);
3532#endif
3533
3534 if (vm_map_lock_upgrade(map))
3535 goto Retry;
3536
3537 if (stack_entry == next_entry) {
3538 /*
3539 * Growing downward.
3540 */
3541 /* Get the preliminary new entry start value */
3542 addr = stack_entry->start - grow_amount;
3543
3544 /*
3545 * If this puts us into the previous entry, cut back our
3546 * growth to the available space. Also, see the note above.
3547 */
3548 if (addr < end) {
3549 stack_entry->avail_ssize = max_grow;
3550 addr = end;
3551 if (stack_guard_page)
3552 addr += PAGE_SIZE;
3553 }
3554
3555 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
3556 next_entry->protection, next_entry->max_protection, 0);
3557
3558 /* Adjust the available stack space by the amount we grew. */
3559 if (rv == KERN_SUCCESS) {
3560 if (prev_entry != &map->header)
3561 vm_map_clip_end(map, prev_entry, addr);
3562 new_entry = prev_entry->next;
3563 KASSERT(new_entry == stack_entry->prev, ("foo"));
3564 KASSERT(new_entry->end == stack_entry->start, ("foo"));
3565 KASSERT(new_entry->start == addr, ("foo"));
3566 grow_amount = new_entry->end - new_entry->start;
3567 new_entry->avail_ssize = stack_entry->avail_ssize -
3568 grow_amount;
3569 stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
3570 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3571 }
3572 } else {
3573 /*
3574 * Growing upward.
3575 */
3576 addr = stack_entry->end + grow_amount;
3577
3578 /*
3579 * If this puts us into the next entry, cut back our growth
3580 * to the available space. Also, see the note above.
3581 */
3582 if (addr > end) {
3583 stack_entry->avail_ssize = end - stack_entry->end;
3584 addr = end;
3585 if (stack_guard_page)
3586 addr -= PAGE_SIZE;
3587 }
3588
3589 grow_amount = addr - stack_entry->end;
3590 cred = stack_entry->cred;
3591 if (cred == NULL && stack_entry->object.vm_object != NULL)
3592 cred = stack_entry->object.vm_object->cred;
3593 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3594 rv = KERN_NO_SPACE;
3595 /* Grow the underlying object if applicable. */
3596 else if (stack_entry->object.vm_object == NULL ||
3597 vm_object_coalesce(stack_entry->object.vm_object,
3598 stack_entry->offset,
3599 (vm_size_t)(stack_entry->end - stack_entry->start),
3600 (vm_size_t)grow_amount, cred != NULL)) {
3601 map->size += (addr - stack_entry->end);
3602 /* Update the current entry. */
3603 stack_entry->end = addr;
3604 stack_entry->avail_ssize -= grow_amount;
3605 vm_map_entry_resize_free(map, stack_entry);
3606 rv = KERN_SUCCESS;
3607
3608 if (next_entry != &map->header)
3609 vm_map_clip_start(map, next_entry, addr);
3610 } else
3611 rv = KERN_FAILURE;
3612 }
3613
3614 if (rv == KERN_SUCCESS && is_procstack)
3615 vm->vm_ssize += btoc(grow_amount);
3616
3617 vm_map_unlock(map);
3618
3619 /*
3620 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3621 */
3622 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3623 vm_map_wire(map,
3624 (stack_entry == next_entry) ? addr : addr - grow_amount,
3625 (stack_entry == next_entry) ? stack_entry->start : addr,
3626 (p->p_flag & P_SYSTEM)
3627 ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3628 : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3629 }
3630
3631out:
3632#ifdef RACCT
3633 if (rv != KERN_SUCCESS) {
3634 PROC_LOCK(p);
3635 error = racct_set(p, RACCT_VMEM, map->size);
3636 KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3637 if (!old_mlock) {
3638 error = racct_set(p, RACCT_MEMLOCK,
3639 ptoa(pmap_wired_count(map->pmap)));
3640 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3641 }
3642 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3643 KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3644 PROC_UNLOCK(p);
3645 }
3646#endif
3647
3648 return (rv);
3649}
3650
3651/*
3652 * Unshare the specified VM space for exec. If other processes are
3653 * mapped to it, then create a new one. The new vmspace is null.
3654 */
3655int
3656vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3657{
3658 struct vmspace *oldvmspace = p->p_vmspace;
3659 struct vmspace *newvmspace;
3660
3661 newvmspace = vmspace_alloc(minuser, maxuser);
3662 if (newvmspace == NULL)
3663 return (ENOMEM);
3664 newvmspace->vm_swrss = oldvmspace->vm_swrss;
3665 /*
3666 * This code is written like this for prototype purposes. The
3667 * goal is to avoid running down the vmspace here, but let the
3668 * other process's that are still using the vmspace to finally
3669 * run it down. Even though there is little or no chance of blocking
3670 * here, it is a good idea to keep this form for future mods.
