Deleted Added
full compact
pmap.c (242535) pmap.c (247360)
1/*-
2 * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com>
3 * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
18 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
20 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
22 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
23 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 *
26 * Some hw specific parts of this pmap were derived or influenced
27 * by NetBSD's ibm4xx pmap module. More generic code is shared with
28 * a few other pmap modules from the FreeBSD tree.
29 */
30
31 /*
32 * VM layout notes:
33 *
34 * Kernel and user threads run within one common virtual address space
35 * defined by AS=0.
36 *
37 * Virtual address space layout:
38 * -----------------------------
39 * 0x0000_0000 - 0xafff_ffff : user process
40 * 0xb000_0000 - 0xbfff_ffff : pmap_mapdev()-ed area (PCI/PCIE etc.)
41 * 0xc000_0000 - 0xc0ff_ffff : kernel reserved
42 * 0xc000_0000 - data_end : kernel code+data, env, metadata etc.
43 * 0xc100_0000 - 0xfeef_ffff : KVA
44 * 0xc100_0000 - 0xc100_3fff : reserved for page zero/copy
45 * 0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs
46 * 0xc200_4000 - 0xc200_8fff : guard page + kstack0
47 * 0xc200_9000 - 0xfeef_ffff : actual free KVA space
48 * 0xfef0_0000 - 0xffff_ffff : I/O devices region
49 */
50
51#include <sys/cdefs.h>
1/*-
2 * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com>
3 * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
18 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
20 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
22 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
23 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 *
26 * Some hw specific parts of this pmap were derived or influenced
27 * by NetBSD's ibm4xx pmap module. More generic code is shared with
28 * a few other pmap modules from the FreeBSD tree.
29 */
30
31 /*
32 * VM layout notes:
33 *
34 * Kernel and user threads run within one common virtual address space
35 * defined by AS=0.
36 *
37 * Virtual address space layout:
38 * -----------------------------
39 * 0x0000_0000 - 0xafff_ffff : user process
40 * 0xb000_0000 - 0xbfff_ffff : pmap_mapdev()-ed area (PCI/PCIE etc.)
41 * 0xc000_0000 - 0xc0ff_ffff : kernel reserved
42 * 0xc000_0000 - data_end : kernel code+data, env, metadata etc.
43 * 0xc100_0000 - 0xfeef_ffff : KVA
44 * 0xc100_0000 - 0xc100_3fff : reserved for page zero/copy
45 * 0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs
46 * 0xc200_4000 - 0xc200_8fff : guard page + kstack0
47 * 0xc200_9000 - 0xfeef_ffff : actual free KVA space
48 * 0xfef0_0000 - 0xffff_ffff : I/O devices region
49 */
50
51#include <sys/cdefs.h>
52__FBSDID("$FreeBSD: head/sys/powerpc/booke/pmap.c 242535 2012-11-03 23:22:49Z alc $");
52__FBSDID("$FreeBSD: head/sys/powerpc/booke/pmap.c 247360 2013-02-26 23:35:27Z attilio $");
53
54#include <sys/param.h>
55#include <sys/malloc.h>
56#include <sys/ktr.h>
57#include <sys/proc.h>
58#include <sys/user.h>
59#include <sys/queue.h>
60#include <sys/systm.h>
61#include <sys/kernel.h>
62#include <sys/linker.h>
63#include <sys/msgbuf.h>
64#include <sys/lock.h>
65#include <sys/mutex.h>
66#include <sys/rwlock.h>
67#include <sys/sched.h>
68#include <sys/smp.h>
69#include <sys/vmmeter.h>
70
71#include <vm/vm.h>
72#include <vm/vm_page.h>
73#include <vm/vm_kern.h>
74#include <vm/vm_pageout.h>
75#include <vm/vm_extern.h>
76#include <vm/vm_object.h>
77#include <vm/vm_param.h>
78#include <vm/vm_map.h>
79#include <vm/vm_pager.h>
80#include <vm/uma.h>
81
82#include <machine/cpu.h>
83#include <machine/pcb.h>
84#include <machine/platform.h>
85
86#include <machine/tlb.h>
87#include <machine/spr.h>
88#include <machine/md_var.h>
89#include <machine/mmuvar.h>
90#include <machine/pmap.h>
91#include <machine/pte.h>
92
93#include "mmu_if.h"
94
95#ifdef DEBUG
96#define debugf(fmt, args...) printf(fmt, ##args)
97#else
98#define debugf(fmt, args...)
99#endif
100
101#define TODO panic("%s: not implemented", __func__);
102
103extern struct mtx sched_lock;
104
105extern int dumpsys_minidump;
106
107extern unsigned char _etext[];
108extern unsigned char _end[];
109
110extern uint32_t *bootinfo;
111
112#ifdef SMP
113extern uint32_t bp_ntlb1s;
114#endif
115
116vm_paddr_t ccsrbar_pa;
117vm_paddr_t kernload;
118vm_offset_t kernstart;
119vm_size_t kernsize;
120
121/* Message buffer and tables. */
122static vm_offset_t data_start;
123static vm_size_t data_end;
124
125/* Phys/avail memory regions. */
126static struct mem_region *availmem_regions;
127static int availmem_regions_sz;
128static struct mem_region *physmem_regions;
129static int physmem_regions_sz;
130
131/* Reserved KVA space and mutex for mmu_booke_zero_page. */
132static vm_offset_t zero_page_va;
133static struct mtx zero_page_mutex;
134
135static struct mtx tlbivax_mutex;
136
137/*
138 * Reserved KVA space for mmu_booke_zero_page_idle. This is used
139 * by idle thred only, no lock required.
140 */
141static vm_offset_t zero_page_idle_va;
142
143/* Reserved KVA space and mutex for mmu_booke_copy_page. */
144static vm_offset_t copy_page_src_va;
145static vm_offset_t copy_page_dst_va;
146static struct mtx copy_page_mutex;
147
148/**************************************************************************/
149/* PMAP */
150/**************************************************************************/
151
152static void mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t,
153 vm_prot_t, boolean_t);
154
155unsigned int kptbl_min; /* Index of the first kernel ptbl. */
156unsigned int kernel_ptbls; /* Number of KVA ptbls. */
157
158/*
159 * If user pmap is processed with mmu_booke_remove and the resident count
160 * drops to 0, there are no more pages to remove, so we need not continue.
161 */
162#define PMAP_REMOVE_DONE(pmap) \
163 ((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
164
165extern void tid_flush(tlbtid_t);
166
167/**************************************************************************/
168/* TLB and TID handling */
169/**************************************************************************/
170
171/* Translation ID busy table */
172static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1];
173
174/*
175 * TLB0 capabilities (entry, way numbers etc.). These can vary between e500
176 * core revisions and should be read from h/w registers during early config.
177 */
178uint32_t tlb0_entries;
179uint32_t tlb0_ways;
180uint32_t tlb0_entries_per_way;
181
182#define TLB0_ENTRIES (tlb0_entries)
183#define TLB0_WAYS (tlb0_ways)
184#define TLB0_ENTRIES_PER_WAY (tlb0_entries_per_way)
185
186#define TLB1_ENTRIES 16
187
188/* In-ram copy of the TLB1 */
189static tlb_entry_t tlb1[TLB1_ENTRIES];
190
191/* Next free entry in the TLB1 */
192static unsigned int tlb1_idx;
193
194static tlbtid_t tid_alloc(struct pmap *);
195
196static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t);
197
198static int tlb1_set_entry(vm_offset_t, vm_offset_t, vm_size_t, uint32_t);
199static void tlb1_write_entry(unsigned int);
200static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
201static vm_size_t tlb1_mapin_region(vm_offset_t, vm_paddr_t, vm_size_t);
202
203static vm_size_t tsize2size(unsigned int);
204static unsigned int size2tsize(vm_size_t);
205static unsigned int ilog2(unsigned int);
206
207static void set_mas4_defaults(void);
208
209static inline void tlb0_flush_entry(vm_offset_t);
210static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
211
212/**************************************************************************/
213/* Page table management */
214/**************************************************************************/
215
216static struct rwlock_padalign pvh_global_lock;
217
218/* Data for the pv entry allocation mechanism */
219static uma_zone_t pvzone;
53
54#include <sys/param.h>
55#include <sys/malloc.h>
56#include <sys/ktr.h>
57#include <sys/proc.h>
58#include <sys/user.h>
59#include <sys/queue.h>
60#include <sys/systm.h>
61#include <sys/kernel.h>
62#include <sys/linker.h>
63#include <sys/msgbuf.h>
64#include <sys/lock.h>
65#include <sys/mutex.h>
66#include <sys/rwlock.h>
67#include <sys/sched.h>
68#include <sys/smp.h>
69#include <sys/vmmeter.h>
70
71#include <vm/vm.h>
72#include <vm/vm_page.h>
73#include <vm/vm_kern.h>
74#include <vm/vm_pageout.h>
75#include <vm/vm_extern.h>
76#include <vm/vm_object.h>
77#include <vm/vm_param.h>
78#include <vm/vm_map.h>
79#include <vm/vm_pager.h>
80#include <vm/uma.h>
81
82#include <machine/cpu.h>
83#include <machine/pcb.h>
84#include <machine/platform.h>
85
86#include <machine/tlb.h>
87#include <machine/spr.h>
88#include <machine/md_var.h>
89#include <machine/mmuvar.h>
90#include <machine/pmap.h>
91#include <machine/pte.h>
92
93#include "mmu_if.h"
94
95#ifdef DEBUG
96#define debugf(fmt, args...) printf(fmt, ##args)
97#else
98#define debugf(fmt, args...)
99#endif
100
101#define TODO panic("%s: not implemented", __func__);
102
103extern struct mtx sched_lock;
104
105extern int dumpsys_minidump;
106
107extern unsigned char _etext[];
108extern unsigned char _end[];
109
110extern uint32_t *bootinfo;
111
112#ifdef SMP
113extern uint32_t bp_ntlb1s;
114#endif
115
116vm_paddr_t ccsrbar_pa;
117vm_paddr_t kernload;
118vm_offset_t kernstart;
119vm_size_t kernsize;
120
121/* Message buffer and tables. */
122static vm_offset_t data_start;
123static vm_size_t data_end;
124
125/* Phys/avail memory regions. */
126static struct mem_region *availmem_regions;
127static int availmem_regions_sz;
128static struct mem_region *physmem_regions;
129static int physmem_regions_sz;
130
131/* Reserved KVA space and mutex for mmu_booke_zero_page. */
132static vm_offset_t zero_page_va;
133static struct mtx zero_page_mutex;
134
135static struct mtx tlbivax_mutex;
136
137/*
138 * Reserved KVA space for mmu_booke_zero_page_idle. This is used
139 * by idle thred only, no lock required.
140 */
141static vm_offset_t zero_page_idle_va;
142
143/* Reserved KVA space and mutex for mmu_booke_copy_page. */
144static vm_offset_t copy_page_src_va;
145static vm_offset_t copy_page_dst_va;
146static struct mtx copy_page_mutex;
147
148/**************************************************************************/
149/* PMAP */
150/**************************************************************************/
151
152static void mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t,
153 vm_prot_t, boolean_t);
154
155unsigned int kptbl_min; /* Index of the first kernel ptbl. */
156unsigned int kernel_ptbls; /* Number of KVA ptbls. */
157
158/*
159 * If user pmap is processed with mmu_booke_remove and the resident count
160 * drops to 0, there are no more pages to remove, so we need not continue.
161 */
162#define PMAP_REMOVE_DONE(pmap) \
163 ((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
164
165extern void tid_flush(tlbtid_t);
166
167/**************************************************************************/
168/* TLB and TID handling */
169/**************************************************************************/
170
171/* Translation ID busy table */
172static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1];
173
174/*
175 * TLB0 capabilities (entry, way numbers etc.). These can vary between e500
176 * core revisions and should be read from h/w registers during early config.
177 */
178uint32_t tlb0_entries;
179uint32_t tlb0_ways;
180uint32_t tlb0_entries_per_way;
181
182#define TLB0_ENTRIES (tlb0_entries)
183#define TLB0_WAYS (tlb0_ways)
184#define TLB0_ENTRIES_PER_WAY (tlb0_entries_per_way)
185
186#define TLB1_ENTRIES 16
187
188/* In-ram copy of the TLB1 */
189static tlb_entry_t tlb1[TLB1_ENTRIES];
190
191/* Next free entry in the TLB1 */
192static unsigned int tlb1_idx;
193
194static tlbtid_t tid_alloc(struct pmap *);
195
196static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t);
197
198static int tlb1_set_entry(vm_offset_t, vm_offset_t, vm_size_t, uint32_t);
199static void tlb1_write_entry(unsigned int);
200static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
201static vm_size_t tlb1_mapin_region(vm_offset_t, vm_paddr_t, vm_size_t);
202
203static vm_size_t tsize2size(unsigned int);
204static unsigned int size2tsize(vm_size_t);
205static unsigned int ilog2(unsigned int);
206
207static void set_mas4_defaults(void);
208
209static inline void tlb0_flush_entry(vm_offset_t);
210static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
211
212/**************************************************************************/
213/* Page table management */
214/**************************************************************************/
215
216static struct rwlock_padalign pvh_global_lock;
217
218/* Data for the pv entry allocation mechanism */
219static uma_zone_t pvzone;
220static struct vm_object pvzone_obj;
221static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
222
223#define PV_ENTRY_ZONE_MIN 2048 /* min pv entries in uma zone */
224
225#ifndef PMAP_SHPGPERPROC
226#define PMAP_SHPGPERPROC 200
227#endif
228
229static void ptbl_init(void);
230static struct ptbl_buf *ptbl_buf_alloc(void);
231static void ptbl_buf_free(struct ptbl_buf *);
232static void ptbl_free_pmap_ptbl(pmap_t, pte_t *);
233
234static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int);
235static void ptbl_free(mmu_t, pmap_t, unsigned int);
236static void ptbl_hold(mmu_t, pmap_t, unsigned int);
237static int ptbl_unhold(mmu_t, pmap_t, unsigned int);
238
239static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t);
240static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t);
241static void pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t);
242static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t);
243
244static pv_entry_t pv_alloc(void);
245static void pv_free(pv_entry_t);
246static void pv_insert(pmap_t, vm_offset_t, vm_page_t);
247static void pv_remove(pmap_t, vm_offset_t, vm_page_t);
248
249/* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */
250#define PTBL_BUFS (128 * 16)
251
252struct ptbl_buf {
253 TAILQ_ENTRY(ptbl_buf) link; /* list link */
254 vm_offset_t kva; /* va of mapping */
255};
256
257/* ptbl free list and a lock used for access synchronization. */
258static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist;
259static struct mtx ptbl_buf_freelist_lock;
260
261/* Base address of kva space allocated fot ptbl bufs. */
262static vm_offset_t ptbl_buf_pool_vabase;
263
264/* Pointer to ptbl_buf structures. */
265static struct ptbl_buf *ptbl_bufs;
266
267void pmap_bootstrap_ap(volatile uint32_t *);
268
269/*
270 * Kernel MMU interface
271 */
272static void mmu_booke_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
273static void mmu_booke_clear_modify(mmu_t, vm_page_t);
274static void mmu_booke_clear_reference(mmu_t, vm_page_t);
275static void mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t,
276 vm_size_t, vm_offset_t);
277static void mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t);
278static void mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t,
279 vm_prot_t, boolean_t);
280static void mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
281 vm_page_t, vm_prot_t);
282static void mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t,
283 vm_prot_t);
284static vm_paddr_t mmu_booke_extract(mmu_t, pmap_t, vm_offset_t);
285static vm_page_t mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t,
286 vm_prot_t);
287static void mmu_booke_init(mmu_t);
288static boolean_t mmu_booke_is_modified(mmu_t, vm_page_t);
289static boolean_t mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
290static boolean_t mmu_booke_is_referenced(mmu_t, vm_page_t);
291static int mmu_booke_ts_referenced(mmu_t, vm_page_t);
292static vm_offset_t mmu_booke_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t,
293 int);
294static int mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t,
295 vm_paddr_t *);
296static void mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t,
297 vm_object_t, vm_pindex_t, vm_size_t);
298static boolean_t mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t);
299static void mmu_booke_page_init(mmu_t, vm_page_t);
300static int mmu_booke_page_wired_mappings(mmu_t, vm_page_t);
301static void mmu_booke_pinit(mmu_t, pmap_t);
302static void mmu_booke_pinit0(mmu_t, pmap_t);
303static void mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
304 vm_prot_t);
305static void mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
306static void mmu_booke_qremove(mmu_t, vm_offset_t, int);
307static void mmu_booke_release(mmu_t, pmap_t);
308static void mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
309static void mmu_booke_remove_all(mmu_t, vm_page_t);
310static void mmu_booke_remove_write(mmu_t, vm_page_t);
311static void mmu_booke_zero_page(mmu_t, vm_page_t);
312static void mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int);
313static void mmu_booke_zero_page_idle(mmu_t, vm_page_t);
314static void mmu_booke_activate(mmu_t, struct thread *);
315static void mmu_booke_deactivate(mmu_t, struct thread *);
316static void mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
317static void *mmu_booke_mapdev(mmu_t, vm_paddr_t, vm_size_t);
318static void mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t);
319static vm_paddr_t mmu_booke_kextract(mmu_t, vm_offset_t);
320static void mmu_booke_kenter(mmu_t, vm_offset_t, vm_paddr_t);
321static void mmu_booke_kremove(mmu_t, vm_offset_t);
322static boolean_t mmu_booke_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
323static void mmu_booke_sync_icache(mmu_t, pmap_t, vm_offset_t,
324 vm_size_t);
325static vm_offset_t mmu_booke_dumpsys_map(mmu_t, struct pmap_md *,
326 vm_size_t, vm_size_t *);
327static void mmu_booke_dumpsys_unmap(mmu_t, struct pmap_md *,
328 vm_size_t, vm_offset_t);
329static struct pmap_md *mmu_booke_scan_md(mmu_t, struct pmap_md *);
330
331static mmu_method_t mmu_booke_methods[] = {
332 /* pmap dispatcher interface */
333 MMUMETHOD(mmu_change_wiring, mmu_booke_change_wiring),
334 MMUMETHOD(mmu_clear_modify, mmu_booke_clear_modify),
335 MMUMETHOD(mmu_clear_reference, mmu_booke_clear_reference),
336 MMUMETHOD(mmu_copy, mmu_booke_copy),
337 MMUMETHOD(mmu_copy_page, mmu_booke_copy_page),
338 MMUMETHOD(mmu_enter, mmu_booke_enter),
339 MMUMETHOD(mmu_enter_object, mmu_booke_enter_object),
340 MMUMETHOD(mmu_enter_quick, mmu_booke_enter_quick),
341 MMUMETHOD(mmu_extract, mmu_booke_extract),
342 MMUMETHOD(mmu_extract_and_hold, mmu_booke_extract_and_hold),
343 MMUMETHOD(mmu_init, mmu_booke_init),
344 MMUMETHOD(mmu_is_modified, mmu_booke_is_modified),
345 MMUMETHOD(mmu_is_prefaultable, mmu_booke_is_prefaultable),
346 MMUMETHOD(mmu_is_referenced, mmu_booke_is_referenced),
347 MMUMETHOD(mmu_ts_referenced, mmu_booke_ts_referenced),
348 MMUMETHOD(mmu_map, mmu_booke_map),
349 MMUMETHOD(mmu_mincore, mmu_booke_mincore),
350 MMUMETHOD(mmu_object_init_pt, mmu_booke_object_init_pt),
351 MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick),
352 MMUMETHOD(mmu_page_init, mmu_booke_page_init),
353 MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings),
354 MMUMETHOD(mmu_pinit, mmu_booke_pinit),
355 MMUMETHOD(mmu_pinit0, mmu_booke_pinit0),
356 MMUMETHOD(mmu_protect, mmu_booke_protect),
357 MMUMETHOD(mmu_qenter, mmu_booke_qenter),
358 MMUMETHOD(mmu_qremove, mmu_booke_qremove),
359 MMUMETHOD(mmu_release, mmu_booke_release),
360 MMUMETHOD(mmu_remove, mmu_booke_remove),
361 MMUMETHOD(mmu_remove_all, mmu_booke_remove_all),
362 MMUMETHOD(mmu_remove_write, mmu_booke_remove_write),
363 MMUMETHOD(mmu_sync_icache, mmu_booke_sync_icache),
364 MMUMETHOD(mmu_zero_page, mmu_booke_zero_page),
365 MMUMETHOD(mmu_zero_page_area, mmu_booke_zero_page_area),
366 MMUMETHOD(mmu_zero_page_idle, mmu_booke_zero_page_idle),
367 MMUMETHOD(mmu_activate, mmu_booke_activate),
368 MMUMETHOD(mmu_deactivate, mmu_booke_deactivate),
369
370 /* Internal interfaces */
371 MMUMETHOD(mmu_bootstrap, mmu_booke_bootstrap),
372 MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped),
373 MMUMETHOD(mmu_mapdev, mmu_booke_mapdev),
374 MMUMETHOD(mmu_kenter, mmu_booke_kenter),
375 MMUMETHOD(mmu_kextract, mmu_booke_kextract),
376/* MMUMETHOD(mmu_kremove, mmu_booke_kremove), */
377 MMUMETHOD(mmu_unmapdev, mmu_booke_unmapdev),
378
379 /* dumpsys() support */
380 MMUMETHOD(mmu_dumpsys_map, mmu_booke_dumpsys_map),
381 MMUMETHOD(mmu_dumpsys_unmap, mmu_booke_dumpsys_unmap),
382 MMUMETHOD(mmu_scan_md, mmu_booke_scan_md),
383
384 { 0, 0 }
385};
386
387MMU_DEF(booke_mmu, MMU_TYPE_BOOKE, mmu_booke_methods, 0);
388
389static inline void
390tlb_miss_lock(void)
391{
392#ifdef SMP
393 struct pcpu *pc;
394
395 if (!smp_started)
396 return;
397
398 STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
399 if (pc != pcpup) {
400
401 CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, "
402 "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke_tlb_lock);
403
404 KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)),
405 ("tlb_miss_lock: tried to lock self"));
406
407 tlb_lock(pc->pc_booke_tlb_lock);
408
409 CTR1(KTR_PMAP, "%s: locked", __func__);
410 }
411 }
412#endif
413}
414
415static inline void
416tlb_miss_unlock(void)
417{
418#ifdef SMP
419 struct pcpu *pc;
420
421 if (!smp_started)
422 return;
423
424 STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
425 if (pc != pcpup) {
426 CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d",
427 __func__, pc->pc_cpuid);
428
429 tlb_unlock(pc->pc_booke_tlb_lock);
430
431 CTR1(KTR_PMAP, "%s: unlocked", __func__);
432 }
433 }
434#endif
435}
436
437/* Return number of entries in TLB0. */
438static __inline void
439tlb0_get_tlbconf(void)
440{
441 uint32_t tlb0_cfg;
442
443 tlb0_cfg = mfspr(SPR_TLB0CFG);
444 tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK;
445 tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
446 tlb0_entries_per_way = tlb0_entries / tlb0_ways;
447}
448
449/* Initialize pool of kva ptbl buffers. */
450static void
451ptbl_init(void)
452{
453 int i;
454
455 CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__,
456 (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS);
457 CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)",
458 __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE);
459
460 mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF);
461 TAILQ_INIT(&ptbl_buf_freelist);
462
463 for (i = 0; i < PTBL_BUFS; i++) {
464 ptbl_bufs[i].kva = ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE;
465 TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link);
466 }
467}
468
469/* Get a ptbl_buf from the freelist. */
470static struct ptbl_buf *
471ptbl_buf_alloc(void)
472{
473 struct ptbl_buf *buf;
474
475 mtx_lock(&ptbl_buf_freelist_lock);
476 buf = TAILQ_FIRST(&ptbl_buf_freelist);
477 if (buf != NULL)
478 TAILQ_REMOVE(&ptbl_buf_freelist, buf, link);
479 mtx_unlock(&ptbl_buf_freelist_lock);
480
481 CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
482
483 return (buf);
484}
485
486/* Return ptbl buff to free pool. */
487static void
488ptbl_buf_free(struct ptbl_buf *buf)
489{
490
491 CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
492
493 mtx_lock(&ptbl_buf_freelist_lock);
494 TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link);
495 mtx_unlock(&ptbl_buf_freelist_lock);
496}
497
498/*
499 * Search the list of allocated ptbl bufs and find on list of allocated ptbls
500 */
501static void
502ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl)
503{
504 struct ptbl_buf *pbuf;
505
506 CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
507
508 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
509
510 TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link)
511 if (pbuf->kva == (vm_offset_t)ptbl) {
512 /* Remove from pmap ptbl buf list. */
513 TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link);
514
515 /* Free corresponding ptbl buf. */
516 ptbl_buf_free(pbuf);
517 break;
518 }
519}
520
521/* Allocate page table. */
522static pte_t *
523ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
524{
525 vm_page_t mtbl[PTBL_PAGES];
526 vm_page_t m;
527 struct ptbl_buf *pbuf;
528 unsigned int pidx;
529 pte_t *ptbl;
530 int i;
531
532 CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
533 (pmap == kernel_pmap), pdir_idx);
534
535 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
536 ("ptbl_alloc: invalid pdir_idx"));
537 KASSERT((pmap->pm_pdir[pdir_idx] == NULL),
538 ("pte_alloc: valid ptbl entry exists!"));
539
540 pbuf = ptbl_buf_alloc();
541 if (pbuf == NULL)
542 panic("pte_alloc: couldn't alloc kernel virtual memory");
543
544 ptbl = (pte_t *)pbuf->kva;
545
546 CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl);
547
548 /* Allocate ptbl pages, this will sleep! */
549 for (i = 0; i < PTBL_PAGES; i++) {
550 pidx = (PTBL_PAGES * pdir_idx) + i;
551 while ((m = vm_page_alloc(NULL, pidx,
552 VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
553
554 PMAP_UNLOCK(pmap);
555 rw_wunlock(&pvh_global_lock);
556 VM_WAIT;
557 rw_wlock(&pvh_global_lock);
558 PMAP_LOCK(pmap);
559 }
560 mtbl[i] = m;
561 }
562
563 /* Map allocated pages into kernel_pmap. */
564 mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES);
565
566 /* Zero whole ptbl. */
567 bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE);
568
569 /* Add pbuf to the pmap ptbl bufs list. */
570 TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link);
571
572 return (ptbl);
573}
574
575/* Free ptbl pages and invalidate pdir entry. */
576static void
577ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
578{
579 pte_t *ptbl;
580 vm_paddr_t pa;
581 vm_offset_t va;
582 vm_page_t m;
583 int i;
584
585 CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
586 (pmap == kernel_pmap), pdir_idx);
587
588 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
589 ("ptbl_free: invalid pdir_idx"));
590
591 ptbl = pmap->pm_pdir[pdir_idx];
592
593 CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
594
595 KASSERT((ptbl != NULL), ("ptbl_free: null ptbl"));
596
597 /*
598 * Invalidate the pdir entry as soon as possible, so that other CPUs
599 * don't attempt to look up the page tables we are releasing.
