Deleted Added
full compact
kern_malloc.c (43301) kern_malloc.c (46568)
1/*
2 * Copyright (c) 1987, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 * @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94
1/*
2 * Copyright (c) 1987, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 * @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94
34 * $Id: kern_malloc.c,v 1.53 1999/01/21 21:54:32 msmith Exp $
34 * $Id: kern_malloc.c,v 1.54 1999/01/27 21:49:56 dillon Exp $
35 */
36
37#include "opt_vm.h"
38
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/kernel.h>
42#define MALLOC_INSTANTIATE
43#include <sys/malloc.h>
44#include <sys/mbuf.h>
45#include <sys/vmmeter.h>
46#include <sys/lock.h>
47
48#include <vm/vm.h>
49#include <vm/vm_param.h>
50#include <vm/vm_kern.h>
51#include <vm/vm_extern.h>
52#include <vm/pmap.h>
53#include <vm/vm_map.h>
54
55static void kmeminit __P((void *));
56SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL)
57
58static MALLOC_DEFINE(M_FREE, "free", "should be on free list");
59
60static struct malloc_type *kmemstatistics;
61static struct kmembuckets bucket[MINBUCKET + 16];
62static struct kmemusage *kmemusage;
63static char *kmembase;
64static char *kmemlimit;
65static int vm_kmem_size;
66
67#ifdef INVARIANTS
68/*
69 * This structure provides a set of masks to catch unaligned frees.
70 */
71static long addrmask[] = { 0,
72 0x00000001, 0x00000003, 0x00000007, 0x0000000f,
73 0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff,
74 0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff,
75 0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff,
76};
77
78/*
79 * The WEIRD_ADDR is used as known text to copy into free objects so
80 * that modifications after frees can be detected.
81 */
82#define WEIRD_ADDR 0xdeadc0de
83#define MAX_COPY 64
84
85/*
86 * Normally the first word of the structure is used to hold the list
87 * pointer for free objects. However, when running with diagnostics,
88 * we use the third and fourth fields, so as to catch modifications
89 * in the most commonly trashed first two words.
90 */
91struct freelist {
92 long spare0;
93 struct malloc_type *type;
94 long spare1;
95 caddr_t next;
96};
97#else /* !INVARIANTS */
98struct freelist {
99 caddr_t next;
100};
101#endif /* INVARIANTS */
102
103/*
104 * malloc:
105 *
106 * Allocate a block of memory.
107 *
108 * If M_NOWAIT is set, this routine will not block and return NULL if
109 * the allocation fails.
110 *
111 * If M_ASLEEP is set (M_NOWAIT must also be set), this routine
112 * will have the side effect of calling asleep() if it returns NULL,
113 * allowing the parent to await() at some future time.
114 */
115void *
116malloc(size, type, flags)
117 unsigned long size;
118 struct malloc_type *type;
119 int flags;
120{
121 register struct kmembuckets *kbp;
122 register struct kmemusage *kup;
123 register struct freelist *freep;
124 long indx, npg, allocsize;
125 int s;
126 caddr_t va, cp, savedlist;
127#ifdef INVARIANTS
128 long *end, *lp;
129 int copysize;
130 const char *savedtype;
131#endif
132 register struct malloc_type *ksp = type;
133
134 /*
135 * Must be at splmem() prior to initializing segment to handle
136 * potential initialization race.
