Deleted Added
full compact
kern_malloc.c (180308) kern_malloc.c (187681)
1/*-
2 * Copyright (c) 1987, 1991, 1993
3 * The Regents of the University of California.
4 * Copyright (c) 2005-2006 Robert N. M. Watson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 4. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94
32 */
33
34/*
35 * Kernel malloc(9) implementation -- general purpose kernel memory allocator
36 * based on memory types. Back end is implemented using the UMA(9) zone
37 * allocator. A set of fixed-size buckets are used for smaller allocations,
38 * and a special UMA allocation interface is used for larger allocations.
39 * Callers declare memory types, and statistics are maintained independently
40 * for each memory type. Statistics are maintained per-CPU for performance
41 * reasons. See malloc(9) and comments in malloc.h for a detailed
42 * description.
43 */
44
45#include <sys/cdefs.h>
1/*-
2 * Copyright (c) 1987, 1991, 1993
3 * The Regents of the University of California.
4 * Copyright (c) 2005-2006 Robert N. M. Watson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 4. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94
32 */
33
34/*
35 * Kernel malloc(9) implementation -- general purpose kernel memory allocator
36 * based on memory types. Back end is implemented using the UMA(9) zone
37 * allocator. A set of fixed-size buckets are used for smaller allocations,
38 * and a special UMA allocation interface is used for larger allocations.
39 * Callers declare memory types, and statistics are maintained independently
40 * for each memory type. Statistics are maintained per-CPU for performance
41 * reasons. See malloc(9) and comments in malloc.h for a detailed
42 * description.
43 */
44
45#include <sys/cdefs.h>
46__FBSDID("$FreeBSD: head/sys/kern/kern_malloc.c 180308 2008-07-05 19:34:33Z alc $");
46__FBSDID("$FreeBSD: head/sys/kern/kern_malloc.c 187681 2009-01-25 09:11:24Z jeff $");
47
48#include "opt_ddb.h"
49#include "opt_kdtrace.h"
50#include "opt_vm.h"
51
52#include <sys/param.h>
53#include <sys/systm.h>
54#include <sys/kdb.h>
55#include <sys/kernel.h>
56#include <sys/lock.h>
57#include <sys/malloc.h>
58#include <sys/mbuf.h>
59#include <sys/mutex.h>
60#include <sys/vmmeter.h>
61#include <sys/proc.h>
62#include <sys/sbuf.h>
63#include <sys/sysctl.h>
64#include <sys/time.h>
65
66#include <vm/vm.h>
67#include <vm/pmap.h>
68#include <vm/vm_param.h>
69#include <vm/vm_kern.h>
70#include <vm/vm_extern.h>
71#include <vm/vm_map.h>
72#include <vm/vm_page.h>
73#include <vm/uma.h>
74#include <vm/uma_int.h>
75#include <vm/uma_dbg.h>
76
77#ifdef DEBUG_MEMGUARD
78#include <vm/memguard.h>
79#endif
80#ifdef DEBUG_REDZONE
81#include <vm/redzone.h>
82#endif
83
84#if defined(INVARIANTS) && defined(__i386__)
85#include <machine/cpu.h>
86#endif
87
88#include <ddb/ddb.h>
89
90#ifdef KDTRACE_HOOKS
91#include <sys/dtrace_bsd.h>
92
93dtrace_malloc_probe_func_t dtrace_malloc_probe;
94#endif
95
96/*
97 * When realloc() is called, if the new size is sufficiently smaller than
98 * the old size, realloc() will allocate a new, smaller block to avoid
99 * wasting memory. 'Sufficiently smaller' is defined as: newsize <=
100 * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'.
101 */
102#ifndef REALLOC_FRACTION
103#define REALLOC_FRACTION 1 /* new block if <= half the size */
104#endif
105
106/*
107 * Centrally define some common malloc types.
108 */
109MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
110MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
111MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
112
113MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
114MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
115
116static void kmeminit(void *);
117SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL);
118
119static MALLOC_DEFINE(M_FREE, "free", "should be on free list");
120
121static struct malloc_type *kmemstatistics;
122static vm_offset_t kmembase;
123static vm_offset_t kmemlimit;
124static int kmemcount;
125
126#define KMEM_ZSHIFT 4
127#define KMEM_ZBASE 16
128#define KMEM_ZMASK (KMEM_ZBASE - 1)
129
130#define KMEM_ZMAX PAGE_SIZE
131#define KMEM_ZSIZE (KMEM_ZMAX >> KMEM_ZSHIFT)
132static u_int8_t kmemsize[KMEM_ZSIZE + 1];
133
134/*
135 * Small malloc(9) memory allocations are allocated from a set of UMA buckets
136 * of various sizes.
137 *
138 * XXX: The comment here used to read "These won't be powers of two for
139 * long." It's possible that a significant amount of wasted memory could be
140 * recovered by tuning the sizes of these buckets.
141 */
142struct {
143 int kz_size;
144 char *kz_name;
145 uma_zone_t kz_zone;
146} kmemzones[] = {
147 {16, "16", NULL},
148 {32, "32", NULL},
149 {64, "64", NULL},
150 {128, "128", NULL},
151 {256, "256", NULL},
152 {512, "512", NULL},
153 {1024, "1024", NULL},
154 {2048, "2048", NULL},
155 {4096, "4096", NULL},
156#if PAGE_SIZE > 4096
157 {8192, "8192", NULL},
158#if PAGE_SIZE > 8192
159 {16384, "16384", NULL},
160#if PAGE_SIZE > 16384
161 {32768, "32768", NULL},
162#if PAGE_SIZE > 32768
163 {65536, "65536", NULL},
164#if PAGE_SIZE > 65536
165#error "Unsupported PAGE_SIZE"
166#endif /* 65536 */
167#endif /* 32768 */
168#endif /* 16384 */
169#endif /* 8192 */
170#endif /* 4096 */
171 {0, NULL},
172};
173
174/*
175 * Zone to allocate malloc type descriptions from. For ABI reasons, memory
176 * types are described by a data structure passed by the declaring code, but
177 * the malloc(9) implementation has its own data structure describing the
178 * type and statistics. This permits the malloc(9)-internal data structures
179 * to be modified without breaking binary-compiled kernel modules that
180 * declare malloc types.
181 */
182static uma_zone_t mt_zone;
183
184u_long vm_kmem_size;
185SYSCTL_ULONG(_vm, OID_AUTO, kmem_size, CTLFLAG_RD, &vm_kmem_size, 0,
186 "Size of kernel memory");
187
188static u_long vm_kmem_size_min;
189SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_min, CTLFLAG_RD, &vm_kmem_size_min, 0,
190 "Minimum size of kernel memory");
191
192static u_long vm_kmem_size_max;
193SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RD, &vm_kmem_size_max, 0,
194 "Maximum size of kernel memory");
195
196static u_int vm_kmem_size_scale;
197SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RD, &vm_kmem_size_scale, 0,
198 "Scale factor for kernel memory size");
199
200/*
201 * The malloc_mtx protects the kmemstatistics linked list.
202 */
203struct mtx malloc_mtx;
204
205#ifdef MALLOC_PROFILE
206uint64_t krequests[KMEM_ZSIZE + 1];
207
208static int sysctl_kern_mprof(SYSCTL_HANDLER_ARGS);
209#endif
210
211static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS);
212
213/*
214 * time_uptime of the last malloc(9) failure (induced or real).
215 */
216static time_t t_malloc_fail;
217
218/*
219 * malloc(9) fault injection -- cause malloc failures every (n) mallocs when
220 * the caller specifies M_NOWAIT. If set to 0, no failures are caused.
