Deleted Added
full compact
uma_core.c (246087) uma_core.c (247360)
1/*-
2 * Copyright (c) 2002-2005, 2009 Jeffrey Roberson <jeff@FreeBSD.org>
3 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
4 * Copyright (c) 2004-2006 Robert N. M. Watson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice unmodified, this list of conditions, and the following
12 * disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/*
30 * uma_core.c Implementation of the Universal Memory allocator
31 *
32 * This allocator is intended to replace the multitude of similar object caches
33 * in the standard FreeBSD kernel. The intent is to be flexible as well as
34 * effecient. A primary design goal is to return unused memory to the rest of
35 * the system. This will make the system as a whole more flexible due to the
36 * ability to move memory to subsystems which most need it instead of leaving
37 * pools of reserved memory unused.
38 *
39 * The basic ideas stem from similar slab/zone based allocators whose algorithms
40 * are well known.
41 *
42 */
43
44/*
45 * TODO:
46 * - Improve memory usage for large allocations
47 * - Investigate cache size adjustments
48 */
49
50#include <sys/cdefs.h>
1/*-
2 * Copyright (c) 2002-2005, 2009 Jeffrey Roberson <jeff@FreeBSD.org>
3 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
4 * Copyright (c) 2004-2006 Robert N. M. Watson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice unmodified, this list of conditions, and the following
12 * disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/*
30 * uma_core.c Implementation of the Universal Memory allocator
31 *
32 * This allocator is intended to replace the multitude of similar object caches
33 * in the standard FreeBSD kernel. The intent is to be flexible as well as
34 * effecient. A primary design goal is to return unused memory to the rest of
35 * the system. This will make the system as a whole more flexible due to the
36 * ability to move memory to subsystems which most need it instead of leaving
37 * pools of reserved memory unused.
38 *
39 * The basic ideas stem from similar slab/zone based allocators whose algorithms
40 * are well known.
41 *
42 */
43
44/*
45 * TODO:
46 * - Improve memory usage for large allocations
47 * - Investigate cache size adjustments
48 */
49
50#include <sys/cdefs.h>
51__FBSDID("$FreeBSD: head/sys/vm/uma_core.c 246087 2013-01-29 19:06:16Z glebius $");
51__FBSDID("$FreeBSD: head/sys/vm/uma_core.c 247360 2013-02-26 23:35:27Z attilio $");
52
53/* I should really use ktr.. */
54/*
55#define UMA_DEBUG 1
56#define UMA_DEBUG_ALLOC 1
57#define UMA_DEBUG_ALLOC_1 1
58*/
59
60#include "opt_ddb.h"
61#include "opt_param.h"
62#include "opt_vm.h"
63
64#include <sys/param.h>
65#include <sys/systm.h>
66#include <sys/kernel.h>
67#include <sys/types.h>
68#include <sys/queue.h>
69#include <sys/malloc.h>
70#include <sys/ktr.h>
71#include <sys/lock.h>
72#include <sys/sysctl.h>
73#include <sys/mutex.h>
74#include <sys/proc.h>
75#include <sys/sbuf.h>
76#include <sys/smp.h>
77#include <sys/vmmeter.h>
78
79#include <vm/vm.h>
80#include <vm/vm_object.h>
81#include <vm/vm_page.h>
52
53/* I should really use ktr.. */
54/*
55#define UMA_DEBUG 1
56#define UMA_DEBUG_ALLOC 1
57#define UMA_DEBUG_ALLOC_1 1
58*/
59
60#include "opt_ddb.h"
61#include "opt_param.h"
62#include "opt_vm.h"
63
64#include <sys/param.h>
65#include <sys/systm.h>
66#include <sys/kernel.h>
67#include <sys/types.h>
68#include <sys/queue.h>
69#include <sys/malloc.h>
70#include <sys/ktr.h>
71#include <sys/lock.h>
72#include <sys/sysctl.h>
73#include <sys/mutex.h>
74#include <sys/proc.h>
75#include <sys/sbuf.h>
76#include <sys/smp.h>
77#include <sys/vmmeter.h>
78
79#include <vm/vm.h>
80#include <vm/vm_object.h>
81#include <vm/vm_page.h>
82#include <vm/vm_pageout.h>
82#include <vm/vm_param.h>
83#include <vm/vm_map.h>
84#include <vm/vm_kern.h>
85#include <vm/vm_extern.h>
86#include <vm/uma.h>
87#include <vm/uma_int.h>
88#include <vm/uma_dbg.h>
89
90#include <ddb/ddb.h>
91
92#ifdef DEBUG_MEMGUARD
93#include <vm/memguard.h>
94#endif
95
96/*
97 * This is the zone and keg from which all zones are spawned. The idea is that
98 * even the zone & keg heads are allocated from the allocator, so we use the
99 * bss section to bootstrap us.
100 */
101static struct uma_keg masterkeg;
102static struct uma_zone masterzone_k;
103static struct uma_zone masterzone_z;
104static uma_zone_t kegs = &masterzone_k;
105static uma_zone_t zones = &masterzone_z;
106
107/* This is the zone from which all of uma_slab_t's are allocated. */
108static uma_zone_t slabzone;
109static uma_zone_t slabrefzone; /* With refcounters (for UMA_ZONE_REFCNT) */
110
111/*
112 * The initial hash tables come out of this zone so they can be allocated
113 * prior to malloc coming up.
114 */
115static uma_zone_t hashzone;
116
117/* The boot-time adjusted value for cache line alignment. */
118int uma_align_cache = 64 - 1;
119
120static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets");
121
122/*
123 * Are we allowed to allocate buckets?
124 */
125static int bucketdisable = 1;
126
127/* Linked list of all kegs in the system */
128static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs);
129
130/* This mutex protects the keg list */
131static struct mtx uma_mtx;
132
133/* Linked list of boot time pages */
134static LIST_HEAD(,uma_slab) uma_boot_pages =
135 LIST_HEAD_INITIALIZER(uma_boot_pages);
136
137/* This mutex protects the boot time pages list */
138static struct mtx uma_boot_pages_mtx;
139
140/* Is the VM done starting up? */
141static int booted = 0;
142#define UMA_STARTUP 1
143#define UMA_STARTUP2 2
144
145/* Maximum number of allowed items-per-slab if the slab header is OFFPAGE */
146static u_int uma_max_ipers;
147static u_int uma_max_ipers_ref;
148
149/*
150 * This is the handle used to schedule events that need to happen
151 * outside of the allocation fast path.
152 */
153static struct callout uma_callout;
154#define UMA_TIMEOUT 20 /* Seconds for callout interval. */
155
156/*
157 * This structure is passed as the zone ctor arg so that I don't have to create
158 * a special allocation function just for zones.
159 */
160struct uma_zctor_args {
161 const char *name;
162 size_t size;
163 uma_ctor ctor;
164 uma_dtor dtor;
165 uma_init uminit;
166 uma_fini fini;
167 uma_keg_t keg;
168 int align;
169 u_int32_t flags;
170};
171
172struct uma_kctor_args {
173 uma_zone_t zone;
174 size_t size;
175 uma_init uminit;
176 uma_fini fini;
177 int align;
178 u_int32_t flags;
179};
180
181struct uma_bucket_zone {
182 uma_zone_t ubz_zone;
183 char *ubz_name;
184 int ubz_entries;
185};
186
187#define BUCKET_MAX 128
188
189struct uma_bucket_zone bucket_zones[] = {
190 { NULL, "16 Bucket", 16 },
191 { NULL, "32 Bucket", 32 },
192 { NULL, "64 Bucket", 64 },
193 { NULL, "128 Bucket", 128 },
194 { NULL, NULL, 0}
195};
196
197#define BUCKET_SHIFT 4
198#define BUCKET_ZONES ((BUCKET_MAX >> BUCKET_SHIFT) + 1)
199
200/*
201 * bucket_size[] maps requested bucket sizes to zones that allocate a bucket
202 * of approximately the right size.
203 */
204static uint8_t bucket_size[BUCKET_ZONES];
205
206/*
207 * Flags and enumerations to be passed to internal functions.
208 */
209enum zfreeskip { SKIP_NONE, SKIP_DTOR, SKIP_FINI };
210
211#define ZFREE_STATFAIL 0x00000001 /* Update zone failure statistic. */
212#define ZFREE_STATFREE 0x00000002 /* Update zone free statistic. */
213
214/* Prototypes.. */
215
83#include <vm/vm_param.h>
84#include <vm/vm_map.h>
85#include <vm/vm_kern.h>
86#include <vm/vm_extern.h>
87#include <vm/uma.h>
88#include <vm/uma_int.h>
89#include <vm/uma_dbg.h>
90
91#include <ddb/ddb.h>
92
93#ifdef DEBUG_MEMGUARD
94#include <vm/memguard.h>
95#endif
96
97/*
98 * This is the zone and keg from which all zones are spawned. The idea is that
99 * even the zone & keg heads are allocated from the allocator, so we use the
100 * bss section to bootstrap us.
101 */
102static struct uma_keg masterkeg;
103static struct uma_zone masterzone_k;
104static struct uma_zone masterzone_z;
105static uma_zone_t kegs = &masterzone_k;
106static uma_zone_t zones = &masterzone_z;
107
108/* This is the zone from which all of uma_slab_t's are allocated. */
109static uma_zone_t slabzone;
110static uma_zone_t slabrefzone; /* With refcounters (for UMA_ZONE_REFCNT) */
111
112/*
113 * The initial hash tables come out of this zone so they can be allocated
114 * prior to malloc coming up.
115 */
116static uma_zone_t hashzone;
117
118/* The boot-time adjusted value for cache line alignment. */
119int uma_align_cache = 64 - 1;
120
121static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets");
122
123/*
124 * Are we allowed to allocate buckets?
125 */
126static int bucketdisable = 1;
127
128/* Linked list of all kegs in the system */
129static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs);
130
131/* This mutex protects the keg list */
132static struct mtx uma_mtx;
133
134/* Linked list of boot time pages */
135static LIST_HEAD(,uma_slab) uma_boot_pages =
136 LIST_HEAD_INITIALIZER(uma_boot_pages);
137
138/* This mutex protects the boot time pages list */
139static struct mtx uma_boot_pages_mtx;
140
141/* Is the VM done starting up? */
142static int booted = 0;
143#define UMA_STARTUP 1
144#define UMA_STARTUP2 2
145
146/* Maximum number of allowed items-per-slab if the slab header is OFFPAGE */
147static u_int uma_max_ipers;
148static u_int uma_max_ipers_ref;
149
150/*
151 * This is the handle used to schedule events that need to happen
152 * outside of the allocation fast path.
153 */
154static struct callout uma_callout;
155#define UMA_TIMEOUT 20 /* Seconds for callout interval. */
156
157/*
158 * This structure is passed as the zone ctor arg so that I don't have to create
159 * a special allocation function just for zones.
160 */
161struct uma_zctor_args {
162 const char *name;
163 size_t size;
164 uma_ctor ctor;
165 uma_dtor dtor;
166 uma_init uminit;
167 uma_fini fini;
168 uma_keg_t keg;
169 int align;
170 u_int32_t flags;
171};
172
173struct uma_kctor_args {
174 uma_zone_t zone;
175 size_t size;
176 uma_init uminit;
177 uma_fini fini;
178 int align;
179 u_int32_t flags;
180};
181
182struct uma_bucket_zone {
183 uma_zone_t ubz_zone;
184 char *ubz_name;
185 int ubz_entries;
186};
187
188#define BUCKET_MAX 128
189
190struct uma_bucket_zone bucket_zones[] = {
191 { NULL, "16 Bucket", 16 },
192 { NULL, "32 Bucket", 32 },
193 { NULL, "64 Bucket", 64 },
194 { NULL, "128 Bucket", 128 },
195 { NULL, NULL, 0}
196};
197
198#define BUCKET_SHIFT 4
199#define BUCKET_ZONES ((BUCKET_MAX >> BUCKET_SHIFT) + 1)
200
201/*
202 * bucket_size[] maps requested bucket sizes to zones that allocate a bucket
203 * of approximately the right size.
204 */
205static uint8_t bucket_size[BUCKET_ZONES];
206
207/*
208 * Flags and enumerations to be passed to internal functions.
209 */
210enum zfreeskip { SKIP_NONE, SKIP_DTOR, SKIP_FINI };
211
212#define ZFREE_STATFAIL 0x00000001 /* Update zone failure statistic. */
213#define ZFREE_STATFREE 0x00000002 /* Update zone free statistic. */
214
215/* Prototypes.. */
216
216static void *obj_alloc(uma_zone_t, int, u_int8_t *, int);
217static void *noobj_alloc(uma_zone_t, int, u_int8_t *, int);
217static void *page_alloc(uma_zone_t, int, u_int8_t *, int);
218static void *startup_alloc(uma_zone_t, int, u_int8_t *, int);
219static void page_free(void *, int, u_int8_t);
220static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int);
221static void cache_drain(uma_zone_t);
222static void bucket_drain(uma_zone_t, uma_bucket_t);
223static void bucket_cache_drain(uma_zone_t zone);
224static int keg_ctor(void *, int, void *, int);
225static void keg_dtor(void *, int, void *);
226static int zone_ctor(void *, int, void *, int);
227static void zone_dtor(void *, int, void *);
228static int zero_init(void *, int, int);
229static void keg_small_init(uma_keg_t keg);
230static void keg_large_init(uma_keg_t keg);
231static void zone_foreach(void (*zfunc)(uma_zone_t));
232static void zone_timeout(uma_zone_t zone);
233static int hash_alloc(struct uma_hash *);
234static int hash_expand(struct uma_hash *, struct uma_hash *);
235static void hash_free(struct uma_hash *hash);
236static void uma_timeout(void *);
237static void uma_startup3(void);
238static void *zone_alloc_item(uma_zone_t, void *, int);
239static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip,
240 int);
241static void bucket_enable(void);
242static void bucket_init(void);
243static uma_bucket_t bucket_alloc(int, int);
244static void bucket_free(uma_bucket_t);
245static void bucket_zone_drain(void);
246static int zone_alloc_bucket(uma_zone_t zone, int flags);
247static uma_slab_t zone_fetch_slab(uma_zone_t zone, uma_keg_t last, int flags);
248static uma_slab_t zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int flags);
249static void *slab_alloc_item(uma_zone_t zone, uma_slab_t slab);
250static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit,
251 uma_fini fini, int align, u_int32_t flags);
252static inline void zone_relock(uma_zone_t zone, uma_keg_t keg);
253static inline void keg_relock(uma_keg_t keg, uma_zone_t zone);
254
255void uma_print_zone(uma_zone_t);
256void uma_print_stats(void);
257static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS);
258static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS);
259
260SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL);
261
262SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT,
263 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones");
264
265SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT,
266 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats");
267
268static int zone_warnings = 1;
269TUNABLE_INT("vm.zone_warnings", &zone_warnings);
270SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RW, &zone_warnings, 0,
271 "Warn when UMA zones becomes full");
272
273/*
274 * This routine checks to see whether or not it's safe to enable buckets.
275 */
276
277static void
278bucket_enable(void)
279{
280 bucketdisable = vm_page_count_min();
281}
282
283/*
284 * Initialize bucket_zones, the array of zones of buckets of various sizes.
285 *
286 * For each zone, calculate the memory required for each bucket, consisting
287 * of the header and an array of pointers. Initialize bucket_size[] to point
288 * the range of appropriate bucket sizes at the zone.
289 */
290static void
291bucket_init(void)
292{
293 struct uma_bucket_zone *ubz;
294 int i;
295 int j;
296
297 for (i = 0, j = 0; bucket_zones[j].ubz_entries != 0; j++) {
298 int size;
299
300 ubz = &bucket_zones[j];
301 size = roundup(sizeof(struct uma_bucket), sizeof(void *));
302 size += sizeof(void *) * ubz->ubz_entries;
303 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size,
304 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
305 UMA_ZFLAG_INTERNAL | UMA_ZFLAG_BUCKET);
306 for (; i <= ubz->ubz_entries; i += (1 << BUCKET_SHIFT))
307 bucket_size[i >> BUCKET_SHIFT] = j;
308 }
309}
310
311/*
312 * Given a desired number of entries for a bucket, return the zone from which
313 * to allocate the bucket.
314 */
315static struct uma_bucket_zone *
316bucket_zone_lookup(int entries)
317{
318 int idx;
319
320 idx = howmany(entries, 1 << BUCKET_SHIFT);
321 return (&bucket_zones[bucket_size[idx]]);
322}
323
324static uma_bucket_t
325bucket_alloc(int entries, int bflags)
326{
327 struct uma_bucket_zone *ubz;
328 uma_bucket_t bucket;
329
330 /*
331 * This is to stop us from allocating per cpu buckets while we're
332 * running out of vm.boot_pages. Otherwise, we would exhaust the
333 * boot pages. This also prevents us from allocating buckets in
334 * low memory situations.
335 */
336 if (bucketdisable)
337 return (NULL);
338
339 ubz = bucket_zone_lookup(entries);
340 bucket = zone_alloc_item(ubz->ubz_zone, NULL, bflags);
341 if (bucket) {
342#ifdef INVARIANTS
343 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries);
344#endif
345 bucket->ub_cnt = 0;
346 bucket->ub_entries = ubz->ubz_entries;
347 }
348
349 return (bucket);
350}
351
352static void
353bucket_free(uma_bucket_t bucket)
354{
355 struct uma_bucket_zone *ubz;
356
357 ubz = bucket_zone_lookup(bucket->ub_entries);
358 zone_free_item(ubz->ubz_zone, bucket, NULL, SKIP_NONE,
359 ZFREE_STATFREE);
360}
361
362static void
363bucket_zone_drain(void)
364{
365 struct uma_bucket_zone *ubz;
366
367 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
368 zone_drain(ubz->ubz_zone);
369}
370
371static void
372zone_log_warning(uma_zone_t zone)
373{
374 static const struct timeval warninterval = { 300, 0 };
375
376 if (!zone_warnings || zone->uz_warning == NULL)
377 return;
378
379 if (ratecheck(&zone->uz_ratecheck, &warninterval))
380 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning);
381}
382
383static inline uma_keg_t
384zone_first_keg(uma_zone_t zone)
385{
386
387 return (LIST_FIRST(&zone->uz_kegs)->kl_keg);
388}
389
390static void
391zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t))
392{
393 uma_klink_t klink;
394
395 LIST_FOREACH(klink, &zone->uz_kegs, kl_link)
396 kegfn(klink->kl_keg);
397}
398
399/*
400 * Routine called by timeout which is used to fire off some time interval
401 * based calculations. (stats, hash size, etc.)
402 *
403 * Arguments:
404 * arg Unused
405 *
406 * Returns:
407 * Nothing
408 */
409static void
410uma_timeout(void *unused)
411{
412 bucket_enable();
413 zone_foreach(zone_timeout);
414
415 /* Reschedule this event */
416 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
417}
418
419/*
420 * Routine to perform timeout driven calculations. This expands the
421 * hashes and does per cpu statistics aggregation.
422 *
423 * Returns nothing.
424 */
425static void
426keg_timeout(uma_keg_t keg)
427{
428
429 KEG_LOCK(keg);
430 /*
431 * Expand the keg hash table.
432 *
433 * This is done if the number of slabs is larger than the hash size.
434 * What I'm trying to do here is completely reduce collisions. This
435 * may be a little aggressive. Should I allow for two collisions max?
436 */
437 if (keg->uk_flags & UMA_ZONE_HASH &&
438 keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) {
439 struct uma_hash newhash;
440 struct uma_hash oldhash;
441 int ret;
442
443 /*
444 * This is so involved because allocating and freeing
445 * while the keg lock is held will lead to deadlock.
446 * I have to do everything in stages and check for
447 * races.
448 */
449 newhash = keg->uk_hash;
450 KEG_UNLOCK(keg);
451 ret = hash_alloc(&newhash);
452 KEG_LOCK(keg);
453 if (ret) {
454 if (hash_expand(&keg->uk_hash, &newhash)) {
455 oldhash = keg->uk_hash;
456 keg->uk_hash = newhash;
457 } else
458 oldhash = newhash;
459
460 KEG_UNLOCK(keg);
461 hash_free(&oldhash);
462 KEG_LOCK(keg);
463 }
464 }
465 KEG_UNLOCK(keg);
466}
467
468static void
469zone_timeout(uma_zone_t zone)
470{
471
472 zone_foreach_keg(zone, &keg_timeout);
473}
474
475/*
476 * Allocate and zero fill the next sized hash table from the appropriate
477 * backing store.
478 *
479 * Arguments:
480 * hash A new hash structure with the old hash size in uh_hashsize
481 *
482 * Returns:
483 * 1 on sucess and 0 on failure.
484 */
485static int
486hash_alloc(struct uma_hash *hash)
487{
488 int oldsize;
489 int alloc;
490
491 oldsize = hash->uh_hashsize;
492
493 /* We're just going to go to a power of two greater */
494 if (oldsize) {
495 hash->uh_hashsize = oldsize * 2;
496 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize;
497 hash->uh_slab_hash = (struct slabhead *)malloc(alloc,
498 M_UMAHASH, M_NOWAIT);
499 } else {
500 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT;
501 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL,
502 M_WAITOK);
503 hash->uh_hashsize = UMA_HASH_SIZE_INIT;
504 }
505 if (hash->uh_slab_hash) {
506 bzero(hash->uh_slab_hash, alloc);
507 hash->uh_hashmask = hash->uh_hashsize - 1;
508 return (1);
509 }
510
511 return (0);
512}
513
514/*
515 * Expands the hash table for HASH zones. This is done from zone_timeout
516 * to reduce collisions. This must not be done in the regular allocation
517 * path, otherwise, we can recurse on the vm while allocating pages.
518 *
519 * Arguments:
520 * oldhash The hash you want to expand
521 * newhash The hash structure for the new table
522 *
523 * Returns:
524 * Nothing
525 *
526 * Discussion:
527 */
528static int
529hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash)
530{
531 uma_slab_t slab;
532 int hval;
533 int i;
534
535 if (!newhash->uh_slab_hash)
536 return (0);
537
538 if (oldhash->uh_hashsize >= newhash->uh_hashsize)
539 return (0);
540
541 /*
542 * I need to investigate hash algorithms for resizing without a
543 * full rehash.
544 */
545
546 for (i = 0; i < oldhash->uh_hashsize; i++)
547 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) {
548 slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]);
549 SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink);
550 hval = UMA_HASH(newhash, slab->us_data);
551 SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval],
552 slab, us_hlink);
553 }
554
555 return (1);
556}
557
558/*
559 * Free the hash bucket to the appropriate backing store.
560 *
561 * Arguments:
562 * slab_hash The hash bucket we're freeing
563 * hashsize The number of entries in that hash bucket
564 *
565 * Returns:
566 * Nothing
567 */
568static void
569hash_free(struct uma_hash *hash)
570{
571 if (hash->uh_slab_hash == NULL)
572 return;
573 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT)
574 zone_free_item(hashzone,
575 hash->uh_slab_hash, NULL, SKIP_NONE, ZFREE_STATFREE);
576 else
577 free(hash->uh_slab_hash, M_UMAHASH);
578}
579
580/*
581 * Frees all outstanding items in a bucket
582 *
583 * Arguments:
584 * zone The zone to free to, must be unlocked.
585 * bucket The free/alloc bucket with items, cpu queue must be locked.
586 *
587 * Returns:
588 * Nothing
589 */
590
591static void
592bucket_drain(uma_zone_t zone, uma_bucket_t bucket)
593{
594 void *item;
595
596 if (bucket == NULL)
597 return;
598
599 while (bucket->ub_cnt > 0) {
600 bucket->ub_cnt--;
601 item = bucket->ub_bucket[bucket->ub_cnt];
602#ifdef INVARIANTS
603 bucket->ub_bucket[bucket->ub_cnt] = NULL;
604 KASSERT(item != NULL,
605 ("bucket_drain: botched ptr, item is NULL"));
606#endif
607 zone_free_item(zone, item, NULL, SKIP_DTOR, 0);
608 }
609}
610
611/*
612 * Drains the per cpu caches for a zone.
613 *
614 * NOTE: This may only be called while the zone is being turn down, and not
615 * during normal operation. This is necessary in order that we do not have
616 * to migrate CPUs to drain the per-CPU caches.
617 *
618 * Arguments:
619 * zone The zone to drain, must be unlocked.
620 *
621 * Returns:
622 * Nothing
623 */
624static void
625cache_drain(uma_zone_t zone)
626{
627 uma_cache_t cache;
628 int cpu;
629
630 /*
631 * XXX: It is safe to not lock the per-CPU caches, because we're
632 * tearing down the zone anyway. I.e., there will be no further use
633 * of the caches at this point.
634 *
635 * XXX: It would good to be able to assert that the zone is being
636 * torn down to prevent improper use of cache_drain().
637 *
638 * XXX: We lock the zone before passing into bucket_cache_drain() as
639 * it is used elsewhere. Should the tear-down path be made special
640 * there in some form?
641 */
642 CPU_FOREACH(cpu) {
643 cache = &zone->uz_cpu[cpu];
644 bucket_drain(zone, cache->uc_allocbucket);
645 bucket_drain(zone, cache->uc_freebucket);
646 if (cache->uc_allocbucket != NULL)
647 bucket_free(cache->uc_allocbucket);
648 if (cache->uc_freebucket != NULL)
649 bucket_free(cache->uc_freebucket);
650 cache->uc_allocbucket = cache->uc_freebucket = NULL;
651 }
652 ZONE_LOCK(zone);
653 bucket_cache_drain(zone);
654 ZONE_UNLOCK(zone);
655}
656
657/*
658 * Drain the cached buckets from a zone. Expects a locked zone on entry.
659 */
660static void
661bucket_cache_drain(uma_zone_t zone)
662{
663 uma_bucket_t bucket;
664
665 /*
666 * Drain the bucket queues and free the buckets, we just keep two per
667 * cpu (alloc/free).
668 */
669 while ((bucket = LIST_FIRST(&zone->uz_full_bucket)) != NULL) {
670 LIST_REMOVE(bucket, ub_link);
671 ZONE_UNLOCK(zone);
672 bucket_drain(zone, bucket);
673 bucket_free(bucket);
674 ZONE_LOCK(zone);
675 }
676
677 /* Now we do the free queue.. */
678 while ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) {
679 LIST_REMOVE(bucket, ub_link);
680 bucket_free(bucket);
681 }
682}
683
684/*
685 * Frees pages from a keg back to the system. This is done on demand from
686 * the pageout daemon.
687 *
688 * Returns nothing.
689 */
690static void
691keg_drain(uma_keg_t keg)
692{
693 struct slabhead freeslabs = { 0 };
694 uma_slab_t slab;
695 uma_slab_t n;
696 u_int8_t flags;
697 u_int8_t *mem;
698 int i;
699
700 /*
701 * We don't want to take pages from statically allocated kegs at this
702 * time
703 */
704 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL)
705 return;
706
707#ifdef UMA_DEBUG
708 printf("%s free items: %u\n", keg->uk_name, keg->uk_free);
709#endif
710 KEG_LOCK(keg);
711 if (keg->uk_free == 0)
712 goto finished;
713
714 slab = LIST_FIRST(&keg->uk_free_slab);
715 while (slab) {
716 n = LIST_NEXT(slab, us_link);
717
718 /* We have no where to free these to */
719 if (slab->us_flags & UMA_SLAB_BOOT) {
720 slab = n;
721 continue;
722 }
723
724 LIST_REMOVE(slab, us_link);
725 keg->uk_pages -= keg->uk_ppera;
726 keg->uk_free -= keg->uk_ipers;
727
728 if (keg->uk_flags & UMA_ZONE_HASH)
729 UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data);
730
731 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink);
732
733 slab = n;
734 }
735finished:
736 KEG_UNLOCK(keg);
737
738 while ((slab = SLIST_FIRST(&freeslabs)) != NULL) {
739 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink);
740 if (keg->uk_fini)
741 for (i = 0; i < keg->uk_ipers; i++)
742 keg->uk_fini(
743 slab->us_data + (keg->uk_rsize * i),
744 keg->uk_size);
745 flags = slab->us_flags;
746 mem = slab->us_data;
747
748 if (keg->uk_flags & UMA_ZONE_VTOSLAB) {
749 vm_object_t obj;
750
751 if (flags & UMA_SLAB_KMEM)
752 obj = kmem_object;
753 else if (flags & UMA_SLAB_KERNEL)
754 obj = kernel_object;
755 else
756 obj = NULL;
757 for (i = 0; i < keg->uk_ppera; i++)
758 vsetobj((vm_offset_t)mem + (i * PAGE_SIZE),
759 obj);
760 }
761 if (keg->uk_flags & UMA_ZONE_OFFPAGE)
762 zone_free_item(keg->uk_slabzone, slab, NULL,
763 SKIP_NONE, ZFREE_STATFREE);
764#ifdef UMA_DEBUG
765 printf("%s: Returning %d bytes.\n",
766 keg->uk_name, UMA_SLAB_SIZE * keg->uk_ppera);
767#endif
768 keg->uk_freef(mem, UMA_SLAB_SIZE * keg->uk_ppera, flags);
769 }
770}
771
772static void
773zone_drain_wait(uma_zone_t zone, int waitok)
774{
775
776 /*
777 * Set draining to interlock with zone_dtor() so we can release our
778 * locks as we go. Only dtor() should do a WAITOK call since it
779 * is the only call that knows the structure will still be available
780 * when it wakes up.