137 */
138
139 s = splmem();
140
141 if (!type->ks_next) {
142 malloc_init(type);
143 }
144
145 indx = BUCKETINDX(size);
146 kbp = &bucket[indx];
147
148 while (ksp->ks_memuse >= ksp->ks_limit) {
149 if (flags & M_ASLEEP) {
150 if (ksp->ks_limblocks < 65535)
151 ksp->ks_limblocks++;
152 asleep((caddr_t)ksp, PSWP+2, type->ks_shortdesc, 0);
153 }
154 if (flags & M_NOWAIT) {
155 splx(s);
156 return ((void *) NULL);
157 }
158 if (ksp->ks_limblocks < 65535)
159 ksp->ks_limblocks++;
160 tsleep((caddr_t)ksp, PSWP+2, type->ks_shortdesc, 0);
161 }
162 ksp->ks_size |= 1 << indx;
163#ifdef INVARIANTS
164 copysize = 1 << indx < MAX_COPY ? 1 << indx : MAX_COPY;
165#endif
166 if (kbp->kb_next == NULL) {
167 kbp->kb_last = NULL;
168 if (size > MAXALLOCSAVE)
169 allocsize = roundup(size, PAGE_SIZE);
170 else
171 allocsize = 1 << indx;
172 npg = btoc(allocsize);
173 va = (caddr_t) kmem_malloc(kmem_map, (vm_size_t)ctob(npg), flags);
174 if (va == NULL) {
175 splx(s);
176 return ((void *) NULL);
177 }
178 kbp->kb_total += kbp->kb_elmpercl;
179 kup = btokup(va);
180 kup->ku_indx = indx;
181 if (allocsize > MAXALLOCSAVE) {
182 if (npg > 65535)
183 panic("malloc: allocation too large");
184 kup->ku_pagecnt = npg;
185 ksp->ks_memuse += allocsize;
186 goto out;
187 }
188 kup->ku_freecnt = kbp->kb_elmpercl;
189 kbp->kb_totalfree += kbp->kb_elmpercl;
190 /*
191 * Just in case we blocked while allocating memory,
192 * and someone else also allocated memory for this
193 * bucket, don't assume the list is still empty.
194 */
195 savedlist = kbp->kb_next;
196 kbp->kb_next = cp = va + (npg * PAGE_SIZE) - allocsize;
197 for (;;) {
198 freep = (struct freelist *)cp;
199#ifdef INVARIANTS
200 /*
201 * Copy in known text to detect modification
202 * after freeing.
203 */
204 end = (long *)&cp[copysize];
205 for (lp = (long *)cp; lp < end; lp++)
206 *lp = WEIRD_ADDR;
207 freep->type = M_FREE;
208#endif /* INVARIANTS */
209 if (cp <= va)
210 break;
211 cp -= allocsize;
212 freep->next = cp;
213 }
214 freep->next = savedlist;
215 if (kbp->kb_last == NULL)
216 kbp->kb_last = (caddr_t)freep;
217 }
218 va = kbp->kb_next;
219 kbp->kb_next = ((struct freelist *)va)->next;
220#ifdef INVARIANTS
221 freep = (struct freelist *)va;
222 savedtype = (const char *) type->ks_shortdesc;
223#if BYTE_ORDER == BIG_ENDIAN
224 freep->type = (struct malloc_type *)WEIRD_ADDR >> 16;
225#endif
226#if BYTE_ORDER == LITTLE_ENDIAN
227 freep->type = (struct malloc_type *)WEIRD_ADDR;
228#endif
229 if ((intptr_t)(void *)&freep->next & 0x2)
230 freep->next = (caddr_t)((WEIRD_ADDR >> 16)|(WEIRD_ADDR << 16));
231 else
232 freep->next = (caddr_t)WEIRD_ADDR;
233 end = (long *)&va[copysize];
234 for (lp = (long *)va; lp < end; lp++) {
235 if (*lp == WEIRD_ADDR)
236 continue;
237 printf("%s %ld of object %p size %lu %s %s (0x%lx != 0x%lx)\n",
238 "Data modified on freelist: word",
239 (long)(lp - (long *)va), (void *)va, size,
240 "previous type", savedtype, *lp, (u_long)WEIRD_ADDR);
241 break;
242 }
243 freep->spare0 = 0;
244#endif /* INVARIANTS */
245 kup = btokup(va);
246 if (kup->ku_indx != indx)
247 panic("malloc: wrong bucket");
248 if (kup->ku_freecnt == 0)
249 panic("malloc: lost data");
250 kup->ku_freecnt--;
251 kbp->kb_totalfree--;
252 ksp->ks_memuse += 1 << indx;
253out:
254 kbp->kb_calls++;
255 ksp->ks_inuse++;
256 ksp->ks_calls++;
257 if (ksp->ks_memuse > ksp->ks_maxused)
258 ksp->ks_maxused = ksp->ks_memuse;
259 splx(s);
260 return ((void *) va);
261}
262
263/*
264 * free:
265 *
266 * Free a block of memory allocated by malloc.
267 *
268 * This routine may not block.
