Deleted Added
full compact
md_intel.c (275876) md_intel.c (279878)
1/*-
2 * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
3 * Copyright (c) 2000 - 2008 S��ren Schmidt <sos@FreeBSD.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
1/*-
2 * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
3 * Copyright (c) 2000 - 2008 S��ren Schmidt <sos@FreeBSD.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: stable/10/sys/geom/raid/md_intel.c 275876 2014-12-18 07:37:21Z mav $");
29__FBSDID("$FreeBSD: stable/10/sys/geom/raid/md_intel.c 279878 2015-03-11 09:50:31Z mav $");
30
31#include <sys/param.h>
32#include <sys/bio.h>
33#include <sys/endian.h>
34#include <sys/kernel.h>
35#include <sys/kobj.h>
36#include <sys/limits.h>
37#include <sys/lock.h>
38#include <sys/malloc.h>
39#include <sys/mutex.h>
40#include <sys/systm.h>
41#include <sys/taskqueue.h>
42#include <geom/geom.h>
43#include "geom/raid/g_raid.h"
44#include "g_raid_md_if.h"
45
46static MALLOC_DEFINE(M_MD_INTEL, "md_intel_data", "GEOM_RAID Intel metadata");
47
48struct intel_raid_map {
49 uint32_t offset;
50 uint32_t disk_sectors;
51 uint32_t stripe_count;
52 uint16_t strip_sectors;
53 uint8_t status;
54#define INTEL_S_READY 0x00
55#define INTEL_S_UNINITIALIZED 0x01
56#define INTEL_S_DEGRADED 0x02
57#define INTEL_S_FAILURE 0x03
58
59 uint8_t type;
60#define INTEL_T_RAID0 0x00
61#define INTEL_T_RAID1 0x01
62#define INTEL_T_RAID5 0x05
63
64 uint8_t total_disks;
65 uint8_t total_domains;
66 uint8_t failed_disk_num;
67 uint8_t ddf;
68 uint32_t offset_hi;
69 uint32_t disk_sectors_hi;
70 uint32_t stripe_count_hi;
71 uint32_t filler_2[4];
72 uint32_t disk_idx[1]; /* total_disks entries. */
73#define INTEL_DI_IDX 0x00ffffff
74#define INTEL_DI_RBLD 0x01000000
75} __packed;
76
77struct intel_raid_vol {
78 uint8_t name[16];
79 u_int64_t total_sectors __packed;
80 uint32_t state;
81#define INTEL_ST_BOOTABLE 0x00000001
82#define INTEL_ST_BOOT_DEVICE 0x00000002
83#define INTEL_ST_READ_COALESCING 0x00000004
84#define INTEL_ST_WRITE_COALESCING 0x00000008
85#define INTEL_ST_LAST_SHUTDOWN_DIRTY 0x00000010
86#define INTEL_ST_HIDDEN_AT_BOOT 0x00000020
87#define INTEL_ST_CURRENTLY_HIDDEN 0x00000040
88#define INTEL_ST_VERIFY_AND_FIX 0x00000080
89#define INTEL_ST_MAP_STATE_UNINIT 0x00000100
90#define INTEL_ST_NO_AUTO_RECOVERY 0x00000200
91#define INTEL_ST_CLONE_N_GO 0x00000400
92#define INTEL_ST_CLONE_MAN_SYNC 0x00000800
93#define INTEL_ST_CNG_MASTER_DISK_NUM 0x00001000
94 uint32_t reserved;
95 uint8_t migr_priority;
96 uint8_t num_sub_vols;
97 uint8_t tid;
98 uint8_t cng_master_disk;
99 uint16_t cache_policy;
100 uint8_t cng_state;
101#define INTEL_CNGST_UPDATED 0
102#define INTEL_CNGST_NEEDS_UPDATE 1
103#define INTEL_CNGST_MASTER_MISSING 2
104 uint8_t cng_sub_state;
105 uint32_t filler_0[10];
106
107 uint32_t curr_migr_unit;
108 uint32_t checkpoint_id;
109 uint8_t migr_state;
110 uint8_t migr_type;
111#define INTEL_MT_INIT 0
112#define INTEL_MT_REBUILD 1
113#define INTEL_MT_VERIFY 2
114#define INTEL_MT_GEN_MIGR 3
115#define INTEL_MT_STATE_CHANGE 4
116#define INTEL_MT_REPAIR 5
117 uint8_t dirty;
118 uint8_t fs_state;
119 uint16_t verify_errors;
120 uint16_t bad_blocks;
121 uint32_t curr_migr_unit_hi;
122 uint32_t filler_1[3];
123 struct intel_raid_map map[1]; /* 2 entries if migr_state != 0. */
124} __packed;
125
126struct intel_raid_disk {
127#define INTEL_SERIAL_LEN 16
128 uint8_t serial[INTEL_SERIAL_LEN];
129 uint32_t sectors;
130 uint32_t id;
131 uint32_t flags;
132#define INTEL_F_SPARE 0x01
133#define INTEL_F_ASSIGNED 0x02
134#define INTEL_F_FAILED 0x04
135#define INTEL_F_ONLINE 0x08
136#define INTEL_F_DISABLED 0x80
137 uint32_t owner_cfg_num;
138 uint32_t sectors_hi;
139 uint32_t filler[3];
140} __packed;
141
142struct intel_raid_conf {
143 uint8_t intel_id[24];
144#define INTEL_MAGIC "Intel Raid ISM Cfg Sig. "
145
146 uint8_t version[6];
147#define INTEL_VERSION_1000 "1.0.00" /* RAID0 */
148#define INTEL_VERSION_1100 "1.1.00" /* RAID1 */
149#define INTEL_VERSION_1200 "1.2.00" /* Many volumes */
150#define INTEL_VERSION_1201 "1.2.01" /* 3 or 4 disks */
151#define INTEL_VERSION_1202 "1.2.02" /* RAID5 */
152#define INTEL_VERSION_1204 "1.2.04" /* 5 or 6 disks */
153#define INTEL_VERSION_1206 "1.2.06" /* CNG */
154#define INTEL_VERSION_1300 "1.3.00" /* Attributes */
155
156 uint8_t dummy_0[2];
157 uint32_t checksum;
158 uint32_t config_size;
159 uint32_t config_id;
160 uint32_t generation;
161 uint32_t error_log_size;
162 uint32_t attributes;
163#define INTEL_ATTR_RAID0 0x00000001
164#define INTEL_ATTR_RAID1 0x00000002
165#define INTEL_ATTR_RAID10 0x00000004
166#define INTEL_ATTR_RAID1E 0x00000008
167#define INTEL_ATTR_RAID5 0x00000010
168#define INTEL_ATTR_RAIDCNG 0x00000020
169#define INTEL_ATTR_EXT_STRIP 0x00000040
170#define INTEL_ATTR_NVM_CACHE 0x02000000
171#define INTEL_ATTR_2TB_DISK 0x04000000
172#define INTEL_ATTR_BBM 0x08000000
173#define INTEL_ATTR_NVM_CACHE2 0x10000000
174#define INTEL_ATTR_2TB 0x20000000
175#define INTEL_ATTR_PM 0x40000000
176#define INTEL_ATTR_CHECKSUM 0x80000000
177
178 uint8_t total_disks;
179 uint8_t total_volumes;
180 uint8_t error_log_pos;
181 uint8_t dummy_2[1];
182 uint32_t cache_size;
183 uint32_t orig_config_id;
184 uint32_t pwr_cycle_count;
185 uint32_t bbm_log_size;
186 uint32_t filler_0[35];
187 struct intel_raid_disk disk[1]; /* total_disks entries. */
188 /* Here goes total_volumes of struct intel_raid_vol. */
189} __packed;
190
191#define INTEL_ATTR_SUPPORTED ( INTEL_ATTR_RAID0 | INTEL_ATTR_RAID1 | \
192 INTEL_ATTR_RAID10 | INTEL_ATTR_RAID1E | INTEL_ATTR_RAID5 | \
193 INTEL_ATTR_RAIDCNG | INTEL_ATTR_EXT_STRIP | INTEL_ATTR_2TB_DISK | \
194 INTEL_ATTR_2TB | INTEL_ATTR_PM | INTEL_ATTR_CHECKSUM )
195
196#define INTEL_MAX_MD_SIZE(ndisks) \
197 (sizeof(struct intel_raid_conf) + \
198 sizeof(struct intel_raid_disk) * (ndisks - 1) + \
199 sizeof(struct intel_raid_vol) * 2 + \
200 sizeof(struct intel_raid_map) * 2 + \
201 sizeof(uint32_t) * (ndisks - 1) * 4)
202
203struct g_raid_md_intel_perdisk {
204 struct intel_raid_conf *pd_meta;
205 int pd_disk_pos;
206 struct intel_raid_disk pd_disk_meta;
207};
208
209struct g_raid_md_intel_pervolume {
210 int pv_volume_pos;
211 int pv_cng;
212 int pv_cng_man_sync;
213 int pv_cng_master_disk;
214};
215
216struct g_raid_md_intel_object {
217 struct g_raid_md_object mdio_base;
218 uint32_t mdio_config_id;
219 uint32_t mdio_orig_config_id;
220 uint32_t mdio_generation;
221 struct intel_raid_conf *mdio_meta;
222 struct callout mdio_start_co; /* STARTING state timer. */
223 int mdio_disks_present;
224 int mdio_started;
225 int mdio_incomplete;
226 struct root_hold_token *mdio_rootmount; /* Root mount delay token. */
227};
228
229static g_raid_md_create_t g_raid_md_create_intel;
230static g_raid_md_taste_t g_raid_md_taste_intel;
231static g_raid_md_event_t g_raid_md_event_intel;
232static g_raid_md_ctl_t g_raid_md_ctl_intel;
233static g_raid_md_write_t g_raid_md_write_intel;
234static g_raid_md_fail_disk_t g_raid_md_fail_disk_intel;
235static g_raid_md_free_disk_t g_raid_md_free_disk_intel;
236static g_raid_md_free_volume_t g_raid_md_free_volume_intel;
237static g_raid_md_free_t g_raid_md_free_intel;
238
239static kobj_method_t g_raid_md_intel_methods[] = {
240 KOBJMETHOD(g_raid_md_create, g_raid_md_create_intel),
241 KOBJMETHOD(g_raid_md_taste, g_raid_md_taste_intel),
242 KOBJMETHOD(g_raid_md_event, g_raid_md_event_intel),
243 KOBJMETHOD(g_raid_md_ctl, g_raid_md_ctl_intel),
244 KOBJMETHOD(g_raid_md_write, g_raid_md_write_intel),
245 KOBJMETHOD(g_raid_md_fail_disk, g_raid_md_fail_disk_intel),
246 KOBJMETHOD(g_raid_md_free_disk, g_raid_md_free_disk_intel),
247 KOBJMETHOD(g_raid_md_free_volume, g_raid_md_free_volume_intel),
248 KOBJMETHOD(g_raid_md_free, g_raid_md_free_intel),
249 { 0, 0 }
250};
251
252static struct g_raid_md_class g_raid_md_intel_class = {
253 "Intel",
254 g_raid_md_intel_methods,
255 sizeof(struct g_raid_md_intel_object),
256 .mdc_enable = 1,
257 .mdc_priority = 100
258};
259
260
261static struct intel_raid_map *
262intel_get_map(struct intel_raid_vol *mvol, int i)
263{
264 struct intel_raid_map *mmap;
265
266 if (i > (mvol->migr_state ? 1 : 0))
267 return (NULL);
268 mmap = &mvol->map[0];
269 for (; i > 0; i--) {
270 mmap = (struct intel_raid_map *)
271 &mmap->disk_idx[mmap->total_disks];
272 }
273 return ((struct intel_raid_map *)mmap);
274}
275
276static struct intel_raid_vol *
277intel_get_volume(struct intel_raid_conf *meta, int i)
278{
279 struct intel_raid_vol *mvol;
280 struct intel_raid_map *mmap;
281
282 if (i > 1)
283 return (NULL);
284 mvol = (struct intel_raid_vol *)&meta->disk[meta->total_disks];
285 for (; i > 0; i--) {
286 mmap = intel_get_map(mvol, mvol->migr_state ? 1 : 0);
287 mvol = (struct intel_raid_vol *)
288 &mmap->disk_idx[mmap->total_disks];
289 }
290 return (mvol);
291}
292
293static off_t
294intel_get_map_offset(struct intel_raid_map *mmap)
295{
296 off_t offset = (off_t)mmap->offset_hi << 32;
297
298 offset += mmap->offset;
299 return (offset);
300}
301
302static void
303intel_set_map_offset(struct intel_raid_map *mmap, off_t offset)
304{
305
306 mmap->offset = offset & 0xffffffff;
307 mmap->offset_hi = offset >> 32;
308}
309
310static off_t
311intel_get_map_disk_sectors(struct intel_raid_map *mmap)
312{
313 off_t disk_sectors = (off_t)mmap->disk_sectors_hi << 32;
314
315 disk_sectors += mmap->disk_sectors;
316 return (disk_sectors);
317}
318
319static void
320intel_set_map_disk_sectors(struct intel_raid_map *mmap, off_t disk_sectors)
321{
322
323 mmap->disk_sectors = disk_sectors & 0xffffffff;
324 mmap->disk_sectors_hi = disk_sectors >> 32;
325}
326
327static void
328intel_set_map_stripe_count(struct intel_raid_map *mmap, off_t stripe_count)
329{
330
331 mmap->stripe_count = stripe_count & 0xffffffff;
332 mmap->stripe_count_hi = stripe_count >> 32;
333}
334
335static off_t
336intel_get_disk_sectors(struct intel_raid_disk *disk)
337{
338 off_t sectors = (off_t)disk->sectors_hi << 32;
339
340 sectors += disk->sectors;
341 return (sectors);
342}
343
344static void
345intel_set_disk_sectors(struct intel_raid_disk *disk, off_t sectors)
346{
347
348 disk->sectors = sectors & 0xffffffff;
349 disk->sectors_hi = sectors >> 32;
350}
351
352static off_t
353intel_get_vol_curr_migr_unit(struct intel_raid_vol *vol)
354{
355 off_t curr_migr_unit = (off_t)vol->curr_migr_unit_hi << 32;
356
357 curr_migr_unit += vol->curr_migr_unit;
358 return (curr_migr_unit);
359}
360
361static void
362intel_set_vol_curr_migr_unit(struct intel_raid_vol *vol, off_t curr_migr_unit)
363{
364
365 vol->curr_migr_unit = curr_migr_unit & 0xffffffff;
366 vol->curr_migr_unit_hi = curr_migr_unit >> 32;
367}
368
369static char *
370intel_status2str(int status)
371{
372
373 switch (status) {
374 case INTEL_S_READY:
375 return ("READY");
376 case INTEL_S_UNINITIALIZED:
377 return ("UNINITIALIZED");
378 case INTEL_S_DEGRADED:
379 return ("DEGRADED");
380 case INTEL_S_FAILURE:
381 return ("FAILURE");
382 default:
383 return ("UNKNOWN");
384 }
385}
386
387static char *
388intel_type2str(int type)
389{
390
391 switch (type) {
392 case INTEL_T_RAID0:
393 return ("RAID0");
394 case INTEL_T_RAID1:
395 return ("RAID1");
396 case INTEL_T_RAID5:
397 return ("RAID5");
