Deleted Added
full compact
ieee80211_output.c (190094) ieee80211_output.c (190391)
1/*-
2 * Copyright (c) 2001 Atsushi Onoe
3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
1/*-
2 * Copyright (c) 2001 Atsushi Onoe
3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/net80211/ieee80211_output.c 190094 2009-03-19 18:45:37Z rpaulo $");
28__FBSDID("$FreeBSD: head/sys/net80211/ieee80211_output.c 190391 2009-03-24 20:39:08Z sam $");
29
30#include "opt_inet.h"
31#include "opt_wlan.h"
32
33#include <sys/param.h>
34#include <sys/systm.h>
35#include <sys/mbuf.h>
36#include <sys/kernel.h>
37#include <sys/endian.h>
38
39#include <sys/socket.h>
40
41#include <net/bpf.h>
42#include <net/ethernet.h>
43#include <net/if.h>
44#include <net/if_llc.h>
45#include <net/if_media.h>
46#include <net/if_vlan_var.h>
47
48#include <net80211/ieee80211_var.h>
49#include <net80211/ieee80211_regdomain.h>
29
30#include "opt_inet.h"
31#include "opt_wlan.h"
32
33#include <sys/param.h>
34#include <sys/systm.h>
35#include <sys/mbuf.h>
36#include <sys/kernel.h>
37#include <sys/endian.h>
38
39#include <sys/socket.h>
40
41#include <net/bpf.h>
42#include <net/ethernet.h>
43#include <net/if.h>
44#include <net/if_llc.h>
45#include <net/if_media.h>
46#include <net/if_vlan_var.h>
47
48#include <net80211/ieee80211_var.h>
49#include <net80211/ieee80211_regdomain.h>
50#ifdef IEEE80211_SUPPORT_SUPERG
51#include <net80211/ieee80211_superg.h>
52#endif
50#ifdef IEEE80211_SUPPORT_TDMA
51#include <net80211/ieee80211_tdma.h>
52#endif
53#include <net80211/ieee80211_wds.h>
54
55#ifdef INET
56#include <netinet/in.h>
57#include <netinet/if_ether.h>
58#include <netinet/in_systm.h>
59#include <netinet/ip.h>
60#endif
61
62#define ETHER_HEADER_COPY(dst, src) \
63 memcpy(dst, src, sizeof(struct ether_header))
64
53#ifdef IEEE80211_SUPPORT_TDMA
54#include <net80211/ieee80211_tdma.h>
55#endif
56#include <net80211/ieee80211_wds.h>
57
58#ifdef INET
59#include <netinet/in.h>
60#include <netinet/if_ether.h>
61#include <netinet/in_systm.h>
62#include <netinet/ip.h>
63#endif
64
65#define ETHER_HEADER_COPY(dst, src) \
66 memcpy(dst, src, sizeof(struct ether_header))
67
65static struct mbuf *ieee80211_encap_fastframe(struct ieee80211vap *,
66 struct mbuf *m1, const struct ether_header *eh1,
67 struct mbuf *m2, const struct ether_header *eh2);
68static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
69 u_int hdrsize, u_int ciphdrsize, u_int mtu);
70static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
71
72#ifdef IEEE80211_DEBUG
73/*
74 * Decide if an outbound management frame should be
75 * printed when debugging is enabled. This filters some
76 * of the less interesting frames that come frequently
77 * (e.g. beacons).
78 */
79static __inline int
80doprint(struct ieee80211vap *vap, int subtype)
81{
82 switch (subtype) {
83 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
84 return (vap->iv_opmode == IEEE80211_M_IBSS);
85 }
86 return 1;
87}
88#endif
89
90/*
91 * Start method for vap's. All packets from the stack come
92 * through here. We handle common processing of the packets
93 * before dispatching them to the underlying device.
94 */
95void
96ieee80211_start(struct ifnet *ifp)
97{
98#define IS_DWDS(vap) \
99 (vap->iv_opmode == IEEE80211_M_WDS && \
100 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
101 struct ieee80211vap *vap = ifp->if_softc;
102 struct ieee80211com *ic = vap->iv_ic;
103 struct ifnet *parent = ic->ic_ifp;
104 struct ieee80211_node *ni;
105 struct mbuf *m;
106 struct ether_header *eh;
107 int error;
108
109 /* NB: parent must be up and running */
110 if (!IFNET_IS_UP_RUNNING(parent)) {
111 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
112 "%s: ignore queue, parent %s not up+running\n",
113 __func__, parent->if_xname);
114 /* XXX stat */
115 return;
116 }
117 if (vap->iv_state == IEEE80211_S_SLEEP) {
118 /*
119 * In power save, wakeup device for transmit.
120 */
121 ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
122 return;
123 }
124 /*
125 * No data frames go out unless we're running.
126 * Note in particular this covers CAC and CSA
127 * states (though maybe we should check muting
128 * for CSA).
129 */
130 if (vap->iv_state != IEEE80211_S_RUN) {
131 IEEE80211_LOCK(ic);
132 /* re-check under the com lock to avoid races */
133 if (vap->iv_state != IEEE80211_S_RUN) {
134 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
135 "%s: ignore queue, in %s state\n",
136 __func__, ieee80211_state_name[vap->iv_state]);
137 vap->iv_stats.is_tx_badstate++;
138 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
139 IEEE80211_UNLOCK(ic);
140 return;
141 }
142 IEEE80211_UNLOCK(ic);
143 }
144 for (;;) {
145 IFQ_DEQUEUE(&ifp->if_snd, m);
146 if (m == NULL)
147 break;
148 /*
149 * Sanitize mbuf flags for net80211 use. We cannot
150 * clear M_PWR_SAV because this may be set for frames
151 * that are re-submitted from the power save queue.
152 *
153 * NB: This must be done before ieee80211_classify as
154 * it marks EAPOL in frames with M_EAPOL.
155 */
156 m->m_flags &= ~(M_80211_TX - M_PWR_SAV);
157 /*
158 * Cancel any background scan.
159 */
160 if (ic->ic_flags & IEEE80211_F_SCAN)
161 ieee80211_cancel_anyscan(vap);
162 /*
163 * Find the node for the destination so we can do
164 * things like power save and fast frames aggregation.
165 *
166 * NB: past this point various code assumes the first
167 * mbuf has the 802.3 header present (and contiguous).
168 */
169 ni = NULL;
170 if (m->m_len < sizeof(struct ether_header) &&
171 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
172 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
173 "discard frame, %s\n", "m_pullup failed");
174 vap->iv_stats.is_tx_nobuf++; /* XXX */
175 ifp->if_oerrors++;
176 continue;
177 }
178 eh = mtod(m, struct ether_header *);
179 if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
180 if (IS_DWDS(vap)) {
181 /*
182 * Only unicast frames from the above go out
183 * DWDS vaps; multicast frames are handled by
184 * dispatching the frame as it comes through
185 * the AP vap (see below).
186 */
187 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
188 eh->ether_dhost, "mcast", "%s", "on DWDS");
189 vap->iv_stats.is_dwds_mcast++;
190 m_freem(m);
191 continue;
192 }
193 if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
194 /*
195 * Spam DWDS vap's w/ multicast traffic.
196 */
197 /* XXX only if dwds in use? */
198 ieee80211_dwds_mcast(vap, m);
199 }
200 }
201 ni = ieee80211_find_txnode(vap, eh->ether_dhost);
202 if (ni == NULL) {
203 /* NB: ieee80211_find_txnode does stat+msg */
204 ifp->if_oerrors++;
205 m_freem(m);
206 continue;
207 }
208 if (ni->ni_associd == 0 &&
209 (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
210 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
211 eh->ether_dhost, NULL,
212 "sta not associated (type 0x%04x)",
213 htons(eh->ether_type));
214 vap->iv_stats.is_tx_notassoc++;
215 ifp->if_oerrors++;
216 m_freem(m);
217 ieee80211_free_node(ni);
218 continue;
219 }
220 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
221 (m->m_flags & M_PWR_SAV) == 0) {
222 /*
223 * Station in power save mode; pass the frame
224 * to the 802.11 layer and continue. We'll get
225 * the frame back when the time is right.
226 * XXX lose WDS vap linkage?
227 */
228 (void) ieee80211_pwrsave(ni, m);
229 ieee80211_free_node(ni);
230 continue;
231 }
232 /* calculate priority so drivers can find the tx queue */
233 if (ieee80211_classify(ni, m)) {
234 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
235 eh->ether_dhost, NULL,
236 "%s", "classification failure");
237 vap->iv_stats.is_tx_classify++;
238 ifp->if_oerrors++;
239 m_freem(m);
240 ieee80211_free_node(ni);
241 continue;
242 }
243
244 BPF_MTAP(ifp, m); /* 802.11 tx path */
245
246 /*
247 * XXX When ni is associated with a WDS link then
248 * the vap will be the WDS vap but ni_vap will point
249 * to the ap vap the station associated to. Once
250 * we handoff the packet to the driver the callback
251 * to ieee80211_encap won't be able to tell if the
252 * packet should be encapsulated for WDS or not (e.g.
253 * multicast frames will not be handled correctly).
254 * We hack this by marking the mbuf so ieee80211_encap
255 * can do the right thing.
256 */
257 if (vap->iv_opmode == IEEE80211_M_WDS)
258 m->m_flags |= M_WDS;
259 else
260 m->m_flags &= ~M_WDS;
261
262 /*
263 * Stash the node pointer and hand the frame off to
264 * the underlying device. Note that we do this after
265 * any call to ieee80211_dwds_mcast because that code
266 * uses any existing value for rcvif.
267 */
268 m->m_pkthdr.rcvif = (void *)ni;
269
270 /* XXX defer if_start calls? */
271 error = parent->if_transmit(parent, m);
272 if (error != 0) {
273 /* NB: IFQ_HANDOFF reclaims mbuf */
274 ieee80211_free_node(ni);
275 } else {
276 ifp->if_opackets++;
277 }
278 ic->ic_lastdata = ticks;
279 }
280#undef IS_DWDS
281}
282
283/*
284 * 802.11 output routine. This is (currently) used only to
285 * connect bpf write calls to the 802.11 layer for injecting
286 * raw 802.11 frames. Note we locate the ieee80211com from
287 * the ifnet using a spare field setup at attach time. This
288 * will go away when the virtual ap support comes in.
289 */
290int
291ieee80211_output(struct ifnet *ifp, struct mbuf *m,
292 struct sockaddr *dst, struct rtentry *rt0)
293{
294#define senderr(e) do { error = (e); goto bad;} while (0)
295 struct ieee80211_node *ni = NULL;
296 struct ieee80211vap *vap;
297 struct ieee80211_frame *wh;
298 int error;
299
300 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
301 /*
302 * Short-circuit requests if the vap is marked OACTIVE
303 * as this is used when tearing down state to indicate
304 * the vap may be gone. This can also happen because a
305 * packet came down through ieee80211_start before the
306 * vap entered RUN state in which case it's also ok to
307 * just drop the frame. This should not be necessary
308 * but callers of if_output don't check OACTIVE.
309 */
310 senderr(ENETDOWN);
311 }
312 vap = ifp->if_softc;
313 /*
314 * Hand to the 802.3 code if not tagged as
315 * a raw 802.11 frame.
316 */
317 if (dst->sa_family != AF_IEEE80211)
318 return vap->iv_output(ifp, m, dst, rt0);
319#ifdef MAC
320 error = mac_check_ifnet_transmit(ifp, m);
321 if (error)
322 senderr(error);
323#endif
324 if (ifp->if_flags & IFF_MONITOR)
325 senderr(ENETDOWN);
326 if (!IFNET_IS_UP_RUNNING(ifp))
327 senderr(ENETDOWN);
328 if (vap->iv_state == IEEE80211_S_CAC) {
329 IEEE80211_DPRINTF(vap,
330 IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
331 "block %s frame in CAC state\n", "raw data");
332 vap->iv_stats.is_tx_badstate++;
333 senderr(EIO); /* XXX */
334 }
335 /* XXX bypass bridge, pfil, carp, etc. */
336
337 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
338 senderr(EIO); /* XXX */
339 wh = mtod(m, struct ieee80211_frame *);
340 if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
341 IEEE80211_FC0_VERSION_0)
342 senderr(EIO); /* XXX */
343
344 /* locate destination node */
345 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
346 case IEEE80211_FC1_DIR_NODS:
347 case IEEE80211_FC1_DIR_FROMDS:
348 ni = ieee80211_find_txnode(vap, wh->i_addr1);
349 break;
350 case IEEE80211_FC1_DIR_TODS:
351 case IEEE80211_FC1_DIR_DSTODS:
352 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame))
353 senderr(EIO); /* XXX */
354 ni = ieee80211_find_txnode(vap, wh->i_addr3);
355 break;
356 default:
357 senderr(EIO); /* XXX */
358 }
359 if (ni == NULL) {
360 /*
361 * Permit packets w/ bpf params through regardless
362 * (see below about sa_len).
363 */
364 if (dst->sa_len == 0)
365 senderr(EHOSTUNREACH);
366 ni = ieee80211_ref_node(vap->iv_bss);
367 }
368
369 /*
370 * Sanitize mbuf for net80211 flags leaked from above.
371 *
372 * NB: This must be done before ieee80211_classify as
373 * it marks EAPOL in frames with M_EAPOL.
374 */
375 m->m_flags &= ~M_80211_TX;
376
377 /* calculate priority so drivers can find the tx queue */
378 /* XXX assumes an 802.3 frame */
379 if (ieee80211_classify(ni, m))
380 senderr(EIO); /* XXX */
381
382 BPF_MTAP(ifp, m);
383
384 /*
385 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
386 * present by setting the sa_len field of the sockaddr (yes,
387 * this is a hack).
388 * NB: we assume sa_data is suitably aligned to cast.
389 */
390 return vap->iv_ic->ic_raw_xmit(ni, m,
391 (const struct ieee80211_bpf_params *)(dst->sa_len ?
392 dst->sa_data : NULL));
393bad:
394 if (m != NULL)
395 m_freem(m);
396 if (ni != NULL)
397 ieee80211_free_node(ni);
398 return error;
399#undef senderr
400}
401
402/*
403 * Set the direction field and address fields of an outgoing
404 * frame. Note this should be called early on in constructing
405 * a frame as it sets i_fc[1]; other bits can then be or'd in.
406 */
407static void
408ieee80211_send_setup(
409 struct ieee80211_node *ni,
410 struct ieee80211_frame *wh,
411 int type, int tid,
412 const uint8_t sa[IEEE80211_ADDR_LEN],
413 const uint8_t da[IEEE80211_ADDR_LEN],
414 const uint8_t bssid[IEEE80211_ADDR_LEN])
415{
416#define WH4(wh) ((struct ieee80211_frame_addr4 *)wh)
417
418 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
419 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
420 struct ieee80211vap *vap = ni->ni_vap;
421
422 switch (vap->iv_opmode) {
423 case IEEE80211_M_STA:
424 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
425 IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
426 IEEE80211_ADDR_COPY(wh->i_addr2, sa);
427 IEEE80211_ADDR_COPY(wh->i_addr3, da);
428 break;
429 case IEEE80211_M_IBSS:
430 case IEEE80211_M_AHDEMO:
431 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
432 IEEE80211_ADDR_COPY(wh->i_addr1, da);
433 IEEE80211_ADDR_COPY(wh->i_addr2, sa);
434 IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
435 break;
436 case IEEE80211_M_HOSTAP:
437 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
438 IEEE80211_ADDR_COPY(wh->i_addr1, da);
439 IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
440 IEEE80211_ADDR_COPY(wh->i_addr3, sa);
441 break;
442 case IEEE80211_M_WDS:
443 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
444 IEEE80211_ADDR_COPY(wh->i_addr1, da);
445 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
446 IEEE80211_ADDR_COPY(wh->i_addr3, da);
447 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
448 break;
449 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */
450 break;
451 }
452 } else {
453 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
454 IEEE80211_ADDR_COPY(wh->i_addr1, da);
455 IEEE80211_ADDR_COPY(wh->i_addr2, sa);
456 IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
457 }
458 *(uint16_t *)&wh->i_dur[0] = 0;
459 *(uint16_t *)&wh->i_seq[0] =
460 htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT);
461 ni->ni_txseqs[tid]++;
462#undef WH4
463}
464
465/*
466 * Send a management frame to the specified node. The node pointer
467 * must have a reference as the pointer will be passed to the driver
468 * and potentially held for a long time. If the frame is successfully
469 * dispatched to the driver, then it is responsible for freeing the
470 * reference (and potentially free'ing up any associated storage);
471 * otherwise deal with reclaiming any reference (on error).
472 */
473int
474ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
475 struct ieee80211_bpf_params *params)
476{
477 struct ieee80211vap *vap = ni->ni_vap;
478 struct ieee80211com *ic = ni->ni_ic;
479 struct ieee80211_frame *wh;
480
481 KASSERT(ni != NULL, ("null node"));
482
483 if (vap->iv_state == IEEE80211_S_CAC) {
484 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
485 ni, "block %s frame in CAC state",
486 ieee80211_mgt_subtype_name[
487 (type & IEEE80211_FC0_SUBTYPE_MASK) >>
488 IEEE80211_FC0_SUBTYPE_SHIFT]);
489 vap->iv_stats.is_tx_badstate++;
490 ieee80211_free_node(ni);
491 m_freem(m);
492 return EIO; /* XXX */
493 }
494
495 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
496 if (m == NULL) {
497 ieee80211_free_node(ni);
498 return ENOMEM;
499 }
500
501 wh = mtod(m, struct ieee80211_frame *);
502 ieee80211_send_setup(ni, wh,
503 IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
504 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
505 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
506 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
507 "encrypting frame (%s)", __func__);
508 wh->i_fc[1] |= IEEE80211_FC1_WEP;
509 }
510 m->m_flags |= M_ENCAP; /* mark encapsulated */
511
512 KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
513 M_WME_SETAC(m, params->ibp_pri);
514
515#ifdef IEEE80211_DEBUG
516 /* avoid printing too many frames */
517 if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
518 ieee80211_msg_dumppkts(vap)) {
519 printf("[%s] send %s on channel %u\n",
520 ether_sprintf(wh->i_addr1),
521 ieee80211_mgt_subtype_name[
522 (type & IEEE80211_FC0_SUBTYPE_MASK) >>
523 IEEE80211_FC0_SUBTYPE_SHIFT],
524 ieee80211_chan2ieee(ic, ic->ic_curchan));
525 }
526#endif
527 IEEE80211_NODE_STAT(ni, tx_mgmt);
528
529 return ic->ic_raw_xmit(ni, m, params);
530}
531
532/*
533 * Send a null data frame to the specified node. If the station
534 * is setup for QoS then a QoS Null Data frame is constructed.
535 * If this is a WDS station then a 4-address frame is constructed.
536 *
537 * NB: the caller is assumed to have setup a node reference
538 * for use; this is necessary to deal with a race condition
539 * when probing for inactive stations. Like ieee80211_mgmt_output
540 * we must cleanup any node reference on error; however we
541 * can safely just unref it as we know it will never be the
542 * last reference to the node.
543 */
544int
545ieee80211_send_nulldata(struct ieee80211_node *ni)
546{
547 struct ieee80211vap *vap = ni->ni_vap;
548 struct ieee80211com *ic = ni->ni_ic;
549 struct mbuf *m;
550 struct ieee80211_frame *wh;
551 int hdrlen;
552 uint8_t *frm;
553
554 if (vap->iv_state == IEEE80211_S_CAC) {
555 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
556 ni, "block %s frame in CAC state", "null data");
557 ieee80211_unref_node(&ni);
558 vap->iv_stats.is_tx_badstate++;
559 return EIO; /* XXX */
560 }
561
562 if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
563 hdrlen = sizeof(struct ieee80211_qosframe);
564 else
565 hdrlen = sizeof(struct ieee80211_frame);
566 /* NB: only WDS vap's get 4-address frames */
567 if (vap->iv_opmode == IEEE80211_M_WDS)
568 hdrlen += IEEE80211_ADDR_LEN;
569 if (ic->ic_flags & IEEE80211_F_DATAPAD)
570 hdrlen = roundup(hdrlen, sizeof(uint32_t));
571
572 m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
573 if (m == NULL) {
574 /* XXX debug msg */
575 ieee80211_unref_node(&ni);
576 vap->iv_stats.is_tx_nobuf++;
577 return ENOMEM;
578 }
579 KASSERT(M_LEADINGSPACE(m) >= hdrlen,
580 ("leading space %zd", M_LEADINGSPACE(m)));
581 M_PREPEND(m, hdrlen, M_DONTWAIT);
582 if (m == NULL) {
583 /* NB: cannot happen */
584 ieee80211_free_node(ni);
585 return ENOMEM;
586 }
587
588 wh = mtod(m, struct ieee80211_frame *); /* NB: a little lie */
589 if (ni->ni_flags & IEEE80211_NODE_QOS) {
590 const int tid = WME_AC_TO_TID(WME_AC_BE);
591 uint8_t *qos;
592
593 ieee80211_send_setup(ni, wh,
594 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
595 tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
596
597 if (vap->iv_opmode == IEEE80211_M_WDS)
598 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
599 else
600 qos = ((struct ieee80211_qosframe *) wh)->i_qos;
601 qos[0] = tid & IEEE80211_QOS_TID;
602 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
603 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
604 qos[1] = 0;
605 } else {
606 ieee80211_send_setup(ni, wh,
607 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
608 IEEE80211_NONQOS_TID,
609 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
610 }
611 if (vap->iv_opmode != IEEE80211_M_WDS) {
612 /* NB: power management bit is never sent by an AP */
613 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
614 vap->iv_opmode != IEEE80211_M_HOSTAP)
615 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
616 }
617 m->m_len = m->m_pkthdr.len = hdrlen;
618 m->m_flags |= M_ENCAP; /* mark encapsulated */
619
620 M_WME_SETAC(m, WME_AC_BE);
621
622 IEEE80211_NODE_STAT(ni, tx_data);
623
624 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
625 "send %snull data frame on channel %u, pwr mgt %s",
626 ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
627 ieee80211_chan2ieee(ic, ic->ic_curchan),
628 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
629
630 return ic->ic_raw_xmit(ni, m, NULL);
631}
632
633/*
634 * Assign priority to a frame based on any vlan tag assigned
635 * to the station and/or any Diffserv setting in an IP header.
636 * Finally, if an ACM policy is setup (in station mode) it's
637 * applied.
638 */
639int
640ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
641{
642 const struct ether_header *eh = mtod(m, struct ether_header *);
643 int v_wme_ac, d_wme_ac, ac;
644
645 /*
646 * Always promote PAE/EAPOL frames to high priority.
647 */
648 if (eh->ether_type == htons(ETHERTYPE_PAE)) {
649 /* NB: mark so others don't need to check header */
650 m->m_flags |= M_EAPOL;
651 ac = WME_AC_VO;
652 goto done;
653 }
654 /*
655 * Non-qos traffic goes to BE.
656 */
657 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
658 ac = WME_AC_BE;
659 goto done;
660 }
661
662 /*
663 * If node has a vlan tag then all traffic
664 * to it must have a matching tag.
665 */
666 v_wme_ac = 0;
667 if (ni->ni_vlan != 0) {
668 if ((m->m_flags & M_VLANTAG) == 0) {
669 IEEE80211_NODE_STAT(ni, tx_novlantag);
670 return 1;
671 }
672 if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
673 EVL_VLANOFTAG(ni->ni_vlan)) {
674 IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
675 return 1;
676 }
677 /* map vlan priority to AC */
678 v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
679 }
680
681#ifdef INET
682 if (eh->ether_type == htons(ETHERTYPE_IP)) {
683 uint8_t tos;
684 /*
685 * IP frame, map the DSCP bits from the TOS field.
686 */
687 /* XXX m_copydata may be too slow for fast path */
688 /* NB: ip header may not be in first mbuf */
689 m_copydata(m, sizeof(struct ether_header) +
690 offsetof(struct ip, ip_tos), sizeof(tos), &tos);
691 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */
692 d_wme_ac = TID_TO_WME_AC(tos);
693 } else {
694#endif /* INET */
695 d_wme_ac = WME_AC_BE;
696#ifdef INET
697 }
698#endif
699 /*
700 * Use highest priority AC.
701 */
702 if (v_wme_ac > d_wme_ac)
703 ac = v_wme_ac;
704 else
705 ac = d_wme_ac;
706
707 /*
708 * Apply ACM policy.
709 */
710 if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
711 static const int acmap[4] = {
712 WME_AC_BK, /* WME_AC_BE */
713 WME_AC_BK, /* WME_AC_BK */
714 WME_AC_BE, /* WME_AC_VI */
715 WME_AC_VI, /* WME_AC_VO */
716 };
717 struct ieee80211com *ic = ni->ni_ic;
718
719 while (ac != WME_AC_BK &&
720 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
721 ac = acmap[ac];
722 }
723done:
724 M_WME_SETAC(m, ac);
725 return 0;
726}
727
728/*
729 * Insure there is sufficient contiguous space to encapsulate the
730 * 802.11 data frame. If room isn't already there, arrange for it.
731 * Drivers and cipher modules assume we have done the necessary work
732 * and fail rudely if they don't find the space they need.
733 */
68static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
69 u_int hdrsize, u_int ciphdrsize, u_int mtu);
70static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
71
72#ifdef IEEE80211_DEBUG
73/*
74 * Decide if an outbound management frame should be
75 * printed when debugging is enabled. This filters some
76 * of the less interesting frames that come frequently
77 * (e.g. beacons).
