Deleted Added
full compact
kern_synch.c (73915) kern_synch.c (74912)
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
39 * $FreeBSD: head/sys/kern/kern_synch.c 73915 2001-03-07 03:01:53Z jhb $
39 * $FreeBSD: head/sys/kern/kern_synch.c 74912 2001-03-28 09:03:24Z jhb $
40 */
41
42#include "opt_ktrace.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/proc.h>
47#include <sys/ipl.h>
48#include <sys/kernel.h>
49#include <sys/ktr.h>
50#include <sys/condvar.h>
51#include <sys/lock.h>
52#include <sys/mutex.h>
53#include <sys/signalvar.h>
54#include <sys/resourcevar.h>
55#include <sys/vmmeter.h>
56#include <sys/sysctl.h>
57#include <sys/sysproto.h>
58#include <vm/vm.h>
59#include <vm/vm_extern.h>
60#ifdef KTRACE
61#include <sys/uio.h>
62#include <sys/ktrace.h>
63#endif
64
65#include <machine/cpu.h>
66#include <machine/smp.h>
67
68static void sched_setup __P((void *dummy));
69SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
70
71int hogticks;
72int lbolt;
73int sched_quantum; /* Roundrobin scheduling quantum in ticks. */
74
75static struct callout schedcpu_callout;
76static struct callout roundrobin_callout;
77
78static void endtsleep __P((void *));
79static void roundrobin __P((void *arg));
80static void schedcpu __P((void *arg));
81
82static int
83sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
84{
85 int error, new_val;
86
87 new_val = sched_quantum * tick;
88 error = sysctl_handle_int(oidp, &new_val, 0, req);
89 if (error != 0 || req->newptr == NULL)
90 return (error);
91 if (new_val < tick)
92 return (EINVAL);
93 sched_quantum = new_val / tick;
94 hogticks = 2 * sched_quantum;
95 return (0);
96}
97
98SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
99 0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
100
101/*
102 * Arrange to reschedule if necessary, taking the priorities and
103 * schedulers into account.
104 */
105void
106maybe_resched(p)
107 struct proc *p;
108{
109
110 mtx_assert(&sched_lock, MA_OWNED);
111 if (p->p_pri.pri_level < curproc->p_pri.pri_level)
112 need_resched();
113}
114
115int
116roundrobin_interval(void)
117{
118 return (sched_quantum);
119}
120
121/*
122 * Force switch among equal priority processes every 100ms.
123 */
124/* ARGSUSED */
125static void
126roundrobin(arg)
127 void *arg;
128{
129
130 mtx_lock_spin(&sched_lock);
131 need_resched();
132 mtx_unlock_spin(&sched_lock);
133#ifdef SMP
134 forward_roundrobin();
135#endif
136
137 callout_reset(&roundrobin_callout, sched_quantum, roundrobin, NULL);
138}
139
140/*
141 * Constants for digital decay and forget:
142 * 90% of (p_estcpu) usage in 5 * loadav time
143 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
144 * Note that, as ps(1) mentions, this can let percentages
145 * total over 100% (I've seen 137.9% for 3 processes).
146 *
147 * Note that schedclock() updates p_estcpu and p_cpticks asynchronously.
148 *
149 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
150 * That is, the system wants to compute a value of decay such
151 * that the following for loop:
152 * for (i = 0; i < (5 * loadavg); i++)
153 * p_estcpu *= decay;
154 * will compute
155 * p_estcpu *= 0.1;
156 * for all values of loadavg:
157 *
158 * Mathematically this loop can be expressed by saying:
159 * decay ** (5 * loadavg) ~= .1
160 *
161 * The system computes decay as:
162 * decay = (2 * loadavg) / (2 * loadavg + 1)
163 *
164 * We wish to prove that the system's computation of decay
165 * will always fulfill the equation:
166 * decay ** (5 * loadavg) ~= .1
167 *
168 * If we compute b as:
169 * b = 2 * loadavg
170 * then
171 * decay = b / (b + 1)
172 *
173 * We now need to prove two things:
174 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
175 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
176 *
177 * Facts:
178 * For x close to zero, exp(x) =~ 1 + x, since
179 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
180 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
181 * For x close to zero, ln(1+x) =~ x, since
182 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
183 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
184 * ln(.1) =~ -2.30
185 *
186 * Proof of (1):
187 * Solve (factor)**(power) =~ .1 given power (5*loadav):
188 * solving for factor,
189 * ln(factor) =~ (-2.30/5*loadav), or
190 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
191 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
192 *
193 * Proof of (2):
194 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
195 * solving for power,
196 * power*ln(b/(b+1)) =~ -2.30, or
197 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
198 *
199 * Actual power values for the implemented algorithm are as follows:
200 * loadav: 1 2 3 4
201 * power: 5.68 10.32 14.94 19.55
202 */
203
204/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
205#define loadfactor(loadav) (2 * (loadav))
206#define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
207
208/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
209static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
210SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
211
212/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
213static int fscale __unused = FSCALE;
214SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
215
216/*
217 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
218 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
219 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
220 *
221 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
222 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
223 *
224 * If you don't want to bother with the faster/more-accurate formula, you
225 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
226 * (more general) method of calculating the %age of CPU used by a process.
227 */
228#define CCPU_SHIFT 11
229
230/*
231 * Recompute process priorities, every hz ticks.
232 * MP-safe, called without the Giant mutex.
233 */
234/* ARGSUSED */
235static void
236schedcpu(arg)
237 void *arg;
238{
239 register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
240 register struct proc *p;
241 register int realstathz, s;
242
243 realstathz = stathz ? stathz : hz;
244 ALLPROC_LOCK(AP_SHARED);
245 LIST_FOREACH(p, &allproc, p_list) {
246 /*
247 * Increment time in/out of memory and sleep time
248 * (if sleeping). We ignore overflow; with 16-bit int's
249 * (remember them?) overflow takes 45 days.
250 if (p->p_stat == SWAIT)
251 continue;
252 */
253 mtx_lock_spin(&sched_lock);
254 p->p_swtime++;
255 if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
256 p->p_slptime++;
257 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
258 /*
259 * If the process has slept the entire second,
260 * stop recalculating its priority until it wakes up.
261 */
262 if (p->p_slptime > 1) {
263 mtx_unlock_spin(&sched_lock);
264 continue;
265 }
266
267 /*
268 * prevent state changes and protect run queue
269 */
270 s = splhigh();
271
272 /*
273 * p_pctcpu is only for ps.
274 */
275#if (FSHIFT >= CCPU_SHIFT)
276 p->p_pctcpu += (realstathz == 100)?
277 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
278 100 * (((fixpt_t) p->p_cpticks)
279 << (FSHIFT - CCPU_SHIFT)) / realstathz;
280#else
281 p->p_pctcpu += ((FSCALE - ccpu) *
282 (p->p_cpticks * FSCALE / realstathz)) >> FSHIFT;
283#endif
284 p->p_cpticks = 0;
285 p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
286 resetpriority(p);
287 if (p->p_pri.pri_level >= PUSER) {
288 if ((p != curproc) &&
289#ifdef SMP
290 p->p_oncpu == NOCPU && /* idle */
291#endif
292 p->p_stat == SRUN &&
293 (p->p_sflag & PS_INMEM) &&
294 (p->p_pri.pri_level / RQ_PPQ) !=
295 (p->p_pri.pri_user / RQ_PPQ)) {
296 remrunqueue(p);
297 p->p_pri.pri_level = p->p_pri.pri_user;
298 setrunqueue(p);
299 } else
300 p->p_pri.pri_level = p->p_pri.pri_user;
301 }
302 mtx_unlock_spin(&sched_lock);
303 splx(s);
304 }
305 ALLPROC_LOCK(AP_RELEASE);
306 vmmeter();
307 wakeup((caddr_t)&lbolt);
308 callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
309}
310
311/*
312 * Recalculate the priority of a process after it has slept for a while.
313 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
314 * least six times the loadfactor will decay p_estcpu to zero.
