Deleted Added
full compact
kern_fork.c (74905) kern_fork.c (74912)
1/*
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)kern_fork.c 8.6 (Berkeley) 4/8/94
1/*
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)kern_fork.c 8.6 (Berkeley) 4/8/94
39 * $FreeBSD: head/sys/kern/kern_fork.c 74905 2001-03-28 03:14:14Z jhb $
39 * $FreeBSD: head/sys/kern/kern_fork.c 74912 2001-03-28 09:03:24Z jhb $
40 */
41
42#include "opt_ktrace.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/sysproto.h>
47#include <sys/filedesc.h>
48#include <sys/kernel.h>
49#include <sys/sysctl.h>
40 */
41
42#include "opt_ktrace.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/sysproto.h>
47#include <sys/filedesc.h>
48#include <sys/kernel.h>
49#include <sys/sysctl.h>
50#include <sys/lock.h>
50#include <sys/malloc.h>
51#include <sys/mutex.h>
52#include <sys/proc.h>
53#include <sys/resourcevar.h>
54#include <sys/syscall.h>
55#include <sys/vnode.h>
56#include <sys/acct.h>
57#include <sys/ktr.h>
58#include <sys/ktrace.h>
59#include <sys/kthread.h>
60#include <sys/unistd.h>
61#include <sys/jail.h>
62#include <sys/sx.h>
63
64#include <vm/vm.h>
51#include <sys/malloc.h>
52#include <sys/mutex.h>
53#include <sys/proc.h>
54#include <sys/resourcevar.h>
55#include <sys/syscall.h>
56#include <sys/vnode.h>
57#include <sys/acct.h>
58#include <sys/ktr.h>
59#include <sys/ktrace.h>
60#include <sys/kthread.h>
61#include <sys/unistd.h>
62#include <sys/jail.h>
63#include <sys/sx.h>
64
65#include <vm/vm.h>
65#include <sys/lock.h>
66#include <vm/pmap.h>
67#include <vm/vm_map.h>
68#include <vm/vm_extern.h>
69#include <vm/vm_zone.h>
70
71#include <sys/vmmeter.h>
72#include <sys/user.h>
73
74static MALLOC_DEFINE(M_ATFORK, "atfork", "atfork callback");
75
76static int fast_vfork = 1;
77SYSCTL_INT(_kern, OID_AUTO, fast_vfork, CTLFLAG_RW, &fast_vfork, 0,
78 "flag to indicate whether we have a fast vfork()");
79
80/*
81 * These are the stuctures used to create a callout list for things to do
82 * when forking a process
83 */
84struct forklist {
85 forklist_fn function;
86 TAILQ_ENTRY(forklist) next;
87};
88
89static struct sx fork_list_lock;
90
91TAILQ_HEAD(forklist_head, forklist);
92static struct forklist_head fork_list = TAILQ_HEAD_INITIALIZER(fork_list);
93
94#ifndef _SYS_SYSPROTO_H_
95struct fork_args {
96 int dummy;
97};
98#endif
99
100static void
101init_fork_list(void *data __unused)
102{
103
104 sx_init(&fork_list_lock, "fork list");
105}
106SYSINIT(fork_list, SI_SUB_INTRINSIC, SI_ORDER_ANY, init_fork_list, NULL);
107
108/* ARGSUSED */
109int
110fork(p, uap)
111 struct proc *p;
112 struct fork_args *uap;
113{
114 int error;
115 struct proc *p2;
116
117 error = fork1(p, RFFDG | RFPROC, &p2);
118 if (error == 0) {
119 p->p_retval[0] = p2->p_pid;
120 p->p_retval[1] = 0;
121 }
122 return error;
123}
124
125/* ARGSUSED */
126int
127vfork(p, uap)
128 struct proc *p;
129 struct vfork_args *uap;
130{
131 int error;
132 struct proc *p2;
133
134 error = fork1(p, RFFDG | RFPROC | RFPPWAIT | RFMEM, &p2);
135 if (error == 0) {
136 p->p_retval[0] = p2->p_pid;
137 p->p_retval[1] = 0;
138 }
139 return error;
140}
141
142int
143rfork(p, uap)
144 struct proc *p;
145 struct rfork_args *uap;
146{
147 int error;
148 struct proc *p2;
149
150 /* mask kernel only flags out of the user flags */
151 error = fork1(p, uap->flags & ~RFKERNELONLY, &p2);
152 if (error == 0) {
153 p->p_retval[0] = p2 ? p2->p_pid : 0;
154 p->p_retval[1] = 0;
155 }
156 return error;
157}
158
159
160int nprocs = 1; /* process 0 */
161static int nextpid = 0;
162SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &nextpid, 0,
163 "Last used PID");
164
165/*
166 * Random component to nextpid generation. We mix in a random factor to make
167 * it a little harder to predict. We sanity check the modulus value to avoid
168 * doing it in critical paths. Don't let it be too small or we pointlessly
169 * waste randomness entropy, and don't let it be impossibly large. Using a
170 * modulus that is too big causes a LOT more process table scans and slows
171 * down fork processing as the pidchecked caching is defeated.
172 */
173static int randompid = 0;
174
175static int
176sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
177{
178 int error, pid;
179
180 pid = randompid;
181 error = sysctl_handle_int(oidp, &pid, 0, req);
182 if (error || !req->newptr)
183 return (error);
184 if (pid < 0 || pid > PID_MAX - 100) /* out of range */
185 pid = PID_MAX - 100;
186 else if (pid < 2) /* NOP */
187 pid = 0;
188 else if (pid < 100) /* Make it reasonable */
189 pid = 100;
190 randompid = pid;
191 return (error);
192}
193
194SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
195 0, 0, sysctl_kern_randompid, "I", "Random PID modulus");
196
197int
198fork1(p1, flags, procp)
199 struct proc *p1; /* parent proc */
200 int flags;
201 struct proc **procp; /* child proc */
202{
203 struct proc *p2, *pptr;
204 uid_t uid;
205 struct proc *newproc;
206 int trypid;
207 int ok;
208 static int pidchecked = 0;
209 struct forklist *ep;
210 struct filedesc *fd;
211
212 /* Can't copy and clear */
213 if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
214 return (EINVAL);
215
216 /*
217 * Here we don't create a new process, but we divorce
218 * certain parts of a process from itself.