78 */
79static __inline int
80doprint(struct ieee80211vap *vap, int subtype)
81{
82 switch (subtype) {
83 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
84 return (vap->iv_opmode == IEEE80211_M_IBSS);
85 }
86 return 1;
87}
88#endif
89
90/*
91 * Start method for vap's. All packets from the stack come
92 * through here. We handle common processing of the packets
93 * before dispatching them to the underlying device.
94 */
95void
96ieee80211_start(struct ifnet *ifp)
97{
98#define IS_DWDS(vap) \
99 (vap->iv_opmode == IEEE80211_M_WDS && \
100 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
101 struct ieee80211vap *vap = ifp->if_softc;
102 struct ieee80211com *ic = vap->iv_ic;
103 struct ifnet *parent = ic->ic_ifp;
104 struct ieee80211_node *ni;
105 struct mbuf *m;
106 struct ether_header *eh;
107 int error;
108
109 /* NB: parent must be up and running */
110 if (!IFNET_IS_UP_RUNNING(parent)) {
111 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
112 "%s: ignore queue, parent %s not up+running\n",
113 __func__, parent->if_xname);
114 /* XXX stat */
115 return;
116 }
117 if (vap->iv_state == IEEE80211_S_SLEEP) {
118 /*
119 * In power save, wakeup device for transmit.
120 */
121 ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
122 return;
123 }
124 /*
125 * No data frames go out unless we're running.
126 * Note in particular this covers CAC and CSA
127 * states (though maybe we should check muting
128 * for CSA).
129 */
130 if (vap->iv_state != IEEE80211_S_RUN) {
131 IEEE80211_LOCK(ic);
132 /* re-check under the com lock to avoid races */
133 if (vap->iv_state != IEEE80211_S_RUN) {
134 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
135 "%s: ignore queue, in %s state\n",
136 __func__, ieee80211_state_name[vap->iv_state]);
137 vap->iv_stats.is_tx_badstate++;
138 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
139 IEEE80211_UNLOCK(ic);
140 return;
141 }
142 IEEE80211_UNLOCK(ic);
143 }
144 for (;;) {
145 IFQ_DEQUEUE(&ifp->if_snd, m);
146 if (m == NULL)
147 break;
148 /*
149 * Sanitize mbuf flags for net80211 use. We cannot
150 * clear M_PWR_SAV because this may be set for frames
151 * that are re-submitted from the power save queue.
152 *
153 * NB: This must be done before ieee80211_classify as
154 * it marks EAPOL in frames with M_EAPOL.
155 */
156 m->m_flags &= ~(M_80211_TX - M_PWR_SAV);
157 /*
158 * Cancel any background scan.
159 */
160 if (ic->ic_flags & IEEE80211_F_SCAN)
161 ieee80211_cancel_anyscan(vap);
162 /*
163 * Find the node for the destination so we can do
164 * things like power save and fast frames aggregation.
165 *
166 * NB: past this point various code assumes the first
167 * mbuf has the 802.3 header present (and contiguous).
168 */
169 ni = NULL;
170 if (m->m_len < sizeof(struct ether_header) &&
171 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
172 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
173 "discard frame, %s\n", "m_pullup failed");
174 vap->iv_stats.is_tx_nobuf++; /* XXX */
175 ifp->if_oerrors++;
176 continue;
177 }
178 eh = mtod(m, struct ether_header *);
179 if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
180 if (IS_DWDS(vap)) {
181 /*
182 * Only unicast frames from the above go out
183 * DWDS vaps; multicast frames are handled by
184 * dispatching the frame as it comes through
185 * the AP vap (see below).
186 */
187 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
188 eh->ether_dhost, "mcast", "%s", "on DWDS");
189 vap->iv_stats.is_dwds_mcast++;
190 m_freem(m);
191 continue;
192 }
193 if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
194 /*
195 * Spam DWDS vap's w/ multicast traffic.
196 */
197 /* XXX only if dwds in use? */
198 ieee80211_dwds_mcast(vap, m);
199 }
200 }
201 ni = ieee80211_find_txnode(vap, eh->ether_dhost);
202 if (ni == NULL) {
203 /* NB: ieee80211_find_txnode does stat+msg */
204 ifp->if_oerrors++;
205 m_freem(m);
206 continue;
207 }
208 if (ni->ni_associd == 0 &&
209 (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
210 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
211 eh->ether_dhost, NULL,
212 "sta not associated (type 0x%04x)",
213 htons(eh->ether_type));
214 vap->iv_stats.is_tx_notassoc++;
215 ifp->if_oerrors++;
216 m_freem(m);
217 ieee80211_free_node(ni);
218 continue;
219 }
220 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
221 (m->m_flags & M_PWR_SAV) == 0) {
222 /*
223 * Station in power save mode; pass the frame
224 * to the 802.11 layer and continue. We'll get
225 * the frame back when the time is right.
226 * XXX lose WDS vap linkage?
227 */
228 (void) ieee80211_pwrsave(ni, m);
229 ieee80211_free_node(ni);
230 continue;
231 }
232 /* calculate priority so drivers can find the tx queue */
233 if (ieee80211_classify(ni, m)) {
234 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
235 eh->ether_dhost, NULL,
236 "%s", "classification failure");
237 vap->iv_stats.is_tx_classify++;
238 ifp->if_oerrors++;
239 m_freem(m);
240 ieee80211_free_node(ni);
241 continue;
242 }
243
244 BPF_MTAP(ifp, m); /* 802.11 tx path */
245
246 /*
247 * XXX When ni is associated with a WDS link then
248 * the vap will be the WDS vap but ni_vap will point
249 * to the ap vap the station associated to. Once
250 * we handoff the packet to the driver the callback
251 * to ieee80211_encap won't be able to tell if the
252 * packet should be encapsulated for WDS or not (e.g.
253 * multicast frames will not be handled correctly).
254 * We hack this by marking the mbuf so ieee80211_encap
255 * can do the right thing.
256 */
257 if (vap->iv_opmode == IEEE80211_M_WDS)
258 m->m_flags |= M_WDS;
259 else
260 m->m_flags &= ~M_WDS;
261
262 /*
263 * Stash the node pointer and hand the frame off to
264 * the underlying device. Note that we do this after
265 * any call to ieee80211_dwds_mcast because that code
266 * uses any existing value for rcvif.
267 */
268 m->m_pkthdr.rcvif = (void *)ni;
269
270 /* XXX defer if_start calls? */
271 error = parent->if_transmit(parent, m);
272 if (error != 0) {
273 /* NB: IFQ_HANDOFF reclaims mbuf */
274 ieee80211_free_node(ni);
275 } else {
276 ifp->if_opackets++;
277 }
278 ic->ic_lastdata = ticks;
279 }
280#undef IS_DWDS
281}
282
283/*
284 * 802.11 output routine. This is (currently) used only to
285 * connect bpf write calls to the 802.11 layer for injecting
286 * raw 802.11 frames. Note we locate the ieee80211com from
287 * the ifnet using a spare field setup at attach time. This
288 * will go away when the virtual ap support comes in.
289 */
290int
291ieee80211_output(struct ifnet *ifp, struct mbuf *m,
292 struct sockaddr *dst, struct rtentry *rt0)
293{
294#define senderr(e) do { error = (e); goto bad;} while (0)
295 struct ieee80211_node *ni = NULL;
296 struct ieee80211vap *vap;
297 struct ieee80211_frame *wh;
298 int error;
299
300 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
301 /*
302 * Short-circuit requests if the vap is marked OACTIVE
303 * as this is used when tearing down state to indicate
304 * the vap may be gone. This can also happen because a
305 * packet came down through ieee80211_start before the
306 * vap entered RUN state in which case it's also ok to
307 * just drop the frame. This should not be necessary
308 * but callers of if_output don't check OACTIVE.
309 */
310 senderr(ENETDOWN);
311 }
312 vap = ifp->if_softc;
313 /*
314 * Hand to the 802.3 code if not tagged as
315 * a raw 802.11 frame.
316 */
317 if (dst->sa_family != AF_IEEE80211)
318 return vap->iv_output(ifp, m, dst, rt0);
319#ifdef MAC
320 error = mac_check_ifnet_transmit(ifp, m);
321 if (error)
322 senderr(error);
323#endif
324 if (ifp->if_flags & IFF_MONITOR)
325 senderr(ENETDOWN);
326 if (!IFNET_IS_UP_RUNNING(ifp))
327 senderr(ENETDOWN);
328 if (vap->iv_state == IEEE80211_S_CAC) {
329 IEEE80211_DPRINTF(vap,
330 IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
331 "block %s frame in CAC state\n", "raw data");
332 vap->iv_stats.is_tx_badstate++;
333 senderr(EIO); /* XXX */
334 }
335 /* XXX bypass bridge, pfil, carp, etc. */
336
337 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
338 senderr(EIO); /* XXX */
339 wh = mtod(m, struct ieee80211_frame *);
340 if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
341 IEEE80211_FC0_VERSION_0)
342 senderr(EIO); /* XXX */
343
344 /* locate destination node */
345 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
346 case IEEE80211_FC1_DIR_NODS:
347 case IEEE80211_FC1_DIR_FROMDS:
348 ni = ieee80211_find_txnode(vap, wh->i_addr1);
349 break;
350 case IEEE80211_FC1_DIR_TODS:
351 case IEEE80211_FC1_DIR_DSTODS:
352 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame))
353 senderr(EIO); /* XXX */
354 ni = ieee80211_find_txnode(vap, wh->i_addr3);
355 break;
356 default:
357 senderr(EIO); /* XXX */
358 }
359 if (ni == NULL) {
360 /*
361 * Permit packets w/ bpf params through regardless
362 * (see below about sa_len).
363 */
364 if (dst->sa_len == 0)
365 senderr(EHOSTUNREACH);
366 ni = ieee80211_ref_node(vap->iv_bss);
367 }
368
369 /*
370 * Sanitize mbuf for net80211 flags leaked from above.
371 *
372 * NB: This must be done before ieee80211_classify as
373 * it marks EAPOL in frames with M_EAPOL.
374 */
375 m->m_flags &= ~M_80211_TX;
376
377 /* calculate priority so drivers can find the tx queue */
378 /* XXX assumes an 802.3 frame */
379 if (ieee80211_classify(ni, m))
380 senderr(EIO); /* XXX */
381
382 BPF_MTAP(ifp, m);
383
384 /*
385 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
386 * present by setting the sa_len field of the sockaddr (yes,
387 * this is a hack).
388 * NB: we assume sa_data is suitably aligned to cast.
389 */
390 return vap->iv_ic->ic_raw_xmit(ni, m,
391 (const struct ieee80211_bpf_params *)(dst->sa_len ?
392 dst->sa_data : NULL));
393bad:
394 if (m != NULL)
395 m_freem(m);
396 if (ni != NULL)
397 ieee80211_free_node(ni);
398 return error;
399#undef senderr
400}
401
402/*
403 * Set the direction field and address fields of an outgoing
404 * frame. Note this should be called early on in constructing
405 * a frame as it sets i_fc[1]; other bits can then be or'd in.
406 */
407static void
408ieee80211_send_setup(
409 struct ieee80211_node *ni,
410 struct ieee80211_frame *wh,
411 int type, int tid,
412 const uint8_t sa[IEEE80211_ADDR_LEN],
413 const uint8_t da[IEEE80211_ADDR_LEN],
414 const uint8_t bssid[IEEE80211_ADDR_LEN])
415{
416#define WH4(wh) ((struct ieee80211_frame_addr4 *)wh)
417
418 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
419 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
420 struct ieee80211vap *vap = ni->ni_vap;
421
422 switch (vap->iv_opmode) {
423 case IEEE80211_M_STA:
424 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
425 IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
426 IEEE80211_ADDR_COPY(wh->i_addr2, sa);
427 IEEE80211_ADDR_COPY(wh->i_addr3, da);
428 break;
429 case IEEE80211_M_IBSS:
430 case IEEE80211_M_AHDEMO:
431 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
432 IEEE80211_ADDR_COPY(wh->i_addr1, da);
433 IEEE80211_ADDR_COPY(wh->i_addr2, sa);
434 IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
435 break;
436 case IEEE80211_M_HOSTAP:
437 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
438 IEEE80211_ADDR_COPY(wh->i_addr1, da);
439 IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
440 IEEE80211_ADDR_COPY(wh->i_addr3, sa);
441 break;
442 case IEEE80211_M_WDS:
443 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
444 IEEE80211_ADDR_COPY(wh->i_addr1, da);
445 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
446 IEEE80211_ADDR_COPY(wh->i_addr3, da);
447 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
448 break;
449 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */
450 break;
451 }
452 } else {
453 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
454 IEEE80211_ADDR_COPY(wh->i_addr1, da);
455 IEEE80211_ADDR_COPY(wh->i_addr2, sa);
456 IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
457 }
458 *(uint16_t *)&wh->i_dur[0] = 0;
459 *(uint16_t *)&wh->i_seq[0] =
460 htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT);
461 ni->ni_txseqs[tid]++;
462#undef WH4
463}
464
465/*
466 * Send a management frame to the specified node. The node pointer
467 * must have a reference as the pointer will be passed to the driver
468 * and potentially held for a long time. If the frame is successfully
469 * dispatched to the driver, then it is responsible for freeing the
470 * reference (and potentially free'ing up any associated storage);
471 * otherwise deal with reclaiming any reference (on error).
472 */
473int
474ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
475 struct ieee80211_bpf_params *params)
476{
477 struct ieee80211vap *vap = ni->ni_vap;
478 struct ieee80211com *ic = ni->ni_ic;
479 struct ieee80211_frame *wh;
480
481 KASSERT(ni != NULL, ("null node"));
482
483 if (vap->iv_state == IEEE80211_S_CAC) {
484 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
485 ni, "block %s frame in CAC state",
486 ieee80211_mgt_subtype_name[
487 (type & IEEE80211_FC0_SUBTYPE_MASK) >>
488 IEEE80211_FC0_SUBTYPE_SHIFT]);
489 vap->iv_stats.is_tx_badstate++;
490 ieee80211_free_node(ni);
491 m_freem(m);
492 return EIO; /* XXX */
493 }
494
495 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
496 if (m == NULL) {
497 ieee80211_free_node(ni);
498 return ENOMEM;
499 }
500
501 wh = mtod(m, struct ieee80211_frame *);
502 ieee80211_send_setup(ni, wh,
503 IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
504 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
505 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
506 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
507 "encrypting frame (%s)", __func__);
508 wh->i_fc[1] |= IEEE80211_FC1_WEP;
509 }
510 m->m_flags |= M_ENCAP; /* mark encapsulated */
511
512 KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
513 M_WME_SETAC(m, params->ibp_pri);
514
515#ifdef IEEE80211_DEBUG
516 /* avoid printing too many frames */
517 if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
518 ieee80211_msg_dumppkts(vap)) {
519 printf("[%s] send %s on channel %u\n",
520 ether_sprintf(wh->i_addr1),
521 ieee80211_mgt_subtype_name[
522 (type & IEEE80211_FC0_SUBTYPE_MASK) >>
523 IEEE80211_FC0_SUBTYPE_SHIFT],
524 ieee80211_chan2ieee(ic, ic->ic_curchan));
525 }
526#endif
527 IEEE80211_NODE_STAT(ni, tx_mgmt);
528
529 return ic->ic_raw_xmit(ni, m, params);
530}
531
532/*
533 * Send a null data frame to the specified node. If the station
534 * is setup for QoS then a QoS Null Data frame is constructed.
535 * If this is a WDS station then a 4-address frame is constructed.
536 *
537 * NB: the caller is assumed to have setup a node reference
538 * for use; this is necessary to deal with a race condition
539 * when probing for inactive stations. Like ieee80211_mgmt_output
540 * we must cleanup any node reference on error; however we
541 * can safely just unref it as we know it will never be the
542 * last reference to the node.
543 */
544int
545ieee80211_send_nulldata(struct ieee80211_node *ni)
546{
547 struct ieee80211vap *vap = ni->ni_vap;
548 struct ieee80211com *ic = ni->ni_ic;
549 struct mbuf *m;
550 struct ieee80211_frame *wh;
551 int hdrlen;
552 uint8_t *frm;
553
554 if (vap->iv_state == IEEE80211_S_CAC) {
555 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
556 ni, "block %s frame in CAC state", "null data");
557 ieee80211_unref_node(&ni);
558 vap->iv_stats.is_tx_badstate++;
559 return EIO; /* XXX */
560 }
561
562 if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
563 hdrlen = sizeof(struct ieee80211_qosframe);
564 else
565 hdrlen = sizeof(struct ieee80211_frame);
566 /* NB: only WDS vap's get 4-address frames */
567 if (vap->iv_opmode == IEEE80211_M_WDS)
568 hdrlen += IEEE80211_ADDR_LEN;
569 if (ic->ic_flags & IEEE80211_F_DATAPAD)
570 hdrlen = roundup(hdrlen, sizeof(uint32_t));
571
572 m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
573 if (m == NULL) {
574 /* XXX debug msg */
575 ieee80211_unref_node(&ni);
576 vap->iv_stats.is_tx_nobuf++;
577 return ENOMEM;
578 }
579 KASSERT(M_LEADINGSPACE(m) >= hdrlen,
580 ("leading space %zd", M_LEADINGSPACE(m)));
581 M_PREPEND(m, hdrlen, M_DONTWAIT);
582 if (m == NULL) {
583 /* NB: cannot happen */
584 ieee80211_free_node(ni);
585 return ENOMEM;
586 }
587
588 wh = mtod(m, struct ieee80211_frame *); /* NB: a little lie */
589 if (ni->ni_flags & IEEE80211_NODE_QOS) {
590 const int tid = WME_AC_TO_TID(WME_AC_BE);
591 uint8_t *qos;
592
593 ieee80211_send_setup(ni, wh,
594 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
595 tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
596
597 if (vap->iv_opmode == IEEE80211_M_WDS)
598 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
599 else
600 qos = ((struct ieee80211_qosframe *) wh)->i_qos;
601 qos[0] = tid & IEEE80211_QOS_TID;
602 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
603 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
604 qos[1] = 0;
605 } else {
606 ieee80211_send_setup(ni, wh,
607 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
608 IEEE80211_NONQOS_TID,
609 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
610 }
611 if (vap->iv_opmode != IEEE80211_M_WDS) {
612 /* NB: power management bit is never sent by an AP */
613 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
614 vap->iv_opmode != IEEE80211_M_HOSTAP)
615 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
616 }
617 m->m_len = m->m_pkthdr.len = hdrlen;
618 m->m_flags |= M_ENCAP; /* mark encapsulated */
619
620 M_WME_SETAC(m, WME_AC_BE);
621
622 IEEE80211_NODE_STAT(ni, tx_data);
623
624 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
625 "send %snull data frame on channel %u, pwr mgt %s",
626 ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
627 ieee80211_chan2ieee(ic, ic->ic_curchan),
628 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
629
630 return ic->ic_raw_xmit(ni, m, NULL);
631}
632
633/*
634 * Assign priority to a frame based on any vlan tag assigned
635 * to the station and/or any Diffserv setting in an IP header.
636 * Finally, if an ACM policy is setup (in station mode) it's
637 * applied.
638 */
639int
640ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
641{
642 const struct ether_header *eh = mtod(m, struct ether_header *);
643 int v_wme_ac, d_wme_ac, ac;
644
645 /*
646 * Always promote PAE/EAPOL frames to high priority.
647 */
648 if (eh->ether_type == htons(ETHERTYPE_PAE)) {
649 /* NB: mark so others don't need to check header */
650 m->m_flags |= M_EAPOL;
651 ac = WME_AC_VO;
652 goto done;
653 }
654 /*
655 * Non-qos traffic goes to BE.
656 */
657 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
658 ac = WME_AC_BE;
659 goto done;
660 }
661
662 /*
663 * If node has a vlan tag then all traffic
664 * to it must have a matching tag.
665 */
666 v_wme_ac = 0;
667 if (ni->ni_vlan != 0) {
668 if ((m->m_flags & M_VLANTAG) == 0) {
669 IEEE80211_NODE_STAT(ni, tx_novlantag);
670 return 1;
671 }
672 if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
673 EVL_VLANOFTAG(ni->ni_vlan)) {
674 IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
675 return 1;
676 }
677 /* map vlan priority to AC */
678 v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
679 }
680
681#ifdef INET
682 if (eh->ether_type == htons(ETHERTYPE_IP)) {
683 uint8_t tos;
684 /*
685 * IP frame, map the DSCP bits from the TOS field.
686 */
687 /* XXX m_copydata may be too slow for fast path */
688 /* NB: ip header may not be in first mbuf */
689 m_copydata(m, sizeof(struct ether_header) +
690 offsetof(struct ip, ip_tos), sizeof(tos), &tos);
691 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */
692 d_wme_ac = TID_TO_WME_AC(tos);
693 } else {
694#endif /* INET */
695 d_wme_ac = WME_AC_BE;
696#ifdef INET
697 }
698#endif
699 /*
700 * Use highest priority AC.
701 */
702 if (v_wme_ac > d_wme_ac)
703 ac = v_wme_ac;
704 else
705 ac = d_wme_ac;
706
707 /*
708 * Apply ACM policy.
709 */
710 if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
711 static const int acmap[4] = {
712 WME_AC_BK, /* WME_AC_BE */
713 WME_AC_BK, /* WME_AC_BK */
714 WME_AC_BE, /* WME_AC_VI */
715 WME_AC_VI, /* WME_AC_VO */
716 };
717 struct ieee80211com *ic = ni->ni_ic;
718
719 while (ac != WME_AC_BK &&
720 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
721 ac = acmap[ac];
722 }
723done:
724 M_WME_SETAC(m, ac);
725 return 0;
726}
727
728/*
729 * Insure there is sufficient contiguous space to encapsulate the
730 * 802.11 data frame. If room isn't already there, arrange for it.
731 * Drivers and cipher modules assume we have done the necessary work
732 * and fail rudely if they don't find the space they need.
733 */
734static struct mbuf *
734struct mbuf *
735ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
736 struct ieee80211_key *key, struct mbuf *m)
737{
738#define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc))
739 int needed_space = vap->iv_ic->ic_headroom + hdrsize;
740
741 if (key != NULL) {
742 /* XXX belongs in crypto code? */
743 needed_space += key->wk_cipher->ic_header;
744 /* XXX frags */
745 /*
746 * When crypto is being done in the host we must insure
747 * the data are writable for the cipher routines; clone
748 * a writable mbuf chain.
749 * XXX handle SWMIC specially
750 */
751 if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
752 m = m_unshare(m, M_NOWAIT);
753 if (m == NULL) {
754 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
755 "%s: cannot get writable mbuf\n", __func__);
756 vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
757 return NULL;
758 }
759 }
760 }
761 /*
762 * We know we are called just before stripping an Ethernet
763 * header and prepending an LLC header. This means we know
764 * there will be
765 * sizeof(struct ether_header) - sizeof(struct llc)
766 * bytes recovered to which we need additional space for the
767 * 802.11 header and any crypto header.
768 */
769 /* XXX check trailing space and copy instead? */
770 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
771 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
772 if (n == NULL) {
773 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
774 "%s: cannot expand storage\n", __func__);
775 vap->iv_stats.is_tx_nobuf++;
776 m_freem(m);
777 return NULL;
778 }
779 KASSERT(needed_space <= MHLEN,
780 ("not enough room, need %u got %zu\n", needed_space, MHLEN));
781 /*
782 * Setup new mbuf to have leading space to prepend the
783 * 802.11 header and any crypto header bits that are
784 * required (the latter are added when the driver calls
785 * back to ieee80211_crypto_encap to do crypto encapsulation).
786 */
787 /* NB: must be first 'cuz it clobbers m_data */
788 m_move_pkthdr(n, m);
789 n->m_len = 0; /* NB: m_gethdr does not set */
790 n->m_data += needed_space;
791 /*
792 * Pull up Ethernet header to create the expected layout.
793 * We could use m_pullup but that's overkill (i.e. we don't
794 * need the actual data) and it cannot fail so do it inline
795 * for speed.
796 */
797 /* NB: struct ether_header is known to be contiguous */
798 n->m_len += sizeof(struct ether_header);
799 m->m_len -= sizeof(struct ether_header);
800 m->m_data += sizeof(struct ether_header);
801 /*
802 * Replace the head of the chain.
803 */
804 n->m_next = m;
805 m = n;
806 }
807 return m;
808#undef TO_BE_RECLAIMED
809}
810
811/*
812 * Return the transmit key to use in sending a unicast frame.
813 * If a unicast key is set we use that. When no unicast key is set
814 * we fall back to the default transmit key.
815 */
816static __inline struct ieee80211_key *
817ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
818 struct ieee80211_node *ni)
819{
820 if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
821 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
822 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
823 return NULL;
824 return &vap->iv_nw_keys[vap->iv_def_txkey];
825 } else {
826 return &ni->ni_ucastkey;
827 }
828}
829
830/*
831 * Return the transmit key to use in sending a multicast frame.
832 * Multicast traffic always uses the group key which is installed as
833 * the default tx key.
834 */
835static __inline struct ieee80211_key *
836ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
837 struct ieee80211_node *ni)
838{
839 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
840 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
841 return NULL;
842 return &vap->iv_nw_keys[vap->iv_def_txkey];
843}
844
845/*
846 * Encapsulate an outbound data frame. The mbuf chain is updated.
