Deleted Added
full compact
subr_bus.c (160186) subr_bus.c (160964)
1/*-
2 * Copyright (c) 1997,1998,2003 Doug Rabson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
1/*-
2 * Copyright (c) 1997,1998,2003 Doug Rabson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/kern/subr_bus.c 160186 2006-07-08 17:06:15Z imp $");
28__FBSDID("$FreeBSD: head/sys/kern/subr_bus.c 160964 2006-08-04 07:56:35Z yar $");
29
30#include "opt_bus.h"
31
32#include <sys/param.h>
33#include <sys/conf.h>
34#include <sys/filio.h>
35#include <sys/lock.h>
36#include <sys/kernel.h>
37#include <sys/kobj.h>
38#include <sys/malloc.h>
39#include <sys/module.h>
40#include <sys/mutex.h>
41#include <sys/poll.h>
42#include <sys/proc.h>
43#include <sys/condvar.h>
44#include <sys/queue.h>
45#include <machine/bus.h>
46#include <sys/rman.h>
47#include <sys/selinfo.h>
48#include <sys/signalvar.h>
49#include <sys/sysctl.h>
50#include <sys/systm.h>
51#include <sys/uio.h>
52#include <sys/bus.h>
53
54#include <machine/stdarg.h>
55
56#include <vm/uma.h>
57
58SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
59SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
60
61/*
62 * Used to attach drivers to devclasses.
63 */
64typedef struct driverlink *driverlink_t;
65struct driverlink {
66 kobj_class_t driver;
67 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */
68};
69
70/*
71 * Forward declarations
72 */
73typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
74typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
75typedef TAILQ_HEAD(device_list, device) device_list_t;
76
77struct devclass {
78 TAILQ_ENTRY(devclass) link;
79 devclass_t parent; /* parent in devclass hierarchy */
80 driver_list_t drivers; /* bus devclasses store drivers for bus */
81 char *name;
82 device_t *devices; /* array of devices indexed by unit */
83 int maxunit; /* size of devices array */
84
85 struct sysctl_ctx_list sysctl_ctx;
86 struct sysctl_oid *sysctl_tree;
87};
88
89/**
90 * @brief Implementation of device.
91 */
92struct device {
93 /*
94 * A device is a kernel object. The first field must be the
95 * current ops table for the object.
96 */
97 KOBJ_FIELDS;
98
99 /*
100 * Device hierarchy.
101 */
102 TAILQ_ENTRY(device) link; /**< list of devices in parent */
103 TAILQ_ENTRY(device) devlink; /**< global device list membership */
104 device_t parent; /**< parent of this device */
105 device_list_t children; /**< list of child devices */
106
107 /*
108 * Details of this device.
109 */
110 driver_t *driver; /**< current driver */
111 devclass_t devclass; /**< current device class */
112 int unit; /**< current unit number */
113 char* nameunit; /**< name+unit e.g. foodev0 */
114 char* desc; /**< driver specific description */
115 int busy; /**< count of calls to device_busy() */
116 device_state_t state; /**< current device state */
117 u_int32_t devflags; /**< api level flags for device_get_flags() */
118 u_short flags; /**< internal device flags */
119#define DF_ENABLED 1 /* device should be probed/attached */
120#define DF_FIXEDCLASS 2 /* devclass specified at create time */
121#define DF_WILDCARD 4 /* unit was originally wildcard */
122#define DF_DESCMALLOCED 8 /* description was malloced */
123#define DF_QUIET 16 /* don't print verbose attach message */
124#define DF_DONENOMATCH 32 /* don't execute DEVICE_NOMATCH again */
125#define DF_EXTERNALSOFTC 64 /* softc not allocated by us */
126#define DF_REBID 128 /* Can rebid after attach */
127 u_char order; /**< order from device_add_child_ordered() */
128 u_char pad;
129 void *ivars; /**< instance variables */
130 void *softc; /**< current driver's variables */
131
132 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */
133 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */
134};
135
136static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
137static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
138
139#ifdef BUS_DEBUG
140
141static int bus_debug = 1;
142TUNABLE_INT("bus.debug", &bus_debug);
143SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
144 "Debug bus code");
145
146#define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
147#define DEVICENAME(d) ((d)? device_get_name(d): "no device")
148#define DRIVERNAME(d) ((d)? d->name : "no driver")
149#define DEVCLANAME(d) ((d)? d->name : "no devclass")
150
151/**
152 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
153 * prevent syslog from deleting initial spaces
154 */
155#define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0)
156
157static void print_device_short(device_t dev, int indent);
158static void print_device(device_t dev, int indent);
159void print_device_tree_short(device_t dev, int indent);
160void print_device_tree(device_t dev, int indent);
161static void print_driver_short(driver_t *driver, int indent);
162static void print_driver(driver_t *driver, int indent);
163static void print_driver_list(driver_list_t drivers, int indent);
164static void print_devclass_short(devclass_t dc, int indent);
165static void print_devclass(devclass_t dc, int indent);
166void print_devclass_list_short(void);
167void print_devclass_list(void);
168
169#else
170/* Make the compiler ignore the function calls */
171#define PDEBUG(a) /* nop */
172#define DEVICENAME(d) /* nop */
173#define DRIVERNAME(d) /* nop */
174#define DEVCLANAME(d) /* nop */
175
176#define print_device_short(d,i) /* nop */
177#define print_device(d,i) /* nop */
178#define print_device_tree_short(d,i) /* nop */
179#define print_device_tree(d,i) /* nop */
180#define print_driver_short(d,i) /* nop */
181#define print_driver(d,i) /* nop */
182#define print_driver_list(d,i) /* nop */
183#define print_devclass_short(d,i) /* nop */
184#define print_devclass(d,i) /* nop */
185#define print_devclass_list_short() /* nop */
186#define print_devclass_list() /* nop */
187#endif
188
189/*
190 * dev sysctl tree
191 */
192
193enum {
194 DEVCLASS_SYSCTL_PARENT,
195};
196
197static int
198devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
199{
200 devclass_t dc = (devclass_t)arg1;
201 const char *value;
202
203 switch (arg2) {
204 case DEVCLASS_SYSCTL_PARENT:
205 value = dc->parent ? dc->parent->name : "";
206 break;
207 default:
208 return (EINVAL);
209 }
210 return (SYSCTL_OUT(req, value, strlen(value)));
211}
212
213static void
214devclass_sysctl_init(devclass_t dc)
215{
216
217 if (dc->sysctl_tree != NULL)
218 return;
219 sysctl_ctx_init(&dc->sysctl_ctx);
220 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
221 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
222 CTLFLAG_RD, 0, "");
223 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
224 OID_AUTO, "%parent", CTLFLAG_RD,
225 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
226 "parent class");
227}
228
229enum {
230 DEVICE_SYSCTL_DESC,
231 DEVICE_SYSCTL_DRIVER,
232 DEVICE_SYSCTL_LOCATION,
233 DEVICE_SYSCTL_PNPINFO,
234 DEVICE_SYSCTL_PARENT,
235};
236
237static int
238device_sysctl_handler(SYSCTL_HANDLER_ARGS)
239{
240 device_t dev = (device_t)arg1;
241 const char *value;
242 char *buf;
243 int error;
244
245 buf = NULL;
246 switch (arg2) {
247 case DEVICE_SYSCTL_DESC:
248 value = dev->desc ? dev->desc : "";
249 break;
250 case DEVICE_SYSCTL_DRIVER:
251 value = dev->driver ? dev->driver->name : "";
252 break;
253 case DEVICE_SYSCTL_LOCATION:
254 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
255 bus_child_location_str(dev, buf, 1024);
256 break;
257 case DEVICE_SYSCTL_PNPINFO:
258 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
259 bus_child_pnpinfo_str(dev, buf, 1024);
260 break;
261 case DEVICE_SYSCTL_PARENT:
262 value = dev->parent ? dev->parent->nameunit : "";
263 break;
264 default:
265 return (EINVAL);
266 }
267 error = SYSCTL_OUT(req, value, strlen(value));
268 if (buf != NULL)
269 free(buf, M_BUS);
270 return (error);
271}
272
273static void
274device_sysctl_init(device_t dev)
275{
276 devclass_t dc = dev->devclass;
277
278 if (dev->sysctl_tree != NULL)
279 return;
280 devclass_sysctl_init(dc);
281 sysctl_ctx_init(&dev->sysctl_ctx);
282 dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
283 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
284 dev->nameunit + strlen(dc->name),
285 CTLFLAG_RD, 0, "");
286 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
287 OID_AUTO, "%desc", CTLFLAG_RD,
288 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
289 "device description");
290 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
291 OID_AUTO, "%driver", CTLFLAG_RD,
292 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
293 "device driver name");
294 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
295 OID_AUTO, "%location", CTLFLAG_RD,
296 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
297 "device location relative to parent");
298 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
299 OID_AUTO, "%pnpinfo", CTLFLAG_RD,
300 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
301 "device identification");
302 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
303 OID_AUTO, "%parent", CTLFLAG_RD,
304 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
305 "parent device");
306}
307
308static void
309device_sysctl_fini(device_t dev)
310{
311 if (dev->sysctl_tree == NULL)
312 return;
313 sysctl_ctx_free(&dev->sysctl_ctx);
314 dev->sysctl_tree = NULL;
315}
316
317/*
318 * /dev/devctl implementation
319 */
320
321/*
322 * This design allows only one reader for /dev/devctl. This is not desirable
323 * in the long run, but will get a lot of hair out of this implementation.
324 * Maybe we should make this device a clonable device.
325 *
326 * Also note: we specifically do not attach a device to the device_t tree
327 * to avoid potential chicken and egg problems. One could argue that all
328 * of this belongs to the root node. One could also further argue that the
329 * sysctl interface that we have not might more properly be an ioctl
330 * interface, but at this stage of the game, I'm not inclined to rock that
331 * boat.
332 *
333 * I'm also not sure that the SIGIO support is done correctly or not, as
334 * I copied it from a driver that had SIGIO support that likely hasn't been
335 * tested since 3.4 or 2.2.8!
336 */
337
338static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
339static int devctl_disable = 0;
340TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable);
341SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
342 sysctl_devctl_disable, "I", "devctl disable");
343
344static d_open_t devopen;
345static d_close_t devclose;
346static d_read_t devread;
347static d_ioctl_t devioctl;
348static d_poll_t devpoll;
349
350static struct cdevsw dev_cdevsw = {
351 .d_version = D_VERSION,
352 .d_flags = D_NEEDGIANT,
353 .d_open = devopen,
354 .d_close = devclose,
355 .d_read = devread,
356 .d_ioctl = devioctl,
357 .d_poll = devpoll,
358 .d_name = "devctl",
359};
360
361struct dev_event_info
362{
363 char *dei_data;
364 TAILQ_ENTRY(dev_event_info) dei_link;
365};
366
367TAILQ_HEAD(devq, dev_event_info);
368
369static struct dev_softc
370{
371 int inuse;
372 int nonblock;
373 struct mtx mtx;
374 struct cv cv;
375 struct selinfo sel;
376 struct devq devq;
377 struct proc *async_proc;
378} devsoftc;
379
380static struct cdev *devctl_dev;
381
382static void
383devinit(void)
384{
385 devctl_dev = make_dev(&dev_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600,
386 "devctl");
387 mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
388 cv_init(&devsoftc.cv, "dev cv");
389 TAILQ_INIT(&devsoftc.devq);
390}
391
392static int
393devopen(struct cdev *dev, int oflags, int devtype, d_thread_t *td)
394{
395 if (devsoftc.inuse)
396 return (EBUSY);
397 /* move to init */
398 devsoftc.inuse = 1;
399 devsoftc.nonblock = 0;
400 devsoftc.async_proc = NULL;
401 return (0);
402}
403
404static int
405devclose(struct cdev *dev, int fflag, int devtype, d_thread_t *td)
406{
407 devsoftc.inuse = 0;
408 mtx_lock(&devsoftc.mtx);
409 cv_broadcast(&devsoftc.cv);
410 mtx_unlock(&devsoftc.mtx);
411
412 return (0);
413}
414
415/*
416 * The read channel for this device is used to report changes to
417 * userland in realtime. We are required to free the data as well as
418 * the n1 object because we allocate them separately. Also note that
419 * we return one record at a time. If you try to read this device a
29
30#include "opt_bus.h"
31
32#include <sys/param.h>
33#include <sys/conf.h>
34#include <sys/filio.h>
35#include <sys/lock.h>
36#include <sys/kernel.h>
37#include <sys/kobj.h>
38#include <sys/malloc.h>
39#include <sys/module.h>
40#include <sys/mutex.h>
41#include <sys/poll.h>
42#include <sys/proc.h>
43#include <sys/condvar.h>
44#include <sys/queue.h>
45#include <machine/bus.h>
46#include <sys/rman.h>
47#include <sys/selinfo.h>
48#include <sys/signalvar.h>
49#include <sys/sysctl.h>
50#include <sys/systm.h>
51#include <sys/uio.h>
52#include <sys/bus.h>
53
54#include <machine/stdarg.h>
55
56#include <vm/uma.h>
57
58SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
59SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
60
61/*
62 * Used to attach drivers to devclasses.
63 */
64typedef struct driverlink *driverlink_t;
65struct driverlink {
66 kobj_class_t driver;
67 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */
68};
69
70/*
71 * Forward declarations
72 */
73typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
74typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
75typedef TAILQ_HEAD(device_list, device) device_list_t;
76
77struct devclass {
78 TAILQ_ENTRY(devclass) link;
79 devclass_t parent; /* parent in devclass hierarchy */
80 driver_list_t drivers; /* bus devclasses store drivers for bus */
81 char *name;
82 device_t *devices; /* array of devices indexed by unit */
83 int maxunit; /* size of devices array */
84
85 struct sysctl_ctx_list sysctl_ctx;
86 struct sysctl_oid *sysctl_tree;
87};
88
89/**
90 * @brief Implementation of device.
91 */
92struct device {
93 /*
94 * A device is a kernel object. The first field must be the
95 * current ops table for the object.
96 */
97 KOBJ_FIELDS;
98
99 /*
100 * Device hierarchy.
101 */
102 TAILQ_ENTRY(device) link; /**< list of devices in parent */
103 TAILQ_ENTRY(device) devlink; /**< global device list membership */
104 device_t parent; /**< parent of this device */
105 device_list_t children; /**< list of child devices */
106
107 /*
108 * Details of this device.
109 */
110 driver_t *driver; /**< current driver */
111 devclass_t devclass; /**< current device class */
112 int unit; /**< current unit number */
113 char* nameunit; /**< name+unit e.g. foodev0 */
114 char* desc; /**< driver specific description */
115 int busy; /**< count of calls to device_busy() */
116 device_state_t state; /**< current device state */
117 u_int32_t devflags; /**< api level flags for device_get_flags() */
118 u_short flags; /**< internal device flags */
119#define DF_ENABLED 1 /* device should be probed/attached */
120#define DF_FIXEDCLASS 2 /* devclass specified at create time */
121#define DF_WILDCARD 4 /* unit was originally wildcard */
122#define DF_DESCMALLOCED 8 /* description was malloced */
123#define DF_QUIET 16 /* don't print verbose attach message */
124#define DF_DONENOMATCH 32 /* don't execute DEVICE_NOMATCH again */
125#define DF_EXTERNALSOFTC 64 /* softc not allocated by us */
126#define DF_REBID 128 /* Can rebid after attach */
127 u_char order; /**< order from device_add_child_ordered() */
128 u_char pad;
129 void *ivars; /**< instance variables */
130 void *softc; /**< current driver's variables */
131
132 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */
133 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */
134};
135
136static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
137static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
138
139#ifdef BUS_DEBUG
140
141static int bus_debug = 1;
142TUNABLE_INT("bus.debug", &bus_debug);
143SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
144 "Debug bus code");
145
146#define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
147#define DEVICENAME(d) ((d)? device_get_name(d): "no device")
148#define DRIVERNAME(d) ((d)? d->name : "no driver")
149#define DEVCLANAME(d) ((d)? d->name : "no devclass")
150
151/**
152 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
153 * prevent syslog from deleting initial spaces
154 */
155#define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0)
156
157static void print_device_short(device_t dev, int indent);
158static void print_device(device_t dev, int indent);
159void print_device_tree_short(device_t dev, int indent);
160void print_device_tree(device_t dev, int indent);
161static void print_driver_short(driver_t *driver, int indent);
162static void print_driver(driver_t *driver, int indent);
163static void print_driver_list(driver_list_t drivers, int indent);
164static void print_devclass_short(devclass_t dc, int indent);
165static void print_devclass(devclass_t dc, int indent);
166void print_devclass_list_short(void);
167void print_devclass_list(void);
168
169#else
170/* Make the compiler ignore the function calls */
171#define PDEBUG(a) /* nop */
172#define DEVICENAME(d) /* nop */
173#define DRIVERNAME(d) /* nop */
174#define DEVCLANAME(d) /* nop */
175
176#define print_device_short(d,i) /* nop */
177#define print_device(d,i) /* nop */
178#define print_device_tree_short(d,i) /* nop */
179#define print_device_tree(d,i) /* nop */
180#define print_driver_short(d,i) /* nop */
181#define print_driver(d,i) /* nop */
182#define print_driver_list(d,i) /* nop */
183#define print_devclass_short(d,i) /* nop */
184#define print_devclass(d,i) /* nop */
185#define print_devclass_list_short() /* nop */
186#define print_devclass_list() /* nop */
187#endif
188
189/*
190 * dev sysctl tree
191 */
192
193enum {
194 DEVCLASS_SYSCTL_PARENT,
195};
196
197static int
198devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
199{
200 devclass_t dc = (devclass_t)arg1;
201 const char *value;
202
203 switch (arg2) {
204 case DEVCLASS_SYSCTL_PARENT:
205 value = dc->parent ? dc->parent->name : "";
206 break;
207 default:
208 return (EINVAL);
209 }
210 return (SYSCTL_OUT(req, value, strlen(value)));
211}
212
213static void
214devclass_sysctl_init(devclass_t dc)
215{
216
217 if (dc->sysctl_tree != NULL)
218 return;
219 sysctl_ctx_init(&dc->sysctl_ctx);
220 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
221 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
222 CTLFLAG_RD, 0, "");
223 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
224 OID_AUTO, "%parent", CTLFLAG_RD,
225 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
226 "parent class");
227}
228
229enum {
230 DEVICE_SYSCTL_DESC,
231 DEVICE_SYSCTL_DRIVER,
232 DEVICE_SYSCTL_LOCATION,
233 DEVICE_SYSCTL_PNPINFO,
234 DEVICE_SYSCTL_PARENT,
235};
236
237static int
238device_sysctl_handler(SYSCTL_HANDLER_ARGS)
239{
240 device_t dev = (device_t)arg1;
241 const char *value;
242 char *buf;
243 int error;
244
245 buf = NULL;
246 switch (arg2) {
247 case DEVICE_SYSCTL_DESC:
248 value = dev->desc ? dev->desc : "";
249 break;
250 case DEVICE_SYSCTL_DRIVER:
251 value = dev->driver ? dev->driver->name : "";
252 break;
253 case DEVICE_SYSCTL_LOCATION:
254 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
255 bus_child_location_str(dev, buf, 1024);
256 break;
257 case DEVICE_SYSCTL_PNPINFO:
258 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
259 bus_child_pnpinfo_str(dev, buf, 1024);
260 break;
261 case DEVICE_SYSCTL_PARENT:
262 value = dev->parent ? dev->parent->nameunit : "";
263 break;
264 default:
265 return (EINVAL);
266 }
267 error = SYSCTL_OUT(req, value, strlen(value));
268 if (buf != NULL)
269 free(buf, M_BUS);
270 return (error);
271}
272
273static void
274device_sysctl_init(device_t dev)
275{
276 devclass_t dc = dev->devclass;
277
278 if (dev->sysctl_tree != NULL)
279 return;
280 devclass_sysctl_init(dc);
281 sysctl_ctx_init(&dev->sysctl_ctx);
282 dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
283 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
284 dev->nameunit + strlen(dc->name),
285 CTLFLAG_RD, 0, "");
286 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
287 OID_AUTO, "%desc", CTLFLAG_RD,
288 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
289 "device description");
290 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
291 OID_AUTO, "%driver", CTLFLAG_RD,
292 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
293 "device driver name");
294 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
295 OID_AUTO, "%location", CTLFLAG_RD,
296 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
297 "device location relative to parent");
298 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
299 OID_AUTO, "%pnpinfo", CTLFLAG_RD,
300 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
301 "device identification");
302 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
303 OID_AUTO, "%parent", CTLFLAG_RD,
304 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
305 "parent device");
306}
307
308static void
309device_sysctl_fini(device_t dev)
310{
311 if (dev->sysctl_tree == NULL)
312 return;
313 sysctl_ctx_free(&dev->sysctl_ctx);
314 dev->sysctl_tree = NULL;
315}
316
317/*
318 * /dev/devctl implementation
319 */
320
321/*
322 * This design allows only one reader for /dev/devctl. This is not desirable
323 * in the long run, but will get a lot of hair out of this implementation.
324 * Maybe we should make this device a clonable device.
325 *
326 * Also note: we specifically do not attach a device to the device_t tree
327 * to avoid potential chicken and egg problems. One could argue that all
328 * of this belongs to the root node. One could also further argue that the
329 * sysctl interface that we have not might more properly be an ioctl
330 * interface, but at this stage of the game, I'm not inclined to rock that
331 * boat.
332 *
333 * I'm also not sure that the SIGIO support is done correctly or not, as
334 * I copied it from a driver that had SIGIO support that likely hasn't been
335 * tested since 3.4 or 2.2.8!
336 */
337
338static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
339static int devctl_disable = 0;
340TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable);
341SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
342 sysctl_devctl_disable, "I", "devctl disable");
343
344static d_open_t devopen;
345static d_close_t devclose;
346static d_read_t devread;
347static d_ioctl_t devioctl;
348static d_poll_t devpoll;
349
350static struct cdevsw dev_cdevsw = {
351 .d_version = D_VERSION,
352 .d_flags = D_NEEDGIANT,
353 .d_open = devopen,
354 .d_close = devclose,
355 .d_read = devread,
356 .d_ioctl = devioctl,
357 .d_poll = devpoll,
358 .d_name = "devctl",
359};
360
361struct dev_event_info
362{
363 char *dei_data;
364 TAILQ_ENTRY(dev_event_info) dei_link;
365};
366
367TAILQ_HEAD(devq, dev_event_info);
368
369static struct dev_softc
370{
371 int inuse;
372 int nonblock;
373 struct mtx mtx;
374 struct cv cv;
375 struct selinfo sel;
376 struct devq devq;
377 struct proc *async_proc;
378} devsoftc;
379
380static struct cdev *devctl_dev;
381
382static void
383devinit(void)
384{
385 devctl_dev = make_dev(&dev_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600,
386 "devctl");
387 mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
388 cv_init(&devsoftc.cv, "dev cv");
389 TAILQ_INIT(&devsoftc.devq);
390}
391
392static int
393devopen(struct cdev *dev, int oflags, int devtype, d_thread_t *td)
394{
395 if (devsoftc.inuse)
396 return (EBUSY);
397 /* move to init */
398 devsoftc.inuse = 1;
399 devsoftc.nonblock = 0;
400 devsoftc.async_proc = NULL;
401 return (0);
402}
403
404static int
405devclose(struct cdev *dev, int fflag, int devtype, d_thread_t *td)
406{
407 devsoftc.inuse = 0;
408 mtx_lock(&devsoftc.mtx);
409 cv_broadcast(&devsoftc.cv);
410 mtx_unlock(&devsoftc.mtx);
411
412 return (0);
413}
414
415/*
416 * The read channel for this device is used to report changes to
417 * userland in realtime. We are required to free the data as well as
418 * the n1 object because we allocate them separately. Also note that
419 * we return one record at a time. If you try to read this device a
420 * character at a time, you will loose the rest of the data. Listening
420 * character at a time, you will lose the rest of the data. Listening
421 * programs are expected to cope.
422 */
423static int
424devread(struct cdev *dev, struct uio *uio, int ioflag)
425{
426 struct dev_event_info *n1;
427 int rv;
428
429 mtx_lock(&devsoftc.mtx);
430 while (TAILQ_EMPTY(&devsoftc.devq)) {
431 if (devsoftc.nonblock) {
432 mtx_unlock(&devsoftc.mtx);
433 return (EAGAIN);
434 }
435 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
436 if (rv) {
437 /*
438 * Need to translate ERESTART to EINTR here? -- jake
439 */
440 mtx_unlock(&devsoftc.mtx);
441 return (rv);
442 }
443 }
444 n1 = TAILQ_FIRST(&devsoftc.devq);
445 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
446 mtx_unlock(&devsoftc.mtx);
447 rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
448 free(n1->dei_data, M_BUS);
449 free(n1, M_BUS);
450 return (rv);
451}
452
453static int
454devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, d_thread_t *td)
455{
456 switch (cmd) {
457
458 case FIONBIO:
459 if (*(int*)data)
460 devsoftc.nonblock = 1;
461 else
462 devsoftc.nonblock = 0;
463 return (0);
464 case FIOASYNC:
465 if (*(int*)data)
466 devsoftc.async_proc = td->td_proc;
467 else
468 devsoftc.async_proc = NULL;
469 return (0);
470
471 /* (un)Support for other fcntl() calls. */
472 case FIOCLEX:
473 case FIONCLEX:
474 case FIONREAD:
475 case FIOSETOWN:
476 case FIOGETOWN:
477 default:
478 break;
479 }
480 return (ENOTTY);
481}
482
483static int
484devpoll(struct cdev *dev, int events, d_thread_t *td)
485{
486 int revents = 0;
487
488 mtx_lock(&devsoftc.mtx);
489 if (events & (POLLIN | POLLRDNORM)) {
490 if (!TAILQ_EMPTY(&devsoftc.devq))
491 revents = events & (POLLIN | POLLRDNORM);
492 else
493 selrecord(td, &devsoftc.sel);
494 }
495 mtx_unlock(&devsoftc.mtx);
496
497 return (revents);
498}
499
500/**
501 * @brief Queue data to be read from the devctl device
502 *
503 * Generic interface to queue data to the devctl device. It is
504 * assumed that @p data is properly formatted. It is further assumed
505 * that @p data is allocated using the M_BUS malloc type.
506 */
507void
508devctl_queue_data(char *data)
509{
510 struct dev_event_info *n1 = NULL;
511 struct proc *p;
512
513 n1 = malloc(sizeof(*n1), M_BUS, M_NOWAIT);
514 if (n1 == NULL)
515 return;
516 n1->dei_data = data;
517 mtx_lock(&devsoftc.mtx);
518 TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
519 cv_broadcast(&devsoftc.cv);
520 mtx_unlock(&devsoftc.mtx);
521 selwakeup(&devsoftc.sel);
522 p = devsoftc.async_proc;
523 if (p != NULL) {
524 PROC_LOCK(p);
525 psignal(p, SIGIO);
526 PROC_UNLOCK(p);
527 }
528}
529
530/**
531 * @brief Send a 'notification' to userland, using standard ways
532 */
533void
534devctl_notify(const char *system, const char *subsystem, const char *type,
535 const char *data)
536{
537 int len = 0;
538 char *msg;
539
540 if (system == NULL)
541 return; /* BOGUS! Must specify system. */
542 if (subsystem == NULL)
543 return; /* BOGUS! Must specify subsystem. */
544 if (type == NULL)
545 return; /* BOGUS! Must specify type. */
546 len += strlen(" system=") + strlen(system);
547 len += strlen(" subsystem=") + strlen(subsystem);
548 len += strlen(" type=") + strlen(type);
549 /* add in the data message plus newline. */
550 if (data != NULL)
551 len += strlen(data);
552 len += 3; /* '!', '\n', and NUL */
553 msg = malloc(len, M_BUS, M_NOWAIT);
554 if (msg == NULL)
555 return; /* Drop it on the floor */
556 if (data != NULL)
557 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
558 system, subsystem, type, data);
559 else
560 snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
561 system, subsystem, type);
562 devctl_queue_data(msg);
563}
564
565/*
566 * Common routine that tries to make sending messages as easy as possible.
567 * We allocate memory for the data, copy strings into that, but do not
568 * free it unless there's an error. The dequeue part of the driver should
569 * free the data. We don't send data when the device is disabled. We do
570 * send data, even when we have no listeners, because we wish to avoid
571 * races relating to startup and restart of listening applications.
