Deleted Added
full compact
kern_exec.c (223692) kern_exec.c (224159)
1/*-
2 * Copyright (c) 1993, David Greenman
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
1/*-
2 * Copyright (c) 1993, David Greenman
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/kern/kern_exec.c 223692 2011-06-30 10:56:02Z jonathan $");
28__FBSDID("$FreeBSD: head/sys/kern/kern_exec.c 224159 2011-07-17 23:05:24Z rwatson $");
29
30#include "opt_capsicum.h"
31#include "opt_hwpmc_hooks.h"
32#include "opt_kdtrace.h"
33#include "opt_ktrace.h"
34#include "opt_vm.h"
35
36#include <sys/param.h>
37#include <sys/capability.h>
38#include <sys/systm.h>
29
30#include "opt_capsicum.h"
31#include "opt_hwpmc_hooks.h"
32#include "opt_kdtrace.h"
33#include "opt_ktrace.h"
34#include "opt_vm.h"
35
36#include <sys/param.h>
37#include <sys/capability.h>
38#include <sys/systm.h>
39#include <sys/capability.h>
39#include <sys/eventhandler.h>
40#include <sys/lock.h>
41#include <sys/mutex.h>
42#include <sys/sysproto.h>
43#include <sys/signalvar.h>
44#include <sys/kernel.h>
45#include <sys/mount.h>
46#include <sys/filedesc.h>
47#include <sys/fcntl.h>
48#include <sys/acct.h>
49#include <sys/exec.h>
50#include <sys/imgact.h>
51#include <sys/imgact_elf.h>
52#include <sys/wait.h>
53#include <sys/malloc.h>
54#include <sys/priv.h>
55#include <sys/proc.h>
56#include <sys/pioctl.h>
57#include <sys/namei.h>
58#include <sys/resourcevar.h>
59#include <sys/sdt.h>
60#include <sys/sf_buf.h>
61#include <sys/syscallsubr.h>
62#include <sys/sysent.h>
63#include <sys/shm.h>
64#include <sys/sysctl.h>
65#include <sys/vnode.h>
66#include <sys/stat.h>
67#ifdef KTRACE
68#include <sys/ktrace.h>
69#endif
70
71#include <vm/vm.h>
72#include <vm/vm_param.h>
73#include <vm/pmap.h>
74#include <vm/vm_page.h>
75#include <vm/vm_map.h>
76#include <vm/vm_kern.h>
77#include <vm/vm_extern.h>
78#include <vm/vm_object.h>
79#include <vm/vm_pager.h>
80
81#ifdef HWPMC_HOOKS
82#include <sys/pmckern.h>
83#endif
84
85#include <machine/reg.h>
86
87#include <security/audit/audit.h>
88#include <security/mac/mac_framework.h>
89
90#ifdef KDTRACE_HOOKS
91#include <sys/dtrace_bsd.h>
92dtrace_execexit_func_t dtrace_fasttrap_exec;
93#endif
94
95SDT_PROVIDER_DECLARE(proc);
96SDT_PROBE_DEFINE(proc, kernel, , exec, exec);
97SDT_PROBE_ARGTYPE(proc, kernel, , exec, 0, "char *");
98SDT_PROBE_DEFINE(proc, kernel, , exec_failure, exec-failure);
99SDT_PROBE_ARGTYPE(proc, kernel, , exec_failure, 0, "int");
100SDT_PROBE_DEFINE(proc, kernel, , exec_success, exec-success);
101SDT_PROBE_ARGTYPE(proc, kernel, , exec_success, 0, "char *");
102
103MALLOC_DEFINE(M_PARGS, "proc-args", "Process arguments");
104
105static int sysctl_kern_ps_strings(SYSCTL_HANDLER_ARGS);
106static int sysctl_kern_usrstack(SYSCTL_HANDLER_ARGS);
107static int sysctl_kern_stackprot(SYSCTL_HANDLER_ARGS);
108static int do_execve(struct thread *td, struct image_args *args,
109 struct mac *mac_p);
110
111/* XXX This should be vm_size_t. */
112SYSCTL_PROC(_kern, KERN_PS_STRINGS, ps_strings, CTLTYPE_ULONG|CTLFLAG_RD,
113 NULL, 0, sysctl_kern_ps_strings, "LU", "");
114
115/* XXX This should be vm_size_t. */
40#include <sys/eventhandler.h>
41#include <sys/lock.h>
42#include <sys/mutex.h>
43#include <sys/sysproto.h>
44#include <sys/signalvar.h>
45#include <sys/kernel.h>
46#include <sys/mount.h>
47#include <sys/filedesc.h>
48#include <sys/fcntl.h>
49#include <sys/acct.h>
50#include <sys/exec.h>
51#include <sys/imgact.h>
52#include <sys/imgact_elf.h>
53#include <sys/wait.h>
54#include <sys/malloc.h>
55#include <sys/priv.h>
56#include <sys/proc.h>
57#include <sys/pioctl.h>
58#include <sys/namei.h>
59#include <sys/resourcevar.h>
60#include <sys/sdt.h>
61#include <sys/sf_buf.h>
62#include <sys/syscallsubr.h>
63#include <sys/sysent.h>
64#include <sys/shm.h>
65#include <sys/sysctl.h>
66#include <sys/vnode.h>
67#include <sys/stat.h>
68#ifdef KTRACE
69#include <sys/ktrace.h>
70#endif
71
72#include <vm/vm.h>
73#include <vm/vm_param.h>
74#include <vm/pmap.h>
75#include <vm/vm_page.h>
76#include <vm/vm_map.h>
77#include <vm/vm_kern.h>
78#include <vm/vm_extern.h>
79#include <vm/vm_object.h>
80#include <vm/vm_pager.h>
81
82#ifdef HWPMC_HOOKS
83#include <sys/pmckern.h>
84#endif
85
86#include <machine/reg.h>
87
88#include <security/audit/audit.h>
89#include <security/mac/mac_framework.h>
90
91#ifdef KDTRACE_HOOKS
92#include <sys/dtrace_bsd.h>
93dtrace_execexit_func_t dtrace_fasttrap_exec;
94#endif
95
96SDT_PROVIDER_DECLARE(proc);
97SDT_PROBE_DEFINE(proc, kernel, , exec, exec);
98SDT_PROBE_ARGTYPE(proc, kernel, , exec, 0, "char *");
99SDT_PROBE_DEFINE(proc, kernel, , exec_failure, exec-failure);
100SDT_PROBE_ARGTYPE(proc, kernel, , exec_failure, 0, "int");
101SDT_PROBE_DEFINE(proc, kernel, , exec_success, exec-success);
102SDT_PROBE_ARGTYPE(proc, kernel, , exec_success, 0, "char *");
103
104MALLOC_DEFINE(M_PARGS, "proc-args", "Process arguments");
105
106static int sysctl_kern_ps_strings(SYSCTL_HANDLER_ARGS);
107static int sysctl_kern_usrstack(SYSCTL_HANDLER_ARGS);
108static int sysctl_kern_stackprot(SYSCTL_HANDLER_ARGS);
109static int do_execve(struct thread *td, struct image_args *args,
110 struct mac *mac_p);
111
112/* XXX This should be vm_size_t. */
113SYSCTL_PROC(_kern, KERN_PS_STRINGS, ps_strings, CTLTYPE_ULONG|CTLFLAG_RD,
114 NULL, 0, sysctl_kern_ps_strings, "LU", "");
115
116/* XXX This should be vm_size_t. */
116SYSCTL_PROC(_kern, KERN_USRSTACK, usrstack, CTLTYPE_ULONG|CTLFLAG_RD,
117 NULL, 0, sysctl_kern_usrstack, "LU", "");
117SYSCTL_PROC(_kern, KERN_USRSTACK, usrstack, CTLTYPE_ULONG|CTLFLAG_RD|
118 CTLFLAG_CAPRD, NULL, 0, sysctl_kern_usrstack, "LU", "");
118
119SYSCTL_PROC(_kern, OID_AUTO, stackprot, CTLTYPE_INT|CTLFLAG_RD,
120 NULL, 0, sysctl_kern_stackprot, "I", "");
121
122u_long ps_arg_cache_limit = PAGE_SIZE / 16;
123SYSCTL_ULONG(_kern, OID_AUTO, ps_arg_cache_limit, CTLFLAG_RW,
124 &ps_arg_cache_limit, 0, "");
125
126static int map_at_zero = 0;
127TUNABLE_INT("security.bsd.map_at_zero", &map_at_zero);
128SYSCTL_INT(_security_bsd, OID_AUTO, map_at_zero, CTLFLAG_RW, &map_at_zero, 0,
129 "Permit processes to map an object at virtual address 0.");
130
131static int
132sysctl_kern_ps_strings(SYSCTL_HANDLER_ARGS)
133{
134 struct proc *p;
135 int error;
136
137 p = curproc;
138#ifdef SCTL_MASK32
139 if (req->flags & SCTL_MASK32) {
140 unsigned int val;
141 val = (unsigned int)p->p_sysent->sv_psstrings;
142 error = SYSCTL_OUT(req, &val, sizeof(val));
143 } else
144#endif
145 error = SYSCTL_OUT(req, &p->p_sysent->sv_psstrings,
146 sizeof(p->p_sysent->sv_psstrings));
147 return error;
148}
149
150static int
151sysctl_kern_usrstack(SYSCTL_HANDLER_ARGS)
152{
153 struct proc *p;
154 int error;
155
156 p = curproc;
157#ifdef SCTL_MASK32
158 if (req->flags & SCTL_MASK32) {
159 unsigned int val;
160 val = (unsigned int)p->p_sysent->sv_usrstack;
161 error = SYSCTL_OUT(req, &val, sizeof(val));
162 } else
163#endif
164 error = SYSCTL_OUT(req, &p->p_sysent->sv_usrstack,
165 sizeof(p->p_sysent->sv_usrstack));
166 return error;
167}
168
169static int
170sysctl_kern_stackprot(SYSCTL_HANDLER_ARGS)
171{
172 struct proc *p;
173
174 p = curproc;
175 return (SYSCTL_OUT(req, &p->p_sysent->sv_stackprot,
176 sizeof(p->p_sysent->sv_stackprot)));
177}
178
179/*
180 * Each of the items is a pointer to a `const struct execsw', hence the
181 * double pointer here.
182 */
183static const struct execsw **execsw;
184
185#ifndef _SYS_SYSPROTO_H_
186struct execve_args {
187 char *fname;
188 char **argv;
189 char **envv;
190};
191#endif
192
193int
194execve(td, uap)
195 struct thread *td;
196 struct execve_args /* {
197 char *fname;
198 char **argv;
199 char **envv;
200 } */ *uap;
201{
202 int error;
203 struct image_args args;
204
205 error = exec_copyin_args(&args, uap->fname, UIO_USERSPACE,
206 uap->argv, uap->envv);
207 if (error == 0)
208 error = kern_execve(td, &args, NULL);
209 return (error);
210}
211
212#ifndef _SYS_SYSPROTO_H_
213struct fexecve_args {
214 int fd;
215 char **argv;
216 char **envv;
217}
218#endif
219int
220fexecve(struct thread *td, struct fexecve_args *uap)
221{
222 int error;
223 struct image_args args;
224
225 error = exec_copyin_args(&args, NULL, UIO_SYSSPACE,
226 uap->argv, uap->envv);
227 if (error == 0) {
228 args.fd = uap->fd;
229 error = kern_execve(td, &args, NULL);
230 }
231 return (error);
232}
233
234#ifndef _SYS_SYSPROTO_H_
235struct __mac_execve_args {
236 char *fname;
237 char **argv;
238 char **envv;
239 struct mac *mac_p;
240};
241#endif
242
243int
244__mac_execve(td, uap)
245 struct thread *td;
246 struct __mac_execve_args /* {
247 char *fname;
248 char **argv;
249 char **envv;
250 struct mac *mac_p;
251 } */ *uap;
252{
253#ifdef MAC
254 int error;
255 struct image_args args;
256
257 error = exec_copyin_args(&args, uap->fname, UIO_USERSPACE,
258 uap->argv, uap->envv);
259 if (error == 0)
260 error = kern_execve(td, &args, uap->mac_p);
261 return (error);
262#else
263 return (ENOSYS);
264#endif
265}
266
267/*
268 * XXX: kern_execve has the astonishing property of not always returning to
269 * the caller. If sufficiently bad things happen during the call to
270 * do_execve(), it can end up calling exit1(); as a result, callers must
271 * avoid doing anything which they might need to undo (e.g., allocating
272 * memory).
273 */
274int
275kern_execve(td, args, mac_p)
276 struct thread *td;
277 struct image_args *args;
278 struct mac *mac_p;
279{
280 struct proc *p = td->td_proc;
281 int error;
282
283 AUDIT_ARG_ARGV(args->begin_argv, args->argc,
284 args->begin_envv - args->begin_argv);
285 AUDIT_ARG_ENVV(args->begin_envv, args->envc,
286 args->endp - args->begin_envv);
287 if (p->p_flag & P_HADTHREADS) {
288 PROC_LOCK(p);
289 if (thread_single(SINGLE_BOUNDARY)) {
290 PROC_UNLOCK(p);
291 exec_free_args(args);
292 return (ERESTART); /* Try again later. */
293 }
294 PROC_UNLOCK(p);
295 }
296
297 error = do_execve(td, args, mac_p);
298
299 if (p->p_flag & P_HADTHREADS) {
300 PROC_LOCK(p);
301 /*
302 * If success, we upgrade to SINGLE_EXIT state to
303 * force other threads to suicide.
