Deleted Added
full compact
1/*-
2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the project nor the names of its contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $
30 */
31
32/*-
33 * Copyright (c) 1982, 1986, 1988, 1990, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
61 */
62
63#include <sys/cdefs.h>
64__FBSDID("$FreeBSD: head/sys/netinet6/ip6_output.c 242079 2012-10-25 09:39:14Z ae $");
64__FBSDID("$FreeBSD: head/sys/netinet6/ip6_output.c 242463 2012-11-02 01:20:55Z ae $");
65
66#include "opt_inet.h"
67#include "opt_inet6.h"
68#include "opt_ipfw.h"
69#include "opt_ipsec.h"
70#include "opt_sctp.h"
71#include "opt_route.h"
72
73#include <sys/param.h>
74#include <sys/kernel.h>
75#include <sys/malloc.h>
76#include <sys/mbuf.h>
77#include <sys/errno.h>
78#include <sys/priv.h>
79#include <sys/proc.h>
80#include <sys/protosw.h>
81#include <sys/socket.h>
82#include <sys/socketvar.h>
83#include <sys/syslog.h>
84#include <sys/ucred.h>
85
86#include <machine/in_cksum.h>
87
88#include <net/if.h>
89#include <net/netisr.h>
90#include <net/route.h>
91#include <net/pfil.h>
92#include <net/vnet.h>
93
94#include <netinet/in.h>
95#include <netinet/in_var.h>
96#include <netinet/ip_var.h>
97#include <netinet6/in6_var.h>
98#include <netinet/ip6.h>
99#include <netinet/icmp6.h>
100#include <netinet6/ip6_var.h>
101#include <netinet/in_pcb.h>
102#include <netinet/tcp_var.h>
103#include <netinet6/nd6.h>
104
105#ifdef IPSEC
106#include <netipsec/ipsec.h>
107#include <netipsec/ipsec6.h>
108#include <netipsec/key.h>
109#include <netinet6/ip6_ipsec.h>
110#endif /* IPSEC */
111#ifdef SCTP
112#include <netinet/sctp.h>
113#include <netinet/sctp_crc32.h>
114#endif
115
116#include <netinet6/ip6protosw.h>
117#include <netinet6/scope6_var.h>
118
119#ifdef FLOWTABLE
120#include <net/flowtable.h>
121#endif
122
123extern int in6_mcast_loop;
124
125struct ip6_exthdrs {
126 struct mbuf *ip6e_ip6;
127 struct mbuf *ip6e_hbh;
128 struct mbuf *ip6e_dest1;
129 struct mbuf *ip6e_rthdr;
130 struct mbuf *ip6e_dest2;
131};
132
133static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **,
134 struct ucred *, int);
135static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *,
136 struct socket *, struct sockopt *);
137static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *);
138static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *,
139 struct ucred *, int, int, int);
140
141static int ip6_copyexthdr(struct mbuf **, caddr_t, int);
142static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
143 struct ip6_frag **);
144static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
145static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
146static int ip6_getpmtu(struct route_in6 *, struct route_in6 *,
147 struct ifnet *, struct in6_addr *, u_long *, int *, u_int);
148static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
149
150
151/*
152 * Make an extension header from option data. hp is the source, and
153 * mp is the destination.
154 */
155#define MAKE_EXTHDR(hp, mp) \
156 do { \
157 if (hp) { \
158 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
159 error = ip6_copyexthdr((mp), (caddr_t)(hp), \
160 ((eh)->ip6e_len + 1) << 3); \
161 if (error) \
162 goto freehdrs; \
163 } \
164 } while (/*CONSTCOND*/ 0)
165
166/*
167 * Form a chain of extension headers.
168 * m is the extension header mbuf
169 * mp is the previous mbuf in the chain
170 * p is the next header
171 * i is the type of option.
172 */
173#define MAKE_CHAIN(m, mp, p, i)\
174 do {\
175 if (m) {\
176 if (!hdrsplit) \
177 panic("assumption failed: hdr not split"); \
178 *mtod((m), u_char *) = *(p);\
179 *(p) = (i);\
180 p = mtod((m), u_char *);\
181 (m)->m_next = (mp)->m_next;\
182 (mp)->m_next = (m);\
183 (mp) = (m);\
184 }\
185 } while (/*CONSTCOND*/ 0)
186
187static void
188in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset)
189{
190 u_short csum;
191
192 csum = in_cksum_skip(m, offset + plen, offset);
193 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0)
194 csum = 0xffff;
195 offset += m->m_pkthdr.csum_data; /* checksum offset */
196
197 if (offset + sizeof(u_short) > m->m_len) {
198 printf("%s: delayed m_pullup, m->len: %d plen %u off %u "
199 "csum_flags=0x%04x\n", __func__, m->m_len, plen, offset,
200 m->m_pkthdr.csum_flags);
201 /*
202 * XXX this should not happen, but if it does, the correct
203 * behavior may be to insert the checksum in the appropriate
204 * next mbuf in the chain.
205 */
206 return;
207 }
208 *(u_short *)(m->m_data + offset) = csum;
209}
210
211/*
212 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
213 * header (with pri, len, nxt, hlim, src, dst).
214 * This function may modify ver and hlim only.
215 * The mbuf chain containing the packet will be freed.
216 * The mbuf opt, if present, will not be freed.
217 * If route_in6 ro is present and has ro_rt initialized, route lookup would be
218 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL,
219 * then result of route lookup is stored in ro->ro_rt.
220 *
221 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
222 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one,
223 * which is rt_rmx.rmx_mtu.
224 *
225 * ifpp - XXX: just for statistics
226 */
227int
228ip6_output(struct mbuf *m0, struct ip6_pktopts *opt,
229 struct route_in6 *ro, int flags, struct ip6_moptions *im6o,
230 struct ifnet **ifpp, struct inpcb *inp)
231{
232 struct ip6_hdr *ip6, *mhip6;
233 struct ifnet *ifp, *origifp;
234 struct mbuf *m = m0;
235 struct mbuf *mprev = NULL;
236 int hlen, tlen, len, off;
237 struct route_in6 ip6route;
238 struct rtentry *rt = NULL;
239 struct sockaddr_in6 *dst, src_sa, dst_sa;
240 struct in6_addr odst;
241 int error = 0;
242 struct in6_ifaddr *ia = NULL;
243 u_long mtu;
244 int alwaysfrag, dontfrag;
245 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
246 struct ip6_exthdrs exthdrs;
247 struct in6_addr finaldst, src0, dst0;
248 u_int32_t zone;
249 struct route_in6 *ro_pmtu = NULL;
250 int hdrsplit = 0;
251 int needipsec = 0;
252 int sw_csum, tso;
253#ifdef IPSEC
254 struct ipsec_output_state state;
255 struct ip6_rthdr *rh = NULL;
256 int needipsectun = 0;
257 int segleft_org = 0;
258 struct secpolicy *sp = NULL;
259#endif /* IPSEC */
260 struct m_tag *fwd_tag;
261
262 ip6 = mtod(m, struct ip6_hdr *);
263 if (ip6 == NULL) {
264 printf ("ip6 is NULL");
265 goto bad;
266 }
267
268 if (inp != NULL)
269 M_SETFIB(m, inp->inp_inc.inc_fibnum);
270
271 finaldst = ip6->ip6_dst;
272 bzero(&exthdrs, sizeof(exthdrs));
273 if (opt) {
274 /* Hop-by-Hop options header */
275 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
276 /* Destination options header(1st part) */
277 if (opt->ip6po_rthdr) {
278 /*
279 * Destination options header(1st part)
280 * This only makes sense with a routing header.
281 * See Section 9.2 of RFC 3542.
282 * Disabling this part just for MIP6 convenience is
283 * a bad idea. We need to think carefully about a
284 * way to make the advanced API coexist with MIP6
285 * options, which might automatically be inserted in
286 * the kernel.
287 */
288 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
289 }
290 /* Routing header */
291 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
292 /* Destination options header(2nd part) */
293 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
294 }
295
296#ifdef IPSEC
297 /*
298 * IPSec checking which handles several cases.
299 * FAST IPSEC: We re-injected the packet.
300 */
301 switch(ip6_ipsec_output(&m, inp, &flags, &error, &ifp, &sp))
302 {
303 case 1: /* Bad packet */
304 goto freehdrs;
305 case -1: /* Do IPSec */
306 needipsec = 1;
307 /*
308 * Do delayed checksums now, as we may send before returning.
309 */
310 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) {
311 plen = m->m_pkthdr.len - sizeof(*ip6);
312 in6_delayed_cksum(m, plen, sizeof(struct ip6_hdr));
313 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6;
314 }
315#ifdef SCTP
316 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) {
317 sctp_delayed_cksum(m, sizeof(struct ip6_hdr));
318 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6;
319 }
320#endif
321 case 0: /* No IPSec */
322 default:
323 break;
324 }
325#endif /* IPSEC */
326
327 /*
328 * Calculate the total length of the extension header chain.
329 * Keep the length of the unfragmentable part for fragmentation.
330 */
331 optlen = 0;
332 if (exthdrs.ip6e_hbh)
333 optlen += exthdrs.ip6e_hbh->m_len;
334 if (exthdrs.ip6e_dest1)
335 optlen += exthdrs.ip6e_dest1->m_len;
336 if (exthdrs.ip6e_rthdr)
337 optlen += exthdrs.ip6e_rthdr->m_len;
338 unfragpartlen = optlen + sizeof(struct ip6_hdr);
339
340 /* NOTE: we don't add AH/ESP length here. do that later. */
341 if (exthdrs.ip6e_dest2)
342 optlen += exthdrs.ip6e_dest2->m_len;
343
344 /*
345 * If we need IPsec, or there is at least one extension header,
346 * separate IP6 header from the payload.
347 */
348 if ((needipsec || optlen) && !hdrsplit) {
349 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
350 m = NULL;
351 goto freehdrs;
352 }
353 m = exthdrs.ip6e_ip6;
354 hdrsplit++;
355 }
356
357 /* adjust pointer */
358 ip6 = mtod(m, struct ip6_hdr *);
359
360 /* adjust mbuf packet header length */
361 m->m_pkthdr.len += optlen;
362 plen = m->m_pkthdr.len - sizeof(*ip6);
363
364 /* If this is a jumbo payload, insert a jumbo payload option. */
365 if (plen > IPV6_MAXPACKET) {
366 if (!hdrsplit) {
367 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
368 m = NULL;
369 goto freehdrs;
370 }
371 m = exthdrs.ip6e_ip6;
372 hdrsplit++;
373 }
374 /* adjust pointer */
375 ip6 = mtod(m, struct ip6_hdr *);
376 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
377 goto freehdrs;
378 ip6->ip6_plen = 0;
379 } else
380 ip6->ip6_plen = htons(plen);
381
382 /*
383 * Concatenate headers and fill in next header fields.
384 * Here we have, on "m"
385 * IPv6 payload
386 * and we insert headers accordingly. Finally, we should be getting:
387 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
388 *
389 * during the header composing process, "m" points to IPv6 header.
390 * "mprev" points to an extension header prior to esp.
391 */
392 u_char *nexthdrp = &ip6->ip6_nxt;
393 mprev = m;
394
395 /*
396 * we treat dest2 specially. this makes IPsec processing
397 * much easier. the goal here is to make mprev point the
398 * mbuf prior to dest2.
399 *
400 * result: IPv6 dest2 payload
401 * m and mprev will point to IPv6 header.
402 */
403 if (exthdrs.ip6e_dest2) {
404 if (!hdrsplit)
405 panic("assumption failed: hdr not split");
406 exthdrs.ip6e_dest2->m_next = m->m_next;
407 m->m_next = exthdrs.ip6e_dest2;
408 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
409 ip6->ip6_nxt = IPPROTO_DSTOPTS;
410 }
411
412 /*
413 * result: IPv6 hbh dest1 rthdr dest2 payload
414 * m will point to IPv6 header. mprev will point to the
415 * extension header prior to dest2 (rthdr in the above case).
416 */
417 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
418 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
419 IPPROTO_DSTOPTS);
420 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
421 IPPROTO_ROUTING);
422
423#ifdef IPSEC
424 if (!needipsec)
425 goto skip_ipsec2;
426
427 /*
428 * pointers after IPsec headers are not valid any more.
429 * other pointers need a great care too.