572 *
573 * devaddq is designed to string together the type of event, with the
574 * object of that event, plus the plug and play info and location info
575 * for that event. This is likely most useful for devices, but less
576 * useful for other consumers of this interface. Those should use
577 * the devctl_queue_data() interface instead.
578 */
579static void
580devaddq(const char *type, const char *what, device_t dev)
581{
582 char *data = NULL;
583 char *loc = NULL;
584 char *pnp = NULL;
585 const char *parstr;
586
587 if (devctl_disable)
588 return;
589 data = malloc(1024, M_BUS, M_NOWAIT);
590 if (data == NULL)
591 goto bad;
592
593 /* get the bus specific location of this device */
594 loc = malloc(1024, M_BUS, M_NOWAIT);
595 if (loc == NULL)
596 goto bad;
597 *loc = '\0';
598 bus_child_location_str(dev, loc, 1024);
599
600 /* Get the bus specific pnp info of this device */
601 pnp = malloc(1024, M_BUS, M_NOWAIT);
602 if (pnp == NULL)
603 goto bad;
604 *pnp = '\0';
605 bus_child_pnpinfo_str(dev, pnp, 1024);
606
607 /* Get the parent of this device, or / if high enough in the tree. */
608 if (device_get_parent(dev) == NULL)
609 parstr = "."; /* Or '/' ? */
610 else
611 parstr = device_get_nameunit(device_get_parent(dev));
612 /* String it all together. */
613 snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
614 parstr);
615 free(loc, M_BUS);
616 free(pnp, M_BUS);
617 devctl_queue_data(data);
618 return;
619bad:
620 free(pnp, M_BUS);
621 free(loc, M_BUS);
622 free(data, M_BUS);
623 return;
624}
625
626/*
627 * A device was added to the tree. We are called just after it successfully
628 * attaches (that is, probe and attach success for this device). No call
629 * is made if a device is merely parented into the tree. See devnomatch
630 * if probe fails. If attach fails, no notification is sent (but maybe
631 * we should have a different message for this).
632 */
633static void
634devadded(device_t dev)
635{
636 char *pnp = NULL;
637 char *tmp = NULL;
638
639 pnp = malloc(1024, M_BUS, M_NOWAIT);
640 if (pnp == NULL)
641 goto fail;
642 tmp = malloc(1024, M_BUS, M_NOWAIT);
643 if (tmp == NULL)
644 goto fail;
645 *pnp = '\0';
646 bus_child_pnpinfo_str(dev, pnp, 1024);
647 snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
648 devaddq("+", tmp, dev);
649fail:
650 if (pnp != NULL)
651 free(pnp, M_BUS);
652 if (tmp != NULL)
653 free(tmp, M_BUS);
654 return;
655}
656
657/*
658 * A device was removed from the tree. We are called just before this
659 * happens.
660 */
661static void
662devremoved(device_t dev)
663{
664 char *pnp = NULL;
665 char *tmp = NULL;
666
667 pnp = malloc(1024, M_BUS, M_NOWAIT);
668 if (pnp == NULL)
669 goto fail;
670 tmp = malloc(1024, M_BUS, M_NOWAIT);
671 if (tmp == NULL)
672 goto fail;
673 *pnp = '\0';
674 bus_child_pnpinfo_str(dev, pnp, 1024);
675 snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
676 devaddq("-", tmp, dev);
677fail:
678 if (pnp != NULL)
679 free(pnp, M_BUS);
680 if (tmp != NULL)
681 free(tmp, M_BUS);
682 return;
683}
684
685/*
686 * Called when there's no match for this device. This is only called
687 * the first time that no match happens, so we don't keep getitng this
688 * message. Should that prove to be undesirable, we can change it.
689 * This is called when all drivers that can attach to a given bus
690 * decline to accept this device. Other errrors may not be detected.
691 */
692static void
693devnomatch(device_t dev)
694{
695 devaddq("?", "", dev);
696}
697
698static int
699sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
700{
701 struct dev_event_info *n1;
702 int dis, error;
703
704 dis = devctl_disable;
705 error = sysctl_handle_int(oidp, &dis, 0, req);
706 if (error || !req->newptr)
707 return (error);
708 mtx_lock(&devsoftc.mtx);
709 devctl_disable = dis;
710 if (dis) {
711 while (!TAILQ_EMPTY(&devsoftc.devq)) {
712 n1 = TAILQ_FIRST(&devsoftc.devq);
713 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
714 free(n1->dei_data, M_BUS);
715 free(n1, M_BUS);
716 }
717 }
718 mtx_unlock(&devsoftc.mtx);
719 return (0);
720}
721
722/* End of /dev/devctl code */
723
724TAILQ_HEAD(,device) bus_data_devices;
725static int bus_data_generation = 1;
726
727kobj_method_t null_methods[] = {
728 { 0, 0 }
729};
730
731DEFINE_CLASS(null, null_methods, 0);
732
733/*
734 * Devclass implementation
735 */
736
737static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
738
739
740/**
741 * @internal
742 * @brief Find or create a device class
743 *
744 * If a device class with the name @p classname exists, return it,
745 * otherwise if @p create is non-zero create and return a new device
746 * class.
747 *
748 * If @p parentname is non-NULL, the parent of the devclass is set to
749 * the devclass of that name.
750 *
751 * @param classname the devclass name to find or create
752 * @param parentname the parent devclass name or @c NULL
753 * @param create non-zero to create a devclass
754 */
755static devclass_t
756devclass_find_internal(const char *classname, const char *parentname,
757 int create)
758{
759 devclass_t dc;
760
761 PDEBUG(("looking for %s", classname));
762 if (!classname)
763 return (NULL);
764
765 TAILQ_FOREACH(dc, &devclasses, link) {
766 if (!strcmp(dc->name, classname))
767 break;
768 }
769
770 if (create && !dc) {
771 PDEBUG(("creating %s", classname));
772 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
773 M_BUS, M_NOWAIT|M_ZERO);
774 if (!dc)
775 return (NULL);
776 dc->parent = NULL;
777 dc->name = (char*) (dc + 1);
778 strcpy(dc->name, classname);
779 TAILQ_INIT(&dc->drivers);
780 TAILQ_INSERT_TAIL(&devclasses, dc, link);
781
782 bus_data_generation_update();
783 }
784
785 /*
786 * If a parent class is specified, then set that as our parent so
787 * that this devclass will support drivers for the parent class as
788 * well. If the parent class has the same name don't do this though
789 * as it creates a cycle that can trigger an infinite loop in
790 * device_probe_child() if a device exists for which there is no
791 * suitable driver.
792 */
793 if (parentname && dc && !dc->parent &&
794 strcmp(classname, parentname) != 0) {
795 dc->parent = devclass_find_internal(parentname, 0, FALSE);
796 }
797
798 return (dc);
799}
800
801/**
802 * @brief Create a device class
803 *
804 * If a device class with the name @p classname exists, return it,
805 * otherwise create and return a new device class.
806 *
807 * @param classname the devclass name to find or create
808 */
809devclass_t
810devclass_create(const char *classname)
811{
812 return (devclass_find_internal(classname, 0, TRUE));
813}
814
815/**
816 * @brief Find a device class
817 *
818 * If a device class with the name @p classname exists, return it,
819 * otherwise return @c NULL.
820 *
821 * @param classname the devclass name to find
822 */
823devclass_t
824devclass_find(const char *classname)
825{
826 return (devclass_find_internal(classname, 0, FALSE));
827}
828
829/**
830 * @brief Add a device driver to a device class
831 *
832 * Add a device driver to a devclass. This is normally called
833 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
834 * all devices in the devclass will be called to allow them to attempt
835 * to re-probe any unmatched children.
836 *
837 * @param dc the devclass to edit
838 * @param driver the driver to register
839 */
840int
841devclass_add_driver(devclass_t dc, driver_t *driver)
842{
843 driverlink_t dl;
844 int i;
845
846 PDEBUG(("%s", DRIVERNAME(driver)));
847
848 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
849 if (!dl)
850 return (ENOMEM);
851
852 /*
853 * Compile the driver's methods. Also increase the reference count
854 * so that the class doesn't get freed when the last instance
855 * goes. This means we can safely use static methods and avoids a
856 * double-free in devclass_delete_driver.
857 */
858 kobj_class_compile((kobj_class_t) driver);
859
860 /*
861 * Make sure the devclass which the driver is implementing exists.
862 */
863 devclass_find_internal(driver->name, 0, TRUE);
864
865 dl->driver = driver;
866 TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
867 driver->refs++; /* XXX: kobj_mtx */
868
869 /*
870 * Call BUS_DRIVER_ADDED for any existing busses in this class.
871 */
872 for (i = 0; i < dc->maxunit; i++)
873 if (dc->devices[i])
874 BUS_DRIVER_ADDED(dc->devices[i], driver);
875
876 bus_data_generation_update();
877 return (0);
878}
879
880/**
881 * @brief Delete a device driver from a device class
882 *
883 * Delete a device driver from a devclass. This is normally called
884 * automatically by DRIVER_MODULE().
885 *
886 * If the driver is currently attached to any devices,
887 * devclass_delete_driver() will first attempt to detach from each
888 * device. If one of the detach calls fails, the driver will not be
889 * deleted.
890 *
891 * @param dc the devclass to edit
892 * @param driver the driver to unregister
893 */
894int
895devclass_delete_driver(devclass_t busclass, driver_t *driver)
896{
897 devclass_t dc = devclass_find(driver->name);
898 driverlink_t dl;
899 device_t dev;
900 int i;
901 int error;
902
903 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
904
905 if (!dc)
906 return (0);
907
908 /*
909 * Find the link structure in the bus' list of drivers.
910 */
911 TAILQ_FOREACH(dl, &busclass->drivers, link) {
912 if (dl->driver == driver)
913 break;
914 }
915
916 if (!dl) {
917 PDEBUG(("%s not found in %s list", driver->name,
918 busclass->name));
919 return (ENOENT);
920 }
921
922 /*
923 * Disassociate from any devices. We iterate through all the
924 * devices in the devclass of the driver and detach any which are
925 * using the driver and which have a parent in the devclass which
926 * we are deleting from.
927 *
928 * Note that since a driver can be in multiple devclasses, we
929 * should not detach devices which are not children of devices in
930 * the affected devclass.
931 */
932 for (i = 0; i < dc->maxunit; i++) {
933 if (dc->devices[i]) {
934 dev = dc->devices[i];
935 if (dev->driver == driver && dev->parent &&
936 dev->parent->devclass == busclass) {
937 if ((error = device_detach(dev)) != 0)
938 return (error);
939 device_set_driver(dev, NULL);
940 }
941 }
942 }
943
944 TAILQ_REMOVE(&busclass->drivers, dl, link);
945 free(dl, M_BUS);
946
947 /* XXX: kobj_mtx */
948 driver->refs--;
949 if (driver->refs == 0)
950 kobj_class_free((kobj_class_t) driver);
951
952 bus_data_generation_update();
953 return (0);
954}
955
956/**
957 * @brief Quiesces a set of device drivers from a device class
958 *
959 * Quiesce a device driver from a devclass. This is normally called
960 * automatically by DRIVER_MODULE().
961 *
962 * If the driver is currently attached to any devices,
963 * devclass_quiesece_driver() will first attempt to quiesce each
964 * device.
965 *
966 * @param dc the devclass to edit
967 * @param driver the driver to unregister
968 */
969int
970devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
971{
972 devclass_t dc = devclass_find(driver->name);
973 driverlink_t dl;
974 device_t dev;
975 int i;
976 int error;
977
978 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
979
980 if (!dc)
981 return (0);
982
983 /*
984 * Find the link structure in the bus' list of drivers.
985 */
986 TAILQ_FOREACH(dl, &busclass->drivers, link) {
987 if (dl->driver == driver)
988 break;
989 }
990
991 if (!dl) {
992 PDEBUG(("%s not found in %s list", driver->name,
993 busclass->name));
994 return (ENOENT);
995 }
996
997 /*
998 * Quiesce all devices. We iterate through all the devices in
999 * the devclass of the driver and quiesce any which are using
1000 * the driver and which have a parent in the devclass which we
1001 * are quiescing.
1002 *
1003 * Note that since a driver can be in multiple devclasses, we
1004 * should not quiesce devices which are not children of
1005 * devices in the affected devclass.
1006 */
1007 for (i = 0; i < dc->maxunit; i++) {
1008 if (dc->devices[i]) {
1009 dev = dc->devices[i];
1010 if (dev->driver == driver && dev->parent &&
1011 dev->parent->devclass == busclass) {
1012 if ((error = device_quiesce(dev)) != 0)
1013 return (error);
1014 }
1015 }
1016 }
1017
1018 return (0);
1019}
1020
1021/**
1022 * @internal
1023 */
1024static driverlink_t
1025devclass_find_driver_internal(devclass_t dc, const char *classname)
1026{
1027 driverlink_t dl;
1028
1029 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1030
1031 TAILQ_FOREACH(dl, &dc->drivers, link) {
1032 if (!strcmp(dl->driver->name, classname))
1033 return (dl);
1034 }
1035
1036 PDEBUG(("not found"));
1037 return (NULL);
1038}
1039
1040/**
1041 * @brief Search a devclass for a driver
1042 *
1043 * This function searches the devclass's list of drivers and returns
1044 * the first driver whose name is @p classname or @c NULL if there is
1045 * no driver of that name.
1046 *
1047 * @param dc the devclass to search
1048 * @param classname the driver name to search for
1049 */
1050kobj_class_t
1051devclass_find_driver(devclass_t dc, const char *classname)
1052{
1053 driverlink_t dl;
1054
1055 dl = devclass_find_driver_internal(dc, classname);
1056 if (dl)
1057 return (dl->driver);
1058 return (NULL);
1059}
1060
1061/**
1062 * @brief Return the name of the devclass
1063 */
1064const char *
1065devclass_get_name(devclass_t dc)
1066{
1067 return (dc->name);
1068}
1069
1070/**
1071 * @brief Find a device given a unit number
1072 *
1073 * @param dc the devclass to search
1074 * @param unit the unit number to search for
1075 *
1076 * @returns the device with the given unit number or @c
1077 * NULL if there is no such device
1078 */
1079device_t
1080devclass_get_device(devclass_t dc, int unit)
1081{
1082 if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1083 return (NULL);
1084 return (dc->devices[unit]);
1085}
1086
1087/**
1088 * @brief Find the softc field of a device given a unit number
1089 *
1090 * @param dc the devclass to search
1091 * @param unit the unit number to search for
1092 *
1093 * @returns the softc field of the device with the given
1094 * unit number or @c NULL if there is no such
1095 * device
1096 */
1097void *
1098devclass_get_softc(devclass_t dc, int unit)
1099{
1100 device_t dev;
1101
1102 dev = devclass_get_device(dc, unit);
1103 if (!dev)
1104 return (NULL);
1105
1106 return (device_get_softc(dev));
1107}
1108
1109/**
1110 * @brief Get a list of devices in the devclass
1111 *
1112 * An array containing a list of all the devices in the given devclass
1113 * is allocated and returned in @p *devlistp. The number of devices
1114 * in the array is returned in @p *devcountp. The caller should free
1115 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1116 *
1117 * @param dc the devclass to examine
1118 * @param devlistp points at location for array pointer return
1119 * value
1120 * @param devcountp points at location for array size return value
1121 *
1122 * @retval 0 success
1123 * @retval ENOMEM the array allocation failed
1124 */
1125int
1126devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1127{
1128 int count, i;
1129 device_t *list;
1130
1131 count = devclass_get_count(dc);
1132 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1133 if (!list)
1134 return (ENOMEM);
1135
1136 count = 0;
1137 for (i = 0; i < dc->maxunit; i++) {
1138 if (dc->devices[i]) {
1139 list[count] = dc->devices[i];
1140 count++;
1141 }
1142 }
1143
1144 *devlistp = list;
1145 *devcountp = count;
1146
1147 return (0);
1148}
1149
1150/**
1151 * @brief Get a list of drivers in the devclass
1152 *
1153 * An array containing a list of pointers to all the drivers in the
1154 * given devclass is allocated and returned in @p *listp. The number
1155 * of drivers in the array is returned in @p *countp. The caller should
1156 * free the array using @c free(p, M_TEMP).
1157 *
1158 * @param dc the devclass to examine
1159 * @param listp gives location for array pointer return value
1160 * @param countp gives location for number of array elements
1161 * return value
1162 *
1163 * @retval 0 success
1164 * @retval ENOMEM the array allocation failed
1165 */
1166int
1167devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1168{
1169 driverlink_t dl;
1170 driver_t **list;
1171 int count;
1172
1173 count = 0;
1174 TAILQ_FOREACH(dl, &dc->drivers, link)
1175 count++;
1176 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1177 if (list == NULL)
1178 return (ENOMEM);
1179
1180 count = 0;
1181 TAILQ_FOREACH(dl, &dc->drivers, link) {
1182 list[count] = dl->driver;
1183 count++;
1184 }
1185 *listp = list;
1186 *countp = count;
1187
1188 return (0);
1189}
1190
1191/**
1192 * @brief Get the number of devices in a devclass
1193 *
1194 * @param dc the devclass to examine
1195 */
1196int
1197devclass_get_count(devclass_t dc)
1198{
1199 int count, i;
1200
1201 count = 0;
1202 for (i = 0; i < dc->maxunit; i++)
1203 if (dc->devices[i])
1204 count++;
1205 return (count);
1206}
1207
1208/**
1209 * @brief Get the maximum unit number used in a devclass
1210 *
1211 * Note that this is one greater than the highest currently-allocated
1212 * unit.
1213 *
1214 * @param dc the devclass to examine
1215 */
1216int
1217devclass_get_maxunit(devclass_t dc)
1218{
1219 return (dc->maxunit);
1220}
1221
1222/**
1223 * @brief Find a free unit number in a devclass
1224 *
1225 * This function searches for the first unused unit number greater
1226 * that or equal to @p unit.
1227 *
1228 * @param dc the devclass to examine
1229 * @param unit the first unit number to check
1230 */
1231int
1232devclass_find_free_unit(devclass_t dc, int unit)
1233{
1234 if (dc == NULL)
1235 return (unit);
1236 while (unit < dc->maxunit && dc->devices[unit] != NULL)
1237 unit++;
1238 return (unit);
1239}
1240
1241/**
1242 * @brief Set the parent of a devclass
1243 *
1244 * The parent class is normally initialised automatically by
1245 * DRIVER_MODULE().
1246 *
1247 * @param dc the devclass to edit
1248 * @param pdc the new parent devclass
1249 */
1250void
1251devclass_set_parent(devclass_t dc, devclass_t pdc)
1252{
1253 dc->parent = pdc;
1254}
1255
1256/**
1257 * @brief Get the parent of a devclass
1258 *
1259 * @param dc the devclass to examine
1260 */
1261devclass_t
1262devclass_get_parent(devclass_t dc)
1263{
1264 return (dc->parent);
1265}
1266
1267struct sysctl_ctx_list *
1268devclass_get_sysctl_ctx(devclass_t dc)
1269{
1270 return (&dc->sysctl_ctx);
1271}
1272
1273struct sysctl_oid *
1274devclass_get_sysctl_tree(devclass_t dc)
1275{
1276 return (dc->sysctl_tree);
1277}
1278
1279/**
1280 * @internal
1281 * @brief Allocate a unit number
1282 *
1283 * On entry, @p *unitp is the desired unit number (or @c -1 if any
1284 * will do). The allocated unit number is returned in @p *unitp.
1285
1286 * @param dc the devclass to allocate from
1287 * @param unitp points at the location for the allocated unit
1288 * number
1289 *
1290 * @retval 0 success
1291 * @retval EEXIST the requested unit number is already allocated
1292 * @retval ENOMEM memory allocation failure
1293 */
1294static int
1295devclass_alloc_unit(devclass_t dc, int *unitp)
1296{
1297 int unit = *unitp;
1298
1299 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1300
1301 /* If we were given a wired unit number, check for existing device */
1302 /* XXX imp XXX */
1303 if (unit != -1) {
1304 if (unit >= 0 && unit < dc->maxunit &&
1305 dc->devices[unit] != NULL) {
1306 if (bootverbose)
1307 printf("%s: %s%d already exists; skipping it\n",
1308 dc->name, dc->name, *unitp);
1309 return (EEXIST);
1310 }
1311 } else {
1312 /* Unwired device, find the next available slot for it */
1313 unit = 0;
1314 while (unit < dc->maxunit && dc->devices[unit] != NULL)
1315 unit++;
1316 }
1317
1318 /*
1319 * We've selected a unit beyond the length of the table, so let's
1320 * extend the table to make room for all units up to and including
1321 * this one.
1322 */
1323 if (unit >= dc->maxunit) {
1324 device_t *newlist;
1325 int newsize;
1326
1327 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1328 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1329 if (!newlist)
1330 return (ENOMEM);
1331 bcopy(dc->devices, newlist, sizeof(device_t) * dc->maxunit);
1332 bzero(newlist + dc->maxunit,
1333 sizeof(device_t) * (newsize - dc->maxunit));
1334 if (dc->devices)
1335 free(dc->devices, M_BUS);
1336 dc->devices = newlist;
1337 dc->maxunit = newsize;
1338 }
1339 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1340
1341 *unitp = unit;
1342 return (0);
1343}
1344
1345/**
1346 * @internal
1347 * @brief Add a device to a devclass
1348 *
1349 * A unit number is allocated for the device (using the device's
1350 * preferred unit number if any) and the device is registered in the
1351 * devclass. This allows the device to be looked up by its unit
1352 * number, e.g. by decoding a dev_t minor number.
1353 *
1354 * @param dc the devclass to add to
1355 * @param dev the device to add
1356 *
1357 * @retval 0 success
1358 * @retval EEXIST the requested unit number is already allocated
1359 * @retval ENOMEM memory allocation failure
1360 */
1361static int
1362devclass_add_device(devclass_t dc, device_t dev)
1363{
1364 int buflen, error;
1365
1366 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1367
1368 buflen = snprintf(NULL, 0, "%s%d$", dc->name, dev->unit);
1369 if (buflen < 0)
1370 return (ENOMEM);
1371 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1372 if (!dev->nameunit)
1373 return (ENOMEM);
1374
1375 if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) {
1376 free(dev->nameunit, M_BUS);
1377 dev->nameunit = NULL;
1378 return (error);
1379 }
1380 dc->devices[dev->unit] = dev;
1381 dev->devclass = dc;
1382 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1383
1384 return (0);
1385}
1386
1387/**
1388 * @internal
1389 * @brief Delete a device from a devclass
1390 *
1391 * The device is removed from the devclass's device list and its unit
1392 * number is freed.
1393
1394 * @param dc the devclass to delete from
1395 * @param dev the device to delete
1396 *
1397 * @retval 0 success
1398 */
1399static int
1400devclass_delete_device(devclass_t dc, device_t dev)
1401{
1402 if (!dc || !dev)
1403 return (0);
1404
1405 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1406
1407 if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1408 panic("devclass_delete_device: inconsistent device class");
1409 dc->devices[dev->unit] = NULL;
1410 if (dev->flags & DF_WILDCARD)
1411 dev->unit = -1;
1412 dev->devclass = NULL;
1413 free(dev->nameunit, M_BUS);
1414 dev->nameunit = NULL;
1415
1416 return (0);
1417}
1418
1419/**
1420 * @internal
1421 * @brief Make a new device and add it as a child of @p parent
1422 *
1423 * @param parent the parent of the new device
1424 * @param name the devclass name of the new device or @c NULL
1425 * to leave the devclass unspecified
1426 * @parem unit the unit number of the new device of @c -1 to
1427 * leave the unit number unspecified
1428 *
1429 * @returns the new device
1430 */
1431static device_t
1432make_device(device_t parent, const char *name, int unit)
1433{
1434 device_t dev;
1435 devclass_t dc;
1436
1437 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1438
1439 if (name) {
1440 dc = devclass_find_internal(name, 0, TRUE);
1441 if (!dc) {
1442 printf("make_device: can't find device class %s\n",
1443 name);
1444 return (NULL);
1445 }
1446 } else {
1447 dc = NULL;
1448 }
1449
1450 dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1451 if (!dev)
1452 return (NULL);
1453
1454 dev->parent = parent;
1455 TAILQ_INIT(&dev->children);
1456 kobj_init((kobj_t) dev, &null_class);
1457 dev->driver = NULL;
1458 dev->devclass = NULL;
1459 dev->unit = unit;
1460 dev->nameunit = NULL;
1461 dev->desc = NULL;
1462 dev->busy = 0;
1463 dev->devflags = 0;
1464 dev->flags = DF_ENABLED;
1465 dev->order = 0;
1466 if (unit == -1)
1467 dev->flags |= DF_WILDCARD;
1468 if (name) {
1469 dev->flags |= DF_FIXEDCLASS;
1470 if (devclass_add_device(dc, dev)) {
1471 kobj_delete((kobj_t) dev, M_BUS);
1472 return (NULL);
1473 }
1474 }
1475 dev->ivars = NULL;
1476 dev->softc = NULL;
1477
1478 dev->state = DS_NOTPRESENT;
1479
1480 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1481 bus_data_generation_update();
1482
1483 return (dev);
1484}
1485
1486/**
1487 * @internal
1488 * @brief Print a description of a device.
1489 */
1490static int
1491device_print_child(device_t dev, device_t child)
1492{
1493 int retval = 0;
1494
1495 if (device_is_alive(child))
1496 retval += BUS_PRINT_CHILD(dev, child);
1497 else
1498 retval += device_printf(child, " not found\n");
1499
1500 return (retval);
1501}
1502
1503/**
1504 * @brief Create a new device
1505 *
1506 * This creates a new device and adds it as a child of an existing
1507 * parent device. The new device will be added after the last existing
1508 * child with order zero.
1509 *
1510 * @param dev the device which will be the parent of the
1511 * new child device
1512 * @param name devclass name for new device or @c NULL if not
1513 * specified
1514 * @param unit unit number for new device or @c -1 if not
1515 * specified
1516 *
1517 * @returns the new device
1518 */
1519device_t
1520device_add_child(device_t dev, const char *name, int unit)
1521{
1522 return (device_add_child_ordered(dev, 0, name, unit));
1523}
1524
1525/**
1526 * @brief Create a new device
1527 *
1528 * This creates a new device and adds it as a child of an existing
1529 * parent device. The new device will be added after the last existing
1530 * child with the same order.
1531 *
1532 * @param dev the device which will be the parent of the
1533 * new child device
1534 * @param order a value which is used to partially sort the
1535 * children of @p dev - devices created using
1536 * lower values of @p order appear first in @p
1537 * dev's list of children
1538 * @param name devclass name for new device or @c NULL if not
1539 * specified
1540 * @param unit unit number for new device or @c -1 if not
1541 * specified
1542 *
1543 * @returns the new device
1544 */
1545device_t
1546device_add_child_ordered(device_t dev, int order, const char *name, int unit)
1547{
1548 device_t child;
1549 device_t place;
1550
1551 PDEBUG(("%s at %s with order %d as unit %d",
1552 name, DEVICENAME(dev), order, unit));
1553
1554 child = make_device(dev, name, unit);
1555 if (child == NULL)
1556 return (child);
1557 child->order = order;
1558
1559 TAILQ_FOREACH(place, &dev->children, link) {
1560 if (place->order > order)
1561 break;
1562 }
1563
1564 if (place) {
1565 /*
1566 * The device 'place' is the first device whose order is
1567 * greater than the new child.
1568 */
1569 TAILQ_INSERT_BEFORE(place, child, link);
1570 } else {
1571 /*
1572 * The new child's order is greater or equal to the order of
1573 * any existing device. Add the child to the tail of the list.
1574 */
1575 TAILQ_INSERT_TAIL(&dev->children, child, link);
1576 }
1577
1578 bus_data_generation_update();
1579 return (child);
1580}
1581
1582/**
1583 * @brief Delete a device
1584 *
1585 * This function deletes a device along with all of its children. If
1586 * the device currently has a driver attached to it, the device is
1587 * detached first using device_detach().