221 */
222#ifdef MALLOC_MAKE_FAILURES
223SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD, 0,
224 "Kernel malloc debugging options");
225
226static int malloc_failure_rate;
227static int malloc_nowait_count;
228static int malloc_failure_count;
229SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RW,
230 &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail");
231TUNABLE_INT("debug.malloc.failure_rate", &malloc_failure_rate);
232SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD,
233 &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures");
234#endif
235
236int
237malloc_last_fail(void)
238{
239
240 return (time_uptime - t_malloc_fail);
241}
242
243/*
244 * An allocation has succeeded -- update malloc type statistics for the
245 * amount of bucket size. Occurs within a critical section so that the
246 * thread isn't preempted and doesn't migrate while updating per-PCU
247 * statistics.
248 */
249static void
250malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size,
251 int zindx)
252{
253 struct malloc_type_internal *mtip;
254 struct malloc_type_stats *mtsp;
255
256 critical_enter();
257 mtip = mtp->ks_handle;
258 mtsp = &mtip->mti_stats[curcpu];
259 if (size > 0) {
260 mtsp->mts_memalloced += size;
261 mtsp->mts_numallocs++;
262 }
263 if (zindx != -1)
264 mtsp->mts_size |= 1 << zindx;
265
266#ifdef KDTRACE_HOOKS
267 if (dtrace_malloc_probe != NULL) {
268 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_MALLOC];
269 if (probe_id != 0)
270 (dtrace_malloc_probe)(probe_id,
271 (uintptr_t) mtp, (uintptr_t) mtip,
272 (uintptr_t) mtsp, size, zindx);
273 }
274#endif
275
276 critical_exit();
277}
278
279void
280malloc_type_allocated(struct malloc_type *mtp, unsigned long size)
281{
282
283 if (size > 0)
284 malloc_type_zone_allocated(mtp, size, -1);
285}
286
287/*
288 * A free operation has occurred -- update malloc type statistics for the
289 * amount of the bucket size. Occurs within a critical section so that the
290 * thread isn't preempted and doesn't migrate while updating per-CPU
291 * statistics.
292 */
293void
294malloc_type_freed(struct malloc_type *mtp, unsigned long size)
295{
296 struct malloc_type_internal *mtip;
297 struct malloc_type_stats *mtsp;
298
299 critical_enter();
300 mtip = mtp->ks_handle;
301 mtsp = &mtip->mti_stats[curcpu];
302 mtsp->mts_memfreed += size;
303 mtsp->mts_numfrees++;
304
305#ifdef KDTRACE_HOOKS
306 if (dtrace_malloc_probe != NULL) {
307 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_FREE];
308 if (probe_id != 0)
309 (dtrace_malloc_probe)(probe_id,
310 (uintptr_t) mtp, (uintptr_t) mtip,
311 (uintptr_t) mtsp, size, 0);
312 }
313#endif
314
315 critical_exit();
316}
317
318/*
319 * malloc:
320 *
321 * Allocate a block of memory.
322 *
323 * If M_NOWAIT is set, this routine will not block and return NULL if
324 * the allocation fails.
325 */
326void *
327malloc(unsigned long size, struct malloc_type *mtp, int flags)
328{
329 int indx;
330 caddr_t va;
331 uma_zone_t zone;
47
48#include "opt_ddb.h"
49#include "opt_kdtrace.h"
50#include "opt_vm.h"
51
52#include <sys/param.h>
53#include <sys/systm.h>
54#include <sys/kdb.h>
55#include <sys/kernel.h>
56#include <sys/lock.h>
57#include <sys/malloc.h>
58#include <sys/mbuf.h>
59#include <sys/mutex.h>
60#include <sys/vmmeter.h>
61#include <sys/proc.h>
62#include <sys/sbuf.h>
63#include <sys/sysctl.h>
64#include <sys/time.h>
65
66#include <vm/vm.h>
67#include <vm/pmap.h>
68#include <vm/vm_param.h>
69#include <vm/vm_kern.h>
70#include <vm/vm_extern.h>
71#include <vm/vm_map.h>
72#include <vm/vm_page.h>
73#include <vm/uma.h>
74#include <vm/uma_int.h>
75#include <vm/uma_dbg.h>
76
77#ifdef DEBUG_MEMGUARD
78#include <vm/memguard.h>
79#endif
80#ifdef DEBUG_REDZONE
81#include <vm/redzone.h>
82#endif
83
84#if defined(INVARIANTS) && defined(__i386__)
85#include <machine/cpu.h>
86#endif
87
88#include <ddb/ddb.h>
89
90#ifdef KDTRACE_HOOKS
91#include <sys/dtrace_bsd.h>
92
93dtrace_malloc_probe_func_t dtrace_malloc_probe;
94#endif
95
96/*
97 * When realloc() is called, if the new size is sufficiently smaller than
98 * the old size, realloc() will allocate a new, smaller block to avoid
99 * wasting memory. 'Sufficiently smaller' is defined as: newsize <=
100 * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'.
101 */
102#ifndef REALLOC_FRACTION
103#define REALLOC_FRACTION 1 /* new block if <= half the size */
104#endif
105
106/*
107 * Centrally define some common malloc types.
108 */
109MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
110MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
111MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
112
113MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
114MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
115
116static void kmeminit(void *);
117SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL);
118
119static MALLOC_DEFINE(M_FREE, "free", "should be on free list");
120
121static struct malloc_type *kmemstatistics;
122static vm_offset_t kmembase;
123static vm_offset_t kmemlimit;
124static int kmemcount;
125
126#define KMEM_ZSHIFT 4
127#define KMEM_ZBASE 16
128#define KMEM_ZMASK (KMEM_ZBASE - 1)
129
130#define KMEM_ZMAX PAGE_SIZE
131#define KMEM_ZSIZE (KMEM_ZMAX >> KMEM_ZSHIFT)
132static u_int8_t kmemsize[KMEM_ZSIZE + 1];
133
134/*
135 * Small malloc(9) memory allocations are allocated from a set of UMA buckets
136 * of various sizes.
137 *
138 * XXX: The comment here used to read "These won't be powers of two for
139 * long." It's possible that a significant amount of wasted memory could be
140 * recovered by tuning the sizes of these buckets.
141 */
142struct {
143 int kz_size;
144 char *kz_name;
145 uma_zone_t kz_zone;
146} kmemzones[] = {
147 {16, "16", NULL},
148 {32, "32", NULL},
149 {64, "64", NULL},
150 {128, "128", NULL},
151 {256, "256", NULL},
152 {512, "512", NULL},
153 {1024, "1024", NULL},
154 {2048, "2048", NULL},
155 {4096, "4096", NULL},
156#if PAGE_SIZE > 4096
157 {8192, "8192", NULL},
158#if PAGE_SIZE > 8192
159 {16384, "16384", NULL},
160#if PAGE_SIZE > 16384
161 {32768, "32768", NULL},
162#if PAGE_SIZE > 32768
163 {65536, "65536", NULL},
164#if PAGE_SIZE > 65536
165#error "Unsupported PAGE_SIZE"
166#endif /* 65536 */
167#endif /* 32768 */
168#endif /* 16384 */
169#endif /* 8192 */
170#endif /* 4096 */
171 {0, NULL},
172};
173
174/*
175 * Zone to allocate malloc type descriptions from. For ABI reasons, memory
176 * types are described by a data structure passed by the declaring code, but
177 * the malloc(9) implementation has its own data structure describing the
178 * type and statistics. This permits the malloc(9)-internal data structures
179 * to be modified without breaking binary-compiled kernel modules that
180 * declare malloc types.
181 */
182static uma_zone_t mt_zone;
183
184u_long vm_kmem_size;
185SYSCTL_ULONG(_vm, OID_AUTO, kmem_size, CTLFLAG_RD, &vm_kmem_size, 0,
186 "Size of kernel memory");
187
188static u_long vm_kmem_size_min;
189SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_min, CTLFLAG_RD, &vm_kmem_size_min, 0,
190 "Minimum size of kernel memory");
191
192static u_long vm_kmem_size_max;
193SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RD, &vm_kmem_size_max, 0,
194 "Maximum size of kernel memory");
195
196static u_int vm_kmem_size_scale;
197SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RD, &vm_kmem_size_scale, 0,
198 "Scale factor for kernel memory size");
199
200/*
201 * The malloc_mtx protects the kmemstatistics linked list.