847 * If an error is encountered NULL is returned. The caller is required
848 * to provide a node reference and pullup the ethernet header in the
849 * first mbuf.
850 *
851 * NB: Packet is assumed to be processed by ieee80211_classify which
852 * marked EAPOL frames w/ M_EAPOL.
853 */
854struct mbuf *
855ieee80211_encap(struct ieee80211_node *ni, struct mbuf *m)
856{
857#define WH4(wh) ((struct ieee80211_frame_addr4 *)(wh))
858 struct ieee80211vap *vap = ni->ni_vap;
859 struct ieee80211com *ic = ni->ni_ic;
860 struct ether_header eh;
861 struct ieee80211_frame *wh;
862 struct ieee80211_key *key;
863 struct llc *llc;
735ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
736 struct ieee80211_key *key, struct mbuf *m)
737{
738#define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc))
739 int needed_space = vap->iv_ic->ic_headroom + hdrsize;
740
741 if (key != NULL) {
742 /* XXX belongs in crypto code? */
743 needed_space += key->wk_cipher->ic_header;
744 /* XXX frags */
745 /*
746 * When crypto is being done in the host we must insure
747 * the data are writable for the cipher routines; clone
748 * a writable mbuf chain.
749 * XXX handle SWMIC specially
750 */
751 if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
752 m = m_unshare(m, M_NOWAIT);
753 if (m == NULL) {
754 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
755 "%s: cannot get writable mbuf\n", __func__);
756 vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
757 return NULL;
758 }
759 }
760 }
761 /*
762 * We know we are called just before stripping an Ethernet
763 * header and prepending an LLC header. This means we know
764 * there will be
765 * sizeof(struct ether_header) - sizeof(struct llc)
766 * bytes recovered to which we need additional space for the
767 * 802.11 header and any crypto header.
768 */
769 /* XXX check trailing space and copy instead? */
770 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
771 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
772 if (n == NULL) {
773 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
774 "%s: cannot expand storage\n", __func__);
775 vap->iv_stats.is_tx_nobuf++;
776 m_freem(m);
777 return NULL;
778 }
779 KASSERT(needed_space <= MHLEN,
780 ("not enough room, need %u got %zu\n", needed_space, MHLEN));
781 /*
782 * Setup new mbuf to have leading space to prepend the
783 * 802.11 header and any crypto header bits that are
784 * required (the latter are added when the driver calls
785 * back to ieee80211_crypto_encap to do crypto encapsulation).
786 */
787 /* NB: must be first 'cuz it clobbers m_data */
788 m_move_pkthdr(n, m);
789 n->m_len = 0; /* NB: m_gethdr does not set */
790 n->m_data += needed_space;
791 /*
792 * Pull up Ethernet header to create the expected layout.
793 * We could use m_pullup but that's overkill (i.e. we don't
794 * need the actual data) and it cannot fail so do it inline
795 * for speed.
796 */
797 /* NB: struct ether_header is known to be contiguous */
798 n->m_len += sizeof(struct ether_header);
799 m->m_len -= sizeof(struct ether_header);
800 m->m_data += sizeof(struct ether_header);
801 /*
802 * Replace the head of the chain.
803 */
804 n->m_next = m;
805 m = n;
806 }
807 return m;
808#undef TO_BE_RECLAIMED
809}
810
811/*
812 * Return the transmit key to use in sending a unicast frame.
813 * If a unicast key is set we use that. When no unicast key is set
814 * we fall back to the default transmit key.
815 */
816static __inline struct ieee80211_key *
817ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
818 struct ieee80211_node *ni)
819{
820 if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
821 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
822 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
823 return NULL;
824 return &vap->iv_nw_keys[vap->iv_def_txkey];
825 } else {
826 return &ni->ni_ucastkey;
827 }
828}
829
830/*
831 * Return the transmit key to use in sending a multicast frame.
832 * Multicast traffic always uses the group key which is installed as
833 * the default tx key.
834 */
835static __inline struct ieee80211_key *
836ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
837 struct ieee80211_node *ni)
838{
839 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
840 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
841 return NULL;
842 return &vap->iv_nw_keys[vap->iv_def_txkey];
843}
844
845/*
846 * Encapsulate an outbound data frame. The mbuf chain is updated.
847 * If an error is encountered NULL is returned. The caller is required
848 * to provide a node reference and pullup the ethernet header in the
849 * first mbuf.
850 *
851 * NB: Packet is assumed to be processed by ieee80211_classify which
852 * marked EAPOL frames w/ M_EAPOL.
853 */
854struct mbuf *
855ieee80211_encap(struct ieee80211_node *ni, struct mbuf *m)
856{
857#define WH4(wh) ((struct ieee80211_frame_addr4 *)(wh))
858 struct ieee80211vap *vap = ni->ni_vap;
859 struct ieee80211com *ic = ni->ni_ic;
860 struct ether_header eh;
861 struct ieee80211_frame *wh;
862 struct ieee80211_key *key;
863 struct llc *llc;
864 int hdrsize, hdrspace, datalen, addqos, txfrag, isff, is4addr;
864 int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr;
865
866 /*
867 * Copy existing Ethernet header to a safe place. The
868 * rest of the code assumes it's ok to strip it when
869 * reorganizing state for the final encapsulation.
870 */
871 KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
872 ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
873
874 /*
875 * Insure space for additional headers. First identify
876 * transmit key to use in calculating any buffer adjustments
877 * required. This is also used below to do privacy
878 * encapsulation work. Then calculate the 802.11 header
879 * size and any padding required by the driver.
880 *
881 * Note key may be NULL if we fall back to the default
882 * transmit key and that is not set. In that case the
883 * buffer may not be expanded as needed by the cipher
884 * routines, but they will/should discard it.
885 */
886 if (vap->iv_flags & IEEE80211_F_PRIVACY) {
887 if (vap->iv_opmode == IEEE80211_M_STA ||
888 !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
889 (vap->iv_opmode == IEEE80211_M_WDS &&
890 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
891 key = ieee80211_crypto_getucastkey(vap, ni);
892 else
893 key = ieee80211_crypto_getmcastkey(vap, ni);
894 if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
895 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
896 eh.ether_dhost,
897 "no default transmit key (%s) deftxkey %u",
898 __func__, vap->iv_def_txkey);
899 vap->iv_stats.is_tx_nodefkey++;
900 goto bad;
901 }
902 } else
903 key = NULL;
904 /*
905 * XXX Some ap's don't handle QoS-encapsulated EAPOL
906 * frames so suppress use. This may be an issue if other
907 * ap's require all data frames to be QoS-encapsulated
908 * once negotiated in which case we'll need to make this
909 * configurable.
910 */
911 addqos = (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) &&
912 (m->m_flags & M_EAPOL) == 0;
913 if (addqos)
914 hdrsize = sizeof(struct ieee80211_qosframe);
915 else
916 hdrsize = sizeof(struct ieee80211_frame);
917 /*
918 * 4-address frames need to be generated for:
919 * o packets sent through a WDS vap (M_WDS || IEEE80211_M_WDS)
920 * o packets relayed by a station operating with dynamic WDS
921 * (IEEE80211_M_STA+IEEE80211_F_DWDS and src address)
922 */
923 is4addr = (m->m_flags & M_WDS) ||
924 vap->iv_opmode == IEEE80211_M_WDS || /* XXX redundant? */
925 (vap->iv_opmode == IEEE80211_M_STA &&
926 (vap->iv_flags & IEEE80211_F_DWDS) &&
927 !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
928 if (is4addr)
929 hdrsize += IEEE80211_ADDR_LEN;
930 /*
931 * Honor driver DATAPAD requirement.
932 */
933 if (ic->ic_flags & IEEE80211_F_DATAPAD)
934 hdrspace = roundup(hdrsize, sizeof(uint32_t));
935 else
936 hdrspace = hdrsize;
937
865
866 /*
867 * Copy existing Ethernet header to a safe place. The
868 * rest of the code assumes it's ok to strip it when
869 * reorganizing state for the final encapsulation.
870 */
871 KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
872 ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
873
874 /*
875 * Insure space for additional headers. First identify
876 * transmit key to use in calculating any buffer adjustments
877 * required. This is also used below to do privacy
878 * encapsulation work. Then calculate the 802.11 header
879 * size and any padding required by the driver.
880 *
881 * Note key may be NULL if we fall back to the default
882 * transmit key and that is not set. In that case the
883 * buffer may not be expanded as needed by the cipher
884 * routines, but they will/should discard it.
885 */
886 if (vap->iv_flags & IEEE80211_F_PRIVACY) {
887 if (vap->iv_opmode == IEEE80211_M_STA ||
888 !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
889 (vap->iv_opmode == IEEE80211_M_WDS &&
890 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
891 key = ieee80211_crypto_getucastkey(vap, ni);
892 else
893 key = ieee80211_crypto_getmcastkey(vap, ni);
894 if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
895 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
896 eh.ether_dhost,
897 "no default transmit key (%s) deftxkey %u",
898 __func__, vap->iv_def_txkey);
899 vap->iv_stats.is_tx_nodefkey++;
900 goto bad;
901 }
902 } else
903 key = NULL;
904 /*
905 * XXX Some ap's don't handle QoS-encapsulated EAPOL
906 * frames so suppress use. This may be an issue if other
907 * ap's require all data frames to be QoS-encapsulated
908 * once negotiated in which case we'll need to make this
909 * configurable.
910 */
911 addqos = (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) &&
912 (m->m_flags & M_EAPOL) == 0;
913 if (addqos)
914 hdrsize = sizeof(struct ieee80211_qosframe);
915 else
916 hdrsize = sizeof(struct ieee80211_frame);
917 /*
918 * 4-address frames need to be generated for:
919 * o packets sent through a WDS vap (M_WDS || IEEE80211_M_WDS)
920 * o packets relayed by a station operating with dynamic WDS
921 * (IEEE80211_M_STA+IEEE80211_F_DWDS and src address)
922 */
923 is4addr = (m->m_flags & M_WDS) ||
924 vap->iv_opmode == IEEE80211_M_WDS || /* XXX redundant? */
925 (vap->iv_opmode == IEEE80211_M_STA &&
926 (vap->iv_flags & IEEE80211_F_DWDS) &&
927 !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
928 if (is4addr)
929 hdrsize += IEEE80211_ADDR_LEN;
930 /*
931 * Honor driver DATAPAD requirement.
932 */
933 if (ic->ic_flags & IEEE80211_F_DATAPAD)
934 hdrspace = roundup(hdrsize, sizeof(uint32_t));
935 else
936 hdrspace = hdrsize;
937
938 if ((isff = m->m_flags & M_FF) != 0) {
939 struct mbuf *m2;
940 struct ether_header eh2;
941
938 if (__predict_true((m->m_flags & M_FF) == 0)) {
942 /*
939 /*
943 * Fast frame encapsulation. There must be two packets
944 * chained with m_nextpkt. We do header adjustment for
945 * each, add the tunnel encapsulation, and then concatenate
946 * the mbuf chains to form a single frame for transmission.
947 */
948 m2 = m->m_nextpkt;
949 if (m2 == NULL) {
950 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
951 "%s: only one frame\n", __func__);
952 goto bad;
953 }
954 m->m_nextpkt = NULL;
955 /*
956 * Include fast frame headers in adjusting header
957 * layout; this allocates space according to what
958 * ieee80211_encap_fastframe will do.
959 */
960 m = ieee80211_mbuf_adjust(vap,
961 hdrspace + sizeof(struct llc) + sizeof(uint32_t) + 2 +
962 sizeof(struct ether_header),
963 key, m);
964 if (m == NULL) {
965 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */
966 m_freem(m2);
967 goto bad;
968 }
969 /*
970 * Copy second frame's Ethernet header out of line
971 * and adjust for encapsulation headers. Note that
972 * we make room for padding in case there isn't room
973 * at the end of first frame.
974 */
975 KASSERT(m2->m_len >= sizeof(eh2), ("no ethernet header!"));
976 ETHER_HEADER_COPY(&eh2, mtod(m2, caddr_t));
977 m2 = ieee80211_mbuf_adjust(vap,
978 ATH_FF_MAX_HDR_PAD + sizeof(struct ether_header),
979 NULL, m2);
980 if (m2 == NULL) {
981 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */
982 goto bad;
983 }
984 m = ieee80211_encap_fastframe(vap, m, &eh, m2, &eh2);
985 if (m == NULL)
986 goto bad;
987 } else {
988 /*
989 * Normal frame.
990 */
991 m = ieee80211_mbuf_adjust(vap, hdrspace, key, m);
992 if (m == NULL) {
993 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */
994 goto bad;
995 }
996 /* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
997 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
998 llc = mtod(m, struct llc *);
999 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1000 llc->llc_control = LLC_UI;
1001 llc->llc_snap.org_code[0] = 0;
1002 llc->llc_snap.org_code[1] = 0;
1003 llc->llc_snap.org_code[2] = 0;
1004 llc->llc_snap.ether_type = eh.ether_type;
940 * Normal frame.
941 */
942 m = ieee80211_mbuf_adjust(vap, hdrspace, key, m);
943 if (m == NULL) {
944 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */
945 goto bad;
946 }
947 /* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
948 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
949 llc = mtod(m, struct llc *);
950 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
951 llc->llc_control = LLC_UI;
952 llc->llc_snap.org_code[0] = 0;
953 llc->llc_snap.org_code[1] = 0;
954 llc->llc_snap.org_code[2] = 0;
955 llc->llc_snap.ether_type = eh.ether_type;
956 } else {
957#ifdef IEEE80211_SUPPORT_SUPERG
958 m = ieee80211_ff_encap(vap, m, hdrspace, key);
959 if (m == NULL)
960#endif
961 goto bad;
1005 }
1006 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */
1007
1008 M_PREPEND(m, hdrspace, M_DONTWAIT);
1009 if (m == NULL) {
1010 vap->iv_stats.is_tx_nobuf++;
1011 goto bad;
1012 }
1013 wh = mtod(m, struct ieee80211_frame *);
1014 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1015 *(uint16_t *)wh->i_dur = 0;
1016 if (is4addr) {
1017 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1018 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1019 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1020 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1021 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1022 } else switch (vap->iv_opmode) {
1023 case IEEE80211_M_STA:
1024 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1025 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1026 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1027 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1028 break;
1029 case IEEE80211_M_IBSS:
1030 case IEEE80211_M_AHDEMO:
1031 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1032 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1033 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1034 /*
1035 * NB: always use the bssid from iv_bss as the
1036 * neighbor's may be stale after an ibss merge
1037 */
1038 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1039 break;
1040 case IEEE80211_M_HOSTAP:
1041 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1042 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1043 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1044 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1045 break;
1046 case IEEE80211_M_MONITOR:
1047 case IEEE80211_M_WDS: /* NB: is4addr should always be true */
1048 goto bad;
1049 }
962 }
963 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */
964
965 M_PREPEND(m, hdrspace, M_DONTWAIT);
966 if (m == NULL) {
967 vap->iv_stats.is_tx_nobuf++;
968 goto bad;
969 }
970 wh = mtod(m, struct ieee80211_frame *);
971 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
972 *(uint16_t *)wh->i_dur = 0;
973 if (is4addr) {
974 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
975 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
976 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
977 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
978 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
979 } else switch (vap->iv_opmode) {
980 case IEEE80211_M_STA:
981 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
982 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
983 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
984 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
985 break;
986 case IEEE80211_M_IBSS:
987 case IEEE80211_M_AHDEMO:
988 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
989 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
990 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
991 /*
992 * NB: always use the bssid from iv_bss as the
993 * neighbor's may be stale after an ibss merge
994 */
995 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
996 break;
997 case IEEE80211_M_HOSTAP:
998 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
999 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1000 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1001 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1002 break;
1003 case IEEE80211_M_MONITOR:
1004 case IEEE80211_M_WDS: /* NB: is4addr should always be true */
1005 goto bad;
1006 }
1050 if (m->m_flags & M_MORE_DATA)
1007 if (m->m_flags & M_MORE_DATA)
1051 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1052 if (addqos) {
1053 uint8_t *qos;
1054 int ac, tid;
1055
1056 if (is4addr) {
1057 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1058 } else
1059 qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1060 ac = M_WME_GETAC(m);
1061 /* map from access class/queue to 11e header priorty value */
1062 tid = WME_AC_TO_TID(ac);
1063 qos[0] = tid & IEEE80211_QOS_TID;
1064 /*
1065 * Check if A-MPDU tx aggregation is setup or if we
1066 * should try to enable it. The sta must be associated
1067 * with HT and A-MPDU enabled for use. When the policy
1068 * routine decides we should enable A-MPDU we issue an
1069 * ADDBA request and wait for a reply. The frame being
1070 * encapsulated will go out w/o using A-MPDU, or possibly
1071 * it might be collected by the driver and held/retransmit.
1072 * The default ic_ampdu_enable routine handles staggering
1073 * ADDBA requests in case the receiver NAK's us or we are
1074 * otherwise unable to establish a BA stream.
1075 */
1076 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
1077 (vap->iv_flags_ext & IEEE80211_FEXT_AMPDU_TX)) {
1078 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
1079
1080 ieee80211_txampdu_count_packet(tap);
1081 if (IEEE80211_AMPDU_RUNNING(tap)) {
1082 /*
1083 * Operational, mark frame for aggregation.
1084 *
1085 * NB: We support only immediate BA's for
1086 * AMPDU which means we set the QoS control
1087 * field to "normal ack" (0) to get "implicit
1088 * block ack" behaviour.
1089 */
1090 m->m_flags |= M_AMPDU_MPDU;
1091 } else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
1092 ic->ic_ampdu_enable(ni, tap)) {
1093 /*
1094 * Not negotiated yet, request service.
1095 */
1096 ieee80211_ampdu_request(ni, tap);
1097 }
1098 }
1099 /* XXX works even when BA marked above */
1100 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1101 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1102 qos[1] = 0;
1103 wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1104
1105 if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1106 /*
1107 * NB: don't assign a sequence # to potential
1108 * aggregates; we expect this happens at the
1109 * point the frame comes off any aggregation q
1110 * as otherwise we may introduce holes in the
1111 * BA sequence space and/or make window accouting
1112 * more difficult.
1113 *
1114 * XXX may want to control this with a driver
1115 * capability; this may also change when we pull
1116 * aggregation up into net80211
1117 */
1118 *(uint16_t *)wh->i_seq =
1119 htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT);
1120 ni->ni_txseqs[tid]++;
1121 }
1122 } else {
1123 *(uint16_t *)wh->i_seq =
1124 htole16(ni->ni_txseqs[IEEE80211_NONQOS_TID] << IEEE80211_SEQ_SEQ_SHIFT);
1125 ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1126 }
1127 /* check if xmit fragmentation is required */
1128 txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1129 !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1130 (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1008 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1009 if (addqos) {
1010 uint8_t *qos;
1011 int ac, tid;
1012
1013 if (is4addr) {
1014 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1015 } else
1016 qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1017 ac = M_WME_GETAC(m);
1018 /* map from access class/queue to 11e header priorty value */
1019 tid = WME_AC_TO_TID(ac);
1020 qos[0] = tid & IEEE80211_QOS_TID;
1021 /*
1022 * Check if A-MPDU tx aggregation is setup or if we
1023 * should try to enable it. The sta must be associated
1024 * with HT and A-MPDU enabled for use. When the policy
1025 * routine decides we should enable A-MPDU we issue an
1026 * ADDBA request and wait for a reply. The frame being
1027 * encapsulated will go out w/o using A-MPDU, or possibly
1028 * it might be collected by the driver and held/retransmit.
1029 * The default ic_ampdu_enable routine handles staggering
1030 * ADDBA requests in case the receiver NAK's us or we are
1031 * otherwise unable to establish a BA stream.
1032 */
1033 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
1034 (vap->iv_flags_ext & IEEE80211_FEXT_AMPDU_TX)) {
1035 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
1036
1037 ieee80211_txampdu_count_packet(tap);
1038 if (IEEE80211_AMPDU_RUNNING(tap)) {
1039 /*
1040 * Operational, mark frame for aggregation.
1041 *
1042 * NB: We support only immediate BA's for
1043 * AMPDU which means we set the QoS control
1044 * field to "normal ack" (0) to get "implicit
1045 * block ack" behaviour.
1046 */
1047 m->m_flags |= M_AMPDU_MPDU;
1048 } else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
1049 ic->ic_ampdu_enable(ni, tap)) {
1050 /*
1051 * Not negotiated yet, request service.
1052 */
1053 ieee80211_ampdu_request(ni, tap);
1054 }
1055 }
1056 /* XXX works even when BA marked above */
1057 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1058 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1059 qos[1] = 0;
1060 wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1061
1062 if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1063 /*
1064 * NB: don't assign a sequence # to potential
1065 * aggregates; we expect this happens at the
1066 * point the frame comes off any aggregation q
1067 * as otherwise we may introduce holes in the
1068 * BA sequence space and/or make window accouting
1069 * more difficult.
1070 *
1071 * XXX may want to control this with a driver
1072 * capability; this may also change when we pull
1073 * aggregation up into net80211
1074 */
1075 *(uint16_t *)wh->i_seq =
1076 htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT);
1077 ni->ni_txseqs[tid]++;
1078 }
1079 } else {
1080 *(uint16_t *)wh->i_seq =
1081 htole16(ni->ni_txseqs[IEEE80211_NONQOS_TID] << IEEE80211_SEQ_SEQ_SHIFT);
1082 ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1083 }
1084 /* check if xmit fragmentation is required */
1085 txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1086 !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1087 (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1131 !isff); /* NB: don't fragment ff's */
1088 (m->m_flags & M_FF) == 0); /* NB: don't fragment ff's */
1132 if (key != NULL) {
1133 /*
1134 * IEEE 802.1X: send EAPOL frames always in the clear.
1135 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1136 */
1137 if ((m->m_flags & M_EAPOL) == 0 ||
1138 ((vap->iv_flags & IEEE80211_F_WPA) &&
1139 (vap->iv_opmode == IEEE80211_M_STA ?
1140 !IEEE80211_KEY_UNDEFINED(key) :
1141 !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1142 wh->i_fc[1] |= IEEE80211_FC1_WEP;
1143 if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1144 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1145 eh.ether_dhost,
1146 "%s", "enmic failed, discard frame");
1147 vap->iv_stats.is_crypto_enmicfail++;
1148 goto bad;
1149 }
1150 }
1151 }
1152 if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1153 key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1154 goto bad;
1155
1156 m->m_flags |= M_ENCAP; /* mark encapsulated */
1157
1158 IEEE80211_NODE_STAT(ni, tx_data);
1159 if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1160 IEEE80211_NODE_STAT(ni, tx_mcast);
1161 else
1162 IEEE80211_NODE_STAT(ni, tx_ucast);
1163 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1164
1165 /* XXX fragmented frames not handled */
1166 if (bpf_peers_present(vap->iv_rawbpf))
1167 bpf_mtap(vap->iv_rawbpf, m);
1168
1169 return m;
1170bad:
1171 if (m != NULL)
1172 m_freem(m);
1173 return NULL;
1174#undef WH4
1175}
1176
1177/*
1089 if (key != NULL) {
1090 /*
1091 * IEEE 802.1X: send EAPOL frames always in the clear.
1092 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1093 */
1094 if ((m->m_flags & M_EAPOL) == 0 ||
1095 ((vap->iv_flags & IEEE80211_F_WPA) &&
1096 (vap->iv_opmode == IEEE80211_M_STA ?
1097 !IEEE80211_KEY_UNDEFINED(key) :
1098 !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1099 wh->i_fc[1] |= IEEE80211_FC1_WEP;
1100 if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1101 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1102 eh.ether_dhost,
1103 "%s", "enmic failed, discard frame");
1104 vap->iv_stats.is_crypto_enmicfail++;
1105 goto bad;
1106 }
1107 }
1108 }
1109 if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1110 key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1111 goto bad;
1112
1113 m->m_flags |= M_ENCAP; /* mark encapsulated */
1114
1115 IEEE80211_NODE_STAT(ni, tx_data);
1116 if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1117 IEEE80211_NODE_STAT(ni, tx_mcast);
1118 else
1119 IEEE80211_NODE_STAT(ni, tx_ucast);
1120 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1121
1122 /* XXX fragmented frames not handled */
1123 if (bpf_peers_present(vap->iv_rawbpf))
1124 bpf_mtap(vap->iv_rawbpf, m);
1125
1126 return m;
1127bad:
1128 if (m != NULL)
1129 m_freem(m);
1130 return NULL;
1131#undef WH4
1132}
1133
1134/*
1178 * Do Ethernet-LLC encapsulation for each payload in a fast frame
1179 * tunnel encapsulation. The frame is assumed to have an Ethernet
1180 * header at the front that must be stripped before prepending the
1181 * LLC followed by the Ethernet header passed in (with an Ethernet
1182 * type that specifies the payload size).