315 */
316void
317updatepri(p)
318 register struct proc *p;
319{
320 register unsigned int newcpu = p->p_estcpu;
321 register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
322
323 if (p->p_slptime > 5 * loadfac)
324 p->p_estcpu = 0;
325 else {
326 p->p_slptime--; /* the first time was done in schedcpu */
327 while (newcpu && --p->p_slptime)
328 newcpu = decay_cpu(loadfac, newcpu);
329 p->p_estcpu = newcpu;
330 }
331 resetpriority(p);
332}
333
334/*
335 * We're only looking at 7 bits of the address; everything is
336 * aligned to 4, lots of things are aligned to greater powers
337 * of 2. Shift right by 8, i.e. drop the bottom 256 worth.
338 */
339#define TABLESIZE 128
340static TAILQ_HEAD(slpquehead, proc) slpque[TABLESIZE];
341#define LOOKUP(x) (((intptr_t)(x) >> 8) & (TABLESIZE - 1))
342
343void
344sleepinit(void)
345{
346 int i;
347
348 sched_quantum = hz/10;
349 hogticks = 2 * sched_quantum;
350 for (i = 0; i < TABLESIZE; i++)
351 TAILQ_INIT(&slpque[i]);
352}
353
354/*
355 * General sleep call. Suspends the current process until a wakeup is
356 * performed on the specified identifier. The process will then be made
357 * runnable with the specified priority. Sleeps at most timo/hz seconds
358 * (0 means no timeout). If pri includes PCATCH flag, signals are checked
359 * before and after sleeping, else signals are not checked. Returns 0 if
360 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
361 * signal needs to be delivered, ERESTART is returned if the current system
362 * call should be restarted if possible, and EINTR is returned if the system
363 * call should be interrupted by the signal (return EINTR).
364 *
365 * The mutex argument is exited before the caller is suspended, and
366 * entered before msleep returns. If priority includes the PDROP
367 * flag the mutex is not entered before returning.
368 */
369int
370msleep(ident, mtx, priority, wmesg, timo)
371 void *ident;
372 struct mtx *mtx;
373 int priority, timo;
374 const char *wmesg;
375{
376 struct proc *p = curproc;
377 int sig, catch = priority & PCATCH;
378 int rval = 0;
379 WITNESS_SAVE_DECL(mtx);
380
381#ifdef KTRACE
382 if (p && KTRPOINT(p, KTR_CSW))
383 ktrcsw(p->p_tracep, 1, 0);
384#endif
40 */
41
42#include "opt_ktrace.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/proc.h>
47#include <sys/ipl.h>
48#include <sys/kernel.h>
49#include <sys/ktr.h>
50#include <sys/condvar.h>
51#include <sys/lock.h>
52#include <sys/mutex.h>
53#include <sys/signalvar.h>
54#include <sys/resourcevar.h>
55#include <sys/vmmeter.h>
56#include <sys/sysctl.h>
57#include <sys/sysproto.h>
58#include <vm/vm.h>
59#include <vm/vm_extern.h>
60#ifdef KTRACE
61#include <sys/uio.h>
62#include <sys/ktrace.h>
63#endif
64
65#include <machine/cpu.h>
66#include <machine/smp.h>
67
68static void sched_setup __P((void *dummy));
69SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
70
71int hogticks;
72int lbolt;
73int sched_quantum; /* Roundrobin scheduling quantum in ticks. */
74
75static struct callout schedcpu_callout;
76static struct callout roundrobin_callout;
77
78static void endtsleep __P((void *));
79static void roundrobin __P((void *arg));
80static void schedcpu __P((void *arg));
81
82static int
83sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
84{
85 int error, new_val;
86
87 new_val = sched_quantum * tick;
88 error = sysctl_handle_int(oidp, &new_val, 0, req);
89 if (error != 0 || req->newptr == NULL)
90 return (error);
91 if (new_val < tick)
92 return (EINVAL);
93 sched_quantum = new_val / tick;
94 hogticks = 2 * sched_quantum;
95 return (0);
96}
97
98SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
99 0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
100
101/*
102 * Arrange to reschedule if necessary, taking the priorities and
103 * schedulers into account.
104 */
105void
106maybe_resched(p)
107 struct proc *p;
108{
109
110 mtx_assert(&sched_lock, MA_OWNED);
111 if (p->p_pri.pri_level < curproc->p_pri.pri_level)
112 need_resched();
113}
114
115int
116roundrobin_interval(void)
117{
118 return (sched_quantum);
119}
120
121/*
122 * Force switch among equal priority processes every 100ms.
123 */
124/* ARGSUSED */
125static void
126roundrobin(arg)
127 void *arg;
128{
129
130 mtx_lock_spin(&sched_lock);
131 need_resched();
132 mtx_unlock_spin(&sched_lock);
133#ifdef SMP
134 forward_roundrobin();
135#endif
136
137 callout_reset(&roundrobin_callout, sched_quantum, roundrobin, NULL);
138}
139
140/*
141 * Constants for digital decay and forget:
142 * 90% of (p_estcpu) usage in 5 * loadav time
143 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
144 * Note that, as ps(1) mentions, this can let percentages
145 * total over 100% (I've seen 137.9% for 3 processes).
146 *
147 * Note that schedclock() updates p_estcpu and p_cpticks asynchronously.
148 *
149 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
150 * That is, the system wants to compute a value of decay such
151 * that the following for loop:
152 * for (i = 0; i < (5 * loadavg); i++)
153 * p_estcpu *= decay;
154 * will compute
155 * p_estcpu *= 0.1;
156 * for all values of loadavg:
157 *
158 * Mathematically this loop can be expressed by saying:
159 * decay ** (5 * loadavg) ~= .1
160 *
161 * The system computes decay as:
162 * decay = (2 * loadavg) / (2 * loadavg + 1)
163 *
164 * We wish to prove that the system's computation of decay
165 * will always fulfill the equation:
166 * decay ** (5 * loadavg) ~= .1
167 *
168 * If we compute b as:
169 * b = 2 * loadavg
170 * then
171 * decay = b / (b + 1)
172 *
173 * We now need to prove two things:
174 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
175 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
176 *
177 * Facts:
178 * For x close to zero, exp(x) =~ 1 + x, since
179 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
180 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
181 * For x close to zero, ln(1+x) =~ x, since
182 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
183 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
184 * ln(.1) =~ -2.30
185 *
186 * Proof of (1):
187 * Solve (factor)**(power) =~ .1 given power (5*loadav):
188 * solving for factor,
189 * ln(factor) =~ (-2.30/5*loadav), or
190 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
191 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
192 *
193 * Proof of (2):
194 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
195 * solving for power,
196 * power*ln(b/(b+1)) =~ -2.30, or
197 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
198 *
199 * Actual power values for the implemented algorithm are as follows:
200 * loadav: 1 2 3 4
201 * power: 5.68 10.32 14.94 19.55
202 */
203
204/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
205#define loadfactor(loadav) (2 * (loadav))
206#define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
207
208/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
209static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
210SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
211
212/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
213static int fscale __unused = FSCALE;
214SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
215
216/*
217 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
218 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
219 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
220 *
221 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
222 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
223 *
224 * If you don't want to bother with the faster/more-accurate formula, you
225 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
226 * (more general) method of calculating the %age of CPU used by a process.
227 */
228#define CCPU_SHIFT 11
229
230/*
231 * Recompute process priorities, every hz ticks.
232 * MP-safe, called without the Giant mutex.
233 */
234/* ARGSUSED */
235static void
236schedcpu(arg)
237 void *arg;
238{
239 register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
240 register struct proc *p;
241 register int realstathz, s;
242
243 realstathz = stathz ? stathz : hz;
244 ALLPROC_LOCK(AP_SHARED);
245 LIST_FOREACH(p, &allproc, p_list) {
246 /*
247 * Increment time in/out of memory and sleep time
248 * (if sleeping). We ignore overflow; with 16-bit int's
249 * (remember them?) overflow takes 45 days.
250 if (p->p_stat == SWAIT)
251 continue;
252 */
253 mtx_lock_spin(&sched_lock);
254 p->p_swtime++;
255 if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
256 p->p_slptime++;
257 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
258 /*
259 * If the process has slept the entire second,
260 * stop recalculating its priority until it wakes up.
