Deleted Added
full compact
kern_mutex.c (67548) kern_mutex.c (67676)
1/*-
2 * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * 3. Berkeley Software Design Inc's name may not be used to endorse or
13 * promote products derived from this software without specific prior
14 * written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29 * and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
1/*-
2 * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * 3. Berkeley Software Design Inc's name may not be used to endorse or
13 * promote products derived from this software without specific prior
14 * written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29 * and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30 * $FreeBSD: head/sys/kern/kern_mutex.c 67548 2000-10-25 04:37:54Z jhb $
30 * $FreeBSD: head/sys/kern/kern_mutex.c 67676 2000-10-27 02:59:30Z jhb $
31 */
32
33/*
34 * Main Entry: witness
35 * Pronunciation: 'wit-n&s
36 * Function: noun
37 * Etymology: Middle English witnesse, from Old English witnes knowledge,
38 * testimony, witness, from 2wit
39 * Date: before 12th century
40 * 1 : attestation of a fact or event : TESTIMONY
41 * 2 : one that gives evidence; specifically : one who testifies in
42 * a cause or before a judicial tribunal
43 * 3 : one asked to be present at a transaction so as to be able to
44 * testify to its having taken place
45 * 4 : one who has personal knowledge of something
46 * 5 a : something serving as evidence or proof : SIGN
47 * b : public affirmation by word or example of usually
48 * religious faith or conviction <the heroic witness to divine
49 * life -- Pilot>
50 * 6 capitalized : a member of the Jehovah's Witnesses
51 */
52
31 */
32
33/*
34 * Main Entry: witness
35 * Pronunciation: 'wit-n&s
36 * Function: noun
37 * Etymology: Middle English witnesse, from Old English witnes knowledge,
38 * testimony, witness, from 2wit
39 * Date: before 12th century
40 * 1 : attestation of a fact or event : TESTIMONY
41 * 2 : one that gives evidence; specifically : one who testifies in
42 * a cause or before a judicial tribunal
43 * 3 : one asked to be present at a transaction so as to be able to
44 * testify to its having taken place
45 * 4 : one who has personal knowledge of something
46 * 5 a : something serving as evidence or proof : SIGN
47 * b : public affirmation by word or example of usually
48 * religious faith or conviction <the heroic witness to divine
49 * life -- Pilot>
50 * 6 capitalized : a member of the Jehovah's Witnesses
51 */
52
53#include "opt_witness.h"
54
53#include <sys/param.h>
54#include <sys/bus.h>
55#include <sys/kernel.h>
56#include <sys/malloc.h>
57#include <sys/proc.h>
55#include <sys/param.h>
56#include <sys/bus.h>
57#include <sys/kernel.h>
58#include <sys/malloc.h>
59#include <sys/proc.h>
60#include <sys/sysctl.h>
58#include <sys/systm.h>
59#include <sys/vmmeter.h>
60#include <sys/ktr.h>
61
62#include <machine/atomic.h>
63#include <machine/bus.h>
64#include <machine/clock.h>
65#include <machine/cpu.h>
66
67#include <vm/vm.h>
68#include <vm/vm_extern.h>
69
70#define _KERN_MUTEX_C_ /* Cause non-inlined mtx_*() to be compiled. */
71#include <sys/mutex.h>
72
73/*
74 * Machine independent bits of the mutex implementation
75 */
76/* All mutexes in system (used for debug/panic) */
77#ifdef MUTEX_DEBUG
78static struct mtx_debug all_mtx_debug = { NULL, {NULL, NULL}, NULL, 0,
79 "All mutexes queue head" };
80static struct mtx all_mtx = { MTX_UNOWNED, 0, 0, &all_mtx_debug,
81 TAILQ_HEAD_INITIALIZER(all_mtx.mtx_blocked),
82 { NULL, NULL }, &all_mtx, &all_mtx };
83#else /* MUTEX_DEBUG */
84static struct mtx all_mtx = { MTX_UNOWNED, 0, 0, "All mutexes queue head",
85 TAILQ_HEAD_INITIALIZER(all_mtx.mtx_blocked),
86 { NULL, NULL }, &all_mtx, &all_mtx };
87#endif /* MUTEX_DEBUG */
88
89static int mtx_cur_cnt;
90static int mtx_max_cnt;
91
92void _mtx_enter_giant_def(void);
93void _mtx_exit_giant_def(void);
94static void propagate_priority(struct proc *) __unused;
95
96#define mtx_unowned(m) ((m)->mtx_lock == MTX_UNOWNED)
97#define mtx_owner(m) (mtx_unowned(m) ? NULL \
98 : (struct proc *)((m)->mtx_lock & MTX_FLAGMASK))
99
100#define RETIP(x) *(((uintptr_t *)(&x)) - 1)
101#define SET_PRIO(p, pri) (p)->p_priority = (pri)
102
103/*
104 * XXX Temporary, for use from assembly language
105 */
106
107void
108_mtx_enter_giant_def(void)
109{
110
111 mtx_enter(&Giant, MTX_DEF);
112}
113
114void
115_mtx_exit_giant_def(void)
116{
117
118 mtx_exit(&Giant, MTX_DEF);
119}
120
121static void
122propagate_priority(struct proc *p)
123{
124 int pri = p->p_priority;
125 struct mtx *m = p->p_blocked;
126
127 for (;;) {
128 struct proc *p1;
129
130 p = mtx_owner(m);
131
132 if (p == NULL) {
133 /*
134 * This really isn't quite right. Really
135 * ought to bump priority of process that
136 * next acquires the mutex.
137 */
138 MPASS(m->mtx_lock == MTX_CONTESTED);
139 return;
140 }
141 MPASS(p->p_magic == P_MAGIC);
142 if (p->p_priority <= pri)
143 return;
144 /*
145 * If lock holder is actually running, just bump priority.
146 */
147 if (TAILQ_NEXT(p, p_procq) == NULL) {
148 MPASS(p->p_stat == SRUN || p->p_stat == SZOMB);
149 SET_PRIO(p, pri);
150 return;
151 }
152 /*
153 * If on run queue move to new run queue, and
154 * quit.
155 */
156 if (p->p_stat == SRUN) {
157 MPASS(p->p_blocked == NULL);
158 remrunqueue(p);
159 SET_PRIO(p, pri);
160 setrunqueue(p);
161 return;
162 }
163
164 /*
165 * If we aren't blocked on a mutex, give up and quit.
166 */
167 if (p->p_stat != SMTX) {
168 printf(
169 "XXX: process %d(%s):%d holds %s but isn't blocked on a mutex\n",
170 p->p_pid, p->p_comm, p->p_stat, m->mtx_description);
171 return;
172 }
173
174 /*
175 * Pick up the mutex that p is blocked on.
176 */
177 m = p->p_blocked;
178 MPASS(m != NULL);
179
180 printf("XXX: process %d(%s) is blocked on %s\n", p->p_pid,
181 p->p_comm, m->mtx_description);
182 /*
183 * Check if the proc needs to be moved up on
184 * the blocked chain
185 */
186 if ((p1 = TAILQ_PREV(p, rq, p_procq)) == NULL ||
187 p1->p_priority <= pri) {
188 if (p1)
189 printf(
190 "XXX: previous process %d(%s) has higher priority\n",
191 p->p_pid, p->p_comm);
192 else
193 printf("XXX: process at head of run queue\n");
194 continue;
195 }
196
197 /*
198 * Remove proc from blocked chain
199 */
200 TAILQ_REMOVE(&m->mtx_blocked, p, p_procq);
201 TAILQ_FOREACH(p1, &m->mtx_blocked, p_procq) {
202 MPASS(p1->p_magic == P_MAGIC);
203 if (p1->p_priority > pri)
204 break;
205 }
206 if (p1)
207 TAILQ_INSERT_BEFORE(p1, p, p_procq);
208 else
209 TAILQ_INSERT_TAIL(&m->mtx_blocked, p, p_procq);
210 CTR4(KTR_LOCK,
211 "propagate priority: p 0x%p moved before 0x%p on [0x%p] %s",
212 p, p1, m, m->mtx_description);
213 }
214}
215
216void
217mtx_enter_hard(struct mtx *m, int type, int saveintr)
218{
219 struct proc *p = CURPROC;
220 struct timeval new_switchtime;
221
222 KASSERT(p != NULL, ("curproc is NULL in mutex"));
223
224 switch (type) {
225 case MTX_DEF:
226 if ((m->mtx_lock & MTX_FLAGMASK) == (uintptr_t)p) {
227 m->mtx_recurse++;
228 atomic_set_ptr(&m->mtx_lock, MTX_RECURSE);
229 CTR1(KTR_LOCK, "mtx_enter: 0x%p recurse", m);
230 return;
231 }
232 CTR3(KTR_LOCK, "mtx_enter: 0x%p contested (lock=%p) [0x%p]",
233 m, (void *)m->mtx_lock, (void *)RETIP(m));
234 while (!_obtain_lock(m, p)) {
235 uintptr_t v;
236 struct proc *p1;
237
238 mtx_enter(&sched_lock, MTX_SPIN | MTX_RLIKELY);
239 /*
240 * check if the lock has been released while
241 * waiting for the schedlock.
242 */
243 if ((v = m->mtx_lock) == MTX_UNOWNED) {
244 mtx_exit(&sched_lock, MTX_SPIN);
245 continue;
246 }
247 /*
248 * The mutex was marked contested on release. This
249 * means that there are processes blocked on it.
250 */
251 if (v == MTX_CONTESTED) {
252 p1 = TAILQ_FIRST(&m->mtx_blocked);
253 KASSERT(p1 != NULL, ("contested mutex has no contesters"));
254 KASSERT(p != NULL, ("curproc is NULL for contested mutex"));
255 m->mtx_lock = (uintptr_t)p | MTX_CONTESTED;
256 if (p1->p_priority < p->p_priority) {
257 SET_PRIO(p, p1->p_priority);
258 }
259 mtx_exit(&sched_lock, MTX_SPIN);
260 return;
261 }
262 /*
263 * If the mutex isn't already contested and
264 * a failure occurs setting the contested bit the
265 * mutex was either release or the
266 * state of the RECURSION bit changed.
267 */
268 if ((v & MTX_CONTESTED) == 0 &&
269 !atomic_cmpset_ptr(&m->mtx_lock, (void *)v,
270 (void *)(v | MTX_CONTESTED))) {
271 mtx_exit(&sched_lock, MTX_SPIN);
272 continue;
273 }
274
275 /* We definitely have to sleep for this lock */
276 mtx_assert(m, MA_NOTOWNED);
277
278#ifdef notyet
279 /*
280 * If we're borrowing an interrupted thread's VM
281 * context must clean up before going to sleep.
282 */
283 if (p->p_flag & (P_ITHD | P_SITHD)) {
284 ithd_t *it = (ithd_t *)p;
285
286 if (it->it_interrupted) {
287 CTR2(KTR_LOCK,
288 "mtx_enter: 0x%x interrupted 0x%x",
289 it, it->it_interrupted);
290 intr_thd_fixup(it);
291 }
292 }
293#endif
294
295 /* Put us on the list of procs blocked on this mutex */
296 if (TAILQ_EMPTY(&m->mtx_blocked)) {
297 p1 = (struct proc *)(m->mtx_lock &
298 MTX_FLAGMASK);
299 LIST_INSERT_HEAD(&p1->p_contested, m,
300 mtx_contested);
301 TAILQ_INSERT_TAIL(&m->mtx_blocked, p, p_procq);
302 } else {
303 TAILQ_FOREACH(p1, &m->mtx_blocked, p_procq)
304 if (p1->p_priority > p->p_priority)
305 break;
306 if (p1)
307 TAILQ_INSERT_BEFORE(p1, p, p_procq);
308 else
309 TAILQ_INSERT_TAIL(&m->mtx_blocked, p,
310 p_procq);
311 }
312
313 p->p_blocked = m; /* Who we're blocked on */
314 p->p_stat = SMTX;
315#if 0
316 propagate_priority(p);
317#endif
318 CTR3(KTR_LOCK, "mtx_enter: p 0x%p blocked on [0x%p] %s",
319 p, m, m->mtx_description);
320 /*
321 * Blatantly copied from mi_switch nearly verbatim.