430 * (IPsec routines should not mangle mbufs prior to AH/ESP)
431 */
432 exthdrs.ip6e_dest2 = NULL;
433
434 if (exthdrs.ip6e_rthdr) {
435 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
436 segleft_org = rh->ip6r_segleft;
437 rh->ip6r_segleft = 0;
438 }
439
440 bzero(&state, sizeof(state));
441 state.m = m;
442 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
443 &needipsectun);
444 m = state.m;
445 if (error == EJUSTRETURN) {
446 /*
447 * We had a SP with a level of 'use' and no SA. We
448 * will just continue to process the packet without
449 * IPsec processing.
450 */
451 ;
452 } else if (error) {
453 /* mbuf is already reclaimed in ipsec6_output_trans. */
454 m = NULL;
455 switch (error) {
456 case EHOSTUNREACH:
457 case ENETUNREACH:
458 case EMSGSIZE:
459 case ENOBUFS:
460 case ENOMEM:
461 break;
462 default:
463 printf("[%s:%d] (ipsec): error code %d\n",
464 __func__, __LINE__, error);
465 /* FALLTHROUGH */
466 case ENOENT:
467 /* don't show these error codes to the user */
468 error = 0;
469 break;
470 }
471 goto bad;
472 } else if (!needipsectun) {
473 /*
474 * In the FAST IPSec case we have already
475 * re-injected the packet and it has been freed
476 * by the ipsec_done() function. So, just clean
477 * up after ourselves.
478 */
479 m = NULL;
480 goto done;
481 }
482 if (exthdrs.ip6e_rthdr) {
483 /* ah6_output doesn't modify mbuf chain */
484 rh->ip6r_segleft = segleft_org;
485 }
486skip_ipsec2:;
487#endif /* IPSEC */
488
489 /*
490 * If there is a routing header, discard the packet.
491 */
492 if (exthdrs.ip6e_rthdr) {
493 error = EINVAL;
494 goto bad;
495 }
496
497 /* Source address validation */
498 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
499 (flags & IPV6_UNSPECSRC) == 0) {
500 error = EOPNOTSUPP;
501 V_ip6stat.ip6s_badscope++;
502 goto bad;
503 }
504 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
505 error = EOPNOTSUPP;
506 V_ip6stat.ip6s_badscope++;
507 goto bad;
508 }
509
510 V_ip6stat.ip6s_localout++;
511
512 /*
513 * Route packet.
514 */
515 if (ro == 0) {
516 ro = &ip6route;
517 bzero((caddr_t)ro, sizeof(*ro));
518 }
519 ro_pmtu = ro;
520 if (opt && opt->ip6po_rthdr)
521 ro = &opt->ip6po_route;
522 dst = (struct sockaddr_in6 *)&ro->ro_dst;
523#ifdef FLOWTABLE
524 if (ro->ro_rt == NULL) {
525 struct flentry *fle;
526
527 /*
528 * The flow table returns route entries valid for up to 30
529 * seconds; we rely on the remainder of ip_output() taking no
530 * longer than that long for the stability of ro_rt. The
531 * flow ID assignment must have happened before this point.
532 */
533 fle = flowtable_lookup_mbuf(V_ip6_ft, m, AF_INET6);
534 if (fle != NULL)
535 flow_to_route_in6(fle, ro);
536 }
537#endif
538again:
539 /*
540 * if specified, try to fill in the traffic class field.
541 * do not override if a non-zero value is already set.
542 * we check the diffserv field and the ecn field separately.
543 */
544 if (opt && opt->ip6po_tclass >= 0) {
545 int mask = 0;
546
547 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
548 mask |= 0xfc;
549 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
550 mask |= 0x03;
551 if (mask != 0)
552 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
553 }
554
555 /* fill in or override the hop limit field, if necessary. */
556 if (opt && opt->ip6po_hlim != -1)
557 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
558 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
559 if (im6o != NULL)
560 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
561 else
562 ip6->ip6_hlim = V_ip6_defmcasthlim;
563 }
564
565#ifdef IPSEC
566 /*
567 * We may re-inject packets into the stack here.
568 */
569 if (needipsec && needipsectun) {
570 struct ipsec_output_state state;
571
572 /*
573 * All the extension headers will become inaccessible
574 * (since they can be encrypted).
575 * Don't panic, we need no more updates to extension headers
576 * on inner IPv6 packet (since they are now encapsulated).
577 *
578 * IPv6 [ESP|AH] IPv6 [extension headers] payload
579 */
580 bzero(&exthdrs, sizeof(exthdrs));
581 exthdrs.ip6e_ip6 = m;
582
583 bzero(&state, sizeof(state));
584 state.m = m;
585 state.ro = (struct route *)ro;
586 state.dst = (struct sockaddr *)dst;
587
588 error = ipsec6_output_tunnel(&state, sp, flags);
589
590 m = state.m;
591 ro = (struct route_in6 *)state.ro;
592 dst = (struct sockaddr_in6 *)state.dst;
593 if (error == EJUSTRETURN) {
594 /*
595 * We had a SP with a level of 'use' and no SA. We
596 * will just continue to process the packet without
597 * IPsec processing.
598 */
599 ;
600 } else if (error) {
601 /* mbuf is already reclaimed in ipsec6_output_tunnel. */
602 m0 = m = NULL;
603 m = NULL;
604 switch (error) {
605 case EHOSTUNREACH:
606 case ENETUNREACH:
607 case EMSGSIZE:
608 case ENOBUFS:
609 case ENOMEM:
610 break;
611 default:
612 printf("[%s:%d] (ipsec): error code %d\n",
613 __func__, __LINE__, error);
614 /* FALLTHROUGH */
615 case ENOENT:
616 /* don't show these error codes to the user */
617 error = 0;
618 break;
619 }
620 goto bad;
621 } else {
622 /*
623 * In the FAST IPSec case we have already
624 * re-injected the packet and it has been freed
625 * by the ipsec_done() function. So, just clean
626 * up after ourselves.
627 */
628 m = NULL;
629 goto done;
630 }
631
632 exthdrs.ip6e_ip6 = m;
633 }
634#endif /* IPSEC */
635
636 /* adjust pointer */
637 ip6 = mtod(m, struct ip6_hdr *);
638
639 bzero(&dst_sa, sizeof(dst_sa));
640 dst_sa.sin6_family = AF_INET6;
641 dst_sa.sin6_len = sizeof(dst_sa);
642 dst_sa.sin6_addr = ip6->ip6_dst;
643 if (ro->ro_rt) {
644 rt = ro->ro_rt;
645 ifp = ro->ro_rt->rt_ifp;
646 } else if ((error = in6_selectroute_fib(&dst_sa, opt, im6o, ro,
647 &ifp, &rt, inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m))) != 0) {
648 switch (error) {
649 case EHOSTUNREACH:
650 V_ip6stat.ip6s_noroute++;
651 break;
652 case EADDRNOTAVAIL:
653 default:
654 break; /* XXX statistics? */
655 }
656 if (ifp != NULL)
657 in6_ifstat_inc(ifp, ifs6_out_discard);
658 goto bad;
659 }
660 if (rt == NULL) {
661 /*
662 * If in6_selectroute() does not return a route entry,
663 * dst may not have been updated.
664 */
665 *dst = dst_sa; /* XXX */
666 }
667
668 /*
669 * then rt (for unicast) and ifp must be non-NULL valid values.
670 */
671 if ((flags & IPV6_FORWARDING) == 0) {
672 /* XXX: the FORWARDING flag can be set for mrouting. */
673 in6_ifstat_inc(ifp, ifs6_out_request);
674 }
675 if (rt != NULL) {
676 ia = (struct in6_ifaddr *)(rt->rt_ifa);
677 rt->rt_use++;
678 }
679
680
681 /*
682 * The outgoing interface must be in the zone of source and
683 * destination addresses.
684 */
685 origifp = ifp;
686
687 src0 = ip6->ip6_src;
688 if (in6_setscope(&src0, origifp, &zone))
689 goto badscope;
690 bzero(&src_sa, sizeof(src_sa));
691 src_sa.sin6_family = AF_INET6;
692 src_sa.sin6_len = sizeof(src_sa);
693 src_sa.sin6_addr = ip6->ip6_src;
694 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
695 goto badscope;
696
697 dst0 = ip6->ip6_dst;
698 if (in6_setscope(&dst0, origifp, &zone))
699 goto badscope;
700 /* re-initialize to be sure */
701 bzero(&dst_sa, sizeof(dst_sa));
702 dst_sa.sin6_family = AF_INET6;
703 dst_sa.sin6_len = sizeof(dst_sa);
704 dst_sa.sin6_addr = ip6->ip6_dst;
705 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) {
706 goto badscope;
707 }
708
709 /* We should use ia_ifp to support the case of
710 * sending packets to an address of our own.
711 */
712 if (ia != NULL && ia->ia_ifp)
713 ifp = ia->ia_ifp;
714
715 /* scope check is done. */
716 goto routefound;
717
718 badscope:
719 V_ip6stat.ip6s_badscope++;
720 in6_ifstat_inc(origifp, ifs6_out_discard);
721 if (error == 0)
722 error = EHOSTUNREACH; /* XXX */
723 goto bad;
724
725 routefound:
726 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
727 if (opt && opt->ip6po_nextroute.ro_rt) {
728 /*
729 * The nexthop is explicitly specified by the
730 * application. We assume the next hop is an IPv6
731 * address.
732 */
733 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop;
734 }
735 else if ((rt->rt_flags & RTF_GATEWAY))
736 dst = (struct sockaddr_in6 *)rt->rt_gateway;
737 }
738
739 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
740 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
741 } else {
742 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
743 in6_ifstat_inc(ifp, ifs6_out_mcast);
744 /*
745 * Confirm that the outgoing interface supports multicast.
746 */
747 if (!(ifp->if_flags & IFF_MULTICAST)) {
748 V_ip6stat.ip6s_noroute++;
749 in6_ifstat_inc(ifp, ifs6_out_discard);
750 error = ENETUNREACH;
751 goto bad;
752 }
753 if ((im6o == NULL && in6_mcast_loop) ||
754 (im6o && im6o->im6o_multicast_loop)) {
755 /*
756 * Loop back multicast datagram if not expressly
757 * forbidden to do so, even if we have not joined
758 * the address; protocols will filter it later,
759 * thus deferring a hash lookup and lock acquisition
760 * at the expense of an m_copym().
761 */
762 ip6_mloopback(ifp, m, dst);
763 } else {
764 /*
765 * If we are acting as a multicast router, perform
766 * multicast forwarding as if the packet had just
767 * arrived on the interface to which we are about
768 * to send. The multicast forwarding function
769 * recursively calls this function, using the
770 * IPV6_FORWARDING flag to prevent infinite recursion.
771 *
772 * Multicasts that are looped back by ip6_mloopback(),
773 * above, will be forwarded by the ip6_input() routine,
774 * if necessary.
775 */
776 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
777 /*
778 * XXX: ip6_mforward expects that rcvif is NULL
779 * when it is called from the originating path.
780 * However, it is not always the case, since
781 * some versions of MGETHDR() does not
782 * initialize the field.
783 */
784 m->m_pkthdr.rcvif = NULL;
785 if (ip6_mforward(ip6, ifp, m) != 0) {
786 m_freem(m);
787 goto done;
788 }
789 }
790 }
791 /*
792 * Multicasts with a hoplimit of zero may be looped back,
793 * above, but must not be transmitted on a network.
794 * Also, multicasts addressed to the loopback interface
795 * are not sent -- the above call to ip6_mloopback() will
796 * loop back a copy if this host actually belongs to the
797 * destination group on the loopback interface.
798 */
799 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
800 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
801 m_freem(m);
802 goto done;
803 }
804 }
805
806 /*
807 * Fill the outgoing inteface to tell the upper layer
808 * to increment per-interface statistics.
809 */
810 if (ifpp)
811 *ifpp = ifp;
812
813 /* Determine path MTU. */
814 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
815 &alwaysfrag, inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m))) != 0)
816 goto bad;
817
818 /*
819 * The caller of this function may specify to use the minimum MTU
820 * in some cases.
821 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
822 * setting. The logic is a bit complicated; by default, unicast
823 * packets will follow path MTU while multicast packets will be sent at
824 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets
825 * including unicast ones will be sent at the minimum MTU. Multicast
826 * packets will always be sent at the minimum MTU unless
827 * IP6PO_MINMTU_DISABLE is explicitly specified.
828 * See RFC 3542 for more details.
829 */
830 if (mtu > IPV6_MMTU) {
831 if ((flags & IPV6_MINMTU))
832 mtu = IPV6_MMTU;
833 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
834 mtu = IPV6_MMTU;
835 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
836 (opt == NULL ||
837 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
838 mtu = IPV6_MMTU;
839 }
840 }
841
842 /*
843 * clear embedded scope identifiers if necessary.
844 * in6_clearscope will touch the addresses only when necessary.