600 */
601 mtx_lock_spin(&tlbivax_mutex);
602 tlb_miss_lock();
603
604 pmap->pm_pdir[pdir_idx] = NULL;
605
606 tlb_miss_unlock();
607 mtx_unlock_spin(&tlbivax_mutex);
608
609 for (i = 0; i < PTBL_PAGES; i++) {
610 va = ((vm_offset_t)ptbl + (i * PAGE_SIZE));
611 pa = pte_vatopa(mmu, kernel_pmap, va);
612 m = PHYS_TO_VM_PAGE(pa);
613 vm_page_free_zero(m);
614 atomic_subtract_int(&cnt.v_wire_count, 1);
615 mmu_booke_kremove(mmu, va);
616 }
617
618 ptbl_free_pmap_ptbl(pmap, ptbl);
619}
620
621/*
622 * Decrement ptbl pages hold count and attempt to free ptbl pages.
623 * Called when removing pte entry from ptbl.
624 *
625 * Return 1 if ptbl pages were freed.
626 */
627static int
628ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
629{
630 pte_t *ptbl;
631 vm_paddr_t pa;
632 vm_page_t m;
633 int i;
634
635 CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
636 (pmap == kernel_pmap), pdir_idx);
637
638 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
639 ("ptbl_unhold: invalid pdir_idx"));
640 KASSERT((pmap != kernel_pmap),
641 ("ptbl_unhold: unholding kernel ptbl!"));
642
643 ptbl = pmap->pm_pdir[pdir_idx];
644
645 //debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl);
646 KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS),
647 ("ptbl_unhold: non kva ptbl"));
648
649 /* decrement hold count */
650 for (i = 0; i < PTBL_PAGES; i++) {
651 pa = pte_vatopa(mmu, kernel_pmap,
652 (vm_offset_t)ptbl + (i * PAGE_SIZE));
653 m = PHYS_TO_VM_PAGE(pa);
654 m->wire_count--;
655 }
656
657 /*
658 * Free ptbl pages if there are no pte etries in this ptbl.
659 * wire_count has the same value for all ptbl pages, so check the last
660 * page.
661 */
662 if (m->wire_count == 0) {
663 ptbl_free(mmu, pmap, pdir_idx);
664
665 //debugf("ptbl_unhold: e (freed ptbl)\n");
666 return (1);
667 }
668
669 return (0);
670}
671
672/*
673 * Increment hold count for ptbl pages. This routine is used when a new pte
674 * entry is being inserted into the ptbl.
675 */
676static void
677ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
678{
679 vm_paddr_t pa;
680 pte_t *ptbl;
681 vm_page_t m;
682 int i;
683
684 CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap,
685 pdir_idx);
686
687 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
688 ("ptbl_hold: invalid pdir_idx"));
689 KASSERT((pmap != kernel_pmap),
690 ("ptbl_hold: holding kernel ptbl!"));
691
692 ptbl = pmap->pm_pdir[pdir_idx];
693
694 KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl"));
695
696 for (i = 0; i < PTBL_PAGES; i++) {
697 pa = pte_vatopa(mmu, kernel_pmap,
698 (vm_offset_t)ptbl + (i * PAGE_SIZE));
699 m = PHYS_TO_VM_PAGE(pa);
700 m->wire_count++;
701 }
702}
703
704/* Allocate pv_entry structure. */
705pv_entry_t
706pv_alloc(void)
707{
708 pv_entry_t pv;
709
710 pv_entry_count++;
711 if (pv_entry_count > pv_entry_high_water)
712 pagedaemon_wakeup();
713 pv = uma_zalloc(pvzone, M_NOWAIT);
714
715 return (pv);
716}
717
718/* Free pv_entry structure. */
719static __inline void
720pv_free(pv_entry_t pve)
721{
722
723 pv_entry_count--;
724 uma_zfree(pvzone, pve);
725}
726
727
728/* Allocate and initialize pv_entry structure. */
729static void
730pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
731{
732 pv_entry_t pve;
733
734 //int su = (pmap == kernel_pmap);
735 //debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
736 // (u_int32_t)pmap, va, (u_int32_t)m);
737
738 pve = pv_alloc();
739 if (pve == NULL)
740 panic("pv_insert: no pv entries!");
741
742 pve->pv_pmap = pmap;
743 pve->pv_va = va;
744
745 /* add to pv_list */
746 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
747 rw_assert(&pvh_global_lock, RA_WLOCKED);
748
749 TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
750
751 //debugf("pv_insert: e\n");
752}
753
754/* Destroy pv entry. */
755static void
756pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
757{
758 pv_entry_t pve;
759
760 //int su = (pmap == kernel_pmap);
761 //debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
762
763 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
764 rw_assert(&pvh_global_lock, RA_WLOCKED);
765
766 /* find pv entry */
767 TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
768 if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
769 /* remove from pv_list */
770 TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
771 if (TAILQ_EMPTY(&m->md.pv_list))
772 vm_page_aflag_clear(m, PGA_WRITEABLE);
773
774 /* free pv entry struct */
775 pv_free(pve);
776 break;
777 }
778 }
779
780 //debugf("pv_remove: e\n");
781}
782
783/*
784 * Clean pte entry, try to free page table page if requested.
785 *
786 * Return 1 if ptbl pages were freed, otherwise return 0.
787 */
788static int
789pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags)
790{
791 unsigned int pdir_idx = PDIR_IDX(va);
792 unsigned int ptbl_idx = PTBL_IDX(va);
793 vm_page_t m;
794 pte_t *ptbl;
795 pte_t *pte;
796
797 //int su = (pmap == kernel_pmap);
798 //debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n",
799 // su, (u_int32_t)pmap, va, flags);
800
801 ptbl = pmap->pm_pdir[pdir_idx];
802 KASSERT(ptbl, ("pte_remove: null ptbl"));
803
804 pte = &ptbl[ptbl_idx];
805
806 if (pte == NULL || !PTE_ISVALID(pte))
807 return (0);
808
809 if (PTE_ISWIRED(pte))
810 pmap->pm_stats.wired_count--;
811
812 /* Handle managed entry. */
813 if (PTE_ISMANAGED(pte)) {
814 /* Get vm_page_t for mapped pte. */
815 m = PHYS_TO_VM_PAGE(PTE_PA(pte));
816
817 if (PTE_ISMODIFIED(pte))
818 vm_page_dirty(m);
819
820 if (PTE_ISREFERENCED(pte))
821 vm_page_aflag_set(m, PGA_REFERENCED);
822
823 pv_remove(pmap, va, m);
824 }
825
826 mtx_lock_spin(&tlbivax_mutex);
827 tlb_miss_lock();
828
829 tlb0_flush_entry(va);
830 pte->flags = 0;
831 pte->rpn = 0;
832
833 tlb_miss_unlock();
834 mtx_unlock_spin(&tlbivax_mutex);
835
836 pmap->pm_stats.resident_count--;
837
838 if (flags & PTBL_UNHOLD) {
839 //debugf("pte_remove: e (unhold)\n");
840 return (ptbl_unhold(mmu, pmap, pdir_idx));
841 }
842
843 //debugf("pte_remove: e\n");
844 return (0);
845}
846
847/*
848 * Insert PTE for a given page and virtual address.
849 */
850static void
851pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags)
852{
853 unsigned int pdir_idx = PDIR_IDX(va);
854 unsigned int ptbl_idx = PTBL_IDX(va);
855 pte_t *ptbl, *pte;
856
857 CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__,
858 pmap == kernel_pmap, pmap, va);
859
860 /* Get the page table pointer. */
861 ptbl = pmap->pm_pdir[pdir_idx];
862
863 if (ptbl == NULL) {
864 /* Allocate page table pages. */
865 ptbl = ptbl_alloc(mmu, pmap, pdir_idx);
866 } else {
867 /*
868 * Check if there is valid mapping for requested
869 * va, if there is, remove it.
870 */
871 pte = &pmap->pm_pdir[pdir_idx][ptbl_idx];
872 if (PTE_ISVALID(pte)) {
873 pte_remove(mmu, pmap, va, PTBL_HOLD);
874 } else {
875 /*
876 * pte is not used, increment hold count
877 * for ptbl pages.
878 */
879 if (pmap != kernel_pmap)
880 ptbl_hold(mmu, pmap, pdir_idx);
881 }
882 }
883
884 /*
885 * Insert pv_entry into pv_list for mapped page if part of managed
886 * memory.
887 */
888 if ((m->oflags & VPO_UNMANAGED) == 0) {
889 flags |= PTE_MANAGED;
890
891 /* Create and insert pv entry. */
892 pv_insert(pmap, va, m);
893 }
894
895 pmap->pm_stats.resident_count++;
896
897 mtx_lock_spin(&tlbivax_mutex);
898 tlb_miss_lock();
899
900 tlb0_flush_entry(va);
901 if (pmap->pm_pdir[pdir_idx] == NULL) {
902 /*
903 * If we just allocated a new page table, hook it in
904 * the pdir.
905 */
906 pmap->pm_pdir[pdir_idx] = ptbl;
907 }
908 pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]);
909 pte->rpn = VM_PAGE_TO_PHYS(m) & ~PTE_PA_MASK;
910 pte->flags |= (PTE_VALID | flags);
911
912 tlb_miss_unlock();
913 mtx_unlock_spin(&tlbivax_mutex);
914}
915
916/* Return the pa for the given pmap/va. */
917static vm_paddr_t
918pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va)
919{
920 vm_paddr_t pa = 0;
921 pte_t *pte;
922
923 pte = pte_find(mmu, pmap, va);
924 if ((pte != NULL) && PTE_ISVALID(pte))
925 pa = (PTE_PA(pte) | (va & PTE_PA_MASK));
926 return (pa);
927}
928
929/* Get a pointer to a PTE in a page table. */
930static pte_t *
931pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va)
932{
933 unsigned int pdir_idx = PDIR_IDX(va);
934 unsigned int ptbl_idx = PTBL_IDX(va);
935
936 KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
937
938 if (pmap->pm_pdir[pdir_idx])
939 return (&(pmap->pm_pdir[pdir_idx][ptbl_idx]));
940
941 return (NULL);
942}
943
944/**************************************************************************/
945/* PMAP related */
946/**************************************************************************/
947
948/*
949 * This is called during booke_init, before the system is really initialized.
950 */
951static void
952mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend)
953{
954 vm_offset_t phys_kernelend;
955 struct mem_region *mp, *mp1;
956 int cnt, i, j;
957 u_int s, e, sz;
958 u_int phys_avail_count;
959 vm_size_t physsz, hwphyssz, kstack0_sz;
960 vm_offset_t kernel_pdir, kstack0, va;
961 vm_paddr_t kstack0_phys;
962 void *dpcpu;
963 pte_t *pte;
964
965 debugf("mmu_booke_bootstrap: entered\n");
966
967 /* Initialize invalidation mutex */
968 mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN);
969
970 /* Read TLB0 size and associativity. */
971 tlb0_get_tlbconf();
972
973 /*
974 * Align kernel start and end address (kernel image).
975 * Note that kernel end does not necessarily relate to kernsize.
976 * kernsize is the size of the kernel that is actually mapped.
977 * Also note that "start - 1" is deliberate. With SMP, the
978 * entry point is exactly a page from the actual load address.
979 * As such, trunc_page() has no effect and we're off by a page.
980 * Since we always have the ELF header between the load address
981 * and the entry point, we can safely subtract 1 to compensate.
982 */
983 kernstart = trunc_page(start - 1);
984 data_start = round_page(kernelend);
985 data_end = data_start;
986
987 /*
988 * Addresses of preloaded modules (like file systems) use
989 * physical addresses. Make sure we relocate those into
990 * virtual addresses.
991 */
992 preload_addr_relocate = kernstart - kernload;
993
994 /* Allocate the dynamic per-cpu area. */
995 dpcpu = (void *)data_end;
996 data_end += DPCPU_SIZE;
997
998 /* Allocate space for the message buffer. */
999 msgbufp = (struct msgbuf *)data_end;
1000 data_end += msgbufsize;
1001 debugf(" msgbufp at 0x%08x end = 0x%08x\n", (uint32_t)msgbufp,
1002 data_end);
1003
1004 data_end = round_page(data_end);
1005
1006 /* Allocate space for ptbl_bufs. */
1007 ptbl_bufs = (struct ptbl_buf *)data_end;
1008 data_end += sizeof(struct ptbl_buf) * PTBL_BUFS;
1009 debugf(" ptbl_bufs at 0x%08x end = 0x%08x\n", (uint32_t)ptbl_bufs,
1010 data_end);
1011
1012 data_end = round_page(data_end);
1013
1014 /* Allocate PTE tables for kernel KVA. */
1015 kernel_pdir = data_end;
1016 kernel_ptbls = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS +
1017 PDIR_SIZE - 1) / PDIR_SIZE;
1018 data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE;
1019 debugf(" kernel ptbls: %d\n", kernel_ptbls);
1020 debugf(" kernel pdir at 0x%08x end = 0x%08x\n", kernel_pdir, data_end);
1021
1022 debugf(" data_end: 0x%08x\n", data_end);
1023 if (data_end - kernstart > kernsize) {
1024 kernsize += tlb1_mapin_region(kernstart + kernsize,
1025 kernload + kernsize, (data_end - kernstart) - kernsize);
1026 }
1027 data_end = kernstart + kernsize;
1028 debugf(" updated data_end: 0x%08x\n", data_end);
1029
1030 /*
1031 * Clear the structures - note we can only do it safely after the
1032 * possible additional TLB1 translations are in place (above) so that
1033 * all range up to the currently calculated 'data_end' is covered.
1034 */
1035 dpcpu_init(dpcpu, 0);
1036 memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE);
1037 memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE);
1038
1039 /*******************************************************/
1040 /* Set the start and end of kva. */
1041 /*******************************************************/
1042 virtual_avail = round_page(data_end);
1043 virtual_end = VM_MAX_KERNEL_ADDRESS;
1044
1045 /* Allocate KVA space for page zero/copy operations. */
1046 zero_page_va = virtual_avail;
1047 virtual_avail += PAGE_SIZE;
1048 zero_page_idle_va = virtual_avail;
1049 virtual_avail += PAGE_SIZE;
1050 copy_page_src_va = virtual_avail;
1051 virtual_avail += PAGE_SIZE;
1052 copy_page_dst_va = virtual_avail;
1053 virtual_avail += PAGE_SIZE;
1054 debugf("zero_page_va = 0x%08x\n", zero_page_va);
1055 debugf("zero_page_idle_va = 0x%08x\n", zero_page_idle_va);
1056 debugf("copy_page_src_va = 0x%08x\n", copy_page_src_va);
1057 debugf("copy_page_dst_va = 0x%08x\n", copy_page_dst_va);
1058
1059 /* Initialize page zero/copy mutexes. */
1060 mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
1061 mtx_init(&copy_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
1062
1063 /* Allocate KVA space for ptbl bufs. */
1064 ptbl_buf_pool_vabase = virtual_avail;
1065 virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
1066 debugf("ptbl_buf_pool_vabase = 0x%08x end = 0x%08x\n",
1067 ptbl_buf_pool_vabase, virtual_avail);
1068
1069 /* Calculate corresponding physical addresses for the kernel region. */
1070 phys_kernelend = kernload + kernsize;
1071 debugf("kernel image and allocated data:\n");
1072 debugf(" kernload = 0x%08x\n", kernload);
1073 debugf(" kernstart = 0x%08x\n", kernstart);
1074 debugf(" kernsize = 0x%08x\n", kernsize);
1075
1076 if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz)
1077 panic("mmu_booke_bootstrap: phys_avail too small");
1078
1079 /*
1080 * Remove kernel physical address range from avail regions list. Page
1081 * align all regions. Non-page aligned memory isn't very interesting
1082 * to us. Also, sort the entries for ascending addresses.
1083 */
1084
1085 /* Retrieve phys/avail mem regions */
1086 mem_regions(&physmem_regions, &physmem_regions_sz,
1087 &availmem_regions, &availmem_regions_sz);
1088 sz = 0;
1089 cnt = availmem_regions_sz;
1090 debugf("processing avail regions:\n");
1091 for (mp = availmem_regions; mp->mr_size; mp++) {
1092 s = mp->mr_start;
1093 e = mp->mr_start + mp->mr_size;
1094 debugf(" %08x-%08x -> ", s, e);
1095 /* Check whether this region holds all of the kernel. */
1096 if (s < kernload && e > phys_kernelend) {
1097 availmem_regions[cnt].mr_start = phys_kernelend;
1098 availmem_regions[cnt++].mr_size = e - phys_kernelend;
1099 e = kernload;
1100 }
1101 /* Look whether this regions starts within the kernel. */
1102 if (s >= kernload && s < phys_kernelend) {
1103 if (e <= phys_kernelend)
1104 goto empty;
1105 s = phys_kernelend;
1106 }
1107 /* Now look whether this region ends within the kernel. */
1108 if (e > kernload && e <= phys_kernelend) {
1109 if (s >= kernload)
1110 goto empty;
1111 e = kernload;
1112 }
1113 /* Now page align the start and size of the region. */
1114 s = round_page(s);
1115 e = trunc_page(e);
1116 if (e < s)
1117 e = s;
1118 sz = e - s;
1119 debugf("%08x-%08x = %x\n", s, e, sz);
1120
1121 /* Check whether some memory is left here. */
1122 if (sz == 0) {
1123 empty:
1124 memmove(mp, mp + 1,
1125 (cnt - (mp - availmem_regions)) * sizeof(*mp));
1126 cnt--;
1127 mp--;
1128 continue;
1129 }
1130
1131 /* Do an insertion sort. */
1132 for (mp1 = availmem_regions; mp1 < mp; mp1++)
1133 if (s < mp1->mr_start)
1134 break;
1135 if (mp1 < mp) {
1136 memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1137 mp1->mr_start = s;
1138 mp1->mr_size = sz;
1139 } else {
1140 mp->mr_start = s;
1141 mp->mr_size = sz;
1142 }
1143 }
1144 availmem_regions_sz = cnt;
1145
1146 /*******************************************************/
1147 /* Steal physical memory for kernel stack from the end */
1148 /* of the first avail region */
1149 /*******************************************************/
1150 kstack0_sz = KSTACK_PAGES * PAGE_SIZE;
1151 kstack0_phys = availmem_regions[0].mr_start +
1152 availmem_regions[0].mr_size;
1153 kstack0_phys -= kstack0_sz;
1154 availmem_regions[0].mr_size -= kstack0_sz;
1155
1156 /*******************************************************/
1157 /* Fill in phys_avail table, based on availmem_regions */
1158 /*******************************************************/
1159 phys_avail_count = 0;
1160 physsz = 0;
1161 hwphyssz = 0;
1162 TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1163
1164 debugf("fill in phys_avail:\n");
1165 for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
1166
1167 debugf(" region: 0x%08x - 0x%08x (0x%08x)\n",
1168 availmem_regions[i].mr_start,
1169 availmem_regions[i].mr_start +
1170 availmem_regions[i].mr_size,
1171 availmem_regions[i].mr_size);
1172
1173 if (hwphyssz != 0 &&
1174 (physsz + availmem_regions[i].mr_size) >= hwphyssz) {
1175 debugf(" hw.physmem adjust\n");
1176 if (physsz < hwphyssz) {
1177 phys_avail[j] = availmem_regions[i].mr_start;
1178 phys_avail[j + 1] =
1179 availmem_regions[i].mr_start +
1180 hwphyssz - physsz;
1181 physsz = hwphyssz;
1182 phys_avail_count++;
1183 }
1184 break;
1185 }
1186
1187 phys_avail[j] = availmem_regions[i].mr_start;
1188 phys_avail[j + 1] = availmem_regions[i].mr_start +
1189 availmem_regions[i].mr_size;
1190 phys_avail_count++;
1191 physsz += availmem_regions[i].mr_size;
1192 }
1193 physmem = btoc(physsz);
1194
1195 /* Calculate the last available physical address. */
1196 for (i = 0; phys_avail[i + 2] != 0; i += 2)
1197 ;
1198 Maxmem = powerpc_btop(phys_avail[i + 1]);
1199
1200 debugf("Maxmem = 0x%08lx\n", Maxmem);
1201 debugf("phys_avail_count = %d\n", phys_avail_count);
1202 debugf("physsz = 0x%08x physmem = %ld (0x%08lx)\n", physsz, physmem,
1203 physmem);
1204
1205 /*******************************************************/
1206 /* Initialize (statically allocated) kernel pmap. */
1207 /*******************************************************/
1208 PMAP_LOCK_INIT(kernel_pmap);
1209 kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE;
1210
1211 debugf("kernel_pmap = 0x%08x\n", (uint32_t)kernel_pmap);
1212 debugf("kptbl_min = %d, kernel_ptbls = %d\n", kptbl_min, kernel_ptbls);
1213 debugf("kernel pdir range: 0x%08x - 0x%08x\n",
1214 kptbl_min * PDIR_SIZE, (kptbl_min + kernel_ptbls) * PDIR_SIZE - 1);
1215
1216 /* Initialize kernel pdir */
1217 for (i = 0; i < kernel_ptbls; i++)
1218 kernel_pmap->pm_pdir[kptbl_min + i] =
1219 (pte_t *)(kernel_pdir + (i * PAGE_SIZE * PTBL_PAGES));
1220
1221 for (i = 0; i < MAXCPU; i++) {
1222 kernel_pmap->pm_tid[i] = TID_KERNEL;
1223
1224 /* Initialize each CPU's tidbusy entry 0 with kernel_pmap */
1225 tidbusy[i][0] = kernel_pmap;
1226 }
1227
1228 /*
1229 * Fill in PTEs covering kernel code and data. They are not required
1230 * for address translation, as this area is covered by static TLB1
1231 * entries, but for pte_vatopa() to work correctly with kernel area
1232 * addresses.
1233 */
1234 for (va = kernstart; va < data_end; va += PAGE_SIZE) {
1235 pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]);
1236 pte->rpn = kernload + (va - kernstart);
1237 pte->flags = PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED |
1238 PTE_VALID;
1239 }
1240 /* Mark kernel_pmap active on all CPUs */
1241 CPU_FILL(&kernel_pmap->pm_active);
1242
1243 /*
1244 * Initialize the global pv list lock.
1245 */
1246 rw_init(&pvh_global_lock, "pmap pv global");
1247
1248 /*******************************************************/
1249 /* Final setup */
1250 /*******************************************************/
1251
1252 /* Enter kstack0 into kernel map, provide guard page */
1253 kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1254 thread0.td_kstack = kstack0;
1255 thread0.td_kstack_pages = KSTACK_PAGES;
1256
1257 debugf("kstack_sz = 0x%08x\n", kstack0_sz);
1258 debugf("kstack0_phys at 0x%08x - 0x%08x\n",
1259 kstack0_phys, kstack0_phys + kstack0_sz);
1260 debugf("kstack0 at 0x%08x - 0x%08x\n", kstack0, kstack0 + kstack0_sz);
1261
1262 virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz;
1263 for (i = 0; i < KSTACK_PAGES; i++) {
1264 mmu_booke_kenter(mmu, kstack0, kstack0_phys);
1265 kstack0 += PAGE_SIZE;
1266 kstack0_phys += PAGE_SIZE;
1267 }
1268
1269 debugf("virtual_avail = %08x\n", virtual_avail);
1270 debugf("virtual_end = %08x\n", virtual_end);
1271
1272 debugf("mmu_booke_bootstrap: exit\n");
1273}
1274
1275void
1276pmap_bootstrap_ap(volatile uint32_t *trcp __unused)
1277{
1278 int i;
1279
1280 /*
1281 * Finish TLB1 configuration: the BSP already set up its TLB1 and we
1282 * have the snapshot of its contents in the s/w tlb1[] table, so use
1283 * these values directly to (re)program AP's TLB1 hardware.
1284 */
1285 for (i = bp_ntlb1s; i < tlb1_idx; i++) {
1286 /* Skip invalid entries */
1287 if (!(tlb1[i].mas1 & MAS1_VALID))
1288 continue;
1289
1290 tlb1_write_entry(i);
1291 }
1292
1293 set_mas4_defaults();
1294}
1295
1296/*
1297 * Get the physical page address for the given pmap/virtual address.
1298 */
1299static vm_paddr_t
1300mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1301{
1302 vm_paddr_t pa;
1303
1304 PMAP_LOCK(pmap);
1305 pa = pte_vatopa(mmu, pmap, va);
1306 PMAP_UNLOCK(pmap);
1307
1308 return (pa);
1309}
1310
1311/*
1312 * Extract the physical page address associated with the given
1313 * kernel virtual address.