322 * When Giant goes away and we stop dinking with it
323 * in mi_switch, we can go back to calling mi_switch
324 * directly here.
325 */
326
327 /*
328 * Compute the amount of time during which the current
329 * process was running, and add that to its total so
330 * far.
331 */
332 microuptime(&new_switchtime);
333 if (timevalcmp(&new_switchtime, &switchtime, <)) {
334 printf(
335 "microuptime() went backwards (%ld.%06ld -> %ld.%06ld)\n",
336 switchtime.tv_sec, switchtime.tv_usec,
337 new_switchtime.tv_sec,
338 new_switchtime.tv_usec);
339 new_switchtime = switchtime;
340 } else {
341 p->p_runtime += (new_switchtime.tv_usec -
342 switchtime.tv_usec) +
343 (new_switchtime.tv_sec - switchtime.tv_sec) *
344 (int64_t)1000000;
345 }
346
347 /*
348 * Pick a new current process and record its start time.
349 */
350 cnt.v_swtch++;
351 switchtime = new_switchtime;
352 cpu_switch();
353 if (switchtime.tv_sec == 0)
354 microuptime(&switchtime);
355 switchticks = ticks;
356 CTR3(KTR_LOCK,
357 "mtx_enter: p 0x%p free from blocked on [0x%p] %s",
358 p, m, m->mtx_description);
359 mtx_exit(&sched_lock, MTX_SPIN);
360 }
361 return;
362 case MTX_SPIN:
363 case MTX_SPIN | MTX_FIRST:
364 case MTX_SPIN | MTX_TOPHALF:
365 {
366 int i = 0;
367
368 if (m->mtx_lock == (uintptr_t)p) {
369 m->mtx_recurse++;
370 return;
371 }
372 CTR1(KTR_LOCK, "mtx_enter: %p spinning", m);
373 for (;;) {
374 if (_obtain_lock(m, p))
375 break;
376 while (m->mtx_lock != MTX_UNOWNED) {
377 if (i++ < 1000000)
378 continue;
379 if (i++ < 6000000)
380 DELAY (1);
381#ifdef DDB
382 else if (!db_active)
383#else
384 else
385#endif
386 panic(
387 "spin lock %s held by 0x%p for > 5 seconds",
388 m->mtx_description,
389 (void *)m->mtx_lock);
390 }
391 }
392
393#ifdef MUTEX_DEBUG
394 if (type != MTX_SPIN)
395 m->mtx_saveintr = 0xbeefface;
396 else
397#endif
398 m->mtx_saveintr = saveintr;
399 CTR1(KTR_LOCK, "mtx_enter: 0x%p spin done", m);
400 return;
401 }
402 }
403}
404
405void
406mtx_exit_hard(struct mtx *m, int type)
407{
408 struct proc *p, *p1;
409 struct mtx *m1;
410 int pri;
411
412 p = CURPROC;
413 switch (type) {
414 case MTX_DEF:
415 case MTX_DEF | MTX_NOSWITCH:
416 if (m->mtx_recurse != 0) {
417 if (--(m->mtx_recurse) == 0)
418 atomic_clear_ptr(&m->mtx_lock, MTX_RECURSE);
419 CTR1(KTR_LOCK, "mtx_exit: 0x%p unrecurse", m);
420 return;
421 }
422 mtx_enter(&sched_lock, MTX_SPIN);
423 CTR1(KTR_LOCK, "mtx_exit: 0x%p contested", m);
424 p1 = TAILQ_FIRST(&m->mtx_blocked);
425 MPASS(p->p_magic == P_MAGIC);
426 MPASS(p1->p_magic == P_MAGIC);
427 TAILQ_REMOVE(&m->mtx_blocked, p1, p_procq);
428 if (TAILQ_EMPTY(&m->mtx_blocked)) {
429 LIST_REMOVE(m, mtx_contested);
430 _release_lock_quick(m);
431 CTR1(KTR_LOCK, "mtx_exit: 0x%p not held", m);
432 } else
433 m->mtx_lock = MTX_CONTESTED;
434 pri = MAXPRI;
435 LIST_FOREACH(m1, &p->p_contested, mtx_contested) {
436 int cp = TAILQ_FIRST(&m1->mtx_blocked)->p_priority;
437 if (cp < pri)
438 pri = cp;
439 }
440 if (pri > p->p_nativepri)
441 pri = p->p_nativepri;
442 SET_PRIO(p, pri);
443 CTR2(KTR_LOCK, "mtx_exit: 0x%p contested setrunqueue 0x%p",
444 m, p1);
445 p1->p_blocked = NULL;
446 p1->p_stat = SRUN;
447 setrunqueue(p1);
448 if ((type & MTX_NOSWITCH) == 0 && p1->p_priority < pri) {
449#ifdef notyet
450 if (p->p_flag & (P_ITHD | P_SITHD)) {
451 ithd_t *it = (ithd_t *)p;
452
453 if (it->it_interrupted) {
454 CTR2(KTR_LOCK,
455 "mtx_exit: 0x%x interruped 0x%x",
456 it, it->it_interrupted);
457 intr_thd_fixup(it);
458 }
459 }
460#endif
461 setrunqueue(p);
462 CTR2(KTR_LOCK, "mtx_exit: 0x%p switching out lock=0x%p",
463 m, (void *)m->mtx_lock);
464 mi_switch();
465 CTR2(KTR_LOCK, "mtx_exit: 0x%p resuming lock=0x%p",
466 m, (void *)m->mtx_lock);
467 }
468 mtx_exit(&sched_lock, MTX_SPIN);
469 break;
470 case MTX_SPIN:
471 case MTX_SPIN | MTX_FIRST:
472 if (m->mtx_recurse != 0) {
473 m->mtx_recurse--;
474 return;
475 }
476 MPASS(mtx_owned(m));
477 _release_lock_quick(m);
478 if (type & MTX_FIRST)
479 enable_intr(); /* XXX is this kosher? */
480 else {
481 MPASS(m->mtx_saveintr != 0xbeefface);
482 restore_intr(m->mtx_saveintr);
483 }
484 break;
485 case MTX_SPIN | MTX_TOPHALF:
486 if (m->mtx_recurse != 0) {
487 m->mtx_recurse--;
488 return;
489 }
490 MPASS(mtx_owned(m));
491 _release_lock_quick(m);
492 break;
493 default:
494 panic("mtx_exit_hard: unsupported type 0x%x\n", type);
495 }
496}
497
498#define MV_DESTROY 0 /* validate before destory */
499#define MV_INIT 1 /* validate before init */
500
501#ifdef MUTEX_DEBUG
502
503int mtx_validate __P((struct mtx *, int));
504
505int
506mtx_validate(struct mtx *m, int when)
507{
508 struct mtx *mp;
509 int i;
510 int retval = 0;
511
512 if (m == &all_mtx || cold)
513 return 0;
514
515 mtx_enter(&all_mtx, MTX_DEF);
516/*
517 * XXX - When kernacc() is fixed on the alpha to handle K0_SEG memory properly
518 * we can re-enable the kernacc() checks.
519 */
520#ifndef __alpha__
521 MPASS(kernacc((caddr_t)all_mtx.mtx_next, sizeof(uintptr_t),
522 VM_PROT_READ) == 1);
523#endif
524 MPASS(all_mtx.mtx_next->mtx_prev == &all_mtx);
525 for (i = 0, mp = all_mtx.mtx_next; mp != &all_mtx; mp = mp->mtx_next) {
526#ifndef __alpha__
527 if (kernacc((caddr_t)mp->mtx_next, sizeof(uintptr_t),
528 VM_PROT_READ) != 1) {
529 panic("mtx_validate: mp=%p mp->mtx_next=%p",
530 mp, mp->mtx_next);
531 }
532#endif
533 i++;
534 if (i > mtx_cur_cnt) {
535 panic("mtx_validate: too many in chain, known=%d\n",
536 mtx_cur_cnt);
537 }
538 }
539 MPASS(i == mtx_cur_cnt);
540 switch (when) {
541 case MV_DESTROY:
542 for (mp = all_mtx.mtx_next; mp != &all_mtx; mp = mp->mtx_next)
543 if (mp == m)
544 break;
545 MPASS(mp == m);
546 break;
547 case MV_INIT:
548 for (mp = all_mtx.mtx_next; mp != &all_mtx; mp = mp->mtx_next)
549 if (mp == m) {
550 /*
551 * Not good. This mutex already exists.
552 */
553 printf("re-initing existing mutex %s\n",
554 m->mtx_description);
555 MPASS(m->mtx_lock == MTX_UNOWNED);
556 retval = 1;
557 }
558 }
559 mtx_exit(&all_mtx, MTX_DEF);
560 return (retval);
561}
562#endif
563
564void
565mtx_init(struct mtx *m, const char *t, int flag)
566{
567#ifdef MUTEX_DEBUG
568 struct mtx_debug *debug;
569#endif
570
571 CTR2(KTR_LOCK, "mtx_init 0x%p (%s)", m, t);
572#ifdef MUTEX_DEBUG
573 if (mtx_validate(m, MV_INIT)) /* diagnostic and error correction */
574 return;
575 if (flag & MTX_COLD)
576 debug = m->mtx_debug;
577 else
578 debug = NULL;
579 if (debug == NULL) {
580#ifdef DIAGNOSTIC
581 if(cold && bootverbose)
582 printf("malloc'ing mtx_debug while cold for %s\n", t);
583#endif
584
585 /* XXX - should not use DEVBUF */
586 debug = malloc(sizeof(struct mtx_debug), M_DEVBUF, M_NOWAIT);
587 MPASS(debug != NULL);
588 bzero(debug, sizeof(struct mtx_debug));
589 }
590#endif
591 bzero((void *)m, sizeof *m);
592 TAILQ_INIT(&m->mtx_blocked);
593#ifdef MUTEX_DEBUG
594 m->mtx_debug = debug;
595#endif
596 m->mtx_description = t;
597 m->mtx_lock = MTX_UNOWNED;
598 /* Put on all mutex queue */
599 mtx_enter(&all_mtx, MTX_DEF);
600 m->mtx_next = &all_mtx;
601 m->mtx_prev = all_mtx.mtx_prev;
602 m->mtx_prev->mtx_next = m;
603 all_mtx.mtx_prev = m;
604 if (++mtx_cur_cnt > mtx_max_cnt)
605 mtx_max_cnt = mtx_cur_cnt;
606 mtx_exit(&all_mtx, MTX_DEF);
607 witness_init(m, flag);
608}
609
610void
611mtx_destroy(struct mtx *m)
612{
613
614 CTR2(KTR_LOCK, "mtx_destroy 0x%p (%s)", m, m->mtx_description);
615#ifdef MUTEX_DEBUG
616 if (m->mtx_next == NULL)
617 panic("mtx_destroy: %p (%s) already destroyed",
618 m, m->mtx_description);
619
620 if (!mtx_owned(m)) {
621 MPASS(m->mtx_lock == MTX_UNOWNED);
622 } else {
623 MPASS((m->mtx_lock & (MTX_RECURSE|MTX_CONTESTED)) == 0);
624 }
625 mtx_validate(m, MV_DESTROY); /* diagnostic */
626#endif
627
628#ifdef WITNESS
629 if (m->mtx_witness)
630 witness_destroy(m);
631#endif /* WITNESS */
632
633 /* Remove from the all mutex queue */
634 mtx_enter(&all_mtx, MTX_DEF);
635 m->mtx_next->mtx_prev = m->mtx_prev;
636 m->mtx_prev->mtx_next = m->mtx_next;
637#ifdef MUTEX_DEBUG
638 m->mtx_next = m->mtx_prev = NULL;
639 free(m->mtx_debug, M_DEVBUF);
640 m->mtx_debug = NULL;
641#endif
642 mtx_cur_cnt--;
643 mtx_exit(&all_mtx, MTX_DEF);
644}
645
646/*
647 * The non-inlined versions of the mtx_*() functions are always built (above),
648 * but the witness code depends on the MUTEX_DEBUG and WITNESS kernel options
649 * being specified.