1588 *
1589 * @param dev the parent device
1590 * @param child the device to delete
1591 *
1592 * @retval 0 success
1593 * @retval non-zero a unit error code describing the error
1594 */
1595int
1596device_delete_child(device_t dev, device_t child)
1597{
1598 int error;
1599 device_t grandchild;
1600
1601 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1602
1603 /* remove children first */
1604 while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
1605 error = device_delete_child(child, grandchild);
1606 if (error)
1607 return (error);
1608 }
1609
1610 if ((error = device_detach(child)) != 0)
1611 return (error);
1612 if (child->devclass)
1613 devclass_delete_device(child->devclass, child);
1614 TAILQ_REMOVE(&dev->children, child, link);
1615 TAILQ_REMOVE(&bus_data_devices, child, devlink);
1616 kobj_delete((kobj_t) child, M_BUS);
1617
1618 bus_data_generation_update();
1619 return (0);
1620}
1621
1622/**
1623 * @brief Find a device given a unit number
1624 *
1625 * This is similar to devclass_get_devices() but only searches for
1626 * devices which have @p dev as a parent.
1627 *
1628 * @param dev the parent device to search
1629 * @param unit the unit number to search for. If the unit is -1,
1630 * return the first child of @p dev which has name
1631 * @p classname (that is, the one with the lowest unit.)
1632 *
1633 * @returns the device with the given unit number or @c
1634 * NULL if there is no such device
1635 */
1636device_t
1637device_find_child(device_t dev, const char *classname, int unit)
1638{
1639 devclass_t dc;
1640 device_t child;
1641
1642 dc = devclass_find(classname);
1643 if (!dc)
1644 return (NULL);
1645
1646 if (unit != -1) {
1647 child = devclass_get_device(dc, unit);
1648 if (child && child->parent == dev)
1649 return (child);
1650 } else {
1651 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1652 child = devclass_get_device(dc, unit);
1653 if (child && child->parent == dev)
1654 return (child);
1655 }
1656 }
1657 return (NULL);
1658}
1659
1660/**
1661 * @internal
1662 */
1663static driverlink_t
1664first_matching_driver(devclass_t dc, device_t dev)
1665{
1666 if (dev->devclass)
1667 return (devclass_find_driver_internal(dc, dev->devclass->name));
1668 return (TAILQ_FIRST(&dc->drivers));
1669}
1670
1671/**
1672 * @internal
1673 */
1674static driverlink_t
1675next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1676{
1677 if (dev->devclass) {
1678 driverlink_t dl;
1679 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1680 if (!strcmp(dev->devclass->name, dl->driver->name))
1681 return (dl);
1682 return (NULL);
1683 }
1684 return (TAILQ_NEXT(last, link));
1685}
1686
1687/**
1688 * @internal
1689 */
1690int
1691device_probe_child(device_t dev, device_t child)
1692{
1693 devclass_t dc;
1694 driverlink_t best = 0;
1695 driverlink_t dl;
1696 int result, pri = 0;
1697 int hasclass = (child->devclass != 0);
1698
1699 GIANT_REQUIRED;
1700
1701 dc = dev->devclass;
1702 if (!dc)
1703 panic("device_probe_child: parent device has no devclass");
1704
1705 /*
1706 * If the state is already probed, then return. However, don't
1707 * return if we can rebid this object.
1708 */
1709 if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
1710 return (0);
1711
1712 for (; dc; dc = dc->parent) {
1713 for (dl = first_matching_driver(dc, child);
1714 dl;
1715 dl = next_matching_driver(dc, child, dl)) {
1716 PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1717 device_set_driver(child, dl->driver);
1718 if (!hasclass)
1719 device_set_devclass(child, dl->driver->name);
1720
1721 /* Fetch any flags for the device before probing. */
1722 resource_int_value(dl->driver->name, child->unit,
1723 "flags", &child->devflags);
1724
1725 result = DEVICE_PROBE(child);
1726
1727 /* Reset flags and devclass before the next probe. */
1728 child->devflags = 0;
1729 if (!hasclass)
1730 device_set_devclass(child, 0);
1731
1732 /*
1733 * If the driver returns SUCCESS, there can be
1734 * no higher match for this device.
1735 */
1736 if (result == 0) {
1737 best = dl;
1738 pri = 0;
1739 break;
1740 }
1741
1742 /*
1743 * The driver returned an error so it
1744 * certainly doesn't match.
1745 */
1746 if (result > 0) {
1747 device_set_driver(child, 0);
1748 continue;
1749 }
1750
1751 /*
1752 * A priority lower than SUCCESS, remember the
1753 * best matching driver. Initialise the value
1754 * of pri for the first match.
1755 */
1756 if (best == 0 || result > pri) {
1757 best = dl;
1758 pri = result;
1759 continue;
1760 }
1761 }
1762 /*
1763 * If we have an unambiguous match in this devclass,
1764 * don't look in the parent.
1765 */
1766 if (best && pri == 0)
1767 break;
1768 }
1769
1770 /*
1771 * If we found a driver, change state and initialise the devclass.
1772 */
1773 /* XXX What happens if we rebid and got no best? */
1774 if (best) {
1775 /*
1776 * If this device was atached, and we were asked to
1777 * rescan, and it is a different driver, then we have
1778 * to detach the old driver and reattach this new one.
1779 * Note, we don't have to check for DF_REBID here
1780 * because if the state is > DS_ALIVE, we know it must
1781 * be.
1782 *
1783 * This assumes that all DF_REBID drivers can have
1784 * their probe routine called at any time and that
1785 * they are idempotent as well as completely benign in
1786 * normal operations.
1787 *
1788 * We also have to make sure that the detach
1789 * succeeded, otherwise we fail the operation (or
1790 * maybe it should just fail silently? I'm torn).
1791 */
1792 if (child->state > DS_ALIVE && best->driver != child->driver)
1793 if ((result = device_detach(dev)) != 0)
1794 return (result);
1795
1796 /* Set the winning driver, devclass, and flags. */
1797 if (!child->devclass)
1798 device_set_devclass(child, best->driver->name);
1799 device_set_driver(child, best->driver);
1800 resource_int_value(best->driver->name, child->unit,
1801 "flags", &child->devflags);
1802
1803 if (pri < 0) {
1804 /*
1805 * A bit bogus. Call the probe method again to make
1806 * sure that we have the right description.
1807 */
1808 DEVICE_PROBE(child);
1809#if 0
1810 child->flags |= DF_REBID;
1811#endif
1812 } else
1813 child->flags &= ~DF_REBID;
1814 child->state = DS_ALIVE;
1815
1816 bus_data_generation_update();
1817 return (0);
1818 }
1819
1820 return (ENXIO);
1821}
1822
1823/**
1824 * @brief Return the parent of a device
1825 */
1826device_t
1827device_get_parent(device_t dev)
1828{
1829 return (dev->parent);
1830}
1831
1832/**
1833 * @brief Get a list of children of a device
1834 *
1835 * An array containing a list of all the children of the given device
1836 * is allocated and returned in @p *devlistp. The number of devices
1837 * in the array is returned in @p *devcountp. The caller should free
1838 * the array using @c free(p, M_TEMP).
1839 *
1840 * @param dev the device to examine
1841 * @param devlistp points at location for array pointer return
1842 * value
1843 * @param devcountp points at location for array size return value
1844 *
1845 * @retval 0 success
1846 * @retval ENOMEM the array allocation failed
1847 */
1848int
1849device_get_children(device_t dev, device_t **devlistp, int *devcountp)
1850{
1851 int count;
1852 device_t child;
1853 device_t *list;
1854
1855 count = 0;
1856 TAILQ_FOREACH(child, &dev->children, link) {
1857 count++;
1858 }
1859
1860 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1861 if (!list)
1862 return (ENOMEM);
1863
1864 count = 0;
1865 TAILQ_FOREACH(child, &dev->children, link) {
1866 list[count] = child;
1867 count++;
1868 }
1869
1870 *devlistp = list;
1871 *devcountp = count;
1872
1873 return (0);
1874}
1875
1876/**
1877 * @brief Return the current driver for the device or @c NULL if there
1878 * is no driver currently attached
1879 */
1880driver_t *
1881device_get_driver(device_t dev)
1882{
1883 return (dev->driver);
1884}
1885
1886/**
1887 * @brief Return the current devclass for the device or @c NULL if
1888 * there is none.
1889 */
1890devclass_t
1891device_get_devclass(device_t dev)
1892{
1893 return (dev->devclass);
1894}
1895
1896/**
1897 * @brief Return the name of the device's devclass or @c NULL if there
1898 * is none.
1899 */
1900const char *
1901device_get_name(device_t dev)
1902{
1903 if (dev != NULL && dev->devclass)
1904 return (devclass_get_name(dev->devclass));
1905 return (NULL);
1906}
1907
1908/**
1909 * @brief Return a string containing the device's devclass name
1910 * followed by an ascii representation of the device's unit number
1911 * (e.g. @c "foo2").
1912 */
1913const char *
1914device_get_nameunit(device_t dev)
1915{
1916 return (dev->nameunit);
1917}
1918
1919/**
1920 * @brief Return the device's unit number.
1921 */
1922int
1923device_get_unit(device_t dev)
1924{
1925 return (dev->unit);
1926}
1927
1928/**
1929 * @brief Return the device's description string
1930 */
1931const char *
1932device_get_desc(device_t dev)
1933{
1934 return (dev->desc);
1935}
1936
1937/**
1938 * @brief Return the device's flags
1939 */
1940u_int32_t
1941device_get_flags(device_t dev)
1942{
1943 return (dev->devflags);
1944}
1945
1946struct sysctl_ctx_list *
1947device_get_sysctl_ctx(device_t dev)
1948{
1949 return (&dev->sysctl_ctx);
1950}
1951
1952struct sysctl_oid *
1953device_get_sysctl_tree(device_t dev)
1954{
1955 return (dev->sysctl_tree);
1956}
1957
1958/**
1959 * @brief Print the name of the device followed by a colon and a space
1960 *
1961 * @returns the number of characters printed
1962 */
1963int
1964device_print_prettyname(device_t dev)
1965{
1966 const char *name = device_get_name(dev);
1967
1968 if (name == 0)
1969 return (printf("unknown: "));
1970 return (printf("%s%d: ", name, device_get_unit(dev)));
1971}
1972
1973/**
1974 * @brief Print the name of the device followed by a colon, a space
1975 * and the result of calling vprintf() with the value of @p fmt and
1976 * the following arguments.
1977 *
1978 * @returns the number of characters printed
1979 */
1980int
1981device_printf(device_t dev, const char * fmt, ...)
1982{
1983 va_list ap;
1984 int retval;
1985
1986 retval = device_print_prettyname(dev);
1987 va_start(ap, fmt);
1988 retval += vprintf(fmt, ap);
1989 va_end(ap);
1990 return (retval);
1991}
1992
1993/**
1994 * @internal
1995 */
1996static void
1997device_set_desc_internal(device_t dev, const char* desc, int copy)
1998{
1999 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2000 free(dev->desc, M_BUS);
2001 dev->flags &= ~DF_DESCMALLOCED;
2002 dev->desc = NULL;
2003 }
2004
2005 if (copy && desc) {
2006 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2007 if (dev->desc) {
2008 strcpy(dev->desc, desc);
2009 dev->flags |= DF_DESCMALLOCED;
2010 }
2011 } else {
2012 /* Avoid a -Wcast-qual warning */
2013 dev->desc = (char *)(uintptr_t) desc;
2014 }
2015
2016 bus_data_generation_update();
2017}
2018
2019/**
2020 * @brief Set the device's description
2021 *
2022 * The value of @c desc should be a string constant that will not
2023 * change (at least until the description is changed in a subsequent
2024 * call to device_set_desc() or device_set_desc_copy()).
2025 */
2026void
2027device_set_desc(device_t dev, const char* desc)
2028{
2029 device_set_desc_internal(dev, desc, FALSE);
2030}
2031
2032/**
2033 * @brief Set the device's description
2034 *
2035 * The string pointed to by @c desc is copied. Use this function if
2036 * the device description is generated, (e.g. with sprintf()).
2037 */
2038void
2039device_set_desc_copy(device_t dev, const char* desc)
2040{
2041 device_set_desc_internal(dev, desc, TRUE);
2042}
2043
2044/**
2045 * @brief Set the device's flags
2046 */
2047void
2048device_set_flags(device_t dev, u_int32_t flags)
2049{
2050 dev->devflags = flags;
2051}
2052
2053/**
2054 * @brief Return the device's softc field
2055 *
2056 * The softc is allocated and zeroed when a driver is attached, based
2057 * on the size field of the driver.
2058 */
2059void *
2060device_get_softc(device_t dev)
2061{
2062 return (dev->softc);
2063}
2064
2065/**
2066 * @brief Set the device's softc field
2067 *
2068 * Most drivers do not need to use this since the softc is allocated
2069 * automatically when the driver is attached.
2070 */
2071void
2072device_set_softc(device_t dev, void *softc)
2073{
2074 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2075 free(dev->softc, M_BUS_SC);
2076 dev->softc = softc;
2077 if (dev->softc)
2078 dev->flags |= DF_EXTERNALSOFTC;
2079 else
2080 dev->flags &= ~DF_EXTERNALSOFTC;
2081}
2082
2083/**
2084 * @brief Get the device's ivars field
2085 *
2086 * The ivars field is used by the parent device to store per-device
2087 * state (e.g. the physical location of the device or a list of
2088 * resources).
2089 */
2090void *
2091device_get_ivars(device_t dev)
2092{
2093
2094 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2095 return (dev->ivars);
2096}
2097
2098/**
2099 * @brief Set the device's ivars field
2100 */
2101void
2102device_set_ivars(device_t dev, void * ivars)
2103{
2104
2105 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2106 dev->ivars = ivars;
2107}
2108
2109/**
2110 * @brief Return the device's state
2111 */
2112device_state_t
2113device_get_state(device_t dev)
2114{
2115 return (dev->state);
2116}
2117
2118/**
2119 * @brief Set the DF_ENABLED flag for the device
2120 */
2121void
2122device_enable(device_t dev)
2123{
2124 dev->flags |= DF_ENABLED;
2125}
2126
2127/**
2128 * @brief Clear the DF_ENABLED flag for the device
2129 */
2130void
2131device_disable(device_t dev)
2132{
2133 dev->flags &= ~DF_ENABLED;
2134}
2135
2136/**
2137 * @brief Increment the busy counter for the device
2138 */
2139void
2140device_busy(device_t dev)
2141{
2142 if (dev->state < DS_ATTACHED)
2143 panic("device_busy: called for unattached device");
2144 if (dev->busy == 0 && dev->parent)
2145 device_busy(dev->parent);
2146 dev->busy++;
2147 dev->state = DS_BUSY;
2148}
2149
2150/**
2151 * @brief Decrement the busy counter for the device
2152 */
2153void
2154device_unbusy(device_t dev)
2155{
2156 if (dev->state != DS_BUSY)
2157 panic("device_unbusy: called for non-busy device %s",
2158 device_get_nameunit(dev));
2159 dev->busy--;
2160 if (dev->busy == 0) {
2161 if (dev->parent)
2162 device_unbusy(dev->parent);
2163 dev->state = DS_ATTACHED;
2164 }
2165}
2166
2167/**
2168 * @brief Set the DF_QUIET flag for the device
2169 */
2170void
2171device_quiet(device_t dev)
2172{
2173 dev->flags |= DF_QUIET;
2174}
2175
2176/**
2177 * @brief Clear the DF_QUIET flag for the device
2178 */
2179void
2180device_verbose(device_t dev)
2181{
2182 dev->flags &= ~DF_QUIET;
2183}
2184
2185/**
2186 * @brief Return non-zero if the DF_QUIET flag is set on the device
2187 */
2188int
2189device_is_quiet(device_t dev)
2190{
2191 return ((dev->flags & DF_QUIET) != 0);
2192}
2193
2194/**
2195 * @brief Return non-zero if the DF_ENABLED flag is set on the device
2196 */
2197int
2198device_is_enabled(device_t dev)
2199{
2200 return ((dev->flags & DF_ENABLED) != 0);
2201}
2202
2203/**
2204 * @brief Return non-zero if the device was successfully probed
2205 */
2206int
2207device_is_alive(device_t dev)
2208{
2209 return (dev->state >= DS_ALIVE);
2210}
2211
2212/**
2213 * @brief Return non-zero if the device currently has a driver
2214 * attached to it
2215 */
2216int
2217device_is_attached(device_t dev)
2218{
2219 return (dev->state >= DS_ATTACHED);
2220}
2221
2222/**
2223 * @brief Set the devclass of a device
2224 * @see devclass_add_device().
2225 */
2226int
2227device_set_devclass(device_t dev, const char *classname)
2228{
2229 devclass_t dc;
2230 int error;
2231
2232 if (!classname) {
2233 if (dev->devclass)
2234 devclass_delete_device(dev->devclass, dev);
2235 return (0);
2236 }
2237
2238 if (dev->devclass) {
2239 printf("device_set_devclass: device class already set\n");
2240 return (EINVAL);
2241 }
2242
2243 dc = devclass_find_internal(classname, 0, TRUE);
2244 if (!dc)
2245 return (ENOMEM);
2246
2247 error = devclass_add_device(dc, dev);
2248
2249 bus_data_generation_update();
2250 return (error);
2251}
2252
2253/**
2254 * @brief Set the driver of a device
2255 *
2256 * @retval 0 success
2257 * @retval EBUSY the device already has a driver attached
2258 * @retval ENOMEM a memory allocation failure occurred
2259 */
2260int
2261device_set_driver(device_t dev, driver_t *driver)
2262{
2263 if (dev->state >= DS_ATTACHED)
2264 return (EBUSY);
2265
2266 if (dev->driver == driver)
2267 return (0);
2268
2269 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2270 free(dev->softc, M_BUS_SC);
2271 dev->softc = NULL;
2272 }
2273 kobj_delete((kobj_t) dev, 0);
2274 dev->driver = driver;
2275 if (driver) {
2276 kobj_init((kobj_t) dev, (kobj_class_t) driver);
2277 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2278 dev->softc = malloc(driver->size, M_BUS_SC,
2279 M_NOWAIT | M_ZERO);
2280 if (!dev->softc) {
2281 kobj_delete((kobj_t) dev, 0);
2282 kobj_init((kobj_t) dev, &null_class);
2283 dev->driver = NULL;
2284 return (ENOMEM);
2285 }
2286 }
2287 } else {
2288 kobj_init((kobj_t) dev, &null_class);
2289 }
2290
2291 bus_data_generation_update();
2292 return (0);
2293}
2294
2295/**
2296 * @brief Probe a device and attach a driver if possible
2297 *
2298 * This function is the core of the device autoconfiguration
2299 * system. Its purpose is to select a suitable driver for a device and
2300 * then call that driver to initialise the hardware appropriately. The
2301 * driver is selected by calling the DEVICE_PROBE() method of a set of
2302 * candidate drivers and then choosing the driver which returned the
2303 * best value. This driver is then attached to the device using
2304 * device_attach().
2305 *
2306 * The set of suitable drivers is taken from the list of drivers in
2307 * the parent device's devclass. If the device was originally created
2308 * with a specific class name (see device_add_child()), only drivers
2309 * with that name are probed, otherwise all drivers in the devclass
2310 * are probed. If no drivers return successful probe values in the
2311 * parent devclass, the search continues in the parent of that
2312 * devclass (see devclass_get_parent()) if any.
2313 *
2314 * @param dev the device to initialise
2315 *
2316 * @retval 0 success
2317 * @retval ENXIO no driver was found
2318 * @retval ENOMEM memory allocation failure
2319 * @retval non-zero some other unix error code
2320 */
2321int
2322device_probe_and_attach(device_t dev)
2323{
2324 int error;
2325
2326 GIANT_REQUIRED;
2327
2328 if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2329 return (0);
2330
2331 if (!(dev->flags & DF_ENABLED)) {
2332 if (bootverbose && device_get_name(dev) != NULL) {
2333 device_print_prettyname(dev);
2334 printf("not probed (disabled)\n");
2335 }
2336 return (0);
2337 }
2338 if ((error = device_probe_child(dev->parent, dev)) != 0) {
2339 if (!(dev->flags & DF_DONENOMATCH)) {
2340 BUS_PROBE_NOMATCH(dev->parent, dev);
2341 devnomatch(dev);
2342 dev->flags |= DF_DONENOMATCH;
2343 }
2344 return (error);
2345 }
2346 error = device_attach(dev);
2347
2348 return (error);
2349}
2350
2351/**
2352 * @brief Attach a device driver to a device
2353 *
2354 * This function is a wrapper around the DEVICE_ATTACH() driver
2355 * method. In addition to calling DEVICE_ATTACH(), it initialises the
2356 * device's sysctl tree, optionally prints a description of the device
2357 * and queues a notification event for user-based device management
2358 * services.
2359 *
2360 * Normally this function is only called internally from
2361 * device_probe_and_attach().
2362 *
2363 * @param dev the device to initialise
2364 *
2365 * @retval 0 success
2366 * @retval ENXIO no driver was found
2367 * @retval ENOMEM memory allocation failure
2368 * @retval non-zero some other unix error code
2369 */
2370int
2371device_attach(device_t dev)
2372{
2373 int error;
2374
2375 device_sysctl_init(dev);
2376 if (!device_is_quiet(dev))
2377 device_print_child(dev->parent, dev);
2378 if ((error = DEVICE_ATTACH(dev)) != 0) {
2379 printf("device_attach: %s%d attach returned %d\n",
2380 dev->driver->name, dev->unit, error);
2381 /* Unset the class; set in device_probe_child */
2382 if (dev->devclass == 0)
2383 device_set_devclass(dev, 0);
2384 device_set_driver(dev, NULL);
2385 device_sysctl_fini(dev);
2386 dev->state = DS_NOTPRESENT;
2387 return (error);
2388 }
2389 dev->state = DS_ATTACHED;
2390 devadded(dev);
2391 return (0);
2392}
2393
2394/**
2395 * @brief Detach a driver from a device
2396 *
2397 * This function is a wrapper around the DEVICE_DETACH() driver
2398 * method. If the call to DEVICE_DETACH() succeeds, it calls
2399 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2400 * notification event for user-based device management services and
2401 * cleans up the device's sysctl tree.
2402 *
2403 * @param dev the device to un-initialise
2404 *
2405 * @retval 0 success
2406 * @retval ENXIO no driver was found
2407 * @retval ENOMEM memory allocation failure
2408 * @retval non-zero some other unix error code
2409 */
2410int
2411device_detach(device_t dev)
2412{
2413 int error;
2414
2415 GIANT_REQUIRED;
2416
2417 PDEBUG(("%s", DEVICENAME(dev)));
2418 if (dev->state == DS_BUSY)
2419 return (EBUSY);
2420 if (dev->state != DS_ATTACHED)
2421 return (0);
2422
2423 if ((error = DEVICE_DETACH(dev)) != 0)
2424 return (error);
2425 devremoved(dev);
2426 device_printf(dev, "detached\n");
2427 if (dev->parent)
2428 BUS_CHILD_DETACHED(dev->parent, dev);
2429
2430 if (!(dev->flags & DF_FIXEDCLASS))
2431 devclass_delete_device(dev->devclass, dev);
2432
2433 dev->state = DS_NOTPRESENT;
2434 device_set_driver(dev, NULL);
2435 device_set_desc(dev, NULL);
2436 device_sysctl_fini(dev);
2437
2438 return (0);
2439}
2440
2441/**
2442 * @brief Tells a driver to quiesce itself.
2443 *
2444 * This function is a wrapper around the DEVICE_QUIESCE() driver
2445 * method. If the call to DEVICE_QUIESCE() succeeds.
2446 *
2447 * @param dev the device to quiesce
2448 *
2449 * @retval 0 success
2450 * @retval ENXIO no driver was found
2451 * @retval ENOMEM memory allocation failure
2452 * @retval non-zero some other unix error code
2453 */
2454int
2455device_quiesce(device_t dev)
2456{
2457
2458 PDEBUG(("%s", DEVICENAME(dev)));
2459 if (dev->state == DS_BUSY)
2460 return (EBUSY);
2461 if (dev->state != DS_ATTACHED)
2462 return (0);
2463
2464 return (DEVICE_QUIESCE(dev));
2465}
2466
2467/**
2468 * @brief Notify a device of system shutdown
2469 *
2470 * This function calls the DEVICE_SHUTDOWN() driver method if the
2471 * device currently has an attached driver.
2472 *
2473 * @returns the value returned by DEVICE_SHUTDOWN()
2474 */
2475int
2476device_shutdown(device_t dev)
2477{
2478 if (dev->state < DS_ATTACHED)
2479 return (0);
2480 return (DEVICE_SHUTDOWN(dev));
2481}
2482
2483/**
2484 * @brief Set the unit number of a device
2485 *
2486 * This function can be used to override the unit number used for a
2487 * device (e.g. to wire a device to a pre-configured unit number).
2488 */
2489int
2490device_set_unit(device_t dev, int unit)
2491{
2492 devclass_t dc;
2493 int err;
2494
2495 dc = device_get_devclass(dev);
2496 if (unit < dc->maxunit && dc->devices[unit])
2497 return (EBUSY);
2498 err = devclass_delete_device(dc, dev);
2499 if (err)
2500 return (err);
2501 dev->unit = unit;
2502 err = devclass_add_device(dc, dev);
2503 if (err)
2504 return (err);
2505
2506 bus_data_generation_update();
2507 return (0);
2508}
2509
2510/*======================================*/
2511/*
2512 * Some useful method implementations to make life easier for bus drivers.
2513 */
2514
2515/**
2516 * @brief Initialise a resource list.
2517 *
2518 * @param rl the resource list to initialise
2519 */
2520void
2521resource_list_init(struct resource_list *rl)
2522{
2523 STAILQ_INIT(rl);
2524}
2525
2526/**
2527 * @brief Reclaim memory used by a resource list.
2528 *
2529 * This function frees the memory for all resource entries on the list
2530 * (if any).
2531 *
2532 * @param rl the resource list to free
2533 */
2534void
2535resource_list_free(struct resource_list *rl)
2536{
2537 struct resource_list_entry *rle;
2538
2539 while ((rle = STAILQ_FIRST(rl)) != NULL) {
2540 if (rle->res)
2541 panic("resource_list_free: resource entry is busy");
2542 STAILQ_REMOVE_HEAD(rl, link);
2543 free(rle, M_BUS);
2544 }
2545}
2546
2547/**
2548 * @brief Add a resource entry.
2549 *
2550 * This function adds a resource entry using the given @p type, @p
2551 * start, @p end and @p count values. A rid value is chosen by
2552 * searching sequentially for the first unused rid starting at zero.
2553 *
2554 * @param rl the resource list to edit
2555 * @param type the resource entry type (e.g. SYS_RES_MEMORY)
2556 * @param start the start address of the resource
2557 * @param end the end address of the resource
2558 * @param count XXX end-start+1
2559 */
2560int
2561resource_list_add_next(struct resource_list *rl, int type, u_long start,
2562 u_long end, u_long count)
2563{
2564 int rid;
2565
2566 rid = 0;
2567 while (resource_list_find(rl, type, rid) != NULL)
2568 rid++;
2569 resource_list_add(rl, type, rid, start, end, count);
2570 return (rid);
2571}
2572
2573/**
2574 * @brief Add or modify a resource entry.
2575 *
2576 * If an existing entry exists with the same type and rid, it will be
2577 * modified using the given values of @p start, @p end and @p
2578 * count. If no entry exists, a new one will be created using the
2579 * given values. The resource list entry that matches is then returned.
2580 *
2581 * @param rl the resource list to edit
2582 * @param type the resource entry type (e.g. SYS_RES_MEMORY)
2583 * @param rid the resource identifier
2584 * @param start the start address of the resource
2585 * @param end the end address of the resource
2586 * @param count XXX end-start+1
2587 */
2588struct resource_list_entry *
2589resource_list_add(struct resource_list *rl, int type, int rid,
2590 u_long start, u_long end, u_long count)
2591{
2592 struct resource_list_entry *rle;
2593
2594 rle = resource_list_find(rl, type, rid);
2595 if (!rle) {
2596 rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2597 M_NOWAIT);
2598 if (!rle)
2599 panic("resource_list_add: can't record entry");
2600 STAILQ_INSERT_TAIL(rl, rle, link);
2601 rle->type = type;
2602 rle->rid = rid;
2603 rle->res = NULL;
2604 }
2605
2606 if (rle->res)
2607 panic("resource_list_add: resource entry is busy");
2608
2609 rle->start = start;
2610 rle->end = end;
2611 rle->count = count;
2612 return (rle);
2613}
2614
2615/**
2616 * @brief Find a resource entry by type and rid.
2617 *
2618 * @param rl the resource list to search
2619 * @param type the resource entry type (e.g. SYS_RES_MEMORY)
2620 * @param rid the resource identifier
2621 *
2622 * @returns the resource entry pointer or NULL if there is no such
2623 * entry.