219 */
220 if ((flags & RFPROC) == 0) {
221
222 vm_fork(p1, 0, flags);
223
224 /*
225 * Close all file descriptors.
226 */
227 if (flags & RFCFDG) {
228 struct filedesc *fdtmp;
229 fdtmp = fdinit(p1);
230 PROC_LOCK(p1);
231 fdfree(p1);
232 p1->p_fd = fdtmp;
233 PROC_UNLOCK(p1);
234 }
235
236 /*
237 * Unshare file descriptors (from parent.)
238 */
239 if (flags & RFFDG) {
240 if (p1->p_fd->fd_refcnt > 1) {
241 struct filedesc *newfd;
242 newfd = fdcopy(p1);
243 PROC_LOCK(p1);
244 fdfree(p1);
245 p1->p_fd = newfd;
246 PROC_UNLOCK(p1);
247 }
248 }
249 *procp = NULL;
250 return (0);
251 }
252
253 /*
254 * Although process entries are dynamically created, we still keep
255 * a global limit on the maximum number we will create. Don't allow
256 * a nonprivileged user to use the last process; don't let root
257 * exceed the limit. The variable nprocs is the current number of
258 * processes, maxproc is the limit.
259 */
260 uid = p1->p_cred->p_ruid;
261 if ((nprocs >= maxproc - 1 && uid != 0) || nprocs >= maxproc) {
262 tablefull("proc");
263 return (EAGAIN);
264 }
265 /*
266 * Increment the nprocs resource before blocking can occur. There
267 * are hard-limits as to the number of processes that can run.
268 */
269 nprocs++;
270
271 /*
272 * Increment the count of procs running with this uid. Don't allow
273 * a nonprivileged user to exceed their current limit.
274 */
275 ok = chgproccnt(p1->p_cred->p_uidinfo, 1,
276 (uid != 0) ? p1->p_rlimit[RLIMIT_NPROC].rlim_cur : 0);
277 if (!ok) {
278 /*
279 * Back out the process count
280 */
281 nprocs--;
282 return (EAGAIN);
283 }
284
285 /* Allocate new proc. */
286 newproc = zalloc(proc_zone);
287
288 /*
289 * Setup linkage for kernel based threading
290 */
291 if((flags & RFTHREAD) != 0) {
292 newproc->p_peers = p1->p_peers;
293 p1->p_peers = newproc;
294 newproc->p_leader = p1->p_leader;
295 } else {
296 newproc->p_peers = NULL;
297 newproc->p_leader = newproc;
298 }
299
300 newproc->p_vmspace = NULL;
301
302 /*
303 * Find an unused process ID. We remember a range of unused IDs
304 * ready to use (from nextpid+1 through pidchecked-1).
305 *
306 * If RFHIGHPID is set (used during system boot), do not allocate
307 * low-numbered pids.
308 */
309 ALLPROC_LOCK(AP_EXCLUSIVE);
310 trypid = nextpid + 1;
311 if (flags & RFHIGHPID) {
312 if (trypid < 10) {
313 trypid = 10;
314 }
315 } else {
316 if (randompid)
317 trypid += arc4random() % randompid;
318 }
319retry:
320 /*
321 * If the process ID prototype has wrapped around,
322 * restart somewhat above 0, as the low-numbered procs
323 * tend to include daemons that don't exit.
324 */
325 if (trypid >= PID_MAX) {
326 trypid = trypid % PID_MAX;
327 if (trypid < 100)
328 trypid += 100;
329 pidchecked = 0;
330 }
331 if (trypid >= pidchecked) {
332 int doingzomb = 0;
333
334 pidchecked = PID_MAX;
335 /*
336 * Scan the active and zombie procs to check whether this pid
337 * is in use. Remember the lowest pid that's greater
338 * than trypid, so we can avoid checking for a while.
339 */
340 p2 = LIST_FIRST(&allproc);
341again:
342 for (; p2 != NULL; p2 = LIST_NEXT(p2, p_list)) {
343 while (p2->p_pid == trypid ||
344 p2->p_pgrp->pg_id == trypid ||
345 p2->p_session->s_sid == trypid) {
346 trypid++;
347 if (trypid >= pidchecked)
348 goto retry;
349 }
350 if (p2->p_pid > trypid && pidchecked > p2->p_pid)
351 pidchecked = p2->p_pid;
352 if (p2->p_pgrp->pg_id > trypid &&
353 pidchecked > p2->p_pgrp->pg_id)
354 pidchecked = p2->p_pgrp->pg_id;
355 if (p2->p_session->s_sid > trypid &&
356 pidchecked > p2->p_session->s_sid)
357 pidchecked = p2->p_session->s_sid;
358 }
359 if (!doingzomb) {
360 doingzomb = 1;
361 p2 = LIST_FIRST(&zombproc);
362 goto again;
363 }
364 }
365
366 /*
367 * RFHIGHPID does not mess with the nextpid counter during boot.
368 */
369 if (flags & RFHIGHPID)
370 pidchecked = 0;
371 else
372 nextpid = trypid;
373
374 p2 = newproc;
375 p2->p_stat = SIDL; /* protect against others */
376 p2->p_pid = trypid;
377 LIST_INSERT_HEAD(&allproc, p2, p_list);
378 LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
379 ALLPROC_LOCK(AP_RELEASE);
380
381 /*
382 * Make a proc table entry for the new process.
383 * Start by zeroing the section of proc that is zero-initialized,
384 * then copy the section that is copied directly from the parent.
385 */
386 bzero(&p2->p_startzero,
387 (unsigned) ((caddr_t)&p2->p_endzero - (caddr_t)&p2->p_startzero));
388 PROC_LOCK(p1);
389 bcopy(&p1->p_startcopy, &p2->p_startcopy,
390 (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
391 PROC_UNLOCK(p1);
392
393 mtx_init(&p2->p_mtx, "process lock", MTX_DEF);
394 PROC_LOCK(p2);
395
396 /*
397 * Duplicate sub-structures as needed.