304 */
305 if (error == 0)
306 thread_single(SINGLE_EXIT);
307 else
308 thread_single_end();
309 PROC_UNLOCK(p);
310 }
311
312 return (error);
313}
314
315/*
316 * In-kernel implementation of execve(). All arguments are assumed to be
317 * userspace pointers from the passed thread.
318 */
319static int
320do_execve(td, args, mac_p)
321 struct thread *td;
322 struct image_args *args;
323 struct mac *mac_p;
324{
325 struct proc *p = td->td_proc;
326 struct nameidata nd;
327 struct ucred *newcred = NULL, *oldcred;
328 struct uidinfo *euip;
329 register_t *stack_base;
330 int error, i;
331 struct image_params image_params, *imgp;
332 struct vattr attr;
333 int (*img_first)(struct image_params *);
334 struct pargs *oldargs = NULL, *newargs = NULL;
335 struct sigacts *oldsigacts, *newsigacts;
336#ifdef KTRACE
337 struct vnode *tracevp = NULL;
338 struct ucred *tracecred = NULL;
339#endif
340 struct vnode *textvp = NULL, *binvp = NULL;
341 int credential_changing;
342 int vfslocked;
343 int textset;
344#ifdef MAC
345 struct label *interpvplabel = NULL;
346 int will_transition;
347#endif
348#ifdef HWPMC_HOOKS
349 struct pmckern_procexec pe;
350#endif
351 static const char fexecv_proc_title[] = "(fexecv)";
352
353 vfslocked = 0;
354 imgp = &image_params;
355
356 /*
357 * Lock the process and set the P_INEXEC flag to indicate that
358 * it should be left alone until we're done here. This is
359 * necessary to avoid race conditions - e.g. in ptrace() -
360 * that might allow a local user to illicitly obtain elevated
361 * privileges.
362 */
363 PROC_LOCK(p);
364 KASSERT((p->p_flag & P_INEXEC) == 0,
365 ("%s(): process already has P_INEXEC flag", __func__));
366 p->p_flag |= P_INEXEC;
367 PROC_UNLOCK(p);
368
369 /*
370 * Initialize part of the common data
371 */
372 imgp->proc = p;
373 imgp->execlabel = NULL;
374 imgp->attr = &attr;
375 imgp->entry_addr = 0;
376 imgp->reloc_base = 0;
377 imgp->vmspace_destroyed = 0;
378 imgp->interpreted = 0;
379 imgp->opened = 0;
380 imgp->interpreter_name = NULL;
381 imgp->auxargs = NULL;
382 imgp->vp = NULL;
383 imgp->object = NULL;
384 imgp->firstpage = NULL;
385 imgp->ps_strings = 0;
386 imgp->auxarg_size = 0;
387 imgp->args = args;
388 imgp->execpath = imgp->freepath = NULL;
389 imgp->execpathp = 0;
390 imgp->canary = 0;
391 imgp->canarylen = 0;
392 imgp->pagesizes = 0;
393 imgp->pagesizeslen = 0;
394 imgp->stack_prot = 0;
395
396#ifdef MAC
397 error = mac_execve_enter(imgp, mac_p);
398 if (error)
399 goto exec_fail;
400#endif
401
402 imgp->image_header = NULL;
403
404 /*
405 * Translate the file name. namei() returns a vnode pointer
406 * in ni_vp amoung other things.
407 *
408 * XXXAUDIT: It would be desirable to also audit the name of the
409 * interpreter if this is an interpreted binary.
410 */
411 if (args->fname != NULL) {
412 NDINIT(&nd, LOOKUP, ISOPEN | LOCKLEAF | FOLLOW | SAVENAME
413 | MPSAFE | AUDITVNODE1, UIO_SYSSPACE, args->fname, td);
414 }
415
416 SDT_PROBE(proc, kernel, , exec, args->fname, 0, 0, 0, 0 );
417
418interpret:
419 if (args->fname != NULL) {
420#ifdef CAPABILITY_MODE
421 /*
422 * While capability mode can't reach this point via direct
423 * path arguments to execve(), we also don't allow
424 * interpreters to be used in capability mode (for now).
425 * Catch indirect lookups and return a permissions error.
426 */
427 if (IN_CAPABILITY_MODE(td)) {
428 error = ECAPMODE;
429 goto exec_fail;
430 }
431#endif
432 error = namei(&nd);
433 if (error)
434 goto exec_fail;
435
436 vfslocked = NDHASGIANT(&nd);
437 binvp = nd.ni_vp;
438 imgp->vp = binvp;
439 } else {
440 AUDIT_ARG_FD(args->fd);
441 error = fgetvp(td, args->fd, &binvp);
442 if (error)
443 goto exec_fail;
444 vfslocked = VFS_LOCK_GIANT(binvp->v_mount);
445 vn_lock(binvp, LK_EXCLUSIVE | LK_RETRY);
446 AUDIT_ARG_VNODE1(binvp);
447 imgp->vp = binvp;
448 }
449
450 /*
451 * Check file permissions (also 'opens' file)
452 */
453 error = exec_check_permissions(imgp);
454 if (error)
455 goto exec_fail_dealloc;
456
457 imgp->object = imgp->vp->v_object;
458 if (imgp->object != NULL)
459 vm_object_reference(imgp->object);
460
461 /*
462 * Set VV_TEXT now so no one can write to the executable while we're
463 * activating it.
464 *
465 * Remember if this was set before and unset it in case this is not
466 * actually an executable image.
467 */
468 textset = imgp->vp->v_vflag & VV_TEXT;
469 imgp->vp->v_vflag |= VV_TEXT;
470
471 error = exec_map_first_page(imgp);
472 if (error)
473 goto exec_fail_dealloc;
474
475 imgp->proc->p_osrel = 0;
476 /*
477 * If the current process has a special image activator it
478 * wants to try first, call it. For example, emulating shell
479 * scripts differently.
480 */
481 error = -1;
482 if ((img_first = imgp->proc->p_sysent->sv_imgact_try) != NULL)
483 error = img_first(imgp);
484
485 /*
486 * Loop through the list of image activators, calling each one.
487 * An activator returns -1 if there is no match, 0 on success,
488 * and an error otherwise.
489 */
490 for (i = 0; error == -1 && execsw[i]; ++i) {
491 if (execsw[i]->ex_imgact == NULL ||
492 execsw[i]->ex_imgact == img_first) {
493 continue;
494 }
495 error = (*execsw[i]->ex_imgact)(imgp);
496 }
497
498 if (error) {
499 if (error == -1) {
500 if (textset == 0)
501 imgp->vp->v_vflag &= ~VV_TEXT;
502 error = ENOEXEC;
503 }
504 goto exec_fail_dealloc;
505 }
506
507 /*
508 * Special interpreter operation, cleanup and loop up to try to
509 * activate the interpreter.
510 */
511 if (imgp->interpreted) {
512 exec_unmap_first_page(imgp);
513 /*
514 * VV_TEXT needs to be unset for scripts. There is a short
515 * period before we determine that something is a script where
516 * VV_TEXT will be set. The vnode lock is held over this
517 * entire period so nothing should illegitimately be blocked.
518 */
519 imgp->vp->v_vflag &= ~VV_TEXT;
520 /* free name buffer and old vnode */
521 if (args->fname != NULL)
522 NDFREE(&nd, NDF_ONLY_PNBUF);
523#ifdef MAC
524 mac_execve_interpreter_enter(binvp, &interpvplabel);
525#endif
526 if (imgp->opened) {
527 VOP_CLOSE(binvp, FREAD, td->td_ucred, td);
528 imgp->opened = 0;
529 }
530 vput(binvp);
531 vm_object_deallocate(imgp->object);
532 imgp->object = NULL;
533 VFS_UNLOCK_GIANT(vfslocked);
534 vfslocked = 0;
535 /* set new name to that of the interpreter */
536 NDINIT(&nd, LOOKUP, LOCKLEAF | FOLLOW | SAVENAME | MPSAFE,
537 UIO_SYSSPACE, imgp->interpreter_name, td);
538 args->fname = imgp->interpreter_name;
539 goto interpret;
540 }
541
542 /*
543 * NB: We unlock the vnode here because it is believed that none
544 * of the sv_copyout_strings/sv_fixup operations require the vnode.
545 */
546 VOP_UNLOCK(imgp->vp, 0);
547
548 /*
549 * Do the best to calculate the full path to the image file.
550 */
551 if (imgp->auxargs != NULL &&
552 ((args->fname != NULL && args->fname[0] == '/') ||
553 vn_fullpath(td, imgp->vp, &imgp->execpath, &imgp->freepath) != 0))
554 imgp->execpath = args->fname;
555
556 /*
557 * Copy out strings (args and env) and initialize stack base
558 */
559 if (p->p_sysent->sv_copyout_strings)
560 stack_base = (*p->p_sysent->sv_copyout_strings)(imgp);
561 else
562 stack_base = exec_copyout_strings(imgp);
563
564 /*
565 * If custom stack fixup routine present for this process
566 * let it do the stack setup.
567 * Else stuff argument count as first item on stack
568 */
569 if (p->p_sysent->sv_fixup != NULL)
570 (*p->p_sysent->sv_fixup)(&stack_base, imgp);
571 else
572 suword(--stack_base, imgp->args->argc);
573
574 /*
575 * For security and other reasons, the file descriptor table cannot
576 * be shared after an exec.
577 */
578 fdunshare(p, td);
579
580 /*
581 * Malloc things before we need locks.
582 */
583 newcred = crget();
584 euip = uifind(attr.va_uid);
585 i = imgp->args->begin_envv - imgp->args->begin_argv;
586 /* Cache arguments if they fit inside our allowance */
587 if (ps_arg_cache_limit >= i + sizeof(struct pargs)) {
588 newargs = pargs_alloc(i);
589 bcopy(imgp->args->begin_argv, newargs->ar_args, i);
590 }
591
592 /* close files on exec */
593 fdcloseexec(td);
594 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY);
595
596 /* Get a reference to the vnode prior to locking the proc */
597 VREF(binvp);
598
599 /*
600 * For security and other reasons, signal handlers cannot
601 * be shared after an exec. The new process gets a copy of the old
602 * handlers. In execsigs(), the new process will have its signals
603 * reset.
604 */
605 PROC_LOCK(p);
606 oldcred = crcopysafe(p, newcred);
607 if (sigacts_shared(p->p_sigacts)) {
608 oldsigacts = p->p_sigacts;
609 PROC_UNLOCK(p);
610 newsigacts = sigacts_alloc();
611 sigacts_copy(newsigacts, oldsigacts);
612 PROC_LOCK(p);
613 p->p_sigacts = newsigacts;
614 } else
615 oldsigacts = NULL;
616
617 /* Stop profiling */
618 stopprofclock(p);
619
620 /* reset caught signals */
621 execsigs(p);
622
623 /* name this process - nameiexec(p, ndp) */
624 bzero(p->p_comm, sizeof(p->p_comm));
625 if (args->fname)
626 bcopy(nd.ni_cnd.cn_nameptr, p->p_comm,
627 min(nd.ni_cnd.cn_namelen, MAXCOMLEN));
628 else if (vn_commname(binvp, p->p_comm, sizeof(p->p_comm)) != 0)
629 bcopy(fexecv_proc_title, p->p_comm, sizeof(fexecv_proc_title));
630 bcopy(p->p_comm, td->td_name, sizeof(td->td_name));
631
632 /*
633 * mark as execed, wakeup the process that vforked (if any) and tell
634 * it that it now has its own resources back
635 */
636 p->p_flag |= P_EXEC;
637 if (p->p_pptr && (p->p_flag & P_PPWAIT)) {
638 p->p_flag &= ~P_PPWAIT;
639 cv_broadcast(&p->p_pwait);
640 }
641
642 /*
643 * Implement image setuid/setgid.
644 *
645 * Don't honor setuid/setgid if the filesystem prohibits it or if
646 * the process is being traced.
647 *
648 * We disable setuid/setgid/etc in compatibility mode on the basis
649 * that most setugid applications are not written with that
650 * environment in mind, and will therefore almost certainly operate
651 * incorrectly. In principle there's no reason that setugid
652 * applications might not be useful in capability mode, so we may want
653 * to reconsider this conservative design choice in the future.
654 *
655 * XXXMAC: For the time being, use NOSUID to also prohibit
656 * transitions on the file system.
657 */
658 credential_changing = 0;
659 credential_changing |= (attr.va_mode & S_ISUID) && oldcred->cr_uid !=
660 attr.va_uid;
661 credential_changing |= (attr.va_mode & S_ISGID) && oldcred->cr_gid !=
662 attr.va_gid;
663#ifdef MAC
664 will_transition = mac_vnode_execve_will_transition(oldcred, imgp->vp,
665 interpvplabel, imgp);
666 credential_changing |= will_transition;
667#endif
668
669 if (credential_changing &&
670#ifdef CAPABILITY_MODE
671 ((oldcred->cr_flags & CRED_FLAG_CAPMODE) == 0) &&
672#endif
673 (imgp->vp->v_mount->mnt_flag & MNT_NOSUID) == 0 &&
674 (p->p_flag & P_TRACED) == 0) {
675 /*
676 * Turn off syscall tracing for set-id programs, except for
677 * root. Record any set-id flags first to make sure that
678 * we do not regain any tracing during a possible block.
