Deleted Added
full compact
uma_int.h (251894) uma_int.h (252040)
1/*-
2 * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org>
3 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice unmodified, this list of conditions, and the following
11 * disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
1/*-
2 * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org>
3 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice unmodified, this list of conditions, and the following
11 * disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 * $FreeBSD: head/sys/vm/uma_int.h 251894 2013-06-18 04:50:20Z jeff $
27 * $FreeBSD: head/sys/vm/uma_int.h 252040 2013-06-20 19:08:12Z jeff $
28 *
29 */
30
31/*
32 * This file includes definitions, structures, prototypes, and inlines that
33 * should not be used outside of the actual implementation of UMA.
34 */
35
36/*
37 * Here's a quick description of the relationship between the objects:
38 *
39 * Kegs contain lists of slabs which are stored in either the full bin, empty
40 * bin, or partially allocated bin, to reduce fragmentation. They also contain
41 * the user supplied value for size, which is adjusted for alignment purposes
42 * and rsize is the result of that. The Keg also stores information for
43 * managing a hash of page addresses that maps pages to uma_slab_t structures
44 * for pages that don't have embedded uma_slab_t's.
45 *
46 * The uma_slab_t may be embedded in a UMA_SLAB_SIZE chunk of memory or it may
47 * be allocated off the page from a special slab zone. The free list within a
48 * slab is managed with a bitmask. For item sizes that would yield more than
49 * 10% memory waste we potentially allocate a separate uma_slab_t if this will
50 * improve the number of items per slab that will fit.
51 *
52 * Other potential space optimizations are storing the 8bit of linkage in space
53 * wasted between items due to alignment problems. This may yield a much better
54 * memory footprint for certain sizes of objects. Another alternative is to
55 * increase the UMA_SLAB_SIZE, or allow for dynamic slab sizes. I prefer
56 * dynamic slab sizes because we could stick with 8 bit indices and only use
57 * large slab sizes for zones with a lot of waste per slab. This may create
58 * inefficiencies in the vm subsystem due to fragmentation in the address space.
59 *
60 * The only really gross cases, with regards to memory waste, are for those
61 * items that are just over half the page size. You can get nearly 50% waste,
62 * so you fall back to the memory footprint of the power of two allocator. I
63 * have looked at memory allocation sizes on many of the machines available to
64 * me, and there does not seem to be an abundance of allocations at this range
65 * so at this time it may not make sense to optimize for it. This can, of
66 * course, be solved with dynamic slab sizes.
67 *
68 * Kegs may serve multiple Zones but by far most of the time they only serve
69 * one. When a Zone is created, a Keg is allocated and setup for it. While
70 * the backing Keg stores slabs, the Zone caches Buckets of items allocated
71 * from the slabs. Each Zone is equipped with an init/fini and ctor/dtor
72 * pair, as well as with its own set of small per-CPU caches, layered above
73 * the Zone's general Bucket cache.
74 *
75 * The PCPU caches are protected by critical sections, and may be accessed
76 * safely only from their associated CPU, while the Zones backed by the same
77 * Keg all share a common Keg lock (to coalesce contention on the backing
78 * slabs). The backing Keg typically only serves one Zone but in the case of
79 * multiple Zones, one of the Zones is considered the Master Zone and all
80 * Zone-related stats from the Keg are done in the Master Zone. For an
81 * example of a Multi-Zone setup, refer to the Mbuf allocation code.
82 */
83
84/*
85 * This is the representation for normal (Non OFFPAGE slab)
86 *
87 * i == item
88 * s == slab pointer
89 *
90 * <---------------- Page (UMA_SLAB_SIZE) ------------------>
91 * ___________________________________________________________
92 * | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___________ |
93 * ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| |slab header||
94 * ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| |___________||
95 * |___________________________________________________________|
96 *
97 *
98 * This is an OFFPAGE slab. These can be larger than UMA_SLAB_SIZE.
99 *
100 * ___________________________________________________________
101 * | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
102 * ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| |
103 * ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| |
104 * |___________________________________________________________|
105 * ___________ ^
106 * |slab header| |
107 * |___________|---*
108 *
109 */
110
111#ifndef VM_UMA_INT_H
112#define VM_UMA_INT_H
113
114#define UMA_SLAB_SIZE PAGE_SIZE /* How big are our slabs? */
115#define UMA_SLAB_MASK (PAGE_SIZE - 1) /* Mask to get back to the page */
116#define UMA_SLAB_SHIFT PAGE_SHIFT /* Number of bits PAGE_MASK */
117
118#define UMA_BOOT_PAGES 64 /* Pages allocated for startup */
119
120/* Max waste percentage before going to off page slab management */
121#define UMA_MAX_WASTE 10
122
123/*
124 * I doubt there will be many cases where this is exceeded. This is the initial
125 * size of the hash table for uma_slabs that are managed off page. This hash
126 * does expand by powers of two. Currently it doesn't get smaller.