650 */
651#if (defined(MUTEX_DEBUG) && defined(WITNESS))
652
653#define WITNESS_COUNT 200
654#define WITNESS_NCHILDREN 2
655
656#ifndef SMP
657extern int witness_spin_check;
658#endif
659
660int witness_watch = 1;
661
662struct witness {
663 struct witness *w_next;
664 const char *w_description;
665 const char *w_file;
666 int w_line;
667 struct witness *w_morechildren;
668 u_char w_childcnt;
669 u_char w_Giant_squawked:1;
670 u_char w_other_squawked:1;
671 u_char w_same_squawked:1;
672 u_char w_sleep:1;
673 u_char w_spin:1; /* this is a spin mutex */
674 u_int w_level;
675 struct witness *w_children[WITNESS_NCHILDREN];
676};
677
678struct witness_blessed {
679 char *b_lock1;
680 char *b_lock2;
681};
682
61#include <sys/systm.h>
62#include <sys/vmmeter.h>
63#include <sys/ktr.h>
64
65#include <machine/atomic.h>
66#include <machine/bus.h>
67#include <machine/clock.h>
68#include <machine/cpu.h>
69
70#include <vm/vm.h>
71#include <vm/vm_extern.h>
72
73#define _KERN_MUTEX_C_ /* Cause non-inlined mtx_*() to be compiled. */
74#include <sys/mutex.h>
75
76/*
77 * Machine independent bits of the mutex implementation
78 */
79/* All mutexes in system (used for debug/panic) */
80#ifdef MUTEX_DEBUG
81static struct mtx_debug all_mtx_debug = { NULL, {NULL, NULL}, NULL, 0,
82 "All mutexes queue head" };
83static struct mtx all_mtx = { MTX_UNOWNED, 0, 0, &all_mtx_debug,
84 TAILQ_HEAD_INITIALIZER(all_mtx.mtx_blocked),
85 { NULL, NULL }, &all_mtx, &all_mtx };
86#else /* MUTEX_DEBUG */
87static struct mtx all_mtx = { MTX_UNOWNED, 0, 0, "All mutexes queue head",
88 TAILQ_HEAD_INITIALIZER(all_mtx.mtx_blocked),
89 { NULL, NULL }, &all_mtx, &all_mtx };
90#endif /* MUTEX_DEBUG */
91
92static int mtx_cur_cnt;
93static int mtx_max_cnt;
94
95void _mtx_enter_giant_def(void);
96void _mtx_exit_giant_def(void);
97static void propagate_priority(struct proc *) __unused;
98
99#define mtx_unowned(m) ((m)->mtx_lock == MTX_UNOWNED)
100#define mtx_owner(m) (mtx_unowned(m) ? NULL \
101 : (struct proc *)((m)->mtx_lock & MTX_FLAGMASK))
102
103#define RETIP(x) *(((uintptr_t *)(&x)) - 1)
104#define SET_PRIO(p, pri) (p)->p_priority = (pri)
105
106/*
107 * XXX Temporary, for use from assembly language
108 */
109
110void
111_mtx_enter_giant_def(void)
112{
113
114 mtx_enter(&Giant, MTX_DEF);
115}
116
117void
118_mtx_exit_giant_def(void)
119{
120
121 mtx_exit(&Giant, MTX_DEF);
122}
123
124static void
125propagate_priority(struct proc *p)
126{
127 int pri = p->p_priority;
128 struct mtx *m = p->p_blocked;
129
130 for (;;) {
131 struct proc *p1;
132
133 p = mtx_owner(m);
134
135 if (p == NULL) {
136 /*
137 * This really isn't quite right. Really
138 * ought to bump priority of process that
139 * next acquires the mutex.
140 */
141 MPASS(m->mtx_lock == MTX_CONTESTED);
142 return;
143 }
144 MPASS(p->p_magic == P_MAGIC);
145 if (p->p_priority <= pri)
146 return;
147 /*
148 * If lock holder is actually running, just bump priority.
149 */
150 if (TAILQ_NEXT(p, p_procq) == NULL) {
151 MPASS(p->p_stat == SRUN || p->p_stat == SZOMB);
152 SET_PRIO(p, pri);
153 return;
154 }
155 /*
156 * If on run queue move to new run queue, and
157 * quit.
158 */
159 if (p->p_stat == SRUN) {
160 MPASS(p->p_blocked == NULL);
161 remrunqueue(p);
162 SET_PRIO(p, pri);
163 setrunqueue(p);
164 return;
165 }
166
167 /*
168 * If we aren't blocked on a mutex, give up and quit.
169 */
170 if (p->p_stat != SMTX) {
171 printf(
172 "XXX: process %d(%s):%d holds %s but isn't blocked on a mutex\n",
173 p->p_pid, p->p_comm, p->p_stat, m->mtx_description);
174 return;
175 }
176
177 /*
178 * Pick up the mutex that p is blocked on.
179 */
180 m = p->p_blocked;
181 MPASS(m != NULL);
182
183 printf("XXX: process %d(%s) is blocked on %s\n", p->p_pid,
184 p->p_comm, m->mtx_description);
185 /*
186 * Check if the proc needs to be moved up on
187 * the blocked chain
188 */
189 if ((p1 = TAILQ_PREV(p, rq, p_procq)) == NULL ||
190 p1->p_priority <= pri) {
191 if (p1)
192 printf(
193 "XXX: previous process %d(%s) has higher priority\n",
194 p->p_pid, p->p_comm);
195 else
196 printf("XXX: process at head of run queue\n");
197 continue;
198 }
199
200 /*
201 * Remove proc from blocked chain
202 */
203 TAILQ_REMOVE(&m->mtx_blocked, p, p_procq);
204 TAILQ_FOREACH(p1, &m->mtx_blocked, p_procq) {
205 MPASS(p1->p_magic == P_MAGIC);
206 if (p1->p_priority > pri)
207 break;
208 }
209 if (p1)
210 TAILQ_INSERT_BEFORE(p1, p, p_procq);
211 else
212 TAILQ_INSERT_TAIL(&m->mtx_blocked, p, p_procq);
213 CTR4(KTR_LOCK,
214 "propagate priority: p 0x%p moved before 0x%p on [0x%p] %s",
215 p, p1, m, m->mtx_description);
216 }
217}
218
219void
220mtx_enter_hard(struct mtx *m, int type, int saveintr)
221{
222 struct proc *p = CURPROC;
223 struct timeval new_switchtime;
224
225 KASSERT(p != NULL, ("curproc is NULL in mutex"));
226
227 switch (type) {
228 case MTX_DEF:
229 if ((m->mtx_lock & MTX_FLAGMASK) == (uintptr_t)p) {
230 m->mtx_recurse++;
231 atomic_set_ptr(&m->mtx_lock, MTX_RECURSE);
232 CTR1(KTR_LOCK, "mtx_enter: 0x%p recurse", m);
233 return;
234 }
235 CTR3(KTR_LOCK, "mtx_enter: 0x%p contested (lock=%p) [0x%p]",
236 m, (void *)m->mtx_lock, (void *)RETIP(m));
237 while (!_obtain_lock(m, p)) {
238 uintptr_t v;
239 struct proc *p1;
240
241 mtx_enter(&sched_lock, MTX_SPIN | MTX_RLIKELY);
242 /*
243 * check if the lock has been released while
244 * waiting for the schedlock.
245 */
246 if ((v = m->mtx_lock) == MTX_UNOWNED) {
247 mtx_exit(&sched_lock, MTX_SPIN);
248 continue;
249 }
250 /*
251 * The mutex was marked contested on release. This
252 * means that there are processes blocked on it.
253 */
254 if (v == MTX_CONTESTED) {
255 p1 = TAILQ_FIRST(&m->mtx_blocked);
256 KASSERT(p1 != NULL, ("contested mutex has no contesters"));
257 KASSERT(p != NULL, ("curproc is NULL for contested mutex"));
258 m->mtx_lock = (uintptr_t)p | MTX_CONTESTED;
259 if (p1->p_priority < p->p_priority) {
260 SET_PRIO(p, p1->p_priority);
261 }
262 mtx_exit(&sched_lock, MTX_SPIN);
263 return;
264 }
265 /*
266 * If the mutex isn't already contested and
267 * a failure occurs setting the contested bit the
268 * mutex was either release or the
269 * state of the RECURSION bit changed.
270 */
271 if ((v & MTX_CONTESTED) == 0 &&
272 !atomic_cmpset_ptr(&m->mtx_lock, (void *)v,
273 (void *)(v | MTX_CONTESTED))) {
274 mtx_exit(&sched_lock, MTX_SPIN);
275 continue;
276 }
277
278 /* We definitely have to sleep for this lock */
279 mtx_assert(m, MA_NOTOWNED);
280
281#ifdef notyet
282 /*
283 * If we're borrowing an interrupted thread's VM
284 * context must clean up before going to sleep.
285 */
286 if (p->p_flag & (P_ITHD | P_SITHD)) {
287 ithd_t *it = (ithd_t *)p;
288
289 if (it->it_interrupted) {
290 CTR2(KTR_LOCK,
291 "mtx_enter: 0x%x interrupted 0x%x",
292 it, it->it_interrupted);
293 intr_thd_fixup(it);
294 }
295 }
296#endif
297
298 /* Put us on the list of procs blocked on this mutex */
299 if (TAILQ_EMPTY(&m->mtx_blocked)) {
300 p1 = (struct proc *)(m->mtx_lock &
301 MTX_FLAGMASK);
302 LIST_INSERT_HEAD(&p1->p_contested, m,
303 mtx_contested);
304 TAILQ_INSERT_TAIL(&m->mtx_blocked, p, p_procq);
305 } else {
306 TAILQ_FOREACH(p1, &m->mtx_blocked, p_procq)
307 if (p1->p_priority > p->p_priority)
308 break;
309 if (p1)
310 TAILQ_INSERT_BEFORE(p1, p, p_procq);
311 else
312 TAILQ_INSERT_TAIL(&m->mtx_blocked, p,
313 p_procq);
314 }
315
316 p->p_blocked = m; /* Who we're blocked on */
317 p->p_stat = SMTX;
318#if 0
319 propagate_priority(p);
320#endif
321 CTR3(KTR_LOCK, "mtx_enter: p 0x%p blocked on [0x%p] %s",
322 p, m, m->mtx_description);
323 /*
324 * Blatantly copied from mi_switch nearly verbatim.
