Deleted Added
full compact
mmu_oea64.c (215158) mmu_oea64.c (215159)
1/*-
2 * Copyright (c) 2001 The NetBSD Foundation, Inc.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to The NetBSD Foundation
6 * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the NetBSD
19 * Foundation, Inc. and its contributors.
20 * 4. Neither the name of The NetBSD Foundation nor the names of its
21 * contributors may be used to endorse or promote products derived
22 * from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36/*-
37 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
38 * Copyright (C) 1995, 1996 TooLs GmbH.
39 * All rights reserved.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. All advertising materials mentioning features or use of this software
50 * must display the following acknowledgement:
51 * This product includes software developed by TooLs GmbH.
52 * 4. The name of TooLs GmbH may not be used to endorse or promote products
53 * derived from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
56 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
57 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
58 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
61 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
62 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
63 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
64 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
67 */
68/*-
69 * Copyright (C) 2001 Benno Rice.
70 * All rights reserved.
71 *
72 * Redistribution and use in source and binary forms, with or without
73 * modification, are permitted provided that the following conditions
74 * are met:
75 * 1. Redistributions of source code must retain the above copyright
76 * notice, this list of conditions and the following disclaimer.
77 * 2. Redistributions in binary form must reproduce the above copyright
78 * notice, this list of conditions and the following disclaimer in the
79 * documentation and/or other materials provided with the distribution.
80 *
81 * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
82 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
83 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
84 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
85 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
86 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
87 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
88 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
89 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
91 */
92
93#include <sys/cdefs.h>
1/*-
2 * Copyright (c) 2001 The NetBSD Foundation, Inc.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to The NetBSD Foundation
6 * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the NetBSD
19 * Foundation, Inc. and its contributors.
20 * 4. Neither the name of The NetBSD Foundation nor the names of its
21 * contributors may be used to endorse or promote products derived
22 * from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36/*-
37 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
38 * Copyright (C) 1995, 1996 TooLs GmbH.
39 * All rights reserved.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. All advertising materials mentioning features or use of this software
50 * must display the following acknowledgement:
51 * This product includes software developed by TooLs GmbH.
52 * 4. The name of TooLs GmbH may not be used to endorse or promote products
53 * derived from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
56 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
57 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
58 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
61 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
62 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
63 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
64 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
67 */
68/*-
69 * Copyright (C) 2001 Benno Rice.
70 * All rights reserved.
71 *
72 * Redistribution and use in source and binary forms, with or without
73 * modification, are permitted provided that the following conditions
74 * are met:
75 * 1. Redistributions of source code must retain the above copyright
76 * notice, this list of conditions and the following disclaimer.
77 * 2. Redistributions in binary form must reproduce the above copyright
78 * notice, this list of conditions and the following disclaimer in the
79 * documentation and/or other materials provided with the distribution.
80 *
81 * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
82 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
83 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
84 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
85 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
86 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
87 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
88 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
89 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
91 */
92
93#include <sys/cdefs.h>
94__FBSDID("$FreeBSD: head/sys/powerpc/aim/mmu_oea64.c 215158 2010-11-12 04:13:48Z nwhitehorn $");
94__FBSDID("$FreeBSD: head/sys/powerpc/aim/mmu_oea64.c 215159 2010-11-12 04:18:19Z nwhitehorn $");
95
96/*
97 * Manages physical address maps.
98 *
99 * In addition to hardware address maps, this module is called upon to
100 * provide software-use-only maps which may or may not be stored in the
101 * same form as hardware maps. These pseudo-maps are used to store
102 * intermediate results from copy operations to and from address spaces.
103 *
104 * Since the information managed by this module is also stored by the
105 * logical address mapping module, this module may throw away valid virtual
106 * to physical mappings at almost any time. However, invalidations of
107 * mappings must be done as requested.
108 *
109 * In order to cope with hardware architectures which make virtual to
110 * physical map invalidates expensive, this module may delay invalidate
111 * reduced protection operations until such time as they are actually
112 * necessary. This module is given full information as to which processors
113 * are currently using which maps, and to when physical maps must be made
114 * correct.
115 */
116
117#include "opt_kstack_pages.h"
118
119#include <sys/param.h>
120#include <sys/kernel.h>
121#include <sys/ktr.h>
122#include <sys/lock.h>
123#include <sys/msgbuf.h>
124#include <sys/mutex.h>
125#include <sys/proc.h>
126#include <sys/sysctl.h>
127#include <sys/systm.h>
128#include <sys/vmmeter.h>
129
130#include <sys/kdb.h>
131
132#include <dev/ofw/openfirm.h>
133
134#include <vm/vm.h>
135#include <vm/vm_param.h>
136#include <vm/vm_kern.h>
137#include <vm/vm_page.h>
138#include <vm/vm_map.h>
139#include <vm/vm_object.h>
140#include <vm/vm_extern.h>
141#include <vm/vm_pageout.h>
142#include <vm/vm_pager.h>
143#include <vm/uma.h>
144
145#include <machine/_inttypes.h>
146#include <machine/cpu.h>
147#include <machine/platform.h>
148#include <machine/frame.h>
149#include <machine/md_var.h>
150#include <machine/psl.h>
151#include <machine/bat.h>
152#include <machine/hid.h>
153#include <machine/pte.h>
154#include <machine/sr.h>
155#include <machine/trap.h>
156#include <machine/mmuvar.h>
157
158#include "mmu_if.h"
159
160#define MOEA_DEBUG
161
162#define TODO panic("%s: not implemented", __func__);
163void moea64_release_vsid(uint64_t vsid);
164uintptr_t moea64_get_unique_vsid(void);
165
166static __inline register_t
167cntlzd(volatile register_t a) {
168 register_t b;
169 __asm ("cntlzd %0, %1" : "=r"(b) : "r"(a));
170 return b;
171}
172
173#define PTESYNC() __asm __volatile("ptesync");
174#define TLBSYNC() __asm __volatile("tlbsync; ptesync");
175#define SYNC() __asm __volatile("sync");
176#define EIEIO() __asm __volatile("eieio");
177
178/*
179 * The tlbie instruction must be executed in 64-bit mode
180 * so we have to twiddle MSR[SF] around every invocation.
181 * Just to add to the fun, exceptions must be off as well
182 * so that we can't trap in 64-bit mode. What a pain.
183 */
184struct mtx tlbie_mutex;
185
186static __inline void
187TLBIE(uint64_t vpn) {
188#ifndef __powerpc64__
189 register_t vpn_hi, vpn_lo;
190 register_t msr;
191 register_t scratch;
192#endif
193
194 vpn <<= ADDR_PIDX_SHFT;
195 vpn &= ~(0xffffULL << 48);
196
197 mtx_lock_spin(&tlbie_mutex);
198#ifdef __powerpc64__
199 __asm __volatile("\
200 ptesync; \
201 tlbie %0; \
202 eieio; \
203 tlbsync; \
204 ptesync;"
205 :: "r"(vpn) : "memory");
206#else
207 vpn_hi = (uint32_t)(vpn >> 32);
208 vpn_lo = (uint32_t)vpn;
209
210 __asm __volatile("\
211 mfmsr %0; \
212 mr %1, %0; \
213 insrdi %1,%5,1,0; \
214 mtmsrd %1; isync; \
215 ptesync; \
216 \
217 sld %1,%2,%4; \
218 or %1,%1,%3; \
219 tlbie %1; \
220 \
221 mtmsrd %0; isync; \
222 eieio; \
223 tlbsync; \
224 ptesync;"
225 : "=r"(msr), "=r"(scratch) : "r"(vpn_hi), "r"(vpn_lo), "r"(32), "r"(1)
226 : "memory");
227#endif
228 mtx_unlock_spin(&tlbie_mutex);
229}
230
231#define DISABLE_TRANS(msr) msr = mfmsr(); mtmsr(msr & ~PSL_DR); isync()
232#define ENABLE_TRANS(msr) mtmsr(msr); isync()
233
234#define VSID_MAKE(sr, hash) ((sr) | (((hash) & 0xfffff) << 4))
235#define VSID_TO_HASH(vsid) (((vsid) >> 4) & 0xfffff)
236#define VSID_HASH_MASK 0x0000007fffffffffULL
237
238#define PVO_PTEGIDX_MASK 0x007UL /* which PTEG slot */
239#define PVO_PTEGIDX_VALID 0x008UL /* slot is valid */
240#define PVO_WIRED 0x010UL /* PVO entry is wired */
241#define PVO_MANAGED 0x020UL /* PVO entry is managed */
242#define PVO_BOOTSTRAP 0x080UL /* PVO entry allocated during
243 bootstrap */
244#define PVO_FAKE 0x100UL /* fictitious phys page */
245#define PVO_LARGE 0x200UL /* large page */
246#define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF)
247#define PVO_ISFAKE(pvo) ((pvo)->pvo_vaddr & PVO_FAKE)
248#define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
249#define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
250#define PVO_PTEGIDX_CLR(pvo) \
251 ((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
252#define PVO_PTEGIDX_SET(pvo, i) \
253 ((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
254#define PVO_VSID(pvo) ((pvo)->pvo_vpn >> 16)
255
256#define MOEA_PVO_CHECK(pvo)
257
258#define LOCK_TABLE() mtx_lock(&moea64_table_mutex)
259#define UNLOCK_TABLE() mtx_unlock(&moea64_table_mutex);
260#define ASSERT_TABLE_LOCK() mtx_assert(&moea64_table_mutex, MA_OWNED)
261
262struct ofw_map {
263 cell_t om_va;
264 cell_t om_len;
265 cell_t om_pa_hi;
266 cell_t om_pa_lo;
267 cell_t om_mode;
268};
269
270/*
271 * Map of physical memory regions.
272 */
273static struct mem_region *regions;
274static struct mem_region *pregions;
275static u_int phys_avail_count;
276static int regions_sz, pregions_sz;
277
278extern struct pmap ofw_pmap;
279
280extern void bs_remap_earlyboot(void);
281
282
283/*
284 * Lock for the pteg and pvo tables.
285 */
286struct mtx moea64_table_mutex;
287struct mtx moea64_slb_mutex;
288
289/*
290 * PTEG data.
291 */
292static struct lpteg *moea64_pteg_table;
293u_int moea64_pteg_count;
294u_int moea64_pteg_mask;
295
296/*
297 * PVO data.
298 */
299struct pvo_head *moea64_pvo_table; /* pvo entries by pteg index */
300struct pvo_head moea64_pvo_kunmanaged = /* list of unmanaged pages */
301 LIST_HEAD_INITIALIZER(moea64_pvo_kunmanaged);
302
303uma_zone_t moea64_upvo_zone; /* zone for pvo entries for unmanaged pages */
304uma_zone_t moea64_mpvo_zone; /* zone for pvo entries for managed pages */
305
306#define BPVO_POOL_SIZE 327680
307static struct pvo_entry *moea64_bpvo_pool;
308static int moea64_bpvo_pool_index = 0;
309
310#define VSID_NBPW (sizeof(u_int32_t) * 8)
311#ifdef __powerpc64__
312#define NVSIDS (NPMAPS * 16)
313#define VSID_HASHMASK 0xffffffffUL
314#else
315#define NVSIDS NPMAPS
316#define VSID_HASHMASK 0xfffffUL
317#endif
318static u_int moea64_vsid_bitmap[NVSIDS / VSID_NBPW];
319
320static boolean_t moea64_initialized = FALSE;
321
322/*
323 * Statistics.
324 */
325u_int moea64_pte_valid = 0;
326u_int moea64_pte_overflow = 0;
327u_int moea64_pvo_entries = 0;
328u_int moea64_pvo_enter_calls = 0;
329u_int moea64_pvo_remove_calls = 0;
330SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
331 &moea64_pte_valid, 0, "");
332SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
333 &moea64_pte_overflow, 0, "");
334SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
335 &moea64_pvo_entries, 0, "");
336SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
337 &moea64_pvo_enter_calls, 0, "");
338SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
339 &moea64_pvo_remove_calls, 0, "");
340
341vm_offset_t moea64_scratchpage_va[2];
342uint64_t moea64_scratchpage_vpn[2];
343struct lpte *moea64_scratchpage_pte[2];
344struct mtx moea64_scratchpage_mtx;
345
346uint64_t moea64_large_page_mask = 0;
347int moea64_large_page_size = 0;
348int moea64_large_page_shift = 0;
349
350/*
351 * Allocate physical memory for use in moea64_bootstrap.
352 */
353static vm_offset_t moea64_bootstrap_alloc(vm_size_t, u_int);
354
355/*
356 * PTE calls.
357 */
358static int moea64_pte_insert(u_int, struct lpte *);
359
360/*
361 * PVO calls.
362 */
363static int moea64_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
364 vm_offset_t, vm_offset_t, uint64_t, int);
365static void moea64_pvo_remove(struct pvo_entry *);
366static struct pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t);
367static struct lpte *moea64_pvo_to_pte(const struct pvo_entry *);
368
369/*
370 * Utility routines.
371 */
372static void moea64_bootstrap(mmu_t mmup,
373 vm_offset_t kernelstart, vm_offset_t kernelend);
374static void moea64_cpu_bootstrap(mmu_t, int ap);
375static void moea64_enter_locked(pmap_t, vm_offset_t, vm_page_t,
376 vm_prot_t, boolean_t);
377static boolean_t moea64_query_bit(vm_page_t, u_int64_t);
378static u_int moea64_clear_bit(vm_page_t, u_int64_t);
379static void moea64_kremove(mmu_t, vm_offset_t);
380static void moea64_syncicache(pmap_t pmap, vm_offset_t va,
381 vm_offset_t pa, vm_size_t sz);
382static void tlbia(void);
383#ifdef __powerpc64__
384static void slbia(void);
385#endif
386
387/*
388 * Kernel MMU interface
389 */
390void moea64_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
391void moea64_clear_modify(mmu_t, vm_page_t);
392void moea64_clear_reference(mmu_t, vm_page_t);
393void moea64_copy_page(mmu_t, vm_page_t, vm_page_t);
394void moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, boolean_t);
395void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
396 vm_prot_t);
397void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
398vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t);
399vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
400void moea64_init(mmu_t);
401boolean_t moea64_is_modified(mmu_t, vm_page_t);
402boolean_t moea64_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
403boolean_t moea64_is_referenced(mmu_t, vm_page_t);
404boolean_t moea64_ts_referenced(mmu_t, vm_page_t);
405vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_offset_t, vm_offset_t, int);
406boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t);
407int moea64_page_wired_mappings(mmu_t, vm_page_t);
408void moea64_pinit(mmu_t, pmap_t);
409void moea64_pinit0(mmu_t, pmap_t);
410void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
411void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
412void moea64_qremove(mmu_t, vm_offset_t, int);
413void moea64_release(mmu_t, pmap_t);
414void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
415void moea64_remove_all(mmu_t, vm_page_t);
416void moea64_remove_write(mmu_t, vm_page_t);
417void moea64_zero_page(mmu_t, vm_page_t);
418void moea64_zero_page_area(mmu_t, vm_page_t, int, int);
419void moea64_zero_page_idle(mmu_t, vm_page_t);
420void moea64_activate(mmu_t, struct thread *);
421void moea64_deactivate(mmu_t, struct thread *);
422void *moea64_mapdev(mmu_t, vm_offset_t, vm_size_t);
423void *moea64_mapdev_attr(mmu_t, vm_offset_t, vm_size_t, vm_memattr_t);
424void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t);
425vm_offset_t moea64_kextract(mmu_t, vm_offset_t);
426void moea64_page_set_memattr(mmu_t, vm_page_t m, vm_memattr_t ma);
427void moea64_kenter_attr(mmu_t, vm_offset_t, vm_offset_t, vm_memattr_t ma);
428void moea64_kenter(mmu_t, vm_offset_t, vm_offset_t);
429boolean_t moea64_dev_direct_mapped(mmu_t, vm_offset_t, vm_size_t);
430static void moea64_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
431
432static mmu_method_t moea64_methods[] = {
433 MMUMETHOD(mmu_change_wiring, moea64_change_wiring),
434 MMUMETHOD(mmu_clear_modify, moea64_clear_modify),
435 MMUMETHOD(mmu_clear_reference, moea64_clear_reference),
436 MMUMETHOD(mmu_copy_page, moea64_copy_page),
437 MMUMETHOD(mmu_enter, moea64_enter),
438 MMUMETHOD(mmu_enter_object, moea64_enter_object),
439 MMUMETHOD(mmu_enter_quick, moea64_enter_quick),
440 MMUMETHOD(mmu_extract, moea64_extract),
441 MMUMETHOD(mmu_extract_and_hold, moea64_extract_and_hold),
442 MMUMETHOD(mmu_init, moea64_init),
443 MMUMETHOD(mmu_is_modified, moea64_is_modified),
444 MMUMETHOD(mmu_is_prefaultable, moea64_is_prefaultable),
445 MMUMETHOD(mmu_is_referenced, moea64_is_referenced),
446 MMUMETHOD(mmu_ts_referenced, moea64_ts_referenced),
447 MMUMETHOD(mmu_map, moea64_map),
448 MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick),
449 MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings),
450 MMUMETHOD(mmu_pinit, moea64_pinit),
451 MMUMETHOD(mmu_pinit0, moea64_pinit0),
452 MMUMETHOD(mmu_protect, moea64_protect),
453 MMUMETHOD(mmu_qenter, moea64_qenter),
454 MMUMETHOD(mmu_qremove, moea64_qremove),
455 MMUMETHOD(mmu_release, moea64_release),
456 MMUMETHOD(mmu_remove, moea64_remove),
457 MMUMETHOD(mmu_remove_all, moea64_remove_all),
458 MMUMETHOD(mmu_remove_write, moea64_remove_write),
459 MMUMETHOD(mmu_sync_icache, moea64_sync_icache),
460 MMUMETHOD(mmu_zero_page, moea64_zero_page),
461 MMUMETHOD(mmu_zero_page_area, moea64_zero_page_area),
462 MMUMETHOD(mmu_zero_page_idle, moea64_zero_page_idle),
463 MMUMETHOD(mmu_activate, moea64_activate),
464 MMUMETHOD(mmu_deactivate, moea64_deactivate),
465 MMUMETHOD(mmu_page_set_memattr, moea64_page_set_memattr),
466
467 /* Internal interfaces */
468 MMUMETHOD(mmu_bootstrap, moea64_bootstrap),
469 MMUMETHOD(mmu_cpu_bootstrap, moea64_cpu_bootstrap),
470 MMUMETHOD(mmu_mapdev, moea64_mapdev),
471 MMUMETHOD(mmu_mapdev_attr, moea64_mapdev_attr),
472 MMUMETHOD(mmu_unmapdev, moea64_unmapdev),
473 MMUMETHOD(mmu_kextract, moea64_kextract),
474 MMUMETHOD(mmu_kenter, moea64_kenter),
475 MMUMETHOD(mmu_kenter_attr, moea64_kenter_attr),
476 MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped),
477
478 { 0, 0 }
479};
480
481MMU_DEF(oea64_mmu, MMU_TYPE_G5, moea64_methods, 0);
482
483static __inline u_int
484va_to_pteg(uint64_t vsid, vm_offset_t addr, int large)
485{
486 uint64_t hash;
487 int shift;
488
489 shift = large ? moea64_large_page_shift : ADDR_PIDX_SHFT;
490 hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)addr & ADDR_PIDX) >>
491 shift);
492 return (hash & moea64_pteg_mask);
493}
494
495static __inline struct pvo_head *
496vm_page_to_pvoh(vm_page_t m)
497{
498
499 return (&m->md.mdpg_pvoh);
500}
501
502static __inline void
503moea64_attr_clear(vm_page_t m, u_int64_t ptebit)
504{
505
506 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
507 m->md.mdpg_attrs &= ~ptebit;
508}
509
510static __inline u_int64_t
511moea64_attr_fetch(vm_page_t m)
512{
513
514 return (m->md.mdpg_attrs);
515}
516
517static __inline void
518moea64_attr_save(vm_page_t m, u_int64_t ptebit)
519{
520
521 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
522 m->md.mdpg_attrs |= ptebit;
523}
524
525static __inline void
526moea64_pte_create(struct lpte *pt, uint64_t vsid, vm_offset_t va,
527 uint64_t pte_lo, int flags)
528{
529
530 ASSERT_TABLE_LOCK();
531
532 /*
533 * Construct a PTE. Default to IMB initially. Valid bit only gets
534 * set when the real pte is set in memory.
535 *
536 * Note: Don't set the valid bit for correct operation of tlb update.
537 */
538 pt->pte_hi = (vsid << LPTE_VSID_SHIFT) |
539 (((uint64_t)(va & ADDR_PIDX) >> ADDR_API_SHFT64) & LPTE_API);
540
541 if (flags & PVO_LARGE)
542 pt->pte_hi |= LPTE_BIG;
543
544 pt->pte_lo = pte_lo;
545}
546
547static __inline void
548moea64_pte_synch(struct lpte *pt, struct lpte *pvo_pt)
549{
550
551 ASSERT_TABLE_LOCK();
552
553 pvo_pt->pte_lo |= pt->pte_lo & (LPTE_REF | LPTE_CHG);
554}
555
556static __inline void
557moea64_pte_clear(struct lpte *pt, uint64_t vpn, u_int64_t ptebit)
558{
559 ASSERT_TABLE_LOCK();
560
561 /*
562 * As shown in Section 7.6.3.2.3
563 */
564 pt->pte_lo &= ~ptebit;
565 TLBIE(vpn);
566}
567
568static __inline void
569moea64_pte_set(struct lpte *pt, struct lpte *pvo_pt)
570{
571
572 ASSERT_TABLE_LOCK();
573 pvo_pt->pte_hi |= LPTE_VALID;
574
575 /*
576 * Update the PTE as defined in section 7.6.3.1.
577 * Note that the REF/CHG bits are from pvo_pt and thus should have
578 * been saved so this routine can restore them (if desired).
579 */
580 pt->pte_lo = pvo_pt->pte_lo;
581 EIEIO();
582 pt->pte_hi = pvo_pt->pte_hi;
583 PTESYNC();
584 moea64_pte_valid++;
585}
586
587static __inline void
588moea64_pte_unset(struct lpte *pt, struct lpte *pvo_pt, uint64_t vpn)
589{
590 ASSERT_TABLE_LOCK();
591 pvo_pt->pte_hi &= ~LPTE_VALID;
592
593 /*
594 * Force the reg & chg bits back into the PTEs.
595 */
596 SYNC();
597
598 /*
599 * Invalidate the pte.
600 */
601 pt->pte_hi &= ~LPTE_VALID;
602 TLBIE(vpn);
603
604 /*
605 * Save the reg & chg bits.
606 */
607 moea64_pte_synch(pt, pvo_pt);
608 moea64_pte_valid--;
609}
610
611static __inline void
612moea64_pte_change(struct lpte *pt, struct lpte *pvo_pt, uint64_t vpn)
613{
614
615 /*
616 * Invalidate the PTE
617 */
618 moea64_pte_unset(pt, pvo_pt, vpn);
619 moea64_pte_set(pt, pvo_pt);
620}
621
622static __inline uint64_t
623moea64_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
624{
625 uint64_t pte_lo;
626 int i;
627
628 if (ma != VM_MEMATTR_DEFAULT) {
629 switch (ma) {
630 case VM_MEMATTR_UNCACHEABLE:
631 return (LPTE_I | LPTE_G);
632 case VM_MEMATTR_WRITE_COMBINING:
633 case VM_MEMATTR_WRITE_BACK:
634 case VM_MEMATTR_PREFETCHABLE:
635 return (LPTE_I);
636 case VM_MEMATTR_WRITE_THROUGH:
637 return (LPTE_W | LPTE_M);
638 }
639 }
640
641 /*
642 * Assume the page is cache inhibited and access is guarded unless
643 * it's in our available memory array.
644 */
645 pte_lo = LPTE_I | LPTE_G;
646 for (i = 0; i < pregions_sz; i++) {
647 if ((pa >= pregions[i].mr_start) &&
648 (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
649 pte_lo &= ~(LPTE_I | LPTE_G);
650 pte_lo |= LPTE_M;
651 break;
652 }
653 }
654
655 return pte_lo;
656}
657
658/*
659 * Quick sort callout for comparing memory regions.