127 */
128#define UMA_HASH_SIZE_INIT 32
129
130/*
131 * I should investigate other hashing algorithms. This should yield a low
132 * number of collisions if the pages are relatively contiguous.
133 */
134
135#define UMA_HASH(h, s) ((((uintptr_t)s) >> UMA_SLAB_SHIFT) & (h)->uh_hashmask)
136
137#define UMA_HASH_INSERT(h, s, mem) \
138 SLIST_INSERT_HEAD(&(h)->uh_slab_hash[UMA_HASH((h), \
139 (mem))], (s), us_hlink)
140#define UMA_HASH_REMOVE(h, s, mem) \
141 SLIST_REMOVE(&(h)->uh_slab_hash[UMA_HASH((h), \
142 (mem))], (s), uma_slab, us_hlink)
143
144/* Hash table for freed address -> slab translation */
145
146SLIST_HEAD(slabhead, uma_slab);
147
148struct uma_hash {
149 struct slabhead *uh_slab_hash; /* Hash table for slabs */
150 int uh_hashsize; /* Current size of the hash table */
151 int uh_hashmask; /* Mask used during hashing */
152};
153
154/*
155 * align field or structure to cache line
156 */
157#if defined(__amd64__)
158#define UMA_ALIGN __aligned(CACHE_LINE_SIZE)
159#else
160#define UMA_ALIGN
161#endif
162
163/*
164 * Structures for per cpu queues.
165 */
166
167struct uma_bucket {
168 LIST_ENTRY(uma_bucket) ub_link; /* Link into the zone */
169 int16_t ub_cnt; /* Count of free items. */
170 int16_t ub_entries; /* Max items. */
171 void *ub_bucket[]; /* actual allocation storage */
172};
173
174typedef struct uma_bucket * uma_bucket_t;
175
176struct uma_cache {
177 uma_bucket_t uc_freebucket; /* Bucket we're freeing to */
178 uma_bucket_t uc_allocbucket; /* Bucket to allocate from */
179 uint64_t uc_allocs; /* Count of allocations */
180 uint64_t uc_frees; /* Count of frees */
181} UMA_ALIGN;
182
183typedef struct uma_cache * uma_cache_t;
184
185/*
186 * Keg management structure
187 *
188 * TODO: Optimize for cache line size
189 *
190 */
191struct uma_keg {
28 *
29 */
30
31/*
32 * This file includes definitions, structures, prototypes, and inlines that
33 * should not be used outside of the actual implementation of UMA.
34 */
35
36/*
37 * Here's a quick description of the relationship between the objects:
38 *
39 * Kegs contain lists of slabs which are stored in either the full bin, empty
40 * bin, or partially allocated bin, to reduce fragmentation. They also contain
41 * the user supplied value for size, which is adjusted for alignment purposes
42 * and rsize is the result of that. The Keg also stores information for
43 * managing a hash of page addresses that maps pages to uma_slab_t structures
44 * for pages that don't have embedded uma_slab_t's.
45 *
46 * The uma_slab_t may be embedded in a UMA_SLAB_SIZE chunk of memory or it may
47 * be allocated off the page from a special slab zone. The free list within a
48 * slab is managed with a bitmask. For item sizes that would yield more than
49 * 10% memory waste we potentially allocate a separate uma_slab_t if this will
50 * improve the number of items per slab that will fit.
51 *
52 * Other potential space optimizations are storing the 8bit of linkage in space
53 * wasted between items due to alignment problems. This may yield a much better
54 * memory footprint for certain sizes of objects. Another alternative is to
55 * increase the UMA_SLAB_SIZE, or allow for dynamic slab sizes. I prefer
56 * dynamic slab sizes because we could stick with 8 bit indices and only use
57 * large slab sizes for zones with a lot of waste per slab. This may create
58 * inefficiencies in the vm subsystem due to fragmentation in the address space.