781 */
782 ZONE_LOCK(zone);
783 while (zone->uz_flags & UMA_ZFLAG_DRAINING) {
784 if (waitok == M_NOWAIT)
785 goto out;
786 mtx_unlock(&uma_mtx);
787 msleep(zone, zone->uz_lock, PVM, "zonedrain", 1);
788 mtx_lock(&uma_mtx);
789 }
790 zone->uz_flags |= UMA_ZFLAG_DRAINING;
791 bucket_cache_drain(zone);
792 ZONE_UNLOCK(zone);
793 /*
794 * The DRAINING flag protects us from being freed while
795 * we're running. Normally the uma_mtx would protect us but we
796 * must be able to release and acquire the right lock for each keg.
797 */
798 zone_foreach_keg(zone, &keg_drain);
799 ZONE_LOCK(zone);
800 zone->uz_flags &= ~UMA_ZFLAG_DRAINING;
801 wakeup(zone);
802out:
803 ZONE_UNLOCK(zone);
804}
805
806void
807zone_drain(uma_zone_t zone)
808{
809
810 zone_drain_wait(zone, M_NOWAIT);
811}
812
813/*
814 * Allocate a new slab for a keg. This does not insert the slab onto a list.
815 *
816 * Arguments:
817 * wait Shall we wait?
818 *
819 * Returns:
820 * The slab that was allocated or NULL if there is no memory and the
821 * caller specified M_NOWAIT.
822 */
823static uma_slab_t
824keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int wait)
825{
826 uma_slabrefcnt_t slabref;
827 uma_alloc allocf;
828 uma_slab_t slab;
829 u_int8_t *mem;
830 u_int8_t flags;
831 int i;
832
833 mtx_assert(&keg->uk_lock, MA_OWNED);
834 slab = NULL;
835
836#ifdef UMA_DEBUG
837 printf("slab_zalloc: Allocating a new slab for %s\n", keg->uk_name);
838#endif
839 allocf = keg->uk_allocf;
840 KEG_UNLOCK(keg);
841
842 if (keg->uk_flags & UMA_ZONE_OFFPAGE) {
843 slab = zone_alloc_item(keg->uk_slabzone, NULL, wait);
844 if (slab == NULL) {
845 KEG_LOCK(keg);
846 return NULL;
847 }
848 }
849
850 /*
851 * This reproduces the old vm_zone behavior of zero filling pages the
852 * first time they are added to a zone.
853 *
854 * Malloced items are zeroed in uma_zalloc.
855 */
856
857 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0)
858 wait |= M_ZERO;
859 else
860 wait &= ~M_ZERO;
861
862 if (keg->uk_flags & UMA_ZONE_NODUMP)
863 wait |= M_NODUMP;
864
865 /* zone is passed for legacy reasons. */
866 mem = allocf(zone, keg->uk_ppera * UMA_SLAB_SIZE, &flags, wait);
867 if (mem == NULL) {
868 if (keg->uk_flags & UMA_ZONE_OFFPAGE)
869 zone_free_item(keg->uk_slabzone, slab, NULL,
870 SKIP_NONE, ZFREE_STATFREE);
871 KEG_LOCK(keg);
872 return (NULL);
873 }
874
875 /* Point the slab into the allocated memory */
876 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE))
877 slab = (uma_slab_t )(mem + keg->uk_pgoff);
878
879 if (keg->uk_flags & UMA_ZONE_VTOSLAB)
880 for (i = 0; i < keg->uk_ppera; i++)
881 vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab);
882
883 slab->us_keg = keg;
884 slab->us_data = mem;
885 slab->us_freecount = keg->uk_ipers;
886 slab->us_firstfree = 0;
887 slab->us_flags = flags;
888
889 if (keg->uk_flags & UMA_ZONE_REFCNT) {
890 slabref = (uma_slabrefcnt_t)slab;
891 for (i = 0; i < keg->uk_ipers; i++) {
892 slabref->us_freelist[i].us_refcnt = 0;
893 slabref->us_freelist[i].us_item = i+1;
894 }
895 } else {
896 for (i = 0; i < keg->uk_ipers; i++)
897 slab->us_freelist[i].us_item = i+1;
898 }
899
900 if (keg->uk_init != NULL) {
901 for (i = 0; i < keg->uk_ipers; i++)
902 if (keg->uk_init(slab->us_data + (keg->uk_rsize * i),
903 keg->uk_size, wait) != 0)
904 break;
905 if (i != keg->uk_ipers) {
906 if (keg->uk_fini != NULL) {
907 for (i--; i > -1; i--)
908 keg->uk_fini(slab->us_data +
909 (keg->uk_rsize * i),
910 keg->uk_size);
911 }
912 if (keg->uk_flags & UMA_ZONE_VTOSLAB) {
913 vm_object_t obj;
914
915 if (flags & UMA_SLAB_KMEM)
916 obj = kmem_object;
917 else if (flags & UMA_SLAB_KERNEL)
918 obj = kernel_object;
919 else
920 obj = NULL;
921 for (i = 0; i < keg->uk_ppera; i++)
922 vsetobj((vm_offset_t)mem +
923 (i * PAGE_SIZE), obj);
924 }
925 if (keg->uk_flags & UMA_ZONE_OFFPAGE)
926 zone_free_item(keg->uk_slabzone, slab,
927 NULL, SKIP_NONE, ZFREE_STATFREE);
928 keg->uk_freef(mem, UMA_SLAB_SIZE * keg->uk_ppera,
929 flags);
930 KEG_LOCK(keg);
931 return (NULL);
932 }
933 }
934 KEG_LOCK(keg);
935
936 if (keg->uk_flags & UMA_ZONE_HASH)
937 UMA_HASH_INSERT(&keg->uk_hash, slab, mem);
938
939 keg->uk_pages += keg->uk_ppera;
940 keg->uk_free += keg->uk_ipers;
941
942 return (slab);
943}
944
945/*
946 * This function is intended to be used early on in place of page_alloc() so
947 * that we may use the boot time page cache to satisfy allocations before
948 * the VM is ready.
949 */
950static void *
951startup_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait)
952{
953 uma_keg_t keg;
954 uma_slab_t tmps;
955 int pages, check_pages;
956
957 keg = zone_first_keg(zone);
958 pages = howmany(bytes, PAGE_SIZE);
959 check_pages = pages - 1;
960 KASSERT(pages > 0, ("startup_alloc can't reserve 0 pages\n"));
961
962 /*
963 * Check our small startup cache to see if it has pages remaining.
964 */
965 mtx_lock(&uma_boot_pages_mtx);
966
967 /* First check if we have enough room. */
968 tmps = LIST_FIRST(&uma_boot_pages);
969 while (tmps != NULL && check_pages-- > 0)
970 tmps = LIST_NEXT(tmps, us_link);
971 if (tmps != NULL) {
972 /*
973 * It's ok to lose tmps references. The last one will
974 * have tmps->us_data pointing to the start address of
975 * "pages" contiguous pages of memory.
976 */
977 while (pages-- > 0) {
978 tmps = LIST_FIRST(&uma_boot_pages);
979 LIST_REMOVE(tmps, us_link);
980 }
981 mtx_unlock(&uma_boot_pages_mtx);
982 *pflag = tmps->us_flags;
983 return (tmps->us_data);
984 }
985 mtx_unlock(&uma_boot_pages_mtx);
986 if (booted < UMA_STARTUP2)
987 panic("UMA: Increase vm.boot_pages");
988 /*
989 * Now that we've booted reset these users to their real allocator.
990 */
991#ifdef UMA_MD_SMALL_ALLOC
992 keg->uk_allocf = (keg->uk_ppera > 1) ? page_alloc : uma_small_alloc;
993#else
994 keg->uk_allocf = page_alloc;
995#endif
996 return keg->uk_allocf(zone, bytes, pflag, wait);
997}
998
999/*
1000 * Allocates a number of pages from the system
1001 *
1002 * Arguments:
1003 * bytes The number of bytes requested
1004 * wait Shall we wait?
1005 *
1006 * Returns:
1007 * A pointer to the alloced memory or possibly
1008 * NULL if M_NOWAIT is set.
1009 */
1010static void *
1011page_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait)
1012{
1013 void *p; /* Returned page */
1014
1015 *pflag = UMA_SLAB_KMEM;
1016 p = (void *) kmem_malloc(kmem_map, bytes, wait);
1017
1018 return (p);
1019}
1020
1021/*
1022 * Allocates a number of pages from within an object
1023 *
1024 * Arguments:
1025 * bytes The number of bytes requested
1026 * wait Shall we wait?
1027 *
1028 * Returns:
1029 * A pointer to the alloced memory or possibly
1030 * NULL if M_NOWAIT is set.
1031 */
1032static void *
218static void *page_alloc(uma_zone_t, int, u_int8_t *, int);
219static void *startup_alloc(uma_zone_t, int, u_int8_t *, int);
220static void page_free(void *, int, u_int8_t);
221static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int);
222static void cache_drain(uma_zone_t);
223static void bucket_drain(uma_zone_t, uma_bucket_t);
224static void bucket_cache_drain(uma_zone_t zone);
225static int keg_ctor(void *, int, void *, int);
226static void keg_dtor(void *, int, void *);
227static int zone_ctor(void *, int, void *, int);
228static void zone_dtor(void *, int, void *);
229static int zero_init(void *, int, int);
230static void keg_small_init(uma_keg_t keg);
231static void keg_large_init(uma_keg_t keg);
232static void zone_foreach(void (*zfunc)(uma_zone_t));
233static void zone_timeout(uma_zone_t zone);
234static int hash_alloc(struct uma_hash *);
235static int hash_expand(struct uma_hash *, struct uma_hash *);
236static void hash_free(struct uma_hash *hash);
237static void uma_timeout(void *);
238static void uma_startup3(void);
239static void *zone_alloc_item(uma_zone_t, void *, int);
240static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip,
241 int);
242static void bucket_enable(void);
243static void bucket_init(void);
244static uma_bucket_t bucket_alloc(int, int);
245static void bucket_free(uma_bucket_t);
246static void bucket_zone_drain(void);
247static int zone_alloc_bucket(uma_zone_t zone, int flags);
248static uma_slab_t zone_fetch_slab(uma_zone_t zone, uma_keg_t last, int flags);
249static uma_slab_t zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int flags);
250static void *slab_alloc_item(uma_zone_t zone, uma_slab_t slab);
251static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit,
252 uma_fini fini, int align, u_int32_t flags);
253static inline void zone_relock(uma_zone_t zone, uma_keg_t keg);
254static inline void keg_relock(uma_keg_t keg, uma_zone_t zone);
255
256void uma_print_zone(uma_zone_t);
257void uma_print_stats(void);
258static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS);
259static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS);
260
261SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL);
262
263SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT,
264 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones");
265
266SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT,
267 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats");
268
269static int zone_warnings = 1;
270TUNABLE_INT("vm.zone_warnings", &zone_warnings);
271SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RW, &zone_warnings, 0,
272 "Warn when UMA zones becomes full");
273
274/*
275 * This routine checks to see whether or not it's safe to enable buckets.
276 */
277
278static void
279bucket_enable(void)
280{
281 bucketdisable = vm_page_count_min();
282}
283
284/*
285 * Initialize bucket_zones, the array of zones of buckets of various sizes.
286 *
287 * For each zone, calculate the memory required for each bucket, consisting
288 * of the header and an array of pointers. Initialize bucket_size[] to point
289 * the range of appropriate bucket sizes at the zone.
290 */
291static void
292bucket_init(void)
293{
294 struct uma_bucket_zone *ubz;
295 int i;
296 int j;
297
298 for (i = 0, j = 0; bucket_zones[j].ubz_entries != 0; j++) {
299 int size;
300
301 ubz = &bucket_zones[j];
302 size = roundup(sizeof(struct uma_bucket), sizeof(void *));
303 size += sizeof(void *) * ubz->ubz_entries;
304 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size,
305 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
306 UMA_ZFLAG_INTERNAL | UMA_ZFLAG_BUCKET);
307 for (; i <= ubz->ubz_entries; i += (1 << BUCKET_SHIFT))
308 bucket_size[i >> BUCKET_SHIFT] = j;
309 }
310}
311
312/*
313 * Given a desired number of entries for a bucket, return the zone from which
314 * to allocate the bucket.
315 */
316static struct uma_bucket_zone *
317bucket_zone_lookup(int entries)
318{
319 int idx;
320
321 idx = howmany(entries, 1 << BUCKET_SHIFT);
322 return (&bucket_zones[bucket_size[idx]]);
323}
324
325static uma_bucket_t
326bucket_alloc(int entries, int bflags)
327{
328 struct uma_bucket_zone *ubz;
329 uma_bucket_t bucket;
330
331 /*
332 * This is to stop us from allocating per cpu buckets while we're
333 * running out of vm.boot_pages. Otherwise, we would exhaust the
334 * boot pages. This also prevents us from allocating buckets in
335 * low memory situations.
336 */
337 if (bucketdisable)
338 return (NULL);
339
340 ubz = bucket_zone_lookup(entries);
341 bucket = zone_alloc_item(ubz->ubz_zone, NULL, bflags);
342 if (bucket) {
343#ifdef INVARIANTS
344 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries);
345#endif
346 bucket->ub_cnt = 0;
347 bucket->ub_entries = ubz->ubz_entries;
348 }
349
350 return (bucket);
351}
352
353static void
354bucket_free(uma_bucket_t bucket)
355{
356 struct uma_bucket_zone *ubz;
357
358 ubz = bucket_zone_lookup(bucket->ub_entries);
359 zone_free_item(ubz->ubz_zone, bucket, NULL, SKIP_NONE,
360 ZFREE_STATFREE);
361}
362
363static void
364bucket_zone_drain(void)
365{
366 struct uma_bucket_zone *ubz;
367
368 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
369 zone_drain(ubz->ubz_zone);
370}
371
372static void
373zone_log_warning(uma_zone_t zone)
374{
375 static const struct timeval warninterval = { 300, 0 };
376
377 if (!zone_warnings || zone->uz_warning == NULL)
378 return;
379
380 if (ratecheck(&zone->uz_ratecheck, &warninterval))
381 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning);
382}
383
384static inline uma_keg_t
385zone_first_keg(uma_zone_t zone)
386{
387
388 return (LIST_FIRST(&zone->uz_kegs)->kl_keg);
389}
390
391static void
392zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t))
393{
394 uma_klink_t klink;
395
396 LIST_FOREACH(klink, &zone->uz_kegs, kl_link)
397 kegfn(klink->kl_keg);
398}
399
400/*
401 * Routine called by timeout which is used to fire off some time interval
402 * based calculations. (stats, hash size, etc.)
403 *
404 * Arguments:
405 * arg Unused
406 *
407 * Returns:
408 * Nothing
409 */
410static void
411uma_timeout(void *unused)
412{
413 bucket_enable();
414 zone_foreach(zone_timeout);
415
416 /* Reschedule this event */
417 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
418}
419
420/*
421 * Routine to perform timeout driven calculations. This expands the
422 * hashes and does per cpu statistics aggregation.
423 *
424 * Returns nothing.
425 */
426static void
427keg_timeout(uma_keg_t keg)
428{
429
430 KEG_LOCK(keg);
431 /*
432 * Expand the keg hash table.
433 *
434 * This is done if the number of slabs is larger than the hash size.
435 * What I'm trying to do here is completely reduce collisions. This
436 * may be a little aggressive. Should I allow for two collisions max?
437 */
438 if (keg->uk_flags & UMA_ZONE_HASH &&
439 keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) {
440 struct uma_hash newhash;
441 struct uma_hash oldhash;
442 int ret;
443
444 /*
445 * This is so involved because allocating and freeing
446 * while the keg lock is held will lead to deadlock.
447 * I have to do everything in stages and check for
448 * races.
449 */
450 newhash = keg->uk_hash;
451 KEG_UNLOCK(keg);
452 ret = hash_alloc(&newhash);
453 KEG_LOCK(keg);
454 if (ret) {
455 if (hash_expand(&keg->uk_hash, &newhash)) {
456 oldhash = keg->uk_hash;
457 keg->uk_hash = newhash;
458 } else
459 oldhash = newhash;
460
461 KEG_UNLOCK(keg);
462 hash_free(&oldhash);
463 KEG_LOCK(keg);
464 }
465 }
466 KEG_UNLOCK(keg);
467}
468
469static void
470zone_timeout(uma_zone_t zone)
471{
472
473 zone_foreach_keg(zone, &keg_timeout);
474}
475
476/*
477 * Allocate and zero fill the next sized hash table from the appropriate
478 * backing store.
479 *
480 * Arguments:
481 * hash A new hash structure with the old hash size in uh_hashsize
482 *
483 * Returns:
484 * 1 on sucess and 0 on failure.
485 */
486static int
487hash_alloc(struct uma_hash *hash)
488{
489 int oldsize;
490 int alloc;
491
492 oldsize = hash->uh_hashsize;
493
494 /* We're just going to go to a power of two greater */
495 if (oldsize) {
496 hash->uh_hashsize = oldsize * 2;
497 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize;
498 hash->uh_slab_hash = (struct slabhead *)malloc(alloc,
499 M_UMAHASH, M_NOWAIT);
500 } else {
501 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT;
502 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL,
503 M_WAITOK);
504 hash->uh_hashsize = UMA_HASH_SIZE_INIT;
505 }
506 if (hash->uh_slab_hash) {
507 bzero(hash->uh_slab_hash, alloc);
508 hash->uh_hashmask = hash->uh_hashsize - 1;
509 return (1);
510 }
511
512 return (0);
513}
514
515/*
516 * Expands the hash table for HASH zones. This is done from zone_timeout
517 * to reduce collisions. This must not be done in the regular allocation
518 * path, otherwise, we can recurse on the vm while allocating pages.
519 *
520 * Arguments:
521 * oldhash The hash you want to expand
522 * newhash The hash structure for the new table
523 *
524 * Returns:
525 * Nothing
526 *
527 * Discussion:
528 */
529static int
530hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash)
531{
532 uma_slab_t slab;
533 int hval;
534 int i;
535
536 if (!newhash->uh_slab_hash)
537 return (0);
538
539 if (oldhash->uh_hashsize >= newhash->uh_hashsize)
540 return (0);
541
542 /*
543 * I need to investigate hash algorithms for resizing without a
544 * full rehash.
545 */
546
547 for (i = 0; i < oldhash->uh_hashsize; i++)
548 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) {
549 slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]);
550 SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink);
551 hval = UMA_HASH(newhash, slab->us_data);
552 SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval],
553 slab, us_hlink);
554 }
555
556 return (1);
557}
558
559/*
560 * Free the hash bucket to the appropriate backing store.
561 *
562 * Arguments:
563 * slab_hash The hash bucket we're freeing
564 * hashsize The number of entries in that hash bucket
565 *
566 * Returns:
567 * Nothing
568 */
569static void
570hash_free(struct uma_hash *hash)
571{
572 if (hash->uh_slab_hash == NULL)
573 return;
574 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT)
575 zone_free_item(hashzone,
576 hash->uh_slab_hash, NULL, SKIP_NONE, ZFREE_STATFREE);
577 else
578 free(hash->uh_slab_hash, M_UMAHASH);
579}
580
581/*
582 * Frees all outstanding items in a bucket
583 *
584 * Arguments:
585 * zone The zone to free to, must be unlocked.
586 * bucket The free/alloc bucket with items, cpu queue must be locked.
587 *
588 * Returns:
589 * Nothing
590 */
591
592static void
593bucket_drain(uma_zone_t zone, uma_bucket_t bucket)
594{
595 void *item;
596
597 if (bucket == NULL)
598 return;
599
600 while (bucket->ub_cnt > 0) {
601 bucket->ub_cnt--;
602 item = bucket->ub_bucket[bucket->ub_cnt];
603#ifdef INVARIANTS
604 bucket->ub_bucket[bucket->ub_cnt] = NULL;
605 KASSERT(item != NULL,
606 ("bucket_drain: botched ptr, item is NULL"));
607#endif
608 zone_free_item(zone, item, NULL, SKIP_DTOR, 0);
609 }
610}
611
612/*
613 * Drains the per cpu caches for a zone.
614 *
615 * NOTE: This may only be called while the zone is being turn down, and not
616 * during normal operation. This is necessary in order that we do not have
617 * to migrate CPUs to drain the per-CPU caches.
618 *
619 * Arguments:
620 * zone The zone to drain, must be unlocked.
621 *
622 * Returns:
623 * Nothing
624 */
625static void
626cache_drain(uma_zone_t zone)
627{
628 uma_cache_t cache;
629 int cpu;
630
631 /*
632 * XXX: It is safe to not lock the per-CPU caches, because we're
633 * tearing down the zone anyway. I.e., there will be no further use
634 * of the caches at this point.
635 *
636 * XXX: It would good to be able to assert that the zone is being
637 * torn down to prevent improper use of cache_drain().
638 *
639 * XXX: We lock the zone before passing into bucket_cache_drain() as
640 * it is used elsewhere. Should the tear-down path be made special
641 * there in some form?
642 */
643 CPU_FOREACH(cpu) {
644 cache = &zone->uz_cpu[cpu];
645 bucket_drain(zone, cache->uc_allocbucket);
646 bucket_drain(zone, cache->uc_freebucket);
647 if (cache->uc_allocbucket != NULL)
648 bucket_free(cache->uc_allocbucket);
649 if (cache->uc_freebucket != NULL)
650 bucket_free(cache->uc_freebucket);
651 cache->uc_allocbucket = cache->uc_freebucket = NULL;
652 }
653 ZONE_LOCK(zone);
654 bucket_cache_drain(zone);
655 ZONE_UNLOCK(zone);
656}
657
658/*
659 * Drain the cached buckets from a zone. Expects a locked zone on entry.
660 */
661static void
662bucket_cache_drain(uma_zone_t zone)
663{
664 uma_bucket_t bucket;
665
666 /*
667 * Drain the bucket queues and free the buckets, we just keep two per
668 * cpu (alloc/free).
669 */
670 while ((bucket = LIST_FIRST(&zone->uz_full_bucket)) != NULL) {
671 LIST_REMOVE(bucket, ub_link);
672 ZONE_UNLOCK(zone);
673 bucket_drain(zone, bucket);
674 bucket_free(bucket);
675 ZONE_LOCK(zone);
676 }
677
678 /* Now we do the free queue.. */
679 while ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) {
680 LIST_REMOVE(bucket, ub_link);
681 bucket_free(bucket);
682 }
683}
684
685/*
686 * Frees pages from a keg back to the system. This is done on demand from
687 * the pageout daemon.
688 *
689 * Returns nothing.
690 */
691static void
692keg_drain(uma_keg_t keg)
693{
694 struct slabhead freeslabs = { 0 };
695 uma_slab_t slab;
696 uma_slab_t n;
697 u_int8_t flags;
698 u_int8_t *mem;
699 int i;
700
701 /*
702 * We don't want to take pages from statically allocated kegs at this
703 * time
704 */
705 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL)
706 return;
707
708#ifdef UMA_DEBUG
709 printf("%s free items: %u\n", keg->uk_name, keg->uk_free);
710#endif
711 KEG_LOCK(keg);
712 if (keg->uk_free == 0)
713 goto finished;
714
715 slab = LIST_FIRST(&keg->uk_free_slab);
716 while (slab) {
717 n = LIST_NEXT(slab, us_link);
718
719 /* We have no where to free these to */
720 if (slab->us_flags & UMA_SLAB_BOOT) {
721 slab = n;
722 continue;
723 }
724
725 LIST_REMOVE(slab, us_link);
726 keg->uk_pages -= keg->uk_ppera;
727 keg->uk_free -= keg->uk_ipers;
728
729 if (keg->uk_flags & UMA_ZONE_HASH)
730 UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data);
731
732 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink);
733
734 slab = n;
735 }
736finished:
737 KEG_UNLOCK(keg);
738
739 while ((slab = SLIST_FIRST(&freeslabs)) != NULL) {
740 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink);
741 if (keg->uk_fini)
742 for (i = 0; i < keg->uk_ipers; i++)
743 keg->uk_fini(
744 slab->us_data + (keg->uk_rsize * i),
745 keg->uk_size);
746 flags = slab->us_flags;
747 mem = slab->us_data;
748
749 if (keg->uk_flags & UMA_ZONE_VTOSLAB) {
750 vm_object_t obj;
751
752 if (flags & UMA_SLAB_KMEM)
753 obj = kmem_object;
754 else if (flags & UMA_SLAB_KERNEL)
755 obj = kernel_object;
756 else
757 obj = NULL;
758 for (i = 0; i < keg->uk_ppera; i++)
759 vsetobj((vm_offset_t)mem + (i * PAGE_SIZE),
760 obj);
761 }
762 if (keg->uk_flags & UMA_ZONE_OFFPAGE)
763 zone_free_item(keg->uk_slabzone, slab, NULL,
764 SKIP_NONE, ZFREE_STATFREE);
765#ifdef UMA_DEBUG
766 printf("%s: Returning %d bytes.\n",
767 keg->uk_name, UMA_SLAB_SIZE * keg->uk_ppera);
768#endif
769 keg->uk_freef(mem, UMA_SLAB_SIZE * keg->uk_ppera, flags);
770 }
771}
772
773static void
774zone_drain_wait(uma_zone_t zone, int waitok)
775{
776
777 /*
778 * Set draining to interlock with zone_dtor() so we can release our
779 * locks as we go. Only dtor() should do a WAITOK call since it
780 * is the only call that knows the structure will still be available
781 * when it wakes up.
782 */
783 ZONE_LOCK(zone);
784 while (zone->uz_flags & UMA_ZFLAG_DRAINING) {
785 if (waitok == M_NOWAIT)
786 goto out;
787 mtx_unlock(&uma_mtx);
788 msleep(zone, zone->uz_lock, PVM, "zonedrain", 1);
789 mtx_lock(&uma_mtx);
790 }
791 zone->uz_flags |= UMA_ZFLAG_DRAINING;
792 bucket_cache_drain(zone);
793 ZONE_UNLOCK(zone);
794 /*
795 * The DRAINING flag protects us from being freed while
796 * we're running. Normally the uma_mtx would protect us but we
797 * must be able to release and acquire the right lock for each keg.
798 */
799 zone_foreach_keg(zone, &keg_drain);
800 ZONE_LOCK(zone);
801 zone->uz_flags &= ~UMA_ZFLAG_DRAINING;
802 wakeup(zone);
803out:
804 ZONE_UNLOCK(zone);
805}
806
807void
808zone_drain(uma_zone_t zone)
809{
810
811 zone_drain_wait(zone, M_NOWAIT);
812}
813
814/*
815 * Allocate a new slab for a keg. This does not insert the slab onto a list.
816 *
817 * Arguments:
818 * wait Shall we wait?
819 *
820 * Returns:
821 * The slab that was allocated or NULL if there is no memory and the
822 * caller specified M_NOWAIT.
823 */
824static uma_slab_t
825keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int wait)
826{
827 uma_slabrefcnt_t slabref;
828 uma_alloc allocf;
829 uma_slab_t slab;
830 u_int8_t *mem;
831 u_int8_t flags;
832 int i;
833
834 mtx_assert(&keg->uk_lock, MA_OWNED);
835 slab = NULL;
836
837#ifdef UMA_DEBUG
838 printf("slab_zalloc: Allocating a new slab for %s\n", keg->uk_name);
839#endif
840 allocf = keg->uk_allocf;
841 KEG_UNLOCK(keg);
842
843 if (keg->uk_flags & UMA_ZONE_OFFPAGE) {
844 slab = zone_alloc_item(keg->uk_slabzone, NULL, wait);
845 if (slab == NULL) {
846 KEG_LOCK(keg);
847 return NULL;
848 }
849 }
850
851 /*
852 * This reproduces the old vm_zone behavior of zero filling pages the
853 * first time they are added to a zone.
854 *
855 * Malloced items are zeroed in uma_zalloc.