269 */
270void
271free(addr, type)
272 void *addr;
273 struct malloc_type *type;
274{
275 register struct kmembuckets *kbp;
276 register struct kmemusage *kup;
277 register struct freelist *freep;
278 long size;
279 int s;
280#ifdef INVARIANTS
281 struct freelist *fp;
282 long *end, *lp, alloc, copysize;
283#endif
284 register struct malloc_type *ksp = type;
285
286 if (!type->ks_next)
287 panic("freeing with unknown type (%s)", type->ks_shortdesc);
288
289 KASSERT(kmembase <= (char *)addr && (char *)addr < kmemlimit,
290 ("free: address %p out of range", (void *)addr));
291 kup = btokup(addr);
292 size = 1 << kup->ku_indx;
293 kbp = &bucket[kup->ku_indx];
294 s = splmem();
295#ifdef INVARIANTS
296 /*
297 * Check for returns of data that do not point to the
298 * beginning of the allocation.
299 */
300 if (size > PAGE_SIZE)
301 alloc = addrmask[BUCKETINDX(PAGE_SIZE)];
302 else
303 alloc = addrmask[kup->ku_indx];
304 if (((uintptr_t)(void *)addr & alloc) != 0)
305 panic("free: unaligned addr %p, size %ld, type %s, mask %ld",
306 (void *)addr, size, type->ks_shortdesc, alloc);
307#endif /* INVARIANTS */
308 if (size > MAXALLOCSAVE) {
309 kmem_free(kmem_map, (vm_offset_t)addr, ctob(kup->ku_pagecnt));
310 size = kup->ku_pagecnt << PAGE_SHIFT;
311 ksp->ks_memuse -= size;
312 kup->ku_indx = 0;
313 kup->ku_pagecnt = 0;
314 if (ksp->ks_memuse + size >= ksp->ks_limit &&
315 ksp->ks_memuse < ksp->ks_limit)
316 wakeup((caddr_t)ksp);
317 ksp->ks_inuse--;
318 kbp->kb_total -= 1;
319 splx(s);
320 return;
321 }
322 freep = (struct freelist *)addr;
323#ifdef INVARIANTS
324 /*
325 * Check for multiple frees. Use a quick check to see if
326 * it looks free before laboriously searching the freelist.
327 */
328 if (freep->spare0 == WEIRD_ADDR) {
329 fp = (struct freelist *)kbp->kb_next;
330 while (fp) {
331 if (fp->spare0 != WEIRD_ADDR)
332 panic("free: free item %p modified", fp);
333 else if (addr == (caddr_t)fp)
334 panic("free: multiple freed item %p", addr);
335 fp = (struct freelist *)fp->next;
336 }
337 }
338 /*
339 * Copy in known text to detect modification after freeing
340 * and to make it look free. Also, save the type being freed
341 * so we can list likely culprit if modification is detected
342 * when the object is reallocated.
343 */
344 copysize = size < MAX_COPY ? size : MAX_COPY;
345 end = (long *)&((caddr_t)addr)[copysize];
346 for (lp = (long *)addr; lp < end; lp++)
347 *lp = WEIRD_ADDR;
348 freep->type = type;
349#endif /* INVARIANTS */
350 kup->ku_freecnt++;
35 */
36
37#include "opt_vm.h"
38
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/kernel.h>
42#define MALLOC_INSTANTIATE
43#include <sys/malloc.h>
44#include <sys/mbuf.h>
45#include <sys/vmmeter.h>
46#include <sys/lock.h>
47
48#include <vm/vm.h>
49#include <vm/vm_param.h>
50#include <vm/vm_kern.h>
51#include <vm/vm_extern.h>
52#include <vm/pmap.h>
53#include <vm/vm_map.h>
54
55static void kmeminit __P((void *));
56SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL)
57
58static MALLOC_DEFINE(M_FREE, "free", "should be on free list");
59
60static struct malloc_type *kmemstatistics;
61static struct kmembuckets bucket[MINBUCKET + 16];
62static struct kmemusage *kmemusage;
63static char *kmembase;
64static char *kmemlimit;
65static int vm_kmem_size;
66
67#ifdef INVARIANTS
68/*
69 * This structure provides a set of masks to catch unaligned frees.
70 */
71static long addrmask[] = { 0,
72 0x00000001, 0x00000003, 0x00000007, 0x0000000f,
73 0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff,
74 0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff,
75 0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff,
76};
77
78/*
79 * The WEIRD_ADDR is used as known text to copy into free objects so
80 * that modifications after frees can be detected.
