Deleted Added
full compact
ffs_alloc.c (59241) ffs_alloc.c (60041)
1/*
2 * Copyright (c) 1982, 1986, 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 * @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95
1/*
2 * Copyright (c) 1982, 1986, 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 * @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95
34 * $FreeBSD: head/sys/ufs/ffs/ffs_alloc.c 59241 2000-04-15 03:34:27Z rwatson $
34 * $FreeBSD: head/sys/ufs/ffs/ffs_alloc.c 60041 2000-05-05 09:59:14Z phk $
35 */
36
37#include "opt_quota.h"
38
39#include <sys/param.h>
40#include <sys/systm.h>
35 */
36
37#include "opt_quota.h"
38
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/bio.h>
41#include <sys/buf.h>
42#include <sys/conf.h>
43#include <sys/proc.h>
44#include <sys/vnode.h>
45#include <sys/mount.h>
46#include <sys/kernel.h>
47#include <sys/sysctl.h>
48#include <sys/syslog.h>
49
50#include <ufs/ufs/extattr.h>
51#include <ufs/ufs/quota.h>
52#include <ufs/ufs/inode.h>
53#include <ufs/ufs/ufs_extern.h>
54#include <ufs/ufs/ufsmount.h>
55
56#include <ufs/ffs/fs.h>
57#include <ufs/ffs/ffs_extern.h>
58
59typedef ufs_daddr_t allocfcn_t __P((struct inode *ip, int cg, ufs_daddr_t bpref,
60 int size));
61
62static ufs_daddr_t ffs_alloccg __P((struct inode *, int, ufs_daddr_t, int));
63static ufs_daddr_t
64 ffs_alloccgblk __P((struct inode *, struct buf *, ufs_daddr_t));
65#ifdef DIAGNOSTIC
66static int ffs_checkblk __P((struct inode *, ufs_daddr_t, long));
67#endif
68static void ffs_clusteracct __P((struct fs *, struct cg *, ufs_daddr_t,
69 int));
70static ufs_daddr_t ffs_clusteralloc __P((struct inode *, int, ufs_daddr_t,
71 int));
72static ino_t ffs_dirpref __P((struct fs *));
73static ufs_daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
74static void ffs_fserr __P((struct fs *, u_int, char *));
75static u_long ffs_hashalloc
76 __P((struct inode *, int, long, int, allocfcn_t *));
77static ino_t ffs_nodealloccg __P((struct inode *, int, ufs_daddr_t, int));
78static ufs_daddr_t ffs_mapsearch __P((struct fs *, struct cg *, ufs_daddr_t,
79 int));
80
81/*
82 * Allocate a block in the file system.
83 *
84 * The size of the requested block is given, which must be some
85 * multiple of fs_fsize and <= fs_bsize.
86 * A preference may be optionally specified. If a preference is given
87 * the following hierarchy is used to allocate a block:
88 * 1) allocate the requested block.
89 * 2) allocate a rotationally optimal block in the same cylinder.
90 * 3) allocate a block in the same cylinder group.
91 * 4) quadradically rehash into other cylinder groups, until an
92 * available block is located.
93 * If no block preference is given the following heirarchy is used
94 * to allocate a block:
95 * 1) allocate a block in the cylinder group that contains the
96 * inode for the file.
97 * 2) quadradically rehash into other cylinder groups, until an
98 * available block is located.
99 */
100int
101ffs_alloc(ip, lbn, bpref, size, cred, bnp)
102 register struct inode *ip;
103 ufs_daddr_t lbn, bpref;
104 int size;
105 struct ucred *cred;
106 ufs_daddr_t *bnp;
107{
108 register struct fs *fs;
109 ufs_daddr_t bno;
110 int cg;
111#ifdef QUOTA
112 int error;
113#endif
114
115 *bnp = 0;
116 fs = ip->i_fs;
117#ifdef DIAGNOSTIC
118 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
119 printf("dev = %s, bsize = %ld, size = %d, fs = %s\n",
120 devtoname(ip->i_dev), (long)fs->fs_bsize, size,
121 fs->fs_fsmnt);
122 panic("ffs_alloc: bad size");
123 }
124 if (cred == NOCRED)
125 panic("ffs_alloc: missing credential");
126#endif /* DIAGNOSTIC */
127 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
128 goto nospace;
129 if (cred->cr_uid != 0 &&
130 freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0)
131 goto nospace;
132#ifdef QUOTA
133 error = chkdq(ip, (long)btodb(size), cred, 0);
134 if (error)
135 return (error);
136#endif
137 if (bpref >= fs->fs_size)
138 bpref = 0;
139 if (bpref == 0)
140 cg = ino_to_cg(fs, ip->i_number);
141 else
142 cg = dtog(fs, bpref);
143 bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
144 ffs_alloccg);
145 if (bno > 0) {
146 ip->i_blocks += btodb(size);
147 ip->i_flag |= IN_CHANGE | IN_UPDATE;
148 *bnp = bno;
149 return (0);
150 }
151#ifdef QUOTA
152 /*
153 * Restore user's disk quota because allocation failed.
154 */
155 (void) chkdq(ip, (long)-btodb(size), cred, FORCE);
156#endif
157nospace:
158 ffs_fserr(fs, cred->cr_uid, "file system full");
159 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
160 return (ENOSPC);
161}
162
163/*
164 * Reallocate a fragment to a bigger size
165 *
166 * The number and size of the old block is given, and a preference
167 * and new size is also specified. The allocator attempts to extend
168 * the original block. Failing that, the regular block allocator is
169 * invoked to get an appropriate block.
170 */
171int
172ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
173 register struct inode *ip;
174 ufs_daddr_t lbprev;
175 ufs_daddr_t bpref;
176 int osize, nsize;
177 struct ucred *cred;
178 struct buf **bpp;
179{
180 register struct fs *fs;
181 struct buf *bp;
182 int cg, request, error;
183 ufs_daddr_t bprev, bno;
184
185 *bpp = 0;
186 fs = ip->i_fs;
187#ifdef DIAGNOSTIC
188 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
189 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
190 printf(
191 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n",
192 devtoname(ip->i_dev), (long)fs->fs_bsize, osize,
193 nsize, fs->fs_fsmnt);
194 panic("ffs_realloccg: bad size");
195 }
196 if (cred == NOCRED)
197 panic("ffs_realloccg: missing credential");
198#endif /* DIAGNOSTIC */
199 if (cred->cr_uid != 0 &&
200 freespace(fs, fs->fs_minfree) - numfrags(fs, nsize - osize) < 0)
201 goto nospace;
202 if ((bprev = ip->i_db[lbprev]) == 0) {
203 printf("dev = %s, bsize = %ld, bprev = %ld, fs = %s\n",
204 devtoname(ip->i_dev), (long)fs->fs_bsize, (long)bprev,
205 fs->fs_fsmnt);
206 panic("ffs_realloccg: bad bprev");
207 }
208 /*
209 * Allocate the extra space in the buffer.
210 */
211 error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp);
212 if (error) {
213 brelse(bp);
214 return (error);
215 }
216
217 if( bp->b_blkno == bp->b_lblkno) {
218 if( lbprev >= NDADDR)
219 panic("ffs_realloccg: lbprev out of range");
220 bp->b_blkno = fsbtodb(fs, bprev);
221 }
222
223#ifdef QUOTA
224 error = chkdq(ip, (long)btodb(nsize - osize), cred, 0);
225 if (error) {
226 brelse(bp);
227 return (error);
228 }
229#endif
230 /*
231 * Check for extension in the existing location.
232 */
233 cg = dtog(fs, bprev);
234 bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize);
235 if (bno) {
236 if (bp->b_blkno != fsbtodb(fs, bno))
237 panic("ffs_realloccg: bad blockno");
238 ip->i_blocks += btodb(nsize - osize);
239 ip->i_flag |= IN_CHANGE | IN_UPDATE;
240 allocbuf(bp, nsize);
241 bp->b_flags |= B_DONE;
242 bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
243 *bpp = bp;
244 return (0);
245 }
246 /*
247 * Allocate a new disk location.
248 */
249 if (bpref >= fs->fs_size)
250 bpref = 0;
251 switch ((int)fs->fs_optim) {
252 case FS_OPTSPACE:
253 /*
254 * Allocate an exact sized fragment. Although this makes
255 * best use of space, we will waste time relocating it if
256 * the file continues to grow. If the fragmentation is
257 * less than half of the minimum free reserve, we choose
258 * to begin optimizing for time.
259 */
260 request = nsize;
261 if (fs->fs_minfree <= 5 ||
262 fs->fs_cstotal.cs_nffree >
263 (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100))
264 break;
265 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
266 fs->fs_fsmnt);
267 fs->fs_optim = FS_OPTTIME;
268 break;
269 case FS_OPTTIME:
270 /*
271 * At this point we have discovered a file that is trying to
272 * grow a small fragment to a larger fragment. To save time,
273 * we allocate a full sized block, then free the unused portion.
274 * If the file continues to grow, the `ffs_fragextend' call
275 * above will be able to grow it in place without further
276 * copying. If aberrant programs cause disk fragmentation to
277 * grow within 2% of the free reserve, we choose to begin
278 * optimizing for space.
279 */
280 request = fs->fs_bsize;
281 if (fs->fs_cstotal.cs_nffree <
282 (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100)
283 break;
284 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
285 fs->fs_fsmnt);
286 fs->fs_optim = FS_OPTSPACE;
287 break;
288 default:
289 printf("dev = %s, optim = %ld, fs = %s\n",
290 devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt);
291 panic("ffs_realloccg: bad optim");
292 /* NOTREACHED */
293 }
294 bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
295 ffs_alloccg);
296 if (bno > 0) {
297 bp->b_blkno = fsbtodb(fs, bno);
298 if (!DOINGSOFTDEP(ITOV(ip)))
299 ffs_blkfree(ip, bprev, (long)osize);
300 if (nsize < request)
301 ffs_blkfree(ip, bno + numfrags(fs, nsize),
302 (long)(request - nsize));
303 ip->i_blocks += btodb(nsize - osize);
304 ip->i_flag |= IN_CHANGE | IN_UPDATE;
305 allocbuf(bp, nsize);
306 bp->b_flags |= B_DONE;
307 bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
308 *bpp = bp;
309 return (0);
310 }
311#ifdef QUOTA
312 /*
313 * Restore user's disk quota because allocation failed.
314 */
315 (void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
316#endif
317 brelse(bp);
318nospace:
319 /*
320 * no space available
321 */
322 ffs_fserr(fs, cred->cr_uid, "file system full");
323 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
324 return (ENOSPC);
325}
326
327SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem");
328
329/*
330 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
331 *
332 * The vnode and an array of buffer pointers for a range of sequential
333 * logical blocks to be made contiguous is given. The allocator attempts
334 * to find a range of sequential blocks starting as close as possible to
335 * an fs_rotdelay offset from the end of the allocation for the logical
336 * block immediately preceeding the current range. If successful, the
337 * physical block numbers in the buffer pointers and in the inode are
338 * changed to reflect the new allocation. If unsuccessful, the allocation
339 * is left unchanged. The success in doing the reallocation is returned.
340 * Note that the error return is not reflected back to the user. Rather
341 * the previous block allocation will be used.
342 */
343static int doasyncfree = 1;
344SYSCTL_INT(_vfs_ffs, FFS_ASYNCFREE, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, "");
345
346static int doreallocblks = 1;
347SYSCTL_INT(_vfs_ffs, FFS_REALLOCBLKS, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, "");
348
349#ifdef DEBUG
350static volatile int prtrealloc = 0;
351#endif
352
353int
354ffs_reallocblks(ap)
355 struct vop_reallocblks_args /* {
356 struct vnode *a_vp;
357 struct cluster_save *a_buflist;
358 } */ *ap;
359{
360 struct fs *fs;
361 struct inode *ip;
362 struct vnode *vp;
363 struct buf *sbp, *ebp;
364 ufs_daddr_t *bap, *sbap, *ebap = 0;
365 struct cluster_save *buflist;
366 ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
367 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
368 int i, len, start_lvl, end_lvl, pref, ssize;
369
370 if (doreallocblks == 0)
371 return (ENOSPC);
372 vp = ap->a_vp;
373 ip = VTOI(vp);
374 fs = ip->i_fs;
375 if (fs->fs_contigsumsize <= 0)
376 return (ENOSPC);
377 buflist = ap->a_buflist;
378 len = buflist->bs_nchildren;
379 start_lbn = buflist->bs_children[0]->b_lblkno;
380 end_lbn = start_lbn + len - 1;
381#ifdef DIAGNOSTIC
382 for (i = 0; i < len; i++)
383 if (!ffs_checkblk(ip,
384 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
385 panic("ffs_reallocblks: unallocated block 1");
386 for (i = 1; i < len; i++)
387 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
388 panic("ffs_reallocblks: non-logical cluster");
389 blkno = buflist->bs_children[0]->b_blkno;
390 ssize = fsbtodb(fs, fs->fs_frag);
391 for (i = 1; i < len - 1; i++)
392 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
393 panic("ffs_reallocblks: non-physical cluster %d", i);
394#endif
395 /*
396 * If the latest allocation is in a new cylinder group, assume that
397 * the filesystem has decided to move and do not force it back to
398 * the previous cylinder group.
399 */
400 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
401 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
402 return (ENOSPC);
403 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
404 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
405 return (ENOSPC);
406 /*
407 * Get the starting offset and block map for the first block.
408 */
409 if (start_lvl == 0) {
410 sbap = &ip->i_db[0];
411 soff = start_lbn;
412 } else {
413 idp = &start_ap[start_lvl - 1];
414 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
415 brelse(sbp);
416 return (ENOSPC);
417 }
418 sbap = (ufs_daddr_t *)sbp->b_data;
419 soff = idp->in_off;
420 }
421 /*
422 * Find the preferred location for the cluster.
423 */
424 pref = ffs_blkpref(ip, start_lbn, soff, sbap);
425 /*
426 * If the block range spans two block maps, get the second map.
427 */
428 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
429 ssize = len;
430 } else {
431#ifdef DIAGNOSTIC
432 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
433 panic("ffs_reallocblk: start == end");
434#endif
435 ssize = len - (idp->in_off + 1);
436 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
437 goto fail;
438 ebap = (ufs_daddr_t *)ebp->b_data;
439 }
440 /*
441 * Search the block map looking for an allocation of the desired size.
442 */
443 if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
444 len, ffs_clusteralloc)) == 0)
445 goto fail;
446 /*
447 * We have found a new contiguous block.