202 */
203struct mtx malloc_mtx;
204
205#ifdef MALLOC_PROFILE
206uint64_t krequests[KMEM_ZSIZE + 1];
207
208static int sysctl_kern_mprof(SYSCTL_HANDLER_ARGS);
209#endif
210
211static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS);
212
213/*
214 * time_uptime of the last malloc(9) failure (induced or real).
215 */
216static time_t t_malloc_fail;
217
218/*
219 * malloc(9) fault injection -- cause malloc failures every (n) mallocs when
220 * the caller specifies M_NOWAIT. If set to 0, no failures are caused.
221 */
222#ifdef MALLOC_MAKE_FAILURES
223SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD, 0,
224 "Kernel malloc debugging options");
225
226static int malloc_failure_rate;
227static int malloc_nowait_count;
228static int malloc_failure_count;
229SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RW,
230 &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail");
231TUNABLE_INT("debug.malloc.failure_rate", &malloc_failure_rate);
232SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD,
233 &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures");
234#endif
235
236int
237malloc_last_fail(void)
238{
239
240 return (time_uptime - t_malloc_fail);
241}
242
243/*
244 * An allocation has succeeded -- update malloc type statistics for the
245 * amount of bucket size. Occurs within a critical section so that the
246 * thread isn't preempted and doesn't migrate while updating per-PCU
247 * statistics.
248 */
249static void
250malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size,
251 int zindx)
252{
253 struct malloc_type_internal *mtip;
254 struct malloc_type_stats *mtsp;
255
256 critical_enter();
257 mtip = mtp->ks_handle;
258 mtsp = &mtip->mti_stats[curcpu];
259 if (size > 0) {
260 mtsp->mts_memalloced += size;
261 mtsp->mts_numallocs++;
262 }
263 if (zindx != -1)
264 mtsp->mts_size |= 1 << zindx;
265
266#ifdef KDTRACE_HOOKS
267 if (dtrace_malloc_probe != NULL) {
268 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_MALLOC];
269 if (probe_id != 0)
270 (dtrace_malloc_probe)(probe_id,
271 (uintptr_t) mtp, (uintptr_t) mtip,
272 (uintptr_t) mtsp, size, zindx);
273 }
274#endif
275
276 critical_exit();
277}
278
279void
280malloc_type_allocated(struct malloc_type *mtp, unsigned long size)
281{
282
283 if (size > 0)
284 malloc_type_zone_allocated(mtp, size, -1);
285}
286
287/*
288 * A free operation has occurred -- update malloc type statistics for the
289 * amount of the bucket size. Occurs within a critical section so that the
290 * thread isn't preempted and doesn't migrate while updating per-CPU
291 * statistics.
292 */
293void
294malloc_type_freed(struct malloc_type *mtp, unsigned long size)
295{
296 struct malloc_type_internal *mtip;
297 struct malloc_type_stats *mtsp;
298
299 critical_enter();
300 mtip = mtp->ks_handle;
301 mtsp = &mtip->mti_stats[curcpu];
302 mtsp->mts_memfreed += size;
303 mtsp->mts_numfrees++;
304
305#ifdef KDTRACE_HOOKS
306 if (dtrace_malloc_probe != NULL) {
307 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_FREE];
308 if (probe_id != 0)
309 (dtrace_malloc_probe)(probe_id,
310 (uintptr_t) mtp, (uintptr_t) mtip,
311 (uintptr_t) mtsp, size, 0);
312 }
313#endif
314
315 critical_exit();
316}
317
318/*
319 * malloc:
320 *
321 * Allocate a block of memory.
322 *
323 * If M_NOWAIT is set, this routine will not block and return NULL if
324 * the allocation fails.
325 */
326void *
327malloc(unsigned long size, struct malloc_type *mtp, int flags)
328{
329 int indx;
330 caddr_t va;
331 uma_zone_t zone;
332 uma_keg_t keg;
333#if defined(DIAGNOSTIC) || defined(DEBUG_REDZONE)
334 unsigned long osize = size;
335#endif
336
337#ifdef INVARIANTS
338 /*
339 * Check that exactly one of M_WAITOK or M_NOWAIT is specified.
340 */
341 indx = flags & (M_WAITOK | M_NOWAIT);
342 if (indx != M_NOWAIT && indx != M_WAITOK) {
343 static struct timeval lasterr;
344 static int curerr, once;
345 if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) {
346 printf("Bad malloc flags: %x\n", indx);
347 kdb_backtrace();
348 flags |= M_WAITOK;
349 once++;
350 }
351 }
352#endif
353#ifdef MALLOC_MAKE_FAILURES
354 if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) {
355 atomic_add_int(&malloc_nowait_count, 1);
356 if ((malloc_nowait_count % malloc_failure_rate) == 0) {
357 atomic_add_int(&malloc_failure_count, 1);
358 t_malloc_fail = time_uptime;
359 return (NULL);
360 }
361 }
362#endif
363 if (flags & M_WAITOK)
364 KASSERT(curthread->td_intr_nesting_level == 0,
365 ("malloc(M_WAITOK) in interrupt context"));
366
367#ifdef DEBUG_MEMGUARD
368 if (memguard_cmp(mtp))
369 return memguard_alloc(size, flags);
370#endif
371
372#ifdef DEBUG_REDZONE
373 size = redzone_size_ntor(size);
374#endif
375
376 if (size <= KMEM_ZMAX) {
377 if (size & KMEM_ZMASK)
378 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
379 indx = kmemsize[size >> KMEM_ZSHIFT];
380 zone = kmemzones[indx].kz_zone;
332#if defined(DIAGNOSTIC) || defined(DEBUG_REDZONE)
333 unsigned long osize = size;
334#endif
335
336#ifdef INVARIANTS
337 /*
338 * Check that exactly one of M_WAITOK or M_NOWAIT is specified.
339 */
340 indx = flags & (M_WAITOK | M_NOWAIT);
341 if (indx != M_NOWAIT && indx != M_WAITOK) {
342 static struct timeval lasterr;
343 static int curerr, once;
344 if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) {
345 printf("Bad malloc flags: %x\n", indx);
346 kdb_backtrace();
347 flags |= M_WAITOK;
348 once++;
349 }
350 }
351#endif
352#ifdef MALLOC_MAKE_FAILURES
353 if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) {
354 atomic_add_int(&malloc_nowait_count, 1);
355 if ((malloc_nowait_count % malloc_failure_rate) == 0) {
356 atomic_add_int(&malloc_failure_count, 1);
357 t_malloc_fail = time_uptime;
358 return (NULL);
359 }
360 }
361#endif
362 if (flags & M_WAITOK)
363 KASSERT(curthread->td_intr_nesting_level == 0,
364 ("malloc(M_WAITOK) in interrupt context"));
365
366#ifdef DEBUG_MEMGUARD
367 if (memguard_cmp(mtp))
368 return memguard_alloc(size, flags);
369#endif
370
371#ifdef DEBUG_REDZONE
372 size = redzone_size_ntor(size);
373#endif
374
375 if (size <= KMEM_ZMAX) {
376 if (size & KMEM_ZMASK)
377 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
378 indx = kmemsize[size >> KMEM_ZSHIFT];
379 zone = kmemzones[indx].kz_zone;
381 keg = zone->uz_keg;
382#ifdef MALLOC_PROFILE
383 krequests[size >> KMEM_ZSHIFT]++;
384#endif
385 va = uma_zalloc(zone, flags);
386 if (va != NULL)
380#ifdef MALLOC_PROFILE
381 krequests[size >> KMEM_ZSHIFT]++;
382#endif
383 va = uma_zalloc(zone, flags);
384 if (va != NULL)
387 size = keg->uk_size;
385 size = zone->uz_size;
388 malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx);
389 } else {
390 size = roundup(size, PAGE_SIZE);
391 zone = NULL;
386 malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx);
387 } else {
388 size = roundup(size, PAGE_SIZE);
389 zone = NULL;
392 keg = NULL;
393 va = uma_large_malloc(size, flags);
394 malloc_type_allocated(mtp, va == NULL ? 0 : size);
395 }
396 if (flags & M_WAITOK)
397 KASSERT(va != NULL, ("malloc(M_WAITOK) returned NULL"));
398 else if (va == NULL)
399 t_malloc_fail = time_uptime;
400#ifdef DIAGNOSTIC
401 if (va != NULL && !(flags & M_ZERO)) {
402 memset(va, 0x70, osize);
403 }
404#endif
405#ifdef DEBUG_REDZONE
406 if (va != NULL)
407 va = redzone_setup(va, osize);
408#endif
409 return ((void *) va);
410}
411
412/*
413 * free:
414 *
415 * Free a block of memory allocated by malloc.