1183 */
1184static struct mbuf *
1185ieee80211_encap1(struct ieee80211vap *vap, struct mbuf *m,
1186 const struct ether_header *eh)
1187{
1188 struct llc *llc;
1189 uint16_t payload;
1190
1191 /* XXX optimize by combining m_adj+M_PREPEND */
1192 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1193 llc = mtod(m, struct llc *);
1194 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1195 llc->llc_control = LLC_UI;
1196 llc->llc_snap.org_code[0] = 0;
1197 llc->llc_snap.org_code[1] = 0;
1198 llc->llc_snap.org_code[2] = 0;
1199 llc->llc_snap.ether_type = eh->ether_type;
1200 payload = m->m_pkthdr.len; /* NB: w/o Ethernet header */
1201
1202 M_PREPEND(m, sizeof(struct ether_header), M_DONTWAIT);
1203 if (m == NULL) { /* XXX cannot happen */
1204 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
1205 "%s: no space for ether_header\n", __func__);
1206 vap->iv_stats.is_tx_nobuf++;
1207 return NULL;
1208 }
1209 ETHER_HEADER_COPY(mtod(m, void *), eh);
1210 mtod(m, struct ether_header *)->ether_type = htons(payload);
1211 return m;
1212}
1213
1214/*
1215 * Do fast frame tunnel encapsulation. The two frames and
1216 * Ethernet headers are supplied. The caller is assumed to
1217 * have arrange for space in the mbuf chains for encapsulating
1218 * headers (to avoid major mbuf fragmentation).
1219 *
1220 * The encapsulated frame is returned or NULL if there is a
1221 * problem (should not happen).
1222 */
1223static struct mbuf *
1224ieee80211_encap_fastframe(struct ieee80211vap *vap,
1225 struct mbuf *m1, const struct ether_header *eh1,
1226 struct mbuf *m2, const struct ether_header *eh2)
1227{
1228 struct llc *llc;
1229 struct mbuf *m;
1230 int pad;
1231
1232 /*
1233 * First, each frame gets a standard encapsulation.
1234 */
1235 m1 = ieee80211_encap1(vap, m1, eh1);
1236 if (m1 == NULL) {
1237 m_freem(m2);
1238 return NULL;
1239 }
1240 m2 = ieee80211_encap1(vap, m2, eh2);
1241 if (m2 == NULL) {
1242 m_freem(m1);
1243 return NULL;
1244 }
1245
1246 /*
1247 * Pad leading frame to a 4-byte boundary. If there
1248 * is space at the end of the first frame, put it
1249 * there; otherwise prepend to the front of the second
1250 * frame. We know doing the second will always work
1251 * because we reserve space above. We prefer appending
1252 * as this typically has better DMA alignment properties.
1253 */
1254 for (m = m1; m->m_next != NULL; m = m->m_next)
1255 ;
1256 pad = roundup2(m1->m_pkthdr.len, 4) - m1->m_pkthdr.len;
1257 if (pad) {
1258 if (M_TRAILINGSPACE(m) < pad) { /* prepend to second */
1259 m2->m_data -= pad;
1260 m2->m_len += pad;
1261 m2->m_pkthdr.len += pad;
1262 } else { /* append to first */
1263 m->m_len += pad;
1264 m1->m_pkthdr.len += pad;
1265 }
1266 }
1267
1268 /*
1269 * Now, stick 'em together and prepend the tunnel headers;
1270 * first the Atheros tunnel header (all zero for now) and
1271 * then a special fast frame LLC.
1272 *
1273 * XXX optimize by prepending together
1274 */
1275 m->m_next = m2; /* NB: last mbuf from above */
1276 m1->m_pkthdr.len += m2->m_pkthdr.len;
1277 M_PREPEND(m1, sizeof(uint32_t)+2, M_DONTWAIT);
1278 if (m1 == NULL) { /* XXX cannot happen */
1279 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
1280 "%s: no space for tunnel header\n", __func__);
1281 vap->iv_stats.is_tx_nobuf++;
1282 return NULL;
1283 }
1284 memset(mtod(m1, void *), 0, sizeof(uint32_t)+2);
1285
1286 M_PREPEND(m1, sizeof(struct llc), M_DONTWAIT);
1287 if (m1 == NULL) { /* XXX cannot happen */
1288 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
1289 "%s: no space for llc header\n", __func__);
1290 vap->iv_stats.is_tx_nobuf++;
1291 return NULL;
1292 }
1293 llc = mtod(m1, struct llc *);
1294 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1295 llc->llc_control = LLC_UI;
1296 llc->llc_snap.org_code[0] = ATH_FF_SNAP_ORGCODE_0;
1297 llc->llc_snap.org_code[1] = ATH_FF_SNAP_ORGCODE_1;
1298 llc->llc_snap.org_code[2] = ATH_FF_SNAP_ORGCODE_2;
1299 llc->llc_snap.ether_type = htons(ATH_FF_ETH_TYPE);
1300
1301 vap->iv_stats.is_ff_encap++;
1302
1303 return m1;
1304}
1305
1306/*
1307 * Fragment the frame according to the specified mtu.
1308 * The size of the 802.11 header (w/o padding) is provided
1309 * so we don't need to recalculate it. We create a new
1310 * mbuf for each fragment and chain it through m_nextpkt;
1311 * we might be able to optimize this by reusing the original
1312 * packet's mbufs but that is significantly more complicated.
1313 */
1314static int
1315ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1316 u_int hdrsize, u_int ciphdrsize, u_int mtu)
1317{
1318 struct ieee80211_frame *wh, *whf;
1319 struct mbuf *m, *prev, *next;
1320 u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1321
1322 KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1323 KASSERT(m0->m_pkthdr.len > mtu,
1324 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1325
1326 wh = mtod(m0, struct ieee80211_frame *);
1327 /* NB: mark the first frag; it will be propagated below */
1328 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1329 totalhdrsize = hdrsize + ciphdrsize;
1330 fragno = 1;
1331 off = mtu - ciphdrsize;
1332 remainder = m0->m_pkthdr.len - off;
1333 prev = m0;
1334 do {
1335 fragsize = totalhdrsize + remainder;
1336 if (fragsize > mtu)
1337 fragsize = mtu;
1338 /* XXX fragsize can be >2048! */
1339 KASSERT(fragsize < MCLBYTES,
1340 ("fragment size %u too big!", fragsize));
1341 if (fragsize > MHLEN)
1342 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1343 else
1344 m = m_gethdr(M_DONTWAIT, MT_DATA);
1345 if (m == NULL)
1346 goto bad;
1347 /* leave room to prepend any cipher header */
1348 m_align(m, fragsize - ciphdrsize);
1349
1350 /*
1351 * Form the header in the fragment. Note that since
1352 * we mark the first fragment with the MORE_FRAG bit
1353 * it automatically is propagated to each fragment; we
1354 * need only clear it on the last fragment (done below).
1355 */
1356 whf = mtod(m, struct ieee80211_frame *);
1357 memcpy(whf, wh, hdrsize);
1358 *(uint16_t *)&whf->i_seq[0] |= htole16(
1359 (fragno & IEEE80211_SEQ_FRAG_MASK) <<
1360 IEEE80211_SEQ_FRAG_SHIFT);
1361 fragno++;
1362
1363 payload = fragsize - totalhdrsize;
1364 /* NB: destination is known to be contiguous */
1365 m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrsize);
1366 m->m_len = hdrsize + payload;
1367 m->m_pkthdr.len = hdrsize + payload;
1368 m->m_flags |= M_FRAG;
1369
1370 /* chain up the fragment */
1371 prev->m_nextpkt = m;
1372 prev = m;
1373
1374 /* deduct fragment just formed */
1375 remainder -= payload;
1376 off += payload;
1377 } while (remainder != 0);
1378
1379 /* set the last fragment */
1380 m->m_flags |= M_LASTFRAG;
1381 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1382
1383 /* strip first mbuf now that everything has been copied */
1384 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1385 m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1386
1387 vap->iv_stats.is_tx_fragframes++;
1388 vap->iv_stats.is_tx_frags += fragno-1;
1389
1390 return 1;
1391bad:
1392 /* reclaim fragments but leave original frame for caller to free */
1393 for (m = m0->m_nextpkt; m != NULL; m = next) {
1394 next = m->m_nextpkt;
1395 m->m_nextpkt = NULL; /* XXX paranoid */
1396 m_freem(m);
1397 }
1398 m0->m_nextpkt = NULL;
1399 return 0;
1400}
1401
1402/*
1403 * Add a supported rates element id to a frame.
1404 */
1405static uint8_t *
1406ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1407{
1408 int nrates;
1409
1410 *frm++ = IEEE80211_ELEMID_RATES;
1411 nrates = rs->rs_nrates;
1412 if (nrates > IEEE80211_RATE_SIZE)
1413 nrates = IEEE80211_RATE_SIZE;
1414 *frm++ = nrates;
1415 memcpy(frm, rs->rs_rates, nrates);
1416 return frm + nrates;
1417}
1418
1419/*
1420 * Add an extended supported rates element id to a frame.
1421 */
1422static uint8_t *
1423ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1424{
1425 /*
1426 * Add an extended supported rates element if operating in 11g mode.
1427 */
1428 if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1429 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1430 *frm++ = IEEE80211_ELEMID_XRATES;
1431 *frm++ = nrates;
1432 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1433 frm += nrates;
1434 }
1435 return frm;
1436}
1437
1438/*
1439 * Add an ssid element to a frame.
1440 */
1441static uint8_t *
1442ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
1443{
1444 *frm++ = IEEE80211_ELEMID_SSID;
1445 *frm++ = len;
1446 memcpy(frm, ssid, len);
1447 return frm + len;
1448}
1449
1450/*
1451 * Add an erp element to a frame.
1452 */
1453static uint8_t *
1454ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
1455{
1456 uint8_t erp;
1457
1458 *frm++ = IEEE80211_ELEMID_ERP;
1459 *frm++ = 1;
1460 erp = 0;
1461 if (ic->ic_nonerpsta != 0)
1462 erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1463 if (ic->ic_flags & IEEE80211_F_USEPROT)
1464 erp |= IEEE80211_ERP_USE_PROTECTION;
1465 if (ic->ic_flags & IEEE80211_F_USEBARKER)
1466 erp |= IEEE80211_ERP_LONG_PREAMBLE;
1467 *frm++ = erp;
1468 return frm;
1469}
1470
1471/*
1472 * Add a CFParams element to a frame.
1473 */
1474static uint8_t *
1475ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
1476{
1477#define ADDSHORT(frm, v) do { \
1478 frm[0] = (v) & 0xff; \
1479 frm[1] = (v) >> 8; \
1480 frm += 2; \
1481} while (0)
1482 *frm++ = IEEE80211_ELEMID_CFPARMS;
1483 *frm++ = 6;
1484 *frm++ = 0; /* CFP count */
1485 *frm++ = 2; /* CFP period */
1486 ADDSHORT(frm, 0); /* CFP MaxDuration (TU) */
1487 ADDSHORT(frm, 0); /* CFP CurRemaining (TU) */
1488 return frm;
1489#undef ADDSHORT
1490}
1491
1492static __inline uint8_t *
1493add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
1494{
1495 memcpy(frm, ie->ie_data, ie->ie_len);
1496 return frm + ie->ie_len;
1497}
1498
1499static __inline uint8_t *
1500add_ie(uint8_t *frm, const uint8_t *ie)
1501{
1502 memcpy(frm, ie, 2 + ie[1]);
1503 return frm + 2 + ie[1];
1504}
1505
1506#define WME_OUI_BYTES 0x00, 0x50, 0xf2
1507/*
1508 * Add a WME information element to a frame.
1509 */
1510static uint8_t *
1511ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
1512{
1513 static const struct ieee80211_wme_info info = {
1514 .wme_id = IEEE80211_ELEMID_VENDOR,
1515 .wme_len = sizeof(struct ieee80211_wme_info) - 2,
1516 .wme_oui = { WME_OUI_BYTES },
1517 .wme_type = WME_OUI_TYPE,
1518 .wme_subtype = WME_INFO_OUI_SUBTYPE,
1519 .wme_version = WME_VERSION,
1520 .wme_info = 0,
1521 };
1522 memcpy(frm, &info, sizeof(info));
1523 return frm + sizeof(info);
1524}
1525
1526/*
1527 * Add a WME parameters element to a frame.
1528 */
1529static uint8_t *
1530ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
1531{
1532#define SM(_v, _f) (((_v) << _f##_S) & _f)
1533#define ADDSHORT(frm, v) do { \
1534 frm[0] = (v) & 0xff; \
1535 frm[1] = (v) >> 8; \
1536 frm += 2; \
1537} while (0)
1538 /* NB: this works 'cuz a param has an info at the front */
1539 static const struct ieee80211_wme_info param = {
1540 .wme_id = IEEE80211_ELEMID_VENDOR,
1541 .wme_len = sizeof(struct ieee80211_wme_param) - 2,
1542 .wme_oui = { WME_OUI_BYTES },
1543 .wme_type = WME_OUI_TYPE,
1544 .wme_subtype = WME_PARAM_OUI_SUBTYPE,
1545 .wme_version = WME_VERSION,
1546 };
1547 int i;
1548
1549 memcpy(frm, &param, sizeof(param));
1550 frm += __offsetof(struct ieee80211_wme_info, wme_info);
1551 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */
1552 *frm++ = 0; /* reserved field */
1553 for (i = 0; i < WME_NUM_AC; i++) {
1554 const struct wmeParams *ac =
1555 &wme->wme_bssChanParams.cap_wmeParams[i];
1556 *frm++ = SM(i, WME_PARAM_ACI)
1557 | SM(ac->wmep_acm, WME_PARAM_ACM)
1558 | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1559 ;
1560 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1561 | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1562 ;
1563 ADDSHORT(frm, ac->wmep_txopLimit);
1564 }
1565 return frm;
1566#undef SM
1567#undef ADDSHORT
1568}
1569#undef WME_OUI_BYTES
1570
1135 * Fragment the frame according to the specified mtu.
1136 * The size of the 802.11 header (w/o padding) is provided
1137 * so we don't need to recalculate it. We create a new
1138 * mbuf for each fragment and chain it through m_nextpkt;
1139 * we might be able to optimize this by reusing the original
1140 * packet's mbufs but that is significantly more complicated.
1141 */
1142static int
1143ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1144 u_int hdrsize, u_int ciphdrsize, u_int mtu)
1145{
1146 struct ieee80211_frame *wh, *whf;
1147 struct mbuf *m, *prev, *next;
1148 u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1149
1150 KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1151 KASSERT(m0->m_pkthdr.len > mtu,
1152 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1153
1154 wh = mtod(m0, struct ieee80211_frame *);
1155 /* NB: mark the first frag; it will be propagated below */
1156 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1157 totalhdrsize = hdrsize + ciphdrsize;
1158 fragno = 1;
1159 off = mtu - ciphdrsize;
1160 remainder = m0->m_pkthdr.len - off;
1161 prev = m0;
1162 do {
1163 fragsize = totalhdrsize + remainder;
1164 if (fragsize > mtu)
1165 fragsize = mtu;
1166 /* XXX fragsize can be >2048! */
1167 KASSERT(fragsize < MCLBYTES,
1168 ("fragment size %u too big!", fragsize));
1169 if (fragsize > MHLEN)
1170 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1171 else
1172 m = m_gethdr(M_DONTWAIT, MT_DATA);
1173 if (m == NULL)
1174 goto bad;
1175 /* leave room to prepend any cipher header */
1176 m_align(m, fragsize - ciphdrsize);
1177
1178 /*
1179 * Form the header in the fragment. Note that since
1180 * we mark the first fragment with the MORE_FRAG bit
1181 * it automatically is propagated to each fragment; we
1182 * need only clear it on the last fragment (done below).
1183 */
1184 whf = mtod(m, struct ieee80211_frame *);
1185 memcpy(whf, wh, hdrsize);
1186 *(uint16_t *)&whf->i_seq[0] |= htole16(
1187 (fragno & IEEE80211_SEQ_FRAG_MASK) <<
1188 IEEE80211_SEQ_FRAG_SHIFT);
1189 fragno++;
1190
1191 payload = fragsize - totalhdrsize;
1192 /* NB: destination is known to be contiguous */
1193 m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrsize);
1194 m->m_len = hdrsize + payload;
1195 m->m_pkthdr.len = hdrsize + payload;
1196 m->m_flags |= M_FRAG;
1197
1198 /* chain up the fragment */
1199 prev->m_nextpkt = m;
1200 prev = m;
1201
1202 /* deduct fragment just formed */
1203 remainder -= payload;
1204 off += payload;
1205 } while (remainder != 0);
1206
1207 /* set the last fragment */
1208 m->m_flags |= M_LASTFRAG;
1209 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1210
1211 /* strip first mbuf now that everything has been copied */
1212 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1213 m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1214
1215 vap->iv_stats.is_tx_fragframes++;
1216 vap->iv_stats.is_tx_frags += fragno-1;
1217
1218 return 1;
1219bad:
1220 /* reclaim fragments but leave original frame for caller to free */
1221 for (m = m0->m_nextpkt; m != NULL; m = next) {
1222 next = m->m_nextpkt;
1223 m->m_nextpkt = NULL; /* XXX paranoid */
1224 m_freem(m);
1225 }
1226 m0->m_nextpkt = NULL;
1227 return 0;
1228}
1229
1230/*
1231 * Add a supported rates element id to a frame.
1232 */
1233static uint8_t *
1234ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1235{
1236 int nrates;
1237
1238 *frm++ = IEEE80211_ELEMID_RATES;
1239 nrates = rs->rs_nrates;
1240 if (nrates > IEEE80211_RATE_SIZE)
1241 nrates = IEEE80211_RATE_SIZE;
1242 *frm++ = nrates;
1243 memcpy(frm, rs->rs_rates, nrates);
1244 return frm + nrates;
1245}
1246
1247/*
1248 * Add an extended supported rates element id to a frame.
1249 */
1250static uint8_t *
1251ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1252{
1253 /*
1254 * Add an extended supported rates element if operating in 11g mode.
1255 */
1256 if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1257 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1258 *frm++ = IEEE80211_ELEMID_XRATES;
1259 *frm++ = nrates;
1260 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1261 frm += nrates;
1262 }
1263 return frm;
1264}
1265
1266/*
1267 * Add an ssid element to a frame.
1268 */
1269static uint8_t *
1270ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
1271{
1272 *frm++ = IEEE80211_ELEMID_SSID;
1273 *frm++ = len;
1274 memcpy(frm, ssid, len);
1275 return frm + len;
1276}
1277
1278/*
1279 * Add an erp element to a frame.
1280 */
1281static uint8_t *
1282ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
1283{
1284 uint8_t erp;
1285
1286 *frm++ = IEEE80211_ELEMID_ERP;
1287 *frm++ = 1;
1288 erp = 0;
1289 if (ic->ic_nonerpsta != 0)
1290 erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1291 if (ic->ic_flags & IEEE80211_F_USEPROT)
1292 erp |= IEEE80211_ERP_USE_PROTECTION;
1293 if (ic->ic_flags & IEEE80211_F_USEBARKER)
1294 erp |= IEEE80211_ERP_LONG_PREAMBLE;
1295 *frm++ = erp;
1296 return frm;
1297}
1298
1299/*
1300 * Add a CFParams element to a frame.
1301 */
1302static uint8_t *
1303ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
1304{
1305#define ADDSHORT(frm, v) do { \
1306 frm[0] = (v) & 0xff; \
1307 frm[1] = (v) >> 8; \
1308 frm += 2; \
1309} while (0)
1310 *frm++ = IEEE80211_ELEMID_CFPARMS;
1311 *frm++ = 6;
1312 *frm++ = 0; /* CFP count */
1313 *frm++ = 2; /* CFP period */
1314 ADDSHORT(frm, 0); /* CFP MaxDuration (TU) */
1315 ADDSHORT(frm, 0); /* CFP CurRemaining (TU) */
1316 return frm;
1317#undef ADDSHORT
1318}
1319
1320static __inline uint8_t *
1321add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
1322{
1323 memcpy(frm, ie->ie_data, ie->ie_len);
1324 return frm + ie->ie_len;
1325}
1326
1327static __inline uint8_t *
1328add_ie(uint8_t *frm, const uint8_t *ie)
1329{
1330 memcpy(frm, ie, 2 + ie[1]);
1331 return frm + 2 + ie[1];
1332}
1333
1334#define WME_OUI_BYTES 0x00, 0x50, 0xf2
1335/*
1336 * Add a WME information element to a frame.
1337 */
1338static uint8_t *
1339ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
1340{
1341 static const struct ieee80211_wme_info info = {
1342 .wme_id = IEEE80211_ELEMID_VENDOR,
1343 .wme_len = sizeof(struct ieee80211_wme_info) - 2,
1344 .wme_oui = { WME_OUI_BYTES },
1345 .wme_type = WME_OUI_TYPE,
1346 .wme_subtype = WME_INFO_OUI_SUBTYPE,
1347 .wme_version = WME_VERSION,
1348 .wme_info = 0,
1349 };
1350 memcpy(frm, &info, sizeof(info));
1351 return frm + sizeof(info);
1352}
1353
1354/*
1355 * Add a WME parameters element to a frame.
1356 */
1357static uint8_t *
1358ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
1359{
1360#define SM(_v, _f) (((_v) << _f##_S) & _f)
1361#define ADDSHORT(frm, v) do { \
1362 frm[0] = (v) & 0xff; \
1363 frm[1] = (v) >> 8; \
1364 frm += 2; \
1365} while (0)
1366 /* NB: this works 'cuz a param has an info at the front */
1367 static const struct ieee80211_wme_info param = {
1368 .wme_id = IEEE80211_ELEMID_VENDOR,
1369 .wme_len = sizeof(struct ieee80211_wme_param) - 2,
1370 .wme_oui = { WME_OUI_BYTES },
1371 .wme_type = WME_OUI_TYPE,
1372 .wme_subtype = WME_PARAM_OUI_SUBTYPE,
1373 .wme_version = WME_VERSION,
1374 };
1375 int i;
1376
1377 memcpy(frm, &param, sizeof(param));
1378 frm += __offsetof(struct ieee80211_wme_info, wme_info);
1379 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */
1380 *frm++ = 0; /* reserved field */
1381 for (i = 0; i < WME_NUM_AC; i++) {
1382 const struct wmeParams *ac =
1383 &wme->wme_bssChanParams.cap_wmeParams[i];
1384 *frm++ = SM(i, WME_PARAM_ACI)
1385 | SM(ac->wmep_acm, WME_PARAM_ACM)
1386 | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1387 ;
1388 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1389 | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1390 ;
1391 ADDSHORT(frm, ac->wmep_txopLimit);
1392 }
1393 return frm;
1394#undef SM
1395#undef ADDSHORT
1396}
1397#undef WME_OUI_BYTES
1398
1571#define ATH_OUI_BYTES 0x00, 0x03, 0x7f
1572/*
1399/*
1573 * Add a WME information element to a frame.
1574 */
1575static uint8_t *
1576ieee80211_add_ath(uint8_t *frm, uint8_t caps, uint16_t defkeyix)
1577{
1578 static const struct ieee80211_ath_ie info = {
1579 .ath_id = IEEE80211_ELEMID_VENDOR,
1580 .ath_len = sizeof(struct ieee80211_ath_ie) - 2,
1581 .ath_oui = { ATH_OUI_BYTES },
1582 .ath_oui_type = ATH_OUI_TYPE,
1583 .ath_oui_subtype= ATH_OUI_SUBTYPE,
1584 .ath_version = ATH_OUI_VERSION,
1585 };
1586 struct ieee80211_ath_ie *ath = (struct ieee80211_ath_ie *) frm;
1587
1588 memcpy(frm, &info, sizeof(info));
1589 ath->ath_capability = caps;
1590 ath->ath_defkeyix[0] = (defkeyix & 0xff);
1591 ath->ath_defkeyix[1] = ((defkeyix >> 8) & 0xff);
1592 return frm + sizeof(info);
1593}
1594#undef ATH_OUI_BYTES
1595
1596/*
1597 * Add an 11h Power Constraint element to a frame.
1598 */
1599static uint8_t *
1600ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
1601{
1602 const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
1603 /* XXX per-vap tx power limit? */
1604 int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
1605
1606 frm[0] = IEEE80211_ELEMID_PWRCNSTR;
1607 frm[1] = 1;
1608 frm[2] = c->ic_maxregpower > limit ? c->ic_maxregpower - limit : 0;
1609 return frm + 3;
1610}
1611
1612/*
1613 * Add an 11h Power Capability element to a frame.
1614 */
1615static uint8_t *
1616ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
1617{
1618 frm[0] = IEEE80211_ELEMID_PWRCAP;
1619 frm[1] = 2;
1620 frm[2] = c->ic_minpower;
1621 frm[3] = c->ic_maxpower;
1622 return frm + 4;
1623}
1624
1625/*
1626 * Add an 11h Supported Channels element to a frame.
1627 */
1628static uint8_t *
1629ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
1630{
1631 static const int ielen = 26;
1632
1633 frm[0] = IEEE80211_ELEMID_SUPPCHAN;
1634 frm[1] = ielen;
1635 /* XXX not correct */
1636 memcpy(frm+2, ic->ic_chan_avail, ielen);
1637 return frm + 2 + ielen;
1638}
1639
1640/*
1641 * Add an 11h Channel Switch Announcement element to a frame.
1642 * Note that we use the per-vap CSA count to adjust the global
1643 * counter so we can use this routine to form probe response
1644 * frames and get the current count.
1645 */
1646static uint8_t *
1647ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
1648{
1649 struct ieee80211com *ic = vap->iv_ic;
1650 struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
1651
1652 csa->csa_ie = IEEE80211_ELEMID_CHANSWITCHANN;
1653 csa->csa_len = 3;
1654 csa->csa_mode = 1; /* XXX force quiet on channel */
1655 csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
1656 csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
1657 return frm + sizeof(*csa);
1658}
1659
1660/*
1661 * Add an 11h country information element to a frame.