325 * When Giant goes away and we stop dinking with it
326 * in mi_switch, we can go back to calling mi_switch
327 * directly here.
328 */
329
330 /*
331 * Compute the amount of time during which the current
332 * process was running, and add that to its total so
333 * far.
334 */
335 microuptime(&new_switchtime);
336 if (timevalcmp(&new_switchtime, &switchtime, <)) {
337 printf(
338 "microuptime() went backwards (%ld.%06ld -> %ld.%06ld)\n",
339 switchtime.tv_sec, switchtime.tv_usec,
340 new_switchtime.tv_sec,
341 new_switchtime.tv_usec);
342 new_switchtime = switchtime;
343 } else {
344 p->p_runtime += (new_switchtime.tv_usec -
345 switchtime.tv_usec) +
346 (new_switchtime.tv_sec - switchtime.tv_sec) *
347 (int64_t)1000000;
348 }
349
350 /*
351 * Pick a new current process and record its start time.
352 */
353 cnt.v_swtch++;
354 switchtime = new_switchtime;
355 cpu_switch();
356 if (switchtime.tv_sec == 0)
357 microuptime(&switchtime);
358 switchticks = ticks;
359 CTR3(KTR_LOCK,
360 "mtx_enter: p 0x%p free from blocked on [0x%p] %s",
361 p, m, m->mtx_description);
362 mtx_exit(&sched_lock, MTX_SPIN);
363 }
364 return;
365 case MTX_SPIN:
366 case MTX_SPIN | MTX_FIRST:
367 case MTX_SPIN | MTX_TOPHALF:
368 {
369 int i = 0;
370
371 if (m->mtx_lock == (uintptr_t)p) {
372 m->mtx_recurse++;
373 return;
374 }
375 CTR1(KTR_LOCK, "mtx_enter: %p spinning", m);
376 for (;;) {
377 if (_obtain_lock(m, p))
378 break;
379 while (m->mtx_lock != MTX_UNOWNED) {
380 if (i++ < 1000000)
381 continue;
382 if (i++ < 6000000)
383 DELAY (1);
384#ifdef DDB
385 else if (!db_active)
386#else
387 else
388#endif
389 panic(
390 "spin lock %s held by 0x%p for > 5 seconds",
391 m->mtx_description,
392 (void *)m->mtx_lock);
393 }
394 }
395
396#ifdef MUTEX_DEBUG
397 if (type != MTX_SPIN)
398 m->mtx_saveintr = 0xbeefface;
399 else
400#endif
401 m->mtx_saveintr = saveintr;
402 CTR1(KTR_LOCK, "mtx_enter: 0x%p spin done", m);
403 return;
404 }
405 }
406}
407
408void
409mtx_exit_hard(struct mtx *m, int type)
410{
411 struct proc *p, *p1;
412 struct mtx *m1;
413 int pri;
414
415 p = CURPROC;
416 switch (type) {
417 case MTX_DEF:
418 case MTX_DEF | MTX_NOSWITCH:
419 if (m->mtx_recurse != 0) {
420 if (--(m->mtx_recurse) == 0)
421 atomic_clear_ptr(&m->mtx_lock, MTX_RECURSE);
422 CTR1(KTR_LOCK, "mtx_exit: 0x%p unrecurse", m);
423 return;
424 }
425 mtx_enter(&sched_lock, MTX_SPIN);
426 CTR1(KTR_LOCK, "mtx_exit: 0x%p contested", m);
427 p1 = TAILQ_FIRST(&m->mtx_blocked);
428 MPASS(p->p_magic == P_MAGIC);
429 MPASS(p1->p_magic == P_MAGIC);
430 TAILQ_REMOVE(&m->mtx_blocked, p1, p_procq);
431 if (TAILQ_EMPTY(&m->mtx_blocked)) {
432 LIST_REMOVE(m, mtx_contested);
433 _release_lock_quick(m);
434 CTR1(KTR_LOCK, "mtx_exit: 0x%p not held", m);
435 } else
436 m->mtx_lock = MTX_CONTESTED;
437 pri = MAXPRI;
438 LIST_FOREACH(m1, &p->p_contested, mtx_contested) {
439 int cp = TAILQ_FIRST(&m1->mtx_blocked)->p_priority;
440 if (cp < pri)
441 pri = cp;
442 }
443 if (pri > p->p_nativepri)
444 pri = p->p_nativepri;
445 SET_PRIO(p, pri);
446 CTR2(KTR_LOCK, "mtx_exit: 0x%p contested setrunqueue 0x%p",
447 m, p1);
448 p1->p_blocked = NULL;
449 p1->p_stat = SRUN;
450 setrunqueue(p1);
451 if ((type & MTX_NOSWITCH) == 0 && p1->p_priority < pri) {
452#ifdef notyet
453 if (p->p_flag & (P_ITHD | P_SITHD)) {
454 ithd_t *it = (ithd_t *)p;
455
456 if (it->it_interrupted) {
457 CTR2(KTR_LOCK,
458 "mtx_exit: 0x%x interruped 0x%x",
459 it, it->it_interrupted);
460 intr_thd_fixup(it);
461 }
462 }
463#endif
464 setrunqueue(p);
465 CTR2(KTR_LOCK, "mtx_exit: 0x%p switching out lock=0x%p",
466 m, (void *)m->mtx_lock);
467 mi_switch();
468 CTR2(KTR_LOCK, "mtx_exit: 0x%p resuming lock=0x%p",
469 m, (void *)m->mtx_lock);
470 }
471 mtx_exit(&sched_lock, MTX_SPIN);
472 break;
473 case MTX_SPIN:
474 case MTX_SPIN | MTX_FIRST:
475 if (m->mtx_recurse != 0) {
476 m->mtx_recurse--;
477 return;
478 }
479 MPASS(mtx_owned(m));
480 _release_lock_quick(m);
481 if (type & MTX_FIRST)
482 enable_intr(); /* XXX is this kosher? */
483 else {
484 MPASS(m->mtx_saveintr != 0xbeefface);
485 restore_intr(m->mtx_saveintr);
486 }
487 break;
488 case MTX_SPIN | MTX_TOPHALF:
489 if (m->mtx_recurse != 0) {
490 m->mtx_recurse--;
491 return;
492 }
493 MPASS(mtx_owned(m));
494 _release_lock_quick(m);
495 break;
496 default:
497 panic("mtx_exit_hard: unsupported type 0x%x\n", type);
498 }
499}
500
501#define MV_DESTROY 0 /* validate before destory */
502#define MV_INIT 1 /* validate before init */
503
504#ifdef MUTEX_DEBUG
505
506int mtx_validate __P((struct mtx *, int));
507
508int
509mtx_validate(struct mtx *m, int when)
510{
511 struct mtx *mp;
512 int i;
513 int retval = 0;
514
515 if (m == &all_mtx || cold)
516 return 0;
517
518 mtx_enter(&all_mtx, MTX_DEF);
519/*
520 * XXX - When kernacc() is fixed on the alpha to handle K0_SEG memory properly
521 * we can re-enable the kernacc() checks.
522 */
523#ifndef __alpha__
524 MPASS(kernacc((caddr_t)all_mtx.mtx_next, sizeof(uintptr_t),
525 VM_PROT_READ) == 1);
526#endif
527 MPASS(all_mtx.mtx_next->mtx_prev == &all_mtx);
528 for (i = 0, mp = all_mtx.mtx_next; mp != &all_mtx; mp = mp->mtx_next) {
529#ifndef __alpha__
530 if (kernacc((caddr_t)mp->mtx_next, sizeof(uintptr_t),
531 VM_PROT_READ) != 1) {
532 panic("mtx_validate: mp=%p mp->mtx_next=%p",
533 mp, mp->mtx_next);
534 }
535#endif
536 i++;
537 if (i > mtx_cur_cnt) {
538 panic("mtx_validate: too many in chain, known=%d\n",
539 mtx_cur_cnt);
540 }
541 }
542 MPASS(i == mtx_cur_cnt);
543 switch (when) {
544 case MV_DESTROY:
545 for (mp = all_mtx.mtx_next; mp != &all_mtx; mp = mp->mtx_next)
546 if (mp == m)
547 break;
548 MPASS(mp == m);
549 break;
550 case MV_INIT:
551 for (mp = all_mtx.mtx_next; mp != &all_mtx; mp = mp->mtx_next)
552 if (mp == m) {
553 /*
554 * Not good. This mutex already exists.
555 */
556 printf("re-initing existing mutex %s\n",
557 m->mtx_description);
558 MPASS(m->mtx_lock == MTX_UNOWNED);
559 retval = 1;
560 }
561 }
562 mtx_exit(&all_mtx, MTX_DEF);
563 return (retval);
564}
565#endif
566
567void
568mtx_init(struct mtx *m, const char *t, int flag)
569{
570#ifdef MUTEX_DEBUG
571 struct mtx_debug *debug;
572#endif
573
574 CTR2(KTR_LOCK, "mtx_init 0x%p (%s)", m, t);
575#ifdef MUTEX_DEBUG
576 if (mtx_validate(m, MV_INIT)) /* diagnostic and error correction */
577 return;
578 if (flag & MTX_COLD)
579 debug = m->mtx_debug;
580 else
581 debug = NULL;
582 if (debug == NULL) {
583#ifdef DIAGNOSTIC
584 if(cold && bootverbose)
585 printf("malloc'ing mtx_debug while cold for %s\n", t);
586#endif
587
588 /* XXX - should not use DEVBUF */
589 debug = malloc(sizeof(struct mtx_debug), M_DEVBUF, M_NOWAIT);
590 MPASS(debug != NULL);
591 bzero(debug, sizeof(struct mtx_debug));
592 }
593#endif
594 bzero((void *)m, sizeof *m);
595 TAILQ_INIT(&m->mtx_blocked);
596#ifdef MUTEX_DEBUG
597 m->mtx_debug = debug;
598#endif
599 m->mtx_description = t;
600 m->mtx_lock = MTX_UNOWNED;
601 /* Put on all mutex queue */
602 mtx_enter(&all_mtx, MTX_DEF);
603 m->mtx_next = &all_mtx;
604 m->mtx_prev = all_mtx.mtx_prev;
605 m->mtx_prev->mtx_next = m;
606 all_mtx.mtx_prev = m;
607 if (++mtx_cur_cnt > mtx_max_cnt)
608 mtx_max_cnt = mtx_cur_cnt;
609 mtx_exit(&all_mtx, MTX_DEF);
610 witness_init(m, flag);
611}
612
613void
614mtx_destroy(struct mtx *m)
615{
616
617 CTR2(KTR_LOCK, "mtx_destroy 0x%p (%s)", m, m->mtx_description);
618#ifdef MUTEX_DEBUG
619 if (m->mtx_next == NULL)
620 panic("mtx_destroy: %p (%s) already destroyed",
621 m, m->mtx_description);
622
623 if (!mtx_owned(m)) {
624 MPASS(m->mtx_lock == MTX_UNOWNED);
625 } else {
626 MPASS((m->mtx_lock & (MTX_RECURSE|MTX_CONTESTED)) == 0);
627 }
628 mtx_validate(m, MV_DESTROY); /* diagnostic */
629#endif
630
631#ifdef WITNESS
632 if (m->mtx_witness)
633 witness_destroy(m);
634#endif /* WITNESS */
635
636 /* Remove from the all mutex queue */
637 mtx_enter(&all_mtx, MTX_DEF);
638 m->mtx_next->mtx_prev = m->mtx_prev;
639 m->mtx_prev->mtx_next = m->mtx_next;
640#ifdef MUTEX_DEBUG
641 m->mtx_next = m->mtx_prev = NULL;
642 free(m->mtx_debug, M_DEVBUF);
643 m->mtx_debug = NULL;
644#endif
645 mtx_cur_cnt--;
646 mtx_exit(&all_mtx, MTX_DEF);
647}
648
649/*
650 * The non-inlined versions of the mtx_*() functions are always built (above),
651 * but the witness code depends on the MUTEX_DEBUG and WITNESS kernel options
652 * being specified.