660 */
661static int mr_cmp(const void *a, const void *b);
662static int om_cmp(const void *a, const void *b);
663
664static int
665mr_cmp(const void *a, const void *b)
666{
667 const struct mem_region *regiona;
668 const struct mem_region *regionb;
669
670 regiona = a;
671 regionb = b;
672 if (regiona->mr_start < regionb->mr_start)
673 return (-1);
674 else if (regiona->mr_start > regionb->mr_start)
675 return (1);
676 else
677 return (0);
678}
679
680static int
681om_cmp(const void *a, const void *b)
682{
683 const struct ofw_map *mapa;
684 const struct ofw_map *mapb;
685
686 mapa = a;
687 mapb = b;
688 if (mapa->om_pa_hi < mapb->om_pa_hi)
689 return (-1);
690 else if (mapa->om_pa_hi > mapb->om_pa_hi)
691 return (1);
692 else if (mapa->om_pa_lo < mapb->om_pa_lo)
693 return (-1);
694 else if (mapa->om_pa_lo > mapb->om_pa_lo)
695 return (1);
696 else
697 return (0);
698}
699
700static void
701moea64_cpu_bootstrap(mmu_t mmup, int ap)
702{
703 int i = 0;
704 #ifdef __powerpc64__
705 struct slb *slb = PCPU_GET(slb);
706 #endif
707
708 /*
709 * Initialize segment registers and MMU
710 */
711
712 mtmsr(mfmsr() & ~PSL_DR & ~PSL_IR); isync();
713
714 /*
715 * Install kernel SLB entries
716 */
717
718 #ifdef __powerpc64__
719 slbia();
720
721 for (i = 0; i < 64; i++) {
722 if (!(slb[i].slbe & SLBE_VALID))
723 continue;
724
725 __asm __volatile ("slbmte %0, %1" ::
726 "r"(slb[i].slbv), "r"(slb[i].slbe));
727 }
728 #else
729 for (i = 0; i < 16; i++)
730 mtsrin(i << ADDR_SR_SHFT, kernel_pmap->pm_sr[i]);
731 #endif
732
733 /*
734 * Install page table
735 */
736
737 __asm __volatile ("ptesync; mtsdr1 %0; isync"
738 :: "r"((uintptr_t)moea64_pteg_table
739 | (64 - cntlzd(moea64_pteg_mask >> 11))));
740 tlbia();
741}
742
743static void
744moea64_add_ofw_mappings(mmu_t mmup, phandle_t mmu, size_t sz)
745{
746 struct ofw_map translations[sz/sizeof(struct ofw_map)];
747 register_t msr;
748 vm_offset_t off;
749 vm_paddr_t pa_base;
750 int i, ofw_mappings;
751
752 bzero(translations, sz);
753 if (OF_getprop(mmu, "translations", translations, sz) == -1)
754 panic("moea64_bootstrap: can't get ofw translations");
755
756 CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
757 sz /= sizeof(*translations);
758 qsort(translations, sz, sizeof (*translations), om_cmp);
759
760 for (i = 0, ofw_mappings = 0; i < sz; i++) {
761 CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
762 (uint32_t)(translations[i].om_pa_lo), translations[i].om_va,
763 translations[i].om_len);
764
765 if (translations[i].om_pa_lo % PAGE_SIZE)
766 panic("OFW translation not page-aligned!");
767
768 pa_base = translations[i].om_pa_lo;
769
770 #ifdef __powerpc64__
771 pa_base += (vm_offset_t)translations[i].om_pa_hi << 32;
772 #else
773 if (translations[i].om_pa_hi)
774 panic("OFW translations above 32-bit boundary!");
775 #endif
776
777 /* Now enter the pages for this mapping */
778
779 DISABLE_TRANS(msr);
780 for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
781 if (moea64_pvo_find_va(kernel_pmap,
782 translations[i].om_va + off) != NULL)
783 continue;
784
785 moea64_kenter(mmup, translations[i].om_va + off,
786 pa_base + off);
787
788 ofw_mappings++;
789 }
790 ENABLE_TRANS(msr);
791 }
792}
793
794#ifdef __powerpc64__
795static void
796moea64_probe_large_page(void)
797{
798 uint16_t pvr = mfpvr() >> 16;
799
800 switch (pvr) {
801 case IBM970:
802 case IBM970FX:
803 case IBM970MP:
804 powerpc_sync(); isync();
805 mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG);
806 powerpc_sync(); isync();
807
808 /* FALLTHROUGH */
809 case IBMCELLBE:
810 moea64_large_page_size = 0x1000000; /* 16 MB */
811 moea64_large_page_shift = 24;
812 break;
813 default:
814 moea64_large_page_size = 0;
815 }
816
817 moea64_large_page_mask = moea64_large_page_size - 1;
818}
819
820static void
821moea64_bootstrap_slb_prefault(vm_offset_t va, int large)
822{
823 struct slb *cache;
824 struct slb entry;
825 uint64_t esid, slbe;
826 uint64_t i;
827
828 cache = PCPU_GET(slb);
829 esid = va >> ADDR_SR_SHFT;
830 slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
831
832 for (i = 0; i < 64; i++) {
833 if (cache[i].slbe == (slbe | i))
834 return;
835 }
836
837 entry.slbe = slbe;
838 entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT;
839 if (large)
840 entry.slbv |= SLBV_L;
841
842 slb_insert_kernel(entry.slbe, entry.slbv);
843}
844#endif
845
846static void
847moea64_setup_direct_map(mmu_t mmup, vm_offset_t kernelstart,
848 vm_offset_t kernelend)
849{
850 register_t msr;
851 vm_paddr_t pa;
852 vm_offset_t size, off;
853 uint64_t pte_lo;
854 int i;
855
856 if (moea64_large_page_size == 0)
857 hw_direct_map = 0;
858
859 DISABLE_TRANS(msr);
860 if (hw_direct_map) {
861 PMAP_LOCK(kernel_pmap);
862 for (i = 0; i < pregions_sz; i++) {
863 for (pa = pregions[i].mr_start; pa < pregions[i].mr_start +
864 pregions[i].mr_size; pa += moea64_large_page_size) {
865 pte_lo = LPTE_M;
866
867 /*
868 * Set memory access as guarded if prefetch within
869 * the page could exit the available physmem area.
870 */
871 if (pa & moea64_large_page_mask) {
872 pa &= moea64_large_page_mask;
873 pte_lo |= LPTE_G;
874 }
875 if (pa + moea64_large_page_size >
876 pregions[i].mr_start + pregions[i].mr_size)
877 pte_lo |= LPTE_G;
878
879 moea64_pvo_enter(kernel_pmap, moea64_upvo_zone,
880 &moea64_pvo_kunmanaged, pa, pa,
881 pte_lo, PVO_WIRED | PVO_LARGE |
882 VM_PROT_EXECUTE);
883 }
884 }
885 PMAP_UNLOCK(kernel_pmap);
886 } else {
887 size = moea64_pteg_count * sizeof(struct lpteg);
888 off = (vm_offset_t)(moea64_pteg_table);
889 for (pa = off; pa < off + size; pa += PAGE_SIZE)
890 moea64_kenter(mmup, pa, pa);
891 size = sizeof(struct pvo_head) * moea64_pteg_count;
892 off = (vm_offset_t)(moea64_pvo_table);
893 for (pa = off; pa < off + size; pa += PAGE_SIZE)
894 moea64_kenter(mmup, pa, pa);
895 size = BPVO_POOL_SIZE*sizeof(struct pvo_entry);
896 off = (vm_offset_t)(moea64_bpvo_pool);
897 for (pa = off; pa < off + size; pa += PAGE_SIZE)
898 moea64_kenter(mmup, pa, pa);
899
900 /*
901 * Map certain important things, like ourselves.
902 *
903 * NOTE: We do not map the exception vector space. That code is
904 * used only in real mode, and leaving it unmapped allows us to
905 * catch NULL pointer deferences, instead of making NULL a valid
906 * address.
907 */
908
909 for (pa = kernelstart & ~PAGE_MASK; pa < kernelend;
910 pa += PAGE_SIZE)
911 moea64_kenter(mmup, pa, pa);
912 }
913 ENABLE_TRANS(msr);
914}
915
916static void
917moea64_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
918{
919 ihandle_t mmui;
920 phandle_t chosen;
921 phandle_t mmu;
922 size_t sz;
923 int i, j;
924 vm_size_t size, physsz, hwphyssz;
925 vm_offset_t pa, va;
926 register_t msr;
927 void *dpcpu;
928
929#ifndef __powerpc64__
930 /* We don't have a direct map since there is no BAT */
931 hw_direct_map = 0;
932
933 /* Make sure battable is zero, since we have no BAT */
934 for (i = 0; i < 16; i++) {
935 battable[i].batu = 0;
936 battable[i].batl = 0;
937 }
938#else
939 moea64_probe_large_page();
940
941 /* Use a direct map if we have large page support */
942 if (moea64_large_page_size > 0)
943 hw_direct_map = 1;
944 else
945 hw_direct_map = 0;
946#endif
947
948 /* Get physical memory regions from firmware */
949 mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
950 CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
951
952 qsort(pregions, pregions_sz, sizeof(*pregions), mr_cmp);
953 if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
954 panic("moea64_bootstrap: phys_avail too small");
955 qsort(regions, regions_sz, sizeof(*regions), mr_cmp);
956 phys_avail_count = 0;
957 physsz = 0;
958 hwphyssz = 0;
959 TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
960 for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
961 CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
962 regions[i].mr_start + regions[i].mr_size,
963 regions[i].mr_size);
964 if (hwphyssz != 0 &&
965 (physsz + regions[i].mr_size) >= hwphyssz) {
966 if (physsz < hwphyssz) {
967 phys_avail[j] = regions[i].mr_start;
968 phys_avail[j + 1] = regions[i].mr_start +
969 hwphyssz - physsz;
970 physsz = hwphyssz;
971 phys_avail_count++;
972 }
973 break;
974 }
975 phys_avail[j] = regions[i].mr_start;
976 phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
977 phys_avail_count++;
978 physsz += regions[i].mr_size;
979 }
980
981 /* Check for overlap with the kernel and exception vectors */
982 for (j = 0; j < 2*phys_avail_count; j+=2) {
983 if (phys_avail[j] < EXC_LAST)
984 phys_avail[j] += EXC_LAST;
985
986 if (kernelstart >= phys_avail[j] &&
987 kernelstart < phys_avail[j+1]) {
988 if (kernelend < phys_avail[j+1]) {
989 phys_avail[2*phys_avail_count] =
990 (kernelend & ~PAGE_MASK) + PAGE_SIZE;
991 phys_avail[2*phys_avail_count + 1] =
992 phys_avail[j+1];
993 phys_avail_count++;
994 }
995
996 phys_avail[j+1] = kernelstart & ~PAGE_MASK;
997 }
998
999 if (kernelend >= phys_avail[j] &&
1000 kernelend < phys_avail[j+1]) {
1001 if (kernelstart > phys_avail[j]) {
1002 phys_avail[2*phys_avail_count] = phys_avail[j];
1003 phys_avail[2*phys_avail_count + 1] =
1004 kernelstart & ~PAGE_MASK;
1005 phys_avail_count++;
1006 }
1007
1008 phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
1009 }
1010 }
1011
1012 physmem = btoc(physsz);
1013
1014 /*
1015 * Allocate PTEG table.
1016 */
1017#ifdef PTEGCOUNT
1018 moea64_pteg_count = PTEGCOUNT;
1019#else
1020 moea64_pteg_count = 0x1000;
1021
1022 while (moea64_pteg_count < physmem)
1023 moea64_pteg_count <<= 1;
1024
1025 moea64_pteg_count >>= 1;
1026#endif /* PTEGCOUNT */
1027
1028 size = moea64_pteg_count * sizeof(struct lpteg);
1029 CTR2(KTR_PMAP, "moea64_bootstrap: %d PTEGs, %d bytes",
1030 moea64_pteg_count, size);
1031
1032 /*
1033 * We now need to allocate memory. This memory, to be allocated,
1034 * has to reside in a page table. The page table we are about to
1035 * allocate. We don't have BAT. So drop to data real mode for a minute
1036 * as a measure of last resort. We do this a couple times.
1037 */
1038
1039 moea64_pteg_table = (struct lpteg *)moea64_bootstrap_alloc(size, size);
1040 DISABLE_TRANS(msr);
1041 bzero((void *)moea64_pteg_table, moea64_pteg_count * sizeof(struct lpteg));
1042 ENABLE_TRANS(msr);
1043
1044 moea64_pteg_mask = moea64_pteg_count - 1;
1045
1046 CTR1(KTR_PMAP, "moea64_bootstrap: PTEG table at %p", moea64_pteg_table);
1047
1048 /*
1049 * Allocate pv/overflow lists.
1050 */
1051 size = sizeof(struct pvo_head) * moea64_pteg_count;
1052
1053 moea64_pvo_table = (struct pvo_head *)moea64_bootstrap_alloc(size,
1054 PAGE_SIZE);
1055 CTR1(KTR_PMAP, "moea64_bootstrap: PVO table at %p", moea64_pvo_table);
1056
1057 DISABLE_TRANS(msr);
1058 for (i = 0; i < moea64_pteg_count; i++)
1059 LIST_INIT(&moea64_pvo_table[i]);
1060 ENABLE_TRANS(msr);
1061
1062 /*
1063 * Initialize the lock that synchronizes access to the pteg and pvo
1064 * tables.
1065 */
1066 mtx_init(&moea64_table_mutex, "pmap table", NULL, MTX_DEF |
1067 MTX_RECURSE);
1068 mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF);
1069
1070 /*
1071 * Initialize the TLBIE lock. TLBIE can only be executed by one CPU.
1072 */
1073 mtx_init(&tlbie_mutex, "tlbie mutex", NULL, MTX_SPIN);
1074
1075 /*
1076 * Initialise the unmanaged pvo pool.
1077 */
1078 moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
1079 BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
1080 moea64_bpvo_pool_index = 0;
1081
1082 /*
1083 * Make sure kernel vsid is allocated as well as VSID 0.
1084 */
1085 #ifndef __powerpc64__
1086 moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW]
1087 |= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
1088 moea64_vsid_bitmap[0] |= 1;
1089 #endif
1090
1091 /*
1092 * Initialize the kernel pmap (which is statically allocated).
1093 */
1094 #ifdef __powerpc64__
1095 for (i = 0; i < 64; i++) {
1096 pcpup->pc_slb[i].slbv = 0;
1097 pcpup->pc_slb[i].slbe = 0;
1098 }
1099 #else
1100 for (i = 0; i < 16; i++)
1101 kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
1102 #endif
1103
1104 kernel_pmap->pmap_phys = kernel_pmap;
1105 kernel_pmap->pm_active = ~0;
1106
1107 PMAP_LOCK_INIT(kernel_pmap);
1108
1109 /*
1110 * Now map in all the other buffers we allocated earlier
1111 */
1112
1113 moea64_setup_direct_map(mmup, kernelstart, kernelend);
1114
1115 /*
1116 * Set up the Open Firmware pmap and add its mappings if not in real
1117 * mode.
1118 */
1119
1120 chosen = OF_finddevice("/chosen");
1121 if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1) {
1122 #ifndef __powerpc64__
1123 moea64_pinit(mmup, &ofw_pmap);
1124
1125 for (i = 0; i < 16; i++)
1126 ofw_pmap.pm_sr[i] = kernel_pmap->pm_sr[i];
1127 #endif
1128
1129 mmu = OF_instance_to_package(mmui);
1130 if (mmu == -1 || (sz = OF_getproplen(mmu, "translations")) == -1)
1131 sz = 0;
1132 if (sz > 6144 /* tmpstksz - 2 KB headroom */)
1133 panic("moea64_bootstrap: too many ofw translations");
1134
1135 if (sz > 0)
1136 moea64_add_ofw_mappings(mmup, mmu, sz);
1137 }
1138
1139#ifdef SMP
1140 TLBSYNC();
1141#endif
1142
1143 /*
1144 * Calculate the last available physical address.
1145 */
1146 for (i = 0; phys_avail[i + 2] != 0; i += 2)
1147 ;
1148 Maxmem = powerpc_btop(phys_avail[i + 1]);
1149
1150 /*
1151 * Initialize MMU and remap early physical mappings
1152 */
1153 moea64_cpu_bootstrap(mmup,0);
1154 mtmsr(mfmsr() | PSL_DR | PSL_IR); isync();
1155 pmap_bootstrapped++;
1156 bs_remap_earlyboot();
1157
1158 /*
1159 * Set the start and end of kva.
1160 */
1161 virtual_avail = VM_MIN_KERNEL_ADDRESS;
1162 virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
1163
1164 /*
1165 * Map the entire KVA range into the SLB. We must not fault there.
1166 */
1167 #ifdef __powerpc64__
1168 for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH)
1169 moea64_bootstrap_slb_prefault(va, 0);
1170 #endif
1171
1172 /*
1173 * Figure out how far we can extend virtual_end into segment 16
1174 * without running into existing mappings. Segment 16 is guaranteed
1175 * to contain neither RAM nor devices (at least on Apple hardware),
1176 * but will generally contain some OFW mappings we should not
1177 * step on.
1178 */
1179
1180 #ifndef __powerpc64__ /* KVA is in high memory on PPC64 */
1181 PMAP_LOCK(kernel_pmap);
1182 while (virtual_end < VM_MAX_KERNEL_ADDRESS &&
1183 moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL)
1184 virtual_end += PAGE_SIZE;
1185 PMAP_UNLOCK(kernel_pmap);
1186 #endif
1187
1188 /*
1189 * Allocate some things for page zeroing. We put this directly
1190 * in the page table, marked with LPTE_LOCKED, to avoid any
1191 * of the PVO book-keeping or other parts of the VM system
1192 * from even knowing that this hack exists.
1193 */
1194
1195 if (!hw_direct_map) {
1196 mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL,
1197 MTX_DEF);
1198 for (i = 0; i < 2; i++) {
1199 struct lpte pt;
1200 uint64_t vsid;
1201 int pteidx, ptegidx;
1202
1203 moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
1204 virtual_end -= PAGE_SIZE;
1205
1206 LOCK_TABLE();
1207
1208 vsid = va_to_vsid(kernel_pmap,
1209 moea64_scratchpage_va[i]);
1210 moea64_pte_create(&pt, vsid, moea64_scratchpage_va[i],
1211 LPTE_NOEXEC, 0);
1212 pt.pte_hi |= LPTE_LOCKED;
1213
1214 moea64_scratchpage_vpn[i] = (vsid << 16) |
1215 ((moea64_scratchpage_va[i] & ADDR_PIDX) >>
1216 ADDR_PIDX_SHFT);
1217 ptegidx = va_to_pteg(vsid, moea64_scratchpage_va[i], 0);
1218 pteidx = moea64_pte_insert(ptegidx, &pt);
1219 if (pt.pte_hi & LPTE_HID)
1220 ptegidx ^= moea64_pteg_mask;
1221
1222 moea64_scratchpage_pte[i] =
1223 &moea64_pteg_table[ptegidx].pt[pteidx];
1224
1225 UNLOCK_TABLE();
1226 }
1227 }
1228
1229 /*
1230 * Allocate a kernel stack with a guard page for thread0 and map it
1231 * into the kernel page map.
1232 */
1233 pa = moea64_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
1234 va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1235 virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
1236 CTR2(KTR_PMAP, "moea_bootstrap: kstack0 at %#x (%#x)", pa, va);
1237 thread0.td_kstack = va;
1238 thread0.td_kstack_pages = KSTACK_PAGES;
1239 for (i = 0; i < KSTACK_PAGES; i++) {
1240 moea64_kenter(mmup, va, pa);
1241 pa += PAGE_SIZE;
1242 va += PAGE_SIZE;
1243 }
1244
1245 /*
1246 * Allocate virtual address space for the message buffer.
1247 */
1248 pa = msgbuf_phys = moea64_bootstrap_alloc(MSGBUF_SIZE, PAGE_SIZE);
1249 msgbufp = (struct msgbuf *)virtual_avail;
1250 va = virtual_avail;
1251 virtual_avail += round_page(MSGBUF_SIZE);
1252 while (va < virtual_avail) {
1253 moea64_kenter(mmup, va, pa);
1254 pa += PAGE_SIZE;
1255 va += PAGE_SIZE;
1256 }
1257
1258 /*
1259 * Allocate virtual address space for the dynamic percpu area.
1260 */
1261 pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
1262 dpcpu = (void *)virtual_avail;
1263 va = virtual_avail;
1264 virtual_avail += DPCPU_SIZE;
1265 while (va < virtual_avail) {
1266 moea64_kenter(mmup, va, pa);
1267 pa += PAGE_SIZE;
1268 va += PAGE_SIZE;
1269 }
1270 dpcpu_init(dpcpu, 0);
1271}
1272
1273/*
1274 * Activate a user pmap. The pmap must be activated before its address
1275 * space can be accessed in any way.
1276 */
1277void
1278moea64_activate(mmu_t mmu, struct thread *td)
1279{
1280 pmap_t pm;
1281
1282 pm = &td->td_proc->p_vmspace->vm_pmap;
1283 pm->pm_active |= PCPU_GET(cpumask);
1284
1285 #ifdef __powerpc64__
1286 PCPU_SET(userslb, pm->pm_slb);
1287 #else
1288 PCPU_SET(curpmap, pm->pmap_phys);
1289 #endif
1290}
1291
1292void
1293moea64_deactivate(mmu_t mmu, struct thread *td)
1294{
1295 pmap_t pm;
1296
1297 pm = &td->td_proc->p_vmspace->vm_pmap;
1298 pm->pm_active &= ~(PCPU_GET(cpumask));
1299 #ifdef __powerpc64__
1300 PCPU_SET(userslb, NULL);
1301 #else
1302 PCPU_SET(curpmap, NULL);
1303 #endif
1304}
1305
1306void
1307moea64_change_wiring(mmu_t mmu, pmap_t pm, vm_offset_t va, boolean_t wired)
1308{
1309 struct pvo_entry *pvo;
1310 struct lpte *pt;
1311 uint64_t vsid;
1312 int i, ptegidx;
1313
1314 PMAP_LOCK(pm);
1315 pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
1316
1317 if (pvo != NULL) {
1318 LOCK_TABLE();
1319 pt = moea64_pvo_to_pte(pvo);
1320
1321 if (wired) {
1322 if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1323 pm->pm_stats.wired_count++;
1324 pvo->pvo_vaddr |= PVO_WIRED;
1325 pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
1326 } else {
1327 if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1328 pm->pm_stats.wired_count--;
1329 pvo->pvo_vaddr &= ~PVO_WIRED;
1330 pvo->pvo_pte.lpte.pte_hi &= ~LPTE_WIRED;
1331 }
1332
1333 if (pt != NULL) {
1334 /* Update wiring flag in page table. */
1335 moea64_pte_change(pt, &pvo->pvo_pte.lpte,
1336 pvo->pvo_vpn);
1337 } else if (wired) {
1338 /*
1339 * If we are wiring the page, and it wasn't in the
1340 * page table before, add it.
1341 */
1342 vsid = PVO_VSID(pvo);
1343 ptegidx = va_to_pteg(vsid, PVO_VADDR(pvo),
1344 pvo->pvo_vaddr & PVO_LARGE);
1345
1346 i = moea64_pte_insert(ptegidx, &pvo->pvo_pte.lpte);
1347 if (i >= 0) {
1348 PVO_PTEGIDX_CLR(pvo);
1349 PVO_PTEGIDX_SET(pvo, i);
1350 }
1351 }
1352
1353 UNLOCK_TABLE();
1354 }
1355 PMAP_UNLOCK(pm);
1356}
1357
1358/*
1359 * This goes through and sets the physical address of our
1360 * special scratch PTE to the PA we want to zero or copy. Because
1361 * of locking issues (this can get called in pvo_enter() by
1362 * the UMA allocator), we can't use most other utility functions here
1363 */
1364
1365static __inline
1366void moea64_set_scratchpage_pa(int which, vm_offset_t pa) {
1367
1368 KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!"));
1369 mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
1370
1371 moea64_scratchpage_pte[which]->pte_hi &= ~LPTE_VALID;
1372 TLBIE(moea64_scratchpage_vpn[which]);
1373
1374 moea64_scratchpage_pte[which]->pte_lo &=
1375 ~(LPTE_WIMG | LPTE_RPGN);
1376 moea64_scratchpage_pte[which]->pte_lo |=
1377 moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa;
1378 EIEIO();
1379
1380 moea64_scratchpage_pte[which]->pte_hi |= LPTE_VALID;
1381 PTESYNC(); isync();
1382}
1383
1384void
1385moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1386{
1387 vm_offset_t dst;
1388 vm_offset_t src;
1389
1390 dst = VM_PAGE_TO_PHYS(mdst);
1391 src = VM_PAGE_TO_PHYS(msrc);
1392
1393 if (hw_direct_map) {
1394 kcopy((void *)src, (void *)dst, PAGE_SIZE);
1395 } else {
1396 mtx_lock(&moea64_scratchpage_mtx);
1397
1398 moea64_set_scratchpage_pa(0,src);
1399 moea64_set_scratchpage_pa(1,dst);
1400
1401 kcopy((void *)moea64_scratchpage_va[0],
1402 (void *)moea64_scratchpage_va[1], PAGE_SIZE);
1403
1404 mtx_unlock(&moea64_scratchpage_mtx);
1405 }
1406}
1407
1408void
1409moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1410{
1411 vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1412
1413 if (!moea64_initialized)
1414 panic("moea64_zero_page: can't zero pa %#" PRIxPTR, pa);
1415 if (size + off > PAGE_SIZE)
1416 panic("moea64_zero_page: size + off > PAGE_SIZE");
1417
1418 if (hw_direct_map) {
1419 bzero((caddr_t)pa + off, size);
1420 } else {
1421 mtx_lock(&moea64_scratchpage_mtx);
1422 moea64_set_scratchpage_pa(0,pa);
1423 bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
1424 mtx_unlock(&moea64_scratchpage_mtx);
1425 }
1426}
1427
1428/*
1429 * Zero a page of physical memory by temporarily mapping it
1430 */
1431void
1432moea64_zero_page(mmu_t mmu, vm_page_t m)
1433{
1434 vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1435 vm_offset_t va, off;
1436
1437 if (!moea64_initialized)
1438 panic("moea64_zero_page: can't zero pa %#zx", pa);
1439
1440 if (!hw_direct_map) {
1441 mtx_lock(&moea64_scratchpage_mtx);
1442
1443 moea64_set_scratchpage_pa(0,pa);
1444 va = moea64_scratchpage_va[0];
1445 } else {
1446 va = pa;
1447 }
1448
1449 for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1450 __asm __volatile("dcbz 0,%0" :: "r"(va + off));
1451
1452 if (!hw_direct_map)
1453 mtx_unlock(&moea64_scratchpage_mtx);
1454}
1455
1456void
1457moea64_zero_page_idle(mmu_t mmu, vm_page_t m)
1458{
1459
1460 moea64_zero_page(mmu, m);
1461}
1462
1463/*
1464 * Map the given physical page at the specified virtual address in the
1465 * target pmap with the protection requested. If specified the page
1466 * will be wired down.
1467 */
1468void
1469moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1470 vm_prot_t prot, boolean_t wired)
1471{
1472
1473 vm_page_lock_queues();
1474 PMAP_LOCK(pmap);
1475 moea64_enter_locked(pmap, va, m, prot, wired);
1476 vm_page_unlock_queues();
1477 PMAP_UNLOCK(pmap);
1478}
1479
1480/*
1481 * Map the given physical page at the specified virtual address in the
1482 * target pmap with the protection requested. If specified the page
1483 * will be wired down.
1484 *
1485 * The page queues and pmap must be locked.