398 default:
399 return ("UNKNOWN");
400 }
401}
402
403static char *
404intel_cngst2str(int cng_state)
405{
406
407 switch (cng_state) {
408 case INTEL_CNGST_UPDATED:
409 return ("UPDATED");
410 case INTEL_CNGST_NEEDS_UPDATE:
411 return ("NEEDS_UPDATE");
412 case INTEL_CNGST_MASTER_MISSING:
413 return ("MASTER_MISSING");
414 default:
415 return ("UNKNOWN");
416 }
417}
418
419static char *
420intel_mt2str(int type)
421{
422
423 switch (type) {
424 case INTEL_MT_INIT:
425 return ("INIT");
426 case INTEL_MT_REBUILD:
427 return ("REBUILD");
428 case INTEL_MT_VERIFY:
429 return ("VERIFY");
430 case INTEL_MT_GEN_MIGR:
431 return ("GEN_MIGR");
432 case INTEL_MT_STATE_CHANGE:
433 return ("STATE_CHANGE");
434 case INTEL_MT_REPAIR:
435 return ("REPAIR");
436 default:
437 return ("UNKNOWN");
438 }
439}
440
441static void
442g_raid_md_intel_print(struct intel_raid_conf *meta)
443{
444 struct intel_raid_vol *mvol;
445 struct intel_raid_map *mmap;
446 int i, j, k;
447
448 if (g_raid_debug < 1)
449 return;
450
451 printf("********* ATA Intel MatrixRAID Metadata *********\n");
452 printf("intel_id <%.24s>\n", meta->intel_id);
453 printf("version <%.6s>\n", meta->version);
454 printf("checksum 0x%08x\n", meta->checksum);
455 printf("config_size 0x%08x\n", meta->config_size);
456 printf("config_id 0x%08x\n", meta->config_id);
457 printf("generation 0x%08x\n", meta->generation);
458 printf("error_log_size %d\n", meta->error_log_size);
459 printf("attributes 0x%b\n", meta->attributes,
460 "\020"
461 "\001RAID0"
462 "\002RAID1"
463 "\003RAID10"
464 "\004RAID1E"
465 "\005RAID15"
466 "\006RAIDCNG"
467 "\007EXT_STRIP"
468 "\032NVM_CACHE"
469 "\0332TB_DISK"
470 "\034BBM"
471 "\035NVM_CACHE"
472 "\0362TB"
473 "\037PM"
474 "\040CHECKSUM");
475 printf("total_disks %u\n", meta->total_disks);
476 printf("total_volumes %u\n", meta->total_volumes);
477 printf("error_log_pos %u\n", meta->error_log_pos);
478 printf("cache_size %u\n", meta->cache_size);
479 printf("orig_config_id 0x%08x\n", meta->orig_config_id);
480 printf("pwr_cycle_count %u\n", meta->pwr_cycle_count);
481 printf("bbm_log_size %u\n", meta->bbm_log_size);
482 printf("Flags: S - Spare, A - Assigned, F - Failed, O - Online, D - Disabled\n");
483 printf("DISK# serial disk_sectors disk_sectors_hi disk_id flags owner\n");
484 for (i = 0; i < meta->total_disks; i++ ) {
485 printf(" %d <%.16s> %u %u 0x%08x 0x%b %08x\n", i,
486 meta->disk[i].serial, meta->disk[i].sectors,
487 meta->disk[i].sectors_hi, meta->disk[i].id,
488 meta->disk[i].flags, "\20\01S\02A\03F\04O\05D",
489 meta->disk[i].owner_cfg_num);
490 }
491 for (i = 0; i < meta->total_volumes; i++) {
492 mvol = intel_get_volume(meta, i);
493 printf(" ****** Volume %d ******\n", i);
494 printf(" name %.16s\n", mvol->name);
495 printf(" total_sectors %ju\n", mvol->total_sectors);
496 printf(" state 0x%b\n", mvol->state,
497 "\020"
498 "\001BOOTABLE"
499 "\002BOOT_DEVICE"
500 "\003READ_COALESCING"
501 "\004WRITE_COALESCING"
502 "\005LAST_SHUTDOWN_DIRTY"
503 "\006HIDDEN_AT_BOOT"
504 "\007CURRENTLY_HIDDEN"
505 "\010VERIFY_AND_FIX"
506 "\011MAP_STATE_UNINIT"
507 "\012NO_AUTO_RECOVERY"
508 "\013CLONE_N_GO"
509 "\014CLONE_MAN_SYNC"
510 "\015CNG_MASTER_DISK_NUM");
511 printf(" reserved %u\n", mvol->reserved);
512 printf(" migr_priority %u\n", mvol->migr_priority);
513 printf(" num_sub_vols %u\n", mvol->num_sub_vols);
514 printf(" tid %u\n", mvol->tid);
515 printf(" cng_master_disk %u\n", mvol->cng_master_disk);
516 printf(" cache_policy %u\n", mvol->cache_policy);
517 printf(" cng_state %u (%s)\n", mvol->cng_state,
518 intel_cngst2str(mvol->cng_state));
519 printf(" cng_sub_state %u\n", mvol->cng_sub_state);
520 printf(" curr_migr_unit %u\n", mvol->curr_migr_unit);
521 printf(" curr_migr_unit_hi %u\n", mvol->curr_migr_unit_hi);
522 printf(" checkpoint_id %u\n", mvol->checkpoint_id);
523 printf(" migr_state %u\n", mvol->migr_state);
524 printf(" migr_type %u (%s)\n", mvol->migr_type,
525 intel_mt2str(mvol->migr_type));
526 printf(" dirty %u\n", mvol->dirty);
527 printf(" fs_state %u\n", mvol->fs_state);
528 printf(" verify_errors %u\n", mvol->verify_errors);
529 printf(" bad_blocks %u\n", mvol->bad_blocks);
530
531 for (j = 0; j < (mvol->migr_state ? 2 : 1); j++) {
532 printf(" *** Map %d ***\n", j);
533 mmap = intel_get_map(mvol, j);
534 printf(" offset %u\n", mmap->offset);
535 printf(" offset_hi %u\n", mmap->offset_hi);
536 printf(" disk_sectors %u\n", mmap->disk_sectors);
537 printf(" disk_sectors_hi %u\n", mmap->disk_sectors_hi);
538 printf(" stripe_count %u\n", mmap->stripe_count);
539 printf(" stripe_count_hi %u\n", mmap->stripe_count_hi);
540 printf(" strip_sectors %u\n", mmap->strip_sectors);
541 printf(" status %u (%s)\n", mmap->status,
542 intel_status2str(mmap->status));
543 printf(" type %u (%s)\n", mmap->type,
544 intel_type2str(mmap->type));
545 printf(" total_disks %u\n", mmap->total_disks);
546 printf(" total_domains %u\n", mmap->total_domains);
547 printf(" failed_disk_num %u\n", mmap->failed_disk_num);
548 printf(" ddf %u\n", mmap->ddf);
549 printf(" disk_idx ");
550 for (k = 0; k < mmap->total_disks; k++)
551 printf(" 0x%08x", mmap->disk_idx[k]);
552 printf("\n");
553 }
554 }
555 printf("=================================================\n");
556}
557
558static struct intel_raid_conf *
559intel_meta_copy(struct intel_raid_conf *meta)
560{
561 struct intel_raid_conf *nmeta;
562
563 nmeta = malloc(meta->config_size, M_MD_INTEL, M_WAITOK);
564 memcpy(nmeta, meta, meta->config_size);
565 return (nmeta);
566}
567
568static int
569intel_meta_find_disk(struct intel_raid_conf *meta, char *serial)
570{
571 int pos;
572
573 for (pos = 0; pos < meta->total_disks; pos++) {
574 if (strncmp(meta->disk[pos].serial,
575 serial, INTEL_SERIAL_LEN) == 0)
576 return (pos);
577 }
578 return (-1);
579}
580
581static struct intel_raid_conf *
582intel_meta_read(struct g_consumer *cp)
583{
584 struct g_provider *pp;
585 struct intel_raid_conf *meta;
586 struct intel_raid_vol *mvol;
587 struct intel_raid_map *mmap, *mmap1;
588 char *buf;
589 int error, i, j, k, left, size;
590 uint32_t checksum, *ptr;
591
592 pp = cp->provider;
593
594 /* Read the anchor sector. */
595 buf = g_read_data(cp,
596 pp->mediasize - pp->sectorsize * 2, pp->sectorsize, &error);
597 if (buf == NULL) {
598 G_RAID_DEBUG(1, "Cannot read metadata from %s (error=%d).",
599 pp->name, error);
600 return (NULL);
601 }
602 meta = (struct intel_raid_conf *)buf;
603
604 /* Check if this is an Intel RAID struct */
605 if (strncmp(meta->intel_id, INTEL_MAGIC, strlen(INTEL_MAGIC))) {
606 G_RAID_DEBUG(1, "Intel signature check failed on %s", pp->name);
607 g_free(buf);
608 return (NULL);
609 }
610 if (meta->config_size > 65536 ||
611 meta->config_size < sizeof(struct intel_raid_conf)) {
612 G_RAID_DEBUG(1, "Intel metadata size looks wrong: %d",
613 meta->config_size);
614 g_free(buf);
615 return (NULL);
616 }
617 size = meta->config_size;
618 meta = malloc(size, M_MD_INTEL, M_WAITOK);
619 memcpy(meta, buf, min(size, pp->sectorsize));
620 g_free(buf);
621
622 /* Read all the rest, if needed. */
623 if (meta->config_size > pp->sectorsize) {
624 left = (meta->config_size - 1) / pp->sectorsize;
625 buf = g_read_data(cp,
626 pp->mediasize - pp->sectorsize * (2 + left),
627 pp->sectorsize * left, &error);
628 if (buf == NULL) {
629 G_RAID_DEBUG(1, "Cannot read remaining metadata"
630 " part from %s (error=%d).",
631 pp->name, error);
632 free(meta, M_MD_INTEL);
633 return (NULL);
634 }
635 memcpy(((char *)meta) + pp->sectorsize, buf,
636 pp->sectorsize * left);
637 g_free(buf);
638 }
639
640 /* Check metadata checksum. */
641 for (checksum = 0, ptr = (uint32_t *)meta, i = 0;
642 i < (meta->config_size / sizeof(uint32_t)); i++) {
643 checksum += *ptr++;
644 }
645 checksum -= meta->checksum;
646 if (checksum != meta->checksum) {
647 G_RAID_DEBUG(1, "Intel checksum check failed on %s", pp->name);
648 free(meta, M_MD_INTEL);
649 return (NULL);
650 }
651
652 /* Validate metadata size. */
653 size = sizeof(struct intel_raid_conf) +
654 sizeof(struct intel_raid_disk) * (meta->total_disks - 1) +
655 sizeof(struct intel_raid_vol) * meta->total_volumes;
656 if (size > meta->config_size) {
657badsize:
658 G_RAID_DEBUG(1, "Intel metadata size incorrect %d < %d",
659 meta->config_size, size);
660 free(meta, M_MD_INTEL);
661 return (NULL);
662 }
663 for (i = 0; i < meta->total_volumes; i++) {
664 mvol = intel_get_volume(meta, i);
665 mmap = intel_get_map(mvol, 0);
666 size += 4 * (mmap->total_disks - 1);
667 if (size > meta->config_size)
668 goto badsize;
669 if (mvol->migr_state) {
670 size += sizeof(struct intel_raid_map);
671 if (size > meta->config_size)
672 goto badsize;
673 mmap = intel_get_map(mvol, 1);
674 size += 4 * (mmap->total_disks - 1);
675 if (size > meta->config_size)
676 goto badsize;
677 }
678 }
679
680 g_raid_md_intel_print(meta);
681
682 if (strncmp(meta->version, INTEL_VERSION_1300, 6) > 0) {
683 G_RAID_DEBUG(1, "Intel unsupported version: '%.6s'",
684 meta->version);
685 free(meta, M_MD_INTEL);
686 return (NULL);
687 }
688
689 if (strncmp(meta->version, INTEL_VERSION_1300, 6) >= 0 &&
690 (meta->attributes & ~INTEL_ATTR_SUPPORTED) != 0) {
691 G_RAID_DEBUG(1, "Intel unsupported attributes: 0x%08x",
692 meta->attributes & ~INTEL_ATTR_SUPPORTED);
693 free(meta, M_MD_INTEL);
694 return (NULL);
695 }
696
697 /* Validate disk indexes. */
698 for (i = 0; i < meta->total_volumes; i++) {
699 mvol = intel_get_volume(meta, i);
700 for (j = 0; j < (mvol->migr_state ? 2 : 1); j++) {
701 mmap = intel_get_map(mvol, j);
702 for (k = 0; k < mmap->total_disks; k++) {
703 if ((mmap->disk_idx[k] & INTEL_DI_IDX) >
704 meta->total_disks) {
705 G_RAID_DEBUG(1, "Intel metadata disk"
706 " index %d too big (>%d)",
707 mmap->disk_idx[k] & INTEL_DI_IDX,
708 meta->total_disks);
709 free(meta, M_MD_INTEL);
710 return (NULL);
711 }
712 }
713 }
714 }
715
716 /* Validate migration types. */
717 for (i = 0; i < meta->total_volumes; i++) {
718 mvol = intel_get_volume(meta, i);
719 /* Deny unknown migration types. */
720 if (mvol->migr_state &&
721 mvol->migr_type != INTEL_MT_INIT &&
722 mvol->migr_type != INTEL_MT_REBUILD &&
723 mvol->migr_type != INTEL_MT_VERIFY &&
724 mvol->migr_type != INTEL_MT_GEN_MIGR &&
725 mvol->migr_type != INTEL_MT_REPAIR) {
726 G_RAID_DEBUG(1, "Intel metadata has unsupported"
727 " migration type %d", mvol->migr_type);
728 free(meta, M_MD_INTEL);
729 return (NULL);
730 }
731 /* Deny general migrations except SINGLE->RAID1. */
732 if (mvol->migr_state &&
733 mvol->migr_type == INTEL_MT_GEN_MIGR) {
734 mmap = intel_get_map(mvol, 0);
735 mmap1 = intel_get_map(mvol, 1);
736 if (mmap1->total_disks != 1 ||
737 mmap->type != INTEL_T_RAID1 ||
738 mmap->total_disks != 2 ||
739 mmap->offset != mmap1->offset ||
740 mmap->disk_sectors != mmap1->disk_sectors ||
741 mmap->total_domains != mmap->total_disks ||
742 mmap->offset_hi != mmap1->offset_hi ||
743 mmap->disk_sectors_hi != mmap1->disk_sectors_hi ||
744 (mmap->disk_idx[0] != mmap1->disk_idx[0] &&
745 mmap->disk_idx[0] != mmap1->disk_idx[1])) {
746 G_RAID_DEBUG(1, "Intel metadata has unsupported"
747 " variant of general migration");
748 free(meta, M_MD_INTEL);
749 return (NULL);
750 }
751 }
752 }
753
754 return (meta);