2624 */
2625struct resource_list_entry *
2626resource_list_find(struct resource_list *rl, int type, int rid)
2627{
2628 struct resource_list_entry *rle;
2629
2630 STAILQ_FOREACH(rle, rl, link) {
2631 if (rle->type == type && rle->rid == rid)
2632 return (rle);
2633 }
2634 return (NULL);
2635}
2636
2637/**
2638 * @brief Delete a resource entry.
2639 *
2640 * @param rl the resource list to edit
2641 * @param type the resource entry type (e.g. SYS_RES_MEMORY)
2642 * @param rid the resource identifier
2643 */
2644void
2645resource_list_delete(struct resource_list *rl, int type, int rid)
2646{
2647 struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2648
2649 if (rle) {
2650 if (rle->res != NULL)
2651 panic("resource_list_delete: resource has not been released");
2652 STAILQ_REMOVE(rl, rle, resource_list_entry, link);
2653 free(rle, M_BUS);
2654 }
2655}
2656
2657/**
2658 * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
2659 *
2660 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
2661 * and passing the allocation up to the parent of @p bus. This assumes
2662 * that the first entry of @c device_get_ivars(child) is a struct
2663 * resource_list. This also handles 'passthrough' allocations where a
2664 * child is a remote descendant of bus by passing the allocation up to
2665 * the parent of bus.
2666 *
2667 * Typically, a bus driver would store a list of child resources
2668 * somewhere in the child device's ivars (see device_get_ivars()) and
2669 * its implementation of BUS_ALLOC_RESOURCE() would find that list and
2670 * then call resource_list_alloc() to perform the allocation.
2671 *
2672 * @param rl the resource list to allocate from
2673 * @param bus the parent device of @p child
2674 * @param child the device which is requesting an allocation
2675 * @param type the type of resource to allocate
2676 * @param rid a pointer to the resource identifier
2677 * @param start hint at the start of the resource range - pass
2678 * @c 0UL for any start address
2679 * @param end hint at the end of the resource range - pass
2680 * @c ~0UL for any end address
2681 * @param count hint at the size of range required - pass @c 1
2682 * for any size
2683 * @param flags any extra flags to control the resource
2684 * allocation - see @c RF_XXX flags in
2685 * <sys/rman.h> for details
2686 *
2687 * @returns the resource which was allocated or @c NULL if no
2688 * resource could be allocated
2689 */
2690struct resource *
2691resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
2692 int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
2693{
2694 struct resource_list_entry *rle = 0;
2695 int passthrough = (device_get_parent(child) != bus);
2696 int isdefault = (start == 0UL && end == ~0UL);
2697
2698 if (passthrough) {
2699 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2700 type, rid, start, end, count, flags));
2701 }
2702
2703 rle = resource_list_find(rl, type, *rid);
2704
2705 if (!rle)
2706 return (NULL); /* no resource of that type/rid */
2707
2708 if (rle->res)
2709 panic("resource_list_alloc: resource entry is busy");
2710
2711 if (isdefault) {
2712 start = rle->start;
2713 count = ulmax(count, rle->count);
2714 end = ulmax(rle->end, start + count - 1);
2715 }
2716
2717 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2718 type, rid, start, end, count, flags);
2719
2720 /*
2721 * Record the new range.
2722 */
2723 if (rle->res) {
2724 rle->start = rman_get_start(rle->res);
2725 rle->end = rman_get_end(rle->res);
2726 rle->count = count;
2727 }
2728
2729 return (rle->res);
2730}
2731
2732/**
2733 * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
2734 *
2735 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
2736 * used with resource_list_alloc().
2737 *
2738 * @param rl the resource list which was allocated from
2739 * @param bus the parent device of @p child
2740 * @param child the device which is requesting a release
2741 * @param type the type of resource to allocate
2742 * @param rid the resource identifier
2743 * @param res the resource to release
2744 *
2745 * @retval 0 success
2746 * @retval non-zero a standard unix error code indicating what
2747 * error condition prevented the operation
2748 */
2749int
2750resource_list_release(struct resource_list *rl, device_t bus, device_t child,
2751 int type, int rid, struct resource *res)
2752{
2753 struct resource_list_entry *rle = 0;
2754 int passthrough = (device_get_parent(child) != bus);
2755 int error;
2756
2757 if (passthrough) {
2758 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2759 type, rid, res));
2760 }
2761
2762 rle = resource_list_find(rl, type, rid);
2763
2764 if (!rle)
2765 panic("resource_list_release: can't find resource");
2766 if (!rle->res)
2767 panic("resource_list_release: resource entry is not busy");
2768
2769 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2770 type, rid, res);
2771 if (error)
2772 return (error);
2773
2774 rle->res = NULL;
2775 return (0);
2776}
2777
2778/**
2779 * @brief Print a description of resources in a resource list
2780 *
2781 * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
2782 * The name is printed if at least one resource of the given type is available.
2783 * The format is used to print resource start and end.
2784 *
2785 * @param rl the resource list to print
2786 * @param name the name of @p type, e.g. @c "memory"
2787 * @param type type type of resource entry to print
2788 * @param format printf(9) format string to print resource
2789 * start and end values
2790 *
2791 * @returns the number of characters printed
2792 */
2793int
2794resource_list_print_type(struct resource_list *rl, const char *name, int type,
2795 const char *format)
2796{
2797 struct resource_list_entry *rle;
2798 int printed, retval;
2799
2800 printed = 0;
2801 retval = 0;
2802 /* Yes, this is kinda cheating */
2803 STAILQ_FOREACH(rle, rl, link) {
2804 if (rle->type == type) {
2805 if (printed == 0)
2806 retval += printf(" %s ", name);
2807 else
2808 retval += printf(",");
2809 printed++;
2810 retval += printf(format, rle->start);
2811 if (rle->count > 1) {
2812 retval += printf("-");
2813 retval += printf(format, rle->start +
2814 rle->count - 1);
2815 }
2816 }
2817 }
2818 return (retval);
2819}
2820
2821/**
2822 * @brief Releases all the resources in a list.
2823 *
2824 * @param rl The resource list to purge.
2825 *
2826 * @returns nothing
2827 */
2828void
2829resource_list_purge(struct resource_list *rl)
2830{
2831 struct resource_list_entry *rle;
2832
2833 while ((rle = STAILQ_FIRST(rl)) != NULL) {
2834 if (rle->res)
2835 bus_release_resource(rman_get_device(rle->res),
2836 rle->type, rle->rid, rle->res);
2837 STAILQ_REMOVE_HEAD(rl, link);
2838 free(rle, M_BUS);
2839 }
2840}
2841
2842/**
2843 * @brief Helper function for implementing DEVICE_PROBE()
2844 *
2845 * This function can be used to help implement the DEVICE_PROBE() for
2846 * a bus (i.e. a device which has other devices attached to it). It
2847 * calls the DEVICE_IDENTIFY() method of each driver in the device's
2848 * devclass.
2849 */
2850int
2851bus_generic_probe(device_t dev)
2852{
2853 devclass_t dc = dev->devclass;
2854 driverlink_t dl;
2855
2856 TAILQ_FOREACH(dl, &dc->drivers, link) {
2857 DEVICE_IDENTIFY(dl->driver, dev);
2858 }
2859
2860 return (0);
2861}
2862
2863/**
2864 * @brief Helper function for implementing DEVICE_ATTACH()
2865 *
2866 * This function can be used to help implement the DEVICE_ATTACH() for
2867 * a bus. It calls device_probe_and_attach() for each of the device's
2868 * children.
2869 */
2870int
2871bus_generic_attach(device_t dev)
2872{
2873 device_t child;
2874
2875 TAILQ_FOREACH(child, &dev->children, link) {
2876 device_probe_and_attach(child);
2877 }
2878
2879 return (0);
2880}
2881
2882/**
2883 * @brief Helper function for implementing DEVICE_DETACH()
2884 *
2885 * This function can be used to help implement the DEVICE_DETACH() for
2886 * a bus. It calls device_detach() for each of the device's
2887 * children.
2888 */
2889int
2890bus_generic_detach(device_t dev)
2891{
2892 device_t child;
2893 int error;
2894
2895 if (dev->state != DS_ATTACHED)
2896 return (EBUSY);
2897
2898 TAILQ_FOREACH(child, &dev->children, link) {
2899 if ((error = device_detach(child)) != 0)
2900 return (error);
2901 }
2902
2903 return (0);
2904}
2905
2906/**
2907 * @brief Helper function for implementing DEVICE_SHUTDOWN()
2908 *
2909 * This function can be used to help implement the DEVICE_SHUTDOWN()
2910 * for a bus. It calls device_shutdown() for each of the device's
2911 * children.
2912 */
2913int
2914bus_generic_shutdown(device_t dev)
2915{
2916 device_t child;
2917
2918 TAILQ_FOREACH(child, &dev->children, link) {
2919 device_shutdown(child);
2920 }
2921
2922 return (0);
2923}
2924
2925/**
2926 * @brief Helper function for implementing DEVICE_SUSPEND()
2927 *
2928 * This function can be used to help implement the DEVICE_SUSPEND()
2929 * for a bus. It calls DEVICE_SUSPEND() for each of the device's
2930 * children. If any call to DEVICE_SUSPEND() fails, the suspend
2931 * operation is aborted and any devices which were suspended are
2932 * resumed immediately by calling their DEVICE_RESUME() methods.
2933 */
2934int
2935bus_generic_suspend(device_t dev)
2936{
2937 int error;
2938 device_t child, child2;
2939
2940 TAILQ_FOREACH(child, &dev->children, link) {
2941 error = DEVICE_SUSPEND(child);
2942 if (error) {
2943 for (child2 = TAILQ_FIRST(&dev->children);
2944 child2 && child2 != child;
2945 child2 = TAILQ_NEXT(child2, link))
2946 DEVICE_RESUME(child2);
2947 return (error);
2948 }
2949 }
2950 return (0);
2951}
2952
2953/**
2954 * @brief Helper function for implementing DEVICE_RESUME()
2955 *
2956 * This function can be used to help implement the DEVICE_RESUME() for
2957 * a bus. It calls DEVICE_RESUME() on each of the device's children.
2958 */
2959int
2960bus_generic_resume(device_t dev)
2961{
2962 device_t child;
2963
2964 TAILQ_FOREACH(child, &dev->children, link) {
2965 DEVICE_RESUME(child);
2966 /* if resume fails, there's nothing we can usefully do... */
2967 }
2968 return (0);
2969}
2970
2971/**
2972 * @brief Helper function for implementing BUS_PRINT_CHILD().
2973 *
2974 * This function prints the first part of the ascii representation of
2975 * @p child, including its name, unit and description (if any - see
2976 * device_set_desc()).
2977 *
2978 * @returns the number of characters printed
2979 */
2980int
2981bus_print_child_header(device_t dev, device_t child)
2982{
2983 int retval = 0;
2984
2985 if (device_get_desc(child)) {
2986 retval += device_printf(child, "<%s>", device_get_desc(child));
2987 } else {
2988 retval += printf("%s", device_get_nameunit(child));
2989 }
2990
2991 return (retval);
2992}
2993
2994/**
2995 * @brief Helper function for implementing BUS_PRINT_CHILD().
2996 *
2997 * This function prints the last part of the ascii representation of
2998 * @p child, which consists of the string @c " on " followed by the
2999 * name and unit of the @p dev.
3000 *
3001 * @returns the number of characters printed
3002 */
3003int
3004bus_print_child_footer(device_t dev, device_t child)
3005{
3006 return (printf(" on %s\n", device_get_nameunit(dev)));
3007}
3008
3009/**
3010 * @brief Helper function for implementing BUS_PRINT_CHILD().
3011 *
3012 * This function simply calls bus_print_child_header() followed by
3013 * bus_print_child_footer().
3014 *
3015 * @returns the number of characters printed
3016 */
3017int
3018bus_generic_print_child(device_t dev, device_t child)
3019{
3020 int retval = 0;
3021
3022 retval += bus_print_child_header(dev, child);
3023 retval += bus_print_child_footer(dev, child);
3024
3025 return (retval);
3026}
3027
3028/**
3029 * @brief Stub function for implementing BUS_READ_IVAR().
3030 *
3031 * @returns ENOENT
3032 */
3033int
3034bus_generic_read_ivar(device_t dev, device_t child, int index,
3035 uintptr_t * result)
3036{
3037 return (ENOENT);
3038}
3039
3040/**
3041 * @brief Stub function for implementing BUS_WRITE_IVAR().
3042 *
3043 * @returns ENOENT
3044 */
3045int
3046bus_generic_write_ivar(device_t dev, device_t child, int index,
3047 uintptr_t value)
3048{
3049 return (ENOENT);
3050}
3051
3052/**
3053 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3054 *
3055 * @returns NULL
3056 */
3057struct resource_list *
3058bus_generic_get_resource_list(device_t dev, device_t child)
3059{
3060 return (NULL);
3061}
3062
3063/**
3064 * @brief Helper function for implementing BUS_DRIVER_ADDED().
3065 *
3066 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3067 * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3068 * and then calls device_probe_and_attach() for each unattached child.
3069 */
3070void
3071bus_generic_driver_added(device_t dev, driver_t *driver)
3072{
3073 device_t child;
3074
3075 DEVICE_IDENTIFY(driver, dev);
3076 TAILQ_FOREACH(child, &dev->children, link) {
3077 if (child->state == DS_NOTPRESENT ||
3078 (child->flags & DF_REBID))
3079 device_probe_and_attach(child);
3080 }
3081}
3082
3083/**
3084 * @brief Helper function for implementing BUS_SETUP_INTR().
3085 *
3086 * This simple implementation of BUS_SETUP_INTR() simply calls the
3087 * BUS_SETUP_INTR() method of the parent of @p dev.
3088 */
3089int
3090bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3091 int flags, driver_intr_t *intr, void *arg, void **cookiep)
3092{
3093 /* Propagate up the bus hierarchy until someone handles it. */
3094 if (dev->parent)
3095 return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3096 intr, arg, cookiep));
3097 return (EINVAL);
3098}
3099
3100/**
3101 * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3102 *
3103 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3104 * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3105 */
3106int
3107bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3108 void *cookie)
3109{
3110 /* Propagate up the bus hierarchy until someone handles it. */
3111 if (dev->parent)
3112 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3113 return (EINVAL);
3114}
3115
3116/**
3117 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3118 *
3119 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3120 * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3121 */
3122struct resource *
3123bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3124 u_long start, u_long end, u_long count, u_int flags)
3125{
3126 /* Propagate up the bus hierarchy until someone handles it. */
3127 if (dev->parent)
3128 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3129 start, end, count, flags));
3130 return (NULL);
3131}
3132
3133/**
3134 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3135 *
3136 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3137 * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3138 */
3139int
3140bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3141 struct resource *r)
3142{
3143 /* Propagate up the bus hierarchy until someone handles it. */
3144 if (dev->parent)
3145 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
3146 r));
3147 return (EINVAL);
3148}
3149
3150/**
3151 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3152 *
3153 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3154 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3155 */
3156int
3157bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3158 struct resource *r)
3159{
3160 /* Propagate up the bus hierarchy until someone handles it. */
3161 if (dev->parent)
3162 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
3163 r));
3164 return (EINVAL);
3165}
3166
3167/**
3168 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3169 *
3170 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3171 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3172 */
3173int
3174bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3175 int rid, struct resource *r)
3176{
3177 /* Propagate up the bus hierarchy until someone handles it. */
3178 if (dev->parent)
3179 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3180 r));
3181 return (EINVAL);
3182}
3183
3184/**
3185 * @brief Helper function for implementing BUS_CONFIG_INTR().
3186 *
3187 * This simple implementation of BUS_CONFIG_INTR() simply calls the
3188 * BUS_CONFIG_INTR() method of the parent of @p dev.
3189 */
3190int
3191bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
3192 enum intr_polarity pol)
3193{
3194
3195 /* Propagate up the bus hierarchy until someone handles it. */
3196 if (dev->parent)
3197 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
3198 return (EINVAL);
3199}
3200
3201/**
3202 * @brief Helper function for implementing BUS_GET_RESOURCE().
3203 *
3204 * This implementation of BUS_GET_RESOURCE() uses the
3205 * resource_list_find() function to do most of the work. It calls
3206 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3207 * search.
3208 */
3209int
3210bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
3211 u_long *startp, u_long *countp)
3212{
3213 struct resource_list * rl = NULL;
3214 struct resource_list_entry * rle = NULL;
3215
3216 rl = BUS_GET_RESOURCE_LIST(dev, child);
3217 if (!rl)
3218 return (EINVAL);
3219
3220 rle = resource_list_find(rl, type, rid);
3221 if (!rle)
3222 return (ENOENT);
3223
3224 if (startp)
3225 *startp = rle->start;
3226 if (countp)
3227 *countp = rle->count;
3228
3229 return (0);
3230}
3231
3232/**
3233 * @brief Helper function for implementing BUS_SET_RESOURCE().
3234 *
3235 * This implementation of BUS_SET_RESOURCE() uses the
3236 * resource_list_add() function to do most of the work. It calls
3237 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3238 * edit.
3239 */
3240int
3241bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
3242 u_long start, u_long count)
3243{
3244 struct resource_list * rl = NULL;
3245
3246 rl = BUS_GET_RESOURCE_LIST(dev, child);
3247 if (!rl)
3248 return (EINVAL);
3249
3250 resource_list_add(rl, type, rid, start, (start + count - 1), count);
3251
3252 return (0);
3253}
3254
3255/**
3256 * @brief Helper function for implementing BUS_DELETE_RESOURCE().
3257 *
3258 * This implementation of BUS_DELETE_RESOURCE() uses the
3259 * resource_list_delete() function to do most of the work. It calls
3260 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3261 * edit.
3262 */
3263void
3264bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
3265{
3266 struct resource_list * rl = NULL;
3267
3268 rl = BUS_GET_RESOURCE_LIST(dev, child);
3269 if (!rl)
3270 return;
3271
3272 resource_list_delete(rl, type, rid);
3273
3274 return;
3275}
3276
3277/**
3278 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3279 *
3280 * This implementation of BUS_RELEASE_RESOURCE() uses the
3281 * resource_list_release() function to do most of the work. It calls
3282 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3283 */
3284int
3285bus_generic_rl_release_resource(device_t dev, device_t child, int type,
3286 int rid, struct resource *r)
3287{
3288 struct resource_list * rl = NULL;
3289
3290 rl = BUS_GET_RESOURCE_LIST(dev, child);
3291 if (!rl)
3292 return (EINVAL);
3293
3294 return (resource_list_release(rl, dev, child, type, rid, r));
3295}
3296
3297/**
3298 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3299 *
3300 * This implementation of BUS_ALLOC_RESOURCE() uses the
3301 * resource_list_alloc() function to do most of the work. It calls
3302 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3303 */
3304struct resource *
3305bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
3306 int *rid, u_long start, u_long end, u_long count, u_int flags)
3307{
3308 struct resource_list * rl = NULL;
3309
3310 rl = BUS_GET_RESOURCE_LIST(dev, child);
3311 if (!rl)
3312 return (NULL);
3313
3314 return (resource_list_alloc(rl, dev, child, type, rid,
3315 start, end, count, flags));
3316}
3317
3318/**
3319 * @brief Helper function for implementing BUS_CHILD_PRESENT().
3320 *
3321 * This simple implementation of BUS_CHILD_PRESENT() simply calls the
3322 * BUS_CHILD_PRESENT() method of the parent of @p dev.
3323 */
3324int
3325bus_generic_child_present(device_t dev, device_t child)
3326{
3327 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
3328}
3329
3330/*
3331 * Some convenience functions to make it easier for drivers to use the
3332 * resource-management functions. All these really do is hide the
3333 * indirection through the parent's method table, making for slightly
3334 * less-wordy code. In the future, it might make sense for this code
3335 * to maintain some sort of a list of resources allocated by each device.
3336 */
3337
3338int
3339bus_alloc_resources(device_t dev, struct resource_spec *rs,
3340 struct resource **res)
3341{
3342 int i;
3343
3344 for (i = 0; rs[i].type != -1; i++)
3345 res[i] = NULL;
3346 for (i = 0; rs[i].type != -1; i++) {
3347 res[i] = bus_alloc_resource_any(dev,
3348 rs[i].type, &rs[i].rid, rs[i].flags);
3349 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
3350 bus_release_resources(dev, rs, res);
3351 return (ENXIO);
3352 }
3353 }
3354 return (0);
3355}
3356
3357void
3358bus_release_resources(device_t dev, const struct resource_spec *rs,
3359 struct resource **res)
3360{
3361 int i;
3362
3363 for (i = 0; rs[i].type != -1; i++)
3364 if (res[i] != NULL) {
3365 bus_release_resource(
3366 dev, rs[i].type, rs[i].rid, res[i]);
3367 res[i] = NULL;
3368 }
3369}
3370
3371/**
3372 * @brief Wrapper function for BUS_ALLOC_RESOURCE().
3373 *
3374 * This function simply calls the BUS_ALLOC_RESOURCE() method of the
3375 * parent of @p dev.
3376 */
3377struct resource *
3378bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
3379 u_long count, u_int flags)
3380{
3381 if (dev->parent == 0)
3382 return (0);
3383 return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
3384 count, flags));
3385}
3386
3387/**
3388 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
3389 *
3390 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
3391 * parent of @p dev.
3392 */
3393int
3394bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
3395{
3396 if (dev->parent == 0)
3397 return (EINVAL);
3398 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3399}
3400
3401/**
3402 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
3403 *
3404 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
3405 * parent of @p dev.
3406 */
3407int
3408bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
3409{
3410 if (dev->parent == 0)
3411 return (EINVAL);
3412 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3413}
3414
3415/**
3416 * @brief Wrapper function for BUS_RELEASE_RESOURCE().
3417 *
3418 * This function simply calls the BUS_RELEASE_RESOURCE() method of the
3419 * parent of @p dev.
3420 */
3421int
3422bus_release_resource(device_t dev, int type, int rid, struct resource *r)
3423{
3424 if (dev->parent == 0)
3425 return (EINVAL);
3426 return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
3427}
3428
3429/**
3430 * @brief Wrapper function for BUS_SETUP_INTR().
3431 *
3432 * This function simply calls the BUS_SETUP_INTR() method of the
3433 * parent of @p dev.
3434 */
3435int
3436bus_setup_intr(device_t dev, struct resource *r, int flags,
3437 driver_intr_t handler, void *arg, void **cookiep)
3438{
3439 int error;
3440
3441 if (dev->parent != 0) {
3442 if ((flags &~ INTR_ENTROPY) == (INTR_TYPE_NET | INTR_MPSAFE) &&
3443 !debug_mpsafenet)
3444 flags &= ~INTR_MPSAFE;
3445 error = BUS_SETUP_INTR(dev->parent, dev, r, flags,
3446 handler, arg, cookiep);
3447 if (error == 0) {
3448 if (!(flags & (INTR_MPSAFE | INTR_FAST)))
3449 device_printf(dev, "[GIANT-LOCKED]\n");
3450 if (bootverbose && (flags & INTR_MPSAFE))
3451 device_printf(dev, "[MPSAFE]\n");
3452 if (flags & INTR_FAST)
3453 device_printf(dev, "[FAST]\n");
3454 }
3455 } else
3456 error = EINVAL;
3457 return (error);
3458}
3459
3460/**
3461 * @brief Wrapper function for BUS_TEARDOWN_INTR().
3462 *
3463 * This function simply calls the BUS_TEARDOWN_INTR() method of the
3464 * parent of @p dev.
3465 */
3466int
3467bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
3468{
3469 if (dev->parent == 0)
3470 return (EINVAL);
3471 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
3472}
3473
3474/**
3475 * @brief Wrapper function for BUS_SET_RESOURCE().
3476 *
3477 * This function simply calls the BUS_SET_RESOURCE() method of the
3478 * parent of @p dev.
3479 */
3480int
3481bus_set_resource(device_t dev, int type, int rid,
3482 u_long start, u_long count)
3483{
3484 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
3485 start, count));
3486}
3487
3488/**
3489 * @brief Wrapper function for BUS_GET_RESOURCE().
3490 *
3491 * This function simply calls the BUS_GET_RESOURCE() method of the
3492 * parent of @p dev.
3493 */
3494int
3495bus_get_resource(device_t dev, int type, int rid,
3496 u_long *startp, u_long *countp)
3497{
3498 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3499 startp, countp));
3500}
3501
3502/**
3503 * @brief Wrapper function for BUS_GET_RESOURCE().
3504 *
3505 * This function simply calls the BUS_GET_RESOURCE() method of the
3506 * parent of @p dev and returns the start value.
3507 */
3508u_long
3509bus_get_resource_start(device_t dev, int type, int rid)
3510{
3511 u_long start, count;
3512 int error;
3513
3514 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3515 &start, &count);
3516 if (error)
3517 return (0);
3518 return (start);
3519}
3520
3521/**
3522 * @brief Wrapper function for BUS_GET_RESOURCE().
3523 *
3524 * This function simply calls the BUS_GET_RESOURCE() method of the
3525 * parent of @p dev and returns the count value.
3526 */
3527u_long
3528bus_get_resource_count(device_t dev, int type, int rid)
3529{
3530 u_long start, count;
3531 int error;
3532
3533 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3534 &start, &count);
3535 if (error)
3536 return (0);
3537 return (count);
3538}
3539
3540/**
3541 * @brief Wrapper function for BUS_DELETE_RESOURCE().
3542 *
3543 * This function simply calls the BUS_DELETE_RESOURCE() method of the
3544 * parent of @p dev.
3545 */
3546void
3547bus_delete_resource(device_t dev, int type, int rid)
3548{
3549 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
3550}
3551
3552/**
3553 * @brief Wrapper function for BUS_CHILD_PRESENT().
3554 *
3555 * This function simply calls the BUS_CHILD_PRESENT() method of the
3556 * parent of @p dev.
3557 */
3558int
3559bus_child_present(device_t child)
3560{
3561 return (BUS_CHILD_PRESENT(device_get_parent(child), child));
3562}
3563
3564/**
3565 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
3566 *
3567 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
3568 * parent of @p dev.
3569 */
3570int
3571bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
3572{
3573 device_t parent;
3574
3575 parent = device_get_parent(child);
3576 if (parent == NULL) {
3577 *buf = '\0';
3578 return (0);
3579 }
3580 return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
3581}
3582
3583/**
3584 * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
3585 *
3586 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
3587 * parent of @p dev.
3588 */
3589int
3590bus_child_location_str(device_t child, char *buf, size_t buflen)
3591{
3592 device_t parent;
3593
3594 parent = device_get_parent(child);
3595 if (parent == NULL) {
3596 *buf = '\0';
3597 return (0);
3598 }
3599 return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
3600}
3601
3602/* Resume all devices and then notify userland that we're up again. */
3603static int
3604root_resume(device_t dev)
3605{
3606 int error;
3607
3608 error = bus_generic_resume(dev);
3609 if (error == 0)
3610 devctl_notify("kern", "power", "resume", NULL);
3611 return (error);
3612}
3613
3614static int
3615root_print_child(device_t dev, device_t child)
3616{
3617 int retval = 0;
3618
3619 retval += bus_print_child_header(dev, child);
3620 retval += printf("\n");
3621
3622 return (retval);
3623}
3624
3625static int
3626root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg,
3627 void **cookiep)
3628{
3629 /*
3630 * If an interrupt mapping gets to here something bad has happened.
3631 */
3632 panic("root_setup_intr");
3633}
3634
3635/*
3636 * If we get here, assume that the device is permanant and really is
3637 * present in the system. Removable bus drivers are expected to intercept
3638 * this call long before it gets here. We return -1 so that drivers that
3639 * really care can check vs -1 or some ERRNO returned higher in the food
3640 * chain.