1486 */
1487
1488static void
1489moea64_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1490 boolean_t wired)
1491{
1492 struct pvo_head *pvo_head;
1493 uma_zone_t zone;
1494 vm_page_t pg;
1495 uint64_t pte_lo;
1496 u_int pvo_flags;
1497 int error;
1498
1499 if (!moea64_initialized) {
1500 pvo_head = &moea64_pvo_kunmanaged;
1501 pg = NULL;
1502 zone = moea64_upvo_zone;
1503 pvo_flags = 0;
1504 } else {
1505 pvo_head = vm_page_to_pvoh(m);
1506 pg = m;
1507 zone = moea64_mpvo_zone;
1508 pvo_flags = PVO_MANAGED;
1509 }
1510
1511 if (pmap_bootstrapped)
1512 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1513 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1514 KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
1515 (m->oflags & VPO_BUSY) != 0 || VM_OBJECT_LOCKED(m->object),
1516 ("moea64_enter_locked: page %p is not busy", m));
1517
1518 /* XXX change the pvo head for fake pages */
1519 if ((m->flags & PG_FICTITIOUS) == PG_FICTITIOUS) {
1520 pvo_flags &= ~PVO_MANAGED;
1521 pvo_head = &moea64_pvo_kunmanaged;
1522 zone = moea64_upvo_zone;
1523 }
1524
1525 pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1526
1527 if (prot & VM_PROT_WRITE) {
1528 pte_lo |= LPTE_BW;
1529 if (pmap_bootstrapped &&
1530 (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0)
1531 vm_page_flag_set(m, PG_WRITEABLE);
1532 } else
1533 pte_lo |= LPTE_BR;
1534
1535 if (prot & VM_PROT_EXECUTE)
1536 pvo_flags |= VM_PROT_EXECUTE;
1537
1538 if (wired)
1539 pvo_flags |= PVO_WIRED;
1540
1541 if ((m->flags & PG_FICTITIOUS) != 0)
1542 pvo_flags |= PVO_FAKE;
1543
1544 error = moea64_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
1545 pte_lo, pvo_flags);
1546
1547 /*
1548 * Flush the page from the instruction cache if this page is
1549 * mapped executable and cacheable.
1550 */
1551 if ((pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1552 moea64_syncicache(pmap, va, VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1553 }
1554}
1555
1556static void
1557moea64_syncicache(pmap_t pmap, vm_offset_t va, vm_offset_t pa, vm_size_t sz)
1558{
1559
1560 /*
1561 * This is much trickier than on older systems because
1562 * we can't sync the icache on physical addresses directly
1563 * without a direct map. Instead we check a couple of cases
1564 * where the memory is already mapped in and, failing that,
1565 * use the same trick we use for page zeroing to create
1566 * a temporary mapping for this physical address.
1567 */
1568
1569 if (!pmap_bootstrapped) {
1570 /*
1571 * If PMAP is not bootstrapped, we are likely to be
1572 * in real mode.
1573 */
1574 __syncicache((void *)pa, sz);
1575 } else if (pmap == kernel_pmap) {
1576 __syncicache((void *)va, sz);
1577 } else if (hw_direct_map) {
1578 __syncicache((void *)pa, sz);
1579 } else {
1580 /* Use the scratch page to set up a temp mapping */
1581
1582 mtx_lock(&moea64_scratchpage_mtx);
1583
1584 moea64_set_scratchpage_pa(1,pa & ~ADDR_POFF);
1585 __syncicache((void *)(moea64_scratchpage_va[1] +
1586 (va & ADDR_POFF)), sz);
1587
1588 mtx_unlock(&moea64_scratchpage_mtx);
1589 }
1590}
1591
1592/*
1593 * Maps a sequence of resident pages belonging to the same object.
1594 * The sequence begins with the given page m_start. This page is
1595 * mapped at the given virtual address start. Each subsequent page is
1596 * mapped at a virtual address that is offset from start by the same
1597 * amount as the page is offset from m_start within the object. The
1598 * last page in the sequence is the page with the largest offset from
1599 * m_start that can be mapped at a virtual address less than the given
1600 * virtual address end. Not every virtual page between start and end
1601 * is mapped; only those for which a resident page exists with the
1602 * corresponding offset from m_start are mapped.
1603 */
1604void
1605moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1606 vm_page_t m_start, vm_prot_t prot)
1607{
1608 vm_page_t m;
1609 vm_pindex_t diff, psize;
1610
1611 psize = atop(end - start);
1612 m = m_start;
1613 vm_page_lock_queues();
1614 PMAP_LOCK(pm);
1615 while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1616 moea64_enter_locked(pm, start + ptoa(diff), m, prot &
1617 (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1618 m = TAILQ_NEXT(m, listq);
1619 }
1620 vm_page_unlock_queues();
1621 PMAP_UNLOCK(pm);
1622}
1623
1624void
1625moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1626 vm_prot_t prot)
1627{
1628
1629 vm_page_lock_queues();
1630 PMAP_LOCK(pm);
1631 moea64_enter_locked(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1632 FALSE);
1633 vm_page_unlock_queues();
1634 PMAP_UNLOCK(pm);
1635}
1636
1637vm_paddr_t
1638moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1639{
1640 struct pvo_entry *pvo;
1641 vm_paddr_t pa;
1642
1643 PMAP_LOCK(pm);
1644 pvo = moea64_pvo_find_va(pm, va);
1645 if (pvo == NULL)
1646 pa = 0;
1647 else
1648 pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) |
1649 (va - PVO_VADDR(pvo));
1650 PMAP_UNLOCK(pm);
1651 return (pa);
1652}
1653
1654/*
1655 * Atomically extract and hold the physical page with the given
1656 * pmap and virtual address pair if that mapping permits the given
1657 * protection.
1658 */
1659vm_page_t
1660moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1661{
1662 struct pvo_entry *pvo;
1663 vm_page_t m;
1664 vm_paddr_t pa;
1665
1666 m = NULL;
1667 pa = 0;
1668 PMAP_LOCK(pmap);
1669retry:
1670 pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1671 if (pvo != NULL && (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) &&
1672 ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) == LPTE_RW ||
1673 (prot & VM_PROT_WRITE) == 0)) {
1674 if (vm_page_pa_tryrelock(pmap,
1675 pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, &pa))
1676 goto retry;
1677 m = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
1678 vm_page_hold(m);
1679 }
1680 PA_UNLOCK_COND(pa);
1681 PMAP_UNLOCK(pmap);
1682 return (m);
1683}
1684
1685static void *
1686moea64_uma_page_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
1687{
1688 /*
1689 * This entire routine is a horrible hack to avoid bothering kmem
1690 * for new KVA addresses. Because this can get called from inside
1691 * kmem allocation routines, calling kmem for a new address here
1692 * can lead to multiply locking non-recursive mutexes.
1693 */
1694 static vm_pindex_t color;
1695 vm_offset_t va;
1696
1697 vm_page_t m;
1698 int pflags, needed_lock;
1699
1700 *flags = UMA_SLAB_PRIV;
1701 needed_lock = !PMAP_LOCKED(kernel_pmap);
1702
1703 if (needed_lock)
1704 PMAP_LOCK(kernel_pmap);
1705
1706 if ((wait & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
1707 pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
1708 else
1709 pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED;
1710 if (wait & M_ZERO)
1711 pflags |= VM_ALLOC_ZERO;
1712
1713 for (;;) {
1714 m = vm_page_alloc(NULL, color++, pflags | VM_ALLOC_NOOBJ);
1715 if (m == NULL) {
1716 if (wait & M_NOWAIT)
1717 return (NULL);
1718 VM_WAIT;
1719 } else
1720 break;
1721 }
1722
1723 va = VM_PAGE_TO_PHYS(m);
1724
1725 moea64_pvo_enter(kernel_pmap, moea64_upvo_zone,
1726 &moea64_pvo_kunmanaged, va, VM_PAGE_TO_PHYS(m), LPTE_M,
1727 PVO_WIRED | PVO_BOOTSTRAP);
1728
1729 if (needed_lock)
1730 PMAP_UNLOCK(kernel_pmap);
1731
1732 if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
1733 bzero((void *)va, PAGE_SIZE);
1734
1735 return (void *)va;
1736}
1737
1738void
1739moea64_init(mmu_t mmu)
1740{
1741
1742 CTR0(KTR_PMAP, "moea64_init");
1743
1744 moea64_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1745 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1746 UMA_ZONE_VM | UMA_ZONE_NOFREE);
1747 moea64_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1748 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1749 UMA_ZONE_VM | UMA_ZONE_NOFREE);
1750
1751 if (!hw_direct_map) {
1752 uma_zone_set_allocf(moea64_upvo_zone,moea64_uma_page_alloc);
1753 uma_zone_set_allocf(moea64_mpvo_zone,moea64_uma_page_alloc);
1754 }
1755
1756 moea64_initialized = TRUE;
1757}
1758
1759boolean_t
1760moea64_is_referenced(mmu_t mmu, vm_page_t m)
1761{
1762
1763 KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1764 ("moea64_is_referenced: page %p is not managed", m));
1765 return (moea64_query_bit(m, PTE_REF));
1766}
1767
1768boolean_t
1769moea64_is_modified(mmu_t mmu, vm_page_t m)
1770{
1771
1772 KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1773 ("moea64_is_modified: page %p is not managed", m));
1774
1775 /*
1776 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be
1777 * concurrently set while the object is locked. Thus, if PG_WRITEABLE
1778 * is clear, no PTEs can have LPTE_CHG set.
1779 */
1780 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1781 if ((m->oflags & VPO_BUSY) == 0 &&
1782 (m->flags & PG_WRITEABLE) == 0)
1783 return (FALSE);
1784 return (moea64_query_bit(m, LPTE_CHG));
1785}
1786
1787boolean_t
1788moea64_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1789{
1790 struct pvo_entry *pvo;
1791 boolean_t rv;
1792
1793 PMAP_LOCK(pmap);
1794 pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1795 rv = pvo == NULL || (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) == 0;
1796 PMAP_UNLOCK(pmap);
1797 return (rv);
1798}
1799
1800void
1801moea64_clear_reference(mmu_t mmu, vm_page_t m)
1802{
1803
1804 KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1805 ("moea64_clear_reference: page %p is not managed", m));
1806 moea64_clear_bit(m, LPTE_REF);
1807}
1808
1809void
1810moea64_clear_modify(mmu_t mmu, vm_page_t m)
1811{
1812
1813 KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1814 ("moea64_clear_modify: page %p is not managed", m));
1815 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1816 KASSERT((m->oflags & VPO_BUSY) == 0,
1817 ("moea64_clear_modify: page %p is busy", m));
1818
1819 /*
1820 * If the page is not PG_WRITEABLE, then no PTEs can have LPTE_CHG
1821 * set. If the object containing the page is locked and the page is
1822 * not VPO_BUSY, then PG_WRITEABLE cannot be concurrently set.
1823 */
1824 if ((m->flags & PG_WRITEABLE) == 0)
1825 return;
1826 moea64_clear_bit(m, LPTE_CHG);
1827}
1828
1829/*
1830 * Clear the write and modified bits in each of the given page's mappings.
1831 */
1832void
1833moea64_remove_write(mmu_t mmu, vm_page_t m)
1834{
1835 struct pvo_entry *pvo;
1836 struct lpte *pt;
1837 pmap_t pmap;
1838 uint64_t lo;
1839
1840 KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1841 ("moea64_remove_write: page %p is not managed", m));
1842
1843 /*
1844 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be set by
1845 * another thread while the object is locked. Thus, if PG_WRITEABLE
1846 * is clear, no page table entries need updating.
1847 */
1848 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1849 if ((m->oflags & VPO_BUSY) == 0 &&
1850 (m->flags & PG_WRITEABLE) == 0)
1851 return;
1852 vm_page_lock_queues();
1853 lo = moea64_attr_fetch(m);
1854 SYNC();
1855 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1856 pmap = pvo->pvo_pmap;
1857 PMAP_LOCK(pmap);
1858 LOCK_TABLE();
1859 if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) {
1860 pt = moea64_pvo_to_pte(pvo);
1861 pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
1862 pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
1863 if (pt != NULL) {
1864 moea64_pte_synch(pt, &pvo->pvo_pte.lpte);
1865 lo |= pvo->pvo_pte.lpte.pte_lo;
1866 pvo->pvo_pte.lpte.pte_lo &= ~LPTE_CHG;
1867 moea64_pte_change(pt, &pvo->pvo_pte.lpte,
1868 pvo->pvo_vpn);
1869 if (pvo->pvo_pmap == kernel_pmap)
1870 isync();
1871 }
1872 }
1873 UNLOCK_TABLE();
1874 PMAP_UNLOCK(pmap);
1875 }
1876 if ((lo & LPTE_CHG) != 0) {
1877 moea64_attr_clear(m, LPTE_CHG);
1878 vm_page_dirty(m);
1879 }
1880 vm_page_flag_clear(m, PG_WRITEABLE);
1881 vm_page_unlock_queues();
1882}
1883
1884/*
1885 * moea64_ts_referenced:
1886 *
1887 * Return a count of reference bits for a page, clearing those bits.
1888 * It is not necessary for every reference bit to be cleared, but it
1889 * is necessary that 0 only be returned when there are truly no
1890 * reference bits set.
1891 *
1892 * XXX: The exact number of bits to check and clear is a matter that
1893 * should be tested and standardized at some point in the future for
1894 * optimal aging of shared pages.
1895 */
1896boolean_t
1897moea64_ts_referenced(mmu_t mmu, vm_page_t m)
1898{
1899
1900 KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1901 ("moea64_ts_referenced: page %p is not managed", m));
1902 return (moea64_clear_bit(m, LPTE_REF));
1903}
1904
1905/*
1906 * Modify the WIMG settings of all mappings for a page.
1907 */
1908void
1909moea64_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1910{
1911 struct pvo_entry *pvo;
1912 struct pvo_head *pvo_head;
1913 struct lpte *pt;
1914 pmap_t pmap;
1915 uint64_t lo;
1916
1917 if (m->flags & PG_FICTITIOUS) {
1918 m->md.mdpg_cache_attrs = ma;
1919 return;
1920 }
1921
1922 vm_page_lock_queues();
1923 pvo_head = vm_page_to_pvoh(m);
1924 lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1925 LIST_FOREACH(pvo, pvo_head, pvo_vlink) {
1926 pmap = pvo->pvo_pmap;
1927 PMAP_LOCK(pmap);
1928 LOCK_TABLE();
1929 pt = moea64_pvo_to_pte(pvo);
1930 pvo->pvo_pte.lpte.pte_lo &= ~LPTE_WIMG;
1931 pvo->pvo_pte.lpte.pte_lo |= lo;
1932 if (pt != NULL) {
1933 moea64_pte_change(pt, &pvo->pvo_pte.lpte,
1934 pvo->pvo_vpn);
1935 if (pvo->pvo_pmap == kernel_pmap)
1936 isync();
1937 }
1938 UNLOCK_TABLE();
1939 PMAP_UNLOCK(pmap);
1940 }
1941 m->md.mdpg_cache_attrs = ma;
1942 vm_page_unlock_queues();
1943}
1944
1945/*
1946 * Map a wired page into kernel virtual address space.
1947 */
1948void
1949moea64_kenter_attr(mmu_t mmu, vm_offset_t va, vm_offset_t pa, vm_memattr_t ma)
1950{
1951 uint64_t pte_lo;
1952 int error;
1953
1954 pte_lo = moea64_calc_wimg(pa, ma);
1955
1956 PMAP_LOCK(kernel_pmap);
1957 error = moea64_pvo_enter(kernel_pmap, moea64_upvo_zone,
1958 &moea64_pvo_kunmanaged, va, pa, pte_lo,
1959 PVO_WIRED | VM_PROT_EXECUTE);
1960
1961 if (error != 0 && error != ENOENT)
1962 panic("moea64_kenter: failed to enter va %#zx pa %#zx: %d", va,
1963 pa, error);
1964
1965 /*
1966 * Flush the memory from the instruction cache.
1967 */
1968 if ((pte_lo & (LPTE_I | LPTE_G)) == 0) {
1969 __syncicache((void *)va, PAGE_SIZE);
1970 }
1971 PMAP_UNLOCK(kernel_pmap);
1972}
1973
1974void
1975moea64_kenter(mmu_t mmu, vm_offset_t va, vm_offset_t pa)
1976{
1977
1978 moea64_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1979}
1980
1981/*
1982 * Extract the physical page address associated with the given kernel virtual
1983 * address.
1984 */
1985vm_offset_t
1986moea64_kextract(mmu_t mmu, vm_offset_t va)
1987{
1988 struct pvo_entry *pvo;
1989 vm_paddr_t pa;
1990
1991 /*
1992 * Shortcut the direct-mapped case when applicable. We never put
1993 * anything but 1:1 mappings below VM_MIN_KERNEL_ADDRESS.
1994 */
1995 if (va < VM_MIN_KERNEL_ADDRESS)
1996 return (va);
1997
1998 PMAP_LOCK(kernel_pmap);
1999 pvo = moea64_pvo_find_va(kernel_pmap, va);
2000 KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR,
2001 va));
2002 pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) + (va - PVO_VADDR(pvo));
2003 PMAP_UNLOCK(kernel_pmap);
2004 return (pa);
2005}
2006
2007/*
2008 * Remove a wired page from kernel virtual address space.
2009 */
2010void
2011moea64_kremove(mmu_t mmu, vm_offset_t va)
2012{
2013 moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
2014}
2015
2016/*
2017 * Map a range of physical addresses into kernel virtual address space.
2018 *
2019 * The value passed in *virt is a suggested virtual address for the mapping.
2020 * Architectures which can support a direct-mapped physical to virtual region
2021 * can return the appropriate address within that region, leaving '*virt'
2022 * unchanged. We cannot and therefore do not; *virt is updated with the
2023 * first usable address after the mapped region.
2024 */
2025vm_offset_t
2026moea64_map(mmu_t mmu, vm_offset_t *virt, vm_offset_t pa_start,
2027 vm_offset_t pa_end, int prot)
2028{
2029 vm_offset_t sva, va;
2030
2031 sva = *virt;
2032 va = sva;
2033 for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
2034 moea64_kenter(mmu, va, pa_start);
2035 *virt = va;
2036
2037 return (sva);
2038}
2039
2040/*
2041 * Returns true if the pmap's pv is one of the first
2042 * 16 pvs linked to from this page. This count may
2043 * be changed upwards or downwards in the future; it
2044 * is only necessary that true be returned for a small
2045 * subset of pmaps for proper page aging.
2046 */
2047boolean_t
2048moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
2049{
2050 int loops;
2051 struct pvo_entry *pvo;
2052 boolean_t rv;
2053
2054 KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2055 ("moea64_page_exists_quick: page %p is not managed", m));
2056 loops = 0;
2057 rv = FALSE;
2058 vm_page_lock_queues();
2059 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2060 if (pvo->pvo_pmap == pmap) {
2061 rv = TRUE;
2062 break;
2063 }
2064 if (++loops >= 16)
2065 break;
2066 }
2067 vm_page_unlock_queues();
2068 return (rv);
2069}
2070
2071/*
2072 * Return the number of managed mappings to the given physical page
2073 * that are wired.
2074 */
2075int
2076moea64_page_wired_mappings(mmu_t mmu, vm_page_t m)
2077{
2078 struct pvo_entry *pvo;
2079 int count;
2080
2081 count = 0;
2082 if ((m->flags & PG_FICTITIOUS) != 0)
2083 return (count);
2084 vm_page_lock_queues();
2085 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
2086 if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
2087 count++;
2088 vm_page_unlock_queues();
2089 return (count);
2090}
2091
2092static uintptr_t moea64_vsidcontext;
2093
2094uintptr_t
2095moea64_get_unique_vsid(void) {
2096 u_int entropy;
2097 register_t hash;
2098 uint32_t mask;
2099 int i;
2100
2101 entropy = 0;
2102 __asm __volatile("mftb %0" : "=r"(entropy));
2103
2104 mtx_lock(&moea64_slb_mutex);
2105 for (i = 0; i < NVSIDS; i += VSID_NBPW) {
2106 u_int n;
2107
2108 /*
2109 * Create a new value by mutiplying by a prime and adding in
2110 * entropy from the timebase register. This is to make the
2111 * VSID more random so that the PT hash function collides
2112 * less often. (Note that the prime casues gcc to do shifts
2113 * instead of a multiply.)
2114 */
2115 moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
2116 hash = moea64_vsidcontext & (NVSIDS - 1);
2117 if (hash == 0) /* 0 is special, avoid it */
2118 continue;
2119 n = hash >> 5;
2120 mask = 1 << (hash & (VSID_NBPW - 1));
2121 hash = (moea64_vsidcontext & VSID_HASHMASK);
2122 if (moea64_vsid_bitmap[n] & mask) { /* collision? */
2123 /* anything free in this bucket? */
2124 if (moea64_vsid_bitmap[n] == 0xffffffff) {
2125 entropy = (moea64_vsidcontext >> 20);
2126 continue;
2127 }
2128 i = ffs(~moea64_vsid_bitmap[n]) - 1;
2129 mask = 1 << i;
2130 hash &= VSID_HASHMASK & ~(VSID_NBPW - 1);
2131 hash |= i;
2132 }
2133 KASSERT(!(moea64_vsid_bitmap[n] & mask),
2134 ("Allocating in-use VSID %#zx\n", hash));
2135 moea64_vsid_bitmap[n] |= mask;
2136 mtx_unlock(&moea64_slb_mutex);
2137 return (hash);
2138 }
2139
2140 mtx_unlock(&moea64_slb_mutex);
2141 panic("%s: out of segments",__func__);
2142}
2143
2144#ifdef __powerpc64__
2145void
2146moea64_pinit(mmu_t mmu, pmap_t pmap)
2147{
2148 PMAP_LOCK_INIT(pmap);
2149
2150 pmap->pm_slb_tree_root = slb_alloc_tree();
2151 pmap->pm_slb = slb_alloc_user_cache();
2152 pmap->pm_slb_len = 0;
2153}
2154#else
2155void
2156moea64_pinit(mmu_t mmu, pmap_t pmap)
2157{
2158 int i;
2159 uint32_t hash;
2160
2161 PMAP_LOCK_INIT(pmap);
2162
2163 if (pmap_bootstrapped)
2164 pmap->pmap_phys = (pmap_t)moea64_kextract(mmu,
2165 (vm_offset_t)pmap);
2166 else
2167 pmap->pmap_phys = pmap;
2168
2169 /*
2170 * Allocate some segment registers for this pmap.
2171 */
2172 hash = moea64_get_unique_vsid();
2173
2174 for (i = 0; i < 16; i++)
2175 pmap->pm_sr[i] = VSID_MAKE(i, hash);
2176
2177 KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0"));
2178}
2179#endif
2180
2181/*
2182 * Initialize the pmap associated with process 0.
2183 */
2184void
2185moea64_pinit0(mmu_t mmu, pmap_t pm)
2186{
2187 moea64_pinit(mmu, pm);
2188 bzero(&pm->pm_stats, sizeof(pm->pm_stats));
2189}
2190
2191/*
2192 * Set the physical protection on the specified range of this map as requested.
2193 */
2194void
2195moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
2196 vm_prot_t prot)
2197{
2198 struct pvo_entry *pvo;
2199 struct lpte *pt;
2200
2201 CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm, sva,
2202 eva, prot);
2203
2204
2205 KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
2206 ("moea64_protect: non current pmap"));
2207
2208 if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2209 moea64_remove(mmu, pm, sva, eva);
2210 return;
2211 }
2212
2213 vm_page_lock_queues();
2214 PMAP_LOCK(pm);
2215 for (; sva < eva; sva += PAGE_SIZE) {
2216 pvo = moea64_pvo_find_va(pm, sva);
2217 if (pvo == NULL)
2218 continue;
2219
2220 /*
2221 * Grab the PTE pointer before we diddle with the cached PTE
2222 * copy.
2223 */
2224 LOCK_TABLE();
2225 pt = moea64_pvo_to_pte(pvo);
2226
2227 /*
2228 * Change the protection of the page.
2229 */
2230 pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
2231 pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
2232 pvo->pvo_pte.lpte.pte_lo &= ~LPTE_NOEXEC;
2233 if ((prot & VM_PROT_EXECUTE) == 0)
2234 pvo->pvo_pte.lpte.pte_lo |= LPTE_NOEXEC;
2235
2236 /*
2237 * If the PVO is in the page table, update that pte as well.
2238 */
2239 if (pt != NULL) {
2240 moea64_pte_change(pt, &pvo->pvo_pte.lpte, pvo->pvo_vpn);
2241 if ((pvo->pvo_pte.lpte.pte_lo &
2242 (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
2243 moea64_syncicache(pm, sva,
2244 pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN,
2245 PAGE_SIZE);
2246 }
2247 }
2248 UNLOCK_TABLE();
2249 }
2250 vm_page_unlock_queues();
2251 PMAP_UNLOCK(pm);
2252}
2253
2254/*
2255 * Map a list of wired pages into kernel virtual address space. This is
2256 * intended for temporary mappings which do not need page modification or
2257 * references recorded. Existing mappings in the region are overwritten.
2258 */
2259void
2260moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count)
2261{
2262 while (count-- > 0) {
2263 moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
2264 va += PAGE_SIZE;
2265 m++;
2266 }
2267}
2268
2269/*
2270 * Remove page mappings from kernel virtual address space. Intended for
2271 * temporary mappings entered by moea64_qenter.