1314 */
1315static vm_paddr_t
1316mmu_booke_kextract(mmu_t mmu, vm_offset_t va)
1317{
1318
1319 return (pte_vatopa(mmu, kernel_pmap, va));
1320}
1321
1322/*
1323 * Initialize the pmap module.
1324 * Called by vm_init, to initialize any structures that the pmap
1325 * system needs to map virtual memory.
1326 */
1327static void
1328mmu_booke_init(mmu_t mmu)
1329{
1330 int shpgperproc = PMAP_SHPGPERPROC;
1331
1332 /*
1333 * Initialize the address space (zone) for the pv entries. Set a
1334 * high water mark so that the system can recover from excessive
1335 * numbers of pv entries.
1336 */
1337 pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
1338 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1339
1340 TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1341 pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
1342
1343 TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1344 pv_entry_high_water = 9 * (pv_entry_max / 10);
1345
220static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
221
222#define PV_ENTRY_ZONE_MIN 2048 /* min pv entries in uma zone */
223
224#ifndef PMAP_SHPGPERPROC
225#define PMAP_SHPGPERPROC 200
226#endif
227
228static void ptbl_init(void);
229static struct ptbl_buf *ptbl_buf_alloc(void);
230static void ptbl_buf_free(struct ptbl_buf *);
231static void ptbl_free_pmap_ptbl(pmap_t, pte_t *);
232
233static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int);
234static void ptbl_free(mmu_t, pmap_t, unsigned int);
235static void ptbl_hold(mmu_t, pmap_t, unsigned int);
236static int ptbl_unhold(mmu_t, pmap_t, unsigned int);
237
238static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t);
239static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t);
240static void pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t);
241static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t);
242
243static pv_entry_t pv_alloc(void);
244static void pv_free(pv_entry_t);
245static void pv_insert(pmap_t, vm_offset_t, vm_page_t);
246static void pv_remove(pmap_t, vm_offset_t, vm_page_t);
247
248/* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */
249#define PTBL_BUFS (128 * 16)
250
251struct ptbl_buf {
252 TAILQ_ENTRY(ptbl_buf) link; /* list link */
253 vm_offset_t kva; /* va of mapping */
254};
255
256/* ptbl free list and a lock used for access synchronization. */
257static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist;
258static struct mtx ptbl_buf_freelist_lock;
259
260/* Base address of kva space allocated fot ptbl bufs. */
261static vm_offset_t ptbl_buf_pool_vabase;
262
263/* Pointer to ptbl_buf structures. */
264static struct ptbl_buf *ptbl_bufs;
265
266void pmap_bootstrap_ap(volatile uint32_t *);
267
268/*
269 * Kernel MMU interface
270 */
271static void mmu_booke_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
272static void mmu_booke_clear_modify(mmu_t, vm_page_t);
273static void mmu_booke_clear_reference(mmu_t, vm_page_t);
274static void mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t,
275 vm_size_t, vm_offset_t);
276static void mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t);
277static void mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t,
278 vm_prot_t, boolean_t);
279static void mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
280 vm_page_t, vm_prot_t);
281static void mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t,
282 vm_prot_t);
283static vm_paddr_t mmu_booke_extract(mmu_t, pmap_t, vm_offset_t);
284static vm_page_t mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t,
285 vm_prot_t);
286static void mmu_booke_init(mmu_t);
287static boolean_t mmu_booke_is_modified(mmu_t, vm_page_t);
288static boolean_t mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
289static boolean_t mmu_booke_is_referenced(mmu_t, vm_page_t);
290static int mmu_booke_ts_referenced(mmu_t, vm_page_t);
291static vm_offset_t mmu_booke_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t,
292 int);
293static int mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t,
294 vm_paddr_t *);
295static void mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t,
296 vm_object_t, vm_pindex_t, vm_size_t);
297static boolean_t mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t);
298static void mmu_booke_page_init(mmu_t, vm_page_t);
299static int mmu_booke_page_wired_mappings(mmu_t, vm_page_t);
300static void mmu_booke_pinit(mmu_t, pmap_t);
301static void mmu_booke_pinit0(mmu_t, pmap_t);
302static void mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
303 vm_prot_t);
304static void mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
305static void mmu_booke_qremove(mmu_t, vm_offset_t, int);
306static void mmu_booke_release(mmu_t, pmap_t);
307static void mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
308static void mmu_booke_remove_all(mmu_t, vm_page_t);
309static void mmu_booke_remove_write(mmu_t, vm_page_t);
310static void mmu_booke_zero_page(mmu_t, vm_page_t);
311static void mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int);
312static void mmu_booke_zero_page_idle(mmu_t, vm_page_t);
313static void mmu_booke_activate(mmu_t, struct thread *);
314static void mmu_booke_deactivate(mmu_t, struct thread *);
315static void mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
316static void *mmu_booke_mapdev(mmu_t, vm_paddr_t, vm_size_t);
317static void mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t);
318static vm_paddr_t mmu_booke_kextract(mmu_t, vm_offset_t);
319static void mmu_booke_kenter(mmu_t, vm_offset_t, vm_paddr_t);
320static void mmu_booke_kremove(mmu_t, vm_offset_t);
321static boolean_t mmu_booke_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
322static void mmu_booke_sync_icache(mmu_t, pmap_t, vm_offset_t,
323 vm_size_t);
324static vm_offset_t mmu_booke_dumpsys_map(mmu_t, struct pmap_md *,
325 vm_size_t, vm_size_t *);
326static void mmu_booke_dumpsys_unmap(mmu_t, struct pmap_md *,
327 vm_size_t, vm_offset_t);
328static struct pmap_md *mmu_booke_scan_md(mmu_t, struct pmap_md *);
329
330static mmu_method_t mmu_booke_methods[] = {
331 /* pmap dispatcher interface */
332 MMUMETHOD(mmu_change_wiring, mmu_booke_change_wiring),
333 MMUMETHOD(mmu_clear_modify, mmu_booke_clear_modify),
334 MMUMETHOD(mmu_clear_reference, mmu_booke_clear_reference),
335 MMUMETHOD(mmu_copy, mmu_booke_copy),
336 MMUMETHOD(mmu_copy_page, mmu_booke_copy_page),
337 MMUMETHOD(mmu_enter, mmu_booke_enter),
338 MMUMETHOD(mmu_enter_object, mmu_booke_enter_object),
339 MMUMETHOD(mmu_enter_quick, mmu_booke_enter_quick),
340 MMUMETHOD(mmu_extract, mmu_booke_extract),
341 MMUMETHOD(mmu_extract_and_hold, mmu_booke_extract_and_hold),
342 MMUMETHOD(mmu_init, mmu_booke_init),
343 MMUMETHOD(mmu_is_modified, mmu_booke_is_modified),
344 MMUMETHOD(mmu_is_prefaultable, mmu_booke_is_prefaultable),
345 MMUMETHOD(mmu_is_referenced, mmu_booke_is_referenced),
346 MMUMETHOD(mmu_ts_referenced, mmu_booke_ts_referenced),
347 MMUMETHOD(mmu_map, mmu_booke_map),
348 MMUMETHOD(mmu_mincore, mmu_booke_mincore),
349 MMUMETHOD(mmu_object_init_pt, mmu_booke_object_init_pt),
350 MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick),
351 MMUMETHOD(mmu_page_init, mmu_booke_page_init),
352 MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings),
353 MMUMETHOD(mmu_pinit, mmu_booke_pinit),
354 MMUMETHOD(mmu_pinit0, mmu_booke_pinit0),
355 MMUMETHOD(mmu_protect, mmu_booke_protect),
356 MMUMETHOD(mmu_qenter, mmu_booke_qenter),
357 MMUMETHOD(mmu_qremove, mmu_booke_qremove),
358 MMUMETHOD(mmu_release, mmu_booke_release),
359 MMUMETHOD(mmu_remove, mmu_booke_remove),
360 MMUMETHOD(mmu_remove_all, mmu_booke_remove_all),
361 MMUMETHOD(mmu_remove_write, mmu_booke_remove_write),
362 MMUMETHOD(mmu_sync_icache, mmu_booke_sync_icache),
363 MMUMETHOD(mmu_zero_page, mmu_booke_zero_page),
364 MMUMETHOD(mmu_zero_page_area, mmu_booke_zero_page_area),
365 MMUMETHOD(mmu_zero_page_idle, mmu_booke_zero_page_idle),
366 MMUMETHOD(mmu_activate, mmu_booke_activate),
367 MMUMETHOD(mmu_deactivate, mmu_booke_deactivate),
368
369 /* Internal interfaces */
370 MMUMETHOD(mmu_bootstrap, mmu_booke_bootstrap),
371 MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped),
372 MMUMETHOD(mmu_mapdev, mmu_booke_mapdev),
373 MMUMETHOD(mmu_kenter, mmu_booke_kenter),
374 MMUMETHOD(mmu_kextract, mmu_booke_kextract),
375/* MMUMETHOD(mmu_kremove, mmu_booke_kremove), */
376 MMUMETHOD(mmu_unmapdev, mmu_booke_unmapdev),
377
378 /* dumpsys() support */
379 MMUMETHOD(mmu_dumpsys_map, mmu_booke_dumpsys_map),
380 MMUMETHOD(mmu_dumpsys_unmap, mmu_booke_dumpsys_unmap),
381 MMUMETHOD(mmu_scan_md, mmu_booke_scan_md),
382
383 { 0, 0 }
384};
385
386MMU_DEF(booke_mmu, MMU_TYPE_BOOKE, mmu_booke_methods, 0);
387
388static inline void
389tlb_miss_lock(void)
390{
391#ifdef SMP
392 struct pcpu *pc;
393
394 if (!smp_started)
395 return;
396
397 STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
398 if (pc != pcpup) {
399
400 CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, "
401 "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke_tlb_lock);
402
403 KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)),
404 ("tlb_miss_lock: tried to lock self"));
405
406 tlb_lock(pc->pc_booke_tlb_lock);
407
408 CTR1(KTR_PMAP, "%s: locked", __func__);
409 }
410 }
411#endif
412}
413
414static inline void
415tlb_miss_unlock(void)
416{
417#ifdef SMP
418 struct pcpu *pc;
419
420 if (!smp_started)
421 return;
422
423 STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
424 if (pc != pcpup) {
425 CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d",
426 __func__, pc->pc_cpuid);
427
428 tlb_unlock(pc->pc_booke_tlb_lock);
429
430 CTR1(KTR_PMAP, "%s: unlocked", __func__);
431 }
432 }
433#endif
434}
435
436/* Return number of entries in TLB0. */
437static __inline void
438tlb0_get_tlbconf(void)
439{
440 uint32_t tlb0_cfg;
441
442 tlb0_cfg = mfspr(SPR_TLB0CFG);
443 tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK;
444 tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
445 tlb0_entries_per_way = tlb0_entries / tlb0_ways;
446}
447
448/* Initialize pool of kva ptbl buffers. */
449static void
450ptbl_init(void)
451{
452 int i;
453
454 CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__,
455 (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS);
456 CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)",
457 __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE);
458
459 mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF);
460 TAILQ_INIT(&ptbl_buf_freelist);
461
462 for (i = 0; i < PTBL_BUFS; i++) {
463 ptbl_bufs[i].kva = ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE;
464 TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link);
465 }
466}
467
468/* Get a ptbl_buf from the freelist. */
469static struct ptbl_buf *
470ptbl_buf_alloc(void)
471{
472 struct ptbl_buf *buf;
473
474 mtx_lock(&ptbl_buf_freelist_lock);
475 buf = TAILQ_FIRST(&ptbl_buf_freelist);
476 if (buf != NULL)
477 TAILQ_REMOVE(&ptbl_buf_freelist, buf, link);
478 mtx_unlock(&ptbl_buf_freelist_lock);
479
480 CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
481
482 return (buf);
483}
484
485/* Return ptbl buff to free pool. */
486static void
487ptbl_buf_free(struct ptbl_buf *buf)
488{
489
490 CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
491
492 mtx_lock(&ptbl_buf_freelist_lock);
493 TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link);
494 mtx_unlock(&ptbl_buf_freelist_lock);
495}
496
497/*
498 * Search the list of allocated ptbl bufs and find on list of allocated ptbls
499 */
500static void
501ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl)
502{
503 struct ptbl_buf *pbuf;
504
505 CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
506
507 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
508
509 TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link)
510 if (pbuf->kva == (vm_offset_t)ptbl) {
511 /* Remove from pmap ptbl buf list. */
512 TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link);
513
514 /* Free corresponding ptbl buf. */
515 ptbl_buf_free(pbuf);
516 break;
517 }
518}
519
520/* Allocate page table. */
521static pte_t *
522ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
523{
524 vm_page_t mtbl[PTBL_PAGES];
525 vm_page_t m;
526 struct ptbl_buf *pbuf;
527 unsigned int pidx;
528 pte_t *ptbl;
529 int i;
530
531 CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
532 (pmap == kernel_pmap), pdir_idx);
533
534 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
535 ("ptbl_alloc: invalid pdir_idx"));
536 KASSERT((pmap->pm_pdir[pdir_idx] == NULL),
537 ("pte_alloc: valid ptbl entry exists!"));
538
539 pbuf = ptbl_buf_alloc();
540 if (pbuf == NULL)
541 panic("pte_alloc: couldn't alloc kernel virtual memory");
542
543 ptbl = (pte_t *)pbuf->kva;
544
545 CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl);
546
547 /* Allocate ptbl pages, this will sleep! */
548 for (i = 0; i < PTBL_PAGES; i++) {
549 pidx = (PTBL_PAGES * pdir_idx) + i;
550 while ((m = vm_page_alloc(NULL, pidx,
551 VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
552
553 PMAP_UNLOCK(pmap);
554 rw_wunlock(&pvh_global_lock);
555 VM_WAIT;
556 rw_wlock(&pvh_global_lock);
557 PMAP_LOCK(pmap);
558 }
559 mtbl[i] = m;
560 }
561
562 /* Map allocated pages into kernel_pmap. */
563 mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES);
564
565 /* Zero whole ptbl. */
566 bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE);
567
568 /* Add pbuf to the pmap ptbl bufs list. */
569 TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link);
570
571 return (ptbl);
572}
573
574/* Free ptbl pages and invalidate pdir entry. */
575static void
576ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
577{
578 pte_t *ptbl;
579 vm_paddr_t pa;
580 vm_offset_t va;
581 vm_page_t m;
582 int i;
583
584 CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
585 (pmap == kernel_pmap), pdir_idx);
586
587 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
588 ("ptbl_free: invalid pdir_idx"));
589
590 ptbl = pmap->pm_pdir[pdir_idx];
591
592 CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
593
594 KASSERT((ptbl != NULL), ("ptbl_free: null ptbl"));
595
596 /*
597 * Invalidate the pdir entry as soon as possible, so that other CPUs
598 * don't attempt to look up the page tables we are releasing.
599 */
600 mtx_lock_spin(&tlbivax_mutex);
601 tlb_miss_lock();
602
603 pmap->pm_pdir[pdir_idx] = NULL;
604
605 tlb_miss_unlock();
606 mtx_unlock_spin(&tlbivax_mutex);
607
608 for (i = 0; i < PTBL_PAGES; i++) {
609 va = ((vm_offset_t)ptbl + (i * PAGE_SIZE));
610 pa = pte_vatopa(mmu, kernel_pmap, va);
611 m = PHYS_TO_VM_PAGE(pa);
612 vm_page_free_zero(m);
613 atomic_subtract_int(&cnt.v_wire_count, 1);
614 mmu_booke_kremove(mmu, va);
615 }
616
617 ptbl_free_pmap_ptbl(pmap, ptbl);
618}
619
620/*
621 * Decrement ptbl pages hold count and attempt to free ptbl pages.
622 * Called when removing pte entry from ptbl.
623 *
624 * Return 1 if ptbl pages were freed.
625 */
626static int
627ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
628{
629 pte_t *ptbl;
630 vm_paddr_t pa;
631 vm_page_t m;
632 int i;
633
634 CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
635 (pmap == kernel_pmap), pdir_idx);
636
637 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
638 ("ptbl_unhold: invalid pdir_idx"));
639 KASSERT((pmap != kernel_pmap),
640 ("ptbl_unhold: unholding kernel ptbl!"));
641
642 ptbl = pmap->pm_pdir[pdir_idx];
643
644 //debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl);
645 KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS),
646 ("ptbl_unhold: non kva ptbl"));
647
648 /* decrement hold count */
649 for (i = 0; i < PTBL_PAGES; i++) {
650 pa = pte_vatopa(mmu, kernel_pmap,
651 (vm_offset_t)ptbl + (i * PAGE_SIZE));
652 m = PHYS_TO_VM_PAGE(pa);
653 m->wire_count--;
654 }
655
656 /*
657 * Free ptbl pages if there are no pte etries in this ptbl.
658 * wire_count has the same value for all ptbl pages, so check the last
659 * page.
660 */
661 if (m->wire_count == 0) {
662 ptbl_free(mmu, pmap, pdir_idx);
663
664 //debugf("ptbl_unhold: e (freed ptbl)\n");
665 return (1);
666 }
667
668 return (0);
669}
670
671/*
672 * Increment hold count for ptbl pages. This routine is used when a new pte
673 * entry is being inserted into the ptbl.
674 */
675static void
676ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
677{
678 vm_paddr_t pa;
679 pte_t *ptbl;
680 vm_page_t m;
681 int i;
682
683 CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap,
684 pdir_idx);
685
686 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
687 ("ptbl_hold: invalid pdir_idx"));
688 KASSERT((pmap != kernel_pmap),
689 ("ptbl_hold: holding kernel ptbl!"));
690
691 ptbl = pmap->pm_pdir[pdir_idx];
692
693 KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl"));
694
695 for (i = 0; i < PTBL_PAGES; i++) {
696 pa = pte_vatopa(mmu, kernel_pmap,
697 (vm_offset_t)ptbl + (i * PAGE_SIZE));
698 m = PHYS_TO_VM_PAGE(pa);
699 m->wire_count++;
700 }
701}
702
703/* Allocate pv_entry structure. */
704pv_entry_t
705pv_alloc(void)
706{
707 pv_entry_t pv;
708
709 pv_entry_count++;
710 if (pv_entry_count > pv_entry_high_water)
711 pagedaemon_wakeup();
712 pv = uma_zalloc(pvzone, M_NOWAIT);
713
714 return (pv);
715}
716
717/* Free pv_entry structure. */
718static __inline void
719pv_free(pv_entry_t pve)
720{
721
722 pv_entry_count--;
723 uma_zfree(pvzone, pve);
724}
725
726
727/* Allocate and initialize pv_entry structure. */
728static void
729pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
730{
731 pv_entry_t pve;
732
733 //int su = (pmap == kernel_pmap);
734 //debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
735 // (u_int32_t)pmap, va, (u_int32_t)m);
736
737 pve = pv_alloc();
738 if (pve == NULL)
739 panic("pv_insert: no pv entries!");
740
741 pve->pv_pmap = pmap;
742 pve->pv_va = va;
743
744 /* add to pv_list */
745 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
746 rw_assert(&pvh_global_lock, RA_WLOCKED);
747
748 TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
749
750 //debugf("pv_insert: e\n");
751}
752
753/* Destroy pv entry. */
754static void
755pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
756{
757 pv_entry_t pve;
758
759 //int su = (pmap == kernel_pmap);
760 //debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
761
762 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
763 rw_assert(&pvh_global_lock, RA_WLOCKED);
764
765 /* find pv entry */
766 TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
767 if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
768 /* remove from pv_list */
769 TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
770 if (TAILQ_EMPTY(&m->md.pv_list))
771 vm_page_aflag_clear(m, PGA_WRITEABLE);
772
773 /* free pv entry struct */
774 pv_free(pve);
775 break;
776 }
777 }
778
779 //debugf("pv_remove: e\n");
780}
781
782/*
783 * Clean pte entry, try to free page table page if requested.
784 *
785 * Return 1 if ptbl pages were freed, otherwise return 0.
786 */
787static int
788pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags)
789{
790 unsigned int pdir_idx = PDIR_IDX(va);
791 unsigned int ptbl_idx = PTBL_IDX(va);
792 vm_page_t m;
793 pte_t *ptbl;
794 pte_t *pte;
795
796 //int su = (pmap == kernel_pmap);
797 //debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n",
798 // su, (u_int32_t)pmap, va, flags);
799
800 ptbl = pmap->pm_pdir[pdir_idx];
801 KASSERT(ptbl, ("pte_remove: null ptbl"));
802
803 pte = &ptbl[ptbl_idx];
804
805 if (pte == NULL || !PTE_ISVALID(pte))
806 return (0);
807
808 if (PTE_ISWIRED(pte))
809 pmap->pm_stats.wired_count--;
810
811 /* Handle managed entry. */
812 if (PTE_ISMANAGED(pte)) {
813 /* Get vm_page_t for mapped pte. */
814 m = PHYS_TO_VM_PAGE(PTE_PA(pte));
815
816 if (PTE_ISMODIFIED(pte))
817 vm_page_dirty(m);
818
819 if (PTE_ISREFERENCED(pte))
820 vm_page_aflag_set(m, PGA_REFERENCED);
821
822 pv_remove(pmap, va, m);
823 }
824
825 mtx_lock_spin(&tlbivax_mutex);
826 tlb_miss_lock();
827
828 tlb0_flush_entry(va);
829 pte->flags = 0;
830 pte->rpn = 0;
831
832 tlb_miss_unlock();
833 mtx_unlock_spin(&tlbivax_mutex);
834
835 pmap->pm_stats.resident_count--;
836
837 if (flags & PTBL_UNHOLD) {
838 //debugf("pte_remove: e (unhold)\n");
839 return (ptbl_unhold(mmu, pmap, pdir_idx));
840 }
841
842 //debugf("pte_remove: e\n");
843 return (0);
844}
845
846/*
847 * Insert PTE for a given page and virtual address.
848 */
849static void
850pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags)
851{
852 unsigned int pdir_idx = PDIR_IDX(va);
853 unsigned int ptbl_idx = PTBL_IDX(va);
854 pte_t *ptbl, *pte;
855
856 CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__,
857 pmap == kernel_pmap, pmap, va);
858
859 /* Get the page table pointer. */
860 ptbl = pmap->pm_pdir[pdir_idx];
861
862 if (ptbl == NULL) {
863 /* Allocate page table pages. */
864 ptbl = ptbl_alloc(mmu, pmap, pdir_idx);
865 } else {
866 /*
867 * Check if there is valid mapping for requested
868 * va, if there is, remove it.
869 */
870 pte = &pmap->pm_pdir[pdir_idx][ptbl_idx];
871 if (PTE_ISVALID(pte)) {
872 pte_remove(mmu, pmap, va, PTBL_HOLD);
873 } else {
874 /*
875 * pte is not used, increment hold count
876 * for ptbl pages.
877 */
878 if (pmap != kernel_pmap)
879 ptbl_hold(mmu, pmap, pdir_idx);
880 }
881 }
882
883 /*
884 * Insert pv_entry into pv_list for mapped page if part of managed
885 * memory.
886 */
887 if ((m->oflags & VPO_UNMANAGED) == 0) {
888 flags |= PTE_MANAGED;
889
890 /* Create and insert pv entry. */
891 pv_insert(pmap, va, m);
892 }
893
894 pmap->pm_stats.resident_count++;
895
896 mtx_lock_spin(&tlbivax_mutex);
897 tlb_miss_lock();
898
899 tlb0_flush_entry(va);
900 if (pmap->pm_pdir[pdir_idx] == NULL) {
901 /*
902 * If we just allocated a new page table, hook it in
903 * the pdir.
904 */
905 pmap->pm_pdir[pdir_idx] = ptbl;
906 }
907 pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]);
908 pte->rpn = VM_PAGE_TO_PHYS(m) & ~PTE_PA_MASK;
909 pte->flags |= (PTE_VALID | flags);
910
911 tlb_miss_unlock();
912 mtx_unlock_spin(&tlbivax_mutex);
913}
914
915/* Return the pa for the given pmap/va. */
916static vm_paddr_t
917pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va)
918{
919 vm_paddr_t pa = 0;
920 pte_t *pte;
921
922 pte = pte_find(mmu, pmap, va);
923 if ((pte != NULL) && PTE_ISVALID(pte))
924 pa = (PTE_PA(pte) | (va & PTE_PA_MASK));
925 return (pa);
926}
927
928/* Get a pointer to a PTE in a page table. */
929static pte_t *
930pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va)
931{
932 unsigned int pdir_idx = PDIR_IDX(va);
933 unsigned int ptbl_idx = PTBL_IDX(va);
934
935 KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
936
937 if (pmap->pm_pdir[pdir_idx])
938 return (&(pmap->pm_pdir[pdir_idx][ptbl_idx]));
939
940 return (NULL);
941}
942
943/**************************************************************************/
944/* PMAP related */
945/**************************************************************************/
946
947/*
948 * This is called during booke_init, before the system is really initialized.
949 */
950static void
951mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend)
952{
953 vm_offset_t phys_kernelend;
954 struct mem_region *mp, *mp1;
955 int cnt, i, j;
956 u_int s, e, sz;
957 u_int phys_avail_count;
958 vm_size_t physsz, hwphyssz, kstack0_sz;
959 vm_offset_t kernel_pdir, kstack0, va;
960 vm_paddr_t kstack0_phys;
961 void *dpcpu;
962 pte_t *pte;
963
964 debugf("mmu_booke_bootstrap: entered\n");
965
966 /* Initialize invalidation mutex */
967 mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN);
968
969 /* Read TLB0 size and associativity. */
970 tlb0_get_tlbconf();
971
972 /*
973 * Align kernel start and end address (kernel image).
974 * Note that kernel end does not necessarily relate to kernsize.
975 * kernsize is the size of the kernel that is actually mapped.