448 *
449 * First we have to replace the old block pointers with the new
450 * block pointers in the inode and indirect blocks associated
451 * with the file.
452 */
453#ifdef DEBUG
454 if (prtrealloc)
455 printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
456 start_lbn, end_lbn);
457#endif
458 blkno = newblk;
459 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
460 if (i == ssize) {
461 bap = ebap;
462 soff = -i;
463 }
464#ifdef DIAGNOSTIC
465 if (!ffs_checkblk(ip,
466 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
467 panic("ffs_reallocblks: unallocated block 2");
468 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
469 panic("ffs_reallocblks: alloc mismatch");
470#endif
471#ifdef DEBUG
472 if (prtrealloc)
473 printf(" %d,", *bap);
474#endif
475 if (DOINGSOFTDEP(vp)) {
476 if (sbap == &ip->i_db[0] && i < ssize)
477 softdep_setup_allocdirect(ip, start_lbn + i,
478 blkno, *bap, fs->fs_bsize, fs->fs_bsize,
479 buflist->bs_children[i]);
480 else
481 softdep_setup_allocindir_page(ip, start_lbn + i,
482 i < ssize ? sbp : ebp, soff + i, blkno,
483 *bap, buflist->bs_children[i]);
484 }
485 *bap++ = blkno;
486 }
487 /*
488 * Next we must write out the modified inode and indirect blocks.
489 * For strict correctness, the writes should be synchronous since
490 * the old block values may have been written to disk. In practise
491 * they are almost never written, but if we are concerned about
492 * strict correctness, the `doasyncfree' flag should be set to zero.
493 *
494 * The test on `doasyncfree' should be changed to test a flag
495 * that shows whether the associated buffers and inodes have
496 * been written. The flag should be set when the cluster is
497 * started and cleared whenever the buffer or inode is flushed.
498 * We can then check below to see if it is set, and do the
499 * synchronous write only when it has been cleared.
500 */
501 if (sbap != &ip->i_db[0]) {
502 if (doasyncfree)
503 bdwrite(sbp);
504 else
505 bwrite(sbp);
506 } else {
507 ip->i_flag |= IN_CHANGE | IN_UPDATE;
508 if (!doasyncfree)
509 UFS_UPDATE(vp, 1);
510 }
511 if (ssize < len) {
512 if (doasyncfree)
513 bdwrite(ebp);
514 else
515 bwrite(ebp);
516 }
517 /*
518 * Last, free the old blocks and assign the new blocks to the buffers.
519 */
520#ifdef DEBUG
521 if (prtrealloc)
522 printf("\n\tnew:");
523#endif
524 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
525 if (!DOINGSOFTDEP(vp))
526 ffs_blkfree(ip,
527 dbtofsb(fs, buflist->bs_children[i]->b_blkno),
528 fs->fs_bsize);
529 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
530#ifdef DIAGNOSTIC
531 if (!ffs_checkblk(ip,
532 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
533 panic("ffs_reallocblks: unallocated block 3");
534#endif
535#ifdef DEBUG
536 if (prtrealloc)
537 printf(" %d,", blkno);
538#endif
539 }
540#ifdef DEBUG
541 if (prtrealloc) {
542 prtrealloc--;
543 printf("\n");
544 }
545#endif
546 return (0);
547
548fail:
549 if (ssize < len)
550 brelse(ebp);
551 if (sbap != &ip->i_db[0])
552 brelse(sbp);
553 return (ENOSPC);
554}
555
556/*
557 * Allocate an inode in the file system.
558 *
559 * If allocating a directory, use ffs_dirpref to select the inode.
560 * If allocating in a directory, the following hierarchy is followed:
561 * 1) allocate the preferred inode.
562 * 2) allocate an inode in the same cylinder group.
563 * 3) quadradically rehash into other cylinder groups, until an
564 * available inode is located.
565 * If no inode preference is given the following heirarchy is used
566 * to allocate an inode:
567 * 1) allocate an inode in cylinder group 0.
568 * 2) quadradically rehash into other cylinder groups, until an
569 * available inode is located.
570 */
571int
572ffs_valloc(pvp, mode, cred, vpp)
573 struct vnode *pvp;
574 int mode;
575 struct ucred *cred;
576 struct vnode **vpp;
577{
578 register struct inode *pip;
579 register struct fs *fs;
580 register struct inode *ip;
581 ino_t ino, ipref;
582 int cg, error;
583
584 *vpp = NULL;
585 pip = VTOI(pvp);
586 fs = pip->i_fs;
587 if (fs->fs_cstotal.cs_nifree == 0)
588 goto noinodes;
589
590 if ((mode & IFMT) == IFDIR)
591 ipref = ffs_dirpref(fs);
592 else
593 ipref = pip->i_number;
594 if (ipref >= fs->fs_ncg * fs->fs_ipg)
595 ipref = 0;
596 cg = ino_to_cg(fs, ipref);
597 ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode,
598 (allocfcn_t *)ffs_nodealloccg);
599 if (ino == 0)
600 goto noinodes;
601 error = VFS_VGET(pvp->v_mount, ino, vpp);
602 if (error) {
603 UFS_VFREE(pvp, ino, mode);
604 return (error);
605 }
606 ip = VTOI(*vpp);
607 if (ip->i_mode) {
608 printf("mode = 0%o, inum = %lu, fs = %s\n",
609 ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt);
610 panic("ffs_valloc: dup alloc");
611 }
612 if (ip->i_blocks) { /* XXX */
613 printf("free inode %s/%lu had %ld blocks\n",
614 fs->fs_fsmnt, (u_long)ino, (long)ip->i_blocks);
615 ip->i_blocks = 0;
616 }
617 ip->i_flags = 0;
618 /*
619 * Set up a new generation number for this inode.
620 */
621 if (ip->i_gen == 0 || ++ip->i_gen == 0)
622 ip->i_gen = random() / 2 + 1;
623 return (0);
624noinodes:
625 ffs_fserr(fs, cred->cr_uid, "out of inodes");
626 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
627 return (ENOSPC);
628}
629
630/*
631 * Find a cylinder to place a directory.
632 *
633 * The policy implemented by this algorithm is to select from
634 * among those cylinder groups with above the average number of
635 * free inodes, the one with the smallest number of directories.
636 */
637static ino_t
638ffs_dirpref(fs)
639 register struct fs *fs;
640{
641 int cg, minndir, mincg, avgifree;
642
643 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
644 minndir = fs->fs_ipg;
645 mincg = 0;
646 for (cg = 0; cg < fs->fs_ncg; cg++)
647 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
648 fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
649 mincg = cg;
650 minndir = fs->fs_cs(fs, cg).cs_ndir;
651 }
652 return ((ino_t)(fs->fs_ipg * mincg));
653}
654
655/*
656 * Select the desired position for the next block in a file. The file is
657 * logically divided into sections. The first section is composed of the
658 * direct blocks. Each additional section contains fs_maxbpg blocks.
659 *
660 * If no blocks have been allocated in the first section, the policy is to
661 * request a block in the same cylinder group as the inode that describes
662 * the file. If no blocks have been allocated in any other section, the
663 * policy is to place the section in a cylinder group with a greater than
664 * average number of free blocks. An appropriate cylinder group is found
665 * by using a rotor that sweeps the cylinder groups. When a new group of
666 * blocks is needed, the sweep begins in the cylinder group following the
667 * cylinder group from which the previous allocation was made. The sweep
668 * continues until a cylinder group with greater than the average number
669 * of free blocks is found. If the allocation is for the first block in an
670 * indirect block, the information on the previous allocation is unavailable;
671 * here a best guess is made based upon the logical block number being
672 * allocated.
673 *
674 * If a section is already partially allocated, the policy is to
675 * contiguously allocate fs_maxcontig blocks. The end of one of these
676 * contiguous blocks and the beginning of the next is physically separated
677 * so that the disk head will be in transit between them for at least
678 * fs_rotdelay milliseconds. This is to allow time for the processor to
679 * schedule another I/O transfer.
680 */
681ufs_daddr_t
682ffs_blkpref(ip, lbn, indx, bap)
683 struct inode *ip;
684 ufs_daddr_t lbn;
685 int indx;
686 ufs_daddr_t *bap;
687{
688 register struct fs *fs;
689 register int cg;
690 int avgbfree, startcg;
691 ufs_daddr_t nextblk;
692
693 fs = ip->i_fs;
694 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
695 if (lbn < NDADDR + NINDIR(fs)) {
696 cg = ino_to_cg(fs, ip->i_number);
697 return (fs->fs_fpg * cg + fs->fs_frag);
698 }
699 /*
700 * Find a cylinder with greater than average number of
701 * unused data blocks.
702 */
703 if (indx == 0 || bap[indx - 1] == 0)
704 startcg =
705 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
706 else
707 startcg = dtog(fs, bap[indx - 1]) + 1;
708 startcg %= fs->fs_ncg;
709 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
710 for (cg = startcg; cg < fs->fs_ncg; cg++)
711 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
712 fs->fs_cgrotor = cg;
713 return (fs->fs_fpg * cg + fs->fs_frag);
714 }
715 for (cg = 0; cg <= startcg; cg++)
716 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
717 fs->fs_cgrotor = cg;
718 return (fs->fs_fpg * cg + fs->fs_frag);
719 }
720 return (0);
721 }
722 /*
723 * One or more previous blocks have been laid out. If less
724 * than fs_maxcontig previous blocks are contiguous, the
725 * next block is requested contiguously, otherwise it is
726 * requested rotationally delayed by fs_rotdelay milliseconds.
727 */
728 nextblk = bap[indx - 1] + fs->fs_frag;
729 if (fs->fs_rotdelay == 0 || indx < fs->fs_maxcontig ||
730 bap[indx - fs->fs_maxcontig] +
731 blkstofrags(fs, fs->fs_maxcontig) != nextblk)
732 return (nextblk);
733 /*
734 * Here we convert ms of delay to frags as:
735 * (frags) = (ms) * (rev/sec) * (sect/rev) /
736 * ((sect/frag) * (ms/sec))
737 * then round up to the next block.
738 */
739 nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
740 (NSPF(fs) * 1000), fs->fs_frag);
741 return (nextblk);
742}
743
744/*
745 * Implement the cylinder overflow algorithm.
746 *
747 * The policy implemented by this algorithm is:
748 * 1) allocate the block in its requested cylinder group.
749 * 2) quadradically rehash on the cylinder group number.
750 * 3) brute force search for a free block.
751 */
752/*VARARGS5*/
753static u_long
754ffs_hashalloc(ip, cg, pref, size, allocator)
755 struct inode *ip;
756 int cg;
757 long pref;
758 int size; /* size for data blocks, mode for inodes */
759 allocfcn_t *allocator;
760{
761 register struct fs *fs;
762 long result; /* XXX why not same type as we return? */
763 int i, icg = cg;
764
765 fs = ip->i_fs;
766 /*
767 * 1: preferred cylinder group
768 */
769 result = (*allocator)(ip, cg, pref, size);
770 if (result)
771 return (result);
772 /*
773 * 2: quadratic rehash
774 */
775 for (i = 1; i < fs->fs_ncg; i *= 2) {
776 cg += i;
777 if (cg >= fs->fs_ncg)
778 cg -= fs->fs_ncg;
779 result = (*allocator)(ip, cg, 0, size);
780 if (result)
781 return (result);
782 }
783 /*
784 * 3: brute force search
785 * Note that we start at i == 2, since 0 was checked initially,
786 * and 1 is always checked in the quadratic rehash.
787 */
788 cg = (icg + 2) % fs->fs_ncg;
789 for (i = 2; i < fs->fs_ncg; i++) {
790 result = (*allocator)(ip, cg, 0, size);
791 if (result)
792 return (result);
793 cg++;
794 if (cg == fs->fs_ncg)
795 cg = 0;
796 }
797 return (0);
798}
799
800/*
801 * Determine whether a fragment can be extended.
802 *
803 * Check to see if the necessary fragments are available, and
804 * if they are, allocate them.
805 */
806static ufs_daddr_t
807ffs_fragextend(ip, cg, bprev, osize, nsize)
808 struct inode *ip;
809 int cg;
810 long bprev;
811 int osize, nsize;
812{
813 register struct fs *fs;
814 register struct cg *cgp;
815 struct buf *bp;
816 long bno;
817 int frags, bbase;
818 int i, error;
819 u_int8_t *blksfree;
820
821 fs = ip->i_fs;
822 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
823 return (0);
824 frags = numfrags(fs, nsize);
825 bbase = fragnum(fs, bprev);
826 if (bbase > fragnum(fs, (bprev + frags - 1))) {
827 /* cannot extend across a block boundary */
828 return (0);
829 }
830 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
831 (int)fs->fs_cgsize, NOCRED, &bp);
832 if (error) {
833 brelse(bp);
834 return (0);
835 }
836 cgp = (struct cg *)bp->b_data;
837 if (!cg_chkmagic(cgp)) {
838 brelse(bp);
839 return (0);
840 }
841 bp->b_xflags |= BX_BKGRDWRITE;
842 cgp->cg_time = time_second;
843 bno = dtogd(fs, bprev);
844 blksfree = cg_blksfree(cgp);
845 for (i = numfrags(fs, osize); i < frags; i++)
846 if (isclr(blksfree, bno + i)) {
847 brelse(bp);
848 return (0);
849 }
850 /*
851 * the current fragment can be extended
852 * deduct the count on fragment being extended into
853 * increase the count on the remaining fragment (if any)
854 * allocate the extended piece
855 */
856 for (i = frags; i < fs->fs_frag - bbase; i++)
857 if (isclr(blksfree, bno + i))
858 break;
859 cgp->cg_frsum[i - numfrags(fs, osize)]--;
860 if (i != frags)
861 cgp->cg_frsum[i - frags]++;
862 for (i = numfrags(fs, osize); i < frags; i++) {
863 clrbit(blksfree, bno + i);
864 cgp->cg_cs.cs_nffree--;
865 fs->fs_cstotal.cs_nffree--;
866 fs->fs_cs(fs, cg).cs_nffree--;
867 }
868 fs->fs_fmod = 1;
869 if (DOINGSOFTDEP(ITOV(ip)))
870 softdep_setup_blkmapdep(bp, fs, bprev);
871 bdwrite(bp);
872 return (bprev);
873}
874
875/*
876 * Determine whether a block can be allocated.
877 *
878 * Check to see if a block of the appropriate size is available,
879 * and if it is, allocate it.