398 * Increase reference counts on shared objects.
399 * The p_stats and p_sigacts substructs are set in vm_fork.
400 */
401 p2->p_flag = 0;
402 mtx_lock_spin(&sched_lock);
403 p2->p_sflag = PS_INMEM;
404 if (p1->p_sflag & PS_PROFIL)
405 startprofclock(p2);
406 mtx_unlock_spin(&sched_lock);
407 /*
408 * We start off holding one spinlock after fork: sched_lock.
409 */
410 p2->p_spinlocks = 1;
411 PROC_UNLOCK(p2);
412 MALLOC(p2->p_cred, struct pcred *, sizeof(struct pcred),
413 M_SUBPROC, M_WAITOK);
414 PROC_LOCK(p2);
415 PROC_LOCK(p1);
416 bcopy(p1->p_cred, p2->p_cred, sizeof(*p2->p_cred));
417 p2->p_cred->p_refcnt = 1;
418 crhold(p1->p_ucred);
419 uihold(p1->p_cred->p_uidinfo);
420
421 if (p2->p_args)
422 p2->p_args->ar_ref++;
423
424 if (flags & RFSIGSHARE) {
425 p2->p_procsig = p1->p_procsig;
426 p2->p_procsig->ps_refcnt++;
427 if (p1->p_sigacts == &p1->p_addr->u_sigacts) {
428 struct sigacts *newsigacts;
429
430 PROC_UNLOCK(p1);
431 PROC_UNLOCK(p2);
432 /* Create the shared sigacts structure */
433 MALLOC(newsigacts, struct sigacts *,
434 sizeof(struct sigacts), M_SUBPROC, M_WAITOK);
435 PROC_LOCK(p2);
436 PROC_LOCK(p1);
437 /*
438 * Set p_sigacts to the new shared structure.
439 * Note that this is updating p1->p_sigacts at the
440 * same time, since p_sigacts is just a pointer to
441 * the shared p_procsig->ps_sigacts.
442 */
443 p2->p_sigacts = newsigacts;
444 bcopy(&p1->p_addr->u_sigacts, p2->p_sigacts,
445 sizeof(*p2->p_sigacts));
446 *p2->p_sigacts = p1->p_addr->u_sigacts;
447 }
448 } else {
449 PROC_UNLOCK(p1);
450 PROC_UNLOCK(p2);
451 MALLOC(p2->p_procsig, struct procsig *, sizeof(struct procsig),
452 M_SUBPROC, M_WAITOK);
453 PROC_LOCK(p2);
454 PROC_LOCK(p1);
455 bcopy(p1->p_procsig, p2->p_procsig, sizeof(*p2->p_procsig));
456 p2->p_procsig->ps_refcnt = 1;
457 p2->p_sigacts = NULL; /* finished in vm_fork() */
458 }
459 if (flags & RFLINUXTHPN)
460 p2->p_sigparent = SIGUSR1;
461 else
462 p2->p_sigparent = SIGCHLD;
463
464 /* bump references to the text vnode (for procfs) */
465 p2->p_textvp = p1->p_textvp;
466 PROC_UNLOCK(p1);
467 PROC_UNLOCK(p2);
468 if (p2->p_textvp)
469 VREF(p2->p_textvp);
470
471 if (flags & RFCFDG)
472 fd = fdinit(p1);
473 else if (flags & RFFDG)
474 fd = fdcopy(p1);
475 else
476 fd = fdshare(p1);
477 PROC_LOCK(p2);
478 p2->p_fd = fd;
479
480 /*
481 * If p_limit is still copy-on-write, bump refcnt,
482 * otherwise get a copy that won't be modified.
483 * (If PL_SHAREMOD is clear, the structure is shared
484 * copy-on-write.)
485 */
486 PROC_LOCK(p1);
487 if (p1->p_limit->p_lflags & PL_SHAREMOD)
488 p2->p_limit = limcopy(p1->p_limit);
489 else {
490 p2->p_limit = p1->p_limit;
491 p2->p_limit->p_refcnt++;
492 }
493
494 /*
495 * Preserve some more flags in subprocess. PS_PROFIL has already
496 * been preserved.
497 */
498 p2->p_flag |= p1->p_flag & P_SUGID;
499 if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
500 p2->p_flag |= P_CONTROLT;
501 if (flags & RFPPWAIT)
502 p2->p_flag |= P_PPWAIT;
503
504 LIST_INSERT_AFTER(p1, p2, p_pglist);
505 PROC_UNLOCK(p1);
506 PROC_UNLOCK(p2);
507
508 /*
509 * Attach the new process to its parent.
510 *
511 * If RFNOWAIT is set, the newly created process becomes a child
512 * of init. This effectively disassociates the child from the
513 * parent.