976 * Also note that "start - 1" is deliberate. With SMP, the
977 * entry point is exactly a page from the actual load address.
978 * As such, trunc_page() has no effect and we're off by a page.
979 * Since we always have the ELF header between the load address
980 * and the entry point, we can safely subtract 1 to compensate.
981 */
982 kernstart = trunc_page(start - 1);
983 data_start = round_page(kernelend);
984 data_end = data_start;
985
986 /*
987 * Addresses of preloaded modules (like file systems) use
988 * physical addresses. Make sure we relocate those into
989 * virtual addresses.
990 */
991 preload_addr_relocate = kernstart - kernload;
992
993 /* Allocate the dynamic per-cpu area. */
994 dpcpu = (void *)data_end;
995 data_end += DPCPU_SIZE;
996
997 /* Allocate space for the message buffer. */
998 msgbufp = (struct msgbuf *)data_end;
999 data_end += msgbufsize;
1000 debugf(" msgbufp at 0x%08x end = 0x%08x\n", (uint32_t)msgbufp,
1001 data_end);
1002
1003 data_end = round_page(data_end);
1004
1005 /* Allocate space for ptbl_bufs. */
1006 ptbl_bufs = (struct ptbl_buf *)data_end;
1007 data_end += sizeof(struct ptbl_buf) * PTBL_BUFS;
1008 debugf(" ptbl_bufs at 0x%08x end = 0x%08x\n", (uint32_t)ptbl_bufs,
1009 data_end);
1010
1011 data_end = round_page(data_end);
1012
1013 /* Allocate PTE tables for kernel KVA. */
1014 kernel_pdir = data_end;
1015 kernel_ptbls = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS +
1016 PDIR_SIZE - 1) / PDIR_SIZE;
1017 data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE;
1018 debugf(" kernel ptbls: %d\n", kernel_ptbls);
1019 debugf(" kernel pdir at 0x%08x end = 0x%08x\n", kernel_pdir, data_end);
1020
1021 debugf(" data_end: 0x%08x\n", data_end);
1022 if (data_end - kernstart > kernsize) {
1023 kernsize += tlb1_mapin_region(kernstart + kernsize,
1024 kernload + kernsize, (data_end - kernstart) - kernsize);
1025 }
1026 data_end = kernstart + kernsize;
1027 debugf(" updated data_end: 0x%08x\n", data_end);
1028
1029 /*
1030 * Clear the structures - note we can only do it safely after the
1031 * possible additional TLB1 translations are in place (above) so that
1032 * all range up to the currently calculated 'data_end' is covered.
1033 */
1034 dpcpu_init(dpcpu, 0);
1035 memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE);
1036 memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE);
1037
1038 /*******************************************************/
1039 /* Set the start and end of kva. */
1040 /*******************************************************/
1041 virtual_avail = round_page(data_end);
1042 virtual_end = VM_MAX_KERNEL_ADDRESS;
1043
1044 /* Allocate KVA space for page zero/copy operations. */
1045 zero_page_va = virtual_avail;
1046 virtual_avail += PAGE_SIZE;
1047 zero_page_idle_va = virtual_avail;
1048 virtual_avail += PAGE_SIZE;
1049 copy_page_src_va = virtual_avail;
1050 virtual_avail += PAGE_SIZE;
1051 copy_page_dst_va = virtual_avail;
1052 virtual_avail += PAGE_SIZE;
1053 debugf("zero_page_va = 0x%08x\n", zero_page_va);
1054 debugf("zero_page_idle_va = 0x%08x\n", zero_page_idle_va);
1055 debugf("copy_page_src_va = 0x%08x\n", copy_page_src_va);
1056 debugf("copy_page_dst_va = 0x%08x\n", copy_page_dst_va);
1057
1058 /* Initialize page zero/copy mutexes. */
1059 mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
1060 mtx_init(&copy_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
1061
1062 /* Allocate KVA space for ptbl bufs. */
1063 ptbl_buf_pool_vabase = virtual_avail;
1064 virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
1065 debugf("ptbl_buf_pool_vabase = 0x%08x end = 0x%08x\n",
1066 ptbl_buf_pool_vabase, virtual_avail);
1067
1068 /* Calculate corresponding physical addresses for the kernel region. */
1069 phys_kernelend = kernload + kernsize;
1070 debugf("kernel image and allocated data:\n");
1071 debugf(" kernload = 0x%08x\n", kernload);
1072 debugf(" kernstart = 0x%08x\n", kernstart);
1073 debugf(" kernsize = 0x%08x\n", kernsize);
1074
1075 if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz)
1076 panic("mmu_booke_bootstrap: phys_avail too small");
1077
1078 /*
1079 * Remove kernel physical address range from avail regions list. Page
1080 * align all regions. Non-page aligned memory isn't very interesting
1081 * to us. Also, sort the entries for ascending addresses.
1082 */
1083
1084 /* Retrieve phys/avail mem regions */
1085 mem_regions(&physmem_regions, &physmem_regions_sz,
1086 &availmem_regions, &availmem_regions_sz);
1087 sz = 0;
1088 cnt = availmem_regions_sz;
1089 debugf("processing avail regions:\n");
1090 for (mp = availmem_regions; mp->mr_size; mp++) {
1091 s = mp->mr_start;
1092 e = mp->mr_start + mp->mr_size;
1093 debugf(" %08x-%08x -> ", s, e);
1094 /* Check whether this region holds all of the kernel. */
1095 if (s < kernload && e > phys_kernelend) {
1096 availmem_regions[cnt].mr_start = phys_kernelend;
1097 availmem_regions[cnt++].mr_size = e - phys_kernelend;
1098 e = kernload;
1099 }
1100 /* Look whether this regions starts within the kernel. */
1101 if (s >= kernload && s < phys_kernelend) {
1102 if (e <= phys_kernelend)
1103 goto empty;
1104 s = phys_kernelend;
1105 }
1106 /* Now look whether this region ends within the kernel. */
1107 if (e > kernload && e <= phys_kernelend) {
1108 if (s >= kernload)
1109 goto empty;
1110 e = kernload;
1111 }
1112 /* Now page align the start and size of the region. */
1113 s = round_page(s);
1114 e = trunc_page(e);
1115 if (e < s)
1116 e = s;
1117 sz = e - s;
1118 debugf("%08x-%08x = %x\n", s, e, sz);
1119
1120 /* Check whether some memory is left here. */
1121 if (sz == 0) {
1122 empty:
1123 memmove(mp, mp + 1,
1124 (cnt - (mp - availmem_regions)) * sizeof(*mp));
1125 cnt--;
1126 mp--;
1127 continue;
1128 }
1129
1130 /* Do an insertion sort. */
1131 for (mp1 = availmem_regions; mp1 < mp; mp1++)
1132 if (s < mp1->mr_start)
1133 break;
1134 if (mp1 < mp) {
1135 memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1136 mp1->mr_start = s;
1137 mp1->mr_size = sz;
1138 } else {
1139 mp->mr_start = s;
1140 mp->mr_size = sz;
1141 }
1142 }
1143 availmem_regions_sz = cnt;
1144
1145 /*******************************************************/
1146 /* Steal physical memory for kernel stack from the end */
1147 /* of the first avail region */
1148 /*******************************************************/
1149 kstack0_sz = KSTACK_PAGES * PAGE_SIZE;
1150 kstack0_phys = availmem_regions[0].mr_start +
1151 availmem_regions[0].mr_size;
1152 kstack0_phys -= kstack0_sz;
1153 availmem_regions[0].mr_size -= kstack0_sz;
1154
1155 /*******************************************************/
1156 /* Fill in phys_avail table, based on availmem_regions */
1157 /*******************************************************/
1158 phys_avail_count = 0;
1159 physsz = 0;
1160 hwphyssz = 0;
1161 TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1162
1163 debugf("fill in phys_avail:\n");
1164 for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
1165
1166 debugf(" region: 0x%08x - 0x%08x (0x%08x)\n",
1167 availmem_regions[i].mr_start,
1168 availmem_regions[i].mr_start +
1169 availmem_regions[i].mr_size,
1170 availmem_regions[i].mr_size);
1171
1172 if (hwphyssz != 0 &&
1173 (physsz + availmem_regions[i].mr_size) >= hwphyssz) {
1174 debugf(" hw.physmem adjust\n");
1175 if (physsz < hwphyssz) {
1176 phys_avail[j] = availmem_regions[i].mr_start;
1177 phys_avail[j + 1] =
1178 availmem_regions[i].mr_start +
1179 hwphyssz - physsz;
1180 physsz = hwphyssz;
1181 phys_avail_count++;
1182 }
1183 break;
1184 }
1185
1186 phys_avail[j] = availmem_regions[i].mr_start;
1187 phys_avail[j + 1] = availmem_regions[i].mr_start +
1188 availmem_regions[i].mr_size;
1189 phys_avail_count++;
1190 physsz += availmem_regions[i].mr_size;
1191 }
1192 physmem = btoc(physsz);
1193
1194 /* Calculate the last available physical address. */
1195 for (i = 0; phys_avail[i + 2] != 0; i += 2)
1196 ;
1197 Maxmem = powerpc_btop(phys_avail[i + 1]);
1198
1199 debugf("Maxmem = 0x%08lx\n", Maxmem);
1200 debugf("phys_avail_count = %d\n", phys_avail_count);
1201 debugf("physsz = 0x%08x physmem = %ld (0x%08lx)\n", physsz, physmem,
1202 physmem);
1203
1204 /*******************************************************/
1205 /* Initialize (statically allocated) kernel pmap. */
1206 /*******************************************************/
1207 PMAP_LOCK_INIT(kernel_pmap);
1208 kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE;
1209
1210 debugf("kernel_pmap = 0x%08x\n", (uint32_t)kernel_pmap);
1211 debugf("kptbl_min = %d, kernel_ptbls = %d\n", kptbl_min, kernel_ptbls);
1212 debugf("kernel pdir range: 0x%08x - 0x%08x\n",
1213 kptbl_min * PDIR_SIZE, (kptbl_min + kernel_ptbls) * PDIR_SIZE - 1);
1214
1215 /* Initialize kernel pdir */
1216 for (i = 0; i < kernel_ptbls; i++)
1217 kernel_pmap->pm_pdir[kptbl_min + i] =
1218 (pte_t *)(kernel_pdir + (i * PAGE_SIZE * PTBL_PAGES));
1219
1220 for (i = 0; i < MAXCPU; i++) {
1221 kernel_pmap->pm_tid[i] = TID_KERNEL;
1222
1223 /* Initialize each CPU's tidbusy entry 0 with kernel_pmap */
1224 tidbusy[i][0] = kernel_pmap;
1225 }
1226
1227 /*
1228 * Fill in PTEs covering kernel code and data. They are not required
1229 * for address translation, as this area is covered by static TLB1
1230 * entries, but for pte_vatopa() to work correctly with kernel area
1231 * addresses.
1232 */
1233 for (va = kernstart; va < data_end; va += PAGE_SIZE) {
1234 pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]);
1235 pte->rpn = kernload + (va - kernstart);
1236 pte->flags = PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED |
1237 PTE_VALID;
1238 }
1239 /* Mark kernel_pmap active on all CPUs */
1240 CPU_FILL(&kernel_pmap->pm_active);
1241
1242 /*
1243 * Initialize the global pv list lock.
1244 */
1245 rw_init(&pvh_global_lock, "pmap pv global");
1246
1247 /*******************************************************/
1248 /* Final setup */
1249 /*******************************************************/
1250
1251 /* Enter kstack0 into kernel map, provide guard page */
1252 kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1253 thread0.td_kstack = kstack0;
1254 thread0.td_kstack_pages = KSTACK_PAGES;
1255
1256 debugf("kstack_sz = 0x%08x\n", kstack0_sz);
1257 debugf("kstack0_phys at 0x%08x - 0x%08x\n",
1258 kstack0_phys, kstack0_phys + kstack0_sz);
1259 debugf("kstack0 at 0x%08x - 0x%08x\n", kstack0, kstack0 + kstack0_sz);
1260
1261 virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz;
1262 for (i = 0; i < KSTACK_PAGES; i++) {
1263 mmu_booke_kenter(mmu, kstack0, kstack0_phys);
1264 kstack0 += PAGE_SIZE;
1265 kstack0_phys += PAGE_SIZE;
1266 }
1267
1268 debugf("virtual_avail = %08x\n", virtual_avail);
1269 debugf("virtual_end = %08x\n", virtual_end);
1270
1271 debugf("mmu_booke_bootstrap: exit\n");
1272}
1273
1274void
1275pmap_bootstrap_ap(volatile uint32_t *trcp __unused)
1276{
1277 int i;
1278
1279 /*
1280 * Finish TLB1 configuration: the BSP already set up its TLB1 and we
1281 * have the snapshot of its contents in the s/w tlb1[] table, so use
1282 * these values directly to (re)program AP's TLB1 hardware.
1283 */
1284 for (i = bp_ntlb1s; i < tlb1_idx; i++) {
1285 /* Skip invalid entries */
1286 if (!(tlb1[i].mas1 & MAS1_VALID))
1287 continue;
1288
1289 tlb1_write_entry(i);
1290 }
1291
1292 set_mas4_defaults();
1293}
1294
1295/*
1296 * Get the physical page address for the given pmap/virtual address.
1297 */
1298static vm_paddr_t
1299mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1300{
1301 vm_paddr_t pa;
1302
1303 PMAP_LOCK(pmap);
1304 pa = pte_vatopa(mmu, pmap, va);
1305 PMAP_UNLOCK(pmap);
1306
1307 return (pa);
1308}
1309
1310/*
1311 * Extract the physical page address associated with the given
1312 * kernel virtual address.
1313 */
1314static vm_paddr_t
1315mmu_booke_kextract(mmu_t mmu, vm_offset_t va)
1316{
1317
1318 return (pte_vatopa(mmu, kernel_pmap, va));
1319}
1320
1321/*
1322 * Initialize the pmap module.
1323 * Called by vm_init, to initialize any structures that the pmap
1324 * system needs to map virtual memory.
1325 */
1326static void
1327mmu_booke_init(mmu_t mmu)
1328{
1329 int shpgperproc = PMAP_SHPGPERPROC;
1330
1331 /*
1332 * Initialize the address space (zone) for the pv entries. Set a
1333 * high water mark so that the system can recover from excessive
1334 * numbers of pv entries.
1335 */
1336 pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
1337 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1338
1339 TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1340 pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
1341
1342 TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1343 pv_entry_high_water = 9 * (pv_entry_max / 10);
1344
1346 uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
1345 uma_zone_reserve_kva(pvzone, pv_entry_max);
1347
1348 /* Pre-fill pvzone with initial number of pv entries. */
1349 uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
1350
1351 /* Initialize ptbl allocation. */
1352 ptbl_init();
1353}
1354
1355/*
1356 * Map a list of wired pages into kernel virtual address space. This is
1357 * intended for temporary mappings which do not need page modification or
1358 * references recorded. Existing mappings in the region are overwritten.
1359 */
1360static void
1361mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1362{
1363 vm_offset_t va;
1364
1365 va = sva;
1366 while (count-- > 0) {
1367 mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1368 va += PAGE_SIZE;
1369 m++;
1370 }
1371}
1372
1373/*
1374 * Remove page mappings from kernel virtual address space. Intended for
1375 * temporary mappings entered by mmu_booke_qenter.
1376 */
1377static void
1378mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count)
1379{
1380 vm_offset_t va;
1381
1382 va = sva;
1383 while (count-- > 0) {
1384 mmu_booke_kremove(mmu, va);
1385 va += PAGE_SIZE;
1386 }
1387}
1388
1389/*
1390 * Map a wired page into kernel virtual address space.
1391 */
1392static void
1393mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1394{
1395 unsigned int pdir_idx = PDIR_IDX(va);
1396 unsigned int ptbl_idx = PTBL_IDX(va);
1397 uint32_t flags;
1398 pte_t *pte;
1399
1400 KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1401 (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va"));
1402
1403 flags = PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID;
1404
1405 pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1406
1407 mtx_lock_spin(&tlbivax_mutex);
1408 tlb_miss_lock();
1409
1410 if (PTE_ISVALID(pte)) {
1411
1412 CTR1(KTR_PMAP, "%s: replacing entry!", __func__);
1413
1414 /* Flush entry from TLB0 */
1415 tlb0_flush_entry(va);
1416 }
1417
1418 pte->rpn = pa & ~PTE_PA_MASK;
1419 pte->flags = flags;
1420
1421 //debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
1422 // "pa=0x%08x rpn=0x%08x flags=0x%08x\n",
1423 // pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
1424
1425 /* Flush the real memory from the instruction cache. */
1426 if ((flags & (PTE_I | PTE_G)) == 0) {
1427 __syncicache((void *)va, PAGE_SIZE);
1428 }
1429
1430 tlb_miss_unlock();
1431 mtx_unlock_spin(&tlbivax_mutex);
1432}
1433
1434/*
1435 * Remove a page from kernel page table.
1436 */
1437static void
1438mmu_booke_kremove(mmu_t mmu, vm_offset_t va)
1439{
1440 unsigned int pdir_idx = PDIR_IDX(va);
1441 unsigned int ptbl_idx = PTBL_IDX(va);
1442 pte_t *pte;
1443
1444// CTR2(KTR_PMAP,("%s: s (va = 0x%08x)\n", __func__, va));
1445
1446 KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1447 (va <= VM_MAX_KERNEL_ADDRESS)),
1448 ("mmu_booke_kremove: invalid va"));
1449
1450 pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1451
1452 if (!PTE_ISVALID(pte)) {
1453
1454 CTR1(KTR_PMAP, "%s: invalid pte", __func__);
1455
1456 return;
1457 }
1458
1459 mtx_lock_spin(&tlbivax_mutex);
1460 tlb_miss_lock();
1461
1462 /* Invalidate entry in TLB0, update PTE. */
1463 tlb0_flush_entry(va);
1464 pte->flags = 0;
1465 pte->rpn = 0;
1466
1467 tlb_miss_unlock();
1468 mtx_unlock_spin(&tlbivax_mutex);
1469}
1470
1471/*
1472 * Initialize pmap associated with process 0.
1473 */
1474static void
1475mmu_booke_pinit0(mmu_t mmu, pmap_t pmap)
1476{
1477
1478 mmu_booke_pinit(mmu, pmap);
1479 PCPU_SET(curpmap, pmap);
1480}
1481
1482/*
1483 * Initialize a preallocated and zeroed pmap structure,
1484 * such as one in a vmspace structure.
1485 */
1486static void
1487mmu_booke_pinit(mmu_t mmu, pmap_t pmap)
1488{
1489 int i;
1490
1491 CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap,
1492 curthread->td_proc->p_pid, curthread->td_proc->p_comm);
1493
1494 KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap"));
1495
1496 PMAP_LOCK_INIT(pmap);
1497 for (i = 0; i < MAXCPU; i++)
1498 pmap->pm_tid[i] = TID_NONE;
1499 CPU_ZERO(&kernel_pmap->pm_active);
1500 bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1501 bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES);
1502 TAILQ_INIT(&pmap->pm_ptbl_list);
1503}
1504
1505/*
1506 * Release any resources held by the given physical map.
1507 * Called when a pmap initialized by mmu_booke_pinit is being released.
1508 * Should only be called if the map contains no valid mappings.
1509 */
1510static void
1511mmu_booke_release(mmu_t mmu, pmap_t pmap)
1512{
1513
1514 KASSERT(pmap->pm_stats.resident_count == 0,
1515 ("pmap_release: pmap resident count %ld != 0",
1516 pmap->pm_stats.resident_count));
1517
1518 PMAP_LOCK_DESTROY(pmap);
1519}
1520
1521/*
1522 * Insert the given physical page at the specified virtual address in the
1523 * target physical map with the protection requested. If specified the page
1524 * will be wired down.
1525 */
1526static void
1527mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1528 vm_prot_t prot, boolean_t wired)
1529{
1530
1531 rw_wlock(&pvh_global_lock);
1532 PMAP_LOCK(pmap);
1533 mmu_booke_enter_locked(mmu, pmap, va, m, prot, wired);
1534 rw_wunlock(&pvh_global_lock);
1535 PMAP_UNLOCK(pmap);
1536}
1537
1538static void
1539mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1540 vm_prot_t prot, boolean_t wired)
1541{
1542 pte_t *pte;
1543 vm_paddr_t pa;
1544 uint32_t flags;
1545 int su, sync;
1546
1547 pa = VM_PAGE_TO_PHYS(m);
1548 su = (pmap == kernel_pmap);
1549 sync = 0;
1550
1551 //debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
1552 // "pa=0x%08x prot=0x%08x wired=%d)\n",
1553 // (u_int32_t)pmap, su, pmap->pm_tid,
1554 // (u_int32_t)m, va, pa, prot, wired);
1555
1556 if (su) {
1557 KASSERT(((va >= virtual_avail) &&
1558 (va <= VM_MAX_KERNEL_ADDRESS)),
1559 ("mmu_booke_enter_locked: kernel pmap, non kernel va"));
1560 } else {
1561 KASSERT((va <= VM_MAXUSER_ADDRESS),
1562 ("mmu_booke_enter_locked: user pmap, non user va"));
1563 }
1564 KASSERT((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) != 0 ||
1565 VM_OBJECT_LOCKED(m->object),
1566 ("mmu_booke_enter_locked: page %p is not busy", m));
1567
1568 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1569
1570 /*
1571 * If there is an existing mapping, and the physical address has not
1572 * changed, must be protection or wiring change.
1573 */
1574 if (((pte = pte_find(mmu, pmap, va)) != NULL) &&
1575 (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
1576
1577 /*
1578 * Before actually updating pte->flags we calculate and
1579 * prepare its new value in a helper var.
1580 */
1581 flags = pte->flags;
1582 flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
1583
1584 /* Wiring change, just update stats. */
1585 if (wired) {
1586 if (!PTE_ISWIRED(pte)) {
1587 flags |= PTE_WIRED;
1588 pmap->pm_stats.wired_count++;
1589 }
1590 } else {
1591 if (PTE_ISWIRED(pte)) {
1592 flags &= ~PTE_WIRED;
1593 pmap->pm_stats.wired_count--;
1594 }
1595 }
1596
1597 if (prot & VM_PROT_WRITE) {
1598 /* Add write permissions. */
1599 flags |= PTE_SW;
1600 if (!su)
1601 flags |= PTE_UW;
1602
1603 if ((flags & PTE_MANAGED) != 0)
1604 vm_page_aflag_set(m, PGA_WRITEABLE);
1605 } else {
1606 /* Handle modified pages, sense modify status. */
1607
1608 /*
1609 * The PTE_MODIFIED flag could be set by underlying
1610 * TLB misses since we last read it (above), possibly
1611 * other CPUs could update it so we check in the PTE
1612 * directly rather than rely on that saved local flags
1613 * copy.
1614 */
1615 if (PTE_ISMODIFIED(pte))
1616 vm_page_dirty(m);
1617 }
1618
1619 if (prot & VM_PROT_EXECUTE) {
1620 flags |= PTE_SX;
1621 if (!su)
1622 flags |= PTE_UX;
1623
1624 /*
1625 * Check existing flags for execute permissions: if we
1626 * are turning execute permissions on, icache should
1627 * be flushed.
1628 */
1629 if ((pte->flags & (PTE_UX | PTE_SX)) == 0)
1630 sync++;
1631 }
1632
1633 flags &= ~PTE_REFERENCED;
1634
1635 /*
1636 * The new flags value is all calculated -- only now actually
1637 * update the PTE.
1638 */
1639 mtx_lock_spin(&tlbivax_mutex);
1640 tlb_miss_lock();
1641
1642 tlb0_flush_entry(va);
1643 pte->flags = flags;
1644
1645 tlb_miss_unlock();
1646 mtx_unlock_spin(&tlbivax_mutex);
1647
1648 } else {
1649 /*
1650 * If there is an existing mapping, but it's for a different
1651 * physical address, pte_enter() will delete the old mapping.
1652 */
1653 //if ((pte != NULL) && PTE_ISVALID(pte))
1654 // debugf("mmu_booke_enter_locked: replace\n");
1655 //else
1656 // debugf("mmu_booke_enter_locked: new\n");
1657
1658 /* Now set up the flags and install the new mapping. */
1659 flags = (PTE_SR | PTE_VALID);
1660 flags |= PTE_M;
1661
1662 if (!su)
1663 flags |= PTE_UR;
1664
1665 if (prot & VM_PROT_WRITE) {
1666 flags |= PTE_SW;
1667 if (!su)
1668 flags |= PTE_UW;
1669
1670 if ((m->oflags & VPO_UNMANAGED) == 0)
1671 vm_page_aflag_set(m, PGA_WRITEABLE);
1672 }
1673
1674 if (prot & VM_PROT_EXECUTE) {
1675 flags |= PTE_SX;
1676 if (!su)
1677 flags |= PTE_UX;
1678 }
1679
1680 /* If its wired update stats. */
1681 if (wired) {
1682 pmap->pm_stats.wired_count++;
1683 flags |= PTE_WIRED;
1684 }
1685
1686 pte_enter(mmu, pmap, m, va, flags);
1687
1688 /* Flush the real memory from the instruction cache. */
1689 if (prot & VM_PROT_EXECUTE)
1690 sync++;
1691 }
1692
1693 if (sync && (su || pmap == PCPU_GET(curpmap))) {
1694 __syncicache((void *)va, PAGE_SIZE);
1695 sync = 0;
1696 }
1697}
1698
1699/*
1700 * Maps a sequence of resident pages belonging to the same object.
1701 * The sequence begins with the given page m_start. This page is
1702 * mapped at the given virtual address start. Each subsequent page is
1703 * mapped at a virtual address that is offset from start by the same
1704 * amount as the page is offset from m_start within the object. The
1705 * last page in the sequence is the page with the largest offset from
1706 * m_start that can be mapped at a virtual address less than the given
1707 * virtual address end. Not every virtual page between start and end
1708 * is mapped; only those for which a resident page exists with the
1709 * corresponding offset from m_start are mapped.