755}
756
757static int
758intel_meta_write(struct g_consumer *cp, struct intel_raid_conf *meta)
759{
760 struct g_provider *pp;
761 char *buf;
762 int error, i, sectors;
763 uint32_t checksum, *ptr;
764
765 pp = cp->provider;
766
767 /* Recalculate checksum for case if metadata were changed. */
768 meta->checksum = 0;
769 for (checksum = 0, ptr = (uint32_t *)meta, i = 0;
770 i < (meta->config_size / sizeof(uint32_t)); i++) {
771 checksum += *ptr++;
772 }
773 meta->checksum = checksum;
774
775 /* Create and fill buffer. */
776 sectors = (meta->config_size + pp->sectorsize - 1) / pp->sectorsize;
777 buf = malloc(sectors * pp->sectorsize, M_MD_INTEL, M_WAITOK | M_ZERO);
778 if (sectors > 1) {
779 memcpy(buf, ((char *)meta) + pp->sectorsize,
780 (sectors - 1) * pp->sectorsize);
781 }
782 memcpy(buf + (sectors - 1) * pp->sectorsize, meta, pp->sectorsize);
783
784 error = g_write_data(cp,
785 pp->mediasize - pp->sectorsize * (1 + sectors),
786 buf, pp->sectorsize * sectors);
787 if (error != 0) {
788 G_RAID_DEBUG(1, "Cannot write metadata to %s (error=%d).",
789 pp->name, error);
790 }
791
792 free(buf, M_MD_INTEL);
793 return (error);
794}
795
796static int
797intel_meta_erase(struct g_consumer *cp)
798{
799 struct g_provider *pp;
800 char *buf;
801 int error;
802
803 pp = cp->provider;
804 buf = malloc(pp->sectorsize, M_MD_INTEL, M_WAITOK | M_ZERO);
805 error = g_write_data(cp,
806 pp->mediasize - 2 * pp->sectorsize,
807 buf, pp->sectorsize);
808 if (error != 0) {
809 G_RAID_DEBUG(1, "Cannot erase metadata on %s (error=%d).",
810 pp->name, error);
811 }
812 free(buf, M_MD_INTEL);
813 return (error);
814}
815
816static int
817intel_meta_write_spare(struct g_consumer *cp, struct intel_raid_disk *d)
818{
819 struct intel_raid_conf *meta;
820 int error;
821
822 /* Fill anchor and single disk. */
823 meta = malloc(INTEL_MAX_MD_SIZE(1), M_MD_INTEL, M_WAITOK | M_ZERO);
824 memcpy(&meta->intel_id[0], INTEL_MAGIC, sizeof(INTEL_MAGIC) - 1);
825 memcpy(&meta->version[0], INTEL_VERSION_1000,
826 sizeof(INTEL_VERSION_1000) - 1);
827 meta->config_size = INTEL_MAX_MD_SIZE(1);
828 meta->config_id = meta->orig_config_id = arc4random();
829 meta->generation = 1;
830 meta->total_disks = 1;
831 meta->disk[0] = *d;
832 error = intel_meta_write(cp, meta);
833 free(meta, M_MD_INTEL);
834 return (error);
835}
836
837static struct g_raid_disk *
838g_raid_md_intel_get_disk(struct g_raid_softc *sc, int id)
839{
840 struct g_raid_disk *disk;
841 struct g_raid_md_intel_perdisk *pd;
842
843 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
844 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
845 if (pd->pd_disk_pos == id)
846 break;
847 }
848 return (disk);
849}
850
851static int
852g_raid_md_intel_supported(int level, int qual, int disks, int force)
853{
854
855 switch (level) {
856 case G_RAID_VOLUME_RL_RAID0:
857 if (disks < 1)
858 return (0);
859 if (!force && (disks < 2 || disks > 6))
860 return (0);
861 break;
862 case G_RAID_VOLUME_RL_RAID1:
863 if (disks < 1)
864 return (0);
865 if (!force && (disks != 2))
866 return (0);
867 break;
868 case G_RAID_VOLUME_RL_RAID1E:
869 if (disks < 2)
870 return (0);
871 if (!force && (disks != 4))
872 return (0);
873 break;
874 case G_RAID_VOLUME_RL_RAID5:
875 if (disks < 3)
876 return (0);
877 if (!force && disks > 6)
878 return (0);
879 if (qual != G_RAID_VOLUME_RLQ_R5LA)
880 return (0);
881 break;
882 default:
883 return (0);
884 }
885 if (level != G_RAID_VOLUME_RL_RAID5 && qual != G_RAID_VOLUME_RLQ_NONE)
886 return (0);
887 return (1);
888}
889
890static struct g_raid_volume *
891g_raid_md_intel_get_volume(struct g_raid_softc *sc, int id)
892{
893 struct g_raid_volume *mvol;
894 struct g_raid_md_intel_pervolume *pv;
895
896 TAILQ_FOREACH(mvol, &sc->sc_volumes, v_next) {
897 pv = mvol->v_md_data;
898 if (pv->pv_volume_pos == id)
899 break;
900 }
901 return (mvol);
902}
903
904static int
905g_raid_md_intel_start_disk(struct g_raid_disk *disk)
906{
907 struct g_raid_softc *sc;
908 struct g_raid_subdisk *sd, *tmpsd;
909 struct g_raid_disk *olddisk, *tmpdisk;
910 struct g_raid_md_object *md;
911 struct g_raid_md_intel_object *mdi;
912 struct g_raid_md_intel_pervolume *pv;
913 struct g_raid_md_intel_perdisk *pd, *oldpd;
914 struct intel_raid_conf *meta;
915 struct intel_raid_vol *mvol;
916 struct intel_raid_map *mmap0, *mmap1;
917 int disk_pos, resurrection = 0, migr_global, i;
918
919 sc = disk->d_softc;
920 md = sc->sc_md;
921 mdi = (struct g_raid_md_intel_object *)md;
922 meta = mdi->mdio_meta;
923 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
924 olddisk = NULL;
925
926 /* Find disk position in metadata by it's serial. */
927 disk_pos = intel_meta_find_disk(meta, pd->pd_disk_meta.serial);
928 if (disk_pos < 0) {
929 G_RAID_DEBUG1(1, sc, "Unknown, probably new or stale disk");
930 /* Failed stale disk is useless for us. */
931 if ((pd->pd_disk_meta.flags & INTEL_F_FAILED) &&
932 !(pd->pd_disk_meta.flags & INTEL_F_DISABLED)) {
933 g_raid_change_disk_state(disk, G_RAID_DISK_S_STALE_FAILED);
934 return (0);
935 }
936 /* If we are in the start process, that's all for now. */
937 if (!mdi->mdio_started)
938 goto nofit;
939 /*
940 * If we have already started - try to get use of the disk.
941 * Try to replace OFFLINE disks first, then FAILED.
942 */
943 TAILQ_FOREACH(tmpdisk, &sc->sc_disks, d_next) {
944 if (tmpdisk->d_state != G_RAID_DISK_S_OFFLINE &&
945 tmpdisk->d_state != G_RAID_DISK_S_FAILED)
946 continue;
947 /* Make sure this disk is big enough. */
948 TAILQ_FOREACH(sd, &tmpdisk->d_subdisks, sd_next) {
949 off_t disk_sectors =
950 intel_get_disk_sectors(&pd->pd_disk_meta);
951
952 if (sd->sd_offset + sd->sd_size + 4096 >
953 disk_sectors * 512) {
954 G_RAID_DEBUG1(1, sc,
955 "Disk too small (%llu < %llu)",
956 (unsigned long long)
957 disk_sectors * 512,
958 (unsigned long long)
959 sd->sd_offset + sd->sd_size + 4096);
960 break;
961 }
962 }
963 if (sd != NULL)
964 continue;
965 if (tmpdisk->d_state == G_RAID_DISK_S_OFFLINE) {
966 olddisk = tmpdisk;
967 break;
968 } else if (olddisk == NULL)
969 olddisk = tmpdisk;
970 }
971 if (olddisk == NULL) {
972nofit:
973 if (pd->pd_disk_meta.flags & INTEL_F_SPARE) {
974 g_raid_change_disk_state(disk,
975 G_RAID_DISK_S_SPARE);
976 return (1);
977 } else {
978 g_raid_change_disk_state(disk,
979 G_RAID_DISK_S_STALE);
980 return (0);
981 }
982 }
983 oldpd = (struct g_raid_md_intel_perdisk *)olddisk->d_md_data;
984 disk_pos = oldpd->pd_disk_pos;
985 resurrection = 1;
986 }
987
988 if (olddisk == NULL) {
989 /* Find placeholder by position. */
990 olddisk = g_raid_md_intel_get_disk(sc, disk_pos);
991 if (olddisk == NULL)
992 panic("No disk at position %d!", disk_pos);
993 if (olddisk->d_state != G_RAID_DISK_S_OFFLINE) {
994 G_RAID_DEBUG1(1, sc, "More then one disk for pos %d",
995 disk_pos);
996 g_raid_change_disk_state(disk, G_RAID_DISK_S_STALE);
997 return (0);
998 }
999 oldpd = (struct g_raid_md_intel_perdisk *)olddisk->d_md_data;
1000 }
1001
1002 /* Replace failed disk or placeholder with new disk. */
1003 TAILQ_FOREACH_SAFE(sd, &olddisk->d_subdisks, sd_next, tmpsd) {
1004 TAILQ_REMOVE(&olddisk->d_subdisks, sd, sd_next);
1005 TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next);
1006 sd->sd_disk = disk;
1007 }
1008 oldpd->pd_disk_pos = -2;
1009 pd->pd_disk_pos = disk_pos;
1010
1011 /* If it was placeholder -- destroy it. */
1012 if (olddisk->d_state == G_RAID_DISK_S_OFFLINE) {
1013 g_raid_destroy_disk(olddisk);
1014 } else {
1015 /* Otherwise, make it STALE_FAILED. */
1016 g_raid_change_disk_state(olddisk, G_RAID_DISK_S_STALE_FAILED);
1017 /* Update global metadata just in case. */
1018 memcpy(&meta->disk[disk_pos], &pd->pd_disk_meta,
1019 sizeof(struct intel_raid_disk));
1020 }
1021
1022 /* Welcome the new disk. */
1023 if ((meta->disk[disk_pos].flags & INTEL_F_DISABLED) &&
1024 !(pd->pd_disk_meta.flags & INTEL_F_SPARE))
1025 g_raid_change_disk_state(disk, G_RAID_DISK_S_DISABLED);
1026 else if (resurrection)
1027 g_raid_change_disk_state(disk, G_RAID_DISK_S_ACTIVE);
1028 else if (meta->disk[disk_pos].flags & INTEL_F_FAILED)
1029 g_raid_change_disk_state(disk, G_RAID_DISK_S_FAILED);
1030 else if (meta->disk[disk_pos].flags & INTEL_F_SPARE)
1031 g_raid_change_disk_state(disk, G_RAID_DISK_S_SPARE);
1032 else
1033 g_raid_change_disk_state(disk, G_RAID_DISK_S_ACTIVE);
1034 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
1035 pv = sd->sd_volume->v_md_data;
1036 mvol = intel_get_volume(meta, pv->pv_volume_pos);
1037 mmap0 = intel_get_map(mvol, 0);
1038 if (mvol->migr_state)
1039 mmap1 = intel_get_map(mvol, 1);
1040 else
1041 mmap1 = mmap0;
1042
1043 migr_global = 1;
1044 for (i = 0; i < mmap0->total_disks; i++) {
1045 if ((mmap0->disk_idx[i] & INTEL_DI_RBLD) == 0 &&
1046 (mmap1->disk_idx[i] & INTEL_DI_RBLD) != 0)
1047 migr_global = 0;
1048 }
1049
1050 if ((meta->disk[disk_pos].flags & INTEL_F_DISABLED) &&
1051 !(pd->pd_disk_meta.flags & INTEL_F_SPARE)) {
1052 /* Disabled disk, useless. */
1053 g_raid_change_subdisk_state(sd,
1054 G_RAID_SUBDISK_S_NONE);
1055 } else if (resurrection) {
1056 /* Stale disk, almost same as new. */
1057 g_raid_change_subdisk_state(sd,
1058 G_RAID_SUBDISK_S_NEW);
1059 } else if (meta->disk[disk_pos].flags & INTEL_F_FAILED) {
1060 /* Failed disk, almost useless. */
1061 g_raid_change_subdisk_state(sd,
1062 G_RAID_SUBDISK_S_FAILED);
1063 } else if (mvol->migr_state == 0) {
1064 if (mmap0->status == INTEL_S_UNINITIALIZED &&
1065 (!pv->pv_cng || pv->pv_cng_master_disk != disk_pos)) {
1066 /* Freshly created uninitialized volume. */
1067 g_raid_change_subdisk_state(sd,
1068 G_RAID_SUBDISK_S_UNINITIALIZED);
1069 } else if (mmap0->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) {
1070 /* Freshly inserted disk. */
1071 g_raid_change_subdisk_state(sd,
1072 G_RAID_SUBDISK_S_NEW);
1073 } else if (mvol->dirty && (!pv->pv_cng ||
1074 pv->pv_cng_master_disk != disk_pos)) {
1075 /* Dirty volume (unclean shutdown). */
1076 g_raid_change_subdisk_state(sd,
1077 G_RAID_SUBDISK_S_STALE);
1078 } else {
1079 /* Up to date disk. */
1080 g_raid_change_subdisk_state(sd,
1081 G_RAID_SUBDISK_S_ACTIVE);
1082 }
1083 } else if (mvol->migr_type == INTEL_MT_INIT ||
1084 mvol->migr_type == INTEL_MT_REBUILD) {
1085 if (mmap0->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) {
1086 /* Freshly inserted disk. */
1087 g_raid_change_subdisk_state(sd,
1088 G_RAID_SUBDISK_S_NEW);
1089 } else if (mmap1->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) {
1090 /* Rebuilding disk. */
1091 g_raid_change_subdisk_state(sd,
1092 G_RAID_SUBDISK_S_REBUILD);
1093 if (mvol->dirty) {
1094 sd->sd_rebuild_pos = 0;
1095 } else {
1096 sd->sd_rebuild_pos =
1097 intel_get_vol_curr_migr_unit(mvol) *
1098 sd->sd_volume->v_strip_size *
1099 mmap0->total_domains;
1100 }
1101 } else if (mvol->migr_type == INTEL_MT_INIT &&
1102 migr_global) {
1103 /* Freshly created uninitialized volume. */
1104 g_raid_change_subdisk_state(sd,
1105 G_RAID_SUBDISK_S_UNINITIALIZED);
1106 } else if (mvol->dirty && (!pv->pv_cng ||
1107 pv->pv_cng_master_disk != disk_pos)) {
1108 /* Dirty volume (unclean shutdown). */
1109 g_raid_change_subdisk_state(sd,
1110 G_RAID_SUBDISK_S_STALE);
1111 } else {
1112 /* Up to date disk. */