3641 */
3642static int
3643root_child_present(device_t dev, device_t child)
3644{
3645 return (-1);
3646}
3647
3648static kobj_method_t root_methods[] = {
3649 /* Device interface */
3650 KOBJMETHOD(device_shutdown, bus_generic_shutdown),
3651 KOBJMETHOD(device_suspend, bus_generic_suspend),
3652 KOBJMETHOD(device_resume, root_resume),
3653
3654 /* Bus interface */
3655 KOBJMETHOD(bus_print_child, root_print_child),
3656 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar),
3657 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar),
3658 KOBJMETHOD(bus_setup_intr, root_setup_intr),
3659 KOBJMETHOD(bus_child_present, root_child_present),
3660
3661 { 0, 0 }
3662};
3663
3664static driver_t root_driver = {
3665 "root",
3666 root_methods,
3667 1, /* no softc */
3668};
3669
3670device_t root_bus;
3671devclass_t root_devclass;
3672
3673static int
3674root_bus_module_handler(module_t mod, int what, void* arg)
3675{
3676 switch (what) {
3677 case MOD_LOAD:
3678 TAILQ_INIT(&bus_data_devices);
3679 kobj_class_compile((kobj_class_t) &root_driver);
3680 root_bus = make_device(NULL, "root", 0);
3681 root_bus->desc = "System root bus";
3682 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
3683 root_bus->driver = &root_driver;
3684 root_bus->state = DS_ATTACHED;
3685 root_devclass = devclass_find_internal("root", 0, FALSE);
3686 devinit();
3687 return (0);
3688
3689 case MOD_SHUTDOWN:
3690 device_shutdown(root_bus);
3691 return (0);
3692 default:
3693 return (EOPNOTSUPP);
3694 }
3695
3696 return (0);
3697}
3698
3699static moduledata_t root_bus_mod = {
3700 "rootbus",
3701 root_bus_module_handler,
3702 0
3703};
3704DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
3705
3706/**
3707 * @brief Automatically configure devices
3708 *
3709 * This function begins the autoconfiguration process by calling
3710 * device_probe_and_attach() for each child of the @c root0 device.
3711 */
3712void
3713root_bus_configure(void)
3714{
3715 device_t dev;
3716
3717 PDEBUG(("."));
3718
3719 TAILQ_FOREACH(dev, &root_bus->children, link) {
3720 device_probe_and_attach(dev);
3721 }
3722}
3723
3724/**
3725 * @brief Module handler for registering device drivers
3726 *
3727 * This module handler is used to automatically register device
3728 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
3729 * devclass_add_driver() for the driver described by the
3730 * driver_module_data structure pointed to by @p arg
3731 */
3732int
3733driver_module_handler(module_t mod, int what, void *arg)
3734{
3735 int error;
3736 struct driver_module_data *dmd;
3737 devclass_t bus_devclass;
3738 kobj_class_t driver;
3739
3740 dmd = (struct driver_module_data *)arg;
3741 bus_devclass = devclass_find_internal(dmd->dmd_busname, 0, TRUE);
3742 error = 0;
3743
3744 switch (what) {
3745 case MOD_LOAD:
3746 if (dmd->dmd_chainevh)
3747 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3748
3749 driver = dmd->dmd_driver;
3750 PDEBUG(("Loading module: driver %s on bus %s",
3751 DRIVERNAME(driver), dmd->dmd_busname));
3752 error = devclass_add_driver(bus_devclass, driver);
3753 if (error)
3754 break;
3755
3756 /*
3757 * If the driver has any base classes, make the
3758 * devclass inherit from the devclass of the driver's
3759 * first base class. This will allow the system to
3760 * search for drivers in both devclasses for children
3761 * of a device using this driver.
3762 */
3763 if (driver->baseclasses) {
3764 const char *parentname;
3765 parentname = driver->baseclasses[0]->name;
3766 *dmd->dmd_devclass =
3767 devclass_find_internal(driver->name,
3768 parentname, TRUE);
3769 } else {
3770 *dmd->dmd_devclass =
3771 devclass_find_internal(driver->name, 0, TRUE);
3772 }
3773 break;
3774
3775 case MOD_UNLOAD:
3776 PDEBUG(("Unloading module: driver %s from bus %s",
3777 DRIVERNAME(dmd->dmd_driver),
3778 dmd->dmd_busname));
3779 error = devclass_delete_driver(bus_devclass,
3780 dmd->dmd_driver);
3781
3782 if (!error && dmd->dmd_chainevh)
3783 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3784 break;
3785 case MOD_QUIESCE:
3786 PDEBUG(("Quiesce module: driver %s from bus %s",
3787 DRIVERNAME(dmd->dmd_driver),
3788 dmd->dmd_busname));
3789 error = devclass_quiesce_driver(bus_devclass,
3790 dmd->dmd_driver);
3791
3792 if (!error && dmd->dmd_chainevh)
3793 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3794 break;
3795 default:
3796 error = EOPNOTSUPP;
3797 break;
3798 }
3799
3800 return (error);
3801}
3802
3803/**
3804 * @brief Enumerate all hinted devices for this bus.
3805 *
3806 * Walks throught he hints for this bus and calls the bus_hinted_child
3807 * routine for each one it fines. It searches first for the specific
3808 * bus that's being probed for hinted children (eg isa0), and then for
3809 * generic children (eg isa).
3810 *
3811 * @param dev bus device to enumerate
3812 */
3813void
3814bus_enumerate_hinted_children(device_t bus)
3815{
3816 int i;
3817 const char *dname, *busname;
3818 int dunit;
3819
3820 /*
3821 * enumerate all devices on the specific bus
3822 */
3823 busname = device_get_nameunit(bus);
3824 i = 0;
3825 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
3826 BUS_HINTED_CHILD(bus, dname, dunit);
3827
3828 /*
3829 * and all the generic ones.
3830 */
3831 busname = device_get_name(bus);
3832 i = 0;
3833 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
3834 BUS_HINTED_CHILD(bus, dname, dunit);
3835}
3836
3837#ifdef BUS_DEBUG
3838
3839/* the _short versions avoid iteration by not calling anything that prints
3840 * more than oneliners. I love oneliners.
3841 */
3842
3843static void
3844print_device_short(device_t dev, int indent)
3845{
3846 if (!dev)
3847 return;
3848
3849 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
3850 dev->unit, dev->desc,
3851 (dev->parent? "":"no "),
3852 (TAILQ_EMPTY(&dev->children)? "no ":""),
3853 (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
3854 (dev->flags&DF_FIXEDCLASS? "fixed,":""),
3855 (dev->flags&DF_WILDCARD? "wildcard,":""),
3856 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
3857 (dev->flags&DF_REBID? "rebiddable,":""),
3858 (dev->ivars? "":"no "),
3859 (dev->softc? "":"no "),
3860 dev->busy));
3861}
3862
3863static void
3864print_device(device_t dev, int indent)
3865{
3866 if (!dev)
3867 return;
3868
3869 print_device_short(dev, indent);
3870
3871 indentprintf(("Parent:\n"));
3872 print_device_short(dev->parent, indent+1);
3873 indentprintf(("Driver:\n"));
3874 print_driver_short(dev->driver, indent+1);
3875 indentprintf(("Devclass:\n"));
3876 print_devclass_short(dev->devclass, indent+1);
3877}
3878
3879void
3880print_device_tree_short(device_t dev, int indent)
3881/* print the device and all its children (indented) */
3882{
3883 device_t child;
3884
3885 if (!dev)
3886 return;
3887
3888 print_device_short(dev, indent);
3889
3890 TAILQ_FOREACH(child, &dev->children, link) {
3891 print_device_tree_short(child, indent+1);
3892 }
3893}
3894
3895void
3896print_device_tree(device_t dev, int indent)
3897/* print the device and all its children (indented) */
3898{
3899 device_t child;
3900
3901 if (!dev)
3902 return;
3903
3904 print_device(dev, indent);
3905
3906 TAILQ_FOREACH(child, &dev->children, link) {
3907 print_device_tree(child, indent+1);
3908 }
3909}
3910
3911static void
3912print_driver_short(driver_t *driver, int indent)
3913{
3914 if (!driver)
3915 return;
3916
3917 indentprintf(("driver %s: softc size = %zd\n",
3918 driver->name, driver->size));
3919}
3920
3921static void
3922print_driver(driver_t *driver, int indent)
3923{
3924 if (!driver)
3925 return;
3926
3927 print_driver_short(driver, indent);
3928}
3929
3930
3931static void
3932print_driver_list(driver_list_t drivers, int indent)
3933{
3934 driverlink_t driver;
3935
3936 TAILQ_FOREACH(driver, &drivers, link) {
3937 print_driver(driver->driver, indent);
3938 }
3939}
3940
3941static void
3942print_devclass_short(devclass_t dc, int indent)
3943{
3944 if ( !dc )
3945 return;
3946
3947 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
3948}
3949
3950static void
3951print_devclass(devclass_t dc, int indent)
3952{
3953 int i;
3954
3955 if ( !dc )
3956 return;
3957
3958 print_devclass_short(dc, indent);
3959 indentprintf(("Drivers:\n"));
3960 print_driver_list(dc->drivers, indent+1);
3961
3962 indentprintf(("Devices:\n"));
3963 for (i = 0; i < dc->maxunit; i++)
3964 if (dc->devices[i])
3965 print_device(dc->devices[i], indent+1);
3966}
3967
3968void
3969print_devclass_list_short(void)
3970{
3971 devclass_t dc;
3972
3973 printf("Short listing of devclasses, drivers & devices:\n");
3974 TAILQ_FOREACH(dc, &devclasses, link) {
3975 print_devclass_short(dc, 0);
3976 }
3977}
3978
3979void
3980print_devclass_list(void)
3981{
3982 devclass_t dc;
3983
3984 printf("Full listing of devclasses, drivers & devices:\n");
3985 TAILQ_FOREACH(dc, &devclasses, link) {
3986 print_devclass(dc, 0);
3987 }
3988}
3989
3990#endif
3991
3992/*
3993 * User-space access to the device tree.
3994 *
3995 * We implement a small set of nodes:
3996 *
3997 * hw.bus Single integer read method to obtain the
3998 * current generation count.
3999 * hw.bus.devices Reads the entire device tree in flat space.
4000 * hw.bus.rman Resource manager interface
4001 *
4002 * We might like to add the ability to scan devclasses and/or drivers to
4003 * determine what else is currently loaded/available.
4004 */
4005
4006static int
4007sysctl_bus(SYSCTL_HANDLER_ARGS)
4008{
4009 struct u_businfo ubus;
4010
4011 ubus.ub_version = BUS_USER_VERSION;
4012 ubus.ub_generation = bus_data_generation;
4013
4014 return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
4015}
4016SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
4017 "bus-related data");
4018
4019static int
4020sysctl_devices(SYSCTL_HANDLER_ARGS)
4021{
4022 int *name = (int *)arg1;
4023 u_int namelen = arg2;
4024 int index;
4025 struct device *dev;
4026 struct u_device udev; /* XXX this is a bit big */
4027 int error;
4028
4029 if (namelen != 2)
4030 return (EINVAL);
4031
4032 if (bus_data_generation_check(name[0]))
4033 return (EINVAL);
4034
4035 index = name[1];
4036
4037 /*
4038 * Scan the list of devices, looking for the requested index.
4039 */
4040 TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
4041 if (index-- == 0)
4042 break;
4043 }
4044 if (dev == NULL)
4045 return (ENOENT);
4046
4047 /*
4048 * Populate the return array.
4049 */
4050 bzero(&udev, sizeof(udev));
4051 udev.dv_handle = (uintptr_t)dev;
4052 udev.dv_parent = (uintptr_t)dev->parent;
4053 if (dev->nameunit != NULL)
4054 strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
4055 if (dev->desc != NULL)
4056 strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
4057 if (dev->driver != NULL && dev->driver->name != NULL)
4058 strlcpy(udev.dv_drivername, dev->driver->name,
4059 sizeof(udev.dv_drivername));
4060 bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
4061 bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
4062 udev.dv_devflags = dev->devflags;
4063 udev.dv_flags = dev->flags;
4064 udev.dv_state = dev->state;
4065 error = SYSCTL_OUT(req, &udev, sizeof(udev));
4066 return (error);
4067}
4068
4069SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
4070 "system device tree");
4071
4072int
4073bus_data_generation_check(int generation)
4074{
4075 if (generation != bus_data_generation)
4076 return (1);
4077
4078 /* XXX generate optimised lists here? */
4079 return (0);
4080}
4081
4082void
4083bus_data_generation_update(void)
4084{
4085 bus_data_generation++;
4086}
4087
4088int
4089bus_free_resource(device_t dev, int type, struct resource *r)
4090{
4091 if (r == NULL)
4092 return (0);
4093 return (bus_release_resource(dev, type, rman_get_rid(r), r));
4094}
421 * programs are expected to cope.
422 */
423static int
424devread(struct cdev *dev, struct uio *uio, int ioflag)
425{
426 struct dev_event_info *n1;
427 int rv;
428
429 mtx_lock(&devsoftc.mtx);
430 while (TAILQ_EMPTY(&devsoftc.devq)) {
431 if (devsoftc.nonblock) {
432 mtx_unlock(&devsoftc.mtx);
433 return (EAGAIN);
434 }
435 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
436 if (rv) {
437 /*
438 * Need to translate ERESTART to EINTR here? -- jake
439 */
440 mtx_unlock(&devsoftc.mtx);
441 return (rv);
442 }
443 }
444 n1 = TAILQ_FIRST(&devsoftc.devq);
445 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
446 mtx_unlock(&devsoftc.mtx);
447 rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
448 free(n1->dei_data, M_BUS);
449 free(n1, M_BUS);
450 return (rv);
451}
452
453static int
454devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, d_thread_t *td)
455{
456 switch (cmd) {
457
458 case FIONBIO:
459 if (*(int*)data)
460 devsoftc.nonblock = 1;
461 else
462 devsoftc.nonblock = 0;
463 return (0);
464 case FIOASYNC:
465 if (*(int*)data)
466 devsoftc.async_proc = td->td_proc;
467 else
468 devsoftc.async_proc = NULL;
469 return (0);
470
471 /* (un)Support for other fcntl() calls. */
472 case FIOCLEX:
473 case FIONCLEX:
474 case FIONREAD:
475 case FIOSETOWN:
476 case FIOGETOWN:
477 default:
478 break;
479 }
480 return (ENOTTY);
481}
482
483static int
484devpoll(struct cdev *dev, int events, d_thread_t *td)
485{
486 int revents = 0;
487
488 mtx_lock(&devsoftc.mtx);
489 if (events & (POLLIN | POLLRDNORM)) {
490 if (!TAILQ_EMPTY(&devsoftc.devq))
491 revents = events & (POLLIN | POLLRDNORM);
492 else
493 selrecord(td, &devsoftc.sel);
494 }
495 mtx_unlock(&devsoftc.mtx);
496
497 return (revents);
498}
499
500/**
501 * @brief Queue data to be read from the devctl device
502 *
503 * Generic interface to queue data to the devctl device. It is
504 * assumed that @p data is properly formatted. It is further assumed
505 * that @p data is allocated using the M_BUS malloc type.
506 */
507void
508devctl_queue_data(char *data)
509{
510 struct dev_event_info *n1 = NULL;
511 struct proc *p;
512
513 n1 = malloc(sizeof(*n1), M_BUS, M_NOWAIT);
514 if (n1 == NULL)
515 return;
516 n1->dei_data = data;
517 mtx_lock(&devsoftc.mtx);
518 TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
519 cv_broadcast(&devsoftc.cv);
520 mtx_unlock(&devsoftc.mtx);
521 selwakeup(&devsoftc.sel);
522 p = devsoftc.async_proc;
523 if (p != NULL) {
524 PROC_LOCK(p);
525 psignal(p, SIGIO);
526 PROC_UNLOCK(p);
527 }
528}
529
530/**
531 * @brief Send a 'notification' to userland, using standard ways
532 */
533void
534devctl_notify(const char *system, const char *subsystem, const char *type,
535 const char *data)
536{
537 int len = 0;
538 char *msg;
539
540 if (system == NULL)
541 return; /* BOGUS! Must specify system. */
542 if (subsystem == NULL)
543 return; /* BOGUS! Must specify subsystem. */
544 if (type == NULL)
545 return; /* BOGUS! Must specify type. */
546 len += strlen(" system=") + strlen(system);
547 len += strlen(" subsystem=") + strlen(subsystem);
548 len += strlen(" type=") + strlen(type);
549 /* add in the data message plus newline. */
550 if (data != NULL)
551 len += strlen(data);
552 len += 3; /* '!', '\n', and NUL */
553 msg = malloc(len, M_BUS, M_NOWAIT);
554 if (msg == NULL)
555 return; /* Drop it on the floor */
556 if (data != NULL)
557 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
558 system, subsystem, type, data);
559 else
560 snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
561 system, subsystem, type);
562 devctl_queue_data(msg);
563}
564
565/*
566 * Common routine that tries to make sending messages as easy as possible.
567 * We allocate memory for the data, copy strings into that, but do not
568 * free it unless there's an error. The dequeue part of the driver should
569 * free the data. We don't send data when the device is disabled. We do
570 * send data, even when we have no listeners, because we wish to avoid
571 * races relating to startup and restart of listening applications.
572 *
573 * devaddq is designed to string together the type of event, with the
574 * object of that event, plus the plug and play info and location info
575 * for that event. This is likely most useful for devices, but less
576 * useful for other consumers of this interface. Those should use
577 * the devctl_queue_data() interface instead.
578 */
579static void
580devaddq(const char *type, const char *what, device_t dev)
581{
582 char *data = NULL;
583 char *loc = NULL;
584 char *pnp = NULL;
585 const char *parstr;
586
587 if (devctl_disable)
588 return;
589 data = malloc(1024, M_BUS, M_NOWAIT);
590 if (data == NULL)
591 goto bad;
592
593 /* get the bus specific location of this device */
594 loc = malloc(1024, M_BUS, M_NOWAIT);
595 if (loc == NULL)
596 goto bad;
597 *loc = '\0';
598 bus_child_location_str(dev, loc, 1024);
599
600 /* Get the bus specific pnp info of this device */
601 pnp = malloc(1024, M_BUS, M_NOWAIT);
602 if (pnp == NULL)
603 goto bad;
604 *pnp = '\0';
605 bus_child_pnpinfo_str(dev, pnp, 1024);
606
607 /* Get the parent of this device, or / if high enough in the tree. */
608 if (device_get_parent(dev) == NULL)
609 parstr = "."; /* Or '/' ? */
610 else
611 parstr = device_get_nameunit(device_get_parent(dev));
612 /* String it all together. */
613 snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
614 parstr);
615 free(loc, M_BUS);
616 free(pnp, M_BUS);
617 devctl_queue_data(data);
618 return;
619bad:
620 free(pnp, M_BUS);
621 free(loc, M_BUS);
622 free(data, M_BUS);
623 return;
624}
625
626/*
627 * A device was added to the tree. We are called just after it successfully
628 * attaches (that is, probe and attach success for this device). No call
629 * is made if a device is merely parented into the tree. See devnomatch
630 * if probe fails. If attach fails, no notification is sent (but maybe
631 * we should have a different message for this).
632 */
633static void
634devadded(device_t dev)
635{
636 char *pnp = NULL;
637 char *tmp = NULL;
638
639 pnp = malloc(1024, M_BUS, M_NOWAIT);
640 if (pnp == NULL)
641 goto fail;
642 tmp = malloc(1024, M_BUS, M_NOWAIT);
643 if (tmp == NULL)
644 goto fail;
645 *pnp = '\0';
646 bus_child_pnpinfo_str(dev, pnp, 1024);
647 snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
648 devaddq("+", tmp, dev);
649fail:
650 if (pnp != NULL)
651 free(pnp, M_BUS);
652 if (tmp != NULL)
653 free(tmp, M_BUS);
654 return;
655}
656
657/*
658 * A device was removed from the tree. We are called just before this
659 * happens.
660 */
661static void
662devremoved(device_t dev)
663{
664 char *pnp = NULL;
665 char *tmp = NULL;
666
667 pnp = malloc(1024, M_BUS, M_NOWAIT);
668 if (pnp == NULL)
669 goto fail;
670 tmp = malloc(1024, M_BUS, M_NOWAIT);
671 if (tmp == NULL)
672 goto fail;
673 *pnp = '\0';
674 bus_child_pnpinfo_str(dev, pnp, 1024);
675 snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
676 devaddq("-", tmp, dev);
677fail:
678 if (pnp != NULL)
679 free(pnp, M_BUS);
680 if (tmp != NULL)
681 free(tmp, M_BUS);
682 return;
683}
684
685/*
686 * Called when there's no match for this device. This is only called
687 * the first time that no match happens, so we don't keep getitng this
688 * message. Should that prove to be undesirable, we can change it.
689 * This is called when all drivers that can attach to a given bus
690 * decline to accept this device. Other errrors may not be detected.
691 */
692static void
693devnomatch(device_t dev)
694{
695 devaddq("?", "", dev);
696}
697
698static int
699sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
700{
701 struct dev_event_info *n1;
702 int dis, error;
703
704 dis = devctl_disable;
705 error = sysctl_handle_int(oidp, &dis, 0, req);
706 if (error || !req->newptr)
707 return (error);
708 mtx_lock(&devsoftc.mtx);
709 devctl_disable = dis;
710 if (dis) {
711 while (!TAILQ_EMPTY(&devsoftc.devq)) {
712 n1 = TAILQ_FIRST(&devsoftc.devq);
713 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
714 free(n1->dei_data, M_BUS);
715 free(n1, M_BUS);
716 }
717 }
718 mtx_unlock(&devsoftc.mtx);
719 return (0);
720}
721
722/* End of /dev/devctl code */
723
724TAILQ_HEAD(,device) bus_data_devices;
725static int bus_data_generation = 1;
726
727kobj_method_t null_methods[] = {
728 { 0, 0 }
729};
730
731DEFINE_CLASS(null, null_methods, 0);
732
733/*
734 * Devclass implementation
735 */
736
737static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
738
739
740/**
741 * @internal
742 * @brief Find or create a device class
743 *
744 * If a device class with the name @p classname exists, return it,
745 * otherwise if @p create is non-zero create and return a new device
746 * class.
747 *
748 * If @p parentname is non-NULL, the parent of the devclass is set to
749 * the devclass of that name.
750 *
751 * @param classname the devclass name to find or create
752 * @param parentname the parent devclass name or @c NULL
753 * @param create non-zero to create a devclass
754 */
755static devclass_t
756devclass_find_internal(const char *classname, const char *parentname,
757 int create)
758{
759 devclass_t dc;
760
761 PDEBUG(("looking for %s", classname));
762 if (!classname)
763 return (NULL);
764
765 TAILQ_FOREACH(dc, &devclasses, link) {
766 if (!strcmp(dc->name, classname))
767 break;
768 }
769
770 if (create && !dc) {
771 PDEBUG(("creating %s", classname));
772 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
773 M_BUS, M_NOWAIT|M_ZERO);
774 if (!dc)
775 return (NULL);
776 dc->parent = NULL;
777 dc->name = (char*) (dc + 1);
778 strcpy(dc->name, classname);
779 TAILQ_INIT(&dc->drivers);
780 TAILQ_INSERT_TAIL(&devclasses, dc, link);
781
782 bus_data_generation_update();
783 }
784
785 /*
786 * If a parent class is specified, then set that as our parent so
787 * that this devclass will support drivers for the parent class as
788 * well. If the parent class has the same name don't do this though
789 * as it creates a cycle that can trigger an infinite loop in
790 * device_probe_child() if a device exists for which there is no
791 * suitable driver.
792 */
793 if (parentname && dc && !dc->parent &&
794 strcmp(classname, parentname) != 0) {
795 dc->parent = devclass_find_internal(parentname, 0, FALSE);
796 }
797
798 return (dc);
799}
800
801/**
802 * @brief Create a device class
803 *
804 * If a device class with the name @p classname exists, return it,
805 * otherwise create and return a new device class.
806 *
807 * @param classname the devclass name to find or create
808 */
809devclass_t
810devclass_create(const char *classname)
811{
812 return (devclass_find_internal(classname, 0, TRUE));
813}
814
815/**
816 * @brief Find a device class
817 *
818 * If a device class with the name @p classname exists, return it,
819 * otherwise return @c NULL.
820 *
821 * @param classname the devclass name to find
822 */
823devclass_t
824devclass_find(const char *classname)
825{
826 return (devclass_find_internal(classname, 0, FALSE));
827}
828
829/**
830 * @brief Add a device driver to a device class
831 *
832 * Add a device driver to a devclass. This is normally called
833 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
834 * all devices in the devclass will be called to allow them to attempt
835 * to re-probe any unmatched children.
836 *
837 * @param dc the devclass to edit
838 * @param driver the driver to register
839 */
840int
841devclass_add_driver(devclass_t dc, driver_t *driver)
842{
843 driverlink_t dl;
844 int i;
845
846 PDEBUG(("%s", DRIVERNAME(driver)));
847
848 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
849 if (!dl)
850 return (ENOMEM);
851
852 /*
853 * Compile the driver's methods. Also increase the reference count
854 * so that the class doesn't get freed when the last instance
855 * goes. This means we can safely use static methods and avoids a
856 * double-free in devclass_delete_driver.
857 */
858 kobj_class_compile((kobj_class_t) driver);
859
860 /*
861 * Make sure the devclass which the driver is implementing exists.
862 */
863 devclass_find_internal(driver->name, 0, TRUE);
864
865 dl->driver = driver;
866 TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
867 driver->refs++; /* XXX: kobj_mtx */
868
869 /*
870 * Call BUS_DRIVER_ADDED for any existing busses in this class.
871 */
872 for (i = 0; i < dc->maxunit; i++)
873 if (dc->devices[i])
874 BUS_DRIVER_ADDED(dc->devices[i], driver);
875
876 bus_data_generation_update();
877 return (0);
878}
879
880/**
881 * @brief Delete a device driver from a device class
882 *
883 * Delete a device driver from a devclass. This is normally called
884 * automatically by DRIVER_MODULE().
885 *
886 * If the driver is currently attached to any devices,
887 * devclass_delete_driver() will first attempt to detach from each
888 * device. If one of the detach calls fails, the driver will not be
889 * deleted.
890 *
891 * @param dc the devclass to edit
892 * @param driver the driver to unregister
893 */
894int
895devclass_delete_driver(devclass_t busclass, driver_t *driver)
896{
897 devclass_t dc = devclass_find(driver->name);
898 driverlink_t dl;
899 device_t dev;
900 int i;
901 int error;
902
903 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
904
905 if (!dc)
906 return (0);
907
908 /*
909 * Find the link structure in the bus' list of drivers.
910 */
911 TAILQ_FOREACH(dl, &busclass->drivers, link) {
912 if (dl->driver == driver)
913 break;
914 }
915
916 if (!dl) {
917 PDEBUG(("%s not found in %s list", driver->name,
918 busclass->name));
919 return (ENOENT);
920 }
921
922 /*
923 * Disassociate from any devices. We iterate through all the
924 * devices in the devclass of the driver and detach any which are
925 * using the driver and which have a parent in the devclass which
926 * we are deleting from.
927 *
928 * Note that since a driver can be in multiple devclasses, we
929 * should not detach devices which are not children of devices in
930 * the affected devclass.
931 */
932 for (i = 0; i < dc->maxunit; i++) {
933 if (dc->devices[i]) {
934 dev = dc->devices[i];
935 if (dev->driver == driver && dev->parent &&
936 dev->parent->devclass == busclass) {
937 if ((error = device_detach(dev)) != 0)
938 return (error);
939 device_set_driver(dev, NULL);
940 }
941 }
942 }
943
944 TAILQ_REMOVE(&busclass->drivers, dl, link);
945 free(dl, M_BUS);
946
947 /* XXX: kobj_mtx */
948 driver->refs--;
949 if (driver->refs == 0)
950 kobj_class_free((kobj_class_t) driver);
951
952 bus_data_generation_update();
953 return (0);
954}
955
956/**
957 * @brief Quiesces a set of device drivers from a device class
958 *
959 * Quiesce a device driver from a devclass. This is normally called
960 * automatically by DRIVER_MODULE().
961 *
962 * If the driver is currently attached to any devices,
963 * devclass_quiesece_driver() will first attempt to quiesce each
964 * device.
965 *
966 * @param dc the devclass to edit
967 * @param driver the driver to unregister
968 */
969int
970devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
971{
972 devclass_t dc = devclass_find(driver->name);
973 driverlink_t dl;
974 device_t dev;
975 int i;
976 int error;
977
978 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
979
980 if (!dc)
981 return (0);
982
983 /*
984 * Find the link structure in the bus' list of drivers.
985 */
986 TAILQ_FOREACH(dl, &busclass->drivers, link) {
987 if (dl->driver == driver)
988 break;
989 }
990
991 if (!dl) {
992 PDEBUG(("%s not found in %s list", driver->name,
993 busclass->name));
994 return (ENOENT);
995 }
996
997 /*
998 * Quiesce all devices. We iterate through all the devices in
999 * the devclass of the driver and quiesce any which are using
1000 * the driver and which have a parent in the devclass which we
1001 * are quiescing.