59 *
60 * The only really gross cases, with regards to memory waste, are for those
61 * items that are just over half the page size. You can get nearly 50% waste,
62 * so you fall back to the memory footprint of the power of two allocator. I
63 * have looked at memory allocation sizes on many of the machines available to
64 * me, and there does not seem to be an abundance of allocations at this range
65 * so at this time it may not make sense to optimize for it. This can, of
66 * course, be solved with dynamic slab sizes.
67 *
68 * Kegs may serve multiple Zones but by far most of the time they only serve
69 * one. When a Zone is created, a Keg is allocated and setup for it. While
70 * the backing Keg stores slabs, the Zone caches Buckets of items allocated
71 * from the slabs. Each Zone is equipped with an init/fini and ctor/dtor
72 * pair, as well as with its own set of small per-CPU caches, layered above
73 * the Zone's general Bucket cache.
74 *
75 * The PCPU caches are protected by critical sections, and may be accessed
76 * safely only from their associated CPU, while the Zones backed by the same
77 * Keg all share a common Keg lock (to coalesce contention on the backing
78 * slabs). The backing Keg typically only serves one Zone but in the case of
79 * multiple Zones, one of the Zones is considered the Master Zone and all
80 * Zone-related stats from the Keg are done in the Master Zone. For an
81 * example of a Multi-Zone setup, refer to the Mbuf allocation code.
82 */
83
84/*
85 * This is the representation for normal (Non OFFPAGE slab)
86 *
87 * i == item
88 * s == slab pointer
89 *
90 * <---------------- Page (UMA_SLAB_SIZE) ------------------>
91 * ___________________________________________________________
92 * | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___________ |
93 * ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| |slab header||
94 * ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| |___________||
95 * |___________________________________________________________|
96 *
97 *
98 * This is an OFFPAGE slab. These can be larger than UMA_SLAB_SIZE.
99 *
100 * ___________________________________________________________
101 * | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
102 * ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| |
103 * ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| |
104 * |___________________________________________________________|
105 * ___________ ^
106 * |slab header| |
107 * |___________|---*
108 *
109 */
110
111#ifndef VM_UMA_INT_H
112#define VM_UMA_INT_H
113
114#define UMA_SLAB_SIZE PAGE_SIZE /* How big are our slabs? */
115#define UMA_SLAB_MASK (PAGE_SIZE - 1) /* Mask to get back to the page */
116#define UMA_SLAB_SHIFT PAGE_SHIFT /* Number of bits PAGE_MASK */
117
118#define UMA_BOOT_PAGES 64 /* Pages allocated for startup */
119
120/* Max waste percentage before going to off page slab management */
121#define UMA_MAX_WASTE 10
122
123/*
124 * I doubt there will be many cases where this is exceeded. This is the initial
125 * size of the hash table for uma_slabs that are managed off page. This hash
126 * does expand by powers of two. Currently it doesn't get smaller.
127 */
128#define UMA_HASH_SIZE_INIT 32
129
130/*
131 * I should investigate other hashing algorithms. This should yield a low
132 * number of collisions if the pages are relatively contiguous.
133 */
134
135#define UMA_HASH(h, s) ((((uintptr_t)s) >> UMA_SLAB_SHIFT) & (h)->uh_hashmask)
136
137#define UMA_HASH_INSERT(h, s, mem) \
138 SLIST_INSERT_HEAD(&(h)->uh_slab_hash[UMA_HASH((h), \
139 (mem))], (s), us_hlink)
140#define UMA_HASH_REMOVE(h, s, mem) \
141 SLIST_REMOVE(&(h)->uh_slab_hash[UMA_HASH((h), \
142 (mem))], (s), uma_slab, us_hlink)
143
144/* Hash table for freed address -> slab translation */
145
146SLIST_HEAD(slabhead, uma_slab);
147
148struct uma_hash {
149 struct slabhead *uh_slab_hash; /* Hash table for slabs */
150 int uh_hashsize; /* Current size of the hash table */
151 int uh_hashmask; /* Mask used during hashing */
152};
153
154/*
155 * align field or structure to cache line
156 */
157#if defined(__amd64__)
158#define UMA_ALIGN __aligned(CACHE_LINE_SIZE)
159#else
160#define UMA_ALIGN
161#endif
162
163/*
164 * Structures for per cpu queues.