2272 */
2273void
2274moea64_qremove(mmu_t mmu, vm_offset_t va, int count)
2275{
2276 while (count-- > 0) {
2277 moea64_kremove(mmu, va);
2278 va += PAGE_SIZE;
2279 }
2280}
2281
2282void
2283moea64_release_vsid(uint64_t vsid)
2284{
2285 int idx, mask;
2286
2287 mtx_lock(&moea64_slb_mutex);
2288 idx = vsid & (NVSIDS-1);
2289 mask = 1 << (idx % VSID_NBPW);
2290 idx /= VSID_NBPW;
2291 KASSERT(moea64_vsid_bitmap[idx] & mask,
2292 ("Freeing unallocated VSID %#jx", vsid));
2293 moea64_vsid_bitmap[idx] &= ~mask;
2294 mtx_unlock(&moea64_slb_mutex);
2295}
2296
2297
2298void
2299moea64_release(mmu_t mmu, pmap_t pmap)
2300{
2301
2302 /*
2303 * Free segment registers' VSIDs
2304 */
2305 #ifdef __powerpc64__
2306 slb_free_tree(pmap);
2307 slb_free_user_cache(pmap->pm_slb);
2308 #else
2309 KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0"));
2310
2311 moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0]));
2312 #endif
2313
2314 PMAP_LOCK_DESTROY(pmap);
2315}
2316
2317/*
2318 * Remove the given range of addresses from the specified map.
2319 */
2320void
2321moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
2322{
2323 struct pvo_entry *pvo;
2324
2325 vm_page_lock_queues();
2326 PMAP_LOCK(pm);
2327 for (; sva < eva; sva += PAGE_SIZE) {
2328 pvo = moea64_pvo_find_va(pm, sva);
2329 if (pvo != NULL)
2330 moea64_pvo_remove(pvo);
2331 }
2332 vm_page_unlock_queues();
2333 PMAP_UNLOCK(pm);
2334}
2335
2336/*
2337 * Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
2338 * will reflect changes in pte's back to the vm_page.
2339 */
2340void
2341moea64_remove_all(mmu_t mmu, vm_page_t m)
2342{
2343 struct pvo_head *pvo_head;
2344 struct pvo_entry *pvo, *next_pvo;
2345 pmap_t pmap;
2346
2347 vm_page_lock_queues();
2348 pvo_head = vm_page_to_pvoh(m);
2349 for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2350 next_pvo = LIST_NEXT(pvo, pvo_vlink);
2351
2352 MOEA_PVO_CHECK(pvo); /* sanity check */
2353 pmap = pvo->pvo_pmap;
2354 PMAP_LOCK(pmap);
2355 moea64_pvo_remove(pvo);
2356 PMAP_UNLOCK(pmap);
2357 }
2358 if ((m->flags & PG_WRITEABLE) && moea64_is_modified(mmu, m)) {
2359 moea64_attr_clear(m, LPTE_CHG);
2360 vm_page_dirty(m);
2361 }
2362 vm_page_flag_clear(m, PG_WRITEABLE);
2363 vm_page_unlock_queues();
2364}
2365
2366/*
2367 * Allocate a physical page of memory directly from the phys_avail map.
2368 * Can only be called from moea64_bootstrap before avail start and end are
2369 * calculated.
2370 */
2371static vm_offset_t
2372moea64_bootstrap_alloc(vm_size_t size, u_int align)
2373{
2374 vm_offset_t s, e;
2375 int i, j;
2376
2377 size = round_page(size);
2378 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2379 if (align != 0)
2380 s = (phys_avail[i] + align - 1) & ~(align - 1);
2381 else
2382 s = phys_avail[i];
2383 e = s + size;
2384
2385 if (s < phys_avail[i] || e > phys_avail[i + 1])
2386 continue;
2387
95
96/*
97 * Manages physical address maps.
98 *
99 * In addition to hardware address maps, this module is called upon to
100 * provide software-use-only maps which may or may not be stored in the
101 * same form as hardware maps. These pseudo-maps are used to store
102 * intermediate results from copy operations to and from address spaces.
103 *
104 * Since the information managed by this module is also stored by the
105 * logical address mapping module, this module may throw away valid virtual
106 * to physical mappings at almost any time. However, invalidations of
107 * mappings must be done as requested.
108 *
109 * In order to cope with hardware architectures which make virtual to
110 * physical map invalidates expensive, this module may delay invalidate
111 * reduced protection operations until such time as they are actually
112 * necessary. This module is given full information as to which processors
113 * are currently using which maps, and to when physical maps must be made
114 * correct.
115 */
116
117#include "opt_kstack_pages.h"
118
119#include <sys/param.h>
120#include <sys/kernel.h>
121#include <sys/ktr.h>
122#include <sys/lock.h>
123#include <sys/msgbuf.h>
124#include <sys/mutex.h>
125#include <sys/proc.h>
126#include <sys/sysctl.h>
127#include <sys/systm.h>
128#include <sys/vmmeter.h>
129
130#include <sys/kdb.h>
131
132#include <dev/ofw/openfirm.h>
133
134#include <vm/vm.h>
135#include <vm/vm_param.h>
136#include <vm/vm_kern.h>
137#include <vm/vm_page.h>
138#include <vm/vm_map.h>
139#include <vm/vm_object.h>
140#include <vm/vm_extern.h>
141#include <vm/vm_pageout.h>
142#include <vm/vm_pager.h>
143#include <vm/uma.h>
144
145#include <machine/_inttypes.h>
146#include <machine/cpu.h>
147#include <machine/platform.h>
148#include <machine/frame.h>
149#include <machine/md_var.h>
150#include <machine/psl.h>
151#include <machine/bat.h>
152#include <machine/hid.h>
153#include <machine/pte.h>
154#include <machine/sr.h>
155#include <machine/trap.h>
156#include <machine/mmuvar.h>
157
158#include "mmu_if.h"
159
160#define MOEA_DEBUG
161
162#define TODO panic("%s: not implemented", __func__);
163void moea64_release_vsid(uint64_t vsid);
164uintptr_t moea64_get_unique_vsid(void);
165
166static __inline register_t
167cntlzd(volatile register_t a) {
168 register_t b;
169 __asm ("cntlzd %0, %1" : "=r"(b) : "r"(a));
170 return b;
171}
172
173#define PTESYNC() __asm __volatile("ptesync");
174#define TLBSYNC() __asm __volatile("tlbsync; ptesync");
175#define SYNC() __asm __volatile("sync");
176#define EIEIO() __asm __volatile("eieio");
177
178/*
179 * The tlbie instruction must be executed in 64-bit mode
180 * so we have to twiddle MSR[SF] around every invocation.
181 * Just to add to the fun, exceptions must be off as well
182 * so that we can't trap in 64-bit mode. What a pain.
183 */
184struct mtx tlbie_mutex;
185
186static __inline void
187TLBIE(uint64_t vpn) {
188#ifndef __powerpc64__
189 register_t vpn_hi, vpn_lo;
190 register_t msr;
191 register_t scratch;
192#endif
193
194 vpn <<= ADDR_PIDX_SHFT;
195 vpn &= ~(0xffffULL << 48);
196
197 mtx_lock_spin(&tlbie_mutex);
198#ifdef __powerpc64__
199 __asm __volatile("\
200 ptesync; \
201 tlbie %0; \
202 eieio; \
203 tlbsync; \
204 ptesync;"
205 :: "r"(vpn) : "memory");
206#else
207 vpn_hi = (uint32_t)(vpn >> 32);
208 vpn_lo = (uint32_t)vpn;
209
210 __asm __volatile("\
211 mfmsr %0; \
212 mr %1, %0; \
213 insrdi %1,%5,1,0; \
214 mtmsrd %1; isync; \
215 ptesync; \
216 \
217 sld %1,%2,%4; \
218 or %1,%1,%3; \
219 tlbie %1; \
220 \
221 mtmsrd %0; isync; \
222 eieio; \
223 tlbsync; \
224 ptesync;"
225 : "=r"(msr), "=r"(scratch) : "r"(vpn_hi), "r"(vpn_lo), "r"(32), "r"(1)
226 : "memory");
227#endif
228 mtx_unlock_spin(&tlbie_mutex);
229}
230
231#define DISABLE_TRANS(msr) msr = mfmsr(); mtmsr(msr & ~PSL_DR); isync()
232#define ENABLE_TRANS(msr) mtmsr(msr); isync()
233
234#define VSID_MAKE(sr, hash) ((sr) | (((hash) & 0xfffff) << 4))
235#define VSID_TO_HASH(vsid) (((vsid) >> 4) & 0xfffff)
236#define VSID_HASH_MASK 0x0000007fffffffffULL
237
238#define PVO_PTEGIDX_MASK 0x007UL /* which PTEG slot */
239#define PVO_PTEGIDX_VALID 0x008UL /* slot is valid */
240#define PVO_WIRED 0x010UL /* PVO entry is wired */
241#define PVO_MANAGED 0x020UL /* PVO entry is managed */
242#define PVO_BOOTSTRAP 0x080UL /* PVO entry allocated during
243 bootstrap */
244#define PVO_FAKE 0x100UL /* fictitious phys page */
245#define PVO_LARGE 0x200UL /* large page */
246#define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF)
247#define PVO_ISFAKE(pvo) ((pvo)->pvo_vaddr & PVO_FAKE)
248#define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
249#define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
250#define PVO_PTEGIDX_CLR(pvo) \
251 ((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
252#define PVO_PTEGIDX_SET(pvo, i) \
253 ((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
254#define PVO_VSID(pvo) ((pvo)->pvo_vpn >> 16)
255
256#define MOEA_PVO_CHECK(pvo)
257
258#define LOCK_TABLE() mtx_lock(&moea64_table_mutex)
259#define UNLOCK_TABLE() mtx_unlock(&moea64_table_mutex);
260#define ASSERT_TABLE_LOCK() mtx_assert(&moea64_table_mutex, MA_OWNED)
261
262struct ofw_map {
263 cell_t om_va;
264 cell_t om_len;
265 cell_t om_pa_hi;
266 cell_t om_pa_lo;
267 cell_t om_mode;
268};
269
270/*
271 * Map of physical memory regions.
272 */
273static struct mem_region *regions;
274static struct mem_region *pregions;
275static u_int phys_avail_count;
276static int regions_sz, pregions_sz;
277
278extern struct pmap ofw_pmap;
279
280extern void bs_remap_earlyboot(void);
281
282
283/*
284 * Lock for the pteg and pvo tables.
285 */
286struct mtx moea64_table_mutex;
287struct mtx moea64_slb_mutex;
288
289/*
290 * PTEG data.
291 */
292static struct lpteg *moea64_pteg_table;
293u_int moea64_pteg_count;
294u_int moea64_pteg_mask;
295
296/*
297 * PVO data.
298 */
299struct pvo_head *moea64_pvo_table; /* pvo entries by pteg index */
300struct pvo_head moea64_pvo_kunmanaged = /* list of unmanaged pages */
301 LIST_HEAD_INITIALIZER(moea64_pvo_kunmanaged);
302
303uma_zone_t moea64_upvo_zone; /* zone for pvo entries for unmanaged pages */
304uma_zone_t moea64_mpvo_zone; /* zone for pvo entries for managed pages */
305
306#define BPVO_POOL_SIZE 327680
307static struct pvo_entry *moea64_bpvo_pool;
308static int moea64_bpvo_pool_index = 0;
309
310#define VSID_NBPW (sizeof(u_int32_t) * 8)
311#ifdef __powerpc64__
312#define NVSIDS (NPMAPS * 16)
313#define VSID_HASHMASK 0xffffffffUL
314#else
315#define NVSIDS NPMAPS
316#define VSID_HASHMASK 0xfffffUL
317#endif
318static u_int moea64_vsid_bitmap[NVSIDS / VSID_NBPW];
319
320static boolean_t moea64_initialized = FALSE;
321
322/*
323 * Statistics.
324 */
325u_int moea64_pte_valid = 0;
326u_int moea64_pte_overflow = 0;
327u_int moea64_pvo_entries = 0;
328u_int moea64_pvo_enter_calls = 0;
329u_int moea64_pvo_remove_calls = 0;
330SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
331 &moea64_pte_valid, 0, "");
332SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
333 &moea64_pte_overflow, 0, "");
334SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
335 &moea64_pvo_entries, 0, "");
336SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
337 &moea64_pvo_enter_calls, 0, "");
338SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
339 &moea64_pvo_remove_calls, 0, "");
340
341vm_offset_t moea64_scratchpage_va[2];
342uint64_t moea64_scratchpage_vpn[2];
343struct lpte *moea64_scratchpage_pte[2];
344struct mtx moea64_scratchpage_mtx;
345
346uint64_t moea64_large_page_mask = 0;
347int moea64_large_page_size = 0;
348int moea64_large_page_shift = 0;
349
350/*
351 * Allocate physical memory for use in moea64_bootstrap.
352 */
353static vm_offset_t moea64_bootstrap_alloc(vm_size_t, u_int);
354
355/*
356 * PTE calls.
357 */
358static int moea64_pte_insert(u_int, struct lpte *);
359
360/*
361 * PVO calls.
362 */
363static int moea64_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
364 vm_offset_t, vm_offset_t, uint64_t, int);
365static void moea64_pvo_remove(struct pvo_entry *);
366static struct pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t);
367static struct lpte *moea64_pvo_to_pte(const struct pvo_entry *);
368
369/*
370 * Utility routines.
371 */
372static void moea64_bootstrap(mmu_t mmup,
373 vm_offset_t kernelstart, vm_offset_t kernelend);
374static void moea64_cpu_bootstrap(mmu_t, int ap);
375static void moea64_enter_locked(pmap_t, vm_offset_t, vm_page_t,
376 vm_prot_t, boolean_t);
377static boolean_t moea64_query_bit(vm_page_t, u_int64_t);
378static u_int moea64_clear_bit(vm_page_t, u_int64_t);
379static void moea64_kremove(mmu_t, vm_offset_t);
380static void moea64_syncicache(pmap_t pmap, vm_offset_t va,
381 vm_offset_t pa, vm_size_t sz);
382static void tlbia(void);
383#ifdef __powerpc64__
384static void slbia(void);
385#endif
386
387/*
388 * Kernel MMU interface
389 */
390void moea64_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
391void moea64_clear_modify(mmu_t, vm_page_t);
392void moea64_clear_reference(mmu_t, vm_page_t);
393void moea64_copy_page(mmu_t, vm_page_t, vm_page_t);
394void moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, boolean_t);
395void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
396 vm_prot_t);
397void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
398vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t);
399vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
400void moea64_init(mmu_t);
401boolean_t moea64_is_modified(mmu_t, vm_page_t);
402boolean_t moea64_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
403boolean_t moea64_is_referenced(mmu_t, vm_page_t);
404boolean_t moea64_ts_referenced(mmu_t, vm_page_t);
405vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_offset_t, vm_offset_t, int);
406boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t);
407int moea64_page_wired_mappings(mmu_t, vm_page_t);
408void moea64_pinit(mmu_t, pmap_t);
409void moea64_pinit0(mmu_t, pmap_t);
410void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
411void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
412void moea64_qremove(mmu_t, vm_offset_t, int);
413void moea64_release(mmu_t, pmap_t);
414void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
415void moea64_remove_all(mmu_t, vm_page_t);
416void moea64_remove_write(mmu_t, vm_page_t);
417void moea64_zero_page(mmu_t, vm_page_t);
418void moea64_zero_page_area(mmu_t, vm_page_t, int, int);
419void moea64_zero_page_idle(mmu_t, vm_page_t);
420void moea64_activate(mmu_t, struct thread *);
421void moea64_deactivate(mmu_t, struct thread *);
422void *moea64_mapdev(mmu_t, vm_offset_t, vm_size_t);
423void *moea64_mapdev_attr(mmu_t, vm_offset_t, vm_size_t, vm_memattr_t);
424void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t);
425vm_offset_t moea64_kextract(mmu_t, vm_offset_t);
426void moea64_page_set_memattr(mmu_t, vm_page_t m, vm_memattr_t ma);
427void moea64_kenter_attr(mmu_t, vm_offset_t, vm_offset_t, vm_memattr_t ma);
428void moea64_kenter(mmu_t, vm_offset_t, vm_offset_t);
429boolean_t moea64_dev_direct_mapped(mmu_t, vm_offset_t, vm_size_t);
430static void moea64_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
431
432static mmu_method_t moea64_methods[] = {
433 MMUMETHOD(mmu_change_wiring, moea64_change_wiring),
434 MMUMETHOD(mmu_clear_modify, moea64_clear_modify),
435 MMUMETHOD(mmu_clear_reference, moea64_clear_reference),
436 MMUMETHOD(mmu_copy_page, moea64_copy_page),
437 MMUMETHOD(mmu_enter, moea64_enter),
438 MMUMETHOD(mmu_enter_object, moea64_enter_object),
439 MMUMETHOD(mmu_enter_quick, moea64_enter_quick),
440 MMUMETHOD(mmu_extract, moea64_extract),
441 MMUMETHOD(mmu_extract_and_hold, moea64_extract_and_hold),
442 MMUMETHOD(mmu_init, moea64_init),
443 MMUMETHOD(mmu_is_modified, moea64_is_modified),
444 MMUMETHOD(mmu_is_prefaultable, moea64_is_prefaultable),
445 MMUMETHOD(mmu_is_referenced, moea64_is_referenced),
446 MMUMETHOD(mmu_ts_referenced, moea64_ts_referenced),
447 MMUMETHOD(mmu_map, moea64_map),
448 MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick),
449 MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings),
450 MMUMETHOD(mmu_pinit, moea64_pinit),
451 MMUMETHOD(mmu_pinit0, moea64_pinit0),
452 MMUMETHOD(mmu_protect, moea64_protect),
453 MMUMETHOD(mmu_qenter, moea64_qenter),
454 MMUMETHOD(mmu_qremove, moea64_qremove),
455 MMUMETHOD(mmu_release, moea64_release),
456 MMUMETHOD(mmu_remove, moea64_remove),
457 MMUMETHOD(mmu_remove_all, moea64_remove_all),
458 MMUMETHOD(mmu_remove_write, moea64_remove_write),
459 MMUMETHOD(mmu_sync_icache, moea64_sync_icache),
460 MMUMETHOD(mmu_zero_page, moea64_zero_page),
461 MMUMETHOD(mmu_zero_page_area, moea64_zero_page_area),
462 MMUMETHOD(mmu_zero_page_idle, moea64_zero_page_idle),
463 MMUMETHOD(mmu_activate, moea64_activate),
464 MMUMETHOD(mmu_deactivate, moea64_deactivate),
465 MMUMETHOD(mmu_page_set_memattr, moea64_page_set_memattr),
466
467 /* Internal interfaces */
468 MMUMETHOD(mmu_bootstrap, moea64_bootstrap),
469 MMUMETHOD(mmu_cpu_bootstrap, moea64_cpu_bootstrap),
470 MMUMETHOD(mmu_mapdev, moea64_mapdev),
471 MMUMETHOD(mmu_mapdev_attr, moea64_mapdev_attr),
472 MMUMETHOD(mmu_unmapdev, moea64_unmapdev),
473 MMUMETHOD(mmu_kextract, moea64_kextract),
474 MMUMETHOD(mmu_kenter, moea64_kenter),
475 MMUMETHOD(mmu_kenter_attr, moea64_kenter_attr),
476 MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped),
477
478 { 0, 0 }
479};
480
481MMU_DEF(oea64_mmu, MMU_TYPE_G5, moea64_methods, 0);
482
483static __inline u_int
484va_to_pteg(uint64_t vsid, vm_offset_t addr, int large)
485{
486 uint64_t hash;
487 int shift;
488
489 shift = large ? moea64_large_page_shift : ADDR_PIDX_SHFT;
490 hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)addr & ADDR_PIDX) >>
491 shift);
492 return (hash & moea64_pteg_mask);
493}
494
495static __inline struct pvo_head *
496vm_page_to_pvoh(vm_page_t m)
497{
498
499 return (&m->md.mdpg_pvoh);
500}
501
502static __inline void
503moea64_attr_clear(vm_page_t m, u_int64_t ptebit)
504{
505
506 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
507 m->md.mdpg_attrs &= ~ptebit;
508}
509
510static __inline u_int64_t
511moea64_attr_fetch(vm_page_t m)
512{
513
514 return (m->md.mdpg_attrs);
515}
516
517static __inline void
518moea64_attr_save(vm_page_t m, u_int64_t ptebit)
519{
520
521 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
522 m->md.mdpg_attrs |= ptebit;
523}
524
525static __inline void
526moea64_pte_create(struct lpte *pt, uint64_t vsid, vm_offset_t va,
527 uint64_t pte_lo, int flags)
528{
529
530 ASSERT_TABLE_LOCK();
531
532 /*
533 * Construct a PTE. Default to IMB initially. Valid bit only gets
534 * set when the real pte is set in memory.
535 *
536 * Note: Don't set the valid bit for correct operation of tlb update.
537 */
538 pt->pte_hi = (vsid << LPTE_VSID_SHIFT) |
539 (((uint64_t)(va & ADDR_PIDX) >> ADDR_API_SHFT64) & LPTE_API);
540
541 if (flags & PVO_LARGE)
542 pt->pte_hi |= LPTE_BIG;
543
544 pt->pte_lo = pte_lo;
545}
546
547static __inline void
548moea64_pte_synch(struct lpte *pt, struct lpte *pvo_pt)
549{
550
551 ASSERT_TABLE_LOCK();
552
553 pvo_pt->pte_lo |= pt->pte_lo & (LPTE_REF | LPTE_CHG);
554}
555
556static __inline void
557moea64_pte_clear(struct lpte *pt, uint64_t vpn, u_int64_t ptebit)
558{
559 ASSERT_TABLE_LOCK();
560
561 /*
562 * As shown in Section 7.6.3.2.3
563 */
564 pt->pte_lo &= ~ptebit;
565 TLBIE(vpn);
566}
567
568static __inline void
569moea64_pte_set(struct lpte *pt, struct lpte *pvo_pt)
570{
571
572 ASSERT_TABLE_LOCK();
573 pvo_pt->pte_hi |= LPTE_VALID;
574
575 /*
576 * Update the PTE as defined in section 7.6.3.1.
577 * Note that the REF/CHG bits are from pvo_pt and thus should have
578 * been saved so this routine can restore them (if desired).
579 */
580 pt->pte_lo = pvo_pt->pte_lo;
581 EIEIO();
582 pt->pte_hi = pvo_pt->pte_hi;
583 PTESYNC();
584 moea64_pte_valid++;
585}
586
587static __inline void
588moea64_pte_unset(struct lpte *pt, struct lpte *pvo_pt, uint64_t vpn)
589{
590 ASSERT_TABLE_LOCK();
591 pvo_pt->pte_hi &= ~LPTE_VALID;
592
593 /*
594 * Force the reg & chg bits back into the PTEs.
595 */
596 SYNC();
597
598 /*
599 * Invalidate the pte.
600 */
601 pt->pte_hi &= ~LPTE_VALID;
602 TLBIE(vpn);
603
604 /*
605 * Save the reg & chg bits.
606 */
607 moea64_pte_synch(pt, pvo_pt);
608 moea64_pte_valid--;
609}
610
611static __inline void
612moea64_pte_change(struct lpte *pt, struct lpte *pvo_pt, uint64_t vpn)
613{
614
615 /*
616 * Invalidate the PTE
617 */
618 moea64_pte_unset(pt, pvo_pt, vpn);
619 moea64_pte_set(pt, pvo_pt);
620}
621
622static __inline uint64_t
623moea64_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
624{
625 uint64_t pte_lo;
626 int i;
627
628 if (ma != VM_MEMATTR_DEFAULT) {
629 switch (ma) {
630 case VM_MEMATTR_UNCACHEABLE:
631 return (LPTE_I | LPTE_G);
632 case VM_MEMATTR_WRITE_COMBINING:
633 case VM_MEMATTR_WRITE_BACK:
634 case VM_MEMATTR_PREFETCHABLE:
635 return (LPTE_I);
636 case VM_MEMATTR_WRITE_THROUGH:
637 return (LPTE_W | LPTE_M);
638 }
639 }
640
641 /*
642 * Assume the page is cache inhibited and access is guarded unless
643 * it's in our available memory array.
644 */
645 pte_lo = LPTE_I | LPTE_G;
646 for (i = 0; i < pregions_sz; i++) {
647 if ((pa >= pregions[i].mr_start) &&
648 (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
649 pte_lo &= ~(LPTE_I | LPTE_G);
650 pte_lo |= LPTE_M;
651 break;
652 }
653 }
654
655 return pte_lo;
656}
657
658/*
659 * Quick sort callout for comparing memory regions.