679 */
680 setsugid(p);
681
682#ifdef KTRACE
683 if (priv_check_cred(oldcred, PRIV_DEBUG_DIFFCRED, 0))
684 ktrprocexec(p, &tracecred, &tracevp);
685#endif
686 /*
687 * Close any file descriptors 0..2 that reference procfs,
688 * then make sure file descriptors 0..2 are in use.
689 *
690 * setugidsafety() may call closef() and then pfind()
691 * which may grab the process lock.
692 * fdcheckstd() may call falloc() which may block to
693 * allocate memory, so temporarily drop the process lock.
694 */
695 PROC_UNLOCK(p);
696 VOP_UNLOCK(imgp->vp, 0);
697 setugidsafety(td);
698 error = fdcheckstd(td);
699 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY);
700 if (error != 0)
701 goto done1;
702 PROC_LOCK(p);
703 /*
704 * Set the new credentials.
705 */
706 if (attr.va_mode & S_ISUID)
707 change_euid(newcred, euip);
708 if (attr.va_mode & S_ISGID)
709 change_egid(newcred, attr.va_gid);
710#ifdef MAC
711 if (will_transition) {
712 mac_vnode_execve_transition(oldcred, newcred, imgp->vp,
713 interpvplabel, imgp);
714 }
715#endif
716 /*
717 * Implement correct POSIX saved-id behavior.
718 *
719 * XXXMAC: Note that the current logic will save the
720 * uid and gid if a MAC domain transition occurs, even
721 * though maybe it shouldn't.
722 */
723 change_svuid(newcred, newcred->cr_uid);
724 change_svgid(newcred, newcred->cr_gid);
725 p->p_ucred = newcred;
726 newcred = NULL;
727 } else {
728 if (oldcred->cr_uid == oldcred->cr_ruid &&
729 oldcred->cr_gid == oldcred->cr_rgid)
730 p->p_flag &= ~P_SUGID;
731 /*
732 * Implement correct POSIX saved-id behavior.
733 *
734 * XXX: It's not clear that the existing behavior is
735 * POSIX-compliant. A number of sources indicate that the
736 * saved uid/gid should only be updated if the new ruid is
737 * not equal to the old ruid, or the new euid is not equal
738 * to the old euid and the new euid is not equal to the old
739 * ruid. The FreeBSD code always updates the saved uid/gid.
740 * Also, this code uses the new (replaced) euid and egid as
741 * the source, which may or may not be the right ones to use.
742 */
743 if (oldcred->cr_svuid != oldcred->cr_uid ||
744 oldcred->cr_svgid != oldcred->cr_gid) {
745 change_svuid(newcred, newcred->cr_uid);
746 change_svgid(newcred, newcred->cr_gid);
747 p->p_ucred = newcred;
748 newcred = NULL;
749 }
750 }
751
752 /*
753 * Store the vp for use in procfs. This vnode was referenced prior
754 * to locking the proc lock.
755 */
756 textvp = p->p_textvp;
757 p->p_textvp = binvp;
758
759#ifdef KDTRACE_HOOKS
760 /*
761 * Tell the DTrace fasttrap provider about the exec if it
762 * has declared an interest.
763 */
764 if (dtrace_fasttrap_exec)
765 dtrace_fasttrap_exec(p);
766#endif
767
768 /*
769 * Notify others that we exec'd, and clear the P_INEXEC flag
770 * as we're now a bona fide freshly-execed process.
771 */
772 KNOTE_LOCKED(&p->p_klist, NOTE_EXEC);
773 p->p_flag &= ~P_INEXEC;
774
775 /*
776 * If tracing the process, trap to the debugger so that
777 * breakpoints can be set before the program executes. We
778 * have to use tdsignal() to deliver the signal to the current
779 * thread since any other threads in this process will exit if
780 * execve() succeeds.
781 */
782 if (p->p_flag & P_TRACED)
783 tdsignal(td, SIGTRAP);
784
785 /* clear "fork but no exec" flag, as we _are_ execing */
786 p->p_acflag &= ~AFORK;
787
788 /*
789 * Free any previous argument cache and replace it with
790 * the new argument cache, if any.
791 */
792 oldargs = p->p_args;
793 p->p_args = newargs;
794 newargs = NULL;
795
796#ifdef HWPMC_HOOKS
797 /*
798 * Check if system-wide sampling is in effect or if the
799 * current process is using PMCs. If so, do exec() time
800 * processing. This processing needs to happen AFTER the
801 * P_INEXEC flag is cleared.
802 *
803 * The proc lock needs to be released before taking the PMC
804 * SX.
805 */
806 if (PMC_SYSTEM_SAMPLING_ACTIVE() || PMC_PROC_IS_USING_PMCS(p)) {
807 PROC_UNLOCK(p);
808 VOP_UNLOCK(imgp->vp, 0);
809 pe.pm_credentialschanged = credential_changing;
810 pe.pm_entryaddr = imgp->entry_addr;
811
812 PMC_CALL_HOOK_X(td, PMC_FN_PROCESS_EXEC, (void *) &pe);
813 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY);
814 } else
815 PROC_UNLOCK(p);
816#else /* !HWPMC_HOOKS */
817 PROC_UNLOCK(p);
818#endif
819
820 /* Set values passed into the program in registers. */
821 if (p->p_sysent->sv_setregs)
822 (*p->p_sysent->sv_setregs)(td, imgp,
823 (u_long)(uintptr_t)stack_base);
824 else
825 exec_setregs(td, imgp, (u_long)(uintptr_t)stack_base);
826
827 vfs_mark_atime(imgp->vp, td->td_ucred);
828
829 SDT_PROBE(proc, kernel, , exec_success, args->fname, 0, 0, 0, 0);
830
831done1:
832 /*
833 * Free any resources malloc'd earlier that we didn't use.
834 */
835 uifree(euip);
836 if (newcred == NULL)
837 crfree(oldcred);
838 else
839 crfree(newcred);
840 VOP_UNLOCK(imgp->vp, 0);
841
842 /*
843 * Handle deferred decrement of ref counts.
844 */
845 if (textvp != NULL) {
846 int tvfslocked;
847
848 tvfslocked = VFS_LOCK_GIANT(textvp->v_mount);
849 vrele(textvp);
850 VFS_UNLOCK_GIANT(tvfslocked);
851 }
852 if (binvp && error != 0)
853 vrele(binvp);
854#ifdef KTRACE
855 if (tracevp != NULL) {
856 int tvfslocked;
857
858 tvfslocked = VFS_LOCK_GIANT(tracevp->v_mount);
859 vrele(tracevp);
860 VFS_UNLOCK_GIANT(tvfslocked);
861 }
862 if (tracecred != NULL)
863 crfree(tracecred);
864#endif
865 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY);
866 pargs_drop(oldargs);
867 pargs_drop(newargs);
868 if (oldsigacts != NULL)
869 sigacts_free(oldsigacts);
870
871exec_fail_dealloc:
872
873 /*
874 * free various allocated resources
875 */
876 if (imgp->firstpage != NULL)
877 exec_unmap_first_page(imgp);
878
879 if (imgp->vp != NULL) {
880 if (args->fname)
881 NDFREE(&nd, NDF_ONLY_PNBUF);
882 if (imgp->opened)
883 VOP_CLOSE(imgp->vp, FREAD, td->td_ucred, td);
884 vput(imgp->vp);
885 }
886
887 if (imgp->object != NULL)
888 vm_object_deallocate(imgp->object);
889
890 free(imgp->freepath, M_TEMP);
891
892 if (error == 0) {
893 PROC_LOCK(p);
894 td->td_dbgflags |= TDB_EXEC;
895 PROC_UNLOCK(p);
896
897 /*
898 * Stop the process here if its stop event mask has
899 * the S_EXEC bit set.
900 */
901 STOPEVENT(p, S_EXEC, 0);
902 goto done2;
903 }
904
905exec_fail:
906 /* we're done here, clear P_INEXEC */
907 PROC_LOCK(p);
908 p->p_flag &= ~P_INEXEC;
909 PROC_UNLOCK(p);
910
911 SDT_PROBE(proc, kernel, , exec_failure, error, 0, 0, 0, 0);
912
913done2:
914#ifdef MAC
915 mac_execve_exit(imgp);
916 mac_execve_interpreter_exit(interpvplabel);
917#endif
918 VFS_UNLOCK_GIANT(vfslocked);
919 exec_free_args(args);
920
921 if (error && imgp->vmspace_destroyed) {
922 /* sorry, no more process anymore. exit gracefully */
923 exit1(td, W_EXITCODE(0, SIGABRT));
924 /* NOT REACHED */
925 }
926
927#ifdef KTRACE
928 if (error == 0)
929 ktrprocctor(p);
930#endif
931
932 return (error);
933}
934
935int
936exec_map_first_page(imgp)
937 struct image_params *imgp;
938{
939 int rv, i;
940 int initial_pagein;
941 vm_page_t ma[VM_INITIAL_PAGEIN];
942 vm_object_t object;
943
944 if (imgp->firstpage != NULL)
945 exec_unmap_first_page(imgp);
946
947 object = imgp->vp->v_object;
948 if (object == NULL)
949 return (EACCES);
950 VM_OBJECT_LOCK(object);
951#if VM_NRESERVLEVEL > 0
952 if ((object->flags & OBJ_COLORED) == 0) {
953 object->flags |= OBJ_COLORED;
954 object->pg_color = 0;
955 }
956#endif
957 ma[0] = vm_page_grab(object, 0, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
958 if (ma[0]->valid != VM_PAGE_BITS_ALL) {
959 initial_pagein = VM_INITIAL_PAGEIN;
960 if (initial_pagein > object->size)
961 initial_pagein = object->size;
962 for (i = 1; i < initial_pagein; i++) {
963 if ((ma[i] = vm_page_next(ma[i - 1])) != NULL) {
964 if (ma[i]->valid)
965 break;
966 if ((ma[i]->oflags & VPO_BUSY) || ma[i]->busy)
967 break;
968 vm_page_busy(ma[i]);
969 } else {
970 ma[i] = vm_page_alloc(object, i,
971 VM_ALLOC_NORMAL | VM_ALLOC_IFNOTCACHED);
972 if (ma[i] == NULL)
973 break;
974 }
975 }
976 initial_pagein = i;
977 rv = vm_pager_get_pages(object, ma, initial_pagein, 0);
978 ma[0] = vm_page_lookup(object, 0);
979 if ((rv != VM_PAGER_OK) || (ma[0] == NULL)) {
980 if (ma[0] != NULL) {
981 vm_page_lock(ma[0]);
982 vm_page_free(ma[0]);
983 vm_page_unlock(ma[0]);
984 }
985 VM_OBJECT_UNLOCK(object);
986 return (EIO);
987 }
988 }
989 vm_page_lock(ma[0]);
990 vm_page_hold(ma[0]);
991 vm_page_unlock(ma[0]);
992 vm_page_wakeup(ma[0]);
993 VM_OBJECT_UNLOCK(object);
994
995 imgp->firstpage = sf_buf_alloc(ma[0], 0);
996 imgp->image_header = (char *)sf_buf_kva(imgp->firstpage);
997
998 return (0);
999}
1000
1001void
1002exec_unmap_first_page(imgp)
1003 struct image_params *imgp;
1004{
1005 vm_page_t m;
1006
1007 if (imgp->firstpage != NULL) {
1008 m = sf_buf_page(imgp->firstpage);
1009 sf_buf_free(imgp->firstpage);
1010 imgp->firstpage = NULL;
1011 vm_page_lock(m);
1012 vm_page_unhold(m);
1013 vm_page_unlock(m);
1014 }
1015}
1016
1017/*
1018 * Destroy old address space, and allocate a new stack
1019 * The new stack is only SGROWSIZ large because it is grown
1020 * automatically in trap.c.
1021 */
1022int
1023exec_new_vmspace(imgp, sv)
1024 struct image_params *imgp;
1025 struct sysentvec *sv;
1026{
1027 int error;
1028 struct proc *p = imgp->proc;
1029 struct vmspace *vmspace = p->p_vmspace;
1030 vm_object_t obj;
1031 vm_offset_t sv_minuser, stack_addr;
1032 vm_map_t map;
1033 u_long ssiz;
1034
1035 imgp->vmspace_destroyed = 1;
1036 imgp->sysent = sv;
1037
1038 /* May be called with Giant held */
1039 EVENTHANDLER_INVOKE(process_exec, p, imgp);
1040
1041 /*
1042 * Blow away entire process VM, if address space not shared,
1043 * otherwise, create a new VM space so that other threads are
1044 * not disrupted
1045 */
1046 map = &vmspace->vm_map;
1047 if (map_at_zero)
1048 sv_minuser = sv->sv_minuser;
1049 else
1050 sv_minuser = MAX(sv->sv_minuser, PAGE_SIZE);
1051 if (vmspace->vm_refcnt == 1 && vm_map_min(map) == sv_minuser &&
1052 vm_map_max(map) == sv->sv_maxuser) {
1053 shmexit(vmspace);
1054 pmap_remove_pages(vmspace_pmap(vmspace));
1055 vm_map_remove(map, vm_map_min(map), vm_map_max(map));
1056 } else {
1057 error = vmspace_exec(p, sv_minuser, sv->sv_maxuser);
1058 if (error)
1059 return (error);
1060 vmspace = p->p_vmspace;
1061 map = &vmspace->vm_map;
1062 }
1063
1064 /* Map a shared page */
1065 obj = sv->sv_shared_page_obj;
1066 if (obj != NULL) {
1067 vm_object_reference(obj);
1068 error = vm_map_fixed(map, obj, 0,
1069 sv->sv_shared_page_base, sv->sv_shared_page_len,
1070 VM_PROT_READ | VM_PROT_EXECUTE, VM_PROT_ALL,
1071 MAP_COPY_ON_WRITE | MAP_ACC_NO_CHARGE);
1072 if (error) {
1073 vm_object_deallocate(obj);
1074 return (error);
1075 }
1076 }
1077
1078 /* Allocate a new stack */
1079 if (sv->sv_maxssiz != NULL)
1080 ssiz = *sv->sv_maxssiz;
1081 else
1082 ssiz = maxssiz;
1083 stack_addr = sv->sv_usrstack - ssiz;
1084 error = vm_map_stack(map, stack_addr, (vm_size_t)ssiz,
1085 obj != NULL && imgp->stack_prot != 0 ? imgp->stack_prot :
1086 sv->sv_stackprot,
1087 VM_PROT_ALL, MAP_STACK_GROWS_DOWN);
1088 if (error)
1089 return (error);
1090
1091#ifdef __ia64__
1092 /* Allocate a new register stack */
1093 stack_addr = IA64_BACKINGSTORE;
1094 error = vm_map_stack(map, stack_addr, (vm_size_t)ssiz,
1095 sv->sv_stackprot, VM_PROT_ALL, MAP_STACK_GROWS_UP);
1096 if (error)
1097 return (error);
1098#endif
1099
1100 /* vm_ssize and vm_maxsaddr are somewhat antiquated concepts in the
1101 * VM_STACK case, but they are still used to monitor the size of the
1102 * process stack so we can check the stack rlimit.