416 *
417 * This routine may not block.
418 */
419void
420free(void *addr, struct malloc_type *mtp)
421{
422 uma_slab_t slab;
423 u_long size;
424
425 /* free(NULL, ...) does nothing */
426 if (addr == NULL)
427 return;
428
429#ifdef DEBUG_MEMGUARD
430 if (memguard_cmp(mtp)) {
431 memguard_free(addr);
432 return;
433 }
434#endif
435
436#ifdef DEBUG_REDZONE
437 redzone_check(addr);
438 addr = redzone_addr_ntor(addr);
439#endif
440
441 size = 0;
442
443 slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK));
444
445 if (slab == NULL)
446 panic("free: address %p(%p) has not been allocated.\n",
447 addr, (void *)((u_long)addr & (~UMA_SLAB_MASK)));
448
449
450 if (!(slab->us_flags & UMA_SLAB_MALLOC)) {
451#ifdef INVARIANTS
452 struct malloc_type **mtpp = addr;
453#endif
454 size = slab->us_keg->uk_size;
455#ifdef INVARIANTS
456 /*
457 * Cache a pointer to the malloc_type that most recently freed
458 * this memory here. This way we know who is most likely to
459 * have stepped on it later.
460 *
461 * This code assumes that size is a multiple of 8 bytes for
462 * 64 bit machines
463 */
464 mtpp = (struct malloc_type **)
465 ((unsigned long)mtpp & ~UMA_ALIGN_PTR);
466 mtpp += (size - sizeof(struct malloc_type *)) /
467 sizeof(struct malloc_type *);
468 *mtpp = mtp;
469#endif
470 uma_zfree_arg(LIST_FIRST(&slab->us_keg->uk_zones), addr, slab);
471 } else {
472 size = slab->us_size;
473 uma_large_free(slab);
474 }
475 malloc_type_freed(mtp, size);
476}
477
478/*
479 * realloc: change the size of a memory block
480 */
481void *
482realloc(void *addr, unsigned long size, struct malloc_type *mtp, int flags)
483{
484 uma_slab_t slab;
485 unsigned long alloc;
486 void *newaddr;
487
488 /* realloc(NULL, ...) is equivalent to malloc(...) */
489 if (addr == NULL)
490 return (malloc(size, mtp, flags));
491
492 /*
493 * XXX: Should report free of old memory and alloc of new memory to
494 * per-CPU stats.
495 */
496
497#ifdef DEBUG_MEMGUARD
498if (memguard_cmp(mtp)) {
499 slab = NULL;
500 alloc = size;
501} else {
502#endif
503
504#ifdef DEBUG_REDZONE
505 slab = NULL;
506 alloc = redzone_get_size(addr);
507#else
508 slab = vtoslab((vm_offset_t)addr & ~(UMA_SLAB_MASK));
509
510 /* Sanity check */
511 KASSERT(slab != NULL,
512 ("realloc: address %p out of range", (void *)addr));
513
514 /* Get the size of the original block */
515 if (!(slab->us_flags & UMA_SLAB_MALLOC))
516 alloc = slab->us_keg->uk_size;
517 else
518 alloc = slab->us_size;
519
520 /* Reuse the original block if appropriate */
521 if (size <= alloc
522 && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE))
523 return (addr);
524#endif /* !DEBUG_REDZONE */
525
526#ifdef DEBUG_MEMGUARD
527}
528#endif
529
530 /* Allocate a new, bigger (or smaller) block */
531 if ((newaddr = malloc(size, mtp, flags)) == NULL)
532 return (NULL);
533
534 /* Copy over original contents */
535 bcopy(addr, newaddr, min(size, alloc));
536 free(addr, mtp);
537 return (newaddr);
538}
539
540/*
541 * reallocf: same as realloc() but free memory on failure.
542 */
543void *
544reallocf(void *addr, unsigned long size, struct malloc_type *mtp, int flags)
545{
546 void *mem;
547
548 if ((mem = realloc(addr, size, mtp, flags)) == NULL)
549 free(addr, mtp);
550 return (mem);
551}
552
553/*
554 * Initialize the kernel memory allocator
555 */
556/* ARGSUSED*/
557static void
558kmeminit(void *dummy)
559{
560 u_int8_t indx;
561 u_long mem_size;
562 int i;
563
564 mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF);
565
566 /*
567 * Try to auto-tune the kernel memory size, so that it is
568 * more applicable for a wider range of machine sizes.
569 * On an X86, a VM_KMEM_SIZE_SCALE value of 4 is good, while
570 * a VM_KMEM_SIZE of 12MB is a fair compromise. The
571 * VM_KMEM_SIZE_MAX is dependent on the maximum KVA space
572 * available, and on an X86 with a total KVA space of 256MB,
573 * try to keep VM_KMEM_SIZE_MAX at 80MB or below.
574 *
575 * Note that the kmem_map is also used by the zone allocator,
576 * so make sure that there is enough space.
577 */
578 vm_kmem_size = VM_KMEM_SIZE + nmbclusters * PAGE_SIZE;
579 mem_size = cnt.v_page_count;
580
581#if defined(VM_KMEM_SIZE_SCALE)
582 vm_kmem_size_scale = VM_KMEM_SIZE_SCALE;
583#endif
584 TUNABLE_INT_FETCH("vm.kmem_size_scale", &vm_kmem_size_scale);
585 if (vm_kmem_size_scale > 0 &&
586 (mem_size / vm_kmem_size_scale) > (vm_kmem_size / PAGE_SIZE))
587 vm_kmem_size = (mem_size / vm_kmem_size_scale) * PAGE_SIZE;
588
589#if defined(VM_KMEM_SIZE_MIN)
590 vm_kmem_size_min = VM_KMEM_SIZE_MIN;
591#endif
592 TUNABLE_ULONG_FETCH("vm.kmem_size_min", &vm_kmem_size_min);
593 if (vm_kmem_size_min > 0 && vm_kmem_size < vm_kmem_size_min) {
594 vm_kmem_size = vm_kmem_size_min;
595 }
596
597#if defined(VM_KMEM_SIZE_MAX)
598 vm_kmem_size_max = VM_KMEM_SIZE_MAX;
599#endif
600 TUNABLE_ULONG_FETCH("vm.kmem_size_max", &vm_kmem_size_max);
601 if (vm_kmem_size_max > 0 && vm_kmem_size >= vm_kmem_size_max)
602 vm_kmem_size = vm_kmem_size_max;
603
604 /* Allow final override from the kernel environment */
605#ifndef BURN_BRIDGES
606 if (TUNABLE_ULONG_FETCH("kern.vm.kmem.size", &vm_kmem_size) != 0)
607 printf("kern.vm.kmem.size is now called vm.kmem_size!\n");
608#endif
609 TUNABLE_ULONG_FETCH("vm.kmem_size", &vm_kmem_size);
610
611 /*
612 * Limit kmem virtual size to twice the physical memory.