3671 */
3672 PROC_VMSPACE_LOCK(p);
3673 p->p_vmspace = newvmspace;
3674 PROC_VMSPACE_UNLOCK(p);
3675 if (p == curthread->td_proc)
3676 pmap_activate(curthread);
3677 vmspace_free(oldvmspace);
3678 return (0);
3679}
3680
3681/*
3682 * Unshare the specified VM space for forcing COW. This
3683 * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3684 */
3685int
3686vmspace_unshare(struct proc *p)
3687{
3688 struct vmspace *oldvmspace = p->p_vmspace;
3689 struct vmspace *newvmspace;
3690 vm_ooffset_t fork_charge;
3691
3692 if (oldvmspace->vm_refcnt == 1)
3693 return (0);
3694 fork_charge = 0;
3695 newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3696 if (newvmspace == NULL)
3697 return (ENOMEM);
3698 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3699 vmspace_free(newvmspace);
3700 return (ENOMEM);
3701 }
3702 PROC_VMSPACE_LOCK(p);
3703 p->p_vmspace = newvmspace;
3704 PROC_VMSPACE_UNLOCK(p);
3705 if (p == curthread->td_proc)
3706 pmap_activate(curthread);
3707 vmspace_free(oldvmspace);
3708 return (0);
3709}
3710
3711/*
3712 * vm_map_lookup:
3713 *
3714 * Finds the VM object, offset, and
3715 * protection for a given virtual address in the
3716 * specified map, assuming a page fault of the
3717 * type specified.
3718 *
3719 * Leaves the map in question locked for read; return
3720 * values are guaranteed until a vm_map_lookup_done
3721 * call is performed. Note that the map argument
3722 * is in/out; the returned map must be used in
3723 * the call to vm_map_lookup_done.
3724 *
3725 * A handle (out_entry) is returned for use in
3726 * vm_map_lookup_done, to make that fast.
3727 *
3728 * If a lookup is requested with "write protection"
3729 * specified, the map may be changed to perform virtual
3730 * copying operations, although the data referenced will
3731 * remain the same.
3732 */
3733int
3734vm_map_lookup(vm_map_t *var_map, /* IN/OUT */
3735 vm_offset_t vaddr,
3736 vm_prot_t fault_typea,
3737 vm_map_entry_t *out_entry, /* OUT */
3738 vm_object_t *object, /* OUT */
3739 vm_pindex_t *pindex, /* OUT */
3740 vm_prot_t *out_prot, /* OUT */
3741 boolean_t *wired) /* OUT */
3742{
3743 vm_map_entry_t entry;
3744 vm_map_t map = *var_map;
3745 vm_prot_t prot;
3746 vm_prot_t fault_type = fault_typea;
3747 vm_object_t eobject;
3748 vm_size_t size;
3749 struct ucred *cred;
3750
3751RetryLookup:;
3752
3753 vm_map_lock_read(map);
3754
3755 /*
3756 * Lookup the faulting address.
3757 */
3758 if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
3759 vm_map_unlock_read(map);
3760 return (KERN_INVALID_ADDRESS);
3761 }
3762
3763 entry = *out_entry;
3764
3765 /*
3766 * Handle submaps.
3767 */
3768 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3769 vm_map_t old_map = map;
3770
3771 *var_map = map = entry->object.sub_map;
3772 vm_map_unlock_read(old_map);
3773 goto RetryLookup;
3774 }
3775
3776 /*
3777 * Check whether this task is allowed to have this page.
3778 */
3779 prot = entry->protection;
3780 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3781 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
3782 vm_map_unlock_read(map);
3783 return (KERN_PROTECTION_FAILURE);
3784 }
3785 if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3786 (entry->eflags & MAP_ENTRY_COW) &&
3787 (fault_type & VM_PROT_WRITE)) {
3788 vm_map_unlock_read(map);
3789 return (KERN_PROTECTION_FAILURE);
3790 }
3791
3792 /*
3793 * If this page is not pageable, we have to get it for all possible
3794 * accesses.
3795 */
3796 *wired = (entry->wired_count != 0);
3797 if (*wired)
3798 fault_type = entry->protection;
3799 size = entry->end - entry->start;
3800 /*
3801 * If the entry was copy-on-write, we either ...
3802 */
3803 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3804 /*
3805 * If we want to write the page, we may as well handle that
3806 * now since we've got the map locked.