1103 */
1104 vmspace->vm_ssize = sgrowsiz >> PAGE_SHIFT;
1105 vmspace->vm_maxsaddr = (char *)sv->sv_usrstack - ssiz;
1106
1107 return (0);
1108}
1109
1110/*
1111 * Copy out argument and environment strings from the old process address
1112 * space into the temporary string buffer.
1113 */
1114int
1115exec_copyin_args(struct image_args *args, char *fname,
1116 enum uio_seg segflg, char **argv, char **envv)
1117{
1118 char *argp, *envp;
1119 int error;
1120 size_t length;
1121
1122 bzero(args, sizeof(*args));
1123 if (argv == NULL)
1124 return (EFAULT);
1125
1126 /*
1127 * Allocate demand-paged memory for the file name, argument, and
1128 * environment strings.
1129 */
1130 error = exec_alloc_args(args);
1131 if (error != 0)
1132 return (error);
1133
1134 /*
1135 * Copy the file name.
1136 */
1137 if (fname != NULL) {
1138 args->fname = args->buf;
1139 error = (segflg == UIO_SYSSPACE) ?
1140 copystr(fname, args->fname, PATH_MAX, &length) :
1141 copyinstr(fname, args->fname, PATH_MAX, &length);
1142 if (error != 0)
1143 goto err_exit;
1144 } else
1145 length = 0;
1146
1147 args->begin_argv = args->buf + length;
1148 args->endp = args->begin_argv;
1149 args->stringspace = ARG_MAX;
1150
1151 /*
1152 * extract arguments first
1153 */
1154 while ((argp = (caddr_t) (intptr_t) fuword(argv++))) {
1155 if (argp == (caddr_t) -1) {
1156 error = EFAULT;
1157 goto err_exit;
1158 }
1159 if ((error = copyinstr(argp, args->endp,
1160 args->stringspace, &length))) {
1161 if (error == ENAMETOOLONG)
1162 error = E2BIG;
1163 goto err_exit;
1164 }
1165 args->stringspace -= length;
1166 args->endp += length;
1167 args->argc++;
1168 }
1169
1170 args->begin_envv = args->endp;
1171
1172 /*
1173 * extract environment strings
1174 */
1175 if (envv) {
1176 while ((envp = (caddr_t)(intptr_t)fuword(envv++))) {
1177 if (envp == (caddr_t)-1) {
1178 error = EFAULT;
1179 goto err_exit;
1180 }
1181 if ((error = copyinstr(envp, args->endp,
1182 args->stringspace, &length))) {
1183 if (error == ENAMETOOLONG)
1184 error = E2BIG;
1185 goto err_exit;
1186 }
1187 args->stringspace -= length;
1188 args->endp += length;
1189 args->envc++;
1190 }
1191 }
1192
1193 return (0);
1194
1195err_exit:
1196 exec_free_args(args);
1197 return (error);
1198}
1199
1200/*
1201 * Allocate temporary demand-paged, zero-filled memory for the file name,
1202 * argument, and environment strings. Returns zero if the allocation succeeds
1203 * and ENOMEM otherwise.
1204 */
1205int
1206exec_alloc_args(struct image_args *args)
1207{
1208
1209 args->buf = (char *)kmem_alloc_wait(exec_map, PATH_MAX + ARG_MAX);
1210 return (args->buf != NULL ? 0 : ENOMEM);
1211}
1212
1213void
1214exec_free_args(struct image_args *args)
1215{
1216
1217 if (args->buf != NULL) {
1218 kmem_free_wakeup(exec_map, (vm_offset_t)args->buf,
1219 PATH_MAX + ARG_MAX);
1220 args->buf = NULL;
1221 }
1222 if (args->fname_buf != NULL) {
1223 free(args->fname_buf, M_TEMP);
1224 args->fname_buf = NULL;
1225 }
1226}
1227
1228/*
1229 * Copy strings out to the new process address space, constructing new arg
1230 * and env vector tables. Return a pointer to the base so that it can be used
1231 * as the initial stack pointer.
1232 */
1233register_t *
1234exec_copyout_strings(imgp)
1235 struct image_params *imgp;
1236{
1237 int argc, envc;
1238 char **vectp;
1239 char *stringp, *destp;
1240 register_t *stack_base;
1241 struct ps_strings *arginfo;
1242 struct proc *p;
1243 size_t execpath_len;
1244 int szsigcode, szps;
1245 char canary[sizeof(long) * 8];
1246
1247 szps = sizeof(pagesizes[0]) * MAXPAGESIZES;
1248 /*
1249 * Calculate string base and vector table pointers.
1250 * Also deal with signal trampoline code for this exec type.
1251 */
1252 if (imgp->execpath != NULL && imgp->auxargs != NULL)
1253 execpath_len = strlen(imgp->execpath) + 1;
1254 else
1255 execpath_len = 0;
1256 p = imgp->proc;
1257 szsigcode = 0;
1258 arginfo = (struct ps_strings *)p->p_sysent->sv_psstrings;
1259 if (p->p_sysent->sv_sigcode_base == 0) {
1260 if (p->p_sysent->sv_szsigcode != NULL)
1261 szsigcode = *(p->p_sysent->sv_szsigcode);
1262 }
1263 destp = (caddr_t)arginfo - szsigcode - SPARE_USRSPACE -
1264 roundup(execpath_len, sizeof(char *)) -
1265 roundup(sizeof(canary), sizeof(char *)) -
1266 roundup(szps, sizeof(char *)) -
1267 roundup((ARG_MAX - imgp->args->stringspace), sizeof(char *));
1268
1269 /*
1270 * install sigcode
1271 */
1272 if (szsigcode != 0)
1273 copyout(p->p_sysent->sv_sigcode, ((caddr_t)arginfo -
1274 szsigcode), szsigcode);
1275
1276 /*
1277 * Copy the image path for the rtld.
1278 */
1279 if (execpath_len != 0) {
1280 imgp->execpathp = (uintptr_t)arginfo - szsigcode - execpath_len;
1281 copyout(imgp->execpath, (void *)imgp->execpathp,
1282 execpath_len);
1283 }
1284
1285 /*
1286 * Prepare the canary for SSP.
1287 */
1288 arc4rand(canary, sizeof(canary), 0);
1289 imgp->canary = (uintptr_t)arginfo - szsigcode - execpath_len -
1290 sizeof(canary);
1291 copyout(canary, (void *)imgp->canary, sizeof(canary));
1292 imgp->canarylen = sizeof(canary);
1293
1294 /*
1295 * Prepare the pagesizes array.
1296 */
1297 imgp->pagesizes = (uintptr_t)arginfo - szsigcode - execpath_len -
1298 roundup(sizeof(canary), sizeof(char *)) - szps;
1299 copyout(pagesizes, (void *)imgp->pagesizes, szps);
1300 imgp->pagesizeslen = szps;
1301
1302 /*
1303 * If we have a valid auxargs ptr, prepare some room
1304 * on the stack.
1305 */
1306 if (imgp->auxargs) {
1307 /*
1308 * 'AT_COUNT*2' is size for the ELF Auxargs data. This is for
1309 * lower compatibility.
1310 */
1311 imgp->auxarg_size = (imgp->auxarg_size) ? imgp->auxarg_size :
1312 (AT_COUNT * 2);
1313 /*
1314 * The '+ 2' is for the null pointers at the end of each of
1315 * the arg and env vector sets,and imgp->auxarg_size is room
1316 * for argument of Runtime loader.
1317 */
1318 vectp = (char **)(destp - (imgp->args->argc +
1319 imgp->args->envc + 2 + imgp->auxarg_size)
1320 * sizeof(char *));
1321 } else {
1322 /*
1323 * The '+ 2' is for the null pointers at the end of each of
1324 * the arg and env vector sets
1325 */
1326 vectp = (char **)(destp - (imgp->args->argc + imgp->args->envc + 2) *
1327 sizeof(char *));
1328 }
1329
1330 /*
1331 * vectp also becomes our initial stack base
1332 */
1333 stack_base = (register_t *)vectp;
1334
1335 stringp = imgp->args->begin_argv;
1336 argc = imgp->args->argc;
1337 envc = imgp->args->envc;
1338
1339 /*
1340 * Copy out strings - arguments and environment.
1341 */
1342 copyout(stringp, destp, ARG_MAX - imgp->args->stringspace);
1343
1344 /*
1345 * Fill in "ps_strings" struct for ps, w, etc.
1346 */
1347 suword(&arginfo->ps_argvstr, (long)(intptr_t)vectp);
1348 suword32(&arginfo->ps_nargvstr, argc);
1349
1350 /*
1351 * Fill in argument portion of vector table.
1352 */
1353 for (; argc > 0; --argc) {
1354 suword(vectp++, (long)(intptr_t)destp);
1355 while (*stringp++ != 0)
1356 destp++;
1357 destp++;
1358 }
1359
1360 /* a null vector table pointer separates the argp's from the envp's */
1361 suword(vectp++, 0);
1362
1363 suword(&arginfo->ps_envstr, (long)(intptr_t)vectp);
1364 suword32(&arginfo->ps_nenvstr, envc);
1365
1366 /*
1367 * Fill in environment portion of vector table.
1368 */
1369 for (; envc > 0; --envc) {
1370 suword(vectp++, (long)(intptr_t)destp);
1371 while (*stringp++ != 0)
1372 destp++;
1373 destp++;
1374 }
1375
1376 /* end of vector table is a null pointer */
1377 suword(vectp, 0);
1378
1379 return (stack_base);
1380}
1381
1382/*
1383 * Check permissions of file to execute.
1384 * Called with imgp->vp locked.
1385 * Return 0 for success or error code on failure.
1386 */
1387int
1388exec_check_permissions(imgp)
1389 struct image_params *imgp;
1390{
1391 struct vnode *vp = imgp->vp;
1392 struct vattr *attr = imgp->attr;
1393 struct thread *td;
1394 int error;
1395
1396 td = curthread;
1397
1398 /* Get file attributes */
1399 error = VOP_GETATTR(vp, attr, td->td_ucred);
1400 if (error)
1401 return (error);
1402
1403#ifdef MAC
1404 error = mac_vnode_check_exec(td->td_ucred, imgp->vp, imgp);
1405 if (error)
1406 return (error);
1407#endif
1408
1409 /*
1410 * 1) Check if file execution is disabled for the filesystem that
1411 * this file resides on.
1412 * 2) Ensure that at least one execute bit is on. Otherwise, a
1413 * privileged user will always succeed, and we don't want this
1414 * to happen unless the file really is executable.
1415 * 3) Ensure that the file is a regular file.
1416 */
1417 if ((vp->v_mount->mnt_flag & MNT_NOEXEC) ||
1418 (attr->va_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) == 0 ||
1419 (attr->va_type != VREG))
1420 return (EACCES);
1421
1422 /*
1423 * Zero length files can't be exec'd
1424 */
1425 if (attr->va_size == 0)
1426 return (ENOEXEC);
1427
1428 /*
1429 * Check for execute permission to file based on current credentials.
1430 */
1431 error = VOP_ACCESS(vp, VEXEC, td->td_ucred, td);
1432 if (error)
1433 return (error);
1434
1435 /*
1436 * Check number of open-for-writes on the file and deny execution
1437 * if there are any.
1438 */
1439 if (vp->v_writecount)
1440 return (ETXTBSY);
1441
1442 /*
1443 * Call filesystem specific open routine (which does nothing in the
1444 * general case).