613 * This allows for kmem map sparseness, but limits the size
614 * to something sane. Be careful to not overflow the 32bit
615 * ints while doing the check.
616 */
617 if (((vm_kmem_size / 2) / PAGE_SIZE) > cnt.v_page_count)
618 vm_kmem_size = 2 * cnt.v_page_count * PAGE_SIZE;
619
620 /*
621 * Tune settings based on the kmem map's size at this time.
622 */
623 init_param3(vm_kmem_size / PAGE_SIZE);
624
625 kmem_map = kmem_suballoc(kernel_map, &kmembase, &kmemlimit,
626 vm_kmem_size, TRUE);
627 kmem_map->system_map = 1;
628
629#ifdef DEBUG_MEMGUARD
630 /*
631 * Initialize MemGuard if support compiled in. MemGuard is a
632 * replacement allocator used for detecting tamper-after-free
633 * scenarios as they occur. It is only used for debugging.
634 */
635 vm_memguard_divisor = 10;
636 TUNABLE_INT_FETCH("vm.memguard.divisor", &vm_memguard_divisor);
637
638 /* Pick a conservative value if provided value sucks. */
639 if ((vm_memguard_divisor <= 0) ||
640 ((vm_kmem_size / vm_memguard_divisor) == 0))
641 vm_memguard_divisor = 10;
642 memguard_init(kmem_map, vm_kmem_size / vm_memguard_divisor);
643#endif
644
645 uma_startup2();
646
647 mt_zone = uma_zcreate("mt_zone", sizeof(struct malloc_type_internal),
648#ifdef INVARIANTS
649 mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
650#else
651 NULL, NULL, NULL, NULL,
652#endif
653 UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
654 for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) {
655 int size = kmemzones[indx].kz_size;
656 char *name = kmemzones[indx].kz_name;
657
658 kmemzones[indx].kz_zone = uma_zcreate(name, size,
659#ifdef INVARIANTS
660 mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
661#else
662 NULL, NULL, NULL, NULL,
663#endif
664 UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
665
666 for (;i <= size; i+= KMEM_ZBASE)
667 kmemsize[i >> KMEM_ZSHIFT] = indx;
668
669 }
670}
671
672void
673malloc_init(void *data)
674{
675 struct malloc_type_internal *mtip;
676 struct malloc_type *mtp;
677
678 KASSERT(cnt.v_page_count != 0, ("malloc_register before vm_init"));
679
680 mtp = data;
681 mtip = uma_zalloc(mt_zone, M_WAITOK | M_ZERO);
682 mtp->ks_handle = mtip;
683
684 mtx_lock(&malloc_mtx);
685 mtp->ks_next = kmemstatistics;
686 kmemstatistics = mtp;
687 kmemcount++;
688 mtx_unlock(&malloc_mtx);
689}
690
691void
692malloc_uninit(void *data)
693{
694 struct malloc_type_internal *mtip;
695 struct malloc_type_stats *mtsp;
696 struct malloc_type *mtp, *temp;
697 uma_slab_t slab;
698 long temp_allocs, temp_bytes;
699 int i;
700
701 mtp = data;
702 KASSERT(mtp->ks_handle != NULL, ("malloc_deregister: cookie NULL"));
703 mtx_lock(&malloc_mtx);
704 mtip = mtp->ks_handle;
705 mtp->ks_handle = NULL;
706 if (mtp != kmemstatistics) {
707 for (temp = kmemstatistics; temp != NULL;
708 temp = temp->ks_next) {
709 if (temp->ks_next == mtp)
710 temp->ks_next = mtp->ks_next;
711 }
712 } else
713 kmemstatistics = mtp->ks_next;
714 kmemcount--;
715 mtx_unlock(&malloc_mtx);
716
717 /*
718 * Look for memory leaks.
719 */
720 temp_allocs = temp_bytes = 0;
721 for (i = 0; i < MAXCPU; i++) {
722 mtsp = &mtip->mti_stats[i];
723 temp_allocs += mtsp->mts_numallocs;
724 temp_allocs -= mtsp->mts_numfrees;
725 temp_bytes += mtsp->mts_memalloced;
726 temp_bytes -= mtsp->mts_memfreed;
727 }
728 if (temp_allocs > 0 || temp_bytes > 0) {
729 printf("Warning: memory type %s leaked memory on destroy "
730 "(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc,
731 temp_allocs, temp_bytes);
732 }
733
734 slab = vtoslab((vm_offset_t) mtip & (~UMA_SLAB_MASK));
735 uma_zfree_arg(mt_zone, mtip, slab);
736}
737
738struct malloc_type *
739malloc_desc2type(const char *desc)
740{
741 struct malloc_type *mtp;
742
743 mtx_assert(&malloc_mtx, MA_OWNED);
744 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
745 if (strcmp(mtp->ks_shortdesc, desc) == 0)
746 return (mtp);
747 }
748 return (NULL);
749}
750
751static int
752sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS)
753{
754 struct malloc_type_stream_header mtsh;
755 struct malloc_type_internal *mtip;
756 struct malloc_type_header mth;
757 struct malloc_type *mtp;
758 int buflen, count, error, i;
759 struct sbuf sbuf;
760 char *buffer;
761
762 mtx_lock(&malloc_mtx);
763restart:
764 mtx_assert(&malloc_mtx, MA_OWNED);
765 count = kmemcount;
766 mtx_unlock(&malloc_mtx);
767 buflen = sizeof(mtsh) + count * (sizeof(mth) +
768 sizeof(struct malloc_type_stats) * MAXCPU) + 1;
769 buffer = malloc(buflen, M_TEMP, M_WAITOK | M_ZERO);
770 mtx_lock(&malloc_mtx);
771 if (count < kmemcount) {
772 free(buffer, M_TEMP);
773 goto restart;
774 }
775
776 sbuf_new(&sbuf, buffer, buflen, SBUF_FIXEDLEN);
777
778 /*
779 * Insert stream header.
780 */
781 bzero(&mtsh, sizeof(mtsh));
782 mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION;
783 mtsh.mtsh_maxcpus = MAXCPU;
784 mtsh.mtsh_count = kmemcount;
785 if (sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh)) < 0) {
786 mtx_unlock(&malloc_mtx);
787 error = ENOMEM;
788 goto out;
789 }
790
791 /*
792 * Insert alternating sequence of type headers and type statistics.
793 */
794 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
795 mtip = (struct malloc_type_internal *)mtp->ks_handle;
796
797 /*
798 * Insert type header.
799 */
800 bzero(&mth, sizeof(mth));
801 strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME);
802 if (sbuf_bcat(&sbuf, &mth, sizeof(mth)) < 0) {
803 mtx_unlock(&malloc_mtx);
804 error = ENOMEM;
805 goto out;
806 }
807
808 /*
809 * Insert type statistics for each CPU.