845 */
846 in6_clearscope(&ip6->ip6_src);
847 in6_clearscope(&ip6->ip6_dst);
848
849 /*
850 * If the outgoing packet contains a hop-by-hop options header,
851 * it must be examined and processed even by the source node.
852 * (RFC 2460, section 4.)
853 */
854 if (exthdrs.ip6e_hbh) {
855 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
856 u_int32_t dummy; /* XXX unused */
857 u_int32_t plen = 0; /* XXX: ip6_process will check the value */
858
859#ifdef DIAGNOSTIC
860 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len)
861 panic("ip6e_hbh is not contiguous");
862#endif
863 /*
864 * XXX: if we have to send an ICMPv6 error to the sender,
865 * we need the M_LOOP flag since icmp6_error() expects
866 * the IPv6 and the hop-by-hop options header are
867 * contiguous unless the flag is set.
868 */
869 m->m_flags |= M_LOOP;
870 m->m_pkthdr.rcvif = ifp;
871 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
872 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
873 &dummy, &plen) < 0) {
874 /* m was already freed at this point */
875 error = EINVAL;/* better error? */
876 goto done;
877 }
878 m->m_flags &= ~M_LOOP; /* XXX */
879 m->m_pkthdr.rcvif = NULL;
880 }
881
882 /* Jump over all PFIL processing if hooks are not active. */
883 if (!PFIL_HOOKED(&V_inet6_pfil_hook))
884 goto passout;
885
886 odst = ip6->ip6_dst;
887 /* Run through list of hooks for output packets. */
888 error = pfil_run_hooks(&V_inet6_pfil_hook, &m, ifp, PFIL_OUT, inp);
889 if (error != 0 || m == NULL)
890 goto done;
891 ip6 = mtod(m, struct ip6_hdr *);
892
893 /* See if destination IP address was changed by packet filter. */
894 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) {
895 m->m_flags |= M_SKIP_FIREWALL;
896 /* If destination is now ourself drop to ip6_input(). */
897 if (in6_localip(&ip6->ip6_dst)) {
898 m->m_flags |= M_FASTFWD_OURS;
899 if (m->m_pkthdr.rcvif == NULL)
900 m->m_pkthdr.rcvif = V_loif;
901 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) {
902 m->m_pkthdr.csum_flags |=
903 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR;
904 m->m_pkthdr.csum_data = 0xffff;
905 }
906#ifdef SCTP
907 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6)
908 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
909#endif
910 error = netisr_queue(NETISR_IPV6, m);
911 goto done;
912 } else
913 goto again; /* Redo the routing table lookup. */
914 }
915
916 if (V_pfilforward == 0)
917 goto passout;
916 /* See if local, if yes, send it to netisr. */
917 if (m->m_flags & M_FASTFWD_OURS) {
918 if (m->m_pkthdr.rcvif == NULL)
919 m->m_pkthdr.rcvif = V_loif;
920 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) {
921 m->m_pkthdr.csum_flags |=
922 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR;
923 m->m_pkthdr.csum_data = 0xffff;
924 }
925#ifdef SCTP
926 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6)
927 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
928#endif
929 error = netisr_queue(NETISR_IPV6, m);
930 goto done;
931 }
932 /* Or forward to some other address? */
935 fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
936 if (fwd_tag) {
933 if ((m->m_flags & M_IP6_NEXTHOP) &&
934 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
935 dst = (struct sockaddr_in6 *)&ro->ro_dst;
936 bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in6));
937 m->m_flags |= M_SKIP_FIREWALL;
938 m->m_flags &= ~M_IP6_NEXTHOP;
939 m_tag_delete(m, fwd_tag);
940 goto again;
941 }
942
943passout:
944 /*
945 * Send the packet to the outgoing interface.
946 * If necessary, do IPv6 fragmentation before sending.
947 *
948 * the logic here is rather complex:
949 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
950 * 1-a: send as is if tlen <= path mtu
951 * 1-b: fragment if tlen > path mtu
952 *
953 * 2: if user asks us not to fragment (dontfrag == 1)
954 * 2-a: send as is if tlen <= interface mtu
955 * 2-b: error if tlen > interface mtu
956 *
957 * 3: if we always need to attach fragment header (alwaysfrag == 1)
958 * always fragment
959 *
960 * 4: if dontfrag == 1 && alwaysfrag == 1
961 * error, as we cannot handle this conflicting request
962 */
963 sw_csum = m->m_pkthdr.csum_flags;
964 if (!hdrsplit) {
965 tso = ((sw_csum & ifp->if_hwassist & CSUM_TSO) != 0) ? 1 : 0;
966 sw_csum &= ~ifp->if_hwassist;
967 } else
968 tso = 0;
969 /*
970 * If we added extension headers, we will not do TSO and calculate the
971 * checksums ourselves for now.
972 * XXX-BZ Need a framework to know when the NIC can handle it, even
973 * with ext. hdrs.
974 */
975 if (sw_csum & CSUM_DELAY_DATA_IPV6) {
976 sw_csum &= ~CSUM_DELAY_DATA_IPV6;
977 in6_delayed_cksum(m, plen, sizeof(struct ip6_hdr));
978 }
979#ifdef SCTP
980 if (sw_csum & CSUM_SCTP_IPV6) {
981 sw_csum &= ~CSUM_SCTP_IPV6;
982 sctp_delayed_cksum(m, sizeof(struct ip6_hdr));
983 }
984#endif
985 m->m_pkthdr.csum_flags &= ifp->if_hwassist;
986 tlen = m->m_pkthdr.len;
987
988 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso)
989 dontfrag = 1;
990 else
991 dontfrag = 0;
992 if (dontfrag && alwaysfrag) { /* case 4 */
993 /* conflicting request - can't transmit */
994 error = EMSGSIZE;
995 goto bad;
996 }
997 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* case 2-b */
998 /*
999 * Even if the DONTFRAG option is specified, we cannot send the
1000 * packet when the data length is larger than the MTU of the
1001 * outgoing interface.
1002 * Notify the error by sending IPV6_PATHMTU ancillary data as
1003 * well as returning an error code (the latter is not described
1004 * in the API spec.)
1005 */
1006 u_int32_t mtu32;
1007 struct ip6ctlparam ip6cp;
1008
1009 mtu32 = (u_int32_t)mtu;
1010 bzero(&ip6cp, sizeof(ip6cp));
1011 ip6cp.ip6c_cmdarg = (void *)&mtu32;
1012 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
1013 (void *)&ip6cp);
1014
1015 error = EMSGSIZE;
1016 goto bad;
1017 }
1018
1019 /*
1020 * transmit packet without fragmentation
1021 */
1022 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */
1023 struct in6_ifaddr *ia6;
1024
1025 ip6 = mtod(m, struct ip6_hdr *);
1026 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
1027 if (ia6) {
1028 /* Record statistics for this interface address. */
1029 ia6->ia_ifa.if_opackets++;
1030 ia6->ia_ifa.if_obytes += m->m_pkthdr.len;
1031 ifa_free(&ia6->ia_ifa);
1032 }
1033 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
1034 goto done;
1035 }
1036
1037 /*
1038 * try to fragment the packet. case 1-b and 3
1039 */
1040 if (mtu < IPV6_MMTU) {
1041 /* path MTU cannot be less than IPV6_MMTU */
1042 error = EMSGSIZE;
1043 in6_ifstat_inc(ifp, ifs6_out_fragfail);
1044 goto bad;
1045 } else if (ip6->ip6_plen == 0) {
1046 /* jumbo payload cannot be fragmented */
1047 error = EMSGSIZE;
1048 in6_ifstat_inc(ifp, ifs6_out_fragfail);
1049 goto bad;
1050 } else {
1051 struct mbuf **mnext, *m_frgpart;
1052 struct ip6_frag *ip6f;
1053 u_int32_t id = htonl(ip6_randomid());
1054 u_char nextproto;
1055
1056 int qslots = ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len;
1057
1058 /*
1059 * Too large for the destination or interface;
1060 * fragment if possible.
1061 * Must be able to put at least 8 bytes per fragment.
1062 */
1063 hlen = unfragpartlen;
1064 if (mtu > IPV6_MAXPACKET)
1065 mtu = IPV6_MAXPACKET;
1066
1067 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
1068 if (len < 8) {
1069 error = EMSGSIZE;
1070 in6_ifstat_inc(ifp, ifs6_out_fragfail);
1071 goto bad;
1072 }
1073
1074 /*
1075 * Verify that we have any chance at all of being able to queue
1076 * the packet or packet fragments
1077 */
1078 if (qslots <= 0 || ((u_int)qslots * (mtu - hlen)
1079 < tlen /* - hlen */)) {
1080 error = ENOBUFS;
1081 V_ip6stat.ip6s_odropped++;
1082 goto bad;
1083 }
1084
1085
1086 /*
1087 * If the interface will not calculate checksums on
1088 * fragmented packets, then do it here.
1089 * XXX-BZ handle the hw offloading case. Need flags.
1090 */
1091 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) {
1092 in6_delayed_cksum(m, plen, hlen);
1093 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6;
1094 }
1095#ifdef SCTP
1096 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) {
1097 sctp_delayed_cksum(m, hlen);
1098 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6;
1099 }
1100#endif
1101 mnext = &m->m_nextpkt;
1102
1103 /*
1104 * Change the next header field of the last header in the
1105 * unfragmentable part.
1106 */
1107 if (exthdrs.ip6e_rthdr) {
1108 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
1109 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
1110 } else if (exthdrs.ip6e_dest1) {
1111 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
1112 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
1113 } else if (exthdrs.ip6e_hbh) {
1114 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
1115 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
1116 } else {
1117 nextproto = ip6->ip6_nxt;
1118 ip6->ip6_nxt = IPPROTO_FRAGMENT;
1119 }
1120
1121 /*
1122 * Loop through length of segment after first fragment,
1123 * make new header and copy data of each part and link onto
1124 * chain.
1125 */
1126 m0 = m;
1127 for (off = hlen; off < tlen; off += len) {
1128 MGETHDR(m, M_DONTWAIT, MT_HEADER);
1129 if (!m) {
1130 error = ENOBUFS;
1131 V_ip6stat.ip6s_odropped++;
1132 goto sendorfree;
1133 }
1134 m->m_pkthdr.rcvif = NULL;
1135 m->m_flags = m0->m_flags & M_COPYFLAGS; /* incl. FIB */
1136 *mnext = m;
1137 mnext = &m->m_nextpkt;
1138 m->m_data += max_linkhdr;
1139 mhip6 = mtod(m, struct ip6_hdr *);
1140 *mhip6 = *ip6;
1141 m->m_len = sizeof(*mhip6);
1142 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
1143 if (error) {
1144 V_ip6stat.ip6s_odropped++;
1145 goto sendorfree;
1146 }
1147 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
1148 if (off + len >= tlen)
1149 len = tlen - off;
1150 else
1151 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
1152 mhip6->ip6_plen = htons((u_short)(len + hlen +
1153 sizeof(*ip6f) - sizeof(struct ip6_hdr)));
1154 if ((m_frgpart = m_copy(m0, off, len)) == 0) {
1155 error = ENOBUFS;
1156 V_ip6stat.ip6s_odropped++;
1157 goto sendorfree;
1158 }
1159 m_cat(m, m_frgpart);
1160 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
1161 m->m_pkthdr.rcvif = NULL;
1162 ip6f->ip6f_reserved = 0;
1163 ip6f->ip6f_ident = id;
1164 ip6f->ip6f_nxt = nextproto;
1165 V_ip6stat.ip6s_ofragments++;
1166 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
1167 }
1168
1169 in6_ifstat_inc(ifp, ifs6_out_fragok);
1170 }
1171
1172 /*
1173 * Remove leading garbages.