514 */
515 if (flags & RFNOWAIT)
516 pptr = initproc;
517 else
518 pptr = p1;
519 PROCTREE_LOCK(PT_EXCLUSIVE);
520 PROC_LOCK(p2);
521 p2->p_pptr = pptr;
522 PROC_UNLOCK(p2);
523 LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
524 PROCTREE_LOCK(PT_RELEASE);
525 PROC_LOCK(p2);
526 LIST_INIT(&p2->p_children);
66#include <vm/pmap.h>
67#include <vm/vm_map.h>
68#include <vm/vm_extern.h>
69#include <vm/vm_zone.h>
70
71#include <sys/vmmeter.h>
72#include <sys/user.h>
73
74static MALLOC_DEFINE(M_ATFORK, "atfork", "atfork callback");
75
76static int fast_vfork = 1;
77SYSCTL_INT(_kern, OID_AUTO, fast_vfork, CTLFLAG_RW, &fast_vfork, 0,
78 "flag to indicate whether we have a fast vfork()");
79
80/*
81 * These are the stuctures used to create a callout list for things to do
82 * when forking a process
83 */
84struct forklist {
85 forklist_fn function;
86 TAILQ_ENTRY(forklist) next;
87};
88
89static struct sx fork_list_lock;
90
91TAILQ_HEAD(forklist_head, forklist);
92static struct forklist_head fork_list = TAILQ_HEAD_INITIALIZER(fork_list);
93
94#ifndef _SYS_SYSPROTO_H_
95struct fork_args {
96 int dummy;
97};
98#endif
99
100static void
101init_fork_list(void *data __unused)
102{
103
104 sx_init(&fork_list_lock, "fork list");
105}
106SYSINIT(fork_list, SI_SUB_INTRINSIC, SI_ORDER_ANY, init_fork_list, NULL);
107
108/* ARGSUSED */
109int
110fork(p, uap)
111 struct proc *p;
112 struct fork_args *uap;
113{
114 int error;
115 struct proc *p2;
116
117 error = fork1(p, RFFDG | RFPROC, &p2);
118 if (error == 0) {
119 p->p_retval[0] = p2->p_pid;
120 p->p_retval[1] = 0;
121 }
122 return error;
123}
124
125/* ARGSUSED */
126int
127vfork(p, uap)
128 struct proc *p;
129 struct vfork_args *uap;
130{
131 int error;
132 struct proc *p2;
133
134 error = fork1(p, RFFDG | RFPROC | RFPPWAIT | RFMEM, &p2);
135 if (error == 0) {
136 p->p_retval[0] = p2->p_pid;
137 p->p_retval[1] = 0;
138 }
139 return error;
140}
141
142int
143rfork(p, uap)
144 struct proc *p;
145 struct rfork_args *uap;
146{
147 int error;
148 struct proc *p2;
149
150 /* mask kernel only flags out of the user flags */
151 error = fork1(p, uap->flags & ~RFKERNELONLY, &p2);
152 if (error == 0) {
153 p->p_retval[0] = p2 ? p2->p_pid : 0;
154 p->p_retval[1] = 0;
155 }
156 return error;
157}
158
159
160int nprocs = 1; /* process 0 */
161static int nextpid = 0;
162SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &nextpid, 0,
163 "Last used PID");
164
165/*
166 * Random component to nextpid generation. We mix in a random factor to make
167 * it a little harder to predict. We sanity check the modulus value to avoid
168 * doing it in critical paths. Don't let it be too small or we pointlessly
169 * waste randomness entropy, and don't let it be impossibly large. Using a
170 * modulus that is too big causes a LOT more process table scans and slows
171 * down fork processing as the pidchecked caching is defeated.
172 */
173static int randompid = 0;
174
175static int
176sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
177{
178 int error, pid;
179
180 pid = randompid;
181 error = sysctl_handle_int(oidp, &pid, 0, req);
182 if (error || !req->newptr)
183 return (error);
184 if (pid < 0 || pid > PID_MAX - 100) /* out of range */
185 pid = PID_MAX - 100;
186 else if (pid < 2) /* NOP */
187 pid = 0;
188 else if (pid < 100) /* Make it reasonable */
189 pid = 100;
190 randompid = pid;
191 return (error);
192}
193
194SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
195 0, 0, sysctl_kern_randompid, "I", "Random PID modulus");
196
197int
198fork1(p1, flags, procp)
199 struct proc *p1; /* parent proc */
200 int flags;
201 struct proc **procp; /* child proc */
202{
203 struct proc *p2, *pptr;
204 uid_t uid;
205 struct proc *newproc;
206 int trypid;
207 int ok;
208 static int pidchecked = 0;
209 struct forklist *ep;
210 struct filedesc *fd;
211
212 /* Can't copy and clear */
213 if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
214 return (EINVAL);
215
216 /*
217 * Here we don't create a new process, but we divorce
218 * certain parts of a process from itself.
219 */
220 if ((flags & RFPROC) == 0) {
221
222 vm_fork(p1, 0, flags);
223
224 /*
225 * Close all file descriptors.
226 */
227 if (flags & RFCFDG) {
228 struct filedesc *fdtmp;
229 fdtmp = fdinit(p1);
230 PROC_LOCK(p1);
231 fdfree(p1);
232 p1->p_fd = fdtmp;
233 PROC_UNLOCK(p1);
234 }
235
236 /*
237 * Unshare file descriptors (from parent.)
238 */
239 if (flags & RFFDG) {
240 if (p1->p_fd->fd_refcnt > 1) {
241 struct filedesc *newfd;
242 newfd = fdcopy(p1);
243 PROC_LOCK(p1);
244 fdfree(p1);
245 p1->p_fd = newfd;
246 PROC_UNLOCK(p1);
247 }
248 }
249 *procp = NULL;
250 return (0);
251 }
252
253 /*
254 * Although process entries are dynamically created, we still keep
255 * a global limit on the maximum number we will create. Don't allow
256 * a nonprivileged user to use the last process; don't let root
257 * exceed the limit. The variable nprocs is the current number of
258 * processes, maxproc is the limit.
259 */
260 uid = p1->p_cred->p_ruid;
261 if ((nprocs >= maxproc - 1 && uid != 0) || nprocs >= maxproc) {
262 tablefull("proc");
263 return (EAGAIN);
264 }
265 /*
266 * Increment the nprocs resource before blocking can occur. There
267 * are hard-limits as to the number of processes that can run.
268 */
269 nprocs++;
270
271 /*
272 * Increment the count of procs running with this uid. Don't allow
273 * a nonprivileged user to exceed their current limit.
274 */
275 ok = chgproccnt(p1->p_cred->p_uidinfo, 1,
276 (uid != 0) ? p1->p_rlimit[RLIMIT_NPROC].rlim_cur : 0);
277 if (!ok) {
278 /*
279 * Back out the process count
280 */
281 nprocs--;
282 return (EAGAIN);
283 }
284
285 /* Allocate new proc. */
286 newproc = zalloc(proc_zone);
287
288 /*
289 * Setup linkage for kernel based threading
290 */
291 if((flags & RFTHREAD) != 0) {
292 newproc->p_peers = p1->p_peers;
293 p1->p_peers = newproc;
294 newproc->p_leader = p1->p_leader;
295 } else {
296 newproc->p_peers = NULL;
297 newproc->p_leader = newproc;
298 }
299
300 newproc->p_vmspace = NULL;
301
302 /*
303 * Find an unused process ID. We remember a range of unused IDs
304 * ready to use (from nextpid+1 through pidchecked-1).