81 */
82#define WEIRD_ADDR 0xdeadc0de
83#define MAX_COPY 64
84
85/*
86 * Normally the first word of the structure is used to hold the list
87 * pointer for free objects. However, when running with diagnostics,
88 * we use the third and fourth fields, so as to catch modifications
89 * in the most commonly trashed first two words.
90 */
91struct freelist {
92 long spare0;
93 struct malloc_type *type;
94 long spare1;
95 caddr_t next;
96};
97#else /* !INVARIANTS */
98struct freelist {
99 caddr_t next;
100};
101#endif /* INVARIANTS */
102
103/*
104 * malloc:
105 *
106 * Allocate a block of memory.
107 *
108 * If M_NOWAIT is set, this routine will not block and return NULL if
109 * the allocation fails.
110 *
111 * If M_ASLEEP is set (M_NOWAIT must also be set), this routine
112 * will have the side effect of calling asleep() if it returns NULL,
113 * allowing the parent to await() at some future time.
114 */
115void *
116malloc(size, type, flags)
117 unsigned long size;
118 struct malloc_type *type;
119 int flags;
120{
121 register struct kmembuckets *kbp;
122 register struct kmemusage *kup;
123 register struct freelist *freep;
124 long indx, npg, allocsize;
125 int s;
126 caddr_t va, cp, savedlist;
127#ifdef INVARIANTS
128 long *end, *lp;
129 int copysize;
130 const char *savedtype;
131#endif
132 register struct malloc_type *ksp = type;
133
134 /*
135 * Must be at splmem() prior to initializing segment to handle
136 * potential initialization race.
137 */
138
139 s = splmem();
140
141 if (!type->ks_next) {
142 malloc_init(type);
143 }
144
145 indx = BUCKETINDX(size);
146 kbp = &bucket[indx];
147
148 while (ksp->ks_memuse >= ksp->ks_limit) {
149 if (flags & M_ASLEEP) {
150 if (ksp->ks_limblocks < 65535)
151 ksp->ks_limblocks++;
152 asleep((caddr_t)ksp, PSWP+2, type->ks_shortdesc, 0);
153 }
154 if (flags & M_NOWAIT) {
155 splx(s);
156 return ((void *) NULL);
157 }
158 if (ksp->ks_limblocks < 65535)
159 ksp->ks_limblocks++;
160 tsleep((caddr_t)ksp, PSWP+2, type->ks_shortdesc, 0);
161 }
162 ksp->ks_size |= 1 << indx;
163#ifdef INVARIANTS
164 copysize = 1 << indx < MAX_COPY ? 1 << indx : MAX_COPY;
165#endif
166 if (kbp->kb_next == NULL) {
167 kbp->kb_last = NULL;
168 if (size > MAXALLOCSAVE)
169 allocsize = roundup(size, PAGE_SIZE);
170 else
171 allocsize = 1 << indx;
172 npg = btoc(allocsize);
173 va = (caddr_t) kmem_malloc(kmem_map, (vm_size_t)ctob(npg), flags);
174 if (va == NULL) {
175 splx(s);
176 return ((void *) NULL);
177 }
178 kbp->kb_total += kbp->kb_elmpercl;
179 kup = btokup(va);
180 kup->ku_indx = indx;
181 if (allocsize > MAXALLOCSAVE) {
182 if (npg > 65535)
183 panic("malloc: allocation too large");
184 kup->ku_pagecnt = npg;
185 ksp->ks_memuse += allocsize;
186 goto out;
187 }
188 kup->ku_freecnt = kbp->kb_elmpercl;
189 kbp->kb_totalfree += kbp->kb_elmpercl;
190 /*
191 * Just in case we blocked while allocating memory,
192 * and someone else also allocated memory for this
193 * bucket, don't assume the list is still empty.
194 */
195 savedlist = kbp->kb_next;
196 kbp->kb_next = cp = va + (npg * PAGE_SIZE) - allocsize;
197 for (;;) {
198 freep = (struct freelist *)cp;
199#ifdef INVARIANTS
200 /*
201 * Copy in known text to detect modification
202 * after freeing.