1174 */
1175sendorfree:
1176 m = m0->m_nextpkt;
1177 m0->m_nextpkt = 0;
1178 m_freem(m0);
1179 for (m0 = m; m; m = m0) {
1180 m0 = m->m_nextpkt;
1181 m->m_nextpkt = 0;
1182 if (error == 0) {
1183 /* Record statistics for this interface address. */
1184 if (ia) {
1185 ia->ia_ifa.if_opackets++;
1186 ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1187 }
1188 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
1189 } else
1190 m_freem(m);
1191 }
1192
1193 if (error == 0)
1194 V_ip6stat.ip6s_fragmented++;
1195
1196done:
1197 if (ro == &ip6route)
1198 RO_RTFREE(ro);
1199 if (ro_pmtu == &ip6route)
1200 RO_RTFREE(ro_pmtu);
1201#ifdef IPSEC
1202 if (sp != NULL)
1203 KEY_FREESP(&sp);
1204#endif
1205
1206 return (error);
1207
1208freehdrs:
1209 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */
1210 m_freem(exthdrs.ip6e_dest1);
1211 m_freem(exthdrs.ip6e_rthdr);
1212 m_freem(exthdrs.ip6e_dest2);
1213 /* FALLTHROUGH */
1214bad:
1215 if (m)
1216 m_freem(m);
1217 goto done;
1218}
1219
1220static int
1221ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen)
1222{
1223 struct mbuf *m;
1224
1225 if (hlen > MCLBYTES)
1226 return (ENOBUFS); /* XXX */
1227
1228 MGET(m, M_DONTWAIT, MT_DATA);
1229 if (!m)
1230 return (ENOBUFS);
1231
1232 if (hlen > MLEN) {
1233 MCLGET(m, M_DONTWAIT);
1234 if ((m->m_flags & M_EXT) == 0) {
1235 m_free(m);
1236 return (ENOBUFS);
1237 }
1238 }
1239 m->m_len = hlen;
1240 if (hdr)
1241 bcopy(hdr, mtod(m, caddr_t), hlen);
1242
1243 *mp = m;
1244 return (0);
1245}
1246
1247/*
1248 * Insert jumbo payload option.
1249 */
1250static int
1251ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
1252{
1253 struct mbuf *mopt;
1254 u_char *optbuf;
1255 u_int32_t v;
1256
1257#define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1258
1259 /*
1260 * If there is no hop-by-hop options header, allocate new one.
1261 * If there is one but it doesn't have enough space to store the
1262 * jumbo payload option, allocate a cluster to store the whole options.
1263 * Otherwise, use it to store the options.
1264 */
1265 if (exthdrs->ip6e_hbh == 0) {
1266 MGET(mopt, M_DONTWAIT, MT_DATA);
1267 if (mopt == 0)
1268 return (ENOBUFS);
1269 mopt->m_len = JUMBOOPTLEN;
1270 optbuf = mtod(mopt, u_char *);
1271 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1272 exthdrs->ip6e_hbh = mopt;
1273 } else {
1274 struct ip6_hbh *hbh;
1275
1276 mopt = exthdrs->ip6e_hbh;
1277 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1278 /*
1279 * XXX assumption:
1280 * - exthdrs->ip6e_hbh is not referenced from places
1281 * other than exthdrs.
1282 * - exthdrs->ip6e_hbh is not an mbuf chain.
1283 */
1284 int oldoptlen = mopt->m_len;
1285 struct mbuf *n;
1286
1287 /*
1288 * XXX: give up if the whole (new) hbh header does
1289 * not fit even in an mbuf cluster.
1290 */
1291 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1292 return (ENOBUFS);
1293
1294 /*
1295 * As a consequence, we must always prepare a cluster
1296 * at this point.
1297 */
1298 MGET(n, M_DONTWAIT, MT_DATA);
1299 if (n) {
1300 MCLGET(n, M_DONTWAIT);
1301 if ((n->m_flags & M_EXT) == 0) {
1302 m_freem(n);
1303 n = NULL;
1304 }
1305 }
1306 if (!n)
1307 return (ENOBUFS);
1308 n->m_len = oldoptlen + JUMBOOPTLEN;
1309 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
1310 oldoptlen);
1311 optbuf = mtod(n, caddr_t) + oldoptlen;
1312 m_freem(mopt);
1313 mopt = exthdrs->ip6e_hbh = n;
1314 } else {
1315 optbuf = mtod(mopt, u_char *) + mopt->m_len;
1316 mopt->m_len += JUMBOOPTLEN;
1317 }
1318 optbuf[0] = IP6OPT_PADN;
1319 optbuf[1] = 1;
1320
1321 /*
1322 * Adjust the header length according to the pad and
1323 * the jumbo payload option.
1324 */
1325 hbh = mtod(mopt, struct ip6_hbh *);
1326 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1327 }
1328
1329 /* fill in the option. */
1330 optbuf[2] = IP6OPT_JUMBO;
1331 optbuf[3] = 4;
1332 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1333 bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1334
1335 /* finally, adjust the packet header length */
1336 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1337
1338 return (0);
1339#undef JUMBOOPTLEN
1340}
1341
1342/*
1343 * Insert fragment header and copy unfragmentable header portions.
1344 */
1345static int
1346ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1347 struct ip6_frag **frghdrp)
1348{
1349 struct mbuf *n, *mlast;
1350
1351 if (hlen > sizeof(struct ip6_hdr)) {
1352 n = m_copym(m0, sizeof(struct ip6_hdr),
1353 hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1354 if (n == 0)
1355 return (ENOBUFS);
1356 m->m_next = n;
1357 } else
1358 n = m;
1359
1360 /* Search for the last mbuf of unfragmentable part. */
1361 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1362 ;
1363
1364 if ((mlast->m_flags & M_EXT) == 0 &&
1365 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1366 /* use the trailing space of the last mbuf for the fragment hdr */
1367 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) +
1368 mlast->m_len);
1369 mlast->m_len += sizeof(struct ip6_frag);
1370 m->m_pkthdr.len += sizeof(struct ip6_frag);
1371 } else {
1372 /* allocate a new mbuf for the fragment header */
1373 struct mbuf *mfrg;
1374
1375 MGET(mfrg, M_DONTWAIT, MT_DATA);
1376 if (mfrg == 0)
1377 return (ENOBUFS);
1378 mfrg->m_len = sizeof(struct ip6_frag);
1379 *frghdrp = mtod(mfrg, struct ip6_frag *);
1380 mlast->m_next = mfrg;
1381 }
1382
1383 return (0);
1384}
1385
1386static int
1387ip6_getpmtu(struct route_in6 *ro_pmtu, struct route_in6 *ro,
1388 struct ifnet *ifp, struct in6_addr *dst, u_long *mtup,
1389 int *alwaysfragp, u_int fibnum)
1390{
1391 u_int32_t mtu = 0;
1392 int alwaysfrag = 0;
1393 int error = 0;
1394
1395 if (ro_pmtu != ro) {
1396 /* The first hop and the final destination may differ. */
1397 struct sockaddr_in6 *sa6_dst =
1398 (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
1399 if (ro_pmtu->ro_rt &&
1400 ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 ||
1401 !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) {
1402 RTFREE(ro_pmtu->ro_rt);
1403 ro_pmtu->ro_rt = (struct rtentry *)NULL;
1404 }
1405 if (ro_pmtu->ro_rt == NULL) {
1406 bzero(sa6_dst, sizeof(*sa6_dst));
1407 sa6_dst->sin6_family = AF_INET6;
1408 sa6_dst->sin6_len = sizeof(struct sockaddr_in6);
1409 sa6_dst->sin6_addr = *dst;
1410
1411 in6_rtalloc(ro_pmtu, fibnum);
1412 }
1413 }
1414 if (ro_pmtu->ro_rt) {
1415 u_int32_t ifmtu;
1416 struct in_conninfo inc;
1417
1418 bzero(&inc, sizeof(inc));
1419 inc.inc_flags |= INC_ISIPV6;
1420 inc.inc6_faddr = *dst;
1421
1422 if (ifp == NULL)
1423 ifp = ro_pmtu->ro_rt->rt_ifp;
1424 ifmtu = IN6_LINKMTU(ifp);
1425 mtu = tcp_hc_getmtu(&inc);
1426 if (mtu)
1427 mtu = min(mtu, ro_pmtu->ro_rt->rt_rmx.rmx_mtu);
1428 else
1429 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
1430 if (mtu == 0)
1431 mtu = ifmtu;
1432 else if (mtu < IPV6_MMTU) {
1433 /*
1434 * RFC2460 section 5, last paragraph:
1435 * if we record ICMPv6 too big message with
1436 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1437 * or smaller, with framgent header attached.
1438 * (fragment header is needed regardless from the
1439 * packet size, for translators to identify packets)
1440 */
1441 alwaysfrag = 1;
1442 mtu = IPV6_MMTU;
1443 } else if (mtu > ifmtu) {
1444 /*
1445 * The MTU on the route is larger than the MTU on
1446 * the interface! This shouldn't happen, unless the
1447 * MTU of the interface has been changed after the
1448 * interface was brought up. Change the MTU in the
1449 * route to match the interface MTU (as long as the
1450 * field isn't locked).
1451 */
1452 mtu = ifmtu;
1453 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu;
1454 }
1455 } else if (ifp) {
1456 mtu = IN6_LINKMTU(ifp);
1457 } else
1458 error = EHOSTUNREACH; /* XXX */
1459
1460 *mtup = mtu;
1461 if (alwaysfragp)
1462 *alwaysfragp = alwaysfrag;
1463 return (error);
1464}
1465
1466/*
1467 * IP6 socket option processing.
1468 */
1469int
1470ip6_ctloutput(struct socket *so, struct sockopt *sopt)
1471{
1472 int optdatalen, uproto;
1473 void *optdata;
1474 struct inpcb *in6p = sotoinpcb(so);
1475 int error, optval;
1476 int level, op, optname;
1477 int optlen;
1478 struct thread *td;
1479
1480 level = sopt->sopt_level;
1481 op = sopt->sopt_dir;
1482 optname = sopt->sopt_name;
1483 optlen = sopt->sopt_valsize;
1484 td = sopt->sopt_td;
1485 error = 0;
1486 optval = 0;
1487 uproto = (int)so->so_proto->pr_protocol;
1488
1489 if (level != IPPROTO_IPV6) {
1490 error = EINVAL;
1491
1492 if (sopt->sopt_level == SOL_SOCKET &&
1493 sopt->sopt_dir == SOPT_SET) {
1494 switch (sopt->sopt_name) {
1495 case SO_REUSEADDR:
1496 INP_WLOCK(in6p);
1497 if (IN_MULTICAST(ntohl(in6p->inp_laddr.s_addr))) {
1498 if ((so->so_options &
1499 (SO_REUSEADDR | SO_REUSEPORT)) != 0)
1500 in6p->inp_flags2 |= INP_REUSEPORT;
1501 else
1502 in6p->inp_flags2 &= ~INP_REUSEPORT;
1503 }
1504 INP_WUNLOCK(in6p);
1505 error = 0;
1506 break;
1507 case SO_REUSEPORT:
1508 INP_WLOCK(in6p);
1509 if ((so->so_options & SO_REUSEPORT) != 0)
1510 in6p->inp_flags2 |= INP_REUSEPORT;
1511 else
1512 in6p->inp_flags2 &= ~INP_REUSEPORT;
1513 INP_WUNLOCK(in6p);
1514 error = 0;
1515 break;
1516 case SO_SETFIB:
1517 INP_WLOCK(in6p);
1518 in6p->inp_inc.inc_fibnum = so->so_fibnum;
1519 INP_WUNLOCK(in6p);
1520 error = 0;
1521 break;
1522 default:
1523 break;
1524 }
1525 }
1526 } else { /* level == IPPROTO_IPV6 */
1527 switch (op) {
1528
1529 case SOPT_SET:
1530 switch (optname) {
1531 case IPV6_2292PKTOPTIONS:
1532#ifdef IPV6_PKTOPTIONS
1533 case IPV6_PKTOPTIONS:
1534#endif
1535 {
1536 struct mbuf *m;
1537
1538 error = soopt_getm(sopt, &m); /* XXX */
1539 if (error != 0)
1540 break;
1541 error = soopt_mcopyin(sopt, m); /* XXX */
1542 if (error != 0)
1543 break;
1544 error = ip6_pcbopts(&in6p->in6p_outputopts,
1545 m, so, sopt);
1546 m_freem(m); /* XXX */
1547 break;
1548 }
1549
1550 /*
1551 * Use of some Hop-by-Hop options or some
1552 * Destination options, might require special
1553 * privilege. That is, normal applications
1554 * (without special privilege) might be forbidden
1555 * from setting certain options in outgoing packets,
1556 * and might never see certain options in received
1557 * packets. [RFC 2292 Section 6]
1558 * KAME specific note:
1559 * KAME prevents non-privileged users from sending or
1560 * receiving ANY hbh/dst options in order to avoid
1561 * overhead of parsing options in the kernel.