856 */
857
858 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0)
859 wait |= M_ZERO;
860 else
861 wait &= ~M_ZERO;
862
863 if (keg->uk_flags & UMA_ZONE_NODUMP)
864 wait |= M_NODUMP;
865
866 /* zone is passed for legacy reasons. */
867 mem = allocf(zone, keg->uk_ppera * UMA_SLAB_SIZE, &flags, wait);
868 if (mem == NULL) {
869 if (keg->uk_flags & UMA_ZONE_OFFPAGE)
870 zone_free_item(keg->uk_slabzone, slab, NULL,
871 SKIP_NONE, ZFREE_STATFREE);
872 KEG_LOCK(keg);
873 return (NULL);
874 }
875
876 /* Point the slab into the allocated memory */
877 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE))
878 slab = (uma_slab_t )(mem + keg->uk_pgoff);
879
880 if (keg->uk_flags & UMA_ZONE_VTOSLAB)
881 for (i = 0; i < keg->uk_ppera; i++)
882 vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab);
883
884 slab->us_keg = keg;
885 slab->us_data = mem;
886 slab->us_freecount = keg->uk_ipers;
887 slab->us_firstfree = 0;
888 slab->us_flags = flags;
889
890 if (keg->uk_flags & UMA_ZONE_REFCNT) {
891 slabref = (uma_slabrefcnt_t)slab;
892 for (i = 0; i < keg->uk_ipers; i++) {
893 slabref->us_freelist[i].us_refcnt = 0;
894 slabref->us_freelist[i].us_item = i+1;
895 }
896 } else {
897 for (i = 0; i < keg->uk_ipers; i++)
898 slab->us_freelist[i].us_item = i+1;
899 }
900
901 if (keg->uk_init != NULL) {
902 for (i = 0; i < keg->uk_ipers; i++)
903 if (keg->uk_init(slab->us_data + (keg->uk_rsize * i),
904 keg->uk_size, wait) != 0)
905 break;
906 if (i != keg->uk_ipers) {
907 if (keg->uk_fini != NULL) {
908 for (i--; i > -1; i--)
909 keg->uk_fini(slab->us_data +
910 (keg->uk_rsize * i),
911 keg->uk_size);
912 }
913 if (keg->uk_flags & UMA_ZONE_VTOSLAB) {
914 vm_object_t obj;
915
916 if (flags & UMA_SLAB_KMEM)
917 obj = kmem_object;
918 else if (flags & UMA_SLAB_KERNEL)
919 obj = kernel_object;
920 else
921 obj = NULL;
922 for (i = 0; i < keg->uk_ppera; i++)
923 vsetobj((vm_offset_t)mem +
924 (i * PAGE_SIZE), obj);
925 }
926 if (keg->uk_flags & UMA_ZONE_OFFPAGE)
927 zone_free_item(keg->uk_slabzone, slab,
928 NULL, SKIP_NONE, ZFREE_STATFREE);
929 keg->uk_freef(mem, UMA_SLAB_SIZE * keg->uk_ppera,
930 flags);
931 KEG_LOCK(keg);
932 return (NULL);
933 }
934 }
935 KEG_LOCK(keg);
936
937 if (keg->uk_flags & UMA_ZONE_HASH)
938 UMA_HASH_INSERT(&keg->uk_hash, slab, mem);
939
940 keg->uk_pages += keg->uk_ppera;
941 keg->uk_free += keg->uk_ipers;
942
943 return (slab);
944}
945
946/*
947 * This function is intended to be used early on in place of page_alloc() so
948 * that we may use the boot time page cache to satisfy allocations before
949 * the VM is ready.
950 */
951static void *
952startup_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait)
953{
954 uma_keg_t keg;
955 uma_slab_t tmps;
956 int pages, check_pages;
957
958 keg = zone_first_keg(zone);
959 pages = howmany(bytes, PAGE_SIZE);
960 check_pages = pages - 1;
961 KASSERT(pages > 0, ("startup_alloc can't reserve 0 pages\n"));
962
963 /*
964 * Check our small startup cache to see if it has pages remaining.
965 */
966 mtx_lock(&uma_boot_pages_mtx);
967
968 /* First check if we have enough room. */
969 tmps = LIST_FIRST(&uma_boot_pages);
970 while (tmps != NULL && check_pages-- > 0)
971 tmps = LIST_NEXT(tmps, us_link);
972 if (tmps != NULL) {
973 /*
974 * It's ok to lose tmps references. The last one will
975 * have tmps->us_data pointing to the start address of
976 * "pages" contiguous pages of memory.
977 */
978 while (pages-- > 0) {
979 tmps = LIST_FIRST(&uma_boot_pages);
980 LIST_REMOVE(tmps, us_link);
981 }
982 mtx_unlock(&uma_boot_pages_mtx);
983 *pflag = tmps->us_flags;
984 return (tmps->us_data);
985 }
986 mtx_unlock(&uma_boot_pages_mtx);
987 if (booted < UMA_STARTUP2)
988 panic("UMA: Increase vm.boot_pages");
989 /*
990 * Now that we've booted reset these users to their real allocator.
991 */
992#ifdef UMA_MD_SMALL_ALLOC
993 keg->uk_allocf = (keg->uk_ppera > 1) ? page_alloc : uma_small_alloc;
994#else
995 keg->uk_allocf = page_alloc;
996#endif
997 return keg->uk_allocf(zone, bytes, pflag, wait);
998}
999
1000/*
1001 * Allocates a number of pages from the system
1002 *
1003 * Arguments:
1004 * bytes The number of bytes requested
1005 * wait Shall we wait?
1006 *
1007 * Returns:
1008 * A pointer to the alloced memory or possibly
1009 * NULL if M_NOWAIT is set.
1010 */
1011static void *
1012page_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait)
1013{
1014 void *p; /* Returned page */
1015
1016 *pflag = UMA_SLAB_KMEM;
1017 p = (void *) kmem_malloc(kmem_map, bytes, wait);
1018
1019 return (p);
1020}
1021
1022/*
1023 * Allocates a number of pages from within an object
1024 *
1025 * Arguments:
1026 * bytes The number of bytes requested
1027 * wait Shall we wait?
1028 *
1029 * Returns:
1030 * A pointer to the alloced memory or possibly
1031 * NULL if M_NOWAIT is set.
1032 */
1033static void *
1033obj_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
1034noobj_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
1034{
1035{
1035 vm_object_t object;
1036 TAILQ_HEAD(, vm_page) alloctail;
1037 u_long npages;
1036 vm_offset_t retkva, zkva;
1038 vm_offset_t retkva, zkva;
1037 vm_page_t p;
1038 int pages, startpages;
1039 vm_page_t p, p_next;
1039 uma_keg_t keg;
1040
1040 uma_keg_t keg;
1041
1042 TAILQ_INIT(&alloctail);
1041 keg = zone_first_keg(zone);
1043 keg = zone_first_keg(zone);
1042 object = keg->uk_obj;
1043 retkva = 0;
1044
1044
1045 /*
1046 * This looks a little weird since we're getting one page at a time.
1047 */
1048 VM_OBJECT_LOCK(object);
1049 p = TAILQ_LAST(&object->memq, pglist);
1050 pages = p != NULL ? p->pindex + 1 : 0;
1051 startpages = pages;
1052 zkva = keg->uk_kva + pages * PAGE_SIZE;
1053 for (; bytes > 0; bytes -= PAGE_SIZE) {
1054 p = vm_page_alloc(object, pages,
1055 VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED);
1056 if (p == NULL) {
1057 if (pages != startpages)
1058 pmap_qremove(retkva, pages - startpages);
1059 while (pages != startpages) {
1060 pages--;
1061 p = TAILQ_LAST(&object->memq, pglist);
1062 vm_page_unwire(p, 0);
1063 vm_page_free(p);
1064 }
1065 retkva = 0;
1066 goto done;
1045 npages = howmany(bytes, PAGE_SIZE);
1046 while (npages > 0) {
1047 p = vm_page_alloc(NULL, 0, VM_ALLOC_INTERRUPT |
1048 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ);
1049 if (p != NULL) {
1050 /*
1051 * Since the page does not belong to an object, its
1052 * listq is unused.
1053 */
1054 TAILQ_INSERT_TAIL(&alloctail, p, listq);
1055 npages--;
1056 continue;
1067 }
1057 }
1058 if (wait & M_WAITOK) {
1059 VM_WAIT;
1060 continue;
1061 }
1062
1063 /*
1064 * Page allocation failed, free intermediate pages and
1065 * exit.
1066 */
1067 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) {
1068 vm_page_unwire(p, 0);
1069 vm_page_free(p);
1070 }
1071 return (NULL);
1072 }
1073 *flags = UMA_SLAB_PRIV;
1074 zkva = keg->uk_kva +
1075 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes));
1076 retkva = zkva;
1077 TAILQ_FOREACH(p, &alloctail, listq) {
1068 pmap_qenter(zkva, &p, 1);
1078 pmap_qenter(zkva, &p, 1);
1069 if (retkva == 0)
1070 retkva = zkva;
1071 zkva += PAGE_SIZE;
1079 zkva += PAGE_SIZE;
1072 pages += 1;
1073 }
1080 }
1074done:
1075 VM_OBJECT_UNLOCK(object);
1076 *flags = UMA_SLAB_PRIV;
1077
1078 return ((void *)retkva);
1079}
1080
1081/*
1082 * Frees a number of pages to the system
1083 *
1084 * Arguments:
1085 * mem A pointer to the memory to be freed
1086 * size The size of the memory being freed
1087 * flags The original p->us_flags field
1088 *
1089 * Returns:
1090 * Nothing
1091 */
1092static void
1093page_free(void *mem, int size, u_int8_t flags)
1094{
1095 vm_map_t map;
1096
1097 if (flags & UMA_SLAB_KMEM)
1098 map = kmem_map;
1099 else if (flags & UMA_SLAB_KERNEL)
1100 map = kernel_map;
1101 else
1102 panic("UMA: page_free used with invalid flags %d", flags);
1103
1104 kmem_free(map, (vm_offset_t)mem, size);
1105}
1106
1107/*
1108 * Zero fill initializer
1109 *
1110 * Arguments/Returns follow uma_init specifications
1111 */
1112static int
1113zero_init(void *mem, int size, int flags)
1114{
1115 bzero(mem, size);
1116 return (0);
1117}
1118
1119/*
1120 * Finish creating a small uma keg. This calculates ipers, and the keg size.
1121 *
1122 * Arguments
1123 * keg The zone we should initialize
1124 *
1125 * Returns
1126 * Nothing
1127 */
1128static void
1129keg_small_init(uma_keg_t keg)
1130{
1131 u_int rsize;
1132 u_int memused;
1133 u_int wastedspace;
1134 u_int shsize;
1135
1136 KASSERT(keg != NULL, ("Keg is null in keg_small_init"));
1137 rsize = keg->uk_size;
1138
1139 if (rsize < UMA_SMALLEST_UNIT)
1140 rsize = UMA_SMALLEST_UNIT;
1141 if (rsize & keg->uk_align)
1142 rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1);
1143
1144 keg->uk_rsize = rsize;
1145 keg->uk_ppera = 1;
1146
1147 if (keg->uk_flags & UMA_ZONE_OFFPAGE) {
1148 shsize = 0;
1149 } else if (keg->uk_flags & UMA_ZONE_REFCNT) {
1150 rsize += UMA_FRITMREF_SZ; /* linkage & refcnt */
1151 shsize = sizeof(struct uma_slab_refcnt);
1152 } else {
1153 rsize += UMA_FRITM_SZ; /* Account for linkage */
1154 shsize = sizeof(struct uma_slab);
1155 }
1156
1157 keg->uk_ipers = (UMA_SLAB_SIZE - shsize) / rsize;
1158 KASSERT(keg->uk_ipers != 0, ("keg_small_init: ipers is 0"));
1159 memused = keg->uk_ipers * rsize + shsize;
1160 wastedspace = UMA_SLAB_SIZE - memused;
1161
1162 /*
1163 * We can't do OFFPAGE if we're internal or if we've been
1164 * asked to not go to the VM for buckets. If we do this we
1165 * may end up going to the VM (kmem_map) for slabs which we
1166 * do not want to do if we're UMA_ZFLAG_CACHEONLY as a
1167 * result of UMA_ZONE_VM, which clearly forbids it.
1168 */
1169 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) ||
1170 (keg->uk_flags & UMA_ZFLAG_CACHEONLY))
1171 return;
1172
1173 if ((wastedspace >= UMA_MAX_WASTE) &&
1174 (keg->uk_ipers < (UMA_SLAB_SIZE / keg->uk_rsize))) {
1175 keg->uk_ipers = UMA_SLAB_SIZE / keg->uk_rsize;
1176 KASSERT(keg->uk_ipers <= 255,
1177 ("keg_small_init: keg->uk_ipers too high!"));
1178#ifdef UMA_DEBUG
1179 printf("UMA decided we need offpage slab headers for "
1180 "keg: %s, calculated wastedspace = %d, "
1181 "maximum wasted space allowed = %d, "
1182 "calculated ipers = %d, "
1183 "new wasted space = %d\n", keg->uk_name, wastedspace,
1184 UMA_MAX_WASTE, keg->uk_ipers,
1185 UMA_SLAB_SIZE - keg->uk_ipers * keg->uk_rsize);
1186#endif
1187 keg->uk_flags |= UMA_ZONE_OFFPAGE;
1188 if ((keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
1189 keg->uk_flags |= UMA_ZONE_HASH;
1190 }
1191}
1192
1193/*
1194 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs. Just give in and do
1195 * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be
1196 * more complicated.
1197 *
1198 * Arguments
1199 * keg The keg we should initialize
1200 *
1201 * Returns
1202 * Nothing
1203 */
1204static void
1205keg_large_init(uma_keg_t keg)
1206{
1207 int pages;
1208
1209 KASSERT(keg != NULL, ("Keg is null in keg_large_init"));
1210 KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0,
1211 ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg"));
1212
1213 pages = keg->uk_size / UMA_SLAB_SIZE;
1214
1215 /* Account for remainder */
1216 if ((pages * UMA_SLAB_SIZE) < keg->uk_size)
1217 pages++;
1218
1219 keg->uk_ppera = pages;
1220 keg->uk_ipers = 1;
1221 keg->uk_rsize = keg->uk_size;
1222
1223 /* We can't do OFFPAGE if we're internal, bail out here. */
1224 if (keg->uk_flags & UMA_ZFLAG_INTERNAL)
1225 return;
1226
1227 keg->uk_flags |= UMA_ZONE_OFFPAGE;
1228 if ((keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
1229 keg->uk_flags |= UMA_ZONE_HASH;
1230}
1231
1232static void
1233keg_cachespread_init(uma_keg_t keg)
1234{
1235 int alignsize;
1236 int trailer;
1237 int pages;
1238 int rsize;
1239
1240 alignsize = keg->uk_align + 1;
1241 rsize = keg->uk_size;
1242 /*
1243 * We want one item to start on every align boundary in a page. To
1244 * do this we will span pages. We will also extend the item by the
1245 * size of align if it is an even multiple of align. Otherwise, it
1246 * would fall on the same boundary every time.
1247 */
1248 if (rsize & keg->uk_align)
1249 rsize = (rsize & ~keg->uk_align) + alignsize;
1250 if ((rsize & alignsize) == 0)
1251 rsize += alignsize;
1252 trailer = rsize - keg->uk_size;
1253 pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE;
1254 pages = MIN(pages, (128 * 1024) / PAGE_SIZE);
1255 keg->uk_rsize = rsize;
1256 keg->uk_ppera = pages;
1257 keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize;
1258 keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB;
1259 KASSERT(keg->uk_ipers <= uma_max_ipers,
1260 ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__,
1261 keg->uk_ipers));
1262}
1263
1264/*
1265 * Keg header ctor. This initializes all fields, locks, etc. And inserts
1266 * the keg onto the global keg list.
1267 *
1268 * Arguments/Returns follow uma_ctor specifications
1269 * udata Actually uma_kctor_args
1270 */
1271static int
1272keg_ctor(void *mem, int size, void *udata, int flags)
1273{
1274 struct uma_kctor_args *arg = udata;
1275 uma_keg_t keg = mem;
1276 uma_zone_t zone;
1277
1278 bzero(keg, size);
1279 keg->uk_size = arg->size;
1280 keg->uk_init = arg->uminit;
1281 keg->uk_fini = arg->fini;
1282 keg->uk_align = arg->align;
1283 keg->uk_free = 0;
1284 keg->uk_pages = 0;
1285 keg->uk_flags = arg->flags;
1286 keg->uk_allocf = page_alloc;
1287 keg->uk_freef = page_free;
1288 keg->uk_recurse = 0;
1289 keg->uk_slabzone = NULL;
1290
1291 /*
1292 * The master zone is passed to us at keg-creation time.
1293 */
1294 zone = arg->zone;
1295 keg->uk_name = zone->uz_name;
1296
1297 if (arg->flags & UMA_ZONE_VM)
1298 keg->uk_flags |= UMA_ZFLAG_CACHEONLY;
1299
1300 if (arg->flags & UMA_ZONE_ZINIT)
1301 keg->uk_init = zero_init;
1302
1303 if (arg->flags & UMA_ZONE_REFCNT || arg->flags & UMA_ZONE_MALLOC)
1304 keg->uk_flags |= UMA_ZONE_VTOSLAB;
1305
1306 /*
1307 * The +UMA_FRITM_SZ added to uk_size is to account for the
1308 * linkage that is added to the size in keg_small_init(). If
1309 * we don't account for this here then we may end up in
1310 * keg_small_init() with a calculated 'ipers' of 0.
1311 */
1312 if (keg->uk_flags & UMA_ZONE_REFCNT) {
1313 if (keg->uk_flags & UMA_ZONE_CACHESPREAD)
1314 keg_cachespread_init(keg);
1315 else if ((keg->uk_size+UMA_FRITMREF_SZ) >
1316 (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt)))
1317 keg_large_init(keg);
1318 else
1319 keg_small_init(keg);
1320 } else {
1321 if (keg->uk_flags & UMA_ZONE_CACHESPREAD)
1322 keg_cachespread_init(keg);
1323 else if ((keg->uk_size+UMA_FRITM_SZ) >
1324 (UMA_SLAB_SIZE - sizeof(struct uma_slab)))
1325 keg_large_init(keg);
1326 else
1327 keg_small_init(keg);
1328 }
1329
1330 if (keg->uk_flags & UMA_ZONE_OFFPAGE) {
1331 if (keg->uk_flags & UMA_ZONE_REFCNT)
1332 keg->uk_slabzone = slabrefzone;
1333 else
1334 keg->uk_slabzone = slabzone;
1335 }
1336
1337 /*
1338 * If we haven't booted yet we need allocations to go through the
1339 * startup cache until the vm is ready.
1340 */
1341 if (keg->uk_ppera == 1) {
1342#ifdef UMA_MD_SMALL_ALLOC
1343 keg->uk_allocf = uma_small_alloc;
1344 keg->uk_freef = uma_small_free;
1345
1346 if (booted < UMA_STARTUP)
1347 keg->uk_allocf = startup_alloc;
1348#else
1349 if (booted < UMA_STARTUP2)
1350 keg->uk_allocf = startup_alloc;
1351#endif
1352 } else if (booted < UMA_STARTUP2 &&
1353 (keg->uk_flags & UMA_ZFLAG_INTERNAL))
1354 keg->uk_allocf = startup_alloc;
1355
1356 /*
1357 * Initialize keg's lock (shared among zones).
1358 */
1359 if (arg->flags & UMA_ZONE_MTXCLASS)
1360 KEG_LOCK_INIT(keg, 1);
1361 else
1362 KEG_LOCK_INIT(keg, 0);
1363
1364 /*
1365 * If we're putting the slab header in the actual page we need to
1366 * figure out where in each page it goes. This calculates a right
1367 * justified offset into the memory on an ALIGN_PTR boundary.
1368 */
1369 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) {
1370 u_int totsize;
1371
1372 /* Size of the slab struct and free list */
1373 if (keg->uk_flags & UMA_ZONE_REFCNT)
1374 totsize = sizeof(struct uma_slab_refcnt) +
1375 keg->uk_ipers * UMA_FRITMREF_SZ;
1376 else
1377 totsize = sizeof(struct uma_slab) +
1378 keg->uk_ipers * UMA_FRITM_SZ;
1379
1380 if (totsize & UMA_ALIGN_PTR)
1381 totsize = (totsize & ~UMA_ALIGN_PTR) +
1382 (UMA_ALIGN_PTR + 1);
1383 keg->uk_pgoff = (UMA_SLAB_SIZE * keg->uk_ppera) - totsize;
1384
1385 if (keg->uk_flags & UMA_ZONE_REFCNT)
1386 totsize = keg->uk_pgoff + sizeof(struct uma_slab_refcnt)
1387 + keg->uk_ipers * UMA_FRITMREF_SZ;
1388 else
1389 totsize = keg->uk_pgoff + sizeof(struct uma_slab)
1390 + keg->uk_ipers * UMA_FRITM_SZ;
1391
1392 /*
1393 * The only way the following is possible is if with our
1394 * UMA_ALIGN_PTR adjustments we are now bigger than
1395 * UMA_SLAB_SIZE. I haven't checked whether this is
1396 * mathematically possible for all cases, so we make
1397 * sure here anyway.
1398 */
1399 if (totsize > UMA_SLAB_SIZE * keg->uk_ppera) {
1400 printf("zone %s ipers %d rsize %d size %d\n",
1401 zone->uz_name, keg->uk_ipers, keg->uk_rsize,
1402 keg->uk_size);
1403 panic("UMA slab won't fit.");
1404 }
1405 }
1406
1407 if (keg->uk_flags & UMA_ZONE_HASH)
1408 hash_alloc(&keg->uk_hash);
1409
1410#ifdef UMA_DEBUG
1411 printf("UMA: %s(%p) size %d(%d) flags %#x ipers %d ppera %d out %d free %d\n",
1412 zone->uz_name, zone, keg->uk_size, keg->uk_rsize, keg->uk_flags,
1413 keg->uk_ipers, keg->uk_ppera,
1414 (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free);
1415#endif
1416
1417 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link);
1418
1419 mtx_lock(&uma_mtx);
1420 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link);
1421 mtx_unlock(&uma_mtx);
1422 return (0);
1423}
1424
1425/*
1426 * Zone header ctor. This initializes all fields, locks, etc.
1427 *
1428 * Arguments/Returns follow uma_ctor specifications
1429 * udata Actually uma_zctor_args
1430 */
1431static int
1432zone_ctor(void *mem, int size, void *udata, int flags)
1433{
1434 struct uma_zctor_args *arg = udata;
1435 uma_zone_t zone = mem;
1436 uma_zone_t z;
1437 uma_keg_t keg;
1438
1439 bzero(zone, size);
1440 zone->uz_name = arg->name;
1441 zone->uz_ctor = arg->ctor;
1442 zone->uz_dtor = arg->dtor;
1443 zone->uz_slab = zone_fetch_slab;
1444 zone->uz_init = NULL;
1445 zone->uz_fini = NULL;
1446 zone->uz_allocs = 0;
1447 zone->uz_frees = 0;
1448 zone->uz_fails = 0;
1449 zone->uz_sleeps = 0;
1450 zone->uz_fills = zone->uz_count = 0;
1451 zone->uz_flags = 0;
1452 zone->uz_warning = NULL;
1453 timevalclear(&zone->uz_ratecheck);
1454 keg = arg->keg;
1455
1456 if (arg->flags & UMA_ZONE_SECONDARY) {
1457 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg"));
1458 zone->uz_init = arg->uminit;
1459 zone->uz_fini = arg->fini;
1460 zone->uz_lock = &keg->uk_lock;
1461 zone->uz_flags |= UMA_ZONE_SECONDARY;
1462 mtx_lock(&uma_mtx);
1463 ZONE_LOCK(zone);
1464 LIST_FOREACH(z, &keg->uk_zones, uz_link) {
1465 if (LIST_NEXT(z, uz_link) == NULL) {
1466 LIST_INSERT_AFTER(z, zone, uz_link);
1467 break;
1468 }
1469 }
1470 ZONE_UNLOCK(zone);
1471 mtx_unlock(&uma_mtx);
1472 } else if (keg == NULL) {
1473 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini,
1474 arg->align, arg->flags)) == NULL)
1475 return (ENOMEM);
1476 } else {
1477 struct uma_kctor_args karg;
1478 int error;
1479
1480 /* We should only be here from uma_startup() */
1481 karg.size = arg->size;
1482 karg.uminit = arg->uminit;
1483 karg.fini = arg->fini;
1484 karg.align = arg->align;
1485 karg.flags = arg->flags;
1486 karg.zone = zone;
1487 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg,
1488 flags);
1489 if (error)
1490 return (error);
1491 }
1492 /*
1493 * Link in the first keg.
1494 */
1495 zone->uz_klink.kl_keg = keg;
1496 LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link);
1497 zone->uz_lock = &keg->uk_lock;
1498 zone->uz_size = keg->uk_size;
1499 zone->uz_flags |= (keg->uk_flags &
1500 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT));
1501
1502 /*
1503 * Some internal zones don't have room allocated for the per cpu
1504 * caches. If we're internal, bail out here.
1505 */
1506 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) {
1507 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0,
1508 ("Secondary zone requested UMA_ZFLAG_INTERNAL"));
1509 return (0);
1510 }
1511
1512 if (keg->uk_flags & UMA_ZONE_MAXBUCKET)
1513 zone->uz_count = BUCKET_MAX;
1514 else if (keg->uk_ipers <= BUCKET_MAX)
1515 zone->uz_count = keg->uk_ipers;
1516 else
1517 zone->uz_count = BUCKET_MAX;
1518 return (0);
1519}
1520
1521/*
1522 * Keg header dtor. This frees all data, destroys locks, frees the hash
1523 * table and removes the keg from the global list.
1524 *
1525 * Arguments/Returns follow uma_dtor specifications
1526 * udata unused
1527 */
1528static void
1529keg_dtor(void *arg, int size, void *udata)
1530{
1531 uma_keg_t keg;
1532
1533 keg = (uma_keg_t)arg;
1534 KEG_LOCK(keg);
1535 if (keg->uk_free != 0) {
1536 printf("Freed UMA keg was not empty (%d items). "
1537 " Lost %d pages of memory.\n",
1538 keg->uk_free, keg->uk_pages);
1539 }
1540 KEG_UNLOCK(keg);
1541
1542 hash_free(&keg->uk_hash);
1543
1544 KEG_LOCK_FINI(keg);
1545}
1546
1547/*
1548 * Zone header dtor.
1549 *
1550 * Arguments/Returns follow uma_dtor specifications
1551 * udata unused
1552 */
1553static void
1554zone_dtor(void *arg, int size, void *udata)
1555{
1556 uma_klink_t klink;
1557 uma_zone_t zone;
1558 uma_keg_t keg;
1559
1560 zone = (uma_zone_t)arg;
1561 keg = zone_first_keg(zone);
1562
1563 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL))
1564 cache_drain(zone);
1565
1566 mtx_lock(&uma_mtx);
1567 LIST_REMOVE(zone, uz_link);
1568 mtx_unlock(&uma_mtx);
1569 /*
1570 * XXX there are some races here where
1571 * the zone can be drained but zone lock
1572 * released and then refilled before we
1573 * remove it... we dont care for now
1574 */
1575 zone_drain_wait(zone, M_WAITOK);
1576 /*
1577 * Unlink all of our kegs.
1578 */
1579 while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) {
1580 klink->kl_keg = NULL;
1581 LIST_REMOVE(klink, kl_link);
1582 if (klink == &zone->uz_klink)
1583 continue;
1584 free(klink, M_TEMP);
1585 }
1586 /*
1587 * We only destroy kegs from non secondary zones.
1588 */
1589 if ((zone->uz_flags & UMA_ZONE_SECONDARY) == 0) {
1590 mtx_lock(&uma_mtx);
1591 LIST_REMOVE(keg, uk_link);
1592 mtx_unlock(&uma_mtx);
1593 zone_free_item(kegs, keg, NULL, SKIP_NONE,
1594 ZFREE_STATFREE);
1595 }
1596}
1597
1598/*
1599 * Traverses every zone in the system and calls a callback
1600 *
1601 * Arguments:
1602 * zfunc A pointer to a function which accepts a zone
1603 * as an argument.
1604 *
1605 * Returns:
1606 * Nothing
1607 */
1608static void
1609zone_foreach(void (*zfunc)(uma_zone_t))
1610{
1611 uma_keg_t keg;
1612 uma_zone_t zone;
1613
1614 mtx_lock(&uma_mtx);
1615 LIST_FOREACH(keg, &uma_kegs, uk_link) {
1616 LIST_FOREACH(zone, &keg->uk_zones, uz_link)
1617 zfunc(zone);
1618 }
1619 mtx_unlock(&uma_mtx);
1620}
1621
1622/* Public functions */
1623/* See uma.h */
1624void
1625uma_startup(void *bootmem, int boot_pages)
1626{
1627 struct uma_zctor_args args;
1628 uma_slab_t slab;
1629 u_int slabsize;
1630 u_int objsize, totsize, wsize;
1631 int i;
1632
1633#ifdef UMA_DEBUG
1634 printf("Creating uma keg headers zone and keg.\n");
1635#endif
1636 mtx_init(&uma_mtx, "UMA lock", NULL, MTX_DEF);
1637
1638 /*
1639 * Figure out the maximum number of items-per-slab we'll have if
1640 * we're using the OFFPAGE slab header to track free items, given
1641 * all possible object sizes and the maximum desired wastage
1642 * (UMA_MAX_WASTE).