880 */
881static ufs_daddr_t
882ffs_alloccg(ip, cg, bpref, size)
883 struct inode *ip;
884 int cg;
885 ufs_daddr_t bpref;
886 int size;
887{
888 register struct fs *fs;
889 register struct cg *cgp;
890 struct buf *bp;
891 register int i;
892 ufs_daddr_t bno, blkno;
893 int allocsiz, error, frags;
894 u_int8_t *blksfree;
895
896 fs = ip->i_fs;
897 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
898 return (0);
899 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
900 (int)fs->fs_cgsize, NOCRED, &bp);
901 if (error) {
902 brelse(bp);
903 return (0);
904 }
905 cgp = (struct cg *)bp->b_data;
906 if (!cg_chkmagic(cgp) ||
907 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
908 brelse(bp);
909 return (0);
910 }
911 bp->b_xflags |= BX_BKGRDWRITE;
912 cgp->cg_time = time_second;
913 if (size == fs->fs_bsize) {
914 bno = ffs_alloccgblk(ip, bp, bpref);
915 bdwrite(bp);
916 return (bno);
917 }
918 /*
919 * check to see if any fragments are already available
920 * allocsiz is the size which will be allocated, hacking
921 * it down to a smaller size if necessary
922 */
923 blksfree = cg_blksfree(cgp);
924 frags = numfrags(fs, size);
925 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
926 if (cgp->cg_frsum[allocsiz] != 0)
927 break;
928 if (allocsiz == fs->fs_frag) {
929 /*
930 * no fragments were available, so a block will be
931 * allocated, and hacked up
932 */
933 if (cgp->cg_cs.cs_nbfree == 0) {
934 brelse(bp);
935 return (0);
936 }
937 bno = ffs_alloccgblk(ip, bp, bpref);
938 bpref = dtogd(fs, bno);
939 for (i = frags; i < fs->fs_frag; i++)
940 setbit(blksfree, bpref + i);
941 i = fs->fs_frag - frags;
942 cgp->cg_cs.cs_nffree += i;
943 fs->fs_cstotal.cs_nffree += i;
944 fs->fs_cs(fs, cg).cs_nffree += i;
945 fs->fs_fmod = 1;
946 cgp->cg_frsum[i]++;
947 bdwrite(bp);
948 return (bno);
949 }
950 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
951 if (bno < 0) {
952 brelse(bp);
953 return (0);
954 }
955 for (i = 0; i < frags; i++)
956 clrbit(blksfree, bno + i);
957 cgp->cg_cs.cs_nffree -= frags;
958 fs->fs_cstotal.cs_nffree -= frags;
959 fs->fs_cs(fs, cg).cs_nffree -= frags;
960 fs->fs_fmod = 1;
961 cgp->cg_frsum[allocsiz]--;
962 if (frags != allocsiz)
963 cgp->cg_frsum[allocsiz - frags]++;
964 blkno = cg * fs->fs_fpg + bno;
965 if (DOINGSOFTDEP(ITOV(ip)))
966 softdep_setup_blkmapdep(bp, fs, blkno);
967 bdwrite(bp);
968 return ((u_long)blkno);
969}
970
971/*
972 * Allocate a block in a cylinder group.
973 *
974 * This algorithm implements the following policy:
975 * 1) allocate the requested block.
976 * 2) allocate a rotationally optimal block in the same cylinder.
977 * 3) allocate the next available block on the block rotor for the
978 * specified cylinder group.
979 * Note that this routine only allocates fs_bsize blocks; these
980 * blocks may be fragmented by the routine that allocates them.
981 */
982static ufs_daddr_t
983ffs_alloccgblk(ip, bp, bpref)
984 struct inode *ip;
985 struct buf *bp;
986 ufs_daddr_t bpref;
987{
988 struct fs *fs;
989 struct cg *cgp;
990 ufs_daddr_t bno, blkno;
991 int cylno, pos, delta;
992 short *cylbp;
993 register int i;
994 u_int8_t *blksfree;
995
996 fs = ip->i_fs;
997 cgp = (struct cg *)bp->b_data;
998 blksfree = cg_blksfree(cgp);
999 if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
1000 bpref = cgp->cg_rotor;
1001 goto norot;
1002 }
1003 bpref = blknum(fs, bpref);
1004 bpref = dtogd(fs, bpref);
1005 /*
1006 * if the requested block is available, use it
1007 */
1008 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bpref))) {
1009 bno = bpref;
1010 goto gotit;
1011 }
1012 if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
1013 /*
1014 * Block layout information is not available.
1015 * Leaving bpref unchanged means we take the
1016 * next available free block following the one
1017 * we just allocated. Hopefully this will at
1018 * least hit a track cache on drives of unknown
1019 * geometry (e.g. SCSI).
1020 */
1021 goto norot;
1022 }
1023 /*
1024 * check for a block available on the same cylinder
1025 */
1026 cylno = cbtocylno(fs, bpref);
1027 if (cg_blktot(cgp)[cylno] == 0)
1028 goto norot;
1029 /*
1030 * check the summary information to see if a block is
1031 * available in the requested cylinder starting at the
1032 * requested rotational position and proceeding around.
1033 */
1034 cylbp = cg_blks(fs, cgp, cylno);
1035 pos = cbtorpos(fs, bpref);
1036 for (i = pos; i < fs->fs_nrpos; i++)
1037 if (cylbp[i] > 0)
1038 break;
1039 if (i == fs->fs_nrpos)
1040 for (i = 0; i < pos; i++)
1041 if (cylbp[i] > 0)
1042 break;
1043 if (cylbp[i] > 0) {
1044 /*
1045 * found a rotational position, now find the actual
1046 * block. A panic if none is actually there.
1047 */
1048 pos = cylno % fs->fs_cpc;
1049 bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
1050 if (fs_postbl(fs, pos)[i] == -1) {
1051 printf("pos = %d, i = %d, fs = %s\n",
1052 pos, i, fs->fs_fsmnt);
1053 panic("ffs_alloccgblk: cyl groups corrupted");
1054 }
1055 for (i = fs_postbl(fs, pos)[i];; ) {
1056 if (ffs_isblock(fs, blksfree, bno + i)) {
1057 bno = blkstofrags(fs, (bno + i));
1058 goto gotit;
1059 }
1060 delta = fs_rotbl(fs)[i];
1061 if (delta <= 0 ||
1062 delta + i > fragstoblks(fs, fs->fs_fpg))
1063 break;
1064 i += delta;
1065 }
1066 printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
1067 panic("ffs_alloccgblk: can't find blk in cyl");
1068 }
1069norot:
1070 /*
1071 * no blocks in the requested cylinder, so take next
1072 * available one in this cylinder group.
1073 */
1074 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1075 if (bno < 0)
1076 return (0);
1077 cgp->cg_rotor = bno;
1078gotit:
1079 blkno = fragstoblks(fs, bno);
1080 ffs_clrblock(fs, blksfree, (long)blkno);
1081 ffs_clusteracct(fs, cgp, blkno, -1);
1082 cgp->cg_cs.cs_nbfree--;
1083 fs->fs_cstotal.cs_nbfree--;
1084 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1085 cylno = cbtocylno(fs, bno);
1086 cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
1087 cg_blktot(cgp)[cylno]--;
1088 fs->fs_fmod = 1;
1089 blkno = cgp->cg_cgx * fs->fs_fpg + bno;
1090 if (DOINGSOFTDEP(ITOV(ip)))
1091 softdep_setup_blkmapdep(bp, fs, blkno);
1092 return (blkno);
1093}
1094
1095/*
1096 * Determine whether a cluster can be allocated.
1097 *
1098 * We do not currently check for optimal rotational layout if there
1099 * are multiple choices in the same cylinder group. Instead we just
1100 * take the first one that we find following bpref.
1101 */
1102static ufs_daddr_t
1103ffs_clusteralloc(ip, cg, bpref, len)
1104 struct inode *ip;
1105 int cg;
1106 ufs_daddr_t bpref;
1107 int len;
1108{
1109 register struct fs *fs;
1110 register struct cg *cgp;
1111 struct buf *bp;
1112 int i, got, run, bno, bit, map;
1113 u_char *mapp;
1114 int32_t *lp;
1115 u_int8_t *blksfree;
1116
1117 fs = ip->i_fs;
1118 if (fs->fs_maxcluster[cg] < len)
1119 return (0);
1120 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1121 NOCRED, &bp))
1122 goto fail;
1123 cgp = (struct cg *)bp->b_data;
1124 if (!cg_chkmagic(cgp))
1125 goto fail;
1126 bp->b_xflags |= BX_BKGRDWRITE;
1127 /*
1128 * Check to see if a cluster of the needed size (or bigger) is
1129 * available in this cylinder group.
1130 */
1131 lp = &cg_clustersum(cgp)[len];
1132 for (i = len; i <= fs->fs_contigsumsize; i++)
1133 if (*lp++ > 0)
1134 break;
1135 if (i > fs->fs_contigsumsize) {
1136 /*
1137 * This is the first time looking for a cluster in this
1138 * cylinder group. Update the cluster summary information
1139 * to reflect the true maximum sized cluster so that
1140 * future cluster allocation requests can avoid reading
1141 * the cylinder group map only to find no clusters.
1142 */
1143 lp = &cg_clustersum(cgp)[len - 1];
1144 for (i = len - 1; i > 0; i--)
1145 if (*lp-- > 0)
1146 break;
1147 fs->fs_maxcluster[cg] = i;
1148 goto fail;
1149 }
1150 /*
1151 * Search the cluster map to find a big enough cluster.
1152 * We take the first one that we find, even if it is larger
1153 * than we need as we prefer to get one close to the previous
1154 * block allocation. We do not search before the current
1155 * preference point as we do not want to allocate a block
1156 * that is allocated before the previous one (as we will
1157 * then have to wait for another pass of the elevator
1158 * algorithm before it will be read). We prefer to fail and
1159 * be recalled to try an allocation in the next cylinder group.
1160 */
1161 if (dtog(fs, bpref) != cg)
1162 bpref = 0;
1163 else
1164 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1165 mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1166 map = *mapp++;
1167 bit = 1 << (bpref % NBBY);
1168 for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
1169 if ((map & bit) == 0) {
1170 run = 0;
1171 } else {
1172 run++;
1173 if (run == len)
1174 break;
1175 }
1176 if ((got & (NBBY - 1)) != (NBBY - 1)) {
1177 bit <<= 1;
1178 } else {
1179 map = *mapp++;
1180 bit = 1;
1181 }
1182 }
1183 if (got >= cgp->cg_nclusterblks)
1184 goto fail;
1185 /*
1186 * Allocate the cluster that we have found.
1187 */
1188 blksfree = cg_blksfree(cgp);
1189 for (i = 1; i <= len; i++)
1190 if (!ffs_isblock(fs, blksfree, got - run + i))
1191 panic("ffs_clusteralloc: map mismatch");
1192 bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1193 if (dtog(fs, bno) != cg)
1194 panic("ffs_clusteralloc: allocated out of group");
1195 len = blkstofrags(fs, len);
1196 for (i = 0; i < len; i += fs->fs_frag)
1197 if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
1198 panic("ffs_clusteralloc: lost block");
1199 bdwrite(bp);
1200 return (bno);
1201
1202fail:
1203 brelse(bp);
1204 return (0);
1205}
1206
1207/*
1208 * Determine whether an inode can be allocated.
1209 *
1210 * Check to see if an inode is available, and if it is,
1211 * allocate it using the following policy:
1212 * 1) allocate the requested inode.
1213 * 2) allocate the next available inode after the requested
1214 * inode in the specified cylinder group.
1215 */
1216static ino_t
1217ffs_nodealloccg(ip, cg, ipref, mode)
1218 struct inode *ip;
1219 int cg;
1220 ufs_daddr_t ipref;
1221 int mode;
1222{
1223 register struct fs *fs;
1224 register struct cg *cgp;
1225 struct buf *bp;
1226 u_int8_t *inosused;
1227 int error, start, len, loc, map, i;
1228
1229 fs = ip->i_fs;
1230 if (fs->fs_cs(fs, cg).cs_nifree == 0)
1231 return (0);
1232 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1233 (int)fs->fs_cgsize, NOCRED, &bp);
1234 if (error) {
1235 brelse(bp);
1236 return (0);
1237 }
1238 cgp = (struct cg *)bp->b_data;
1239 if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
1240 brelse(bp);
1241 return (0);
1242 }
1243 bp->b_xflags |= BX_BKGRDWRITE;
1244 cgp->cg_time = time_second;
1245 inosused = cg_inosused(cgp);
1246 if (ipref) {
1247 ipref %= fs->fs_ipg;
1248 if (isclr(inosused, ipref))
1249 goto gotit;
1250 }
1251 start = cgp->cg_irotor / NBBY;
1252 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
1253 loc = skpc(0xff, len, &inosused[start]);
1254 if (loc == 0) {
1255 len = start + 1;
1256 start = 0;
1257 loc = skpc(0xff, len, &inosused[0]);
1258 if (loc == 0) {
1259 printf("cg = %d, irotor = %ld, fs = %s\n",
1260 cg, (long)cgp->cg_irotor, fs->fs_fsmnt);
1261 panic("ffs_nodealloccg: map corrupted");
1262 /* NOTREACHED */
1263 }
1264 }
1265 i = start + len - loc;
1266 map = inosused[i];
1267 ipref = i * NBBY;
1268 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1269 if ((map & i) == 0) {
1270 cgp->cg_irotor = ipref;
1271 goto gotit;
1272 }
1273 }
1274 printf("fs = %s\n", fs->fs_fsmnt);
1275 panic("ffs_nodealloccg: block not in map");
1276 /* NOTREACHED */
1277gotit:
1278 if (DOINGSOFTDEP(ITOV(ip)))
1279 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
1280 setbit(inosused, ipref);
1281 cgp->cg_cs.cs_nifree--;
1282 fs->fs_cstotal.cs_nifree--;
1283 fs->fs_cs(fs, cg).cs_nifree--;
1284 fs->fs_fmod = 1;
1285 if ((mode & IFMT) == IFDIR) {
1286 cgp->cg_cs.cs_ndir++;
1287 fs->fs_cstotal.cs_ndir++;
1288 fs->fs_cs(fs, cg).cs_ndir++;
1289 }
1290 bdwrite(bp);
1291 return (cg * fs->fs_ipg + ipref);
1292}
1293
1294/*
1295 * Free a block or fragment.
1296 *
1297 * The specified block or fragment is placed back in the
1298 * free map. If a fragment is deallocated, a possible
1299 * block reassembly is checked.