203 */
204 end = (long *)&cp[copysize];
205 for (lp = (long *)cp; lp < end; lp++)
206 *lp = WEIRD_ADDR;
207 freep->type = M_FREE;
208#endif /* INVARIANTS */
209 if (cp <= va)
210 break;
211 cp -= allocsize;
212 freep->next = cp;
213 }
214 freep->next = savedlist;
215 if (kbp->kb_last == NULL)
216 kbp->kb_last = (caddr_t)freep;
217 }
218 va = kbp->kb_next;
219 kbp->kb_next = ((struct freelist *)va)->next;
220#ifdef INVARIANTS
221 freep = (struct freelist *)va;
222 savedtype = (const char *) type->ks_shortdesc;
223#if BYTE_ORDER == BIG_ENDIAN
224 freep->type = (struct malloc_type *)WEIRD_ADDR >> 16;
225#endif
226#if BYTE_ORDER == LITTLE_ENDIAN
227 freep->type = (struct malloc_type *)WEIRD_ADDR;
228#endif
229 if ((intptr_t)(void *)&freep->next & 0x2)
230 freep->next = (caddr_t)((WEIRD_ADDR >> 16)|(WEIRD_ADDR << 16));
231 else
232 freep->next = (caddr_t)WEIRD_ADDR;
233 end = (long *)&va[copysize];
234 for (lp = (long *)va; lp < end; lp++) {
235 if (*lp == WEIRD_ADDR)
236 continue;
237 printf("%s %ld of object %p size %lu %s %s (0x%lx != 0x%lx)\n",
238 "Data modified on freelist: word",
239 (long)(lp - (long *)va), (void *)va, size,
240 "previous type", savedtype, *lp, (u_long)WEIRD_ADDR);
241 break;
242 }
243 freep->spare0 = 0;
244#endif /* INVARIANTS */
245 kup = btokup(va);
246 if (kup->ku_indx != indx)
247 panic("malloc: wrong bucket");
248 if (kup->ku_freecnt == 0)
249 panic("malloc: lost data");
250 kup->ku_freecnt--;
251 kbp->kb_totalfree--;
252 ksp->ks_memuse += 1 << indx;
253out:
254 kbp->kb_calls++;
255 ksp->ks_inuse++;
256 ksp->ks_calls++;
257 if (ksp->ks_memuse > ksp->ks_maxused)
258 ksp->ks_maxused = ksp->ks_memuse;
259 splx(s);
260 return ((void *) va);
261}
262
263/*
264 * free:
265 *
266 * Free a block of memory allocated by malloc.
267 *
268 * This routine may not block.
269 */
270void
271free(addr, type)
272 void *addr;
273 struct malloc_type *type;
274{
275 register struct kmembuckets *kbp;
276 register struct kmemusage *kup;
277 register struct freelist *freep;
278 long size;
279 int s;
280#ifdef INVARIANTS
281 struct freelist *fp;
282 long *end, *lp, alloc, copysize;
283#endif
284 register struct malloc_type *ksp = type;
285
286 if (!type->ks_next)
287 panic("freeing with unknown type (%s)", type->ks_shortdesc);
288
289 KASSERT(kmembase <= (char *)addr && (char *)addr < kmemlimit,
290 ("free: address %p out of range", (void *)addr));
291 kup = btokup(addr);
292 size = 1 << kup->ku_indx;
293 kbp = &bucket[kup->ku_indx];
294 s = splmem();
295#ifdef INVARIANTS
296 /*
297 * Check for returns of data that do not point to the
298 * beginning of the allocation.
299 */
300 if (size > PAGE_SIZE)
301 alloc = addrmask[BUCKETINDX(PAGE_SIZE)];
302 else
303 alloc = addrmask[kup->ku_indx];
304 if (((uintptr_t)(void *)addr & alloc) != 0)
305 panic("free: unaligned addr %p, size %ld, type %s, mask %ld",
306 (void *)addr, size, type->ks_shortdesc, alloc);
307#endif /* INVARIANTS */
308 if (size > MAXALLOCSAVE) {
309 kmem_free(kmem_map, (vm_offset_t)addr, ctob(kup->ku_pagecnt));
310 size = kup->ku_pagecnt << PAGE_SHIFT;
311 ksp->ks_memuse -= size;
312 kup->ku_indx = 0;
313 kup->ku_pagecnt = 0;
314 if (ksp->ks_memuse + size >= ksp->ks_limit &&
315 ksp->ks_memuse < ksp->ks_limit)
316 wakeup((caddr_t)ksp);
317 ksp->ks_inuse--;
318 kbp->kb_total -= 1;
319 splx(s);
320 return;
321 }
322 freep = (struct freelist *)addr;
323#ifdef INVARIANTS
324 /*
325 * Check for multiple frees. Use a quick check to see if
326 * it looks free before laboriously searching the freelist.