660 */
661static int mr_cmp(const void *a, const void *b);
662static int om_cmp(const void *a, const void *b);
663
664static int
665mr_cmp(const void *a, const void *b)
666{
667 const struct mem_region *regiona;
668 const struct mem_region *regionb;
669
670 regiona = a;
671 regionb = b;
672 if (regiona->mr_start < regionb->mr_start)
673 return (-1);
674 else if (regiona->mr_start > regionb->mr_start)
675 return (1);
676 else
677 return (0);
678}
679
680static int
681om_cmp(const void *a, const void *b)
682{
683 const struct ofw_map *mapa;
684 const struct ofw_map *mapb;
685
686 mapa = a;
687 mapb = b;
688 if (mapa->om_pa_hi < mapb->om_pa_hi)
689 return (-1);
690 else if (mapa->om_pa_hi > mapb->om_pa_hi)
691 return (1);
692 else if (mapa->om_pa_lo < mapb->om_pa_lo)
693 return (-1);
694 else if (mapa->om_pa_lo > mapb->om_pa_lo)
695 return (1);
696 else
697 return (0);
698}
699
700static void
701moea64_cpu_bootstrap(mmu_t mmup, int ap)
702{
703 int i = 0;
704 #ifdef __powerpc64__
705 struct slb *slb = PCPU_GET(slb);
706 #endif
707
708 /*
709 * Initialize segment registers and MMU
710 */
711
712 mtmsr(mfmsr() & ~PSL_DR & ~PSL_IR); isync();
713
714 /*
715 * Install kernel SLB entries
716 */
717
718 #ifdef __powerpc64__
719 slbia();
720
721 for (i = 0; i < 64; i++) {
722 if (!(slb[i].slbe & SLBE_VALID))
723 continue;
724
725 __asm __volatile ("slbmte %0, %1" ::
726 "r"(slb[i].slbv), "r"(slb[i].slbe));
727 }
728 #else
729 for (i = 0; i < 16; i++)
730 mtsrin(i << ADDR_SR_SHFT, kernel_pmap->pm_sr[i]);
731 #endif
732
733 /*
734 * Install page table
735 */
736
737 __asm __volatile ("ptesync; mtsdr1 %0; isync"
738 :: "r"((uintptr_t)moea64_pteg_table
739 | (64 - cntlzd(moea64_pteg_mask >> 11))));
740 tlbia();
741}
742
743static void
744moea64_add_ofw_mappings(mmu_t mmup, phandle_t mmu, size_t sz)
745{
746 struct ofw_map translations[sz/sizeof(struct ofw_map)];
747 register_t msr;
748 vm_offset_t off;
749 vm_paddr_t pa_base;
750 int i, ofw_mappings;
751
752 bzero(translations, sz);
753 if (OF_getprop(mmu, "translations", translations, sz) == -1)
754 panic("moea64_bootstrap: can't get ofw translations");
755
756 CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
757 sz /= sizeof(*translations);
758 qsort(translations, sz, sizeof (*translations), om_cmp);
759
760 for (i = 0, ofw_mappings = 0; i < sz; i++) {
761 CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
762 (uint32_t)(translations[i].om_pa_lo), translations[i].om_va,
763 translations[i].om_len);
764
765 if (translations[i].om_pa_lo % PAGE_SIZE)
766 panic("OFW translation not page-aligned!");
767
768 pa_base = translations[i].om_pa_lo;
769
770 #ifdef __powerpc64__
771 pa_base += (vm_offset_t)translations[i].om_pa_hi << 32;
772 #else
773 if (translations[i].om_pa_hi)
774 panic("OFW translations above 32-bit boundary!");
775 #endif
776
777 /* Now enter the pages for this mapping */
778
779 DISABLE_TRANS(msr);
780 for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
781 if (moea64_pvo_find_va(kernel_pmap,
782 translations[i].om_va + off) != NULL)
783 continue;
784
785 moea64_kenter(mmup, translations[i].om_va + off,
786 pa_base + off);
787
788 ofw_mappings++;
789 }
790 ENABLE_TRANS(msr);
791 }
792}
793
794#ifdef __powerpc64__
795static void
796moea64_probe_large_page(void)
797{
798 uint16_t pvr = mfpvr() >> 16;
799
800 switch (pvr) {
801 case IBM970:
802 case IBM970FX:
803 case IBM970MP:
804 powerpc_sync(); isync();
805 mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG);
806 powerpc_sync(); isync();
807
808 /* FALLTHROUGH */
809 case IBMCELLBE:
810 moea64_large_page_size = 0x1000000; /* 16 MB */
811 moea64_large_page_shift = 24;
812 break;
813 default:
814 moea64_large_page_size = 0;
815 }
816
817 moea64_large_page_mask = moea64_large_page_size - 1;
818}
819
820static void
821moea64_bootstrap_slb_prefault(vm_offset_t va, int large)
822{
823 struct slb *cache;
824 struct slb entry;
825 uint64_t esid, slbe;
826 uint64_t i;
827
828 cache = PCPU_GET(slb);
829 esid = va >> ADDR_SR_SHFT;
830 slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
831
832 for (i = 0; i < 64; i++) {
833 if (cache[i].slbe == (slbe | i))
834 return;
835 }
836
837 entry.slbe = slbe;
838 entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT;
839 if (large)
840 entry.slbv |= SLBV_L;
841
842 slb_insert_kernel(entry.slbe, entry.slbv);
843}
844#endif
845
846static void
847moea64_setup_direct_map(mmu_t mmup, vm_offset_t kernelstart,
848 vm_offset_t kernelend)
849{
850 register_t msr;
851 vm_paddr_t pa;
852 vm_offset_t size, off;
853 uint64_t pte_lo;
854 int i;
855
856 if (moea64_large_page_size == 0)
857 hw_direct_map = 0;
858
859 DISABLE_TRANS(msr);
860 if (hw_direct_map) {
861 PMAP_LOCK(kernel_pmap);
862 for (i = 0; i < pregions_sz; i++) {
863 for (pa = pregions[i].mr_start; pa < pregions[i].mr_start +
864 pregions[i].mr_size; pa += moea64_large_page_size) {
865 pte_lo = LPTE_M;
866
867 /*
868 * Set memory access as guarded if prefetch within
869 * the page could exit the available physmem area.
870 */
871 if (pa & moea64_large_page_mask) {
872 pa &= moea64_large_page_mask;
873 pte_lo |= LPTE_G;
874 }
875 if (pa + moea64_large_page_size >
876 pregions[i].mr_start + pregions[i].mr_size)
877 pte_lo |= LPTE_G;
878
879 moea64_pvo_enter(kernel_pmap, moea64_upvo_zone,
880 &moea64_pvo_kunmanaged, pa, pa,
881 pte_lo, PVO_WIRED | PVO_LARGE |
882 VM_PROT_EXECUTE);
883 }
884 }
885 PMAP_UNLOCK(kernel_pmap);
886 } else {
887 size = moea64_pteg_count * sizeof(struct lpteg);
888 off = (vm_offset_t)(moea64_pteg_table);
889 for (pa = off; pa < off + size; pa += PAGE_SIZE)
890 moea64_kenter(mmup, pa, pa);
891 size = sizeof(struct pvo_head) * moea64_pteg_count;
892 off = (vm_offset_t)(moea64_pvo_table);
893 for (pa = off; pa < off + size; pa += PAGE_SIZE)
894 moea64_kenter(mmup, pa, pa);
895 size = BPVO_POOL_SIZE*sizeof(struct pvo_entry);
896 off = (vm_offset_t)(moea64_bpvo_pool);
897 for (pa = off; pa < off + size; pa += PAGE_SIZE)
898 moea64_kenter(mmup, pa, pa);
899
900 /*
901 * Map certain important things, like ourselves.
902 *
903 * NOTE: We do not map the exception vector space. That code is
904 * used only in real mode, and leaving it unmapped allows us to
905 * catch NULL pointer deferences, instead of making NULL a valid
906 * address.
907 */
908
909 for (pa = kernelstart & ~PAGE_MASK; pa < kernelend;
910 pa += PAGE_SIZE)
911 moea64_kenter(mmup, pa, pa);
912 }
913 ENABLE_TRANS(msr);
914}
915
916static void
917moea64_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
918{
919 ihandle_t mmui;
920 phandle_t chosen;
921 phandle_t mmu;
922 size_t sz;
923 int i, j;
924 vm_size_t size, physsz, hwphyssz;
925 vm_offset_t pa, va;
926 register_t msr;
927 void *dpcpu;
928
929#ifndef __powerpc64__
930 /* We don't have a direct map since there is no BAT */
931 hw_direct_map = 0;
932
933 /* Make sure battable is zero, since we have no BAT */
934 for (i = 0; i < 16; i++) {
935 battable[i].batu = 0;
936 battable[i].batl = 0;
937 }
938#else
939 moea64_probe_large_page();
940
941 /* Use a direct map if we have large page support */
942 if (moea64_large_page_size > 0)
943 hw_direct_map = 1;
944 else
945 hw_direct_map = 0;
946#endif
947
948 /* Get physical memory regions from firmware */
949 mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
950 CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
951
952 qsort(pregions, pregions_sz, sizeof(*pregions), mr_cmp);
953 if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
954 panic("moea64_bootstrap: phys_avail too small");
955 qsort(regions, regions_sz, sizeof(*regions), mr_cmp);
956 phys_avail_count = 0;
957 physsz = 0;
958 hwphyssz = 0;
959 TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
960 for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
961 CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
962 regions[i].mr_start + regions[i].mr_size,
963 regions[i].mr_size);
964 if (hwphyssz != 0 &&
965 (physsz + regions[i].mr_size) >= hwphyssz) {
966 if (physsz < hwphyssz) {
967 phys_avail[j] = regions[i].mr_start;
968 phys_avail[j + 1] = regions[i].mr_start +
969 hwphyssz - physsz;
970 physsz = hwphyssz;
971 phys_avail_count++;
972 }
973 break;
974 }
975 phys_avail[j] = regions[i].mr_start;
976 phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
977 phys_avail_count++;
978 physsz += regions[i].mr_size;
979 }
980
981 /* Check for overlap with the kernel and exception vectors */
982 for (j = 0; j < 2*phys_avail_count; j+=2) {
983 if (phys_avail[j] < EXC_LAST)
984 phys_avail[j] += EXC_LAST;
985
986 if (kernelstart >= phys_avail[j] &&
987 kernelstart < phys_avail[j+1]) {
988 if (kernelend < phys_avail[j+1]) {
989 phys_avail[2*phys_avail_count] =
990 (kernelend & ~PAGE_MASK) + PAGE_SIZE;
991 phys_avail[2*phys_avail_count + 1] =
992 phys_avail[j+1];
993 phys_avail_count++;
994 }
995
996 phys_avail[j+1] = kernelstart & ~PAGE_MASK;
997 }
998
999 if (kernelend >= phys_avail[j] &&
1000 kernelend < phys_avail[j+1]) {
1001 if (kernelstart > phys_avail[j]) {
1002 phys_avail[2*phys_avail_count] = phys_avail[j];
1003 phys_avail[2*phys_avail_count + 1] =
1004 kernelstart & ~PAGE_MASK;
1005 phys_avail_count++;
1006 }
1007
1008 phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
1009 }
1010 }
1011
1012 physmem = btoc(physsz);
1013
1014 /*
1015 * Allocate PTEG table.
1016 */
1017#ifdef PTEGCOUNT
1018 moea64_pteg_count = PTEGCOUNT;
1019#else
1020 moea64_pteg_count = 0x1000;
1021
1022 while (moea64_pteg_count < physmem)
1023 moea64_pteg_count <<= 1;
1024
1025 moea64_pteg_count >>= 1;
1026#endif /* PTEGCOUNT */
1027
1028 size = moea64_pteg_count * sizeof(struct lpteg);
1029 CTR2(KTR_PMAP, "moea64_bootstrap: %d PTEGs, %d bytes",
1030 moea64_pteg_count, size);
1031
1032 /*
1033 * We now need to allocate memory. This memory, to be allocated,
1034 * has to reside in a page table. The page table we are about to
1035 * allocate. We don't have BAT. So drop to data real mode for a minute
1036 * as a measure of last resort. We do this a couple times.
1037 */
1038
1039 moea64_pteg_table = (struct lpteg *)moea64_bootstrap_alloc(size, size);
1040 DISABLE_TRANS(msr);
1041 bzero((void *)moea64_pteg_table, moea64_pteg_count * sizeof(struct lpteg));
1042 ENABLE_TRANS(msr);
1043
1044 moea64_pteg_mask = moea64_pteg_count - 1;
1045
1046 CTR1(KTR_PMAP, "moea64_bootstrap: PTEG table at %p", moea64_pteg_table);
1047
1048 /*
1049 * Allocate pv/overflow lists.
1050 */
1051 size = sizeof(struct pvo_head) * moea64_pteg_count;
1052
1053 moea64_pvo_table = (struct pvo_head *)moea64_bootstrap_alloc(size,
1054 PAGE_SIZE);
1055 CTR1(KTR_PMAP, "moea64_bootstrap: PVO table at %p", moea64_pvo_table);
1056
1057 DISABLE_TRANS(msr);
1058 for (i = 0; i < moea64_pteg_count; i++)
1059 LIST_INIT(&moea64_pvo_table[i]);
1060 ENABLE_TRANS(msr);
1061
1062 /*
1063 * Initialize the lock that synchronizes access to the pteg and pvo
1064 * tables.
1065 */
1066 mtx_init(&moea64_table_mutex, "pmap table", NULL, MTX_DEF |
1067 MTX_RECURSE);
1068 mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF);
1069
1070 /*
1071 * Initialize the TLBIE lock. TLBIE can only be executed by one CPU.
1072 */
1073 mtx_init(&tlbie_mutex, "tlbie mutex", NULL, MTX_SPIN);
1074
1075 /*
1076 * Initialise the unmanaged pvo pool.
1077 */
1078 moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
1079 BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
1080 moea64_bpvo_pool_index = 0;
1081
1082 /*
1083 * Make sure kernel vsid is allocated as well as VSID 0.
1084 */
1085 #ifndef __powerpc64__
1086 moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW]
1087 |= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
1088 moea64_vsid_bitmap[0] |= 1;
1089 #endif
1090
1091 /*
1092 * Initialize the kernel pmap (which is statically allocated).
1093 */
1094 #ifdef __powerpc64__
1095 for (i = 0; i < 64; i++) {
1096 pcpup->pc_slb[i].slbv = 0;
1097 pcpup->pc_slb[i].slbe = 0;
1098 }
1099 #else
1100 for (i = 0; i < 16; i++)
1101 kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
1102 #endif
1103
1104 kernel_pmap->pmap_phys = kernel_pmap;
1105 kernel_pmap->pm_active = ~0;
1106
1107 PMAP_LOCK_INIT(kernel_pmap);
1108
1109 /*
1110 * Now map in all the other buffers we allocated earlier
1111 */
1112
1113 moea64_setup_direct_map(mmup, kernelstart, kernelend);
1114
1115 /*
1116 * Set up the Open Firmware pmap and add its mappings if not in real
1117 * mode.
1118 */
1119
1120 chosen = OF_finddevice("/chosen");
1121 if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1) {
1122 #ifndef __powerpc64__
1123 moea64_pinit(mmup, &ofw_pmap);
1124
1125 for (i = 0; i < 16; i++)
1126 ofw_pmap.pm_sr[i] = kernel_pmap->pm_sr[i];
1127 #endif
1128
1129 mmu = OF_instance_to_package(mmui);
1130 if (mmu == -1 || (sz = OF_getproplen(mmu, "translations")) == -1)
1131 sz = 0;
1132 if (sz > 6144 /* tmpstksz - 2 KB headroom */)
1133 panic("moea64_bootstrap: too many ofw translations");
1134
1135 if (sz > 0)
1136 moea64_add_ofw_mappings(mmup, mmu, sz);
1137 }
1138
1139#ifdef SMP
1140 TLBSYNC();
1141#endif
1142
1143 /*
1144 * Calculate the last available physical address.
1145 */
1146 for (i = 0; phys_avail[i + 2] != 0; i += 2)
1147 ;
1148 Maxmem = powerpc_btop(phys_avail[i + 1]);
1149
1150 /*
1151 * Initialize MMU and remap early physical mappings
1152 */
1153 moea64_cpu_bootstrap(mmup,0);
1154 mtmsr(mfmsr() | PSL_DR | PSL_IR); isync();
1155 pmap_bootstrapped++;
1156 bs_remap_earlyboot();
1157
1158 /*
1159 * Set the start and end of kva.
1160 */
1161 virtual_avail = VM_MIN_KERNEL_ADDRESS;
1162 virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
1163
1164 /*
1165 * Map the entire KVA range into the SLB. We must not fault there.
1166 */
1167 #ifdef __powerpc64__
1168 for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH)
1169 moea64_bootstrap_slb_prefault(va, 0);
1170 #endif
1171
1172 /*
1173 * Figure out how far we can extend virtual_end into segment 16
1174 * without running into existing mappings. Segment 16 is guaranteed
1175 * to contain neither RAM nor devices (at least on Apple hardware),
1176 * but will generally contain some OFW mappings we should not
1177 * step on.
1178 */
1179
1180 #ifndef __powerpc64__ /* KVA is in high memory on PPC64 */
1181 PMAP_LOCK(kernel_pmap);
1182 while (virtual_end < VM_MAX_KERNEL_ADDRESS &&
1183 moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL)
1184 virtual_end += PAGE_SIZE;
1185 PMAP_UNLOCK(kernel_pmap);
1186 #endif
1187
1188 /*
1189 * Allocate some things for page zeroing. We put this directly
1190 * in the page table, marked with LPTE_LOCKED, to avoid any
1191 * of the PVO book-keeping or other parts of the VM system
1192 * from even knowing that this hack exists.
1193 */
1194
1195 if (!hw_direct_map) {
1196 mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL,
1197 MTX_DEF);
1198 for (i = 0; i < 2; i++) {
1199 struct lpte pt;
1200 uint64_t vsid;
1201 int pteidx, ptegidx;
1202
1203 moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
1204 virtual_end -= PAGE_SIZE;
1205
1206 LOCK_TABLE();
1207
1208 vsid = va_to_vsid(kernel_pmap,
1209 moea64_scratchpage_va[i]);
1210 moea64_pte_create(&pt, vsid, moea64_scratchpage_va[i],
1211 LPTE_NOEXEC, 0);
1212 pt.pte_hi |= LPTE_LOCKED;
1213
1214 moea64_scratchpage_vpn[i] = (vsid << 16) |
1215 ((moea64_scratchpage_va[i] & ADDR_PIDX) >>
1216 ADDR_PIDX_SHFT);
1217 ptegidx = va_to_pteg(vsid, moea64_scratchpage_va[i], 0);
1218 pteidx = moea64_pte_insert(ptegidx, &pt);
1219 if (pt.pte_hi & LPTE_HID)
1220 ptegidx ^= moea64_pteg_mask;
1221
1222 moea64_scratchpage_pte[i] =
1223 &moea64_pteg_table[ptegidx].pt[pteidx];
1224
1225 UNLOCK_TABLE();
1226 }
1227 }
1228
1229 /*
1230 * Allocate a kernel stack with a guard page for thread0 and map it
1231 * into the kernel page map.
1232 */
1233 pa = moea64_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
1234 va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1235 virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
1236 CTR2(KTR_PMAP, "moea_bootstrap: kstack0 at %#x (%#x)", pa, va);
1237 thread0.td_kstack = va;
1238 thread0.td_kstack_pages = KSTACK_PAGES;
1239 for (i = 0; i < KSTACK_PAGES; i++) {
1240 moea64_kenter(mmup, va, pa);
1241 pa += PAGE_SIZE;
1242 va += PAGE_SIZE;
1243 }
1244
1245 /*
1246 * Allocate virtual address space for the message buffer.
1247 */
1248 pa = msgbuf_phys = moea64_bootstrap_alloc(MSGBUF_SIZE, PAGE_SIZE);
1249 msgbufp = (struct msgbuf *)virtual_avail;
1250 va = virtual_avail;
1251 virtual_avail += round_page(MSGBUF_SIZE);
1252 while (va < virtual_avail) {
1253 moea64_kenter(mmup, va, pa);
1254 pa += PAGE_SIZE;
1255 va += PAGE_SIZE;
1256 }
1257
1258 /*
1259 * Allocate virtual address space for the dynamic percpu area.
1260 */
1261 pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
1262 dpcpu = (void *)virtual_avail;
1263 va = virtual_avail;
1264 virtual_avail += DPCPU_SIZE;
1265 while (va < virtual_avail) {
1266 moea64_kenter(mmup, va, pa);
1267 pa += PAGE_SIZE;
1268 va += PAGE_SIZE;
1269 }
1270 dpcpu_init(dpcpu, 0);
1271}
1272
1273/*
1274 * Activate a user pmap. The pmap must be activated before its address
1275 * space can be accessed in any way.
1276 */
1277void
1278moea64_activate(mmu_t mmu, struct thread *td)
1279{
1280 pmap_t pm;
1281
1282 pm = &td->td_proc->p_vmspace->vm_pmap;
1283 pm->pm_active |= PCPU_GET(cpumask);
1284
1285 #ifdef __powerpc64__
1286 PCPU_SET(userslb, pm->pm_slb);
1287 #else
1288 PCPU_SET(curpmap, pm->pmap_phys);
1289 #endif
1290}
1291
1292void
1293moea64_deactivate(mmu_t mmu, struct thread *td)
1294{
1295 pmap_t pm;
1296
1297 pm = &td->td_proc->p_vmspace->vm_pmap;
1298 pm->pm_active &= ~(PCPU_GET(cpumask));
1299 #ifdef __powerpc64__
1300 PCPU_SET(userslb, NULL);
1301 #else
1302 PCPU_SET(curpmap, NULL);
1303 #endif
1304}
1305
1306void
1307moea64_change_wiring(mmu_t mmu, pmap_t pm, vm_offset_t va, boolean_t wired)
1308{
1309 struct pvo_entry *pvo;
1310 struct lpte *pt;
1311 uint64_t vsid;
1312 int i, ptegidx;
1313
1314 PMAP_LOCK(pm);
1315 pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
1316
1317 if (pvo != NULL) {
1318 LOCK_TABLE();
1319 pt = moea64_pvo_to_pte(pvo);
1320
1321 if (wired) {
1322 if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1323 pm->pm_stats.wired_count++;
1324 pvo->pvo_vaddr |= PVO_WIRED;
1325 pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
1326 } else {
1327 if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1328 pm->pm_stats.wired_count--;
1329 pvo->pvo_vaddr &= ~PVO_WIRED;
1330 pvo->pvo_pte.lpte.pte_hi &= ~LPTE_WIRED;
1331 }
1332
1333 if (pt != NULL) {
1334 /* Update wiring flag in page table. */
1335 moea64_pte_change(pt, &pvo->pvo_pte.lpte,
1336 pvo->pvo_vpn);
1337 } else if (wired) {
1338 /*
1339 * If we are wiring the page, and it wasn't in the
1340 * page table before, add it.
1341 */
1342 vsid = PVO_VSID(pvo);
1343 ptegidx = va_to_pteg(vsid, PVO_VADDR(pvo),
1344 pvo->pvo_vaddr & PVO_LARGE);
1345
1346 i = moea64_pte_insert(ptegidx, &pvo->pvo_pte.lpte);
1347 if (i >= 0) {
1348 PVO_PTEGIDX_CLR(pvo);
1349 PVO_PTEGIDX_SET(pvo, i);
1350 }
1351 }
1352
1353 UNLOCK_TABLE();
1354 }
1355 PMAP_UNLOCK(pm);
1356}
1357
1358/*
1359 * This goes through and sets the physical address of our
1360 * special scratch PTE to the PA we want to zero or copy. Because
1361 * of locking issues (this can get called in pvo_enter() by
1362 * the UMA allocator), we can't use most other utility functions here
1363 */
1364
1365static __inline
1366void moea64_set_scratchpage_pa(int which, vm_offset_t pa) {
1367
1368 KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!"));
1369 mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
1370
1371 moea64_scratchpage_pte[which]->pte_hi &= ~LPTE_VALID;
1372 TLBIE(moea64_scratchpage_vpn[which]);
1373
1374 moea64_scratchpage_pte[which]->pte_lo &=
1375 ~(LPTE_WIMG | LPTE_RPGN);
1376 moea64_scratchpage_pte[which]->pte_lo |=
1377 moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa;
1378 EIEIO();
1379
1380 moea64_scratchpage_pte[which]->pte_hi |= LPTE_VALID;
1381 PTESYNC(); isync();
1382}
1383
1384void
1385moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1386{
1387 vm_offset_t dst;
1388 vm_offset_t src;
1389
1390 dst = VM_PAGE_TO_PHYS(mdst);
1391 src = VM_PAGE_TO_PHYS(msrc);
1392
1393 if (hw_direct_map) {
1394 kcopy((void *)src, (void *)dst, PAGE_SIZE);
1395 } else {
1396 mtx_lock(&moea64_scratchpage_mtx);
1397
1398 moea64_set_scratchpage_pa(0,src);
1399 moea64_set_scratchpage_pa(1,dst);
1400
1401 kcopy((void *)moea64_scratchpage_va[0],
1402 (void *)moea64_scratchpage_va[1], PAGE_SIZE);
1403
1404 mtx_unlock(&moea64_scratchpage_mtx);
1405 }
1406}
1407
1408void
1409moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1410{
1411 vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1412
1413 if (!moea64_initialized)
1414 panic("moea64_zero_page: can't zero pa %#" PRIxPTR, pa);
1415 if (size + off > PAGE_SIZE)
1416 panic("moea64_zero_page: size + off > PAGE_SIZE");
1417
1418 if (hw_direct_map) {
1419 bzero((caddr_t)pa + off, size);
1420 } else {
1421 mtx_lock(&moea64_scratchpage_mtx);
1422 moea64_set_scratchpage_pa(0,pa);
1423 bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
1424 mtx_unlock(&moea64_scratchpage_mtx);
1425 }
1426}
1427
1428/*
1429 * Zero a page of physical memory by temporarily mapping it
1430 */
1431void
1432moea64_zero_page(mmu_t mmu, vm_page_t m)
1433{
1434 vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1435 vm_offset_t va, off;
1436
1437 if (!moea64_initialized)
1438 panic("moea64_zero_page: can't zero pa %#zx", pa);
1439
1440 if (!hw_direct_map) {
1441 mtx_lock(&moea64_scratchpage_mtx);
1442
1443 moea64_set_scratchpage_pa(0,pa);
1444 va = moea64_scratchpage_va[0];
1445 } else {
1446 va = pa;
1447 }
1448
1449 for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1450 __asm __volatile("dcbz 0,%0" :: "r"(va + off));
1451
1452 if (!hw_direct_map)
1453 mtx_unlock(&moea64_scratchpage_mtx);
1454}
1455
1456void
1457moea64_zero_page_idle(mmu_t mmu, vm_page_t m)
1458{
1459
1460 moea64_zero_page(mmu, m);
1461}
1462
1463/*
1464 * Map the given physical page at the specified virtual address in the
1465 * target pmap with the protection requested. If specified the page
1466 * will be wired down.
1467 */
1468void
1469moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1470 vm_prot_t prot, boolean_t wired)
1471{
1472
1473 vm_page_lock_queues();
1474 PMAP_LOCK(pmap);
1475 moea64_enter_locked(pmap, va, m, prot, wired);
1476 vm_page_unlock_queues();
1477 PMAP_UNLOCK(pmap);
1478}
1479
1480/*
1481 * Map the given physical page at the specified virtual address in the
1482 * target pmap with the protection requested. If specified the page
1483 * will be wired down.
1484 *
1485 * The page queues and pmap must be locked.