1662 */
1663static uint8_t *
1664ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
1665{
1666
1667 if (ic->ic_countryie == NULL ||
1668 ic->ic_countryie_chan != ic->ic_bsschan) {
1669 /*
1670 * Handle lazy construction of ie. This is done on
1671 * first use and after a channel change that requires
1672 * re-calculation.
1673 */
1674 if (ic->ic_countryie != NULL)
1675 free(ic->ic_countryie, M_80211_NODE_IE);
1676 ic->ic_countryie = ieee80211_alloc_countryie(ic);
1677 if (ic->ic_countryie == NULL)
1678 return frm;
1679 ic->ic_countryie_chan = ic->ic_bsschan;
1680 }
1681 return add_appie(frm, ic->ic_countryie);
1682}
1683
1684/*
1685 * Send a probe request frame with the specified ssid
1686 * and any optional information element data.
1687 */
1688int
1689ieee80211_send_probereq(struct ieee80211_node *ni,
1690 const uint8_t sa[IEEE80211_ADDR_LEN],
1691 const uint8_t da[IEEE80211_ADDR_LEN],
1692 const uint8_t bssid[IEEE80211_ADDR_LEN],
1693 const uint8_t *ssid, size_t ssidlen)
1694{
1695 struct ieee80211vap *vap = ni->ni_vap;
1696 struct ieee80211com *ic = ni->ni_ic;
1697 const struct ieee80211_txparam *tp;
1698 struct ieee80211_bpf_params params;
1699 struct ieee80211_frame *wh;
1700 const struct ieee80211_rateset *rs;
1701 struct mbuf *m;
1702 uint8_t *frm;
1703
1704 if (vap->iv_state == IEEE80211_S_CAC) {
1705 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
1706 "block %s frame in CAC state", "probe request");
1707 vap->iv_stats.is_tx_badstate++;
1708 return EIO; /* XXX */
1709 }
1710
1711 /*
1712 * Hold a reference on the node so it doesn't go away until after
1713 * the xmit is complete all the way in the driver. On error we
1714 * will remove our reference.
1715 */
1716 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
1717 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1718 __func__, __LINE__,
1719 ni, ether_sprintf(ni->ni_macaddr),
1720 ieee80211_node_refcnt(ni)+1);
1721 ieee80211_ref_node(ni);
1722
1723 /*
1724 * prreq frame format
1725 * [tlv] ssid
1726 * [tlv] supported rates
1727 * [tlv] RSN (optional)
1728 * [tlv] extended supported rates
1729 * [tlv] WPA (optional)
1730 * [tlv] user-specified ie's
1731 */
1732 m = ieee80211_getmgtframe(&frm,
1733 ic->ic_headroom + sizeof(struct ieee80211_frame),
1734 2 + IEEE80211_NWID_LEN
1735 + 2 + IEEE80211_RATE_SIZE
1736 + sizeof(struct ieee80211_ie_wpa)
1737 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1738 + sizeof(struct ieee80211_ie_wpa)
1739 + (vap->iv_appie_probereq != NULL ?
1740 vap->iv_appie_probereq->ie_len : 0)
1741 );
1742 if (m == NULL) {
1743 vap->iv_stats.is_tx_nobuf++;
1744 ieee80211_free_node(ni);
1745 return ENOMEM;
1746 }
1747
1748 frm = ieee80211_add_ssid(frm, ssid, ssidlen);
1749 rs = ieee80211_get_suprates(ic, ic->ic_curchan);
1750 frm = ieee80211_add_rates(frm, rs);
1751 if (vap->iv_flags & IEEE80211_F_WPA2) {
1752 if (vap->iv_rsn_ie != NULL)
1753 frm = add_ie(frm, vap->iv_rsn_ie);
1754 /* XXX else complain? */
1755 }
1756 frm = ieee80211_add_xrates(frm, rs);
1757 if (vap->iv_flags & IEEE80211_F_WPA1) {
1758 if (vap->iv_wpa_ie != NULL)
1759 frm = add_ie(frm, vap->iv_wpa_ie);
1760 /* XXX else complain? */
1761 }
1762 if (vap->iv_appie_probereq != NULL)
1763 frm = add_appie(frm, vap->iv_appie_probereq);
1764 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
1765
1766 KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
1767 ("leading space %zd", M_LEADINGSPACE(m)));
1768 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
1769 if (m == NULL) {
1770 /* NB: cannot happen */
1771 ieee80211_free_node(ni);
1772 return ENOMEM;
1773 }
1774
1775 wh = mtod(m, struct ieee80211_frame *);
1776 ieee80211_send_setup(ni, wh,
1777 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
1778 IEEE80211_NONQOS_TID, sa, da, bssid);
1779 /* XXX power management? */
1780 m->m_flags |= M_ENCAP; /* mark encapsulated */
1781
1782 M_WME_SETAC(m, WME_AC_BE);
1783
1784 IEEE80211_NODE_STAT(ni, tx_probereq);
1785 IEEE80211_NODE_STAT(ni, tx_mgmt);
1786
1787 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
1788 "send probe req on channel %u bssid %s ssid \"%.*s\"\n",
1789 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid),
1790 ssidlen, ssid);
1791
1792 memset(&params, 0, sizeof(params));
1793 params.ibp_pri = M_WME_GETAC(m);
1794 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1795 params.ibp_rate0 = tp->mgmtrate;
1796 if (IEEE80211_IS_MULTICAST(da)) {
1797 params.ibp_flags |= IEEE80211_BPF_NOACK;
1798 params.ibp_try0 = 1;
1799 } else
1800 params.ibp_try0 = tp->maxretry;
1801 params.ibp_power = ni->ni_txpower;
1802 return ic->ic_raw_xmit(ni, m, &params);
1803}
1804
1805/*
1806 * Calculate capability information for mgt frames.
1807 */
1808static uint16_t
1809getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
1810{
1811 struct ieee80211com *ic = vap->iv_ic;
1812 uint16_t capinfo;
1813
1814 KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
1815
1816 if (vap->iv_opmode == IEEE80211_M_HOSTAP)
1817 capinfo = IEEE80211_CAPINFO_ESS;
1818 else if (vap->iv_opmode == IEEE80211_M_IBSS)
1819 capinfo = IEEE80211_CAPINFO_IBSS;
1820 else
1821 capinfo = 0;
1822 if (vap->iv_flags & IEEE80211_F_PRIVACY)
1823 capinfo |= IEEE80211_CAPINFO_PRIVACY;
1824 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1825 IEEE80211_IS_CHAN_2GHZ(chan))
1826 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1827 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1828 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1829 if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
1830 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
1831 return capinfo;
1832}
1833
1834/*
1835 * Send a management frame. The node is for the destination (or ic_bss
1836 * when in station mode). Nodes other than ic_bss have their reference
1837 * count bumped to reflect our use for an indeterminant time.
1838 */
1839int
1840ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
1841{
1842#define HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
1843#define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
1844 struct ieee80211vap *vap = ni->ni_vap;
1845 struct ieee80211com *ic = ni->ni_ic;
1846 struct ieee80211_node *bss = vap->iv_bss;
1847 struct ieee80211_bpf_params params;
1848 struct mbuf *m;
1849 uint8_t *frm;
1850 uint16_t capinfo;
1851 int has_challenge, is_shared_key, ret, status;
1852
1853 KASSERT(ni != NULL, ("null node"));
1854
1855 /*
1856 * Hold a reference on the node so it doesn't go away until after
1857 * the xmit is complete all the way in the driver. On error we
1858 * will remove our reference.
1859 */
1860 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
1861 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1862 __func__, __LINE__,
1863 ni, ether_sprintf(ni->ni_macaddr),
1864 ieee80211_node_refcnt(ni)+1);
1865 ieee80211_ref_node(ni);
1866
1867 memset(&params, 0, sizeof(params));
1868 switch (type) {
1869
1870 case IEEE80211_FC0_SUBTYPE_AUTH:
1871 status = arg >> 16;
1872 arg &= 0xffff;
1873 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
1874 arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
1875 ni->ni_challenge != NULL);
1876
1877 /*
1878 * Deduce whether we're doing open authentication or
1879 * shared key authentication. We do the latter if
1880 * we're in the middle of a shared key authentication
1881 * handshake or if we're initiating an authentication
1882 * request and configured to use shared key.
1883 */
1884 is_shared_key = has_challenge ||
1885 arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
1886 (arg == IEEE80211_AUTH_SHARED_REQUEST &&
1887 bss->ni_authmode == IEEE80211_AUTH_SHARED);
1888
1889 m = ieee80211_getmgtframe(&frm,
1890 ic->ic_headroom + sizeof(struct ieee80211_frame),
1891 3 * sizeof(uint16_t)
1892 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
1893 sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
1894 );
1895 if (m == NULL)
1896 senderr(ENOMEM, is_tx_nobuf);
1897
1898 ((uint16_t *)frm)[0] =
1899 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
1900 : htole16(IEEE80211_AUTH_ALG_OPEN);
1901 ((uint16_t *)frm)[1] = htole16(arg); /* sequence number */
1902 ((uint16_t *)frm)[2] = htole16(status);/* status */
1903
1904 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
1905 ((uint16_t *)frm)[3] =
1906 htole16((IEEE80211_CHALLENGE_LEN << 8) |
1907 IEEE80211_ELEMID_CHALLENGE);
1908 memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
1909 IEEE80211_CHALLENGE_LEN);
1910 m->m_pkthdr.len = m->m_len =
1911 4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
1912 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
1913 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
1914 "request encrypt frame (%s)", __func__);
1915 /* mark frame for encryption */
1916 params.ibp_flags |= IEEE80211_BPF_CRYPTO;
1917 }
1918 } else
1919 m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
1920
1921 /* XXX not right for shared key */
1922 if (status == IEEE80211_STATUS_SUCCESS)
1923 IEEE80211_NODE_STAT(ni, tx_auth);
1924 else
1925 IEEE80211_NODE_STAT(ni, tx_auth_fail);
1926
1927 if (vap->iv_opmode == IEEE80211_M_STA)
1928 ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
1929 (void *) vap->iv_state);
1930 break;
1931
1932 case IEEE80211_FC0_SUBTYPE_DEAUTH:
1933 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
1934 "send station deauthenticate (reason %d)", arg);
1935 m = ieee80211_getmgtframe(&frm,
1936 ic->ic_headroom + sizeof(struct ieee80211_frame),
1937 sizeof(uint16_t));
1938 if (m == NULL)
1939 senderr(ENOMEM, is_tx_nobuf);
1940 *(uint16_t *)frm = htole16(arg); /* reason */
1941 m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
1942
1943 IEEE80211_NODE_STAT(ni, tx_deauth);
1944 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
1945
1946 ieee80211_node_unauthorize(ni); /* port closed */
1947 break;
1948
1949 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
1950 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
1951 /*
1952 * asreq frame format
1953 * [2] capability information
1954 * [2] listen interval
1955 * [6*] current AP address (reassoc only)
1956 * [tlv] ssid
1957 * [tlv] supported rates
1958 * [tlv] extended supported rates
1959 * [4] power capability (optional)
1960 * [28] supported channels (optional)
1961 * [tlv] HT capabilities
1962 * [tlv] WME (optional)
1963 * [tlv] Vendor OUI HT capabilities (optional)
1964 * [tlv] Atheros capabilities (if negotiated)
1965 * [tlv] AppIE's (optional)
1966 */
1967 m = ieee80211_getmgtframe(&frm,
1968 ic->ic_headroom + sizeof(struct ieee80211_frame),
1969 sizeof(uint16_t)
1970 + sizeof(uint16_t)
1971 + IEEE80211_ADDR_LEN
1972 + 2 + IEEE80211_NWID_LEN
1973 + 2 + IEEE80211_RATE_SIZE
1974 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1975 + 4
1976 + 2 + 26
1977 + sizeof(struct ieee80211_wme_info)
1978 + sizeof(struct ieee80211_ie_htcap)
1979 + 4 + sizeof(struct ieee80211_ie_htcap)
1400 * Add an 11h Power Constraint element to a frame.
1401 */
1402static uint8_t *
1403ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
1404{
1405 const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
1406 /* XXX per-vap tx power limit? */
1407 int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
1408
1409 frm[0] = IEEE80211_ELEMID_PWRCNSTR;
1410 frm[1] = 1;
1411 frm[2] = c->ic_maxregpower > limit ? c->ic_maxregpower - limit : 0;
1412 return frm + 3;
1413}
1414
1415/*
1416 * Add an 11h Power Capability element to a frame.
1417 */
1418static uint8_t *
1419ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
1420{
1421 frm[0] = IEEE80211_ELEMID_PWRCAP;
1422 frm[1] = 2;
1423 frm[2] = c->ic_minpower;
1424 frm[3] = c->ic_maxpower;
1425 return frm + 4;
1426}
1427
1428/*
1429 * Add an 11h Supported Channels element to a frame.
1430 */
1431static uint8_t *
1432ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
1433{
1434 static const int ielen = 26;
1435
1436 frm[0] = IEEE80211_ELEMID_SUPPCHAN;
1437 frm[1] = ielen;
1438 /* XXX not correct */
1439 memcpy(frm+2, ic->ic_chan_avail, ielen);
1440 return frm + 2 + ielen;
1441}
1442
1443/*
1444 * Add an 11h Channel Switch Announcement element to a frame.
1445 * Note that we use the per-vap CSA count to adjust the global
1446 * counter so we can use this routine to form probe response
1447 * frames and get the current count.
1448 */
1449static uint8_t *
1450ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
1451{
1452 struct ieee80211com *ic = vap->iv_ic;
1453 struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
1454
1455 csa->csa_ie = IEEE80211_ELEMID_CHANSWITCHANN;
1456 csa->csa_len = 3;
1457 csa->csa_mode = 1; /* XXX force quiet on channel */
1458 csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
1459 csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
1460 return frm + sizeof(*csa);
1461}
1462
1463/*
1464 * Add an 11h country information element to a frame.
1465 */
1466static uint8_t *
1467ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
1468{
1469
1470 if (ic->ic_countryie == NULL ||
1471 ic->ic_countryie_chan != ic->ic_bsschan) {
1472 /*
1473 * Handle lazy construction of ie. This is done on
1474 * first use and after a channel change that requires
1475 * re-calculation.
1476 */
1477 if (ic->ic_countryie != NULL)
1478 free(ic->ic_countryie, M_80211_NODE_IE);
1479 ic->ic_countryie = ieee80211_alloc_countryie(ic);
1480 if (ic->ic_countryie == NULL)
1481 return frm;
1482 ic->ic_countryie_chan = ic->ic_bsschan;
1483 }
1484 return add_appie(frm, ic->ic_countryie);
1485}
1486
1487/*
1488 * Send a probe request frame with the specified ssid
1489 * and any optional information element data.
1490 */
1491int
1492ieee80211_send_probereq(struct ieee80211_node *ni,
1493 const uint8_t sa[IEEE80211_ADDR_LEN],
1494 const uint8_t da[IEEE80211_ADDR_LEN],
1495 const uint8_t bssid[IEEE80211_ADDR_LEN],
1496 const uint8_t *ssid, size_t ssidlen)
1497{
1498 struct ieee80211vap *vap = ni->ni_vap;
1499 struct ieee80211com *ic = ni->ni_ic;
1500 const struct ieee80211_txparam *tp;
1501 struct ieee80211_bpf_params params;
1502 struct ieee80211_frame *wh;
1503 const struct ieee80211_rateset *rs;
1504 struct mbuf *m;
1505 uint8_t *frm;
1506
1507 if (vap->iv_state == IEEE80211_S_CAC) {
1508 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
1509 "block %s frame in CAC state", "probe request");
1510 vap->iv_stats.is_tx_badstate++;
1511 return EIO; /* XXX */
1512 }
1513
1514 /*
1515 * Hold a reference on the node so it doesn't go away until after
1516 * the xmit is complete all the way in the driver. On error we
1517 * will remove our reference.
1518 */
1519 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
1520 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1521 __func__, __LINE__,
1522 ni, ether_sprintf(ni->ni_macaddr),
1523 ieee80211_node_refcnt(ni)+1);
1524 ieee80211_ref_node(ni);
1525
1526 /*
1527 * prreq frame format
1528 * [tlv] ssid
1529 * [tlv] supported rates
1530 * [tlv] RSN (optional)
1531 * [tlv] extended supported rates
1532 * [tlv] WPA (optional)
1533 * [tlv] user-specified ie's
1534 */
1535 m = ieee80211_getmgtframe(&frm,
1536 ic->ic_headroom + sizeof(struct ieee80211_frame),
1537 2 + IEEE80211_NWID_LEN
1538 + 2 + IEEE80211_RATE_SIZE
1539 + sizeof(struct ieee80211_ie_wpa)
1540 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1541 + sizeof(struct ieee80211_ie_wpa)
1542 + (vap->iv_appie_probereq != NULL ?
1543 vap->iv_appie_probereq->ie_len : 0)
1544 );
1545 if (m == NULL) {
1546 vap->iv_stats.is_tx_nobuf++;
1547 ieee80211_free_node(ni);
1548 return ENOMEM;
1549 }
1550
1551 frm = ieee80211_add_ssid(frm, ssid, ssidlen);
1552 rs = ieee80211_get_suprates(ic, ic->ic_curchan);
1553 frm = ieee80211_add_rates(frm, rs);
1554 if (vap->iv_flags & IEEE80211_F_WPA2) {
1555 if (vap->iv_rsn_ie != NULL)
1556 frm = add_ie(frm, vap->iv_rsn_ie);
1557 /* XXX else complain? */
1558 }
1559 frm = ieee80211_add_xrates(frm, rs);
1560 if (vap->iv_flags & IEEE80211_F_WPA1) {
1561 if (vap->iv_wpa_ie != NULL)
1562 frm = add_ie(frm, vap->iv_wpa_ie);
1563 /* XXX else complain? */
1564 }
1565 if (vap->iv_appie_probereq != NULL)
1566 frm = add_appie(frm, vap->iv_appie_probereq);
1567 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
1568
1569 KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
1570 ("leading space %zd", M_LEADINGSPACE(m)));
1571 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
1572 if (m == NULL) {
1573 /* NB: cannot happen */
1574 ieee80211_free_node(ni);
1575 return ENOMEM;
1576 }
1577
1578 wh = mtod(m, struct ieee80211_frame *);
1579 ieee80211_send_setup(ni, wh,
1580 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
1581 IEEE80211_NONQOS_TID, sa, da, bssid);
1582 /* XXX power management? */
1583 m->m_flags |= M_ENCAP; /* mark encapsulated */
1584
1585 M_WME_SETAC(m, WME_AC_BE);
1586
1587 IEEE80211_NODE_STAT(ni, tx_probereq);
1588 IEEE80211_NODE_STAT(ni, tx_mgmt);
1589
1590 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
1591 "send probe req on channel %u bssid %s ssid \"%.*s\"\n",
1592 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid),
1593 ssidlen, ssid);
1594
1595 memset(&params, 0, sizeof(params));
1596 params.ibp_pri = M_WME_GETAC(m);
1597 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1598 params.ibp_rate0 = tp->mgmtrate;
1599 if (IEEE80211_IS_MULTICAST(da)) {
1600 params.ibp_flags |= IEEE80211_BPF_NOACK;
1601 params.ibp_try0 = 1;
1602 } else
1603 params.ibp_try0 = tp->maxretry;
1604 params.ibp_power = ni->ni_txpower;
1605 return ic->ic_raw_xmit(ni, m, &params);
1606}
1607
1608/*
1609 * Calculate capability information for mgt frames.
1610 */
1611static uint16_t
1612getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
1613{
1614 struct ieee80211com *ic = vap->iv_ic;
1615 uint16_t capinfo;
1616
1617 KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
1618
1619 if (vap->iv_opmode == IEEE80211_M_HOSTAP)
1620 capinfo = IEEE80211_CAPINFO_ESS;
1621 else if (vap->iv_opmode == IEEE80211_M_IBSS)
1622 capinfo = IEEE80211_CAPINFO_IBSS;
1623 else
1624 capinfo = 0;
1625 if (vap->iv_flags & IEEE80211_F_PRIVACY)
1626 capinfo |= IEEE80211_CAPINFO_PRIVACY;
1627 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1628 IEEE80211_IS_CHAN_2GHZ(chan))
1629 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1630 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1631 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1632 if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
1633 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
1634 return capinfo;
1635}
1636
1637/*
1638 * Send a management frame. The node is for the destination (or ic_bss
1639 * when in station mode). Nodes other than ic_bss have their reference
1640 * count bumped to reflect our use for an indeterminant time.
1641 */
1642int
1643ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
1644{
1645#define HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
1646#define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
1647 struct ieee80211vap *vap = ni->ni_vap;
1648 struct ieee80211com *ic = ni->ni_ic;
1649 struct ieee80211_node *bss = vap->iv_bss;
1650 struct ieee80211_bpf_params params;
1651 struct mbuf *m;
1652 uint8_t *frm;
1653 uint16_t capinfo;
1654 int has_challenge, is_shared_key, ret, status;
1655
1656 KASSERT(ni != NULL, ("null node"));
1657
1658 /*
1659 * Hold a reference on the node so it doesn't go away until after
1660 * the xmit is complete all the way in the driver. On error we
1661 * will remove our reference.
1662 */
1663 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
1664 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1665 __func__, __LINE__,
1666 ni, ether_sprintf(ni->ni_macaddr),
1667 ieee80211_node_refcnt(ni)+1);
1668 ieee80211_ref_node(ni);
1669
1670 memset(&params, 0, sizeof(params));
1671 switch (type) {
1672
1673 case IEEE80211_FC0_SUBTYPE_AUTH:
1674 status = arg >> 16;
1675 arg &= 0xffff;
1676 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
1677 arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
1678 ni->ni_challenge != NULL);
1679
1680 /*
1681 * Deduce whether we're doing open authentication or
1682 * shared key authentication. We do the latter if
1683 * we're in the middle of a shared key authentication
1684 * handshake or if we're initiating an authentication
1685 * request and configured to use shared key.
1686 */
1687 is_shared_key = has_challenge ||
1688 arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
1689 (arg == IEEE80211_AUTH_SHARED_REQUEST &&
1690 bss->ni_authmode == IEEE80211_AUTH_SHARED);
1691
1692 m = ieee80211_getmgtframe(&frm,
1693 ic->ic_headroom + sizeof(struct ieee80211_frame),
1694 3 * sizeof(uint16_t)
1695 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
1696 sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
1697 );
1698 if (m == NULL)
1699 senderr(ENOMEM, is_tx_nobuf);
1700
1701 ((uint16_t *)frm)[0] =
1702 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
1703 : htole16(IEEE80211_AUTH_ALG_OPEN);
1704 ((uint16_t *)frm)[1] = htole16(arg); /* sequence number */
1705 ((uint16_t *)frm)[2] = htole16(status);/* status */
1706
1707 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
1708 ((uint16_t *)frm)[3] =
1709 htole16((IEEE80211_CHALLENGE_LEN << 8) |
1710 IEEE80211_ELEMID_CHALLENGE);
1711 memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
1712 IEEE80211_CHALLENGE_LEN);
1713 m->m_pkthdr.len = m->m_len =
1714 4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
1715 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
1716 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
1717 "request encrypt frame (%s)", __func__);
1718 /* mark frame for encryption */
1719 params.ibp_flags |= IEEE80211_BPF_CRYPTO;
1720 }
1721 } else
1722 m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
1723
1724 /* XXX not right for shared key */
1725 if (status == IEEE80211_STATUS_SUCCESS)
1726 IEEE80211_NODE_STAT(ni, tx_auth);
1727 else
1728 IEEE80211_NODE_STAT(ni, tx_auth_fail);
1729
1730 if (vap->iv_opmode == IEEE80211_M_STA)
1731 ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
1732 (void *) vap->iv_state);
1733 break;
1734
1735 case IEEE80211_FC0_SUBTYPE_DEAUTH:
1736 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
1737 "send station deauthenticate (reason %d)", arg);
1738 m = ieee80211_getmgtframe(&frm,
1739 ic->ic_headroom + sizeof(struct ieee80211_frame),
1740 sizeof(uint16_t));
1741 if (m == NULL)
1742 senderr(ENOMEM, is_tx_nobuf);
1743 *(uint16_t *)frm = htole16(arg); /* reason */
1744 m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
1745
1746 IEEE80211_NODE_STAT(ni, tx_deauth);
1747 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
1748
1749 ieee80211_node_unauthorize(ni); /* port closed */
1750 break;
1751
1752 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
1753 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
1754 /*
1755 * asreq frame format
1756 * [2] capability information
1757 * [2] listen interval
1758 * [6*] current AP address (reassoc only)
1759 * [tlv] ssid
1760 * [tlv] supported rates
1761 * [tlv] extended supported rates
1762 * [4] power capability (optional)
1763 * [28] supported channels (optional)
1764 * [tlv] HT capabilities
1765 * [tlv] WME (optional)
1766 * [tlv] Vendor OUI HT capabilities (optional)
1767 * [tlv] Atheros capabilities (if negotiated)
1768 * [tlv] AppIE's (optional)
1769 */
1770 m = ieee80211_getmgtframe(&frm,
1771 ic->ic_headroom + sizeof(struct ieee80211_frame),
1772 sizeof(uint16_t)
1773 + sizeof(uint16_t)
1774 + IEEE80211_ADDR_LEN
1775 + 2 + IEEE80211_NWID_LEN
1776 + 2 + IEEE80211_RATE_SIZE
1777 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1778 + 4
1779 + 2 + 26
1780 + sizeof(struct ieee80211_wme_info)
1781 + sizeof(struct ieee80211_ie_htcap)
1782 + 4 + sizeof(struct ieee80211_ie_htcap)
1783#ifdef IEEE80211_SUPPORT_SUPERG
1980 + sizeof(struct ieee80211_ath_ie)
1784 + sizeof(struct ieee80211_ath_ie)
1785#endif
1981 + (vap->iv_appie_wpa != NULL ?