653 */
654#if (defined(MUTEX_DEBUG) && defined(WITNESS))
655
656#define WITNESS_COUNT 200
657#define WITNESS_NCHILDREN 2
658
659#ifndef SMP
660extern int witness_spin_check;
661#endif
662
663int witness_watch = 1;
664
665struct witness {
666 struct witness *w_next;
667 const char *w_description;
668 const char *w_file;
669 int w_line;
670 struct witness *w_morechildren;
671 u_char w_childcnt;
672 u_char w_Giant_squawked:1;
673 u_char w_other_squawked:1;
674 u_char w_same_squawked:1;
675 u_char w_sleep:1;
676 u_char w_spin:1; /* this is a spin mutex */
677 u_int w_level;
678 struct witness *w_children[WITNESS_NCHILDREN];
679};
680
681struct witness_blessed {
682 char *b_lock1;
683 char *b_lock2;
684};
685
683#ifdef KDEBUG
686#ifdef DDB
684/*
687/*
685 * When WITNESS_KDEBUG is set to 1, it will cause the system to
688 * When DDB is enabled and witness_ddb is set to 1, it will cause the system to
686 * drop into kdebug() when:
687 * - a lock heirarchy violation occurs
688 * - locks are held when going to sleep.
689 */
689 * drop into kdebug() when:
690 * - a lock heirarchy violation occurs
691 * - locks are held when going to sleep.
692 */
690#ifndef WITNESS_KDEBUG
691#define WITNESS_KDEBUG 0
693#ifdef WITNESS_DDB
694int witness_ddb = 1;
695#else
696int witness_ddb = 0;
692#endif
697#endif
693int witness_kdebug = WITNESS_KDEBUG;
694#endif /* KDEBUG */
698SYSCTL_INT(_debug, OID_AUTO, witness_ddb, CTLFLAG_RW, &witness_ddb, 0, "");
699#endif /* DDB */
695
700
696#ifndef WITNESS_SKIPSPIN
697#define WITNESS_SKIPSPIN 0
701#ifdef WITNESS_SKIPSPIN
702int witness_skipspin = 1;
703#else
704int witness_skipspin = 0;
698#endif
705#endif
699int witness_skipspin = WITNESS_SKIPSPIN;
706SYSCTL_INT(_debug, OID_AUTO, witness_skipspin, CTLFLAG_RD, &witness_skipspin, 0,
707 "");
700
708
701
702static struct mtx w_mtx;
709MUTEX_DECLARE(static,w_mtx);
703static struct witness *w_free;
704static struct witness *w_all;
705static int w_inited;
706static int witness_dead; /* fatal error, probably no memory */
707
708static struct witness w_data[WITNESS_COUNT];
709
710static struct witness *enroll __P((const char *description, int flag));
711static int itismychild __P((struct witness *parent, struct witness *child));
712static void removechild __P((struct witness *parent, struct witness *child));
713static int isitmychild __P((struct witness *parent, struct witness *child));
714static int isitmydescendant __P((struct witness *parent, struct witness *child));
715static int dup_ok __P((struct witness *));
716static int blessed __P((struct witness *, struct witness *));
717static void witness_displaydescendants
718 __P((void(*)(const char *fmt, ...), struct witness *));
719static void witness_leveldescendents __P((struct witness *parent, int level));
720static void witness_levelall __P((void));
721static struct witness * witness_get __P((void));
722static void witness_free __P((struct witness *m));
723
724
725static char *ignore_list[] = {
726 "witness lock",
710static struct witness *w_free;
711static struct witness *w_all;
712static int w_inited;
713static int witness_dead; /* fatal error, probably no memory */
714
715static struct witness w_data[WITNESS_COUNT];
716
717static struct witness *enroll __P((const char *description, int flag));
718static int itismychild __P((struct witness *parent, struct witness *child));
719static void removechild __P((struct witness *parent, struct witness *child));
720static int isitmychild __P((struct witness *parent, struct witness *child));
721static int isitmydescendant __P((struct witness *parent, struct witness *child));
722static int dup_ok __P((struct witness *));
723static int blessed __P((struct witness *, struct witness *));
724static void witness_displaydescendants
725 __P((void(*)(const char *fmt, ...), struct witness *));
726static void witness_leveldescendents __P((struct witness *parent, int level));
727static void witness_levelall __P((void));
728static struct witness * witness_get __P((void));
729static void witness_free __P((struct witness *m));
730
731
732static char *ignore_list[] = {
733 "witness lock",
727 "Kdebug", /* breaks rules and may or may not work */
728 "Page Alias", /* sparc only, witness lock won't block intr */
729 NULL
730};
731
732static char *spin_order_list[] = {
733 "sched lock",
734 NULL
735};
736
737static char *spin_order_list[] = {
738 "sched lock",
734 "log mtx",
735 "zslock", /* sparc only above log, this one is a real hack */
736 "time lock", /* above callout */
737 "callout mtx", /* above wayout */
739 "clk",
740 "sio",
738 /*
739 * leaf locks
740 */
741 /*
742 * leaf locks
743 */
741 "wayout mtx",
742 "kernel_pmap", /* sparc only, logically equal "pmap" below */
743 "pmap", /* sparc only */
744 NULL
745};
746
747static char *order_list[] = {
744 NULL
745};
746
747static char *order_list[] = {
748 "tcb", "inp", "so_snd", "so_rcv", "Giant lock", NULL,
749 "udb", "inp", NULL,
750 "unp head", "unp", "so_snd", NULL,
751 "de0", "Giant lock", NULL,
752 "ifnet", "Giant lock", NULL,
753 "fifo", "so_snd", NULL,
754 "hme0", "Giant lock", NULL,
755 "esp0", "Giant lock", NULL,
756 "hfa0", "Giant lock", NULL,
757 "so_rcv", "atm_global", NULL,
758 "so_snd", "atm_global", NULL,
759 "NFS", "Giant lock", NULL,
760 NULL
761};
762
763static char *dup_list[] = {
748 NULL
749};
750
751static char *dup_list[] = {
764 "inp",
765 "process group",
766 "session",
767 "unp",
768 "rtentry",
769 "rawcb",
770 NULL
771};
772
773static char *sleep_list[] = {
774 "Giant lock",
775 NULL
776};
777
778/*
779 * Pairs of locks which have been blessed
780 * Don't complain about order problems with blessed locks
781 */
782static struct witness_blessed blessed_list[] = {
783};
784static int blessed_count = sizeof(blessed_list) / sizeof(struct witness_blessed);
785
786void
787witness_init(struct mtx *m, int flag)
788{
789 m->mtx_witness = enroll(m->mtx_description, flag);
790}
791
792void
793witness_destroy(struct mtx *m)
794{
795 struct mtx *m1;
796 struct proc *p;
797 p = CURPROC;
798 for ((m1 = LIST_FIRST(&p->p_heldmtx)); m1 != NULL;
799 m1 = LIST_NEXT(m1, mtx_held)) {
800 if (m1 == m) {
801 LIST_REMOVE(m, mtx_held);
802 break;
803 }
804 }
805 return;
806
807}
808
809void
810witness_enter(struct mtx *m, int flags, const char *file, int line)
811{
812 struct witness *w, *w1;
813 struct mtx *m1;
814 struct proc *p;
815 int i;
752 NULL
753};
754
755static char *sleep_list[] = {
756 "Giant lock",
757 NULL
758};
759
760/*
761 * Pairs of locks which have been blessed
762 * Don't complain about order problems with blessed locks
763 */
764static struct witness_blessed blessed_list[] = {
765};
766static int blessed_count = sizeof(blessed_list) / sizeof(struct witness_blessed);
767
768void
769witness_init(struct mtx *m, int flag)
770{
771 m->mtx_witness = enroll(m->mtx_description, flag);
772}
773
774void
775witness_destroy(struct mtx *m)
776{
777 struct mtx *m1;
778 struct proc *p;
779 p = CURPROC;
780 for ((m1 = LIST_FIRST(&p->p_heldmtx)); m1 != NULL;
781 m1 = LIST_NEXT(m1, mtx_held)) {
782 if (m1 == m) {
783 LIST_REMOVE(m, mtx_held);
784 break;
785 }
786 }
787 return;
788
789}
790
791void
792witness_enter(struct mtx *m, int flags, const char *file, int line)
793{
794 struct witness *w, *w1;
795 struct mtx *m1;
796 struct proc *p;
797 int i;
816#ifdef KDEBUG
817 int go_into_kdebug = 0;
818#endif /* KDEBUG */
798#ifdef DDB
799 int go_into_ddb = 0;
800#endif /* DDB */
819
820 w = m->mtx_witness;
821 p = CURPROC;
822
823 if (flags & MTX_SPIN) {
824 if (!w->w_spin)
825 panic("mutex_enter: MTX_SPIN on MTX_DEF mutex %s @"
826 " %s:%d", m->mtx_description, file, line);
827 if (m->mtx_recurse != 0)
828 return;
829 mtx_enter(&w_mtx, MTX_SPIN);
830 i = witness_spin_check;
831 if (i != 0 && w->w_level < i) {
832 mtx_exit(&w_mtx, MTX_SPIN);
833 panic("mutex_enter(%s:%x, MTX_SPIN) out of order @"
834 " %s:%d already holding %s:%x",
835 m->mtx_description, w->w_level, file, line,
836 spin_order_list[ffs(i)-1], i);
837 }
838 PCPU_SET(witness_spin_check, i | w->w_level);
839 mtx_exit(&w_mtx, MTX_SPIN);
840 return;
841 }
842 if (w->w_spin)
843 panic("mutex_enter: MTX_DEF on MTX_SPIN mutex %s @ %s:%d",
844 m->mtx_description, file, line);
845
846 if (m->mtx_recurse != 0)
847 return;
848 if (witness_dead)
849 goto out;
850 if (cold)
851 goto out;
852
853 if (!mtx_legal2block())
854 panic("blockable mtx_enter() of %s when not legal @ %s:%d",
855 m->mtx_description, file, line);
856 /*
857 * Is this the first mutex acquired
858 */