1445 */
1446 error = VOP_OPEN(vp, FREAD, td->td_ucred, td, NULL);
1447 if (error == 0)
1448 imgp->opened = 1;
1449 return (error);
1450}
1451
1452/*
1453 * Exec handler registration
1454 */
1455int
1456exec_register(execsw_arg)
1457 const struct execsw *execsw_arg;
1458{
1459 const struct execsw **es, **xs, **newexecsw;
1460 int count = 2; /* New slot and trailing NULL */
1461
1462 if (execsw)
1463 for (es = execsw; *es; es++)
1464 count++;
1465 newexecsw = malloc(count * sizeof(*es), M_TEMP, M_WAITOK);
1466 if (newexecsw == NULL)
1467 return (ENOMEM);
1468 xs = newexecsw;
1469 if (execsw)
1470 for (es = execsw; *es; es++)
1471 *xs++ = *es;
1472 *xs++ = execsw_arg;
1473 *xs = NULL;
1474 if (execsw)
1475 free(execsw, M_TEMP);
1476 execsw = newexecsw;
1477 return (0);
1478}
1479
1480int
1481exec_unregister(execsw_arg)
1482 const struct execsw *execsw_arg;
1483{
1484 const struct execsw **es, **xs, **newexecsw;
1485 int count = 1;
1486
1487 if (execsw == NULL)
1488 panic("unregister with no handlers left?\n");
1489
1490 for (es = execsw; *es; es++) {
1491 if (*es == execsw_arg)
1492 break;
1493 }
1494 if (*es == NULL)
1495 return (ENOENT);
1496 for (es = execsw; *es; es++)
1497 if (*es != execsw_arg)
1498 count++;
1499 newexecsw = malloc(count * sizeof(*es), M_TEMP, M_WAITOK);
1500 if (newexecsw == NULL)
1501 return (ENOMEM);
1502 xs = newexecsw;
1503 for (es = execsw; *es; es++)
1504 if (*es != execsw_arg)
1505 *xs++ = *es;
1506 *xs = NULL;
1507 if (execsw)
1508 free(execsw, M_TEMP);
1509 execsw = newexecsw;
1510 return (0);
1511}
1512
1513static vm_object_t shared_page_obj;
1514static int shared_page_free;
1515
1516int
1517shared_page_fill(int size, int align, const char *data)
1518{
1519 vm_page_t m;
1520 struct sf_buf *s;
1521 vm_offset_t sk;
1522 int res;
1523
1524 VM_OBJECT_LOCK(shared_page_obj);
1525 m = vm_page_grab(shared_page_obj, 0, VM_ALLOC_RETRY);
1526 res = roundup(shared_page_free, align);
1527 if (res + size >= IDX_TO_OFF(shared_page_obj->size))
1528 res = -1;
1529 else {
1530 VM_OBJECT_UNLOCK(shared_page_obj);
1531 s = sf_buf_alloc(m, SFB_DEFAULT);
1532 sk = sf_buf_kva(s);
1533 bcopy(data, (void *)(sk + res), size);
1534 shared_page_free = res + size;
1535 sf_buf_free(s);
1536 VM_OBJECT_LOCK(shared_page_obj);
1537 }
1538 vm_page_wakeup(m);
1539 VM_OBJECT_UNLOCK(shared_page_obj);
1540 return (res);
1541}
1542
1543static void
1544shared_page_init(void *dummy __unused)
1545{
1546 vm_page_t m;
1547
1548 shared_page_obj = vm_pager_allocate(OBJT_PHYS, 0, PAGE_SIZE,
1549 VM_PROT_DEFAULT, 0, NULL);
1550 VM_OBJECT_LOCK(shared_page_obj);
1551 m = vm_page_grab(shared_page_obj, 0, VM_ALLOC_RETRY | VM_ALLOC_NOBUSY |
1552 VM_ALLOC_ZERO);
1553 m->valid = VM_PAGE_BITS_ALL;
1554 VM_OBJECT_UNLOCK(shared_page_obj);
1555}
1556
1557SYSINIT(shp, SI_SUB_EXEC, SI_ORDER_FIRST, (sysinit_cfunc_t)shared_page_init,
1558 NULL);
1559
1560void
1561exec_sysvec_init(void *param)
1562{
1563 struct sysentvec *sv;
1564
1565 sv = (struct sysentvec *)param;
1566
1567 if ((sv->sv_flags & SV_SHP) == 0)
1568 return;
1569 sv->sv_shared_page_obj = shared_page_obj;
1570 sv->sv_sigcode_base = sv->sv_shared_page_base +
1571 shared_page_fill(*(sv->sv_szsigcode), 16, sv->sv_sigcode);
1572}
119
120SYSCTL_PROC(_kern, OID_AUTO, stackprot, CTLTYPE_INT|CTLFLAG_RD,
121 NULL, 0, sysctl_kern_stackprot, "I", "");
122
123u_long ps_arg_cache_limit = PAGE_SIZE / 16;
124SYSCTL_ULONG(_kern, OID_AUTO, ps_arg_cache_limit, CTLFLAG_RW,
125 &ps_arg_cache_limit, 0, "");
126
127static int map_at_zero = 0;
128TUNABLE_INT("security.bsd.map_at_zero", &map_at_zero);
129SYSCTL_INT(_security_bsd, OID_AUTO, map_at_zero, CTLFLAG_RW, &map_at_zero, 0,
130 "Permit processes to map an object at virtual address 0.");
131
132static int
133sysctl_kern_ps_strings(SYSCTL_HANDLER_ARGS)
134{
135 struct proc *p;
136 int error;
137
138 p = curproc;
139#ifdef SCTL_MASK32
140 if (req->flags & SCTL_MASK32) {
141 unsigned int val;
142 val = (unsigned int)p->p_sysent->sv_psstrings;
143 error = SYSCTL_OUT(req, &val, sizeof(val));
144 } else
145#endif
146 error = SYSCTL_OUT(req, &p->p_sysent->sv_psstrings,
147 sizeof(p->p_sysent->sv_psstrings));
148 return error;
149}
150
151static int
152sysctl_kern_usrstack(SYSCTL_HANDLER_ARGS)
153{
154 struct proc *p;
155 int error;
156
157 p = curproc;
158#ifdef SCTL_MASK32
159 if (req->flags & SCTL_MASK32) {
160 unsigned int val;
161 val = (unsigned int)p->p_sysent->sv_usrstack;
162 error = SYSCTL_OUT(req, &val, sizeof(val));
163 } else
164#endif
165 error = SYSCTL_OUT(req, &p->p_sysent->sv_usrstack,
166 sizeof(p->p_sysent->sv_usrstack));
167 return error;
168}
169
170static int
171sysctl_kern_stackprot(SYSCTL_HANDLER_ARGS)
172{
173 struct proc *p;
174
175 p = curproc;
176 return (SYSCTL_OUT(req, &p->p_sysent->sv_stackprot,
177 sizeof(p->p_sysent->sv_stackprot)));
178}
179
180/*
181 * Each of the items is a pointer to a `const struct execsw', hence the
182 * double pointer here.
183 */
184static const struct execsw **execsw;
185
186#ifndef _SYS_SYSPROTO_H_
187struct execve_args {
188 char *fname;
189 char **argv;
190 char **envv;
191};
192#endif
193
194int
195execve(td, uap)
196 struct thread *td;
197 struct execve_args /* {
198 char *fname;
199 char **argv;
200 char **envv;
201 } */ *uap;
202{
203 int error;
204 struct image_args args;
205
206 error = exec_copyin_args(&args, uap->fname, UIO_USERSPACE,
207 uap->argv, uap->envv);
208 if (error == 0)
209 error = kern_execve(td, &args, NULL);
210 return (error);
211}
212
213#ifndef _SYS_SYSPROTO_H_
214struct fexecve_args {
215 int fd;
216 char **argv;
217 char **envv;
218}
219#endif
220int
221fexecve(struct thread *td, struct fexecve_args *uap)
222{
223 int error;
224 struct image_args args;
225
226 error = exec_copyin_args(&args, NULL, UIO_SYSSPACE,
227 uap->argv, uap->envv);
228 if (error == 0) {
229 args.fd = uap->fd;
230 error = kern_execve(td, &args, NULL);
231 }
232 return (error);
233}
234
235#ifndef _SYS_SYSPROTO_H_
236struct __mac_execve_args {
237 char *fname;
238 char **argv;
239 char **envv;
240 struct mac *mac_p;
241};
242#endif
243
244int
245__mac_execve(td, uap)
246 struct thread *td;
247 struct __mac_execve_args /* {
248 char *fname;
249 char **argv;
250 char **envv;
251 struct mac *mac_p;
252 } */ *uap;
253{
254#ifdef MAC
255 int error;
256 struct image_args args;
257
258 error = exec_copyin_args(&args, uap->fname, UIO_USERSPACE,
259 uap->argv, uap->envv);
260 if (error == 0)
261 error = kern_execve(td, &args, uap->mac_p);
262 return (error);
263#else
264 return (ENOSYS);
265#endif
266}
267
268/*
269 * XXX: kern_execve has the astonishing property of not always returning to
270 * the caller. If sufficiently bad things happen during the call to
271 * do_execve(), it can end up calling exit1(); as a result, callers must
272 * avoid doing anything which they might need to undo (e.g., allocating
273 * memory).
274 */
275int
276kern_execve(td, args, mac_p)
277 struct thread *td;
278 struct image_args *args;
279 struct mac *mac_p;
280{
281 struct proc *p = td->td_proc;
282 int error;
283
284 AUDIT_ARG_ARGV(args->begin_argv, args->argc,
285 args->begin_envv - args->begin_argv);
286 AUDIT_ARG_ENVV(args->begin_envv, args->envc,
287 args->endp - args->begin_envv);
288 if (p->p_flag & P_HADTHREADS) {
289 PROC_LOCK(p);
290 if (thread_single(SINGLE_BOUNDARY)) {
291 PROC_UNLOCK(p);
292 exec_free_args(args);
293 return (ERESTART); /* Try again later. */
294 }
295 PROC_UNLOCK(p);
296 }
297
298 error = do_execve(td, args, mac_p);
299
300 if (p->p_flag & P_HADTHREADS) {
301 PROC_LOCK(p);
302 /*
303 * If success, we upgrade to SINGLE_EXIT state to
304 * force other threads to suicide.
305 */
306 if (error == 0)
307 thread_single(SINGLE_EXIT);
308 else
309 thread_single_end();
310 PROC_UNLOCK(p);
311 }
312
313 return (error);
314}
315
316/*
317 * In-kernel implementation of execve(). All arguments are assumed to be
318 * userspace pointers from the passed thread.
319 */
320static int
321do_execve(td, args, mac_p)
322 struct thread *td;
323 struct image_args *args;
324 struct mac *mac_p;
325{
326 struct proc *p = td->td_proc;
327 struct nameidata nd;
328 struct ucred *newcred = NULL, *oldcred;
329 struct uidinfo *euip;
330 register_t *stack_base;
331 int error, i;
332 struct image_params image_params, *imgp;
333 struct vattr attr;
334 int (*img_first)(struct image_params *);
335 struct pargs *oldargs = NULL, *newargs = NULL;
336 struct sigacts *oldsigacts, *newsigacts;
337#ifdef KTRACE
338 struct vnode *tracevp = NULL;
339 struct ucred *tracecred = NULL;
340#endif
341 struct vnode *textvp = NULL, *binvp = NULL;
342 int credential_changing;
343 int vfslocked;
344 int textset;
345#ifdef MAC
346 struct label *interpvplabel = NULL;
347 int will_transition;
348#endif
349#ifdef HWPMC_HOOKS
350 struct pmckern_procexec pe;
351#endif
352 static const char fexecv_proc_title[] = "(fexecv)";
353
354 vfslocked = 0;
355 imgp = &image_params;
356
357 /*
358 * Lock the process and set the P_INEXEC flag to indicate that
359 * it should be left alone until we're done here. This is
360 * necessary to avoid race conditions - e.g. in ptrace() -
361 * that might allow a local user to illicitly obtain elevated
362 * privileges.
363 */
364 PROC_LOCK(p);
365 KASSERT((p->p_flag & P_INEXEC) == 0,
366 ("%s(): process already has P_INEXEC flag", __func__));
367 p->p_flag |= P_INEXEC;
368 PROC_UNLOCK(p);
369
370 /*
371 * Initialize part of the common data
372 */
373 imgp->proc = p;
374 imgp->execlabel = NULL;
375 imgp->attr = &attr;
376 imgp->entry_addr = 0;
377 imgp->reloc_base = 0;
378 imgp->vmspace_destroyed = 0;
379 imgp->interpreted = 0;
380 imgp->opened = 0;
381 imgp->interpreter_name = NULL;
382 imgp->auxargs = NULL;
383 imgp->vp = NULL;
384 imgp->object = NULL;
385 imgp->firstpage = NULL;
386 imgp->ps_strings = 0;
387 imgp->auxarg_size = 0;
388 imgp->args = args;
389 imgp->execpath = imgp->freepath = NULL;
390 imgp->execpathp = 0;
391 imgp->canary = 0;
392 imgp->canarylen = 0;
393 imgp->pagesizes = 0;
394 imgp->pagesizeslen = 0;
395 imgp->stack_prot = 0;
396
397#ifdef MAC
398 error = mac_execve_enter(imgp, mac_p);
399 if (error)
400 goto exec_fail;
401#endif
402
403 imgp->image_header = NULL;
404
405 /*
406 * Translate the file name. namei() returns a vnode pointer
407 * in ni_vp amoung other things.
408 *
409 * XXXAUDIT: It would be desirable to also audit the name of the
410 * interpreter if this is an interpreted binary.
411 */
412 if (args->fname != NULL) {
413 NDINIT(&nd, LOOKUP, ISOPEN | LOCKLEAF | FOLLOW | SAVENAME
414 | MPSAFE | AUDITVNODE1, UIO_SYSSPACE, args->fname, td);
415 }
416
417 SDT_PROBE(proc, kernel, , exec, args->fname, 0, 0, 0, 0 );
418
419interpret:
420 if (args->fname != NULL) {
421#ifdef CAPABILITY_MODE
422 /*
423 * While capability mode can't reach this point via direct
424 * path arguments to execve(), we also don't allow
425 * interpreters to be used in capability mode (for now).