327 */
328 if (freep->spare0 == WEIRD_ADDR) {
329 fp = (struct freelist *)kbp->kb_next;
330 while (fp) {
331 if (fp->spare0 != WEIRD_ADDR)
332 panic("free: free item %p modified", fp);
333 else if (addr == (caddr_t)fp)
334 panic("free: multiple freed item %p", addr);
335 fp = (struct freelist *)fp->next;
336 }
337 }
338 /*
339 * Copy in known text to detect modification after freeing
340 * and to make it look free. Also, save the type being freed
341 * so we can list likely culprit if modification is detected
342 * when the object is reallocated.
343 */
344 copysize = size < MAX_COPY ? size : MAX_COPY;
345 end = (long *)&((caddr_t)addr)[copysize];
346 for (lp = (long *)addr; lp < end; lp++)
347 *lp = WEIRD_ADDR;
348 freep->type = type;
349#endif /* INVARIANTS */
350 kup->ku_freecnt++;
351 if (kup->ku_freecnt >= kbp->kb_elmpercl)
351 if (kup->ku_freecnt >= kbp->kb_elmpercl) {
352 if (kup->ku_freecnt > kbp->kb_elmpercl)
353 panic("free: multiple frees");
354 else if (kbp->kb_totalfree > kbp->kb_highwat)
355 kbp->kb_couldfree++;
352 if (kup->ku_freecnt > kbp->kb_elmpercl)
353 panic("free: multiple frees");
354 else if (kbp->kb_totalfree > kbp->kb_highwat)
355 kbp->kb_couldfree++;
356 }
356 kbp->kb_totalfree++;
357 ksp->ks_memuse -= size;
358 if (ksp->ks_memuse + size >= ksp->ks_limit &&
359 ksp->ks_memuse < ksp->ks_limit)
360 wakeup((caddr_t)ksp);
361 ksp->ks_inuse--;
362#ifdef OLD_MALLOC_MEMORY_POLICY
363 if (kbp->kb_next == NULL)
364 kbp->kb_next = addr;
365 else
366 ((struct freelist *)kbp->kb_last)->next = addr;
367 freep->next = NULL;
368 kbp->kb_last = addr;
369#else
370 /*
371 * Return memory to the head of the queue for quick reuse. This
372 * can improve performance by improving the probability of the
373 * item being in the cache when it is reused.
374 */
375 if (kbp->kb_next == NULL) {
376 kbp->kb_next = addr;
377 kbp->kb_last = addr;
378 freep->next = NULL;
379 } else {
380 freep->next = kbp->kb_next;
381 kbp->kb_next = addr;
382 }
383#endif
384 splx(s);
385}
386
387/*
388 * Initialize the kernel memory allocator
389 */
390/* ARGSUSED*/
391static void
392kmeminit(dummy)
393 void *dummy;
394{
395 register long indx;
396 int npg;
397 int mem_size;
398 int xvm_kmem_size;
399
400#if ((MAXALLOCSAVE & (MAXALLOCSAVE - 1)) != 0)
401#error "kmeminit: MAXALLOCSAVE not power of 2"
402#endif
403#if (MAXALLOCSAVE > MINALLOCSIZE * 32768)
404#error "kmeminit: MAXALLOCSAVE too big"
405#endif
406#if (MAXALLOCSAVE < PAGE_SIZE)
407#error "kmeminit: MAXALLOCSAVE too small"
408#endif
409
410 /*
411 * Try to auto-tune the kernel memory size, so that it is
412 * more applicable for a wider range of machine sizes.
413 * On an X86, a VM_KMEM_SIZE_SCALE value of 4 is good, while
414 * a VM_KMEM_SIZE of 12MB is a fair compromise. The
415 * VM_KMEM_SIZE_MAX is dependent on the maximum KVA space
416 * available, and on an X86 with a total KVA space of 256MB,
417 * try to keep VM_KMEM_SIZE_MAX at 80MB or below.
418 *
419 * Note that the kmem_map is also used by the zone allocator,
420 * so make sure that there is enough space.