261 */
262 if (p->p_slptime > 1) {
263 mtx_unlock_spin(&sched_lock);
264 continue;
265 }
266
267 /*
268 * prevent state changes and protect run queue
269 */
270 s = splhigh();
271
272 /*
273 * p_pctcpu is only for ps.
274 */
275#if (FSHIFT >= CCPU_SHIFT)
276 p->p_pctcpu += (realstathz == 100)?
277 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
278 100 * (((fixpt_t) p->p_cpticks)
279 << (FSHIFT - CCPU_SHIFT)) / realstathz;
280#else
281 p->p_pctcpu += ((FSCALE - ccpu) *
282 (p->p_cpticks * FSCALE / realstathz)) >> FSHIFT;
283#endif
284 p->p_cpticks = 0;
285 p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
286 resetpriority(p);
287 if (p->p_pri.pri_level >= PUSER) {
288 if ((p != curproc) &&
289#ifdef SMP
290 p->p_oncpu == NOCPU && /* idle */
291#endif
292 p->p_stat == SRUN &&
293 (p->p_sflag & PS_INMEM) &&
294 (p->p_pri.pri_level / RQ_PPQ) !=
295 (p->p_pri.pri_user / RQ_PPQ)) {
296 remrunqueue(p);
297 p->p_pri.pri_level = p->p_pri.pri_user;
298 setrunqueue(p);
299 } else
300 p->p_pri.pri_level = p->p_pri.pri_user;
301 }
302 mtx_unlock_spin(&sched_lock);
303 splx(s);
304 }
305 ALLPROC_LOCK(AP_RELEASE);
306 vmmeter();
307 wakeup((caddr_t)&lbolt);
308 callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
309}
310
311/*
312 * Recalculate the priority of a process after it has slept for a while.
313 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
314 * least six times the loadfactor will decay p_estcpu to zero.
315 */
316void
317updatepri(p)
318 register struct proc *p;
319{
320 register unsigned int newcpu = p->p_estcpu;
321 register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
322
323 if (p->p_slptime > 5 * loadfac)
324 p->p_estcpu = 0;
325 else {
326 p->p_slptime--; /* the first time was done in schedcpu */
327 while (newcpu && --p->p_slptime)
328 newcpu = decay_cpu(loadfac, newcpu);
329 p->p_estcpu = newcpu;
330 }
331 resetpriority(p);
332}
333
334/*
335 * We're only looking at 7 bits of the address; everything is
336 * aligned to 4, lots of things are aligned to greater powers
337 * of 2. Shift right by 8, i.e. drop the bottom 256 worth.
338 */
339#define TABLESIZE 128
340static TAILQ_HEAD(slpquehead, proc) slpque[TABLESIZE];
341#define LOOKUP(x) (((intptr_t)(x) >> 8) & (TABLESIZE - 1))
342
343void
344sleepinit(void)
345{
346 int i;
347
348 sched_quantum = hz/10;
349 hogticks = 2 * sched_quantum;
350 for (i = 0; i < TABLESIZE; i++)
351 TAILQ_INIT(&slpque[i]);
352}
353
354/*
355 * General sleep call. Suspends the current process until a wakeup is
356 * performed on the specified identifier. The process will then be made
357 * runnable with the specified priority. Sleeps at most timo/hz seconds
358 * (0 means no timeout). If pri includes PCATCH flag, signals are checked
359 * before and after sleeping, else signals are not checked. Returns 0 if
360 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
361 * signal needs to be delivered, ERESTART is returned if the current system
362 * call should be restarted if possible, and EINTR is returned if the system
363 * call should be interrupted by the signal (return EINTR).
364 *
365 * The mutex argument is exited before the caller is suspended, and
366 * entered before msleep returns. If priority includes the PDROP
367 * flag the mutex is not entered before returning.
368 */
369int
370msleep(ident, mtx, priority, wmesg, timo)
371 void *ident;
372 struct mtx *mtx;
373 int priority, timo;
374 const char *wmesg;
375{
376 struct proc *p = curproc;
377 int sig, catch = priority & PCATCH;
378 int rval = 0;
379 WITNESS_SAVE_DECL(mtx);
380
381#ifdef KTRACE
382 if (p && KTRPOINT(p, KTR_CSW))
383 ktrcsw(p->p_tracep, 1, 0);
384#endif
385 WITNESS_SLEEP(0, mtx);
385 WITNESS_SLEEP(0, &mtx->mtx_object);
386 mtx_lock_spin(&sched_lock);
387 if (cold || panicstr) {
388 /*
389 * After a panic, or during autoconfiguration,
390 * just give interrupts a chance, then just return;
391 * don't run any other procs or panic below,
392 * in case this is the idle process and already asleep.
393 */
394 if (mtx != NULL && priority & PDROP)
395 mtx_unlock_flags(mtx, MTX_NOSWITCH);
396 mtx_unlock_spin(&sched_lock);
397 return (0);
398 }
399
400 DROP_GIANT_NOSWITCH();
401
402 if (mtx != NULL) {
403 mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
386 mtx_lock_spin(&sched_lock);
387 if (cold || panicstr) {
388 /*
389 * After a panic, or during autoconfiguration,
390 * just give interrupts a chance, then just return;
391 * don't run any other procs or panic below,
392 * in case this is the idle process and already asleep.
393 */
394 if (mtx != NULL && priority & PDROP)
395 mtx_unlock_flags(mtx, MTX_NOSWITCH);
396 mtx_unlock_spin(&sched_lock);
397 return (0);
398 }
399
400 DROP_GIANT_NOSWITCH();
401
402 if (mtx != NULL) {
403 mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
404 WITNESS_SAVE(mtx, mtx);
404 WITNESS_SAVE(&mtx->mtx_object, mtx);
405 mtx_unlock_flags(mtx, MTX_NOSWITCH);
406 if (priority & PDROP)
407 mtx = NULL;
408 }
409
410 KASSERT(p != NULL, ("msleep1"));
411 KASSERT(ident != NULL && p->p_stat == SRUN, ("msleep"));
412 /*
413 * Process may be sitting on a slpque if asleep() was called, remove
414 * it before re-adding.
415 */
416 if (p->p_wchan != NULL)
417 unsleep(p);
418
419 p->p_wchan = ident;
420 p->p_wmesg = wmesg;
421 p->p_slptime = 0;
422 p->p_pri.pri_level = priority & PRIMASK;
423 CTR4(KTR_PROC, "msleep: proc %p (pid %d, %s), schedlock %p",
424 p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
425 TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_slpq);
426 if (timo)
427 callout_reset(&p->p_slpcallout, timo, endtsleep, p);
428 /*
429 * We put ourselves on the sleep queue and start our timeout
430 * before calling CURSIG, as we could stop there, and a wakeup
431 * or a SIGCONT (or both) could occur while we were stopped.
432 * A SIGCONT would cause us to be marked as SSLEEP
433 * without resuming us, thus we must be ready for sleep
434 * when CURSIG is called. If the wakeup happens while we're
435 * stopped, p->p_wchan will be 0 upon return from CURSIG.