1643 *
1644 * We iterate until we find an object size for
1645 * which the calculated wastage in keg_small_init() will be
1646 * enough to warrant OFFPAGE. Since wastedspace versus objsize
1647 * is an overall increasing see-saw function, we find the smallest
1648 * objsize such that the wastage is always acceptable for objects
1649 * with that objsize or smaller. Since a smaller objsize always
1650 * generates a larger possible uma_max_ipers, we use this computed
1651 * objsize to calculate the largest ipers possible. Since the
1652 * ipers calculated for OFFPAGE slab headers is always larger than
1653 * the ipers initially calculated in keg_small_init(), we use
1654 * the former's equation (UMA_SLAB_SIZE / keg->uk_rsize) to
1655 * obtain the maximum ipers possible for offpage slab headers.
1656 *
1657 * It should be noted that ipers versus objsize is an inversly
1658 * proportional function which drops off rather quickly so as
1659 * long as our UMA_MAX_WASTE is such that the objsize we calculate
1660 * falls into the portion of the inverse relation AFTER the steep
1661 * falloff, then uma_max_ipers shouldn't be too high (~10 on i386).
1662 *
1663 * Note that we have 8-bits (1 byte) to use as a freelist index
1664 * inside the actual slab header itself and this is enough to
1665 * accomodate us. In the worst case, a UMA_SMALLEST_UNIT sized
1666 * object with offpage slab header would have ipers =
1667 * UMA_SLAB_SIZE / UMA_SMALLEST_UNIT (currently = 256), which is
1668 * 1 greater than what our byte-integer freelist index can
1669 * accomodate, but we know that this situation never occurs as
1670 * for UMA_SMALLEST_UNIT-sized objects, we will never calculate
1671 * that we need to go to offpage slab headers. Or, if we do,
1672 * then we trap that condition below and panic in the INVARIANTS case.
1673 */
1674 wsize = UMA_SLAB_SIZE - sizeof(struct uma_slab) - UMA_MAX_WASTE;
1675 totsize = wsize;
1676 objsize = UMA_SMALLEST_UNIT;
1677 while (totsize >= wsize) {
1678 totsize = (UMA_SLAB_SIZE - sizeof(struct uma_slab)) /
1679 (objsize + UMA_FRITM_SZ);
1680 totsize *= (UMA_FRITM_SZ + objsize);
1681 objsize++;
1682 }
1683 if (objsize > UMA_SMALLEST_UNIT)
1684 objsize--;
1685 uma_max_ipers = MAX(UMA_SLAB_SIZE / objsize, 64);
1686
1687 wsize = UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt) - UMA_MAX_WASTE;
1688 totsize = wsize;
1689 objsize = UMA_SMALLEST_UNIT;
1690 while (totsize >= wsize) {
1691 totsize = (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt)) /
1692 (objsize + UMA_FRITMREF_SZ);
1693 totsize *= (UMA_FRITMREF_SZ + objsize);
1694 objsize++;
1695 }
1696 if (objsize > UMA_SMALLEST_UNIT)
1697 objsize--;
1698 uma_max_ipers_ref = MAX(UMA_SLAB_SIZE / objsize, 64);
1699
1700 KASSERT((uma_max_ipers_ref <= 255) && (uma_max_ipers <= 255),
1701 ("uma_startup: calculated uma_max_ipers values too large!"));
1702
1703#ifdef UMA_DEBUG
1704 printf("Calculated uma_max_ipers (for OFFPAGE) is %d\n", uma_max_ipers);
1705 printf("Calculated uma_max_ipers_ref (for OFFPAGE) is %d\n",
1706 uma_max_ipers_ref);
1707#endif
1708
1709 /* "manually" create the initial zone */
1710 args.name = "UMA Kegs";
1711 args.size = sizeof(struct uma_keg);
1712 args.ctor = keg_ctor;
1713 args.dtor = keg_dtor;
1714 args.uminit = zero_init;
1715 args.fini = NULL;
1716 args.keg = &masterkeg;
1717 args.align = 32 - 1;
1718 args.flags = UMA_ZFLAG_INTERNAL;
1719 /* The initial zone has no Per cpu queues so it's smaller */
1720 zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK);
1721
1722#ifdef UMA_DEBUG
1723 printf("Filling boot free list.\n");
1724#endif
1725 for (i = 0; i < boot_pages; i++) {
1726 slab = (uma_slab_t)((u_int8_t *)bootmem + (i * UMA_SLAB_SIZE));
1727 slab->us_data = (u_int8_t *)slab;
1728 slab->us_flags = UMA_SLAB_BOOT;
1729 LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link);
1730 }
1731 mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF);
1732
1733#ifdef UMA_DEBUG
1734 printf("Creating uma zone headers zone and keg.\n");
1735#endif
1736 args.name = "UMA Zones";
1737 args.size = sizeof(struct uma_zone) +
1738 (sizeof(struct uma_cache) * (mp_maxid + 1));
1739 args.ctor = zone_ctor;
1740 args.dtor = zone_dtor;
1741 args.uminit = zero_init;
1742 args.fini = NULL;
1743 args.keg = NULL;
1744 args.align = 32 - 1;
1745 args.flags = UMA_ZFLAG_INTERNAL;
1746 /* The initial zone has no Per cpu queues so it's smaller */
1747 zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK);
1748
1749#ifdef UMA_DEBUG
1750 printf("Initializing pcpu cache locks.\n");
1751#endif
1752#ifdef UMA_DEBUG
1753 printf("Creating slab and hash zones.\n");
1754#endif
1755
1756 /*
1757 * This is the max number of free list items we'll have with
1758 * offpage slabs.
1759 */
1760 slabsize = uma_max_ipers * UMA_FRITM_SZ;
1761 slabsize += sizeof(struct uma_slab);
1762
1763 /* Now make a zone for slab headers */
1764 slabzone = uma_zcreate("UMA Slabs",
1765 slabsize,
1766 NULL, NULL, NULL, NULL,
1767 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
1768
1769 /*
1770 * We also create a zone for the bigger slabs with reference
1771 * counts in them, to accomodate UMA_ZONE_REFCNT zones.
1772 */
1773 slabsize = uma_max_ipers_ref * UMA_FRITMREF_SZ;
1774 slabsize += sizeof(struct uma_slab_refcnt);
1775 slabrefzone = uma_zcreate("UMA RCntSlabs",
1776 slabsize,
1777 NULL, NULL, NULL, NULL,
1778 UMA_ALIGN_PTR,
1779 UMA_ZFLAG_INTERNAL);
1780
1781 hashzone = uma_zcreate("UMA Hash",
1782 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT,
1783 NULL, NULL, NULL, NULL,
1784 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
1785
1786 bucket_init();
1787
1788 booted = UMA_STARTUP;
1789
1790#ifdef UMA_DEBUG
1791 printf("UMA startup complete.\n");
1792#endif
1793}
1794
1795/* see uma.h */
1796void
1797uma_startup2(void)
1798{
1799 booted = UMA_STARTUP2;
1800 bucket_enable();
1801#ifdef UMA_DEBUG
1802 printf("UMA startup2 complete.\n");
1803#endif
1804}
1805
1806/*
1807 * Initialize our callout handle
1808 *
1809 */
1810
1811static void
1812uma_startup3(void)
1813{
1814#ifdef UMA_DEBUG
1815 printf("Starting callout.\n");
1816#endif
1817 callout_init(&uma_callout, CALLOUT_MPSAFE);
1818 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
1819#ifdef UMA_DEBUG
1820 printf("UMA startup3 complete.\n");
1821#endif
1822}
1823
1824static uma_keg_t
1825uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini,
1826 int align, u_int32_t flags)
1827{
1828 struct uma_kctor_args args;
1829
1830 args.size = size;
1831 args.uminit = uminit;
1832 args.fini = fini;
1833 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align;
1834 args.flags = flags;
1835 args.zone = zone;
1836 return (zone_alloc_item(kegs, &args, M_WAITOK));
1837}
1838
1839/* See uma.h */
1840void
1841uma_set_align(int align)
1842{
1843
1844 if (align != UMA_ALIGN_CACHE)
1845 uma_align_cache = align;
1846}
1847
1848/* See uma.h */
1849uma_zone_t
1850uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor,
1851 uma_init uminit, uma_fini fini, int align, u_int32_t flags)
1852
1853{
1854 struct uma_zctor_args args;
1855
1856 /* This stuff is essential for the zone ctor */
1857 args.name = name;
1858 args.size = size;
1859 args.ctor = ctor;
1860 args.dtor = dtor;
1861 args.uminit = uminit;
1862 args.fini = fini;
1863 args.align = align;
1864 args.flags = flags;
1865 args.keg = NULL;
1866
1867 return (zone_alloc_item(zones, &args, M_WAITOK));
1868}
1869
1870/* See uma.h */
1871uma_zone_t
1872uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor,
1873 uma_init zinit, uma_fini zfini, uma_zone_t master)
1874{
1875 struct uma_zctor_args args;
1876 uma_keg_t keg;
1877
1878 keg = zone_first_keg(master);
1879 args.name = name;
1880 args.size = keg->uk_size;
1881 args.ctor = ctor;
1882 args.dtor = dtor;
1883 args.uminit = zinit;
1884 args.fini = zfini;
1885 args.align = keg->uk_align;
1886 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY;
1887 args.keg = keg;
1888
1889 /* XXX Attaches only one keg of potentially many. */
1890 return (zone_alloc_item(zones, &args, M_WAITOK));
1891}
1892
1893static void
1894zone_lock_pair(uma_zone_t a, uma_zone_t b)
1895{
1896 if (a < b) {
1897 ZONE_LOCK(a);
1898 mtx_lock_flags(b->uz_lock, MTX_DUPOK);
1899 } else {
1900 ZONE_LOCK(b);
1901 mtx_lock_flags(a->uz_lock, MTX_DUPOK);
1902 }
1903}
1904
1905static void
1906zone_unlock_pair(uma_zone_t a, uma_zone_t b)
1907{
1908
1909 ZONE_UNLOCK(a);
1910 ZONE_UNLOCK(b);
1911}
1912
1913int
1914uma_zsecond_add(uma_zone_t zone, uma_zone_t master)
1915{
1916 uma_klink_t klink;
1917 uma_klink_t kl;
1918 int error;
1919
1920 error = 0;
1921 klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO);
1922
1923 zone_lock_pair(zone, master);
1924 /*
1925 * zone must use vtoslab() to resolve objects and must already be
1926 * a secondary.
1927 */
1928 if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY))
1929 != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) {
1930 error = EINVAL;
1931 goto out;
1932 }
1933 /*
1934 * The new master must also use vtoslab().
1935 */
1936 if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) {
1937 error = EINVAL;
1938 goto out;
1939 }
1940 /*
1941 * Both must either be refcnt, or not be refcnt.
1942 */
1943 if ((zone->uz_flags & UMA_ZONE_REFCNT) !=
1944 (master->uz_flags & UMA_ZONE_REFCNT)) {
1945 error = EINVAL;
1946 goto out;
1947 }
1948 /*
1949 * The underlying object must be the same size. rsize
1950 * may be different.
1951 */
1952 if (master->uz_size != zone->uz_size) {
1953 error = E2BIG;
1954 goto out;
1955 }
1956 /*
1957 * Put it at the end of the list.
1958 */
1959 klink->kl_keg = zone_first_keg(master);
1960 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) {
1961 if (LIST_NEXT(kl, kl_link) == NULL) {
1962 LIST_INSERT_AFTER(kl, klink, kl_link);
1963 break;
1964 }
1965 }
1966 klink = NULL;
1967 zone->uz_flags |= UMA_ZFLAG_MULTI;
1968 zone->uz_slab = zone_fetch_slab_multi;
1969
1970out:
1971 zone_unlock_pair(zone, master);
1972 if (klink != NULL)
1973 free(klink, M_TEMP);
1974
1975 return (error);
1976}
1977
1978
1979/* See uma.h */
1980void
1981uma_zdestroy(uma_zone_t zone)
1982{
1983
1984 zone_free_item(zones, zone, NULL, SKIP_NONE, ZFREE_STATFREE);
1985}
1986
1987/* See uma.h */
1988void *
1989uma_zalloc_arg(uma_zone_t zone, void *udata, int flags)
1990{
1991 void *item;
1992 uma_cache_t cache;
1993 uma_bucket_t bucket;
1994 int cpu;
1995
1996 /* This is the fast path allocation */
1997#ifdef UMA_DEBUG_ALLOC_1
1998 printf("Allocating one item from %s(%p)\n", zone->uz_name, zone);
1999#endif
2000 CTR3(KTR_UMA, "uma_zalloc_arg thread %x zone %s flags %d", curthread,
2001 zone->uz_name, flags);
2002
2003 if (flags & M_WAITOK) {
2004 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2005 "uma_zalloc_arg: zone \"%s\"", zone->uz_name);
2006 }
2007#ifdef DEBUG_MEMGUARD
2008 if (memguard_cmp_zone(zone)) {
2009 item = memguard_alloc(zone->uz_size, flags);
2010 if (item != NULL) {
2011 /*
2012 * Avoid conflict with the use-after-free
2013 * protecting infrastructure from INVARIANTS.
2014 */
2015 if (zone->uz_init != NULL &&
2016 zone->uz_init != mtrash_init &&
2017 zone->uz_init(item, zone->uz_size, flags) != 0)
2018 return (NULL);
2019 if (zone->uz_ctor != NULL &&
2020 zone->uz_ctor != mtrash_ctor &&
2021 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) {
2022 zone->uz_fini(item, zone->uz_size);
2023 return (NULL);
2024 }
2025 return (item);
2026 }
2027 /* This is unfortunate but should not be fatal. */
2028 }
2029#endif
2030 /*
2031 * If possible, allocate from the per-CPU cache. There are two
2032 * requirements for safe access to the per-CPU cache: (1) the thread
2033 * accessing the cache must not be preempted or yield during access,
2034 * and (2) the thread must not migrate CPUs without switching which
2035 * cache it accesses. We rely on a critical section to prevent
2036 * preemption and migration. We release the critical section in
2037 * order to acquire the zone mutex if we are unable to allocate from
2038 * the current cache; when we re-acquire the critical section, we
2039 * must detect and handle migration if it has occurred.
2040 */
2041zalloc_restart:
2042 critical_enter();
2043 cpu = curcpu;
2044 cache = &zone->uz_cpu[cpu];
2045
2046zalloc_start:
2047 bucket = cache->uc_allocbucket;
2048
2049 if (bucket) {
2050 if (bucket->ub_cnt > 0) {
2051 bucket->ub_cnt--;
2052 item = bucket->ub_bucket[bucket->ub_cnt];
2053#ifdef INVARIANTS
2054 bucket->ub_bucket[bucket->ub_cnt] = NULL;
2055#endif
2056 KASSERT(item != NULL,
2057 ("uma_zalloc: Bucket pointer mangled."));
2058 cache->uc_allocs++;
2059 critical_exit();
2060#ifdef INVARIANTS
2061 ZONE_LOCK(zone);
2062 uma_dbg_alloc(zone, NULL, item);
2063 ZONE_UNLOCK(zone);
2064#endif
2065 if (zone->uz_ctor != NULL) {
2066 if (zone->uz_ctor(item, zone->uz_size,
2067 udata, flags) != 0) {
2068 zone_free_item(zone, item, udata,
2069 SKIP_DTOR, ZFREE_STATFAIL |
2070 ZFREE_STATFREE);
2071 return (NULL);
2072 }
2073 }
2074 if (flags & M_ZERO)
2075 bzero(item, zone->uz_size);
2076 return (item);
2077 } else if (cache->uc_freebucket) {
2078 /*
2079 * We have run out of items in our allocbucket.
2080 * See if we can switch with our free bucket.
2081 */
2082 if (cache->uc_freebucket->ub_cnt > 0) {
2083#ifdef UMA_DEBUG_ALLOC
2084 printf("uma_zalloc: Swapping empty with"
2085 " alloc.\n");
2086#endif
2087 bucket = cache->uc_freebucket;
2088 cache->uc_freebucket = cache->uc_allocbucket;
2089 cache->uc_allocbucket = bucket;
2090
2091 goto zalloc_start;
2092 }
2093 }
2094 }
2095 /*
2096 * Attempt to retrieve the item from the per-CPU cache has failed, so
2097 * we must go back to the zone. This requires the zone lock, so we
2098 * must drop the critical section, then re-acquire it when we go back
2099 * to the cache. Since the critical section is released, we may be
2100 * preempted or migrate. As such, make sure not to maintain any
2101 * thread-local state specific to the cache from prior to releasing
2102 * the critical section.
2103 */
2104 critical_exit();
2105 ZONE_LOCK(zone);
2106 critical_enter();
2107 cpu = curcpu;
2108 cache = &zone->uz_cpu[cpu];
2109 bucket = cache->uc_allocbucket;
2110 if (bucket != NULL) {
2111 if (bucket->ub_cnt > 0) {
2112 ZONE_UNLOCK(zone);
2113 goto zalloc_start;
2114 }
2115 bucket = cache->uc_freebucket;
2116 if (bucket != NULL && bucket->ub_cnt > 0) {
2117 ZONE_UNLOCK(zone);
2118 goto zalloc_start;
2119 }
2120 }
2121
2122 /* Since we have locked the zone we may as well send back our stats */
2123 zone->uz_allocs += cache->uc_allocs;
2124 cache->uc_allocs = 0;
2125 zone->uz_frees += cache->uc_frees;
2126 cache->uc_frees = 0;
2127
2128 /* Our old one is now a free bucket */
2129 if (cache->uc_allocbucket) {
2130 KASSERT(cache->uc_allocbucket->ub_cnt == 0,
2131 ("uma_zalloc_arg: Freeing a non free bucket."));
2132 LIST_INSERT_HEAD(&zone->uz_free_bucket,
2133 cache->uc_allocbucket, ub_link);
2134 cache->uc_allocbucket = NULL;
2135 }
2136
2137 /* Check the free list for a new alloc bucket */
2138 if ((bucket = LIST_FIRST(&zone->uz_full_bucket)) != NULL) {
2139 KASSERT(bucket->ub_cnt != 0,
2140 ("uma_zalloc_arg: Returning an empty bucket."));
2141
2142 LIST_REMOVE(bucket, ub_link);
2143 cache->uc_allocbucket = bucket;
2144 ZONE_UNLOCK(zone);
2145 goto zalloc_start;
2146 }
2147 /* We are no longer associated with this CPU. */
2148 critical_exit();
2149
2150 /* Bump up our uz_count so we get here less */
2151 if (zone->uz_count < BUCKET_MAX)
2152 zone->uz_count++;
2153
2154 /*
2155 * Now lets just fill a bucket and put it on the free list. If that
2156 * works we'll restart the allocation from the begining.
2157 */
2158 if (zone_alloc_bucket(zone, flags)) {
2159 ZONE_UNLOCK(zone);
2160 goto zalloc_restart;
2161 }
2162 ZONE_UNLOCK(zone);
2163 /*
2164 * We may not be able to get a bucket so return an actual item.
2165 */
2166#ifdef UMA_DEBUG
2167 printf("uma_zalloc_arg: Bucketzone returned NULL\n");
2168#endif
2169
2170 item = zone_alloc_item(zone, udata, flags);
2171 return (item);
2172}
2173
2174static uma_slab_t
2175keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int flags)
2176{
2177 uma_slab_t slab;
2178
2179 mtx_assert(&keg->uk_lock, MA_OWNED);
2180 slab = NULL;
2181
2182 for (;;) {
2183 /*
2184 * Find a slab with some space. Prefer slabs that are partially
2185 * used over those that are totally full. This helps to reduce
2186 * fragmentation.
2187 */
2188 if (keg->uk_free != 0) {
2189 if (!LIST_EMPTY(&keg->uk_part_slab)) {
2190 slab = LIST_FIRST(&keg->uk_part_slab);
2191 } else {
2192 slab = LIST_FIRST(&keg->uk_free_slab);
2193 LIST_REMOVE(slab, us_link);
2194 LIST_INSERT_HEAD(&keg->uk_part_slab, slab,
2195 us_link);
2196 }
2197 MPASS(slab->us_keg == keg);
2198 return (slab);
2199 }
2200
2201 /*
2202 * M_NOVM means don't ask at all!
2203 */
2204 if (flags & M_NOVM)
2205 break;
2206
2207 if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) {
2208 keg->uk_flags |= UMA_ZFLAG_FULL;
2209 /*
2210 * If this is not a multi-zone, set the FULL bit.
2211 * Otherwise slab_multi() takes care of it.
2212 */
2213 if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0) {
2214 zone->uz_flags |= UMA_ZFLAG_FULL;
2215 zone_log_warning(zone);
2216 }
2217 if (flags & M_NOWAIT)
2218 break;
2219 zone->uz_sleeps++;
2220 msleep(keg, &keg->uk_lock, PVM, "keglimit", 0);
2221 continue;
2222 }
2223 keg->uk_recurse++;
2224 slab = keg_alloc_slab(keg, zone, flags);
2225 keg->uk_recurse--;
2226 /*
2227 * If we got a slab here it's safe to mark it partially used
2228 * and return. We assume that the caller is going to remove
2229 * at least one item.
2230 */
2231 if (slab) {
2232 MPASS(slab->us_keg == keg);
2233 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
2234 return (slab);
2235 }
2236 /*
2237 * We might not have been able to get a slab but another cpu
2238 * could have while we were unlocked. Check again before we
2239 * fail.
2240 */
2241 flags |= M_NOVM;
2242 }
2243 return (slab);
2244}
2245
2246static inline void
2247zone_relock(uma_zone_t zone, uma_keg_t keg)
2248{
2249 if (zone->uz_lock != &keg->uk_lock) {
2250 KEG_UNLOCK(keg);
2251 ZONE_LOCK(zone);
2252 }
2253}
2254
2255static inline void
2256keg_relock(uma_keg_t keg, uma_zone_t zone)
2257{
2258 if (zone->uz_lock != &keg->uk_lock) {
2259 ZONE_UNLOCK(zone);
2260 KEG_LOCK(keg);
2261 }
2262}
2263
2264static uma_slab_t
2265zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int flags)
2266{
2267 uma_slab_t slab;
2268
2269 if (keg == NULL)
2270 keg = zone_first_keg(zone);
2271 /*
2272 * This is to prevent us from recursively trying to allocate
2273 * buckets. The problem is that if an allocation forces us to
2274 * grab a new bucket we will call page_alloc, which will go off
2275 * and cause the vm to allocate vm_map_entries. If we need new
2276 * buckets there too we will recurse in kmem_alloc and bad
2277 * things happen. So instead we return a NULL bucket, and make
2278 * the code that allocates buckets smart enough to deal with it
2279 */
2280 if (keg->uk_flags & UMA_ZFLAG_BUCKET && keg->uk_recurse != 0)
2281 return (NULL);
2282
2283 for (;;) {
2284 slab = keg_fetch_slab(keg, zone, flags);
2285 if (slab)
2286 return (slab);
2287 if (flags & (M_NOWAIT | M_NOVM))
2288 break;
2289 }
2290 return (NULL);
2291}
2292
2293/*
2294 * uma_zone_fetch_slab_multi: Fetches a slab from one available keg. Returns
2295 * with the keg locked. Caller must call zone_relock() afterwards if the
2296 * zone lock is required. On NULL the zone lock is held.
2297 *
2298 * The last pointer is used to seed the search. It is not required.
2299 */
2300static uma_slab_t
2301zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int rflags)
2302{
2303 uma_klink_t klink;
2304 uma_slab_t slab;
2305 uma_keg_t keg;
2306 int flags;
2307 int empty;
2308 int full;
2309
2310 /*
2311 * Don't wait on the first pass. This will skip limit tests
2312 * as well. We don't want to block if we can find a provider
2313 * without blocking.
2314 */
2315 flags = (rflags & ~M_WAITOK) | M_NOWAIT;
2316 /*
2317 * Use the last slab allocated as a hint for where to start
2318 * the search.
2319 */
2320 if (last) {
2321 slab = keg_fetch_slab(last, zone, flags);
2322 if (slab)
2323 return (slab);
2324 zone_relock(zone, last);
2325 last = NULL;
2326 }
2327 /*
2328 * Loop until we have a slab incase of transient failures
2329 * while M_WAITOK is specified. I'm not sure this is 100%
2330 * required but we've done it for so long now.
2331 */
2332 for (;;) {
2333 empty = 0;
2334 full = 0;
2335 /*
2336 * Search the available kegs for slabs. Be careful to hold the
2337 * correct lock while calling into the keg layer.
2338 */
2339 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) {
2340 keg = klink->kl_keg;
2341 keg_relock(keg, zone);
2342 if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) {
2343 slab = keg_fetch_slab(keg, zone, flags);
2344 if (slab)
2345 return (slab);
2346 }
2347 if (keg->uk_flags & UMA_ZFLAG_FULL)
2348 full++;
2349 else
2350 empty++;
2351 zone_relock(zone, keg);
2352 }
2353 if (rflags & (M_NOWAIT | M_NOVM))
2354 break;
2355 flags = rflags;
2356 /*
2357 * All kegs are full. XXX We can't atomically check all kegs
2358 * and sleep so just sleep for a short period and retry.
2359 */
2360 if (full && !empty) {
2361 zone->uz_flags |= UMA_ZFLAG_FULL;
2362 zone->uz_sleeps++;
2363 zone_log_warning(zone);
2364 msleep(zone, zone->uz_lock, PVM, "zonelimit", hz/100);
2365 zone->uz_flags &= ~UMA_ZFLAG_FULL;
2366 continue;
2367 }
2368 }
2369 return (NULL);
2370}
2371
2372static void *
2373slab_alloc_item(uma_zone_t zone, uma_slab_t slab)
2374{
2375 uma_keg_t keg;
2376 uma_slabrefcnt_t slabref;
2377 void *item;
2378 u_int8_t freei;
2379
2380 keg = slab->us_keg;
2381 mtx_assert(&keg->uk_lock, MA_OWNED);
2382
2383 freei = slab->us_firstfree;
2384 if (keg->uk_flags & UMA_ZONE_REFCNT) {
2385 slabref = (uma_slabrefcnt_t)slab;
2386 slab->us_firstfree = slabref->us_freelist[freei].us_item;
2387 } else {
2388 slab->us_firstfree = slab->us_freelist[freei].us_item;
2389 }
2390 item = slab->us_data + (keg->uk_rsize * freei);
2391
2392 slab->us_freecount--;
2393 keg->uk_free--;
2394#ifdef INVARIANTS
2395 uma_dbg_alloc(zone, slab, item);
2396#endif
2397 /* Move this slab to the full list */
2398 if (slab->us_freecount == 0) {
2399 LIST_REMOVE(slab, us_link);
2400 LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link);
2401 }
2402
2403 return (item);
2404}
2405
2406static int
2407zone_alloc_bucket(uma_zone_t zone, int flags)
2408{
2409 uma_bucket_t bucket;
2410 uma_slab_t slab;
2411 uma_keg_t keg;
2412 int16_t saved;
2413 int max, origflags = flags;
2414
2415 /*
2416 * Try this zone's free list first so we don't allocate extra buckets.
2417 */
2418 if ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) {
2419 KASSERT(bucket->ub_cnt == 0,
2420 ("zone_alloc_bucket: Bucket on free list is not empty."));
2421 LIST_REMOVE(bucket, ub_link);
2422 } else {
2423 int bflags;
2424
2425 bflags = (flags & ~M_ZERO);
2426 if (zone->uz_flags & UMA_ZFLAG_CACHEONLY)
2427 bflags |= M_NOVM;
2428
2429 ZONE_UNLOCK(zone);
2430 bucket = bucket_alloc(zone->uz_count, bflags);
2431 ZONE_LOCK(zone);
2432 }
2433
2434 if (bucket == NULL) {
2435 return (0);
2436 }
2437
2438#ifdef SMP
2439 /*
2440 * This code is here to limit the number of simultaneous bucket fills
2441 * for any given zone to the number of per cpu caches in this zone. This
2442 * is done so that we don't allocate more memory than we really need.
2443 */
2444 if (zone->uz_fills >= mp_ncpus)
2445 goto done;
2446
2447#endif
2448 zone->uz_fills++;
2449
2450 max = MIN(bucket->ub_entries, zone->uz_count);
2451 /* Try to keep the buckets totally full */
2452 saved = bucket->ub_cnt;
2453 slab = NULL;
2454 keg = NULL;
2455 while (bucket->ub_cnt < max &&
2456 (slab = zone->uz_slab(zone, keg, flags)) != NULL) {
2457 keg = slab->us_keg;
2458 while (slab->us_freecount && bucket->ub_cnt < max) {
2459 bucket->ub_bucket[bucket->ub_cnt++] =
2460 slab_alloc_item(zone, slab);
2461 }
2462
2463 /* Don't block on the next fill */
2464 flags |= M_NOWAIT;
2465 }
2466 if (slab)
2467 zone_relock(zone, keg);
2468
2469 /*
2470 * We unlock here because we need to call the zone's init.
2471 * It should be safe to unlock because the slab dealt with
2472 * above is already on the appropriate list within the keg
2473 * and the bucket we filled is not yet on any list, so we
2474 * own it.
2475 */
2476 if (zone->uz_init != NULL) {
2477 int i;
2478
2479 ZONE_UNLOCK(zone);
2480 for (i = saved; i < bucket->ub_cnt; i++)
2481 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size,
2482 origflags) != 0)
2483 break;
2484 /*
2485 * If we couldn't initialize the whole bucket, put the
2486 * rest back onto the freelist.