421 */
422 vm_kmem_size = VM_KMEM_SIZE;
423 mem_size = cnt.v_page_count * PAGE_SIZE;
424
425#if defined(VM_KMEM_SIZE_SCALE)
426 if ((mem_size / VM_KMEM_SIZE_SCALE) > vm_kmem_size)
427 vm_kmem_size = mem_size / VM_KMEM_SIZE_SCALE;
428#endif
429
430#if defined(VM_KMEM_SIZE_MAX)
431 if (vm_kmem_size >= VM_KMEM_SIZE_MAX)
432 vm_kmem_size = VM_KMEM_SIZE_MAX;
433#endif
434
435 /* Allow final override from the kernel environment */
436 if (getenv_int("kern.vm.kmem.size", &xvm_kmem_size))
437 vm_kmem_size = xvm_kmem_size;
438
439 if (vm_kmem_size > 2 * (cnt.v_page_count * PAGE_SIZE))
440 vm_kmem_size = 2 * (cnt.v_page_count * PAGE_SIZE);
441
442 npg = (nmbufs * MSIZE + nmbclusters * MCLBYTES + vm_kmem_size)
443 / PAGE_SIZE;
444
445 kmemusage = (struct kmemusage *) kmem_alloc(kernel_map,
446 (vm_size_t)(npg * sizeof(struct kmemusage)));
447 kmem_map = kmem_suballoc(kernel_map, (vm_offset_t *)&kmembase,
448 (vm_offset_t *)&kmemlimit, (vm_size_t)(npg * PAGE_SIZE));
449 kmem_map->system_map = 1;
450 for (indx = 0; indx < MINBUCKET + 16; indx++) {
451 if (1 << indx >= PAGE_SIZE)
452 bucket[indx].kb_elmpercl = 1;
453 else
454 bucket[indx].kb_elmpercl = PAGE_SIZE / (1 << indx);
455 bucket[indx].kb_highwat = 5 * bucket[indx].kb_elmpercl;
456 }
457}
458
459void
460malloc_init(data)
461 void *data;
462{
463 struct malloc_type *type = (struct malloc_type *)data;
464
465 if (type->ks_magic != M_MAGIC)
466 panic("malloc type lacks magic");
467
468 if (type->ks_next)
469 return;
470
471 if (cnt.v_page_count == 0)
472 panic("malloc_init not allowed before vm init");
473
474 /*
475 * The default limits for each malloc region is 1/2 of the
476 * malloc portion of the kmem map size.
477 */
478 type->ks_limit = vm_kmem_size / 2;
479 type->ks_next = kmemstatistics;
480 kmemstatistics = type;
481}
482
483void
484malloc_uninit(data)
485 void *data;
486{
487 struct malloc_type *type = (struct malloc_type *)data;
488 struct malloc_type *t;
489
490 if (type->ks_magic != M_MAGIC)
491 panic("malloc type lacks magic");
492
493 if (cnt.v_page_count == 0)
494 panic("malloc_uninit not allowed before vm init");
495
496 if (type == kmemstatistics)
497 kmemstatistics = type->ks_next;
498 else {
499 for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
500 if (t->ks_next == type) {
501 t->ks_next = type->ks_next;
502 break;
503 }
504 }
505 }
506}
357 kbp->kb_totalfree++;
358 ksp->ks_memuse -= size;
359 if (ksp->ks_memuse + size >= ksp->ks_limit &&
360 ksp->ks_memuse < ksp->ks_limit)
361 wakeup((caddr_t)ksp);
362 ksp->ks_inuse--;
363#ifdef OLD_MALLOC_MEMORY_POLICY
364 if (kbp->kb_next == NULL)
365 kbp->kb_next = addr;
366 else
367 ((struct freelist *)kbp->kb_last)->next = addr;
368 freep->next = NULL;
369 kbp->kb_last = addr;
370#else
371 /*
372 * Return memory to the head of the queue for quick reuse. This
373 * can improve performance by improving the probability of the
374 * item being in the cache when it is reused.