1982 vap->iv_appie_wpa->ie_len : 0)
1983 + (vap->iv_appie_assocreq != NULL ?
1984 vap->iv_appie_assocreq->ie_len : 0)
1985 );
1986 if (m == NULL)
1987 senderr(ENOMEM, is_tx_nobuf);
1988
1989 KASSERT(vap->iv_opmode == IEEE80211_M_STA,
1990 ("wrong mode %u", vap->iv_opmode));
1991 capinfo = IEEE80211_CAPINFO_ESS;
1992 if (vap->iv_flags & IEEE80211_F_PRIVACY)
1993 capinfo |= IEEE80211_CAPINFO_PRIVACY;
1994 /*
1995 * NB: Some 11a AP's reject the request when
1996 * short premable is set.
1997 */
1998 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1999 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2000 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2001 if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2002 (ic->ic_caps & IEEE80211_C_SHSLOT))
2003 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2004 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2005 (vap->iv_flags & IEEE80211_F_DOTH))
2006 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2007 *(uint16_t *)frm = htole16(capinfo);
2008 frm += 2;
2009
2010 KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2011 *(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2012 bss->ni_intval));
2013 frm += 2;
2014
2015 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2016 IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2017 frm += IEEE80211_ADDR_LEN;
2018 }
2019
2020 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2021 frm = ieee80211_add_rates(frm, &ni->ni_rates);
2022 if (vap->iv_flags & IEEE80211_F_WPA2) {
2023 if (vap->iv_rsn_ie != NULL)
2024 frm = add_ie(frm, vap->iv_rsn_ie);
2025 /* XXX else complain? */
2026 }
2027 frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2028 if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2029 frm = ieee80211_add_powercapability(frm,
2030 ic->ic_curchan);
2031 frm = ieee80211_add_supportedchannels(frm, ic);
2032 }
2033 if ((vap->iv_flags_ext & IEEE80211_FEXT_HT) &&
2034 ni->ni_ies.htcap_ie != NULL &&
2035 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP)
2036 frm = ieee80211_add_htcap(frm, ni);
2037 if (vap->iv_flags & IEEE80211_F_WPA1) {
2038 if (vap->iv_wpa_ie != NULL)
2039 frm = add_ie(frm, vap->iv_wpa_ie);
2040 /* XXX else complain */
2041 }
2042 if ((ic->ic_flags & IEEE80211_F_WME) &&
2043 ni->ni_ies.wme_ie != NULL)
2044 frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
2045 if ((vap->iv_flags_ext & IEEE80211_FEXT_HT) &&
2046 ni->ni_ies.htcap_ie != NULL &&
2047 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR)
2048 frm = ieee80211_add_htcap_vendor(frm, ni);
1786 + (vap->iv_appie_wpa != NULL ?
1787 vap->iv_appie_wpa->ie_len : 0)
1788 + (vap->iv_appie_assocreq != NULL ?
1789 vap->iv_appie_assocreq->ie_len : 0)
1790 );
1791 if (m == NULL)
1792 senderr(ENOMEM, is_tx_nobuf);
1793
1794 KASSERT(vap->iv_opmode == IEEE80211_M_STA,
1795 ("wrong mode %u", vap->iv_opmode));
1796 capinfo = IEEE80211_CAPINFO_ESS;
1797 if (vap->iv_flags & IEEE80211_F_PRIVACY)
1798 capinfo |= IEEE80211_CAPINFO_PRIVACY;
1799 /*
1800 * NB: Some 11a AP's reject the request when
1801 * short premable is set.
1802 */
1803 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1804 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
1805 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1806 if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
1807 (ic->ic_caps & IEEE80211_C_SHSLOT))
1808 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1809 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
1810 (vap->iv_flags & IEEE80211_F_DOTH))
1811 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
1812 *(uint16_t *)frm = htole16(capinfo);
1813 frm += 2;
1814
1815 KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
1816 *(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
1817 bss->ni_intval));
1818 frm += 2;
1819
1820 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
1821 IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
1822 frm += IEEE80211_ADDR_LEN;
1823 }
1824
1825 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
1826 frm = ieee80211_add_rates(frm, &ni->ni_rates);
1827 if (vap->iv_flags & IEEE80211_F_WPA2) {
1828 if (vap->iv_rsn_ie != NULL)
1829 frm = add_ie(frm, vap->iv_rsn_ie);
1830 /* XXX else complain? */
1831 }
1832 frm = ieee80211_add_xrates(frm, &ni->ni_rates);
1833 if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
1834 frm = ieee80211_add_powercapability(frm,
1835 ic->ic_curchan);
1836 frm = ieee80211_add_supportedchannels(frm, ic);
1837 }
1838 if ((vap->iv_flags_ext & IEEE80211_FEXT_HT) &&
1839 ni->ni_ies.htcap_ie != NULL &&
1840 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP)
1841 frm = ieee80211_add_htcap(frm, ni);
1842 if (vap->iv_flags & IEEE80211_F_WPA1) {
1843 if (vap->iv_wpa_ie != NULL)
1844 frm = add_ie(frm, vap->iv_wpa_ie);
1845 /* XXX else complain */
1846 }
1847 if ((ic->ic_flags & IEEE80211_F_WME) &&
1848 ni->ni_ies.wme_ie != NULL)
1849 frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
1850 if ((vap->iv_flags_ext & IEEE80211_FEXT_HT) &&
1851 ni->ni_ies.htcap_ie != NULL &&
1852 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR)
1853 frm = ieee80211_add_htcap_vendor(frm, ni);
1854#ifdef IEEE80211_SUPPORT_SUPERG
2049 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2050 frm = ieee80211_add_ath(frm,
2051 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2052 (vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2053 ni->ni_authmode != IEEE80211_AUTH_8021X &&
2054 vap->iv_def_txkey != IEEE80211_KEYIX_NONE ?
2055 vap->iv_def_txkey : 0x7fff);
1855 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
1856 frm = ieee80211_add_ath(frm,
1857 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
1858 (vap->iv_flags & IEEE80211_F_WPA) == 0 &&
1859 ni->ni_authmode != IEEE80211_AUTH_8021X &&
1860 vap->iv_def_txkey != IEEE80211_KEYIX_NONE ?
1861 vap->iv_def_txkey : 0x7fff);
1862#endif /* IEEE80211_SUPPORT_SUPERG */
2056 if (vap->iv_appie_assocreq != NULL)
2057 frm = add_appie(frm, vap->iv_appie_assocreq);
2058 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2059
2060 ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2061 (void *) vap->iv_state);
2062 break;
2063
2064 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2065 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2066 /*
2067 * asresp frame format
2068 * [2] capability information
2069 * [2] status
2070 * [2] association ID
2071 * [tlv] supported rates
2072 * [tlv] extended supported rates
2073 * [tlv] HT capabilities (standard, if STA enabled)
2074 * [tlv] HT information (standard, if STA enabled)
2075 * [tlv] WME (if configured and STA enabled)
2076 * [tlv] HT capabilities (vendor OUI, if STA enabled)
2077 * [tlv] HT information (vendor OUI, if STA enabled)
2078 * [tlv] Atheros capabilities (if STA enabled)
2079 * [tlv] AppIE's (optional)
2080 */
2081 m = ieee80211_getmgtframe(&frm,
2082 ic->ic_headroom + sizeof(struct ieee80211_frame),
2083 sizeof(uint16_t)
2084 + sizeof(uint16_t)
2085 + sizeof(uint16_t)
2086 + 2 + IEEE80211_RATE_SIZE
2087 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2088 + sizeof(struct ieee80211_ie_htcap) + 4
2089 + sizeof(struct ieee80211_ie_htinfo) + 4
2090 + sizeof(struct ieee80211_wme_param)
1863 if (vap->iv_appie_assocreq != NULL)
1864 frm = add_appie(frm, vap->iv_appie_assocreq);
1865 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
1866
1867 ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
1868 (void *) vap->iv_state);
1869 break;
1870
1871 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
1872 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
1873 /*
1874 * asresp frame format
1875 * [2] capability information
1876 * [2] status
1877 * [2] association ID
1878 * [tlv] supported rates
1879 * [tlv] extended supported rates
1880 * [tlv] HT capabilities (standard, if STA enabled)
1881 * [tlv] HT information (standard, if STA enabled)
1882 * [tlv] WME (if configured and STA enabled)
1883 * [tlv] HT capabilities (vendor OUI, if STA enabled)
1884 * [tlv] HT information (vendor OUI, if STA enabled)
1885 * [tlv] Atheros capabilities (if STA enabled)
1886 * [tlv] AppIE's (optional)
1887 */
1888 m = ieee80211_getmgtframe(&frm,
1889 ic->ic_headroom + sizeof(struct ieee80211_frame),
1890 sizeof(uint16_t)
1891 + sizeof(uint16_t)
1892 + sizeof(uint16_t)
1893 + 2 + IEEE80211_RATE_SIZE
1894 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1895 + sizeof(struct ieee80211_ie_htcap) + 4
1896 + sizeof(struct ieee80211_ie_htinfo) + 4
1897 + sizeof(struct ieee80211_wme_param)
1898#ifdef IEEE80211_SUPPORT_SUPERG
2091 + sizeof(struct ieee80211_ath_ie)
1899 + sizeof(struct ieee80211_ath_ie)
1900#endif
2092 + (vap->iv_appie_assocresp != NULL ?
2093 vap->iv_appie_assocresp->ie_len : 0)
2094 );
2095 if (m == NULL)
2096 senderr(ENOMEM, is_tx_nobuf);
2097
2098 capinfo = getcapinfo(vap, bss->ni_chan);
2099 *(uint16_t *)frm = htole16(capinfo);
2100 frm += 2;
2101
2102 *(uint16_t *)frm = htole16(arg); /* status */
2103 frm += 2;
2104
2105 if (arg == IEEE80211_STATUS_SUCCESS) {
2106 *(uint16_t *)frm = htole16(ni->ni_associd);
2107 IEEE80211_NODE_STAT(ni, tx_assoc);
2108 } else
2109 IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2110 frm += 2;
2111
2112 frm = ieee80211_add_rates(frm, &ni->ni_rates);
2113 frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2114 /* NB: respond according to what we received */
2115 if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2116 frm = ieee80211_add_htcap(frm, ni);
2117 frm = ieee80211_add_htinfo(frm, ni);
2118 }
2119 if ((vap->iv_flags & IEEE80211_F_WME) &&
2120 ni->ni_ies.wme_ie != NULL)
2121 frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2122 if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2123 frm = ieee80211_add_htcap_vendor(frm, ni);
2124 frm = ieee80211_add_htinfo_vendor(frm, ni);
2125 }
1901 + (vap->iv_appie_assocresp != NULL ?
1902 vap->iv_appie_assocresp->ie_len : 0)
1903 );
1904 if (m == NULL)
1905 senderr(ENOMEM, is_tx_nobuf);
1906
1907 capinfo = getcapinfo(vap, bss->ni_chan);
1908 *(uint16_t *)frm = htole16(capinfo);
1909 frm += 2;
1910
1911 *(uint16_t *)frm = htole16(arg); /* status */
1912 frm += 2;
1913
1914 if (arg == IEEE80211_STATUS_SUCCESS) {
1915 *(uint16_t *)frm = htole16(ni->ni_associd);
1916 IEEE80211_NODE_STAT(ni, tx_assoc);
1917 } else
1918 IEEE80211_NODE_STAT(ni, tx_assoc_fail);
1919 frm += 2;
1920
1921 frm = ieee80211_add_rates(frm, &ni->ni_rates);
1922 frm = ieee80211_add_xrates(frm, &ni->ni_rates);
1923 /* NB: respond according to what we received */
1924 if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
1925 frm = ieee80211_add_htcap(frm, ni);
1926 frm = ieee80211_add_htinfo(frm, ni);
1927 }
1928 if ((vap->iv_flags & IEEE80211_F_WME) &&
1929 ni->ni_ies.wme_ie != NULL)
1930 frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
1931 if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
1932 frm = ieee80211_add_htcap_vendor(frm, ni);
1933 frm = ieee80211_add_htinfo_vendor(frm, ni);
1934 }
1935#ifdef IEEE80211_SUPPORT_SUPERG
2126 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2127 frm = ieee80211_add_ath(frm,
2128 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2129 ni->ni_ath_defkeyix);
1936 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
1937 frm = ieee80211_add_ath(frm,
1938 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
1939 ni->ni_ath_defkeyix);
1940#endif /* IEEE80211_SUPPORT_SUPERG */
2130 if (vap->iv_appie_assocresp != NULL)
2131 frm = add_appie(frm, vap->iv_appie_assocresp);
2132 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2133 break;
2134
2135 case IEEE80211_FC0_SUBTYPE_DISASSOC:
2136 IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2137 "send station disassociate (reason %d)", arg);
2138 m = ieee80211_getmgtframe(&frm,
2139 ic->ic_headroom + sizeof(struct ieee80211_frame),
2140 sizeof(uint16_t));
2141 if (m == NULL)
2142 senderr(ENOMEM, is_tx_nobuf);
2143 *(uint16_t *)frm = htole16(arg); /* reason */
2144 m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2145
2146 IEEE80211_NODE_STAT(ni, tx_disassoc);
2147 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2148 break;
2149
2150 default:
2151 IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2152 "invalid mgmt frame type %u", type);
2153 senderr(EINVAL, is_tx_unknownmgt);
2154 /* NOTREACHED */
2155 }
2156
2157 /* NB: force non-ProbeResp frames to the highest queue */
2158 params.ibp_pri = WME_AC_VO;
2159 params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2160 /* NB: we know all frames are unicast */
2161 params.ibp_try0 = bss->ni_txparms->maxretry;
2162 params.ibp_power = bss->ni_txpower;
2163 return ieee80211_mgmt_output(ni, m, type, &params);
2164bad:
2165 ieee80211_free_node(ni);
2166 return ret;
2167#undef senderr
2168#undef HTFLAGS
2169}
2170
2171/*
2172 * Return an mbuf with a probe response frame in it.
2173 * Space is left to prepend and 802.11 header at the
2174 * front but it's left to the caller to fill in.
2175 */
2176struct mbuf *
2177ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2178{
2179 struct ieee80211vap *vap = bss->ni_vap;
2180 struct ieee80211com *ic = bss->ni_ic;
2181 const struct ieee80211_rateset *rs;
2182 struct mbuf *m;
2183 uint16_t capinfo;
2184 uint8_t *frm;
2185
2186 /*
2187 * probe response frame format
2188 * [8] time stamp
2189 * [2] beacon interval
2190 * [2] cabability information
2191 * [tlv] ssid
2192 * [tlv] supported rates
2193 * [tlv] parameter set (FH/DS)
2194 * [tlv] parameter set (IBSS)
2195 * [tlv] country (optional)
2196 * [3] power control (optional)
2197 * [5] channel switch announcement (CSA) (optional)
2198 * [tlv] extended rate phy (ERP)
2199 * [tlv] extended supported rates
2200 * [tlv] RSN (optional)
2201 * [tlv] HT capabilities
2202 * [tlv] HT information
2203 * [tlv] WPA (optional)
2204 * [tlv] WME (optional)
2205 * [tlv] Vendor OUI HT capabilities (optional)
2206 * [tlv] Vendor OUI HT information (optional)
2207 * [tlv] Atheros capabilities
2208 * [tlv] AppIE's (optional)
2209 */
2210 m = ieee80211_getmgtframe(&frm,
2211 ic->ic_headroom + sizeof(struct ieee80211_frame),
2212 8
2213 + sizeof(uint16_t)
2214 + sizeof(uint16_t)
2215 + 2 + IEEE80211_NWID_LEN
2216 + 2 + IEEE80211_RATE_SIZE
2217 + 7 /* max(7,3) */
2218 + IEEE80211_COUNTRY_MAX_SIZE
2219 + 3
2220 + sizeof(struct ieee80211_csa_ie)
2221 + 3
2222 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2223 + sizeof(struct ieee80211_ie_wpa)
2224 + sizeof(struct ieee80211_ie_htcap)
2225 + sizeof(struct ieee80211_ie_htinfo)
2226 + sizeof(struct ieee80211_ie_wpa)
2227 + sizeof(struct ieee80211_wme_param)
2228 + 4 + sizeof(struct ieee80211_ie_htcap)
2229 + 4 + sizeof(struct ieee80211_ie_htinfo)
1941 if (vap->iv_appie_assocresp != NULL)
1942 frm = add_appie(frm, vap->iv_appie_assocresp);
1943 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
1944 break;
1945
1946 case IEEE80211_FC0_SUBTYPE_DISASSOC:
1947 IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
1948 "send station disassociate (reason %d)", arg);
1949 m = ieee80211_getmgtframe(&frm,
1950 ic->ic_headroom + sizeof(struct ieee80211_frame),
1951 sizeof(uint16_t));
1952 if (m == NULL)
1953 senderr(ENOMEM, is_tx_nobuf);
1954 *(uint16_t *)frm = htole16(arg); /* reason */
1955 m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
1956
1957 IEEE80211_NODE_STAT(ni, tx_disassoc);
1958 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
1959 break;
1960
1961 default:
1962 IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
1963 "invalid mgmt frame type %u", type);
1964 senderr(EINVAL, is_tx_unknownmgt);
1965 /* NOTREACHED */
1966 }
1967
1968 /* NB: force non-ProbeResp frames to the highest queue */
1969 params.ibp_pri = WME_AC_VO;
1970 params.ibp_rate0 = bss->ni_txparms->mgmtrate;
1971 /* NB: we know all frames are unicast */
1972 params.ibp_try0 = bss->ni_txparms->maxretry;
1973 params.ibp_power = bss->ni_txpower;
1974 return ieee80211_mgmt_output(ni, m, type, &params);
1975bad:
1976 ieee80211_free_node(ni);
1977 return ret;
1978#undef senderr
1979#undef HTFLAGS
1980}
1981
1982/*
1983 * Return an mbuf with a probe response frame in it.
1984 * Space is left to prepend and 802.11 header at the
1985 * front but it's left to the caller to fill in.
1986 */
1987struct mbuf *
1988ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
1989{
1990 struct ieee80211vap *vap = bss->ni_vap;
1991 struct ieee80211com *ic = bss->ni_ic;
1992 const struct ieee80211_rateset *rs;
1993 struct mbuf *m;
1994 uint16_t capinfo;
1995 uint8_t *frm;
1996
1997 /*
1998 * probe response frame format
1999 * [8] time stamp
2000 * [2] beacon interval
2001 * [2] cabability information
2002 * [tlv] ssid
2003 * [tlv] supported rates
2004 * [tlv] parameter set (FH/DS)
2005 * [tlv] parameter set (IBSS)
2006 * [tlv] country (optional)
2007 * [3] power control (optional)
2008 * [5] channel switch announcement (CSA) (optional)
2009 * [tlv] extended rate phy (ERP)
2010 * [tlv] extended supported rates
2011 * [tlv] RSN (optional)
2012 * [tlv] HT capabilities
2013 * [tlv] HT information
2014 * [tlv] WPA (optional)
2015 * [tlv] WME (optional)
2016 * [tlv] Vendor OUI HT capabilities (optional)
2017 * [tlv] Vendor OUI HT information (optional)
2018 * [tlv] Atheros capabilities
2019 * [tlv] AppIE's (optional)
2020 */
2021 m = ieee80211_getmgtframe(&frm,
2022 ic->ic_headroom + sizeof(struct ieee80211_frame),
2023 8
2024 + sizeof(uint16_t)
2025 + sizeof(uint16_t)
2026 + 2 + IEEE80211_NWID_LEN
2027 + 2 + IEEE80211_RATE_SIZE
2028 + 7 /* max(7,3) */
2029 + IEEE80211_COUNTRY_MAX_SIZE
2030 + 3
2031 + sizeof(struct ieee80211_csa_ie)
2032 + 3
2033 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2034 + sizeof(struct ieee80211_ie_wpa)
2035 + sizeof(struct ieee80211_ie_htcap)
2036 + sizeof(struct ieee80211_ie_htinfo)
2037 + sizeof(struct ieee80211_ie_wpa)
2038 + sizeof(struct ieee80211_wme_param)
2039 + 4 + sizeof(struct ieee80211_ie_htcap)
2040 + 4 + sizeof(struct ieee80211_ie_htinfo)
2041#ifdef IEEE80211_SUPPORT_SUPERG
2230 + sizeof(struct ieee80211_ath_ie)
2042 + sizeof(struct ieee80211_ath_ie)
2043#endif
2231 + (vap->iv_appie_proberesp != NULL ?
2232 vap->iv_appie_proberesp->ie_len : 0)
2233 );
2234 if (m == NULL) {
2235 vap->iv_stats.is_tx_nobuf++;
2236 return NULL;
2237 }
2238
2239 memset(frm, 0, 8); /* timestamp should be filled later */
2240 frm += 8;
2241 *(uint16_t *)frm = htole16(bss->ni_intval);
2242 frm += 2;
2243 capinfo = getcapinfo(vap, bss->ni_chan);
2244 *(uint16_t *)frm = htole16(capinfo);
2245 frm += 2;
2246
2247 frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2248 rs = ieee80211_get_suprates(ic, bss->ni_chan);
2249 frm = ieee80211_add_rates(frm, rs);
2250
2251 if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2252 *frm++ = IEEE80211_ELEMID_FHPARMS;
2253 *frm++ = 5;
2254 *frm++ = bss->ni_fhdwell & 0x00ff;
2255 *frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2256 *frm++ = IEEE80211_FH_CHANSET(
2257 ieee80211_chan2ieee(ic, bss->ni_chan));
2258 *frm++ = IEEE80211_FH_CHANPAT(
2259 ieee80211_chan2ieee(ic, bss->ni_chan));
2260 *frm++ = bss->ni_fhindex;
2261 } else {
2262 *frm++ = IEEE80211_ELEMID_DSPARMS;
2263 *frm++ = 1;
2264 *frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2265 }
2266
2267 if (vap->iv_opmode == IEEE80211_M_IBSS) {
2268 *frm++ = IEEE80211_ELEMID_IBSSPARMS;
2269 *frm++ = 2;
2270 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
2271 }
2272 if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2273 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2274 frm = ieee80211_add_countryie(frm, ic);
2275 if (vap->iv_flags & IEEE80211_F_DOTH) {
2276 if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2277 frm = ieee80211_add_powerconstraint(frm, vap);
2278 if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2279 frm = ieee80211_add_csa(frm, vap);
2280 }
2281 if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2282 frm = ieee80211_add_erp(frm, ic);
2283 frm = ieee80211_add_xrates(frm, rs);
2284 if (vap->iv_flags & IEEE80211_F_WPA2) {
2285 if (vap->iv_rsn_ie != NULL)
2286 frm = add_ie(frm, vap->iv_rsn_ie);
2287 /* XXX else complain? */
2288 }
2289 /*
2290 * NB: legacy 11b clients do not get certain ie's.
2291 * The caller identifies such clients by passing
2292 * a token in legacy to us. Could expand this to be
2293 * any legacy client for stuff like HT ie's.
2294 */
2295 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2296 legacy != IEEE80211_SEND_LEGACY_11B) {
2297 frm = ieee80211_add_htcap(frm, bss);
2298 frm = ieee80211_add_htinfo(frm, bss);
2299 }
2300 if (vap->iv_flags & IEEE80211_F_WPA1) {
2301 if (vap->iv_wpa_ie != NULL)
2302 frm = add_ie(frm, vap->iv_wpa_ie);
2303 /* XXX else complain? */
2304 }
2305 if (vap->iv_flags & IEEE80211_F_WME)
2306 frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2307 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2308 (vap->iv_flags_ext & IEEE80211_FEXT_HTCOMPAT) &&
2309 legacy != IEEE80211_SEND_LEGACY_11B) {
2310 frm = ieee80211_add_htcap_vendor(frm, bss);
2311 frm = ieee80211_add_htinfo_vendor(frm, bss);
2312 }
2044 + (vap->iv_appie_proberesp != NULL ?