2487 */
2488 if (i != bucket->ub_cnt) {
2489 int j;
2490
2491 for (j = i; j < bucket->ub_cnt; j++) {
2492 zone_free_item(zone, bucket->ub_bucket[j],
2493 NULL, SKIP_FINI, 0);
2494#ifdef INVARIANTS
2495 bucket->ub_bucket[j] = NULL;
2496#endif
2497 }
2498 bucket->ub_cnt = i;
2499 }
2500 ZONE_LOCK(zone);
2501 }
2502
2503 zone->uz_fills--;
2504 if (bucket->ub_cnt != 0) {
2505 LIST_INSERT_HEAD(&zone->uz_full_bucket,
2506 bucket, ub_link);
2507 return (1);
2508 }
2509#ifdef SMP
2510done:
2511#endif
2512 bucket_free(bucket);
2513
2514 return (0);
2515}
2516/*
2517 * Allocates an item for an internal zone
2518 *
2519 * Arguments
2520 * zone The zone to alloc for.
2521 * udata The data to be passed to the constructor.
2522 * flags M_WAITOK, M_NOWAIT, M_ZERO.
2523 *
2524 * Returns
2525 * NULL if there is no memory and M_NOWAIT is set
2526 * An item if successful
2527 */
2528
2529static void *
2530zone_alloc_item(uma_zone_t zone, void *udata, int flags)
2531{
2532 uma_slab_t slab;
2533 void *item;
2534
2535 item = NULL;
2536
2537#ifdef UMA_DEBUG_ALLOC
2538 printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone);
2539#endif
2540 ZONE_LOCK(zone);
2541
2542 slab = zone->uz_slab(zone, NULL, flags);
2543 if (slab == NULL) {
2544 zone->uz_fails++;
2545 ZONE_UNLOCK(zone);
2546 return (NULL);
2547 }
2548
2549 item = slab_alloc_item(zone, slab);
2550
2551 zone_relock(zone, slab->us_keg);
2552 zone->uz_allocs++;
2553 ZONE_UNLOCK(zone);
2554
2555 /*
2556 * We have to call both the zone's init (not the keg's init)
2557 * and the zone's ctor. This is because the item is going from
2558 * a keg slab directly to the user, and the user is expecting it
2559 * to be both zone-init'd as well as zone-ctor'd.
2560 */
2561 if (zone->uz_init != NULL) {
2562 if (zone->uz_init(item, zone->uz_size, flags) != 0) {
2563 zone_free_item(zone, item, udata, SKIP_FINI,
2564 ZFREE_STATFAIL | ZFREE_STATFREE);
2565 return (NULL);
2566 }
2567 }
2568 if (zone->uz_ctor != NULL) {
2569 if (zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) {
2570 zone_free_item(zone, item, udata, SKIP_DTOR,
2571 ZFREE_STATFAIL | ZFREE_STATFREE);
2572 return (NULL);
2573 }
2574 }
2575 if (flags & M_ZERO)
2576 bzero(item, zone->uz_size);
2577
2578 return (item);
2579}
2580
2581/* See uma.h */
2582void
2583uma_zfree_arg(uma_zone_t zone, void *item, void *udata)
2584{
2585 uma_cache_t cache;
2586 uma_bucket_t bucket;
2587 int bflags;
2588 int cpu;
2589
2590#ifdef UMA_DEBUG_ALLOC_1
2591 printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone);
2592#endif
2593 CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread,
2594 zone->uz_name);
2595
2596 /* uma_zfree(..., NULL) does nothing, to match free(9). */
2597 if (item == NULL)
2598 return;
2599#ifdef DEBUG_MEMGUARD
2600 if (is_memguard_addr(item)) {
2601 if (zone->uz_dtor != NULL && zone->uz_dtor != mtrash_dtor)
2602 zone->uz_dtor(item, zone->uz_size, udata);
2603 if (zone->uz_fini != NULL && zone->uz_fini != mtrash_fini)
2604 zone->uz_fini(item, zone->uz_size);
2605 memguard_free(item);
2606 return;
2607 }
2608#endif
2609 if (zone->uz_dtor)
2610 zone->uz_dtor(item, zone->uz_size, udata);
2611
2612#ifdef INVARIANTS
2613 ZONE_LOCK(zone);
2614 if (zone->uz_flags & UMA_ZONE_MALLOC)
2615 uma_dbg_free(zone, udata, item);
2616 else
2617 uma_dbg_free(zone, NULL, item);
2618 ZONE_UNLOCK(zone);
2619#endif
2620 /*
2621 * The race here is acceptable. If we miss it we'll just have to wait
2622 * a little longer for the limits to be reset.
2623 */
2624 if (zone->uz_flags & UMA_ZFLAG_FULL)
2625 goto zfree_internal;
2626
2627 /*
2628 * If possible, free to the per-CPU cache. There are two
2629 * requirements for safe access to the per-CPU cache: (1) the thread
2630 * accessing the cache must not be preempted or yield during access,
2631 * and (2) the thread must not migrate CPUs without switching which
2632 * cache it accesses. We rely on a critical section to prevent
2633 * preemption and migration. We release the critical section in
2634 * order to acquire the zone mutex if we are unable to free to the
2635 * current cache; when we re-acquire the critical section, we must
2636 * detect and handle migration if it has occurred.
2637 */
2638zfree_restart:
2639 critical_enter();
2640 cpu = curcpu;
2641 cache = &zone->uz_cpu[cpu];
2642
2643zfree_start:
2644 bucket = cache->uc_freebucket;
2645
2646 if (bucket) {
2647 /*
2648 * Do we have room in our bucket? It is OK for this uz count
2649 * check to be slightly out of sync.
2650 */
2651
2652 if (bucket->ub_cnt < bucket->ub_entries) {
2653 KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL,
2654 ("uma_zfree: Freeing to non free bucket index."));
2655 bucket->ub_bucket[bucket->ub_cnt] = item;
2656 bucket->ub_cnt++;
2657 cache->uc_frees++;
2658 critical_exit();
2659 return;
2660 } else if (cache->uc_allocbucket) {
2661#ifdef UMA_DEBUG_ALLOC
2662 printf("uma_zfree: Swapping buckets.\n");
2663#endif
2664 /*
2665 * We have run out of space in our freebucket.
2666 * See if we can switch with our alloc bucket.
2667 */
2668 if (cache->uc_allocbucket->ub_cnt <
2669 cache->uc_freebucket->ub_cnt) {
2670 bucket = cache->uc_freebucket;
2671 cache->uc_freebucket = cache->uc_allocbucket;
2672 cache->uc_allocbucket = bucket;
2673 goto zfree_start;
2674 }
2675 }
2676 }
2677 /*
2678 * We can get here for two reasons:
2679 *
2680 * 1) The buckets are NULL
2681 * 2) The alloc and free buckets are both somewhat full.
2682 *
2683 * We must go back the zone, which requires acquiring the zone lock,
2684 * which in turn means we must release and re-acquire the critical
2685 * section. Since the critical section is released, we may be
2686 * preempted or migrate. As such, make sure not to maintain any
2687 * thread-local state specific to the cache from prior to releasing
2688 * the critical section.
2689 */
2690 critical_exit();
2691 ZONE_LOCK(zone);
2692 critical_enter();
2693 cpu = curcpu;
2694 cache = &zone->uz_cpu[cpu];
2695 if (cache->uc_freebucket != NULL) {
2696 if (cache->uc_freebucket->ub_cnt <
2697 cache->uc_freebucket->ub_entries) {
2698 ZONE_UNLOCK(zone);
2699 goto zfree_start;
2700 }
2701 if (cache->uc_allocbucket != NULL &&
2702 (cache->uc_allocbucket->ub_cnt <
2703 cache->uc_freebucket->ub_cnt)) {
2704 ZONE_UNLOCK(zone);
2705 goto zfree_start;
2706 }
2707 }
2708
2709 /* Since we have locked the zone we may as well send back our stats */
2710 zone->uz_allocs += cache->uc_allocs;
2711 cache->uc_allocs = 0;
2712 zone->uz_frees += cache->uc_frees;
2713 cache->uc_frees = 0;
2714
2715 bucket = cache->uc_freebucket;
2716 cache->uc_freebucket = NULL;
2717
2718 /* Can we throw this on the zone full list? */
2719 if (bucket != NULL) {
2720#ifdef UMA_DEBUG_ALLOC
2721 printf("uma_zfree: Putting old bucket on the free list.\n");
2722#endif
2723 /* ub_cnt is pointing to the last free item */
2724 KASSERT(bucket->ub_cnt != 0,
2725 ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n"));
2726 LIST_INSERT_HEAD(&zone->uz_full_bucket,
2727 bucket, ub_link);
2728 }
2729 if ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) {
2730 LIST_REMOVE(bucket, ub_link);
2731 ZONE_UNLOCK(zone);
2732 cache->uc_freebucket = bucket;
2733 goto zfree_start;
2734 }
2735 /* We are no longer associated with this CPU. */
2736 critical_exit();
2737
2738 /* And the zone.. */
2739 ZONE_UNLOCK(zone);
2740
2741#ifdef UMA_DEBUG_ALLOC
2742 printf("uma_zfree: Allocating new free bucket.\n");
2743#endif
2744 bflags = M_NOWAIT;
2745
2746 if (zone->uz_flags & UMA_ZFLAG_CACHEONLY)
2747 bflags |= M_NOVM;
2748 bucket = bucket_alloc(zone->uz_count, bflags);
2749 if (bucket) {
2750 ZONE_LOCK(zone);
2751 LIST_INSERT_HEAD(&zone->uz_free_bucket,
2752 bucket, ub_link);
2753 ZONE_UNLOCK(zone);
2754 goto zfree_restart;
2755 }
2756
2757 /*
2758 * If nothing else caught this, we'll just do an internal free.
2759 */
2760zfree_internal:
2761 zone_free_item(zone, item, udata, SKIP_DTOR, ZFREE_STATFREE);
2762
2763 return;
2764}
2765
2766/*
2767 * Frees an item to an INTERNAL zone or allocates a free bucket
2768 *
2769 * Arguments:
2770 * zone The zone to free to
2771 * item The item we're freeing
2772 * udata User supplied data for the dtor
2773 * skip Skip dtors and finis
2774 */
2775static void
2776zone_free_item(uma_zone_t zone, void *item, void *udata,
2777 enum zfreeskip skip, int flags)
2778{
2779 uma_slab_t slab;
2780 uma_slabrefcnt_t slabref;
2781 uma_keg_t keg;
2782 u_int8_t *mem;
2783 u_int8_t freei;
2784 int clearfull;
2785
2786 if (skip < SKIP_DTOR && zone->uz_dtor)
2787 zone->uz_dtor(item, zone->uz_size, udata);
2788
2789 if (skip < SKIP_FINI && zone->uz_fini)
2790 zone->uz_fini(item, zone->uz_size);
2791
2792 ZONE_LOCK(zone);
2793
2794 if (flags & ZFREE_STATFAIL)
2795 zone->uz_fails++;
2796 if (flags & ZFREE_STATFREE)
2797 zone->uz_frees++;
2798
2799 if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) {
2800 mem = (u_int8_t *)((unsigned long)item & (~UMA_SLAB_MASK));
2801 keg = zone_first_keg(zone); /* Must only be one. */
2802 if (zone->uz_flags & UMA_ZONE_HASH) {
2803 slab = hash_sfind(&keg->uk_hash, mem);
2804 } else {
2805 mem += keg->uk_pgoff;
2806 slab = (uma_slab_t)mem;
2807 }
2808 } else {
2809 /* This prevents redundant lookups via free(). */
2810 if ((zone->uz_flags & UMA_ZONE_MALLOC) && udata != NULL)
2811 slab = (uma_slab_t)udata;
2812 else
2813 slab = vtoslab((vm_offset_t)item);
2814 keg = slab->us_keg;
2815 keg_relock(keg, zone);
2816 }
2817 MPASS(keg == slab->us_keg);
2818
2819 /* Do we need to remove from any lists? */
2820 if (slab->us_freecount+1 == keg->uk_ipers) {
2821 LIST_REMOVE(slab, us_link);
2822 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
2823 } else if (slab->us_freecount == 0) {
2824 LIST_REMOVE(slab, us_link);
2825 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
2826 }
2827
2828 /* Slab management stuff */
2829 freei = ((unsigned long)item - (unsigned long)slab->us_data)
2830 / keg->uk_rsize;
2831
2832#ifdef INVARIANTS
2833 if (!skip)
2834 uma_dbg_free(zone, slab, item);
2835#endif
2836
2837 if (keg->uk_flags & UMA_ZONE_REFCNT) {
2838 slabref = (uma_slabrefcnt_t)slab;
2839 slabref->us_freelist[freei].us_item = slab->us_firstfree;
2840 } else {
2841 slab->us_freelist[freei].us_item = slab->us_firstfree;
2842 }
2843 slab->us_firstfree = freei;
2844 slab->us_freecount++;
2845
2846 /* Zone statistics */
2847 keg->uk_free++;
2848
2849 clearfull = 0;
2850 if (keg->uk_flags & UMA_ZFLAG_FULL) {
2851 if (keg->uk_pages < keg->uk_maxpages) {
2852 keg->uk_flags &= ~UMA_ZFLAG_FULL;
2853 clearfull = 1;
2854 }
2855
2856 /*
2857 * We can handle one more allocation. Since we're clearing ZFLAG_FULL,
2858 * wake up all procs blocked on pages. This should be uncommon, so
2859 * keeping this simple for now (rather than adding count of blocked
2860 * threads etc).
2861 */
2862 wakeup(keg);
2863 }
2864 if (clearfull) {
2865 zone_relock(zone, keg);
2866 zone->uz_flags &= ~UMA_ZFLAG_FULL;
2867 wakeup(zone);
2868 ZONE_UNLOCK(zone);
2869 } else
2870 KEG_UNLOCK(keg);
2871}
2872
2873/* See uma.h */
2874int
2875uma_zone_set_max(uma_zone_t zone, int nitems)
2876{
2877 uma_keg_t keg;
2878
2879 ZONE_LOCK(zone);
2880 keg = zone_first_keg(zone);
2881 keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera;
2882 if (keg->uk_maxpages * keg->uk_ipers < nitems)
2883 keg->uk_maxpages += keg->uk_ppera;
2884 nitems = keg->uk_maxpages * keg->uk_ipers;
2885 ZONE_UNLOCK(zone);
2886
2887 return (nitems);
2888}
2889
2890/* See uma.h */
2891int
2892uma_zone_get_max(uma_zone_t zone)
2893{
2894 int nitems;
2895 uma_keg_t keg;
2896
2897 ZONE_LOCK(zone);
2898 keg = zone_first_keg(zone);
2899 nitems = keg->uk_maxpages * keg->uk_ipers;
2900 ZONE_UNLOCK(zone);
2901
2902 return (nitems);
2903}
2904
2905/* See uma.h */
2906void
2907uma_zone_set_warning(uma_zone_t zone, const char *warning)
2908{
2909
2910 ZONE_LOCK(zone);
2911 zone->uz_warning = warning;
2912 ZONE_UNLOCK(zone);
2913}
2914
2915/* See uma.h */
2916int
2917uma_zone_get_cur(uma_zone_t zone)
2918{
2919 int64_t nitems;
2920 u_int i;
2921
2922 ZONE_LOCK(zone);
2923 nitems = zone->uz_allocs - zone->uz_frees;
2924 CPU_FOREACH(i) {
2925 /*
2926 * See the comment in sysctl_vm_zone_stats() regarding the
2927 * safety of accessing the per-cpu caches. With the zone lock
2928 * held, it is safe, but can potentially result in stale data.
2929 */
2930 nitems += zone->uz_cpu[i].uc_allocs -
2931 zone->uz_cpu[i].uc_frees;
2932 }
2933 ZONE_UNLOCK(zone);
2934
2935 return (nitems < 0 ? 0 : nitems);
2936}
2937
2938/* See uma.h */
2939void
2940uma_zone_set_init(uma_zone_t zone, uma_init uminit)
2941{
2942 uma_keg_t keg;
2943
2944 ZONE_LOCK(zone);
2945 keg = zone_first_keg(zone);
2946 KASSERT(keg->uk_pages == 0,
2947 ("uma_zone_set_init on non-empty keg"));
2948 keg->uk_init = uminit;
2949 ZONE_UNLOCK(zone);
2950}
2951
2952/* See uma.h */
2953void
2954uma_zone_set_fini(uma_zone_t zone, uma_fini fini)
2955{
2956 uma_keg_t keg;
2957
2958 ZONE_LOCK(zone);
2959 keg = zone_first_keg(zone);
2960 KASSERT(keg->uk_pages == 0,
2961 ("uma_zone_set_fini on non-empty keg"));
2962 keg->uk_fini = fini;
2963 ZONE_UNLOCK(zone);
2964}
2965
2966/* See uma.h */
2967void
2968uma_zone_set_zinit(uma_zone_t zone, uma_init zinit)
2969{
2970 ZONE_LOCK(zone);
2971 KASSERT(zone_first_keg(zone)->uk_pages == 0,
2972 ("uma_zone_set_zinit on non-empty keg"));
2973 zone->uz_init = zinit;
2974 ZONE_UNLOCK(zone);
2975}
2976
2977/* See uma.h */
2978void
2979uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini)
2980{
2981 ZONE_LOCK(zone);
2982 KASSERT(zone_first_keg(zone)->uk_pages == 0,
2983 ("uma_zone_set_zfini on non-empty keg"));
2984 zone->uz_fini = zfini;
2985 ZONE_UNLOCK(zone);
2986}
2987
2988/* See uma.h */
2989/* XXX uk_freef is not actually used with the zone locked */
2990void
2991uma_zone_set_freef(uma_zone_t zone, uma_free freef)
2992{
2993
2994 ZONE_LOCK(zone);
2995 zone_first_keg(zone)->uk_freef = freef;
2996 ZONE_UNLOCK(zone);
2997}
2998
2999/* See uma.h */
3000/* XXX uk_allocf is not actually used with the zone locked */
3001void
3002uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf)
3003{
3004 uma_keg_t keg;
3005
3006 ZONE_LOCK(zone);
3007 keg = zone_first_keg(zone);
3008 keg->uk_flags |= UMA_ZFLAG_PRIVALLOC;
3009 keg->uk_allocf = allocf;
3010 ZONE_UNLOCK(zone);
3011}
3012
3013/* See uma.h */
3014int
1081
1082 return ((void *)retkva);
1083}
1084
1085/*
1086 * Frees a number of pages to the system
1087 *
1088 * Arguments:
1089 * mem A pointer to the memory to be freed
1090 * size The size of the memory being freed
1091 * flags The original p->us_flags field
1092 *
1093 * Returns:
1094 * Nothing
1095 */
1096static void
1097page_free(void *mem, int size, u_int8_t flags)
1098{
1099 vm_map_t map;
1100
1101 if (flags & UMA_SLAB_KMEM)
1102 map = kmem_map;
1103 else if (flags & UMA_SLAB_KERNEL)
1104 map = kernel_map;
1105 else
1106 panic("UMA: page_free used with invalid flags %d", flags);
1107
1108 kmem_free(map, (vm_offset_t)mem, size);
1109}
1110
1111/*
1112 * Zero fill initializer
1113 *
1114 * Arguments/Returns follow uma_init specifications
1115 */
1116static int
1117zero_init(void *mem, int size, int flags)
1118{
1119 bzero(mem, size);
1120 return (0);
1121}
1122
1123/*
1124 * Finish creating a small uma keg. This calculates ipers, and the keg size.
1125 *
1126 * Arguments
1127 * keg The zone we should initialize
1128 *
1129 * Returns
1130 * Nothing
1131 */
1132static void
1133keg_small_init(uma_keg_t keg)
1134{
1135 u_int rsize;
1136 u_int memused;
1137 u_int wastedspace;
1138 u_int shsize;
1139
1140 KASSERT(keg != NULL, ("Keg is null in keg_small_init"));
1141 rsize = keg->uk_size;
1142
1143 if (rsize < UMA_SMALLEST_UNIT)
1144 rsize = UMA_SMALLEST_UNIT;
1145 if (rsize & keg->uk_align)
1146 rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1);
1147
1148 keg->uk_rsize = rsize;
1149 keg->uk_ppera = 1;
1150
1151 if (keg->uk_flags & UMA_ZONE_OFFPAGE) {
1152 shsize = 0;
1153 } else if (keg->uk_flags & UMA_ZONE_REFCNT) {
1154 rsize += UMA_FRITMREF_SZ; /* linkage & refcnt */
1155 shsize = sizeof(struct uma_slab_refcnt);
1156 } else {
1157 rsize += UMA_FRITM_SZ; /* Account for linkage */
1158 shsize = sizeof(struct uma_slab);
1159 }
1160
1161 keg->uk_ipers = (UMA_SLAB_SIZE - shsize) / rsize;
1162 KASSERT(keg->uk_ipers != 0, ("keg_small_init: ipers is 0"));
1163 memused = keg->uk_ipers * rsize + shsize;
1164 wastedspace = UMA_SLAB_SIZE - memused;
1165
1166 /*
1167 * We can't do OFFPAGE if we're internal or if we've been
1168 * asked to not go to the VM for buckets. If we do this we
1169 * may end up going to the VM (kmem_map) for slabs which we
1170 * do not want to do if we're UMA_ZFLAG_CACHEONLY as a
1171 * result of UMA_ZONE_VM, which clearly forbids it.
1172 */
1173 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) ||
1174 (keg->uk_flags & UMA_ZFLAG_CACHEONLY))
1175 return;
1176
1177 if ((wastedspace >= UMA_MAX_WASTE) &&
1178 (keg->uk_ipers < (UMA_SLAB_SIZE / keg->uk_rsize))) {
1179 keg->uk_ipers = UMA_SLAB_SIZE / keg->uk_rsize;
1180 KASSERT(keg->uk_ipers <= 255,
1181 ("keg_small_init: keg->uk_ipers too high!"));
1182#ifdef UMA_DEBUG
1183 printf("UMA decided we need offpage slab headers for "
1184 "keg: %s, calculated wastedspace = %d, "
1185 "maximum wasted space allowed = %d, "
1186 "calculated ipers = %d, "
1187 "new wasted space = %d\n", keg->uk_name, wastedspace,
1188 UMA_MAX_WASTE, keg->uk_ipers,
1189 UMA_SLAB_SIZE - keg->uk_ipers * keg->uk_rsize);
1190#endif
1191 keg->uk_flags |= UMA_ZONE_OFFPAGE;
1192 if ((keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
1193 keg->uk_flags |= UMA_ZONE_HASH;
1194 }
1195}
1196
1197/*
1198 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs. Just give in and do
1199 * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be
1200 * more complicated.
1201 *
1202 * Arguments
1203 * keg The keg we should initialize
1204 *
1205 * Returns
1206 * Nothing
1207 */
1208static void
1209keg_large_init(uma_keg_t keg)
1210{
1211 int pages;
1212
1213 KASSERT(keg != NULL, ("Keg is null in keg_large_init"));
1214 KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0,
1215 ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg"));
1216
1217 pages = keg->uk_size / UMA_SLAB_SIZE;
1218
1219 /* Account for remainder */
1220 if ((pages * UMA_SLAB_SIZE) < keg->uk_size)
1221 pages++;
1222
1223 keg->uk_ppera = pages;
1224 keg->uk_ipers = 1;
1225 keg->uk_rsize = keg->uk_size;
1226
1227 /* We can't do OFFPAGE if we're internal, bail out here. */
1228 if (keg->uk_flags & UMA_ZFLAG_INTERNAL)
1229 return;
1230
1231 keg->uk_flags |= UMA_ZONE_OFFPAGE;
1232 if ((keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
1233 keg->uk_flags |= UMA_ZONE_HASH;
1234}
1235
1236static void
1237keg_cachespread_init(uma_keg_t keg)
1238{
1239 int alignsize;
1240 int trailer;
1241 int pages;
1242 int rsize;
1243
1244 alignsize = keg->uk_align + 1;
1245 rsize = keg->uk_size;
1246 /*
1247 * We want one item to start on every align boundary in a page. To
1248 * do this we will span pages. We will also extend the item by the
1249 * size of align if it is an even multiple of align. Otherwise, it
1250 * would fall on the same boundary every time.
1251 */
1252 if (rsize & keg->uk_align)
1253 rsize = (rsize & ~keg->uk_align) + alignsize;
1254 if ((rsize & alignsize) == 0)
1255 rsize += alignsize;
1256 trailer = rsize - keg->uk_size;
1257 pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE;
1258 pages = MIN(pages, (128 * 1024) / PAGE_SIZE);
1259 keg->uk_rsize = rsize;
1260 keg->uk_ppera = pages;
1261 keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize;
1262 keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB;
1263 KASSERT(keg->uk_ipers <= uma_max_ipers,
1264 ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__,
1265 keg->uk_ipers));
1266}
1267
1268/*
1269 * Keg header ctor. This initializes all fields, locks, etc. And inserts
1270 * the keg onto the global keg list.
1271 *
1272 * Arguments/Returns follow uma_ctor specifications
1273 * udata Actually uma_kctor_args
1274 */
1275static int
1276keg_ctor(void *mem, int size, void *udata, int flags)
1277{
1278 struct uma_kctor_args *arg = udata;
1279 uma_keg_t keg = mem;
1280 uma_zone_t zone;
1281
1282 bzero(keg, size);
1283 keg->uk_size = arg->size;
1284 keg->uk_init = arg->uminit;
1285 keg->uk_fini = arg->fini;
1286 keg->uk_align = arg->align;
1287 keg->uk_free = 0;
1288 keg->uk_pages = 0;
1289 keg->uk_flags = arg->flags;
1290 keg->uk_allocf = page_alloc;
1291 keg->uk_freef = page_free;
1292 keg->uk_recurse = 0;
1293 keg->uk_slabzone = NULL;
1294
1295 /*
1296 * The master zone is passed to us at keg-creation time.
1297 */
1298 zone = arg->zone;
1299 keg->uk_name = zone->uz_name;
1300
1301 if (arg->flags & UMA_ZONE_VM)
1302 keg->uk_flags |= UMA_ZFLAG_CACHEONLY;
1303
1304 if (arg->flags & UMA_ZONE_ZINIT)
1305 keg->uk_init = zero_init;
1306
1307 if (arg->flags & UMA_ZONE_REFCNT || arg->flags & UMA_ZONE_MALLOC)
1308 keg->uk_flags |= UMA_ZONE_VTOSLAB;
1309
1310 /*
1311 * The +UMA_FRITM_SZ added to uk_size is to account for the
1312 * linkage that is added to the size in keg_small_init(). If
1313 * we don't account for this here then we may end up in
1314 * keg_small_init() with a calculated 'ipers' of 0.
1315 */
1316 if (keg->uk_flags & UMA_ZONE_REFCNT) {
1317 if (keg->uk_flags & UMA_ZONE_CACHESPREAD)
1318 keg_cachespread_init(keg);
1319 else if ((keg->uk_size+UMA_FRITMREF_SZ) >
1320 (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt)))
1321 keg_large_init(keg);
1322 else
1323 keg_small_init(keg);
1324 } else {
1325 if (keg->uk_flags & UMA_ZONE_CACHESPREAD)
1326 keg_cachespread_init(keg);
1327 else if ((keg->uk_size+UMA_FRITM_SZ) >
1328 (UMA_SLAB_SIZE - sizeof(struct uma_slab)))
1329 keg_large_init(keg);
1330 else
1331 keg_small_init(keg);
1332 }
1333
1334 if (keg->uk_flags & UMA_ZONE_OFFPAGE) {
1335 if (keg->uk_flags & UMA_ZONE_REFCNT)
1336 keg->uk_slabzone = slabrefzone;
1337 else
1338 keg->uk_slabzone = slabzone;
1339 }
1340
1341 /*
1342 * If we haven't booted yet we need allocations to go through the
1343 * startup cache until the vm is ready.
1344 */
1345 if (keg->uk_ppera == 1) {
1346#ifdef UMA_MD_SMALL_ALLOC
1347 keg->uk_allocf = uma_small_alloc;
1348 keg->uk_freef = uma_small_free;
1349
1350 if (booted < UMA_STARTUP)
1351 keg->uk_allocf = startup_alloc;
1352#else
1353 if (booted < UMA_STARTUP2)
1354 keg->uk_allocf = startup_alloc;
1355#endif
1356 } else if (booted < UMA_STARTUP2 &&
1357 (keg->uk_flags & UMA_ZFLAG_INTERNAL))
1358 keg->uk_allocf = startup_alloc;
1359
1360 /*
1361 * Initialize keg's lock (shared among zones).
1362 */
1363 if (arg->flags & UMA_ZONE_MTXCLASS)
1364 KEG_LOCK_INIT(keg, 1);
1365 else
1366 KEG_LOCK_INIT(keg, 0);
1367
1368 /*
1369 * If we're putting the slab header in the actual page we need to
1370 * figure out where in each page it goes. This calculates a right
1371 * justified offset into the memory on an ALIGN_PTR boundary.