165 */
166
167struct uma_bucket {
168 LIST_ENTRY(uma_bucket) ub_link; /* Link into the zone */
169 int16_t ub_cnt; /* Count of free items. */
170 int16_t ub_entries; /* Max items. */
171 void *ub_bucket[]; /* actual allocation storage */
172};
173
174typedef struct uma_bucket * uma_bucket_t;
175
176struct uma_cache {
177 uma_bucket_t uc_freebucket; /* Bucket we're freeing to */
178 uma_bucket_t uc_allocbucket; /* Bucket to allocate from */
179 uint64_t uc_allocs; /* Count of allocations */
180 uint64_t uc_frees; /* Count of frees */
181} UMA_ALIGN;
182
183typedef struct uma_cache * uma_cache_t;
184
185/*
186 * Keg management structure
187 *
188 * TODO: Optimize for cache line size
189 *
190 */
191struct uma_keg {
192 struct mtx uk_lock; /* Lock for the keg */
192 struct mtx_padalign uk_lock; /* Lock for the keg */
193 struct uma_hash uk_hash;
194
195 LIST_HEAD(,uma_zone) uk_zones; /* Keg's zones */
196 LIST_HEAD(,uma_slab) uk_part_slab; /* partially allocated slabs */
197 LIST_HEAD(,uma_slab) uk_free_slab; /* empty slab list */
198 LIST_HEAD(,uma_slab) uk_full_slab; /* full slabs */
199
200 uint32_t uk_align; /* Alignment mask */
201 uint32_t uk_pages; /* Total page count */
202 uint32_t uk_free; /* Count of items free in slabs */
203 uint32_t uk_size; /* Requested size of each item */
204 uint32_t uk_rsize; /* Real size of each item */
205 uint32_t uk_maxpages; /* Maximum number of pages to alloc */
206
207 uma_init uk_init; /* Keg's init routine */
208 uma_fini uk_fini; /* Keg's fini routine */
209 uma_alloc uk_allocf; /* Allocation function */
210 uma_free uk_freef; /* Free routine */
211
212 u_long uk_offset; /* Next free offset from base KVA */
213 vm_offset_t uk_kva; /* Zone base KVA */
214 uma_zone_t uk_slabzone; /* Slab zone backing us, if OFFPAGE */
215
216 uint16_t uk_slabsize; /* Slab size for this keg */
217 uint16_t uk_pgoff; /* Offset to uma_slab struct */
218 uint16_t uk_ppera; /* pages per allocation from backend */
219 uint16_t uk_ipers; /* Items per slab */
220 uint32_t uk_flags; /* Internal flags */
221
222 /* Least used fields go to the last cache line. */
223 const char *uk_name; /* Name of creating zone. */
224 LIST_ENTRY(uma_keg) uk_link; /* List of all kegs */
225};
226typedef struct uma_keg * uma_keg_t;
227
228/*
229 * Free bits per-slab.
230 */
231#define SLAB_SETSIZE (PAGE_SIZE / UMA_SMALLEST_UNIT)
232BITSET_DEFINE(slabbits, SLAB_SETSIZE);
233
234/*
235 * The slab structure manages a single contiguous allocation from backing
236 * store and subdivides it into individually allocatable items.
237 */
238struct uma_slab {
239 uma_keg_t us_keg; /* Keg we live in */
240 union {
241 LIST_ENTRY(uma_slab) _us_link; /* slabs in zone */
242 unsigned long _us_size; /* Size of allocation */
243 } us_type;
244 SLIST_ENTRY(uma_slab) us_hlink; /* Link for hash table */
245 uint8_t *us_data; /* First item */
246 struct slabbits us_free; /* Free bitmask. */
247#ifdef INVARIANTS
248 struct slabbits us_debugfree; /* Debug bitmask. */
249#endif
250 uint16_t us_freecount; /* How many are free? */
251 uint8_t us_flags; /* Page flags see uma.h */
252 uint8_t us_pad; /* Pad to 32bits, unused. */
253};
254
255#define us_link us_type._us_link
256#define us_size us_type._us_size
257
258/*
259 * The slab structure for UMA_ZONE_REFCNT zones for whose items we
260 * maintain reference counters in the slab for.