1486 */
1487
1488static void
1489moea64_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1490 boolean_t wired)
1491{
1492 struct pvo_head *pvo_head;
1493 uma_zone_t zone;
1494 vm_page_t pg;
1495 uint64_t pte_lo;
1496 u_int pvo_flags;
1497 int error;
1498
1499 if (!moea64_initialized) {
1500 pvo_head = &moea64_pvo_kunmanaged;
1501 pg = NULL;
1502 zone = moea64_upvo_zone;
1503 pvo_flags = 0;
1504 } else {
1505 pvo_head = vm_page_to_pvoh(m);
1506 pg = m;
1507 zone = moea64_mpvo_zone;
1508 pvo_flags = PVO_MANAGED;
1509 }
1510
1511 if (pmap_bootstrapped)
1512 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1513 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1514 KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
1515 (m->oflags & VPO_BUSY) != 0 || VM_OBJECT_LOCKED(m->object),
1516 ("moea64_enter_locked: page %p is not busy", m));
1517
1518 /* XXX change the pvo head for fake pages */
1519 if ((m->flags & PG_FICTITIOUS) == PG_FICTITIOUS) {
1520 pvo_flags &= ~PVO_MANAGED;
1521 pvo_head = &moea64_pvo_kunmanaged;
1522 zone = moea64_upvo_zone;
1523 }
1524
1525 pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1526
1527 if (prot & VM_PROT_WRITE) {
1528 pte_lo |= LPTE_BW;
1529 if (pmap_bootstrapped &&
1530 (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0)
1531 vm_page_flag_set(m, PG_WRITEABLE);
1532 } else
1533 pte_lo |= LPTE_BR;
1534
1535 if (prot & VM_PROT_EXECUTE)
1536 pvo_flags |= VM_PROT_EXECUTE;
1537
1538 if (wired)
1539 pvo_flags |= PVO_WIRED;
1540
1541 if ((m->flags & PG_FICTITIOUS) != 0)
1542 pvo_flags |= PVO_FAKE;
1543
1544 error = moea64_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
1545 pte_lo, pvo_flags);
1546
1547 /*
1548 * Flush the page from the instruction cache if this page is
1549 * mapped executable and cacheable.
1550 */
1551 if ((pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1552 moea64_syncicache(pmap, va, VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1553 }
1554}
1555
1556static void
1557moea64_syncicache(pmap_t pmap, vm_offset_t va, vm_offset_t pa, vm_size_t sz)
1558{
1559
1560 /*
1561 * This is much trickier than on older systems because
1562 * we can't sync the icache on physical addresses directly
1563 * without a direct map. Instead we check a couple of cases
1564 * where the memory is already mapped in and, failing that,
1565 * use the same trick we use for page zeroing to create
1566 * a temporary mapping for this physical address.
1567 */
1568
1569 if (!pmap_bootstrapped) {
1570 /*
1571 * If PMAP is not bootstrapped, we are likely to be
1572 * in real mode.
1573 */
1574 __syncicache((void *)pa, sz);
1575 } else if (pmap == kernel_pmap) {
1576 __syncicache((void *)va, sz);
1577 } else if (hw_direct_map) {
1578 __syncicache((void *)pa, sz);
1579 } else {
1580 /* Use the scratch page to set up a temp mapping */
1581
1582 mtx_lock(&moea64_scratchpage_mtx);
1583
1584 moea64_set_scratchpage_pa(1,pa & ~ADDR_POFF);
1585 __syncicache((void *)(moea64_scratchpage_va[1] +
1586 (va & ADDR_POFF)), sz);
1587
1588 mtx_unlock(&moea64_scratchpage_mtx);
1589 }
1590}
1591
1592/*
1593 * Maps a sequence of resident pages belonging to the same object.
1594 * The sequence begins with the given page m_start. This page is
1595 * mapped at the given virtual address start. Each subsequent page is
1596 * mapped at a virtual address that is offset from start by the same
1597 * amount as the page is offset from m_start within the object. The
1598 * last page in the sequence is the page with the largest offset from
1599 * m_start that can be mapped at a virtual address less than the given
1600 * virtual address end. Not every virtual page between start and end
1601 * is mapped; only those for which a resident page exists with the
1602 * corresponding offset from m_start are mapped.
1603 */
1604void
1605moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1606 vm_page_t m_start, vm_prot_t prot)
1607{
1608 vm_page_t m;
1609 vm_pindex_t diff, psize;
1610
1611 psize = atop(end - start);
1612 m = m_start;
1613 vm_page_lock_queues();
1614 PMAP_LOCK(pm);
1615 while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1616 moea64_enter_locked(pm, start + ptoa(diff), m, prot &
1617 (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1618 m = TAILQ_NEXT(m, listq);
1619 }
1620 vm_page_unlock_queues();
1621 PMAP_UNLOCK(pm);
1622}
1623
1624void
1625moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1626 vm_prot_t prot)
1627{
1628
1629 vm_page_lock_queues();
1630 PMAP_LOCK(pm);
1631 moea64_enter_locked(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1632 FALSE);
1633 vm_page_unlock_queues();
1634 PMAP_UNLOCK(pm);
1635}
1636
1637vm_paddr_t
1638moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1639{
1640 struct pvo_entry *pvo;
1641 vm_paddr_t pa;
1642
1643 PMAP_LOCK(pm);
1644 pvo = moea64_pvo_find_va(pm, va);
1645 if (pvo == NULL)
1646 pa = 0;
1647 else
1648 pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) |
1649 (va - PVO_VADDR(pvo));
1650 PMAP_UNLOCK(pm);
1651 return (pa);
1652}
1653
1654/*
1655 * Atomically extract and hold the physical page with the given
1656 * pmap and virtual address pair if that mapping permits the given
1657 * protection.
1658 */
1659vm_page_t
1660moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1661{
1662 struct pvo_entry *pvo;
1663 vm_page_t m;
1664 vm_paddr_t pa;
1665
1666 m = NULL;
1667 pa = 0;
1668 PMAP_LOCK(pmap);
1669retry:
1670 pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1671 if (pvo != NULL && (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) &&
1672 ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) == LPTE_RW ||
1673 (prot & VM_PROT_WRITE) == 0)) {
1674 if (vm_page_pa_tryrelock(pmap,
1675 pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, &pa))
1676 goto retry;
1677 m = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
1678 vm_page_hold(m);
1679 }
1680 PA_UNLOCK_COND(pa);
1681 PMAP_UNLOCK(pmap);
1682 return (m);
1683}
1684
1685static void *
1686moea64_uma_page_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
1687{
1688 /*
1689 * This entire routine is a horrible hack to avoid bothering kmem
1690 * for new KVA addresses. Because this can get called from inside
1691 * kmem allocation routines, calling kmem for a new address here
1692 * can lead to multiply locking non-recursive mutexes.
1693 */
1694 static vm_pindex_t color;
1695 vm_offset_t va;
1696
1697 vm_page_t m;
1698 int pflags, needed_lock;
1699
1700 *flags = UMA_SLAB_PRIV;
1701 needed_lock = !PMAP_LOCKED(kernel_pmap);
1702
1703 if (needed_lock)
1704 PMAP_LOCK(kernel_pmap);
1705
1706 if ((wait & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
1707 pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
1708 else
1709 pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED;
1710 if (wait & M_ZERO)
1711 pflags |= VM_ALLOC_ZERO;
1712
1713 for (;;) {
1714 m = vm_page_alloc(NULL, color++, pflags | VM_ALLOC_NOOBJ);
1715 if (m == NULL) {
1716 if (wait & M_NOWAIT)
1717 return (NULL);
1718 VM_WAIT;
1719 } else
1720 break;
1721 }
1722
1723 va = VM_PAGE_TO_PHYS(m);
1724
1725 moea64_pvo_enter(kernel_pmap, moea64_upvo_zone,
1726 &moea64_pvo_kunmanaged, va, VM_PAGE_TO_PHYS(m), LPTE_M,
1727 PVO_WIRED | PVO_BOOTSTRAP);
1728
1729 if (needed_lock)
1730 PMAP_UNLOCK(kernel_pmap);
1731
1732 if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
1733 bzero((void *)va, PAGE_SIZE);
1734
1735 return (void *)va;
1736}
1737
1738void
1739moea64_init(mmu_t mmu)
1740{
1741
1742 CTR0(KTR_PMAP, "moea64_init");
1743
1744 moea64_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1745 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1746 UMA_ZONE_VM | UMA_ZONE_NOFREE);
1747 moea64_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1748 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1749 UMA_ZONE_VM | UMA_ZONE_NOFREE);
1750
1751 if (!hw_direct_map) {
1752 uma_zone_set_allocf(moea64_upvo_zone,moea64_uma_page_alloc);
1753 uma_zone_set_allocf(moea64_mpvo_zone,moea64_uma_page_alloc);
1754 }
1755
1756 moea64_initialized = TRUE;
1757}
1758
1759boolean_t
1760moea64_is_referenced(mmu_t mmu, vm_page_t m)
1761{
1762
1763 KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1764 ("moea64_is_referenced: page %p is not managed", m));
1765 return (moea64_query_bit(m, PTE_REF));
1766}
1767
1768boolean_t
1769moea64_is_modified(mmu_t mmu, vm_page_t m)
1770{
1771
1772 KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1773 ("moea64_is_modified: page %p is not managed", m));
1774
1775 /*
1776 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be
1777 * concurrently set while the object is locked. Thus, if PG_WRITEABLE
1778 * is clear, no PTEs can have LPTE_CHG set.
1779 */
1780 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1781 if ((m->oflags & VPO_BUSY) == 0 &&
1782 (m->flags & PG_WRITEABLE) == 0)
1783 return (FALSE);
1784 return (moea64_query_bit(m, LPTE_CHG));
1785}
1786
1787boolean_t
1788moea64_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1789{
1790 struct pvo_entry *pvo;
1791 boolean_t rv;
1792
1793 PMAP_LOCK(pmap);
1794 pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1795 rv = pvo == NULL || (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) == 0;
1796 PMAP_UNLOCK(pmap);
1797 return (rv);
1798}
1799
1800void
1801moea64_clear_reference(mmu_t mmu, vm_page_t m)
1802{
1803
1804 KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1805 ("moea64_clear_reference: page %p is not managed", m));
1806 moea64_clear_bit(m, LPTE_REF);
1807}
1808
1809void
1810moea64_clear_modify(mmu_t mmu, vm_page_t m)
1811{
1812
1813 KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1814 ("moea64_clear_modify: page %p is not managed", m));
1815 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1816 KASSERT((m->oflags & VPO_BUSY) == 0,
1817 ("moea64_clear_modify: page %p is busy", m));
1818
1819 /*
1820 * If the page is not PG_WRITEABLE, then no PTEs can have LPTE_CHG
1821 * set. If the object containing the page is locked and the page is
1822 * not VPO_BUSY, then PG_WRITEABLE cannot be concurrently set.
1823 */
1824 if ((m->flags & PG_WRITEABLE) == 0)
1825 return;
1826 moea64_clear_bit(m, LPTE_CHG);
1827}
1828
1829/*
1830 * Clear the write and modified bits in each of the given page's mappings.
1831 */
1832void
1833moea64_remove_write(mmu_t mmu, vm_page_t m)
1834{
1835 struct pvo_entry *pvo;
1836 struct lpte *pt;
1837 pmap_t pmap;
1838 uint64_t lo;
1839
1840 KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1841 ("moea64_remove_write: page %p is not managed", m));
1842
1843 /*
1844 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be set by
1845 * another thread while the object is locked. Thus, if PG_WRITEABLE
1846 * is clear, no page table entries need updating.
1847 */
1848 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1849 if ((m->oflags & VPO_BUSY) == 0 &&
1850 (m->flags & PG_WRITEABLE) == 0)
1851 return;
1852 vm_page_lock_queues();
1853 lo = moea64_attr_fetch(m);
1854 SYNC();
1855 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1856 pmap = pvo->pvo_pmap;
1857 PMAP_LOCK(pmap);
1858 LOCK_TABLE();
1859 if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) {
1860 pt = moea64_pvo_to_pte(pvo);
1861 pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
1862 pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
1863 if (pt != NULL) {
1864 moea64_pte_synch(pt, &pvo->pvo_pte.lpte);
1865 lo |= pvo->pvo_pte.lpte.pte_lo;
1866 pvo->pvo_pte.lpte.pte_lo &= ~LPTE_CHG;
1867 moea64_pte_change(pt, &pvo->pvo_pte.lpte,
1868 pvo->pvo_vpn);
1869 if (pvo->pvo_pmap == kernel_pmap)
1870 isync();
1871 }
1872 }
1873 UNLOCK_TABLE();
1874 PMAP_UNLOCK(pmap);
1875 }
1876 if ((lo & LPTE_CHG) != 0) {
1877 moea64_attr_clear(m, LPTE_CHG);
1878 vm_page_dirty(m);
1879 }
1880 vm_page_flag_clear(m, PG_WRITEABLE);
1881 vm_page_unlock_queues();
1882}
1883
1884/*
1885 * moea64_ts_referenced:
1886 *
1887 * Return a count of reference bits for a page, clearing those bits.
1888 * It is not necessary for every reference bit to be cleared, but it
1889 * is necessary that 0 only be returned when there are truly no
1890 * reference bits set.
1891 *
1892 * XXX: The exact number of bits to check and clear is a matter that
1893 * should be tested and standardized at some point in the future for
1894 * optimal aging of shared pages.
1895 */
1896boolean_t
1897moea64_ts_referenced(mmu_t mmu, vm_page_t m)
1898{
1899
1900 KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1901 ("moea64_ts_referenced: page %p is not managed", m));
1902 return (moea64_clear_bit(m, LPTE_REF));
1903}
1904
1905/*
1906 * Modify the WIMG settings of all mappings for a page.
1907 */
1908void
1909moea64_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1910{
1911 struct pvo_entry *pvo;
1912 struct pvo_head *pvo_head;
1913 struct lpte *pt;
1914 pmap_t pmap;
1915 uint64_t lo;
1916
1917 if (m->flags & PG_FICTITIOUS) {
1918 m->md.mdpg_cache_attrs = ma;
1919 return;
1920 }
1921
1922 vm_page_lock_queues();
1923 pvo_head = vm_page_to_pvoh(m);
1924 lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1925 LIST_FOREACH(pvo, pvo_head, pvo_vlink) {
1926 pmap = pvo->pvo_pmap;
1927 PMAP_LOCK(pmap);
1928 LOCK_TABLE();
1929 pt = moea64_pvo_to_pte(pvo);
1930 pvo->pvo_pte.lpte.pte_lo &= ~LPTE_WIMG;
1931 pvo->pvo_pte.lpte.pte_lo |= lo;
1932 if (pt != NULL) {
1933 moea64_pte_change(pt, &pvo->pvo_pte.lpte,
1934 pvo->pvo_vpn);
1935 if (pvo->pvo_pmap == kernel_pmap)
1936 isync();
1937 }
1938 UNLOCK_TABLE();
1939 PMAP_UNLOCK(pmap);
1940 }
1941 m->md.mdpg_cache_attrs = ma;
1942 vm_page_unlock_queues();
1943}
1944
1945/*
1946 * Map a wired page into kernel virtual address space.
1947 */
1948void
1949moea64_kenter_attr(mmu_t mmu, vm_offset_t va, vm_offset_t pa, vm_memattr_t ma)
1950{
1951 uint64_t pte_lo;
1952 int error;
1953
1954 pte_lo = moea64_calc_wimg(pa, ma);
1955
1956 PMAP_LOCK(kernel_pmap);
1957 error = moea64_pvo_enter(kernel_pmap, moea64_upvo_zone,
1958 &moea64_pvo_kunmanaged, va, pa, pte_lo,
1959 PVO_WIRED | VM_PROT_EXECUTE);
1960
1961 if (error != 0 && error != ENOENT)
1962 panic("moea64_kenter: failed to enter va %#zx pa %#zx: %d", va,
1963 pa, error);
1964
1965 /*
1966 * Flush the memory from the instruction cache.
1967 */
1968 if ((pte_lo & (LPTE_I | LPTE_G)) == 0) {
1969 __syncicache((void *)va, PAGE_SIZE);
1970 }
1971 PMAP_UNLOCK(kernel_pmap);
1972}
1973
1974void
1975moea64_kenter(mmu_t mmu, vm_offset_t va, vm_offset_t pa)
1976{
1977
1978 moea64_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1979}
1980
1981/*
1982 * Extract the physical page address associated with the given kernel virtual
1983 * address.
1984 */
1985vm_offset_t
1986moea64_kextract(mmu_t mmu, vm_offset_t va)
1987{
1988 struct pvo_entry *pvo;
1989 vm_paddr_t pa;
1990
1991 /*
1992 * Shortcut the direct-mapped case when applicable. We never put
1993 * anything but 1:1 mappings below VM_MIN_KERNEL_ADDRESS.
1994 */
1995 if (va < VM_MIN_KERNEL_ADDRESS)
1996 return (va);
1997
1998 PMAP_LOCK(kernel_pmap);
1999 pvo = moea64_pvo_find_va(kernel_pmap, va);
2000 KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR,
2001 va));
2002 pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) + (va - PVO_VADDR(pvo));
2003 PMAP_UNLOCK(kernel_pmap);
2004 return (pa);
2005}
2006
2007/*
2008 * Remove a wired page from kernel virtual address space.
2009 */
2010void
2011moea64_kremove(mmu_t mmu, vm_offset_t va)
2012{
2013 moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
2014}
2015
2016/*
2017 * Map a range of physical addresses into kernel virtual address space.
2018 *
2019 * The value passed in *virt is a suggested virtual address for the mapping.
2020 * Architectures which can support a direct-mapped physical to virtual region
2021 * can return the appropriate address within that region, leaving '*virt'
2022 * unchanged. We cannot and therefore do not; *virt is updated with the
2023 * first usable address after the mapped region.
2024 */
2025vm_offset_t
2026moea64_map(mmu_t mmu, vm_offset_t *virt, vm_offset_t pa_start,
2027 vm_offset_t pa_end, int prot)
2028{
2029 vm_offset_t sva, va;
2030
2031 sva = *virt;
2032 va = sva;
2033 for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
2034 moea64_kenter(mmu, va, pa_start);
2035 *virt = va;
2036
2037 return (sva);
2038}
2039
2040/*
2041 * Returns true if the pmap's pv is one of the first
2042 * 16 pvs linked to from this page. This count may
2043 * be changed upwards or downwards in the future; it
2044 * is only necessary that true be returned for a small
2045 * subset of pmaps for proper page aging.
2046 */
2047boolean_t
2048moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
2049{
2050 int loops;
2051 struct pvo_entry *pvo;
2052 boolean_t rv;
2053
2054 KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2055 ("moea64_page_exists_quick: page %p is not managed", m));
2056 loops = 0;
2057 rv = FALSE;
2058 vm_page_lock_queues();
2059 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2060 if (pvo->pvo_pmap == pmap) {
2061 rv = TRUE;
2062 break;
2063 }
2064 if (++loops >= 16)
2065 break;
2066 }
2067 vm_page_unlock_queues();
2068 return (rv);
2069}
2070
2071/*
2072 * Return the number of managed mappings to the given physical page
2073 * that are wired.
2074 */
2075int
2076moea64_page_wired_mappings(mmu_t mmu, vm_page_t m)
2077{
2078 struct pvo_entry *pvo;
2079 int count;
2080
2081 count = 0;
2082 if ((m->flags & PG_FICTITIOUS) != 0)
2083 return (count);
2084 vm_page_lock_queues();
2085 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
2086 if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
2087 count++;
2088 vm_page_unlock_queues();
2089 return (count);
2090}
2091
2092static uintptr_t moea64_vsidcontext;
2093
2094uintptr_t
2095moea64_get_unique_vsid(void) {
2096 u_int entropy;
2097 register_t hash;
2098 uint32_t mask;
2099 int i;
2100
2101 entropy = 0;
2102 __asm __volatile("mftb %0" : "=r"(entropy));
2103
2104 mtx_lock(&moea64_slb_mutex);
2105 for (i = 0; i < NVSIDS; i += VSID_NBPW) {
2106 u_int n;
2107
2108 /*
2109 * Create a new value by mutiplying by a prime and adding in
2110 * entropy from the timebase register. This is to make the
2111 * VSID more random so that the PT hash function collides
2112 * less often. (Note that the prime casues gcc to do shifts
2113 * instead of a multiply.)
2114 */
2115 moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
2116 hash = moea64_vsidcontext & (NVSIDS - 1);
2117 if (hash == 0) /* 0 is special, avoid it */
2118 continue;
2119 n = hash >> 5;
2120 mask = 1 << (hash & (VSID_NBPW - 1));
2121 hash = (moea64_vsidcontext & VSID_HASHMASK);
2122 if (moea64_vsid_bitmap[n] & mask) { /* collision? */
2123 /* anything free in this bucket? */
2124 if (moea64_vsid_bitmap[n] == 0xffffffff) {
2125 entropy = (moea64_vsidcontext >> 20);
2126 continue;
2127 }
2128 i = ffs(~moea64_vsid_bitmap[n]) - 1;
2129 mask = 1 << i;
2130 hash &= VSID_HASHMASK & ~(VSID_NBPW - 1);
2131 hash |= i;
2132 }
2133 KASSERT(!(moea64_vsid_bitmap[n] & mask),
2134 ("Allocating in-use VSID %#zx\n", hash));
2135 moea64_vsid_bitmap[n] |= mask;
2136 mtx_unlock(&moea64_slb_mutex);
2137 return (hash);
2138 }
2139
2140 mtx_unlock(&moea64_slb_mutex);
2141 panic("%s: out of segments",__func__);
2142}
2143
2144#ifdef __powerpc64__
2145void
2146moea64_pinit(mmu_t mmu, pmap_t pmap)
2147{
2148 PMAP_LOCK_INIT(pmap);
2149
2150 pmap->pm_slb_tree_root = slb_alloc_tree();
2151 pmap->pm_slb = slb_alloc_user_cache();
2152 pmap->pm_slb_len = 0;
2153}
2154#else
2155void
2156moea64_pinit(mmu_t mmu, pmap_t pmap)
2157{
2158 int i;
2159 uint32_t hash;
2160
2161 PMAP_LOCK_INIT(pmap);
2162
2163 if (pmap_bootstrapped)
2164 pmap->pmap_phys = (pmap_t)moea64_kextract(mmu,
2165 (vm_offset_t)pmap);
2166 else
2167 pmap->pmap_phys = pmap;
2168
2169 /*
2170 * Allocate some segment registers for this pmap.
2171 */
2172 hash = moea64_get_unique_vsid();
2173
2174 for (i = 0; i < 16; i++)
2175 pmap->pm_sr[i] = VSID_MAKE(i, hash);
2176
2177 KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0"));
2178}
2179#endif
2180
2181/*
2182 * Initialize the pmap associated with process 0.
2183 */
2184void
2185moea64_pinit0(mmu_t mmu, pmap_t pm)
2186{
2187 moea64_pinit(mmu, pm);
2188 bzero(&pm->pm_stats, sizeof(pm->pm_stats));
2189}
2190
2191/*
2192 * Set the physical protection on the specified range of this map as requested.
2193 */
2194void
2195moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
2196 vm_prot_t prot)
2197{
2198 struct pvo_entry *pvo;
2199 struct lpte *pt;
2200
2201 CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm, sva,
2202 eva, prot);
2203
2204
2205 KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
2206 ("moea64_protect: non current pmap"));
2207
2208 if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2209 moea64_remove(mmu, pm, sva, eva);
2210 return;
2211 }
2212
2213 vm_page_lock_queues();
2214 PMAP_LOCK(pm);
2215 for (; sva < eva; sva += PAGE_SIZE) {
2216 pvo = moea64_pvo_find_va(pm, sva);
2217 if (pvo == NULL)
2218 continue;
2219
2220 /*
2221 * Grab the PTE pointer before we diddle with the cached PTE
2222 * copy.
2223 */
2224 LOCK_TABLE();
2225 pt = moea64_pvo_to_pte(pvo);
2226
2227 /*
2228 * Change the protection of the page.
2229 */
2230 pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
2231 pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
2232 pvo->pvo_pte.lpte.pte_lo &= ~LPTE_NOEXEC;
2233 if ((prot & VM_PROT_EXECUTE) == 0)
2234 pvo->pvo_pte.lpte.pte_lo |= LPTE_NOEXEC;
2235
2236 /*
2237 * If the PVO is in the page table, update that pte as well.
2238 */
2239 if (pt != NULL) {
2240 moea64_pte_change(pt, &pvo->pvo_pte.lpte, pvo->pvo_vpn);
2241 if ((pvo->pvo_pte.lpte.pte_lo &
2242 (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
2243 moea64_syncicache(pm, sva,
2244 pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN,
2245 PAGE_SIZE);
2246 }
2247 }
2248 UNLOCK_TABLE();
2249 }
2250 vm_page_unlock_queues();
2251 PMAP_UNLOCK(pm);
2252}
2253
2254/*
2255 * Map a list of wired pages into kernel virtual address space. This is
2256 * intended for temporary mappings which do not need page modification or
2257 * references recorded. Existing mappings in the region are overwritten.
2258 */
2259void
2260moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count)
2261{
2262 while (count-- > 0) {
2263 moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
2264 va += PAGE_SIZE;
2265 m++;
2266 }
2267}
2268
2269/*
2270 * Remove page mappings from kernel virtual address space. Intended for
2271 * temporary mappings entered by moea64_qenter.