1300 */
1301void
1302ffs_blkfree(ip, bno, size)
1303 register struct inode *ip;
1304 ufs_daddr_t bno;
1305 long size;
1306{
1307 register struct fs *fs;
1308 register struct cg *cgp;
1309 struct buf *bp;
1310 ufs_daddr_t blkno;
1311 int i, error, cg, blk, frags, bbase;
1312 u_int8_t *blksfree;
1313
1314 fs = ip->i_fs;
1315 VOP_FREEBLKS(ip->i_devvp, fsbtodb(fs, bno), size);
1316 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1317 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1318 printf("dev=%s, bno = %ld, bsize = %ld, size = %ld, fs = %s\n",
1319 devtoname(ip->i_dev), (long)bno, (long)fs->fs_bsize, size,
1320 fs->fs_fsmnt);
1321 panic("ffs_blkfree: bad size");
1322 }
1323 cg = dtog(fs, bno);
1324 if ((u_int)bno >= fs->fs_size) {
1325 printf("bad block %ld, ino %lu\n",
1326 (long)bno, (u_long)ip->i_number);
1327 ffs_fserr(fs, ip->i_uid, "bad block");
1328 return;
1329 }
1330 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1331 (int)fs->fs_cgsize, NOCRED, &bp);
1332 if (error) {
1333 brelse(bp);
1334 return;
1335 }
1336 cgp = (struct cg *)bp->b_data;
1337 if (!cg_chkmagic(cgp)) {
1338 brelse(bp);
1339 return;
1340 }
1341 bp->b_xflags |= BX_BKGRDWRITE;
1342 cgp->cg_time = time_second;
1343 bno = dtogd(fs, bno);
1344 blksfree = cg_blksfree(cgp);
1345 if (size == fs->fs_bsize) {
1346 blkno = fragstoblks(fs, bno);
1347 if (!ffs_isfreeblock(fs, blksfree, blkno)) {
1348 printf("dev = %s, block = %ld, fs = %s\n",
1349 devtoname(ip->i_dev), (long)bno, fs->fs_fsmnt);
1350 panic("ffs_blkfree: freeing free block");
1351 }
1352 ffs_setblock(fs, blksfree, blkno);
1353 ffs_clusteracct(fs, cgp, blkno, 1);
1354 cgp->cg_cs.cs_nbfree++;
1355 fs->fs_cstotal.cs_nbfree++;
1356 fs->fs_cs(fs, cg).cs_nbfree++;
1357 i = cbtocylno(fs, bno);
1358 cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
1359 cg_blktot(cgp)[i]++;
1360 } else {
1361 bbase = bno - fragnum(fs, bno);
1362 /*
1363 * decrement the counts associated with the old frags
1364 */
1365 blk = blkmap(fs, blksfree, bbase);
1366 ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
1367 /*
1368 * deallocate the fragment
1369 */
1370 frags = numfrags(fs, size);
1371 for (i = 0; i < frags; i++) {
1372 if (isset(blksfree, bno + i)) {
1373 printf("dev = %s, block = %ld, fs = %s\n",
1374 devtoname(ip->i_dev), (long)(bno + i),
1375 fs->fs_fsmnt);
1376 panic("ffs_blkfree: freeing free frag");
1377 }
1378 setbit(blksfree, bno + i);
1379 }
1380 cgp->cg_cs.cs_nffree += i;
1381 fs->fs_cstotal.cs_nffree += i;
1382 fs->fs_cs(fs, cg).cs_nffree += i;
1383 /*
1384 * add back in counts associated with the new frags
1385 */
1386 blk = blkmap(fs, blksfree, bbase);
1387 ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1388 /*
1389 * if a complete block has been reassembled, account for it
1390 */
1391 blkno = fragstoblks(fs, bbase);
1392 if (ffs_isblock(fs, blksfree, blkno)) {
1393 cgp->cg_cs.cs_nffree -= fs->fs_frag;
1394 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1395 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1396 ffs_clusteracct(fs, cgp, blkno, 1);
1397 cgp->cg_cs.cs_nbfree++;
1398 fs->fs_cstotal.cs_nbfree++;
1399 fs->fs_cs(fs, cg).cs_nbfree++;
1400 i = cbtocylno(fs, bbase);
1401 cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
1402 cg_blktot(cgp)[i]++;
1403 }
1404 }
1405 fs->fs_fmod = 1;
1406 bdwrite(bp);
1407}
1408
1409#ifdef DIAGNOSTIC
1410/*
1411 * Verify allocation of a block or fragment. Returns true if block or
1412 * fragment is allocated, false if it is free.
1413 */
1414static int
1415ffs_checkblk(ip, bno, size)
1416 struct inode *ip;
1417 ufs_daddr_t bno;
1418 long size;
1419{
1420 struct fs *fs;
1421 struct cg *cgp;
1422 struct buf *bp;
1423 int i, error, frags, free;
1424 u_int8_t *blksfree;
1425
1426 fs = ip->i_fs;
1427 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1428 printf("bsize = %ld, size = %ld, fs = %s\n",
1429 (long)fs->fs_bsize, size, fs->fs_fsmnt);
1430 panic("ffs_checkblk: bad size");
1431 }
1432 if ((u_int)bno >= fs->fs_size)
1433 panic("ffs_checkblk: bad block %d", bno);
1434 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1435 (int)fs->fs_cgsize, NOCRED, &bp);
1436 if (error)
1437 panic("ffs_checkblk: cg bread failed");
1438 cgp = (struct cg *)bp->b_data;
1439 if (!cg_chkmagic(cgp))
1440 panic("ffs_checkblk: cg magic mismatch");
1441 bp->b_xflags |= BX_BKGRDWRITE;
1442 blksfree = cg_blksfree(cgp);
1443 bno = dtogd(fs, bno);
1444 if (size == fs->fs_bsize) {
1445 free = ffs_isblock(fs, blksfree, fragstoblks(fs, bno));
1446 } else {
1447 frags = numfrags(fs, size);
1448 for (free = 0, i = 0; i < frags; i++)
1449 if (isset(blksfree, bno + i))
1450 free++;
1451 if (free != 0 && free != frags)
1452 panic("ffs_checkblk: partially free fragment");
1453 }
1454 brelse(bp);
1455 return (!free);
1456}
1457#endif /* DIAGNOSTIC */
1458
1459/*
1460 * Free an inode.
1461 */
1462int
1463ffs_vfree( pvp, ino, mode)
1464 struct vnode *pvp;
1465 ino_t ino;
1466 int mode;
1467{
1468 if (DOINGSOFTDEP(pvp)) {
1469 softdep_freefile(pvp, ino, mode);
1470 return (0);
1471 }
1472 return (ffs_freefile(pvp, ino, mode));
1473}
1474
1475/*
1476 * Do the actual free operation.
1477 * The specified inode is placed back in the free map.
1478 */
1479 int
1480 ffs_freefile( pvp, ino, mode)
1481 struct vnode *pvp;
1482 ino_t ino;
1483 int mode;
1484{
1485 register struct fs *fs;
1486 register struct cg *cgp;
1487 register struct inode *pip;
1488 struct buf *bp;
1489 int error, cg;
1490 u_int8_t *inosused;
1491
1492 pip = VTOI(pvp);
1493 fs = pip->i_fs;
1494 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1495 panic("ffs_vfree: range: dev = (%d,%d), ino = %d, fs = %s",
1496 major(pip->i_dev), minor(pip->i_dev), ino, fs->fs_fsmnt);
1497 cg = ino_to_cg(fs, ino);
1498 error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1499 (int)fs->fs_cgsize, NOCRED, &bp);
1500 if (error) {
1501 brelse(bp);
1502 return (error);
1503 }
1504 cgp = (struct cg *)bp->b_data;
1505 if (!cg_chkmagic(cgp)) {
1506 brelse(bp);
1507 return (0);
1508 }
1509 bp->b_xflags |= BX_BKGRDWRITE;
1510 cgp->cg_time = time_second;
1511 inosused = cg_inosused(cgp);
1512 ino %= fs->fs_ipg;
1513 if (isclr(inosused, ino)) {
1514 printf("dev = %s, ino = %lu, fs = %s\n",
1515 devtoname(pip->i_dev), (u_long)ino, fs->fs_fsmnt);
1516 if (fs->fs_ronly == 0)
1517 panic("ffs_vfree: freeing free inode");
1518 }
1519 clrbit(inosused, ino);
1520 if (ino < cgp->cg_irotor)
1521 cgp->cg_irotor = ino;
1522 cgp->cg_cs.cs_nifree++;
1523 fs->fs_cstotal.cs_nifree++;
1524 fs->fs_cs(fs, cg).cs_nifree++;
1525 if ((mode & IFMT) == IFDIR) {
1526 cgp->cg_cs.cs_ndir--;
1527 fs->fs_cstotal.cs_ndir--;
1528 fs->fs_cs(fs, cg).cs_ndir--;
1529 }
1530 fs->fs_fmod = 1;
1531 bdwrite(bp);
1532 return (0);
1533}
1534
1535/*
1536 * Find a block of the specified size in the specified cylinder group.
1537 *
1538 * It is a panic if a request is made to find a block if none are
1539 * available.
1540 */
1541static ufs_daddr_t
1542ffs_mapsearch(fs, cgp, bpref, allocsiz)
1543 register struct fs *fs;
1544 register struct cg *cgp;
1545 ufs_daddr_t bpref;
1546 int allocsiz;
1547{
1548 ufs_daddr_t bno;
1549 int start, len, loc, i;
1550 int blk, field, subfield, pos;
1551 u_int8_t *blksfree;
1552
1553 /*
1554 * find the fragment by searching through the free block
1555 * map for an appropriate bit pattern
1556 */
1557 if (bpref)
1558 start = dtogd(fs, bpref) / NBBY;
1559 else
1560 start = cgp->cg_frotor / NBBY;
1561 blksfree = cg_blksfree(cgp);
1562 len = howmany(fs->fs_fpg, NBBY) - start;
1563 loc = scanc((u_int)len, (u_char *)&blksfree[start],
1564 (u_char *)fragtbl[fs->fs_frag],
1565 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1566 if (loc == 0) {
1567 len = start + 1;
1568 start = 0;
1569 loc = scanc((u_int)len, (u_char *)&blksfree[0],
1570 (u_char *)fragtbl[fs->fs_frag],
1571 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1572 if (loc == 0) {
1573 printf("start = %d, len = %d, fs = %s\n",
1574 start, len, fs->fs_fsmnt);
1575 panic("ffs_alloccg: map corrupted");
1576 /* NOTREACHED */
1577 }
1578 }
1579 bno = (start + len - loc) * NBBY;
1580 cgp->cg_frotor = bno;
1581 /*
1582 * found the byte in the map
1583 * sift through the bits to find the selected frag
1584 */
1585 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1586 blk = blkmap(fs, blksfree, bno);
1587 blk <<= 1;
1588 field = around[allocsiz];
1589 subfield = inside[allocsiz];
1590 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1591 if ((blk & field) == subfield)
1592 return (bno + pos);
1593 field <<= 1;
1594 subfield <<= 1;
1595 }
1596 }
1597 printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt);
1598 panic("ffs_alloccg: block not in map");
1599 return (-1);
1600}
1601
1602/*
1603 * Update the cluster map because of an allocation or free.
1604 *
1605 * Cnt == 1 means free; cnt == -1 means allocating.
1606 */
1607static void
1608ffs_clusteracct(fs, cgp, blkno, cnt)
1609 struct fs *fs;
1610 struct cg *cgp;
1611 ufs_daddr_t blkno;
1612 int cnt;
1613{
1614 int32_t *sump;
1615 int32_t *lp;
1616 u_char *freemapp, *mapp;
1617 int i, start, end, forw, back, map, bit;
1618
1619 if (fs->fs_contigsumsize <= 0)
1620 return;
1621 freemapp = cg_clustersfree(cgp);
1622 sump = cg_clustersum(cgp);
1623 /*
1624 * Allocate or clear the actual block.
1625 */
1626 if (cnt > 0)
1627 setbit(freemapp, blkno);
1628 else
1629 clrbit(freemapp, blkno);
1630 /*
1631 * Find the size of the cluster going forward.
1632 */
1633 start = blkno + 1;
1634 end = start + fs->fs_contigsumsize;
1635 if (end >= cgp->cg_nclusterblks)
1636 end = cgp->cg_nclusterblks;
1637 mapp = &freemapp[start / NBBY];
1638 map = *mapp++;
1639 bit = 1 << (start % NBBY);
1640 for (i = start; i < end; i++) {
1641 if ((map & bit) == 0)
1642 break;
1643 if ((i & (NBBY - 1)) != (NBBY - 1)) {
1644 bit <<= 1;
1645 } else {
1646 map = *mapp++;
1647 bit = 1;
1648 }
1649 }
1650 forw = i - start;
1651 /*
1652 * Find the size of the cluster going backward.
1653 */
1654 start = blkno - 1;
1655 end = start - fs->fs_contigsumsize;
1656 if (end < 0)
1657 end = -1;
1658 mapp = &freemapp[start / NBBY];
1659 map = *mapp--;
1660 bit = 1 << (start % NBBY);
1661 for (i = start; i > end; i--) {
1662 if ((map & bit) == 0)
1663 break;
1664 if ((i & (NBBY - 1)) != 0) {
1665 bit >>= 1;
1666 } else {
1667 map = *mapp--;
1668 bit = 1 << (NBBY - 1);
1669 }
1670 }
1671 back = start - i;
1672 /*
1673 * Account for old cluster and the possibly new forward and
1674 * back clusters.
1675 */
1676 i = back + forw + 1;
1677 if (i > fs->fs_contigsumsize)
1678 i = fs->fs_contigsumsize;
1679 sump[i] += cnt;
1680 if (back > 0)
1681 sump[back] -= cnt;
1682 if (forw > 0)
1683 sump[forw] -= cnt;
1684 /*
1685 * Update cluster summary information.
1686 */
1687 lp = &sump[fs->fs_contigsumsize];
1688 for (i = fs->fs_contigsumsize; i > 0; i--)
1689 if (*lp-- > 0)
1690 break;
1691 fs->fs_maxcluster[cgp->cg_cgx] = i;
1692}
1693
1694/*
1695 * Fserr prints the name of a file system with an error diagnostic.