261 */
262struct uma_slab_refcnt {
263 struct uma_slab us_head; /* slab header data */
264 uint32_t us_refcnt[0]; /* Actually larger. */
265};
266
267typedef struct uma_slab * uma_slab_t;
268typedef struct uma_slab_refcnt * uma_slabrefcnt_t;
269typedef uma_slab_t (*uma_slaballoc)(uma_zone_t, uma_keg_t, int);
270
271struct uma_klink {
272 LIST_ENTRY(uma_klink) kl_link;
273 uma_keg_t kl_keg;
274};
275typedef struct uma_klink *uma_klink_t;
276
277/*
278 * Zone management structure
279 *
280 * TODO: Optimize for cache line size
281 *
282 */
283struct uma_zone {
193 struct uma_hash uk_hash;
194
195 LIST_HEAD(,uma_zone) uk_zones; /* Keg's zones */
196 LIST_HEAD(,uma_slab) uk_part_slab; /* partially allocated slabs */
197 LIST_HEAD(,uma_slab) uk_free_slab; /* empty slab list */
198 LIST_HEAD(,uma_slab) uk_full_slab; /* full slabs */
199
200 uint32_t uk_align; /* Alignment mask */
201 uint32_t uk_pages; /* Total page count */
202 uint32_t uk_free; /* Count of items free in slabs */
203 uint32_t uk_size; /* Requested size of each item */
204 uint32_t uk_rsize; /* Real size of each item */
205 uint32_t uk_maxpages; /* Maximum number of pages to alloc */
206
207 uma_init uk_init; /* Keg's init routine */
208 uma_fini uk_fini; /* Keg's fini routine */
209 uma_alloc uk_allocf; /* Allocation function */
210 uma_free uk_freef; /* Free routine */
211
212 u_long uk_offset; /* Next free offset from base KVA */
213 vm_offset_t uk_kva; /* Zone base KVA */
214 uma_zone_t uk_slabzone; /* Slab zone backing us, if OFFPAGE */
215
216 uint16_t uk_slabsize; /* Slab size for this keg */
217 uint16_t uk_pgoff; /* Offset to uma_slab struct */
218 uint16_t uk_ppera; /* pages per allocation from backend */
219 uint16_t uk_ipers; /* Items per slab */
220 uint32_t uk_flags; /* Internal flags */
221
222 /* Least used fields go to the last cache line. */
223 const char *uk_name; /* Name of creating zone. */
224 LIST_ENTRY(uma_keg) uk_link; /* List of all kegs */
225};
226typedef struct uma_keg * uma_keg_t;
227
228/*
229 * Free bits per-slab.
230 */
231#define SLAB_SETSIZE (PAGE_SIZE / UMA_SMALLEST_UNIT)
232BITSET_DEFINE(slabbits, SLAB_SETSIZE);
233
234/*
235 * The slab structure manages a single contiguous allocation from backing
236 * store and subdivides it into individually allocatable items.
237 */
238struct uma_slab {
239 uma_keg_t us_keg; /* Keg we live in */
240 union {
241 LIST_ENTRY(uma_slab) _us_link; /* slabs in zone */
242 unsigned long _us_size; /* Size of allocation */
243 } us_type;
244 SLIST_ENTRY(uma_slab) us_hlink; /* Link for hash table */
245 uint8_t *us_data; /* First item */
246 struct slabbits us_free; /* Free bitmask. */
247#ifdef INVARIANTS
248 struct slabbits us_debugfree; /* Debug bitmask. */
249#endif
250 uint16_t us_freecount; /* How many are free? */
251 uint8_t us_flags; /* Page flags see uma.h */
252 uint8_t us_pad; /* Pad to 32bits, unused. */
253};
254
255#define us_link us_type._us_link
256#define us_size us_type._us_size
257
258/*
259 * The slab structure for UMA_ZONE_REFCNT zones for whose items we
260 * maintain reference counters in the slab for.