375 */
376 if (kbp->kb_next == NULL) {
377 kbp->kb_next = addr;
378 kbp->kb_last = addr;
379 freep->next = NULL;
380 } else {
381 freep->next = kbp->kb_next;
382 kbp->kb_next = addr;
383 }
384#endif
385 splx(s);
386}
387
388/*
389 * Initialize the kernel memory allocator
390 */
391/* ARGSUSED*/
392static void
393kmeminit(dummy)
394 void *dummy;
395{
396 register long indx;
397 int npg;
398 int mem_size;
399 int xvm_kmem_size;
400
401#if ((MAXALLOCSAVE & (MAXALLOCSAVE - 1)) != 0)
402#error "kmeminit: MAXALLOCSAVE not power of 2"
403#endif
404#if (MAXALLOCSAVE > MINALLOCSIZE * 32768)
405#error "kmeminit: MAXALLOCSAVE too big"
406#endif
407#if (MAXALLOCSAVE < PAGE_SIZE)
408#error "kmeminit: MAXALLOCSAVE too small"
409#endif
410
411 /*
412 * Try to auto-tune the kernel memory size, so that it is
413 * more applicable for a wider range of machine sizes.
414 * On an X86, a VM_KMEM_SIZE_SCALE value of 4 is good, while
415 * a VM_KMEM_SIZE of 12MB is a fair compromise. The
416 * VM_KMEM_SIZE_MAX is dependent on the maximum KVA space
417 * available, and on an X86 with a total KVA space of 256MB,
418 * try to keep VM_KMEM_SIZE_MAX at 80MB or below.
419 *
420 * Note that the kmem_map is also used by the zone allocator,
421 * so make sure that there is enough space.
422 */
423 vm_kmem_size = VM_KMEM_SIZE;
424 mem_size = cnt.v_page_count * PAGE_SIZE;
425
426#if defined(VM_KMEM_SIZE_SCALE)
427 if ((mem_size / VM_KMEM_SIZE_SCALE) > vm_kmem_size)
428 vm_kmem_size = mem_size / VM_KMEM_SIZE_SCALE;
429#endif
430
431#if defined(VM_KMEM_SIZE_MAX)
432 if (vm_kmem_size >= VM_KMEM_SIZE_MAX)
433 vm_kmem_size = VM_KMEM_SIZE_MAX;
434#endif
435
436 /* Allow final override from the kernel environment */
437 if (getenv_int("kern.vm.kmem.size", &xvm_kmem_size))
438 vm_kmem_size = xvm_kmem_size;
439
440 if (vm_kmem_size > 2 * (cnt.v_page_count * PAGE_SIZE))
441 vm_kmem_size = 2 * (cnt.v_page_count * PAGE_SIZE);
442
443 npg = (nmbufs * MSIZE + nmbclusters * MCLBYTES + vm_kmem_size)
444 / PAGE_SIZE;
445
446 kmemusage = (struct kmemusage *) kmem_alloc(kernel_map,
447 (vm_size_t)(npg * sizeof(struct kmemusage)));
448 kmem_map = kmem_suballoc(kernel_map, (vm_offset_t *)&kmembase,
449 (vm_offset_t *)&kmemlimit, (vm_size_t)(npg * PAGE_SIZE));
450 kmem_map->system_map = 1;
451 for (indx = 0; indx < MINBUCKET + 16; indx++) {
452 if (1 << indx >= PAGE_SIZE)
453 bucket[indx].kb_elmpercl = 1;
454 else
455 bucket[indx].kb_elmpercl = PAGE_SIZE / (1 << indx);
456 bucket[indx].kb_highwat = 5 * bucket[indx].kb_elmpercl;
457 }
458}
459
460void
461malloc_init(data)
462 void *data;
463{
464 struct malloc_type *type = (struct malloc_type *)data;
465
466 if (type->ks_magic != M_MAGIC)
467 panic("malloc type lacks magic");
468
469 if (type->ks_next)
470 return;
471
472 if (cnt.v_page_count == 0)
473 panic("malloc_init not allowed before vm init");
474
475 /*
476 * The default limits for each malloc region is 1/2 of the
477 * malloc portion of the kmem map size.
478 */
479 type->ks_limit = vm_kmem_size / 2;
480 type->ks_next = kmemstatistics;
481 kmemstatistics = type;
482}
483
484void
485malloc_uninit(data)
486 void *data;
487{
488 struct malloc_type *type = (struct malloc_type *)data;
489 struct malloc_type *t;
490
491 if (type->ks_magic != M_MAGIC)
492 panic("malloc type lacks magic");
493
494 if (cnt.v_page_count == 0)
495 panic("malloc_uninit not allowed before vm init");
496
497 if (type == kmemstatistics)
498 kmemstatistics = type->ks_next;
499 else {
500 for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
501 if (t->ks_next == type) {
502 t->ks_next = type->ks_next;
503 break;
504 }
505 }
506 }
507}