1696 *
1697 * The form of the error message is:
1698 * fs: error message
1699 */
1700static void
1701ffs_fserr(fs, uid, cp)
1702 struct fs *fs;
1703 u_int uid;
1704 char *cp;
1705{
1706 struct proc *p = curproc; /* XXX */
1707
1708 log(LOG_ERR, "pid %d (%s), uid %d on %s: %s\n", p ? p->p_pid : -1,
1709 p ? p->p_comm : "-", uid, fs->fs_fsmnt, cp);
1710}
42#include <sys/buf.h>
43#include <sys/conf.h>
44#include <sys/proc.h>
45#include <sys/vnode.h>
46#include <sys/mount.h>
47#include <sys/kernel.h>
48#include <sys/sysctl.h>
49#include <sys/syslog.h>
50
51#include <ufs/ufs/extattr.h>
52#include <ufs/ufs/quota.h>
53#include <ufs/ufs/inode.h>
54#include <ufs/ufs/ufs_extern.h>
55#include <ufs/ufs/ufsmount.h>
56
57#include <ufs/ffs/fs.h>
58#include <ufs/ffs/ffs_extern.h>
59
60typedef ufs_daddr_t allocfcn_t __P((struct inode *ip, int cg, ufs_daddr_t bpref,
61 int size));
62
63static ufs_daddr_t ffs_alloccg __P((struct inode *, int, ufs_daddr_t, int));
64static ufs_daddr_t
65 ffs_alloccgblk __P((struct inode *, struct buf *, ufs_daddr_t));
66#ifdef DIAGNOSTIC
67static int ffs_checkblk __P((struct inode *, ufs_daddr_t, long));
68#endif
69static void ffs_clusteracct __P((struct fs *, struct cg *, ufs_daddr_t,
70 int));
71static ufs_daddr_t ffs_clusteralloc __P((struct inode *, int, ufs_daddr_t,
72 int));
73static ino_t ffs_dirpref __P((struct fs *));
74static ufs_daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
75static void ffs_fserr __P((struct fs *, u_int, char *));
76static u_long ffs_hashalloc
77 __P((struct inode *, int, long, int, allocfcn_t *));
78static ino_t ffs_nodealloccg __P((struct inode *, int, ufs_daddr_t, int));
79static ufs_daddr_t ffs_mapsearch __P((struct fs *, struct cg *, ufs_daddr_t,
80 int));
81
82/*
83 * Allocate a block in the file system.
84 *
85 * The size of the requested block is given, which must be some
86 * multiple of fs_fsize and <= fs_bsize.
87 * A preference may be optionally specified. If a preference is given
88 * the following hierarchy is used to allocate a block:
89 * 1) allocate the requested block.
90 * 2) allocate a rotationally optimal block in the same cylinder.
91 * 3) allocate a block in the same cylinder group.
92 * 4) quadradically rehash into other cylinder groups, until an
93 * available block is located.
94 * If no block preference is given the following heirarchy is used
95 * to allocate a block:
96 * 1) allocate a block in the cylinder group that contains the
97 * inode for the file.
98 * 2) quadradically rehash into other cylinder groups, until an
99 * available block is located.
100 */
101int
102ffs_alloc(ip, lbn, bpref, size, cred, bnp)
103 register struct inode *ip;
104 ufs_daddr_t lbn, bpref;
105 int size;
106 struct ucred *cred;
107 ufs_daddr_t *bnp;
108{
109 register struct fs *fs;
110 ufs_daddr_t bno;
111 int cg;
112#ifdef QUOTA
113 int error;
114#endif
115
116 *bnp = 0;
117 fs = ip->i_fs;
118#ifdef DIAGNOSTIC
119 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
120 printf("dev = %s, bsize = %ld, size = %d, fs = %s\n",
121 devtoname(ip->i_dev), (long)fs->fs_bsize, size,
122 fs->fs_fsmnt);
123 panic("ffs_alloc: bad size");
124 }
125 if (cred == NOCRED)
126 panic("ffs_alloc: missing credential");
127#endif /* DIAGNOSTIC */
128 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
129 goto nospace;
130 if (cred->cr_uid != 0 &&
131 freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0)
132 goto nospace;
133#ifdef QUOTA
134 error = chkdq(ip, (long)btodb(size), cred, 0);
135 if (error)
136 return (error);
137#endif
138 if (bpref >= fs->fs_size)
139 bpref = 0;
140 if (bpref == 0)
141 cg = ino_to_cg(fs, ip->i_number);
142 else
143 cg = dtog(fs, bpref);
144 bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
145 ffs_alloccg);
146 if (bno > 0) {
147 ip->i_blocks += btodb(size);
148 ip->i_flag |= IN_CHANGE | IN_UPDATE;
149 *bnp = bno;
150 return (0);
151 }
152#ifdef QUOTA
153 /*
154 * Restore user's disk quota because allocation failed.
155 */
156 (void) chkdq(ip, (long)-btodb(size), cred, FORCE);
157#endif
158nospace:
159 ffs_fserr(fs, cred->cr_uid, "file system full");
160 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
161 return (ENOSPC);
162}
163
164/*
165 * Reallocate a fragment to a bigger size
166 *
167 * The number and size of the old block is given, and a preference
168 * and new size is also specified. The allocator attempts to extend
169 * the original block. Failing that, the regular block allocator is
170 * invoked to get an appropriate block.
171 */
172int
173ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
174 register struct inode *ip;
175 ufs_daddr_t lbprev;
176 ufs_daddr_t bpref;
177 int osize, nsize;
178 struct ucred *cred;
179 struct buf **bpp;
180{
181 register struct fs *fs;
182 struct buf *bp;
183 int cg, request, error;
184 ufs_daddr_t bprev, bno;
185
186 *bpp = 0;
187 fs = ip->i_fs;
188#ifdef DIAGNOSTIC
189 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
190 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
191 printf(
192 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n",
193 devtoname(ip->i_dev), (long)fs->fs_bsize, osize,
194 nsize, fs->fs_fsmnt);
195 panic("ffs_realloccg: bad size");
196 }
197 if (cred == NOCRED)
198 panic("ffs_realloccg: missing credential");
199#endif /* DIAGNOSTIC */
200 if (cred->cr_uid != 0 &&
201 freespace(fs, fs->fs_minfree) - numfrags(fs, nsize - osize) < 0)
202 goto nospace;
203 if ((bprev = ip->i_db[lbprev]) == 0) {
204 printf("dev = %s, bsize = %ld, bprev = %ld, fs = %s\n",
205 devtoname(ip->i_dev), (long)fs->fs_bsize, (long)bprev,
206 fs->fs_fsmnt);
207 panic("ffs_realloccg: bad bprev");
208 }
209 /*
210 * Allocate the extra space in the buffer.
211 */
212 error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp);
213 if (error) {
214 brelse(bp);
215 return (error);
216 }
217
218 if( bp->b_blkno == bp->b_lblkno) {
219 if( lbprev >= NDADDR)
220 panic("ffs_realloccg: lbprev out of range");
221 bp->b_blkno = fsbtodb(fs, bprev);
222 }
223
224#ifdef QUOTA
225 error = chkdq(ip, (long)btodb(nsize - osize), cred, 0);
226 if (error) {
227 brelse(bp);
228 return (error);
229 }
230#endif
231 /*
232 * Check for extension in the existing location.
233 */
234 cg = dtog(fs, bprev);
235 bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize);
236 if (bno) {
237 if (bp->b_blkno != fsbtodb(fs, bno))
238 panic("ffs_realloccg: bad blockno");
239 ip->i_blocks += btodb(nsize - osize);
240 ip->i_flag |= IN_CHANGE | IN_UPDATE;
241 allocbuf(bp, nsize);
242 bp->b_flags |= B_DONE;
243 bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
244 *bpp = bp;
245 return (0);
246 }
247 /*
248 * Allocate a new disk location.
249 */
250 if (bpref >= fs->fs_size)
251 bpref = 0;
252 switch ((int)fs->fs_optim) {
253 case FS_OPTSPACE:
254 /*
255 * Allocate an exact sized fragment. Although this makes
256 * best use of space, we will waste time relocating it if
257 * the file continues to grow. If the fragmentation is
258 * less than half of the minimum free reserve, we choose
259 * to begin optimizing for time.
260 */
261 request = nsize;
262 if (fs->fs_minfree <= 5 ||
263 fs->fs_cstotal.cs_nffree >
264 (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100))
265 break;
266 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
267 fs->fs_fsmnt);
268 fs->fs_optim = FS_OPTTIME;
269 break;
270 case FS_OPTTIME:
271 /*
272 * At this point we have discovered a file that is trying to
273 * grow a small fragment to a larger fragment. To save time,
274 * we allocate a full sized block, then free the unused portion.
275 * If the file continues to grow, the `ffs_fragextend' call
276 * above will be able to grow it in place without further
277 * copying. If aberrant programs cause disk fragmentation to
278 * grow within 2% of the free reserve, we choose to begin
279 * optimizing for space.
280 */
281 request = fs->fs_bsize;
282 if (fs->fs_cstotal.cs_nffree <
283 (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100)
284 break;
285 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
286 fs->fs_fsmnt);
287 fs->fs_optim = FS_OPTSPACE;
288 break;
289 default:
290 printf("dev = %s, optim = %ld, fs = %s\n",
291 devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt);
292 panic("ffs_realloccg: bad optim");
293 /* NOTREACHED */
294 }
295 bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
296 ffs_alloccg);
297 if (bno > 0) {
298 bp->b_blkno = fsbtodb(fs, bno);
299 if (!DOINGSOFTDEP(ITOV(ip)))
300 ffs_blkfree(ip, bprev, (long)osize);
301 if (nsize < request)
302 ffs_blkfree(ip, bno + numfrags(fs, nsize),
303 (long)(request - nsize));
304 ip->i_blocks += btodb(nsize - osize);
305 ip->i_flag |= IN_CHANGE | IN_UPDATE;
306 allocbuf(bp, nsize);
307 bp->b_flags |= B_DONE;
308 bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
309 *bpp = bp;
310 return (0);
311 }
312#ifdef QUOTA
313 /*
314 * Restore user's disk quota because allocation failed.
315 */
316 (void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
317#endif
318 brelse(bp);
319nospace:
320 /*
321 * no space available
322 */
323 ffs_fserr(fs, cred->cr_uid, "file system full");
324 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
325 return (ENOSPC);
326}
327
328SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem");
329
330/*
331 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
332 *
333 * The vnode and an array of buffer pointers for a range of sequential
334 * logical blocks to be made contiguous is given. The allocator attempts
335 * to find a range of sequential blocks starting as close as possible to
336 * an fs_rotdelay offset from the end of the allocation for the logical
337 * block immediately preceeding the current range. If successful, the
338 * physical block numbers in the buffer pointers and in the inode are
339 * changed to reflect the new allocation. If unsuccessful, the allocation
340 * is left unchanged. The success in doing the reallocation is returned.
341 * Note that the error return is not reflected back to the user. Rather
342 * the previous block allocation will be used.
343 */
344static int doasyncfree = 1;
345SYSCTL_INT(_vfs_ffs, FFS_ASYNCFREE, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, "");
346
347static int doreallocblks = 1;
348SYSCTL_INT(_vfs_ffs, FFS_REALLOCBLKS, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, "");
349
350#ifdef DEBUG
351static volatile int prtrealloc = 0;
352#endif
353
354int
355ffs_reallocblks(ap)
356 struct vop_reallocblks_args /* {
357 struct vnode *a_vp;
358 struct cluster_save *a_buflist;
359 } */ *ap;
360{
361 struct fs *fs;
362 struct inode *ip;
363 struct vnode *vp;
364 struct buf *sbp, *ebp;
365 ufs_daddr_t *bap, *sbap, *ebap = 0;
366 struct cluster_save *buflist;
367 ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
368 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
369 int i, len, start_lvl, end_lvl, pref, ssize;
370
371 if (doreallocblks == 0)
372 return (ENOSPC);
373 vp = ap->a_vp;
374 ip = VTOI(vp);
375 fs = ip->i_fs;
376 if (fs->fs_contigsumsize <= 0)
377 return (ENOSPC);
378 buflist = ap->a_buflist;
379 len = buflist->bs_nchildren;
380 start_lbn = buflist->bs_children[0]->b_lblkno;
381 end_lbn = start_lbn + len - 1;
382#ifdef DIAGNOSTIC
383 for (i = 0; i < len; i++)
384 if (!ffs_checkblk(ip,
385 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
386 panic("ffs_reallocblks: unallocated block 1");
387 for (i = 1; i < len; i++)
388 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
389 panic("ffs_reallocblks: non-logical cluster");
390 blkno = buflist->bs_children[0]->b_blkno;
391 ssize = fsbtodb(fs, fs->fs_frag);
392 for (i = 1; i < len - 1; i++)
393 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
394 panic("ffs_reallocblks: non-physical cluster %d", i);
395#endif
396 /*
397 * If the latest allocation is in a new cylinder group, assume that
398 * the filesystem has decided to move and do not force it back to
399 * the previous cylinder group.
400 */
401 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
402 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
403 return (ENOSPC);
404 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
405 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
406 return (ENOSPC);
407 /*
408 * Get the starting offset and block map for the first block.
409 */
410 if (start_lvl == 0) {
411 sbap = &ip->i_db[0];
412 soff = start_lbn;
413 } else {
414 idp = &start_ap[start_lvl - 1];
415 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
416 brelse(sbp);
417 return (ENOSPC);
418 }
419 sbap = (ufs_daddr_t *)sbp->b_data;
420 soff = idp->in_off;
421 }
422 /*
423 * Find the preferred location for the cluster.
424 */
425 pref = ffs_blkpref(ip, start_lbn, soff, sbap);
426 /*
427 * If the block range spans two block maps, get the second map.
428 */
429 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
430 ssize = len;
431 } else {
432#ifdef DIAGNOSTIC
433 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
434 panic("ffs_reallocblk: start == end");
435#endif
436 ssize = len - (idp->in_off + 1);
437 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
438 goto fail;
439 ebap = (ufs_daddr_t *)ebp->b_data;
440 }
441 /*
442 * Search the block map looking for an allocation of the desired size.
443 */
444 if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
445 len, ffs_clusteralloc)) == 0)
446 goto fail;
447 /*
448 * We have found a new contiguous block.
449 *
450 * First we have to replace the old block pointers with the new
451 * block pointers in the inode and indirect blocks associated
452 * with the file.