305 *
306 * If RFHIGHPID is set (used during system boot), do not allocate
307 * low-numbered pids.
308 */
309 ALLPROC_LOCK(AP_EXCLUSIVE);
310 trypid = nextpid + 1;
311 if (flags & RFHIGHPID) {
312 if (trypid < 10) {
313 trypid = 10;
314 }
315 } else {
316 if (randompid)
317 trypid += arc4random() % randompid;
318 }
319retry:
320 /*
321 * If the process ID prototype has wrapped around,
322 * restart somewhat above 0, as the low-numbered procs
323 * tend to include daemons that don't exit.
324 */
325 if (trypid >= PID_MAX) {
326 trypid = trypid % PID_MAX;
327 if (trypid < 100)
328 trypid += 100;
329 pidchecked = 0;
330 }
331 if (trypid >= pidchecked) {
332 int doingzomb = 0;
333
334 pidchecked = PID_MAX;
335 /*
336 * Scan the active and zombie procs to check whether this pid
337 * is in use. Remember the lowest pid that's greater
338 * than trypid, so we can avoid checking for a while.
339 */
340 p2 = LIST_FIRST(&allproc);
341again:
342 for (; p2 != NULL; p2 = LIST_NEXT(p2, p_list)) {
343 while (p2->p_pid == trypid ||
344 p2->p_pgrp->pg_id == trypid ||
345 p2->p_session->s_sid == trypid) {
346 trypid++;
347 if (trypid >= pidchecked)
348 goto retry;
349 }
350 if (p2->p_pid > trypid && pidchecked > p2->p_pid)
351 pidchecked = p2->p_pid;
352 if (p2->p_pgrp->pg_id > trypid &&
353 pidchecked > p2->p_pgrp->pg_id)
354 pidchecked = p2->p_pgrp->pg_id;
355 if (p2->p_session->s_sid > trypid &&
356 pidchecked > p2->p_session->s_sid)
357 pidchecked = p2->p_session->s_sid;
358 }
359 if (!doingzomb) {
360 doingzomb = 1;
361 p2 = LIST_FIRST(&zombproc);
362 goto again;
363 }
364 }
365
366 /*
367 * RFHIGHPID does not mess with the nextpid counter during boot.
368 */
369 if (flags & RFHIGHPID)
370 pidchecked = 0;
371 else
372 nextpid = trypid;
373
374 p2 = newproc;
375 p2->p_stat = SIDL; /* protect against others */
376 p2->p_pid = trypid;
377 LIST_INSERT_HEAD(&allproc, p2, p_list);
378 LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
379 ALLPROC_LOCK(AP_RELEASE);
380
381 /*
382 * Make a proc table entry for the new process.
383 * Start by zeroing the section of proc that is zero-initialized,
384 * then copy the section that is copied directly from the parent.
385 */
386 bzero(&p2->p_startzero,
387 (unsigned) ((caddr_t)&p2->p_endzero - (caddr_t)&p2->p_startzero));
388 PROC_LOCK(p1);
389 bcopy(&p1->p_startcopy, &p2->p_startcopy,
390 (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
391 PROC_UNLOCK(p1);
392
393 mtx_init(&p2->p_mtx, "process lock", MTX_DEF);
394 PROC_LOCK(p2);
395
396 /*
397 * Duplicate sub-structures as needed.
398 * Increase reference counts on shared objects.
399 * The p_stats and p_sigacts substructs are set in vm_fork.
400 */
401 p2->p_flag = 0;
402 mtx_lock_spin(&sched_lock);
403 p2->p_sflag = PS_INMEM;
404 if (p1->p_sflag & PS_PROFIL)
405 startprofclock(p2);
406 mtx_unlock_spin(&sched_lock);
407 /*
408 * We start off holding one spinlock after fork: sched_lock.
409 */
410 p2->p_spinlocks = 1;
411 PROC_UNLOCK(p2);
412 MALLOC(p2->p_cred, struct pcred *, sizeof(struct pcred),
413 M_SUBPROC, M_WAITOK);
414 PROC_LOCK(p2);
415 PROC_LOCK(p1);
416 bcopy(p1->p_cred, p2->p_cred, sizeof(*p2->p_cred));
417 p2->p_cred->p_refcnt = 1;
418 crhold(p1->p_ucred);
419 uihold(p1->p_cred->p_uidinfo);
420
421 if (p2->p_args)
422 p2->p_args->ar_ref++;
423
424 if (flags & RFSIGSHARE) {
425 p2->p_procsig = p1->p_procsig;
426 p2->p_procsig->ps_refcnt++;
427 if (p1->p_sigacts == &p1->p_addr->u_sigacts) {
428 struct sigacts *newsigacts;
429
430 PROC_UNLOCK(p1);
431 PROC_UNLOCK(p2);
432 /* Create the shared sigacts structure */
433 MALLOC(newsigacts, struct sigacts *,
434 sizeof(struct sigacts), M_SUBPROC, M_WAITOK);
435 PROC_LOCK(p2);
436 PROC_LOCK(p1);
437 /*
438 * Set p_sigacts to the new shared structure.
439 * Note that this is updating p1->p_sigacts at the
440 * same time, since p_sigacts is just a pointer to
441 * the shared p_procsig->ps_sigacts.