261 */
262struct uma_slab_refcnt {
263 struct uma_slab us_head; /* slab header data */
264 uint32_t us_refcnt[0]; /* Actually larger. */
265};
266
267typedef struct uma_slab * uma_slab_t;
268typedef struct uma_slab_refcnt * uma_slabrefcnt_t;
269typedef uma_slab_t (*uma_slaballoc)(uma_zone_t, uma_keg_t, int);
270
271struct uma_klink {
272 LIST_ENTRY(uma_klink) kl_link;
273 uma_keg_t kl_keg;
274};
275typedef struct uma_klink *uma_klink_t;
276
277/*
278 * Zone management structure
279 *
280 * TODO: Optimize for cache line size
281 *
282 */
283struct uma_zone {
284 const char *uz_name; /* Text name of the zone */
285 struct mtx *uz_lock; /* Lock for the zone (keg's lock) */
284 struct mtx_padalign uz_lock; /* Lock for the zone */
285 struct mtx_padalign *uz_lockptr;
286 const char *uz_name; /* Text name of the zone */
286
287 LIST_ENTRY(uma_zone) uz_link; /* List of all zones in keg */
288 LIST_HEAD(,uma_bucket) uz_buckets; /* full buckets */
289
290 LIST_HEAD(,uma_klink) uz_kegs; /* List of kegs. */
291 struct uma_klink uz_klink; /* klink for first keg. */
292
293 uma_slaballoc uz_slab; /* Allocate a slab from the backend. */
294 uma_ctor uz_ctor; /* Constructor for each allocation */
295 uma_dtor uz_dtor; /* Destructor */
296 uma_init uz_init; /* Initializer for each item */
297 uma_fini uz_fini; /* Finalizer for each item. */
298 uma_import uz_import; /* Import new memory to cache. */
299 uma_release uz_release; /* Release memory from cache. */
300 void *uz_arg; /* Import/release argument. */
301
302 uint32_t uz_flags; /* Flags inherited from kegs */
303 uint32_t uz_size; /* Size inherited from kegs */
304
305 volatile u_long uz_allocs UMA_ALIGN; /* Total number of allocations */
306 volatile u_long uz_fails; /* Total number of alloc failures */
307 volatile u_long uz_frees; /* Total number of frees */
308 uint64_t uz_sleeps; /* Total number of alloc sleeps */
309 uint16_t uz_count; /* Highest amount of items in bucket */
310
311 /* The next three fields are used to print a rate-limited warnings. */
312 const char *uz_warning; /* Warning to print on failure */
313 struct timeval uz_ratecheck; /* Warnings rate-limiting */
314
315 /*
316 * This HAS to be the last item because we adjust the zone size
317 * based on NCPU and then allocate the space for the zones.
318 */
319 struct uma_cache uz_cpu[1]; /* Per cpu caches */
320};
321
322/*
323 * These flags must not overlap with the UMA_ZONE flags specified in uma.h.
324 */
325#define UMA_ZFLAG_MULTI 0x04000000 /* Multiple kegs in the zone. */
326#define UMA_ZFLAG_DRAINING 0x08000000 /* Running zone_drain. */
327#define UMA_ZFLAG_PRIVALLOC 0x10000000 /* Use uz_allocf. */
328#define UMA_ZFLAG_INTERNAL 0x20000000 /* No offpage no PCPU. */
329#define UMA_ZFLAG_FULL 0x40000000 /* Reached uz_maxpages */
330#define UMA_ZFLAG_CACHEONLY 0x80000000 /* Don't ask VM for buckets. */
331
332#define UMA_ZFLAG_INHERIT (UMA_ZFLAG_INTERNAL | UMA_ZFLAG_CACHEONLY)
333
334static inline uma_keg_t
335zone_first_keg(uma_zone_t zone)
336{
287
288 LIST_ENTRY(uma_zone) uz_link; /* List of all zones in keg */
289 LIST_HEAD(,uma_bucket) uz_buckets; /* full buckets */
290
291 LIST_HEAD(,uma_klink) uz_kegs; /* List of kegs. */
292 struct uma_klink uz_klink; /* klink for first keg. */
293
294 uma_slaballoc uz_slab; /* Allocate a slab from the backend. */
295 uma_ctor uz_ctor; /* Constructor for each allocation */
296 uma_dtor uz_dtor; /* Destructor */
297 uma_init uz_init; /* Initializer for each item */
298 uma_fini uz_fini; /* Finalizer for each item. */
299 uma_import uz_import; /* Import new memory to cache. */
300 uma_release uz_release; /* Release memory from cache. */
301 void *uz_arg; /* Import/release argument. */
302
303 uint32_t uz_flags; /* Flags inherited from kegs */
304 uint32_t uz_size; /* Size inherited from kegs */
305
306 volatile u_long uz_allocs UMA_ALIGN; /* Total number of allocations */
307 volatile u_long uz_fails; /* Total number of alloc failures */
308 volatile u_long uz_frees; /* Total number of frees */
309 uint64_t uz_sleeps; /* Total number of alloc sleeps */
310 uint16_t uz_count; /* Highest amount of items in bucket */
311
312 /* The next three fields are used to print a rate-limited warnings. */
313 const char *uz_warning; /* Warning to print on failure */
314 struct timeval uz_ratecheck; /* Warnings rate-limiting */
315
316 /*
317 * This HAS to be the last item because we adjust the zone size
318 * based on NCPU and then allocate the space for the zones.