2045 vap->iv_appie_proberesp->ie_len : 0)
2046 );
2047 if (m == NULL) {
2048 vap->iv_stats.is_tx_nobuf++;
2049 return NULL;
2050 }
2051
2052 memset(frm, 0, 8); /* timestamp should be filled later */
2053 frm += 8;
2054 *(uint16_t *)frm = htole16(bss->ni_intval);
2055 frm += 2;
2056 capinfo = getcapinfo(vap, bss->ni_chan);
2057 *(uint16_t *)frm = htole16(capinfo);
2058 frm += 2;
2059
2060 frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2061 rs = ieee80211_get_suprates(ic, bss->ni_chan);
2062 frm = ieee80211_add_rates(frm, rs);
2063
2064 if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2065 *frm++ = IEEE80211_ELEMID_FHPARMS;
2066 *frm++ = 5;
2067 *frm++ = bss->ni_fhdwell & 0x00ff;
2068 *frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2069 *frm++ = IEEE80211_FH_CHANSET(
2070 ieee80211_chan2ieee(ic, bss->ni_chan));
2071 *frm++ = IEEE80211_FH_CHANPAT(
2072 ieee80211_chan2ieee(ic, bss->ni_chan));
2073 *frm++ = bss->ni_fhindex;
2074 } else {
2075 *frm++ = IEEE80211_ELEMID_DSPARMS;
2076 *frm++ = 1;
2077 *frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2078 }
2079
2080 if (vap->iv_opmode == IEEE80211_M_IBSS) {
2081 *frm++ = IEEE80211_ELEMID_IBSSPARMS;
2082 *frm++ = 2;
2083 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
2084 }
2085 if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2086 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2087 frm = ieee80211_add_countryie(frm, ic);
2088 if (vap->iv_flags & IEEE80211_F_DOTH) {
2089 if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2090 frm = ieee80211_add_powerconstraint(frm, vap);
2091 if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2092 frm = ieee80211_add_csa(frm, vap);
2093 }
2094 if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2095 frm = ieee80211_add_erp(frm, ic);
2096 frm = ieee80211_add_xrates(frm, rs);
2097 if (vap->iv_flags & IEEE80211_F_WPA2) {
2098 if (vap->iv_rsn_ie != NULL)
2099 frm = add_ie(frm, vap->iv_rsn_ie);
2100 /* XXX else complain? */
2101 }
2102 /*
2103 * NB: legacy 11b clients do not get certain ie's.
2104 * The caller identifies such clients by passing
2105 * a token in legacy to us. Could expand this to be
2106 * any legacy client for stuff like HT ie's.
2107 */
2108 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2109 legacy != IEEE80211_SEND_LEGACY_11B) {
2110 frm = ieee80211_add_htcap(frm, bss);
2111 frm = ieee80211_add_htinfo(frm, bss);
2112 }
2113 if (vap->iv_flags & IEEE80211_F_WPA1) {
2114 if (vap->iv_wpa_ie != NULL)
2115 frm = add_ie(frm, vap->iv_wpa_ie);
2116 /* XXX else complain? */
2117 }
2118 if (vap->iv_flags & IEEE80211_F_WME)
2119 frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2120 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2121 (vap->iv_flags_ext & IEEE80211_FEXT_HTCOMPAT) &&
2122 legacy != IEEE80211_SEND_LEGACY_11B) {
2123 frm = ieee80211_add_htcap_vendor(frm, bss);
2124 frm = ieee80211_add_htinfo_vendor(frm, bss);
2125 }
2126#ifdef IEEE80211_SUPPORT_SUPERG
2313 if (bss->ni_ies.ath_ie != NULL && legacy != IEEE80211_SEND_LEGACY_11B)
2314 frm = ieee80211_add_ath(frm, bss->ni_ath_flags,
2315 bss->ni_ath_defkeyix);
2127 if (bss->ni_ies.ath_ie != NULL && legacy != IEEE80211_SEND_LEGACY_11B)
2128 frm = ieee80211_add_ath(frm, bss->ni_ath_flags,
2129 bss->ni_ath_defkeyix);
2130#endif
2316 if (vap->iv_appie_proberesp != NULL)
2317 frm = add_appie(frm, vap->iv_appie_proberesp);
2318 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2319
2320 return m;
2321}
2322
2323/*
2324 * Send a probe response frame to the specified mac address.
2325 * This does not go through the normal mgt frame api so we
2326 * can specify the destination address and re-use the bss node
2327 * for the sta reference.
2328 */
2329int
2330ieee80211_send_proberesp(struct ieee80211vap *vap,
2331 const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
2332{
2333 struct ieee80211_node *bss = vap->iv_bss;
2334 struct ieee80211com *ic = vap->iv_ic;
2335 struct ieee80211_frame *wh;
2336 struct mbuf *m;
2337
2338 if (vap->iv_state == IEEE80211_S_CAC) {
2339 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
2340 "block %s frame in CAC state", "probe response");
2341 vap->iv_stats.is_tx_badstate++;
2342 return EIO; /* XXX */
2343 }
2344
2345 /*
2346 * Hold a reference on the node so it doesn't go away until after
2347 * the xmit is complete all the way in the driver. On error we
2348 * will remove our reference.
2349 */
2350 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2351 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2352 __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
2353 ieee80211_node_refcnt(bss)+1);
2354 ieee80211_ref_node(bss);
2355
2356 m = ieee80211_alloc_proberesp(bss, legacy);
2357 if (m == NULL) {
2358 ieee80211_free_node(bss);
2359 return ENOMEM;
2360 }
2361
2362 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
2363 KASSERT(m != NULL, ("no room for header"));
2364
2365 wh = mtod(m, struct ieee80211_frame *);
2366 ieee80211_send_setup(bss, wh,
2367 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
2368 IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
2369 /* XXX power management? */
2370 m->m_flags |= M_ENCAP; /* mark encapsulated */
2371
2372 M_WME_SETAC(m, WME_AC_BE);
2373
2374 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2375 "send probe resp on channel %u to %s%s\n",
2376 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
2377 legacy ? " <legacy>" : "");
2378 IEEE80211_NODE_STAT(bss, tx_mgmt);
2379
2380 return ic->ic_raw_xmit(bss, m, NULL);
2381}
2382
2383/*
2384 * Allocate and build a RTS (Request To Send) control frame.
2385 */
2386struct mbuf *
2387ieee80211_alloc_rts(struct ieee80211com *ic,
2388 const uint8_t ra[IEEE80211_ADDR_LEN],
2389 const uint8_t ta[IEEE80211_ADDR_LEN],
2390 uint16_t dur)
2391{
2392 struct ieee80211_frame_rts *rts;
2393 struct mbuf *m;
2394
2395 /* XXX honor ic_headroom */
2396 m = m_gethdr(M_DONTWAIT, MT_DATA);
2397 if (m != NULL) {
2398 rts = mtod(m, struct ieee80211_frame_rts *);
2399 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2400 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
2401 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2402 *(u_int16_t *)rts->i_dur = htole16(dur);
2403 IEEE80211_ADDR_COPY(rts->i_ra, ra);
2404 IEEE80211_ADDR_COPY(rts->i_ta, ta);
2405
2406 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
2407 }
2408 return m;
2409}
2410
2411/*
2412 * Allocate and build a CTS (Clear To Send) control frame.
2413 */
2414struct mbuf *
2415ieee80211_alloc_cts(struct ieee80211com *ic,
2416 const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
2417{
2418 struct ieee80211_frame_cts *cts;
2419 struct mbuf *m;
2420
2421 /* XXX honor ic_headroom */
2422 m = m_gethdr(M_DONTWAIT, MT_DATA);
2423 if (m != NULL) {
2424 cts = mtod(m, struct ieee80211_frame_cts *);
2425 cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2426 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
2427 cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2428 *(u_int16_t *)cts->i_dur = htole16(dur);
2429 IEEE80211_ADDR_COPY(cts->i_ra, ra);
2430
2431 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
2432 }
2433 return m;
2434}
2435
2436static void
2437ieee80211_tx_mgt_timeout(void *arg)
2438{
2439 struct ieee80211_node *ni = arg;
2440 struct ieee80211vap *vap = ni->ni_vap;
2441
2442 if (vap->iv_state != IEEE80211_S_INIT &&
2443 (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2444 /*
2445 * NB: it's safe to specify a timeout as the reason here;
2446 * it'll only be used in the right state.
2447 */
2448 ieee80211_new_state(vap, IEEE80211_S_SCAN,
2449 IEEE80211_SCAN_FAIL_TIMEOUT);
2450 }
2451}
2452
2453static void
2454ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
2455{
2456 struct ieee80211vap *vap = ni->ni_vap;
2457 enum ieee80211_state ostate = (enum ieee80211_state) arg;
2458
2459 /*
2460 * Frame transmit completed; arrange timer callback. If
2461 * transmit was successfuly we wait for response. Otherwise
2462 * we arrange an immediate callback instead of doing the
2463 * callback directly since we don't know what state the driver
2464 * is in (e.g. what locks it is holding). This work should
2465 * not be too time-critical and not happen too often so the
2466 * added overhead is acceptable.
2467 *
2468 * XXX what happens if !acked but response shows up before callback?
2469 */
2470 if (vap->iv_state == ostate)
2471 callout_reset(&vap->iv_mgtsend,
2472 status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
2473 ieee80211_tx_mgt_timeout, ni);
2474}
2475
2476static void
2477ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
2478 struct ieee80211_beacon_offsets *bo, struct ieee80211_node *ni)
2479{
2480 struct ieee80211vap *vap = ni->ni_vap;
2481 struct ieee80211com *ic = ni->ni_ic;
2482 struct ieee80211_rateset *rs = &ni->ni_rates;
2483 uint16_t capinfo;
2484
2485 /*
2486 * beacon frame format
2487 * [8] time stamp
2488 * [2] beacon interval
2489 * [2] cabability information
2490 * [tlv] ssid
2491 * [tlv] supported rates
2492 * [3] parameter set (DS)
2493 * [8] CF parameter set (optional)
2494 * [tlv] parameter set (IBSS/TIM)
2495 * [tlv] country (optional)
2496 * [3] power control (optional)
2497 * [5] channel switch announcement (CSA) (optional)
2498 * [tlv] extended rate phy (ERP)
2499 * [tlv] extended supported rates
2500 * [tlv] RSN parameters
2501 * [tlv] HT capabilities
2502 * [tlv] HT information
2503 * XXX Vendor-specific OIDs (e.g. Atheros)
2504 * [tlv] WPA parameters
2505 * [tlv] WME parameters
2506 * [tlv] Vendor OUI HT capabilities (optional)
2507 * [tlv] Vendor OUI HT information (optional)
2508 * [tlv] TDMA parameters (optional)
2509 * [tlv] application data (optional)
2510 */
2511
2512 memset(bo, 0, sizeof(*bo));
2513
2514 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */
2515 frm += 8;
2516 *(uint16_t *)frm = htole16(ni->ni_intval);
2517 frm += 2;
2518 capinfo = getcapinfo(vap, ni->ni_chan);
2519 bo->bo_caps = (uint16_t *)frm;
2520 *(uint16_t *)frm = htole16(capinfo);
2521 frm += 2;
2522 *frm++ = IEEE80211_ELEMID_SSID;
2523 if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
2524 *frm++ = ni->ni_esslen;
2525 memcpy(frm, ni->ni_essid, ni->ni_esslen);
2526 frm += ni->ni_esslen;
2527 } else
2528 *frm++ = 0;
2529 frm = ieee80211_add_rates(frm, rs);
2530 if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
2531 *frm++ = IEEE80211_ELEMID_DSPARMS;
2532 *frm++ = 1;
2533 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
2534 }
2535 if (ic->ic_flags & IEEE80211_F_PCF) {
2536 bo->bo_cfp = frm;
2537 frm = ieee80211_add_cfparms(frm, ic);
2538 }
2539 bo->bo_tim = frm;
2540 if (vap->iv_opmode == IEEE80211_M_IBSS) {
2541 *frm++ = IEEE80211_ELEMID_IBSSPARMS;
2542 *frm++ = 2;
2543 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
2544 bo->bo_tim_len = 0;
2545 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
2546 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
2547
2548 tie->tim_ie = IEEE80211_ELEMID_TIM;
2549 tie->tim_len = 4; /* length */
2550 tie->tim_count = 0; /* DTIM count */
2551 tie->tim_period = vap->iv_dtim_period; /* DTIM period */
2552 tie->tim_bitctl = 0; /* bitmap control */
2553 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */
2554 frm += sizeof(struct ieee80211_tim_ie);
2555 bo->bo_tim_len = 1;
2556 }
2557 bo->bo_tim_trailer = frm;
2558 if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2559 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2560 frm = ieee80211_add_countryie(frm, ic);
2561 if (vap->iv_flags & IEEE80211_F_DOTH) {
2562 if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
2563 frm = ieee80211_add_powerconstraint(frm, vap);
2564 bo->bo_csa = frm;
2565 if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2566 frm = ieee80211_add_csa(frm, vap);
2567 } else
2568 bo->bo_csa = frm;
2569 if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
2570 bo->bo_erp = frm;
2571 frm = ieee80211_add_erp(frm, ic);
2572 }
2573 frm = ieee80211_add_xrates(frm, rs);
2574 if (vap->iv_flags & IEEE80211_F_WPA2) {
2575 if (vap->iv_rsn_ie != NULL)
2576 frm = add_ie(frm, vap->iv_rsn_ie);
2577 /* XXX else complain */
2578 }
2579 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
2580 frm = ieee80211_add_htcap(frm, ni);
2581 bo->bo_htinfo = frm;
2582 frm = ieee80211_add_htinfo(frm, ni);
2583 }
2584 if (vap->iv_flags & IEEE80211_F_WPA1) {
2585 if (vap->iv_wpa_ie != NULL)
2586 frm = add_ie(frm, vap->iv_wpa_ie);
2587 /* XXX else complain */
2588 }
2589 if (vap->iv_flags & IEEE80211_F_WME) {
2590 bo->bo_wme = frm;
2591 frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2592 }
2593 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2594 (vap->iv_flags_ext & IEEE80211_FEXT_HTCOMPAT)) {
2595 frm = ieee80211_add_htcap_vendor(frm, ni);
2596 frm = ieee80211_add_htinfo_vendor(frm, ni);
2597 }
2598#ifdef IEEE80211_SUPPORT_TDMA
2599 if (vap->iv_caps & IEEE80211_C_TDMA) {
2600 bo->bo_tdma = frm;
2601 frm = ieee80211_add_tdma(frm, vap);
2602 }
2603#endif
2604 if (vap->iv_appie_beacon != NULL) {
2605 bo->bo_appie = frm;
2606 bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
2607 frm = add_appie(frm, vap->iv_appie_beacon);
2608 }
2609 bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
2610 bo->bo_csa_trailer_len = frm - bo->bo_csa;
2611 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2612}
2613
2614/*
2615 * Allocate a beacon frame and fillin the appropriate bits.
2616 */
2617struct mbuf *
2618ieee80211_beacon_alloc(struct ieee80211_node *ni,
2619 struct ieee80211_beacon_offsets *bo)
2620{
2621 struct ieee80211vap *vap = ni->ni_vap;
2622 struct ieee80211com *ic = ni->ni_ic;
2623 struct ifnet *ifp = vap->iv_ifp;
2624 struct ieee80211_frame *wh;
2625 struct mbuf *m;
2626 int pktlen;
2627 uint8_t *frm;
2628
2629 /*
2630 * beacon frame format
2631 * [8] time stamp
2632 * [2] beacon interval
2633 * [2] cabability information
2634 * [tlv] ssid
2635 * [tlv] supported rates
2636 * [3] parameter set (DS)
2637 * [8] CF parameter set (optional)
2638 * [tlv] parameter set (IBSS/TIM)
2639 * [tlv] country (optional)
2640 * [3] power control (optional)
2641 * [5] channel switch announcement (CSA) (optional)
2642 * [tlv] extended rate phy (ERP)
2643 * [tlv] extended supported rates
2644 * [tlv] RSN parameters
2645 * [tlv] HT capabilities
2646 * [tlv] HT information
2647 * [tlv] Vendor OUI HT capabilities (optional)
2648 * [tlv] Vendor OUI HT information (optional)
2649 * XXX Vendor-specific OIDs (e.g. Atheros)
2650 * [tlv] WPA parameters
2651 * [tlv] WME parameters
2652 * [tlv] TDMA parameters (optional)
2653 * [tlv] application data (optional)
2654 * NB: we allocate the max space required for the TIM bitmap.
2655 * XXX how big is this?
2656 */
2657 pktlen = 8 /* time stamp */
2658 + sizeof(uint16_t) /* beacon interval */
2659 + sizeof(uint16_t) /* capabilities */
2660 + 2 + ni->ni_esslen /* ssid */
2661 + 2 + IEEE80211_RATE_SIZE /* supported rates */
2662 + 2 + 1 /* DS parameters */
2663 + 2 + 6 /* CF parameters */
2664 + 2 + 4 + vap->iv_tim_len /* DTIM/IBSSPARMS */
2665 + IEEE80211_COUNTRY_MAX_SIZE /* country */
2666 + 2 + 1 /* power control */
2667 + sizeof(struct ieee80211_csa_ie) /* CSA */
2668 + 2 + 1 /* ERP */
2669 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2670 + (vap->iv_caps & IEEE80211_C_WPA ? /* WPA 1+2 */
2671 2*sizeof(struct ieee80211_ie_wpa) : 0)
2672 /* XXX conditional? */
2673 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
2674 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
2675 + (vap->iv_caps & IEEE80211_C_WME ? /* WME */
2676 sizeof(struct ieee80211_wme_param) : 0)
2677#ifdef IEEE80211_SUPPORT_TDMA
2678 + (vap->iv_caps & IEEE80211_C_TDMA ? /* TDMA */
2679 sizeof(struct ieee80211_tdma_param) : 0)
2680#endif
2681 + IEEE80211_MAX_APPIE
2682 ;
2683 m = ieee80211_getmgtframe(&frm,
2684 ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
2685 if (m == NULL) {
2686 IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
2687 "%s: cannot get buf; size %u\n", __func__, pktlen);
2688 vap->iv_stats.is_tx_nobuf++;
2689 return NULL;
2690 }
2691 ieee80211_beacon_construct(m, frm, bo, ni);
2692
2693 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
2694 KASSERT(m != NULL, ("no space for 802.11 header?"));
2695 wh = mtod(m, struct ieee80211_frame *);
2696 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2697 IEEE80211_FC0_SUBTYPE_BEACON;
2698 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2699 *(uint16_t *)wh->i_dur = 0;
2700 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2701 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
2702 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
2703 *(uint16_t *)wh->i_seq = 0;
2704
2705 return m;
2706}
2707
2708/*
2709 * Update the dynamic parts of a beacon frame based on the current state.
2710 */
2711int
2712ieee80211_beacon_update(struct ieee80211_node *ni,
2713 struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast)
2714{
2715 struct ieee80211vap *vap = ni->ni_vap;
2716 struct ieee80211com *ic = ni->ni_ic;
2717 int len_changed = 0;
2718 uint16_t capinfo;
2719
2720 IEEE80211_LOCK(ic);
2721 /*
2722 * Handle 11h channel change when we've reached the count.
2723 * We must recalculate the beacon frame contents to account
2724 * for the new channel. Note we do this only for the first
2725 * vap that reaches this point; subsequent vaps just update
2726 * their beacon state to reflect the recalculated channel.
2727 */
2728 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
2729 vap->iv_csa_count == ic->ic_csa_count) {
2730 vap->iv_csa_count = 0;
2731 /*
2732 * Effect channel change before reconstructing the beacon
2733 * frame contents as many places reference ni_chan.
2734 */
2735 if (ic->ic_csa_newchan != NULL)
2736 ieee80211_csa_completeswitch(ic);
2737 /*
2738 * NB: ieee80211_beacon_construct clears all pending
2739 * updates in bo_flags so we don't need to explicitly
2740 * clear IEEE80211_BEACON_CSA.
2741 */
2742 ieee80211_beacon_construct(m,
2743 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), bo, ni);
2744
2745 /* XXX do WME aggressive mode processing? */
2746 IEEE80211_UNLOCK(ic);
2747 return 1; /* just assume length changed */
2748 }
2749
2750 /* XXX faster to recalculate entirely or just changes? */
2751 capinfo = getcapinfo(vap, ni->ni_chan);
2752 *bo->bo_caps = htole16(capinfo);
2753
2754 if (vap->iv_flags & IEEE80211_F_WME) {
2755 struct ieee80211_wme_state *wme = &ic->ic_wme;
2756
2757 /*
2758 * Check for agressive mode change. When there is
2759 * significant high priority traffic in the BSS
2760 * throttle back BE traffic by using conservative
2761 * parameters. Otherwise BE uses agressive params
2762 * to optimize performance of legacy/non-QoS traffic.
2763 */
2764 if (wme->wme_flags & WME_F_AGGRMODE) {
2765 if (wme->wme_hipri_traffic >
2766 wme->wme_hipri_switch_thresh) {
2767 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
2768 "%s: traffic %u, disable aggressive mode\n",
2769 __func__, wme->wme_hipri_traffic);
2770 wme->wme_flags &= ~WME_F_AGGRMODE;
2771 ieee80211_wme_updateparams_locked(vap);
2772 wme->wme_hipri_traffic =
2773 wme->wme_hipri_switch_hysteresis;
2774 } else
2775 wme->wme_hipri_traffic = 0;
2776 } else {
2777 if (wme->wme_hipri_traffic <=
2778 wme->wme_hipri_switch_thresh) {
2779 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
2780 "%s: traffic %u, enable aggressive mode\n",
2781 __func__, wme->wme_hipri_traffic);
2782 wme->wme_flags |= WME_F_AGGRMODE;
2783 ieee80211_wme_updateparams_locked(vap);
2784 wme->wme_hipri_traffic = 0;
2785 } else
2786 wme->wme_hipri_traffic =
2787 wme->wme_hipri_switch_hysteresis;
2788 }
2789 if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
2790 (void) ieee80211_add_wme_param(bo->bo_wme, wme);
2791 clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
2792 }
2793 }
2794
2795 if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) {
2796 ieee80211_ht_update_beacon(vap, bo);
2797 clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
2798 }
2799#ifdef IEEE80211_SUPPORT_TDMA
2800 if (vap->iv_caps & IEEE80211_C_TDMA) {
2801 /*
2802 * NB: the beacon is potentially updated every TBTT.
2803 */
2804 ieee80211_tdma_update_beacon(vap, bo);
2805 }
2806#endif
2807 if (vap->iv_opmode == IEEE80211_M_HOSTAP) { /* NB: no IBSS support*/
2808 struct ieee80211_tim_ie *tie =
2809 (struct ieee80211_tim_ie *) bo->bo_tim;
2810 if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
2811 u_int timlen, timoff, i;
2812 /*
2813 * ATIM/DTIM needs updating. If it fits in the
2814 * current space allocated then just copy in the
2815 * new bits. Otherwise we need to move any trailing
2816 * data to make room. Note that we know there is
2817 * contiguous space because ieee80211_beacon_allocate
2818 * insures there is space in the mbuf to write a
2819 * maximal-size virtual bitmap (based on iv_max_aid).
2820 */
2821 /*
2822 * Calculate the bitmap size and offset, copy any
2823 * trailer out of the way, and then copy in the
2824 * new bitmap and update the information element.
2825 * Note that the tim bitmap must contain at least
2826 * one byte and any offset must be even.
2827 */
2828 if (vap->iv_ps_pending != 0) {
2829 timoff = 128; /* impossibly large */
2830 for (i = 0; i < vap->iv_tim_len; i++)
2831 if (vap->iv_tim_bitmap[i]) {
2832 timoff = i &~ 1;
2833 break;
2834 }
2835 KASSERT(timoff != 128, ("tim bitmap empty!"));
2836 for (i = vap->iv_tim_len-1; i >= timoff; i--)
2837 if (vap->iv_tim_bitmap[i])
2838 break;
2839 timlen = 1 + (i - timoff);
2840 } else {
2841 timoff = 0;
2842 timlen = 1;
2843 }
2844 if (timlen != bo->bo_tim_len) {
2845 /* copy up/down trailer */
2846 int adjust = tie->tim_bitmap+timlen
2847 - bo->bo_tim_trailer;
2848 ovbcopy(bo->bo_tim_trailer,
2849 bo->bo_tim_trailer+adjust,
2850 bo->bo_tim_trailer_len);
2851 bo->bo_tim_trailer += adjust;
2852 bo->bo_erp += adjust;
2853 bo->bo_htinfo += adjust;
2854 bo->bo_appie += adjust;
2855 bo->bo_wme += adjust;
2856 bo->bo_csa += adjust;
2857 bo->bo_tim_len = timlen;
2858
2859 /* update information element */
2860 tie->tim_len = 3 + timlen;
2861 tie->tim_bitctl = timoff;
2862 len_changed = 1;
2863 }
2864 memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
2865 bo->bo_tim_len);
2866
2867 clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
2868
2869 IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
2870 "%s: TIM updated, pending %u, off %u, len %u\n",
2871 __func__, vap->iv_ps_pending, timoff, timlen);
2872 }
2873 /* count down DTIM period */
2874 if (tie->tim_count == 0)
2875 tie->tim_count = tie->tim_period - 1;
2876 else
2877 tie->tim_count--;
2878 /* update state for buffered multicast frames on DTIM */
2879 if (mcast && tie->tim_count == 0)
2880 tie->tim_bitctl |= 1;
2881 else
2882 tie->tim_bitctl &= ~1;
2883 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
2884 struct ieee80211_csa_ie *csa =
2885 (struct ieee80211_csa_ie *) bo->bo_csa;
2886
2887 /*
2888 * Insert or update CSA ie. If we're just starting
2889 * to count down to the channel switch then we need
2890 * to insert the CSA ie. Otherwise we just need to
2891 * drop the count. The actual change happens above
2892 * when the vap's count reaches the target count.