1562 */
1563 case IPV6_RECVHOPOPTS:
1564 case IPV6_RECVDSTOPTS:
1565 case IPV6_RECVRTHDRDSTOPTS:
1566 if (td != NULL) {
1567 error = priv_check(td,
1568 PRIV_NETINET_SETHDROPTS);
1569 if (error)
1570 break;
1571 }
1572 /* FALLTHROUGH */
1573 case IPV6_UNICAST_HOPS:
1574 case IPV6_HOPLIMIT:
1575 case IPV6_FAITH:
1576
1577 case IPV6_RECVPKTINFO:
1578 case IPV6_RECVHOPLIMIT:
1579 case IPV6_RECVRTHDR:
1580 case IPV6_RECVPATHMTU:
1581 case IPV6_RECVTCLASS:
1582 case IPV6_V6ONLY:
1583 case IPV6_AUTOFLOWLABEL:
1584 case IPV6_BINDANY:
1585 if (optname == IPV6_BINDANY && td != NULL) {
1586 error = priv_check(td,
1587 PRIV_NETINET_BINDANY);
1588 if (error)
1589 break;
1590 }
1591
1592 if (optlen != sizeof(int)) {
1593 error = EINVAL;
1594 break;
1595 }
1596 error = sooptcopyin(sopt, &optval,
1597 sizeof optval, sizeof optval);
1598 if (error)
1599 break;
1600 switch (optname) {
1601
1602 case IPV6_UNICAST_HOPS:
1603 if (optval < -1 || optval >= 256)
1604 error = EINVAL;
1605 else {
1606 /* -1 = kernel default */
1607 in6p->in6p_hops = optval;
1608 if ((in6p->inp_vflag &
1609 INP_IPV4) != 0)
1610 in6p->inp_ip_ttl = optval;
1611 }
1612 break;
1613#define OPTSET(bit) \
1614do { \
1615 INP_WLOCK(in6p); \
1616 if (optval) \
1617 in6p->inp_flags |= (bit); \
1618 else \
1619 in6p->inp_flags &= ~(bit); \
1620 INP_WUNLOCK(in6p); \
1621} while (/*CONSTCOND*/ 0)
1622#define OPTSET2292(bit) \
1623do { \
1624 INP_WLOCK(in6p); \
1625 in6p->inp_flags |= IN6P_RFC2292; \
1626 if (optval) \
1627 in6p->inp_flags |= (bit); \
1628 else \
1629 in6p->inp_flags &= ~(bit); \
1630 INP_WUNLOCK(in6p); \
1631} while (/*CONSTCOND*/ 0)
1632#define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0)
1633
1634 case IPV6_RECVPKTINFO:
1635 /* cannot mix with RFC2292 */
1636 if (OPTBIT(IN6P_RFC2292)) {
1637 error = EINVAL;
1638 break;
1639 }
1640 OPTSET(IN6P_PKTINFO);
1641 break;
1642
1643 case IPV6_HOPLIMIT:
1644 {
1645 struct ip6_pktopts **optp;
1646
1647 /* cannot mix with RFC2292 */
1648 if (OPTBIT(IN6P_RFC2292)) {
1649 error = EINVAL;
1650 break;
1651 }
1652 optp = &in6p->in6p_outputopts;
1653 error = ip6_pcbopt(IPV6_HOPLIMIT,
1654 (u_char *)&optval, sizeof(optval),
1655 optp, (td != NULL) ? td->td_ucred :
1656 NULL, uproto);
1657 break;
1658 }
1659
1660 case IPV6_RECVHOPLIMIT:
1661 /* cannot mix with RFC2292 */
1662 if (OPTBIT(IN6P_RFC2292)) {
1663 error = EINVAL;
1664 break;
1665 }
1666 OPTSET(IN6P_HOPLIMIT);
1667 break;
1668
1669 case IPV6_RECVHOPOPTS:
1670 /* cannot mix with RFC2292 */
1671 if (OPTBIT(IN6P_RFC2292)) {
1672 error = EINVAL;
1673 break;
1674 }
1675 OPTSET(IN6P_HOPOPTS);
1676 break;
1677
1678 case IPV6_RECVDSTOPTS:
1679 /* cannot mix with RFC2292 */
1680 if (OPTBIT(IN6P_RFC2292)) {
1681 error = EINVAL;
1682 break;
1683 }
1684 OPTSET(IN6P_DSTOPTS);
1685 break;
1686
1687 case IPV6_RECVRTHDRDSTOPTS:
1688 /* cannot mix with RFC2292 */
1689 if (OPTBIT(IN6P_RFC2292)) {
1690 error = EINVAL;
1691 break;
1692 }
1693 OPTSET(IN6P_RTHDRDSTOPTS);
1694 break;
1695
1696 case IPV6_RECVRTHDR:
1697 /* cannot mix with RFC2292 */
1698 if (OPTBIT(IN6P_RFC2292)) {
1699 error = EINVAL;
1700 break;
1701 }
1702 OPTSET(IN6P_RTHDR);
1703 break;
1704
1705 case IPV6_FAITH:
1706 OPTSET(INP_FAITH);
1707 break;
1708
1709 case IPV6_RECVPATHMTU:
1710 /*
1711 * We ignore this option for TCP
1712 * sockets.
1713 * (RFC3542 leaves this case
1714 * unspecified.)
1715 */
1716 if (uproto != IPPROTO_TCP)
1717 OPTSET(IN6P_MTU);
1718 break;
1719
1720 case IPV6_V6ONLY:
1721 /*
1722 * make setsockopt(IPV6_V6ONLY)
1723 * available only prior to bind(2).
1724 * see ipng mailing list, Jun 22 2001.
1725 */
1726 if (in6p->inp_lport ||
1727 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
1728 error = EINVAL;
1729 break;
1730 }
1731 OPTSET(IN6P_IPV6_V6ONLY);
1732 if (optval)
1733 in6p->inp_vflag &= ~INP_IPV4;
1734 else
1735 in6p->inp_vflag |= INP_IPV4;
1736 break;
1737 case IPV6_RECVTCLASS:
1738 /* cannot mix with RFC2292 XXX */
1739 if (OPTBIT(IN6P_RFC2292)) {
1740 error = EINVAL;
1741 break;
1742 }
1743 OPTSET(IN6P_TCLASS);
1744 break;
1745 case IPV6_AUTOFLOWLABEL:
1746 OPTSET(IN6P_AUTOFLOWLABEL);
1747 break;
1748
1749 case IPV6_BINDANY:
1750 OPTSET(INP_BINDANY);
1751 break;
1752 }
1753 break;
1754
1755 case IPV6_TCLASS:
1756 case IPV6_DONTFRAG:
1757 case IPV6_USE_MIN_MTU:
1758 case IPV6_PREFER_TEMPADDR:
1759 if (optlen != sizeof(optval)) {
1760 error = EINVAL;
1761 break;
1762 }
1763 error = sooptcopyin(sopt, &optval,
1764 sizeof optval, sizeof optval);
1765 if (error)
1766 break;
1767 {
1768 struct ip6_pktopts **optp;
1769 optp = &in6p->in6p_outputopts;
1770 error = ip6_pcbopt(optname,
1771 (u_char *)&optval, sizeof(optval),
1772 optp, (td != NULL) ? td->td_ucred :
1773 NULL, uproto);
1774 break;
1775 }
1776
1777 case IPV6_2292PKTINFO:
1778 case IPV6_2292HOPLIMIT:
1779 case IPV6_2292HOPOPTS:
1780 case IPV6_2292DSTOPTS:
1781 case IPV6_2292RTHDR:
1782 /* RFC 2292 */
1783 if (optlen != sizeof(int)) {
1784 error = EINVAL;
1785 break;
1786 }
1787 error = sooptcopyin(sopt, &optval,
1788 sizeof optval, sizeof optval);
1789 if (error)
1790 break;
1791 switch (optname) {
1792 case IPV6_2292PKTINFO:
1793 OPTSET2292(IN6P_PKTINFO);
1794 break;
1795 case IPV6_2292HOPLIMIT:
1796 OPTSET2292(IN6P_HOPLIMIT);
1797 break;
1798 case IPV6_2292HOPOPTS:
1799 /*
1800 * Check super-user privilege.
1801 * See comments for IPV6_RECVHOPOPTS.
1802 */
1803 if (td != NULL) {
1804 error = priv_check(td,
1805 PRIV_NETINET_SETHDROPTS);
1806 if (error)
1807 return (error);
1808 }
1809 OPTSET2292(IN6P_HOPOPTS);
1810 break;
1811 case IPV6_2292DSTOPTS:
1812 if (td != NULL) {
1813 error = priv_check(td,
1814 PRIV_NETINET_SETHDROPTS);
1815 if (error)
1816 return (error);
1817 }
1818 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1819 break;
1820 case IPV6_2292RTHDR:
1821 OPTSET2292(IN6P_RTHDR);
1822 break;
1823 }
1824 break;
1825 case IPV6_PKTINFO:
1826 case IPV6_HOPOPTS:
1827 case IPV6_RTHDR:
1828 case IPV6_DSTOPTS:
1829 case IPV6_RTHDRDSTOPTS:
1830 case IPV6_NEXTHOP:
1831 {
1832 /* new advanced API (RFC3542) */
1833 u_char *optbuf;
1834 u_char optbuf_storage[MCLBYTES];
1835 int optlen;
1836 struct ip6_pktopts **optp;
1837
1838 /* cannot mix with RFC2292 */
1839 if (OPTBIT(IN6P_RFC2292)) {
1840 error = EINVAL;
1841 break;
1842 }
1843
1844 /*
1845 * We only ensure valsize is not too large
1846 * here. Further validation will be done
1847 * later.
1848 */
1849 error = sooptcopyin(sopt, optbuf_storage,
1850 sizeof(optbuf_storage), 0);
1851 if (error)
1852 break;
1853 optlen = sopt->sopt_valsize;
1854 optbuf = optbuf_storage;
1855 optp = &in6p->in6p_outputopts;
1856 error = ip6_pcbopt(optname, optbuf, optlen,
1857 optp, (td != NULL) ? td->td_ucred : NULL,
1858 uproto);
1859 break;
1860 }
1861#undef OPTSET
1862
1863 case IPV6_MULTICAST_IF:
1864 case IPV6_MULTICAST_HOPS:
1865 case IPV6_MULTICAST_LOOP:
1866 case IPV6_JOIN_GROUP:
1867 case IPV6_LEAVE_GROUP:
1868 case IPV6_MSFILTER:
1869 case MCAST_BLOCK_SOURCE:
1870 case MCAST_UNBLOCK_SOURCE:
1871 case MCAST_JOIN_GROUP:
1872 case MCAST_LEAVE_GROUP:
1873 case MCAST_JOIN_SOURCE_GROUP:
1874 case MCAST_LEAVE_SOURCE_GROUP:
1875 error = ip6_setmoptions(in6p, sopt);
1876 break;
1877
1878 case IPV6_PORTRANGE:
1879 error = sooptcopyin(sopt, &optval,
1880 sizeof optval, sizeof optval);
1881 if (error)
1882 break;
1883
1884 INP_WLOCK(in6p);
1885 switch (optval) {
1886 case IPV6_PORTRANGE_DEFAULT:
1887 in6p->inp_flags &= ~(INP_LOWPORT);
1888 in6p->inp_flags &= ~(INP_HIGHPORT);
1889 break;
1890
1891 case IPV6_PORTRANGE_HIGH:
1892 in6p->inp_flags &= ~(INP_LOWPORT);
1893 in6p->inp_flags |= INP_HIGHPORT;
1894 break;
1895
1896 case IPV6_PORTRANGE_LOW:
1897 in6p->inp_flags &= ~(INP_HIGHPORT);
1898 in6p->inp_flags |= INP_LOWPORT;
1899 break;
1900
1901 default:
1902 error = EINVAL;
1903 break;
1904 }
1905 INP_WUNLOCK(in6p);
1906 break;
1907
1908#ifdef IPSEC
1909 case IPV6_IPSEC_POLICY:
1910 {
1911 caddr_t req;
1912 struct mbuf *m;
1913
1914 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1915 break;
1916 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1917 break;
1918 req = mtod(m, caddr_t);
1919 error = ipsec_set_policy(in6p, optname, req,
1920 m->m_len, (sopt->sopt_td != NULL) ?
1921 sopt->sopt_td->td_ucred : NULL);
1922 m_freem(m);
1923 break;
1924 }
1925#endif /* IPSEC */
1926
1927 default:
1928 error = ENOPROTOOPT;
1929 break;
1930 }
1931 break;
1932
1933 case SOPT_GET:
1934 switch (optname) {
1935
1936 case IPV6_2292PKTOPTIONS:
1937#ifdef IPV6_PKTOPTIONS
1938 case IPV6_PKTOPTIONS:
1939#endif
1940 /*
1941 * RFC3542 (effectively) deprecated the
1942 * semantics of the 2292-style pktoptions.
1943 * Since it was not reliable in nature (i.e.,
1944 * applications had to expect the lack of some
1945 * information after all), it would make sense
1946 * to simplify this part by always returning
1947 * empty data.