1113 g_raid_change_subdisk_state(sd,
1114 G_RAID_SUBDISK_S_ACTIVE);
1115 }
1116 } else if (mvol->migr_type == INTEL_MT_VERIFY ||
1117 mvol->migr_type == INTEL_MT_REPAIR) {
1118 if (mmap0->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) {
1119 /* Freshly inserted disk. */
1120 g_raid_change_subdisk_state(sd,
1121 G_RAID_SUBDISK_S_NEW);
1122 } else if ((mmap1->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) ||
1123 migr_global) {
1124 /* Resyncing disk. */
1125 g_raid_change_subdisk_state(sd,
1126 G_RAID_SUBDISK_S_RESYNC);
1127 if (mvol->dirty) {
1128 sd->sd_rebuild_pos = 0;
1129 } else {
1130 sd->sd_rebuild_pos =
1131 intel_get_vol_curr_migr_unit(mvol) *
1132 sd->sd_volume->v_strip_size *
1133 mmap0->total_domains;
1134 }
1135 } else if (mvol->dirty) {
1136 /* Dirty volume (unclean shutdown). */
1137 g_raid_change_subdisk_state(sd,
1138 G_RAID_SUBDISK_S_STALE);
1139 } else {
1140 /* Up to date disk. */
1141 g_raid_change_subdisk_state(sd,
1142 G_RAID_SUBDISK_S_ACTIVE);
1143 }
1144 } else if (mvol->migr_type == INTEL_MT_GEN_MIGR) {
1145 if ((mmap1->disk_idx[0] & INTEL_DI_IDX) != disk_pos) {
1146 /* Freshly inserted disk. */
1147 g_raid_change_subdisk_state(sd,
1148 G_RAID_SUBDISK_S_NEW);
1149 } else {
1150 /* Up to date disk. */
1151 g_raid_change_subdisk_state(sd,
1152 G_RAID_SUBDISK_S_ACTIVE);
1153 }
1154 }
1155 g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW,
1156 G_RAID_EVENT_SUBDISK);
1157 }
1158
1159 /* Update status of our need for spare. */
1160 if (mdi->mdio_started) {
1161 mdi->mdio_incomplete =
1162 (g_raid_ndisks(sc, G_RAID_DISK_S_ACTIVE) +
1163 g_raid_ndisks(sc, G_RAID_DISK_S_DISABLED) <
1164 meta->total_disks);
1165 }
1166
1167 return (resurrection);
1168}
1169
1170static void
1171g_disk_md_intel_retaste(void *arg, int pending)
1172{
1173
1174 G_RAID_DEBUG(1, "Array is not complete, trying to retaste.");
1175 g_retaste(&g_raid_class);
1176 free(arg, M_MD_INTEL);
1177}
1178
1179static void
1180g_raid_md_intel_refill(struct g_raid_softc *sc)
1181{
1182 struct g_raid_md_object *md;
1183 struct g_raid_md_intel_object *mdi;
1184 struct intel_raid_conf *meta;
1185 struct g_raid_disk *disk;
1186 struct task *task;
1187 int update, na;
1188
1189 md = sc->sc_md;
1190 mdi = (struct g_raid_md_intel_object *)md;
1191 meta = mdi->mdio_meta;
1192 update = 0;
1193 do {
1194 /* Make sure we miss anything. */
1195 na = g_raid_ndisks(sc, G_RAID_DISK_S_ACTIVE) +
1196 g_raid_ndisks(sc, G_RAID_DISK_S_DISABLED);
1197 if (na == meta->total_disks)
1198 break;
1199
1200 G_RAID_DEBUG1(1, md->mdo_softc,
1201 "Array is not complete (%d of %d), "
1202 "trying to refill.", na, meta->total_disks);
1203
1204 /* Try to get use some of STALE disks. */
1205 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
1206 if (disk->d_state == G_RAID_DISK_S_STALE) {
1207 update += g_raid_md_intel_start_disk(disk);
1208 if (disk->d_state == G_RAID_DISK_S_ACTIVE ||
1209 disk->d_state == G_RAID_DISK_S_DISABLED)
1210 break;
1211 }
1212 }
1213 if (disk != NULL)
1214 continue;
1215
1216 /* Try to get use some of SPARE disks. */
1217 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
1218 if (disk->d_state == G_RAID_DISK_S_SPARE) {
1219 update += g_raid_md_intel_start_disk(disk);
1220 if (disk->d_state == G_RAID_DISK_S_ACTIVE)
1221 break;
1222 }
1223 }
1224 } while (disk != NULL);
1225
1226 /* Write new metadata if we changed something. */
1227 if (update) {
1228 g_raid_md_write_intel(md, NULL, NULL, NULL);
1229 meta = mdi->mdio_meta;
1230 }
1231
1232 /* Update status of our need for spare. */
1233 mdi->mdio_incomplete = (g_raid_ndisks(sc, G_RAID_DISK_S_ACTIVE) +
1234 g_raid_ndisks(sc, G_RAID_DISK_S_DISABLED) < meta->total_disks);
1235
1236 /* Request retaste hoping to find spare. */
1237 if (mdi->mdio_incomplete) {
1238 task = malloc(sizeof(struct task),
1239 M_MD_INTEL, M_WAITOK | M_ZERO);
1240 TASK_INIT(task, 0, g_disk_md_intel_retaste, task);
1241 taskqueue_enqueue(taskqueue_swi, task);
1242 }
1243}
1244
1245static void
1246g_raid_md_intel_start(struct g_raid_softc *sc)
1247{
1248 struct g_raid_md_object *md;
1249 struct g_raid_md_intel_object *mdi;
1250 struct g_raid_md_intel_pervolume *pv;
1251 struct g_raid_md_intel_perdisk *pd;
1252 struct intel_raid_conf *meta;
1253 struct intel_raid_vol *mvol;
1254 struct intel_raid_map *mmap;
1255 struct g_raid_volume *vol;
1256 struct g_raid_subdisk *sd;
1257 struct g_raid_disk *disk;
1258 int i, j, disk_pos;
1259
1260 md = sc->sc_md;
1261 mdi = (struct g_raid_md_intel_object *)md;
1262 meta = mdi->mdio_meta;
1263
1264 /* Create volumes and subdisks. */
1265 for (i = 0; i < meta->total_volumes; i++) {
1266 mvol = intel_get_volume(meta, i);
1267 mmap = intel_get_map(mvol, 0);
1268 vol = g_raid_create_volume(sc, mvol->name, mvol->tid - 1);
1269 pv = malloc(sizeof(*pv), M_MD_INTEL, M_WAITOK | M_ZERO);
1270 pv->pv_volume_pos = i;
1271 pv->pv_cng = (mvol->state & INTEL_ST_CLONE_N_GO) != 0;
1272 pv->pv_cng_man_sync = (mvol->state & INTEL_ST_CLONE_MAN_SYNC) != 0;
1273 if (mvol->cng_master_disk < mmap->total_disks)
1274 pv->pv_cng_master_disk = mvol->cng_master_disk;
1275 vol->v_md_data = pv;
1276 vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_NONE;
1277 if (mmap->type == INTEL_T_RAID0)
1278 vol->v_raid_level = G_RAID_VOLUME_RL_RAID0;
1279 else if (mmap->type == INTEL_T_RAID1 &&
1280 mmap->total_domains >= 2 &&
1281 mmap->total_domains <= mmap->total_disks) {
1282 /* Assume total_domains is correct. */
1283 if (mmap->total_domains == mmap->total_disks)
1284 vol->v_raid_level = G_RAID_VOLUME_RL_RAID1;
1285 else
1286 vol->v_raid_level = G_RAID_VOLUME_RL_RAID1E;
1287 } else if (mmap->type == INTEL_T_RAID1) {
1288 /* total_domains looks wrong. */
1289 if (mmap->total_disks <= 2)
1290 vol->v_raid_level = G_RAID_VOLUME_RL_RAID1;
1291 else
1292 vol->v_raid_level = G_RAID_VOLUME_RL_RAID1E;
1293 } else if (mmap->type == INTEL_T_RAID5) {
1294 vol->v_raid_level = G_RAID_VOLUME_RL_RAID5;
1295 vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_R5LA;
1296 } else
1297 vol->v_raid_level = G_RAID_VOLUME_RL_UNKNOWN;
1298 vol->v_strip_size = (u_int)mmap->strip_sectors * 512; //ZZZ
1299 vol->v_disks_count = mmap->total_disks;
1300 vol->v_mediasize = (off_t)mvol->total_sectors * 512; //ZZZ
1301 vol->v_sectorsize = 512; //ZZZ
1302 for (j = 0; j < vol->v_disks_count; j++) {
1303 sd = &vol->v_subdisks[j];
1304 sd->sd_offset = intel_get_map_offset(mmap) * 512; //ZZZ
1305 sd->sd_size = intel_get_map_disk_sectors(mmap) * 512; //ZZZ
1306 }
1307 g_raid_start_volume(vol);
1308 }
1309
1310 /* Create disk placeholders to store data for later writing. */
1311 for (disk_pos = 0; disk_pos < meta->total_disks; disk_pos++) {
1312 pd = malloc(sizeof(*pd), M_MD_INTEL, M_WAITOK | M_ZERO);
1313 pd->pd_disk_pos = disk_pos;
1314 pd->pd_disk_meta = meta->disk[disk_pos];
1315 disk = g_raid_create_disk(sc);
1316 disk->d_md_data = (void *)pd;
1317 disk->d_state = G_RAID_DISK_S_OFFLINE;
1318 for (i = 0; i < meta->total_volumes; i++) {
1319 mvol = intel_get_volume(meta, i);
1320 mmap = intel_get_map(mvol, 0);
1321 for (j = 0; j < mmap->total_disks; j++) {
1322 if ((mmap->disk_idx[j] & INTEL_DI_IDX) == disk_pos)
1323 break;
1324 }
1325 if (j == mmap->total_disks)
1326 continue;
1327 vol = g_raid_md_intel_get_volume(sc, i);
1328 sd = &vol->v_subdisks[j];
1329 sd->sd_disk = disk;
1330 TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next);
1331 }
1332 }
1333
1334 /* Make all disks found till the moment take their places. */
1335 do {
1336 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
1337 if (disk->d_state == G_RAID_DISK_S_NONE) {
1338 g_raid_md_intel_start_disk(disk);
1339 break;
1340 }
1341 }
1342 } while (disk != NULL);
1343
1344 mdi->mdio_started = 1;
1345 G_RAID_DEBUG1(0, sc, "Array started.");
1346 g_raid_md_write_intel(md, NULL, NULL, NULL);
1347
1348 /* Pickup any STALE/SPARE disks to refill array if needed. */
1349 g_raid_md_intel_refill(sc);
1350
1351 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
1352 g_raid_event_send(vol, G_RAID_VOLUME_E_START,
1353 G_RAID_EVENT_VOLUME);
1354 }
1355
1356 callout_stop(&mdi->mdio_start_co);
1357 G_RAID_DEBUG1(1, sc, "root_mount_rel %p", mdi->mdio_rootmount);
1358 root_mount_rel(mdi->mdio_rootmount);
1359 mdi->mdio_rootmount = NULL;
1360}
1361
1362static void
1363g_raid_md_intel_new_disk(struct g_raid_disk *disk)
1364{
1365 struct g_raid_softc *sc;
1366 struct g_raid_md_object *md;
1367 struct g_raid_md_intel_object *mdi;
1368 struct intel_raid_conf *pdmeta;
1369 struct g_raid_md_intel_perdisk *pd;
1370
1371 sc = disk->d_softc;
1372 md = sc->sc_md;
1373 mdi = (struct g_raid_md_intel_object *)md;
1374 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
1375 pdmeta = pd->pd_meta;
1376
1377 if (mdi->mdio_started) {
1378 if (g_raid_md_intel_start_disk(disk))
1379 g_raid_md_write_intel(md, NULL, NULL, NULL);
1380 } else {
1381 /* If we haven't started yet - check metadata freshness. */
1382 if (mdi->mdio_meta == NULL ||
1383 ((int32_t)(pdmeta->generation - mdi->mdio_generation)) > 0) {
1384 G_RAID_DEBUG1(1, sc, "Newer disk");
1385 if (mdi->mdio_meta != NULL)
1386 free(mdi->mdio_meta, M_MD_INTEL);
1387 mdi->mdio_meta = intel_meta_copy(pdmeta);
1388 mdi->mdio_generation = mdi->mdio_meta->generation;
1389 mdi->mdio_disks_present = 1;
1390 } else if (pdmeta->generation == mdi->mdio_generation) {
1391 mdi->mdio_disks_present++;
1392 G_RAID_DEBUG1(1, sc, "Matching disk (%d of %d up)",
1393 mdi->mdio_disks_present,
1394 mdi->mdio_meta->total_disks);
1395 } else {
1396 G_RAID_DEBUG1(1, sc, "Older disk");
1397 }
1398 /* If we collected all needed disks - start array. */
1399 if (mdi->mdio_disks_present == mdi->mdio_meta->total_disks)
1400 g_raid_md_intel_start(sc);
1401 }
1402}
1403
1404static void
1405g_raid_intel_go(void *arg)
1406{
1407 struct g_raid_softc *sc;
1408 struct g_raid_md_object *md;
1409 struct g_raid_md_intel_object *mdi;
1410
1411 sc = arg;
1412 md = sc->sc_md;
1413 mdi = (struct g_raid_md_intel_object *)md;
1414 if (!mdi->mdio_started) {
1415 G_RAID_DEBUG1(0, sc, "Force array start due to timeout.");
1416 g_raid_event_send(sc, G_RAID_NODE_E_START, 0);
1417 }
1418}
1419
1420static int
1421g_raid_md_create_intel(struct g_raid_md_object *md, struct g_class *mp,
1422 struct g_geom **gp)
1423{
1424 struct g_raid_softc *sc;
1425 struct g_raid_md_intel_object *mdi;
1426 char name[16];
1427
1428 mdi = (struct g_raid_md_intel_object *)md;
1429 mdi->mdio_config_id = mdi->mdio_orig_config_id = arc4random();
1430 mdi->mdio_generation = 0;
1431 snprintf(name, sizeof(name), "Intel-%08x", mdi->mdio_config_id);
1432 sc = g_raid_create_node(mp, name, md);
1433 if (sc == NULL)
1434 return (G_RAID_MD_TASTE_FAIL);
1435 md->mdo_softc = sc;
1436 *gp = sc->sc_geom;
1437 return (G_RAID_MD_TASTE_NEW);
1438}
1439
1440/*
1441 * Return the last N characters of the serial label. The Linux and
1442 * ataraid(7) code always uses the last 16 characters of the label to
1443 * store into the Intel meta format. Generalize this to N characters
1444 * since that's easy. Labels can be up to 20 characters for SATA drives
1445 * and up 251 characters for SAS drives. Since intel controllers don't
1446 * support SAS drives, just stick with the SATA limits for stack friendliness.