1002 *
1003 * Note that since a driver can be in multiple devclasses, we
1004 * should not quiesce devices which are not children of
1005 * devices in the affected devclass.
1006 */
1007 for (i = 0; i < dc->maxunit; i++) {
1008 if (dc->devices[i]) {
1009 dev = dc->devices[i];
1010 if (dev->driver == driver && dev->parent &&
1011 dev->parent->devclass == busclass) {
1012 if ((error = device_quiesce(dev)) != 0)
1013 return (error);
1014 }
1015 }
1016 }
1017
1018 return (0);
1019}
1020
1021/**
1022 * @internal
1023 */
1024static driverlink_t
1025devclass_find_driver_internal(devclass_t dc, const char *classname)
1026{
1027 driverlink_t dl;
1028
1029 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1030
1031 TAILQ_FOREACH(dl, &dc->drivers, link) {
1032 if (!strcmp(dl->driver->name, classname))
1033 return (dl);
1034 }
1035
1036 PDEBUG(("not found"));
1037 return (NULL);
1038}
1039
1040/**
1041 * @brief Search a devclass for a driver
1042 *
1043 * This function searches the devclass's list of drivers and returns
1044 * the first driver whose name is @p classname or @c NULL if there is
1045 * no driver of that name.
1046 *
1047 * @param dc the devclass to search
1048 * @param classname the driver name to search for
1049 */
1050kobj_class_t
1051devclass_find_driver(devclass_t dc, const char *classname)
1052{
1053 driverlink_t dl;
1054
1055 dl = devclass_find_driver_internal(dc, classname);
1056 if (dl)
1057 return (dl->driver);
1058 return (NULL);
1059}
1060
1061/**
1062 * @brief Return the name of the devclass
1063 */
1064const char *
1065devclass_get_name(devclass_t dc)
1066{
1067 return (dc->name);
1068}
1069
1070/**
1071 * @brief Find a device given a unit number
1072 *
1073 * @param dc the devclass to search
1074 * @param unit the unit number to search for
1075 *
1076 * @returns the device with the given unit number or @c
1077 * NULL if there is no such device
1078 */
1079device_t
1080devclass_get_device(devclass_t dc, int unit)
1081{
1082 if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1083 return (NULL);
1084 return (dc->devices[unit]);
1085}
1086
1087/**
1088 * @brief Find the softc field of a device given a unit number
1089 *
1090 * @param dc the devclass to search
1091 * @param unit the unit number to search for
1092 *
1093 * @returns the softc field of the device with the given
1094 * unit number or @c NULL if there is no such
1095 * device
1096 */
1097void *
1098devclass_get_softc(devclass_t dc, int unit)
1099{
1100 device_t dev;
1101
1102 dev = devclass_get_device(dc, unit);
1103 if (!dev)
1104 return (NULL);
1105
1106 return (device_get_softc(dev));
1107}
1108
1109/**
1110 * @brief Get a list of devices in the devclass
1111 *
1112 * An array containing a list of all the devices in the given devclass
1113 * is allocated and returned in @p *devlistp. The number of devices
1114 * in the array is returned in @p *devcountp. The caller should free
1115 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1116 *
1117 * @param dc the devclass to examine
1118 * @param devlistp points at location for array pointer return
1119 * value
1120 * @param devcountp points at location for array size return value
1121 *
1122 * @retval 0 success
1123 * @retval ENOMEM the array allocation failed
1124 */
1125int
1126devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1127{
1128 int count, i;
1129 device_t *list;
1130
1131 count = devclass_get_count(dc);
1132 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1133 if (!list)
1134 return (ENOMEM);
1135
1136 count = 0;
1137 for (i = 0; i < dc->maxunit; i++) {
1138 if (dc->devices[i]) {
1139 list[count] = dc->devices[i];
1140 count++;
1141 }
1142 }
1143
1144 *devlistp = list;
1145 *devcountp = count;
1146
1147 return (0);
1148}
1149
1150/**
1151 * @brief Get a list of drivers in the devclass
1152 *
1153 * An array containing a list of pointers to all the drivers in the
1154 * given devclass is allocated and returned in @p *listp. The number
1155 * of drivers in the array is returned in @p *countp. The caller should
1156 * free the array using @c free(p, M_TEMP).
1157 *
1158 * @param dc the devclass to examine
1159 * @param listp gives location for array pointer return value
1160 * @param countp gives location for number of array elements
1161 * return value
1162 *
1163 * @retval 0 success
1164 * @retval ENOMEM the array allocation failed
1165 */
1166int
1167devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1168{
1169 driverlink_t dl;
1170 driver_t **list;
1171 int count;
1172
1173 count = 0;
1174 TAILQ_FOREACH(dl, &dc->drivers, link)
1175 count++;
1176 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1177 if (list == NULL)
1178 return (ENOMEM);
1179
1180 count = 0;
1181 TAILQ_FOREACH(dl, &dc->drivers, link) {
1182 list[count] = dl->driver;
1183 count++;
1184 }
1185 *listp = list;
1186 *countp = count;
1187
1188 return (0);
1189}
1190
1191/**
1192 * @brief Get the number of devices in a devclass
1193 *
1194 * @param dc the devclass to examine
1195 */
1196int
1197devclass_get_count(devclass_t dc)
1198{
1199 int count, i;
1200
1201 count = 0;
1202 for (i = 0; i < dc->maxunit; i++)
1203 if (dc->devices[i])
1204 count++;
1205 return (count);
1206}
1207
1208/**
1209 * @brief Get the maximum unit number used in a devclass
1210 *
1211 * Note that this is one greater than the highest currently-allocated
1212 * unit.
1213 *
1214 * @param dc the devclass to examine
1215 */
1216int
1217devclass_get_maxunit(devclass_t dc)
1218{
1219 return (dc->maxunit);
1220}
1221
1222/**
1223 * @brief Find a free unit number in a devclass
1224 *
1225 * This function searches for the first unused unit number greater
1226 * that or equal to @p unit.
1227 *
1228 * @param dc the devclass to examine
1229 * @param unit the first unit number to check
1230 */
1231int
1232devclass_find_free_unit(devclass_t dc, int unit)
1233{
1234 if (dc == NULL)
1235 return (unit);
1236 while (unit < dc->maxunit && dc->devices[unit] != NULL)
1237 unit++;
1238 return (unit);
1239}
1240
1241/**
1242 * @brief Set the parent of a devclass
1243 *
1244 * The parent class is normally initialised automatically by
1245 * DRIVER_MODULE().
1246 *
1247 * @param dc the devclass to edit
1248 * @param pdc the new parent devclass
1249 */
1250void
1251devclass_set_parent(devclass_t dc, devclass_t pdc)
1252{
1253 dc->parent = pdc;
1254}
1255
1256/**
1257 * @brief Get the parent of a devclass
1258 *
1259 * @param dc the devclass to examine
1260 */
1261devclass_t
1262devclass_get_parent(devclass_t dc)
1263{
1264 return (dc->parent);
1265}
1266
1267struct sysctl_ctx_list *
1268devclass_get_sysctl_ctx(devclass_t dc)
1269{
1270 return (&dc->sysctl_ctx);
1271}
1272
1273struct sysctl_oid *
1274devclass_get_sysctl_tree(devclass_t dc)
1275{
1276 return (dc->sysctl_tree);
1277}
1278
1279/**
1280 * @internal
1281 * @brief Allocate a unit number
1282 *
1283 * On entry, @p *unitp is the desired unit number (or @c -1 if any
1284 * will do). The allocated unit number is returned in @p *unitp.
1285
1286 * @param dc the devclass to allocate from
1287 * @param unitp points at the location for the allocated unit
1288 * number
1289 *
1290 * @retval 0 success
1291 * @retval EEXIST the requested unit number is already allocated
1292 * @retval ENOMEM memory allocation failure
1293 */
1294static int
1295devclass_alloc_unit(devclass_t dc, int *unitp)
1296{
1297 int unit = *unitp;
1298
1299 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1300
1301 /* If we were given a wired unit number, check for existing device */
1302 /* XXX imp XXX */
1303 if (unit != -1) {
1304 if (unit >= 0 && unit < dc->maxunit &&
1305 dc->devices[unit] != NULL) {
1306 if (bootverbose)
1307 printf("%s: %s%d already exists; skipping it\n",
1308 dc->name, dc->name, *unitp);
1309 return (EEXIST);
1310 }
1311 } else {
1312 /* Unwired device, find the next available slot for it */
1313 unit = 0;
1314 while (unit < dc->maxunit && dc->devices[unit] != NULL)
1315 unit++;
1316 }
1317
1318 /*
1319 * We've selected a unit beyond the length of the table, so let's
1320 * extend the table to make room for all units up to and including
1321 * this one.
1322 */
1323 if (unit >= dc->maxunit) {
1324 device_t *newlist;
1325 int newsize;
1326
1327 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1328 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1329 if (!newlist)
1330 return (ENOMEM);
1331 bcopy(dc->devices, newlist, sizeof(device_t) * dc->maxunit);
1332 bzero(newlist + dc->maxunit,
1333 sizeof(device_t) * (newsize - dc->maxunit));
1334 if (dc->devices)
1335 free(dc->devices, M_BUS);
1336 dc->devices = newlist;
1337 dc->maxunit = newsize;
1338 }
1339 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1340
1341 *unitp = unit;
1342 return (0);
1343}
1344
1345/**
1346 * @internal
1347 * @brief Add a device to a devclass
1348 *
1349 * A unit number is allocated for the device (using the device's
1350 * preferred unit number if any) and the device is registered in the
1351 * devclass. This allows the device to be looked up by its unit
1352 * number, e.g. by decoding a dev_t minor number.
1353 *
1354 * @param dc the devclass to add to
1355 * @param dev the device to add
1356 *
1357 * @retval 0 success
1358 * @retval EEXIST the requested unit number is already allocated
1359 * @retval ENOMEM memory allocation failure
1360 */
1361static int
1362devclass_add_device(devclass_t dc, device_t dev)
1363{
1364 int buflen, error;
1365
1366 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1367
1368 buflen = snprintf(NULL, 0, "%s%d$", dc->name, dev->unit);
1369 if (buflen < 0)
1370 return (ENOMEM);
1371 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1372 if (!dev->nameunit)
1373 return (ENOMEM);
1374
1375 if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) {
1376 free(dev->nameunit, M_BUS);
1377 dev->nameunit = NULL;
1378 return (error);
1379 }
1380 dc->devices[dev->unit] = dev;
1381 dev->devclass = dc;
1382 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1383
1384 return (0);
1385}
1386
1387/**
1388 * @internal
1389 * @brief Delete a device from a devclass
1390 *
1391 * The device is removed from the devclass's device list and its unit
1392 * number is freed.
1393
1394 * @param dc the devclass to delete from
1395 * @param dev the device to delete
1396 *
1397 * @retval 0 success
1398 */
1399static int
1400devclass_delete_device(devclass_t dc, device_t dev)
1401{
1402 if (!dc || !dev)
1403 return (0);
1404
1405 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1406
1407 if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1408 panic("devclass_delete_device: inconsistent device class");
1409 dc->devices[dev->unit] = NULL;
1410 if (dev->flags & DF_WILDCARD)
1411 dev->unit = -1;
1412 dev->devclass = NULL;
1413 free(dev->nameunit, M_BUS);
1414 dev->nameunit = NULL;
1415
1416 return (0);
1417}
1418
1419/**
1420 * @internal
1421 * @brief Make a new device and add it as a child of @p parent
1422 *
1423 * @param parent the parent of the new device
1424 * @param name the devclass name of the new device or @c NULL
1425 * to leave the devclass unspecified
1426 * @parem unit the unit number of the new device of @c -1 to
1427 * leave the unit number unspecified
1428 *
1429 * @returns the new device
1430 */
1431static device_t
1432make_device(device_t parent, const char *name, int unit)
1433{
1434 device_t dev;
1435 devclass_t dc;
1436
1437 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1438
1439 if (name) {
1440 dc = devclass_find_internal(name, 0, TRUE);
1441 if (!dc) {
1442 printf("make_device: can't find device class %s\n",
1443 name);
1444 return (NULL);
1445 }
1446 } else {
1447 dc = NULL;
1448 }
1449
1450 dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1451 if (!dev)
1452 return (NULL);
1453
1454 dev->parent = parent;
1455 TAILQ_INIT(&dev->children);
1456 kobj_init((kobj_t) dev, &null_class);
1457 dev->driver = NULL;
1458 dev->devclass = NULL;
1459 dev->unit = unit;
1460 dev->nameunit = NULL;
1461 dev->desc = NULL;
1462 dev->busy = 0;
1463 dev->devflags = 0;
1464 dev->flags = DF_ENABLED;
1465 dev->order = 0;
1466 if (unit == -1)
1467 dev->flags |= DF_WILDCARD;
1468 if (name) {
1469 dev->flags |= DF_FIXEDCLASS;
1470 if (devclass_add_device(dc, dev)) {
1471 kobj_delete((kobj_t) dev, M_BUS);
1472 return (NULL);
1473 }
1474 }
1475 dev->ivars = NULL;
1476 dev->softc = NULL;
1477
1478 dev->state = DS_NOTPRESENT;
1479
1480 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1481 bus_data_generation_update();
1482
1483 return (dev);
1484}
1485
1486/**
1487 * @internal
1488 * @brief Print a description of a device.
1489 */
1490static int
1491device_print_child(device_t dev, device_t child)
1492{
1493 int retval = 0;
1494
1495 if (device_is_alive(child))
1496 retval += BUS_PRINT_CHILD(dev, child);
1497 else
1498 retval += device_printf(child, " not found\n");
1499
1500 return (retval);
1501}
1502
1503/**
1504 * @brief Create a new device
1505 *
1506 * This creates a new device and adds it as a child of an existing
1507 * parent device. The new device will be added after the last existing
1508 * child with order zero.
1509 *
1510 * @param dev the device which will be the parent of the
1511 * new child device
1512 * @param name devclass name for new device or @c NULL if not
1513 * specified
1514 * @param unit unit number for new device or @c -1 if not
1515 * specified
1516 *
1517 * @returns the new device
1518 */
1519device_t
1520device_add_child(device_t dev, const char *name, int unit)
1521{
1522 return (device_add_child_ordered(dev, 0, name, unit));
1523}
1524
1525/**
1526 * @brief Create a new device
1527 *
1528 * This creates a new device and adds it as a child of an existing
1529 * parent device. The new device will be added after the last existing
1530 * child with the same order.
1531 *
1532 * @param dev the device which will be the parent of the
1533 * new child device
1534 * @param order a value which is used to partially sort the
1535 * children of @p dev - devices created using
1536 * lower values of @p order appear first in @p
1537 * dev's list of children
1538 * @param name devclass name for new device or @c NULL if not
1539 * specified
1540 * @param unit unit number for new device or @c -1 if not
1541 * specified
1542 *
1543 * @returns the new device
1544 */
1545device_t
1546device_add_child_ordered(device_t dev, int order, const char *name, int unit)
1547{
1548 device_t child;
1549 device_t place;
1550
1551 PDEBUG(("%s at %s with order %d as unit %d",
1552 name, DEVICENAME(dev), order, unit));
1553
1554 child = make_device(dev, name, unit);
1555 if (child == NULL)
1556 return (child);
1557 child->order = order;
1558
1559 TAILQ_FOREACH(place, &dev->children, link) {
1560 if (place->order > order)
1561 break;
1562 }
1563
1564 if (place) {
1565 /*
1566 * The device 'place' is the first device whose order is
1567 * greater than the new child.
1568 */
1569 TAILQ_INSERT_BEFORE(place, child, link);
1570 } else {
1571 /*
1572 * The new child's order is greater or equal to the order of
1573 * any existing device. Add the child to the tail of the list.
1574 */
1575 TAILQ_INSERT_TAIL(&dev->children, child, link);
1576 }
1577
1578 bus_data_generation_update();
1579 return (child);
1580}
1581
1582/**
1583 * @brief Delete a device
1584 *
1585 * This function deletes a device along with all of its children. If
1586 * the device currently has a driver attached to it, the device is
1587 * detached first using device_detach().
1588 *
1589 * @param dev the parent device
1590 * @param child the device to delete
1591 *
1592 * @retval 0 success
1593 * @retval non-zero a unit error code describing the error
1594 */
1595int
1596device_delete_child(device_t dev, device_t child)
1597{
1598 int error;
1599 device_t grandchild;
1600
1601 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1602
1603 /* remove children first */
1604 while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
1605 error = device_delete_child(child, grandchild);
1606 if (error)
1607 return (error);
1608 }
1609
1610 if ((error = device_detach(child)) != 0)
1611 return (error);
1612 if (child->devclass)
1613 devclass_delete_device(child->devclass, child);
1614 TAILQ_REMOVE(&dev->children, child, link);
1615 TAILQ_REMOVE(&bus_data_devices, child, devlink);
1616 kobj_delete((kobj_t) child, M_BUS);
1617
1618 bus_data_generation_update();
1619 return (0);
1620}
1621
1622/**
1623 * @brief Find a device given a unit number
1624 *
1625 * This is similar to devclass_get_devices() but only searches for
1626 * devices which have @p dev as a parent.
1627 *
1628 * @param dev the parent device to search
1629 * @param unit the unit number to search for. If the unit is -1,
1630 * return the first child of @p dev which has name
1631 * @p classname (that is, the one with the lowest unit.)
1632 *
1633 * @returns the device with the given unit number or @c
1634 * NULL if there is no such device
1635 */
1636device_t
1637device_find_child(device_t dev, const char *classname, int unit)
1638{
1639 devclass_t dc;
1640 device_t child;
1641
1642 dc = devclass_find(classname);
1643 if (!dc)
1644 return (NULL);
1645
1646 if (unit != -1) {
1647 child = devclass_get_device(dc, unit);
1648 if (child && child->parent == dev)
1649 return (child);
1650 } else {
1651 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1652 child = devclass_get_device(dc, unit);
1653 if (child && child->parent == dev)
1654 return (child);
1655 }
1656 }
1657 return (NULL);
1658}
1659
1660/**
1661 * @internal
1662 */
1663static driverlink_t
1664first_matching_driver(devclass_t dc, device_t dev)
1665{
1666 if (dev->devclass)
1667 return (devclass_find_driver_internal(dc, dev->devclass->name));
1668 return (TAILQ_FIRST(&dc->drivers));
1669}
1670
1671/**
1672 * @internal
1673 */
1674static driverlink_t
1675next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1676{
1677 if (dev->devclass) {
1678 driverlink_t dl;
1679 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1680 if (!strcmp(dev->devclass->name, dl->driver->name))
1681 return (dl);
1682 return (NULL);
1683 }
1684 return (TAILQ_NEXT(last, link));
1685}
1686
1687/**
1688 * @internal
1689 */
1690int
1691device_probe_child(device_t dev, device_t child)
1692{
1693 devclass_t dc;
1694 driverlink_t best = 0;
1695 driverlink_t dl;
1696 int result, pri = 0;
1697 int hasclass = (child->devclass != 0);
1698
1699 GIANT_REQUIRED;
1700
1701 dc = dev->devclass;
1702 if (!dc)
1703 panic("device_probe_child: parent device has no devclass");
1704
1705 /*
1706 * If the state is already probed, then return. However, don't
1707 * return if we can rebid this object.
1708 */
1709 if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
1710 return (0);
1711
1712 for (; dc; dc = dc->parent) {
1713 for (dl = first_matching_driver(dc, child);
1714 dl;
1715 dl = next_matching_driver(dc, child, dl)) {
1716 PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1717 device_set_driver(child, dl->driver);
1718 if (!hasclass)
1719 device_set_devclass(child, dl->driver->name);
1720
1721 /* Fetch any flags for the device before probing. */
1722 resource_int_value(dl->driver->name, child->unit,
1723 "flags", &child->devflags);
1724
1725 result = DEVICE_PROBE(child);
1726
1727 /* Reset flags and devclass before the next probe. */
1728 child->devflags = 0;
1729 if (!hasclass)
1730 device_set_devclass(child, 0);
1731
1732 /*
1733 * If the driver returns SUCCESS, there can be
1734 * no higher match for this device.
1735 */
1736 if (result == 0) {
1737 best = dl;
1738 pri = 0;
1739 break;
1740 }
1741
1742 /*
1743 * The driver returned an error so it
1744 * certainly doesn't match.
1745 */
1746 if (result > 0) {
1747 device_set_driver(child, 0);
1748 continue;
1749 }
1750
1751 /*
1752 * A priority lower than SUCCESS, remember the
1753 * best matching driver. Initialise the value
1754 * of pri for the first match.
1755 */
1756 if (best == 0 || result > pri) {
1757 best = dl;
1758 pri = result;
1759 continue;
1760 }
1761 }
1762 /*
1763 * If we have an unambiguous match in this devclass,
1764 * don't look in the parent.
1765 */
1766 if (best && pri == 0)
1767 break;
1768 }
1769
1770 /*
1771 * If we found a driver, change state and initialise the devclass.
1772 */
1773 /* XXX What happens if we rebid and got no best? */
1774 if (best) {
1775 /*
1776 * If this device was atached, and we were asked to
1777 * rescan, and it is a different driver, then we have
1778 * to detach the old driver and reattach this new one.
1779 * Note, we don't have to check for DF_REBID here
1780 * because if the state is > DS_ALIVE, we know it must
1781 * be.
1782 *
1783 * This assumes that all DF_REBID drivers can have
1784 * their probe routine called at any time and that
1785 * they are idempotent as well as completely benign in
1786 * normal operations.
1787 *
1788 * We also have to make sure that the detach
1789 * succeeded, otherwise we fail the operation (or
1790 * maybe it should just fail silently? I'm torn).
1791 */
1792 if (child->state > DS_ALIVE && best->driver != child->driver)
1793 if ((result = device_detach(dev)) != 0)
1794 return (result);
1795
1796 /* Set the winning driver, devclass, and flags. */
1797 if (!child->devclass)
1798 device_set_devclass(child, best->driver->name);
1799 device_set_driver(child, best->driver);
1800 resource_int_value(best->driver->name, child->unit,
1801 "flags", &child->devflags);
1802
1803 if (pri < 0) {
1804 /*
1805 * A bit bogus. Call the probe method again to make
1806 * sure that we have the right description.
1807 */
1808 DEVICE_PROBE(child);
1809#if 0
1810 child->flags |= DF_REBID;
1811#endif
1812 } else
1813 child->flags &= ~DF_REBID;
1814 child->state = DS_ALIVE;
1815
1816 bus_data_generation_update();
1817 return (0);
1818 }
1819
1820 return (ENXIO);
1821}
1822
1823/**
1824 * @brief Return the parent of a device
1825 */
1826device_t
1827device_get_parent(device_t dev)
1828{
1829 return (dev->parent);
1830}
1831
1832/**
1833 * @brief Get a list of children of a device
1834 *
1835 * An array containing a list of all the children of the given device
1836 * is allocated and returned in @p *devlistp. The number of devices
1837 * in the array is returned in @p *devcountp. The caller should free
1838 * the array using @c free(p, M_TEMP).
1839 *
1840 * @param dev the device to examine
1841 * @param devlistp points at location for array pointer return
1842 * value
1843 * @param devcountp points at location for array size return value
1844 *
1845 * @retval 0 success
1846 * @retval ENOMEM the array allocation failed
1847 */
1848int
1849device_get_children(device_t dev, device_t **devlistp, int *devcountp)
1850{
1851 int count;
1852 device_t child;
1853 device_t *list;
1854
1855 count = 0;
1856 TAILQ_FOREACH(child, &dev->children, link) {
1857 count++;
1858 }
1859
1860 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1861 if (!list)
1862 return (ENOMEM);
1863
1864 count = 0;
1865 TAILQ_FOREACH(child, &dev->children, link) {
1866 list[count] = child;
1867 count++;
1868 }
1869
1870 *devlistp = list;
1871 *devcountp = count;
1872
1873 return (0);
1874}
1875
1876/**
1877 * @brief Return the current driver for the device or @c NULL if there
1878 * is no driver currently attached
1879 */
1880driver_t *
1881device_get_driver(device_t dev)
1882{
1883 return (dev->driver);
1884}
1885
1886/**
1887 * @brief Return the current devclass for the device or @c NULL if
1888 * there is none.
1889 */
1890devclass_t
1891device_get_devclass(device_t dev)
1892{
1893 return (dev->devclass);
1894}
1895
1896/**
1897 * @brief Return the name of the device's devclass or @c NULL if there
1898 * is none.
1899 */
1900const char *
1901device_get_name(device_t dev)
1902{
1903 if (dev != NULL && dev->devclass)
1904 return (devclass_get_name(dev->devclass));
1905 return (NULL);
1906}
1907
1908/**
1909 * @brief Return a string containing the device's devclass name
1910 * followed by an ascii representation of the device's unit number
1911 * (e.g. @c "foo2").
1912 */
1913const char *
1914device_get_nameunit(device_t dev)
1915{
1916 return (dev->nameunit);
1917}
1918
1919/**
1920 * @brief Return the device's unit number.
1921 */
1922int
1923device_get_unit(device_t dev)
1924{
1925 return (dev->unit);
1926}
1927
1928/**
1929 * @brief Return the device's description string
1930 */
1931const char *
1932device_get_desc(device_t dev)
1933{
1934 return (dev->desc);
1935}
1936
1937/**
1938 * @brief Return the device's flags
1939 */
1940u_int32_t
1941device_get_flags(device_t dev)
1942{
1943 return (dev->devflags);
1944}
1945
1946struct sysctl_ctx_list *
1947device_get_sysctl_ctx(device_t dev)
1948{
1949 return (&dev->sysctl_ctx);
1950}
1951
1952struct sysctl_oid *
1953device_get_sysctl_tree(device_t dev)
1954{
1955 return (dev->sysctl_tree);
1956}
1957
1958/**
1959 * @brief Print the name of the device followed by a colon and a space
1960 *
1961 * @returns the number of characters printed
1962 */
1963int
1964device_print_prettyname(device_t dev)
1965{
1966 const char *name = device_get_name(dev);
1967
1968 if (name == 0)
1969 return (printf("unknown: "));
1970 return (printf("%s%d: ", name, device_get_unit(dev)));
1971}
1972
1973/**
1974 * @brief Print the name of the device followed by a colon, a space
1975 * and the result of calling vprintf() with the value of @p fmt and
1976 * the following arguments.
1977 *
1978 * @returns the number of characters printed
1979 */
1980int
1981device_printf(device_t dev, const char * fmt, ...)
1982{
1983 va_list ap;
1984 int retval;
1985
1986 retval = device_print_prettyname(dev);
1987 va_start(ap, fmt);
1988 retval += vprintf(fmt, ap);
1989 va_end(ap);
1990 return (retval);
1991}
1992
1993/**
1994 * @internal
1995 */
1996static void
1997device_set_desc_internal(device_t dev, const char* desc, int copy)
1998{
1999 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2000 free(dev->desc, M_BUS);
2001 dev->flags &= ~DF_DESCMALLOCED;
2002 dev->desc = NULL;
2003 }
2004
2005 if (copy && desc) {
2006 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2007 if (dev->desc) {
2008 strcpy(dev->desc, desc);
2009 dev->flags |= DF_DESCMALLOCED;
2010 }
2011 } else {
2012 /* Avoid a -Wcast-qual warning */
2013 dev->desc = (char *)(uintptr_t) desc;
2014 }
2015
2016 bus_data_generation_update();
2017}
2018
2019/**
2020 * @brief Set the device's description
2021 *
2022 * The value of @c desc should be a string constant that will not
2023 * change (at least until the description is changed in a subsequent
2024 * call to device_set_desc() or device_set_desc_copy()).
2025 */
2026void
2027device_set_desc(device_t dev, const char* desc)
2028{
2029 device_set_desc_internal(dev, desc, FALSE);
2030}
2031
2032/**
2033 * @brief Set the device's description
2034 *
2035 * The string pointed to by @c desc is copied. Use this function if
2036 * the device description is generated, (e.g. with sprintf()).
2037 */
2038void
2039device_set_desc_copy(device_t dev, const char* desc)
2040{
2041 device_set_desc_internal(dev, desc, TRUE);
2042}
2043
2044/**
2045 * @brief Set the device's flags
2046 */
2047void
2048device_set_flags(device_t dev, u_int32_t flags)
2049{
2050 dev->devflags = flags;
2051}
2052
2053/**
2054 * @brief Return the device's softc field
2055 *
2056 * The softc is allocated and zeroed when a driver is attached, based
2057 * on the size field of the driver.