810 */
811 for (i = 0; i < MAXCPU; i++) {
812 if (sbuf_bcat(&sbuf, &mtip->mti_stats[i],
813 sizeof(mtip->mti_stats[i])) < 0) {
814 mtx_unlock(&malloc_mtx);
815 error = ENOMEM;
816 goto out;
817 }
818 }
819 }
820 mtx_unlock(&malloc_mtx);
821 sbuf_finish(&sbuf);
822 error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf));
823out:
824 sbuf_delete(&sbuf);
825 free(buffer, M_TEMP);
826 return (error);
827}
828
829SYSCTL_PROC(_kern, OID_AUTO, malloc_stats, CTLFLAG_RD|CTLTYPE_STRUCT,
830 0, 0, sysctl_kern_malloc_stats, "s,malloc_type_ustats",
831 "Return malloc types");
832
833SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0,
834 "Count of kernel malloc types");
835
836void
837malloc_type_list(malloc_type_list_func_t *func, void *arg)
838{
839 struct malloc_type *mtp, **bufmtp;
840 int count, i;
841 size_t buflen;
842
843 mtx_lock(&malloc_mtx);
844restart:
845 mtx_assert(&malloc_mtx, MA_OWNED);
846 count = kmemcount;
847 mtx_unlock(&malloc_mtx);
848
849 buflen = sizeof(struct malloc_type *) * count;
850 bufmtp = malloc(buflen, M_TEMP, M_WAITOK);
851
852 mtx_lock(&malloc_mtx);
853
854 if (count < kmemcount) {
855 free(bufmtp, M_TEMP);
856 goto restart;
857 }
858
859 for (mtp = kmemstatistics, i = 0; mtp != NULL; mtp = mtp->ks_next, i++)
860 bufmtp[i] = mtp;
861
862 mtx_unlock(&malloc_mtx);
863
864 for (i = 0; i < count; i++)
865 (func)(bufmtp[i], arg);
866
867 free(bufmtp, M_TEMP);
868}
869
870#ifdef DDB
871DB_SHOW_COMMAND(malloc, db_show_malloc)
872{
873 struct malloc_type_internal *mtip;
874 struct malloc_type *mtp;
875 u_int64_t allocs, frees;
876 u_int64_t alloced, freed;
877 int i;
878
879 db_printf("%18s %12s %12s %12s\n", "Type", "InUse", "MemUse",
880 "Requests");
881 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
882 mtip = (struct malloc_type_internal *)mtp->ks_handle;
883 allocs = 0;
884 frees = 0;
885 alloced = 0;
886 freed = 0;
887 for (i = 0; i < MAXCPU; i++) {
888 allocs += mtip->mti_stats[i].mts_numallocs;
889 frees += mtip->mti_stats[i].mts_numfrees;
890 alloced += mtip->mti_stats[i].mts_memalloced;
891 freed += mtip->mti_stats[i].mts_memfreed;
892 }
893 db_printf("%18s %12ju %12juK %12ju\n",
894 mtp->ks_shortdesc, allocs - frees,
895 (alloced - freed + 1023) / 1024, allocs);
896 }
897}
898#endif
899
900#ifdef MALLOC_PROFILE
901
902static int
903sysctl_kern_mprof(SYSCTL_HANDLER_ARGS)
904{
905 int linesize = 64;
906 struct sbuf sbuf;
907 uint64_t count;
908 uint64_t waste;
909 uint64_t mem;
910 int bufsize;
911 int error;
912 char *buf;
913 int rsize;
914 int size;
915 int i;
916
917 bufsize = linesize * (KMEM_ZSIZE + 1);
918 bufsize += 128; /* For the stats line */
919 bufsize += 128; /* For the banner line */
920 waste = 0;
921 mem = 0;
922
923 buf = malloc(bufsize, M_TEMP, M_WAITOK|M_ZERO);
924 sbuf_new(&sbuf, buf, bufsize, SBUF_FIXEDLEN);
925 sbuf_printf(&sbuf,
926 "\n Size Requests Real Size\n");
927 for (i = 0; i < KMEM_ZSIZE; i++) {
928 size = i << KMEM_ZSHIFT;
929 rsize = kmemzones[kmemsize[i]].kz_size;
930 count = (long long unsigned)krequests[i];
931
932 sbuf_printf(&sbuf, "%6d%28llu%11d\n", size,
933 (unsigned long long)count, rsize);
934
935 if ((rsize * count) > (size * count))
936 waste += (rsize * count) - (size * count);
937 mem += (rsize * count);
938 }
939 sbuf_printf(&sbuf,
940 "\nTotal memory used:\t%30llu\nTotal Memory wasted:\t%30llu\n",
941 (unsigned long long)mem, (unsigned long long)waste);
942 sbuf_finish(&sbuf);
943
944 error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf));
945
946 sbuf_delete(&sbuf);
947 free(buf, M_TEMP);
948 return (error);
949}
950
951SYSCTL_OID(_kern, OID_AUTO, mprof, CTLTYPE_STRING|CTLFLAG_RD,
952 NULL, 0, sysctl_kern_mprof, "A", "Malloc Profiling");
953#endif /* MALLOC_PROFILE */
390 va = uma_large_malloc(size, flags);
391 malloc_type_allocated(mtp, va == NULL ? 0 : size);
392 }
393 if (flags & M_WAITOK)
394 KASSERT(va != NULL, ("malloc(M_WAITOK) returned NULL"));
395 else if (va == NULL)
396 t_malloc_fail = time_uptime;
397#ifdef DIAGNOSTIC
398 if (va != NULL && !(flags & M_ZERO)) {
399 memset(va, 0x70, osize);
400 }
401#endif
402#ifdef DEBUG_REDZONE
403 if (va != NULL)
404 va = redzone_setup(va, osize);
405#endif
406 return ((void *) va);
407}
408
409/*
410 * free:
411 *
412 * Free a block of memory allocated by malloc.
413 *
414 * This routine may not block.
415 */
416void
417free(void *addr, struct malloc_type *mtp)
418{
419 uma_slab_t slab;
420 u_long size;
421
422 /* free(NULL, ...) does nothing */
423 if (addr == NULL)
424 return;
425
426#ifdef DEBUG_MEMGUARD
427 if (memguard_cmp(mtp)) {
428 memguard_free(addr);
429 return;
430 }
431#endif
432
433#ifdef DEBUG_REDZONE
434 redzone_check(addr);
435 addr = redzone_addr_ntor(addr);
436#endif
437
438 size = 0;
439
440 slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK));
441
442 if (slab == NULL)
443 panic("free: address %p(%p) has not been allocated.\n",
444 addr, (void *)((u_long)addr & (~UMA_SLAB_MASK)));
445
446
447 if (!(slab->us_flags & UMA_SLAB_MALLOC)) {
448#ifdef INVARIANTS
449 struct malloc_type **mtpp = addr;
450#endif
451 size = slab->us_keg->uk_size;
452#ifdef INVARIANTS
453 /*
454 * Cache a pointer to the malloc_type that most recently freed
455 * this memory here. This way we know who is most likely to
456 * have stepped on it later.
457 *
458 * This code assumes that size is a multiple of 8 bytes for
459 * 64 bit machines
460 */
461 mtpp = (struct malloc_type **)
462 ((unsigned long)mtpp & ~UMA_ALIGN_PTR);
463 mtpp += (size - sizeof(struct malloc_type *)) /
464 sizeof(struct malloc_type *);
465 *mtpp = mtp;
466#endif
467 uma_zfree_arg(LIST_FIRST(&slab->us_keg->uk_zones), addr, slab);
468 } else {
469 size = slab->us_size;
470 uma_large_free(slab);
471 }
472 malloc_type_freed(mtp, size);
473}
474
475/*
476 * realloc: change the size of a memory block
477 */
478void *
479realloc(void *addr, unsigned long size, struct malloc_type *mtp, int flags)
480{
481 uma_slab_t slab;
482 unsigned long alloc;
483 void *newaddr;
484
485 /* realloc(NULL, ...) is equivalent to malloc(...) */
486 if (addr == NULL)
487 return (malloc(size, mtp, flags));
488
489 /*
490 * XXX: Should report free of old memory and alloc of new memory to
491 * per-CPU stats.