1447 */
1448static int
1449g_raid_md_get_label(struct g_consumer *cp, char *serial, int serlen)
1450{
1451 char serial_buffer[24];
1452 int len, error;
1453
1454 len = sizeof(serial_buffer);
1455 error = g_io_getattr("GEOM::ident", cp, &len, serial_buffer);
1456 if (error != 0)
1457 return (error);
1458 len = strlen(serial_buffer);
1459 if (len > serlen)
1460 len -= serlen;
1461 else
1462 len = 0;
1463 strncpy(serial, serial_buffer + len, serlen);
1464 return (0);
1465}
1466
1467static int
1468g_raid_md_taste_intel(struct g_raid_md_object *md, struct g_class *mp,
1469 struct g_consumer *cp, struct g_geom **gp)
1470{
1471 struct g_consumer *rcp;
1472 struct g_provider *pp;
1473 struct g_raid_md_intel_object *mdi, *mdi1;
1474 struct g_raid_softc *sc;
1475 struct g_raid_disk *disk;
1476 struct intel_raid_conf *meta;
1477 struct g_raid_md_intel_perdisk *pd;
1478 struct g_geom *geom;
1479 int error, disk_pos, result, spare, len;
1480 char serial[INTEL_SERIAL_LEN];
1481 char name[16];
1482 uint16_t vendor;
1483
1484 G_RAID_DEBUG(1, "Tasting Intel on %s", cp->provider->name);
1485 mdi = (struct g_raid_md_intel_object *)md;
1486 pp = cp->provider;
1487
1488 /* Read metadata from device. */
1489 meta = NULL;
30
31#include <sys/param.h>
32#include <sys/bio.h>
33#include <sys/endian.h>
34#include <sys/kernel.h>
35#include <sys/kobj.h>
36#include <sys/limits.h>
37#include <sys/lock.h>
38#include <sys/malloc.h>
39#include <sys/mutex.h>
40#include <sys/systm.h>
41#include <sys/taskqueue.h>
42#include <geom/geom.h>
43#include "geom/raid/g_raid.h"
44#include "g_raid_md_if.h"
45
46static MALLOC_DEFINE(M_MD_INTEL, "md_intel_data", "GEOM_RAID Intel metadata");
47
48struct intel_raid_map {
49 uint32_t offset;
50 uint32_t disk_sectors;
51 uint32_t stripe_count;
52 uint16_t strip_sectors;
53 uint8_t status;
54#define INTEL_S_READY 0x00
55#define INTEL_S_UNINITIALIZED 0x01
56#define INTEL_S_DEGRADED 0x02
57#define INTEL_S_FAILURE 0x03
58
59 uint8_t type;
60#define INTEL_T_RAID0 0x00
61#define INTEL_T_RAID1 0x01
62#define INTEL_T_RAID5 0x05
63
64 uint8_t total_disks;
65 uint8_t total_domains;
66 uint8_t failed_disk_num;
67 uint8_t ddf;
68 uint32_t offset_hi;
69 uint32_t disk_sectors_hi;
70 uint32_t stripe_count_hi;
71 uint32_t filler_2[4];
72 uint32_t disk_idx[1]; /* total_disks entries. */
73#define INTEL_DI_IDX 0x00ffffff
74#define INTEL_DI_RBLD 0x01000000
75} __packed;
76
77struct intel_raid_vol {
78 uint8_t name[16];
79 u_int64_t total_sectors __packed;
80 uint32_t state;
81#define INTEL_ST_BOOTABLE 0x00000001
82#define INTEL_ST_BOOT_DEVICE 0x00000002
83#define INTEL_ST_READ_COALESCING 0x00000004
84#define INTEL_ST_WRITE_COALESCING 0x00000008
85#define INTEL_ST_LAST_SHUTDOWN_DIRTY 0x00000010
86#define INTEL_ST_HIDDEN_AT_BOOT 0x00000020
87#define INTEL_ST_CURRENTLY_HIDDEN 0x00000040
88#define INTEL_ST_VERIFY_AND_FIX 0x00000080
89#define INTEL_ST_MAP_STATE_UNINIT 0x00000100
90#define INTEL_ST_NO_AUTO_RECOVERY 0x00000200
91#define INTEL_ST_CLONE_N_GO 0x00000400
92#define INTEL_ST_CLONE_MAN_SYNC 0x00000800
93#define INTEL_ST_CNG_MASTER_DISK_NUM 0x00001000
94 uint32_t reserved;
95 uint8_t migr_priority;
96 uint8_t num_sub_vols;
97 uint8_t tid;
98 uint8_t cng_master_disk;
99 uint16_t cache_policy;
100 uint8_t cng_state;
101#define INTEL_CNGST_UPDATED 0
102#define INTEL_CNGST_NEEDS_UPDATE 1
103#define INTEL_CNGST_MASTER_MISSING 2
104 uint8_t cng_sub_state;
105 uint32_t filler_0[10];
106
107 uint32_t curr_migr_unit;
108 uint32_t checkpoint_id;
109 uint8_t migr_state;
110 uint8_t migr_type;
111#define INTEL_MT_INIT 0
112#define INTEL_MT_REBUILD 1
113#define INTEL_MT_VERIFY 2
114#define INTEL_MT_GEN_MIGR 3
115#define INTEL_MT_STATE_CHANGE 4
116#define INTEL_MT_REPAIR 5
117 uint8_t dirty;
118 uint8_t fs_state;
119 uint16_t verify_errors;
120 uint16_t bad_blocks;
121 uint32_t curr_migr_unit_hi;
122 uint32_t filler_1[3];
123 struct intel_raid_map map[1]; /* 2 entries if migr_state != 0. */
124} __packed;
125
126struct intel_raid_disk {
127#define INTEL_SERIAL_LEN 16
128 uint8_t serial[INTEL_SERIAL_LEN];
129 uint32_t sectors;
130 uint32_t id;
131 uint32_t flags;
132#define INTEL_F_SPARE 0x01
133#define INTEL_F_ASSIGNED 0x02
134#define INTEL_F_FAILED 0x04
135#define INTEL_F_ONLINE 0x08
136#define INTEL_F_DISABLED 0x80
137 uint32_t owner_cfg_num;
138 uint32_t sectors_hi;
139 uint32_t filler[3];
140} __packed;
141
142struct intel_raid_conf {
143 uint8_t intel_id[24];
144#define INTEL_MAGIC "Intel Raid ISM Cfg Sig. "
145
146 uint8_t version[6];
147#define INTEL_VERSION_1000 "1.0.00" /* RAID0 */
148#define INTEL_VERSION_1100 "1.1.00" /* RAID1 */
149#define INTEL_VERSION_1200 "1.2.00" /* Many volumes */
150#define INTEL_VERSION_1201 "1.2.01" /* 3 or 4 disks */
151#define INTEL_VERSION_1202 "1.2.02" /* RAID5 */
152#define INTEL_VERSION_1204 "1.2.04" /* 5 or 6 disks */
153#define INTEL_VERSION_1206 "1.2.06" /* CNG */
154#define INTEL_VERSION_1300 "1.3.00" /* Attributes */
155
156 uint8_t dummy_0[2];
157 uint32_t checksum;
158 uint32_t config_size;
159 uint32_t config_id;
160 uint32_t generation;
161 uint32_t error_log_size;
162 uint32_t attributes;
163#define INTEL_ATTR_RAID0 0x00000001
164#define INTEL_ATTR_RAID1 0x00000002
165#define INTEL_ATTR_RAID10 0x00000004
166#define INTEL_ATTR_RAID1E 0x00000008
167#define INTEL_ATTR_RAID5 0x00000010
168#define INTEL_ATTR_RAIDCNG 0x00000020
169#define INTEL_ATTR_EXT_STRIP 0x00000040
170#define INTEL_ATTR_NVM_CACHE 0x02000000
171#define INTEL_ATTR_2TB_DISK 0x04000000
172#define INTEL_ATTR_BBM 0x08000000
173#define INTEL_ATTR_NVM_CACHE2 0x10000000
174#define INTEL_ATTR_2TB 0x20000000
175#define INTEL_ATTR_PM 0x40000000
176#define INTEL_ATTR_CHECKSUM 0x80000000
177
178 uint8_t total_disks;
179 uint8_t total_volumes;
180 uint8_t error_log_pos;
181 uint8_t dummy_2[1];
182 uint32_t cache_size;
183 uint32_t orig_config_id;
184 uint32_t pwr_cycle_count;
185 uint32_t bbm_log_size;
186 uint32_t filler_0[35];
187 struct intel_raid_disk disk[1]; /* total_disks entries. */
188 /* Here goes total_volumes of struct intel_raid_vol. */
189} __packed;
190
191#define INTEL_ATTR_SUPPORTED ( INTEL_ATTR_RAID0 | INTEL_ATTR_RAID1 | \
192 INTEL_ATTR_RAID10 | INTEL_ATTR_RAID1E | INTEL_ATTR_RAID5 | \
193 INTEL_ATTR_RAIDCNG | INTEL_ATTR_EXT_STRIP | INTEL_ATTR_2TB_DISK | \
194 INTEL_ATTR_2TB | INTEL_ATTR_PM | INTEL_ATTR_CHECKSUM )
195
196#define INTEL_MAX_MD_SIZE(ndisks) \
197 (sizeof(struct intel_raid_conf) + \
198 sizeof(struct intel_raid_disk) * (ndisks - 1) + \
199 sizeof(struct intel_raid_vol) * 2 + \
200 sizeof(struct intel_raid_map) * 2 + \
201 sizeof(uint32_t) * (ndisks - 1) * 4)
202
203struct g_raid_md_intel_perdisk {
204 struct intel_raid_conf *pd_meta;
205 int pd_disk_pos;
206 struct intel_raid_disk pd_disk_meta;
207};
208
209struct g_raid_md_intel_pervolume {
210 int pv_volume_pos;
211 int pv_cng;
212 int pv_cng_man_sync;
213 int pv_cng_master_disk;
214};
215
216struct g_raid_md_intel_object {
217 struct g_raid_md_object mdio_base;
218 uint32_t mdio_config_id;
219 uint32_t mdio_orig_config_id;
220 uint32_t mdio_generation;
221 struct intel_raid_conf *mdio_meta;
222 struct callout mdio_start_co; /* STARTING state timer. */
223 int mdio_disks_present;
224 int mdio_started;
225 int mdio_incomplete;
226 struct root_hold_token *mdio_rootmount; /* Root mount delay token. */
227};
228
229static g_raid_md_create_t g_raid_md_create_intel;
230static g_raid_md_taste_t g_raid_md_taste_intel;
231static g_raid_md_event_t g_raid_md_event_intel;
232static g_raid_md_ctl_t g_raid_md_ctl_intel;
233static g_raid_md_write_t g_raid_md_write_intel;
234static g_raid_md_fail_disk_t g_raid_md_fail_disk_intel;
235static g_raid_md_free_disk_t g_raid_md_free_disk_intel;
236static g_raid_md_free_volume_t g_raid_md_free_volume_intel;
237static g_raid_md_free_t g_raid_md_free_intel;
238
239static kobj_method_t g_raid_md_intel_methods[] = {
240 KOBJMETHOD(g_raid_md_create, g_raid_md_create_intel),
241 KOBJMETHOD(g_raid_md_taste, g_raid_md_taste_intel),
242 KOBJMETHOD(g_raid_md_event, g_raid_md_event_intel),
243 KOBJMETHOD(g_raid_md_ctl, g_raid_md_ctl_intel),
244 KOBJMETHOD(g_raid_md_write, g_raid_md_write_intel),
245 KOBJMETHOD(g_raid_md_fail_disk, g_raid_md_fail_disk_intel),
246 KOBJMETHOD(g_raid_md_free_disk, g_raid_md_free_disk_intel),
247 KOBJMETHOD(g_raid_md_free_volume, g_raid_md_free_volume_intel),
248 KOBJMETHOD(g_raid_md_free, g_raid_md_free_intel),
249 { 0, 0 }
250};
251
252static struct g_raid_md_class g_raid_md_intel_class = {
253 "Intel",
254 g_raid_md_intel_methods,
255 sizeof(struct g_raid_md_intel_object),
256 .mdc_enable = 1,
257 .mdc_priority = 100
258};
259
260
261static struct intel_raid_map *
262intel_get_map(struct intel_raid_vol *mvol, int i)
263{
264 struct intel_raid_map *mmap;
265
266 if (i > (mvol->migr_state ? 1 : 0))
267 return (NULL);
268 mmap = &mvol->map[0];
269 for (; i > 0; i--) {
270 mmap = (struct intel_raid_map *)
271 &mmap->disk_idx[mmap->total_disks];
272 }
273 return ((struct intel_raid_map *)mmap);
274}
275
276static struct intel_raid_vol *
277intel_get_volume(struct intel_raid_conf *meta, int i)
278{
279 struct intel_raid_vol *mvol;
280 struct intel_raid_map *mmap;
281
282 if (i > 1)
283 return (NULL);
284 mvol = (struct intel_raid_vol *)&meta->disk[meta->total_disks];
285 for (; i > 0; i--) {
286 mmap = intel_get_map(mvol, mvol->migr_state ? 1 : 0);
287 mvol = (struct intel_raid_vol *)
288 &mmap->disk_idx[mmap->total_disks];
289 }
290 return (mvol);
291}
292
293static off_t
294intel_get_map_offset(struct intel_raid_map *mmap)
295{
296 off_t offset = (off_t)mmap->offset_hi << 32;
297
298 offset += mmap->offset;
299 return (offset);
300}
301
302static void
303intel_set_map_offset(struct intel_raid_map *mmap, off_t offset)
304{
305
306 mmap->offset = offset & 0xffffffff;
307 mmap->offset_hi = offset >> 32;
308}
309
310static off_t
311intel_get_map_disk_sectors(struct intel_raid_map *mmap)
312{
313 off_t disk_sectors = (off_t)mmap->disk_sectors_hi << 32;
314
315 disk_sectors += mmap->disk_sectors;
316 return (disk_sectors);
317}
318
319static void
320intel_set_map_disk_sectors(struct intel_raid_map *mmap, off_t disk_sectors)
321{
322
323 mmap->disk_sectors = disk_sectors & 0xffffffff;
324 mmap->disk_sectors_hi = disk_sectors >> 32;
325}
326
327static void
328intel_set_map_stripe_count(struct intel_raid_map *mmap, off_t stripe_count)
329{
330
331 mmap->stripe_count = stripe_count & 0xffffffff;
332 mmap->stripe_count_hi = stripe_count >> 32;
333}
334
335static off_t
336intel_get_disk_sectors(struct intel_raid_disk *disk)
337{
338 off_t sectors = (off_t)disk->sectors_hi << 32;
339
340 sectors += disk->sectors;
341 return (sectors);
342}
343
344static void
345intel_set_disk_sectors(struct intel_raid_disk *disk, off_t sectors)
346{
347