3807 *
3808 * If we don't need to write the page, we just demote the
3809 * permissions allowed.
3810 */
3811 if ((fault_type & VM_PROT_WRITE) != 0 ||
3812 (fault_typea & VM_PROT_COPY) != 0) {
3813 /*
3814 * Make a new object, and place it in the object
3815 * chain. Note that no new references have appeared
3816 * -- one just moved from the map to the new
3817 * object.
3818 */
3819 if (vm_map_lock_upgrade(map))
3820 goto RetryLookup;
3821
3822 if (entry->cred == NULL) {
3823 /*
3824 * The debugger owner is charged for
3825 * the memory.
3826 */
3827 cred = curthread->td_ucred;
3828 crhold(cred);
3829 if (!swap_reserve_by_cred(size, cred)) {
3830 crfree(cred);
3831 vm_map_unlock(map);
3832 return (KERN_RESOURCE_SHORTAGE);
3833 }
3834 entry->cred = cred;
3835 }
3836 vm_object_shadow(&entry->object.vm_object,
3837 &entry->offset, size);
3838 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3839 eobject = entry->object.vm_object;
3840 if (eobject->cred != NULL) {
3841 /*
3842 * The object was not shadowed.
3843 */
3844 swap_release_by_cred(size, entry->cred);
3845 crfree(entry->cred);
3846 entry->cred = NULL;
3847 } else if (entry->cred != NULL) {
3848 VM_OBJECT_LOCK(eobject);
3849 eobject->cred = entry->cred;
3850 eobject->charge = size;
3851 VM_OBJECT_UNLOCK(eobject);
3852 entry->cred = NULL;
3853 }
3854
3855 vm_map_lock_downgrade(map);
3856 } else {
3857 /*
3858 * We're attempting to read a copy-on-write page --
3859 * don't allow writes.
3860 */
3861 prot &= ~VM_PROT_WRITE;
3862 }
3863 }
3864
3865 /*
3866 * Create an object if necessary.
3867 */
3868 if (entry->object.vm_object == NULL &&
3869 !map->system_map) {
3870 if (vm_map_lock_upgrade(map))
3871 goto RetryLookup;
3872 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3873 atop(size));
3874 entry->offset = 0;
3875 if (entry->cred != NULL) {
3876 VM_OBJECT_LOCK(entry->object.vm_object);
3877 entry->object.vm_object->cred = entry->cred;
3878 entry->object.vm_object->charge = size;
3879 VM_OBJECT_UNLOCK(entry->object.vm_object);
3880 entry->cred = NULL;
3881 }
3882 vm_map_lock_downgrade(map);
3883 }
3884
3885 /*
3886 * Return the object/offset from this entry. If the entry was
3887 * copy-on-write or empty, it has been fixed up.
3888 */
3889 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3890 *object = entry->object.vm_object;
3891
3892 *out_prot = prot;
3893 return (KERN_SUCCESS);
3894}
3895
3896/*
3897 * vm_map_lookup_locked:
3898 *
3899 * Lookup the faulting address. A version of vm_map_lookup that returns
3900 * KERN_FAILURE instead of blocking on map lock or memory allocation.
3901 */
3902int
3903vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */
3904 vm_offset_t vaddr,
3905 vm_prot_t fault_typea,
3906 vm_map_entry_t *out_entry, /* OUT */
3907 vm_object_t *object, /* OUT */
3908 vm_pindex_t *pindex, /* OUT */
3909 vm_prot_t *out_prot, /* OUT */
3910 boolean_t *wired) /* OUT */
3911{
3912 vm_map_entry_t entry;
3913 vm_map_t map = *var_map;
3914 vm_prot_t prot;
3915 vm_prot_t fault_type = fault_typea;
3916
3917 /*
3918 * Lookup the faulting address.
3919 */
3920 if (!vm_map_lookup_entry(map, vaddr, out_entry))
3921 return (KERN_INVALID_ADDRESS);
3922
3923 entry = *out_entry;
3924
3925 /*
3926 * Fail if the entry refers to a submap.
3927 */
3928 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3929 return (KERN_FAILURE);
3930
3931 /*
3932 * Check whether this task is allowed to have this page.
3933 */
3934 prot = entry->protection;
3935 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
3936 if ((fault_type & prot) != fault_type)
3937 return (KERN_PROTECTION_FAILURE);
3938 if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3939 (entry->eflags & MAP_ENTRY_COW) &&
3940 (fault_type & VM_PROT_WRITE))
3941 return (KERN_PROTECTION_FAILURE);
3942
3943 /*
3944 * If this page is not pageable, we have to get it for all possible
3945 * accesses.