1372 */
1373 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) {
1374 u_int totsize;
1375
1376 /* Size of the slab struct and free list */
1377 if (keg->uk_flags & UMA_ZONE_REFCNT)
1378 totsize = sizeof(struct uma_slab_refcnt) +
1379 keg->uk_ipers * UMA_FRITMREF_SZ;
1380 else
1381 totsize = sizeof(struct uma_slab) +
1382 keg->uk_ipers * UMA_FRITM_SZ;
1383
1384 if (totsize & UMA_ALIGN_PTR)
1385 totsize = (totsize & ~UMA_ALIGN_PTR) +
1386 (UMA_ALIGN_PTR + 1);
1387 keg->uk_pgoff = (UMA_SLAB_SIZE * keg->uk_ppera) - totsize;
1388
1389 if (keg->uk_flags & UMA_ZONE_REFCNT)
1390 totsize = keg->uk_pgoff + sizeof(struct uma_slab_refcnt)
1391 + keg->uk_ipers * UMA_FRITMREF_SZ;
1392 else
1393 totsize = keg->uk_pgoff + sizeof(struct uma_slab)
1394 + keg->uk_ipers * UMA_FRITM_SZ;
1395
1396 /*
1397 * The only way the following is possible is if with our
1398 * UMA_ALIGN_PTR adjustments we are now bigger than
1399 * UMA_SLAB_SIZE. I haven't checked whether this is
1400 * mathematically possible for all cases, so we make
1401 * sure here anyway.
1402 */
1403 if (totsize > UMA_SLAB_SIZE * keg->uk_ppera) {
1404 printf("zone %s ipers %d rsize %d size %d\n",
1405 zone->uz_name, keg->uk_ipers, keg->uk_rsize,
1406 keg->uk_size);
1407 panic("UMA slab won't fit.");
1408 }
1409 }
1410
1411 if (keg->uk_flags & UMA_ZONE_HASH)
1412 hash_alloc(&keg->uk_hash);
1413
1414#ifdef UMA_DEBUG
1415 printf("UMA: %s(%p) size %d(%d) flags %#x ipers %d ppera %d out %d free %d\n",
1416 zone->uz_name, zone, keg->uk_size, keg->uk_rsize, keg->uk_flags,
1417 keg->uk_ipers, keg->uk_ppera,
1418 (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free);
1419#endif
1420
1421 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link);
1422
1423 mtx_lock(&uma_mtx);
1424 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link);
1425 mtx_unlock(&uma_mtx);
1426 return (0);
1427}
1428
1429/*
1430 * Zone header ctor. This initializes all fields, locks, etc.
1431 *
1432 * Arguments/Returns follow uma_ctor specifications
1433 * udata Actually uma_zctor_args
1434 */
1435static int
1436zone_ctor(void *mem, int size, void *udata, int flags)
1437{
1438 struct uma_zctor_args *arg = udata;
1439 uma_zone_t zone = mem;
1440 uma_zone_t z;
1441 uma_keg_t keg;
1442
1443 bzero(zone, size);
1444 zone->uz_name = arg->name;
1445 zone->uz_ctor = arg->ctor;
1446 zone->uz_dtor = arg->dtor;
1447 zone->uz_slab = zone_fetch_slab;
1448 zone->uz_init = NULL;
1449 zone->uz_fini = NULL;
1450 zone->uz_allocs = 0;
1451 zone->uz_frees = 0;
1452 zone->uz_fails = 0;
1453 zone->uz_sleeps = 0;
1454 zone->uz_fills = zone->uz_count = 0;
1455 zone->uz_flags = 0;
1456 zone->uz_warning = NULL;
1457 timevalclear(&zone->uz_ratecheck);
1458 keg = arg->keg;
1459
1460 if (arg->flags & UMA_ZONE_SECONDARY) {
1461 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg"));
1462 zone->uz_init = arg->uminit;
1463 zone->uz_fini = arg->fini;
1464 zone->uz_lock = &keg->uk_lock;
1465 zone->uz_flags |= UMA_ZONE_SECONDARY;
1466 mtx_lock(&uma_mtx);
1467 ZONE_LOCK(zone);
1468 LIST_FOREACH(z, &keg->uk_zones, uz_link) {
1469 if (LIST_NEXT(z, uz_link) == NULL) {
1470 LIST_INSERT_AFTER(z, zone, uz_link);
1471 break;
1472 }
1473 }
1474 ZONE_UNLOCK(zone);
1475 mtx_unlock(&uma_mtx);
1476 } else if (keg == NULL) {
1477 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini,
1478 arg->align, arg->flags)) == NULL)
1479 return (ENOMEM);
1480 } else {
1481 struct uma_kctor_args karg;
1482 int error;
1483
1484 /* We should only be here from uma_startup() */
1485 karg.size = arg->size;
1486 karg.uminit = arg->uminit;
1487 karg.fini = arg->fini;
1488 karg.align = arg->align;
1489 karg.flags = arg->flags;
1490 karg.zone = zone;
1491 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg,
1492 flags);
1493 if (error)
1494 return (error);
1495 }
1496 /*
1497 * Link in the first keg.
1498 */
1499 zone->uz_klink.kl_keg = keg;
1500 LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link);
1501 zone->uz_lock = &keg->uk_lock;
1502 zone->uz_size = keg->uk_size;
1503 zone->uz_flags |= (keg->uk_flags &
1504 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT));
1505
1506 /*
1507 * Some internal zones don't have room allocated for the per cpu
1508 * caches. If we're internal, bail out here.
1509 */
1510 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) {
1511 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0,
1512 ("Secondary zone requested UMA_ZFLAG_INTERNAL"));
1513 return (0);
1514 }
1515
1516 if (keg->uk_flags & UMA_ZONE_MAXBUCKET)
1517 zone->uz_count = BUCKET_MAX;
1518 else if (keg->uk_ipers <= BUCKET_MAX)
1519 zone->uz_count = keg->uk_ipers;
1520 else
1521 zone->uz_count = BUCKET_MAX;
1522 return (0);
1523}
1524
1525/*
1526 * Keg header dtor. This frees all data, destroys locks, frees the hash
1527 * table and removes the keg from the global list.
1528 *
1529 * Arguments/Returns follow uma_dtor specifications
1530 * udata unused
1531 */
1532static void
1533keg_dtor(void *arg, int size, void *udata)
1534{
1535 uma_keg_t keg;
1536
1537 keg = (uma_keg_t)arg;
1538 KEG_LOCK(keg);
1539 if (keg->uk_free != 0) {
1540 printf("Freed UMA keg was not empty (%d items). "
1541 " Lost %d pages of memory.\n",
1542 keg->uk_free, keg->uk_pages);
1543 }
1544 KEG_UNLOCK(keg);
1545
1546 hash_free(&keg->uk_hash);
1547
1548 KEG_LOCK_FINI(keg);
1549}
1550
1551/*
1552 * Zone header dtor.
1553 *
1554 * Arguments/Returns follow uma_dtor specifications
1555 * udata unused
1556 */
1557static void
1558zone_dtor(void *arg, int size, void *udata)
1559{
1560 uma_klink_t klink;
1561 uma_zone_t zone;
1562 uma_keg_t keg;
1563
1564 zone = (uma_zone_t)arg;
1565 keg = zone_first_keg(zone);
1566
1567 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL))
1568 cache_drain(zone);
1569
1570 mtx_lock(&uma_mtx);
1571 LIST_REMOVE(zone, uz_link);
1572 mtx_unlock(&uma_mtx);
1573 /*
1574 * XXX there are some races here where
1575 * the zone can be drained but zone lock
1576 * released and then refilled before we
1577 * remove it... we dont care for now
1578 */
1579 zone_drain_wait(zone, M_WAITOK);
1580 /*
1581 * Unlink all of our kegs.
1582 */
1583 while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) {
1584 klink->kl_keg = NULL;
1585 LIST_REMOVE(klink, kl_link);
1586 if (klink == &zone->uz_klink)
1587 continue;
1588 free(klink, M_TEMP);
1589 }
1590 /*
1591 * We only destroy kegs from non secondary zones.
1592 */
1593 if ((zone->uz_flags & UMA_ZONE_SECONDARY) == 0) {
1594 mtx_lock(&uma_mtx);
1595 LIST_REMOVE(keg, uk_link);
1596 mtx_unlock(&uma_mtx);
1597 zone_free_item(kegs, keg, NULL, SKIP_NONE,
1598 ZFREE_STATFREE);
1599 }
1600}
1601
1602/*
1603 * Traverses every zone in the system and calls a callback
1604 *
1605 * Arguments:
1606 * zfunc A pointer to a function which accepts a zone
1607 * as an argument.
1608 *
1609 * Returns:
1610 * Nothing
1611 */
1612static void
1613zone_foreach(void (*zfunc)(uma_zone_t))
1614{
1615 uma_keg_t keg;
1616 uma_zone_t zone;
1617
1618 mtx_lock(&uma_mtx);
1619 LIST_FOREACH(keg, &uma_kegs, uk_link) {
1620 LIST_FOREACH(zone, &keg->uk_zones, uz_link)
1621 zfunc(zone);
1622 }
1623 mtx_unlock(&uma_mtx);
1624}
1625
1626/* Public functions */
1627/* See uma.h */
1628void
1629uma_startup(void *bootmem, int boot_pages)
1630{
1631 struct uma_zctor_args args;
1632 uma_slab_t slab;
1633 u_int slabsize;
1634 u_int objsize, totsize, wsize;
1635 int i;
1636
1637#ifdef UMA_DEBUG
1638 printf("Creating uma keg headers zone and keg.\n");
1639#endif
1640 mtx_init(&uma_mtx, "UMA lock", NULL, MTX_DEF);
1641
1642 /*
1643 * Figure out the maximum number of items-per-slab we'll have if
1644 * we're using the OFFPAGE slab header to track free items, given
1645 * all possible object sizes and the maximum desired wastage
1646 * (UMA_MAX_WASTE).
1647 *
1648 * We iterate until we find an object size for
1649 * which the calculated wastage in keg_small_init() will be
1650 * enough to warrant OFFPAGE. Since wastedspace versus objsize
1651 * is an overall increasing see-saw function, we find the smallest
1652 * objsize such that the wastage is always acceptable for objects
1653 * with that objsize or smaller. Since a smaller objsize always
1654 * generates a larger possible uma_max_ipers, we use this computed
1655 * objsize to calculate the largest ipers possible. Since the
1656 * ipers calculated for OFFPAGE slab headers is always larger than
1657 * the ipers initially calculated in keg_small_init(), we use
1658 * the former's equation (UMA_SLAB_SIZE / keg->uk_rsize) to
1659 * obtain the maximum ipers possible for offpage slab headers.
1660 *
1661 * It should be noted that ipers versus objsize is an inversly
1662 * proportional function which drops off rather quickly so as
1663 * long as our UMA_MAX_WASTE is such that the objsize we calculate
1664 * falls into the portion of the inverse relation AFTER the steep
1665 * falloff, then uma_max_ipers shouldn't be too high (~10 on i386).
1666 *
1667 * Note that we have 8-bits (1 byte) to use as a freelist index
1668 * inside the actual slab header itself and this is enough to
1669 * accomodate us. In the worst case, a UMA_SMALLEST_UNIT sized
1670 * object with offpage slab header would have ipers =
1671 * UMA_SLAB_SIZE / UMA_SMALLEST_UNIT (currently = 256), which is
1672 * 1 greater than what our byte-integer freelist index can
1673 * accomodate, but we know that this situation never occurs as
1674 * for UMA_SMALLEST_UNIT-sized objects, we will never calculate
1675 * that we need to go to offpage slab headers. Or, if we do,
1676 * then we trap that condition below and panic in the INVARIANTS case.
1677 */
1678 wsize = UMA_SLAB_SIZE - sizeof(struct uma_slab) - UMA_MAX_WASTE;
1679 totsize = wsize;
1680 objsize = UMA_SMALLEST_UNIT;
1681 while (totsize >= wsize) {
1682 totsize = (UMA_SLAB_SIZE - sizeof(struct uma_slab)) /
1683 (objsize + UMA_FRITM_SZ);
1684 totsize *= (UMA_FRITM_SZ + objsize);
1685 objsize++;
1686 }
1687 if (objsize > UMA_SMALLEST_UNIT)
1688 objsize--;
1689 uma_max_ipers = MAX(UMA_SLAB_SIZE / objsize, 64);
1690
1691 wsize = UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt) - UMA_MAX_WASTE;
1692 totsize = wsize;
1693 objsize = UMA_SMALLEST_UNIT;
1694 while (totsize >= wsize) {
1695 totsize = (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt)) /
1696 (objsize + UMA_FRITMREF_SZ);
1697 totsize *= (UMA_FRITMREF_SZ + objsize);
1698 objsize++;
1699 }
1700 if (objsize > UMA_SMALLEST_UNIT)
1701 objsize--;
1702 uma_max_ipers_ref = MAX(UMA_SLAB_SIZE / objsize, 64);
1703
1704 KASSERT((uma_max_ipers_ref <= 255) && (uma_max_ipers <= 255),
1705 ("uma_startup: calculated uma_max_ipers values too large!"));
1706
1707#ifdef UMA_DEBUG
1708 printf("Calculated uma_max_ipers (for OFFPAGE) is %d\n", uma_max_ipers);
1709 printf("Calculated uma_max_ipers_ref (for OFFPAGE) is %d\n",
1710 uma_max_ipers_ref);
1711#endif
1712
1713 /* "manually" create the initial zone */
1714 args.name = "UMA Kegs";
1715 args.size = sizeof(struct uma_keg);
1716 args.ctor = keg_ctor;
1717 args.dtor = keg_dtor;
1718 args.uminit = zero_init;
1719 args.fini = NULL;
1720 args.keg = &masterkeg;
1721 args.align = 32 - 1;
1722 args.flags = UMA_ZFLAG_INTERNAL;
1723 /* The initial zone has no Per cpu queues so it's smaller */
1724 zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK);
1725
1726#ifdef UMA_DEBUG
1727 printf("Filling boot free list.\n");
1728#endif
1729 for (i = 0; i < boot_pages; i++) {
1730 slab = (uma_slab_t)((u_int8_t *)bootmem + (i * UMA_SLAB_SIZE));
1731 slab->us_data = (u_int8_t *)slab;
1732 slab->us_flags = UMA_SLAB_BOOT;
1733 LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link);
1734 }
1735 mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF);
1736
1737#ifdef UMA_DEBUG
1738 printf("Creating uma zone headers zone and keg.\n");
1739#endif
1740 args.name = "UMA Zones";
1741 args.size = sizeof(struct uma_zone) +
1742 (sizeof(struct uma_cache) * (mp_maxid + 1));
1743 args.ctor = zone_ctor;
1744 args.dtor = zone_dtor;
1745 args.uminit = zero_init;
1746 args.fini = NULL;
1747 args.keg = NULL;
1748 args.align = 32 - 1;
1749 args.flags = UMA_ZFLAG_INTERNAL;
1750 /* The initial zone has no Per cpu queues so it's smaller */
1751 zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK);
1752
1753#ifdef UMA_DEBUG
1754 printf("Initializing pcpu cache locks.\n");
1755#endif
1756#ifdef UMA_DEBUG
1757 printf("Creating slab and hash zones.\n");
1758#endif
1759
1760 /*
1761 * This is the max number of free list items we'll have with
1762 * offpage slabs.
1763 */
1764 slabsize = uma_max_ipers * UMA_FRITM_SZ;
1765 slabsize += sizeof(struct uma_slab);
1766
1767 /* Now make a zone for slab headers */
1768 slabzone = uma_zcreate("UMA Slabs",
1769 slabsize,
1770 NULL, NULL, NULL, NULL,
1771 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
1772
1773 /*
1774 * We also create a zone for the bigger slabs with reference
1775 * counts in them, to accomodate UMA_ZONE_REFCNT zones.
1776 */
1777 slabsize = uma_max_ipers_ref * UMA_FRITMREF_SZ;
1778 slabsize += sizeof(struct uma_slab_refcnt);
1779 slabrefzone = uma_zcreate("UMA RCntSlabs",
1780 slabsize,
1781 NULL, NULL, NULL, NULL,
1782 UMA_ALIGN_PTR,
1783 UMA_ZFLAG_INTERNAL);
1784
1785 hashzone = uma_zcreate("UMA Hash",
1786 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT,
1787 NULL, NULL, NULL, NULL,
1788 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
1789
1790 bucket_init();
1791
1792 booted = UMA_STARTUP;
1793
1794#ifdef UMA_DEBUG
1795 printf("UMA startup complete.\n");
1796#endif
1797}
1798
1799/* see uma.h */
1800void
1801uma_startup2(void)
1802{
1803 booted = UMA_STARTUP2;
1804 bucket_enable();
1805#ifdef UMA_DEBUG
1806 printf("UMA startup2 complete.\n");
1807#endif
1808}
1809
1810/*
1811 * Initialize our callout handle
1812 *
1813 */
1814
1815static void
1816uma_startup3(void)
1817{
1818#ifdef UMA_DEBUG
1819 printf("Starting callout.\n");
1820#endif
1821 callout_init(&uma_callout, CALLOUT_MPSAFE);
1822 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
1823#ifdef UMA_DEBUG
1824 printf("UMA startup3 complete.\n");
1825#endif
1826}
1827
1828static uma_keg_t
1829uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini,
1830 int align, u_int32_t flags)
1831{
1832 struct uma_kctor_args args;
1833
1834 args.size = size;
1835 args.uminit = uminit;
1836 args.fini = fini;
1837 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align;
1838 args.flags = flags;
1839 args.zone = zone;
1840 return (zone_alloc_item(kegs, &args, M_WAITOK));
1841}
1842
1843/* See uma.h */
1844void
1845uma_set_align(int align)
1846{
1847
1848 if (align != UMA_ALIGN_CACHE)
1849 uma_align_cache = align;
1850}
1851
1852/* See uma.h */
1853uma_zone_t
1854uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor,
1855 uma_init uminit, uma_fini fini, int align, u_int32_t flags)
1856
1857{
1858 struct uma_zctor_args args;
1859
1860 /* This stuff is essential for the zone ctor */
1861 args.name = name;
1862 args.size = size;
1863 args.ctor = ctor;
1864 args.dtor = dtor;
1865 args.uminit = uminit;
1866 args.fini = fini;
1867 args.align = align;
1868 args.flags = flags;
1869 args.keg = NULL;
1870
1871 return (zone_alloc_item(zones, &args, M_WAITOK));
1872}
1873
1874/* See uma.h */
1875uma_zone_t
1876uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor,
1877 uma_init zinit, uma_fini zfini, uma_zone_t master)
1878{
1879 struct uma_zctor_args args;
1880 uma_keg_t keg;
1881
1882 keg = zone_first_keg(master);
1883 args.name = name;
1884 args.size = keg->uk_size;
1885 args.ctor = ctor;
1886 args.dtor = dtor;
1887 args.uminit = zinit;
1888 args.fini = zfini;
1889 args.align = keg->uk_align;
1890 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY;
1891 args.keg = keg;
1892
1893 /* XXX Attaches only one keg of potentially many. */
1894 return (zone_alloc_item(zones, &args, M_WAITOK));
1895}
1896
1897static void
1898zone_lock_pair(uma_zone_t a, uma_zone_t b)
1899{
1900 if (a < b) {
1901 ZONE_LOCK(a);
1902 mtx_lock_flags(b->uz_lock, MTX_DUPOK);
1903 } else {
1904 ZONE_LOCK(b);
1905 mtx_lock_flags(a->uz_lock, MTX_DUPOK);
1906 }
1907}
1908
1909static void
1910zone_unlock_pair(uma_zone_t a, uma_zone_t b)
1911{
1912
1913 ZONE_UNLOCK(a);
1914 ZONE_UNLOCK(b);
1915}
1916
1917int
1918uma_zsecond_add(uma_zone_t zone, uma_zone_t master)
1919{
1920 uma_klink_t klink;
1921 uma_klink_t kl;
1922 int error;
1923
1924 error = 0;
1925 klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO);
1926
1927 zone_lock_pair(zone, master);
1928 /*
1929 * zone must use vtoslab() to resolve objects and must already be
1930 * a secondary.
1931 */
1932 if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY))
1933 != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) {
1934 error = EINVAL;
1935 goto out;
1936 }
1937 /*
1938 * The new master must also use vtoslab().
1939 */
1940 if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) {
1941 error = EINVAL;
1942 goto out;
1943 }
1944 /*
1945 * Both must either be refcnt, or not be refcnt.
1946 */
1947 if ((zone->uz_flags & UMA_ZONE_REFCNT) !=
1948 (master->uz_flags & UMA_ZONE_REFCNT)) {
1949 error = EINVAL;
1950 goto out;
1951 }
1952 /*
1953 * The underlying object must be the same size. rsize
1954 * may be different.
1955 */
1956 if (master->uz_size != zone->uz_size) {
1957 error = E2BIG;
1958 goto out;
1959 }
1960 /*
1961 * Put it at the end of the list.
1962 */
1963 klink->kl_keg = zone_first_keg(master);
1964 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) {
1965 if (LIST_NEXT(kl, kl_link) == NULL) {
1966 LIST_INSERT_AFTER(kl, klink, kl_link);
1967 break;
1968 }
1969 }
1970 klink = NULL;
1971 zone->uz_flags |= UMA_ZFLAG_MULTI;
1972 zone->uz_slab = zone_fetch_slab_multi;
1973
1974out:
1975 zone_unlock_pair(zone, master);
1976 if (klink != NULL)
1977 free(klink, M_TEMP);
1978
1979 return (error);
1980}
1981
1982
1983/* See uma.h */
1984void
1985uma_zdestroy(uma_zone_t zone)
1986{
1987
1988 zone_free_item(zones, zone, NULL, SKIP_NONE, ZFREE_STATFREE);
1989}
1990
1991/* See uma.h */
1992void *
1993uma_zalloc_arg(uma_zone_t zone, void *udata, int flags)
1994{
1995 void *item;
1996 uma_cache_t cache;
1997 uma_bucket_t bucket;
1998 int cpu;
1999
2000 /* This is the fast path allocation */
2001#ifdef UMA_DEBUG_ALLOC_1
2002 printf("Allocating one item from %s(%p)\n", zone->uz_name, zone);
2003#endif
2004 CTR3(KTR_UMA, "uma_zalloc_arg thread %x zone %s flags %d", curthread,
2005 zone->uz_name, flags);
2006
2007 if (flags & M_WAITOK) {
2008 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2009 "uma_zalloc_arg: zone \"%s\"", zone->uz_name);
2010 }
2011#ifdef DEBUG_MEMGUARD
2012 if (memguard_cmp_zone(zone)) {
2013 item = memguard_alloc(zone->uz_size, flags);
2014 if (item != NULL) {
2015 /*
2016 * Avoid conflict with the use-after-free
2017 * protecting infrastructure from INVARIANTS.
2018 */
2019 if (zone->uz_init != NULL &&
2020 zone->uz_init != mtrash_init &&
2021 zone->uz_init(item, zone->uz_size, flags) != 0)
2022 return (NULL);
2023 if (zone->uz_ctor != NULL &&
2024 zone->uz_ctor != mtrash_ctor &&
2025 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) {
2026 zone->uz_fini(item, zone->uz_size);
2027 return (NULL);
2028 }
2029 return (item);
2030 }
2031 /* This is unfortunate but should not be fatal. */
2032 }
2033#endif
2034 /*
2035 * If possible, allocate from the per-CPU cache. There are two
2036 * requirements for safe access to the per-CPU cache: (1) the thread
2037 * accessing the cache must not be preempted or yield during access,
2038 * and (2) the thread must not migrate CPUs without switching which
2039 * cache it accesses. We rely on a critical section to prevent
2040 * preemption and migration. We release the critical section in
2041 * order to acquire the zone mutex if we are unable to allocate from
2042 * the current cache; when we re-acquire the critical section, we
2043 * must detect and handle migration if it has occurred.
2044 */
2045zalloc_restart:
2046 critical_enter();
2047 cpu = curcpu;
2048 cache = &zone->uz_cpu[cpu];
2049
2050zalloc_start:
2051 bucket = cache->uc_allocbucket;
2052
2053 if (bucket) {
2054 if (bucket->ub_cnt > 0) {
2055 bucket->ub_cnt--;
2056 item = bucket->ub_bucket[bucket->ub_cnt];
2057#ifdef INVARIANTS
2058 bucket->ub_bucket[bucket->ub_cnt] = NULL;
2059#endif
2060 KASSERT(item != NULL,
2061 ("uma_zalloc: Bucket pointer mangled."));
2062 cache->uc_allocs++;
2063 critical_exit();
2064#ifdef INVARIANTS
2065 ZONE_LOCK(zone);
2066 uma_dbg_alloc(zone, NULL, item);
2067 ZONE_UNLOCK(zone);
2068#endif
2069 if (zone->uz_ctor != NULL) {
2070 if (zone->uz_ctor(item, zone->uz_size,
2071 udata, flags) != 0) {
2072 zone_free_item(zone, item, udata,
2073 SKIP_DTOR, ZFREE_STATFAIL |
2074 ZFREE_STATFREE);
2075 return (NULL);
2076 }
2077 }
2078 if (flags & M_ZERO)
2079 bzero(item, zone->uz_size);
2080 return (item);
2081 } else if (cache->uc_freebucket) {
2082 /*
2083 * We have run out of items in our allocbucket.
2084 * See if we can switch with our free bucket.
2085 */
2086 if (cache->uc_freebucket->ub_cnt > 0) {
2087#ifdef UMA_DEBUG_ALLOC
2088 printf("uma_zalloc: Swapping empty with"
2089 " alloc.\n");
2090#endif
2091 bucket = cache->uc_freebucket;
2092 cache->uc_freebucket = cache->uc_allocbucket;
2093 cache->uc_allocbucket = bucket;
2094
2095 goto zalloc_start;
2096 }
2097 }
2098 }
2099 /*
2100 * Attempt to retrieve the item from the per-CPU cache has failed, so
2101 * we must go back to the zone. This requires the zone lock, so we
2102 * must drop the critical section, then re-acquire it when we go back
2103 * to the cache. Since the critical section is released, we may be
2104 * preempted or migrate. As such, make sure not to maintain any
2105 * thread-local state specific to the cache from prior to releasing
2106 * the critical section.
2107 */
2108 critical_exit();
2109 ZONE_LOCK(zone);
2110 critical_enter();
2111 cpu = curcpu;
2112 cache = &zone->uz_cpu[cpu];
2113 bucket = cache->uc_allocbucket;
2114 if (bucket != NULL) {
2115 if (bucket->ub_cnt > 0) {
2116 ZONE_UNLOCK(zone);
2117 goto zalloc_start;
2118 }
2119 bucket = cache->uc_freebucket;
2120 if (bucket != NULL && bucket->ub_cnt > 0) {
2121 ZONE_UNLOCK(zone);
2122 goto zalloc_start;
2123 }
2124 }
2125
2126 /* Since we have locked the zone we may as well send back our stats */
2127 zone->uz_allocs += cache->uc_allocs;
2128 cache->uc_allocs = 0;
2129 zone->uz_frees += cache->uc_frees;
2130 cache->uc_frees = 0;
2131
2132 /* Our old one is now a free bucket */
2133 if (cache->uc_allocbucket) {
2134 KASSERT(cache->uc_allocbucket->ub_cnt == 0,
2135 ("uma_zalloc_arg: Freeing a non free bucket."));
2136 LIST_INSERT_HEAD(&zone->uz_free_bucket,
2137 cache->uc_allocbucket, ub_link);
2138 cache->uc_allocbucket = NULL;
2139 }
2140
2141 /* Check the free list for a new alloc bucket */
2142 if ((bucket = LIST_FIRST(&zone->uz_full_bucket)) != NULL) {
2143 KASSERT(bucket->ub_cnt != 0,
2144 ("uma_zalloc_arg: Returning an empty bucket."));
2145
2146 LIST_REMOVE(bucket, ub_link);
2147 cache->uc_allocbucket = bucket;
2148 ZONE_UNLOCK(zone);
2149 goto zalloc_start;
2150 }
2151 /* We are no longer associated with this CPU. */
2152 critical_exit();
2153
2154 /* Bump up our uz_count so we get here less */
2155 if (zone->uz_count < BUCKET_MAX)
2156 zone->uz_count++;
2157
2158 /*
2159 * Now lets just fill a bucket and put it on the free list. If that
2160 * works we'll restart the allocation from the begining.
2161 */
2162 if (zone_alloc_bucket(zone, flags)) {
2163 ZONE_UNLOCK(zone);
2164 goto zalloc_restart;
2165 }
2166 ZONE_UNLOCK(zone);
2167 /*
2168 * We may not be able to get a bucket so return an actual item.
2169 */
2170#ifdef UMA_DEBUG
2171 printf("uma_zalloc_arg: Bucketzone returned NULL\n");
2172#endif
2173
2174 item = zone_alloc_item(zone, udata, flags);
2175 return (item);
2176}
2177
2178static uma_slab_t
2179keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int flags)
2180{
2181 uma_slab_t slab;
2182
2183 mtx_assert(&keg->uk_lock, MA_OWNED);
2184 slab = NULL;
2185
2186 for (;;) {
2187 /*
2188 * Find a slab with some space. Prefer slabs that are partially
2189 * used over those that are totally full. This helps to reduce
2190 * fragmentation.