348 disk->sectors = sectors & 0xffffffff;
349 disk->sectors_hi = sectors >> 32;
350}
351
352static off_t
353intel_get_vol_curr_migr_unit(struct intel_raid_vol *vol)
354{
355 off_t curr_migr_unit = (off_t)vol->curr_migr_unit_hi << 32;
356
357 curr_migr_unit += vol->curr_migr_unit;
358 return (curr_migr_unit);
359}
360
361static void
362intel_set_vol_curr_migr_unit(struct intel_raid_vol *vol, off_t curr_migr_unit)
363{
364
365 vol->curr_migr_unit = curr_migr_unit & 0xffffffff;
366 vol->curr_migr_unit_hi = curr_migr_unit >> 32;
367}
368
369static char *
370intel_status2str(int status)
371{
372
373 switch (status) {
374 case INTEL_S_READY:
375 return ("READY");
376 case INTEL_S_UNINITIALIZED:
377 return ("UNINITIALIZED");
378 case INTEL_S_DEGRADED:
379 return ("DEGRADED");
380 case INTEL_S_FAILURE:
381 return ("FAILURE");
382 default:
383 return ("UNKNOWN");
384 }
385}
386
387static char *
388intel_type2str(int type)
389{
390
391 switch (type) {
392 case INTEL_T_RAID0:
393 return ("RAID0");
394 case INTEL_T_RAID1:
395 return ("RAID1");
396 case INTEL_T_RAID5:
397 return ("RAID5");
398 default:
399 return ("UNKNOWN");
400 }
401}
402
403static char *
404intel_cngst2str(int cng_state)
405{
406
407 switch (cng_state) {
408 case INTEL_CNGST_UPDATED:
409 return ("UPDATED");
410 case INTEL_CNGST_NEEDS_UPDATE:
411 return ("NEEDS_UPDATE");
412 case INTEL_CNGST_MASTER_MISSING:
413 return ("MASTER_MISSING");
414 default:
415 return ("UNKNOWN");
416 }
417}
418
419static char *
420intel_mt2str(int type)
421{
422
423 switch (type) {
424 case INTEL_MT_INIT:
425 return ("INIT");
426 case INTEL_MT_REBUILD:
427 return ("REBUILD");
428 case INTEL_MT_VERIFY:
429 return ("VERIFY");
430 case INTEL_MT_GEN_MIGR:
431 return ("GEN_MIGR");
432 case INTEL_MT_STATE_CHANGE:
433 return ("STATE_CHANGE");
434 case INTEL_MT_REPAIR:
435 return ("REPAIR");
436 default:
437 return ("UNKNOWN");
438 }
439}
440
441static void
442g_raid_md_intel_print(struct intel_raid_conf *meta)
443{
444 struct intel_raid_vol *mvol;
445 struct intel_raid_map *mmap;
446 int i, j, k;
447
448 if (g_raid_debug < 1)
449 return;
450
451 printf("********* ATA Intel MatrixRAID Metadata *********\n");
452 printf("intel_id <%.24s>\n", meta->intel_id);
453 printf("version <%.6s>\n", meta->version);
454 printf("checksum 0x%08x\n", meta->checksum);
455 printf("config_size 0x%08x\n", meta->config_size);
456 printf("config_id 0x%08x\n", meta->config_id);
457 printf("generation 0x%08x\n", meta->generation);
458 printf("error_log_size %d\n", meta->error_log_size);
459 printf("attributes 0x%b\n", meta->attributes,
460 "\020"
461 "\001RAID0"
462 "\002RAID1"
463 "\003RAID10"
464 "\004RAID1E"
465 "\005RAID15"
466 "\006RAIDCNG"
467 "\007EXT_STRIP"
468 "\032NVM_CACHE"
469 "\0332TB_DISK"
470 "\034BBM"
471 "\035NVM_CACHE"
472 "\0362TB"
473 "\037PM"
474 "\040CHECKSUM");
475 printf("total_disks %u\n", meta->total_disks);
476 printf("total_volumes %u\n", meta->total_volumes);
477 printf("error_log_pos %u\n", meta->error_log_pos);
478 printf("cache_size %u\n", meta->cache_size);
479 printf("orig_config_id 0x%08x\n", meta->orig_config_id);
480 printf("pwr_cycle_count %u\n", meta->pwr_cycle_count);
481 printf("bbm_log_size %u\n", meta->bbm_log_size);
482 printf("Flags: S - Spare, A - Assigned, F - Failed, O - Online, D - Disabled\n");
483 printf("DISK# serial disk_sectors disk_sectors_hi disk_id flags owner\n");
484 for (i = 0; i < meta->total_disks; i++ ) {
485 printf(" %d <%.16s> %u %u 0x%08x 0x%b %08x\n", i,
486 meta->disk[i].serial, meta->disk[i].sectors,
487 meta->disk[i].sectors_hi, meta->disk[i].id,
488 meta->disk[i].flags, "\20\01S\02A\03F\04O\05D",
489 meta->disk[i].owner_cfg_num);
490 }
491 for (i = 0; i < meta->total_volumes; i++) {
492 mvol = intel_get_volume(meta, i);
493 printf(" ****** Volume %d ******\n", i);
494 printf(" name %.16s\n", mvol->name);
495 printf(" total_sectors %ju\n", mvol->total_sectors);
496 printf(" state 0x%b\n", mvol->state,
497 "\020"
498 "\001BOOTABLE"
499 "\002BOOT_DEVICE"
500 "\003READ_COALESCING"
501 "\004WRITE_COALESCING"
502 "\005LAST_SHUTDOWN_DIRTY"
503 "\006HIDDEN_AT_BOOT"
504 "\007CURRENTLY_HIDDEN"
505 "\010VERIFY_AND_FIX"
506 "\011MAP_STATE_UNINIT"
507 "\012NO_AUTO_RECOVERY"
508 "\013CLONE_N_GO"
509 "\014CLONE_MAN_SYNC"
510 "\015CNG_MASTER_DISK_NUM");
511 printf(" reserved %u\n", mvol->reserved);
512 printf(" migr_priority %u\n", mvol->migr_priority);
513 printf(" num_sub_vols %u\n", mvol->num_sub_vols);
514 printf(" tid %u\n", mvol->tid);
515 printf(" cng_master_disk %u\n", mvol->cng_master_disk);
516 printf(" cache_policy %u\n", mvol->cache_policy);
517 printf(" cng_state %u (%s)\n", mvol->cng_state,
518 intel_cngst2str(mvol->cng_state));
519 printf(" cng_sub_state %u\n", mvol->cng_sub_state);
520 printf(" curr_migr_unit %u\n", mvol->curr_migr_unit);
521 printf(" curr_migr_unit_hi %u\n", mvol->curr_migr_unit_hi);
522 printf(" checkpoint_id %u\n", mvol->checkpoint_id);
523 printf(" migr_state %u\n", mvol->migr_state);
524 printf(" migr_type %u (%s)\n", mvol->migr_type,
525 intel_mt2str(mvol->migr_type));
526 printf(" dirty %u\n", mvol->dirty);
527 printf(" fs_state %u\n", mvol->fs_state);
528 printf(" verify_errors %u\n", mvol->verify_errors);
529 printf(" bad_blocks %u\n", mvol->bad_blocks);
530
531 for (j = 0; j < (mvol->migr_state ? 2 : 1); j++) {
532 printf(" *** Map %d ***\n", j);
533 mmap = intel_get_map(mvol, j);
534 printf(" offset %u\n", mmap->offset);
535 printf(" offset_hi %u\n", mmap->offset_hi);
536 printf(" disk_sectors %u\n", mmap->disk_sectors);
537 printf(" disk_sectors_hi %u\n", mmap->disk_sectors_hi);
538 printf(" stripe_count %u\n", mmap->stripe_count);
539 printf(" stripe_count_hi %u\n", mmap->stripe_count_hi);
540 printf(" strip_sectors %u\n", mmap->strip_sectors);
541 printf(" status %u (%s)\n", mmap->status,
542 intel_status2str(mmap->status));
543 printf(" type %u (%s)\n", mmap->type,
544 intel_type2str(mmap->type));
545 printf(" total_disks %u\n", mmap->total_disks);
546 printf(" total_domains %u\n", mmap->total_domains);
547 printf(" failed_disk_num %u\n", mmap->failed_disk_num);
548 printf(" ddf %u\n", mmap->ddf);
549 printf(" disk_idx ");
550 for (k = 0; k < mmap->total_disks; k++)
551 printf(" 0x%08x", mmap->disk_idx[k]);
552 printf("\n");
553 }
554 }
555 printf("=================================================\n");
556}
557
558static struct intel_raid_conf *
559intel_meta_copy(struct intel_raid_conf *meta)
560{
561 struct intel_raid_conf *nmeta;
562
563 nmeta = malloc(meta->config_size, M_MD_INTEL, M_WAITOK);
564 memcpy(nmeta, meta, meta->config_size);
565 return (nmeta);
566}
567
568static int
569intel_meta_find_disk(struct intel_raid_conf *meta, char *serial)
570{
571 int pos;
572
573 for (pos = 0; pos < meta->total_disks; pos++) {
574 if (strncmp(meta->disk[pos].serial,
575 serial, INTEL_SERIAL_LEN) == 0)
576 return (pos);
577 }
578 return (-1);
579}
580
581static struct intel_raid_conf *
582intel_meta_read(struct g_consumer *cp)
583{
584 struct g_provider *pp;
585 struct intel_raid_conf *meta;
586 struct intel_raid_vol *mvol;
587 struct intel_raid_map *mmap, *mmap1;
588 char *buf;
589 int error, i, j, k, left, size;
590 uint32_t checksum, *ptr;
591
592 pp = cp->provider;
593
594 /* Read the anchor sector. */
595 buf = g_read_data(cp,
596 pp->mediasize - pp->sectorsize * 2, pp->sectorsize, &error);
597 if (buf == NULL) {
598 G_RAID_DEBUG(1, "Cannot read metadata from %s (error=%d).",
599 pp->name, error);
600 return (NULL);
601 }
602 meta = (struct intel_raid_conf *)buf;
603
604 /* Check if this is an Intel RAID struct */
605 if (strncmp(meta->intel_id, INTEL_MAGIC, strlen(INTEL_MAGIC))) {
606 G_RAID_DEBUG(1, "Intel signature check failed on %s", pp->name);
607 g_free(buf);
608 return (NULL);
609 }
610 if (meta->config_size > 65536 ||
611 meta->config_size < sizeof(struct intel_raid_conf)) {
612 G_RAID_DEBUG(1, "Intel metadata size looks wrong: %d",
613 meta->config_size);
614 g_free(buf);
615 return (NULL);
616 }
617 size = meta->config_size;
618 meta = malloc(size, M_MD_INTEL, M_WAITOK);
619 memcpy(meta, buf, min(size, pp->sectorsize));
620 g_free(buf);
621
622 /* Read all the rest, if needed. */
623 if (meta->config_size > pp->sectorsize) {
624 left = (meta->config_size - 1) / pp->sectorsize;
625 buf = g_read_data(cp,
626 pp->mediasize - pp->sectorsize * (2 + left),
627 pp->sectorsize * left, &error);
628 if (buf == NULL) {
629 G_RAID_DEBUG(1, "Cannot read remaining metadata"
630 " part from %s (error=%d).",
631 pp->name, error);
632 free(meta, M_MD_INTEL);
633 return (NULL);
634 }
635 memcpy(((char *)meta) + pp->sectorsize, buf,
636 pp->sectorsize * left);
637 g_free(buf);
638 }
639
640 /* Check metadata checksum. */
641 for (checksum = 0, ptr = (uint32_t *)meta, i = 0;
642 i < (meta->config_size / sizeof(uint32_t)); i++) {
643 checksum += *ptr++;
644 }
645 checksum -= meta->checksum;
646 if (checksum != meta->checksum) {
647 G_RAID_DEBUG(1, "Intel checksum check failed on %s", pp->name);
648 free(meta, M_MD_INTEL);
649 return (NULL);
650 }
651
652 /* Validate metadata size. */
653 size = sizeof(struct intel_raid_conf) +
654 sizeof(struct intel_raid_disk) * (meta->total_disks - 1) +
655 sizeof(struct intel_raid_vol) * meta->total_volumes;
656 if (size > meta->config_size) {
657badsize:
658 G_RAID_DEBUG(1, "Intel metadata size incorrect %d < %d",
659 meta->config_size, size);
660 free(meta, M_MD_INTEL);
661 return (NULL);
662 }
663 for (i = 0; i < meta->total_volumes; i++) {
664 mvol = intel_get_volume(meta, i);
665 mmap = intel_get_map(mvol, 0);
666 size += 4 * (mmap->total_disks - 1);
667 if (size > meta->config_size)
668 goto badsize;
669 if (mvol->migr_state) {
670 size += sizeof(struct intel_raid_map);
671 if (size > meta->config_size)
672 goto badsize;
673 mmap = intel_get_map(mvol, 1);
674 size += 4 * (mmap->total_disks - 1);
675 if (size > meta->config_size)
676 goto badsize;
677 }
678 }
679
680 g_raid_md_intel_print(meta);
681
682 if (strncmp(meta->version, INTEL_VERSION_1300, 6) > 0) {
683 G_RAID_DEBUG(1, "Intel unsupported version: '%.6s'",
684 meta->version);
685 free(meta, M_MD_INTEL);
686 return (NULL);
687 }
688
689 if (strncmp(meta->version, INTEL_VERSION_1300, 6) >= 0 &&
690 (meta->attributes & ~INTEL_ATTR_SUPPORTED) != 0) {
691 G_RAID_DEBUG(1, "Intel unsupported attributes: 0x%08x",
692 meta->attributes & ~INTEL_ATTR_SUPPORTED);
693 free(meta, M_MD_INTEL);
694 return (NULL);
695 }
696
697 /* Validate disk indexes. */
698 for (i = 0; i < meta->total_volumes; i++) {
699 mvol = intel_get_volume(meta, i);
700 for (j = 0; j < (mvol->migr_state ? 2 : 1); j++) {
701 mmap = intel_get_map(mvol, j);
702 for (k = 0; k < mmap->total_disks; k++) {
703 if ((mmap->disk_idx[k] & INTEL_DI_IDX) >
704 meta->total_disks) {
705 G_RAID_DEBUG(1, "Intel metadata disk"