2058 */
2059void *
2060device_get_softc(device_t dev)
2061{
2062 return (dev->softc);
2063}
2064
2065/**
2066 * @brief Set the device's softc field
2067 *
2068 * Most drivers do not need to use this since the softc is allocated
2069 * automatically when the driver is attached.
2070 */
2071void
2072device_set_softc(device_t dev, void *softc)
2073{
2074 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2075 free(dev->softc, M_BUS_SC);
2076 dev->softc = softc;
2077 if (dev->softc)
2078 dev->flags |= DF_EXTERNALSOFTC;
2079 else
2080 dev->flags &= ~DF_EXTERNALSOFTC;
2081}
2082
2083/**
2084 * @brief Get the device's ivars field
2085 *
2086 * The ivars field is used by the parent device to store per-device
2087 * state (e.g. the physical location of the device or a list of
2088 * resources).
2089 */
2090void *
2091device_get_ivars(device_t dev)
2092{
2093
2094 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2095 return (dev->ivars);
2096}
2097
2098/**
2099 * @brief Set the device's ivars field
2100 */
2101void
2102device_set_ivars(device_t dev, void * ivars)
2103{
2104
2105 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2106 dev->ivars = ivars;
2107}
2108
2109/**
2110 * @brief Return the device's state
2111 */
2112device_state_t
2113device_get_state(device_t dev)
2114{
2115 return (dev->state);
2116}
2117
2118/**
2119 * @brief Set the DF_ENABLED flag for the device
2120 */
2121void
2122device_enable(device_t dev)
2123{
2124 dev->flags |= DF_ENABLED;
2125}
2126
2127/**
2128 * @brief Clear the DF_ENABLED flag for the device
2129 */
2130void
2131device_disable(device_t dev)
2132{
2133 dev->flags &= ~DF_ENABLED;
2134}
2135
2136/**
2137 * @brief Increment the busy counter for the device
2138 */
2139void
2140device_busy(device_t dev)
2141{
2142 if (dev->state < DS_ATTACHED)
2143 panic("device_busy: called for unattached device");
2144 if (dev->busy == 0 && dev->parent)
2145 device_busy(dev->parent);
2146 dev->busy++;
2147 dev->state = DS_BUSY;
2148}
2149
2150/**
2151 * @brief Decrement the busy counter for the device
2152 */
2153void
2154device_unbusy(device_t dev)
2155{
2156 if (dev->state != DS_BUSY)
2157 panic("device_unbusy: called for non-busy device %s",
2158 device_get_nameunit(dev));
2159 dev->busy--;
2160 if (dev->busy == 0) {
2161 if (dev->parent)
2162 device_unbusy(dev->parent);
2163 dev->state = DS_ATTACHED;
2164 }
2165}
2166
2167/**
2168 * @brief Set the DF_QUIET flag for the device
2169 */
2170void
2171device_quiet(device_t dev)
2172{
2173 dev->flags |= DF_QUIET;
2174}
2175
2176/**
2177 * @brief Clear the DF_QUIET flag for the device
2178 */
2179void
2180device_verbose(device_t dev)
2181{
2182 dev->flags &= ~DF_QUIET;
2183}
2184
2185/**
2186 * @brief Return non-zero if the DF_QUIET flag is set on the device
2187 */
2188int
2189device_is_quiet(device_t dev)
2190{
2191 return ((dev->flags & DF_QUIET) != 0);
2192}
2193
2194/**
2195 * @brief Return non-zero if the DF_ENABLED flag is set on the device
2196 */
2197int
2198device_is_enabled(device_t dev)
2199{
2200 return ((dev->flags & DF_ENABLED) != 0);
2201}
2202
2203/**
2204 * @brief Return non-zero if the device was successfully probed
2205 */
2206int
2207device_is_alive(device_t dev)
2208{
2209 return (dev->state >= DS_ALIVE);
2210}
2211
2212/**
2213 * @brief Return non-zero if the device currently has a driver
2214 * attached to it
2215 */
2216int
2217device_is_attached(device_t dev)
2218{
2219 return (dev->state >= DS_ATTACHED);
2220}
2221
2222/**
2223 * @brief Set the devclass of a device
2224 * @see devclass_add_device().
2225 */
2226int
2227device_set_devclass(device_t dev, const char *classname)
2228{
2229 devclass_t dc;
2230 int error;
2231
2232 if (!classname) {
2233 if (dev->devclass)
2234 devclass_delete_device(dev->devclass, dev);
2235 return (0);
2236 }
2237
2238 if (dev->devclass) {
2239 printf("device_set_devclass: device class already set\n");
2240 return (EINVAL);
2241 }
2242
2243 dc = devclass_find_internal(classname, 0, TRUE);
2244 if (!dc)
2245 return (ENOMEM);
2246
2247 error = devclass_add_device(dc, dev);
2248
2249 bus_data_generation_update();
2250 return (error);
2251}
2252
2253/**
2254 * @brief Set the driver of a device
2255 *
2256 * @retval 0 success
2257 * @retval EBUSY the device already has a driver attached
2258 * @retval ENOMEM a memory allocation failure occurred
2259 */
2260int
2261device_set_driver(device_t dev, driver_t *driver)
2262{
2263 if (dev->state >= DS_ATTACHED)
2264 return (EBUSY);
2265
2266 if (dev->driver == driver)
2267 return (0);
2268
2269 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2270 free(dev->softc, M_BUS_SC);
2271 dev->softc = NULL;
2272 }
2273 kobj_delete((kobj_t) dev, 0);
2274 dev->driver = driver;
2275 if (driver) {
2276 kobj_init((kobj_t) dev, (kobj_class_t) driver);
2277 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2278 dev->softc = malloc(driver->size, M_BUS_SC,
2279 M_NOWAIT | M_ZERO);
2280 if (!dev->softc) {
2281 kobj_delete((kobj_t) dev, 0);
2282 kobj_init((kobj_t) dev, &null_class);
2283 dev->driver = NULL;
2284 return (ENOMEM);
2285 }
2286 }
2287 } else {
2288 kobj_init((kobj_t) dev, &null_class);
2289 }
2290
2291 bus_data_generation_update();
2292 return (0);
2293}
2294
2295/**
2296 * @brief Probe a device and attach a driver if possible
2297 *
2298 * This function is the core of the device autoconfiguration
2299 * system. Its purpose is to select a suitable driver for a device and
2300 * then call that driver to initialise the hardware appropriately. The
2301 * driver is selected by calling the DEVICE_PROBE() method of a set of
2302 * candidate drivers and then choosing the driver which returned the
2303 * best value. This driver is then attached to the device using
2304 * device_attach().
2305 *
2306 * The set of suitable drivers is taken from the list of drivers in
2307 * the parent device's devclass. If the device was originally created
2308 * with a specific class name (see device_add_child()), only drivers
2309 * with that name are probed, otherwise all drivers in the devclass
2310 * are probed. If no drivers return successful probe values in the
2311 * parent devclass, the search continues in the parent of that
2312 * devclass (see devclass_get_parent()) if any.
2313 *
2314 * @param dev the device to initialise
2315 *
2316 * @retval 0 success
2317 * @retval ENXIO no driver was found
2318 * @retval ENOMEM memory allocation failure
2319 * @retval non-zero some other unix error code
2320 */
2321int
2322device_probe_and_attach(device_t dev)
2323{
2324 int error;
2325
2326 GIANT_REQUIRED;
2327
2328 if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2329 return (0);
2330
2331 if (!(dev->flags & DF_ENABLED)) {
2332 if (bootverbose && device_get_name(dev) != NULL) {
2333 device_print_prettyname(dev);
2334 printf("not probed (disabled)\n");
2335 }
2336 return (0);
2337 }
2338 if ((error = device_probe_child(dev->parent, dev)) != 0) {
2339 if (!(dev->flags & DF_DONENOMATCH)) {
2340 BUS_PROBE_NOMATCH(dev->parent, dev);
2341 devnomatch(dev);
2342 dev->flags |= DF_DONENOMATCH;
2343 }
2344 return (error);
2345 }
2346 error = device_attach(dev);
2347
2348 return (error);
2349}
2350
2351/**
2352 * @brief Attach a device driver to a device
2353 *
2354 * This function is a wrapper around the DEVICE_ATTACH() driver
2355 * method. In addition to calling DEVICE_ATTACH(), it initialises the
2356 * device's sysctl tree, optionally prints a description of the device
2357 * and queues a notification event for user-based device management
2358 * services.
2359 *
2360 * Normally this function is only called internally from
2361 * device_probe_and_attach().
2362 *
2363 * @param dev the device to initialise
2364 *
2365 * @retval 0 success
2366 * @retval ENXIO no driver was found
2367 * @retval ENOMEM memory allocation failure
2368 * @retval non-zero some other unix error code
2369 */
2370int
2371device_attach(device_t dev)
2372{
2373 int error;
2374
2375 device_sysctl_init(dev);
2376 if (!device_is_quiet(dev))
2377 device_print_child(dev->parent, dev);
2378 if ((error = DEVICE_ATTACH(dev)) != 0) {
2379 printf("device_attach: %s%d attach returned %d\n",
2380 dev->driver->name, dev->unit, error);
2381 /* Unset the class; set in device_probe_child */
2382 if (dev->devclass == 0)
2383 device_set_devclass(dev, 0);
2384 device_set_driver(dev, NULL);
2385 device_sysctl_fini(dev);
2386 dev->state = DS_NOTPRESENT;
2387 return (error);
2388 }
2389 dev->state = DS_ATTACHED;
2390 devadded(dev);
2391 return (0);
2392}
2393
2394/**
2395 * @brief Detach a driver from a device
2396 *
2397 * This function is a wrapper around the DEVICE_DETACH() driver
2398 * method. If the call to DEVICE_DETACH() succeeds, it calls
2399 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2400 * notification event for user-based device management services and
2401 * cleans up the device's sysctl tree.
2402 *
2403 * @param dev the device to un-initialise
2404 *
2405 * @retval 0 success
2406 * @retval ENXIO no driver was found
2407 * @retval ENOMEM memory allocation failure
2408 * @retval non-zero some other unix error code
2409 */
2410int
2411device_detach(device_t dev)
2412{
2413 int error;
2414
2415 GIANT_REQUIRED;
2416
2417 PDEBUG(("%s", DEVICENAME(dev)));
2418 if (dev->state == DS_BUSY)
2419 return (EBUSY);
2420 if (dev->state != DS_ATTACHED)
2421 return (0);
2422
2423 if ((error = DEVICE_DETACH(dev)) != 0)
2424 return (error);
2425 devremoved(dev);
2426 device_printf(dev, "detached\n");
2427 if (dev->parent)
2428 BUS_CHILD_DETACHED(dev->parent, dev);
2429
2430 if (!(dev->flags & DF_FIXEDCLASS))
2431 devclass_delete_device(dev->devclass, dev);
2432
2433 dev->state = DS_NOTPRESENT;
2434 device_set_driver(dev, NULL);
2435 device_set_desc(dev, NULL);
2436 device_sysctl_fini(dev);
2437
2438 return (0);
2439}
2440
2441/**
2442 * @brief Tells a driver to quiesce itself.
2443 *
2444 * This function is a wrapper around the DEVICE_QUIESCE() driver
2445 * method. If the call to DEVICE_QUIESCE() succeeds.
2446 *
2447 * @param dev the device to quiesce
2448 *
2449 * @retval 0 success
2450 * @retval ENXIO no driver was found
2451 * @retval ENOMEM memory allocation failure
2452 * @retval non-zero some other unix error code
2453 */
2454int
2455device_quiesce(device_t dev)
2456{
2457
2458 PDEBUG(("%s", DEVICENAME(dev)));
2459 if (dev->state == DS_BUSY)
2460 return (EBUSY);
2461 if (dev->state != DS_ATTACHED)
2462 return (0);
2463
2464 return (DEVICE_QUIESCE(dev));
2465}
2466
2467/**
2468 * @brief Notify a device of system shutdown
2469 *
2470 * This function calls the DEVICE_SHUTDOWN() driver method if the
2471 * device currently has an attached driver.
2472 *
2473 * @returns the value returned by DEVICE_SHUTDOWN()
2474 */
2475int
2476device_shutdown(device_t dev)
2477{
2478 if (dev->state < DS_ATTACHED)
2479 return (0);
2480 return (DEVICE_SHUTDOWN(dev));
2481}
2482
2483/**
2484 * @brief Set the unit number of a device
2485 *
2486 * This function can be used to override the unit number used for a
2487 * device (e.g. to wire a device to a pre-configured unit number).
2488 */
2489int
2490device_set_unit(device_t dev, int unit)
2491{
2492 devclass_t dc;
2493 int err;
2494
2495 dc = device_get_devclass(dev);
2496 if (unit < dc->maxunit && dc->devices[unit])
2497 return (EBUSY);
2498 err = devclass_delete_device(dc, dev);
2499 if (err)
2500 return (err);
2501 dev->unit = unit;
2502 err = devclass_add_device(dc, dev);
2503 if (err)
2504 return (err);
2505
2506 bus_data_generation_update();
2507 return (0);
2508}
2509
2510/*======================================*/
2511/*
2512 * Some useful method implementations to make life easier for bus drivers.
2513 */
2514
2515/**
2516 * @brief Initialise a resource list.
2517 *
2518 * @param rl the resource list to initialise
2519 */
2520void
2521resource_list_init(struct resource_list *rl)
2522{
2523 STAILQ_INIT(rl);
2524}
2525
2526/**
2527 * @brief Reclaim memory used by a resource list.
2528 *
2529 * This function frees the memory for all resource entries on the list
2530 * (if any).
2531 *
2532 * @param rl the resource list to free
2533 */
2534void
2535resource_list_free(struct resource_list *rl)
2536{
2537 struct resource_list_entry *rle;
2538
2539 while ((rle = STAILQ_FIRST(rl)) != NULL) {
2540 if (rle->res)
2541 panic("resource_list_free: resource entry is busy");
2542 STAILQ_REMOVE_HEAD(rl, link);
2543 free(rle, M_BUS);
2544 }
2545}
2546
2547/**
2548 * @brief Add a resource entry.
2549 *
2550 * This function adds a resource entry using the given @p type, @p
2551 * start, @p end and @p count values. A rid value is chosen by
2552 * searching sequentially for the first unused rid starting at zero.
2553 *
2554 * @param rl the resource list to edit
2555 * @param type the resource entry type (e.g. SYS_RES_MEMORY)
2556 * @param start the start address of the resource
2557 * @param end the end address of the resource
2558 * @param count XXX end-start+1
2559 */
2560int
2561resource_list_add_next(struct resource_list *rl, int type, u_long start,
2562 u_long end, u_long count)
2563{
2564 int rid;
2565
2566 rid = 0;
2567 while (resource_list_find(rl, type, rid) != NULL)
2568 rid++;
2569 resource_list_add(rl, type, rid, start, end, count);
2570 return (rid);
2571}
2572
2573/**
2574 * @brief Add or modify a resource entry.
2575 *
2576 * If an existing entry exists with the same type and rid, it will be
2577 * modified using the given values of @p start, @p end and @p
2578 * count. If no entry exists, a new one will be created using the
2579 * given values. The resource list entry that matches is then returned.
2580 *
2581 * @param rl the resource list to edit
2582 * @param type the resource entry type (e.g. SYS_RES_MEMORY)
2583 * @param rid the resource identifier
2584 * @param start the start address of the resource
2585 * @param end the end address of the resource
2586 * @param count XXX end-start+1
2587 */
2588struct resource_list_entry *
2589resource_list_add(struct resource_list *rl, int type, int rid,
2590 u_long start, u_long end, u_long count)
2591{
2592 struct resource_list_entry *rle;
2593
2594 rle = resource_list_find(rl, type, rid);
2595 if (!rle) {
2596 rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2597 M_NOWAIT);
2598 if (!rle)
2599 panic("resource_list_add: can't record entry");
2600 STAILQ_INSERT_TAIL(rl, rle, link);
2601 rle->type = type;
2602 rle->rid = rid;
2603 rle->res = NULL;
2604 }
2605
2606 if (rle->res)
2607 panic("resource_list_add: resource entry is busy");
2608
2609 rle->start = start;
2610 rle->end = end;
2611 rle->count = count;
2612 return (rle);
2613}
2614
2615/**
2616 * @brief Find a resource entry by type and rid.
2617 *
2618 * @param rl the resource list to search
2619 * @param type the resource entry type (e.g. SYS_RES_MEMORY)
2620 * @param rid the resource identifier
2621 *
2622 * @returns the resource entry pointer or NULL if there is no such
2623 * entry.
2624 */
2625struct resource_list_entry *
2626resource_list_find(struct resource_list *rl, int type, int rid)
2627{
2628 struct resource_list_entry *rle;
2629
2630 STAILQ_FOREACH(rle, rl, link) {
2631 if (rle->type == type && rle->rid == rid)
2632 return (rle);
2633 }
2634 return (NULL);
2635}
2636
2637/**
2638 * @brief Delete a resource entry.
2639 *
2640 * @param rl the resource list to edit
2641 * @param type the resource entry type (e.g. SYS_RES_MEMORY)
2642 * @param rid the resource identifier
2643 */
2644void
2645resource_list_delete(struct resource_list *rl, int type, int rid)
2646{
2647 struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2648
2649 if (rle) {
2650 if (rle->res != NULL)
2651 panic("resource_list_delete: resource has not been released");
2652 STAILQ_REMOVE(rl, rle, resource_list_entry, link);
2653 free(rle, M_BUS);
2654 }
2655}
2656
2657/**
2658 * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
2659 *
2660 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
2661 * and passing the allocation up to the parent of @p bus. This assumes
2662 * that the first entry of @c device_get_ivars(child) is a struct
2663 * resource_list. This also handles 'passthrough' allocations where a
2664 * child is a remote descendant of bus by passing the allocation up to
2665 * the parent of bus.
2666 *
2667 * Typically, a bus driver would store a list of child resources
2668 * somewhere in the child device's ivars (see device_get_ivars()) and
2669 * its implementation of BUS_ALLOC_RESOURCE() would find that list and
2670 * then call resource_list_alloc() to perform the allocation.
2671 *
2672 * @param rl the resource list to allocate from
2673 * @param bus the parent device of @p child
2674 * @param child the device which is requesting an allocation
2675 * @param type the type of resource to allocate
2676 * @param rid a pointer to the resource identifier
2677 * @param start hint at the start of the resource range - pass
2678 * @c 0UL for any start address
2679 * @param end hint at the end of the resource range - pass
2680 * @c ~0UL for any end address
2681 * @param count hint at the size of range required - pass @c 1
2682 * for any size
2683 * @param flags any extra flags to control the resource
2684 * allocation - see @c RF_XXX flags in
2685 * <sys/rman.h> for details
2686 *
2687 * @returns the resource which was allocated or @c NULL if no
2688 * resource could be allocated
2689 */
2690struct resource *
2691resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
2692 int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
2693{
2694 struct resource_list_entry *rle = 0;
2695 int passthrough = (device_get_parent(child) != bus);
2696 int isdefault = (start == 0UL && end == ~0UL);
2697
2698 if (passthrough) {
2699 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2700 type, rid, start, end, count, flags));
2701 }
2702
2703 rle = resource_list_find(rl, type, *rid);
2704
2705 if (!rle)
2706 return (NULL); /* no resource of that type/rid */
2707
2708 if (rle->res)
2709 panic("resource_list_alloc: resource entry is busy");
2710
2711 if (isdefault) {
2712 start = rle->start;
2713 count = ulmax(count, rle->count);
2714 end = ulmax(rle->end, start + count - 1);
2715 }
2716
2717 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2718 type, rid, start, end, count, flags);
2719
2720 /*
2721 * Record the new range.
2722 */
2723 if (rle->res) {
2724 rle->start = rman_get_start(rle->res);
2725 rle->end = rman_get_end(rle->res);
2726 rle->count = count;
2727 }
2728
2729 return (rle->res);
2730}
2731
2732/**
2733 * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
2734 *
2735 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
2736 * used with resource_list_alloc().
2737 *
2738 * @param rl the resource list which was allocated from
2739 * @param bus the parent device of @p child
2740 * @param child the device which is requesting a release
2741 * @param type the type of resource to allocate
2742 * @param rid the resource identifier
2743 * @param res the resource to release
2744 *
2745 * @retval 0 success
2746 * @retval non-zero a standard unix error code indicating what
2747 * error condition prevented the operation
2748 */
2749int
2750resource_list_release(struct resource_list *rl, device_t bus, device_t child,
2751 int type, int rid, struct resource *res)
2752{
2753 struct resource_list_entry *rle = 0;
2754 int passthrough = (device_get_parent(child) != bus);
2755 int error;
2756
2757 if (passthrough) {
2758 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2759 type, rid, res));
2760 }
2761
2762 rle = resource_list_find(rl, type, rid);
2763
2764 if (!rle)
2765 panic("resource_list_release: can't find resource");
2766 if (!rle->res)
2767 panic("resource_list_release: resource entry is not busy");
2768
2769 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2770 type, rid, res);
2771 if (error)
2772 return (error);
2773
2774 rle->res = NULL;
2775 return (0);
2776}
2777
2778/**
2779 * @brief Print a description of resources in a resource list
2780 *
2781 * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
2782 * The name is printed if at least one resource of the given type is available.
2783 * The format is used to print resource start and end.
2784 *
2785 * @param rl the resource list to print
2786 * @param name the name of @p type, e.g. @c "memory"
2787 * @param type type type of resource entry to print
2788 * @param format printf(9) format string to print resource
2789 * start and end values
2790 *
2791 * @returns the number of characters printed
2792 */
2793int
2794resource_list_print_type(struct resource_list *rl, const char *name, int type,
2795 const char *format)
2796{
2797 struct resource_list_entry *rle;
2798 int printed, retval;
2799
2800 printed = 0;
2801 retval = 0;
2802 /* Yes, this is kinda cheating */
2803 STAILQ_FOREACH(rle, rl, link) {
2804 if (rle->type == type) {
2805 if (printed == 0)
2806 retval += printf(" %s ", name);
2807 else
2808 retval += printf(",");
2809 printed++;
2810 retval += printf(format, rle->start);
2811 if (rle->count > 1) {
2812 retval += printf("-");
2813 retval += printf(format, rle->start +
2814 rle->count - 1);
2815 }
2816 }
2817 }
2818 return (retval);
2819}
2820
2821/**
2822 * @brief Releases all the resources in a list.
2823 *
2824 * @param rl The resource list to purge.
2825 *
2826 * @returns nothing
2827 */
2828void
2829resource_list_purge(struct resource_list *rl)
2830{
2831 struct resource_list_entry *rle;
2832
2833 while ((rle = STAILQ_FIRST(rl)) != NULL) {
2834 if (rle->res)
2835 bus_release_resource(rman_get_device(rle->res),
2836 rle->type, rle->rid, rle->res);
2837 STAILQ_REMOVE_HEAD(rl, link);
2838 free(rle, M_BUS);
2839 }
2840}
2841
2842/**
2843 * @brief Helper function for implementing DEVICE_PROBE()
2844 *
2845 * This function can be used to help implement the DEVICE_PROBE() for
2846 * a bus (i.e. a device which has other devices attached to it). It
2847 * calls the DEVICE_IDENTIFY() method of each driver in the device's
2848 * devclass.
2849 */
2850int
2851bus_generic_probe(device_t dev)
2852{
2853 devclass_t dc = dev->devclass;
2854 driverlink_t dl;
2855
2856 TAILQ_FOREACH(dl, &dc->drivers, link) {
2857 DEVICE_IDENTIFY(dl->driver, dev);
2858 }
2859
2860 return (0);
2861}
2862
2863/**
2864 * @brief Helper function for implementing DEVICE_ATTACH()
2865 *
2866 * This function can be used to help implement the DEVICE_ATTACH() for
2867 * a bus. It calls device_probe_and_attach() for each of the device's
2868 * children.
2869 */
2870int
2871bus_generic_attach(device_t dev)
2872{
2873 device_t child;
2874
2875 TAILQ_FOREACH(child, &dev->children, link) {
2876 device_probe_and_attach(child);
2877 }
2878
2879 return (0);
2880}
2881
2882/**
2883 * @brief Helper function for implementing DEVICE_DETACH()
2884 *
2885 * This function can be used to help implement the DEVICE_DETACH() for
2886 * a bus. It calls device_detach() for each of the device's
2887 * children.
2888 */
2889int
2890bus_generic_detach(device_t dev)
2891{
2892 device_t child;
2893 int error;
2894
2895 if (dev->state != DS_ATTACHED)
2896 return (EBUSY);
2897
2898 TAILQ_FOREACH(child, &dev->children, link) {
2899 if ((error = device_detach(child)) != 0)
2900 return (error);
2901 }
2902
2903 return (0);
2904}
2905
2906/**
2907 * @brief Helper function for implementing DEVICE_SHUTDOWN()
2908 *
2909 * This function can be used to help implement the DEVICE_SHUTDOWN()
2910 * for a bus. It calls device_shutdown() for each of the device's
2911 * children.
2912 */
2913int
2914bus_generic_shutdown(device_t dev)
2915{
2916 device_t child;
2917
2918 TAILQ_FOREACH(child, &dev->children, link) {
2919 device_shutdown(child);
2920 }
2921
2922 return (0);
2923}
2924
2925/**
2926 * @brief Helper function for implementing DEVICE_SUSPEND()
2927 *
2928 * This function can be used to help implement the DEVICE_SUSPEND()
2929 * for a bus. It calls DEVICE_SUSPEND() for each of the device's
2930 * children. If any call to DEVICE_SUSPEND() fails, the suspend
2931 * operation is aborted and any devices which were suspended are
2932 * resumed immediately by calling their DEVICE_RESUME() methods.
2933 */
2934int
2935bus_generic_suspend(device_t dev)
2936{
2937 int error;
2938 device_t child, child2;
2939
2940 TAILQ_FOREACH(child, &dev->children, link) {
2941 error = DEVICE_SUSPEND(child);
2942 if (error) {
2943 for (child2 = TAILQ_FIRST(&dev->children);
2944 child2 && child2 != child;
2945 child2 = TAILQ_NEXT(child2, link))
2946 DEVICE_RESUME(child2);
2947 return (error);
2948 }
2949 }
2950 return (0);
2951}
2952
2953/**
2954 * @brief Helper function for implementing DEVICE_RESUME()
2955 *
2956 * This function can be used to help implement the DEVICE_RESUME() for
2957 * a bus. It calls DEVICE_RESUME() on each of the device's children.
2958 */
2959int
2960bus_generic_resume(device_t dev)
2961{
2962 device_t child;
2963
2964 TAILQ_FOREACH(child, &dev->children, link) {
2965 DEVICE_RESUME(child);
2966 /* if resume fails, there's nothing we can usefully do... */
2967 }
2968 return (0);
2969}
2970
2971/**
2972 * @brief Helper function for implementing BUS_PRINT_CHILD().
2973 *
2974 * This function prints the first part of the ascii representation of
2975 * @p child, including its name, unit and description (if any - see
2976 * device_set_desc()).
2977 *
2978 * @returns the number of characters printed
2979 */
2980int
2981bus_print_child_header(device_t dev, device_t child)
2982{
2983 int retval = 0;
2984
2985 if (device_get_desc(child)) {
2986 retval += device_printf(child, "<%s>", device_get_desc(child));
2987 } else {
2988 retval += printf("%s", device_get_nameunit(child));
2989 }
2990
2991 return (retval);
2992}
2993
2994/**
2995 * @brief Helper function for implementing BUS_PRINT_CHILD().
2996 *
2997 * This function prints the last part of the ascii representation of
2998 * @p child, which consists of the string @c " on " followed by the
2999 * name and unit of the @p dev.
3000 *
3001 * @returns the number of characters printed
3002 */
3003int
3004bus_print_child_footer(device_t dev, device_t child)
3005{
3006 return (printf(" on %s\n", device_get_nameunit(dev)));
3007}
3008
3009/**
3010 * @brief Helper function for implementing BUS_PRINT_CHILD().
3011 *
3012 * This function simply calls bus_print_child_header() followed by
3013 * bus_print_child_footer().
3014 *
3015 * @returns the number of characters printed
3016 */
3017int
3018bus_generic_print_child(device_t dev, device_t child)
3019{
3020 int retval = 0;
3021
3022 retval += bus_print_child_header(dev, child);
3023 retval += bus_print_child_footer(dev, child);
3024
3025 return (retval);
3026}
3027
3028/**
3029 * @brief Stub function for implementing BUS_READ_IVAR().