436 */
437 if (catch) {
438 CTR4(KTR_PROC,
439 "msleep caught: proc %p (pid %d, %s), schedlock %p",
440 p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
441 p->p_sflag |= PS_SINTR;
442 mtx_unlock_spin(&sched_lock);
443 if ((sig = CURSIG(p))) {
444 mtx_lock_spin(&sched_lock);
445 if (p->p_wchan)
446 unsleep(p);
447 p->p_stat = SRUN;
448 goto resume;
449 }
450 mtx_lock_spin(&sched_lock);
451 if (p->p_wchan == NULL) {
452 catch = 0;
453 goto resume;
454 }
455 } else
456 sig = 0;
457 p->p_stat = SSLEEP;
458 p->p_stats->p_ru.ru_nvcsw++;
459 mi_switch();
460 CTR4(KTR_PROC,
461 "msleep resume: proc %p (pid %d, %s), schedlock %p",
462 p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
463resume:
464 p->p_sflag &= ~PS_SINTR;
465 if (p->p_sflag & PS_TIMEOUT) {
466 p->p_sflag &= ~PS_TIMEOUT;
467 if (sig == 0) {
468#ifdef KTRACE
469 if (KTRPOINT(p, KTR_CSW))
470 ktrcsw(p->p_tracep, 0, 0);
471#endif
472 rval = EWOULDBLOCK;
473 mtx_unlock_spin(&sched_lock);
474 goto out;
475 }
476 } else if (timo)
477 callout_stop(&p->p_slpcallout);
478 mtx_unlock_spin(&sched_lock);
479
480 if (catch && (sig != 0 || (sig = CURSIG(p)))) {
481#ifdef KTRACE
482 if (KTRPOINT(p, KTR_CSW))
483 ktrcsw(p->p_tracep, 0, 0);
484#endif
485 PROC_LOCK(p);
486 if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
487 rval = EINTR;
488 else
489 rval = ERESTART;
490 PROC_UNLOCK(p);
491 goto out;
492 }
493out:
494#ifdef KTRACE
495 if (KTRPOINT(p, KTR_CSW))
496 ktrcsw(p->p_tracep, 0, 0);
497#endif
498 PICKUP_GIANT();
499 if (mtx != NULL) {
500 mtx_lock(mtx);
405 mtx_unlock_flags(mtx, MTX_NOSWITCH);
406 if (priority & PDROP)
407 mtx = NULL;
408 }
409
410 KASSERT(p != NULL, ("msleep1"));
411 KASSERT(ident != NULL && p->p_stat == SRUN, ("msleep"));
412 /*
413 * Process may be sitting on a slpque if asleep() was called, remove
414 * it before re-adding.
415 */
416 if (p->p_wchan != NULL)
417 unsleep(p);
418
419 p->p_wchan = ident;
420 p->p_wmesg = wmesg;
421 p->p_slptime = 0;
422 p->p_pri.pri_level = priority & PRIMASK;
423 CTR4(KTR_PROC, "msleep: proc %p (pid %d, %s), schedlock %p",
424 p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
425 TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_slpq);
426 if (timo)
427 callout_reset(&p->p_slpcallout, timo, endtsleep, p);
428 /*
429 * We put ourselves on the sleep queue and start our timeout
430 * before calling CURSIG, as we could stop there, and a wakeup
431 * or a SIGCONT (or both) could occur while we were stopped.
432 * A SIGCONT would cause us to be marked as SSLEEP
433 * without resuming us, thus we must be ready for sleep
434 * when CURSIG is called. If the wakeup happens while we're
435 * stopped, p->p_wchan will be 0 upon return from CURSIG.
436 */
437 if (catch) {
438 CTR4(KTR_PROC,
439 "msleep caught: proc %p (pid %d, %s), schedlock %p",
440 p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
441 p->p_sflag |= PS_SINTR;
442 mtx_unlock_spin(&sched_lock);
443 if ((sig = CURSIG(p))) {
444 mtx_lock_spin(&sched_lock);
445 if (p->p_wchan)
446 unsleep(p);
447 p->p_stat = SRUN;
448 goto resume;
449 }
450 mtx_lock_spin(&sched_lock);
451 if (p->p_wchan == NULL) {
452 catch = 0;
453 goto resume;
454 }
455 } else
456 sig = 0;
457 p->p_stat = SSLEEP;
458 p->p_stats->p_ru.ru_nvcsw++;
459 mi_switch();
460 CTR4(KTR_PROC,
461 "msleep resume: proc %p (pid %d, %s), schedlock %p",
462 p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
463resume:
464 p->p_sflag &= ~PS_SINTR;
465 if (p->p_sflag & PS_TIMEOUT) {
466 p->p_sflag &= ~PS_TIMEOUT;
467 if (sig == 0) {
468#ifdef KTRACE
469 if (KTRPOINT(p, KTR_CSW))
470 ktrcsw(p->p_tracep, 0, 0);
471#endif
472 rval = EWOULDBLOCK;
473 mtx_unlock_spin(&sched_lock);
474 goto out;
475 }
476 } else if (timo)
477 callout_stop(&p->p_slpcallout);
478 mtx_unlock_spin(&sched_lock);
479
480 if (catch && (sig != 0 || (sig = CURSIG(p)))) {
481#ifdef KTRACE
482 if (KTRPOINT(p, KTR_CSW))
483 ktrcsw(p->p_tracep, 0, 0);
484#endif
485 PROC_LOCK(p);
486 if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
487 rval = EINTR;
488 else
489 rval = ERESTART;
490 PROC_UNLOCK(p);
491 goto out;
492 }
493out:
494#ifdef KTRACE
495 if (KTRPOINT(p, KTR_CSW))
496 ktrcsw(p->p_tracep, 0, 0);
497#endif
498 PICKUP_GIANT();
499 if (mtx != NULL) {
500 mtx_lock(mtx);
501 WITNESS_RESTORE(mtx, mtx);
501 WITNESS_RESTORE(&mtx->mtx_object, mtx);
502 }
503 return (rval);
504}
505
506/*
507 * asleep() - async sleep call. Place process on wait queue and return
508 * immediately without blocking. The process stays runnable until mawait()
509 * is called. If ident is NULL, remove process from wait queue if it is still
510 * on one.
511 *
512 * Only the most recent sleep condition is effective when making successive
513 * calls to asleep() or when calling msleep().
514 *
515 * The timeout, if any, is not initiated until mawait() is called. The sleep
516 * priority, signal, and timeout is specified in the asleep() call but may be
517 * overriden in the mawait() call.
518 *
519 * <<<<<<<< EXPERIMENTAL, UNTESTED >>>>>>>>>>
520 */
521
522int
523asleep(void *ident, int priority, const char *wmesg, int timo)
524{
525 struct proc *p = curproc;
526 int s;
527
528 /*
529 * obtain sched_lock while manipulating sleep structures and slpque.
530 *
531 * Remove preexisting wait condition (if any) and place process
532 * on appropriate slpque, but do not put process to sleep.
533 */
534
535 s = splhigh();
536 mtx_lock_spin(&sched_lock);
537
538 if (p->p_wchan != NULL)
539 unsleep(p);
540
541 if (ident) {
542 p->p_wchan = ident;
543 p->p_wmesg = wmesg;
544 p->p_slptime = 0;
545 p->p_asleep.as_priority = priority;
546 p->p_asleep.as_timo = timo;
547 TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_slpq);
548 }
549
550 mtx_unlock_spin(&sched_lock);
551 splx(s);
552
553 return(0);
554}
555
556/*
557 * mawait() - wait for async condition to occur. The process blocks until
558 * wakeup() is called on the most recent asleep() address. If wakeup is called
559 * prior to mawait(), mawait() winds up being a NOP.
560 *
561 * If mawait() is called more then once (without an intervening asleep() call),
562 * mawait() is still effectively a NOP but it calls mi_switch() to give other
563 * processes some cpu before returning. The process is left runnable.
564 *
565 * <<<<<<<< EXPERIMENTAL, UNTESTED >>>>>>>>>>
566 */
567
568int
569mawait(struct mtx *mtx, int priority, int timo)
570{
571 struct proc *p = curproc;
572 int rval = 0;
573 int s;
574 WITNESS_SAVE_DECL(mtx);
575
502 }
503 return (rval);
504}
505
506/*
507 * asleep() - async sleep call. Place process on wait queue and return
508 * immediately without blocking. The process stays runnable until mawait()
509 * is called. If ident is NULL, remove process from wait queue if it is still
510 * on one.
511 *
512 * Only the most recent sleep condition is effective when making successive
513 * calls to asleep() or when calling msleep().
514 *
515 * The timeout, if any, is not initiated until mawait() is called. The sleep
516 * priority, signal, and timeout is specified in the asleep() call but may be
517 * overriden in the mawait() call.
518 *
519 * <<<<<<<< EXPERIMENTAL, UNTESTED >>>>>>>>>>
520 */
521
522int
523asleep(void *ident, int priority, const char *wmesg, int timo)
524{
525 struct proc *p = curproc;
526 int s;
527
528 /*
529 * obtain sched_lock while manipulating sleep structures and slpque.
530 *
531 * Remove preexisting wait condition (if any) and place process
532 * on appropriate slpque, but do not put process to sleep.