706 " index %d too big (>%d)",
707 mmap->disk_idx[k] & INTEL_DI_IDX,
708 meta->total_disks);
709 free(meta, M_MD_INTEL);
710 return (NULL);
711 }
712 }
713 }
714 }
715
716 /* Validate migration types. */
717 for (i = 0; i < meta->total_volumes; i++) {
718 mvol = intel_get_volume(meta, i);
719 /* Deny unknown migration types. */
720 if (mvol->migr_state &&
721 mvol->migr_type != INTEL_MT_INIT &&
722 mvol->migr_type != INTEL_MT_REBUILD &&
723 mvol->migr_type != INTEL_MT_VERIFY &&
724 mvol->migr_type != INTEL_MT_GEN_MIGR &&
725 mvol->migr_type != INTEL_MT_REPAIR) {
726 G_RAID_DEBUG(1, "Intel metadata has unsupported"
727 " migration type %d", mvol->migr_type);
728 free(meta, M_MD_INTEL);
729 return (NULL);
730 }
731 /* Deny general migrations except SINGLE->RAID1. */
732 if (mvol->migr_state &&
733 mvol->migr_type == INTEL_MT_GEN_MIGR) {
734 mmap = intel_get_map(mvol, 0);
735 mmap1 = intel_get_map(mvol, 1);
736 if (mmap1->total_disks != 1 ||
737 mmap->type != INTEL_T_RAID1 ||
738 mmap->total_disks != 2 ||
739 mmap->offset != mmap1->offset ||
740 mmap->disk_sectors != mmap1->disk_sectors ||
741 mmap->total_domains != mmap->total_disks ||
742 mmap->offset_hi != mmap1->offset_hi ||
743 mmap->disk_sectors_hi != mmap1->disk_sectors_hi ||
744 (mmap->disk_idx[0] != mmap1->disk_idx[0] &&
745 mmap->disk_idx[0] != mmap1->disk_idx[1])) {
746 G_RAID_DEBUG(1, "Intel metadata has unsupported"
747 " variant of general migration");
748 free(meta, M_MD_INTEL);
749 return (NULL);
750 }
751 }
752 }
753
754 return (meta);
755}
756
757static int
758intel_meta_write(struct g_consumer *cp, struct intel_raid_conf *meta)
759{
760 struct g_provider *pp;
761 char *buf;
762 int error, i, sectors;
763 uint32_t checksum, *ptr;
764
765 pp = cp->provider;
766
767 /* Recalculate checksum for case if metadata were changed. */
768 meta->checksum = 0;
769 for (checksum = 0, ptr = (uint32_t *)meta, i = 0;
770 i < (meta->config_size / sizeof(uint32_t)); i++) {
771 checksum += *ptr++;
772 }
773 meta->checksum = checksum;
774
775 /* Create and fill buffer. */
776 sectors = (meta->config_size + pp->sectorsize - 1) / pp->sectorsize;
777 buf = malloc(sectors * pp->sectorsize, M_MD_INTEL, M_WAITOK | M_ZERO);
778 if (sectors > 1) {
779 memcpy(buf, ((char *)meta) + pp->sectorsize,
780 (sectors - 1) * pp->sectorsize);
781 }
782 memcpy(buf + (sectors - 1) * pp->sectorsize, meta, pp->sectorsize);
783
784 error = g_write_data(cp,
785 pp->mediasize - pp->sectorsize * (1 + sectors),
786 buf, pp->sectorsize * sectors);
787 if (error != 0) {
788 G_RAID_DEBUG(1, "Cannot write metadata to %s (error=%d).",
789 pp->name, error);
790 }
791
792 free(buf, M_MD_INTEL);
793 return (error);
794}
795
796static int
797intel_meta_erase(struct g_consumer *cp)
798{
799 struct g_provider *pp;
800 char *buf;
801 int error;
802
803 pp = cp->provider;
804 buf = malloc(pp->sectorsize, M_MD_INTEL, M_WAITOK | M_ZERO);
805 error = g_write_data(cp,
806 pp->mediasize - 2 * pp->sectorsize,
807 buf, pp->sectorsize);
808 if (error != 0) {
809 G_RAID_DEBUG(1, "Cannot erase metadata on %s (error=%d).",
810 pp->name, error);
811 }
812 free(buf, M_MD_INTEL);
813 return (error);
814}
815
816static int
817intel_meta_write_spare(struct g_consumer *cp, struct intel_raid_disk *d)
818{
819 struct intel_raid_conf *meta;
820 int error;
821
822 /* Fill anchor and single disk. */
823 meta = malloc(INTEL_MAX_MD_SIZE(1), M_MD_INTEL, M_WAITOK | M_ZERO);
824 memcpy(&meta->intel_id[0], INTEL_MAGIC, sizeof(INTEL_MAGIC) - 1);
825 memcpy(&meta->version[0], INTEL_VERSION_1000,
826 sizeof(INTEL_VERSION_1000) - 1);
827 meta->config_size = INTEL_MAX_MD_SIZE(1);
828 meta->config_id = meta->orig_config_id = arc4random();
829 meta->generation = 1;
830 meta->total_disks = 1;
831 meta->disk[0] = *d;
832 error = intel_meta_write(cp, meta);
833 free(meta, M_MD_INTEL);
834 return (error);
835}
836
837static struct g_raid_disk *
838g_raid_md_intel_get_disk(struct g_raid_softc *sc, int id)
839{
840 struct g_raid_disk *disk;
841 struct g_raid_md_intel_perdisk *pd;
842
843 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
844 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
845 if (pd->pd_disk_pos == id)
846 break;
847 }
848 return (disk);
849}
850
851static int
852g_raid_md_intel_supported(int level, int qual, int disks, int force)
853{
854
855 switch (level) {
856 case G_RAID_VOLUME_RL_RAID0:
857 if (disks < 1)
858 return (0);
859 if (!force && (disks < 2 || disks > 6))
860 return (0);
861 break;
862 case G_RAID_VOLUME_RL_RAID1:
863 if (disks < 1)
864 return (0);
865 if (!force && (disks != 2))
866 return (0);
867 break;
868 case G_RAID_VOLUME_RL_RAID1E:
869 if (disks < 2)
870 return (0);
871 if (!force && (disks != 4))
872 return (0);
873 break;
874 case G_RAID_VOLUME_RL_RAID5:
875 if (disks < 3)
876 return (0);
877 if (!force && disks > 6)
878 return (0);
879 if (qual != G_RAID_VOLUME_RLQ_R5LA)
880 return (0);
881 break;
882 default:
883 return (0);
884 }
885 if (level != G_RAID_VOLUME_RL_RAID5 && qual != G_RAID_VOLUME_RLQ_NONE)
886 return (0);
887 return (1);
888}
889
890static struct g_raid_volume *
891g_raid_md_intel_get_volume(struct g_raid_softc *sc, int id)
892{
893 struct g_raid_volume *mvol;
894 struct g_raid_md_intel_pervolume *pv;
895
896 TAILQ_FOREACH(mvol, &sc->sc_volumes, v_next) {
897 pv = mvol->v_md_data;
898 if (pv->pv_volume_pos == id)
899 break;
900 }
901 return (mvol);
902}
903
904static int
905g_raid_md_intel_start_disk(struct g_raid_disk *disk)
906{
907 struct g_raid_softc *sc;
908 struct g_raid_subdisk *sd, *tmpsd;
909 struct g_raid_disk *olddisk, *tmpdisk;
910 struct g_raid_md_object *md;
911 struct g_raid_md_intel_object *mdi;
912 struct g_raid_md_intel_pervolume *pv;
913 struct g_raid_md_intel_perdisk *pd, *oldpd;
914 struct intel_raid_conf *meta;
915 struct intel_raid_vol *mvol;
916 struct intel_raid_map *mmap0, *mmap1;
917 int disk_pos, resurrection = 0, migr_global, i;
918
919 sc = disk->d_softc;
920 md = sc->sc_md;
921 mdi = (struct g_raid_md_intel_object *)md;
922 meta = mdi->mdio_meta;
923 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
924 olddisk = NULL;
925
926 /* Find disk position in metadata by it's serial. */
927 disk_pos = intel_meta_find_disk(meta, pd->pd_disk_meta.serial);
928 if (disk_pos < 0) {
929 G_RAID_DEBUG1(1, sc, "Unknown, probably new or stale disk");
930 /* Failed stale disk is useless for us. */
931 if ((pd->pd_disk_meta.flags & INTEL_F_FAILED) &&
932 !(pd->pd_disk_meta.flags & INTEL_F_DISABLED)) {
933 g_raid_change_disk_state(disk, G_RAID_DISK_S_STALE_FAILED);
934 return (0);
935 }
936 /* If we are in the start process, that's all for now. */
937 if (!mdi->mdio_started)
938 goto nofit;
939 /*
940 * If we have already started - try to get use of the disk.
941 * Try to replace OFFLINE disks first, then FAILED.
942 */
943 TAILQ_FOREACH(tmpdisk, &sc->sc_disks, d_next) {
944 if (tmpdisk->d_state != G_RAID_DISK_S_OFFLINE &&
945 tmpdisk->d_state != G_RAID_DISK_S_FAILED)
946 continue;
947 /* Make sure this disk is big enough. */
948 TAILQ_FOREACH(sd, &tmpdisk->d_subdisks, sd_next) {
949 off_t disk_sectors =
950 intel_get_disk_sectors(&pd->pd_disk_meta);
951
952 if (sd->sd_offset + sd->sd_size + 4096 >
953 disk_sectors * 512) {
954 G_RAID_DEBUG1(1, sc,
955 "Disk too small (%llu < %llu)",
956 (unsigned long long)
957 disk_sectors * 512,
958 (unsigned long long)
959 sd->sd_offset + sd->sd_size + 4096);
960 break;
961 }
962 }
963 if (sd != NULL)
964 continue;
965 if (tmpdisk->d_state == G_RAID_DISK_S_OFFLINE) {
966 olddisk = tmpdisk;
967 break;
968 } else if (olddisk == NULL)
969 olddisk = tmpdisk;
970 }
971 if (olddisk == NULL) {
972nofit:
973 if (pd->pd_disk_meta.flags & INTEL_F_SPARE) {
974 g_raid_change_disk_state(disk,
975 G_RAID_DISK_S_SPARE);
976 return (1);
977 } else {
978 g_raid_change_disk_state(disk,
979 G_RAID_DISK_S_STALE);
980 return (0);
981 }
982 }
983 oldpd = (struct g_raid_md_intel_perdisk *)olddisk->d_md_data;
984 disk_pos = oldpd->pd_disk_pos;
985 resurrection = 1;
986 }
987
988 if (olddisk == NULL) {
989 /* Find placeholder by position. */
990 olddisk = g_raid_md_intel_get_disk(sc, disk_pos);
991 if (olddisk == NULL)
992 panic("No disk at position %d!", disk_pos);
993 if (olddisk->d_state != G_RAID_DISK_S_OFFLINE) {
994 G_RAID_DEBUG1(1, sc, "More then one disk for pos %d",
995 disk_pos);
996 g_raid_change_disk_state(disk, G_RAID_DISK_S_STALE);
997 return (0);
998 }
999 oldpd = (struct g_raid_md_intel_perdisk *)olddisk->d_md_data;
1000 }
1001
1002 /* Replace failed disk or placeholder with new disk. */
1003 TAILQ_FOREACH_SAFE(sd, &olddisk->d_subdisks, sd_next, tmpsd) {
1004 TAILQ_REMOVE(&olddisk->d_subdisks, sd, sd_next);
1005 TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next);
1006 sd->sd_disk = disk;
1007 }
1008 oldpd->pd_disk_pos = -2;
1009 pd->pd_disk_pos = disk_pos;
1010
1011 /* If it was placeholder -- destroy it. */
1012 if (olddisk->d_state == G_RAID_DISK_S_OFFLINE) {
1013 g_raid_destroy_disk(olddisk);
1014 } else {
1015 /* Otherwise, make it STALE_FAILED. */
1016 g_raid_change_disk_state(olddisk, G_RAID_DISK_S_STALE_FAILED);
1017 /* Update global metadata just in case. */
1018 memcpy(&meta->disk[disk_pos], &pd->pd_disk_meta,
1019 sizeof(struct intel_raid_disk));
1020 }
1021
1022 /* Welcome the new disk. */
1023 if ((meta->disk[disk_pos].flags & INTEL_F_DISABLED) &&
1024 !(pd->pd_disk_meta.flags & INTEL_F_SPARE))
1025 g_raid_change_disk_state(disk, G_RAID_DISK_S_DISABLED);
1026 else if (resurrection)
1027 g_raid_change_disk_state(disk, G_RAID_DISK_S_ACTIVE);
1028 else if (meta->disk[disk_pos].flags & INTEL_F_FAILED)
1029 g_raid_change_disk_state(disk, G_RAID_DISK_S_FAILED);
1030 else if (meta->disk[disk_pos].flags & INTEL_F_SPARE)
1031 g_raid_change_disk_state(disk, G_RAID_DISK_S_SPARE);
1032 else
1033 g_raid_change_disk_state(disk, G_RAID_DISK_S_ACTIVE);
1034 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
1035 pv = sd->sd_volume->v_md_data;
1036 mvol = intel_get_volume(meta, pv->pv_volume_pos);
1037 mmap0 = intel_get_map(mvol, 0);
1038 if (mvol->migr_state)
1039 mmap1 = intel_get_map(mvol, 1);
1040 else
1041 mmap1 = mmap0;
1042
1043 migr_global = 1;
1044 for (i = 0; i < mmap0->total_disks; i++) {
1045 if ((mmap0->disk_idx[i] & INTEL_DI_RBLD) == 0 &&
1046 (mmap1->disk_idx[i] & INTEL_DI_RBLD) != 0)
1047 migr_global = 0;
1048 }
1049
1050 if ((meta->disk[disk_pos].flags & INTEL_F_DISABLED) &&
1051 !(pd->pd_disk_meta.flags & INTEL_F_SPARE)) {
1052 /* Disabled disk, useless. */
1053 g_raid_change_subdisk_state(sd,
1054 G_RAID_SUBDISK_S_NONE);
1055 } else if (resurrection) {
1056 /* Stale disk, almost same as new. */
1057 g_raid_change_subdisk_state(sd,
1058 G_RAID_SUBDISK_S_NEW);
1059 } else if (meta->disk[disk_pos].flags & INTEL_F_FAILED) {