453 */
454#ifdef DEBUG
455 if (prtrealloc)
456 printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
457 start_lbn, end_lbn);
458#endif
459 blkno = newblk;
460 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
461 if (i == ssize) {
462 bap = ebap;
463 soff = -i;
464 }
465#ifdef DIAGNOSTIC
466 if (!ffs_checkblk(ip,
467 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
468 panic("ffs_reallocblks: unallocated block 2");
469 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
470 panic("ffs_reallocblks: alloc mismatch");
471#endif
472#ifdef DEBUG
473 if (prtrealloc)
474 printf(" %d,", *bap);
475#endif
476 if (DOINGSOFTDEP(vp)) {
477 if (sbap == &ip->i_db[0] && i < ssize)
478 softdep_setup_allocdirect(ip, start_lbn + i,
479 blkno, *bap, fs->fs_bsize, fs->fs_bsize,
480 buflist->bs_children[i]);
481 else
482 softdep_setup_allocindir_page(ip, start_lbn + i,
483 i < ssize ? sbp : ebp, soff + i, blkno,
484 *bap, buflist->bs_children[i]);
485 }
486 *bap++ = blkno;
487 }
488 /*
489 * Next we must write out the modified inode and indirect blocks.
490 * For strict correctness, the writes should be synchronous since
491 * the old block values may have been written to disk. In practise
492 * they are almost never written, but if we are concerned about
493 * strict correctness, the `doasyncfree' flag should be set to zero.
494 *
495 * The test on `doasyncfree' should be changed to test a flag
496 * that shows whether the associated buffers and inodes have
497 * been written. The flag should be set when the cluster is
498 * started and cleared whenever the buffer or inode is flushed.
499 * We can then check below to see if it is set, and do the
500 * synchronous write only when it has been cleared.
501 */
502 if (sbap != &ip->i_db[0]) {
503 if (doasyncfree)
504 bdwrite(sbp);
505 else
506 bwrite(sbp);
507 } else {
508 ip->i_flag |= IN_CHANGE | IN_UPDATE;
509 if (!doasyncfree)
510 UFS_UPDATE(vp, 1);
511 }
512 if (ssize < len) {
513 if (doasyncfree)
514 bdwrite(ebp);
515 else
516 bwrite(ebp);
517 }
518 /*
519 * Last, free the old blocks and assign the new blocks to the buffers.
520 */
521#ifdef DEBUG
522 if (prtrealloc)
523 printf("\n\tnew:");
524#endif
525 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
526 if (!DOINGSOFTDEP(vp))
527 ffs_blkfree(ip,
528 dbtofsb(fs, buflist->bs_children[i]->b_blkno),
529 fs->fs_bsize);
530 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
531#ifdef DIAGNOSTIC
532 if (!ffs_checkblk(ip,
533 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
534 panic("ffs_reallocblks: unallocated block 3");
535#endif
536#ifdef DEBUG
537 if (prtrealloc)
538 printf(" %d,", blkno);
539#endif
540 }
541#ifdef DEBUG
542 if (prtrealloc) {
543 prtrealloc--;
544 printf("\n");
545 }
546#endif
547 return (0);
548
549fail:
550 if (ssize < len)
551 brelse(ebp);
552 if (sbap != &ip->i_db[0])
553 brelse(sbp);
554 return (ENOSPC);
555}
556
557/*
558 * Allocate an inode in the file system.
559 *
560 * If allocating a directory, use ffs_dirpref to select the inode.
561 * If allocating in a directory, the following hierarchy is followed:
562 * 1) allocate the preferred inode.
563 * 2) allocate an inode in the same cylinder group.
564 * 3) quadradically rehash into other cylinder groups, until an
565 * available inode is located.
566 * If no inode preference is given the following heirarchy is used
567 * to allocate an inode:
568 * 1) allocate an inode in cylinder group 0.
569 * 2) quadradically rehash into other cylinder groups, until an
570 * available inode is located.
571 */
572int
573ffs_valloc(pvp, mode, cred, vpp)
574 struct vnode *pvp;
575 int mode;
576 struct ucred *cred;
577 struct vnode **vpp;
578{
579 register struct inode *pip;
580 register struct fs *fs;
581 register struct inode *ip;
582 ino_t ino, ipref;
583 int cg, error;
584
585 *vpp = NULL;
586 pip = VTOI(pvp);
587 fs = pip->i_fs;
588 if (fs->fs_cstotal.cs_nifree == 0)
589 goto noinodes;
590
591 if ((mode & IFMT) == IFDIR)
592 ipref = ffs_dirpref(fs);
593 else
594 ipref = pip->i_number;
595 if (ipref >= fs->fs_ncg * fs->fs_ipg)
596 ipref = 0;
597 cg = ino_to_cg(fs, ipref);
598 ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode,
599 (allocfcn_t *)ffs_nodealloccg);
600 if (ino == 0)
601 goto noinodes;
602 error = VFS_VGET(pvp->v_mount, ino, vpp);
603 if (error) {
604 UFS_VFREE(pvp, ino, mode);
605 return (error);
606 }
607 ip = VTOI(*vpp);
608 if (ip->i_mode) {
609 printf("mode = 0%o, inum = %lu, fs = %s\n",
610 ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt);
611 panic("ffs_valloc: dup alloc");
612 }
613 if (ip->i_blocks) { /* XXX */
614 printf("free inode %s/%lu had %ld blocks\n",
615 fs->fs_fsmnt, (u_long)ino, (long)ip->i_blocks);
616 ip->i_blocks = 0;
617 }
618 ip->i_flags = 0;
619 /*
620 * Set up a new generation number for this inode.
621 */
622 if (ip->i_gen == 0 || ++ip->i_gen == 0)
623 ip->i_gen = random() / 2 + 1;
624 return (0);
625noinodes:
626 ffs_fserr(fs, cred->cr_uid, "out of inodes");
627 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
628 return (ENOSPC);
629}
630
631/*
632 * Find a cylinder to place a directory.
633 *
634 * The policy implemented by this algorithm is to select from
635 * among those cylinder groups with above the average number of
636 * free inodes, the one with the smallest number of directories.
637 */
638static ino_t
639ffs_dirpref(fs)
640 register struct fs *fs;
641{
642 int cg, minndir, mincg, avgifree;
643
644 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
645 minndir = fs->fs_ipg;
646 mincg = 0;
647 for (cg = 0; cg < fs->fs_ncg; cg++)
648 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
649 fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
650 mincg = cg;
651 minndir = fs->fs_cs(fs, cg).cs_ndir;
652 }
653 return ((ino_t)(fs->fs_ipg * mincg));
654}
655
656/*
657 * Select the desired position for the next block in a file. The file is
658 * logically divided into sections. The first section is composed of the
659 * direct blocks. Each additional section contains fs_maxbpg blocks.
660 *
661 * If no blocks have been allocated in the first section, the policy is to
662 * request a block in the same cylinder group as the inode that describes
663 * the file. If no blocks have been allocated in any other section, the
664 * policy is to place the section in a cylinder group with a greater than
665 * average number of free blocks. An appropriate cylinder group is found
666 * by using a rotor that sweeps the cylinder groups. When a new group of
667 * blocks is needed, the sweep begins in the cylinder group following the
668 * cylinder group from which the previous allocation was made. The sweep
669 * continues until a cylinder group with greater than the average number
670 * of free blocks is found. If the allocation is for the first block in an
671 * indirect block, the information on the previous allocation is unavailable;
672 * here a best guess is made based upon the logical block number being
673 * allocated.
674 *
675 * If a section is already partially allocated, the policy is to
676 * contiguously allocate fs_maxcontig blocks. The end of one of these
677 * contiguous blocks and the beginning of the next is physically separated
678 * so that the disk head will be in transit between them for at least
679 * fs_rotdelay milliseconds. This is to allow time for the processor to
680 * schedule another I/O transfer.
681 */
682ufs_daddr_t
683ffs_blkpref(ip, lbn, indx, bap)
684 struct inode *ip;
685 ufs_daddr_t lbn;
686 int indx;
687 ufs_daddr_t *bap;
688{
689 register struct fs *fs;
690 register int cg;
691 int avgbfree, startcg;
692 ufs_daddr_t nextblk;
693
694 fs = ip->i_fs;
695 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
696 if (lbn < NDADDR + NINDIR(fs)) {
697 cg = ino_to_cg(fs, ip->i_number);
698 return (fs->fs_fpg * cg + fs->fs_frag);
699 }
700 /*
701 * Find a cylinder with greater than average number of
702 * unused data blocks.
703 */
704 if (indx == 0 || bap[indx - 1] == 0)
705 startcg =
706 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
707 else
708 startcg = dtog(fs, bap[indx - 1]) + 1;
709 startcg %= fs->fs_ncg;
710 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
711 for (cg = startcg; cg < fs->fs_ncg; cg++)
712 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
713 fs->fs_cgrotor = cg;
714 return (fs->fs_fpg * cg + fs->fs_frag);
715 }
716 for (cg = 0; cg <= startcg; cg++)
717 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
718 fs->fs_cgrotor = cg;
719 return (fs->fs_fpg * cg + fs->fs_frag);
720 }
721 return (0);
722 }
723 /*
724 * One or more previous blocks have been laid out. If less
725 * than fs_maxcontig previous blocks are contiguous, the
726 * next block is requested contiguously, otherwise it is
727 * requested rotationally delayed by fs_rotdelay milliseconds.
728 */
729 nextblk = bap[indx - 1] + fs->fs_frag;
730 if (fs->fs_rotdelay == 0 || indx < fs->fs_maxcontig ||
731 bap[indx - fs->fs_maxcontig] +
732 blkstofrags(fs, fs->fs_maxcontig) != nextblk)
733 return (nextblk);
734 /*
735 * Here we convert ms of delay to frags as:
736 * (frags) = (ms) * (rev/sec) * (sect/rev) /
737 * ((sect/frag) * (ms/sec))
738 * then round up to the next block.
739 */
740 nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
741 (NSPF(fs) * 1000), fs->fs_frag);
742 return (nextblk);
743}
744
745/*
746 * Implement the cylinder overflow algorithm.
747 *
748 * The policy implemented by this algorithm is:
749 * 1) allocate the block in its requested cylinder group.
750 * 2) quadradically rehash on the cylinder group number.
751 * 3) brute force search for a free block.
752 */
753/*VARARGS5*/
754static u_long
755ffs_hashalloc(ip, cg, pref, size, allocator)
756 struct inode *ip;
757 int cg;
758 long pref;
759 int size; /* size for data blocks, mode for inodes */
760 allocfcn_t *allocator;
761{
762 register struct fs *fs;
763 long result; /* XXX why not same type as we return? */
764 int i, icg = cg;
765
766 fs = ip->i_fs;
767 /*
768 * 1: preferred cylinder group
769 */
770 result = (*allocator)(ip, cg, pref, size);
771 if (result)
772 return (result);
773 /*
774 * 2: quadratic rehash
775 */
776 for (i = 1; i < fs->fs_ncg; i *= 2) {
777 cg += i;
778 if (cg >= fs->fs_ncg)
779 cg -= fs->fs_ncg;
780 result = (*allocator)(ip, cg, 0, size);
781 if (result)
782 return (result);
783 }
784 /*
785 * 3: brute force search
786 * Note that we start at i == 2, since 0 was checked initially,
787 * and 1 is always checked in the quadratic rehash.
788 */
789 cg = (icg + 2) % fs->fs_ncg;
790 for (i = 2; i < fs->fs_ncg; i++) {
791 result = (*allocator)(ip, cg, 0, size);
792 if (result)
793 return (result);
794 cg++;
795 if (cg == fs->fs_ncg)
796 cg = 0;
797 }
798 return (0);
799}
800
801/*
802 * Determine whether a fragment can be extended.
803 *
804 * Check to see if the necessary fragments are available, and
805 * if they are, allocate them.
806 */
807static ufs_daddr_t
808ffs_fragextend(ip, cg, bprev, osize, nsize)
809 struct inode *ip;
810 int cg;
811 long bprev;
812 int osize, nsize;
813{
814 register struct fs *fs;
815 register struct cg *cgp;
816 struct buf *bp;
817 long bno;
818 int frags, bbase;
819 int i, error;
820 u_int8_t *blksfree;
821
822 fs = ip->i_fs;
823 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
824 return (0);
825 frags = numfrags(fs, nsize);
826 bbase = fragnum(fs, bprev);
827 if (bbase > fragnum(fs, (bprev + frags - 1))) {
828 /* cannot extend across a block boundary */
829 return (0);
830 }
831 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
832 (int)fs->fs_cgsize, NOCRED, &bp);
833 if (error) {
834 brelse(bp);
835 return (0);
836 }
837 cgp = (struct cg *)bp->b_data;
838 if (!cg_chkmagic(cgp)) {
839 brelse(bp);
840 return (0);
841 }
842 bp->b_xflags |= BX_BKGRDWRITE;
843 cgp->cg_time = time_second;
844 bno = dtogd(fs, bprev);
845 blksfree = cg_blksfree(cgp);
846 for (i = numfrags(fs, osize); i < frags; i++)
847 if (isclr(blksfree, bno + i)) {
848 brelse(bp);
849 return (0);
850 }
851 /*
852 * the current fragment can be extended
853 * deduct the count on fragment being extended into
854 * increase the count on the remaining fragment (if any)
855 * allocate the extended piece
856 */
857 for (i = frags; i < fs->fs_frag - bbase; i++)
858 if (isclr(blksfree, bno + i))
859 break;
860 cgp->cg_frsum[i - numfrags(fs, osize)]--;
861 if (i != frags)
862 cgp->cg_frsum[i - frags]++;
863 for (i = numfrags(fs, osize); i < frags; i++) {
864 clrbit(blksfree, bno + i);
865 cgp->cg_cs.cs_nffree--;
866 fs->fs_cstotal.cs_nffree--;
867 fs->fs_cs(fs, cg).cs_nffree--;
868 }
869 fs->fs_fmod = 1;
870 if (DOINGSOFTDEP(ITOV(ip)))
871 softdep_setup_blkmapdep(bp, fs, bprev);
872 bdwrite(bp);
873 return (bprev);
874}
875
876/*
877 * Determine whether a block can be allocated.
878 *
879 * Check to see if a block of the appropriate size is available,
880 * and if it is, allocate it.