1948 */
1949 sopt->sopt_valsize = 0;
1950 break;
1951
1952 case IPV6_RECVHOPOPTS:
1953 case IPV6_RECVDSTOPTS:
1954 case IPV6_RECVRTHDRDSTOPTS:
1955 case IPV6_UNICAST_HOPS:
1956 case IPV6_RECVPKTINFO:
1957 case IPV6_RECVHOPLIMIT:
1958 case IPV6_RECVRTHDR:
1959 case IPV6_RECVPATHMTU:
1960
1961 case IPV6_FAITH:
1962 case IPV6_V6ONLY:
1963 case IPV6_PORTRANGE:
1964 case IPV6_RECVTCLASS:
1965 case IPV6_AUTOFLOWLABEL:
1966 case IPV6_BINDANY:
1967 switch (optname) {
1968
1969 case IPV6_RECVHOPOPTS:
1970 optval = OPTBIT(IN6P_HOPOPTS);
1971 break;
1972
1973 case IPV6_RECVDSTOPTS:
1974 optval = OPTBIT(IN6P_DSTOPTS);
1975 break;
1976
1977 case IPV6_RECVRTHDRDSTOPTS:
1978 optval = OPTBIT(IN6P_RTHDRDSTOPTS);
1979 break;
1980
1981 case IPV6_UNICAST_HOPS:
1982 optval = in6p->in6p_hops;
1983 break;
1984
1985 case IPV6_RECVPKTINFO:
1986 optval = OPTBIT(IN6P_PKTINFO);
1987 break;
1988
1989 case IPV6_RECVHOPLIMIT:
1990 optval = OPTBIT(IN6P_HOPLIMIT);
1991 break;
1992
1993 case IPV6_RECVRTHDR:
1994 optval = OPTBIT(IN6P_RTHDR);
1995 break;
1996
1997 case IPV6_RECVPATHMTU:
1998 optval = OPTBIT(IN6P_MTU);
1999 break;
2000
2001 case IPV6_FAITH:
2002 optval = OPTBIT(INP_FAITH);
2003 break;
2004
2005 case IPV6_V6ONLY:
2006 optval = OPTBIT(IN6P_IPV6_V6ONLY);
2007 break;
2008
2009 case IPV6_PORTRANGE:
2010 {
2011 int flags;
2012 flags = in6p->inp_flags;
2013 if (flags & INP_HIGHPORT)
2014 optval = IPV6_PORTRANGE_HIGH;
2015 else if (flags & INP_LOWPORT)
2016 optval = IPV6_PORTRANGE_LOW;
2017 else
2018 optval = 0;
2019 break;
2020 }
2021 case IPV6_RECVTCLASS:
2022 optval = OPTBIT(IN6P_TCLASS);
2023 break;
2024
2025 case IPV6_AUTOFLOWLABEL:
2026 optval = OPTBIT(IN6P_AUTOFLOWLABEL);
2027 break;
2028
2029 case IPV6_BINDANY:
2030 optval = OPTBIT(INP_BINDANY);
2031 break;
2032 }
2033 if (error)
2034 break;
2035 error = sooptcopyout(sopt, &optval,
2036 sizeof optval);
2037 break;
2038
2039 case IPV6_PATHMTU:
2040 {
2041 u_long pmtu = 0;
2042 struct ip6_mtuinfo mtuinfo;
2043 struct route_in6 sro;
2044
2045 bzero(&sro, sizeof(sro));
2046
2047 if (!(so->so_state & SS_ISCONNECTED))
2048 return (ENOTCONN);
2049 /*
2050 * XXX: we dot not consider the case of source
2051 * routing, or optional information to specify
2052 * the outgoing interface.
2053 */
2054 error = ip6_getpmtu(&sro, NULL, NULL,
2055 &in6p->in6p_faddr, &pmtu, NULL,
2056 so->so_fibnum);
2057 if (sro.ro_rt)
2058 RTFREE(sro.ro_rt);
2059 if (error)
2060 break;
2061 if (pmtu > IPV6_MAXPACKET)
2062 pmtu = IPV6_MAXPACKET;
2063
2064 bzero(&mtuinfo, sizeof(mtuinfo));
2065 mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
2066 optdata = (void *)&mtuinfo;
2067 optdatalen = sizeof(mtuinfo);
2068 error = sooptcopyout(sopt, optdata,
2069 optdatalen);
2070 break;
2071 }
2072
2073 case IPV6_2292PKTINFO:
2074 case IPV6_2292HOPLIMIT:
2075 case IPV6_2292HOPOPTS:
2076 case IPV6_2292RTHDR:
2077 case IPV6_2292DSTOPTS:
2078 switch (optname) {
2079 case IPV6_2292PKTINFO:
2080 optval = OPTBIT(IN6P_PKTINFO);
2081 break;
2082 case IPV6_2292HOPLIMIT:
2083 optval = OPTBIT(IN6P_HOPLIMIT);
2084 break;
2085 case IPV6_2292HOPOPTS:
2086 optval = OPTBIT(IN6P_HOPOPTS);
2087 break;
2088 case IPV6_2292RTHDR:
2089 optval = OPTBIT(IN6P_RTHDR);
2090 break;
2091 case IPV6_2292DSTOPTS:
2092 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
2093 break;
2094 }
2095 error = sooptcopyout(sopt, &optval,
2096 sizeof optval);
2097 break;
2098 case IPV6_PKTINFO:
2099 case IPV6_HOPOPTS:
2100 case IPV6_RTHDR:
2101 case IPV6_DSTOPTS:
2102 case IPV6_RTHDRDSTOPTS:
2103 case IPV6_NEXTHOP:
2104 case IPV6_TCLASS:
2105 case IPV6_DONTFRAG:
2106 case IPV6_USE_MIN_MTU:
2107 case IPV6_PREFER_TEMPADDR:
2108 error = ip6_getpcbopt(in6p->in6p_outputopts,
2109 optname, sopt);
2110 break;
2111
2112 case IPV6_MULTICAST_IF:
2113 case IPV6_MULTICAST_HOPS:
2114 case IPV6_MULTICAST_LOOP:
2115 case IPV6_MSFILTER:
2116 error = ip6_getmoptions(in6p, sopt);
2117 break;
2118
2119#ifdef IPSEC
2120 case IPV6_IPSEC_POLICY:
2121 {
2122 caddr_t req = NULL;
2123 size_t len = 0;
2124 struct mbuf *m = NULL;
2125 struct mbuf **mp = &m;
2126 size_t ovalsize = sopt->sopt_valsize;
2127 caddr_t oval = (caddr_t)sopt->sopt_val;
2128
2129 error = soopt_getm(sopt, &m); /* XXX */
2130 if (error != 0)
2131 break;
2132 error = soopt_mcopyin(sopt, m); /* XXX */
2133 if (error != 0)
2134 break;
2135 sopt->sopt_valsize = ovalsize;
2136 sopt->sopt_val = oval;
2137 if (m) {
2138 req = mtod(m, caddr_t);
2139 len = m->m_len;
2140 }
2141 error = ipsec_get_policy(in6p, req, len, mp);
2142 if (error == 0)
2143 error = soopt_mcopyout(sopt, m); /* XXX */
2144 if (error == 0 && m)
2145 m_freem(m);
2146 break;
2147 }
2148#endif /* IPSEC */
2149
2150 default:
2151 error = ENOPROTOOPT;
2152 break;
2153 }
2154 break;
2155 }
2156 }
2157 return (error);
2158}
2159
2160int
2161ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt)
2162{
2163 int error = 0, optval, optlen;
2164 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
2165 struct inpcb *in6p = sotoinpcb(so);
2166 int level, op, optname;
2167
2168 level = sopt->sopt_level;
2169 op = sopt->sopt_dir;
2170 optname = sopt->sopt_name;
2171 optlen = sopt->sopt_valsize;
2172
2173 if (level != IPPROTO_IPV6) {
2174 return (EINVAL);
2175 }
2176
2177 switch (optname) {
2178 case IPV6_CHECKSUM:
2179 /*
2180 * For ICMPv6 sockets, no modification allowed for checksum
2181 * offset, permit "no change" values to help existing apps.
2182 *
2183 * RFC3542 says: "An attempt to set IPV6_CHECKSUM
2184 * for an ICMPv6 socket will fail."
2185 * The current behavior does not meet RFC3542.
2186 */
2187 switch (op) {
2188 case SOPT_SET:
2189 if (optlen != sizeof(int)) {
2190 error = EINVAL;
2191 break;
2192 }
2193 error = sooptcopyin(sopt, &optval, sizeof(optval),
2194 sizeof(optval));
2195 if (error)
2196 break;
2197 if ((optval % 2) != 0) {
2198 /* the API assumes even offset values */
2199 error = EINVAL;
2200 } else if (so->so_proto->pr_protocol ==
2201 IPPROTO_ICMPV6) {
2202 if (optval != icmp6off)
2203 error = EINVAL;
2204 } else
2205 in6p->in6p_cksum = optval;
2206 break;
2207
2208 case SOPT_GET:
2209 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
2210 optval = icmp6off;
2211 else
2212 optval = in6p->in6p_cksum;
2213
2214 error = sooptcopyout(sopt, &optval, sizeof(optval));
2215 break;
2216
2217 default:
2218 error = EINVAL;
2219 break;
2220 }
2221 break;
2222
2223 default:
2224 error = ENOPROTOOPT;
2225 break;
2226 }
2227
2228 return (error);
2229}
2230
2231/*
2232 * Set up IP6 options in pcb for insertion in output packets or
2233 * specifying behavior of outgoing packets.
2234 */
2235static int
2236ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m,
2237 struct socket *so, struct sockopt *sopt)
2238{
2239 struct ip6_pktopts *opt = *pktopt;
2240 int error = 0;
2241 struct thread *td = sopt->sopt_td;
2242
2243 /* turn off any old options. */
2244 if (opt) {
2245#ifdef DIAGNOSTIC
2246 if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
2247 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
2248 opt->ip6po_rhinfo.ip6po_rhi_rthdr)
2249 printf("ip6_pcbopts: all specified options are cleared.\n");
2250#endif
2251 ip6_clearpktopts(opt, -1);
2252 } else
2253 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
2254 *pktopt = NULL;
2255
2256 if (!m || m->m_len == 0) {
2257 /*
2258 * Only turning off any previous options, regardless of
2259 * whether the opt is just created or given.
2260 */
2261 free(opt, M_IP6OPT);
2262 return (0);
2263 }
2264
2265 /* set options specified by user. */
2266 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ?
2267 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) {
2268 ip6_clearpktopts(opt, -1); /* XXX: discard all options */
2269 free(opt, M_IP6OPT);
2270 return (error);
2271 }
2272 *pktopt = opt;
2273 return (0);
2274}
2275
2276/*
2277 * initialize ip6_pktopts. beware that there are non-zero default values in
2278 * the struct.