426 * Catch indirect lookups and return a permissions error.
427 */
428 if (IN_CAPABILITY_MODE(td)) {
429 error = ECAPMODE;
430 goto exec_fail;
431 }
432#endif
433 error = namei(&nd);
434 if (error)
435 goto exec_fail;
436
437 vfslocked = NDHASGIANT(&nd);
438 binvp = nd.ni_vp;
439 imgp->vp = binvp;
440 } else {
441 AUDIT_ARG_FD(args->fd);
442 error = fgetvp(td, args->fd, &binvp);
443 if (error)
444 goto exec_fail;
445 vfslocked = VFS_LOCK_GIANT(binvp->v_mount);
446 vn_lock(binvp, LK_EXCLUSIVE | LK_RETRY);
447 AUDIT_ARG_VNODE1(binvp);
448 imgp->vp = binvp;
449 }
450
451 /*
452 * Check file permissions (also 'opens' file)
453 */
454 error = exec_check_permissions(imgp);
455 if (error)
456 goto exec_fail_dealloc;
457
458 imgp->object = imgp->vp->v_object;
459 if (imgp->object != NULL)
460 vm_object_reference(imgp->object);
461
462 /*
463 * Set VV_TEXT now so no one can write to the executable while we're
464 * activating it.
465 *
466 * Remember if this was set before and unset it in case this is not
467 * actually an executable image.
468 */
469 textset = imgp->vp->v_vflag & VV_TEXT;
470 imgp->vp->v_vflag |= VV_TEXT;
471
472 error = exec_map_first_page(imgp);
473 if (error)
474 goto exec_fail_dealloc;
475
476 imgp->proc->p_osrel = 0;
477 /*
478 * If the current process has a special image activator it
479 * wants to try first, call it. For example, emulating shell
480 * scripts differently.
481 */
482 error = -1;
483 if ((img_first = imgp->proc->p_sysent->sv_imgact_try) != NULL)
484 error = img_first(imgp);
485
486 /*
487 * Loop through the list of image activators, calling each one.
488 * An activator returns -1 if there is no match, 0 on success,
489 * and an error otherwise.
490 */
491 for (i = 0; error == -1 && execsw[i]; ++i) {
492 if (execsw[i]->ex_imgact == NULL ||
493 execsw[i]->ex_imgact == img_first) {
494 continue;
495 }
496 error = (*execsw[i]->ex_imgact)(imgp);
497 }
498
499 if (error) {
500 if (error == -1) {
501 if (textset == 0)
502 imgp->vp->v_vflag &= ~VV_TEXT;
503 error = ENOEXEC;
504 }
505 goto exec_fail_dealloc;
506 }
507
508 /*
509 * Special interpreter operation, cleanup and loop up to try to
510 * activate the interpreter.
511 */
512 if (imgp->interpreted) {
513 exec_unmap_first_page(imgp);
514 /*
515 * VV_TEXT needs to be unset for scripts. There is a short
516 * period before we determine that something is a script where
517 * VV_TEXT will be set. The vnode lock is held over this
518 * entire period so nothing should illegitimately be blocked.
519 */
520 imgp->vp->v_vflag &= ~VV_TEXT;
521 /* free name buffer and old vnode */
522 if (args->fname != NULL)
523 NDFREE(&nd, NDF_ONLY_PNBUF);
524#ifdef MAC
525 mac_execve_interpreter_enter(binvp, &interpvplabel);
526#endif
527 if (imgp->opened) {
528 VOP_CLOSE(binvp, FREAD, td->td_ucred, td);
529 imgp->opened = 0;
530 }
531 vput(binvp);
532 vm_object_deallocate(imgp->object);
533 imgp->object = NULL;
534 VFS_UNLOCK_GIANT(vfslocked);
535 vfslocked = 0;
536 /* set new name to that of the interpreter */
537 NDINIT(&nd, LOOKUP, LOCKLEAF | FOLLOW | SAVENAME | MPSAFE,
538 UIO_SYSSPACE, imgp->interpreter_name, td);
539 args->fname = imgp->interpreter_name;
540 goto interpret;
541 }
542
543 /*
544 * NB: We unlock the vnode here because it is believed that none
545 * of the sv_copyout_strings/sv_fixup operations require the vnode.
546 */
547 VOP_UNLOCK(imgp->vp, 0);
548
549 /*
550 * Do the best to calculate the full path to the image file.
551 */
552 if (imgp->auxargs != NULL &&
553 ((args->fname != NULL && args->fname[0] == '/') ||
554 vn_fullpath(td, imgp->vp, &imgp->execpath, &imgp->freepath) != 0))
555 imgp->execpath = args->fname;
556
557 /*
558 * Copy out strings (args and env) and initialize stack base
559 */
560 if (p->p_sysent->sv_copyout_strings)
561 stack_base = (*p->p_sysent->sv_copyout_strings)(imgp);
562 else
563 stack_base = exec_copyout_strings(imgp);
564
565 /*
566 * If custom stack fixup routine present for this process
567 * let it do the stack setup.
568 * Else stuff argument count as first item on stack
569 */
570 if (p->p_sysent->sv_fixup != NULL)
571 (*p->p_sysent->sv_fixup)(&stack_base, imgp);
572 else
573 suword(--stack_base, imgp->args->argc);
574
575 /*
576 * For security and other reasons, the file descriptor table cannot
577 * be shared after an exec.
578 */
579 fdunshare(p, td);
580
581 /*
582 * Malloc things before we need locks.
583 */
584 newcred = crget();
585 euip = uifind(attr.va_uid);
586 i = imgp->args->begin_envv - imgp->args->begin_argv;
587 /* Cache arguments if they fit inside our allowance */
588 if (ps_arg_cache_limit >= i + sizeof(struct pargs)) {
589 newargs = pargs_alloc(i);
590 bcopy(imgp->args->begin_argv, newargs->ar_args, i);
591 }
592
593 /* close files on exec */
594 fdcloseexec(td);
595 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY);
596
597 /* Get a reference to the vnode prior to locking the proc */
598 VREF(binvp);
599
600 /*
601 * For security and other reasons, signal handlers cannot
602 * be shared after an exec. The new process gets a copy of the old
603 * handlers. In execsigs(), the new process will have its signals
604 * reset.
605 */
606 PROC_LOCK(p);
607 oldcred = crcopysafe(p, newcred);
608 if (sigacts_shared(p->p_sigacts)) {
609 oldsigacts = p->p_sigacts;
610 PROC_UNLOCK(p);
611 newsigacts = sigacts_alloc();
612 sigacts_copy(newsigacts, oldsigacts);
613 PROC_LOCK(p);
614 p->p_sigacts = newsigacts;
615 } else
616 oldsigacts = NULL;
617
618 /* Stop profiling */
619 stopprofclock(p);
620
621 /* reset caught signals */
622 execsigs(p);
623
624 /* name this process - nameiexec(p, ndp) */
625 bzero(p->p_comm, sizeof(p->p_comm));
626 if (args->fname)
627 bcopy(nd.ni_cnd.cn_nameptr, p->p_comm,
628 min(nd.ni_cnd.cn_namelen, MAXCOMLEN));
629 else if (vn_commname(binvp, p->p_comm, sizeof(p->p_comm)) != 0)
630 bcopy(fexecv_proc_title, p->p_comm, sizeof(fexecv_proc_title));
631 bcopy(p->p_comm, td->td_name, sizeof(td->td_name));
632
633 /*
634 * mark as execed, wakeup the process that vforked (if any) and tell
635 * it that it now has its own resources back
636 */
637 p->p_flag |= P_EXEC;
638 if (p->p_pptr && (p->p_flag & P_PPWAIT)) {
639 p->p_flag &= ~P_PPWAIT;
640 cv_broadcast(&p->p_pwait);
641 }
642
643 /*
644 * Implement image setuid/setgid.
645 *
646 * Don't honor setuid/setgid if the filesystem prohibits it or if
647 * the process is being traced.
648 *
649 * We disable setuid/setgid/etc in compatibility mode on the basis
650 * that most setugid applications are not written with that
651 * environment in mind, and will therefore almost certainly operate
652 * incorrectly. In principle there's no reason that setugid
653 * applications might not be useful in capability mode, so we may want
654 * to reconsider this conservative design choice in the future.
655 *
656 * XXXMAC: For the time being, use NOSUID to also prohibit
657 * transitions on the file system.
658 */
659 credential_changing = 0;
660 credential_changing |= (attr.va_mode & S_ISUID) && oldcred->cr_uid !=
661 attr.va_uid;
662 credential_changing |= (attr.va_mode & S_ISGID) && oldcred->cr_gid !=
663 attr.va_gid;
664#ifdef MAC
665 will_transition = mac_vnode_execve_will_transition(oldcred, imgp->vp,
666 interpvplabel, imgp);
667 credential_changing |= will_transition;
668#endif
669
670 if (credential_changing &&
671#ifdef CAPABILITY_MODE
672 ((oldcred->cr_flags & CRED_FLAG_CAPMODE) == 0) &&
673#endif
674 (imgp->vp->v_mount->mnt_flag & MNT_NOSUID) == 0 &&
675 (p->p_flag & P_TRACED) == 0) {
676 /*
677 * Turn off syscall tracing for set-id programs, except for
678 * root. Record any set-id flags first to make sure that
679 * we do not regain any tracing during a possible block.
680 */
681 setsugid(p);
682
683#ifdef KTRACE
684 if (priv_check_cred(oldcred, PRIV_DEBUG_DIFFCRED, 0))
685 ktrprocexec(p, &tracecred, &tracevp);
686#endif
687 /*
688 * Close any file descriptors 0..2 that reference procfs,
689 * then make sure file descriptors 0..2 are in use.
690 *
691 * setugidsafety() may call closef() and then pfind()
692 * which may grab the process lock.
693 * fdcheckstd() may call falloc() which may block to
694 * allocate memory, so temporarily drop the process lock.
695 */
696 PROC_UNLOCK(p);
697 VOP_UNLOCK(imgp->vp, 0);
698 setugidsafety(td);
699 error = fdcheckstd(td);
700 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY);
701 if (error != 0)
702 goto done1;
703 PROC_LOCK(p);
704 /*
705 * Set the new credentials.
706 */
707 if (attr.va_mode & S_ISUID)
708 change_euid(newcred, euip);
709 if (attr.va_mode & S_ISGID)
710 change_egid(newcred, attr.va_gid);
711#ifdef MAC
712 if (will_transition) {
713 mac_vnode_execve_transition(oldcred, newcred, imgp->vp,
714 interpvplabel, imgp);
715 }
716#endif
717 /*
718 * Implement correct POSIX saved-id behavior.
719 *
720 * XXXMAC: Note that the current logic will save the
721 * uid and gid if a MAC domain transition occurs, even
722 * though maybe it shouldn't.
723 */
724 change_svuid(newcred, newcred->cr_uid);
725 change_svgid(newcred, newcred->cr_gid);
726 p->p_ucred = newcred;
727 newcred = NULL;
728 } else {
729 if (oldcred->cr_uid == oldcred->cr_ruid &&
730 oldcred->cr_gid == oldcred->cr_rgid)
731 p->p_flag &= ~P_SUGID;
732 /*
733 * Implement correct POSIX saved-id behavior.
734 *
735 * XXX: It's not clear that the existing behavior is
736 * POSIX-compliant. A number of sources indicate that the
737 * saved uid/gid should only be updated if the new ruid is
738 * not equal to the old ruid, or the new euid is not equal
739 * to the old euid and the new euid is not equal to the old
740 * ruid. The FreeBSD code always updates the saved uid/gid.
741 * Also, this code uses the new (replaced) euid and egid as
742 * the source, which may or may not be the right ones to use.
743 */
744 if (oldcred->cr_svuid != oldcred->cr_uid ||
745 oldcred->cr_svgid != oldcred->cr_gid) {
746 change_svuid(newcred, newcred->cr_uid);
747 change_svgid(newcred, newcred->cr_gid);
748 p->p_ucred = newcred;
749 newcred = NULL;
750 }
751 }
752
753 /*
754 * Store the vp for use in procfs. This vnode was referenced prior
755 * to locking the proc lock.
756 */
757 textvp = p->p_textvp;
758 p->p_textvp = binvp;
759
760#ifdef KDTRACE_HOOKS
761 /*
762 * Tell the DTrace fasttrap provider about the exec if it
763 * has declared an interest.
764 */
765 if (dtrace_fasttrap_exec)
766 dtrace_fasttrap_exec(p);
767#endif
768
769 /*
770 * Notify others that we exec'd, and clear the P_INEXEC flag
771 * as we're now a bona fide freshly-execed process.
772 */
773 KNOTE_LOCKED(&p->p_klist, NOTE_EXEC);
774 p->p_flag &= ~P_INEXEC;
775
776 /*
777 * If tracing the process, trap to the debugger so that
778 * breakpoints can be set before the program executes. We
779 * have to use tdsignal() to deliver the signal to the current
780 * thread since any other threads in this process will exit if
781 * execve() succeeds.
782 */
783 if (p->p_flag & P_TRACED)
784 tdsignal(td, SIGTRAP);
785
786 /* clear "fork but no exec" flag, as we _are_ execing */
787 p->p_acflag &= ~AFORK;
788
789 /*
790 * Free any previous argument cache and replace it with
791 * the new argument cache, if any.