859 if ((m1 = LIST_FIRST(&p->p_heldmtx)) == NULL)
860 goto out;
861
862 if ((w1 = m1->mtx_witness) == w) {
863 if (w->w_same_squawked || dup_ok(w))
864 goto out;
865 w->w_same_squawked = 1;
866 printf("acquring duplicate lock of same type: \"%s\"\n",
867 m->mtx_description);
868 printf(" 1st @ %s:%d\n", w->w_file, w->w_line);
869 printf(" 2nd @ %s:%d\n", file, line);
801
802 w = m->mtx_witness;
803 p = CURPROC;
804
805 if (flags & MTX_SPIN) {
806 if (!w->w_spin)
807 panic("mutex_enter: MTX_SPIN on MTX_DEF mutex %s @"
808 " %s:%d", m->mtx_description, file, line);
809 if (m->mtx_recurse != 0)
810 return;
811 mtx_enter(&w_mtx, MTX_SPIN);
812 i = witness_spin_check;
813 if (i != 0 && w->w_level < i) {
814 mtx_exit(&w_mtx, MTX_SPIN);
815 panic("mutex_enter(%s:%x, MTX_SPIN) out of order @"
816 " %s:%d already holding %s:%x",
817 m->mtx_description, w->w_level, file, line,
818 spin_order_list[ffs(i)-1], i);
819 }
820 PCPU_SET(witness_spin_check, i | w->w_level);
821 mtx_exit(&w_mtx, MTX_SPIN);
822 return;
823 }
824 if (w->w_spin)
825 panic("mutex_enter: MTX_DEF on MTX_SPIN mutex %s @ %s:%d",
826 m->mtx_description, file, line);
827
828 if (m->mtx_recurse != 0)
829 return;
830 if (witness_dead)
831 goto out;
832 if (cold)
833 goto out;
834
835 if (!mtx_legal2block())
836 panic("blockable mtx_enter() of %s when not legal @ %s:%d",
837 m->mtx_description, file, line);
838 /*
839 * Is this the first mutex acquired
840 */
841 if ((m1 = LIST_FIRST(&p->p_heldmtx)) == NULL)
842 goto out;
843
844 if ((w1 = m1->mtx_witness) == w) {
845 if (w->w_same_squawked || dup_ok(w))
846 goto out;
847 w->w_same_squawked = 1;
848 printf("acquring duplicate lock of same type: \"%s\"\n",
849 m->mtx_description);
850 printf(" 1st @ %s:%d\n", w->w_file, w->w_line);
851 printf(" 2nd @ %s:%d\n", file, line);
870#ifdef KDEBUG
871 go_into_kdebug = 1;
872#endif /* KDEBUG */
852#ifdef DDB
853 go_into_ddb = 1;
854#endif /* DDB */
873 goto out;
874 }
875 MPASS(!mtx_owned(&w_mtx));
876 mtx_enter(&w_mtx, MTX_SPIN);
877 /*
878 * If we have a known higher number just say ok
879 */
880 if (witness_watch > 1 && w->w_level > w1->w_level) {
881 mtx_exit(&w_mtx, MTX_SPIN);
882 goto out;
883 }
884 if (isitmydescendant(m1->mtx_witness, w)) {
885 mtx_exit(&w_mtx, MTX_SPIN);
886 goto out;
887 }
888 for (i = 0; m1 != NULL; m1 = LIST_NEXT(m1, mtx_held), i++) {
889
890 MPASS(i < 200);
891 w1 = m1->mtx_witness;
892 if (isitmydescendant(w, w1)) {
893 mtx_exit(&w_mtx, MTX_SPIN);
894 if (blessed(w, w1))
895 goto out;
896 if (m1 == &Giant) {
897 if (w1->w_Giant_squawked)
898 goto out;
899 else
900 w1->w_Giant_squawked = 1;
901 } else {
902 if (w1->w_other_squawked)
903 goto out;
904 else
905 w1->w_other_squawked = 1;
906 }
907 printf("lock order reversal\n");
908 printf(" 1st %s last acquired @ %s:%d\n",
909 w->w_description, w->w_file, w->w_line);
910 printf(" 2nd %p %s @ %s:%d\n",
911 m1, w1->w_description, w1->w_file, w1->w_line);
912 printf(" 3rd %p %s @ %s:%d\n",
913 m, w->w_description, file, line);
855 goto out;
856 }
857 MPASS(!mtx_owned(&w_mtx));
858 mtx_enter(&w_mtx, MTX_SPIN);
859 /*
860 * If we have a known higher number just say ok
861 */
862 if (witness_watch > 1 && w->w_level > w1->w_level) {
863 mtx_exit(&w_mtx, MTX_SPIN);
864 goto out;
865 }
866 if (isitmydescendant(m1->mtx_witness, w)) {
867 mtx_exit(&w_mtx, MTX_SPIN);
868 goto out;
869 }
870 for (i = 0; m1 != NULL; m1 = LIST_NEXT(m1, mtx_held), i++) {
871
872 MPASS(i < 200);
873 w1 = m1->mtx_witness;
874 if (isitmydescendant(w, w1)) {
875 mtx_exit(&w_mtx, MTX_SPIN);
876 if (blessed(w, w1))
877 goto out;
878 if (m1 == &Giant) {
879 if (w1->w_Giant_squawked)
880 goto out;
881 else
882 w1->w_Giant_squawked = 1;
883 } else {
884 if (w1->w_other_squawked)
885 goto out;
886 else
887 w1->w_other_squawked = 1;
888 }
889 printf("lock order reversal\n");
890 printf(" 1st %s last acquired @ %s:%d\n",
891 w->w_description, w->w_file, w->w_line);
892 printf(" 2nd %p %s @ %s:%d\n",
893 m1, w1->w_description, w1->w_file, w1->w_line);
894 printf(" 3rd %p %s @ %s:%d\n",
895 m, w->w_description, file, line);
914#ifdef KDEBUG
915 go_into_kdebug = 1;
916#endif /* KDEBUG */
896#ifdef DDB
897 go_into_ddb = 1;
898#endif /* DDB */
917 goto out;
918 }
919 }
920 m1 = LIST_FIRST(&p->p_heldmtx);
921 if (!itismychild(m1->mtx_witness, w))
922 mtx_exit(&w_mtx, MTX_SPIN);
923
924out:
899 goto out;
900 }
901 }
902 m1 = LIST_FIRST(&p->p_heldmtx);
903 if (!itismychild(m1->mtx_witness, w))
904 mtx_exit(&w_mtx, MTX_SPIN);
905
906out:
925#ifdef KDEBUG
926 if (witness_kdebug && go_into_kdebug)
927 kdebug();
928#endif /* KDEBUG */
907#ifdef DDB
908 if (witness_ddb && go_into_ddb)
909 Debugger("witness_enter");
910#endif /* DDB */
929 w->w_file = file;
930 w->w_line = line;
931 m->mtx_line = line;
932 m->mtx_file = file;
933
934 /*
935 * If this pays off it likely means that a mutex being witnessed
936 * is acquired in hardclock. Put it in the ignore list. It is
937 * likely not the mutex this assert fails on.
938 */
939 MPASS(m->mtx_held.le_prev == NULL);
940 LIST_INSERT_HEAD(&p->p_heldmtx, (struct mtx*)m, mtx_held);
941}
942
943void
944witness_exit(struct mtx *m, int flags, const char *file, int line)
945{
946 struct witness *w;
947
948 w = m->mtx_witness;
949
950 if (flags & MTX_SPIN) {
951 if (!w->w_spin)
952 panic("mutex_exit: MTX_SPIN on MTX_DEF mutex %s @"
953 " %s:%d", m->mtx_description, file, line);
954 if (m->mtx_recurse != 0)
955 return;
956 mtx_enter(&w_mtx, MTX_SPIN);
957 PCPU_SET(witness_spin_check, witness_spin_check & ~w->w_level);
958 mtx_exit(&w_mtx, MTX_SPIN);
959 return;
960 }
961 if (w->w_spin)
962 panic("mutex_exit: MTX_DEF on MTX_SPIN mutex %s @ %s:%d",
963 m->mtx_description, file, line);
964
965 if (m->mtx_recurse != 0)
966 return;
967
968 if ((flags & MTX_NOSWITCH) == 0 && !mtx_legal2block() && !cold)
969 panic("switchable mtx_exit() of %s when not legal @ %s:%d",
970 m->mtx_description, file, line);
971 LIST_REMOVE(m, mtx_held);
972 m->mtx_held.le_prev = NULL;
973}
974
975void
976witness_try_enter(struct mtx *m, int flags, const char *file, int line)
977{
978 struct proc *p;
979 struct witness *w = m->mtx_witness;
980
981 if (flags & MTX_SPIN) {
982 if (!w->w_spin)
983 panic("mutex_try_enter: "
984 "MTX_SPIN on MTX_DEF mutex %s @ %s:%d",
985 m->mtx_description, file, line);
986 if (m->mtx_recurse != 0)
987 return;
988 mtx_enter(&w_mtx, MTX_SPIN);
989 PCPU_SET(witness_spin_check, witness_spin_check | w->w_level);
990 mtx_exit(&w_mtx, MTX_SPIN);
991 return;
992 }
993
994 if (w->w_spin)
995 panic("mutex_try_enter: MTX_DEF on MTX_SPIN mutex %s @ %s:%d",
996 m->mtx_description, file, line);
997
998 if (m->mtx_recurse != 0)
999 return;
1000
1001 w->w_file = file;
1002 w->w_line = line;
1003 m->mtx_line = line;
1004 m->mtx_file = file;
1005 p = CURPROC;
1006 MPASS(m->mtx_held.le_prev == NULL);
1007 LIST_INSERT_HEAD(&p->p_heldmtx, (struct mtx*)m, mtx_held);
1008}
1009
1010void
1011witness_display(void(*prnt)(const char *fmt, ...))
1012{
1013 struct witness *w, *w1;
1014
1015 witness_levelall();
1016
1017 for (w = w_all; w; w = w->w_next) {
1018 if (w->w_file == NULL)
1019 continue;
1020 for (w1 = w_all; w1; w1 = w1->w_next) {
1021 if (isitmychild(w1, w))
1022 break;
1023 }
1024 if (w1 != NULL)
1025 continue;
1026 /*
1027 * This lock has no anscestors, display its descendants.
1028 */
1029 witness_displaydescendants(prnt, w);
1030 }
1031 prnt("\nMutex which were never acquired\n");
1032 for (w = w_all; w; w = w->w_next) {
1033 if (w->w_file != NULL)
1034 continue;
1035 prnt("%s\n", w->w_description);
1036 }
1037}
1038
1039int
1040witness_sleep(int check_only, struct mtx *mtx, const char *file, int line)
1041{
1042 struct mtx *m;
1043 struct proc *p;
1044 char **sleep;
1045 int n = 0;
1046
1047 p = CURPROC;
1048 for ((m = LIST_FIRST(&p->p_heldmtx)); m != NULL;
1049 m = LIST_NEXT(m, mtx_held)) {
1050 if (m == mtx)
1051 continue;
1052 for (sleep = sleep_list; *sleep!= NULL; sleep++)
1053 if (strcmp(m->mtx_description, *sleep) == 0)
1054 goto next;
1055 printf("%s:%d: %s with \"%s\" locked from %s:%d\n",
1056 file, line, check_only ? "could sleep" : "sleeping",
1057 m->mtx_description,
1058 m->mtx_witness->w_file, m->mtx_witness->w_line);
1059 n++;
1060 next:
1061 }
911 w->w_file = file;
912 w->w_line = line;
913 m->mtx_line = line;
914 m->mtx_file = file;
915
916 /*
917 * If this pays off it likely means that a mutex being witnessed
918 * is acquired in hardclock. Put it in the ignore list. It is
919 * likely not the mutex this assert fails on.