2191 */
2192 if (keg->uk_free != 0) {
2193 if (!LIST_EMPTY(&keg->uk_part_slab)) {
2194 slab = LIST_FIRST(&keg->uk_part_slab);
2195 } else {
2196 slab = LIST_FIRST(&keg->uk_free_slab);
2197 LIST_REMOVE(slab, us_link);
2198 LIST_INSERT_HEAD(&keg->uk_part_slab, slab,
2199 us_link);
2200 }
2201 MPASS(slab->us_keg == keg);
2202 return (slab);
2203 }
2204
2205 /*
2206 * M_NOVM means don't ask at all!
2207 */
2208 if (flags & M_NOVM)
2209 break;
2210
2211 if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) {
2212 keg->uk_flags |= UMA_ZFLAG_FULL;
2213 /*
2214 * If this is not a multi-zone, set the FULL bit.
2215 * Otherwise slab_multi() takes care of it.
2216 */
2217 if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0) {
2218 zone->uz_flags |= UMA_ZFLAG_FULL;
2219 zone_log_warning(zone);
2220 }
2221 if (flags & M_NOWAIT)
2222 break;
2223 zone->uz_sleeps++;
2224 msleep(keg, &keg->uk_lock, PVM, "keglimit", 0);
2225 continue;
2226 }
2227 keg->uk_recurse++;
2228 slab = keg_alloc_slab(keg, zone, flags);
2229 keg->uk_recurse--;
2230 /*
2231 * If we got a slab here it's safe to mark it partially used
2232 * and return. We assume that the caller is going to remove
2233 * at least one item.
2234 */
2235 if (slab) {
2236 MPASS(slab->us_keg == keg);
2237 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
2238 return (slab);
2239 }
2240 /*
2241 * We might not have been able to get a slab but another cpu
2242 * could have while we were unlocked. Check again before we
2243 * fail.
2244 */
2245 flags |= M_NOVM;
2246 }
2247 return (slab);
2248}
2249
2250static inline void
2251zone_relock(uma_zone_t zone, uma_keg_t keg)
2252{
2253 if (zone->uz_lock != &keg->uk_lock) {
2254 KEG_UNLOCK(keg);
2255 ZONE_LOCK(zone);
2256 }
2257}
2258
2259static inline void
2260keg_relock(uma_keg_t keg, uma_zone_t zone)
2261{
2262 if (zone->uz_lock != &keg->uk_lock) {
2263 ZONE_UNLOCK(zone);
2264 KEG_LOCK(keg);
2265 }
2266}
2267
2268static uma_slab_t
2269zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int flags)
2270{
2271 uma_slab_t slab;
2272
2273 if (keg == NULL)
2274 keg = zone_first_keg(zone);
2275 /*
2276 * This is to prevent us from recursively trying to allocate
2277 * buckets. The problem is that if an allocation forces us to
2278 * grab a new bucket we will call page_alloc, which will go off
2279 * and cause the vm to allocate vm_map_entries. If we need new
2280 * buckets there too we will recurse in kmem_alloc and bad
2281 * things happen. So instead we return a NULL bucket, and make
2282 * the code that allocates buckets smart enough to deal with it
2283 */
2284 if (keg->uk_flags & UMA_ZFLAG_BUCKET && keg->uk_recurse != 0)
2285 return (NULL);
2286
2287 for (;;) {
2288 slab = keg_fetch_slab(keg, zone, flags);
2289 if (slab)
2290 return (slab);
2291 if (flags & (M_NOWAIT | M_NOVM))
2292 break;
2293 }
2294 return (NULL);
2295}
2296
2297/*
2298 * uma_zone_fetch_slab_multi: Fetches a slab from one available keg. Returns
2299 * with the keg locked. Caller must call zone_relock() afterwards if the
2300 * zone lock is required. On NULL the zone lock is held.
2301 *
2302 * The last pointer is used to seed the search. It is not required.
2303 */
2304static uma_slab_t
2305zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int rflags)
2306{
2307 uma_klink_t klink;
2308 uma_slab_t slab;
2309 uma_keg_t keg;
2310 int flags;
2311 int empty;
2312 int full;
2313
2314 /*
2315 * Don't wait on the first pass. This will skip limit tests
2316 * as well. We don't want to block if we can find a provider
2317 * without blocking.
2318 */
2319 flags = (rflags & ~M_WAITOK) | M_NOWAIT;
2320 /*
2321 * Use the last slab allocated as a hint for where to start
2322 * the search.
2323 */
2324 if (last) {
2325 slab = keg_fetch_slab(last, zone, flags);
2326 if (slab)
2327 return (slab);
2328 zone_relock(zone, last);
2329 last = NULL;
2330 }
2331 /*
2332 * Loop until we have a slab incase of transient failures
2333 * while M_WAITOK is specified. I'm not sure this is 100%
2334 * required but we've done it for so long now.
2335 */
2336 for (;;) {
2337 empty = 0;
2338 full = 0;
2339 /*
2340 * Search the available kegs for slabs. Be careful to hold the
2341 * correct lock while calling into the keg layer.
2342 */
2343 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) {
2344 keg = klink->kl_keg;
2345 keg_relock(keg, zone);
2346 if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) {
2347 slab = keg_fetch_slab(keg, zone, flags);
2348 if (slab)
2349 return (slab);
2350 }
2351 if (keg->uk_flags & UMA_ZFLAG_FULL)
2352 full++;
2353 else
2354 empty++;
2355 zone_relock(zone, keg);
2356 }
2357 if (rflags & (M_NOWAIT | M_NOVM))
2358 break;
2359 flags = rflags;
2360 /*
2361 * All kegs are full. XXX We can't atomically check all kegs
2362 * and sleep so just sleep for a short period and retry.
2363 */
2364 if (full && !empty) {
2365 zone->uz_flags |= UMA_ZFLAG_FULL;
2366 zone->uz_sleeps++;
2367 zone_log_warning(zone);
2368 msleep(zone, zone->uz_lock, PVM, "zonelimit", hz/100);
2369 zone->uz_flags &= ~UMA_ZFLAG_FULL;
2370 continue;
2371 }
2372 }
2373 return (NULL);
2374}
2375
2376static void *
2377slab_alloc_item(uma_zone_t zone, uma_slab_t slab)
2378{
2379 uma_keg_t keg;
2380 uma_slabrefcnt_t slabref;
2381 void *item;
2382 u_int8_t freei;
2383
2384 keg = slab->us_keg;
2385 mtx_assert(&keg->uk_lock, MA_OWNED);
2386
2387 freei = slab->us_firstfree;
2388 if (keg->uk_flags & UMA_ZONE_REFCNT) {
2389 slabref = (uma_slabrefcnt_t)slab;
2390 slab->us_firstfree = slabref->us_freelist[freei].us_item;
2391 } else {
2392 slab->us_firstfree = slab->us_freelist[freei].us_item;
2393 }
2394 item = slab->us_data + (keg->uk_rsize * freei);
2395
2396 slab->us_freecount--;
2397 keg->uk_free--;
2398#ifdef INVARIANTS
2399 uma_dbg_alloc(zone, slab, item);
2400#endif
2401 /* Move this slab to the full list */
2402 if (slab->us_freecount == 0) {
2403 LIST_REMOVE(slab, us_link);
2404 LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link);
2405 }
2406
2407 return (item);
2408}
2409
2410static int
2411zone_alloc_bucket(uma_zone_t zone, int flags)
2412{
2413 uma_bucket_t bucket;
2414 uma_slab_t slab;
2415 uma_keg_t keg;
2416 int16_t saved;
2417 int max, origflags = flags;
2418
2419 /*
2420 * Try this zone's free list first so we don't allocate extra buckets.
2421 */
2422 if ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) {
2423 KASSERT(bucket->ub_cnt == 0,
2424 ("zone_alloc_bucket: Bucket on free list is not empty."));
2425 LIST_REMOVE(bucket, ub_link);
2426 } else {
2427 int bflags;
2428
2429 bflags = (flags & ~M_ZERO);
2430 if (zone->uz_flags & UMA_ZFLAG_CACHEONLY)
2431 bflags |= M_NOVM;
2432
2433 ZONE_UNLOCK(zone);
2434 bucket = bucket_alloc(zone->uz_count, bflags);
2435 ZONE_LOCK(zone);
2436 }
2437
2438 if (bucket == NULL) {
2439 return (0);
2440 }
2441
2442#ifdef SMP
2443 /*
2444 * This code is here to limit the number of simultaneous bucket fills
2445 * for any given zone to the number of per cpu caches in this zone. This
2446 * is done so that we don't allocate more memory than we really need.
2447 */
2448 if (zone->uz_fills >= mp_ncpus)
2449 goto done;
2450
2451#endif
2452 zone->uz_fills++;
2453
2454 max = MIN(bucket->ub_entries, zone->uz_count);
2455 /* Try to keep the buckets totally full */
2456 saved = bucket->ub_cnt;
2457 slab = NULL;
2458 keg = NULL;
2459 while (bucket->ub_cnt < max &&
2460 (slab = zone->uz_slab(zone, keg, flags)) != NULL) {
2461 keg = slab->us_keg;
2462 while (slab->us_freecount && bucket->ub_cnt < max) {
2463 bucket->ub_bucket[bucket->ub_cnt++] =
2464 slab_alloc_item(zone, slab);
2465 }
2466
2467 /* Don't block on the next fill */
2468 flags |= M_NOWAIT;
2469 }
2470 if (slab)
2471 zone_relock(zone, keg);
2472
2473 /*
2474 * We unlock here because we need to call the zone's init.
2475 * It should be safe to unlock because the slab dealt with
2476 * above is already on the appropriate list within the keg
2477 * and the bucket we filled is not yet on any list, so we
2478 * own it.
2479 */
2480 if (zone->uz_init != NULL) {
2481 int i;
2482
2483 ZONE_UNLOCK(zone);
2484 for (i = saved; i < bucket->ub_cnt; i++)
2485 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size,
2486 origflags) != 0)
2487 break;
2488 /*
2489 * If we couldn't initialize the whole bucket, put the
2490 * rest back onto the freelist.
2491 */
2492 if (i != bucket->ub_cnt) {
2493 int j;
2494
2495 for (j = i; j < bucket->ub_cnt; j++) {
2496 zone_free_item(zone, bucket->ub_bucket[j],
2497 NULL, SKIP_FINI, 0);
2498#ifdef INVARIANTS
2499 bucket->ub_bucket[j] = NULL;
2500#endif
2501 }
2502 bucket->ub_cnt = i;
2503 }
2504 ZONE_LOCK(zone);
2505 }
2506
2507 zone->uz_fills--;
2508 if (bucket->ub_cnt != 0) {
2509 LIST_INSERT_HEAD(&zone->uz_full_bucket,
2510 bucket, ub_link);
2511 return (1);
2512 }
2513#ifdef SMP
2514done:
2515#endif
2516 bucket_free(bucket);
2517
2518 return (0);
2519}
2520/*
2521 * Allocates an item for an internal zone
2522 *
2523 * Arguments
2524 * zone The zone to alloc for.
2525 * udata The data to be passed to the constructor.
2526 * flags M_WAITOK, M_NOWAIT, M_ZERO.
2527 *
2528 * Returns
2529 * NULL if there is no memory and M_NOWAIT is set
2530 * An item if successful
2531 */
2532
2533static void *
2534zone_alloc_item(uma_zone_t zone, void *udata, int flags)
2535{
2536 uma_slab_t slab;
2537 void *item;
2538
2539 item = NULL;
2540
2541#ifdef UMA_DEBUG_ALLOC
2542 printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone);
2543#endif
2544 ZONE_LOCK(zone);
2545
2546 slab = zone->uz_slab(zone, NULL, flags);
2547 if (slab == NULL) {
2548 zone->uz_fails++;
2549 ZONE_UNLOCK(zone);
2550 return (NULL);
2551 }
2552
2553 item = slab_alloc_item(zone, slab);
2554
2555 zone_relock(zone, slab->us_keg);
2556 zone->uz_allocs++;
2557 ZONE_UNLOCK(zone);
2558
2559 /*
2560 * We have to call both the zone's init (not the keg's init)
2561 * and the zone's ctor. This is because the item is going from
2562 * a keg slab directly to the user, and the user is expecting it
2563 * to be both zone-init'd as well as zone-ctor'd.
2564 */
2565 if (zone->uz_init != NULL) {
2566 if (zone->uz_init(item, zone->uz_size, flags) != 0) {
2567 zone_free_item(zone, item, udata, SKIP_FINI,
2568 ZFREE_STATFAIL | ZFREE_STATFREE);
2569 return (NULL);
2570 }
2571 }
2572 if (zone->uz_ctor != NULL) {
2573 if (zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) {
2574 zone_free_item(zone, item, udata, SKIP_DTOR,
2575 ZFREE_STATFAIL | ZFREE_STATFREE);
2576 return (NULL);
2577 }
2578 }
2579 if (flags & M_ZERO)
2580 bzero(item, zone->uz_size);
2581
2582 return (item);
2583}
2584
2585/* See uma.h */
2586void
2587uma_zfree_arg(uma_zone_t zone, void *item, void *udata)
2588{
2589 uma_cache_t cache;
2590 uma_bucket_t bucket;
2591 int bflags;
2592 int cpu;
2593
2594#ifdef UMA_DEBUG_ALLOC_1
2595 printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone);
2596#endif
2597 CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread,
2598 zone->uz_name);
2599
2600 /* uma_zfree(..., NULL) does nothing, to match free(9). */
2601 if (item == NULL)
2602 return;
2603#ifdef DEBUG_MEMGUARD
2604 if (is_memguard_addr(item)) {
2605 if (zone->uz_dtor != NULL && zone->uz_dtor != mtrash_dtor)
2606 zone->uz_dtor(item, zone->uz_size, udata);
2607 if (zone->uz_fini != NULL && zone->uz_fini != mtrash_fini)
2608 zone->uz_fini(item, zone->uz_size);
2609 memguard_free(item);
2610 return;
2611 }
2612#endif
2613 if (zone->uz_dtor)
2614 zone->uz_dtor(item, zone->uz_size, udata);
2615
2616#ifdef INVARIANTS
2617 ZONE_LOCK(zone);
2618 if (zone->uz_flags & UMA_ZONE_MALLOC)
2619 uma_dbg_free(zone, udata, item);
2620 else
2621 uma_dbg_free(zone, NULL, item);
2622 ZONE_UNLOCK(zone);
2623#endif
2624 /*
2625 * The race here is acceptable. If we miss it we'll just have to wait
2626 * a little longer for the limits to be reset.
2627 */
2628 if (zone->uz_flags & UMA_ZFLAG_FULL)
2629 goto zfree_internal;
2630
2631 /*
2632 * If possible, free to the per-CPU cache. There are two
2633 * requirements for safe access to the per-CPU cache: (1) the thread
2634 * accessing the cache must not be preempted or yield during access,
2635 * and (2) the thread must not migrate CPUs without switching which
2636 * cache it accesses. We rely on a critical section to prevent
2637 * preemption and migration. We release the critical section in
2638 * order to acquire the zone mutex if we are unable to free to the
2639 * current cache; when we re-acquire the critical section, we must
2640 * detect and handle migration if it has occurred.
2641 */
2642zfree_restart:
2643 critical_enter();
2644 cpu = curcpu;
2645 cache = &zone->uz_cpu[cpu];
2646
2647zfree_start:
2648 bucket = cache->uc_freebucket;
2649
2650 if (bucket) {
2651 /*
2652 * Do we have room in our bucket? It is OK for this uz count
2653 * check to be slightly out of sync.
2654 */
2655
2656 if (bucket->ub_cnt < bucket->ub_entries) {
2657 KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL,
2658 ("uma_zfree: Freeing to non free bucket index."));
2659 bucket->ub_bucket[bucket->ub_cnt] = item;
2660 bucket->ub_cnt++;
2661 cache->uc_frees++;
2662 critical_exit();
2663 return;
2664 } else if (cache->uc_allocbucket) {
2665#ifdef UMA_DEBUG_ALLOC
2666 printf("uma_zfree: Swapping buckets.\n");
2667#endif
2668 /*
2669 * We have run out of space in our freebucket.
2670 * See if we can switch with our alloc bucket.
2671 */
2672 if (cache->uc_allocbucket->ub_cnt <
2673 cache->uc_freebucket->ub_cnt) {
2674 bucket = cache->uc_freebucket;
2675 cache->uc_freebucket = cache->uc_allocbucket;
2676 cache->uc_allocbucket = bucket;
2677 goto zfree_start;
2678 }
2679 }
2680 }
2681 /*
2682 * We can get here for two reasons:
2683 *
2684 * 1) The buckets are NULL
2685 * 2) The alloc and free buckets are both somewhat full.
2686 *
2687 * We must go back the zone, which requires acquiring the zone lock,
2688 * which in turn means we must release and re-acquire the critical
2689 * section. Since the critical section is released, we may be
2690 * preempted or migrate. As such, make sure not to maintain any
2691 * thread-local state specific to the cache from prior to releasing
2692 * the critical section.
2693 */
2694 critical_exit();
2695 ZONE_LOCK(zone);
2696 critical_enter();
2697 cpu = curcpu;
2698 cache = &zone->uz_cpu[cpu];
2699 if (cache->uc_freebucket != NULL) {
2700 if (cache->uc_freebucket->ub_cnt <
2701 cache->uc_freebucket->ub_entries) {
2702 ZONE_UNLOCK(zone);
2703 goto zfree_start;
2704 }
2705 if (cache->uc_allocbucket != NULL &&
2706 (cache->uc_allocbucket->ub_cnt <
2707 cache->uc_freebucket->ub_cnt)) {
2708 ZONE_UNLOCK(zone);
2709 goto zfree_start;
2710 }
2711 }
2712
2713 /* Since we have locked the zone we may as well send back our stats */
2714 zone->uz_allocs += cache->uc_allocs;
2715 cache->uc_allocs = 0;
2716 zone->uz_frees += cache->uc_frees;
2717 cache->uc_frees = 0;
2718
2719 bucket = cache->uc_freebucket;
2720 cache->uc_freebucket = NULL;
2721
2722 /* Can we throw this on the zone full list? */
2723 if (bucket != NULL) {
2724#ifdef UMA_DEBUG_ALLOC
2725 printf("uma_zfree: Putting old bucket on the free list.\n");
2726#endif
2727 /* ub_cnt is pointing to the last free item */
2728 KASSERT(bucket->ub_cnt != 0,
2729 ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n"));
2730 LIST_INSERT_HEAD(&zone->uz_full_bucket,
2731 bucket, ub_link);
2732 }
2733 if ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) {
2734 LIST_REMOVE(bucket, ub_link);
2735 ZONE_UNLOCK(zone);
2736 cache->uc_freebucket = bucket;
2737 goto zfree_start;
2738 }
2739 /* We are no longer associated with this CPU. */
2740 critical_exit();
2741
2742 /* And the zone.. */
2743 ZONE_UNLOCK(zone);
2744
2745#ifdef UMA_DEBUG_ALLOC
2746 printf("uma_zfree: Allocating new free bucket.\n");
2747#endif
2748 bflags = M_NOWAIT;
2749
2750 if (zone->uz_flags & UMA_ZFLAG_CACHEONLY)
2751 bflags |= M_NOVM;
2752 bucket = bucket_alloc(zone->uz_count, bflags);
2753 if (bucket) {
2754 ZONE_LOCK(zone);
2755 LIST_INSERT_HEAD(&zone->uz_free_bucket,
2756 bucket, ub_link);
2757 ZONE_UNLOCK(zone);
2758 goto zfree_restart;
2759 }
2760
2761 /*
2762 * If nothing else caught this, we'll just do an internal free.
2763 */
2764zfree_internal:
2765 zone_free_item(zone, item, udata, SKIP_DTOR, ZFREE_STATFREE);
2766
2767 return;
2768}
2769
2770/*
2771 * Frees an item to an INTERNAL zone or allocates a free bucket
2772 *
2773 * Arguments:
2774 * zone The zone to free to
2775 * item The item we're freeing
2776 * udata User supplied data for the dtor
2777 * skip Skip dtors and finis
2778 */
2779static void
2780zone_free_item(uma_zone_t zone, void *item, void *udata,
2781 enum zfreeskip skip, int flags)
2782{
2783 uma_slab_t slab;
2784 uma_slabrefcnt_t slabref;
2785 uma_keg_t keg;
2786 u_int8_t *mem;
2787 u_int8_t freei;
2788 int clearfull;
2789
2790 if (skip < SKIP_DTOR && zone->uz_dtor)
2791 zone->uz_dtor(item, zone->uz_size, udata);
2792
2793 if (skip < SKIP_FINI && zone->uz_fini)
2794 zone->uz_fini(item, zone->uz_size);
2795
2796 ZONE_LOCK(zone);
2797
2798 if (flags & ZFREE_STATFAIL)
2799 zone->uz_fails++;
2800 if (flags & ZFREE_STATFREE)
2801 zone->uz_frees++;
2802
2803 if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) {
2804 mem = (u_int8_t *)((unsigned long)item & (~UMA_SLAB_MASK));
2805 keg = zone_first_keg(zone); /* Must only be one. */
2806 if (zone->uz_flags & UMA_ZONE_HASH) {
2807 slab = hash_sfind(&keg->uk_hash, mem);
2808 } else {
2809 mem += keg->uk_pgoff;
2810 slab = (uma_slab_t)mem;
2811 }
2812 } else {
2813 /* This prevents redundant lookups via free(). */
2814 if ((zone->uz_flags & UMA_ZONE_MALLOC) && udata != NULL)
2815 slab = (uma_slab_t)udata;
2816 else
2817 slab = vtoslab((vm_offset_t)item);
2818 keg = slab->us_keg;
2819 keg_relock(keg, zone);
2820 }
2821 MPASS(keg == slab->us_keg);
2822
2823 /* Do we need to remove from any lists? */
2824 if (slab->us_freecount+1 == keg->uk_ipers) {
2825 LIST_REMOVE(slab, us_link);
2826 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
2827 } else if (slab->us_freecount == 0) {
2828 LIST_REMOVE(slab, us_link);
2829 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
2830 }
2831
2832 /* Slab management stuff */
2833 freei = ((unsigned long)item - (unsigned long)slab->us_data)
2834 / keg->uk_rsize;
2835
2836#ifdef INVARIANTS
2837 if (!skip)
2838 uma_dbg_free(zone, slab, item);
2839#endif
2840
2841 if (keg->uk_flags & UMA_ZONE_REFCNT) {
2842 slabref = (uma_slabrefcnt_t)slab;
2843 slabref->us_freelist[freei].us_item = slab->us_firstfree;
2844 } else {
2845 slab->us_freelist[freei].us_item = slab->us_firstfree;
2846 }
2847 slab->us_firstfree = freei;
2848 slab->us_freecount++;
2849
2850 /* Zone statistics */
2851 keg->uk_free++;
2852
2853 clearfull = 0;
2854 if (keg->uk_flags & UMA_ZFLAG_FULL) {
2855 if (keg->uk_pages < keg->uk_maxpages) {
2856 keg->uk_flags &= ~UMA_ZFLAG_FULL;
2857 clearfull = 1;
2858 }
2859
2860 /*
2861 * We can handle one more allocation. Since we're clearing ZFLAG_FULL,
2862 * wake up all procs blocked on pages. This should be uncommon, so
2863 * keeping this simple for now (rather than adding count of blocked
2864 * threads etc).
2865 */
2866 wakeup(keg);
2867 }
2868 if (clearfull) {
2869 zone_relock(zone, keg);
2870 zone->uz_flags &= ~UMA_ZFLAG_FULL;
2871 wakeup(zone);
2872 ZONE_UNLOCK(zone);
2873 } else
2874 KEG_UNLOCK(keg);
2875}
2876
2877/* See uma.h */
2878int
2879uma_zone_set_max(uma_zone_t zone, int nitems)
2880{
2881 uma_keg_t keg;
2882
2883 ZONE_LOCK(zone);
2884 keg = zone_first_keg(zone);
2885 keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera;
2886 if (keg->uk_maxpages * keg->uk_ipers < nitems)
2887 keg->uk_maxpages += keg->uk_ppera;
2888 nitems = keg->uk_maxpages * keg->uk_ipers;
2889 ZONE_UNLOCK(zone);
2890
2891 return (nitems);
2892}
2893
2894/* See uma.h */
2895int
2896uma_zone_get_max(uma_zone_t zone)
2897{
2898 int nitems;
2899 uma_keg_t keg;
2900
2901 ZONE_LOCK(zone);
2902 keg = zone_first_keg(zone);
2903 nitems = keg->uk_maxpages * keg->uk_ipers;
2904 ZONE_UNLOCK(zone);
2905
2906 return (nitems);
2907}
2908
2909/* See uma.h */
2910void
2911uma_zone_set_warning(uma_zone_t zone, const char *warning)
2912{
2913
2914 ZONE_LOCK(zone);
2915 zone->uz_warning = warning;
2916 ZONE_UNLOCK(zone);
2917}
2918
2919/* See uma.h */
2920int
2921uma_zone_get_cur(uma_zone_t zone)
2922{
2923 int64_t nitems;
2924 u_int i;
2925
2926 ZONE_LOCK(zone);
2927 nitems = zone->uz_allocs - zone->uz_frees;
2928 CPU_FOREACH(i) {
2929 /*
2930 * See the comment in sysctl_vm_zone_stats() regarding the
2931 * safety of accessing the per-cpu caches. With the zone lock
2932 * held, it is safe, but can potentially result in stale data.