792 */
793 oldargs = p->p_args;
794 p->p_args = newargs;
795 newargs = NULL;
796
797#ifdef HWPMC_HOOKS
798 /*
799 * Check if system-wide sampling is in effect or if the
800 * current process is using PMCs. If so, do exec() time
801 * processing. This processing needs to happen AFTER the
802 * P_INEXEC flag is cleared.
803 *
804 * The proc lock needs to be released before taking the PMC
805 * SX.
806 */
807 if (PMC_SYSTEM_SAMPLING_ACTIVE() || PMC_PROC_IS_USING_PMCS(p)) {
808 PROC_UNLOCK(p);
809 VOP_UNLOCK(imgp->vp, 0);
810 pe.pm_credentialschanged = credential_changing;
811 pe.pm_entryaddr = imgp->entry_addr;
812
813 PMC_CALL_HOOK_X(td, PMC_FN_PROCESS_EXEC, (void *) &pe);
814 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY);
815 } else
816 PROC_UNLOCK(p);
817#else /* !HWPMC_HOOKS */
818 PROC_UNLOCK(p);
819#endif
820
821 /* Set values passed into the program in registers. */
822 if (p->p_sysent->sv_setregs)
823 (*p->p_sysent->sv_setregs)(td, imgp,
824 (u_long)(uintptr_t)stack_base);
825 else
826 exec_setregs(td, imgp, (u_long)(uintptr_t)stack_base);
827
828 vfs_mark_atime(imgp->vp, td->td_ucred);
829
830 SDT_PROBE(proc, kernel, , exec_success, args->fname, 0, 0, 0, 0);
831
832done1:
833 /*
834 * Free any resources malloc'd earlier that we didn't use.
835 */
836 uifree(euip);
837 if (newcred == NULL)
838 crfree(oldcred);
839 else
840 crfree(newcred);
841 VOP_UNLOCK(imgp->vp, 0);
842
843 /*
844 * Handle deferred decrement of ref counts.
845 */
846 if (textvp != NULL) {
847 int tvfslocked;
848
849 tvfslocked = VFS_LOCK_GIANT(textvp->v_mount);
850 vrele(textvp);
851 VFS_UNLOCK_GIANT(tvfslocked);
852 }
853 if (binvp && error != 0)
854 vrele(binvp);
855#ifdef KTRACE
856 if (tracevp != NULL) {
857 int tvfslocked;
858
859 tvfslocked = VFS_LOCK_GIANT(tracevp->v_mount);
860 vrele(tracevp);
861 VFS_UNLOCK_GIANT(tvfslocked);
862 }
863 if (tracecred != NULL)
864 crfree(tracecred);
865#endif
866 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY);
867 pargs_drop(oldargs);
868 pargs_drop(newargs);
869 if (oldsigacts != NULL)
870 sigacts_free(oldsigacts);
871
872exec_fail_dealloc:
873
874 /*
875 * free various allocated resources
876 */
877 if (imgp->firstpage != NULL)
878 exec_unmap_first_page(imgp);
879
880 if (imgp->vp != NULL) {
881 if (args->fname)
882 NDFREE(&nd, NDF_ONLY_PNBUF);
883 if (imgp->opened)
884 VOP_CLOSE(imgp->vp, FREAD, td->td_ucred, td);
885 vput(imgp->vp);
886 }
887
888 if (imgp->object != NULL)
889 vm_object_deallocate(imgp->object);
890
891 free(imgp->freepath, M_TEMP);
892
893 if (error == 0) {
894 PROC_LOCK(p);
895 td->td_dbgflags |= TDB_EXEC;
896 PROC_UNLOCK(p);
897
898 /*
899 * Stop the process here if its stop event mask has
900 * the S_EXEC bit set.
901 */
902 STOPEVENT(p, S_EXEC, 0);
903 goto done2;
904 }
905
906exec_fail:
907 /* we're done here, clear P_INEXEC */
908 PROC_LOCK(p);
909 p->p_flag &= ~P_INEXEC;
910 PROC_UNLOCK(p);
911
912 SDT_PROBE(proc, kernel, , exec_failure, error, 0, 0, 0, 0);
913
914done2:
915#ifdef MAC
916 mac_execve_exit(imgp);
917 mac_execve_interpreter_exit(interpvplabel);
918#endif
919 VFS_UNLOCK_GIANT(vfslocked);
920 exec_free_args(args);
921
922 if (error && imgp->vmspace_destroyed) {
923 /* sorry, no more process anymore. exit gracefully */
924 exit1(td, W_EXITCODE(0, SIGABRT));
925 /* NOT REACHED */
926 }
927
928#ifdef KTRACE
929 if (error == 0)
930 ktrprocctor(p);
931#endif
932
933 return (error);
934}
935
936int
937exec_map_first_page(imgp)
938 struct image_params *imgp;
939{
940 int rv, i;
941 int initial_pagein;
942 vm_page_t ma[VM_INITIAL_PAGEIN];
943 vm_object_t object;
944
945 if (imgp->firstpage != NULL)
946 exec_unmap_first_page(imgp);
947
948 object = imgp->vp->v_object;
949 if (object == NULL)
950 return (EACCES);
951 VM_OBJECT_LOCK(object);
952#if VM_NRESERVLEVEL > 0
953 if ((object->flags & OBJ_COLORED) == 0) {
954 object->flags |= OBJ_COLORED;
955 object->pg_color = 0;
956 }
957#endif
958 ma[0] = vm_page_grab(object, 0, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
959 if (ma[0]->valid != VM_PAGE_BITS_ALL) {
960 initial_pagein = VM_INITIAL_PAGEIN;
961 if (initial_pagein > object->size)
962 initial_pagein = object->size;
963 for (i = 1; i < initial_pagein; i++) {
964 if ((ma[i] = vm_page_next(ma[i - 1])) != NULL) {
965 if (ma[i]->valid)
966 break;
967 if ((ma[i]->oflags & VPO_BUSY) || ma[i]->busy)
968 break;
969 vm_page_busy(ma[i]);
970 } else {
971 ma[i] = vm_page_alloc(object, i,
972 VM_ALLOC_NORMAL | VM_ALLOC_IFNOTCACHED);
973 if (ma[i] == NULL)
974 break;
975 }
976 }
977 initial_pagein = i;
978 rv = vm_pager_get_pages(object, ma, initial_pagein, 0);
979 ma[0] = vm_page_lookup(object, 0);
980 if ((rv != VM_PAGER_OK) || (ma[0] == NULL)) {
981 if (ma[0] != NULL) {
982 vm_page_lock(ma[0]);
983 vm_page_free(ma[0]);
984 vm_page_unlock(ma[0]);
985 }
986 VM_OBJECT_UNLOCK(object);
987 return (EIO);
988 }
989 }
990 vm_page_lock(ma[0]);
991 vm_page_hold(ma[0]);
992 vm_page_unlock(ma[0]);
993 vm_page_wakeup(ma[0]);
994 VM_OBJECT_UNLOCK(object);
995
996 imgp->firstpage = sf_buf_alloc(ma[0], 0);
997 imgp->image_header = (char *)sf_buf_kva(imgp->firstpage);
998
999 return (0);
1000}
1001
1002void
1003exec_unmap_first_page(imgp)
1004 struct image_params *imgp;
1005{
1006 vm_page_t m;
1007
1008 if (imgp->firstpage != NULL) {
1009 m = sf_buf_page(imgp->firstpage);
1010 sf_buf_free(imgp->firstpage);
1011 imgp->firstpage = NULL;
1012 vm_page_lock(m);
1013 vm_page_unhold(m);
1014 vm_page_unlock(m);
1015 }
1016}
1017
1018/*
1019 * Destroy old address space, and allocate a new stack
1020 * The new stack is only SGROWSIZ large because it is grown
1021 * automatically in trap.c.
1022 */
1023int
1024exec_new_vmspace(imgp, sv)
1025 struct image_params *imgp;
1026 struct sysentvec *sv;
1027{
1028 int error;
1029 struct proc *p = imgp->proc;
1030 struct vmspace *vmspace = p->p_vmspace;
1031 vm_object_t obj;
1032 vm_offset_t sv_minuser, stack_addr;
1033 vm_map_t map;
1034 u_long ssiz;
1035
1036 imgp->vmspace_destroyed = 1;
1037 imgp->sysent = sv;
1038
1039 /* May be called with Giant held */
1040 EVENTHANDLER_INVOKE(process_exec, p, imgp);
1041
1042 /*
1043 * Blow away entire process VM, if address space not shared,
1044 * otherwise, create a new VM space so that other threads are
1045 * not disrupted
1046 */
1047 map = &vmspace->vm_map;
1048 if (map_at_zero)
1049 sv_minuser = sv->sv_minuser;
1050 else
1051 sv_minuser = MAX(sv->sv_minuser, PAGE_SIZE);
1052 if (vmspace->vm_refcnt == 1 && vm_map_min(map) == sv_minuser &&
1053 vm_map_max(map) == sv->sv_maxuser) {
1054 shmexit(vmspace);
1055 pmap_remove_pages(vmspace_pmap(vmspace));
1056 vm_map_remove(map, vm_map_min(map), vm_map_max(map));
1057 } else {
1058 error = vmspace_exec(p, sv_minuser, sv->sv_maxuser);
1059 if (error)
1060 return (error);
1061 vmspace = p->p_vmspace;
1062 map = &vmspace->vm_map;
1063 }
1064
1065 /* Map a shared page */
1066 obj = sv->sv_shared_page_obj;
1067 if (obj != NULL) {
1068 vm_object_reference(obj);
1069 error = vm_map_fixed(map, obj, 0,
1070 sv->sv_shared_page_base, sv->sv_shared_page_len,
1071 VM_PROT_READ | VM_PROT_EXECUTE, VM_PROT_ALL,
1072 MAP_COPY_ON_WRITE | MAP_ACC_NO_CHARGE);
1073 if (error) {
1074 vm_object_deallocate(obj);
1075 return (error);
1076 }
1077 }
1078
1079 /* Allocate a new stack */
1080 if (sv->sv_maxssiz != NULL)
1081 ssiz = *sv->sv_maxssiz;
1082 else
1083 ssiz = maxssiz;
1084 stack_addr = sv->sv_usrstack - ssiz;
1085 error = vm_map_stack(map, stack_addr, (vm_size_t)ssiz,
1086 obj != NULL && imgp->stack_prot != 0 ? imgp->stack_prot :
1087 sv->sv_stackprot,
1088 VM_PROT_ALL, MAP_STACK_GROWS_DOWN);
1089 if (error)
1090 return (error);
1091
1092#ifdef __ia64__
1093 /* Allocate a new register stack */
1094 stack_addr = IA64_BACKINGSTORE;
1095 error = vm_map_stack(map, stack_addr, (vm_size_t)ssiz,
1096 sv->sv_stackprot, VM_PROT_ALL, MAP_STACK_GROWS_UP);
1097 if (error)
1098 return (error);
1099#endif
1100
1101 /* vm_ssize and vm_maxsaddr are somewhat antiquated concepts in the
1102 * VM_STACK case, but they are still used to monitor the size of the
1103 * process stack so we can check the stack rlimit.
1104 */
1105 vmspace->vm_ssize = sgrowsiz >> PAGE_SHIFT;
1106 vmspace->vm_maxsaddr = (char *)sv->sv_usrstack - ssiz;
1107
1108 return (0);
1109}
1110
1111/*
1112 * Copy out argument and environment strings from the old process address
1113 * space into the temporary string buffer.
1114 */
1115int
1116exec_copyin_args(struct image_args *args, char *fname,
1117 enum uio_seg segflg, char **argv, char **envv)
1118{
1119 char *argp, *envp;
1120 int error;
1121 size_t length;
1122
1123 bzero(args, sizeof(*args));
1124 if (argv == NULL)
1125 return (EFAULT);
1126
1127 /*
1128 * Allocate demand-paged memory for the file name, argument, and
1129 * environment strings.
1130 */
1131 error = exec_alloc_args(args);
1132 if (error != 0)
1133 return (error);
1134
1135 /*
1136 * Copy the file name.
1137 */
1138 if (fname != NULL) {
1139 args->fname = args->buf;
1140 error = (segflg == UIO_SYSSPACE) ?
1141 copystr(fname, args->fname, PATH_MAX, &length) :
1142 copyinstr(fname, args->fname, PATH_MAX, &length);
1143 if (error != 0)
1144 goto err_exit;
1145 } else
1146 length = 0;
1147
1148 args->begin_argv = args->buf + length;
1149 args->endp = args->begin_argv;
1150 args->stringspace = ARG_MAX;
1151
1152 /*
1153 * extract arguments first
1154 */
1155 while ((argp = (caddr_t) (intptr_t) fuword(argv++))) {
1156 if (argp == (caddr_t) -1) {
1157 error = EFAULT;
1158 goto err_exit;
1159 }
1160 if ((error = copyinstr(argp, args->endp,
1161 args->stringspace, &length))) {
1162 if (error == ENAMETOOLONG)
1163 error = E2BIG;
1164 goto err_exit;
1165 }
1166 args->stringspace -= length;
1167 args->endp += length;
1168 args->argc++;
1169 }
1170
1171 args->begin_envv = args->endp;
1172
1173 /*
1174 * extract environment strings
1175 */
1176 if (envv) {
1177 while ((envp = (caddr_t)(intptr_t)fuword(envv++))) {
1178 if (envp == (caddr_t)-1) {
1179 error = EFAULT;
1180 goto err_exit;
1181 }
1182 if ((error = copyinstr(envp, args->endp,
1183 args->stringspace, &length))) {
1184 if (error == ENAMETOOLONG)
1185 error = E2BIG;
1186 goto err_exit;
1187 }
1188 args->stringspace -= length;
1189 args->endp += length;
1190 args->envc++;
1191 }
1192 }
1193
1194 return (0);
1195
1196err_exit:
1197 exec_free_args(args);
1198 return (error);
1199}
1200
1201/*
1202 * Allocate temporary demand-paged, zero-filled memory for the file name,
1203 * argument, and environment strings. Returns zero if the allocation succeeds
1204 * and ENOMEM otherwise.