533 */
534
535 s = splhigh();
536 mtx_lock_spin(&sched_lock);
537
538 if (p->p_wchan != NULL)
539 unsleep(p);
540
541 if (ident) {
542 p->p_wchan = ident;
543 p->p_wmesg = wmesg;
544 p->p_slptime = 0;
545 p->p_asleep.as_priority = priority;
546 p->p_asleep.as_timo = timo;
547 TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_slpq);
548 }
549
550 mtx_unlock_spin(&sched_lock);
551 splx(s);
552
553 return(0);
554}
555
556/*
557 * mawait() - wait for async condition to occur. The process blocks until
558 * wakeup() is called on the most recent asleep() address. If wakeup is called
559 * prior to mawait(), mawait() winds up being a NOP.
560 *
561 * If mawait() is called more then once (without an intervening asleep() call),
562 * mawait() is still effectively a NOP but it calls mi_switch() to give other
563 * processes some cpu before returning. The process is left runnable.
564 *
565 * <<<<<<<< EXPERIMENTAL, UNTESTED >>>>>>>>>>
566 */
567
568int
569mawait(struct mtx *mtx, int priority, int timo)
570{
571 struct proc *p = curproc;
572 int rval = 0;
573 int s;
574 WITNESS_SAVE_DECL(mtx);
575
576 WITNESS_SLEEP(0, mtx);
576 WITNESS_SLEEP(0, &mtx->mtx_object);
577 mtx_lock_spin(&sched_lock);
578 DROP_GIANT_NOSWITCH();
579 if (mtx != NULL) {
580 mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
577 mtx_lock_spin(&sched_lock);
578 DROP_GIANT_NOSWITCH();
579 if (mtx != NULL) {
580 mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
581 WITNESS_SAVE(mtx, mtx);
581 WITNESS_SAVE(&mtx->mtx_object, mtx);
582 mtx_unlock_flags(mtx, MTX_NOSWITCH);
583 if (priority & PDROP)
584 mtx = NULL;
585 }
586
587 s = splhigh();
588
589 if (p->p_wchan != NULL) {
590 int sig;
591 int catch;
592
593 /*
594 * The call to mawait() can override defaults specified in
595 * the original asleep().
596 */
597 if (priority < 0)
598 priority = p->p_asleep.as_priority;
599 if (timo < 0)
600 timo = p->p_asleep.as_timo;
601
602 /*
603 * Install timeout
604 */
605
606 if (timo)
607 callout_reset(&p->p_slpcallout, timo, endtsleep, p);
608
609 sig = 0;
610 catch = priority & PCATCH;
611
612 if (catch) {
613 p->p_sflag |= PS_SINTR;
614 mtx_unlock_spin(&sched_lock);
615 if ((sig = CURSIG(p))) {
616 mtx_lock_spin(&sched_lock);
617 if (p->p_wchan)
618 unsleep(p);
619 p->p_stat = SRUN;
620 goto resume;
621 }
622 mtx_lock_spin(&sched_lock);
623 if (p->p_wchan == NULL) {
624 catch = 0;
625 goto resume;
626 }
627 }
628 p->p_stat = SSLEEP;
629 p->p_stats->p_ru.ru_nvcsw++;
630 mi_switch();
631resume:
632
633 splx(s);
634 p->p_sflag &= ~PS_SINTR;
635 if (p->p_sflag & PS_TIMEOUT) {
636 p->p_sflag &= ~PS_TIMEOUT;
637 if (sig == 0) {
638#ifdef KTRACE
639 if (KTRPOINT(p, KTR_CSW))
640 ktrcsw(p->p_tracep, 0, 0);
641#endif
642 rval = EWOULDBLOCK;
643 mtx_unlock_spin(&sched_lock);
644 goto out;
645 }
646 } else if (timo)
647 callout_stop(&p->p_slpcallout);
648 mtx_unlock_spin(&sched_lock);
649
650 if (catch && (sig != 0 || (sig = CURSIG(p)))) {
651#ifdef KTRACE
652 if (KTRPOINT(p, KTR_CSW))
653 ktrcsw(p->p_tracep, 0, 0);
654#endif
655 PROC_LOCK(p);
656 if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
657 rval = EINTR;
658 else
659 rval = ERESTART;
660 PROC_UNLOCK(p);
661 goto out;
662 }
663#ifdef KTRACE
664 if (KTRPOINT(p, KTR_CSW))
665 ktrcsw(p->p_tracep, 0, 0);
666#endif
667 } else {
668 /*
669 * If as_priority is 0, mawait() has been called without an
670 * intervening asleep(). We are still effectively a NOP,
671 * but we call mi_switch() for safety.
672 */
673
674 if (p->p_asleep.as_priority == 0) {
675 p->p_stats->p_ru.ru_nvcsw++;
676 mi_switch();
677 }
678 mtx_unlock_spin(&sched_lock);
679 splx(s);
680 }
681
682 /*
683 * clear p_asleep.as_priority as an indication that mawait() has been
684 * called. If mawait() is called again without an intervening asleep(),
685 * mawait() is still effectively a NOP but the above mi_switch() code
686 * is triggered as a safety.
687 */
688 p->p_asleep.as_priority = 0;
689
690out:
691 PICKUP_GIANT();
692 if (mtx != NULL) {
693 mtx_lock(mtx);
582 mtx_unlock_flags(mtx, MTX_NOSWITCH);
583 if (priority & PDROP)
584 mtx = NULL;
585 }
586
587 s = splhigh();
588
589 if (p->p_wchan != NULL) {
590 int sig;
591 int catch;
592
593 /*
594 * The call to mawait() can override defaults specified in
595 * the original asleep().
596 */
597 if (priority < 0)
598 priority = p->p_asleep.as_priority;
599 if (timo < 0)
600 timo = p->p_asleep.as_timo;
601
602 /*
603 * Install timeout
604 */
605
606 if (timo)
607 callout_reset(&p->p_slpcallout, timo, endtsleep, p);
608
609 sig = 0;
610 catch = priority & PCATCH;
611
612 if (catch) {
613 p->p_sflag |= PS_SINTR;
614 mtx_unlock_spin(&sched_lock);
615 if ((sig = CURSIG(p))) {
616 mtx_lock_spin(&sched_lock);
617 if (p->p_wchan)
618 unsleep(p);
619 p->p_stat = SRUN;
620 goto resume;
621 }
622 mtx_lock_spin(&sched_lock);
623 if (p->p_wchan == NULL) {
624 catch = 0;
625 goto resume;
626 }
627 }
628 p->p_stat = SSLEEP;
629 p->p_stats->p_ru.ru_nvcsw++;
630 mi_switch();
631resume:
632
633 splx(s);
634 p->p_sflag &= ~PS_SINTR;
635 if (p->p_sflag & PS_TIMEOUT) {
636 p->p_sflag &= ~PS_TIMEOUT;
637 if (sig == 0) {
638#ifdef KTRACE
639 if (KTRPOINT(p, KTR_CSW))
640 ktrcsw(p->p_tracep, 0, 0);
641#endif
642 rval = EWOULDBLOCK;
643 mtx_unlock_spin(&sched_lock);
644 goto out;
645 }
646 } else if (timo)
647 callout_stop(&p->p_slpcallout);
648 mtx_unlock_spin(&sched_lock);
649
650 if (catch && (sig != 0 || (sig = CURSIG(p)))) {
651#ifdef KTRACE
652 if (KTRPOINT(p, KTR_CSW))
653 ktrcsw(p->p_tracep, 0, 0);
654#endif
655 PROC_LOCK(p);
656 if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
657 rval = EINTR;
658 else
659 rval = ERESTART;
660 PROC_UNLOCK(p);
661 goto out;
662 }
663#ifdef KTRACE
664 if (KTRPOINT(p, KTR_CSW))
665 ktrcsw(p->p_tracep, 0, 0);
666#endif
667 } else {
668 /*
669 * If as_priority is 0, mawait() has been called without an
670 * intervening asleep(). We are still effectively a NOP,
671 * but we call mi_switch() for safety.