2933 */
2934 nitems += zone->uz_cpu[i].uc_allocs -
2935 zone->uz_cpu[i].uc_frees;
2936 }
2937 ZONE_UNLOCK(zone);
2938
2939 return (nitems < 0 ? 0 : nitems);
2940}
2941
2942/* See uma.h */
2943void
2944uma_zone_set_init(uma_zone_t zone, uma_init uminit)
2945{
2946 uma_keg_t keg;
2947
2948 ZONE_LOCK(zone);
2949 keg = zone_first_keg(zone);
2950 KASSERT(keg->uk_pages == 0,
2951 ("uma_zone_set_init on non-empty keg"));
2952 keg->uk_init = uminit;
2953 ZONE_UNLOCK(zone);
2954}
2955
2956/* See uma.h */
2957void
2958uma_zone_set_fini(uma_zone_t zone, uma_fini fini)
2959{
2960 uma_keg_t keg;
2961
2962 ZONE_LOCK(zone);
2963 keg = zone_first_keg(zone);
2964 KASSERT(keg->uk_pages == 0,
2965 ("uma_zone_set_fini on non-empty keg"));
2966 keg->uk_fini = fini;
2967 ZONE_UNLOCK(zone);
2968}
2969
2970/* See uma.h */
2971void
2972uma_zone_set_zinit(uma_zone_t zone, uma_init zinit)
2973{
2974 ZONE_LOCK(zone);
2975 KASSERT(zone_first_keg(zone)->uk_pages == 0,
2976 ("uma_zone_set_zinit on non-empty keg"));
2977 zone->uz_init = zinit;
2978 ZONE_UNLOCK(zone);
2979}
2980
2981/* See uma.h */
2982void
2983uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini)
2984{
2985 ZONE_LOCK(zone);
2986 KASSERT(zone_first_keg(zone)->uk_pages == 0,
2987 ("uma_zone_set_zfini on non-empty keg"));
2988 zone->uz_fini = zfini;
2989 ZONE_UNLOCK(zone);
2990}
2991
2992/* See uma.h */
2993/* XXX uk_freef is not actually used with the zone locked */
2994void
2995uma_zone_set_freef(uma_zone_t zone, uma_free freef)
2996{
2997
2998 ZONE_LOCK(zone);
2999 zone_first_keg(zone)->uk_freef = freef;
3000 ZONE_UNLOCK(zone);
3001}
3002
3003/* See uma.h */
3004/* XXX uk_allocf is not actually used with the zone locked */
3005void
3006uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf)
3007{
3008 uma_keg_t keg;
3009
3010 ZONE_LOCK(zone);
3011 keg = zone_first_keg(zone);
3012 keg->uk_flags |= UMA_ZFLAG_PRIVALLOC;
3013 keg->uk_allocf = allocf;
3014 ZONE_UNLOCK(zone);
3015}
3016
3017/* See uma.h */
3018int
3015uma_zone_set_obj(uma_zone_t zone, struct vm_object *obj, int count)
3019uma_zone_reserve_kva(uma_zone_t zone, int count)
3016{
3017 uma_keg_t keg;
3018 vm_offset_t kva;
3019 int pages;
3020
3021 keg = zone_first_keg(zone);
3022 pages = count / keg->uk_ipers;
3023
3024 if (pages * keg->uk_ipers < count)
3025 pages++;
3026
3020{
3021 uma_keg_t keg;
3022 vm_offset_t kva;
3023 int pages;
3024
3025 keg = zone_first_keg(zone);
3026 pages = count / keg->uk_ipers;
3027
3028 if (pages * keg->uk_ipers < count)
3029 pages++;
3030
3027 kva = kmem_alloc_nofault(kernel_map, pages * UMA_SLAB_SIZE);
3028
3029 if (kva == 0)
3030 return (0);
3031 if (obj == NULL)
3032 obj = vm_object_allocate(OBJT_PHYS, pages);
3033 else {
3034 VM_OBJECT_LOCK_INIT(obj, "uma object");
3035 _vm_object_allocate(OBJT_PHYS, pages, obj);
3036 }
3031#ifdef UMA_MD_SMALL_ALLOC
3032 if (keg->uk_ppera > 1) {
3033#else
3034 if (1) {
3035#endif
3036 kva = kmem_alloc_nofault(kernel_map, pages * UMA_SLAB_SIZE);
3037 if (kva == 0)
3038 return (0);
3039 } else
3040 kva = 0;
3037 ZONE_LOCK(zone);
3038 keg->uk_kva = kva;
3041 ZONE_LOCK(zone);
3042 keg->uk_kva = kva;
3039 keg->uk_obj = obj;
3043 keg->uk_offset = 0;
3040 keg->uk_maxpages = pages;
3044 keg->uk_maxpages = pages;
3041 keg->uk_allocf = obj_alloc;
3045#ifdef UMA_MD_SMALL_ALLOC
3046 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc;
3047#else
3048 keg->uk_allocf = noobj_alloc;
3049#endif
3042 keg->uk_flags |= UMA_ZONE_NOFREE | UMA_ZFLAG_PRIVALLOC;
3043 ZONE_UNLOCK(zone);
3044 return (1);
3045}
3046
3047/* See uma.h */
3048void
3049uma_prealloc(uma_zone_t zone, int items)
3050{
3051 int slabs;
3052 uma_slab_t slab;
3053 uma_keg_t keg;
3054
3055 keg = zone_first_keg(zone);
3056 ZONE_LOCK(zone);
3057 slabs = items / keg->uk_ipers;
3058 if (slabs * keg->uk_ipers < items)
3059 slabs++;
3060 while (slabs > 0) {
3061 slab = keg_alloc_slab(keg, zone, M_WAITOK);
3062 if (slab == NULL)
3063 break;
3064 MPASS(slab->us_keg == keg);
3065 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
3066 slabs--;
3067 }
3068 ZONE_UNLOCK(zone);
3069}
3070
3071/* See uma.h */
3072u_int32_t *
3073uma_find_refcnt(uma_zone_t zone, void *item)
3074{
3075 uma_slabrefcnt_t slabref;
3076 uma_keg_t keg;
3077 u_int32_t *refcnt;
3078 int idx;
3079
3080 slabref = (uma_slabrefcnt_t)vtoslab((vm_offset_t)item &
3081 (~UMA_SLAB_MASK));
3082 keg = slabref->us_keg;
3083 KASSERT(slabref != NULL && slabref->us_keg->uk_flags & UMA_ZONE_REFCNT,
3084 ("uma_find_refcnt(): zone possibly not UMA_ZONE_REFCNT"));
3085 idx = ((unsigned long)item - (unsigned long)slabref->us_data)
3086 / keg->uk_rsize;
3087 refcnt = &slabref->us_freelist[idx].us_refcnt;
3088 return refcnt;
3089}
3090
3091/* See uma.h */
3092void
3093uma_reclaim(void)
3094{
3095#ifdef UMA_DEBUG
3096 printf("UMA: vm asked us to release pages!\n");
3097#endif
3098 bucket_enable();
3099 zone_foreach(zone_drain);
3100 /*
3101 * Some slabs may have been freed but this zone will be visited early
3102 * we visit again so that we can free pages that are empty once other
3103 * zones are drained. We have to do the same for buckets.
3104 */
3105 zone_drain(slabzone);
3106 zone_drain(slabrefzone);
3107 bucket_zone_drain();
3108}
3109
3110/* See uma.h */
3111int
3112uma_zone_exhausted(uma_zone_t zone)
3113{
3114 int full;
3115
3116 ZONE_LOCK(zone);
3117 full = (zone->uz_flags & UMA_ZFLAG_FULL);
3118 ZONE_UNLOCK(zone);
3119 return (full);
3120}
3121
3122int
3123uma_zone_exhausted_nolock(uma_zone_t zone)
3124{
3125 return (zone->uz_flags & UMA_ZFLAG_FULL);
3126}
3127
3128void *
3129uma_large_malloc(int size, int wait)
3130{
3131 void *mem;
3132 uma_slab_t slab;
3133 u_int8_t flags;
3134
3135 slab = zone_alloc_item(slabzone, NULL, wait);
3136 if (slab == NULL)
3137 return (NULL);
3138 mem = page_alloc(NULL, size, &flags, wait);
3139 if (mem) {
3140 vsetslab((vm_offset_t)mem, slab);
3141 slab->us_data = mem;
3142 slab->us_flags = flags | UMA_SLAB_MALLOC;
3143 slab->us_size = size;
3144 } else {
3145 zone_free_item(slabzone, slab, NULL, SKIP_NONE,
3146 ZFREE_STATFAIL | ZFREE_STATFREE);
3147 }
3148
3149 return (mem);
3150}
3151
3152void
3153uma_large_free(uma_slab_t slab)
3154{
3155 vsetobj((vm_offset_t)slab->us_data, kmem_object);
3156 page_free(slab->us_data, slab->us_size, slab->us_flags);
3157 zone_free_item(slabzone, slab, NULL, SKIP_NONE, ZFREE_STATFREE);
3158}
3159
3160void
3161uma_print_stats(void)
3162{
3163 zone_foreach(uma_print_zone);
3164}
3165
3166static void
3167slab_print(uma_slab_t slab)
3168{
3169 printf("slab: keg %p, data %p, freecount %d, firstfree %d\n",
3170 slab->us_keg, slab->us_data, slab->us_freecount,
3171 slab->us_firstfree);
3172}
3173
3174static void
3175cache_print(uma_cache_t cache)
3176{
3177 printf("alloc: %p(%d), free: %p(%d)\n",
3178 cache->uc_allocbucket,
3179 cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0,
3180 cache->uc_freebucket,
3181 cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0);
3182}
3183
3184static void
3185uma_print_keg(uma_keg_t keg)
3186{
3187 uma_slab_t slab;
3188
3189 printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d "
3190 "out %d free %d limit %d\n",
3191 keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags,
3192 keg->uk_ipers, keg->uk_ppera,
3193 (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free,
3194 (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers);
3195 printf("Part slabs:\n");
3196 LIST_FOREACH(slab, &keg->uk_part_slab, us_link)
3197 slab_print(slab);
3198 printf("Free slabs:\n");
3199 LIST_FOREACH(slab, &keg->uk_free_slab, us_link)
3200 slab_print(slab);
3201 printf("Full slabs:\n");
3202 LIST_FOREACH(slab, &keg->uk_full_slab, us_link)
3203 slab_print(slab);
3204}
3205
3206void
3207uma_print_zone(uma_zone_t zone)
3208{
3209 uma_cache_t cache;
3210 uma_klink_t kl;
3211 int i;
3212
3213 printf("zone: %s(%p) size %d flags %#x\n",
3214 zone->uz_name, zone, zone->uz_size, zone->uz_flags);
3215 LIST_FOREACH(kl, &zone->uz_kegs, kl_link)
3216 uma_print_keg(kl->kl_keg);
3217 CPU_FOREACH(i) {
3218 cache = &zone->uz_cpu[i];
3219 printf("CPU %d Cache:\n", i);
3220 cache_print(cache);
3221 }
3222}
3223
3224#ifdef DDB
3225/*
3226 * Generate statistics across both the zone and its per-cpu cache's. Return
3227 * desired statistics if the pointer is non-NULL for that statistic.
3228 *
3229 * Note: does not update the zone statistics, as it can't safely clear the
3230 * per-CPU cache statistic.
3231 *
3232 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't
3233 * safe from off-CPU; we should modify the caches to track this information
3234 * directly so that we don't have to.
3235 */
3236static void
3237uma_zone_sumstat(uma_zone_t z, int *cachefreep, u_int64_t *allocsp,
3238 u_int64_t *freesp, u_int64_t *sleepsp)
3239{
3240 uma_cache_t cache;
3241 u_int64_t allocs, frees, sleeps;
3242 int cachefree, cpu;
3243
3244 allocs = frees = sleeps = 0;
3245 cachefree = 0;
3246 CPU_FOREACH(cpu) {
3247 cache = &z->uz_cpu[cpu];
3248 if (cache->uc_allocbucket != NULL)
3249 cachefree += cache->uc_allocbucket->ub_cnt;
3250 if (cache->uc_freebucket != NULL)
3251 cachefree += cache->uc_freebucket->ub_cnt;
3252 allocs += cache->uc_allocs;
3253 frees += cache->uc_frees;
3254 }
3255 allocs += z->uz_allocs;
3256 frees += z->uz_frees;
3257 sleeps += z->uz_sleeps;
3258 if (cachefreep != NULL)
3259 *cachefreep = cachefree;
3260 if (allocsp != NULL)
3261 *allocsp = allocs;
3262 if (freesp != NULL)
3263 *freesp = frees;
3264 if (sleepsp != NULL)
3265 *sleepsp = sleeps;
3266}
3267#endif /* DDB */
3268
3269static int
3270sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS)
3271{
3272 uma_keg_t kz;
3273 uma_zone_t z;
3274 int count;
3275
3276 count = 0;
3277 mtx_lock(&uma_mtx);
3278 LIST_FOREACH(kz, &uma_kegs, uk_link) {
3279 LIST_FOREACH(z, &kz->uk_zones, uz_link)
3280 count++;
3281 }
3282 mtx_unlock(&uma_mtx);
3283 return (sysctl_handle_int(oidp, &count, 0, req));
3284}
3285
3286static int
3287sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS)
3288{
3289 struct uma_stream_header ush;
3290 struct uma_type_header uth;
3291 struct uma_percpu_stat ups;
3292 uma_bucket_t bucket;
3293 struct sbuf sbuf;
3294 uma_cache_t cache;
3295 uma_klink_t kl;
3296 uma_keg_t kz;
3297 uma_zone_t z;
3298 uma_keg_t k;
3299 int count, error, i;
3300
3301 error = sysctl_wire_old_buffer(req, 0);
3302 if (error != 0)
3303 return (error);
3304 sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
3305
3306 count = 0;
3307 mtx_lock(&uma_mtx);
3308 LIST_FOREACH(kz, &uma_kegs, uk_link) {
3309 LIST_FOREACH(z, &kz->uk_zones, uz_link)
3310 count++;
3311 }
3312
3313 /*
3314 * Insert stream header.
3315 */
3316 bzero(&ush, sizeof(ush));
3317 ush.ush_version = UMA_STREAM_VERSION;
3318 ush.ush_maxcpus = (mp_maxid + 1);
3319 ush.ush_count = count;
3320 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush));
3321
3322 LIST_FOREACH(kz, &uma_kegs, uk_link) {
3323 LIST_FOREACH(z, &kz->uk_zones, uz_link) {
3324 bzero(&uth, sizeof(uth));
3325 ZONE_LOCK(z);
3326 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
3327 uth.uth_align = kz->uk_align;
3328 uth.uth_size = kz->uk_size;
3329 uth.uth_rsize = kz->uk_rsize;
3330 LIST_FOREACH(kl, &z->uz_kegs, kl_link) {
3331 k = kl->kl_keg;
3332 uth.uth_maxpages += k->uk_maxpages;
3333 uth.uth_pages += k->uk_pages;
3334 uth.uth_keg_free += k->uk_free;
3335 uth.uth_limit = (k->uk_maxpages / k->uk_ppera)
3336 * k->uk_ipers;
3337 }
3338
3339 /*
3340 * A zone is secondary is it is not the first entry
3341 * on the keg's zone list.
3342 */
3343 if ((z->uz_flags & UMA_ZONE_SECONDARY) &&
3344 (LIST_FIRST(&kz->uk_zones) != z))
3345 uth.uth_zone_flags = UTH_ZONE_SECONDARY;
3346
3347 LIST_FOREACH(bucket, &z->uz_full_bucket, ub_link)
3348 uth.uth_zone_free += bucket->ub_cnt;
3349 uth.uth_allocs = z->uz_allocs;
3350 uth.uth_frees = z->uz_frees;
3351 uth.uth_fails = z->uz_fails;
3352 uth.uth_sleeps = z->uz_sleeps;
3353 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth));
3354 /*
3355 * While it is not normally safe to access the cache
3356 * bucket pointers while not on the CPU that owns the
3357 * cache, we only allow the pointers to be exchanged
3358 * without the zone lock held, not invalidated, so
3359 * accept the possible race associated with bucket
3360 * exchange during monitoring.
3361 */
3362 for (i = 0; i < (mp_maxid + 1); i++) {
3363 bzero(&ups, sizeof(ups));
3364 if (kz->uk_flags & UMA_ZFLAG_INTERNAL)
3365 goto skip;
3366 if (CPU_ABSENT(i))
3367 goto skip;
3368 cache = &z->uz_cpu[i];
3369 if (cache->uc_allocbucket != NULL)
3370 ups.ups_cache_free +=
3371 cache->uc_allocbucket->ub_cnt;
3372 if (cache->uc_freebucket != NULL)
3373 ups.ups_cache_free +=
3374 cache->uc_freebucket->ub_cnt;
3375 ups.ups_allocs = cache->uc_allocs;
3376 ups.ups_frees = cache->uc_frees;
3377skip:
3378 (void)sbuf_bcat(&sbuf, &ups, sizeof(ups));
3379 }
3380 ZONE_UNLOCK(z);
3381 }
3382 }
3383 mtx_unlock(&uma_mtx);
3384 error = sbuf_finish(&sbuf);
3385 sbuf_delete(&sbuf);
3386 return (error);
3387}
3388
3389#ifdef DDB
3390DB_SHOW_COMMAND(uma, db_show_uma)
3391{
3392 u_int64_t allocs, frees, sleeps;
3393 uma_bucket_t bucket;
3394 uma_keg_t kz;
3395 uma_zone_t z;
3396 int cachefree;
3397
3398 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free",
3399 "Requests", "Sleeps");
3400 LIST_FOREACH(kz, &uma_kegs, uk_link) {
3401 LIST_FOREACH(z, &kz->uk_zones, uz_link) {
3402 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) {
3403 allocs = z->uz_allocs;
3404 frees = z->uz_frees;
3405 sleeps = z->uz_sleeps;
3406 cachefree = 0;
3407 } else
3408 uma_zone_sumstat(z, &cachefree, &allocs,
3409 &frees, &sleeps);
3410 if (!((z->uz_flags & UMA_ZONE_SECONDARY) &&
3411 (LIST_FIRST(&kz->uk_zones) != z)))
3412 cachefree += kz->uk_free;
3413 LIST_FOREACH(bucket, &z->uz_full_bucket, ub_link)
3414 cachefree += bucket->ub_cnt;
3415 db_printf("%18s %8ju %8jd %8d %12ju %8ju\n", z->uz_name,
3416 (uintmax_t)kz->uk_size,
3417 (intmax_t)(allocs - frees), cachefree,
3418 (uintmax_t)allocs, sleeps);
3419 if (db_pager_quit)
3420 return;
3421 }
3422 }
3423}
3424#endif
3050 keg->uk_flags |= UMA_ZONE_NOFREE | UMA_ZFLAG_PRIVALLOC;
3051 ZONE_UNLOCK(zone);
3052 return (1);
3053}
3054
3055/* See uma.h */
3056void
3057uma_prealloc(uma_zone_t zone, int items)
3058{
3059 int slabs;
3060 uma_slab_t slab;
3061 uma_keg_t keg;
3062
3063 keg = zone_first_keg(zone);
3064 ZONE_LOCK(zone);
3065 slabs = items / keg->uk_ipers;
3066 if (slabs * keg->uk_ipers < items)
3067 slabs++;
3068 while (slabs > 0) {
3069 slab = keg_alloc_slab(keg, zone, M_WAITOK);
3070 if (slab == NULL)
3071 break;
3072 MPASS(slab->us_keg == keg);
3073 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
3074 slabs--;
3075 }
3076 ZONE_UNLOCK(zone);
3077}
3078
3079/* See uma.h */
3080u_int32_t *
3081uma_find_refcnt(uma_zone_t zone, void *item)
3082{
3083 uma_slabrefcnt_t slabref;
3084 uma_keg_t keg;
3085 u_int32_t *refcnt;
3086 int idx;
3087
3088 slabref = (uma_slabrefcnt_t)vtoslab((vm_offset_t)item &
3089 (~UMA_SLAB_MASK));
3090 keg = slabref->us_keg;
3091 KASSERT(slabref != NULL && slabref->us_keg->uk_flags & UMA_ZONE_REFCNT,
3092 ("uma_find_refcnt(): zone possibly not UMA_ZONE_REFCNT"));
3093 idx = ((unsigned long)item - (unsigned long)slabref->us_data)
3094 / keg->uk_rsize;
3095 refcnt = &slabref->us_freelist[idx].us_refcnt;
3096 return refcnt;
3097}
3098
3099/* See uma.h */
3100void
3101uma_reclaim(void)
3102{
3103#ifdef UMA_DEBUG
3104 printf("UMA: vm asked us to release pages!\n");
3105#endif
3106 bucket_enable();
3107 zone_foreach(zone_drain);
3108 /*
3109 * Some slabs may have been freed but this zone will be visited early
3110 * we visit again so that we can free pages that are empty once other
3111 * zones are drained. We have to do the same for buckets.
3112 */
3113 zone_drain(slabzone);
3114 zone_drain(slabrefzone);
3115 bucket_zone_drain();
3116}
3117
3118/* See uma.h */
3119int
3120uma_zone_exhausted(uma_zone_t zone)
3121{
3122 int full;
3123
3124 ZONE_LOCK(zone);
3125 full = (zone->uz_flags & UMA_ZFLAG_FULL);
3126 ZONE_UNLOCK(zone);
3127 return (full);
3128}
3129
3130int
3131uma_zone_exhausted_nolock(uma_zone_t zone)
3132{
3133 return (zone->uz_flags & UMA_ZFLAG_FULL);
3134}
3135
3136void *
3137uma_large_malloc(int size, int wait)
3138{
3139 void *mem;
3140 uma_slab_t slab;
3141 u_int8_t flags;
3142
3143 slab = zone_alloc_item(slabzone, NULL, wait);
3144 if (slab == NULL)
3145 return (NULL);
3146 mem = page_alloc(NULL, size, &flags, wait);
3147 if (mem) {
3148 vsetslab((vm_offset_t)mem, slab);
3149 slab->us_data = mem;
3150 slab->us_flags = flags | UMA_SLAB_MALLOC;
3151 slab->us_size = size;
3152 } else {
3153 zone_free_item(slabzone, slab, NULL, SKIP_NONE,
3154 ZFREE_STATFAIL | ZFREE_STATFREE);
3155 }
3156
3157 return (mem);
3158}
3159
3160void
3161uma_large_free(uma_slab_t slab)
3162{
3163 vsetobj((vm_offset_t)slab->us_data, kmem_object);
3164 page_free(slab->us_data, slab->us_size, slab->us_flags);
3165 zone_free_item(slabzone, slab, NULL, SKIP_NONE, ZFREE_STATFREE);
3166}
3167
3168void
3169uma_print_stats(void)
3170{
3171 zone_foreach(uma_print_zone);
3172}
3173
3174static void
3175slab_print(uma_slab_t slab)
3176{
3177 printf("slab: keg %p, data %p, freecount %d, firstfree %d\n",
3178 slab->us_keg, slab->us_data, slab->us_freecount,
3179 slab->us_firstfree);
3180}
3181
3182static void
3183cache_print(uma_cache_t cache)
3184{
3185 printf("alloc: %p(%d), free: %p(%d)\n",
3186 cache->uc_allocbucket,
3187 cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0,
3188 cache->uc_freebucket,
3189 cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0);
3190}
3191
3192static void
3193uma_print_keg(uma_keg_t keg)
3194{
3195 uma_slab_t slab;
3196
3197 printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d "
3198 "out %d free %d limit %d\n",
3199 keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags,
3200 keg->uk_ipers, keg->uk_ppera,
3201 (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free,
3202 (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers);
3203 printf("Part slabs:\n");
3204 LIST_FOREACH(slab, &keg->uk_part_slab, us_link)
3205 slab_print(slab);
3206 printf("Free slabs:\n");
3207 LIST_FOREACH(slab, &keg->uk_free_slab, us_link)
3208 slab_print(slab);
3209 printf("Full slabs:\n");
3210 LIST_FOREACH(slab, &keg->uk_full_slab, us_link)
3211 slab_print(slab);
3212}
3213
3214void
3215uma_print_zone(uma_zone_t zone)
3216{
3217 uma_cache_t cache;
3218 uma_klink_t kl;
3219 int i;
3220
3221 printf("zone: %s(%p) size %d flags %#x\n",
3222 zone->uz_name, zone, zone->uz_size, zone->uz_flags);
3223 LIST_FOREACH(kl, &zone->uz_kegs, kl_link)
3224 uma_print_keg(kl->kl_keg);
3225 CPU_FOREACH(i) {
3226 cache = &zone->uz_cpu[i];
3227 printf("CPU %d Cache:\n", i);
3228 cache_print(cache);
3229 }
3230}
3231
3232#ifdef DDB
3233/*
3234 * Generate statistics across both the zone and its per-cpu cache's. Return
3235 * desired statistics if the pointer is non-NULL for that statistic.
3236 *
3237 * Note: does not update the zone statistics, as it can't safely clear the
3238 * per-CPU cache statistic.
3239 *
3240 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't
3241 * safe from off-CPU; we should modify the caches to track this information
3242 * directly so that we don't have to.
3243 */
3244static void
3245uma_zone_sumstat(uma_zone_t z, int *cachefreep, u_int64_t *allocsp,
3246 u_int64_t *freesp, u_int64_t *sleepsp)
3247{
3248 uma_cache_t cache;
3249 u_int64_t allocs, frees, sleeps;
3250 int cachefree, cpu;
3251
3252 allocs = frees = sleeps = 0;
3253 cachefree = 0;
3254 CPU_FOREACH(cpu) {
3255 cache = &z->uz_cpu[cpu];
3256 if (cache->uc_allocbucket != NULL)
3257 cachefree += cache->uc_allocbucket->ub_cnt;
3258 if (cache->uc_freebucket != NULL)
3259 cachefree += cache->uc_freebucket->ub_cnt;
3260 allocs += cache->uc_allocs;
3261 frees += cache->uc_frees;
3262 }
3263 allocs += z->uz_allocs;
3264 frees += z->uz_frees;
3265 sleeps += z->uz_sleeps;
3266 if (cachefreep != NULL)
3267 *cachefreep = cachefree;
3268 if (allocsp != NULL)
3269 *allocsp = allocs;
3270 if (freesp != NULL)
3271 *freesp = frees;
3272 if (sleepsp != NULL)
3273 *sleepsp = sleeps;
3274}
3275#endif /* DDB */
3276
3277static int
3278sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS)
3279{
3280 uma_keg_t kz;
3281 uma_zone_t z;
3282 int count;
3283
3284 count = 0;
3285 mtx_lock(&uma_mtx);
3286 LIST_FOREACH(kz, &uma_kegs, uk_link) {
3287 LIST_FOREACH(z, &kz->uk_zones, uz_link)
3288 count++;
3289 }
3290 mtx_unlock(&uma_mtx);
3291 return (sysctl_handle_int(oidp, &count, 0, req));
3292}
3293
3294static int
3295sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS)
3296{
3297 struct uma_stream_header ush;
3298 struct uma_type_header uth;
3299 struct uma_percpu_stat ups;
3300 uma_bucket_t bucket;
3301 struct sbuf sbuf;
3302 uma_cache_t cache;
3303 uma_klink_t kl;
3304 uma_keg_t kz;
3305 uma_zone_t z;
3306 uma_keg_t k;
3307 int count, error, i;
3308
3309 error = sysctl_wire_old_buffer(req, 0);
3310 if (error != 0)
3311 return (error);
3312 sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
3313
3314 count = 0;
3315 mtx_lock(&uma_mtx);
3316 LIST_FOREACH(kz, &uma_kegs, uk_link) {
3317 LIST_FOREACH(z, &kz->uk_zones, uz_link)
3318 count++;
3319 }
3320
3321 /*
3322 * Insert stream header.
3323 */
3324 bzero(&ush, sizeof(ush));
3325 ush.ush_version = UMA_STREAM_VERSION;
3326 ush.ush_maxcpus = (mp_maxid + 1);
3327 ush.ush_count = count;
3328 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush));
3329
3330 LIST_FOREACH(kz, &uma_kegs, uk_link) {
3331 LIST_FOREACH(z, &kz->uk_zones, uz_link) {
3332 bzero(&uth, sizeof(uth));
3333 ZONE_LOCK(z);
3334 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
3335 uth.uth_align = kz->uk_align;
3336 uth.uth_size = kz->uk_size;
3337 uth.uth_rsize = kz->uk_rsize;
3338 LIST_FOREACH(kl, &z->uz_kegs, kl_link) {
3339 k = kl->kl_keg;
3340 uth.uth_maxpages += k->uk_maxpages;
3341 uth.uth_pages += k->uk_pages;
3342 uth.uth_keg_free += k->uk_free;
3343 uth.uth_limit = (k->uk_maxpages / k->uk_ppera)
3344 * k->uk_ipers;
3345 }
3346
3347 /*
3348 * A zone is secondary is it is not the first entry
3349 * on the keg's zone list.
3350 */
3351 if ((z->uz_flags & UMA_ZONE_SECONDARY) &&
3352 (LIST_FIRST(&kz->uk_zones) != z))
3353 uth.uth_zone_flags = UTH_ZONE_SECONDARY;
3354
3355 LIST_FOREACH(bucket, &z->uz_full_bucket, ub_link)
3356 uth.uth_zone_free += bucket->ub_cnt;
3357 uth.uth_allocs = z->uz_allocs;
3358 uth.uth_frees = z->uz_frees;
3359 uth.uth_fails = z->uz_fails;
3360 uth.uth_sleeps = z->uz_sleeps;
3361 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth));
3362 /*
3363 * While it is not normally safe to access the cache
3364 * bucket pointers while not on the CPU that owns the
3365 * cache, we only allow the pointers to be exchanged
3366 * without the zone lock held, not invalidated, so
3367 * accept the possible race associated with bucket
3368 * exchange during monitoring.
3369 */
3370 for (i = 0; i < (mp_maxid + 1); i++) {
3371 bzero(&ups, sizeof(ups));
3372 if (kz->uk_flags & UMA_ZFLAG_INTERNAL)
3373 goto skip;
3374 if (CPU_ABSENT(i))
3375 goto skip;
3376 cache = &z->uz_cpu[i];
3377 if (cache->uc_allocbucket != NULL)
3378 ups.ups_cache_free +=
3379 cache->uc_allocbucket->ub_cnt;
3380 if (cache->uc_freebucket != NULL)
3381 ups.ups_cache_free +=
3382 cache->uc_freebucket->ub_cnt;
3383 ups.ups_allocs = cache->uc_allocs;
3384 ups.ups_frees = cache->uc_frees;
3385skip:
3386 (void)sbuf_bcat(&sbuf, &ups, sizeof(ups));
3387 }
3388 ZONE_UNLOCK(z);
3389 }
3390 }
3391 mtx_unlock(&uma_mtx);
3392 error = sbuf_finish(&sbuf);
3393 sbuf_delete(&sbuf);
3394 return (error);
3395}
3396
3397#ifdef DDB
3398DB_SHOW_COMMAND(uma, db_show_uma)
3399{
3400 u_int64_t allocs, frees, sleeps;
3401 uma_bucket_t bucket;
3402 uma_keg_t kz;
3403 uma_zone_t z;
3404 int cachefree;
3405
3406 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free",
3407 "Requests", "Sleeps");
3408 LIST_FOREACH(kz, &uma_kegs, uk_link) {
3409 LIST_FOREACH(z, &kz->uk_zones, uz_link) {
3410 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) {
3411 allocs = z->uz_allocs;
3412 frees = z->uz_frees;
3413 sleeps = z->uz_sleeps;
3414 cachefree = 0;
3415 } else
3416 uma_zone_sumstat(z, &cachefree, &allocs,
3417 &frees, &sleeps);
3418 if (!((z->uz_flags & UMA_ZONE_SECONDARY) &&
3419 (LIST_FIRST(&kz->uk_zones) != z)))
3420 cachefree += kz->uk_free;
3421 LIST_FOREACH(bucket, &z->uz_full_bucket, ub_link)
3422 cachefree += bucket->ub_cnt;
3423 db_printf("%18s %8ju %8jd %8d %12ju %8ju\n", z->uz_name,
3424 (uintmax_t)kz->uk_size,
3425 (intmax_t)(allocs - frees), cachefree,
3426 (uintmax_t)allocs, sleeps);
3427 if (db_pager_quit)
3428 return;
3429 }
3430 }
3431}
3432#endif