1205 */
1206int
1207exec_alloc_args(struct image_args *args)
1208{
1209
1210 args->buf = (char *)kmem_alloc_wait(exec_map, PATH_MAX + ARG_MAX);
1211 return (args->buf != NULL ? 0 : ENOMEM);
1212}
1213
1214void
1215exec_free_args(struct image_args *args)
1216{
1217
1218 if (args->buf != NULL) {
1219 kmem_free_wakeup(exec_map, (vm_offset_t)args->buf,
1220 PATH_MAX + ARG_MAX);
1221 args->buf = NULL;
1222 }
1223 if (args->fname_buf != NULL) {
1224 free(args->fname_buf, M_TEMP);
1225 args->fname_buf = NULL;
1226 }
1227}
1228
1229/*
1230 * Copy strings out to the new process address space, constructing new arg
1231 * and env vector tables. Return a pointer to the base so that it can be used
1232 * as the initial stack pointer.
1233 */
1234register_t *
1235exec_copyout_strings(imgp)
1236 struct image_params *imgp;
1237{
1238 int argc, envc;
1239 char **vectp;
1240 char *stringp, *destp;
1241 register_t *stack_base;
1242 struct ps_strings *arginfo;
1243 struct proc *p;
1244 size_t execpath_len;
1245 int szsigcode, szps;
1246 char canary[sizeof(long) * 8];
1247
1248 szps = sizeof(pagesizes[0]) * MAXPAGESIZES;
1249 /*
1250 * Calculate string base and vector table pointers.
1251 * Also deal with signal trampoline code for this exec type.
1252 */
1253 if (imgp->execpath != NULL && imgp->auxargs != NULL)
1254 execpath_len = strlen(imgp->execpath) + 1;
1255 else
1256 execpath_len = 0;
1257 p = imgp->proc;
1258 szsigcode = 0;
1259 arginfo = (struct ps_strings *)p->p_sysent->sv_psstrings;
1260 if (p->p_sysent->sv_sigcode_base == 0) {
1261 if (p->p_sysent->sv_szsigcode != NULL)
1262 szsigcode = *(p->p_sysent->sv_szsigcode);
1263 }
1264 destp = (caddr_t)arginfo - szsigcode - SPARE_USRSPACE -
1265 roundup(execpath_len, sizeof(char *)) -
1266 roundup(sizeof(canary), sizeof(char *)) -
1267 roundup(szps, sizeof(char *)) -
1268 roundup((ARG_MAX - imgp->args->stringspace), sizeof(char *));
1269
1270 /*
1271 * install sigcode
1272 */
1273 if (szsigcode != 0)
1274 copyout(p->p_sysent->sv_sigcode, ((caddr_t)arginfo -
1275 szsigcode), szsigcode);
1276
1277 /*
1278 * Copy the image path for the rtld.
1279 */
1280 if (execpath_len != 0) {
1281 imgp->execpathp = (uintptr_t)arginfo - szsigcode - execpath_len;
1282 copyout(imgp->execpath, (void *)imgp->execpathp,
1283 execpath_len);
1284 }
1285
1286 /*
1287 * Prepare the canary for SSP.
1288 */
1289 arc4rand(canary, sizeof(canary), 0);
1290 imgp->canary = (uintptr_t)arginfo - szsigcode - execpath_len -
1291 sizeof(canary);
1292 copyout(canary, (void *)imgp->canary, sizeof(canary));
1293 imgp->canarylen = sizeof(canary);
1294
1295 /*
1296 * Prepare the pagesizes array.
1297 */
1298 imgp->pagesizes = (uintptr_t)arginfo - szsigcode - execpath_len -
1299 roundup(sizeof(canary), sizeof(char *)) - szps;
1300 copyout(pagesizes, (void *)imgp->pagesizes, szps);
1301 imgp->pagesizeslen = szps;
1302
1303 /*
1304 * If we have a valid auxargs ptr, prepare some room
1305 * on the stack.
1306 */
1307 if (imgp->auxargs) {
1308 /*
1309 * 'AT_COUNT*2' is size for the ELF Auxargs data. This is for
1310 * lower compatibility.
1311 */
1312 imgp->auxarg_size = (imgp->auxarg_size) ? imgp->auxarg_size :
1313 (AT_COUNT * 2);
1314 /*
1315 * The '+ 2' is for the null pointers at the end of each of
1316 * the arg and env vector sets,and imgp->auxarg_size is room
1317 * for argument of Runtime loader.
1318 */
1319 vectp = (char **)(destp - (imgp->args->argc +
1320 imgp->args->envc + 2 + imgp->auxarg_size)
1321 * sizeof(char *));
1322 } else {
1323 /*
1324 * The '+ 2' is for the null pointers at the end of each of
1325 * the arg and env vector sets
1326 */
1327 vectp = (char **)(destp - (imgp->args->argc + imgp->args->envc + 2) *
1328 sizeof(char *));
1329 }
1330
1331 /*
1332 * vectp also becomes our initial stack base
1333 */
1334 stack_base = (register_t *)vectp;
1335
1336 stringp = imgp->args->begin_argv;
1337 argc = imgp->args->argc;
1338 envc = imgp->args->envc;
1339
1340 /*
1341 * Copy out strings - arguments and environment.
1342 */
1343 copyout(stringp, destp, ARG_MAX - imgp->args->stringspace);
1344
1345 /*
1346 * Fill in "ps_strings" struct for ps, w, etc.
1347 */
1348 suword(&arginfo->ps_argvstr, (long)(intptr_t)vectp);
1349 suword32(&arginfo->ps_nargvstr, argc);
1350
1351 /*
1352 * Fill in argument portion of vector table.
1353 */
1354 for (; argc > 0; --argc) {
1355 suword(vectp++, (long)(intptr_t)destp);
1356 while (*stringp++ != 0)
1357 destp++;
1358 destp++;
1359 }
1360
1361 /* a null vector table pointer separates the argp's from the envp's */
1362 suword(vectp++, 0);
1363
1364 suword(&arginfo->ps_envstr, (long)(intptr_t)vectp);
1365 suword32(&arginfo->ps_nenvstr, envc);
1366
1367 /*
1368 * Fill in environment portion of vector table.
1369 */
1370 for (; envc > 0; --envc) {
1371 suword(vectp++, (long)(intptr_t)destp);
1372 while (*stringp++ != 0)
1373 destp++;
1374 destp++;
1375 }
1376
1377 /* end of vector table is a null pointer */
1378 suword(vectp, 0);
1379
1380 return (stack_base);
1381}
1382
1383/*
1384 * Check permissions of file to execute.
1385 * Called with imgp->vp locked.
1386 * Return 0 for success or error code on failure.
1387 */
1388int
1389exec_check_permissions(imgp)
1390 struct image_params *imgp;
1391{
1392 struct vnode *vp = imgp->vp;
1393 struct vattr *attr = imgp->attr;
1394 struct thread *td;
1395 int error;
1396
1397 td = curthread;
1398
1399 /* Get file attributes */
1400 error = VOP_GETATTR(vp, attr, td->td_ucred);
1401 if (error)
1402 return (error);
1403
1404#ifdef MAC
1405 error = mac_vnode_check_exec(td->td_ucred, imgp->vp, imgp);
1406 if (error)
1407 return (error);
1408#endif
1409
1410 /*
1411 * 1) Check if file execution is disabled for the filesystem that
1412 * this file resides on.
1413 * 2) Ensure that at least one execute bit is on. Otherwise, a
1414 * privileged user will always succeed, and we don't want this
1415 * to happen unless the file really is executable.
1416 * 3) Ensure that the file is a regular file.
1417 */
1418 if ((vp->v_mount->mnt_flag & MNT_NOEXEC) ||
1419 (attr->va_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) == 0 ||
1420 (attr->va_type != VREG))
1421 return (EACCES);
1422
1423 /*
1424 * Zero length files can't be exec'd
1425 */
1426 if (attr->va_size == 0)
1427 return (ENOEXEC);
1428
1429 /*
1430 * Check for execute permission to file based on current credentials.
1431 */
1432 error = VOP_ACCESS(vp, VEXEC, td->td_ucred, td);
1433 if (error)
1434 return (error);
1435
1436 /*
1437 * Check number of open-for-writes on the file and deny execution
1438 * if there are any.
1439 */
1440 if (vp->v_writecount)
1441 return (ETXTBSY);
1442
1443 /*
1444 * Call filesystem specific open routine (which does nothing in the
1445 * general case).
1446 */
1447 error = VOP_OPEN(vp, FREAD, td->td_ucred, td, NULL);
1448 if (error == 0)
1449 imgp->opened = 1;
1450 return (error);
1451}
1452
1453/*
1454 * Exec handler registration
1455 */
1456int
1457exec_register(execsw_arg)
1458 const struct execsw *execsw_arg;
1459{
1460 const struct execsw **es, **xs, **newexecsw;
1461 int count = 2; /* New slot and trailing NULL */
1462
1463 if (execsw)
1464 for (es = execsw; *es; es++)
1465 count++;
1466 newexecsw = malloc(count * sizeof(*es), M_TEMP, M_WAITOK);
1467 if (newexecsw == NULL)
1468 return (ENOMEM);
1469 xs = newexecsw;
1470 if (execsw)
1471 for (es = execsw; *es; es++)
1472 *xs++ = *es;
1473 *xs++ = execsw_arg;
1474 *xs = NULL;
1475 if (execsw)
1476 free(execsw, M_TEMP);
1477 execsw = newexecsw;
1478 return (0);
1479}
1480
1481int
1482exec_unregister(execsw_arg)
1483 const struct execsw *execsw_arg;
1484{
1485 const struct execsw **es, **xs, **newexecsw;
1486 int count = 1;
1487
1488 if (execsw == NULL)
1489 panic("unregister with no handlers left?\n");
1490
1491 for (es = execsw; *es; es++) {
1492 if (*es == execsw_arg)
1493 break;
1494 }
1495 if (*es == NULL)
1496 return (ENOENT);
1497 for (es = execsw; *es; es++)
1498 if (*es != execsw_arg)
1499 count++;
1500 newexecsw = malloc(count * sizeof(*es), M_TEMP, M_WAITOK);
1501 if (newexecsw == NULL)
1502 return (ENOMEM);
1503 xs = newexecsw;
1504 for (es = execsw; *es; es++)
1505 if (*es != execsw_arg)
1506 *xs++ = *es;
1507 *xs = NULL;
1508 if (execsw)
1509 free(execsw, M_TEMP);
1510 execsw = newexecsw;
1511 return (0);
1512}
1513
1514static vm_object_t shared_page_obj;
1515static int shared_page_free;
1516
1517int
1518shared_page_fill(int size, int align, const char *data)
1519{
1520 vm_page_t m;
1521 struct sf_buf *s;
1522 vm_offset_t sk;
1523 int res;
1524
1525 VM_OBJECT_LOCK(shared_page_obj);
1526 m = vm_page_grab(shared_page_obj, 0, VM_ALLOC_RETRY);
1527 res = roundup(shared_page_free, align);
1528 if (res + size >= IDX_TO_OFF(shared_page_obj->size))
1529 res = -1;
1530 else {
1531 VM_OBJECT_UNLOCK(shared_page_obj);
1532 s = sf_buf_alloc(m, SFB_DEFAULT);
1533 sk = sf_buf_kva(s);
1534 bcopy(data, (void *)(sk + res), size);
1535 shared_page_free = res + size;
1536 sf_buf_free(s);
1537 VM_OBJECT_LOCK(shared_page_obj);
1538 }
1539 vm_page_wakeup(m);
1540 VM_OBJECT_UNLOCK(shared_page_obj);
1541 return (res);
1542}
1543
1544static void
1545shared_page_init(void *dummy __unused)
1546{
1547 vm_page_t m;
1548
1549 shared_page_obj = vm_pager_allocate(OBJT_PHYS, 0, PAGE_SIZE,
1550 VM_PROT_DEFAULT, 0, NULL);
1551 VM_OBJECT_LOCK(shared_page_obj);
1552 m = vm_page_grab(shared_page_obj, 0, VM_ALLOC_RETRY | VM_ALLOC_NOBUSY |
1553 VM_ALLOC_ZERO);
1554 m->valid = VM_PAGE_BITS_ALL;
1555 VM_OBJECT_UNLOCK(shared_page_obj);
1556}
1557
1558SYSINIT(shp, SI_SUB_EXEC, SI_ORDER_FIRST, (sysinit_cfunc_t)shared_page_init,
1559 NULL);
1560
1561void
1562exec_sysvec_init(void *param)
1563{
1564 struct sysentvec *sv;
1565
1566 sv = (struct sysentvec *)param;
1567
1568 if ((sv->sv_flags & SV_SHP) == 0)
1569 return;
1570 sv->sv_shared_page_obj = shared_page_obj;
1571 sv->sv_sigcode_base = sv->sv_shared_page_base +
1572 shared_page_fill(*(sv->sv_szsigcode), 16, sv->sv_sigcode);
1573}