1710 */
1711static void
1712mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start,
1713 vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
1714{
1715 vm_page_t m;
1716 vm_pindex_t diff, psize;
1717
1718 psize = atop(end - start);
1719 m = m_start;
1720 rw_wlock(&pvh_global_lock);
1721 PMAP_LOCK(pmap);
1722 while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1723 mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m,
1724 prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1725 m = TAILQ_NEXT(m, listq);
1726 }
1727 rw_wunlock(&pvh_global_lock);
1728 PMAP_UNLOCK(pmap);
1729}
1730
1731static void
1732mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1733 vm_prot_t prot)
1734{
1735
1736 rw_wlock(&pvh_global_lock);
1737 PMAP_LOCK(pmap);
1738 mmu_booke_enter_locked(mmu, pmap, va, m,
1739 prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1740 rw_wunlock(&pvh_global_lock);
1741 PMAP_UNLOCK(pmap);
1742}
1743
1744/*
1745 * Remove the given range of addresses from the specified map.
1746 *
1747 * It is assumed that the start and end are properly rounded to the page size.
1748 */
1749static void
1750mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva)
1751{
1752 pte_t *pte;
1753 uint8_t hold_flag;
1754
1755 int su = (pmap == kernel_pmap);
1756
1757 //debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
1758 // su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
1759
1760 if (su) {
1761 KASSERT(((va >= virtual_avail) &&
1762 (va <= VM_MAX_KERNEL_ADDRESS)),
1763 ("mmu_booke_remove: kernel pmap, non kernel va"));
1764 } else {
1765 KASSERT((va <= VM_MAXUSER_ADDRESS),
1766 ("mmu_booke_remove: user pmap, non user va"));
1767 }
1768
1769 if (PMAP_REMOVE_DONE(pmap)) {
1770 //debugf("mmu_booke_remove: e (empty)\n");
1771 return;
1772 }
1773
1774 hold_flag = PTBL_HOLD_FLAG(pmap);
1775 //debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
1776
1777 rw_wlock(&pvh_global_lock);
1778 PMAP_LOCK(pmap);
1779 for (; va < endva; va += PAGE_SIZE) {
1780 pte = pte_find(mmu, pmap, va);
1781 if ((pte != NULL) && PTE_ISVALID(pte))
1782 pte_remove(mmu, pmap, va, hold_flag);
1783 }
1784 PMAP_UNLOCK(pmap);
1785 rw_wunlock(&pvh_global_lock);
1786
1787 //debugf("mmu_booke_remove: e\n");
1788}
1789
1790/*
1791 * Remove physical page from all pmaps in which it resides.
1792 */
1793static void
1794mmu_booke_remove_all(mmu_t mmu, vm_page_t m)
1795{
1796 pv_entry_t pv, pvn;
1797 uint8_t hold_flag;
1798
1799 rw_wlock(&pvh_global_lock);
1800 for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) {
1801 pvn = TAILQ_NEXT(pv, pv_link);
1802
1803 PMAP_LOCK(pv->pv_pmap);
1804 hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
1805 pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag);
1806 PMAP_UNLOCK(pv->pv_pmap);
1807 }
1808 vm_page_aflag_clear(m, PGA_WRITEABLE);
1809 rw_wunlock(&pvh_global_lock);
1810}
1811
1812/*
1813 * Map a range of physical addresses into kernel virtual address space.
1814 */
1815static vm_offset_t
1816mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1817 vm_paddr_t pa_end, int prot)
1818{
1819 vm_offset_t sva = *virt;
1820 vm_offset_t va = sva;
1821
1822 //debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n",
1823 // sva, pa_start, pa_end);
1824
1825 while (pa_start < pa_end) {
1826 mmu_booke_kenter(mmu, va, pa_start);
1827 va += PAGE_SIZE;
1828 pa_start += PAGE_SIZE;
1829 }
1830 *virt = va;
1831
1832 //debugf("mmu_booke_map: e (va = 0x%08x)\n", va);
1833 return (sva);
1834}
1835
1836/*
1837 * The pmap must be activated before it's address space can be accessed in any
1838 * way.
1839 */
1840static void
1841mmu_booke_activate(mmu_t mmu, struct thread *td)
1842{
1843 pmap_t pmap;
1844 u_int cpuid;
1845
1846 pmap = &td->td_proc->p_vmspace->vm_pmap;
1847
1848 CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%08x)",
1849 __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1850
1851 KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
1852
1853 mtx_lock_spin(&sched_lock);
1854
1855 cpuid = PCPU_GET(cpuid);
1856 CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
1857 PCPU_SET(curpmap, pmap);
1858
1859 if (pmap->pm_tid[cpuid] == TID_NONE)
1860 tid_alloc(pmap);
1861
1862 /* Load PID0 register with pmap tid value. */
1863 mtspr(SPR_PID0, pmap->pm_tid[cpuid]);
1864 __asm __volatile("isync");
1865
1866 mtx_unlock_spin(&sched_lock);
1867
1868 CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__,
1869 pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm);
1870}
1871
1872/*
1873 * Deactivate the specified process's address space.
1874 */
1875static void
1876mmu_booke_deactivate(mmu_t mmu, struct thread *td)
1877{
1878 pmap_t pmap;
1879
1880 pmap = &td->td_proc->p_vmspace->vm_pmap;
1881
1882 CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%08x",
1883 __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1884
1885 CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmap->pm_active);
1886 PCPU_SET(curpmap, NULL);
1887}
1888
1889/*
1890 * Copy the range specified by src_addr/len
1891 * from the source map to the range dst_addr/len
1892 * in the destination map.
1893 *
1894 * This routine is only advisory and need not do anything.
1895 */
1896static void
1897mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap,
1898 vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr)
1899{
1900
1901}
1902
1903/*
1904 * Set the physical protection on the specified range of this map as requested.
1905 */
1906static void
1907mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1908 vm_prot_t prot)
1909{
1910 vm_offset_t va;
1911 vm_page_t m;
1912 pte_t *pte;
1913
1914 if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1915 mmu_booke_remove(mmu, pmap, sva, eva);
1916 return;
1917 }
1918
1919 if (prot & VM_PROT_WRITE)
1920 return;
1921
1922 PMAP_LOCK(pmap);
1923 for (va = sva; va < eva; va += PAGE_SIZE) {
1924 if ((pte = pte_find(mmu, pmap, va)) != NULL) {
1925 if (PTE_ISVALID(pte)) {
1926 m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1927
1928 mtx_lock_spin(&tlbivax_mutex);
1929 tlb_miss_lock();
1930
1931 /* Handle modified pages. */
1932 if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte))
1933 vm_page_dirty(m);
1934
1935 tlb0_flush_entry(va);
1936 pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
1937
1938 tlb_miss_unlock();
1939 mtx_unlock_spin(&tlbivax_mutex);
1940 }
1941 }
1942 }
1943 PMAP_UNLOCK(pmap);
1944}
1945
1946/*
1947 * Clear the write and modified bits in each of the given page's mappings.
1948 */
1949static void
1950mmu_booke_remove_write(mmu_t mmu, vm_page_t m)
1951{
1952 pv_entry_t pv;
1953 pte_t *pte;
1954
1955 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1956 ("mmu_booke_remove_write: page %p is not managed", m));
1957
1958 /*
1959 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be set by
1960 * another thread while the object is locked. Thus, if PGA_WRITEABLE
1961 * is clear, no page table entries need updating.
1962 */
1963 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1964 if ((m->oflags & VPO_BUSY) == 0 &&
1965 (m->aflags & PGA_WRITEABLE) == 0)
1966 return;
1967 rw_wlock(&pvh_global_lock);
1968 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1969 PMAP_LOCK(pv->pv_pmap);
1970 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
1971 if (PTE_ISVALID(pte)) {
1972 m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1973
1974 mtx_lock_spin(&tlbivax_mutex);
1975 tlb_miss_lock();
1976
1977 /* Handle modified pages. */
1978 if (PTE_ISMODIFIED(pte))
1979 vm_page_dirty(m);
1980
1981 /* Flush mapping from TLB0. */
1982 pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
1983
1984 tlb_miss_unlock();
1985 mtx_unlock_spin(&tlbivax_mutex);
1986 }
1987 }
1988 PMAP_UNLOCK(pv->pv_pmap);
1989 }
1990 vm_page_aflag_clear(m, PGA_WRITEABLE);
1991 rw_wunlock(&pvh_global_lock);
1992}
1993
1994static void
1995mmu_booke_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
1996{
1997 pte_t *pte;
1998 pmap_t pmap;
1999 vm_page_t m;
2000 vm_offset_t addr;
2001 vm_paddr_t pa;
2002 int active, valid;
2003
2004 va = trunc_page(va);
2005 sz = round_page(sz);
2006
2007 rw_wlock(&pvh_global_lock);
2008 pmap = PCPU_GET(curpmap);
2009 active = (pm == kernel_pmap || pm == pmap) ? 1 : 0;
2010 while (sz > 0) {
2011 PMAP_LOCK(pm);
2012 pte = pte_find(mmu, pm, va);
2013 valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0;
2014 if (valid)
2015 pa = PTE_PA(pte);
2016 PMAP_UNLOCK(pm);
2017 if (valid) {
2018 if (!active) {
2019 /* Create a mapping in the active pmap. */
2020 addr = 0;
2021 m = PHYS_TO_VM_PAGE(pa);
2022 PMAP_LOCK(pmap);
2023 pte_enter(mmu, pmap, m, addr,
2024 PTE_SR | PTE_VALID | PTE_UR);
2025 __syncicache((void *)addr, PAGE_SIZE);
2026 pte_remove(mmu, pmap, addr, PTBL_UNHOLD);
2027 PMAP_UNLOCK(pmap);
2028 } else
2029 __syncicache((void *)va, PAGE_SIZE);
2030 }
2031 va += PAGE_SIZE;
2032 sz -= PAGE_SIZE;
2033 }
2034 rw_wunlock(&pvh_global_lock);
2035}
2036
2037/*
2038 * Atomically extract and hold the physical page with the given
2039 * pmap and virtual address pair if that mapping permits the given
2040 * protection.
2041 */
2042static vm_page_t
2043mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va,
2044 vm_prot_t prot)
2045{
2046 pte_t *pte;
2047 vm_page_t m;
2048 uint32_t pte_wbit;
2049 vm_paddr_t pa;
2050
2051 m = NULL;
2052 pa = 0;
2053 PMAP_LOCK(pmap);
2054retry:
2055 pte = pte_find(mmu, pmap, va);
2056 if ((pte != NULL) && PTE_ISVALID(pte)) {
2057 if (pmap == kernel_pmap)
2058 pte_wbit = PTE_SW;
2059 else
2060 pte_wbit = PTE_UW;
2061
2062 if ((pte->flags & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) {
2063 if (vm_page_pa_tryrelock(pmap, PTE_PA(pte), &pa))
2064 goto retry;
2065 m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2066 vm_page_hold(m);
2067 }
2068 }
2069
2070 PA_UNLOCK_COND(pa);
2071 PMAP_UNLOCK(pmap);
2072 return (m);
2073}
2074
2075/*
2076 * Initialize a vm_page's machine-dependent fields.
2077 */
2078static void
2079mmu_booke_page_init(mmu_t mmu, vm_page_t m)
2080{
2081
2082 TAILQ_INIT(&m->md.pv_list);
2083}
2084
2085/*
2086 * mmu_booke_zero_page_area zeros the specified hardware page by
2087 * mapping it into virtual memory and using bzero to clear
2088 * its contents.
2089 *
2090 * off and size must reside within a single page.
2091 */
2092static void
2093mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
2094{
2095 vm_offset_t va;
2096
2097 /* XXX KASSERT off and size are within a single page? */
2098
2099 mtx_lock(&zero_page_mutex);
2100 va = zero_page_va;
2101
2102 mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2103 bzero((caddr_t)va + off, size);
2104 mmu_booke_kremove(mmu, va);
2105
2106 mtx_unlock(&zero_page_mutex);
2107}
2108
2109/*
2110 * mmu_booke_zero_page zeros the specified hardware page.
2111 */
2112static void
2113mmu_booke_zero_page(mmu_t mmu, vm_page_t m)
2114{
2115
2116 mmu_booke_zero_page_area(mmu, m, 0, PAGE_SIZE);
2117}
2118
2119/*
2120 * mmu_booke_copy_page copies the specified (machine independent) page by
2121 * mapping the page into virtual memory and using memcopy to copy the page,
2122 * one machine dependent page at a time.
2123 */
2124static void
2125mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm)
2126{
2127 vm_offset_t sva, dva;
2128
2129 sva = copy_page_src_va;
2130 dva = copy_page_dst_va;
2131
2132 mtx_lock(&copy_page_mutex);
2133 mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm));
2134 mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm));
2135 memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE);
2136 mmu_booke_kremove(mmu, dva);
2137 mmu_booke_kremove(mmu, sva);
2138 mtx_unlock(&copy_page_mutex);
2139}
2140
2141/*
2142 * mmu_booke_zero_page_idle zeros the specified hardware page by mapping it
2143 * into virtual memory and using bzero to clear its contents. This is intended
2144 * to be called from the vm_pagezero process only and outside of Giant. No
2145 * lock is required.
2146 */
2147static void
2148mmu_booke_zero_page_idle(mmu_t mmu, vm_page_t m)
2149{
2150 vm_offset_t va;
2151
2152 va = zero_page_idle_va;
2153 mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2154 bzero((caddr_t)va, PAGE_SIZE);
2155 mmu_booke_kremove(mmu, va);
2156}
2157
2158/*
2159 * Return whether or not the specified physical page was modified
2160 * in any of physical maps.
2161 */
2162static boolean_t
2163mmu_booke_is_modified(mmu_t mmu, vm_page_t m)
2164{
2165 pte_t *pte;
2166 pv_entry_t pv;
2167 boolean_t rv;
2168
2169 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2170 ("mmu_booke_is_modified: page %p is not managed", m));
2171 rv = FALSE;
2172
2173 /*
2174 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be
2175 * concurrently set while the object is locked. Thus, if PGA_WRITEABLE
2176 * is clear, no PTEs can be modified.
2177 */
2178 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2179 if ((m->oflags & VPO_BUSY) == 0 &&
2180 (m->aflags & PGA_WRITEABLE) == 0)
2181 return (rv);
2182 rw_wlock(&pvh_global_lock);
2183 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2184 PMAP_LOCK(pv->pv_pmap);
2185 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2186 PTE_ISVALID(pte)) {
2187 if (PTE_ISMODIFIED(pte))
2188 rv = TRUE;
2189 }
2190 PMAP_UNLOCK(pv->pv_pmap);
2191 if (rv)
2192 break;
2193 }
2194 rw_wunlock(&pvh_global_lock);
2195 return (rv);
2196}
2197
2198/*
2199 * Return whether or not the specified virtual address is eligible
2200 * for prefault.
2201 */
2202static boolean_t
2203mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
2204{
2205
2206 return (FALSE);
2207}
2208
2209/*
2210 * Return whether or not the specified physical page was referenced
2211 * in any physical maps.
2212 */
2213static boolean_t
2214mmu_booke_is_referenced(mmu_t mmu, vm_page_t m)
2215{
2216 pte_t *pte;
2217 pv_entry_t pv;
2218 boolean_t rv;
2219
2220 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2221 ("mmu_booke_is_referenced: page %p is not managed", m));
2222 rv = FALSE;
2223 rw_wlock(&pvh_global_lock);
2224 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2225 PMAP_LOCK(pv->pv_pmap);
2226 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2227 PTE_ISVALID(pte)) {
2228 if (PTE_ISREFERENCED(pte))
2229 rv = TRUE;
2230 }
2231 PMAP_UNLOCK(pv->pv_pmap);
2232 if (rv)
2233 break;
2234 }
2235 rw_wunlock(&pvh_global_lock);
2236 return (rv);
2237}
2238
2239/*
2240 * Clear the modify bits on the specified physical page.
2241 */
2242static void
2243mmu_booke_clear_modify(mmu_t mmu, vm_page_t m)
2244{
2245 pte_t *pte;
2246 pv_entry_t pv;
2247
2248 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2249 ("mmu_booke_clear_modify: page %p is not managed", m));
2250 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2251 KASSERT((m->oflags & VPO_BUSY) == 0,
2252 ("mmu_booke_clear_modify: page %p is busy", m));
2253
2254 /*
2255 * If the page is not PG_AWRITEABLE, then no PTEs can be modified.
2256 * If the object containing the page is locked and the page is not
2257 * VPO_BUSY, then PG_AWRITEABLE cannot be concurrently set.
2258 */
2259 if ((m->aflags & PGA_WRITEABLE) == 0)
2260 return;
2261 rw_wlock(&pvh_global_lock);
2262 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2263 PMAP_LOCK(pv->pv_pmap);
2264 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2265 PTE_ISVALID(pte)) {
2266 mtx_lock_spin(&tlbivax_mutex);
2267 tlb_miss_lock();
2268
2269 if (pte->flags & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
2270 tlb0_flush_entry(pv->pv_va);
2271 pte->flags &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
2272 PTE_REFERENCED);
2273 }
2274
2275 tlb_miss_unlock();
2276 mtx_unlock_spin(&tlbivax_mutex);
2277 }
2278 PMAP_UNLOCK(pv->pv_pmap);
2279 }
2280 rw_wunlock(&pvh_global_lock);
2281}
2282
2283/*
2284 * Return a count of reference bits for a page, clearing those bits.
2285 * It is not necessary for every reference bit to be cleared, but it
2286 * is necessary that 0 only be returned when there are truly no
2287 * reference bits set.
2288 *
2289 * XXX: The exact number of bits to check and clear is a matter that
2290 * should be tested and standardized at some point in the future for
2291 * optimal aging of shared pages.
2292 */
2293static int
2294mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m)
2295{
2296 pte_t *pte;
2297 pv_entry_t pv;
2298 int count;
2299
2300 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2301 ("mmu_booke_ts_referenced: page %p is not managed", m));
2302 count = 0;
2303 rw_wlock(&pvh_global_lock);
2304 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2305 PMAP_LOCK(pv->pv_pmap);
2306 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2307 PTE_ISVALID(pte)) {
2308 if (PTE_ISREFERENCED(pte)) {
2309 mtx_lock_spin(&tlbivax_mutex);
2310 tlb_miss_lock();
2311
2312 tlb0_flush_entry(pv->pv_va);
2313 pte->flags &= ~PTE_REFERENCED;
2314
2315 tlb_miss_unlock();
2316 mtx_unlock_spin(&tlbivax_mutex);
2317
2318 if (++count > 4) {
2319 PMAP_UNLOCK(pv->pv_pmap);
2320 break;
2321 }
2322 }
2323 }
2324 PMAP_UNLOCK(pv->pv_pmap);
2325 }
2326 rw_wunlock(&pvh_global_lock);
2327 return (count);
2328}
2329
2330/*
2331 * Clear the reference bit on the specified physical page.
2332 */
2333static void
2334mmu_booke_clear_reference(mmu_t mmu, vm_page_t m)
2335{
2336 pte_t *pte;
2337 pv_entry_t pv;
2338
2339 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2340 ("mmu_booke_clear_reference: page %p is not managed", m));
2341 rw_wlock(&pvh_global_lock);
2342 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2343 PMAP_LOCK(pv->pv_pmap);
2344 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2345 PTE_ISVALID(pte)) {
2346 if (PTE_ISREFERENCED(pte)) {
2347 mtx_lock_spin(&tlbivax_mutex);
2348 tlb_miss_lock();
2349
2350 tlb0_flush_entry(pv->pv_va);
2351 pte->flags &= ~PTE_REFERENCED;
2352
2353 tlb_miss_unlock();
2354 mtx_unlock_spin(&tlbivax_mutex);
2355 }
2356 }
2357 PMAP_UNLOCK(pv->pv_pmap);
2358 }
2359 rw_wunlock(&pvh_global_lock);
2360}
2361
2362/*
2363 * Change wiring attribute for a map/virtual-address pair.
2364 */
2365static void
2366mmu_booke_change_wiring(mmu_t mmu, pmap_t pmap, vm_offset_t va, boolean_t wired)
2367{
2368 pte_t *pte;
2369
2370 PMAP_LOCK(pmap);
2371 if ((pte = pte_find(mmu, pmap, va)) != NULL) {
2372 if (wired) {
2373 if (!PTE_ISWIRED(pte)) {
2374 pte->flags |= PTE_WIRED;
2375 pmap->pm_stats.wired_count++;
2376 }
2377 } else {
2378 if (PTE_ISWIRED(pte)) {
2379 pte->flags &= ~PTE_WIRED;
2380 pmap->pm_stats.wired_count--;
2381 }
2382 }
2383 }
2384 PMAP_UNLOCK(pmap);
2385}
2386
2387/*
2388 * Return true if the pmap's pv is one of the first 16 pvs linked to from this
2389 * page. This count may be changed upwards or downwards in the future; it is
2390 * only necessary that true be returned for a small subset of pmaps for proper
2391 * page aging.
2392 */
2393static boolean_t
2394mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
2395{
2396 pv_entry_t pv;
2397 int loops;
2398 boolean_t rv;
2399
2400 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2401 ("mmu_booke_page_exists_quick: page %p is not managed", m));
2402 loops = 0;
2403 rv = FALSE;
2404 rw_wlock(&pvh_global_lock);
2405 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2406 if (pv->pv_pmap == pmap) {
2407 rv = TRUE;
2408 break;
2409 }
2410 if (++loops >= 16)
2411 break;
2412 }
2413 rw_wunlock(&pvh_global_lock);
2414 return (rv);
2415}
2416
2417/*
2418 * Return the number of managed mappings to the given physical page that are
2419 * wired.
2420 */
2421static int
2422mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m)
2423{
2424 pv_entry_t pv;
2425 pte_t *pte;
2426 int count = 0;
2427
2428 if ((m->oflags & VPO_UNMANAGED) != 0)
2429 return (count);
2430 rw_wlock(&pvh_global_lock);
2431 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2432 PMAP_LOCK(pv->pv_pmap);
2433 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL)
2434 if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
2435 count++;
2436 PMAP_UNLOCK(pv->pv_pmap);
2437 }
2438 rw_wunlock(&pvh_global_lock);
2439 return (count);
2440}
2441
2442static int
2443mmu_booke_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2444{
2445 int i;
2446 vm_offset_t va;
2447
2448 /*
2449 * This currently does not work for entries that
2450 * overlap TLB1 entries.
2451 */
2452 for (i = 0; i < tlb1_idx; i ++) {
2453 if (tlb1_iomapped(i, pa, size, &va) == 0)
2454 return (0);
2455 }
2456
2457 return (EFAULT);
2458}
2459
2460vm_offset_t
2461mmu_booke_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2462 vm_size_t *sz)
2463{
2464 vm_paddr_t pa, ppa;
2465 vm_offset_t va;
2466 vm_size_t gran;
2467
2468 /* Raw physical memory dumps don't have a virtual address. */
2469 if (md->md_vaddr == ~0UL) {
2470 /* We always map a 256MB page at 256M. */
2471 gran = 256 * 1024 * 1024;
2472 pa = md->md_paddr + ofs;
2473 ppa = pa & ~(gran - 1);
2474 ofs = pa - ppa;
2475 va = gran;
2476 tlb1_set_entry(va, ppa, gran, _TLB_ENTRY_IO);
2477 if (*sz > (gran - ofs))
2478 *sz = gran - ofs;
2479 return (va + ofs);
2480 }
2481
2482 /* Minidumps are based on virtual memory addresses. */
2483 va = md->md_vaddr + ofs;
2484 if (va >= kernstart + kernsize) {
2485 gran = PAGE_SIZE - (va & PAGE_MASK);
2486 if (*sz > gran)
2487 *sz = gran;
2488 }
2489 return (va);
2490}
2491
2492void
2493mmu_booke_dumpsys_unmap(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2494 vm_offset_t va)
2495{
2496
2497 /* Raw physical memory dumps don't have a virtual address. */
2498 if (md->md_vaddr == ~0UL) {
2499 tlb1_idx--;
2500 tlb1[tlb1_idx].mas1 = 0;
2501 tlb1[tlb1_idx].mas2 = 0;
2502 tlb1[tlb1_idx].mas3 = 0;
2503 tlb1_write_entry(tlb1_idx);
2504 return;
2505 }
2506
2507 /* Minidumps are based on virtual memory addresses. */
2508 /* Nothing to do... */
2509}
2510
2511struct pmap_md *
2512mmu_booke_scan_md(mmu_t mmu, struct pmap_md *prev)
2513{
2514 static struct pmap_md md;
2515 pte_t *pte;
2516 vm_offset_t va;
2517
2518 if (dumpsys_minidump) {
2519 md.md_paddr = ~0UL; /* Minidumps use virtual addresses. */
2520 if (prev == NULL) {
2521 /* 1st: kernel .data and .bss. */
2522 md.md_index = 1;
2523 md.md_vaddr = trunc_page((uintptr_t)_etext);
2524 md.md_size = round_page((uintptr_t)_end) - md.md_vaddr;
2525 return (&md);
2526 }
2527 switch (prev->md_index) {
2528 case 1:
2529 /* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2530 md.md_index = 2;
2531 md.md_vaddr = data_start;
2532 md.md_size = data_end - data_start;
2533 break;
2534 case 2:
2535 /* 3rd: kernel VM. */
2536 va = prev->md_vaddr + prev->md_size;
2537 /* Find start of next chunk (from va). */
2538 while (va < virtual_end) {
2539 /* Don't dump the buffer cache. */
2540 if (va >= kmi.buffer_sva &&
2541 va < kmi.buffer_eva) {
2542 va = kmi.buffer_eva;
2543 continue;
2544 }
2545 pte = pte_find(mmu, kernel_pmap, va);
2546 if (pte != NULL && PTE_ISVALID(pte))
2547 break;
2548 va += PAGE_SIZE;
2549 }
2550 if (va < virtual_end) {
2551 md.md_vaddr = va;
2552 va += PAGE_SIZE;
2553 /* Find last page in chunk. */
2554 while (va < virtual_end) {
2555 /* Don't run into the buffer cache. */
2556 if (va == kmi.buffer_sva)
2557 break;
2558 pte = pte_find(mmu, kernel_pmap, va);
2559 if (pte == NULL || !PTE_ISVALID(pte))
2560 break;
2561 va += PAGE_SIZE;
2562 }
2563 md.md_size = va - md.md_vaddr;
2564 break;
2565 }
2566 md.md_index = 3;
2567 /* FALLTHROUGH */
2568 default:
2569 return (NULL);
2570 }
2571 } else { /* minidumps */
2572 mem_regions(&physmem_regions, &physmem_regions_sz,
2573 &availmem_regions, &availmem_regions_sz);
2574
2575 if (prev == NULL) {
2576 /* first physical chunk. */
2577 md.md_paddr = physmem_regions[0].mr_start;
2578 md.md_size = physmem_regions[0].mr_size;
2579 md.md_vaddr = ~0UL;
2580 md.md_index = 1;
2581 } else if (md.md_index < physmem_regions_sz) {
2582 md.md_paddr = physmem_regions[md.md_index].mr_start;
2583 md.md_size = physmem_regions[md.md_index].mr_size;
2584 md.md_vaddr = ~0UL;
2585 md.md_index++;
2586 } else {
2587 /* There's no next physical chunk. */
2588 return (NULL);
2589 }
2590 }
2591
2592 return (&md);
2593}
2594
2595/*
2596 * Map a set of physical memory pages into the kernel virtual address space.