492 */
493
494#ifdef DEBUG_MEMGUARD
495if (memguard_cmp(mtp)) {
496 slab = NULL;
497 alloc = size;
498} else {
499#endif
500
501#ifdef DEBUG_REDZONE
502 slab = NULL;
503 alloc = redzone_get_size(addr);
504#else
505 slab = vtoslab((vm_offset_t)addr & ~(UMA_SLAB_MASK));
506
507 /* Sanity check */
508 KASSERT(slab != NULL,
509 ("realloc: address %p out of range", (void *)addr));
510
511 /* Get the size of the original block */
512 if (!(slab->us_flags & UMA_SLAB_MALLOC))
513 alloc = slab->us_keg->uk_size;
514 else
515 alloc = slab->us_size;
516
517 /* Reuse the original block if appropriate */
518 if (size <= alloc
519 && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE))
520 return (addr);
521#endif /* !DEBUG_REDZONE */
522
523#ifdef DEBUG_MEMGUARD
524}
525#endif
526
527 /* Allocate a new, bigger (or smaller) block */
528 if ((newaddr = malloc(size, mtp, flags)) == NULL)
529 return (NULL);
530
531 /* Copy over original contents */
532 bcopy(addr, newaddr, min(size, alloc));
533 free(addr, mtp);
534 return (newaddr);
535}
536
537/*
538 * reallocf: same as realloc() but free memory on failure.
539 */
540void *
541reallocf(void *addr, unsigned long size, struct malloc_type *mtp, int flags)
542{
543 void *mem;
544
545 if ((mem = realloc(addr, size, mtp, flags)) == NULL)
546 free(addr, mtp);
547 return (mem);
548}
549
550/*
551 * Initialize the kernel memory allocator
552 */
553/* ARGSUSED*/
554static void
555kmeminit(void *dummy)
556{
557 u_int8_t indx;
558 u_long mem_size;
559 int i;
560
561 mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF);
562
563 /*
564 * Try to auto-tune the kernel memory size, so that it is
565 * more applicable for a wider range of machine sizes.
566 * On an X86, a VM_KMEM_SIZE_SCALE value of 4 is good, while
567 * a VM_KMEM_SIZE of 12MB is a fair compromise. The
568 * VM_KMEM_SIZE_MAX is dependent on the maximum KVA space
569 * available, and on an X86 with a total KVA space of 256MB,
570 * try to keep VM_KMEM_SIZE_MAX at 80MB or below.
571 *
572 * Note that the kmem_map is also used by the zone allocator,
573 * so make sure that there is enough space.
574 */
575 vm_kmem_size = VM_KMEM_SIZE + nmbclusters * PAGE_SIZE;
576 mem_size = cnt.v_page_count;
577
578#if defined(VM_KMEM_SIZE_SCALE)
579 vm_kmem_size_scale = VM_KMEM_SIZE_SCALE;
580#endif
581 TUNABLE_INT_FETCH("vm.kmem_size_scale", &vm_kmem_size_scale);
582 if (vm_kmem_size_scale > 0 &&
583 (mem_size / vm_kmem_size_scale) > (vm_kmem_size / PAGE_SIZE))
584 vm_kmem_size = (mem_size / vm_kmem_size_scale) * PAGE_SIZE;
585
586#if defined(VM_KMEM_SIZE_MIN)
587 vm_kmem_size_min = VM_KMEM_SIZE_MIN;
588#endif
589 TUNABLE_ULONG_FETCH("vm.kmem_size_min", &vm_kmem_size_min);
590 if (vm_kmem_size_min > 0 && vm_kmem_size < vm_kmem_size_min) {
591 vm_kmem_size = vm_kmem_size_min;
592 }
593
594#if defined(VM_KMEM_SIZE_MAX)
595 vm_kmem_size_max = VM_KMEM_SIZE_MAX;
596#endif
597 TUNABLE_ULONG_FETCH("vm.kmem_size_max", &vm_kmem_size_max);
598 if (vm_kmem_size_max > 0 && vm_kmem_size >= vm_kmem_size_max)
599 vm_kmem_size = vm_kmem_size_max;
600
601 /* Allow final override from the kernel environment */
602#ifndef BURN_BRIDGES
603 if (TUNABLE_ULONG_FETCH("kern.vm.kmem.size", &vm_kmem_size) != 0)
604 printf("kern.vm.kmem.size is now called vm.kmem_size!\n");
605#endif
606 TUNABLE_ULONG_FETCH("vm.kmem_size", &vm_kmem_size);
607
608 /*
609 * Limit kmem virtual size to twice the physical memory.
610 * This allows for kmem map sparseness, but limits the size
611 * to something sane. Be careful to not overflow the 32bit
612 * ints while doing the check.
613 */
614 if (((vm_kmem_size / 2) / PAGE_SIZE) > cnt.v_page_count)
615 vm_kmem_size = 2 * cnt.v_page_count * PAGE_SIZE;
616
617 /*
618 * Tune settings based on the kmem map's size at this time.
619 */
620 init_param3(vm_kmem_size / PAGE_SIZE);
621
622 kmem_map = kmem_suballoc(kernel_map, &kmembase, &kmemlimit,
623 vm_kmem_size, TRUE);
624 kmem_map->system_map = 1;
625
626#ifdef DEBUG_MEMGUARD
627 /*
628 * Initialize MemGuard if support compiled in. MemGuard is a
629 * replacement allocator used for detecting tamper-after-free
630 * scenarios as they occur. It is only used for debugging.
631 */
632 vm_memguard_divisor = 10;
633 TUNABLE_INT_FETCH("vm.memguard.divisor", &vm_memguard_divisor);
634
635 /* Pick a conservative value if provided value sucks. */
636 if ((vm_memguard_divisor <= 0) ||
637 ((vm_kmem_size / vm_memguard_divisor) == 0))
638 vm_memguard_divisor = 10;
639 memguard_init(kmem_map, vm_kmem_size / vm_memguard_divisor);
640#endif
641
642 uma_startup2();
643
644 mt_zone = uma_zcreate("mt_zone", sizeof(struct malloc_type_internal),
645#ifdef INVARIANTS
646 mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
647#else
648 NULL, NULL, NULL, NULL,
649#endif
650 UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
651 for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) {
652 int size = kmemzones[indx].kz_size;
653 char *name = kmemzones[indx].kz_name;
654
655 kmemzones[indx].kz_zone = uma_zcreate(name, size,
656#ifdef INVARIANTS
657 mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
658#else
659 NULL, NULL, NULL, NULL,
660#endif
661 UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
662
663 for (;i <= size; i+= KMEM_ZBASE)
664 kmemsize[i >> KMEM_ZSHIFT] = indx;
665
666 }
667}
668
669void
670malloc_init(void *data)
671{
672 struct malloc_type_internal *mtip;
673 struct malloc_type *mtp;
674
675 KASSERT(cnt.v_page_count != 0, ("malloc_register before vm_init"));
676
677 mtp = data;
678 mtip = uma_zalloc(mt_zone, M_WAITOK | M_ZERO);
679 mtp->ks_handle = mtip;
680
681 mtx_lock(&malloc_mtx);
682 mtp->ks_next = kmemstatistics;
683 kmemstatistics = mtp;
684 kmemcount++;
685 mtx_unlock(&malloc_mtx);
686}
687
688void
689malloc_uninit(void *data)
690{
691 struct malloc_type_internal *mtip;
692 struct malloc_type_stats *mtsp;
693 struct malloc_type *mtp, *temp;
694 uma_slab_t slab;
695 long temp_allocs, temp_bytes;
696 int i;
697
698 mtp = data;
699 KASSERT(mtp->ks_handle != NULL, ("malloc_deregister: cookie NULL"));
700 mtx_lock(&malloc_mtx);
701 mtip = mtp->ks_handle;
702 mtp->ks_handle = NULL;
703 if (mtp != kmemstatistics) {
704 for (temp = kmemstatistics; temp != NULL;
705 temp = temp->ks_next) {
706 if (temp->ks_next == mtp)
707 temp->ks_next = mtp->ks_next;
708 }
709 } else
710 kmemstatistics = mtp->ks_next;
711 kmemcount--;
712 mtx_unlock(&malloc_mtx);
713
714 /*
715 * Look for memory leaks.