3946 */
3947 *wired = (entry->wired_count != 0);
3948 if (*wired)
3949 fault_type = entry->protection;
3950
3951 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3952 /*
3953 * Fail if the entry was copy-on-write for a write fault.
3954 */
3955 if (fault_type & VM_PROT_WRITE)
3956 return (KERN_FAILURE);
3957 /*
3958 * We're attempting to read a copy-on-write page --
3959 * don't allow writes.
3960 */
3961 prot &= ~VM_PROT_WRITE;
3962 }
3963
3964 /*
3965 * Fail if an object should be created.
3966 */
3967 if (entry->object.vm_object == NULL && !map->system_map)
3968 return (KERN_FAILURE);
3969
3970 /*
3971 * Return the object/offset from this entry. If the entry was
3972 * copy-on-write or empty, it has been fixed up.
3973 */
3974 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3975 *object = entry->object.vm_object;
3976
3977 *out_prot = prot;
3978 return (KERN_SUCCESS);
3979}
3980
3981/*
3982 * vm_map_lookup_done:
3983 *
3984 * Releases locks acquired by a vm_map_lookup
3985 * (according to the handle returned by that lookup).
3986 */
3987void
3988vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
3989{
3990 /*
3991 * Unlock the main-level map
3992 */
3993 vm_map_unlock_read(map);
3994}
3995
3996#include "opt_ddb.h"
3997#ifdef DDB
3998#include <sys/kernel.h>
3999
4000#include <ddb/ddb.h>
4001
4002static void
4003vm_map_print(vm_map_t map)
4004{
4005 vm_map_entry_t entry;
4006
4007 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4008 (void *)map,
4009 (void *)map->pmap, map->nentries, map->timestamp);
4010
4011 db_indent += 2;
4012 for (entry = map->header.next; entry != &map->header;
4013 entry = entry->next) {
4014 db_iprintf("map entry %p: start=%p, end=%p\n",
4015 (void *)entry, (void *)entry->start, (void *)entry->end);
4016 {
4017 static char *inheritance_name[4] =
4018 {"share", "copy", "none", "donate_copy"};
4019
4020 db_iprintf(" prot=%x/%x/%s",
4021 entry->protection,
4022 entry->max_protection,
4023 inheritance_name[(int)(unsigned char)entry->inheritance]);
4024 if (entry->wired_count != 0)
4025 db_printf(", wired");
4026 }
4027 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4028 db_printf(", share=%p, offset=0x%jx\n",
4029 (void *)entry->object.sub_map,
4030 (uintmax_t)entry->offset);
4031 if ((entry->prev == &map->header) ||
4032 (entry->prev->object.sub_map !=
4033 entry->object.sub_map)) {
4034 db_indent += 2;
4035 vm_map_print((vm_map_t)entry->object.sub_map);
4036 db_indent -= 2;
4037 }
4038 } else {
4039 if (entry->cred != NULL)
4040 db_printf(", ruid %d", entry->cred->cr_ruid);
4041 db_printf(", object=%p, offset=0x%jx",
4042 (void *)entry->object.vm_object,
4043 (uintmax_t)entry->offset);
4044 if (entry->object.vm_object && entry->object.vm_object->cred)
4045 db_printf(", obj ruid %d charge %jx",
4046 entry->object.vm_object->cred->cr_ruid,
4047 (uintmax_t)entry->object.vm_object->charge);
4048 if (entry->eflags & MAP_ENTRY_COW)
4049 db_printf(", copy (%s)",
4050 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4051 db_printf("\n");
4052
4053 if ((entry->prev == &map->header) ||
4054 (entry->prev->object.vm_object !=
4055 entry->object.vm_object)) {
4056 db_indent += 2;
4057 vm_object_print((db_expr_t)(intptr_t)
4058 entry->object.vm_object,
4059 1, 0, (char *)0);
4060 db_indent -= 2;
4061 }
4062 }
4063 }
4064 db_indent -= 2;
4065}
4066
4067DB_SHOW_COMMAND(map, map)
4068{
4069
4070 if (!have_addr) {
4071 db_printf("usage: show map <addr>\n");
4072 return;
4073 }
4074 vm_map_print((vm_map_t)addr);
4075}
4076
4077DB_SHOW_COMMAND(procvm, procvm)
4078{
4079 struct proc *p;
4080
4081 if (have_addr) {
4082 p = (struct proc *) addr;
4083 } else {
4084 p = curproc;
4085 }
4086
4087 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4088 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4089 (void *)vmspace_pmap(p->p_vmspace));
4090
4091 vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4092}
4093
4094#endif /* DDB */