920 */
921 MPASS(m->mtx_held.le_prev == NULL);
922 LIST_INSERT_HEAD(&p->p_heldmtx, (struct mtx*)m, mtx_held);
923}
924
925void
926witness_exit(struct mtx *m, int flags, const char *file, int line)
927{
928 struct witness *w;
929
930 w = m->mtx_witness;
931
932 if (flags & MTX_SPIN) {
933 if (!w->w_spin)
934 panic("mutex_exit: MTX_SPIN on MTX_DEF mutex %s @"
935 " %s:%d", m->mtx_description, file, line);
936 if (m->mtx_recurse != 0)
937 return;
938 mtx_enter(&w_mtx, MTX_SPIN);
939 PCPU_SET(witness_spin_check, witness_spin_check & ~w->w_level);
940 mtx_exit(&w_mtx, MTX_SPIN);
941 return;
942 }
943 if (w->w_spin)
944 panic("mutex_exit: MTX_DEF on MTX_SPIN mutex %s @ %s:%d",
945 m->mtx_description, file, line);
946
947 if (m->mtx_recurse != 0)
948 return;
949
950 if ((flags & MTX_NOSWITCH) == 0 && !mtx_legal2block() && !cold)
951 panic("switchable mtx_exit() of %s when not legal @ %s:%d",
952 m->mtx_description, file, line);
953 LIST_REMOVE(m, mtx_held);
954 m->mtx_held.le_prev = NULL;
955}
956
957void
958witness_try_enter(struct mtx *m, int flags, const char *file, int line)
959{
960 struct proc *p;
961 struct witness *w = m->mtx_witness;
962
963 if (flags & MTX_SPIN) {
964 if (!w->w_spin)
965 panic("mutex_try_enter: "
966 "MTX_SPIN on MTX_DEF mutex %s @ %s:%d",
967 m->mtx_description, file, line);
968 if (m->mtx_recurse != 0)
969 return;
970 mtx_enter(&w_mtx, MTX_SPIN);
971 PCPU_SET(witness_spin_check, witness_spin_check | w->w_level);
972 mtx_exit(&w_mtx, MTX_SPIN);
973 return;
974 }
975
976 if (w->w_spin)
977 panic("mutex_try_enter: MTX_DEF on MTX_SPIN mutex %s @ %s:%d",
978 m->mtx_description, file, line);
979
980 if (m->mtx_recurse != 0)
981 return;
982
983 w->w_file = file;
984 w->w_line = line;
985 m->mtx_line = line;
986 m->mtx_file = file;
987 p = CURPROC;
988 MPASS(m->mtx_held.le_prev == NULL);
989 LIST_INSERT_HEAD(&p->p_heldmtx, (struct mtx*)m, mtx_held);
990}
991
992void
993witness_display(void(*prnt)(const char *fmt, ...))
994{
995 struct witness *w, *w1;
996
997 witness_levelall();
998
999 for (w = w_all; w; w = w->w_next) {
1000 if (w->w_file == NULL)
1001 continue;
1002 for (w1 = w_all; w1; w1 = w1->w_next) {
1003 if (isitmychild(w1, w))
1004 break;
1005 }
1006 if (w1 != NULL)
1007 continue;
1008 /*
1009 * This lock has no anscestors, display its descendants.
1010 */
1011 witness_displaydescendants(prnt, w);
1012 }
1013 prnt("\nMutex which were never acquired\n");
1014 for (w = w_all; w; w = w->w_next) {
1015 if (w->w_file != NULL)
1016 continue;
1017 prnt("%s\n", w->w_description);
1018 }
1019}
1020
1021int
1022witness_sleep(int check_only, struct mtx *mtx, const char *file, int line)
1023{
1024 struct mtx *m;
1025 struct proc *p;
1026 char **sleep;
1027 int n = 0;
1028
1029 p = CURPROC;
1030 for ((m = LIST_FIRST(&p->p_heldmtx)); m != NULL;
1031 m = LIST_NEXT(m, mtx_held)) {
1032 if (m == mtx)
1033 continue;
1034 for (sleep = sleep_list; *sleep!= NULL; sleep++)
1035 if (strcmp(m->mtx_description, *sleep) == 0)
1036 goto next;
1037 printf("%s:%d: %s with \"%s\" locked from %s:%d\n",
1038 file, line, check_only ? "could sleep" : "sleeping",
1039 m->mtx_description,
1040 m->mtx_witness->w_file, m->mtx_witness->w_line);
1041 n++;
1042 next:
1043 }
1062#ifdef KDEBUG
1063 if (witness_kdebug && n)
1064 kdebug();
1065#endif /* KDEBUG */
1044#ifdef DDB
1045 if (witness_ddb && n)
1046 Debugger("witness_sleep");
1047#endif /* DDB */
1066 return (n);
1067}
1068
1069static struct witness *
1070enroll(const char *description, int flag)
1071{
1072 int i;
1073 struct witness *w, *w1;
1074 char **ignore;
1075 char **order;
1076
1077 if (!witness_watch)
1078 return (NULL);
1079 for (ignore = ignore_list; *ignore != NULL; ignore++)
1080 if (strcmp(description, *ignore) == 0)
1081 return (NULL);
1082
1083 if (w_inited == 0) {
1048 return (n);
1049}
1050
1051static struct witness *
1052enroll(const char *description, int flag)
1053{
1054 int i;
1055 struct witness *w, *w1;
1056 char **ignore;
1057 char **order;
1058
1059 if (!witness_watch)
1060 return (NULL);
1061 for (ignore = ignore_list; *ignore != NULL; ignore++)
1062 if (strcmp(description, *ignore) == 0)
1063 return (NULL);
1064
1065 if (w_inited == 0) {
1084 mtx_init(&w_mtx, "witness lock", MTX_DEF);
1066 mtx_init(&w_mtx, "witness lock", MTX_COLD | MTX_DEF);
1085 for (i = 0; i < WITNESS_COUNT; i++) {
1086 w = &w_data[i];
1087 witness_free(w);
1088 }
1089 w_inited = 1;
1090 for (order = order_list; *order != NULL; order++) {
1091 w = enroll(*order, MTX_DEF);
1092 w->w_file = "order list";
1093 for (order++; *order != NULL; order++) {
1094 w1 = enroll(*order, MTX_DEF);
1095 w1->w_file = "order list";
1096 itismychild(w, w1);
1097 w = w1;
1098 }
1099 }
1100 }
1101 if ((flag & MTX_SPIN) && witness_skipspin)
1102 return (NULL);
1103 mtx_enter(&w_mtx, MTX_SPIN);
1104 for (w = w_all; w; w = w->w_next) {
1105 if (strcmp(description, w->w_description) == 0) {
1106 mtx_exit(&w_mtx, MTX_SPIN);
1107 return (w);
1108 }
1109 }
1110 if ((w = witness_get()) == NULL)
1111 return (NULL);
1112 w->w_next = w_all;
1113 w_all = w;
1114 w->w_description = description;
1115 mtx_exit(&w_mtx, MTX_SPIN);
1116 if (flag & MTX_SPIN) {
1117 w->w_spin = 1;
1118
1119 i = 1;
1120 for (order = spin_order_list; *order != NULL; order++) {
1121 if (strcmp(description, *order) == 0)
1122 break;
1123 i <<= 1;
1124 }
1125 if (*order == NULL)
1126 panic("spin lock %s not in order list", description);
1127 w->w_level = i;
1128 }
1129 return (w);
1130}
1131
1132static int
1133itismychild(struct witness *parent, struct witness *child)
1134{
1135 static int recursed;
1136
1137 /*
1138 * Insert "child" after "parent"
1139 */
1140 while (parent->w_morechildren)
1141 parent = parent->w_morechildren;
1142
1143 if (parent->w_childcnt == WITNESS_NCHILDREN) {
1144 if ((parent->w_morechildren = witness_get()) == NULL)
1145 return (1);
1146 parent = parent->w_morechildren;
1147 }
1148 MPASS(child != NULL);
1149 parent->w_children[parent->w_childcnt++] = child;
1150 /*
1151 * now prune whole tree
1152 */
1153 if (recursed)
1154 return (0);
1155 recursed = 1;
1156 for (child = w_all; child != NULL; child = child->w_next) {
1157 for (parent = w_all; parent != NULL;
1158 parent = parent->w_next) {
1159 if (!isitmychild(parent, child))
1160 continue;
1161 removechild(parent, child);
1162 if (isitmydescendant(parent, child))
1163 continue;
1164 itismychild(parent, child);
1165 }
1166 }
1167 recursed = 0;
1168 witness_levelall();
1169 return (0);
1170}
1171
1172static void
1173removechild(struct witness *parent, struct witness *child)
1174{
1175 struct witness *w, *w1;
1176 int i;
1177
1178 for (w = parent; w != NULL; w = w->w_morechildren)
1179 for (i = 0; i < w->w_childcnt; i++)
1180 if (w->w_children[i] == child)
1181 goto found;
1182 return;
1183found:
1184 for (w1 = w; w1->w_morechildren != NULL; w1 = w1->w_morechildren)
1185 continue;
1186 w->w_children[i] = w1->w_children[--w1->w_childcnt];
1187 MPASS(w->w_children[i] != NULL);
1188
1189 if (w1->w_childcnt != 0)
1190 return;
1191
1192 if (w1 == parent)
1193 return;
1194 for (w = parent; w->w_morechildren != w1; w = w->w_morechildren)
1195 continue;
1196 w->w_morechildren = 0;
1197 witness_free(w1);
1198}
1199
1200static int
1201isitmychild(struct witness *parent, struct witness *child)
1202{
1203 struct witness *w;
1204 int i;
1205
1206 for (w = parent; w != NULL; w = w->w_morechildren) {
1207 for (i = 0; i < w->w_childcnt; i++) {
1208 if (w->w_children[i] == child)
1209 return (1);
1210 }
1211 }
1212 return (0);
1213}
1214
1215static int
1216isitmydescendant(struct witness *parent, struct witness *child)
1217{
1218 struct witness *w;
1219 int i;
1220 int j;
1221
1222 for (j = 0, w = parent; w != NULL; w = w->w_morechildren, j++) {
1223 MPASS(j < 1000);
1224 for (i = 0; i < w->w_childcnt; i++) {
1225 if (w->w_children[i] == child)
1226 return (1);
1227 }
1228 for (i = 0; i < w->w_childcnt; i++) {
1229 if (isitmydescendant(w->w_children[i], child))
1230 return (1);
1231 }
1232 }
1233 return (0);
1234}
1235
1236void
1237witness_levelall (void)
1238{
1239 struct witness *w, *w1;
1240
1241 for (w = w_all; w; w = w->w_next)
1242 if (!w->w_spin)
1243 w->w_level = 0;
1244 for (w = w_all; w; w = w->w_next) {
1245 if (w->w_spin)
1246 continue;
1247 for (w1 = w_all; w1; w1 = w1->w_next) {
1248 if (isitmychild(w1, w))
1249 break;
1250 }
1251 if (w1 != NULL)
1252 continue;
1253 witness_leveldescendents(w, 0);
1254 }
1255}
1256
1257static void
1258witness_leveldescendents(struct witness *parent, int level)
1259{
1260 int i;
1261 struct witness *w;
1262
1263 if (parent->w_level < level)
1264 parent->w_level = level;
1265 level++;
1266 for (w = parent; w != NULL; w = w->w_morechildren)
1267 for (i = 0; i < w->w_childcnt; i++)
1268 witness_leveldescendents(w->w_children[i], level);
1269}
1270
1271static void
1272witness_displaydescendants(void(*prnt)(const char *fmt, ...),
1273 struct witness *parent)
1274{
1275 struct witness *w;
1276 int i;
1277 int level = parent->w_level;
1278
1279 prnt("%d", level);
1280 if (level < 10)
1281 prnt(" ");
1282 for (i = 0; i < level; i++)
1283 prnt(" ");
1284 prnt("%s", parent->w_description);
1285 if (parent->w_file != NULL) {