3030 *
3031 * @returns ENOENT
3032 */
3033int
3034bus_generic_read_ivar(device_t dev, device_t child, int index,
3035 uintptr_t * result)
3036{
3037 return (ENOENT);
3038}
3039
3040/**
3041 * @brief Stub function for implementing BUS_WRITE_IVAR().
3042 *
3043 * @returns ENOENT
3044 */
3045int
3046bus_generic_write_ivar(device_t dev, device_t child, int index,
3047 uintptr_t value)
3048{
3049 return (ENOENT);
3050}
3051
3052/**
3053 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3054 *
3055 * @returns NULL
3056 */
3057struct resource_list *
3058bus_generic_get_resource_list(device_t dev, device_t child)
3059{
3060 return (NULL);
3061}
3062
3063/**
3064 * @brief Helper function for implementing BUS_DRIVER_ADDED().
3065 *
3066 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3067 * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3068 * and then calls device_probe_and_attach() for each unattached child.
3069 */
3070void
3071bus_generic_driver_added(device_t dev, driver_t *driver)
3072{
3073 device_t child;
3074
3075 DEVICE_IDENTIFY(driver, dev);
3076 TAILQ_FOREACH(child, &dev->children, link) {
3077 if (child->state == DS_NOTPRESENT ||
3078 (child->flags & DF_REBID))
3079 device_probe_and_attach(child);
3080 }
3081}
3082
3083/**
3084 * @brief Helper function for implementing BUS_SETUP_INTR().
3085 *
3086 * This simple implementation of BUS_SETUP_INTR() simply calls the
3087 * BUS_SETUP_INTR() method of the parent of @p dev.
3088 */
3089int
3090bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3091 int flags, driver_intr_t *intr, void *arg, void **cookiep)
3092{
3093 /* Propagate up the bus hierarchy until someone handles it. */
3094 if (dev->parent)
3095 return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3096 intr, arg, cookiep));
3097 return (EINVAL);
3098}
3099
3100/**
3101 * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3102 *
3103 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3104 * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3105 */
3106int
3107bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3108 void *cookie)
3109{
3110 /* Propagate up the bus hierarchy until someone handles it. */
3111 if (dev->parent)
3112 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3113 return (EINVAL);
3114}
3115
3116/**
3117 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3118 *
3119 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3120 * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3121 */
3122struct resource *
3123bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3124 u_long start, u_long end, u_long count, u_int flags)
3125{
3126 /* Propagate up the bus hierarchy until someone handles it. */
3127 if (dev->parent)
3128 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3129 start, end, count, flags));
3130 return (NULL);
3131}
3132
3133/**
3134 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3135 *
3136 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3137 * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3138 */
3139int
3140bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3141 struct resource *r)
3142{
3143 /* Propagate up the bus hierarchy until someone handles it. */
3144 if (dev->parent)
3145 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
3146 r));
3147 return (EINVAL);
3148}
3149
3150/**
3151 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3152 *
3153 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3154 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3155 */
3156int
3157bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3158 struct resource *r)
3159{
3160 /* Propagate up the bus hierarchy until someone handles it. */
3161 if (dev->parent)
3162 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
3163 r));
3164 return (EINVAL);
3165}
3166
3167/**
3168 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3169 *
3170 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3171 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3172 */
3173int
3174bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3175 int rid, struct resource *r)
3176{
3177 /* Propagate up the bus hierarchy until someone handles it. */
3178 if (dev->parent)
3179 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3180 r));
3181 return (EINVAL);
3182}
3183
3184/**
3185 * @brief Helper function for implementing BUS_CONFIG_INTR().
3186 *
3187 * This simple implementation of BUS_CONFIG_INTR() simply calls the
3188 * BUS_CONFIG_INTR() method of the parent of @p dev.
3189 */
3190int
3191bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
3192 enum intr_polarity pol)
3193{
3194
3195 /* Propagate up the bus hierarchy until someone handles it. */
3196 if (dev->parent)
3197 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
3198 return (EINVAL);
3199}
3200
3201/**
3202 * @brief Helper function for implementing BUS_GET_RESOURCE().
3203 *
3204 * This implementation of BUS_GET_RESOURCE() uses the
3205 * resource_list_find() function to do most of the work. It calls
3206 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3207 * search.
3208 */
3209int
3210bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
3211 u_long *startp, u_long *countp)
3212{
3213 struct resource_list * rl = NULL;
3214 struct resource_list_entry * rle = NULL;
3215
3216 rl = BUS_GET_RESOURCE_LIST(dev, child);
3217 if (!rl)
3218 return (EINVAL);
3219
3220 rle = resource_list_find(rl, type, rid);
3221 if (!rle)
3222 return (ENOENT);
3223
3224 if (startp)
3225 *startp = rle->start;
3226 if (countp)
3227 *countp = rle->count;
3228
3229 return (0);
3230}
3231
3232/**
3233 * @brief Helper function for implementing BUS_SET_RESOURCE().
3234 *
3235 * This implementation of BUS_SET_RESOURCE() uses the
3236 * resource_list_add() function to do most of the work. It calls
3237 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3238 * edit.
3239 */
3240int
3241bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
3242 u_long start, u_long count)
3243{
3244 struct resource_list * rl = NULL;
3245
3246 rl = BUS_GET_RESOURCE_LIST(dev, child);
3247 if (!rl)
3248 return (EINVAL);
3249
3250 resource_list_add(rl, type, rid, start, (start + count - 1), count);
3251
3252 return (0);
3253}
3254
3255/**
3256 * @brief Helper function for implementing BUS_DELETE_RESOURCE().
3257 *
3258 * This implementation of BUS_DELETE_RESOURCE() uses the
3259 * resource_list_delete() function to do most of the work. It calls
3260 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3261 * edit.
3262 */
3263void
3264bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
3265{
3266 struct resource_list * rl = NULL;
3267
3268 rl = BUS_GET_RESOURCE_LIST(dev, child);
3269 if (!rl)
3270 return;
3271
3272 resource_list_delete(rl, type, rid);
3273
3274 return;
3275}
3276
3277/**
3278 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3279 *
3280 * This implementation of BUS_RELEASE_RESOURCE() uses the
3281 * resource_list_release() function to do most of the work. It calls
3282 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3283 */
3284int
3285bus_generic_rl_release_resource(device_t dev, device_t child, int type,
3286 int rid, struct resource *r)
3287{
3288 struct resource_list * rl = NULL;
3289
3290 rl = BUS_GET_RESOURCE_LIST(dev, child);
3291 if (!rl)
3292 return (EINVAL);
3293
3294 return (resource_list_release(rl, dev, child, type, rid, r));
3295}
3296
3297/**
3298 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3299 *
3300 * This implementation of BUS_ALLOC_RESOURCE() uses the
3301 * resource_list_alloc() function to do most of the work. It calls
3302 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3303 */
3304struct resource *
3305bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
3306 int *rid, u_long start, u_long end, u_long count, u_int flags)
3307{
3308 struct resource_list * rl = NULL;
3309
3310 rl = BUS_GET_RESOURCE_LIST(dev, child);
3311 if (!rl)
3312 return (NULL);
3313
3314 return (resource_list_alloc(rl, dev, child, type, rid,
3315 start, end, count, flags));
3316}
3317
3318/**
3319 * @brief Helper function for implementing BUS_CHILD_PRESENT().
3320 *
3321 * This simple implementation of BUS_CHILD_PRESENT() simply calls the
3322 * BUS_CHILD_PRESENT() method of the parent of @p dev.
3323 */
3324int
3325bus_generic_child_present(device_t dev, device_t child)
3326{
3327 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
3328}
3329
3330/*
3331 * Some convenience functions to make it easier for drivers to use the
3332 * resource-management functions. All these really do is hide the
3333 * indirection through the parent's method table, making for slightly
3334 * less-wordy code. In the future, it might make sense for this code
3335 * to maintain some sort of a list of resources allocated by each device.
3336 */
3337
3338int
3339bus_alloc_resources(device_t dev, struct resource_spec *rs,
3340 struct resource **res)
3341{
3342 int i;
3343
3344 for (i = 0; rs[i].type != -1; i++)
3345 res[i] = NULL;
3346 for (i = 0; rs[i].type != -1; i++) {
3347 res[i] = bus_alloc_resource_any(dev,
3348 rs[i].type, &rs[i].rid, rs[i].flags);
3349 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
3350 bus_release_resources(dev, rs, res);
3351 return (ENXIO);
3352 }
3353 }
3354 return (0);
3355}
3356
3357void
3358bus_release_resources(device_t dev, const struct resource_spec *rs,
3359 struct resource **res)
3360{
3361 int i;
3362
3363 for (i = 0; rs[i].type != -1; i++)
3364 if (res[i] != NULL) {
3365 bus_release_resource(
3366 dev, rs[i].type, rs[i].rid, res[i]);
3367 res[i] = NULL;
3368 }
3369}
3370
3371/**
3372 * @brief Wrapper function for BUS_ALLOC_RESOURCE().
3373 *
3374 * This function simply calls the BUS_ALLOC_RESOURCE() method of the
3375 * parent of @p dev.
3376 */
3377struct resource *
3378bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
3379 u_long count, u_int flags)
3380{
3381 if (dev->parent == 0)
3382 return (0);
3383 return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
3384 count, flags));
3385}
3386
3387/**
3388 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
3389 *
3390 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
3391 * parent of @p dev.
3392 */
3393int
3394bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
3395{
3396 if (dev->parent == 0)
3397 return (EINVAL);
3398 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3399}
3400
3401/**
3402 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
3403 *
3404 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
3405 * parent of @p dev.
3406 */
3407int
3408bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
3409{
3410 if (dev->parent == 0)
3411 return (EINVAL);
3412 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3413}
3414
3415/**
3416 * @brief Wrapper function for BUS_RELEASE_RESOURCE().
3417 *
3418 * This function simply calls the BUS_RELEASE_RESOURCE() method of the
3419 * parent of @p dev.
3420 */
3421int
3422bus_release_resource(device_t dev, int type, int rid, struct resource *r)
3423{
3424 if (dev->parent == 0)
3425 return (EINVAL);
3426 return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
3427}
3428
3429/**
3430 * @brief Wrapper function for BUS_SETUP_INTR().
3431 *
3432 * This function simply calls the BUS_SETUP_INTR() method of the
3433 * parent of @p dev.
3434 */
3435int
3436bus_setup_intr(device_t dev, struct resource *r, int flags,
3437 driver_intr_t handler, void *arg, void **cookiep)
3438{
3439 int error;
3440
3441 if (dev->parent != 0) {
3442 if ((flags &~ INTR_ENTROPY) == (INTR_TYPE_NET | INTR_MPSAFE) &&
3443 !debug_mpsafenet)
3444 flags &= ~INTR_MPSAFE;
3445 error = BUS_SETUP_INTR(dev->parent, dev, r, flags,
3446 handler, arg, cookiep);
3447 if (error == 0) {
3448 if (!(flags & (INTR_MPSAFE | INTR_FAST)))
3449 device_printf(dev, "[GIANT-LOCKED]\n");
3450 if (bootverbose && (flags & INTR_MPSAFE))
3451 device_printf(dev, "[MPSAFE]\n");
3452 if (flags & INTR_FAST)
3453 device_printf(dev, "[FAST]\n");
3454 }
3455 } else
3456 error = EINVAL;
3457 return (error);
3458}
3459
3460/**
3461 * @brief Wrapper function for BUS_TEARDOWN_INTR().
3462 *
3463 * This function simply calls the BUS_TEARDOWN_INTR() method of the
3464 * parent of @p dev.
3465 */
3466int
3467bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
3468{
3469 if (dev->parent == 0)
3470 return (EINVAL);
3471 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
3472}
3473
3474/**
3475 * @brief Wrapper function for BUS_SET_RESOURCE().
3476 *
3477 * This function simply calls the BUS_SET_RESOURCE() method of the
3478 * parent of @p dev.
3479 */
3480int
3481bus_set_resource(device_t dev, int type, int rid,
3482 u_long start, u_long count)
3483{
3484 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
3485 start, count));
3486}
3487
3488/**
3489 * @brief Wrapper function for BUS_GET_RESOURCE().
3490 *
3491 * This function simply calls the BUS_GET_RESOURCE() method of the
3492 * parent of @p dev.
3493 */
3494int
3495bus_get_resource(device_t dev, int type, int rid,
3496 u_long *startp, u_long *countp)
3497{
3498 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3499 startp, countp));
3500}
3501
3502/**
3503 * @brief Wrapper function for BUS_GET_RESOURCE().
3504 *
3505 * This function simply calls the BUS_GET_RESOURCE() method of the
3506 * parent of @p dev and returns the start value.
3507 */
3508u_long
3509bus_get_resource_start(device_t dev, int type, int rid)
3510{
3511 u_long start, count;
3512 int error;
3513
3514 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3515 &start, &count);
3516 if (error)
3517 return (0);
3518 return (start);
3519}
3520
3521/**
3522 * @brief Wrapper function for BUS_GET_RESOURCE().
3523 *
3524 * This function simply calls the BUS_GET_RESOURCE() method of the
3525 * parent of @p dev and returns the count value.
3526 */
3527u_long
3528bus_get_resource_count(device_t dev, int type, int rid)
3529{
3530 u_long start, count;
3531 int error;
3532
3533 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3534 &start, &count);
3535 if (error)
3536 return (0);
3537 return (count);
3538}
3539
3540/**
3541 * @brief Wrapper function for BUS_DELETE_RESOURCE().
3542 *
3543 * This function simply calls the BUS_DELETE_RESOURCE() method of the
3544 * parent of @p dev.
3545 */
3546void
3547bus_delete_resource(device_t dev, int type, int rid)
3548{
3549 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
3550}
3551
3552/**
3553 * @brief Wrapper function for BUS_CHILD_PRESENT().
3554 *
3555 * This function simply calls the BUS_CHILD_PRESENT() method of the
3556 * parent of @p dev.
3557 */
3558int
3559bus_child_present(device_t child)
3560{
3561 return (BUS_CHILD_PRESENT(device_get_parent(child), child));
3562}
3563
3564/**
3565 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
3566 *
3567 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
3568 * parent of @p dev.
3569 */
3570int
3571bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
3572{
3573 device_t parent;
3574
3575 parent = device_get_parent(child);
3576 if (parent == NULL) {
3577 *buf = '\0';
3578 return (0);
3579 }
3580 return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
3581}
3582
3583/**
3584 * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
3585 *
3586 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
3587 * parent of @p dev.
3588 */
3589int
3590bus_child_location_str(device_t child, char *buf, size_t buflen)
3591{
3592 device_t parent;
3593
3594 parent = device_get_parent(child);
3595 if (parent == NULL) {
3596 *buf = '\0';
3597 return (0);
3598 }
3599 return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
3600}
3601
3602/* Resume all devices and then notify userland that we're up again. */
3603static int
3604root_resume(device_t dev)
3605{
3606 int error;
3607
3608 error = bus_generic_resume(dev);
3609 if (error == 0)
3610 devctl_notify("kern", "power", "resume", NULL);
3611 return (error);
3612}
3613
3614static int
3615root_print_child(device_t dev, device_t child)
3616{
3617 int retval = 0;
3618
3619 retval += bus_print_child_header(dev, child);
3620 retval += printf("\n");
3621
3622 return (retval);
3623}
3624
3625static int
3626root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg,
3627 void **cookiep)
3628{
3629 /*
3630 * If an interrupt mapping gets to here something bad has happened.
3631 */
3632 panic("root_setup_intr");
3633}
3634
3635/*
3636 * If we get here, assume that the device is permanant and really is
3637 * present in the system. Removable bus drivers are expected to intercept
3638 * this call long before it gets here. We return -1 so that drivers that
3639 * really care can check vs -1 or some ERRNO returned higher in the food
3640 * chain.
3641 */
3642static int
3643root_child_present(device_t dev, device_t child)
3644{
3645 return (-1);
3646}
3647
3648static kobj_method_t root_methods[] = {
3649 /* Device interface */
3650 KOBJMETHOD(device_shutdown, bus_generic_shutdown),
3651 KOBJMETHOD(device_suspend, bus_generic_suspend),
3652 KOBJMETHOD(device_resume, root_resume),
3653
3654 /* Bus interface */
3655 KOBJMETHOD(bus_print_child, root_print_child),
3656 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar),
3657 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar),
3658 KOBJMETHOD(bus_setup_intr, root_setup_intr),
3659 KOBJMETHOD(bus_child_present, root_child_present),
3660
3661 { 0, 0 }
3662};
3663
3664static driver_t root_driver = {
3665 "root",
3666 root_methods,
3667 1, /* no softc */
3668};
3669
3670device_t root_bus;
3671devclass_t root_devclass;
3672
3673static int
3674root_bus_module_handler(module_t mod, int what, void* arg)
3675{
3676 switch (what) {
3677 case MOD_LOAD:
3678 TAILQ_INIT(&bus_data_devices);
3679 kobj_class_compile((kobj_class_t) &root_driver);
3680 root_bus = make_device(NULL, "root", 0);
3681 root_bus->desc = "System root bus";
3682 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
3683 root_bus->driver = &root_driver;
3684 root_bus->state = DS_ATTACHED;
3685 root_devclass = devclass_find_internal("root", 0, FALSE);
3686 devinit();
3687 return (0);
3688
3689 case MOD_SHUTDOWN:
3690 device_shutdown(root_bus);
3691 return (0);
3692 default:
3693 return (EOPNOTSUPP);
3694 }
3695
3696 return (0);
3697}
3698
3699static moduledata_t root_bus_mod = {
3700 "rootbus",
3701 root_bus_module_handler,
3702 0
3703};
3704DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
3705
3706/**
3707 * @brief Automatically configure devices
3708 *
3709 * This function begins the autoconfiguration process by calling
3710 * device_probe_and_attach() for each child of the @c root0 device.
3711 */
3712void
3713root_bus_configure(void)
3714{
3715 device_t dev;
3716
3717 PDEBUG(("."));
3718
3719 TAILQ_FOREACH(dev, &root_bus->children, link) {
3720 device_probe_and_attach(dev);
3721 }
3722}
3723
3724/**
3725 * @brief Module handler for registering device drivers
3726 *
3727 * This module handler is used to automatically register device
3728 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
3729 * devclass_add_driver() for the driver described by the
3730 * driver_module_data structure pointed to by @p arg
3731 */
3732int
3733driver_module_handler(module_t mod, int what, void *arg)
3734{
3735 int error;
3736 struct driver_module_data *dmd;
3737 devclass_t bus_devclass;
3738 kobj_class_t driver;
3739
3740 dmd = (struct driver_module_data *)arg;
3741 bus_devclass = devclass_find_internal(dmd->dmd_busname, 0, TRUE);
3742 error = 0;
3743
3744 switch (what) {
3745 case MOD_LOAD:
3746 if (dmd->dmd_chainevh)
3747 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3748
3749 driver = dmd->dmd_driver;
3750 PDEBUG(("Loading module: driver %s on bus %s",
3751 DRIVERNAME(driver), dmd->dmd_busname));
3752 error = devclass_add_driver(bus_devclass, driver);
3753 if (error)
3754 break;
3755
3756 /*
3757 * If the driver has any base classes, make the
3758 * devclass inherit from the devclass of the driver's
3759 * first base class. This will allow the system to
3760 * search for drivers in both devclasses for children
3761 * of a device using this driver.
3762 */
3763 if (driver->baseclasses) {
3764 const char *parentname;
3765 parentname = driver->baseclasses[0]->name;
3766 *dmd->dmd_devclass =
3767 devclass_find_internal(driver->name,
3768 parentname, TRUE);
3769 } else {
3770 *dmd->dmd_devclass =
3771 devclass_find_internal(driver->name, 0, TRUE);
3772 }
3773 break;
3774
3775 case MOD_UNLOAD:
3776 PDEBUG(("Unloading module: driver %s from bus %s",
3777 DRIVERNAME(dmd->dmd_driver),
3778 dmd->dmd_busname));
3779 error = devclass_delete_driver(bus_devclass,
3780 dmd->dmd_driver);
3781
3782 if (!error && dmd->dmd_chainevh)
3783 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3784 break;
3785 case MOD_QUIESCE:
3786 PDEBUG(("Quiesce module: driver %s from bus %s",
3787 DRIVERNAME(dmd->dmd_driver),
3788 dmd->dmd_busname));
3789 error = devclass_quiesce_driver(bus_devclass,
3790 dmd->dmd_driver);
3791
3792 if (!error && dmd->dmd_chainevh)
3793 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3794 break;
3795 default:
3796 error = EOPNOTSUPP;
3797 break;
3798 }
3799
3800 return (error);
3801}
3802
3803/**
3804 * @brief Enumerate all hinted devices for this bus.
3805 *
3806 * Walks throught he hints for this bus and calls the bus_hinted_child
3807 * routine for each one it fines. It searches first for the specific
3808 * bus that's being probed for hinted children (eg isa0), and then for
3809 * generic children (eg isa).
3810 *
3811 * @param dev bus device to enumerate
3812 */
3813void
3814bus_enumerate_hinted_children(device_t bus)
3815{
3816 int i;
3817 const char *dname, *busname;
3818 int dunit;
3819
3820 /*
3821 * enumerate all devices on the specific bus
3822 */
3823 busname = device_get_nameunit(bus);
3824 i = 0;
3825 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
3826 BUS_HINTED_CHILD(bus, dname, dunit);
3827
3828 /*
3829 * and all the generic ones.
3830 */
3831 busname = device_get_name(bus);
3832 i = 0;
3833 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
3834 BUS_HINTED_CHILD(bus, dname, dunit);
3835}
3836
3837#ifdef BUS_DEBUG
3838
3839/* the _short versions avoid iteration by not calling anything that prints
3840 * more than oneliners. I love oneliners.
3841 */
3842
3843static void
3844print_device_short(device_t dev, int indent)
3845{
3846 if (!dev)
3847 return;
3848
3849 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
3850 dev->unit, dev->desc,
3851 (dev->parent? "":"no "),
3852 (TAILQ_EMPTY(&dev->children)? "no ":""),
3853 (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
3854 (dev->flags&DF_FIXEDCLASS? "fixed,":""),
3855 (dev->flags&DF_WILDCARD? "wildcard,":""),
3856 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
3857 (dev->flags&DF_REBID? "rebiddable,":""),
3858 (dev->ivars? "":"no "),
3859 (dev->softc? "":"no "),
3860 dev->busy));
3861}
3862
3863static void
3864print_device(device_t dev, int indent)
3865{
3866 if (!dev)
3867 return;
3868
3869 print_device_short(dev, indent);
3870
3871 indentprintf(("Parent:\n"));
3872 print_device_short(dev->parent, indent+1);
3873 indentprintf(("Driver:\n"));
3874 print_driver_short(dev->driver, indent+1);
3875 indentprintf(("Devclass:\n"));
3876 print_devclass_short(dev->devclass, indent+1);
3877}
3878
3879void
3880print_device_tree_short(device_t dev, int indent)
3881/* print the device and all its children (indented) */
3882{
3883 device_t child;
3884
3885 if (!dev)
3886 return;
3887
3888 print_device_short(dev, indent);
3889
3890 TAILQ_FOREACH(child, &dev->children, link) {
3891 print_device_tree_short(child, indent+1);
3892 }
3893}
3894
3895void
3896print_device_tree(device_t dev, int indent)
3897/* print the device and all its children (indented) */
3898{
3899 device_t child;
3900
3901 if (!dev)
3902 return;
3903
3904 print_device(dev, indent);
3905
3906 TAILQ_FOREACH(child, &dev->children, link) {
3907 print_device_tree(child, indent+1);
3908 }
3909}
3910
3911static void
3912print_driver_short(driver_t *driver, int indent)
3913{
3914 if (!driver)
3915 return;
3916
3917 indentprintf(("driver %s: softc size = %zd\n",
3918 driver->name, driver->size));
3919}
3920
3921static void
3922print_driver(driver_t *driver, int indent)
3923{
3924 if (!driver)
3925 return;
3926
3927 print_driver_short(driver, indent);
3928}
3929
3930
3931static void
3932print_driver_list(driver_list_t drivers, int indent)
3933{
3934 driverlink_t driver;
3935
3936 TAILQ_FOREACH(driver, &drivers, link) {
3937 print_driver(driver->driver, indent);
3938 }
3939}
3940
3941static void
3942print_devclass_short(devclass_t dc, int indent)
3943{
3944 if ( !dc )
3945 return;
3946
3947 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
3948}
3949
3950static void
3951print_devclass(devclass_t dc, int indent)
3952{
3953 int i;
3954
3955 if ( !dc )
3956 return;
3957
3958 print_devclass_short(dc, indent);
3959 indentprintf(("Drivers:\n"));
3960 print_driver_list(dc->drivers, indent+1);
3961
3962 indentprintf(("Devices:\n"));
3963 for (i = 0; i < dc->maxunit; i++)
3964 if (dc->devices[i])
3965 print_device(dc->devices[i], indent+1);
3966}
3967
3968void
3969print_devclass_list_short(void)
3970{
3971 devclass_t dc;
3972
3973 printf("Short listing of devclasses, drivers & devices:\n");
3974 TAILQ_FOREACH(dc, &devclasses, link) {
3975 print_devclass_short(dc, 0);
3976 }
3977}
3978
3979void
3980print_devclass_list(void)
3981{
3982 devclass_t dc;
3983
3984 printf("Full listing of devclasses, drivers & devices:\n");
3985 TAILQ_FOREACH(dc, &devclasses, link) {
3986 print_devclass(dc, 0);
3987 }
3988}
3989
3990#endif
3991
3992/*
3993 * User-space access to the device tree.
3994 *
3995 * We implement a small set of nodes:
3996 *
3997 * hw.bus Single integer read method to obtain the
3998 * current generation count.
3999 * hw.bus.devices Reads the entire device tree in flat space.
4000 * hw.bus.rman Resource manager interface
4001 *
4002 * We might like to add the ability to scan devclasses and/or drivers to
4003 * determine what else is currently loaded/available.
4004 */
4005
4006static int
4007sysctl_bus(SYSCTL_HANDLER_ARGS)
4008{
4009 struct u_businfo ubus;
4010
4011 ubus.ub_version = BUS_USER_VERSION;
4012 ubus.ub_generation = bus_data_generation;
4013
4014 return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
4015}
4016SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
4017 "bus-related data");
4018
4019static int
4020sysctl_devices(SYSCTL_HANDLER_ARGS)
4021{
4022 int *name = (int *)arg1;
4023 u_int namelen = arg2;
4024 int index;
4025 struct device *dev;
4026 struct u_device udev; /* XXX this is a bit big */
4027 int error;
4028
4029 if (namelen != 2)
4030 return (EINVAL);
4031
4032 if (bus_data_generation_check(name[0]))
4033 return (EINVAL);
4034
4035 index = name[1];
4036
4037 /*
4038 * Scan the list of devices, looking for the requested index.
4039 */
4040 TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
4041 if (index-- == 0)
4042 break;
4043 }
4044 if (dev == NULL)
4045 return (ENOENT);
4046
4047 /*
4048 * Populate the return array.
4049 */
4050 bzero(&udev, sizeof(udev));
4051 udev.dv_handle = (uintptr_t)dev;
4052 udev.dv_parent = (uintptr_t)dev->parent;
4053 if (dev->nameunit != NULL)
4054 strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
4055 if (dev->desc != NULL)
4056 strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
4057 if (dev->driver != NULL && dev->driver->name != NULL)
4058 strlcpy(udev.dv_drivername, dev->driver->name,
4059 sizeof(udev.dv_drivername));
4060 bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
4061 bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
4062 udev.dv_devflags = dev->devflags;
4063 udev.dv_flags = dev->flags;
4064 udev.dv_state = dev->state;
4065 error = SYSCTL_OUT(req, &udev, sizeof(udev));
4066 return (error);
4067}
4068
4069SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
4070 "system device tree");
4071
4072int
4073bus_data_generation_check(int generation)
4074{
4075 if (generation != bus_data_generation)
4076 return (1);
4077
4078 /* XXX generate optimised lists here? */
4079 return (0);
4080}
4081
4082void
4083bus_data_generation_update(void)
4084{
4085 bus_data_generation++;
4086}
4087
4088int
4089bus_free_resource(device_t dev, int type, struct resource *r)
4090{
4091 if (r == NULL)
4092 return (0);
4093 return (bus_release_resource(dev, type, rman_get_rid(r), r));
4094}