2272 */
2273void
2274moea64_qremove(mmu_t mmu, vm_offset_t va, int count)
2275{
2276 while (count-- > 0) {
2277 moea64_kremove(mmu, va);
2278 va += PAGE_SIZE;
2279 }
2280}
2281
2282void
2283moea64_release_vsid(uint64_t vsid)
2284{
2285 int idx, mask;
2286
2287 mtx_lock(&moea64_slb_mutex);
2288 idx = vsid & (NVSIDS-1);
2289 mask = 1 << (idx % VSID_NBPW);
2290 idx /= VSID_NBPW;
2291 KASSERT(moea64_vsid_bitmap[idx] & mask,
2292 ("Freeing unallocated VSID %#jx", vsid));
2293 moea64_vsid_bitmap[idx] &= ~mask;
2294 mtx_unlock(&moea64_slb_mutex);
2295}
2296
2297
2298void
2299moea64_release(mmu_t mmu, pmap_t pmap)
2300{
2301
2302 /*
2303 * Free segment registers' VSIDs
2304 */
2305 #ifdef __powerpc64__
2306 slb_free_tree(pmap);
2307 slb_free_user_cache(pmap->pm_slb);
2308 #else
2309 KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0"));
2310
2311 moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0]));
2312 #endif
2313
2314 PMAP_LOCK_DESTROY(pmap);
2315}
2316
2317/*
2318 * Remove the given range of addresses from the specified map.
2319 */
2320void
2321moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
2322{
2323 struct pvo_entry *pvo;
2324
2325 vm_page_lock_queues();
2326 PMAP_LOCK(pm);
2327 for (; sva < eva; sva += PAGE_SIZE) {
2328 pvo = moea64_pvo_find_va(pm, sva);
2329 if (pvo != NULL)
2330 moea64_pvo_remove(pvo);
2331 }
2332 vm_page_unlock_queues();
2333 PMAP_UNLOCK(pm);
2334}
2335
2336/*
2337 * Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
2338 * will reflect changes in pte's back to the vm_page.
2339 */
2340void
2341moea64_remove_all(mmu_t mmu, vm_page_t m)
2342{
2343 struct pvo_head *pvo_head;
2344 struct pvo_entry *pvo, *next_pvo;
2345 pmap_t pmap;
2346
2347 vm_page_lock_queues();
2348 pvo_head = vm_page_to_pvoh(m);
2349 for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2350 next_pvo = LIST_NEXT(pvo, pvo_vlink);
2351
2352 MOEA_PVO_CHECK(pvo); /* sanity check */
2353 pmap = pvo->pvo_pmap;
2354 PMAP_LOCK(pmap);
2355 moea64_pvo_remove(pvo);
2356 PMAP_UNLOCK(pmap);
2357 }
2358 if ((m->flags & PG_WRITEABLE) && moea64_is_modified(mmu, m)) {
2359 moea64_attr_clear(m, LPTE_CHG);
2360 vm_page_dirty(m);
2361 }
2362 vm_page_flag_clear(m, PG_WRITEABLE);
2363 vm_page_unlock_queues();
2364}
2365
2366/*
2367 * Allocate a physical page of memory directly from the phys_avail map.
2368 * Can only be called from moea64_bootstrap before avail start and end are
2369 * calculated.
2370 */
2371static vm_offset_t
2372moea64_bootstrap_alloc(vm_size_t size, u_int align)
2373{
2374 vm_offset_t s, e;
2375 int i, j;
2376
2377 size = round_page(size);
2378 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2379 if (align != 0)
2380 s = (phys_avail[i] + align - 1) & ~(align - 1);
2381 else
2382 s = phys_avail[i];
2383 e = s + size;
2384
2385 if (s < phys_avail[i] || e > phys_avail[i + 1])
2386 continue;
2387
2388 if (s + size > platform_real_maxaddr())
2389 continue;
2390
2388 if (s == phys_avail[i]) {
2389 phys_avail[i] += size;
2390 } else if (e == phys_avail[i + 1]) {
2391 phys_avail[i + 1] -= size;
2392 } else {
2393 for (j = phys_avail_count * 2; j > i; j -= 2) {
2394 phys_avail[j] = phys_avail[j - 2];
2395 phys_avail[j + 1] = phys_avail[j - 1];
2396 }
2397
2398 phys_avail[i + 3] = phys_avail[i + 1];
2399 phys_avail[i + 1] = s;
2400 phys_avail[i + 2] = e;
2401 phys_avail_count++;
2402 }
2403
2404 return (s);
2405 }
2406 panic("moea64_bootstrap_alloc: could not allocate memory");
2407}
2408
2409static void
2410tlbia(void)
2411{
2412 vm_offset_t i;
2413 #ifndef __powerpc64__
2414 register_t msr, scratch;
2415 #endif
2416
2417 TLBSYNC();
2418
2419 for (i = 0; i < 0xFF000; i += 0x00001000) {
2420 #ifdef __powerpc64__
2421 __asm __volatile("tlbiel %0" :: "r"(i));
2422 #else
2423 __asm __volatile("\
2424 mfmsr %0; \
2425 mr %1, %0; \
2426 insrdi %1,%3,1,0; \
2427 mtmsrd %1; \
2428 isync; \
2429 \
2430 tlbiel %2; \
2431 \
2432 mtmsrd %0; \
2433 isync;"
2434 : "=r"(msr), "=r"(scratch) : "r"(i), "r"(1));
2435 #endif
2436 }
2437
2438 EIEIO();
2439 TLBSYNC();
2440}
2441
2442#ifdef __powerpc64__
2443static void
2444slbia(void)
2445{
2446 register_t seg0;
2447
2448 __asm __volatile ("slbia");
2449 __asm __volatile ("slbmfee %0,%1; slbie %0;" : "=r"(seg0) : "r"(0));
2450}
2451#endif
2452
2453static int
2454moea64_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
2455 vm_offset_t va, vm_offset_t pa, uint64_t pte_lo, int flags)
2456{
2457 struct pvo_entry *pvo;
2458 uint64_t vsid;
2459 int first;
2460 u_int ptegidx;
2461 int i;
2462 int bootstrap;
2463
2464 /*
2465 * One nasty thing that can happen here is that the UMA calls to
2466 * allocate new PVOs need to map more memory, which calls pvo_enter(),
2467 * which calls UMA...
2468 *
2469 * We break the loop by detecting recursion and allocating out of
2470 * the bootstrap pool.
2471 */
2472
2473 first = 0;
2474 bootstrap = (flags & PVO_BOOTSTRAP);
2475
2476 if (!moea64_initialized)
2477 bootstrap = 1;
2478
2479 /*
2480 * Compute the PTE Group index.
2481 */
2482 va &= ~ADDR_POFF;
2483 vsid = va_to_vsid(pm, va);
2484 ptegidx = va_to_pteg(vsid, va, flags & PVO_LARGE);
2485
2486 /*
2487 * Remove any existing mapping for this page. Reuse the pvo entry if
2488 * there is a mapping.
2489 */
2490 LOCK_TABLE();
2491
2492 moea64_pvo_enter_calls++;
2493
2494 LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) {
2495 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2496 if ((pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) == pa &&
2497 (pvo->pvo_pte.lpte.pte_lo & LPTE_PP) ==
2498 (pte_lo & LPTE_PP)) {
2499 if (!(pvo->pvo_pte.lpte.pte_hi & LPTE_VALID)) {
2500 /* Re-insert if spilled */
2501 i = moea64_pte_insert(ptegidx,
2502 &pvo->pvo_pte.lpte);
2503 if (i >= 0)
2504 PVO_PTEGIDX_SET(pvo, i);
2505 moea64_pte_overflow--;
2506 }
2507 UNLOCK_TABLE();
2508 return (0);
2509 }
2510 moea64_pvo_remove(pvo);
2511 break;
2512 }
2513 }
2514
2515 /*
2516 * If we aren't overwriting a mapping, try to allocate.
2517 */
2518 if (bootstrap) {
2519 if (moea64_bpvo_pool_index >= BPVO_POOL_SIZE) {
2520 panic("moea64_enter: bpvo pool exhausted, %d, %d, %zd",
2521 moea64_bpvo_pool_index, BPVO_POOL_SIZE,
2522 BPVO_POOL_SIZE * sizeof(struct pvo_entry));
2523 }
2524 pvo = &moea64_bpvo_pool[moea64_bpvo_pool_index];
2525 moea64_bpvo_pool_index++;
2526 bootstrap = 1;
2527 } else {
2528 /*
2529 * Note: drop the table lock around the UMA allocation in
2530 * case the UMA allocator needs to manipulate the page
2531 * table. The mapping we are working with is already
2532 * protected by the PMAP lock.
2533 */
2534 UNLOCK_TABLE();
2535 pvo = uma_zalloc(zone, M_NOWAIT);
2536 LOCK_TABLE();
2537 }
2538
2539 if (pvo == NULL) {
2540 UNLOCK_TABLE();
2541 return (ENOMEM);
2542 }
2543
2544 moea64_pvo_entries++;
2545 pvo->pvo_vaddr = va;
2546 pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT)
2547 | (vsid << 16);
2548 pvo->pvo_pmap = pm;
2549 LIST_INSERT_HEAD(&moea64_pvo_table[ptegidx], pvo, pvo_olink);
2550 pvo->pvo_vaddr &= ~ADDR_POFF;
2551
2552 if (!(flags & VM_PROT_EXECUTE))
2553 pte_lo |= LPTE_NOEXEC;
2554 if (flags & PVO_WIRED)
2555 pvo->pvo_vaddr |= PVO_WIRED;
2556 if (pvo_head != &moea64_pvo_kunmanaged)
2557 pvo->pvo_vaddr |= PVO_MANAGED;
2558 if (bootstrap)
2559 pvo->pvo_vaddr |= PVO_BOOTSTRAP;
2560 if (flags & PVO_FAKE)
2561 pvo->pvo_vaddr |= PVO_FAKE;
2562 if (flags & PVO_LARGE)
2563 pvo->pvo_vaddr |= PVO_LARGE;
2564
2565 moea64_pte_create(&pvo->pvo_pte.lpte, vsid, va,
2566 (uint64_t)(pa) | pte_lo, flags);
2567
2568 /*
2569 * Remember if the list was empty and therefore will be the first
2570 * item.
2571 */
2572 if (LIST_FIRST(pvo_head) == NULL)
2573 first = 1;
2574 LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2575
2576 if (pvo->pvo_vaddr & PVO_WIRED) {
2577 pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
2578 pm->pm_stats.wired_count++;
2579 }
2580 pm->pm_stats.resident_count++;
2581
2582 /*
2583 * We hope this succeeds but it isn't required.
2584 */
2585 i = moea64_pte_insert(ptegidx, &pvo->pvo_pte.lpte);
2586 if (i >= 0) {
2587 PVO_PTEGIDX_SET(pvo, i);
2588 } else {
2589 panic("moea64_pvo_enter: overflow");
2590 moea64_pte_overflow++;
2591 }
2592
2593 if (pm == kernel_pmap)
2594 isync();
2595
2596 UNLOCK_TABLE();
2597
2598#ifdef __powerpc64__
2599 /*
2600 * Make sure all our bootstrap mappings are in the SLB as soon
2601 * as virtual memory is switched on.
2602 */
2603 if (!pmap_bootstrapped)
2604 moea64_bootstrap_slb_prefault(va, flags & PVO_LARGE);
2605#endif
2606
2607 return (first ? ENOENT : 0);
2608}
2609
2610static void
2611moea64_pvo_remove(struct pvo_entry *pvo)
2612{
2613 struct lpte *pt;
2614
2615 /*
2616 * If there is an active pte entry, we need to deactivate it (and
2617 * save the ref & cfg bits).
2618 */
2619 LOCK_TABLE();
2620 pt = moea64_pvo_to_pte(pvo);
2621 if (pt != NULL) {
2622 moea64_pte_unset(pt, &pvo->pvo_pte.lpte, pvo->pvo_vpn);
2623 PVO_PTEGIDX_CLR(pvo);
2624 } else {
2625 moea64_pte_overflow--;
2626 }
2627
2628 /*
2629 * Update our statistics.
2630 */
2631 pvo->pvo_pmap->pm_stats.resident_count--;
2632 if (pvo->pvo_vaddr & PVO_WIRED)
2633 pvo->pvo_pmap->pm_stats.wired_count--;
2634
2635 /*
2636 * Save the REF/CHG bits into their cache if the page is managed.
2637 */
2638 if ((pvo->pvo_vaddr & (PVO_MANAGED|PVO_FAKE)) == PVO_MANAGED) {
2639 struct vm_page *pg;
2640
2641 pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
2642 if (pg != NULL) {
2643 moea64_attr_save(pg, pvo->pvo_pte.lpte.pte_lo &
2644 (LPTE_REF | LPTE_CHG));
2645 }
2646 }
2647
2648 /*
2649 * Remove this PVO from the PV list.
2650 */
2651 LIST_REMOVE(pvo, pvo_vlink);
2652
2653 /*
2654 * Remove this from the overflow list and return it to the pool
2655 * if we aren't going to reuse it.
2656 */
2657 LIST_REMOVE(pvo, pvo_olink);
2658
2659 moea64_pvo_entries--;
2660 moea64_pvo_remove_calls++;
2661
2662 UNLOCK_TABLE();
2663
2664 if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2665 uma_zfree((pvo->pvo_vaddr & PVO_MANAGED) ? moea64_mpvo_zone :
2666 moea64_upvo_zone, pvo);
2667}
2668
2669static struct pvo_entry *
2670moea64_pvo_find_va(pmap_t pm, vm_offset_t va)
2671{
2672 struct pvo_entry *pvo;
2673 int ptegidx;
2674 uint64_t vsid;
2675 #ifdef __powerpc64__
2676 uint64_t slbv;
2677
2678 if (pm == kernel_pmap) {
2679 slbv = kernel_va_to_slbv(va);
2680 } else {
2681 struct slb *slb;
2682 slb = user_va_to_slb_entry(pm, va);
2683 /* The page is not mapped if the segment isn't */
2684 if (slb == NULL)
2685 return NULL;
2686 slbv = slb->slbv;
2687 }
2688
2689 vsid = (slbv & SLBV_VSID_MASK) >> SLBV_VSID_SHIFT;
2690 if (slbv & SLBV_L)
2691 va &= ~moea64_large_page_mask;
2692 else
2693 va &= ~ADDR_POFF;
2694 ptegidx = va_to_pteg(vsid, va, slbv & SLBV_L);
2695 #else
2696 va &= ~ADDR_POFF;
2697 vsid = va_to_vsid(pm, va);
2698 ptegidx = va_to_pteg(vsid, va, 0);
2699 #endif
2700
2701 LOCK_TABLE();
2702 LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) {
2703 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va)
2704 break;
2705 }
2706 UNLOCK_TABLE();
2707
2708 return (pvo);
2709}
2710
2711static struct lpte *
2712moea64_pvo_to_pte(const struct pvo_entry *pvo)
2713{
2714 struct lpte *pt;
2715 int pteidx, ptegidx;
2716 uint64_t vsid;
2717
2718 ASSERT_TABLE_LOCK();
2719
2720 /* If the PTEG index is not set, then there is no page table entry */
2721 if (!PVO_PTEGIDX_ISSET(pvo))
2722 return (NULL);
2723
2724 /*
2725 * Calculate the ptegidx
2726 */
2727 vsid = PVO_VSID(pvo);
2728 ptegidx = va_to_pteg(vsid, PVO_VADDR(pvo),
2729 pvo->pvo_vaddr & PVO_LARGE);
2730
2731 /*
2732 * We can find the actual pte entry without searching by grabbing
2733 * the PTEG index from 3 unused bits in pvo_vaddr and by
2734 * noticing the HID bit.
2735 */
2736 if (pvo->pvo_pte.lpte.pte_hi & LPTE_HID)
2737 ptegidx ^= moea64_pteg_mask;
2738
2739 pteidx = (ptegidx << 3) | PVO_PTEGIDX_GET(pvo);
2740
2741 if ((pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) &&
2742 !PVO_PTEGIDX_ISSET(pvo)) {
2743 panic("moea64_pvo_to_pte: pvo %p has valid pte in pvo but no "
2744 "valid pte index", pvo);
2745 }
2746
2747 if ((pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) == 0 &&
2748 PVO_PTEGIDX_ISSET(pvo)) {
2749 panic("moea64_pvo_to_pte: pvo %p has valid pte index in pvo "
2750 "pvo but no valid pte", pvo);
2751 }
2752
2753 pt = &moea64_pteg_table[pteidx >> 3].pt[pteidx & 7];
2754 if ((pt->pte_hi ^ (pvo->pvo_pte.lpte.pte_hi & ~LPTE_VALID)) ==
2755 LPTE_VALID) {
2756 if ((pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) == 0) {
2757 panic("moea64_pvo_to_pte: pvo %p has valid pte in "
2758 "moea64_pteg_table %p but invalid in pvo", pvo, pt);
2759 }
2760
2761 if (((pt->pte_lo ^ pvo->pvo_pte.lpte.pte_lo) &
2762 ~(LPTE_M|LPTE_CHG|LPTE_REF)) != 0) {
2763 panic("moea64_pvo_to_pte: pvo %p pte does not match "
2764 "pte %p in moea64_pteg_table difference is %#x",
2765 pvo, pt,
2766 (uint32_t)(pt->pte_lo ^ pvo->pvo_pte.lpte.pte_lo));
2767 }
2768
2769 return (pt);
2770 }
2771
2772 if (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) {
2773 panic("moea64_pvo_to_pte: pvo %p has invalid pte %p in "
2774 "moea64_pteg_table but valid in pvo", pvo, pt);
2775 }
2776
2777 return (NULL);
2778}
2779
2780static __inline int
2781moea64_pte_spillable_ident(u_int ptegidx)
2782{
2783 struct lpte *pt;
2784 int i, j, k;
2785
2786 /* Start at a random slot */
2787 i = mftb() % 8;
2788 k = -1;
2789 for (j = 0; j < 8; j++) {
2790 pt = &moea64_pteg_table[ptegidx].pt[(i + j) % 8];
2791 if (pt->pte_hi & (LPTE_LOCKED | LPTE_WIRED))
2792 continue;
2793
2794 /* This is a candidate, so remember it */
2795 k = (i + j) % 8;
2796
2797 /* Try to get a page that has not been used lately */
2798 if (!(pt->pte_lo & LPTE_REF))
2799 return (k);
2800 }
2801
2802 return (k);
2803}
2804
2805static int
2806moea64_pte_insert(u_int ptegidx, struct lpte *pvo_pt)
2807{
2808 struct lpte *pt;
2809 struct pvo_entry *pvo;
2810 u_int pteg_bktidx;
2811 int i;
2812
2813 ASSERT_TABLE_LOCK();
2814
2815 /*
2816 * First try primary hash.
2817 */
2818 pteg_bktidx = ptegidx;
2819 for (pt = moea64_pteg_table[pteg_bktidx].pt, i = 0; i < 8; i++, pt++) {
2820 if ((pt->pte_hi & (LPTE_VALID | LPTE_LOCKED)) == 0) {
2821 pvo_pt->pte_hi &= ~LPTE_HID;
2822 moea64_pte_set(pt, pvo_pt);
2823 return (i);
2824 }
2825 }
2826
2827 /*
2828 * Now try secondary hash.
2829 */
2830 pteg_bktidx ^= moea64_pteg_mask;
2831 for (pt = moea64_pteg_table[pteg_bktidx].pt, i = 0; i < 8; i++, pt++) {
2832 if ((pt->pte_hi & (LPTE_VALID | LPTE_LOCKED)) == 0) {
2833 pvo_pt->pte_hi |= LPTE_HID;
2834 moea64_pte_set(pt, pvo_pt);
2835 return (i);
2836 }
2837 }
2838
2839 /*
2840 * Out of luck. Find a PTE to sacrifice.
2841 */
2842 pteg_bktidx = ptegidx;
2843 i = moea64_pte_spillable_ident(pteg_bktidx);
2844 if (i < 0) {
2845 pteg_bktidx ^= moea64_pteg_mask;
2846 i = moea64_pte_spillable_ident(pteg_bktidx);
2847 }
2848
2849 if (i < 0) {
2850 /* No freeable slots in either PTEG? We're hosed. */
2851 panic("moea64_pte_insert: overflow");
2852 return (-1);
2853 }
2854
2855 if (pteg_bktidx == ptegidx)
2856 pvo_pt->pte_hi &= ~LPTE_HID;
2857 else
2858 pvo_pt->pte_hi |= LPTE_HID;
2859
2860 /*
2861 * Synchronize the sacrifice PTE with its PVO, then mark both
2862 * invalid. The PVO will be reused when/if the VM system comes
2863 * here after a fault.
2864 */
2865 pt = &moea64_pteg_table[pteg_bktidx].pt[i];
2866
2867 if (pt->pte_hi & LPTE_HID)
2868 pteg_bktidx ^= moea64_pteg_mask; /* PTEs indexed by primary */
2869
2870 LIST_FOREACH(pvo, &moea64_pvo_table[pteg_bktidx], pvo_olink) {
2871 if (pvo->pvo_pte.lpte.pte_hi == pt->pte_hi) {
2872 KASSERT(pvo->pvo_pte.lpte.pte_hi & LPTE_VALID,
2873 ("Invalid PVO for valid PTE!"));
2874 moea64_pte_unset(pt, &pvo->pvo_pte.lpte, pvo->pvo_vpn);
2875 PVO_PTEGIDX_CLR(pvo);
2876 moea64_pte_overflow++;
2877 break;
2878 }
2879 }
2880
2881 KASSERT(pvo->pvo_pte.lpte.pte_hi == pt->pte_hi,
2882 ("Unable to find PVO for spilled PTE"));
2883
2884 /*
2885 * Set the new PTE.
2886 */
2887 moea64_pte_set(pt, pvo_pt);
2888
2889 return (i);
2890}
2891
2892static boolean_t
2893moea64_query_bit(vm_page_t m, u_int64_t ptebit)
2894{
2895 struct pvo_entry *pvo;
2896 struct lpte *pt;
2897
2898 if (moea64_attr_fetch(m) & ptebit)
2899 return (TRUE);
2900
2901 vm_page_lock_queues();
2902
2903 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2904 MOEA_PVO_CHECK(pvo); /* sanity check */
2905
2906 /*
2907 * See if we saved the bit off. If so, cache it and return
2908 * success.
2909 */
2910 if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2911 moea64_attr_save(m, ptebit);
2912 MOEA_PVO_CHECK(pvo); /* sanity check */
2913 vm_page_unlock_queues();
2914 return (TRUE);
2915 }
2916 }
2917
2918 /*
2919 * No luck, now go through the hard part of looking at the PTEs
2920 * themselves. Sync so that any pending REF/CHG bits are flushed to
2921 * the PTEs.
2922 */
2923 SYNC();
2924 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2925 MOEA_PVO_CHECK(pvo); /* sanity check */
2926
2927 /*
2928 * See if this pvo has a valid PTE. if so, fetch the
2929 * REF/CHG bits from the valid PTE. If the appropriate
2930 * ptebit is set, cache it and return success.
2931 */
2932 LOCK_TABLE();
2933 pt = moea64_pvo_to_pte(pvo);
2934 if (pt != NULL) {
2935 moea64_pte_synch(pt, &pvo->pvo_pte.lpte);
2936 if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2937 UNLOCK_TABLE();
2938
2939 moea64_attr_save(m, ptebit);
2940 MOEA_PVO_CHECK(pvo); /* sanity check */
2941 vm_page_unlock_queues();
2942 return (TRUE);
2943 }
2944 }
2945 UNLOCK_TABLE();
2946 }
2947
2948 vm_page_unlock_queues();
2949 return (FALSE);
2950}
2951
2952static u_int
2953moea64_clear_bit(vm_page_t m, u_int64_t ptebit)
2954{
2955 u_int count;
2956 struct pvo_entry *pvo;
2957 struct lpte *pt;
2958
2959 vm_page_lock_queues();
2960
2961 /*
2962 * Clear the cached value.
2963 */
2964 moea64_attr_clear(m, ptebit);
2965
2966 /*
2967 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2968 * we can reset the right ones). note that since the pvo entries and
2969 * list heads are accessed via BAT0 and are never placed in the page
2970 * table, we don't have to worry about further accesses setting the
2971 * REF/CHG bits.
2972 */
2973 SYNC();
2974
2975 /*
2976 * For each pvo entry, clear the pvo's ptebit. If this pvo has a
2977 * valid pte clear the ptebit from the valid pte.
2978 */
2979 count = 0;
2980 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2981 MOEA_PVO_CHECK(pvo); /* sanity check */
2982
2983 LOCK_TABLE();
2984 pt = moea64_pvo_to_pte(pvo);
2985 if (pt != NULL) {
2986 moea64_pte_synch(pt, &pvo->pvo_pte.lpte);
2987 if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2988 count++;
2989 moea64_pte_clear(pt, pvo->pvo_vpn, ptebit);
2990 }
2991 }
2992 pvo->pvo_pte.lpte.pte_lo &= ~ptebit;
2993 MOEA_PVO_CHECK(pvo); /* sanity check */
2994 UNLOCK_TABLE();
2995 }
2996
2997 vm_page_unlock_queues();
2998 return (count);
2999}
3000
3001boolean_t
3002moea64_dev_direct_mapped(mmu_t mmu, vm_offset_t pa, vm_size_t size)
3003{
3004 struct pvo_entry *pvo;
3005 vm_offset_t ppa;
3006 int error = 0;
3007
3008 PMAP_LOCK(kernel_pmap);
3009 for (ppa = pa & ~ADDR_POFF; ppa < pa + size; ppa += PAGE_SIZE) {
3010 pvo = moea64_pvo_find_va(kernel_pmap, ppa);
3011 if (pvo == NULL ||
3012 (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) != ppa) {
3013 error = EFAULT;
3014 break;
3015 }
3016 }
3017 PMAP_UNLOCK(kernel_pmap);
3018
3019 return (error);
3020}
3021
3022/*
3023 * Map a set of physical memory pages into the kernel virtual
3024 * address space. Return a pointer to where it is mapped. This
3025 * routine is intended to be used for mapping device memory,
3026 * NOT real memory.