2279 */
2280void
2281ip6_initpktopts(struct ip6_pktopts *opt)
2282{
2283
2284 bzero(opt, sizeof(*opt));
2285 opt->ip6po_hlim = -1; /* -1 means default hop limit */
2286 opt->ip6po_tclass = -1; /* -1 means default traffic class */
2287 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
2288 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM;
2289}
2290
2291static int
2292ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
2293 struct ucred *cred, int uproto)
2294{
2295 struct ip6_pktopts *opt;
2296
2297 if (*pktopt == NULL) {
2298 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
2299 M_WAITOK);
2300 ip6_initpktopts(*pktopt);
2301 }
2302 opt = *pktopt;
2303
2304 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto));
2305}
2306
2307static int
2308ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
2309{
2310 void *optdata = NULL;
2311 int optdatalen = 0;
2312 struct ip6_ext *ip6e;
2313 int error = 0;
2314 struct in6_pktinfo null_pktinfo;
2315 int deftclass = 0, on;
2316 int defminmtu = IP6PO_MINMTU_MCASTONLY;
2317 int defpreftemp = IP6PO_TEMPADDR_SYSTEM;
2318
2319 switch (optname) {
2320 case IPV6_PKTINFO:
2321 if (pktopt && pktopt->ip6po_pktinfo)
2322 optdata = (void *)pktopt->ip6po_pktinfo;
2323 else {
2324 /* XXX: we don't have to do this every time... */
2325 bzero(&null_pktinfo, sizeof(null_pktinfo));
2326 optdata = (void *)&null_pktinfo;
2327 }
2328 optdatalen = sizeof(struct in6_pktinfo);
2329 break;
2330 case IPV6_TCLASS:
2331 if (pktopt && pktopt->ip6po_tclass >= 0)
2332 optdata = (void *)&pktopt->ip6po_tclass;
2333 else
2334 optdata = (void *)&deftclass;
2335 optdatalen = sizeof(int);
2336 break;
2337 case IPV6_HOPOPTS:
2338 if (pktopt && pktopt->ip6po_hbh) {
2339 optdata = (void *)pktopt->ip6po_hbh;
2340 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
2341 optdatalen = (ip6e->ip6e_len + 1) << 3;
2342 }
2343 break;
2344 case IPV6_RTHDR:
2345 if (pktopt && pktopt->ip6po_rthdr) {
2346 optdata = (void *)pktopt->ip6po_rthdr;
2347 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
2348 optdatalen = (ip6e->ip6e_len + 1) << 3;
2349 }
2350 break;
2351 case IPV6_RTHDRDSTOPTS:
2352 if (pktopt && pktopt->ip6po_dest1) {
2353 optdata = (void *)pktopt->ip6po_dest1;
2354 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
2355 optdatalen = (ip6e->ip6e_len + 1) << 3;
2356 }
2357 break;
2358 case IPV6_DSTOPTS:
2359 if (pktopt && pktopt->ip6po_dest2) {
2360 optdata = (void *)pktopt->ip6po_dest2;
2361 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
2362 optdatalen = (ip6e->ip6e_len + 1) << 3;
2363 }
2364 break;
2365 case IPV6_NEXTHOP:
2366 if (pktopt && pktopt->ip6po_nexthop) {
2367 optdata = (void *)pktopt->ip6po_nexthop;
2368 optdatalen = pktopt->ip6po_nexthop->sa_len;
2369 }
2370 break;
2371 case IPV6_USE_MIN_MTU:
2372 if (pktopt)
2373 optdata = (void *)&pktopt->ip6po_minmtu;
2374 else
2375 optdata = (void *)&defminmtu;
2376 optdatalen = sizeof(int);
2377 break;
2378 case IPV6_DONTFRAG:
2379 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
2380 on = 1;
2381 else
2382 on = 0;
2383 optdata = (void *)&on;
2384 optdatalen = sizeof(on);
2385 break;
2386 case IPV6_PREFER_TEMPADDR:
2387 if (pktopt)
2388 optdata = (void *)&pktopt->ip6po_prefer_tempaddr;
2389 else
2390 optdata = (void *)&defpreftemp;
2391 optdatalen = sizeof(int);
2392 break;
2393 default: /* should not happen */
2394#ifdef DIAGNOSTIC
2395 panic("ip6_getpcbopt: unexpected option\n");
2396#endif
2397 return (ENOPROTOOPT);
2398 }
2399
2400 error = sooptcopyout(sopt, optdata, optdatalen);
2401
2402 return (error);
2403}
2404
2405void
2406ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2407{
2408 if (pktopt == NULL)
2409 return;
2410
2411 if (optname == -1 || optname == IPV6_PKTINFO) {
2412 if (pktopt->ip6po_pktinfo)
2413 free(pktopt->ip6po_pktinfo, M_IP6OPT);
2414 pktopt->ip6po_pktinfo = NULL;
2415 }
2416 if (optname == -1 || optname == IPV6_HOPLIMIT)
2417 pktopt->ip6po_hlim = -1;
2418 if (optname == -1 || optname == IPV6_TCLASS)
2419 pktopt->ip6po_tclass = -1;
2420 if (optname == -1 || optname == IPV6_NEXTHOP) {
2421 if (pktopt->ip6po_nextroute.ro_rt) {
2422 RTFREE(pktopt->ip6po_nextroute.ro_rt);
2423 pktopt->ip6po_nextroute.ro_rt = NULL;
2424 }
2425 if (pktopt->ip6po_nexthop)
2426 free(pktopt->ip6po_nexthop, M_IP6OPT);
2427 pktopt->ip6po_nexthop = NULL;
2428 }
2429 if (optname == -1 || optname == IPV6_HOPOPTS) {
2430 if (pktopt->ip6po_hbh)
2431 free(pktopt->ip6po_hbh, M_IP6OPT);
2432 pktopt->ip6po_hbh = NULL;
2433 }
2434 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2435 if (pktopt->ip6po_dest1)
2436 free(pktopt->ip6po_dest1, M_IP6OPT);
2437 pktopt->ip6po_dest1 = NULL;
2438 }
2439 if (optname == -1 || optname == IPV6_RTHDR) {
2440 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2441 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2442 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2443 if (pktopt->ip6po_route.ro_rt) {
2444 RTFREE(pktopt->ip6po_route.ro_rt);
2445 pktopt->ip6po_route.ro_rt = NULL;
2446 }
2447 }
2448 if (optname == -1 || optname == IPV6_DSTOPTS) {
2449 if (pktopt->ip6po_dest2)
2450 free(pktopt->ip6po_dest2, M_IP6OPT);
2451 pktopt->ip6po_dest2 = NULL;
2452 }
2453}
2454
2455#define PKTOPT_EXTHDRCPY(type) \
2456do {\
2457 if (src->type) {\
2458 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2459 dst->type = malloc(hlen, M_IP6OPT, canwait);\
2460 if (dst->type == NULL && canwait == M_NOWAIT)\
2461 goto bad;\
2462 bcopy(src->type, dst->type, hlen);\
2463 }\
2464} while (/*CONSTCOND*/ 0)
2465
2466static int
2467copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2468{
2469 if (dst == NULL || src == NULL) {
2470 printf("ip6_clearpktopts: invalid argument\n");
2471 return (EINVAL);
2472 }
2473
2474 dst->ip6po_hlim = src->ip6po_hlim;
2475 dst->ip6po_tclass = src->ip6po_tclass;
2476 dst->ip6po_flags = src->ip6po_flags;
2477 dst->ip6po_minmtu = src->ip6po_minmtu;
2478 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr;
2479 if (src->ip6po_pktinfo) {
2480 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
2481 M_IP6OPT, canwait);
2482 if (dst->ip6po_pktinfo == NULL)
2483 goto bad;
2484 *dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2485 }
2486 if (src->ip6po_nexthop) {
2487 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
2488 M_IP6OPT, canwait);
2489 if (dst->ip6po_nexthop == NULL)
2490 goto bad;
2491 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop,
2492 src->ip6po_nexthop->sa_len);
2493 }
2494 PKTOPT_EXTHDRCPY(ip6po_hbh);
2495 PKTOPT_EXTHDRCPY(ip6po_dest1);
2496 PKTOPT_EXTHDRCPY(ip6po_dest2);
2497 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2498 return (0);
2499
2500 bad:
2501 ip6_clearpktopts(dst, -1);
2502 return (ENOBUFS);
2503}
2504#undef PKTOPT_EXTHDRCPY
2505
2506struct ip6_pktopts *
2507ip6_copypktopts(struct ip6_pktopts *src, int canwait)
2508{
2509 int error;
2510 struct ip6_pktopts *dst;
2511
2512 dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
2513 if (dst == NULL)
2514 return (NULL);
2515 ip6_initpktopts(dst);
2516
2517 if ((error = copypktopts(dst, src, canwait)) != 0) {
2518 free(dst, M_IP6OPT);
2519 return (NULL);
2520 }
2521
2522 return (dst);
2523}
2524
2525void
2526ip6_freepcbopts(struct ip6_pktopts *pktopt)
2527{
2528 if (pktopt == NULL)
2529 return;
2530
2531 ip6_clearpktopts(pktopt, -1);
2532
2533 free(pktopt, M_IP6OPT);
2534}
2535
2536/*
2537 * Set IPv6 outgoing packet options based on advanced API.
2538 */
2539int
2540ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
2541 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto)
2542{
2543 struct cmsghdr *cm = 0;
2544
2545 if (control == NULL || opt == NULL)
2546 return (EINVAL);
2547
2548 ip6_initpktopts(opt);
2549 if (stickyopt) {
2550 int error;
2551
2552 /*
2553 * If stickyopt is provided, make a local copy of the options
2554 * for this particular packet, then override them by ancillary
2555 * objects.
2556 * XXX: copypktopts() does not copy the cached route to a next
2557 * hop (if any). This is not very good in terms of efficiency,
2558 * but we can allow this since this option should be rarely
2559 * used.
2560 */
2561 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
2562 return (error);
2563 }
2564
2565 /*
2566 * XXX: Currently, we assume all the optional information is stored
2567 * in a single mbuf.
2568 */
2569 if (control->m_next)
2570 return (EINVAL);
2571
2572 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2573 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2574 int error;
2575
2576 if (control->m_len < CMSG_LEN(0))
2577 return (EINVAL);
2578
2579 cm = mtod(control, struct cmsghdr *);
2580 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2581 return (EINVAL);
2582 if (cm->cmsg_level != IPPROTO_IPV6)
2583 continue;
2584
2585 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
2586 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
2587 if (error)
2588 return (error);
2589 }
2590
2591 return (0);
2592}
2593
2594/*
2595 * Set a particular packet option, as a sticky option or an ancillary data
2596 * item. "len" can be 0 only when it's a sticky option.
2597 * We have 4 cases of combination of "sticky" and "cmsg":
2598 * "sticky=0, cmsg=0": impossible
2599 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2600 * "sticky=1, cmsg=0": RFC3542 socket option
2601 * "sticky=1, cmsg=1": RFC2292 socket option
2602 */
2603static int
2604ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2605 struct ucred *cred, int sticky, int cmsg, int uproto)
2606{
2607 int minmtupolicy, preftemp;
2608 int error;
2609
2610 if (!sticky && !cmsg) {
2611#ifdef DIAGNOSTIC
2612 printf("ip6_setpktopt: impossible case\n");
2613#endif
2614 return (EINVAL);
2615 }
2616
2617 /*
2618 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2619 * not be specified in the context of RFC3542. Conversely,
2620 * RFC3542 types should not be specified in the context of RFC2292.
2621 */
2622 if (!cmsg) {
2623 switch (optname) {
2624 case IPV6_2292PKTINFO:
2625 case IPV6_2292HOPLIMIT:
2626 case IPV6_2292NEXTHOP:
2627 case IPV6_2292HOPOPTS:
2628 case IPV6_2292DSTOPTS:
2629 case IPV6_2292RTHDR:
2630 case IPV6_2292PKTOPTIONS:
2631 return (ENOPROTOOPT);
2632 }
2633 }
2634 if (sticky && cmsg) {
2635 switch (optname) {
2636 case IPV6_PKTINFO:
2637 case IPV6_HOPLIMIT:
2638 case IPV6_NEXTHOP:
2639 case IPV6_HOPOPTS:
2640 case IPV6_DSTOPTS:
2641 case IPV6_RTHDRDSTOPTS:
2642 case IPV6_RTHDR:
2643 case IPV6_USE_MIN_MTU:
2644 case IPV6_DONTFRAG:
2645 case IPV6_TCLASS:
2646 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */
2647 return (ENOPROTOOPT);
2648 }
2649 }
2650
2651 switch (optname) {
2652 case IPV6_2292PKTINFO:
2653 case IPV6_PKTINFO:
2654 {
2655 struct ifnet *ifp = NULL;
2656 struct in6_pktinfo *pktinfo;
2657
2658 if (len != sizeof(struct in6_pktinfo))
2659 return (EINVAL);
2660
2661 pktinfo = (struct in6_pktinfo *)buf;
2662
2663 /*
2664 * An application can clear any sticky IPV6_PKTINFO option by
2665 * doing a "regular" setsockopt with ipi6_addr being
2666 * in6addr_any and ipi6_ifindex being zero.
2667 * [RFC 3542, Section 6]
2668 */
2669 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
2670 pktinfo->ipi6_ifindex == 0 &&
2671 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2672 ip6_clearpktopts(opt, optname);
2673 break;
2674 }
2675
2676 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
2677 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2678 return (EINVAL);
2679 }
2680
2681 /* validate the interface index if specified. */
2682 if (pktinfo->ipi6_ifindex > V_if_index ||
2683 pktinfo->ipi6_ifindex < 0) {
2684 return (ENXIO);
2685 }
2686 if (pktinfo->ipi6_ifindex) {
2687 ifp = ifnet_byindex(pktinfo->ipi6_ifindex);
2688 if (ifp == NULL)
2689 return (ENXIO);
2690 }
2691
2692 /*
2693 * We store the address anyway, and let in6_selectsrc()
2694 * validate the specified address. This is because ipi6_addr
2695 * may not have enough information about its scope zone, and
2696 * we may need additional information (such as outgoing
2697 * interface or the scope zone of a destination address) to
2698 * disambiguate the scope.
2699 * XXX: the delay of the validation may confuse the
2700 * application when it is used as a sticky option.