2893 */
2894 if (vap->iv_csa_count == 0) {
2895 memmove(&csa[1], csa, bo->bo_csa_trailer_len);
2896 bo->bo_erp += sizeof(*csa);
2897 bo->bo_wme += sizeof(*csa);
2898 bo->bo_appie += sizeof(*csa);
2899 bo->bo_csa_trailer_len += sizeof(*csa);
2900 bo->bo_tim_trailer_len += sizeof(*csa);
2901 m->m_len += sizeof(*csa);
2902 m->m_pkthdr.len += sizeof(*csa);
2903
2904 ieee80211_add_csa(bo->bo_csa, vap);
2905 } else
2906 csa->csa_count--;
2907 vap->iv_csa_count++;
2908 /* NB: don't clear IEEE80211_BEACON_CSA */
2909 }
2910 if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
2911 /*
2912 * ERP element needs updating.
2913 */
2914 (void) ieee80211_add_erp(bo->bo_erp, ic);
2915 clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
2916 }
2917 }
2918 if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
2919 const struct ieee80211_appie *aie = vap->iv_appie_beacon;
2920 int aielen;
2921 uint8_t *frm;
2922
2923 aielen = 0;
2924 if (aie != NULL)
2925 aielen += aie->ie_len;
2926 if (aielen != bo->bo_appie_len) {
2927 /* copy up/down trailer */
2928 int adjust = aielen - bo->bo_appie_len;
2929 ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
2930 bo->bo_tim_trailer_len);
2931 bo->bo_tim_trailer += adjust;
2932 bo->bo_appie += adjust;
2933 bo->bo_appie_len = aielen;
2934
2935 len_changed = 1;
2936 }
2937 frm = bo->bo_appie;
2938 if (aie != NULL)
2939 frm = add_appie(frm, aie);
2940 clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
2941 }
2942 IEEE80211_UNLOCK(ic);
2943
2944 return len_changed;
2945}
2131 if (vap->iv_appie_proberesp != NULL)
2132 frm = add_appie(frm, vap->iv_appie_proberesp);
2133 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2134
2135 return m;
2136}
2137
2138/*
2139 * Send a probe response frame to the specified mac address.
2140 * This does not go through the normal mgt frame api so we
2141 * can specify the destination address and re-use the bss node
2142 * for the sta reference.
2143 */
2144int
2145ieee80211_send_proberesp(struct ieee80211vap *vap,
2146 const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
2147{
2148 struct ieee80211_node *bss = vap->iv_bss;
2149 struct ieee80211com *ic = vap->iv_ic;
2150 struct ieee80211_frame *wh;
2151 struct mbuf *m;
2152
2153 if (vap->iv_state == IEEE80211_S_CAC) {
2154 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
2155 "block %s frame in CAC state", "probe response");
2156 vap->iv_stats.is_tx_badstate++;
2157 return EIO; /* XXX */
2158 }
2159
2160 /*
2161 * Hold a reference on the node so it doesn't go away until after
2162 * the xmit is complete all the way in the driver. On error we
2163 * will remove our reference.
2164 */
2165 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2166 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2167 __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
2168 ieee80211_node_refcnt(bss)+1);
2169 ieee80211_ref_node(bss);
2170
2171 m = ieee80211_alloc_proberesp(bss, legacy);
2172 if (m == NULL) {
2173 ieee80211_free_node(bss);
2174 return ENOMEM;
2175 }
2176
2177 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
2178 KASSERT(m != NULL, ("no room for header"));
2179
2180 wh = mtod(m, struct ieee80211_frame *);
2181 ieee80211_send_setup(bss, wh,
2182 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
2183 IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
2184 /* XXX power management? */
2185 m->m_flags |= M_ENCAP; /* mark encapsulated */
2186
2187 M_WME_SETAC(m, WME_AC_BE);
2188
2189 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2190 "send probe resp on channel %u to %s%s\n",
2191 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
2192 legacy ? " <legacy>" : "");
2193 IEEE80211_NODE_STAT(bss, tx_mgmt);
2194
2195 return ic->ic_raw_xmit(bss, m, NULL);
2196}
2197
2198/*
2199 * Allocate and build a RTS (Request To Send) control frame.
2200 */
2201struct mbuf *
2202ieee80211_alloc_rts(struct ieee80211com *ic,
2203 const uint8_t ra[IEEE80211_ADDR_LEN],
2204 const uint8_t ta[IEEE80211_ADDR_LEN],
2205 uint16_t dur)
2206{
2207 struct ieee80211_frame_rts *rts;
2208 struct mbuf *m;
2209
2210 /* XXX honor ic_headroom */
2211 m = m_gethdr(M_DONTWAIT, MT_DATA);
2212 if (m != NULL) {
2213 rts = mtod(m, struct ieee80211_frame_rts *);
2214 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2215 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
2216 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2217 *(u_int16_t *)rts->i_dur = htole16(dur);
2218 IEEE80211_ADDR_COPY(rts->i_ra, ra);
2219 IEEE80211_ADDR_COPY(rts->i_ta, ta);
2220
2221 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
2222 }
2223 return m;
2224}
2225
2226/*
2227 * Allocate and build a CTS (Clear To Send) control frame.
2228 */
2229struct mbuf *
2230ieee80211_alloc_cts(struct ieee80211com *ic,
2231 const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
2232{
2233 struct ieee80211_frame_cts *cts;
2234 struct mbuf *m;
2235
2236 /* XXX honor ic_headroom */
2237 m = m_gethdr(M_DONTWAIT, MT_DATA);
2238 if (m != NULL) {
2239 cts = mtod(m, struct ieee80211_frame_cts *);
2240 cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2241 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
2242 cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2243 *(u_int16_t *)cts->i_dur = htole16(dur);
2244 IEEE80211_ADDR_COPY(cts->i_ra, ra);
2245
2246 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
2247 }
2248 return m;
2249}
2250
2251static void
2252ieee80211_tx_mgt_timeout(void *arg)
2253{
2254 struct ieee80211_node *ni = arg;
2255 struct ieee80211vap *vap = ni->ni_vap;
2256
2257 if (vap->iv_state != IEEE80211_S_INIT &&
2258 (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2259 /*
2260 * NB: it's safe to specify a timeout as the reason here;
2261 * it'll only be used in the right state.
2262 */
2263 ieee80211_new_state(vap, IEEE80211_S_SCAN,
2264 IEEE80211_SCAN_FAIL_TIMEOUT);
2265 }
2266}
2267
2268static void
2269ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
2270{
2271 struct ieee80211vap *vap = ni->ni_vap;
2272 enum ieee80211_state ostate = (enum ieee80211_state) arg;
2273
2274 /*
2275 * Frame transmit completed; arrange timer callback. If
2276 * transmit was successfuly we wait for response. Otherwise
2277 * we arrange an immediate callback instead of doing the
2278 * callback directly since we don't know what state the driver
2279 * is in (e.g. what locks it is holding). This work should
2280 * not be too time-critical and not happen too often so the
2281 * added overhead is acceptable.
2282 *
2283 * XXX what happens if !acked but response shows up before callback?
2284 */
2285 if (vap->iv_state == ostate)
2286 callout_reset(&vap->iv_mgtsend,
2287 status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
2288 ieee80211_tx_mgt_timeout, ni);
2289}
2290
2291static void
2292ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
2293 struct ieee80211_beacon_offsets *bo, struct ieee80211_node *ni)
2294{
2295 struct ieee80211vap *vap = ni->ni_vap;
2296 struct ieee80211com *ic = ni->ni_ic;
2297 struct ieee80211_rateset *rs = &ni->ni_rates;
2298 uint16_t capinfo;
2299
2300 /*
2301 * beacon frame format
2302 * [8] time stamp
2303 * [2] beacon interval
2304 * [2] cabability information
2305 * [tlv] ssid
2306 * [tlv] supported rates
2307 * [3] parameter set (DS)
2308 * [8] CF parameter set (optional)
2309 * [tlv] parameter set (IBSS/TIM)
2310 * [tlv] country (optional)
2311 * [3] power control (optional)
2312 * [5] channel switch announcement (CSA) (optional)
2313 * [tlv] extended rate phy (ERP)
2314 * [tlv] extended supported rates
2315 * [tlv] RSN parameters
2316 * [tlv] HT capabilities
2317 * [tlv] HT information
2318 * XXX Vendor-specific OIDs (e.g. Atheros)
2319 * [tlv] WPA parameters
2320 * [tlv] WME parameters
2321 * [tlv] Vendor OUI HT capabilities (optional)
2322 * [tlv] Vendor OUI HT information (optional)
2323 * [tlv] TDMA parameters (optional)
2324 * [tlv] application data (optional)
2325 */
2326
2327 memset(bo, 0, sizeof(*bo));
2328
2329 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */
2330 frm += 8;
2331 *(uint16_t *)frm = htole16(ni->ni_intval);
2332 frm += 2;
2333 capinfo = getcapinfo(vap, ni->ni_chan);
2334 bo->bo_caps = (uint16_t *)frm;
2335 *(uint16_t *)frm = htole16(capinfo);
2336 frm += 2;
2337 *frm++ = IEEE80211_ELEMID_SSID;
2338 if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
2339 *frm++ = ni->ni_esslen;
2340 memcpy(frm, ni->ni_essid, ni->ni_esslen);
2341 frm += ni->ni_esslen;
2342 } else
2343 *frm++ = 0;
2344 frm = ieee80211_add_rates(frm, rs);
2345 if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
2346 *frm++ = IEEE80211_ELEMID_DSPARMS;
2347 *frm++ = 1;
2348 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
2349 }
2350 if (ic->ic_flags & IEEE80211_F_PCF) {
2351 bo->bo_cfp = frm;
2352 frm = ieee80211_add_cfparms(frm, ic);
2353 }
2354 bo->bo_tim = frm;
2355 if (vap->iv_opmode == IEEE80211_M_IBSS) {
2356 *frm++ = IEEE80211_ELEMID_IBSSPARMS;
2357 *frm++ = 2;
2358 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
2359 bo->bo_tim_len = 0;
2360 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
2361 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
2362
2363 tie->tim_ie = IEEE80211_ELEMID_TIM;
2364 tie->tim_len = 4; /* length */
2365 tie->tim_count = 0; /* DTIM count */
2366 tie->tim_period = vap->iv_dtim_period; /* DTIM period */
2367 tie->tim_bitctl = 0; /* bitmap control */
2368 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */
2369 frm += sizeof(struct ieee80211_tim_ie);
2370 bo->bo_tim_len = 1;
2371 }
2372 bo->bo_tim_trailer = frm;
2373 if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2374 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2375 frm = ieee80211_add_countryie(frm, ic);
2376 if (vap->iv_flags & IEEE80211_F_DOTH) {
2377 if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
2378 frm = ieee80211_add_powerconstraint(frm, vap);
2379 bo->bo_csa = frm;
2380 if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2381 frm = ieee80211_add_csa(frm, vap);
2382 } else
2383 bo->bo_csa = frm;
2384 if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
2385 bo->bo_erp = frm;
2386 frm = ieee80211_add_erp(frm, ic);
2387 }
2388 frm = ieee80211_add_xrates(frm, rs);
2389 if (vap->iv_flags & IEEE80211_F_WPA2) {
2390 if (vap->iv_rsn_ie != NULL)
2391 frm = add_ie(frm, vap->iv_rsn_ie);
2392 /* XXX else complain */
2393 }
2394 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
2395 frm = ieee80211_add_htcap(frm, ni);
2396 bo->bo_htinfo = frm;
2397 frm = ieee80211_add_htinfo(frm, ni);
2398 }
2399 if (vap->iv_flags & IEEE80211_F_WPA1) {
2400 if (vap->iv_wpa_ie != NULL)
2401 frm = add_ie(frm, vap->iv_wpa_ie);
2402 /* XXX else complain */
2403 }
2404 if (vap->iv_flags & IEEE80211_F_WME) {
2405 bo->bo_wme = frm;
2406 frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2407 }
2408 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2409 (vap->iv_flags_ext & IEEE80211_FEXT_HTCOMPAT)) {
2410 frm = ieee80211_add_htcap_vendor(frm, ni);
2411 frm = ieee80211_add_htinfo_vendor(frm, ni);
2412 }
2413#ifdef IEEE80211_SUPPORT_TDMA
2414 if (vap->iv_caps & IEEE80211_C_TDMA) {
2415 bo->bo_tdma = frm;
2416 frm = ieee80211_add_tdma(frm, vap);
2417 }
2418#endif
2419 if (vap->iv_appie_beacon != NULL) {
2420 bo->bo_appie = frm;
2421 bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
2422 frm = add_appie(frm, vap->iv_appie_beacon);
2423 }
2424 bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
2425 bo->bo_csa_trailer_len = frm - bo->bo_csa;
2426 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2427}
2428
2429/*
2430 * Allocate a beacon frame and fillin the appropriate bits.
2431 */
2432struct mbuf *
2433ieee80211_beacon_alloc(struct ieee80211_node *ni,
2434 struct ieee80211_beacon_offsets *bo)
2435{
2436 struct ieee80211vap *vap = ni->ni_vap;
2437 struct ieee80211com *ic = ni->ni_ic;
2438 struct ifnet *ifp = vap->iv_ifp;
2439 struct ieee80211_frame *wh;
2440 struct mbuf *m;
2441 int pktlen;
2442 uint8_t *frm;
2443
2444 /*
2445 * beacon frame format
2446 * [8] time stamp
2447 * [2] beacon interval
2448 * [2] cabability information
2449 * [tlv] ssid
2450 * [tlv] supported rates
2451 * [3] parameter set (DS)
2452 * [8] CF parameter set (optional)
2453 * [tlv] parameter set (IBSS/TIM)
2454 * [tlv] country (optional)
2455 * [3] power control (optional)
2456 * [5] channel switch announcement (CSA) (optional)
2457 * [tlv] extended rate phy (ERP)
2458 * [tlv] extended supported rates
2459 * [tlv] RSN parameters
2460 * [tlv] HT capabilities
2461 * [tlv] HT information
2462 * [tlv] Vendor OUI HT capabilities (optional)
2463 * [tlv] Vendor OUI HT information (optional)
2464 * XXX Vendor-specific OIDs (e.g. Atheros)
2465 * [tlv] WPA parameters
2466 * [tlv] WME parameters
2467 * [tlv] TDMA parameters (optional)
2468 * [tlv] application data (optional)
2469 * NB: we allocate the max space required for the TIM bitmap.
2470 * XXX how big is this?
2471 */
2472 pktlen = 8 /* time stamp */
2473 + sizeof(uint16_t) /* beacon interval */
2474 + sizeof(uint16_t) /* capabilities */
2475 + 2 + ni->ni_esslen /* ssid */
2476 + 2 + IEEE80211_RATE_SIZE /* supported rates */
2477 + 2 + 1 /* DS parameters */
2478 + 2 + 6 /* CF parameters */
2479 + 2 + 4 + vap->iv_tim_len /* DTIM/IBSSPARMS */
2480 + IEEE80211_COUNTRY_MAX_SIZE /* country */
2481 + 2 + 1 /* power control */
2482 + sizeof(struct ieee80211_csa_ie) /* CSA */
2483 + 2 + 1 /* ERP */
2484 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2485 + (vap->iv_caps & IEEE80211_C_WPA ? /* WPA 1+2 */
2486 2*sizeof(struct ieee80211_ie_wpa) : 0)
2487 /* XXX conditional? */
2488 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
2489 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
2490 + (vap->iv_caps & IEEE80211_C_WME ? /* WME */
2491 sizeof(struct ieee80211_wme_param) : 0)
2492#ifdef IEEE80211_SUPPORT_TDMA
2493 + (vap->iv_caps & IEEE80211_C_TDMA ? /* TDMA */
2494 sizeof(struct ieee80211_tdma_param) : 0)
2495#endif
2496 + IEEE80211_MAX_APPIE
2497 ;
2498 m = ieee80211_getmgtframe(&frm,
2499 ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
2500 if (m == NULL) {
2501 IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
2502 "%s: cannot get buf; size %u\n", __func__, pktlen);
2503 vap->iv_stats.is_tx_nobuf++;
2504 return NULL;
2505 }
2506 ieee80211_beacon_construct(m, frm, bo, ni);
2507
2508 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
2509 KASSERT(m != NULL, ("no space for 802.11 header?"));
2510 wh = mtod(m, struct ieee80211_frame *);
2511 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2512 IEEE80211_FC0_SUBTYPE_BEACON;
2513 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2514 *(uint16_t *)wh->i_dur = 0;
2515 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2516 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
2517 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
2518 *(uint16_t *)wh->i_seq = 0;
2519
2520 return m;
2521}
2522
2523/*
2524 * Update the dynamic parts of a beacon frame based on the current state.
2525 */
2526int
2527ieee80211_beacon_update(struct ieee80211_node *ni,
2528 struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast)
2529{
2530 struct ieee80211vap *vap = ni->ni_vap;
2531 struct ieee80211com *ic = ni->ni_ic;
2532 int len_changed = 0;
2533 uint16_t capinfo;
2534
2535 IEEE80211_LOCK(ic);
2536 /*
2537 * Handle 11h channel change when we've reached the count.
2538 * We must recalculate the beacon frame contents to account
2539 * for the new channel. Note we do this only for the first
2540 * vap that reaches this point; subsequent vaps just update
2541 * their beacon state to reflect the recalculated channel.
2542 */
2543 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
2544 vap->iv_csa_count == ic->ic_csa_count) {
2545 vap->iv_csa_count = 0;
2546 /*
2547 * Effect channel change before reconstructing the beacon
2548 * frame contents as many places reference ni_chan.
2549 */
2550 if (ic->ic_csa_newchan != NULL)
2551 ieee80211_csa_completeswitch(ic);
2552 /*
2553 * NB: ieee80211_beacon_construct clears all pending
2554 * updates in bo_flags so we don't need to explicitly
2555 * clear IEEE80211_BEACON_CSA.
2556 */
2557 ieee80211_beacon_construct(m,
2558 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), bo, ni);
2559
2560 /* XXX do WME aggressive mode processing? */
2561 IEEE80211_UNLOCK(ic);
2562 return 1; /* just assume length changed */
2563 }
2564
2565 /* XXX faster to recalculate entirely or just changes? */
2566 capinfo = getcapinfo(vap, ni->ni_chan);
2567 *bo->bo_caps = htole16(capinfo);
2568
2569 if (vap->iv_flags & IEEE80211_F_WME) {
2570 struct ieee80211_wme_state *wme = &ic->ic_wme;
2571
2572 /*
2573 * Check for agressive mode change. When there is
2574 * significant high priority traffic in the BSS
2575 * throttle back BE traffic by using conservative
2576 * parameters. Otherwise BE uses agressive params
2577 * to optimize performance of legacy/non-QoS traffic.
2578 */
2579 if (wme->wme_flags & WME_F_AGGRMODE) {
2580 if (wme->wme_hipri_traffic >
2581 wme->wme_hipri_switch_thresh) {
2582 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
2583 "%s: traffic %u, disable aggressive mode\n",
2584 __func__, wme->wme_hipri_traffic);
2585 wme->wme_flags &= ~WME_F_AGGRMODE;
2586 ieee80211_wme_updateparams_locked(vap);
2587 wme->wme_hipri_traffic =
2588 wme->wme_hipri_switch_hysteresis;
2589 } else
2590 wme->wme_hipri_traffic = 0;
2591 } else {
2592 if (wme->wme_hipri_traffic <=
2593 wme->wme_hipri_switch_thresh) {
2594 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
2595 "%s: traffic %u, enable aggressive mode\n",
2596 __func__, wme->wme_hipri_traffic);
2597 wme->wme_flags |= WME_F_AGGRMODE;
2598 ieee80211_wme_updateparams_locked(vap);
2599 wme->wme_hipri_traffic = 0;
2600 } else
2601 wme->wme_hipri_traffic =
2602 wme->wme_hipri_switch_hysteresis;
2603 }
2604 if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
2605 (void) ieee80211_add_wme_param(bo->bo_wme, wme);
2606 clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
2607 }
2608 }
2609
2610 if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) {
2611 ieee80211_ht_update_beacon(vap, bo);
2612 clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
2613 }
2614#ifdef IEEE80211_SUPPORT_TDMA
2615 if (vap->iv_caps & IEEE80211_C_TDMA) {
2616 /*
2617 * NB: the beacon is potentially updated every TBTT.
2618 */
2619 ieee80211_tdma_update_beacon(vap, bo);
2620 }
2621#endif
2622 if (vap->iv_opmode == IEEE80211_M_HOSTAP) { /* NB: no IBSS support*/
2623 struct ieee80211_tim_ie *tie =
2624 (struct ieee80211_tim_ie *) bo->bo_tim;
2625 if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
2626 u_int timlen, timoff, i;
2627 /*
2628 * ATIM/DTIM needs updating. If it fits in the
2629 * current space allocated then just copy in the
2630 * new bits. Otherwise we need to move any trailing
2631 * data to make room. Note that we know there is
2632 * contiguous space because ieee80211_beacon_allocate
2633 * insures there is space in the mbuf to write a
2634 * maximal-size virtual bitmap (based on iv_max_aid).
2635 */
2636 /*
2637 * Calculate the bitmap size and offset, copy any
2638 * trailer out of the way, and then copy in the
2639 * new bitmap and update the information element.
2640 * Note that the tim bitmap must contain at least
2641 * one byte and any offset must be even.
2642 */
2643 if (vap->iv_ps_pending != 0) {
2644 timoff = 128; /* impossibly large */
2645 for (i = 0; i < vap->iv_tim_len; i++)
2646 if (vap->iv_tim_bitmap[i]) {
2647 timoff = i &~ 1;
2648 break;
2649 }
2650 KASSERT(timoff != 128, ("tim bitmap empty!"));
2651 for (i = vap->iv_tim_len-1; i >= timoff; i--)
2652 if (vap->iv_tim_bitmap[i])
2653 break;
2654 timlen = 1 + (i - timoff);
2655 } else {
2656 timoff = 0;
2657 timlen = 1;
2658 }
2659 if (timlen != bo->bo_tim_len) {
2660 /* copy up/down trailer */
2661 int adjust = tie->tim_bitmap+timlen
2662 - bo->bo_tim_trailer;
2663 ovbcopy(bo->bo_tim_trailer,
2664 bo->bo_tim_trailer+adjust,
2665 bo->bo_tim_trailer_len);
2666 bo->bo_tim_trailer += adjust;
2667 bo->bo_erp += adjust;
2668 bo->bo_htinfo += adjust;
2669 bo->bo_appie += adjust;
2670 bo->bo_wme += adjust;
2671 bo->bo_csa += adjust;
2672 bo->bo_tim_len = timlen;
2673
2674 /* update information element */
2675 tie->tim_len = 3 + timlen;
2676 tie->tim_bitctl = timoff;
2677 len_changed = 1;
2678 }
2679 memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
2680 bo->bo_tim_len);
2681
2682 clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
2683
2684 IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
2685 "%s: TIM updated, pending %u, off %u, len %u\n",
2686 __func__, vap->iv_ps_pending, timoff, timlen);
2687 }
2688 /* count down DTIM period */
2689 if (tie->tim_count == 0)
2690 tie->tim_count = tie->tim_period - 1;
2691 else
2692 tie->tim_count--;
2693 /* update state for buffered multicast frames on DTIM */
2694 if (mcast && tie->tim_count == 0)
2695 tie->tim_bitctl |= 1;
2696 else
2697 tie->tim_bitctl &= ~1;
2698 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
2699 struct ieee80211_csa_ie *csa =
2700 (struct ieee80211_csa_ie *) bo->bo_csa;
2701
2702 /*
2703 * Insert or update CSA ie. If we're just starting
2704 * to count down to the channel switch then we need
2705 * to insert the CSA ie. Otherwise we just need to
2706 * drop the count. The actual change happens above
2707 * when the vap's count reaches the target count.
2708 */
2709 if (vap->iv_csa_count == 0) {
2710 memmove(&csa[1], csa, bo->bo_csa_trailer_len);
2711 bo->bo_erp += sizeof(*csa);
2712 bo->bo_wme += sizeof(*csa);
2713 bo->bo_appie += sizeof(*csa);
2714 bo->bo_csa_trailer_len += sizeof(*csa);
2715 bo->bo_tim_trailer_len += sizeof(*csa);
2716 m->m_len += sizeof(*csa);
2717 m->m_pkthdr.len += sizeof(*csa);
2718
2719 ieee80211_add_csa(bo->bo_csa, vap);
2720 } else
2721 csa->csa_count--;
2722 vap->iv_csa_count++;
2723 /* NB: don't clear IEEE80211_BEACON_CSA */
2724 }
2725 if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
2726 /*
2727 * ERP element needs updating.
2728 */
2729 (void) ieee80211_add_erp(bo->bo_erp, ic);
2730 clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
2731 }
2732 }
2733 if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
2734 const struct ieee80211_appie *aie = vap->iv_appie_beacon;
2735 int aielen;
2736 uint8_t *frm;
2737
2738 aielen = 0;
2739 if (aie != NULL)
2740 aielen += aie->ie_len;
2741 if (aielen != bo->bo_appie_len) {
2742 /* copy up/down trailer */
2743 int adjust = aielen - bo->bo_appie_len;
2744 ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
2745 bo->bo_tim_trailer_len);
2746 bo->bo_tim_trailer += adjust;
2747 bo->bo_appie += adjust;
2748 bo->bo_appie_len = aielen;
2749
2750 len_changed = 1;
2751 }
2752 frm = bo->bo_appie;
2753 if (aie != NULL)
2754 frm = add_appie(frm, aie);
2755 clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
2756 }
2757 IEEE80211_UNLOCK(ic);
2758
2759 return len_changed;
2760}