442 */
443 p2->p_sigacts = newsigacts;
444 bcopy(&p1->p_addr->u_sigacts, p2->p_sigacts,
445 sizeof(*p2->p_sigacts));
446 *p2->p_sigacts = p1->p_addr->u_sigacts;
447 }
448 } else {
449 PROC_UNLOCK(p1);
450 PROC_UNLOCK(p2);
451 MALLOC(p2->p_procsig, struct procsig *, sizeof(struct procsig),
452 M_SUBPROC, M_WAITOK);
453 PROC_LOCK(p2);
454 PROC_LOCK(p1);
455 bcopy(p1->p_procsig, p2->p_procsig, sizeof(*p2->p_procsig));
456 p2->p_procsig->ps_refcnt = 1;
457 p2->p_sigacts = NULL; /* finished in vm_fork() */
458 }
459 if (flags & RFLINUXTHPN)
460 p2->p_sigparent = SIGUSR1;
461 else
462 p2->p_sigparent = SIGCHLD;
463
464 /* bump references to the text vnode (for procfs) */
465 p2->p_textvp = p1->p_textvp;
466 PROC_UNLOCK(p1);
467 PROC_UNLOCK(p2);
468 if (p2->p_textvp)
469 VREF(p2->p_textvp);
470
471 if (flags & RFCFDG)
472 fd = fdinit(p1);
473 else if (flags & RFFDG)
474 fd = fdcopy(p1);
475 else
476 fd = fdshare(p1);
477 PROC_LOCK(p2);
478 p2->p_fd = fd;
479
480 /*
481 * If p_limit is still copy-on-write, bump refcnt,
482 * otherwise get a copy that won't be modified.
483 * (If PL_SHAREMOD is clear, the structure is shared
484 * copy-on-write.)
485 */
486 PROC_LOCK(p1);
487 if (p1->p_limit->p_lflags & PL_SHAREMOD)
488 p2->p_limit = limcopy(p1->p_limit);
489 else {
490 p2->p_limit = p1->p_limit;
491 p2->p_limit->p_refcnt++;
492 }
493
494 /*
495 * Preserve some more flags in subprocess. PS_PROFIL has already
496 * been preserved.
497 */
498 p2->p_flag |= p1->p_flag & P_SUGID;
499 if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
500 p2->p_flag |= P_CONTROLT;
501 if (flags & RFPPWAIT)
502 p2->p_flag |= P_PPWAIT;
503
504 LIST_INSERT_AFTER(p1, p2, p_pglist);
505 PROC_UNLOCK(p1);
506 PROC_UNLOCK(p2);
507
508 /*
509 * Attach the new process to its parent.
510 *
511 * If RFNOWAIT is set, the newly created process becomes a child
512 * of init. This effectively disassociates the child from the
513 * parent.
514 */
515 if (flags & RFNOWAIT)
516 pptr = initproc;
517 else
518 pptr = p1;
519 PROCTREE_LOCK(PT_EXCLUSIVE);
520 PROC_LOCK(p2);
521 p2->p_pptr = pptr;
522 PROC_UNLOCK(p2);
523 LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
524 PROCTREE_LOCK(PT_RELEASE);
525 PROC_LOCK(p2);
526 LIST_INIT(&p2->p_children);
527 LIST_INIT(&p2->p_heldmtx);
528 LIST_INIT(&p2->p_contested);
529
530 callout_init(&p2->p_itcallout, 0);
531 callout_init(&p2->p_slpcallout, 1);
532
533 PROC_LOCK(p1);
534#ifdef KTRACE
535 /*
536 * Copy traceflag and tracefile if enabled.
537 * If not inherited, these were zeroed above.
538 */
539 if (p1->p_traceflag & KTRFAC_INHERIT) {
540 p2->p_traceflag = p1->p_traceflag;
541 if ((p2->p_tracep = p1->p_tracep) != NULL) {
542 PROC_UNLOCK(p1);
543 PROC_UNLOCK(p2);
544 VREF(p2->p_tracep);
545 PROC_LOCK(p2);
546 PROC_LOCK(p1);
547 }
548 }
549#endif
550
551 /*
552 * set priority of child to be that of parent
553 */
554 mtx_lock_spin(&sched_lock);
555 p2->p_estcpu = p1->p_estcpu;
556 mtx_unlock_spin(&sched_lock);
557
558 /*
559 * This begins the section where we must prevent the parent
560 * from being swapped.
561 */
562 _PHOLD(p1);
563 PROC_UNLOCK(p1);
564 PROC_UNLOCK(p2);
565
566 /*
567 * Finish creating the child process. It will return via a different
568 * execution path later. (ie: directly into user mode)
569 */
570 vm_fork(p1, p2, flags);
571
572 if (flags == (RFFDG | RFPROC)) {
573 cnt.v_forks++;
574 cnt.v_forkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
575 } else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
576 cnt.v_vforks++;
577 cnt.v_vforkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
578 } else if (p1 == &proc0) {
579 cnt.v_kthreads++;
580 cnt.v_kthreadpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
581 } else {
582 cnt.v_rforks++;
583 cnt.v_rforkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
584 }
585
586 /*
587 * Both processes are set up, now check if any loadable modules want
588 * to adjust anything.
589 * What if they have an error? XXX
590 */
591 sx_slock(&fork_list_lock);
592 TAILQ_FOREACH(ep, &fork_list, next) {
593 (*ep->function)(p1, p2, flags);
594 }
595 sx_sunlock(&fork_list_lock);
596
597 /*
598 * If RFSTOPPED not requested, make child runnable and add to
599 * run queue.
600 */
601 microtime(&(p2->p_stats->p_start));
602 p2->p_acflag = AFORK;
603 if ((flags & RFSTOPPED) == 0) {
604 mtx_lock_spin(&sched_lock);
605 p2->p_stat = SRUN;
606 setrunqueue(p2);
607 mtx_unlock_spin(&sched_lock);
608 }
609
610 /*
611 * Now can be swapped.
612 */
613 PROC_LOCK(p1);
614 _PRELE(p1);
615
616 /*
617 * tell any interested parties about the new process
618 */
619 KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
620 PROC_UNLOCK(p1);
621
622 /*
623 * Preserve synchronization semantics of vfork. If waiting for
624 * child to exec or exit, set P_PPWAIT on child, and sleep on our
625 * proc (in case of exit).