1286 prnt(" -- last acquired @ %s", parent->w_file);
1287#ifndef W_USE_WHERE
1288 prnt(":%d", parent->w_line);
1289#endif
1290 prnt("\n");
1291 }
1292
1293 for (w = parent; w != NULL; w = w->w_morechildren)
1294 for (i = 0; i < w->w_childcnt; i++)
1295 witness_displaydescendants(prnt, w->w_children[i]);
1296 }
1297
1298static int
1299dup_ok(struct witness *w)
1300{
1301 char **dup;
1302
1303 for (dup = dup_list; *dup!= NULL; dup++)
1304 if (strcmp(w->w_description, *dup) == 0)
1305 return (1);
1306 return (0);
1307}
1308
1309static int
1310blessed(struct witness *w1, struct witness *w2)
1311{
1312 int i;
1313 struct witness_blessed *b;
1314
1315 for (i = 0; i < blessed_count; i++) {
1316 b = &blessed_list[i];
1317 if (strcmp(w1->w_description, b->b_lock1) == 0) {
1318 if (strcmp(w2->w_description, b->b_lock2) == 0)
1319 return (1);
1320 continue;
1321 }
1322 if (strcmp(w1->w_description, b->b_lock2) == 0)
1323 if (strcmp(w2->w_description, b->b_lock1) == 0)
1324 return (1);
1325 }
1326 return (0);
1327}
1328
1329static struct witness *
1330witness_get()
1331{
1332 struct witness *w;
1333
1334 if ((w = w_free) == NULL) {
1335 witness_dead = 1;
1336 mtx_exit(&w_mtx, MTX_SPIN);
1337 printf("witness exhausted\n");
1338 return (NULL);
1339 }
1340 w_free = w->w_next;
1341 bzero(w, sizeof(*w));
1342 return (w);
1343}
1344
1345static void
1346witness_free(struct witness *w)
1347{
1348 w->w_next = w_free;
1349 w_free = w;
1350}
1351
1352void
1353witness_list(struct proc *p)
1354{
1355 struct mtx *m;
1356
1357 for ((m = LIST_FIRST(&p->p_heldmtx)); m != NULL;
1358 m = LIST_NEXT(m, mtx_held)) {
1359 printf("\t\"%s\" (%p) locked at %s:%d\n",
1360 m->mtx_description, m,
1361 m->mtx_witness->w_file, m->mtx_witness->w_line);
1362 }
1363}
1364
1365void
1366witness_save(struct mtx *m, const char **filep, int *linep)
1367{
1368 *filep = m->mtx_witness->w_file;
1369 *linep = m->mtx_witness->w_line;
1370}
1371
1372void
1373witness_restore(struct mtx *m, const char *file, int line)
1374{
1375 m->mtx_witness->w_file = file;
1376 m->mtx_witness->w_line = line;
1377}
1378
1379#endif /* (defined(MUTEX_DEBUG) && defined(WITNESS)) */
1067 for (i = 0; i < WITNESS_COUNT; i++) {
1068 w = &w_data[i];
1069 witness_free(w);
1070 }
1071 w_inited = 1;
1072 for (order = order_list; *order != NULL; order++) {
1073 w = enroll(*order, MTX_DEF);
1074 w->w_file = "order list";
1075 for (order++; *order != NULL; order++) {
1076 w1 = enroll(*order, MTX_DEF);
1077 w1->w_file = "order list";
1078 itismychild(w, w1);
1079 w = w1;
1080 }
1081 }
1082 }
1083 if ((flag & MTX_SPIN) && witness_skipspin)
1084 return (NULL);
1085 mtx_enter(&w_mtx, MTX_SPIN);
1086 for (w = w_all; w; w = w->w_next) {
1087 if (strcmp(description, w->w_description) == 0) {
1088 mtx_exit(&w_mtx, MTX_SPIN);
1089 return (w);
1090 }
1091 }
1092 if ((w = witness_get()) == NULL)
1093 return (NULL);
1094 w->w_next = w_all;
1095 w_all = w;
1096 w->w_description = description;
1097 mtx_exit(&w_mtx, MTX_SPIN);
1098 if (flag & MTX_SPIN) {
1099 w->w_spin = 1;
1100
1101 i = 1;
1102 for (order = spin_order_list; *order != NULL; order++) {
1103 if (strcmp(description, *order) == 0)
1104 break;
1105 i <<= 1;
1106 }
1107 if (*order == NULL)
1108 panic("spin lock %s not in order list", description);
1109 w->w_level = i;
1110 }
1111 return (w);
1112}
1113
1114static int
1115itismychild(struct witness *parent, struct witness *child)
1116{
1117 static int recursed;
1118
1119 /*
1120 * Insert "child" after "parent"
1121 */
1122 while (parent->w_morechildren)
1123 parent = parent->w_morechildren;
1124
1125 if (parent->w_childcnt == WITNESS_NCHILDREN) {
1126 if ((parent->w_morechildren = witness_get()) == NULL)
1127 return (1);
1128 parent = parent->w_morechildren;
1129 }
1130 MPASS(child != NULL);
1131 parent->w_children[parent->w_childcnt++] = child;
1132 /*
1133 * now prune whole tree
1134 */
1135 if (recursed)
1136 return (0);
1137 recursed = 1;
1138 for (child = w_all; child != NULL; child = child->w_next) {
1139 for (parent = w_all; parent != NULL;
1140 parent = parent->w_next) {
1141 if (!isitmychild(parent, child))
1142 continue;
1143 removechild(parent, child);
1144 if (isitmydescendant(parent, child))
1145 continue;
1146 itismychild(parent, child);
1147 }
1148 }
1149 recursed = 0;
1150 witness_levelall();
1151 return (0);
1152}
1153
1154static void
1155removechild(struct witness *parent, struct witness *child)
1156{
1157 struct witness *w, *w1;
1158 int i;
1159
1160 for (w = parent; w != NULL; w = w->w_morechildren)
1161 for (i = 0; i < w->w_childcnt; i++)
1162 if (w->w_children[i] == child)
1163 goto found;
1164 return;
1165found:
1166 for (w1 = w; w1->w_morechildren != NULL; w1 = w1->w_morechildren)
1167 continue;
1168 w->w_children[i] = w1->w_children[--w1->w_childcnt];
1169 MPASS(w->w_children[i] != NULL);
1170
1171 if (w1->w_childcnt != 0)
1172 return;
1173
1174 if (w1 == parent)
1175 return;
1176 for (w = parent; w->w_morechildren != w1; w = w->w_morechildren)
1177 continue;
1178 w->w_morechildren = 0;
1179 witness_free(w1);
1180}
1181
1182static int
1183isitmychild(struct witness *parent, struct witness *child)
1184{
1185 struct witness *w;
1186 int i;
1187
1188 for (w = parent; w != NULL; w = w->w_morechildren) {
1189 for (i = 0; i < w->w_childcnt; i++) {
1190 if (w->w_children[i] == child)
1191 return (1);
1192 }
1193 }
1194 return (0);
1195}
1196
1197static int
1198isitmydescendant(struct witness *parent, struct witness *child)
1199{
1200 struct witness *w;
1201 int i;
1202 int j;
1203
1204 for (j = 0, w = parent; w != NULL; w = w->w_morechildren, j++) {
1205 MPASS(j < 1000);
1206 for (i = 0; i < w->w_childcnt; i++) {
1207 if (w->w_children[i] == child)
1208 return (1);
1209 }
1210 for (i = 0; i < w->w_childcnt; i++) {
1211 if (isitmydescendant(w->w_children[i], child))
1212 return (1);
1213 }
1214 }
1215 return (0);
1216}
1217
1218void
1219witness_levelall (void)
1220{
1221 struct witness *w, *w1;
1222
1223 for (w = w_all; w; w = w->w_next)
1224 if (!w->w_spin)
1225 w->w_level = 0;
1226 for (w = w_all; w; w = w->w_next) {
1227 if (w->w_spin)
1228 continue;
1229 for (w1 = w_all; w1; w1 = w1->w_next) {
1230 if (isitmychild(w1, w))
1231 break;
1232 }
1233 if (w1 != NULL)
1234 continue;
1235 witness_leveldescendents(w, 0);
1236 }
1237}
1238
1239static void
1240witness_leveldescendents(struct witness *parent, int level)
1241{
1242 int i;
1243 struct witness *w;
1244
1245 if (parent->w_level < level)
1246 parent->w_level = level;
1247 level++;
1248 for (w = parent; w != NULL; w = w->w_morechildren)
1249 for (i = 0; i < w->w_childcnt; i++)
1250 witness_leveldescendents(w->w_children[i], level);
1251}
1252
1253static void
1254witness_displaydescendants(void(*prnt)(const char *fmt, ...),
1255 struct witness *parent)
1256{
1257 struct witness *w;
1258 int i;
1259 int level = parent->w_level;
1260
1261 prnt("%d", level);
1262 if (level < 10)
1263 prnt(" ");
1264 for (i = 0; i < level; i++)
1265 prnt(" ");
1266 prnt("%s", parent->w_description);
1267 if (parent->w_file != NULL) {
1268 prnt(" -- last acquired @ %s", parent->w_file);
1269#ifndef W_USE_WHERE
1270 prnt(":%d", parent->w_line);
1271#endif
1272 prnt("\n");
1273 }
1274
1275 for (w = parent; w != NULL; w = w->w_morechildren)
1276 for (i = 0; i < w->w_childcnt; i++)
1277 witness_displaydescendants(prnt, w->w_children[i]);
1278 }
1279
1280static int
1281dup_ok(struct witness *w)
1282{
1283 char **dup;
1284
1285 for (dup = dup_list; *dup!= NULL; dup++)
1286 if (strcmp(w->w_description, *dup) == 0)
1287 return (1);
1288 return (0);
1289}
1290
1291static int
1292blessed(struct witness *w1, struct witness *w2)
1293{
1294 int i;
1295 struct witness_blessed *b;
1296
1297 for (i = 0; i < blessed_count; i++) {
1298 b = &blessed_list[i];
1299 if (strcmp(w1->w_description, b->b_lock1) == 0) {
1300 if (strcmp(w2->w_description, b->b_lock2) == 0)
1301 return (1);
1302 continue;
1303 }
1304 if (strcmp(w1->w_description, b->b_lock2) == 0)
1305 if (strcmp(w2->w_description, b->b_lock1) == 0)
1306 return (1);
1307 }
1308 return (0);
1309}
1310
1311static struct witness *
1312witness_get()
1313{
1314 struct witness *w;
1315
1316 if ((w = w_free) == NULL) {
1317 witness_dead = 1;
1318 mtx_exit(&w_mtx, MTX_SPIN);
1319 printf("witness exhausted\n");
1320 return (NULL);
1321 }
1322 w_free = w->w_next;
1323 bzero(w, sizeof(*w));
1324 return (w);
1325}
1326
1327static void
1328witness_free(struct witness *w)
1329{
1330 w->w_next = w_free;
1331 w_free = w;
1332}
1333
1334void
1335witness_list(struct proc *p)
1336{
1337 struct mtx *m;
1338
1339 for ((m = LIST_FIRST(&p->p_heldmtx)); m != NULL;
1340 m = LIST_NEXT(m, mtx_held)) {
1341 printf("\t\"%s\" (%p) locked at %s:%d\n",
1342 m->mtx_description, m,
1343 m->mtx_witness->w_file, m->mtx_witness->w_line);
1344 }
1345}
1346
1347void
1348witness_save(struct mtx *m, const char **filep, int *linep)
1349{
1350 *filep = m->mtx_witness->w_file;
1351 *linep = m->mtx_witness->w_line;
1352}
1353
1354void
1355witness_restore(struct mtx *m, const char *file, int line)
1356{
1357 m->mtx_witness->w_file = file;
1358 m->mtx_witness->w_line = line;
1359}
1360
1361#endif /* (defined(MUTEX_DEBUG) && defined(WITNESS)) */