2597 * Return a pointer to where it is mapped. This routine is intended to be used
2598 * for mapping device memory, NOT real memory.
2599 */
2600static void *
2601mmu_booke_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2602{
2603 void *res;
2604 uintptr_t va;
2605 vm_size_t sz;
2606
2607 /*
2608 * CCSR is premapped. Note that (pa + size - 1) is there to make sure
2609 * we don't wrap around. Devices on the local bus typically extend all
2610 * the way up to and including 0xffffffff. In that case (pa + size)
2611 * would be 0. This creates a false positive (i.e. we think it's
2612 * within the CCSR) and not create a mapping.
2613 */
2614 if (pa >= ccsrbar_pa && (pa + size - 1) < (ccsrbar_pa + CCSRBAR_SIZE)) {
2615 va = CCSRBAR_VA + (pa - ccsrbar_pa);
2616 return ((void *)va);
2617 }
2618
2619 va = (pa >= 0x80000000) ? pa : (0xe2000000 + pa);
2620 res = (void *)va;
2621
2622 do {
2623 sz = 1 << (ilog2(size) & ~1);
2624 if (bootverbose)
2625 printf("Wiring VA=%x to PA=%x (size=%x), "
2626 "using TLB1[%d]\n", va, pa, sz, tlb1_idx);
2627 tlb1_set_entry(va, pa, sz, _TLB_ENTRY_IO);
2628 size -= sz;
2629 pa += sz;
2630 va += sz;
2631 } while (size > 0);
2632
2633 return (res);
2634}
2635
2636/*
2637 * 'Unmap' a range mapped by mmu_booke_mapdev().
2638 */
2639static void
2640mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2641{
2642 vm_offset_t base, offset;
2643
2644 /*
2645 * Unmap only if this is inside kernel virtual space.
2646 */
2647 if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2648 base = trunc_page(va);
2649 offset = va & PAGE_MASK;
2650 size = roundup(offset + size, PAGE_SIZE);
2651 kmem_free(kernel_map, base, size);
2652 }
2653}
2654
2655/*
2656 * mmu_booke_object_init_pt preloads the ptes for a given object into the
2657 * specified pmap. This eliminates the blast of soft faults on process startup
2658 * and immediately after an mmap.
2659 */
2660static void
2661mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2662 vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2663{
2664
2665 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2666 KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2667 ("mmu_booke_object_init_pt: non-device object"));
2668}
2669
2670/*
2671 * Perform the pmap work for mincore.
2672 */
2673static int
2674mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2675 vm_paddr_t *locked_pa)
2676{
2677
2678 TODO;
2679 return (0);
2680}
2681
2682/**************************************************************************/
2683/* TID handling */
2684/**************************************************************************/
2685
2686/*
2687 * Allocate a TID. If necessary, steal one from someone else.
2688 * The new TID is flushed from the TLB before returning.
2689 */
2690static tlbtid_t
2691tid_alloc(pmap_t pmap)
2692{
2693 tlbtid_t tid;
2694 int thiscpu;
2695
2696 KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
2697
2698 CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap);
2699
2700 thiscpu = PCPU_GET(cpuid);
2701
2702 tid = PCPU_GET(tid_next);
2703 if (tid > TID_MAX)
2704 tid = TID_MIN;
2705 PCPU_SET(tid_next, tid + 1);
2706
2707 /* If we are stealing TID then clear the relevant pmap's field */
2708 if (tidbusy[thiscpu][tid] != NULL) {
2709
2710 CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid);
2711
2712 tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE;
2713
2714 /* Flush all entries from TLB0 matching this TID. */
2715 tid_flush(tid);
2716 }
2717
2718 tidbusy[thiscpu][tid] = pmap;
2719 pmap->pm_tid[thiscpu] = tid;
2720 __asm __volatile("msync; isync");
2721
2722 CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid,
2723 PCPU_GET(tid_next));
2724
2725 return (tid);
2726}
2727
2728/**************************************************************************/
2729/* TLB0 handling */
2730/**************************************************************************/
2731
2732static void
2733tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3,
2734 uint32_t mas7)
2735{
2736 int as;
2737 char desc[3];
2738 tlbtid_t tid;
2739 vm_size_t size;
2740 unsigned int tsize;
2741
2742 desc[2] = '\0';
2743 if (mas1 & MAS1_VALID)
2744 desc[0] = 'V';
2745 else
2746 desc[0] = ' ';
2747
2748 if (mas1 & MAS1_IPROT)
2749 desc[1] = 'P';
2750 else
2751 desc[1] = ' ';
2752
2753 as = (mas1 & MAS1_TS_MASK) ? 1 : 0;
2754 tid = MAS1_GETTID(mas1);
2755
2756 tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
2757 size = 0;
2758 if (tsize)
2759 size = tsize2size(tsize);
2760
2761 debugf("%3d: (%s) [AS=%d] "
2762 "sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x "
2763 "mas2(va) = 0x%08x mas3(pa) = 0x%08x mas7 = 0x%08x\n",
2764 i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7);
2765}
2766
2767/* Convert TLB0 va and way number to tlb0[] table index. */
2768static inline unsigned int
2769tlb0_tableidx(vm_offset_t va, unsigned int way)
2770{
2771 unsigned int idx;
2772
2773 idx = (way * TLB0_ENTRIES_PER_WAY);
2774 idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
2775 return (idx);
2776}
2777
2778/*
2779 * Invalidate TLB0 entry.
2780 */
2781static inline void
2782tlb0_flush_entry(vm_offset_t va)
2783{
2784
2785 CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va);
2786
2787 mtx_assert(&tlbivax_mutex, MA_OWNED);
2788
2789 __asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK));
2790 __asm __volatile("isync; msync");
2791 __asm __volatile("tlbsync; msync");
2792
2793 CTR1(KTR_PMAP, "%s: e", __func__);
2794}
2795
2796/* Print out contents of the MAS registers for each TLB0 entry */
2797void
2798tlb0_print_tlbentries(void)
2799{
2800 uint32_t mas0, mas1, mas2, mas3, mas7;
2801 int entryidx, way, idx;
2802
2803 debugf("TLB0 entries:\n");
2804 for (way = 0; way < TLB0_WAYS; way ++)
2805 for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
2806
2807 mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
2808 mtspr(SPR_MAS0, mas0);
2809 __asm __volatile("isync");
2810
2811 mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
2812 mtspr(SPR_MAS2, mas2);
2813
2814 __asm __volatile("isync; tlbre");
2815
2816 mas1 = mfspr(SPR_MAS1);
2817 mas2 = mfspr(SPR_MAS2);
2818 mas3 = mfspr(SPR_MAS3);
2819 mas7 = mfspr(SPR_MAS7);
2820
2821 idx = tlb0_tableidx(mas2, way);
2822 tlb_print_entry(idx, mas1, mas2, mas3, mas7);
2823 }
2824}
2825
2826/**************************************************************************/
2827/* TLB1 handling */
2828/**************************************************************************/
2829
2830/*
2831 * TLB1 mapping notes:
2832 *
2833 * TLB1[0] CCSRBAR
2834 * TLB1[1] Kernel text and data.
2835 * TLB1[2-15] Additional kernel text and data mappings (if required), PCI
2836 * windows, other devices mappings.
2837 */
2838
2839/*
2840 * Write given entry to TLB1 hardware.
2841 * Use 32 bit pa, clear 4 high-order bits of RPN (mas7).
2842 */
2843static void
2844tlb1_write_entry(unsigned int idx)
2845{
2846 uint32_t mas0, mas7;
2847
2848 //debugf("tlb1_write_entry: s\n");
2849
2850 /* Clear high order RPN bits */
2851 mas7 = 0;
2852
2853 /* Select entry */
2854 mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx);
2855 //debugf("tlb1_write_entry: mas0 = 0x%08x\n", mas0);
2856
2857 mtspr(SPR_MAS0, mas0);
2858 __asm __volatile("isync");
2859 mtspr(SPR_MAS1, tlb1[idx].mas1);
2860 __asm __volatile("isync");
2861 mtspr(SPR_MAS2, tlb1[idx].mas2);
2862 __asm __volatile("isync");
2863 mtspr(SPR_MAS3, tlb1[idx].mas3);
2864 __asm __volatile("isync");
2865 mtspr(SPR_MAS7, mas7);
2866 __asm __volatile("isync; tlbwe; isync; msync");
2867
2868 //debugf("tlb1_write_entry: e\n");
2869}
2870
2871/*
2872 * Return the largest uint value log such that 2^log <= num.
2873 */
2874static unsigned int
2875ilog2(unsigned int num)
2876{
2877 int lz;
2878
2879 __asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num));
2880 return (31 - lz);
2881}
2882
2883/*
2884 * Convert TLB TSIZE value to mapped region size.
2885 */
2886static vm_size_t
2887tsize2size(unsigned int tsize)
2888{
2889
2890 /*
2891 * size = 4^tsize KB
2892 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
2893 */
2894
2895 return ((1 << (2 * tsize)) * 1024);
2896}
2897
2898/*
2899 * Convert region size (must be power of 4) to TLB TSIZE value.
2900 */
2901static unsigned int
2902size2tsize(vm_size_t size)
2903{
2904
2905 return (ilog2(size) / 2 - 5);
2906}
2907
2908/*
2909 * Register permanent kernel mapping in TLB1.
2910 *
2911 * Entries are created starting from index 0 (current free entry is
2912 * kept in tlb1_idx) and are not supposed to be invalidated.
2913 */
2914static int
2915tlb1_set_entry(vm_offset_t va, vm_offset_t pa, vm_size_t size,
2916 uint32_t flags)
2917{
2918 uint32_t ts, tid;
2919 int tsize;
2920
2921 if (tlb1_idx >= TLB1_ENTRIES) {
2922 printf("tlb1_set_entry: TLB1 full!\n");
2923 return (-1);
2924 }
2925
2926 /* Convert size to TSIZE */
2927 tsize = size2tsize(size);
2928
2929 tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK;
2930 /* XXX TS is hard coded to 0 for now as we only use single address space */
2931 ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK;
2932
2933 /* XXX LOCK tlb1[] */
2934
2935 tlb1[tlb1_idx].mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
2936 tlb1[tlb1_idx].mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
2937 tlb1[tlb1_idx].mas2 = (va & MAS2_EPN_MASK) | flags;
2938
2939 /* Set supervisor RWX permission bits */
2940 tlb1[tlb1_idx].mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
2941
2942 tlb1_write_entry(tlb1_idx++);
2943
2944 /* XXX UNLOCK tlb1[] */
2945
2946 /*
2947 * XXX in general TLB1 updates should be propagated between CPUs,
2948 * since current design assumes to have the same TLB1 set-up on all
2949 * cores.
2950 */
2951 return (0);
2952}
2953
2954/*
2955 * Map in contiguous RAM region into the TLB1 using maximum of
2956 * KERNEL_REGION_MAX_TLB_ENTRIES entries.
2957 *
2958 * If necessary round up last entry size and return total size
2959 * used by all allocated entries.
2960 */
2961vm_size_t
2962tlb1_mapin_region(vm_offset_t va, vm_paddr_t pa, vm_size_t size)
2963{
2964 vm_size_t pgs[KERNEL_REGION_MAX_TLB_ENTRIES];
2965 vm_size_t mapped, pgsz, base, mask;
2966 int idx, nents;
2967
2968 /* Round up to the next 1M */
2969 size = (size + (1 << 20) - 1) & ~((1 << 20) - 1);
2970
2971 mapped = 0;
2972 idx = 0;
2973 base = va;
2974 pgsz = 64*1024*1024;
2975 while (mapped < size) {
2976 while (mapped < size && idx < KERNEL_REGION_MAX_TLB_ENTRIES) {
2977 while (pgsz > (size - mapped))
2978 pgsz >>= 2;
2979 pgs[idx++] = pgsz;
2980 mapped += pgsz;
2981 }
2982
2983 /* We under-map. Correct for this. */
2984 if (mapped < size) {
2985 while (pgs[idx - 1] == pgsz) {
2986 idx--;
2987 mapped -= pgsz;
2988 }
2989 /* XXX We may increase beyond out starting point. */
2990 pgsz <<= 2;
2991 pgs[idx++] = pgsz;
2992 mapped += pgsz;
2993 }
2994 }
2995
2996 nents = idx;
2997 mask = pgs[0] - 1;
2998 /* Align address to the boundary */
2999 if (va & mask) {
3000 va = (va + mask) & ~mask;
3001 pa = (pa + mask) & ~mask;
3002 }
3003
3004 for (idx = 0; idx < nents; idx++) {
3005 pgsz = pgs[idx];
3006 debugf("%u: %x -> %x, size=%x\n", idx, pa, va, pgsz);
3007 tlb1_set_entry(va, pa, pgsz, _TLB_ENTRY_MEM);
3008 pa += pgsz;
3009 va += pgsz;
3010 }
3011
3012 mapped = (va - base);
3013 debugf("mapped size 0x%08x (wasted space 0x%08x)\n",
3014 mapped, mapped - size);
3015 return (mapped);
3016}
3017
3018/*
3019 * TLB1 initialization routine, to be called after the very first
3020 * assembler level setup done in locore.S.
3021 */
3022void
3023tlb1_init(vm_offset_t ccsrbar)
3024{
3025 uint32_t mas0, mas1, mas3;
3026 uint32_t tsz;
3027 u_int i;
3028
3029 ccsrbar_pa = ccsrbar;
3030
3031 if (bootinfo != NULL && bootinfo[0] != 1) {
3032 tlb1_idx = *((uint16_t *)(bootinfo + 8));
3033 } else
3034 tlb1_idx = 1;
3035
3036 /* The first entry/entries are used to map the kernel. */
3037 for (i = 0; i < tlb1_idx; i++) {
3038 mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3039 mtspr(SPR_MAS0, mas0);
3040 __asm __volatile("isync; tlbre");
3041
3042 mas1 = mfspr(SPR_MAS1);
3043 if ((mas1 & MAS1_VALID) == 0)
3044 continue;
3045
3046 mas3 = mfspr(SPR_MAS3);
3047
3048 tlb1[i].mas1 = mas1;
3049 tlb1[i].mas2 = mfspr(SPR_MAS2);
3050 tlb1[i].mas3 = mas3;
3051
3052 if (i == 0)
3053 kernload = mas3 & MAS3_RPN;
3054
3055 tsz = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3056 kernsize += (tsz > 0) ? tsize2size(tsz) : 0;
3057 }
3058
3059 /* Map in CCSRBAR. */
3060 tlb1_set_entry(CCSRBAR_VA, ccsrbar, CCSRBAR_SIZE, _TLB_ENTRY_IO);
3061
3062#ifdef SMP
3063 bp_ntlb1s = tlb1_idx;
3064#endif
3065
3066 /* Purge the remaining entries */
3067 for (i = tlb1_idx; i < TLB1_ENTRIES; i++)
3068 tlb1_write_entry(i);
3069
3070 /* Setup TLB miss defaults */
3071 set_mas4_defaults();
3072}
3073
3074/*
3075 * Setup MAS4 defaults.
3076 * These values are loaded to MAS0-2 on a TLB miss.
3077 */
3078static void
3079set_mas4_defaults(void)
3080{
3081 uint32_t mas4;
3082
3083 /* Defaults: TLB0, PID0, TSIZED=4K */
3084 mas4 = MAS4_TLBSELD0;
3085 mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
3086#ifdef SMP
3087 mas4 |= MAS4_MD;
3088#endif
3089 mtspr(SPR_MAS4, mas4);
3090 __asm __volatile("isync");
3091}
3092
3093/*
3094 * Print out contents of the MAS registers for each TLB1 entry
3095 */
3096void
3097tlb1_print_tlbentries(void)
3098{
3099 uint32_t mas0, mas1, mas2, mas3, mas7;
3100 int i;
3101
3102 debugf("TLB1 entries:\n");
3103 for (i = 0; i < TLB1_ENTRIES; i++) {
3104
3105 mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3106 mtspr(SPR_MAS0, mas0);
3107
3108 __asm __volatile("isync; tlbre");
3109
3110 mas1 = mfspr(SPR_MAS1);
3111 mas2 = mfspr(SPR_MAS2);
3112 mas3 = mfspr(SPR_MAS3);
3113 mas7 = mfspr(SPR_MAS7);
3114
3115 tlb_print_entry(i, mas1, mas2, mas3, mas7);
3116 }
3117}
3118
3119/*
3120 * Print out contents of the in-ram tlb1 table.
3121 */
3122void
3123tlb1_print_entries(void)
3124{
3125 int i;
3126
3127 debugf("tlb1[] table entries:\n");
3128 for (i = 0; i < TLB1_ENTRIES; i++)
3129 tlb_print_entry(i, tlb1[i].mas1, tlb1[i].mas2, tlb1[i].mas3, 0);
3130}
3131
3132/*
3133 * Return 0 if the physical IO range is encompassed by one of the
3134 * the TLB1 entries, otherwise return related error code.
3135 */
3136static int
3137tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
3138{
3139 uint32_t prot;
3140 vm_paddr_t pa_start;
3141 vm_paddr_t pa_end;
3142 unsigned int entry_tsize;
3143 vm_size_t entry_size;
3144
3145 *va = (vm_offset_t)NULL;
3146
3147 /* Skip invalid entries */
3148 if (!(tlb1[i].mas1 & MAS1_VALID))
3149 return (EINVAL);
3150
3151 /*
3152 * The entry must be cache-inhibited, guarded, and r/w
3153 * so it can function as an i/o page
3154 */
3155 prot = tlb1[i].mas2 & (MAS2_I | MAS2_G);
3156 if (prot != (MAS2_I | MAS2_G))
3157 return (EPERM);
3158
3159 prot = tlb1[i].mas3 & (MAS3_SR | MAS3_SW);
3160 if (prot != (MAS3_SR | MAS3_SW))
3161 return (EPERM);
3162
3163 /* The address should be within the entry range. */
3164 entry_tsize = (tlb1[i].mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3165 KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
3166
3167 entry_size = tsize2size(entry_tsize);
3168 pa_start = tlb1[i].mas3 & MAS3_RPN;
3169 pa_end = pa_start + entry_size - 1;
3170
3171 if ((pa < pa_start) || ((pa + size) > pa_end))
3172 return (ERANGE);
3173
3174 /* Return virtual address of this mapping. */
3175 *va = (tlb1[i].mas2 & MAS2_EPN_MASK) + (pa - pa_start);
3176 return (0);
3177}
1346
1347 /* Pre-fill pvzone with initial number of pv entries. */
1348 uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
1349
1350 /* Initialize ptbl allocation. */
1351 ptbl_init();
1352}
1353
1354/*
1355 * Map a list of wired pages into kernel virtual address space. This is
1356 * intended for temporary mappings which do not need page modification or
1357 * references recorded. Existing mappings in the region are overwritten.
1358 */
1359static void
1360mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1361{
1362 vm_offset_t va;
1363
1364 va = sva;
1365 while (count-- > 0) {
1366 mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1367 va += PAGE_SIZE;
1368 m++;
1369 }
1370}
1371
1372/*
1373 * Remove page mappings from kernel virtual address space. Intended for
1374 * temporary mappings entered by mmu_booke_qenter.
1375 */
1376static void
1377mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count)
1378{
1379 vm_offset_t va;
1380
1381 va = sva;
1382 while (count-- > 0) {
1383 mmu_booke_kremove(mmu, va);
1384 va += PAGE_SIZE;
1385 }
1386}
1387
1388/*
1389 * Map a wired page into kernel virtual address space.
1390 */
1391static void
1392mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1393{
1394 unsigned int pdir_idx = PDIR_IDX(va);
1395 unsigned int ptbl_idx = PTBL_IDX(va);
1396 uint32_t flags;
1397 pte_t *pte;
1398
1399 KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1400 (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va"));
1401
1402 flags = PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID;
1403
1404 pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1405
1406 mtx_lock_spin(&tlbivax_mutex);
1407 tlb_miss_lock();
1408
1409 if (PTE_ISVALID(pte)) {
1410
1411 CTR1(KTR_PMAP, "%s: replacing entry!", __func__);
1412
1413 /* Flush entry from TLB0 */
1414 tlb0_flush_entry(va);
1415 }
1416
1417 pte->rpn = pa & ~PTE_PA_MASK;
1418 pte->flags = flags;
1419
1420 //debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
1421 // "pa=0x%08x rpn=0x%08x flags=0x%08x\n",
1422 // pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
1423
1424 /* Flush the real memory from the instruction cache. */
1425 if ((flags & (PTE_I | PTE_G)) == 0) {
1426 __syncicache((void *)va, PAGE_SIZE);
1427 }
1428
1429 tlb_miss_unlock();
1430 mtx_unlock_spin(&tlbivax_mutex);
1431}
1432
1433/*
1434 * Remove a page from kernel page table.
1435 */
1436static void
1437mmu_booke_kremove(mmu_t mmu, vm_offset_t va)
1438{
1439 unsigned int pdir_idx = PDIR_IDX(va);
1440 unsigned int ptbl_idx = PTBL_IDX(va);
1441 pte_t *pte;
1442
1443// CTR2(KTR_PMAP,("%s: s (va = 0x%08x)\n", __func__, va));
1444
1445 KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1446 (va <= VM_MAX_KERNEL_ADDRESS)),
1447 ("mmu_booke_kremove: invalid va"));
1448
1449 pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1450
1451 if (!PTE_ISVALID(pte)) {
1452
1453 CTR1(KTR_PMAP, "%s: invalid pte", __func__);
1454
1455 return;
1456 }
1457
1458 mtx_lock_spin(&tlbivax_mutex);
1459 tlb_miss_lock();
1460
1461 /* Invalidate entry in TLB0, update PTE. */
1462 tlb0_flush_entry(va);
1463 pte->flags = 0;
1464 pte->rpn = 0;
1465
1466 tlb_miss_unlock();
1467 mtx_unlock_spin(&tlbivax_mutex);
1468}
1469
1470/*
1471 * Initialize pmap associated with process 0.
1472 */
1473static void
1474mmu_booke_pinit0(mmu_t mmu, pmap_t pmap)
1475{
1476
1477 mmu_booke_pinit(mmu, pmap);
1478 PCPU_SET(curpmap, pmap);
1479}
1480
1481/*
1482 * Initialize a preallocated and zeroed pmap structure,
1483 * such as one in a vmspace structure.
1484 */
1485static void
1486mmu_booke_pinit(mmu_t mmu, pmap_t pmap)
1487{
1488 int i;
1489
1490 CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap,
1491 curthread->td_proc->p_pid, curthread->td_proc->p_comm);
1492
1493 KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap"));
1494
1495 PMAP_LOCK_INIT(pmap);
1496 for (i = 0; i < MAXCPU; i++)
1497 pmap->pm_tid[i] = TID_NONE;
1498 CPU_ZERO(&kernel_pmap->pm_active);
1499 bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1500 bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES);
1501 TAILQ_INIT(&pmap->pm_ptbl_list);
1502}
1503
1504/*
1505 * Release any resources held by the given physical map.
1506 * Called when a pmap initialized by mmu_booke_pinit is being released.
1507 * Should only be called if the map contains no valid mappings.
1508 */
1509static void
1510mmu_booke_release(mmu_t mmu, pmap_t pmap)
1511{
1512
1513 KASSERT(pmap->pm_stats.resident_count == 0,
1514 ("pmap_release: pmap resident count %ld != 0",
1515 pmap->pm_stats.resident_count));
1516
1517 PMAP_LOCK_DESTROY(pmap);
1518}
1519
1520/*
1521 * Insert the given physical page at the specified virtual address in the
1522 * target physical map with the protection requested. If specified the page
1523 * will be wired down.