716 */
717 temp_allocs = temp_bytes = 0;
718 for (i = 0; i < MAXCPU; i++) {
719 mtsp = &mtip->mti_stats[i];
720 temp_allocs += mtsp->mts_numallocs;
721 temp_allocs -= mtsp->mts_numfrees;
722 temp_bytes += mtsp->mts_memalloced;
723 temp_bytes -= mtsp->mts_memfreed;
724 }
725 if (temp_allocs > 0 || temp_bytes > 0) {
726 printf("Warning: memory type %s leaked memory on destroy "
727 "(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc,
728 temp_allocs, temp_bytes);
729 }
730
731 slab = vtoslab((vm_offset_t) mtip & (~UMA_SLAB_MASK));
732 uma_zfree_arg(mt_zone, mtip, slab);
733}
734
735struct malloc_type *
736malloc_desc2type(const char *desc)
737{
738 struct malloc_type *mtp;
739
740 mtx_assert(&malloc_mtx, MA_OWNED);
741 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
742 if (strcmp(mtp->ks_shortdesc, desc) == 0)
743 return (mtp);
744 }
745 return (NULL);
746}
747
748static int
749sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS)
750{
751 struct malloc_type_stream_header mtsh;
752 struct malloc_type_internal *mtip;
753 struct malloc_type_header mth;
754 struct malloc_type *mtp;
755 int buflen, count, error, i;
756 struct sbuf sbuf;
757 char *buffer;
758
759 mtx_lock(&malloc_mtx);
760restart:
761 mtx_assert(&malloc_mtx, MA_OWNED);
762 count = kmemcount;
763 mtx_unlock(&malloc_mtx);
764 buflen = sizeof(mtsh) + count * (sizeof(mth) +
765 sizeof(struct malloc_type_stats) * MAXCPU) + 1;
766 buffer = malloc(buflen, M_TEMP, M_WAITOK | M_ZERO);
767 mtx_lock(&malloc_mtx);
768 if (count < kmemcount) {
769 free(buffer, M_TEMP);
770 goto restart;
771 }
772
773 sbuf_new(&sbuf, buffer, buflen, SBUF_FIXEDLEN);
774
775 /*
776 * Insert stream header.
777 */
778 bzero(&mtsh, sizeof(mtsh));
779 mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION;
780 mtsh.mtsh_maxcpus = MAXCPU;
781 mtsh.mtsh_count = kmemcount;
782 if (sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh)) < 0) {
783 mtx_unlock(&malloc_mtx);
784 error = ENOMEM;
785 goto out;
786 }
787
788 /*
789 * Insert alternating sequence of type headers and type statistics.
790 */
791 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
792 mtip = (struct malloc_type_internal *)mtp->ks_handle;
793
794 /*
795 * Insert type header.
796 */
797 bzero(&mth, sizeof(mth));
798 strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME);
799 if (sbuf_bcat(&sbuf, &mth, sizeof(mth)) < 0) {
800 mtx_unlock(&malloc_mtx);
801 error = ENOMEM;
802 goto out;
803 }
804
805 /*
806 * Insert type statistics for each CPU.
807 */
808 for (i = 0; i < MAXCPU; i++) {
809 if (sbuf_bcat(&sbuf, &mtip->mti_stats[i],
810 sizeof(mtip->mti_stats[i])) < 0) {
811 mtx_unlock(&malloc_mtx);
812 error = ENOMEM;
813 goto out;
814 }
815 }
816 }
817 mtx_unlock(&malloc_mtx);
818 sbuf_finish(&sbuf);
819 error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf));
820out:
821 sbuf_delete(&sbuf);
822 free(buffer, M_TEMP);
823 return (error);
824}
825
826SYSCTL_PROC(_kern, OID_AUTO, malloc_stats, CTLFLAG_RD|CTLTYPE_STRUCT,
827 0, 0, sysctl_kern_malloc_stats, "s,malloc_type_ustats",
828 "Return malloc types");
829
830SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0,
831 "Count of kernel malloc types");
832
833void
834malloc_type_list(malloc_type_list_func_t *func, void *arg)
835{
836 struct malloc_type *mtp, **bufmtp;
837 int count, i;
838 size_t buflen;
839
840 mtx_lock(&malloc_mtx);
841restart:
842 mtx_assert(&malloc_mtx, MA_OWNED);
843 count = kmemcount;
844 mtx_unlock(&malloc_mtx);
845
846 buflen = sizeof(struct malloc_type *) * count;
847 bufmtp = malloc(buflen, M_TEMP, M_WAITOK);
848
849 mtx_lock(&malloc_mtx);
850
851 if (count < kmemcount) {
852 free(bufmtp, M_TEMP);
853 goto restart;
854 }
855
856 for (mtp = kmemstatistics, i = 0; mtp != NULL; mtp = mtp->ks_next, i++)
857 bufmtp[i] = mtp;
858
859 mtx_unlock(&malloc_mtx);
860
861 for (i = 0; i < count; i++)
862 (func)(bufmtp[i], arg);
863
864 free(bufmtp, M_TEMP);
865}
866
867#ifdef DDB
868DB_SHOW_COMMAND(malloc, db_show_malloc)
869{
870 struct malloc_type_internal *mtip;
871 struct malloc_type *mtp;
872 u_int64_t allocs, frees;
873 u_int64_t alloced, freed;
874 int i;
875
876 db_printf("%18s %12s %12s %12s\n", "Type", "InUse", "MemUse",
877 "Requests");
878 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
879 mtip = (struct malloc_type_internal *)mtp->ks_handle;
880 allocs = 0;
881 frees = 0;
882 alloced = 0;
883 freed = 0;
884 for (i = 0; i < MAXCPU; i++) {
885 allocs += mtip->mti_stats[i].mts_numallocs;
886 frees += mtip->mti_stats[i].mts_numfrees;
887 alloced += mtip->mti_stats[i].mts_memalloced;
888 freed += mtip->mti_stats[i].mts_memfreed;
889 }
890 db_printf("%18s %12ju %12juK %12ju\n",
891 mtp->ks_shortdesc, allocs - frees,
892 (alloced - freed + 1023) / 1024, allocs);
893 }
894}
895#endif
896
897#ifdef MALLOC_PROFILE
898
899static int
900sysctl_kern_mprof(SYSCTL_HANDLER_ARGS)
901{
902 int linesize = 64;
903 struct sbuf sbuf;
904 uint64_t count;
905 uint64_t waste;
906 uint64_t mem;
907 int bufsize;
908 int error;
909 char *buf;
910 int rsize;
911 int size;
912 int i;
913
914 bufsize = linesize * (KMEM_ZSIZE + 1);
915 bufsize += 128; /* For the stats line */
916 bufsize += 128; /* For the banner line */
917 waste = 0;
918 mem = 0;
919
920 buf = malloc(bufsize, M_TEMP, M_WAITOK|M_ZERO);
921 sbuf_new(&sbuf, buf, bufsize, SBUF_FIXEDLEN);
922 sbuf_printf(&sbuf,
923 "\n Size Requests Real Size\n");
924 for (i = 0; i < KMEM_ZSIZE; i++) {
925 size = i << KMEM_ZSHIFT;
926 rsize = kmemzones[kmemsize[i]].kz_size;
927 count = (long long unsigned)krequests[i];
928
929 sbuf_printf(&sbuf, "%6d%28llu%11d\n", size,
930 (unsigned long long)count, rsize);
931
932 if ((rsize * count) > (size * count))
933 waste += (rsize * count) - (size * count);
934 mem += (rsize * count);
935 }
936 sbuf_printf(&sbuf,
937 "\nTotal memory used:\t%30llu\nTotal Memory wasted:\t%30llu\n",
938 (unsigned long long)mem, (unsigned long long)waste);
939 sbuf_finish(&sbuf);
940
941 error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf));
942
943 sbuf_delete(&sbuf);
944 free(buf, M_TEMP);
945 return (error);
946}
947
948SYSCTL_OID(_kern, OID_AUTO, mprof, CTLTYPE_STRING|CTLFLAG_RD,
949 NULL, 0, sysctl_kern_mprof, "A", "Malloc Profiling");
950#endif /* MALLOC_PROFILE */