672 */
673
674 if (p->p_asleep.as_priority == 0) {
675 p->p_stats->p_ru.ru_nvcsw++;
676 mi_switch();
677 }
678 mtx_unlock_spin(&sched_lock);
679 splx(s);
680 }
681
682 /*
683 * clear p_asleep.as_priority as an indication that mawait() has been
684 * called. If mawait() is called again without an intervening asleep(),
685 * mawait() is still effectively a NOP but the above mi_switch() code
686 * is triggered as a safety.
687 */
688 p->p_asleep.as_priority = 0;
689
690out:
691 PICKUP_GIANT();
692 if (mtx != NULL) {
693 mtx_lock(mtx);
694 WITNESS_RESTORE(mtx, mtx);
694 WITNESS_RESTORE(&mtx->mtx_object, mtx);
695 }
696 return (rval);
697}
698
699/*
700 * Implement timeout for msleep or asleep()/mawait()
701 *
702 * If process hasn't been awakened (wchan non-zero),
703 * set timeout flag and undo the sleep. If proc
704 * is stopped, just unsleep so it will remain stopped.
705 * MP-safe, called without the Giant mutex.
706 */
707static void
708endtsleep(arg)
709 void *arg;
710{
711 register struct proc *p;
712 int s;
713
714 p = (struct proc *)arg;
715 CTR4(KTR_PROC,
716 "endtsleep: proc %p (pid %d, %s), schedlock %p",
717 p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
718 s = splhigh();
719 mtx_lock_spin(&sched_lock);
720 if (p->p_wchan) {
721 if (p->p_stat == SSLEEP)
722 setrunnable(p);
723 else
724 unsleep(p);
725 p->p_sflag |= PS_TIMEOUT;
726 }
727 mtx_unlock_spin(&sched_lock);
728 splx(s);
729}
730
731/*
732 * Remove a process from its wait queue
733 */
734void
735unsleep(p)
736 register struct proc *p;
737{
738 int s;
739
740 s = splhigh();
741 mtx_lock_spin(&sched_lock);
742 if (p->p_wchan) {
743 TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_slpq);
744 p->p_wchan = NULL;
745 }
746 mtx_unlock_spin(&sched_lock);
747 splx(s);
748}
749
750/*
751 * Make all processes sleeping on the specified identifier runnable.
752 */
753void
754wakeup(ident)
755 register void *ident;
756{
757 register struct slpquehead *qp;
758 register struct proc *p;
759 int s;
760
761 s = splhigh();
762 mtx_lock_spin(&sched_lock);
763 qp = &slpque[LOOKUP(ident)];
764restart:
765 TAILQ_FOREACH(p, qp, p_slpq) {
766 if (p->p_wchan == ident) {
767 TAILQ_REMOVE(qp, p, p_slpq);
768 p->p_wchan = NULL;
769 if (p->p_stat == SSLEEP) {
770 /* OPTIMIZED EXPANSION OF setrunnable(p); */
771 CTR4(KTR_PROC,
772 "wakeup: proc %p (pid %d, %s), schedlock %p",
773 p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
774 if (p->p_slptime > 1)
775 updatepri(p);
776 p->p_slptime = 0;
777 p->p_stat = SRUN;
778 if (p->p_sflag & PS_INMEM) {
779 setrunqueue(p);
780 maybe_resched(p);
781 } else {
782 p->p_sflag |= PS_SWAPINREQ;
783 wakeup((caddr_t)&proc0);
784 }
785 /* END INLINE EXPANSION */
786 goto restart;
787 }
788 }
789 }
790 mtx_unlock_spin(&sched_lock);
791 splx(s);
792}
793
794/*
795 * Make a process sleeping on the specified identifier runnable.
796 * May wake more than one process if a target process is currently
797 * swapped out.
798 */
799void
800wakeup_one(ident)
801 register void *ident;
802{
803 register struct slpquehead *qp;
804 register struct proc *p;
805 int s;
806
807 s = splhigh();
808 mtx_lock_spin(&sched_lock);
809 qp = &slpque[LOOKUP(ident)];
810
811 TAILQ_FOREACH(p, qp, p_slpq) {
812 if (p->p_wchan == ident) {
813 TAILQ_REMOVE(qp, p, p_slpq);
814 p->p_wchan = NULL;
815 if (p->p_stat == SSLEEP) {
816 /* OPTIMIZED EXPANSION OF setrunnable(p); */
817 CTR4(KTR_PROC,
818 "wakeup1: proc %p (pid %d, %s), schedlock %p",
819 p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
820 if (p->p_slptime > 1)
821 updatepri(p);
822 p->p_slptime = 0;
823 p->p_stat = SRUN;
824 if (p->p_sflag & PS_INMEM) {
825 setrunqueue(p);
826 maybe_resched(p);
827 break;
828 } else {
829 p->p_sflag |= PS_SWAPINREQ;
830 wakeup((caddr_t)&proc0);
831 }
832 /* END INLINE EXPANSION */
833 }
834 }
835 }
836 mtx_unlock_spin(&sched_lock);
837 splx(s);
838}
839
840/*
841 * The machine independent parts of mi_switch().
842 * Must be called at splstatclock() or higher.
843 */
844void
845mi_switch()
846{
847 struct timeval new_switchtime;
848 register struct proc *p = curproc; /* XXX */
849#if 0
850 register struct rlimit *rlim;
851#endif
852 u_int sched_nest;
853
854 mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
855
856 /*
857 * Compute the amount of time during which the current
858 * process was running, and add that to its total so far.
859 */
860 microuptime(&new_switchtime);
861 if (timevalcmp(&new_switchtime, PCPU_PTR(switchtime), <)) {
862#if 0
863 /* XXX: This doesn't play well with sched_lock right now. */
864 printf("microuptime() went backwards (%ld.%06ld -> %ld.%06ld)\n",
865 PCPU_GET(switchtime.tv_sec), PCPU_GET(switchtime.tv_usec),
866 new_switchtime.tv_sec, new_switchtime.tv_usec);
867#endif
868 new_switchtime = PCPU_GET(switchtime);
869 } else {
870 p->p_runtime += (new_switchtime.tv_usec - PCPU_GET(switchtime.tv_usec)) +
871 (new_switchtime.tv_sec - PCPU_GET(switchtime.tv_sec)) *
872 (int64_t)1000000;
873 }
874
875#if 0
876 /*
877 * Check if the process exceeds its cpu resource allocation.
878 * If over max, kill it.
879 *
880 * XXX drop sched_lock, pickup Giant
881 */
882 if (p->p_stat != SZOMB && p->p_limit->p_cpulimit != RLIM_INFINITY &&
883 p->p_runtime > p->p_limit->p_cpulimit) {
884 rlim = &p->p_rlimit[RLIMIT_CPU];
885 if (p->p_runtime / (rlim_t)1000000 >= rlim->rlim_max) {
886 mtx_unlock_spin(&sched_lock);
887 killproc(p, "exceeded maximum CPU limit");
888 mtx_lock_spin(&sched_lock);
889 } else {
890 mtx_unlock_spin(&sched_lock);
891 PROC_LOCK(p);
892 psignal(p, SIGXCPU);
893 mtx_lock_spin(&sched_lock);
894 PROC_UNLOCK_NOSWITCH(p);
895 if (rlim->rlim_cur < rlim->rlim_max) {
896 /* XXX: we should make a private copy */
897 rlim->rlim_cur += 5;
898 }
899 }
900 }
901#endif
902
903 /*
904 * Pick a new current process and record its start time.
905 */
906 cnt.v_swtch++;
907 PCPU_SET(switchtime, new_switchtime);
908 CTR4(KTR_PROC, "mi_switch: old proc %p (pid %d, %s), schedlock %p",
909 p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
910 sched_nest = sched_lock.mtx_recurse;
911 curproc->p_lastcpu = curproc->p_oncpu;
912 curproc->p_oncpu = NOCPU;
913 clear_resched();
914 cpu_switch();
915 curproc->p_oncpu = PCPU_GET(cpuid);
916 sched_lock.mtx_recurse = sched_nest;
917 sched_lock.mtx_lock = (uintptr_t)curproc;
918 CTR4(KTR_PROC, "mi_switch: new proc %p (pid %d, %s), schedlock %p",
919 p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
920 if (PCPU_GET(switchtime.tv_sec) == 0)
921 microuptime(PCPU_PTR(switchtime));
922 PCPU_SET(switchticks, ticks);
923}
924
925/*
926 * Change process state to be runnable,
927 * placing it on the run queue if it is in memory,
928 * and awakening the swapper if it isn't in memory.