881 */
882static ufs_daddr_t
883ffs_alloccg(ip, cg, bpref, size)
884 struct inode *ip;
885 int cg;
886 ufs_daddr_t bpref;
887 int size;
888{
889 register struct fs *fs;
890 register struct cg *cgp;
891 struct buf *bp;
892 register int i;
893 ufs_daddr_t bno, blkno;
894 int allocsiz, error, frags;
895 u_int8_t *blksfree;
896
897 fs = ip->i_fs;
898 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
899 return (0);
900 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
901 (int)fs->fs_cgsize, NOCRED, &bp);
902 if (error) {
903 brelse(bp);
904 return (0);
905 }
906 cgp = (struct cg *)bp->b_data;
907 if (!cg_chkmagic(cgp) ||
908 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
909 brelse(bp);
910 return (0);
911 }
912 bp->b_xflags |= BX_BKGRDWRITE;
913 cgp->cg_time = time_second;
914 if (size == fs->fs_bsize) {
915 bno = ffs_alloccgblk(ip, bp, bpref);
916 bdwrite(bp);
917 return (bno);
918 }
919 /*
920 * check to see if any fragments are already available
921 * allocsiz is the size which will be allocated, hacking
922 * it down to a smaller size if necessary
923 */
924 blksfree = cg_blksfree(cgp);
925 frags = numfrags(fs, size);
926 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
927 if (cgp->cg_frsum[allocsiz] != 0)
928 break;
929 if (allocsiz == fs->fs_frag) {
930 /*
931 * no fragments were available, so a block will be
932 * allocated, and hacked up
933 */
934 if (cgp->cg_cs.cs_nbfree == 0) {
935 brelse(bp);
936 return (0);
937 }
938 bno = ffs_alloccgblk(ip, bp, bpref);
939 bpref = dtogd(fs, bno);
940 for (i = frags; i < fs->fs_frag; i++)
941 setbit(blksfree, bpref + i);
942 i = fs->fs_frag - frags;
943 cgp->cg_cs.cs_nffree += i;
944 fs->fs_cstotal.cs_nffree += i;
945 fs->fs_cs(fs, cg).cs_nffree += i;
946 fs->fs_fmod = 1;
947 cgp->cg_frsum[i]++;
948 bdwrite(bp);
949 return (bno);
950 }
951 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
952 if (bno < 0) {
953 brelse(bp);
954 return (0);
955 }
956 for (i = 0; i < frags; i++)
957 clrbit(blksfree, bno + i);
958 cgp->cg_cs.cs_nffree -= frags;
959 fs->fs_cstotal.cs_nffree -= frags;
960 fs->fs_cs(fs, cg).cs_nffree -= frags;
961 fs->fs_fmod = 1;
962 cgp->cg_frsum[allocsiz]--;
963 if (frags != allocsiz)
964 cgp->cg_frsum[allocsiz - frags]++;
965 blkno = cg * fs->fs_fpg + bno;
966 if (DOINGSOFTDEP(ITOV(ip)))
967 softdep_setup_blkmapdep(bp, fs, blkno);
968 bdwrite(bp);
969 return ((u_long)blkno);
970}
971
972/*
973 * Allocate a block in a cylinder group.
974 *
975 * This algorithm implements the following policy:
976 * 1) allocate the requested block.
977 * 2) allocate a rotationally optimal block in the same cylinder.
978 * 3) allocate the next available block on the block rotor for the
979 * specified cylinder group.
980 * Note that this routine only allocates fs_bsize blocks; these
981 * blocks may be fragmented by the routine that allocates them.
982 */
983static ufs_daddr_t
984ffs_alloccgblk(ip, bp, bpref)
985 struct inode *ip;
986 struct buf *bp;
987 ufs_daddr_t bpref;
988{
989 struct fs *fs;
990 struct cg *cgp;
991 ufs_daddr_t bno, blkno;
992 int cylno, pos, delta;
993 short *cylbp;
994 register int i;
995 u_int8_t *blksfree;
996
997 fs = ip->i_fs;
998 cgp = (struct cg *)bp->b_data;
999 blksfree = cg_blksfree(cgp);
1000 if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
1001 bpref = cgp->cg_rotor;
1002 goto norot;
1003 }
1004 bpref = blknum(fs, bpref);
1005 bpref = dtogd(fs, bpref);
1006 /*
1007 * if the requested block is available, use it
1008 */
1009 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bpref))) {
1010 bno = bpref;
1011 goto gotit;
1012 }
1013 if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
1014 /*
1015 * Block layout information is not available.
1016 * Leaving bpref unchanged means we take the
1017 * next available free block following the one
1018 * we just allocated. Hopefully this will at
1019 * least hit a track cache on drives of unknown
1020 * geometry (e.g. SCSI).
1021 */
1022 goto norot;
1023 }
1024 /*
1025 * check for a block available on the same cylinder
1026 */
1027 cylno = cbtocylno(fs, bpref);
1028 if (cg_blktot(cgp)[cylno] == 0)
1029 goto norot;
1030 /*
1031 * check the summary information to see if a block is
1032 * available in the requested cylinder starting at the
1033 * requested rotational position and proceeding around.
1034 */
1035 cylbp = cg_blks(fs, cgp, cylno);
1036 pos = cbtorpos(fs, bpref);
1037 for (i = pos; i < fs->fs_nrpos; i++)
1038 if (cylbp[i] > 0)
1039 break;
1040 if (i == fs->fs_nrpos)
1041 for (i = 0; i < pos; i++)
1042 if (cylbp[i] > 0)
1043 break;
1044 if (cylbp[i] > 0) {
1045 /*
1046 * found a rotational position, now find the actual
1047 * block. A panic if none is actually there.
1048 */
1049 pos = cylno % fs->fs_cpc;
1050 bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
1051 if (fs_postbl(fs, pos)[i] == -1) {
1052 printf("pos = %d, i = %d, fs = %s\n",
1053 pos, i, fs->fs_fsmnt);
1054 panic("ffs_alloccgblk: cyl groups corrupted");
1055 }
1056 for (i = fs_postbl(fs, pos)[i];; ) {
1057 if (ffs_isblock(fs, blksfree, bno + i)) {
1058 bno = blkstofrags(fs, (bno + i));
1059 goto gotit;
1060 }
1061 delta = fs_rotbl(fs)[i];
1062 if (delta <= 0 ||
1063 delta + i > fragstoblks(fs, fs->fs_fpg))
1064 break;
1065 i += delta;
1066 }
1067 printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
1068 panic("ffs_alloccgblk: can't find blk in cyl");
1069 }
1070norot:
1071 /*
1072 * no blocks in the requested cylinder, so take next
1073 * available one in this cylinder group.
1074 */
1075 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1076 if (bno < 0)
1077 return (0);
1078 cgp->cg_rotor = bno;
1079gotit:
1080 blkno = fragstoblks(fs, bno);
1081 ffs_clrblock(fs, blksfree, (long)blkno);
1082 ffs_clusteracct(fs, cgp, blkno, -1);
1083 cgp->cg_cs.cs_nbfree--;
1084 fs->fs_cstotal.cs_nbfree--;
1085 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1086 cylno = cbtocylno(fs, bno);
1087 cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
1088 cg_blktot(cgp)[cylno]--;
1089 fs->fs_fmod = 1;
1090 blkno = cgp->cg_cgx * fs->fs_fpg + bno;
1091 if (DOINGSOFTDEP(ITOV(ip)))
1092 softdep_setup_blkmapdep(bp, fs, blkno);
1093 return (blkno);
1094}
1095
1096/*
1097 * Determine whether a cluster can be allocated.
1098 *
1099 * We do not currently check for optimal rotational layout if there
1100 * are multiple choices in the same cylinder group. Instead we just
1101 * take the first one that we find following bpref.
1102 */
1103static ufs_daddr_t
1104ffs_clusteralloc(ip, cg, bpref, len)
1105 struct inode *ip;
1106 int cg;
1107 ufs_daddr_t bpref;
1108 int len;
1109{
1110 register struct fs *fs;
1111 register struct cg *cgp;
1112 struct buf *bp;
1113 int i, got, run, bno, bit, map;
1114 u_char *mapp;
1115 int32_t *lp;
1116 u_int8_t *blksfree;
1117
1118 fs = ip->i_fs;
1119 if (fs->fs_maxcluster[cg] < len)
1120 return (0);
1121 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1122 NOCRED, &bp))
1123 goto fail;
1124 cgp = (struct cg *)bp->b_data;
1125 if (!cg_chkmagic(cgp))
1126 goto fail;
1127 bp->b_xflags |= BX_BKGRDWRITE;
1128 /*
1129 * Check to see if a cluster of the needed size (or bigger) is
1130 * available in this cylinder group.
1131 */
1132 lp = &cg_clustersum(cgp)[len];
1133 for (i = len; i <= fs->fs_contigsumsize; i++)
1134 if (*lp++ > 0)
1135 break;
1136 if (i > fs->fs_contigsumsize) {
1137 /*
1138 * This is the first time looking for a cluster in this
1139 * cylinder group. Update the cluster summary information
1140 * to reflect the true maximum sized cluster so that
1141 * future cluster allocation requests can avoid reading
1142 * the cylinder group map only to find no clusters.
1143 */
1144 lp = &cg_clustersum(cgp)[len - 1];
1145 for (i = len - 1; i > 0; i--)
1146 if (*lp-- > 0)
1147 break;
1148 fs->fs_maxcluster[cg] = i;
1149 goto fail;
1150 }
1151 /*
1152 * Search the cluster map to find a big enough cluster.
1153 * We take the first one that we find, even if it is larger
1154 * than we need as we prefer to get one close to the previous
1155 * block allocation. We do not search before the current
1156 * preference point as we do not want to allocate a block
1157 * that is allocated before the previous one (as we will
1158 * then have to wait for another pass of the elevator
1159 * algorithm before it will be read). We prefer to fail and
1160 * be recalled to try an allocation in the next cylinder group.
1161 */
1162 if (dtog(fs, bpref) != cg)
1163 bpref = 0;
1164 else
1165 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1166 mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1167 map = *mapp++;
1168 bit = 1 << (bpref % NBBY);
1169 for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
1170 if ((map & bit) == 0) {
1171 run = 0;
1172 } else {
1173 run++;
1174 if (run == len)
1175 break;
1176 }
1177 if ((got & (NBBY - 1)) != (NBBY - 1)) {
1178 bit <<= 1;
1179 } else {
1180 map = *mapp++;
1181 bit = 1;
1182 }
1183 }
1184 if (got >= cgp->cg_nclusterblks)
1185 goto fail;
1186 /*
1187 * Allocate the cluster that we have found.
1188 */
1189 blksfree = cg_blksfree(cgp);
1190 for (i = 1; i <= len; i++)
1191 if (!ffs_isblock(fs, blksfree, got - run + i))
1192 panic("ffs_clusteralloc: map mismatch");
1193 bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1194 if (dtog(fs, bno) != cg)
1195 panic("ffs_clusteralloc: allocated out of group");
1196 len = blkstofrags(fs, len);
1197 for (i = 0; i < len; i += fs->fs_frag)
1198 if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
1199 panic("ffs_clusteralloc: lost block");
1200 bdwrite(bp);
1201 return (bno);
1202
1203fail:
1204 brelse(bp);
1205 return (0);
1206}
1207
1208/*
1209 * Determine whether an inode can be allocated.
1210 *
1211 * Check to see if an inode is available, and if it is,
1212 * allocate it using the following policy:
1213 * 1) allocate the requested inode.
1214 * 2) allocate the next available inode after the requested
1215 * inode in the specified cylinder group.
1216 */
1217static ino_t
1218ffs_nodealloccg(ip, cg, ipref, mode)
1219 struct inode *ip;
1220 int cg;
1221 ufs_daddr_t ipref;
1222 int mode;
1223{
1224 register struct fs *fs;
1225 register struct cg *cgp;
1226 struct buf *bp;
1227 u_int8_t *inosused;
1228 int error, start, len, loc, map, i;
1229
1230 fs = ip->i_fs;
1231 if (fs->fs_cs(fs, cg).cs_nifree == 0)
1232 return (0);
1233 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1234 (int)fs->fs_cgsize, NOCRED, &bp);
1235 if (error) {
1236 brelse(bp);
1237 return (0);
1238 }
1239 cgp = (struct cg *)bp->b_data;
1240 if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
1241 brelse(bp);
1242 return (0);
1243 }
1244 bp->b_xflags |= BX_BKGRDWRITE;
1245 cgp->cg_time = time_second;
1246 inosused = cg_inosused(cgp);
1247 if (ipref) {
1248 ipref %= fs->fs_ipg;
1249 if (isclr(inosused, ipref))
1250 goto gotit;
1251 }
1252 start = cgp->cg_irotor / NBBY;
1253 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
1254 loc = skpc(0xff, len, &inosused[start]);
1255 if (loc == 0) {
1256 len = start + 1;
1257 start = 0;
1258 loc = skpc(0xff, len, &inosused[0]);
1259 if (loc == 0) {
1260 printf("cg = %d, irotor = %ld, fs = %s\n",
1261 cg, (long)cgp->cg_irotor, fs->fs_fsmnt);
1262 panic("ffs_nodealloccg: map corrupted");
1263 /* NOTREACHED */
1264 }
1265 }
1266 i = start + len - loc;
1267 map = inosused[i];
1268 ipref = i * NBBY;
1269 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1270 if ((map & i) == 0) {
1271 cgp->cg_irotor = ipref;
1272 goto gotit;
1273 }
1274 }
1275 printf("fs = %s\n", fs->fs_fsmnt);
1276 panic("ffs_nodealloccg: block not in map");
1277 /* NOTREACHED */
1278gotit:
1279 if (DOINGSOFTDEP(ITOV(ip)))
1280 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
1281 setbit(inosused, ipref);
1282 cgp->cg_cs.cs_nifree--;
1283 fs->fs_cstotal.cs_nifree--;
1284 fs->fs_cs(fs, cg).cs_nifree--;
1285 fs->fs_fmod = 1;
1286 if ((mode & IFMT) == IFDIR) {
1287 cgp->cg_cs.cs_ndir++;
1288 fs->fs_cstotal.cs_ndir++;
1289 fs->fs_cs(fs, cg).cs_ndir++;
1290 }
1291 bdwrite(bp);
1292 return (cg * fs->fs_ipg + ipref);
1293}
1294
1295/*
1296 * Free a block or fragment.
1297 *
1298 * The specified block or fragment is placed back in the
1299 * free map. If a fragment is deallocated, a possible
1300 * block reassembly is checked.