626 */
627 PROC_LOCK(p2);
628 while (p2->p_flag & P_PPWAIT)
629 msleep(p1, &p2->p_mtx, PWAIT, "ppwait", 0);
630 PROC_UNLOCK(p2);
631
632 /*
633 * Return child proc pointer to parent.
634 */
635 *procp = p2;
636 return (0);
637}
638
639/*
640 * The next two functionms are general routines to handle adding/deleting
641 * items on the fork callout list.
642 *
643 * at_fork():
644 * Take the arguments given and put them onto the fork callout list,
645 * However first make sure that it's not already there.
646 * Returns 0 on success or a standard error number.
647 */
648
649int
650at_fork(function)
651 forklist_fn function;
652{
653 struct forklist *ep;
654
655#ifdef INVARIANTS
656 /* let the programmer know if he's been stupid */
657 if (rm_at_fork(function))
658 printf("WARNING: fork callout entry (%p) already present\n",
659 function);
660#endif
661 ep = malloc(sizeof(*ep), M_ATFORK, M_NOWAIT);
662 if (ep == NULL)
663 return (ENOMEM);
664 ep->function = function;
665 sx_xlock(&fork_list_lock);
666 TAILQ_INSERT_TAIL(&fork_list, ep, next);
667 sx_xunlock(&fork_list_lock);
668 return (0);
669}
670
671/*
672 * Scan the exit callout list for the given item and remove it..
673 * Returns the number of items removed (0 or 1)
674 */
675
676int
677rm_at_fork(function)
678 forklist_fn function;
679{
680 struct forklist *ep;
681
682 sx_xlock(&fork_list_lock);
683 TAILQ_FOREACH(ep, &fork_list, next) {
684 if (ep->function == function) {
685 TAILQ_REMOVE(&fork_list, ep, next);
686 sx_xunlock(&fork_list_lock);
687 free(ep, M_ATFORK);
688 return(1);
689 }
690 }
691 sx_xunlock(&fork_list_lock);
692 return (0);
693}
694
695/*
696 * Handle the return of a child process from fork1(). This function
697 * is called from the MD fork_trampoline() entry point.
698 */
699void
700fork_exit(callout, arg, frame)
701 void (*callout)(void *, struct trapframe *);
702 void *arg;
703 struct trapframe *frame;
704{
705 struct proc *p;
706
707 p = curproc;
708
709 /*
710 * Setup the sched_lock state so that we can release it.
711 */
712 sched_lock.mtx_lock = (uintptr_t)p;
713 sched_lock.mtx_recurse = 0;
714 /*
715 * XXX: We really shouldn't have to do this.
716 */
717 mtx_intr_enable(&sched_lock);
718 mtx_unlock_spin(&sched_lock);
719
720#ifdef SMP
721 if (PCPU_GET(switchtime.tv_sec) == 0)
722 microuptime(PCPU_PTR(switchtime));
723 PCPU_SET(switchticks, ticks);
724#endif
725
726 /*
727 * cpu_set_fork_handler intercepts this function call to
728 * have this call a non-return function to stay in kernel mode.
729 * initproc has its own fork handler, but it does return.
730 */
731 KASSERT(callout != NULL, ("NULL callout in fork_exit"));
732 callout(arg, frame);
733
734 /*
735 * Check if a kernel thread misbehaved and returned from its main
736 * function.
737 */
738 PROC_LOCK(p);
739 if (p->p_flag & P_KTHREAD) {
740 PROC_UNLOCK(p);
741 mtx_lock(&Giant);
742 printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
743 p->p_comm, p->p_pid);
744 kthread_exit(0);
745 }
746 PROC_UNLOCK(p);
747 mtx_assert(&Giant, MA_NOTOWNED);
748}
749
750/*
751 * Simplified back end of syscall(), used when returning from fork()
752 * directly into user mode. Giant is not held on entry, and must not
753 * be held on return. This function is passed in to fork_exit() as the
754 * first parameter and is called when returning to a new userland process.
755 */
756void
757fork_return(p, frame)
758 struct proc *p;
759 struct trapframe *frame;
760{
761
762 userret(p, frame, 0);
763#ifdef KTRACE
764 if (KTRPOINT(p, KTR_SYSRET)) {
765 if (!mtx_owned(&Giant))
766 mtx_lock(&Giant);
767 ktrsysret(p->p_tracep, SYS_fork, 0, 0);
768 }
769#endif
770 if (mtx_owned(&Giant))
771 mtx_unlock(&Giant);
772 mtx_assert(&Giant, MA_NOTOWNED);
773}
527 LIST_INIT(&p2->p_contested);
528
529 callout_init(&p2->p_itcallout, 0);
530 callout_init(&p2->p_slpcallout, 1);
531
532 PROC_LOCK(p1);
533#ifdef KTRACE
534 /*
535 * Copy traceflag and tracefile if enabled.
536 * If not inherited, these were zeroed above.
537 */
538 if (p1->p_traceflag & KTRFAC_INHERIT) {
539 p2->p_traceflag = p1->p_traceflag;
540 if ((p2->p_tracep = p1->p_tracep) != NULL) {
541 PROC_UNLOCK(p1);
542 PROC_UNLOCK(p2);
543 VREF(p2->p_tracep);
544 PROC_LOCK(p2);
545 PROC_LOCK(p1);
546 }
547 }
548#endif
549
550 /*
551 * set priority of child to be that of parent
552 */
553 mtx_lock_spin(&sched_lock);
554 p2->p_estcpu = p1->p_estcpu;
555 mtx_unlock_spin(&sched_lock);
556
557 /*
558 * This begins the section where we must prevent the parent
559 * from being swapped.
560 */
561 _PHOLD(p1);
562 PROC_UNLOCK(p1);
563 PROC_UNLOCK(p2);
564
565 /*
566 * Finish creating the child process. It will return via a different
567 * execution path later. (ie: directly into user mode)
568 */
569 vm_fork(p1, p2, flags);
570
571 if (flags == (RFFDG | RFPROC)) {
572 cnt.v_forks++;
573 cnt.v_forkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
574 } else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
575 cnt.v_vforks++;
576 cnt.v_vforkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
577 } else if (p1 == &proc0) {
578 cnt.v_kthreads++;
579 cnt.v_kthreadpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
580 } else {
581 cnt.v_rforks++;
582 cnt.v_rforkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
583 }
584
585 /*
586 * Both processes are set up, now check if any loadable modules want
587 * to adjust anything.