929 */
930void
931setrunnable(p)
932 register struct proc *p;
933{
934 register int s;
935
936 s = splhigh();
937 mtx_lock_spin(&sched_lock);
938 switch (p->p_stat) {
939 case 0:
940 case SRUN:
941 case SZOMB:
942 case SWAIT:
943 default:
944 panic("setrunnable");
945 case SSTOP:
946 case SSLEEP: /* e.g. when sending signals */
947 if (p->p_sflag & PS_CVWAITQ)
948 cv_waitq_remove(p);
949 else
950 unsleep(p);
951 break;
952
953 case SIDL:
954 break;
955 }
956 p->p_stat = SRUN;
957 if (p->p_sflag & PS_INMEM)
958 setrunqueue(p);
959 splx(s);
960 if (p->p_slptime > 1)
961 updatepri(p);
962 p->p_slptime = 0;
963 if ((p->p_sflag & PS_INMEM) == 0) {
964 p->p_sflag |= PS_SWAPINREQ;
965 wakeup((caddr_t)&proc0);
966 }
967 else
968 maybe_resched(p);
969 mtx_unlock_spin(&sched_lock);
970}
971
972/*
973 * Compute the priority of a process when running in user mode.
974 * Arrange to reschedule if the resulting priority is better
975 * than that of the current process.
976 */
977void
978resetpriority(p)
979 register struct proc *p;
980{
981 register unsigned int newpriority;
982
983 mtx_lock_spin(&sched_lock);
984 if (p->p_pri.pri_class == PRI_TIMESHARE) {
985 newpriority = PUSER + p->p_estcpu / INVERSE_ESTCPU_WEIGHT +
986 NICE_WEIGHT * (p->p_nice - PRIO_MIN);
987 newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
988 PRI_MAX_TIMESHARE);
989 p->p_pri.pri_user = newpriority;
990 }
991 maybe_resched(p);
992 mtx_unlock_spin(&sched_lock);
993}
994
995/* ARGSUSED */
996static void
997sched_setup(dummy)
998 void *dummy;
999{
1000
1001 callout_init(&schedcpu_callout, 1);
1002 callout_init(&roundrobin_callout, 0);
1003
1004 /* Kick off timeout driven events by calling first time. */
1005 roundrobin(NULL);
1006 schedcpu(NULL);
1007}
1008
1009/*
1010 * We adjust the priority of the current process. The priority of
1011 * a process gets worse as it accumulates CPU time. The cpu usage
1012 * estimator (p_estcpu) is increased here. resetpriority() will
1013 * compute a different priority each time p_estcpu increases by
1014 * INVERSE_ESTCPU_WEIGHT
1015 * (until MAXPRI is reached). The cpu usage estimator ramps up
1016 * quite quickly when the process is running (linearly), and decays
1017 * away exponentially, at a rate which is proportionally slower when
1018 * the system is busy. The basic principle is that the system will
1019 * 90% forget that the process used a lot of CPU time in 5 * loadav
1020 * seconds. This causes the system to favor processes which haven't
1021 * run much recently, and to round-robin among other processes.
1022 */
1023void
1024schedclock(p)
1025 struct proc *p;
1026{
1027
1028 p->p_cpticks++;
1029 p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
1030 if ((p->p_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
1031 resetpriority(p);
1032 if (p->p_pri.pri_level >= PUSER)
1033 p->p_pri.pri_level = p->p_pri.pri_user;
1034 }
1035}
1036
1037/*
1038 * General purpose yield system call
1039 */
1040int
1041yield(struct proc *p, struct yield_args *uap)
1042{
1043 int s;
1044
1045 p->p_retval[0] = 0;
1046
1047 s = splhigh();
1048 mtx_lock_spin(&sched_lock);
1049 DROP_GIANT_NOSWITCH();
1050 p->p_pri.pri_level = PRI_MAX_TIMESHARE;
1051 setrunqueue(p);
1052 p->p_stats->p_ru.ru_nvcsw++;
1053 mi_switch();
1054 mtx_unlock_spin(&sched_lock);
1055 PICKUP_GIANT();
1056 splx(s);
1057
1058 return (0);
1059}
695 }
696 return (rval);
697}
698
699/*
700 * Implement timeout for msleep or asleep()/mawait()
701 *
702 * If process hasn't been awakened (wchan non-zero),
703 * set timeout flag and undo the sleep. If proc
704 * is stopped, just unsleep so it will remain stopped.
705 * MP-safe, called without the Giant mutex.
706 */
707static void
708endtsleep(arg)
709 void *arg;
710{
711 register struct proc *p;
712 int s;
713
714 p = (struct proc *)arg;
715 CTR4(KTR_PROC,
716 "endtsleep: proc %p (pid %d, %s), schedlock %p",
717 p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
718 s = splhigh();
719 mtx_lock_spin(&sched_lock);
720 if (p->p_wchan) {
721 if (p->p_stat == SSLEEP)
722 setrunnable(p);
723 else
724 unsleep(p);
725 p->p_sflag |= PS_TIMEOUT;
726 }
727 mtx_unlock_spin(&sched_lock);
728 splx(s);
729}
730
731/*
732 * Remove a process from its wait queue
733 */
734void
735unsleep(p)
736 register struct proc *p;
737{
738 int s;
739
740 s = splhigh();
741 mtx_lock_spin(&sched_lock);
742 if (p->p_wchan) {
743 TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_slpq);
744 p->p_wchan = NULL;
745 }
746 mtx_unlock_spin(&sched_lock);
747 splx(s);
748}
749
750/*
751 * Make all processes sleeping on the specified identifier runnable.
752 */
753void
754wakeup(ident)
755 register void *ident;
756{
757 register struct slpquehead *qp;
758 register struct proc *p;
759 int s;
760
761 s = splhigh();
762 mtx_lock_spin(&sched_lock);
763 qp = &slpque[LOOKUP(ident)];
764restart:
765 TAILQ_FOREACH(p, qp, p_slpq) {
766 if (p->p_wchan == ident) {
767 TAILQ_REMOVE(qp, p, p_slpq);
768 p->p_wchan = NULL;
769 if (p->p_stat == SSLEEP) {
770 /* OPTIMIZED EXPANSION OF setrunnable(p); */
771 CTR4(KTR_PROC,
772 "wakeup: proc %p (pid %d, %s), schedlock %p",
773 p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
774 if (p->p_slptime > 1)
775 updatepri(p);
776 p->p_slptime = 0;
777 p->p_stat = SRUN;
778 if (p->p_sflag & PS_INMEM) {
779 setrunqueue(p);
780 maybe_resched(p);
781 } else {
782 p->p_sflag |= PS_SWAPINREQ;
783 wakeup((caddr_t)&proc0);
784 }
785 /* END INLINE EXPANSION */
786 goto restart;
787 }
788 }
789 }
790 mtx_unlock_spin(&sched_lock);
791 splx(s);
792}
793
794/*
795 * Make a process sleeping on the specified identifier runnable.
796 * May wake more than one process if a target process is currently
797 * swapped out.
798 */
799void
800wakeup_one(ident)
801 register void *ident;
802{
803 register struct slpquehead *qp;
804 register struct proc *p;
805 int s;
806
807 s = splhigh();
808 mtx_lock_spin(&sched_lock);
809 qp = &slpque[LOOKUP(ident)];
810
811 TAILQ_FOREACH(p, qp, p_slpq) {
812 if (p->p_wchan == ident) {
813 TAILQ_REMOVE(qp, p, p_slpq);
814 p->p_wchan = NULL;
815 if (p->p_stat == SSLEEP) {
816 /* OPTIMIZED EXPANSION OF setrunnable(p); */
817 CTR4(KTR_PROC,
818 "wakeup1: proc %p (pid %d, %s), schedlock %p",
819 p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
820 if (p->p_slptime > 1)
821 updatepri(p);
822 p->p_slptime = 0;
823 p->p_stat = SRUN;
824 if (p->p_sflag & PS_INMEM) {
825 setrunqueue(p);
826 maybe_resched(p);
827 break;
828 } else {
829 p->p_sflag |= PS_SWAPINREQ;
830 wakeup((caddr_t)&proc0);
831 }
832 /* END INLINE EXPANSION */
833 }
834 }
835 }
836 mtx_unlock_spin(&sched_lock);
837 splx(s);
838}
839
840/*
841 * The machine independent parts of mi_switch().