3027 */
3028void *
3029moea64_mapdev_attr(mmu_t mmu, vm_offset_t pa, vm_size_t size, vm_memattr_t ma)
3030{
3031 vm_offset_t va, tmpva, ppa, offset;
3032
3033 ppa = trunc_page(pa);
3034 offset = pa & PAGE_MASK;
3035 size = roundup(offset + size, PAGE_SIZE);
3036
3037 va = kmem_alloc_nofault(kernel_map, size);
3038
3039 if (!va)
3040 panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
3041
3042 for (tmpva = va; size > 0;) {
3043 moea64_kenter_attr(mmu, tmpva, ppa, ma);
3044 size -= PAGE_SIZE;
3045 tmpva += PAGE_SIZE;
3046 ppa += PAGE_SIZE;
3047 }
3048
3049 return ((void *)(va + offset));
3050}
3051
3052void *
3053moea64_mapdev(mmu_t mmu, vm_offset_t pa, vm_size_t size)
3054{
3055
3056 return moea64_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT);
3057}
3058
3059void
3060moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
3061{
3062 vm_offset_t base, offset;
3063
3064 base = trunc_page(va);
3065 offset = va & PAGE_MASK;
3066 size = roundup(offset + size, PAGE_SIZE);
3067
3068 kmem_free(kernel_map, base, size);
3069}
3070
3071static void
3072moea64_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
3073{
3074 struct pvo_entry *pvo;
3075 vm_offset_t lim;
3076 vm_paddr_t pa;
3077 vm_size_t len;
3078
3079 PMAP_LOCK(pm);
3080 while (sz > 0) {
3081 lim = round_page(va);
3082 len = MIN(lim - va, sz);
3083 pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
3084 if (pvo != NULL) {
3085 pa = (pvo->pvo_pte.pte.pte_lo & LPTE_RPGN) |
3086 (va & ADDR_POFF);
3087 moea64_syncicache(pm, va, pa, len);
3088 }
3089 va += len;
3090 sz -= len;
3091 }
3092 PMAP_UNLOCK(pm);
3093}
2391 if (s == phys_avail[i]) {
2392 phys_avail[i] += size;
2393 } else if (e == phys_avail[i + 1]) {
2394 phys_avail[i + 1] -= size;
2395 } else {
2396 for (j = phys_avail_count * 2; j > i; j -= 2) {
2397 phys_avail[j] = phys_avail[j - 2];
2398 phys_avail[j + 1] = phys_avail[j - 1];
2399 }
2400
2401 phys_avail[i + 3] = phys_avail[i + 1];
2402 phys_avail[i + 1] = s;
2403 phys_avail[i + 2] = e;
2404 phys_avail_count++;
2405 }
2406
2407 return (s);
2408 }
2409 panic("moea64_bootstrap_alloc: could not allocate memory");
2410}
2411
2412static void
2413tlbia(void)
2414{
2415 vm_offset_t i;
2416 #ifndef __powerpc64__
2417 register_t msr, scratch;
2418 #endif
2419
2420 TLBSYNC();
2421
2422 for (i = 0; i < 0xFF000; i += 0x00001000) {
2423 #ifdef __powerpc64__
2424 __asm __volatile("tlbiel %0" :: "r"(i));
2425 #else
2426 __asm __volatile("\
2427 mfmsr %0; \
2428 mr %1, %0; \
2429 insrdi %1,%3,1,0; \
2430 mtmsrd %1; \
2431 isync; \
2432 \
2433 tlbiel %2; \
2434 \
2435 mtmsrd %0; \
2436 isync;"
2437 : "=r"(msr), "=r"(scratch) : "r"(i), "r"(1));
2438 #endif
2439 }
2440
2441 EIEIO();
2442 TLBSYNC();
2443}
2444
2445#ifdef __powerpc64__
2446static void
2447slbia(void)
2448{
2449 register_t seg0;
2450
2451 __asm __volatile ("slbia");
2452 __asm __volatile ("slbmfee %0,%1; slbie %0;" : "=r"(seg0) : "r"(0));
2453}
2454#endif
2455
2456static int
2457moea64_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
2458 vm_offset_t va, vm_offset_t pa, uint64_t pte_lo, int flags)
2459{
2460 struct pvo_entry *pvo;
2461 uint64_t vsid;
2462 int first;
2463 u_int ptegidx;
2464 int i;
2465 int bootstrap;
2466
2467 /*
2468 * One nasty thing that can happen here is that the UMA calls to
2469 * allocate new PVOs need to map more memory, which calls pvo_enter(),
2470 * which calls UMA...
2471 *
2472 * We break the loop by detecting recursion and allocating out of
2473 * the bootstrap pool.
2474 */
2475
2476 first = 0;
2477 bootstrap = (flags & PVO_BOOTSTRAP);
2478
2479 if (!moea64_initialized)
2480 bootstrap = 1;
2481
2482 /*
2483 * Compute the PTE Group index.
2484 */
2485 va &= ~ADDR_POFF;
2486 vsid = va_to_vsid(pm, va);
2487 ptegidx = va_to_pteg(vsid, va, flags & PVO_LARGE);
2488
2489 /*
2490 * Remove any existing mapping for this page. Reuse the pvo entry if
2491 * there is a mapping.
2492 */
2493 LOCK_TABLE();
2494
2495 moea64_pvo_enter_calls++;
2496
2497 LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) {
2498 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2499 if ((pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) == pa &&
2500 (pvo->pvo_pte.lpte.pte_lo & LPTE_PP) ==
2501 (pte_lo & LPTE_PP)) {
2502 if (!(pvo->pvo_pte.lpte.pte_hi & LPTE_VALID)) {
2503 /* Re-insert if spilled */
2504 i = moea64_pte_insert(ptegidx,
2505 &pvo->pvo_pte.lpte);
2506 if (i >= 0)
2507 PVO_PTEGIDX_SET(pvo, i);
2508 moea64_pte_overflow--;
2509 }
2510 UNLOCK_TABLE();
2511 return (0);
2512 }
2513 moea64_pvo_remove(pvo);
2514 break;
2515 }
2516 }
2517
2518 /*
2519 * If we aren't overwriting a mapping, try to allocate.
2520 */
2521 if (bootstrap) {
2522 if (moea64_bpvo_pool_index >= BPVO_POOL_SIZE) {
2523 panic("moea64_enter: bpvo pool exhausted, %d, %d, %zd",
2524 moea64_bpvo_pool_index, BPVO_POOL_SIZE,
2525 BPVO_POOL_SIZE * sizeof(struct pvo_entry));
2526 }
2527 pvo = &moea64_bpvo_pool[moea64_bpvo_pool_index];
2528 moea64_bpvo_pool_index++;
2529 bootstrap = 1;
2530 } else {
2531 /*
2532 * Note: drop the table lock around the UMA allocation in
2533 * case the UMA allocator needs to manipulate the page
2534 * table. The mapping we are working with is already
2535 * protected by the PMAP lock.
2536 */
2537 UNLOCK_TABLE();
2538 pvo = uma_zalloc(zone, M_NOWAIT);
2539 LOCK_TABLE();
2540 }
2541
2542 if (pvo == NULL) {
2543 UNLOCK_TABLE();
2544 return (ENOMEM);
2545 }
2546
2547 moea64_pvo_entries++;
2548 pvo->pvo_vaddr = va;
2549 pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT)
2550 | (vsid << 16);
2551 pvo->pvo_pmap = pm;
2552 LIST_INSERT_HEAD(&moea64_pvo_table[ptegidx], pvo, pvo_olink);
2553 pvo->pvo_vaddr &= ~ADDR_POFF;
2554
2555 if (!(flags & VM_PROT_EXECUTE))
2556 pte_lo |= LPTE_NOEXEC;
2557 if (flags & PVO_WIRED)
2558 pvo->pvo_vaddr |= PVO_WIRED;
2559 if (pvo_head != &moea64_pvo_kunmanaged)
2560 pvo->pvo_vaddr |= PVO_MANAGED;
2561 if (bootstrap)
2562 pvo->pvo_vaddr |= PVO_BOOTSTRAP;
2563 if (flags & PVO_FAKE)
2564 pvo->pvo_vaddr |= PVO_FAKE;
2565 if (flags & PVO_LARGE)
2566 pvo->pvo_vaddr |= PVO_LARGE;
2567
2568 moea64_pte_create(&pvo->pvo_pte.lpte, vsid, va,
2569 (uint64_t)(pa) | pte_lo, flags);
2570
2571 /*
2572 * Remember if the list was empty and therefore will be the first
2573 * item.
2574 */
2575 if (LIST_FIRST(pvo_head) == NULL)
2576 first = 1;
2577 LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2578
2579 if (pvo->pvo_vaddr & PVO_WIRED) {
2580 pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
2581 pm->pm_stats.wired_count++;
2582 }
2583 pm->pm_stats.resident_count++;
2584
2585 /*
2586 * We hope this succeeds but it isn't required.
2587 */
2588 i = moea64_pte_insert(ptegidx, &pvo->pvo_pte.lpte);
2589 if (i >= 0) {
2590 PVO_PTEGIDX_SET(pvo, i);
2591 } else {
2592 panic("moea64_pvo_enter: overflow");
2593 moea64_pte_overflow++;
2594 }
2595
2596 if (pm == kernel_pmap)
2597 isync();
2598
2599 UNLOCK_TABLE();
2600
2601#ifdef __powerpc64__
2602 /*
2603 * Make sure all our bootstrap mappings are in the SLB as soon
2604 * as virtual memory is switched on.
2605 */
2606 if (!pmap_bootstrapped)
2607 moea64_bootstrap_slb_prefault(va, flags & PVO_LARGE);
2608#endif
2609
2610 return (first ? ENOENT : 0);
2611}
2612
2613static void
2614moea64_pvo_remove(struct pvo_entry *pvo)
2615{
2616 struct lpte *pt;
2617
2618 /*
2619 * If there is an active pte entry, we need to deactivate it (and
2620 * save the ref & cfg bits).
2621 */
2622 LOCK_TABLE();
2623 pt = moea64_pvo_to_pte(pvo);
2624 if (pt != NULL) {
2625 moea64_pte_unset(pt, &pvo->pvo_pte.lpte, pvo->pvo_vpn);
2626 PVO_PTEGIDX_CLR(pvo);
2627 } else {
2628 moea64_pte_overflow--;
2629 }
2630
2631 /*
2632 * Update our statistics.
2633 */
2634 pvo->pvo_pmap->pm_stats.resident_count--;
2635 if (pvo->pvo_vaddr & PVO_WIRED)
2636 pvo->pvo_pmap->pm_stats.wired_count--;
2637
2638 /*
2639 * Save the REF/CHG bits into their cache if the page is managed.
2640 */
2641 if ((pvo->pvo_vaddr & (PVO_MANAGED|PVO_FAKE)) == PVO_MANAGED) {
2642 struct vm_page *pg;
2643
2644 pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
2645 if (pg != NULL) {
2646 moea64_attr_save(pg, pvo->pvo_pte.lpte.pte_lo &
2647 (LPTE_REF | LPTE_CHG));
2648 }
2649 }
2650
2651 /*
2652 * Remove this PVO from the PV list.
2653 */
2654 LIST_REMOVE(pvo, pvo_vlink);
2655
2656 /*
2657 * Remove this from the overflow list and return it to the pool
2658 * if we aren't going to reuse it.
2659 */
2660 LIST_REMOVE(pvo, pvo_olink);
2661
2662 moea64_pvo_entries--;
2663 moea64_pvo_remove_calls++;
2664
2665 UNLOCK_TABLE();
2666
2667 if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2668 uma_zfree((pvo->pvo_vaddr & PVO_MANAGED) ? moea64_mpvo_zone :
2669 moea64_upvo_zone, pvo);
2670}
2671
2672static struct pvo_entry *
2673moea64_pvo_find_va(pmap_t pm, vm_offset_t va)
2674{
2675 struct pvo_entry *pvo;
2676 int ptegidx;
2677 uint64_t vsid;
2678 #ifdef __powerpc64__
2679 uint64_t slbv;
2680
2681 if (pm == kernel_pmap) {
2682 slbv = kernel_va_to_slbv(va);
2683 } else {
2684 struct slb *slb;
2685 slb = user_va_to_slb_entry(pm, va);
2686 /* The page is not mapped if the segment isn't */
2687 if (slb == NULL)
2688 return NULL;
2689 slbv = slb->slbv;
2690 }
2691
2692 vsid = (slbv & SLBV_VSID_MASK) >> SLBV_VSID_SHIFT;
2693 if (slbv & SLBV_L)
2694 va &= ~moea64_large_page_mask;
2695 else
2696 va &= ~ADDR_POFF;
2697 ptegidx = va_to_pteg(vsid, va, slbv & SLBV_L);
2698 #else
2699 va &= ~ADDR_POFF;
2700 vsid = va_to_vsid(pm, va);
2701 ptegidx = va_to_pteg(vsid, va, 0);
2702 #endif
2703
2704 LOCK_TABLE();
2705 LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) {
2706 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va)
2707 break;
2708 }
2709 UNLOCK_TABLE();
2710
2711 return (pvo);
2712}
2713
2714static struct lpte *
2715moea64_pvo_to_pte(const struct pvo_entry *pvo)
2716{
2717 struct lpte *pt;
2718 int pteidx, ptegidx;
2719 uint64_t vsid;
2720
2721 ASSERT_TABLE_LOCK();
2722
2723 /* If the PTEG index is not set, then there is no page table entry */
2724 if (!PVO_PTEGIDX_ISSET(pvo))
2725 return (NULL);
2726
2727 /*
2728 * Calculate the ptegidx
2729 */
2730 vsid = PVO_VSID(pvo);
2731 ptegidx = va_to_pteg(vsid, PVO_VADDR(pvo),
2732 pvo->pvo_vaddr & PVO_LARGE);
2733
2734 /*
2735 * We can find the actual pte entry without searching by grabbing
2736 * the PTEG index from 3 unused bits in pvo_vaddr and by
2737 * noticing the HID bit.
2738 */
2739 if (pvo->pvo_pte.lpte.pte_hi & LPTE_HID)
2740 ptegidx ^= moea64_pteg_mask;
2741
2742 pteidx = (ptegidx << 3) | PVO_PTEGIDX_GET(pvo);
2743
2744 if ((pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) &&
2745 !PVO_PTEGIDX_ISSET(pvo)) {
2746 panic("moea64_pvo_to_pte: pvo %p has valid pte in pvo but no "
2747 "valid pte index", pvo);
2748 }
2749
2750 if ((pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) == 0 &&
2751 PVO_PTEGIDX_ISSET(pvo)) {
2752 panic("moea64_pvo_to_pte: pvo %p has valid pte index in pvo "
2753 "pvo but no valid pte", pvo);
2754 }
2755
2756 pt = &moea64_pteg_table[pteidx >> 3].pt[pteidx & 7];
2757 if ((pt->pte_hi ^ (pvo->pvo_pte.lpte.pte_hi & ~LPTE_VALID)) ==
2758 LPTE_VALID) {
2759 if ((pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) == 0) {
2760 panic("moea64_pvo_to_pte: pvo %p has valid pte in "
2761 "moea64_pteg_table %p but invalid in pvo", pvo, pt);
2762 }
2763
2764 if (((pt->pte_lo ^ pvo->pvo_pte.lpte.pte_lo) &
2765 ~(LPTE_M|LPTE_CHG|LPTE_REF)) != 0) {
2766 panic("moea64_pvo_to_pte: pvo %p pte does not match "
2767 "pte %p in moea64_pteg_table difference is %#x",
2768 pvo, pt,
2769 (uint32_t)(pt->pte_lo ^ pvo->pvo_pte.lpte.pte_lo));
2770 }
2771
2772 return (pt);
2773 }
2774
2775 if (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) {
2776 panic("moea64_pvo_to_pte: pvo %p has invalid pte %p in "
2777 "moea64_pteg_table but valid in pvo", pvo, pt);
2778 }
2779
2780 return (NULL);
2781}
2782
2783static __inline int
2784moea64_pte_spillable_ident(u_int ptegidx)
2785{
2786 struct lpte *pt;
2787 int i, j, k;
2788
2789 /* Start at a random slot */
2790 i = mftb() % 8;
2791 k = -1;
2792 for (j = 0; j < 8; j++) {
2793 pt = &moea64_pteg_table[ptegidx].pt[(i + j) % 8];
2794 if (pt->pte_hi & (LPTE_LOCKED | LPTE_WIRED))
2795 continue;
2796
2797 /* This is a candidate, so remember it */
2798 k = (i + j) % 8;
2799
2800 /* Try to get a page that has not been used lately */
2801 if (!(pt->pte_lo & LPTE_REF))
2802 return (k);
2803 }
2804
2805 return (k);
2806}
2807
2808static int
2809moea64_pte_insert(u_int ptegidx, struct lpte *pvo_pt)
2810{
2811 struct lpte *pt;
2812 struct pvo_entry *pvo;
2813 u_int pteg_bktidx;
2814 int i;
2815
2816 ASSERT_TABLE_LOCK();
2817
2818 /*
2819 * First try primary hash.
2820 */
2821 pteg_bktidx = ptegidx;
2822 for (pt = moea64_pteg_table[pteg_bktidx].pt, i = 0; i < 8; i++, pt++) {
2823 if ((pt->pte_hi & (LPTE_VALID | LPTE_LOCKED)) == 0) {
2824 pvo_pt->pte_hi &= ~LPTE_HID;
2825 moea64_pte_set(pt, pvo_pt);
2826 return (i);
2827 }
2828 }
2829
2830 /*
2831 * Now try secondary hash.
2832 */
2833 pteg_bktidx ^= moea64_pteg_mask;
2834 for (pt = moea64_pteg_table[pteg_bktidx].pt, i = 0; i < 8; i++, pt++) {
2835 if ((pt->pte_hi & (LPTE_VALID | LPTE_LOCKED)) == 0) {
2836 pvo_pt->pte_hi |= LPTE_HID;
2837 moea64_pte_set(pt, pvo_pt);
2838 return (i);
2839 }
2840 }
2841
2842 /*
2843 * Out of luck. Find a PTE to sacrifice.
2844 */
2845 pteg_bktidx = ptegidx;
2846 i = moea64_pte_spillable_ident(pteg_bktidx);
2847 if (i < 0) {
2848 pteg_bktidx ^= moea64_pteg_mask;
2849 i = moea64_pte_spillable_ident(pteg_bktidx);
2850 }
2851
2852 if (i < 0) {
2853 /* No freeable slots in either PTEG? We're hosed. */
2854 panic("moea64_pte_insert: overflow");
2855 return (-1);
2856 }
2857
2858 if (pteg_bktidx == ptegidx)
2859 pvo_pt->pte_hi &= ~LPTE_HID;
2860 else
2861 pvo_pt->pte_hi |= LPTE_HID;
2862
2863 /*
2864 * Synchronize the sacrifice PTE with its PVO, then mark both
2865 * invalid. The PVO will be reused when/if the VM system comes
2866 * here after a fault.
2867 */
2868 pt = &moea64_pteg_table[pteg_bktidx].pt[i];
2869
2870 if (pt->pte_hi & LPTE_HID)
2871 pteg_bktidx ^= moea64_pteg_mask; /* PTEs indexed by primary */
2872
2873 LIST_FOREACH(pvo, &moea64_pvo_table[pteg_bktidx], pvo_olink) {
2874 if (pvo->pvo_pte.lpte.pte_hi == pt->pte_hi) {
2875 KASSERT(pvo->pvo_pte.lpte.pte_hi & LPTE_VALID,
2876 ("Invalid PVO for valid PTE!"));
2877 moea64_pte_unset(pt, &pvo->pvo_pte.lpte, pvo->pvo_vpn);
2878 PVO_PTEGIDX_CLR(pvo);
2879 moea64_pte_overflow++;
2880 break;
2881 }
2882 }
2883
2884 KASSERT(pvo->pvo_pte.lpte.pte_hi == pt->pte_hi,
2885 ("Unable to find PVO for spilled PTE"));
2886
2887 /*
2888 * Set the new PTE.
2889 */
2890 moea64_pte_set(pt, pvo_pt);
2891
2892 return (i);
2893}
2894
2895static boolean_t
2896moea64_query_bit(vm_page_t m, u_int64_t ptebit)
2897{
2898 struct pvo_entry *pvo;
2899 struct lpte *pt;
2900
2901 if (moea64_attr_fetch(m) & ptebit)
2902 return (TRUE);
2903
2904 vm_page_lock_queues();
2905
2906 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2907 MOEA_PVO_CHECK(pvo); /* sanity check */
2908
2909 /*
2910 * See if we saved the bit off. If so, cache it and return
2911 * success.
2912 */
2913 if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2914 moea64_attr_save(m, ptebit);
2915 MOEA_PVO_CHECK(pvo); /* sanity check */
2916 vm_page_unlock_queues();
2917 return (TRUE);
2918 }
2919 }
2920
2921 /*
2922 * No luck, now go through the hard part of looking at the PTEs
2923 * themselves. Sync so that any pending REF/CHG bits are flushed to
2924 * the PTEs.
2925 */
2926 SYNC();
2927 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2928 MOEA_PVO_CHECK(pvo); /* sanity check */
2929
2930 /*
2931 * See if this pvo has a valid PTE. if so, fetch the
2932 * REF/CHG bits from the valid PTE. If the appropriate
2933 * ptebit is set, cache it and return success.
2934 */
2935 LOCK_TABLE();
2936 pt = moea64_pvo_to_pte(pvo);
2937 if (pt != NULL) {
2938 moea64_pte_synch(pt, &pvo->pvo_pte.lpte);
2939 if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2940 UNLOCK_TABLE();
2941
2942 moea64_attr_save(m, ptebit);
2943 MOEA_PVO_CHECK(pvo); /* sanity check */
2944 vm_page_unlock_queues();
2945 return (TRUE);
2946 }
2947 }
2948 UNLOCK_TABLE();
2949 }
2950
2951 vm_page_unlock_queues();
2952 return (FALSE);
2953}
2954
2955static u_int
2956moea64_clear_bit(vm_page_t m, u_int64_t ptebit)
2957{
2958 u_int count;
2959 struct pvo_entry *pvo;
2960 struct lpte *pt;
2961
2962 vm_page_lock_queues();
2963
2964 /*
2965 * Clear the cached value.
2966 */
2967 moea64_attr_clear(m, ptebit);
2968
2969 /*
2970 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2971 * we can reset the right ones). note that since the pvo entries and
2972 * list heads are accessed via BAT0 and are never placed in the page
2973 * table, we don't have to worry about further accesses setting the
2974 * REF/CHG bits.
2975 */
2976 SYNC();
2977
2978 /*
2979 * For each pvo entry, clear the pvo's ptebit. If this pvo has a
2980 * valid pte clear the ptebit from the valid pte.
2981 */
2982 count = 0;
2983 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2984 MOEA_PVO_CHECK(pvo); /* sanity check */
2985
2986 LOCK_TABLE();
2987 pt = moea64_pvo_to_pte(pvo);
2988 if (pt != NULL) {
2989 moea64_pte_synch(pt, &pvo->pvo_pte.lpte);
2990 if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2991 count++;
2992 moea64_pte_clear(pt, pvo->pvo_vpn, ptebit);
2993 }
2994 }
2995 pvo->pvo_pte.lpte.pte_lo &= ~ptebit;
2996 MOEA_PVO_CHECK(pvo); /* sanity check */
2997 UNLOCK_TABLE();
2998 }
2999
3000 vm_page_unlock_queues();
3001 return (count);
3002}
3003
3004boolean_t
3005moea64_dev_direct_mapped(mmu_t mmu, vm_offset_t pa, vm_size_t size)
3006{
3007 struct pvo_entry *pvo;
3008 vm_offset_t ppa;
3009 int error = 0;
3010
3011 PMAP_LOCK(kernel_pmap);
3012 for (ppa = pa & ~ADDR_POFF; ppa < pa + size; ppa += PAGE_SIZE) {
3013 pvo = moea64_pvo_find_va(kernel_pmap, ppa);
3014 if (pvo == NULL ||
3015 (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) != ppa) {
3016 error = EFAULT;
3017 break;
3018 }
3019 }
3020 PMAP_UNLOCK(kernel_pmap);
3021
3022 return (error);
3023}
3024
3025/*
3026 * Map a set of physical memory pages into the kernel virtual
3027 * address space. Return a pointer to where it is mapped. This
3028 * routine is intended to be used for mapping device memory,
3029 * NOT real memory.
3030 */
3031void *
3032moea64_mapdev_attr(mmu_t mmu, vm_offset_t pa, vm_size_t size, vm_memattr_t ma)
3033{
3034 vm_offset_t va, tmpva, ppa, offset;
3035
3036 ppa = trunc_page(pa);
3037 offset = pa & PAGE_MASK;
3038 size = roundup(offset + size, PAGE_SIZE);
3039
3040 va = kmem_alloc_nofault(kernel_map, size);
3041
3042 if (!va)
3043 panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
3044
3045 for (tmpva = va; size > 0;) {
3046 moea64_kenter_attr(mmu, tmpva, ppa, ma);
3047 size -= PAGE_SIZE;
3048 tmpva += PAGE_SIZE;
3049 ppa += PAGE_SIZE;
3050 }
3051
3052 return ((void *)(va + offset));
3053}
3054
3055void *
3056moea64_mapdev(mmu_t mmu, vm_offset_t pa, vm_size_t size)
3057{
3058
3059 return moea64_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT);
3060}
3061
3062void
3063moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
3064{
3065 vm_offset_t base, offset;
3066
3067 base = trunc_page(va);
3068 offset = va & PAGE_MASK;
3069 size = roundup(offset + size, PAGE_SIZE);
3070
3071 kmem_free(kernel_map, base, size);
3072}
3073
3074static void
3075moea64_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
3076{
3077 struct pvo_entry *pvo;
3078 vm_offset_t lim;
3079 vm_paddr_t pa;
3080 vm_size_t len;
3081
3082 PMAP_LOCK(pm);
3083 while (sz > 0) {
3084 lim = round_page(va);
3085 len = MIN(lim - va, sz);
3086 pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
3087 if (pvo != NULL) {
3088 pa = (pvo->pvo_pte.pte.pte_lo & LPTE_RPGN) |
3089 (va & ADDR_POFF);
3090 moea64_syncicache(pm, va, pa, len);
3091 }
3092 va += len;
3093 sz -= len;
3094 }
3095 PMAP_UNLOCK(pm);
3096}