588 * What if they have an error? XXX
589 */
590 sx_slock(&fork_list_lock);
591 TAILQ_FOREACH(ep, &fork_list, next) {
592 (*ep->function)(p1, p2, flags);
593 }
594 sx_sunlock(&fork_list_lock);
595
596 /*
597 * If RFSTOPPED not requested, make child runnable and add to
598 * run queue.
599 */
600 microtime(&(p2->p_stats->p_start));
601 p2->p_acflag = AFORK;
602 if ((flags & RFSTOPPED) == 0) {
603 mtx_lock_spin(&sched_lock);
604 p2->p_stat = SRUN;
605 setrunqueue(p2);
606 mtx_unlock_spin(&sched_lock);
607 }
608
609 /*
610 * Now can be swapped.
611 */
612 PROC_LOCK(p1);
613 _PRELE(p1);
614
615 /*
616 * tell any interested parties about the new process
617 */
618 KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
619 PROC_UNLOCK(p1);
620
621 /*
622 * Preserve synchronization semantics of vfork. If waiting for
623 * child to exec or exit, set P_PPWAIT on child, and sleep on our
624 * proc (in case of exit).
625 */
626 PROC_LOCK(p2);
627 while (p2->p_flag & P_PPWAIT)
628 msleep(p1, &p2->p_mtx, PWAIT, "ppwait", 0);
629 PROC_UNLOCK(p2);
630
631 /*
632 * Return child proc pointer to parent.
633 */
634 *procp = p2;
635 return (0);
636}
637
638/*
639 * The next two functionms are general routines to handle adding/deleting
640 * items on the fork callout list.
641 *
642 * at_fork():
643 * Take the arguments given and put them onto the fork callout list,
644 * However first make sure that it's not already there.
645 * Returns 0 on success or a standard error number.
646 */
647
648int
649at_fork(function)
650 forklist_fn function;
651{
652 struct forklist *ep;
653
654#ifdef INVARIANTS
655 /* let the programmer know if he's been stupid */
656 if (rm_at_fork(function))
657 printf("WARNING: fork callout entry (%p) already present\n",
658 function);
659#endif
660 ep = malloc(sizeof(*ep), M_ATFORK, M_NOWAIT);
661 if (ep == NULL)
662 return (ENOMEM);
663 ep->function = function;
664 sx_xlock(&fork_list_lock);
665 TAILQ_INSERT_TAIL(&fork_list, ep, next);
666 sx_xunlock(&fork_list_lock);
667 return (0);
668}
669
670/*
671 * Scan the exit callout list for the given item and remove it..
672 * Returns the number of items removed (0 or 1)
673 */
674
675int
676rm_at_fork(function)
677 forklist_fn function;
678{
679 struct forklist *ep;
680
681 sx_xlock(&fork_list_lock);
682 TAILQ_FOREACH(ep, &fork_list, next) {
683 if (ep->function == function) {
684 TAILQ_REMOVE(&fork_list, ep, next);
685 sx_xunlock(&fork_list_lock);
686 free(ep, M_ATFORK);
687 return(1);
688 }
689 }
690 sx_xunlock(&fork_list_lock);
691 return (0);
692}
693
694/*
695 * Handle the return of a child process from fork1(). This function
696 * is called from the MD fork_trampoline() entry point.
697 */
698void
699fork_exit(callout, arg, frame)
700 void (*callout)(void *, struct trapframe *);
701 void *arg;
702 struct trapframe *frame;
703{
704 struct proc *p;
705
706 p = curproc;
707
708 /*
709 * Setup the sched_lock state so that we can release it.
710 */
711 sched_lock.mtx_lock = (uintptr_t)p;
712 sched_lock.mtx_recurse = 0;
713 /*
714 * XXX: We really shouldn't have to do this.
715 */
716 mtx_intr_enable(&sched_lock);
717 mtx_unlock_spin(&sched_lock);
718
719#ifdef SMP
720 if (PCPU_GET(switchtime.tv_sec) == 0)
721 microuptime(PCPU_PTR(switchtime));
722 PCPU_SET(switchticks, ticks);
723#endif
724
725 /*
726 * cpu_set_fork_handler intercepts this function call to
727 * have this call a non-return function to stay in kernel mode.
728 * initproc has its own fork handler, but it does return.
729 */
730 KASSERT(callout != NULL, ("NULL callout in fork_exit"));
731 callout(arg, frame);
732
733 /*
734 * Check if a kernel thread misbehaved and returned from its main
735 * function.
736 */
737 PROC_LOCK(p);
738 if (p->p_flag & P_KTHREAD) {
739 PROC_UNLOCK(p);
740 mtx_lock(&Giant);
741 printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
742 p->p_comm, p->p_pid);
743 kthread_exit(0);
744 }
745 PROC_UNLOCK(p);
746 mtx_assert(&Giant, MA_NOTOWNED);
747}
748
749/*
750 * Simplified back end of syscall(), used when returning from fork()
751 * directly into user mode. Giant is not held on entry, and must not
752 * be held on return. This function is passed in to fork_exit() as the
753 * first parameter and is called when returning to a new userland process.
754 */
755void
756fork_return(p, frame)
757 struct proc *p;
758 struct trapframe *frame;
759{
760
761 userret(p, frame, 0);
762#ifdef KTRACE
763 if (KTRPOINT(p, KTR_SYSRET)) {
764 if (!mtx_owned(&Giant))
765 mtx_lock(&Giant);
766 ktrsysret(p->p_tracep, SYS_fork, 0, 0);
767 }
768#endif
769 if (mtx_owned(&Giant))
770 mtx_unlock(&Giant);
771 mtx_assert(&Giant, MA_NOTOWNED);
772}