1524 */
1525static void
1526mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1527 vm_prot_t prot, boolean_t wired)
1528{
1529
1530 rw_wlock(&pvh_global_lock);
1531 PMAP_LOCK(pmap);
1532 mmu_booke_enter_locked(mmu, pmap, va, m, prot, wired);
1533 rw_wunlock(&pvh_global_lock);
1534 PMAP_UNLOCK(pmap);
1535}
1536
1537static void
1538mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1539 vm_prot_t prot, boolean_t wired)
1540{
1541 pte_t *pte;
1542 vm_paddr_t pa;
1543 uint32_t flags;
1544 int su, sync;
1545
1546 pa = VM_PAGE_TO_PHYS(m);
1547 su = (pmap == kernel_pmap);
1548 sync = 0;
1549
1550 //debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
1551 // "pa=0x%08x prot=0x%08x wired=%d)\n",
1552 // (u_int32_t)pmap, su, pmap->pm_tid,
1553 // (u_int32_t)m, va, pa, prot, wired);
1554
1555 if (su) {
1556 KASSERT(((va >= virtual_avail) &&
1557 (va <= VM_MAX_KERNEL_ADDRESS)),
1558 ("mmu_booke_enter_locked: kernel pmap, non kernel va"));
1559 } else {
1560 KASSERT((va <= VM_MAXUSER_ADDRESS),
1561 ("mmu_booke_enter_locked: user pmap, non user va"));
1562 }
1563 KASSERT((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) != 0 ||
1564 VM_OBJECT_LOCKED(m->object),
1565 ("mmu_booke_enter_locked: page %p is not busy", m));
1566
1567 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1568
1569 /*
1570 * If there is an existing mapping, and the physical address has not
1571 * changed, must be protection or wiring change.
1572 */
1573 if (((pte = pte_find(mmu, pmap, va)) != NULL) &&
1574 (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
1575
1576 /*
1577 * Before actually updating pte->flags we calculate and
1578 * prepare its new value in a helper var.
1579 */
1580 flags = pte->flags;
1581 flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
1582
1583 /* Wiring change, just update stats. */
1584 if (wired) {
1585 if (!PTE_ISWIRED(pte)) {
1586 flags |= PTE_WIRED;
1587 pmap->pm_stats.wired_count++;
1588 }
1589 } else {
1590 if (PTE_ISWIRED(pte)) {
1591 flags &= ~PTE_WIRED;
1592 pmap->pm_stats.wired_count--;
1593 }
1594 }
1595
1596 if (prot & VM_PROT_WRITE) {
1597 /* Add write permissions. */
1598 flags |= PTE_SW;
1599 if (!su)
1600 flags |= PTE_UW;
1601
1602 if ((flags & PTE_MANAGED) != 0)
1603 vm_page_aflag_set(m, PGA_WRITEABLE);
1604 } else {
1605 /* Handle modified pages, sense modify status. */
1606
1607 /*
1608 * The PTE_MODIFIED flag could be set by underlying
1609 * TLB misses since we last read it (above), possibly
1610 * other CPUs could update it so we check in the PTE
1611 * directly rather than rely on that saved local flags
1612 * copy.
1613 */
1614 if (PTE_ISMODIFIED(pte))
1615 vm_page_dirty(m);
1616 }
1617
1618 if (prot & VM_PROT_EXECUTE) {
1619 flags |= PTE_SX;
1620 if (!su)
1621 flags |= PTE_UX;
1622
1623 /*
1624 * Check existing flags for execute permissions: if we
1625 * are turning execute permissions on, icache should
1626 * be flushed.
1627 */
1628 if ((pte->flags & (PTE_UX | PTE_SX)) == 0)
1629 sync++;
1630 }
1631
1632 flags &= ~PTE_REFERENCED;
1633
1634 /*
1635 * The new flags value is all calculated -- only now actually
1636 * update the PTE.
1637 */
1638 mtx_lock_spin(&tlbivax_mutex);
1639 tlb_miss_lock();
1640
1641 tlb0_flush_entry(va);
1642 pte->flags = flags;
1643
1644 tlb_miss_unlock();
1645 mtx_unlock_spin(&tlbivax_mutex);
1646
1647 } else {
1648 /*
1649 * If there is an existing mapping, but it's for a different
1650 * physical address, pte_enter() will delete the old mapping.
1651 */
1652 //if ((pte != NULL) && PTE_ISVALID(pte))
1653 // debugf("mmu_booke_enter_locked: replace\n");
1654 //else
1655 // debugf("mmu_booke_enter_locked: new\n");
1656
1657 /* Now set up the flags and install the new mapping. */
1658 flags = (PTE_SR | PTE_VALID);
1659 flags |= PTE_M;
1660
1661 if (!su)
1662 flags |= PTE_UR;
1663
1664 if (prot & VM_PROT_WRITE) {
1665 flags |= PTE_SW;
1666 if (!su)
1667 flags |= PTE_UW;
1668
1669 if ((m->oflags & VPO_UNMANAGED) == 0)
1670 vm_page_aflag_set(m, PGA_WRITEABLE);
1671 }
1672
1673 if (prot & VM_PROT_EXECUTE) {
1674 flags |= PTE_SX;
1675 if (!su)
1676 flags |= PTE_UX;
1677 }
1678
1679 /* If its wired update stats. */
1680 if (wired) {
1681 pmap->pm_stats.wired_count++;
1682 flags |= PTE_WIRED;
1683 }
1684
1685 pte_enter(mmu, pmap, m, va, flags);
1686
1687 /* Flush the real memory from the instruction cache. */
1688 if (prot & VM_PROT_EXECUTE)
1689 sync++;
1690 }
1691
1692 if (sync && (su || pmap == PCPU_GET(curpmap))) {
1693 __syncicache((void *)va, PAGE_SIZE);
1694 sync = 0;
1695 }
1696}
1697
1698/*
1699 * Maps a sequence of resident pages belonging to the same object.
1700 * The sequence begins with the given page m_start. This page is
1701 * mapped at the given virtual address start. Each subsequent page is
1702 * mapped at a virtual address that is offset from start by the same
1703 * amount as the page is offset from m_start within the object. The
1704 * last page in the sequence is the page with the largest offset from
1705 * m_start that can be mapped at a virtual address less than the given
1706 * virtual address end. Not every virtual page between start and end
1707 * is mapped; only those for which a resident page exists with the
1708 * corresponding offset from m_start are mapped.
1709 */
1710static void
1711mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start,
1712 vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
1713{
1714 vm_page_t m;
1715 vm_pindex_t diff, psize;
1716
1717 psize = atop(end - start);
1718 m = m_start;
1719 rw_wlock(&pvh_global_lock);
1720 PMAP_LOCK(pmap);
1721 while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1722 mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m,
1723 prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1724 m = TAILQ_NEXT(m, listq);
1725 }
1726 rw_wunlock(&pvh_global_lock);
1727 PMAP_UNLOCK(pmap);
1728}
1729
1730static void
1731mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1732 vm_prot_t prot)
1733{
1734
1735 rw_wlock(&pvh_global_lock);
1736 PMAP_LOCK(pmap);
1737 mmu_booke_enter_locked(mmu, pmap, va, m,
1738 prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1739 rw_wunlock(&pvh_global_lock);
1740 PMAP_UNLOCK(pmap);
1741}
1742
1743/*
1744 * Remove the given range of addresses from the specified map.
1745 *
1746 * It is assumed that the start and end are properly rounded to the page size.
1747 */
1748static void
1749mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva)
1750{
1751 pte_t *pte;
1752 uint8_t hold_flag;
1753
1754 int su = (pmap == kernel_pmap);
1755
1756 //debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
1757 // su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
1758
1759 if (su) {
1760 KASSERT(((va >= virtual_avail) &&
1761 (va <= VM_MAX_KERNEL_ADDRESS)),
1762 ("mmu_booke_remove: kernel pmap, non kernel va"));
1763 } else {
1764 KASSERT((va <= VM_MAXUSER_ADDRESS),
1765 ("mmu_booke_remove: user pmap, non user va"));
1766 }
1767
1768 if (PMAP_REMOVE_DONE(pmap)) {
1769 //debugf("mmu_booke_remove: e (empty)\n");
1770 return;
1771 }
1772
1773 hold_flag = PTBL_HOLD_FLAG(pmap);
1774 //debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
1775
1776 rw_wlock(&pvh_global_lock);
1777 PMAP_LOCK(pmap);
1778 for (; va < endva; va += PAGE_SIZE) {
1779 pte = pte_find(mmu, pmap, va);
1780 if ((pte != NULL) && PTE_ISVALID(pte))
1781 pte_remove(mmu, pmap, va, hold_flag);
1782 }
1783 PMAP_UNLOCK(pmap);
1784 rw_wunlock(&pvh_global_lock);
1785
1786 //debugf("mmu_booke_remove: e\n");
1787}
1788
1789/*
1790 * Remove physical page from all pmaps in which it resides.
1791 */
1792static void
1793mmu_booke_remove_all(mmu_t mmu, vm_page_t m)
1794{
1795 pv_entry_t pv, pvn;
1796 uint8_t hold_flag;
1797
1798 rw_wlock(&pvh_global_lock);
1799 for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) {
1800 pvn = TAILQ_NEXT(pv, pv_link);
1801
1802 PMAP_LOCK(pv->pv_pmap);
1803 hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
1804 pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag);
1805 PMAP_UNLOCK(pv->pv_pmap);
1806 }
1807 vm_page_aflag_clear(m, PGA_WRITEABLE);
1808 rw_wunlock(&pvh_global_lock);
1809}
1810
1811/*
1812 * Map a range of physical addresses into kernel virtual address space.
1813 */
1814static vm_offset_t
1815mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1816 vm_paddr_t pa_end, int prot)
1817{
1818 vm_offset_t sva = *virt;
1819 vm_offset_t va = sva;
1820
1821 //debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n",
1822 // sva, pa_start, pa_end);
1823
1824 while (pa_start < pa_end) {
1825 mmu_booke_kenter(mmu, va, pa_start);
1826 va += PAGE_SIZE;
1827 pa_start += PAGE_SIZE;
1828 }
1829 *virt = va;
1830
1831 //debugf("mmu_booke_map: e (va = 0x%08x)\n", va);
1832 return (sva);
1833}
1834
1835/*
1836 * The pmap must be activated before it's address space can be accessed in any
1837 * way.
1838 */
1839static void
1840mmu_booke_activate(mmu_t mmu, struct thread *td)
1841{
1842 pmap_t pmap;
1843 u_int cpuid;
1844
1845 pmap = &td->td_proc->p_vmspace->vm_pmap;
1846
1847 CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%08x)",
1848 __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1849
1850 KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
1851
1852 mtx_lock_spin(&sched_lock);
1853
1854 cpuid = PCPU_GET(cpuid);
1855 CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
1856 PCPU_SET(curpmap, pmap);
1857
1858 if (pmap->pm_tid[cpuid] == TID_NONE)
1859 tid_alloc(pmap);
1860
1861 /* Load PID0 register with pmap tid value. */
1862 mtspr(SPR_PID0, pmap->pm_tid[cpuid]);
1863 __asm __volatile("isync");
1864
1865 mtx_unlock_spin(&sched_lock);
1866
1867 CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__,
1868 pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm);
1869}
1870
1871/*
1872 * Deactivate the specified process's address space.
1873 */
1874static void
1875mmu_booke_deactivate(mmu_t mmu, struct thread *td)
1876{
1877 pmap_t pmap;
1878
1879 pmap = &td->td_proc->p_vmspace->vm_pmap;
1880
1881 CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%08x",
1882 __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1883
1884 CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmap->pm_active);
1885 PCPU_SET(curpmap, NULL);
1886}
1887
1888/*
1889 * Copy the range specified by src_addr/len
1890 * from the source map to the range dst_addr/len
1891 * in the destination map.
1892 *
1893 * This routine is only advisory and need not do anything.
1894 */
1895static void
1896mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap,
1897 vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr)
1898{
1899
1900}
1901
1902/*
1903 * Set the physical protection on the specified range of this map as requested.
1904 */
1905static void
1906mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1907 vm_prot_t prot)
1908{
1909 vm_offset_t va;
1910 vm_page_t m;
1911 pte_t *pte;
1912
1913 if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1914 mmu_booke_remove(mmu, pmap, sva, eva);
1915 return;
1916 }
1917
1918 if (prot & VM_PROT_WRITE)
1919 return;
1920
1921 PMAP_LOCK(pmap);
1922 for (va = sva; va < eva; va += PAGE_SIZE) {
1923 if ((pte = pte_find(mmu, pmap, va)) != NULL) {
1924 if (PTE_ISVALID(pte)) {
1925 m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1926
1927 mtx_lock_spin(&tlbivax_mutex);
1928 tlb_miss_lock();
1929
1930 /* Handle modified pages. */
1931 if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte))
1932 vm_page_dirty(m);
1933
1934 tlb0_flush_entry(va);
1935 pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
1936
1937 tlb_miss_unlock();
1938 mtx_unlock_spin(&tlbivax_mutex);
1939 }
1940 }
1941 }
1942 PMAP_UNLOCK(pmap);
1943}
1944
1945/*
1946 * Clear the write and modified bits in each of the given page's mappings.
1947 */
1948static void
1949mmu_booke_remove_write(mmu_t mmu, vm_page_t m)
1950{
1951 pv_entry_t pv;
1952 pte_t *pte;
1953
1954 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1955 ("mmu_booke_remove_write: page %p is not managed", m));
1956
1957 /*
1958 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be set by
1959 * another thread while the object is locked. Thus, if PGA_WRITEABLE
1960 * is clear, no page table entries need updating.
1961 */
1962 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1963 if ((m->oflags & VPO_BUSY) == 0 &&
1964 (m->aflags & PGA_WRITEABLE) == 0)
1965 return;
1966 rw_wlock(&pvh_global_lock);
1967 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1968 PMAP_LOCK(pv->pv_pmap);
1969 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
1970 if (PTE_ISVALID(pte)) {
1971 m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1972
1973 mtx_lock_spin(&tlbivax_mutex);
1974 tlb_miss_lock();
1975
1976 /* Handle modified pages. */
1977 if (PTE_ISMODIFIED(pte))
1978 vm_page_dirty(m);
1979
1980 /* Flush mapping from TLB0. */
1981 pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
1982
1983 tlb_miss_unlock();
1984 mtx_unlock_spin(&tlbivax_mutex);
1985 }
1986 }
1987 PMAP_UNLOCK(pv->pv_pmap);
1988 }
1989 vm_page_aflag_clear(m, PGA_WRITEABLE);
1990 rw_wunlock(&pvh_global_lock);
1991}
1992
1993static void
1994mmu_booke_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
1995{
1996 pte_t *pte;
1997 pmap_t pmap;
1998 vm_page_t m;
1999 vm_offset_t addr;
2000 vm_paddr_t pa;
2001 int active, valid;
2002
2003 va = trunc_page(va);
2004 sz = round_page(sz);
2005
2006 rw_wlock(&pvh_global_lock);
2007 pmap = PCPU_GET(curpmap);
2008 active = (pm == kernel_pmap || pm == pmap) ? 1 : 0;
2009 while (sz > 0) {
2010 PMAP_LOCK(pm);
2011 pte = pte_find(mmu, pm, va);
2012 valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0;
2013 if (valid)
2014 pa = PTE_PA(pte);
2015 PMAP_UNLOCK(pm);
2016 if (valid) {
2017 if (!active) {
2018 /* Create a mapping in the active pmap. */
2019 addr = 0;
2020 m = PHYS_TO_VM_PAGE(pa);
2021 PMAP_LOCK(pmap);
2022 pte_enter(mmu, pmap, m, addr,
2023 PTE_SR | PTE_VALID | PTE_UR);
2024 __syncicache((void *)addr, PAGE_SIZE);
2025 pte_remove(mmu, pmap, addr, PTBL_UNHOLD);
2026 PMAP_UNLOCK(pmap);
2027 } else
2028 __syncicache((void *)va, PAGE_SIZE);
2029 }
2030 va += PAGE_SIZE;
2031 sz -= PAGE_SIZE;
2032 }
2033 rw_wunlock(&pvh_global_lock);
2034}
2035
2036/*
2037 * Atomically extract and hold the physical page with the given
2038 * pmap and virtual address pair if that mapping permits the given
2039 * protection.
2040 */
2041static vm_page_t
2042mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va,
2043 vm_prot_t prot)
2044{
2045 pte_t *pte;
2046 vm_page_t m;
2047 uint32_t pte_wbit;
2048 vm_paddr_t pa;
2049
2050 m = NULL;
2051 pa = 0;
2052 PMAP_LOCK(pmap);
2053retry:
2054 pte = pte_find(mmu, pmap, va);
2055 if ((pte != NULL) && PTE_ISVALID(pte)) {
2056 if (pmap == kernel_pmap)
2057 pte_wbit = PTE_SW;
2058 else
2059 pte_wbit = PTE_UW;
2060
2061 if ((pte->flags & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) {
2062 if (vm_page_pa_tryrelock(pmap, PTE_PA(pte), &pa))
2063 goto retry;
2064 m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2065 vm_page_hold(m);
2066 }
2067 }
2068
2069 PA_UNLOCK_COND(pa);
2070 PMAP_UNLOCK(pmap);
2071 return (m);
2072}
2073
2074/*
2075 * Initialize a vm_page's machine-dependent fields.
2076 */
2077static void
2078mmu_booke_page_init(mmu_t mmu, vm_page_t m)
2079{
2080
2081 TAILQ_INIT(&m->md.pv_list);
2082}
2083
2084/*
2085 * mmu_booke_zero_page_area zeros the specified hardware page by
2086 * mapping it into virtual memory and using bzero to clear
2087 * its contents.
2088 *
2089 * off and size must reside within a single page.
2090 */
2091static void
2092mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
2093{
2094 vm_offset_t va;
2095
2096 /* XXX KASSERT off and size are within a single page? */
2097
2098 mtx_lock(&zero_page_mutex);
2099 va = zero_page_va;
2100
2101 mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2102 bzero((caddr_t)va + off, size);
2103 mmu_booke_kremove(mmu, va);
2104
2105 mtx_unlock(&zero_page_mutex);
2106}
2107
2108/*
2109 * mmu_booke_zero_page zeros the specified hardware page.
2110 */
2111static void
2112mmu_booke_zero_page(mmu_t mmu, vm_page_t m)
2113{
2114
2115 mmu_booke_zero_page_area(mmu, m, 0, PAGE_SIZE);
2116}
2117
2118/*
2119 * mmu_booke_copy_page copies the specified (machine independent) page by
2120 * mapping the page into virtual memory and using memcopy to copy the page,
2121 * one machine dependent page at a time.
2122 */
2123static void
2124mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm)
2125{
2126 vm_offset_t sva, dva;
2127
2128 sva = copy_page_src_va;
2129 dva = copy_page_dst_va;
2130
2131 mtx_lock(&copy_page_mutex);
2132 mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm));
2133 mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm));
2134 memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE);
2135 mmu_booke_kremove(mmu, dva);
2136 mmu_booke_kremove(mmu, sva);
2137 mtx_unlock(&copy_page_mutex);
2138}
2139
2140/*
2141 * mmu_booke_zero_page_idle zeros the specified hardware page by mapping it
2142 * into virtual memory and using bzero to clear its contents. This is intended
2143 * to be called from the vm_pagezero process only and outside of Giant. No
2144 * lock is required.
2145 */
2146static void
2147mmu_booke_zero_page_idle(mmu_t mmu, vm_page_t m)
2148{
2149 vm_offset_t va;
2150
2151 va = zero_page_idle_va;
2152 mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2153 bzero((caddr_t)va, PAGE_SIZE);
2154 mmu_booke_kremove(mmu, va);
2155}
2156
2157/*
2158 * Return whether or not the specified physical page was modified
2159 * in any of physical maps.
2160 */
2161static boolean_t
2162mmu_booke_is_modified(mmu_t mmu, vm_page_t m)
2163{
2164 pte_t *pte;
2165 pv_entry_t pv;
2166 boolean_t rv;
2167
2168 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2169 ("mmu_booke_is_modified: page %p is not managed", m));
2170 rv = FALSE;
2171
2172 /*
2173 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be
2174 * concurrently set while the object is locked. Thus, if PGA_WRITEABLE
2175 * is clear, no PTEs can be modified.
2176 */
2177 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2178 if ((m->oflags & VPO_BUSY) == 0 &&
2179 (m->aflags & PGA_WRITEABLE) == 0)
2180 return (rv);
2181 rw_wlock(&pvh_global_lock);
2182 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2183 PMAP_LOCK(pv->pv_pmap);
2184 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2185 PTE_ISVALID(pte)) {
2186 if (PTE_ISMODIFIED(pte))
2187 rv = TRUE;
2188 }
2189 PMAP_UNLOCK(pv->pv_pmap);
2190 if (rv)
2191 break;
2192 }
2193 rw_wunlock(&pvh_global_lock);
2194 return (rv);
2195}
2196
2197/*
2198 * Return whether or not the specified virtual address is eligible
2199 * for prefault.
2200 */
2201static boolean_t
2202mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
2203{
2204
2205 return (FALSE);
2206}
2207
2208/*
2209 * Return whether or not the specified physical page was referenced
2210 * in any physical maps.
2211 */
2212static boolean_t
2213mmu_booke_is_referenced(mmu_t mmu, vm_page_t m)
2214{
2215 pte_t *pte;
2216 pv_entry_t pv;
2217 boolean_t rv;
2218
2219 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2220 ("mmu_booke_is_referenced: page %p is not managed", m));
2221 rv = FALSE;
2222 rw_wlock(&pvh_global_lock);
2223 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2224 PMAP_LOCK(pv->pv_pmap);
2225 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2226 PTE_ISVALID(pte)) {
2227 if (PTE_ISREFERENCED(pte))
2228 rv = TRUE;
2229 }
2230 PMAP_UNLOCK(pv->pv_pmap);
2231 if (rv)
2232 break;
2233 }
2234 rw_wunlock(&pvh_global_lock);
2235 return (rv);
2236}
2237
2238/*
2239 * Clear the modify bits on the specified physical page.
2240 */
2241static void
2242mmu_booke_clear_modify(mmu_t mmu, vm_page_t m)
2243{
2244 pte_t *pte;
2245 pv_entry_t pv;
2246
2247 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2248 ("mmu_booke_clear_modify: page %p is not managed", m));
2249 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2250 KASSERT((m->oflags & VPO_BUSY) == 0,
2251 ("mmu_booke_clear_modify: page %p is busy", m));
2252
2253 /*
2254 * If the page is not PG_AWRITEABLE, then no PTEs can be modified.
2255 * If the object containing the page is locked and the page is not
2256 * VPO_BUSY, then PG_AWRITEABLE cannot be concurrently set.
2257 */
2258 if ((m->aflags & PGA_WRITEABLE) == 0)
2259 return;
2260 rw_wlock(&pvh_global_lock);
2261 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2262 PMAP_LOCK(pv->pv_pmap);
2263 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2264 PTE_ISVALID(pte)) {
2265 mtx_lock_spin(&tlbivax_mutex);
2266 tlb_miss_lock();
2267
2268 if (pte->flags & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
2269 tlb0_flush_entry(pv->pv_va);
2270 pte->flags &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
2271 PTE_REFERENCED);
2272 }
2273
2274 tlb_miss_unlock();
2275 mtx_unlock_spin(&tlbivax_mutex);
2276 }
2277 PMAP_UNLOCK(pv->pv_pmap);
2278 }
2279 rw_wunlock(&pvh_global_lock);
2280}
2281
2282/*
2283 * Return a count of reference bits for a page, clearing those bits.
2284 * It is not necessary for every reference bit to be cleared, but it
2285 * is necessary that 0 only be returned when there are truly no
2286 * reference bits set.
2287 *
2288 * XXX: The exact number of bits to check and clear is a matter that
2289 * should be tested and standardized at some point in the future for
2290 * optimal aging of shared pages.
2291 */
2292static int
2293mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m)
2294{
2295 pte_t *pte;
2296 pv_entry_t pv;
2297 int count;
2298
2299 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2300 ("mmu_booke_ts_referenced: page %p is not managed", m));
2301 count = 0;
2302 rw_wlock(&pvh_global_lock);
2303 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2304 PMAP_LOCK(pv->pv_pmap);
2305 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2306 PTE_ISVALID(pte)) {
2307 if (PTE_ISREFERENCED(pte)) {
2308 mtx_lock_spin(&tlbivax_mutex);
2309 tlb_miss_lock();
2310
2311 tlb0_flush_entry(pv->pv_va);
2312 pte->flags &= ~PTE_REFERENCED;
2313
2314 tlb_miss_unlock();
2315 mtx_unlock_spin(&tlbivax_mutex);
2316
2317 if (++count > 4) {
2318 PMAP_UNLOCK(pv->pv_pmap);
2319 break;
2320 }
2321 }
2322 }
2323 PMAP_UNLOCK(pv->pv_pmap);
2324 }
2325 rw_wunlock(&pvh_global_lock);
2326 return (count);
2327}
2328
2329/*
2330 * Clear the reference bit on the specified physical page.
2331 */
2332static void
2333mmu_booke_clear_reference(mmu_t mmu, vm_page_t m)
2334{
2335 pte_t *pte;
2336 pv_entry_t pv;
2337
2338 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2339 ("mmu_booke_clear_reference: page %p is not managed", m));
2340 rw_wlock(&pvh_global_lock);
2341 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2342 PMAP_LOCK(pv->pv_pmap);
2343 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2344 PTE_ISVALID(pte)) {
2345 if (PTE_ISREFERENCED(pte)) {
2346 mtx_lock_spin(&tlbivax_mutex);
2347 tlb_miss_lock();
2348
2349 tlb0_flush_entry(pv->pv_va);
2350 pte->flags &= ~PTE_REFERENCED;
2351
2352 tlb_miss_unlock();
2353 mtx_unlock_spin(&tlbivax_mutex);
2354 }
2355 }
2356 PMAP_UNLOCK(pv->pv_pmap);
2357 }
2358 rw_wunlock(&pvh_global_lock);
2359}
2360
2361/*
2362 * Change wiring attribute for a map/virtual-address pair.