842 * Must be called at splstatclock() or higher.
843 */
844void
845mi_switch()
846{
847 struct timeval new_switchtime;
848 register struct proc *p = curproc; /* XXX */
849#if 0
850 register struct rlimit *rlim;
851#endif
852 u_int sched_nest;
853
854 mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
855
856 /*
857 * Compute the amount of time during which the current
858 * process was running, and add that to its total so far.
859 */
860 microuptime(&new_switchtime);
861 if (timevalcmp(&new_switchtime, PCPU_PTR(switchtime), <)) {
862#if 0
863 /* XXX: This doesn't play well with sched_lock right now. */
864 printf("microuptime() went backwards (%ld.%06ld -> %ld.%06ld)\n",
865 PCPU_GET(switchtime.tv_sec), PCPU_GET(switchtime.tv_usec),
866 new_switchtime.tv_sec, new_switchtime.tv_usec);
867#endif
868 new_switchtime = PCPU_GET(switchtime);
869 } else {
870 p->p_runtime += (new_switchtime.tv_usec - PCPU_GET(switchtime.tv_usec)) +
871 (new_switchtime.tv_sec - PCPU_GET(switchtime.tv_sec)) *
872 (int64_t)1000000;
873 }
874
875#if 0
876 /*
877 * Check if the process exceeds its cpu resource allocation.
878 * If over max, kill it.
879 *
880 * XXX drop sched_lock, pickup Giant
881 */
882 if (p->p_stat != SZOMB && p->p_limit->p_cpulimit != RLIM_INFINITY &&
883 p->p_runtime > p->p_limit->p_cpulimit) {
884 rlim = &p->p_rlimit[RLIMIT_CPU];
885 if (p->p_runtime / (rlim_t)1000000 >= rlim->rlim_max) {
886 mtx_unlock_spin(&sched_lock);
887 killproc(p, "exceeded maximum CPU limit");
888 mtx_lock_spin(&sched_lock);
889 } else {
890 mtx_unlock_spin(&sched_lock);
891 PROC_LOCK(p);
892 psignal(p, SIGXCPU);
893 mtx_lock_spin(&sched_lock);
894 PROC_UNLOCK_NOSWITCH(p);
895 if (rlim->rlim_cur < rlim->rlim_max) {
896 /* XXX: we should make a private copy */
897 rlim->rlim_cur += 5;
898 }
899 }
900 }
901#endif
902
903 /*
904 * Pick a new current process and record its start time.
905 */
906 cnt.v_swtch++;
907 PCPU_SET(switchtime, new_switchtime);
908 CTR4(KTR_PROC, "mi_switch: old proc %p (pid %d, %s), schedlock %p",
909 p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
910 sched_nest = sched_lock.mtx_recurse;
911 curproc->p_lastcpu = curproc->p_oncpu;
912 curproc->p_oncpu = NOCPU;
913 clear_resched();
914 cpu_switch();
915 curproc->p_oncpu = PCPU_GET(cpuid);
916 sched_lock.mtx_recurse = sched_nest;
917 sched_lock.mtx_lock = (uintptr_t)curproc;
918 CTR4(KTR_PROC, "mi_switch: new proc %p (pid %d, %s), schedlock %p",
919 p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
920 if (PCPU_GET(switchtime.tv_sec) == 0)
921 microuptime(PCPU_PTR(switchtime));
922 PCPU_SET(switchticks, ticks);
923}
924
925/*
926 * Change process state to be runnable,
927 * placing it on the run queue if it is in memory,
928 * and awakening the swapper if it isn't in memory.
929 */
930void
931setrunnable(p)
932 register struct proc *p;
933{
934 register int s;
935
936 s = splhigh();
937 mtx_lock_spin(&sched_lock);
938 switch (p->p_stat) {
939 case 0:
940 case SRUN:
941 case SZOMB:
942 case SWAIT:
943 default:
944 panic("setrunnable");
945 case SSTOP:
946 case SSLEEP: /* e.g. when sending signals */
947 if (p->p_sflag & PS_CVWAITQ)
948 cv_waitq_remove(p);
949 else
950 unsleep(p);
951 break;
952
953 case SIDL:
954 break;
955 }
956 p->p_stat = SRUN;
957 if (p->p_sflag & PS_INMEM)
958 setrunqueue(p);
959 splx(s);
960 if (p->p_slptime > 1)
961 updatepri(p);
962 p->p_slptime = 0;
963 if ((p->p_sflag & PS_INMEM) == 0) {
964 p->p_sflag |= PS_SWAPINREQ;
965 wakeup((caddr_t)&proc0);
966 }
967 else
968 maybe_resched(p);
969 mtx_unlock_spin(&sched_lock);
970}
971
972/*
973 * Compute the priority of a process when running in user mode.
974 * Arrange to reschedule if the resulting priority is better
975 * than that of the current process.
976 */
977void
978resetpriority(p)
979 register struct proc *p;
980{
981 register unsigned int newpriority;
982
983 mtx_lock_spin(&sched_lock);
984 if (p->p_pri.pri_class == PRI_TIMESHARE) {
985 newpriority = PUSER + p->p_estcpu / INVERSE_ESTCPU_WEIGHT +
986 NICE_WEIGHT * (p->p_nice - PRIO_MIN);
987 newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
988 PRI_MAX_TIMESHARE);
989 p->p_pri.pri_user = newpriority;
990 }
991 maybe_resched(p);
992 mtx_unlock_spin(&sched_lock);
993}
994
995/* ARGSUSED */
996static void
997sched_setup(dummy)
998 void *dummy;
999{
1000
1001 callout_init(&schedcpu_callout, 1);
1002 callout_init(&roundrobin_callout, 0);
1003
1004 /* Kick off timeout driven events by calling first time. */
1005 roundrobin(NULL);
1006 schedcpu(NULL);
1007}
1008
1009/*
1010 * We adjust the priority of the current process. The priority of
1011 * a process gets worse as it accumulates CPU time. The cpu usage
1012 * estimator (p_estcpu) is increased here. resetpriority() will
1013 * compute a different priority each time p_estcpu increases by
1014 * INVERSE_ESTCPU_WEIGHT
1015 * (until MAXPRI is reached). The cpu usage estimator ramps up
1016 * quite quickly when the process is running (linearly), and decays
1017 * away exponentially, at a rate which is proportionally slower when
1018 * the system is busy. The basic principle is that the system will
1019 * 90% forget that the process used a lot of CPU time in 5 * loadav
1020 * seconds. This causes the system to favor processes which haven't
1021 * run much recently, and to round-robin among other processes.
1022 */
1023void
1024schedclock(p)
1025 struct proc *p;
1026{
1027
1028 p->p_cpticks++;
1029 p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
1030 if ((p->p_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
1031 resetpriority(p);
1032 if (p->p_pri.pri_level >= PUSER)
1033 p->p_pri.pri_level = p->p_pri.pri_user;
1034 }
1035}
1036
1037/*
1038 * General purpose yield system call
1039 */
1040int
1041yield(struct proc *p, struct yield_args *uap)
1042{
1043 int s;
1044
1045 p->p_retval[0] = 0;
1046
1047 s = splhigh();
1048 mtx_lock_spin(&sched_lock);
1049 DROP_GIANT_NOSWITCH();
1050 p->p_pri.pri_level = PRI_MAX_TIMESHARE;
1051 setrunqueue(p);
1052 p->p_stats->p_ru.ru_nvcsw++;
1053 mi_switch();
1054 mtx_unlock_spin(&sched_lock);
1055 PICKUP_GIANT();
1056 splx(s);
1057
1058 return (0);
1059}