319 */
320 struct uma_cache uz_cpu[1]; /* Per cpu caches */
321};
322
323/*
324 * These flags must not overlap with the UMA_ZONE flags specified in uma.h.
325 */
326#define UMA_ZFLAG_MULTI 0x04000000 /* Multiple kegs in the zone. */
327#define UMA_ZFLAG_DRAINING 0x08000000 /* Running zone_drain. */
328#define UMA_ZFLAG_PRIVALLOC 0x10000000 /* Use uz_allocf. */
329#define UMA_ZFLAG_INTERNAL 0x20000000 /* No offpage no PCPU. */
330#define UMA_ZFLAG_FULL 0x40000000 /* Reached uz_maxpages */
331#define UMA_ZFLAG_CACHEONLY 0x80000000 /* Don't ask VM for buckets. */
332
333#define UMA_ZFLAG_INHERIT (UMA_ZFLAG_INTERNAL | UMA_ZFLAG_CACHEONLY)
334
335static inline uma_keg_t
336zone_first_keg(uma_zone_t zone)
337{
338 uma_klink_t klink;
337
339
338 return (LIST_FIRST(&zone->uz_kegs)->kl_keg);
340 klink = LIST_FIRST(&zone->uz_kegs);
341 return (klink != NULL) ? klink->kl_keg : NULL;
339}
340
341#undef UMA_ALIGN
342
343#ifdef _KERNEL
344/* Internal prototypes */
345static __inline uma_slab_t hash_sfind(struct uma_hash *hash, uint8_t *data);
346void *uma_large_malloc(int size, int wait);
347void uma_large_free(uma_slab_t slab);
348
349/* Lock Macros */
350
351#define KEG_LOCK_INIT(k, lc) \
352 do { \
353 if ((lc)) \
354 mtx_init(&(k)->uk_lock, (k)->uk_name, \
355 (k)->uk_name, MTX_DEF | MTX_DUPOK); \
356 else \
357 mtx_init(&(k)->uk_lock, (k)->uk_name, \
358 "UMA zone", MTX_DEF | MTX_DUPOK); \
359 } while (0)
342}
343
344#undef UMA_ALIGN
345
346#ifdef _KERNEL
347/* Internal prototypes */
348static __inline uma_slab_t hash_sfind(struct uma_hash *hash, uint8_t *data);
349void *uma_large_malloc(int size, int wait);
350void uma_large_free(uma_slab_t slab);
351
352/* Lock Macros */
353
354#define KEG_LOCK_INIT(k, lc) \
355 do { \
356 if ((lc)) \
357 mtx_init(&(k)->uk_lock, (k)->uk_name, \
358 (k)->uk_name, MTX_DEF | MTX_DUPOK); \
359 else \
360 mtx_init(&(k)->uk_lock, (k)->uk_name, \
361 "UMA zone", MTX_DEF | MTX_DUPOK); \
362 } while (0)
360
363
361#define KEG_LOCK_FINI(k) mtx_destroy(&(k)->uk_lock)
362#define KEG_LOCK(k) mtx_lock(&(k)->uk_lock)
363#define KEG_UNLOCK(k) mtx_unlock(&(k)->uk_lock)
364#define KEG_LOCK_FINI(k) mtx_destroy(&(k)->uk_lock)
365#define KEG_LOCK(k) mtx_lock(&(k)->uk_lock)
366#define KEG_UNLOCK(k) mtx_unlock(&(k)->uk_lock)
364#define ZONE_LOCK(z) mtx_lock((z)->uz_lock)
365#define ZONE_TRYLOCK(z) mtx_trylock((z)->uz_lock)
366#define ZONE_UNLOCK(z) mtx_unlock((z)->uz_lock)
367
367
368#define ZONE_LOCK_INIT(z, lc) \
369 do { \
370 if ((lc)) \
371 mtx_init(&(z)->uz_lock, (z)->uz_name, \
372 (z)->uz_name, MTX_DEF | MTX_DUPOK); \
373 else \
374 mtx_init(&(z)->uz_lock, (z)->uz_name, \
375 "UMA zone", MTX_DEF | MTX_DUPOK); \
376 } while (0)
377
378#define ZONE_LOCK(z) mtx_lock((z)->uz_lockptr)
379#define ZONE_TRYLOCK(z) mtx_trylock((z)->uz_lockptr)
380#define ZONE_UNLOCK(z) mtx_unlock((z)->uz_lockptr)
381#define ZONE_LOCK_FINI(z) mtx_destroy(&(z)->uz_lock)
382
368/*
369 * Find a slab within a hash table. This is used for OFFPAGE zones to lookup
370 * the slab structure.