1301 */
1302void
1303ffs_blkfree(ip, bno, size)
1304 register struct inode *ip;
1305 ufs_daddr_t bno;
1306 long size;
1307{
1308 register struct fs *fs;
1309 register struct cg *cgp;
1310 struct buf *bp;
1311 ufs_daddr_t blkno;
1312 int i, error, cg, blk, frags, bbase;
1313 u_int8_t *blksfree;
1314
1315 fs = ip->i_fs;
1316 VOP_FREEBLKS(ip->i_devvp, fsbtodb(fs, bno), size);
1317 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1318 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1319 printf("dev=%s, bno = %ld, bsize = %ld, size = %ld, fs = %s\n",
1320 devtoname(ip->i_dev), (long)bno, (long)fs->fs_bsize, size,
1321 fs->fs_fsmnt);
1322 panic("ffs_blkfree: bad size");
1323 }
1324 cg = dtog(fs, bno);
1325 if ((u_int)bno >= fs->fs_size) {
1326 printf("bad block %ld, ino %lu\n",
1327 (long)bno, (u_long)ip->i_number);
1328 ffs_fserr(fs, ip->i_uid, "bad block");
1329 return;
1330 }
1331 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1332 (int)fs->fs_cgsize, NOCRED, &bp);
1333 if (error) {
1334 brelse(bp);
1335 return;
1336 }
1337 cgp = (struct cg *)bp->b_data;
1338 if (!cg_chkmagic(cgp)) {
1339 brelse(bp);
1340 return;
1341 }
1342 bp->b_xflags |= BX_BKGRDWRITE;
1343 cgp->cg_time = time_second;
1344 bno = dtogd(fs, bno);
1345 blksfree = cg_blksfree(cgp);
1346 if (size == fs->fs_bsize) {
1347 blkno = fragstoblks(fs, bno);
1348 if (!ffs_isfreeblock(fs, blksfree, blkno)) {
1349 printf("dev = %s, block = %ld, fs = %s\n",
1350 devtoname(ip->i_dev), (long)bno, fs->fs_fsmnt);
1351 panic("ffs_blkfree: freeing free block");
1352 }
1353 ffs_setblock(fs, blksfree, blkno);
1354 ffs_clusteracct(fs, cgp, blkno, 1);
1355 cgp->cg_cs.cs_nbfree++;
1356 fs->fs_cstotal.cs_nbfree++;
1357 fs->fs_cs(fs, cg).cs_nbfree++;
1358 i = cbtocylno(fs, bno);
1359 cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
1360 cg_blktot(cgp)[i]++;
1361 } else {
1362 bbase = bno - fragnum(fs, bno);
1363 /*
1364 * decrement the counts associated with the old frags
1365 */
1366 blk = blkmap(fs, blksfree, bbase);
1367 ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
1368 /*
1369 * deallocate the fragment
1370 */
1371 frags = numfrags(fs, size);
1372 for (i = 0; i < frags; i++) {
1373 if (isset(blksfree, bno + i)) {
1374 printf("dev = %s, block = %ld, fs = %s\n",
1375 devtoname(ip->i_dev), (long)(bno + i),
1376 fs->fs_fsmnt);
1377 panic("ffs_blkfree: freeing free frag");
1378 }
1379 setbit(blksfree, bno + i);
1380 }
1381 cgp->cg_cs.cs_nffree += i;
1382 fs->fs_cstotal.cs_nffree += i;
1383 fs->fs_cs(fs, cg).cs_nffree += i;
1384 /*
1385 * add back in counts associated with the new frags
1386 */
1387 blk = blkmap(fs, blksfree, bbase);
1388 ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1389 /*
1390 * if a complete block has been reassembled, account for it
1391 */
1392 blkno = fragstoblks(fs, bbase);
1393 if (ffs_isblock(fs, blksfree, blkno)) {
1394 cgp->cg_cs.cs_nffree -= fs->fs_frag;
1395 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1396 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1397 ffs_clusteracct(fs, cgp, blkno, 1);
1398 cgp->cg_cs.cs_nbfree++;
1399 fs->fs_cstotal.cs_nbfree++;
1400 fs->fs_cs(fs, cg).cs_nbfree++;
1401 i = cbtocylno(fs, bbase);
1402 cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
1403 cg_blktot(cgp)[i]++;
1404 }
1405 }
1406 fs->fs_fmod = 1;
1407 bdwrite(bp);
1408}
1409
1410#ifdef DIAGNOSTIC
1411/*
1412 * Verify allocation of a block or fragment. Returns true if block or
1413 * fragment is allocated, false if it is free.
1414 */
1415static int
1416ffs_checkblk(ip, bno, size)
1417 struct inode *ip;
1418 ufs_daddr_t bno;
1419 long size;
1420{
1421 struct fs *fs;
1422 struct cg *cgp;
1423 struct buf *bp;
1424 int i, error, frags, free;
1425 u_int8_t *blksfree;
1426
1427 fs = ip->i_fs;
1428 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1429 printf("bsize = %ld, size = %ld, fs = %s\n",
1430 (long)fs->fs_bsize, size, fs->fs_fsmnt);
1431 panic("ffs_checkblk: bad size");
1432 }
1433 if ((u_int)bno >= fs->fs_size)
1434 panic("ffs_checkblk: bad block %d", bno);
1435 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1436 (int)fs->fs_cgsize, NOCRED, &bp);
1437 if (error)
1438 panic("ffs_checkblk: cg bread failed");
1439 cgp = (struct cg *)bp->b_data;
1440 if (!cg_chkmagic(cgp))
1441 panic("ffs_checkblk: cg magic mismatch");
1442 bp->b_xflags |= BX_BKGRDWRITE;
1443 blksfree = cg_blksfree(cgp);
1444 bno = dtogd(fs, bno);
1445 if (size == fs->fs_bsize) {
1446 free = ffs_isblock(fs, blksfree, fragstoblks(fs, bno));
1447 } else {
1448 frags = numfrags(fs, size);
1449 for (free = 0, i = 0; i < frags; i++)
1450 if (isset(blksfree, bno + i))
1451 free++;
1452 if (free != 0 && free != frags)
1453 panic("ffs_checkblk: partially free fragment");
1454 }
1455 brelse(bp);
1456 return (!free);
1457}
1458#endif /* DIAGNOSTIC */
1459
1460/*
1461 * Free an inode.
1462 */
1463int
1464ffs_vfree( pvp, ino, mode)
1465 struct vnode *pvp;
1466 ino_t ino;
1467 int mode;
1468{
1469 if (DOINGSOFTDEP(pvp)) {
1470 softdep_freefile(pvp, ino, mode);
1471 return (0);
1472 }
1473 return (ffs_freefile(pvp, ino, mode));
1474}
1475
1476/*
1477 * Do the actual free operation.
1478 * The specified inode is placed back in the free map.
1479 */
1480 int
1481 ffs_freefile( pvp, ino, mode)
1482 struct vnode *pvp;
1483 ino_t ino;
1484 int mode;
1485{
1486 register struct fs *fs;
1487 register struct cg *cgp;
1488 register struct inode *pip;
1489 struct buf *bp;
1490 int error, cg;
1491 u_int8_t *inosused;
1492
1493 pip = VTOI(pvp);
1494 fs = pip->i_fs;
1495 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1496 panic("ffs_vfree: range: dev = (%d,%d), ino = %d, fs = %s",
1497 major(pip->i_dev), minor(pip->i_dev), ino, fs->fs_fsmnt);
1498 cg = ino_to_cg(fs, ino);
1499 error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1500 (int)fs->fs_cgsize, NOCRED, &bp);
1501 if (error) {
1502 brelse(bp);
1503 return (error);
1504 }
1505 cgp = (struct cg *)bp->b_data;
1506 if (!cg_chkmagic(cgp)) {
1507 brelse(bp);
1508 return (0);
1509 }
1510 bp->b_xflags |= BX_BKGRDWRITE;
1511 cgp->cg_time = time_second;
1512 inosused = cg_inosused(cgp);
1513 ino %= fs->fs_ipg;
1514 if (isclr(inosused, ino)) {
1515 printf("dev = %s, ino = %lu, fs = %s\n",
1516 devtoname(pip->i_dev), (u_long)ino, fs->fs_fsmnt);
1517 if (fs->fs_ronly == 0)
1518 panic("ffs_vfree: freeing free inode");
1519 }
1520 clrbit(inosused, ino);
1521 if (ino < cgp->cg_irotor)
1522 cgp->cg_irotor = ino;
1523 cgp->cg_cs.cs_nifree++;
1524 fs->fs_cstotal.cs_nifree++;
1525 fs->fs_cs(fs, cg).cs_nifree++;
1526 if ((mode & IFMT) == IFDIR) {
1527 cgp->cg_cs.cs_ndir--;
1528 fs->fs_cstotal.cs_ndir--;
1529 fs->fs_cs(fs, cg).cs_ndir--;
1530 }
1531 fs->fs_fmod = 1;
1532 bdwrite(bp);
1533 return (0);
1534}
1535
1536/*
1537 * Find a block of the specified size in the specified cylinder group.
1538 *
1539 * It is a panic if a request is made to find a block if none are
1540 * available.
1541 */
1542static ufs_daddr_t
1543ffs_mapsearch(fs, cgp, bpref, allocsiz)
1544 register struct fs *fs;
1545 register struct cg *cgp;
1546 ufs_daddr_t bpref;
1547 int allocsiz;
1548{
1549 ufs_daddr_t bno;
1550 int start, len, loc, i;
1551 int blk, field, subfield, pos;
1552 u_int8_t *blksfree;
1553
1554 /*
1555 * find the fragment by searching through the free block
1556 * map for an appropriate bit pattern
1557 */
1558 if (bpref)
1559 start = dtogd(fs, bpref) / NBBY;
1560 else
1561 start = cgp->cg_frotor / NBBY;
1562 blksfree = cg_blksfree(cgp);
1563 len = howmany(fs->fs_fpg, NBBY) - start;
1564 loc = scanc((u_int)len, (u_char *)&blksfree[start],
1565 (u_char *)fragtbl[fs->fs_frag],
1566 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1567 if (loc == 0) {
1568 len = start + 1;
1569 start = 0;
1570 loc = scanc((u_int)len, (u_char *)&blksfree[0],
1571 (u_char *)fragtbl[fs->fs_frag],
1572 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1573 if (loc == 0) {
1574 printf("start = %d, len = %d, fs = %s\n",
1575 start, len, fs->fs_fsmnt);
1576 panic("ffs_alloccg: map corrupted");
1577 /* NOTREACHED */
1578 }
1579 }
1580 bno = (start + len - loc) * NBBY;
1581 cgp->cg_frotor = bno;
1582 /*
1583 * found the byte in the map
1584 * sift through the bits to find the selected frag
1585 */
1586 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1587 blk = blkmap(fs, blksfree, bno);
1588 blk <<= 1;
1589 field = around[allocsiz];
1590 subfield = inside[allocsiz];
1591 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1592 if ((blk & field) == subfield)
1593 return (bno + pos);
1594 field <<= 1;
1595 subfield <<= 1;
1596 }
1597 }
1598 printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt);
1599 panic("ffs_alloccg: block not in map");
1600 return (-1);
1601}
1602
1603/*
1604 * Update the cluster map because of an allocation or free.
1605 *
1606 * Cnt == 1 means free; cnt == -1 means allocating.
1607 */
1608static void
1609ffs_clusteracct(fs, cgp, blkno, cnt)
1610 struct fs *fs;
1611 struct cg *cgp;
1612 ufs_daddr_t blkno;
1613 int cnt;
1614{
1615 int32_t *sump;
1616 int32_t *lp;
1617 u_char *freemapp, *mapp;
1618 int i, start, end, forw, back, map, bit;
1619
1620 if (fs->fs_contigsumsize <= 0)
1621 return;
1622 freemapp = cg_clustersfree(cgp);
1623 sump = cg_clustersum(cgp);
1624 /*
1625 * Allocate or clear the actual block.
1626 */
1627 if (cnt > 0)
1628 setbit(freemapp, blkno);
1629 else
1630 clrbit(freemapp, blkno);
1631 /*
1632 * Find the size of the cluster going forward.
1633 */
1634 start = blkno + 1;
1635 end = start + fs->fs_contigsumsize;
1636 if (end >= cgp->cg_nclusterblks)
1637 end = cgp->cg_nclusterblks;
1638 mapp = &freemapp[start / NBBY];
1639 map = *mapp++;
1640 bit = 1 << (start % NBBY);
1641 for (i = start; i < end; i++) {
1642 if ((map & bit) == 0)
1643 break;
1644 if ((i & (NBBY - 1)) != (NBBY - 1)) {
1645 bit <<= 1;
1646 } else {
1647 map = *mapp++;
1648 bit = 1;
1649 }
1650 }
1651 forw = i - start;
1652 /*
1653 * Find the size of the cluster going backward.
1654 */
1655 start = blkno - 1;
1656 end = start - fs->fs_contigsumsize;
1657 if (end < 0)
1658 end = -1;
1659 mapp = &freemapp[start / NBBY];
1660 map = *mapp--;
1661 bit = 1 << (start % NBBY);
1662 for (i = start; i > end; i--) {
1663 if ((map & bit) == 0)
1664 break;
1665 if ((i & (NBBY - 1)) != 0) {
1666 bit >>= 1;
1667 } else {
1668 map = *mapp--;
1669 bit = 1 << (NBBY - 1);
1670 }
1671 }
1672 back = start - i;
1673 /*
1674 * Account for old cluster and the possibly new forward and
1675 * back clusters.
1676 */
1677 i = back + forw + 1;
1678 if (i > fs->fs_contigsumsize)
1679 i = fs->fs_contigsumsize;
1680 sump[i] += cnt;
1681 if (back > 0)
1682 sump[back] -= cnt;
1683 if (forw > 0)
1684 sump[forw] -= cnt;
1685 /*
1686 * Update cluster summary information.
1687 */
1688 lp = &sump[fs->fs_contigsumsize];
1689 for (i = fs->fs_contigsumsize; i > 0; i--)
1690 if (*lp-- > 0)
1691 break;
1692 fs->fs_maxcluster[cgp->cg_cgx] = i;
1693}
1694
1695/*
1696 * Fserr prints the name of a file system with an error diagnostic.
1697 *
1698 * The form of the error message is:
1699 * fs: error message
1700 */
1701static void
1702ffs_fserr(fs, uid, cp)
1703 struct fs *fs;
1704 u_int uid;
1705 char *cp;
1706{
1707 struct proc *p = curproc; /* XXX */
1708
1709 log(LOG_ERR, "pid %d (%s), uid %d on %s: %s\n", p ? p->p_pid : -1,
1710 p ? p->p_comm : "-", uid, fs->fs_fsmnt, cp);
1711}