2701 */
2702 if (opt->ip6po_pktinfo == NULL) {
2703 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
2704 M_IP6OPT, M_NOWAIT);
2705 if (opt->ip6po_pktinfo == NULL)
2706 return (ENOBUFS);
2707 }
2708 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo));
2709 break;
2710 }
2711
2712 case IPV6_2292HOPLIMIT:
2713 case IPV6_HOPLIMIT:
2714 {
2715 int *hlimp;
2716
2717 /*
2718 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2719 * to simplify the ordering among hoplimit options.
2720 */
2721 if (optname == IPV6_HOPLIMIT && sticky)
2722 return (ENOPROTOOPT);
2723
2724 if (len != sizeof(int))
2725 return (EINVAL);
2726 hlimp = (int *)buf;
2727 if (*hlimp < -1 || *hlimp > 255)
2728 return (EINVAL);
2729
2730 opt->ip6po_hlim = *hlimp;
2731 break;
2732 }
2733
2734 case IPV6_TCLASS:
2735 {
2736 int tclass;
2737
2738 if (len != sizeof(int))
2739 return (EINVAL);
2740 tclass = *(int *)buf;
2741 if (tclass < -1 || tclass > 255)
2742 return (EINVAL);
2743
2744 opt->ip6po_tclass = tclass;
2745 break;
2746 }
2747
2748 case IPV6_2292NEXTHOP:
2749 case IPV6_NEXTHOP:
2750 if (cred != NULL) {
2751 error = priv_check_cred(cred,
2752 PRIV_NETINET_SETHDROPTS, 0);
2753 if (error)
2754 return (error);
2755 }
2756
2757 if (len == 0) { /* just remove the option */
2758 ip6_clearpktopts(opt, IPV6_NEXTHOP);
2759 break;
2760 }
2761
2762 /* check if cmsg_len is large enough for sa_len */
2763 if (len < sizeof(struct sockaddr) || len < *buf)
2764 return (EINVAL);
2765
2766 switch (((struct sockaddr *)buf)->sa_family) {
2767 case AF_INET6:
2768 {
2769 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
2770 int error;
2771
2772 if (sa6->sin6_len != sizeof(struct sockaddr_in6))
2773 return (EINVAL);
2774
2775 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
2776 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
2777 return (EINVAL);
2778 }
2779 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone))
2780 != 0) {
2781 return (error);
2782 }
2783 break;
2784 }
2785 case AF_LINK: /* should eventually be supported */
2786 default:
2787 return (EAFNOSUPPORT);
2788 }
2789
2790 /* turn off the previous option, then set the new option. */
2791 ip6_clearpktopts(opt, IPV6_NEXTHOP);
2792 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
2793 if (opt->ip6po_nexthop == NULL)
2794 return (ENOBUFS);
2795 bcopy(buf, opt->ip6po_nexthop, *buf);
2796 break;
2797
2798 case IPV6_2292HOPOPTS:
2799 case IPV6_HOPOPTS:
2800 {
2801 struct ip6_hbh *hbh;
2802 int hbhlen;
2803
2804 /*
2805 * XXX: We don't allow a non-privileged user to set ANY HbH
2806 * options, since per-option restriction has too much
2807 * overhead.
2808 */
2809 if (cred != NULL) {
2810 error = priv_check_cred(cred,
2811 PRIV_NETINET_SETHDROPTS, 0);
2812 if (error)
2813 return (error);
2814 }
2815
2816 if (len == 0) {
2817 ip6_clearpktopts(opt, IPV6_HOPOPTS);
2818 break; /* just remove the option */
2819 }
2820
2821 /* message length validation */
2822 if (len < sizeof(struct ip6_hbh))
2823 return (EINVAL);
2824 hbh = (struct ip6_hbh *)buf;
2825 hbhlen = (hbh->ip6h_len + 1) << 3;
2826 if (len != hbhlen)
2827 return (EINVAL);
2828
2829 /* turn off the previous option, then set the new option. */
2830 ip6_clearpktopts(opt, IPV6_HOPOPTS);
2831 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
2832 if (opt->ip6po_hbh == NULL)
2833 return (ENOBUFS);
2834 bcopy(hbh, opt->ip6po_hbh, hbhlen);
2835
2836 break;
2837 }
2838
2839 case IPV6_2292DSTOPTS:
2840 case IPV6_DSTOPTS:
2841 case IPV6_RTHDRDSTOPTS:
2842 {
2843 struct ip6_dest *dest, **newdest = NULL;
2844 int destlen;
2845
2846 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */
2847 error = priv_check_cred(cred,
2848 PRIV_NETINET_SETHDROPTS, 0);
2849 if (error)
2850 return (error);
2851 }
2852
2853 if (len == 0) {
2854 ip6_clearpktopts(opt, optname);
2855 break; /* just remove the option */
2856 }
2857
2858 /* message length validation */
2859 if (len < sizeof(struct ip6_dest))
2860 return (EINVAL);
2861 dest = (struct ip6_dest *)buf;
2862 destlen = (dest->ip6d_len + 1) << 3;
2863 if (len != destlen)
2864 return (EINVAL);
2865
2866 /*
2867 * Determine the position that the destination options header
2868 * should be inserted; before or after the routing header.
2869 */
2870 switch (optname) {
2871 case IPV6_2292DSTOPTS:
2872 /*
2873 * The old advacned API is ambiguous on this point.
2874 * Our approach is to determine the position based
2875 * according to the existence of a routing header.
2876 * Note, however, that this depends on the order of the
2877 * extension headers in the ancillary data; the 1st
2878 * part of the destination options header must appear
2879 * before the routing header in the ancillary data,
2880 * too.
2881 * RFC3542 solved the ambiguity by introducing
2882 * separate ancillary data or option types.
2883 */
2884 if (opt->ip6po_rthdr == NULL)
2885 newdest = &opt->ip6po_dest1;
2886 else
2887 newdest = &opt->ip6po_dest2;
2888 break;
2889 case IPV6_RTHDRDSTOPTS:
2890 newdest = &opt->ip6po_dest1;
2891 break;
2892 case IPV6_DSTOPTS:
2893 newdest = &opt->ip6po_dest2;
2894 break;
2895 }
2896
2897 /* turn off the previous option, then set the new option. */
2898 ip6_clearpktopts(opt, optname);
2899 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
2900 if (*newdest == NULL)
2901 return (ENOBUFS);
2902 bcopy(dest, *newdest, destlen);
2903
2904 break;
2905 }
2906
2907 case IPV6_2292RTHDR:
2908 case IPV6_RTHDR:
2909 {
2910 struct ip6_rthdr *rth;
2911 int rthlen;
2912
2913 if (len == 0) {
2914 ip6_clearpktopts(opt, IPV6_RTHDR);
2915 break; /* just remove the option */
2916 }
2917
2918 /* message length validation */
2919 if (len < sizeof(struct ip6_rthdr))
2920 return (EINVAL);
2921 rth = (struct ip6_rthdr *)buf;
2922 rthlen = (rth->ip6r_len + 1) << 3;
2923 if (len != rthlen)
2924 return (EINVAL);
2925
2926 switch (rth->ip6r_type) {
2927 case IPV6_RTHDR_TYPE_0:
2928 if (rth->ip6r_len == 0) /* must contain one addr */
2929 return (EINVAL);
2930 if (rth->ip6r_len % 2) /* length must be even */
2931 return (EINVAL);
2932 if (rth->ip6r_len / 2 != rth->ip6r_segleft)
2933 return (EINVAL);
2934 break;
2935 default:
2936 return (EINVAL); /* not supported */
2937 }
2938
2939 /* turn off the previous option */
2940 ip6_clearpktopts(opt, IPV6_RTHDR);
2941 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
2942 if (opt->ip6po_rthdr == NULL)
2943 return (ENOBUFS);
2944 bcopy(rth, opt->ip6po_rthdr, rthlen);
2945
2946 break;
2947 }
2948
2949 case IPV6_USE_MIN_MTU:
2950 if (len != sizeof(int))
2951 return (EINVAL);
2952 minmtupolicy = *(int *)buf;
2953 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
2954 minmtupolicy != IP6PO_MINMTU_DISABLE &&
2955 minmtupolicy != IP6PO_MINMTU_ALL) {
2956 return (EINVAL);
2957 }
2958 opt->ip6po_minmtu = minmtupolicy;
2959 break;
2960
2961 case IPV6_DONTFRAG:
2962 if (len != sizeof(int))
2963 return (EINVAL);
2964
2965 if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
2966 /*
2967 * we ignore this option for TCP sockets.
2968 * (RFC3542 leaves this case unspecified.)
2969 */
2970 opt->ip6po_flags &= ~IP6PO_DONTFRAG;
2971 } else
2972 opt->ip6po_flags |= IP6PO_DONTFRAG;
2973 break;
2974
2975 case IPV6_PREFER_TEMPADDR:
2976 if (len != sizeof(int))
2977 return (EINVAL);
2978 preftemp = *(int *)buf;
2979 if (preftemp != IP6PO_TEMPADDR_SYSTEM &&
2980 preftemp != IP6PO_TEMPADDR_NOTPREFER &&
2981 preftemp != IP6PO_TEMPADDR_PREFER) {
2982 return (EINVAL);
2983 }
2984 opt->ip6po_prefer_tempaddr = preftemp;
2985 break;
2986
2987 default:
2988 return (ENOPROTOOPT);
2989 } /* end of switch */
2990
2991 return (0);
2992}
2993
2994/*
2995 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
2996 * packet to the input queue of a specified interface. Note that this
2997 * calls the output routine of the loopback "driver", but with an interface
2998 * pointer that might NOT be &loif -- easier than replicating that code here.
2999 */
3000void
3001ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst)
3002{
3003 struct mbuf *copym;
3004 struct ip6_hdr *ip6;
3005
3006 copym = m_copy(m, 0, M_COPYALL);
3007 if (copym == NULL)
3008 return;
3009
3010 /*
3011 * Make sure to deep-copy IPv6 header portion in case the data
3012 * is in an mbuf cluster, so that we can safely override the IPv6
3013 * header portion later.
3014 */
3015 if ((copym->m_flags & M_EXT) != 0 ||
3016 copym->m_len < sizeof(struct ip6_hdr)) {
3017 copym = m_pullup(copym, sizeof(struct ip6_hdr));
3018 if (copym == NULL)
3019 return;
3020 }
3021
3022#ifdef DIAGNOSTIC
3023 if (copym->m_len < sizeof(*ip6)) {
3024 m_freem(copym);
3025 return;
3026 }
3027#endif
3028
3029 ip6 = mtod(copym, struct ip6_hdr *);
3030 /*
3031 * clear embedded scope identifiers if necessary.
3032 * in6_clearscope will touch the addresses only when necessary.
3033 */
3034 in6_clearscope(&ip6->ip6_src);
3035 in6_clearscope(&ip6->ip6_dst);
3036
3037 (void)if_simloop(ifp, copym, dst->sin6_family, 0);
3038}
3039
3040/*
3041 * Chop IPv6 header off from the payload.
3042 */
3043static int
3044ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs)
3045{
3046 struct mbuf *mh;
3047 struct ip6_hdr *ip6;
3048
3049 ip6 = mtod(m, struct ip6_hdr *);
3050 if (m->m_len > sizeof(*ip6)) {
3051 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
3052 if (mh == 0) {
3053 m_freem(m);
3054 return ENOBUFS;
3055 }
3056 M_MOVE_PKTHDR(mh, m);
3057 MH_ALIGN(mh, sizeof(*ip6));
3058 m->m_len -= sizeof(*ip6);
3059 m->m_data += sizeof(*ip6);
3060 mh->m_next = m;
3061 m = mh;
3062 m->m_len = sizeof(*ip6);
3063 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
3064 }
3065 exthdrs->ip6e_ip6 = m;
3066 return 0;
3067}
3068
3069/*
3070 * Compute IPv6 extension header length.
3071 */
3072int
3073ip6_optlen(struct inpcb *in6p)
3074{
3075 int len;
3076
3077 if (!in6p->in6p_outputopts)
3078 return 0;
3079
3080 len = 0;
3081#define elen(x) \
3082 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
3083
3084 len += elen(in6p->in6p_outputopts->ip6po_hbh);
3085 if (in6p->in6p_outputopts->ip6po_rthdr)
3086 /* dest1 is valid with rthdr only */
3087 len += elen(in6p->in6p_outputopts->ip6po_dest1);
3088 len += elen(in6p->in6p_outputopts->ip6po_rthdr);
3089 len += elen(in6p->in6p_outputopts->ip6po_dest2);
3090 return len;
3091#undef elen
3092}