2363 */
2364static void
2365mmu_booke_change_wiring(mmu_t mmu, pmap_t pmap, vm_offset_t va, boolean_t wired)
2366{
2367 pte_t *pte;
2368
2369 PMAP_LOCK(pmap);
2370 if ((pte = pte_find(mmu, pmap, va)) != NULL) {
2371 if (wired) {
2372 if (!PTE_ISWIRED(pte)) {
2373 pte->flags |= PTE_WIRED;
2374 pmap->pm_stats.wired_count++;
2375 }
2376 } else {
2377 if (PTE_ISWIRED(pte)) {
2378 pte->flags &= ~PTE_WIRED;
2379 pmap->pm_stats.wired_count--;
2380 }
2381 }
2382 }
2383 PMAP_UNLOCK(pmap);
2384}
2385
2386/*
2387 * Return true if the pmap's pv is one of the first 16 pvs linked to from this
2388 * page. This count may be changed upwards or downwards in the future; it is
2389 * only necessary that true be returned for a small subset of pmaps for proper
2390 * page aging.
2391 */
2392static boolean_t
2393mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
2394{
2395 pv_entry_t pv;
2396 int loops;
2397 boolean_t rv;
2398
2399 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2400 ("mmu_booke_page_exists_quick: page %p is not managed", m));
2401 loops = 0;
2402 rv = FALSE;
2403 rw_wlock(&pvh_global_lock);
2404 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2405 if (pv->pv_pmap == pmap) {
2406 rv = TRUE;
2407 break;
2408 }
2409 if (++loops >= 16)
2410 break;
2411 }
2412 rw_wunlock(&pvh_global_lock);
2413 return (rv);
2414}
2415
2416/*
2417 * Return the number of managed mappings to the given physical page that are
2418 * wired.
2419 */
2420static int
2421mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m)
2422{
2423 pv_entry_t pv;
2424 pte_t *pte;
2425 int count = 0;
2426
2427 if ((m->oflags & VPO_UNMANAGED) != 0)
2428 return (count);
2429 rw_wlock(&pvh_global_lock);
2430 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2431 PMAP_LOCK(pv->pv_pmap);
2432 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL)
2433 if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
2434 count++;
2435 PMAP_UNLOCK(pv->pv_pmap);
2436 }
2437 rw_wunlock(&pvh_global_lock);
2438 return (count);
2439}
2440
2441static int
2442mmu_booke_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2443{
2444 int i;
2445 vm_offset_t va;
2446
2447 /*
2448 * This currently does not work for entries that
2449 * overlap TLB1 entries.
2450 */
2451 for (i = 0; i < tlb1_idx; i ++) {
2452 if (tlb1_iomapped(i, pa, size, &va) == 0)
2453 return (0);
2454 }
2455
2456 return (EFAULT);
2457}
2458
2459vm_offset_t
2460mmu_booke_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2461 vm_size_t *sz)
2462{
2463 vm_paddr_t pa, ppa;
2464 vm_offset_t va;
2465 vm_size_t gran;
2466
2467 /* Raw physical memory dumps don't have a virtual address. */
2468 if (md->md_vaddr == ~0UL) {
2469 /* We always map a 256MB page at 256M. */
2470 gran = 256 * 1024 * 1024;
2471 pa = md->md_paddr + ofs;
2472 ppa = pa & ~(gran - 1);
2473 ofs = pa - ppa;
2474 va = gran;
2475 tlb1_set_entry(va, ppa, gran, _TLB_ENTRY_IO);
2476 if (*sz > (gran - ofs))
2477 *sz = gran - ofs;
2478 return (va + ofs);
2479 }
2480
2481 /* Minidumps are based on virtual memory addresses. */
2482 va = md->md_vaddr + ofs;
2483 if (va >= kernstart + kernsize) {
2484 gran = PAGE_SIZE - (va & PAGE_MASK);
2485 if (*sz > gran)
2486 *sz = gran;
2487 }
2488 return (va);
2489}
2490
2491void
2492mmu_booke_dumpsys_unmap(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2493 vm_offset_t va)
2494{
2495
2496 /* Raw physical memory dumps don't have a virtual address. */
2497 if (md->md_vaddr == ~0UL) {
2498 tlb1_idx--;
2499 tlb1[tlb1_idx].mas1 = 0;
2500 tlb1[tlb1_idx].mas2 = 0;
2501 tlb1[tlb1_idx].mas3 = 0;
2502 tlb1_write_entry(tlb1_idx);
2503 return;
2504 }
2505
2506 /* Minidumps are based on virtual memory addresses. */
2507 /* Nothing to do... */
2508}
2509
2510struct pmap_md *
2511mmu_booke_scan_md(mmu_t mmu, struct pmap_md *prev)
2512{
2513 static struct pmap_md md;
2514 pte_t *pte;
2515 vm_offset_t va;
2516
2517 if (dumpsys_minidump) {
2518 md.md_paddr = ~0UL; /* Minidumps use virtual addresses. */
2519 if (prev == NULL) {
2520 /* 1st: kernel .data and .bss. */
2521 md.md_index = 1;
2522 md.md_vaddr = trunc_page((uintptr_t)_etext);
2523 md.md_size = round_page((uintptr_t)_end) - md.md_vaddr;
2524 return (&md);
2525 }
2526 switch (prev->md_index) {
2527 case 1:
2528 /* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2529 md.md_index = 2;
2530 md.md_vaddr = data_start;
2531 md.md_size = data_end - data_start;
2532 break;
2533 case 2:
2534 /* 3rd: kernel VM. */
2535 va = prev->md_vaddr + prev->md_size;
2536 /* Find start of next chunk (from va). */
2537 while (va < virtual_end) {
2538 /* Don't dump the buffer cache. */
2539 if (va >= kmi.buffer_sva &&
2540 va < kmi.buffer_eva) {
2541 va = kmi.buffer_eva;
2542 continue;
2543 }
2544 pte = pte_find(mmu, kernel_pmap, va);
2545 if (pte != NULL && PTE_ISVALID(pte))
2546 break;
2547 va += PAGE_SIZE;
2548 }
2549 if (va < virtual_end) {
2550 md.md_vaddr = va;
2551 va += PAGE_SIZE;
2552 /* Find last page in chunk. */
2553 while (va < virtual_end) {
2554 /* Don't run into the buffer cache. */
2555 if (va == kmi.buffer_sva)
2556 break;
2557 pte = pte_find(mmu, kernel_pmap, va);
2558 if (pte == NULL || !PTE_ISVALID(pte))
2559 break;
2560 va += PAGE_SIZE;
2561 }
2562 md.md_size = va - md.md_vaddr;
2563 break;
2564 }
2565 md.md_index = 3;
2566 /* FALLTHROUGH */
2567 default:
2568 return (NULL);
2569 }
2570 } else { /* minidumps */
2571 mem_regions(&physmem_regions, &physmem_regions_sz,
2572 &availmem_regions, &availmem_regions_sz);
2573
2574 if (prev == NULL) {
2575 /* first physical chunk. */
2576 md.md_paddr = physmem_regions[0].mr_start;
2577 md.md_size = physmem_regions[0].mr_size;
2578 md.md_vaddr = ~0UL;
2579 md.md_index = 1;
2580 } else if (md.md_index < physmem_regions_sz) {
2581 md.md_paddr = physmem_regions[md.md_index].mr_start;
2582 md.md_size = physmem_regions[md.md_index].mr_size;
2583 md.md_vaddr = ~0UL;
2584 md.md_index++;
2585 } else {
2586 /* There's no next physical chunk. */
2587 return (NULL);
2588 }
2589 }
2590
2591 return (&md);
2592}
2593
2594/*
2595 * Map a set of physical memory pages into the kernel virtual address space.
2596 * Return a pointer to where it is mapped. This routine is intended to be used
2597 * for mapping device memory, NOT real memory.
2598 */
2599static void *
2600mmu_booke_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2601{
2602 void *res;
2603 uintptr_t va;
2604 vm_size_t sz;
2605
2606 /*
2607 * CCSR is premapped. Note that (pa + size - 1) is there to make sure
2608 * we don't wrap around. Devices on the local bus typically extend all
2609 * the way up to and including 0xffffffff. In that case (pa + size)
2610 * would be 0. This creates a false positive (i.e. we think it's
2611 * within the CCSR) and not create a mapping.
2612 */
2613 if (pa >= ccsrbar_pa && (pa + size - 1) < (ccsrbar_pa + CCSRBAR_SIZE)) {
2614 va = CCSRBAR_VA + (pa - ccsrbar_pa);
2615 return ((void *)va);
2616 }
2617
2618 va = (pa >= 0x80000000) ? pa : (0xe2000000 + pa);
2619 res = (void *)va;
2620
2621 do {
2622 sz = 1 << (ilog2(size) & ~1);
2623 if (bootverbose)
2624 printf("Wiring VA=%x to PA=%x (size=%x), "
2625 "using TLB1[%d]\n", va, pa, sz, tlb1_idx);
2626 tlb1_set_entry(va, pa, sz, _TLB_ENTRY_IO);
2627 size -= sz;
2628 pa += sz;
2629 va += sz;
2630 } while (size > 0);
2631
2632 return (res);
2633}
2634
2635/*
2636 * 'Unmap' a range mapped by mmu_booke_mapdev().
2637 */
2638static void
2639mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2640{
2641 vm_offset_t base, offset;
2642
2643 /*
2644 * Unmap only if this is inside kernel virtual space.
2645 */
2646 if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2647 base = trunc_page(va);
2648 offset = va & PAGE_MASK;
2649 size = roundup(offset + size, PAGE_SIZE);
2650 kmem_free(kernel_map, base, size);
2651 }
2652}
2653
2654/*
2655 * mmu_booke_object_init_pt preloads the ptes for a given object into the
2656 * specified pmap. This eliminates the blast of soft faults on process startup
2657 * and immediately after an mmap.
2658 */
2659static void
2660mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2661 vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2662{
2663
2664 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2665 KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2666 ("mmu_booke_object_init_pt: non-device object"));
2667}
2668
2669/*
2670 * Perform the pmap work for mincore.
2671 */
2672static int
2673mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2674 vm_paddr_t *locked_pa)
2675{
2676
2677 TODO;
2678 return (0);
2679}
2680
2681/**************************************************************************/
2682/* TID handling */
2683/**************************************************************************/
2684
2685/*
2686 * Allocate a TID. If necessary, steal one from someone else.
2687 * The new TID is flushed from the TLB before returning.
2688 */
2689static tlbtid_t
2690tid_alloc(pmap_t pmap)
2691{
2692 tlbtid_t tid;
2693 int thiscpu;
2694
2695 KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
2696
2697 CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap);
2698
2699 thiscpu = PCPU_GET(cpuid);
2700
2701 tid = PCPU_GET(tid_next);
2702 if (tid > TID_MAX)
2703 tid = TID_MIN;
2704 PCPU_SET(tid_next, tid + 1);
2705
2706 /* If we are stealing TID then clear the relevant pmap's field */
2707 if (tidbusy[thiscpu][tid] != NULL) {
2708
2709 CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid);
2710
2711 tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE;
2712
2713 /* Flush all entries from TLB0 matching this TID. */
2714 tid_flush(tid);
2715 }
2716
2717 tidbusy[thiscpu][tid] = pmap;
2718 pmap->pm_tid[thiscpu] = tid;
2719 __asm __volatile("msync; isync");
2720
2721 CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid,
2722 PCPU_GET(tid_next));
2723
2724 return (tid);
2725}
2726
2727/**************************************************************************/
2728/* TLB0 handling */
2729/**************************************************************************/
2730
2731static void
2732tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3,
2733 uint32_t mas7)
2734{
2735 int as;
2736 char desc[3];
2737 tlbtid_t tid;
2738 vm_size_t size;
2739 unsigned int tsize;
2740
2741 desc[2] = '\0';
2742 if (mas1 & MAS1_VALID)
2743 desc[0] = 'V';
2744 else
2745 desc[0] = ' ';
2746
2747 if (mas1 & MAS1_IPROT)
2748 desc[1] = 'P';
2749 else
2750 desc[1] = ' ';
2751
2752 as = (mas1 & MAS1_TS_MASK) ? 1 : 0;
2753 tid = MAS1_GETTID(mas1);
2754
2755 tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
2756 size = 0;
2757 if (tsize)
2758 size = tsize2size(tsize);
2759
2760 debugf("%3d: (%s) [AS=%d] "
2761 "sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x "
2762 "mas2(va) = 0x%08x mas3(pa) = 0x%08x mas7 = 0x%08x\n",
2763 i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7);
2764}
2765
2766/* Convert TLB0 va and way number to tlb0[] table index. */
2767static inline unsigned int
2768tlb0_tableidx(vm_offset_t va, unsigned int way)
2769{
2770 unsigned int idx;
2771
2772 idx = (way * TLB0_ENTRIES_PER_WAY);
2773 idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
2774 return (idx);
2775}
2776
2777/*
2778 * Invalidate TLB0 entry.
2779 */
2780static inline void
2781tlb0_flush_entry(vm_offset_t va)
2782{
2783
2784 CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va);
2785
2786 mtx_assert(&tlbivax_mutex, MA_OWNED);
2787
2788 __asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK));
2789 __asm __volatile("isync; msync");
2790 __asm __volatile("tlbsync; msync");
2791
2792 CTR1(KTR_PMAP, "%s: e", __func__);
2793}
2794
2795/* Print out contents of the MAS registers for each TLB0 entry */
2796void
2797tlb0_print_tlbentries(void)
2798{
2799 uint32_t mas0, mas1, mas2, mas3, mas7;
2800 int entryidx, way, idx;
2801
2802 debugf("TLB0 entries:\n");
2803 for (way = 0; way < TLB0_WAYS; way ++)
2804 for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
2805
2806 mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
2807 mtspr(SPR_MAS0, mas0);
2808 __asm __volatile("isync");
2809
2810 mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
2811 mtspr(SPR_MAS2, mas2);
2812
2813 __asm __volatile("isync; tlbre");
2814
2815 mas1 = mfspr(SPR_MAS1);
2816 mas2 = mfspr(SPR_MAS2);
2817 mas3 = mfspr(SPR_MAS3);
2818 mas7 = mfspr(SPR_MAS7);
2819
2820 idx = tlb0_tableidx(mas2, way);
2821 tlb_print_entry(idx, mas1, mas2, mas3, mas7);
2822 }
2823}
2824
2825/**************************************************************************/
2826/* TLB1 handling */
2827/**************************************************************************/
2828
2829/*
2830 * TLB1 mapping notes:
2831 *
2832 * TLB1[0] CCSRBAR
2833 * TLB1[1] Kernel text and data.
2834 * TLB1[2-15] Additional kernel text and data mappings (if required), PCI
2835 * windows, other devices mappings.
2836 */
2837
2838/*
2839 * Write given entry to TLB1 hardware.
2840 * Use 32 bit pa, clear 4 high-order bits of RPN (mas7).
2841 */
2842static void
2843tlb1_write_entry(unsigned int idx)
2844{
2845 uint32_t mas0, mas7;
2846
2847 //debugf("tlb1_write_entry: s\n");
2848
2849 /* Clear high order RPN bits */
2850 mas7 = 0;
2851
2852 /* Select entry */
2853 mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx);
2854 //debugf("tlb1_write_entry: mas0 = 0x%08x\n", mas0);
2855
2856 mtspr(SPR_MAS0, mas0);
2857 __asm __volatile("isync");
2858 mtspr(SPR_MAS1, tlb1[idx].mas1);
2859 __asm __volatile("isync");
2860 mtspr(SPR_MAS2, tlb1[idx].mas2);
2861 __asm __volatile("isync");
2862 mtspr(SPR_MAS3, tlb1[idx].mas3);
2863 __asm __volatile("isync");
2864 mtspr(SPR_MAS7, mas7);
2865 __asm __volatile("isync; tlbwe; isync; msync");
2866
2867 //debugf("tlb1_write_entry: e\n");
2868}
2869
2870/*
2871 * Return the largest uint value log such that 2^log <= num.
2872 */
2873static unsigned int
2874ilog2(unsigned int num)
2875{
2876 int lz;
2877
2878 __asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num));
2879 return (31 - lz);
2880}
2881
2882/*
2883 * Convert TLB TSIZE value to mapped region size.
2884 */
2885static vm_size_t
2886tsize2size(unsigned int tsize)
2887{
2888
2889 /*
2890 * size = 4^tsize KB
2891 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
2892 */
2893
2894 return ((1 << (2 * tsize)) * 1024);
2895}
2896
2897/*
2898 * Convert region size (must be power of 4) to TLB TSIZE value.
2899 */
2900static unsigned int
2901size2tsize(vm_size_t size)
2902{
2903
2904 return (ilog2(size) / 2 - 5);
2905}
2906
2907/*
2908 * Register permanent kernel mapping in TLB1.
2909 *
2910 * Entries are created starting from index 0 (current free entry is
2911 * kept in tlb1_idx) and are not supposed to be invalidated.
2912 */
2913static int
2914tlb1_set_entry(vm_offset_t va, vm_offset_t pa, vm_size_t size,
2915 uint32_t flags)
2916{
2917 uint32_t ts, tid;
2918 int tsize;
2919
2920 if (tlb1_idx >= TLB1_ENTRIES) {
2921 printf("tlb1_set_entry: TLB1 full!\n");
2922 return (-1);
2923 }
2924
2925 /* Convert size to TSIZE */
2926 tsize = size2tsize(size);
2927
2928 tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK;
2929 /* XXX TS is hard coded to 0 for now as we only use single address space */
2930 ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK;
2931
2932 /* XXX LOCK tlb1[] */
2933
2934 tlb1[tlb1_idx].mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
2935 tlb1[tlb1_idx].mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
2936 tlb1[tlb1_idx].mas2 = (va & MAS2_EPN_MASK) | flags;
2937
2938 /* Set supervisor RWX permission bits */
2939 tlb1[tlb1_idx].mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
2940
2941 tlb1_write_entry(tlb1_idx++);
2942
2943 /* XXX UNLOCK tlb1[] */
2944
2945 /*
2946 * XXX in general TLB1 updates should be propagated between CPUs,
2947 * since current design assumes to have the same TLB1 set-up on all
2948 * cores.
2949 */
2950 return (0);
2951}
2952
2953/*
2954 * Map in contiguous RAM region into the TLB1 using maximum of
2955 * KERNEL_REGION_MAX_TLB_ENTRIES entries.
2956 *
2957 * If necessary round up last entry size and return total size
2958 * used by all allocated entries.
2959 */
2960vm_size_t
2961tlb1_mapin_region(vm_offset_t va, vm_paddr_t pa, vm_size_t size)
2962{
2963 vm_size_t pgs[KERNEL_REGION_MAX_TLB_ENTRIES];
2964 vm_size_t mapped, pgsz, base, mask;
2965 int idx, nents;
2966
2967 /* Round up to the next 1M */
2968 size = (size + (1 << 20) - 1) & ~((1 << 20) - 1);
2969
2970 mapped = 0;
2971 idx = 0;
2972 base = va;
2973 pgsz = 64*1024*1024;
2974 while (mapped < size) {
2975 while (mapped < size && idx < KERNEL_REGION_MAX_TLB_ENTRIES) {
2976 while (pgsz > (size - mapped))
2977 pgsz >>= 2;
2978 pgs[idx++] = pgsz;
2979 mapped += pgsz;
2980 }
2981
2982 /* We under-map. Correct for this. */
2983 if (mapped < size) {
2984 while (pgs[idx - 1] == pgsz) {
2985 idx--;
2986 mapped -= pgsz;
2987 }
2988 /* XXX We may increase beyond out starting point. */
2989 pgsz <<= 2;
2990 pgs[idx++] = pgsz;
2991 mapped += pgsz;
2992 }
2993 }
2994
2995 nents = idx;
2996 mask = pgs[0] - 1;
2997 /* Align address to the boundary */
2998 if (va & mask) {
2999 va = (va + mask) & ~mask;
3000 pa = (pa + mask) & ~mask;
3001 }
3002
3003 for (idx = 0; idx < nents; idx++) {
3004 pgsz = pgs[idx];
3005 debugf("%u: %x -> %x, size=%x\n", idx, pa, va, pgsz);
3006 tlb1_set_entry(va, pa, pgsz, _TLB_ENTRY_MEM);
3007 pa += pgsz;
3008 va += pgsz;
3009 }
3010
3011 mapped = (va - base);
3012 debugf("mapped size 0x%08x (wasted space 0x%08x)\n",
3013 mapped, mapped - size);
3014 return (mapped);
3015}
3016
3017/*
3018 * TLB1 initialization routine, to be called after the very first
3019 * assembler level setup done in locore.S.
3020 */
3021void
3022tlb1_init(vm_offset_t ccsrbar)
3023{
3024 uint32_t mas0, mas1, mas3;
3025 uint32_t tsz;
3026 u_int i;
3027
3028 ccsrbar_pa = ccsrbar;
3029
3030 if (bootinfo != NULL && bootinfo[0] != 1) {
3031 tlb1_idx = *((uint16_t *)(bootinfo + 8));
3032 } else
3033 tlb1_idx = 1;
3034
3035 /* The first entry/entries are used to map the kernel. */
3036 for (i = 0; i < tlb1_idx; i++) {
3037 mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3038 mtspr(SPR_MAS0, mas0);
3039 __asm __volatile("isync; tlbre");
3040
3041 mas1 = mfspr(SPR_MAS1);
3042 if ((mas1 & MAS1_VALID) == 0)
3043 continue;
3044
3045 mas3 = mfspr(SPR_MAS3);
3046
3047 tlb1[i].mas1 = mas1;
3048 tlb1[i].mas2 = mfspr(SPR_MAS2);
3049 tlb1[i].mas3 = mas3;
3050
3051 if (i == 0)
3052 kernload = mas3 & MAS3_RPN;
3053
3054 tsz = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3055 kernsize += (tsz > 0) ? tsize2size(tsz) : 0;
3056 }
3057
3058 /* Map in CCSRBAR. */
3059 tlb1_set_entry(CCSRBAR_VA, ccsrbar, CCSRBAR_SIZE, _TLB_ENTRY_IO);
3060
3061#ifdef SMP
3062 bp_ntlb1s = tlb1_idx;
3063#endif
3064
3065 /* Purge the remaining entries */
3066 for (i = tlb1_idx; i < TLB1_ENTRIES; i++)
3067 tlb1_write_entry(i);
3068
3069 /* Setup TLB miss defaults */
3070 set_mas4_defaults();
3071}
3072
3073/*
3074 * Setup MAS4 defaults.
3075 * These values are loaded to MAS0-2 on a TLB miss.
3076 */
3077static void
3078set_mas4_defaults(void)
3079{
3080 uint32_t mas4;
3081
3082 /* Defaults: TLB0, PID0, TSIZED=4K */
3083 mas4 = MAS4_TLBSELD0;
3084 mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
3085#ifdef SMP
3086 mas4 |= MAS4_MD;
3087#endif
3088 mtspr(SPR_MAS4, mas4);
3089 __asm __volatile("isync");
3090}
3091
3092/*
3093 * Print out contents of the MAS registers for each TLB1 entry
3094 */
3095void
3096tlb1_print_tlbentries(void)
3097{
3098 uint32_t mas0, mas1, mas2, mas3, mas7;
3099 int i;
3100
3101 debugf("TLB1 entries:\n");
3102 for (i = 0; i < TLB1_ENTRIES; i++) {
3103
3104 mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3105 mtspr(SPR_MAS0, mas0);
3106
3107 __asm __volatile("isync; tlbre");
3108
3109 mas1 = mfspr(SPR_MAS1);
3110 mas2 = mfspr(SPR_MAS2);
3111 mas3 = mfspr(SPR_MAS3);
3112 mas7 = mfspr(SPR_MAS7);
3113
3114 tlb_print_entry(i, mas1, mas2, mas3, mas7);
3115 }
3116}
3117
3118/*
3119 * Print out contents of the in-ram tlb1 table.
3120 */
3121void
3122tlb1_print_entries(void)
3123{
3124 int i;
3125
3126 debugf("tlb1[] table entries:\n");
3127 for (i = 0; i < TLB1_ENTRIES; i++)
3128 tlb_print_entry(i, tlb1[i].mas1, tlb1[i].mas2, tlb1[i].mas3, 0);
3129}
3130
3131/*
3132 * Return 0 if the physical IO range is encompassed by one of the
3133 * the TLB1 entries, otherwise return related error code.
3134 */
3135static int
3136tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
3137{
3138 uint32_t prot;
3139 vm_paddr_t pa_start;
3140 vm_paddr_t pa_end;
3141 unsigned int entry_tsize;
3142 vm_size_t entry_size;
3143
3144 *va = (vm_offset_t)NULL;
3145
3146 /* Skip invalid entries */
3147 if (!(tlb1[i].mas1 & MAS1_VALID))
3148 return (EINVAL);
3149
3150 /*
3151 * The entry must be cache-inhibited, guarded, and r/w
3152 * so it can function as an i/o page
3153 */
3154 prot = tlb1[i].mas2 & (MAS2_I | MAS2_G);
3155 if (prot != (MAS2_I | MAS2_G))
3156 return (EPERM);
3157
3158 prot = tlb1[i].mas3 & (MAS3_SR | MAS3_SW);
3159 if (prot != (MAS3_SR | MAS3_SW))
3160 return (EPERM);
3161
3162 /* The address should be within the entry range. */
3163 entry_tsize = (tlb1[i].mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3164 KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
3165
3166 entry_size = tsize2size(entry_tsize);
3167 pa_start = tlb1[i].mas3 & MAS3_RPN;
3168 pa_end = pa_start + entry_size - 1;
3169
3170 if ((pa < pa_start) || ((pa + size) > pa_end))
3171 return (ERANGE);
3172
3173 /* Return virtual address of this mapping. */
3174 *va = (tlb1[i].mas2 & MAS2_EPN_MASK) + (pa - pa_start);
3175 return (0);
3176}