371 *
372 * Arguments:
373 * hash The hash table to search.
374 * data The base page of the item.
375 *
376 * Returns:
377 * A pointer to a slab if successful, else NULL.
378 */
379static __inline uma_slab_t
380hash_sfind(struct uma_hash *hash, uint8_t *data)
381{
382 uma_slab_t slab;
383 int hval;
384
385 hval = UMA_HASH(hash, data);
386
387 SLIST_FOREACH(slab, &hash->uh_slab_hash[hval], us_hlink) {
388 if ((uint8_t *)slab->us_data == data)
389 return (slab);
390 }
391 return (NULL);
392}
393
394static __inline uma_slab_t
395vtoslab(vm_offset_t va)
396{
397 vm_page_t p;
398 uma_slab_t slab;
399
400 p = PHYS_TO_VM_PAGE(pmap_kextract(va));
401 slab = (uma_slab_t )p->object;
402
403 if (p->flags & PG_SLAB)
404 return (slab);
405 else
406 return (NULL);
407}
408
409static __inline void
410vsetslab(vm_offset_t va, uma_slab_t slab)
411{
412 vm_page_t p;
413
414 p = PHYS_TO_VM_PAGE(pmap_kextract(va));
415 p->object = (vm_object_t)slab;
416 p->flags |= PG_SLAB;
417}
418
419static __inline void
420vsetobj(vm_offset_t va, vm_object_t obj)
421{
422 vm_page_t p;
423
424 p = PHYS_TO_VM_PAGE(pmap_kextract(va));
425 p->object = obj;
426 p->flags &= ~PG_SLAB;
427}
428
429/*
430 * The following two functions may be defined by architecture specific code
431 * if they can provide more effecient allocation functions. This is useful
432 * for using direct mapped addresses.
433 */
434void *uma_small_alloc(uma_zone_t zone, int bytes, uint8_t *pflag, int wait);
435void uma_small_free(void *mem, int size, uint8_t flags);
436#endif /* _KERNEL */
437
438#endif /* VM_UMA_INT_H */
383/*
384 * Find a slab within a hash table. This is used for OFFPAGE zones to lookup
385 * the slab structure.
386 *
387 * Arguments:
388 * hash The hash table to search.
389 * data The base page of the item.
390 *
391 * Returns:
392 * A pointer to a slab if successful, else NULL.
393 */
394static __inline uma_slab_t
395hash_sfind(struct uma_hash *hash, uint8_t *data)
396{
397 uma_slab_t slab;
398 int hval;
399
400 hval = UMA_HASH(hash, data);
401
402 SLIST_FOREACH(slab, &hash->uh_slab_hash[hval], us_hlink) {
403 if ((uint8_t *)slab->us_data == data)
404 return (slab);
405 }
406 return (NULL);
407}
408
409static __inline uma_slab_t
410vtoslab(vm_offset_t va)
411{
412 vm_page_t p;
413 uma_slab_t slab;
414
415 p = PHYS_TO_VM_PAGE(pmap_kextract(va));
416 slab = (uma_slab_t )p->object;
417
418 if (p->flags & PG_SLAB)
419 return (slab);
420 else
421 return (NULL);
422}
423
424static __inline void
425vsetslab(vm_offset_t va, uma_slab_t slab)
426{
427 vm_page_t p;
428
429 p = PHYS_TO_VM_PAGE(pmap_kextract(va));
430 p->object = (vm_object_t)slab;
431 p->flags |= PG_SLAB;
432}
433
434static __inline void
435vsetobj(vm_offset_t va, vm_object_t obj)
436{
437 vm_page_t p;
438
439 p = PHYS_TO_VM_PAGE(pmap_kextract(va));
440 p->object = obj;
441 p->flags &= ~PG_SLAB;
442}
443
444/*
445 * The following two functions may be defined by architecture specific code
446 * if they can provide more effecient allocation functions. This is useful
447 * for using direct mapped addresses.
448 */
449void *uma_small_alloc(uma_zone_t zone, int bytes, uint8_t *pflag, int wait);
450void uma_small_free(void *mem, int size, uint8_t flags);
451#endif /* _KERNEL */
452
453#endif /* VM_UMA_INT_H */