1060 /* Failed disk, almost useless. */
1061 g_raid_change_subdisk_state(sd,
1062 G_RAID_SUBDISK_S_FAILED);
1063 } else if (mvol->migr_state == 0) {
1064 if (mmap0->status == INTEL_S_UNINITIALIZED &&
1065 (!pv->pv_cng || pv->pv_cng_master_disk != disk_pos)) {
1066 /* Freshly created uninitialized volume. */
1067 g_raid_change_subdisk_state(sd,
1068 G_RAID_SUBDISK_S_UNINITIALIZED);
1069 } else if (mmap0->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) {
1070 /* Freshly inserted disk. */
1071 g_raid_change_subdisk_state(sd,
1072 G_RAID_SUBDISK_S_NEW);
1073 } else if (mvol->dirty && (!pv->pv_cng ||
1074 pv->pv_cng_master_disk != disk_pos)) {
1075 /* Dirty volume (unclean shutdown). */
1076 g_raid_change_subdisk_state(sd,
1077 G_RAID_SUBDISK_S_STALE);
1078 } else {
1079 /* Up to date disk. */
1080 g_raid_change_subdisk_state(sd,
1081 G_RAID_SUBDISK_S_ACTIVE);
1082 }
1083 } else if (mvol->migr_type == INTEL_MT_INIT ||
1084 mvol->migr_type == INTEL_MT_REBUILD) {
1085 if (mmap0->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) {
1086 /* Freshly inserted disk. */
1087 g_raid_change_subdisk_state(sd,
1088 G_RAID_SUBDISK_S_NEW);
1089 } else if (mmap1->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) {
1090 /* Rebuilding disk. */
1091 g_raid_change_subdisk_state(sd,
1092 G_RAID_SUBDISK_S_REBUILD);
1093 if (mvol->dirty) {
1094 sd->sd_rebuild_pos = 0;
1095 } else {
1096 sd->sd_rebuild_pos =
1097 intel_get_vol_curr_migr_unit(mvol) *
1098 sd->sd_volume->v_strip_size *
1099 mmap0->total_domains;
1100 }
1101 } else if (mvol->migr_type == INTEL_MT_INIT &&
1102 migr_global) {
1103 /* Freshly created uninitialized volume. */
1104 g_raid_change_subdisk_state(sd,
1105 G_RAID_SUBDISK_S_UNINITIALIZED);
1106 } else if (mvol->dirty && (!pv->pv_cng ||
1107 pv->pv_cng_master_disk != disk_pos)) {
1108 /* Dirty volume (unclean shutdown). */
1109 g_raid_change_subdisk_state(sd,
1110 G_RAID_SUBDISK_S_STALE);
1111 } else {
1112 /* Up to date disk. */
1113 g_raid_change_subdisk_state(sd,
1114 G_RAID_SUBDISK_S_ACTIVE);
1115 }
1116 } else if (mvol->migr_type == INTEL_MT_VERIFY ||
1117 mvol->migr_type == INTEL_MT_REPAIR) {
1118 if (mmap0->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) {
1119 /* Freshly inserted disk. */
1120 g_raid_change_subdisk_state(sd,
1121 G_RAID_SUBDISK_S_NEW);
1122 } else if ((mmap1->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) ||
1123 migr_global) {
1124 /* Resyncing disk. */
1125 g_raid_change_subdisk_state(sd,
1126 G_RAID_SUBDISK_S_RESYNC);
1127 if (mvol->dirty) {
1128 sd->sd_rebuild_pos = 0;
1129 } else {
1130 sd->sd_rebuild_pos =
1131 intel_get_vol_curr_migr_unit(mvol) *
1132 sd->sd_volume->v_strip_size *
1133 mmap0->total_domains;
1134 }
1135 } else if (mvol->dirty) {
1136 /* Dirty volume (unclean shutdown). */
1137 g_raid_change_subdisk_state(sd,
1138 G_RAID_SUBDISK_S_STALE);
1139 } else {
1140 /* Up to date disk. */
1141 g_raid_change_subdisk_state(sd,
1142 G_RAID_SUBDISK_S_ACTIVE);
1143 }
1144 } else if (mvol->migr_type == INTEL_MT_GEN_MIGR) {
1145 if ((mmap1->disk_idx[0] & INTEL_DI_IDX) != disk_pos) {
1146 /* Freshly inserted disk. */
1147 g_raid_change_subdisk_state(sd,
1148 G_RAID_SUBDISK_S_NEW);
1149 } else {
1150 /* Up to date disk. */
1151 g_raid_change_subdisk_state(sd,
1152 G_RAID_SUBDISK_S_ACTIVE);
1153 }
1154 }
1155 g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW,
1156 G_RAID_EVENT_SUBDISK);
1157 }
1158
1159 /* Update status of our need for spare. */
1160 if (mdi->mdio_started) {
1161 mdi->mdio_incomplete =
1162 (g_raid_ndisks(sc, G_RAID_DISK_S_ACTIVE) +
1163 g_raid_ndisks(sc, G_RAID_DISK_S_DISABLED) <
1164 meta->total_disks);
1165 }
1166
1167 return (resurrection);
1168}
1169
1170static void
1171g_disk_md_intel_retaste(void *arg, int pending)
1172{
1173
1174 G_RAID_DEBUG(1, "Array is not complete, trying to retaste.");
1175 g_retaste(&g_raid_class);
1176 free(arg, M_MD_INTEL);
1177}
1178
1179static void
1180g_raid_md_intel_refill(struct g_raid_softc *sc)
1181{
1182 struct g_raid_md_object *md;
1183 struct g_raid_md_intel_object *mdi;
1184 struct intel_raid_conf *meta;
1185 struct g_raid_disk *disk;
1186 struct task *task;
1187 int update, na;
1188
1189 md = sc->sc_md;
1190 mdi = (struct g_raid_md_intel_object *)md;
1191 meta = mdi->mdio_meta;
1192 update = 0;
1193 do {
1194 /* Make sure we miss anything. */
1195 na = g_raid_ndisks(sc, G_RAID_DISK_S_ACTIVE) +
1196 g_raid_ndisks(sc, G_RAID_DISK_S_DISABLED);
1197 if (na == meta->total_disks)
1198 break;
1199
1200 G_RAID_DEBUG1(1, md->mdo_softc,
1201 "Array is not complete (%d of %d), "
1202 "trying to refill.", na, meta->total_disks);
1203
1204 /* Try to get use some of STALE disks. */
1205 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
1206 if (disk->d_state == G_RAID_DISK_S_STALE) {
1207 update += g_raid_md_intel_start_disk(disk);
1208 if (disk->d_state == G_RAID_DISK_S_ACTIVE ||
1209 disk->d_state == G_RAID_DISK_S_DISABLED)
1210 break;
1211 }
1212 }
1213 if (disk != NULL)
1214 continue;
1215
1216 /* Try to get use some of SPARE disks. */
1217 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
1218 if (disk->d_state == G_RAID_DISK_S_SPARE) {
1219 update += g_raid_md_intel_start_disk(disk);
1220 if (disk->d_state == G_RAID_DISK_S_ACTIVE)
1221 break;
1222 }
1223 }
1224 } while (disk != NULL);
1225
1226 /* Write new metadata if we changed something. */
1227 if (update) {
1228 g_raid_md_write_intel(md, NULL, NULL, NULL);
1229 meta = mdi->mdio_meta;
1230 }
1231
1232 /* Update status of our need for spare. */
1233 mdi->mdio_incomplete = (g_raid_ndisks(sc, G_RAID_DISK_S_ACTIVE) +
1234 g_raid_ndisks(sc, G_RAID_DISK_S_DISABLED) < meta->total_disks);
1235
1236 /* Request retaste hoping to find spare. */
1237 if (mdi->mdio_incomplete) {
1238 task = malloc(sizeof(struct task),
1239 M_MD_INTEL, M_WAITOK | M_ZERO);
1240 TASK_INIT(task, 0, g_disk_md_intel_retaste, task);
1241 taskqueue_enqueue(taskqueue_swi, task);
1242 }
1243}
1244
1245static void
1246g_raid_md_intel_start(struct g_raid_softc *sc)
1247{
1248 struct g_raid_md_object *md;
1249 struct g_raid_md_intel_object *mdi;
1250 struct g_raid_md_intel_pervolume *pv;
1251 struct g_raid_md_intel_perdisk *pd;
1252 struct intel_raid_conf *meta;
1253 struct intel_raid_vol *mvol;
1254 struct intel_raid_map *mmap;
1255 struct g_raid_volume *vol;
1256 struct g_raid_subdisk *sd;
1257 struct g_raid_disk *disk;
1258 int i, j, disk_pos;
1259
1260 md = sc->sc_md;
1261 mdi = (struct g_raid_md_intel_object *)md;
1262 meta = mdi->mdio_meta;
1263
1264 /* Create volumes and subdisks. */
1265 for (i = 0; i < meta->total_volumes; i++) {
1266 mvol = intel_get_volume(meta, i);
1267 mmap = intel_get_map(mvol, 0);
1268 vol = g_raid_create_volume(sc, mvol->name, mvol->tid - 1);
1269 pv = malloc(sizeof(*pv), M_MD_INTEL, M_WAITOK | M_ZERO);
1270 pv->pv_volume_pos = i;
1271 pv->pv_cng = (mvol->state & INTEL_ST_CLONE_N_GO) != 0;
1272 pv->pv_cng_man_sync = (mvol->state & INTEL_ST_CLONE_MAN_SYNC) != 0;
1273 if (mvol->cng_master_disk < mmap->total_disks)
1274 pv->pv_cng_master_disk = mvol->cng_master_disk;
1275 vol->v_md_data = pv;
1276 vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_NONE;
1277 if (mmap->type == INTEL_T_RAID0)
1278 vol->v_raid_level = G_RAID_VOLUME_RL_RAID0;
1279 else if (mmap->type == INTEL_T_RAID1 &&
1280 mmap->total_domains >= 2 &&
1281 mmap->total_domains <= mmap->total_disks) {
1282 /* Assume total_domains is correct. */
1283 if (mmap->total_domains == mmap->total_disks)
1284 vol->v_raid_level = G_RAID_VOLUME_RL_RAID1;
1285 else
1286 vol->v_raid_level = G_RAID_VOLUME_RL_RAID1E;
1287 } else if (mmap->type == INTEL_T_RAID1) {
1288 /* total_domains looks wrong. */
1289 if (mmap->total_disks <= 2)
1290 vol->v_raid_level = G_RAID_VOLUME_RL_RAID1;
1291 else
1292 vol->v_raid_level = G_RAID_VOLUME_RL_RAID1E;
1293 } else if (mmap->type == INTEL_T_RAID5) {
1294 vol->v_raid_level = G_RAID_VOLUME_RL_RAID5;
1295 vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_R5LA;
1296 } else
1297 vol->v_raid_level = G_RAID_VOLUME_RL_UNKNOWN;
1298 vol->v_strip_size = (u_int)mmap->strip_sectors * 512; //ZZZ
1299 vol->v_disks_count = mmap->total_disks;
1300 vol->v_mediasize = (off_t)mvol->total_sectors * 512; //ZZZ
1301 vol->v_sectorsize = 512; //ZZZ
1302 for (j = 0; j < vol->v_disks_count; j++) {
1303 sd = &vol->v_subdisks[j];
1304 sd->sd_offset = intel_get_map_offset(mmap) * 512; //ZZZ
1305 sd->sd_size = intel_get_map_disk_sectors(mmap) * 512; //ZZZ
1306 }
1307 g_raid_start_volume(vol);
1308 }
1309
1310 /* Create disk placeholders to store data for later writing. */
1311 for (disk_pos = 0; disk_pos < meta->total_disks; disk_pos++) {
1312 pd = malloc(sizeof(*pd), M_MD_INTEL, M_WAITOK | M_ZERO);
1313 pd->pd_disk_pos = disk_pos;
1314 pd->pd_disk_meta = meta->disk[disk_pos];
1315 disk = g_raid_create_disk(sc);
1316 disk->d_md_data = (void *)pd;
1317 disk->d_state = G_RAID_DISK_S_OFFLINE;
1318 for (i = 0; i < meta->total_volumes; i++) {
1319 mvol = intel_get_volume(meta, i);
1320 mmap = intel_get_map(mvol, 0);
1321 for (j = 0; j < mmap->total_disks; j++) {
1322 if ((mmap->disk_idx[j] & INTEL_DI_IDX) == disk_pos)
1323 break;
1324 }
1325 if (j == mmap->total_disks)
1326 continue;
1327 vol = g_raid_md_intel_get_volume(sc, i);
1328 sd = &vol->v_subdisks[j];
1329 sd->sd_disk = disk;
1330 TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next);
1331 }
1332 }
1333
1334 /* Make all disks found till the moment take their places. */
1335 do {
1336 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
1337 if (disk->d_state == G_RAID_DISK_S_NONE) {
1338 g_raid_md_intel_start_disk(disk);
1339 break;
1340 }
1341 }
1342 } while (disk != NULL);
1343
1344 mdi->mdio_started = 1;
1345 G_RAID_DEBUG1(0, sc, "Array started.");
1346 g_raid_md_write_intel(md, NULL, NULL, NULL);
1347
1348 /* Pickup any STALE/SPARE disks to refill array if needed. */
1349 g_raid_md_intel_refill(sc);
1350
1351 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
1352 g_raid_event_send(vol, G_RAID_VOLUME_E_START,
1353 G_RAID_EVENT_VOLUME);
1354 }
1355
1356 callout_stop(&mdi->mdio_start_co);
1357 G_RAID_DEBUG1(1, sc, "root_mount_rel %p", mdi->mdio_rootmount);
1358 root_mount_rel(mdi->mdio_rootmount);
1359 mdi->mdio_rootmount = NULL;
1360}
1361
1362static void
1363g_raid_md_intel_new_disk(struct g_raid_disk *disk)
1364{
1365 struct g_raid_softc *sc;
1366 struct g_raid_md_object *md;
1367 struct g_raid_md_intel_object *mdi;
1368 struct intel_raid_conf *pdmeta;
1369 struct g_raid_md_intel_perdisk *pd;
1370
1371 sc = disk->d_softc;
1372 md = sc->sc_md;
1373 mdi = (struct g_raid_md_intel_object *)md;
1374 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
1375 pdmeta = pd->pd_meta;
1376
1377 if (mdi->mdio_started) {
1378 if (g_raid_md_intel_start_disk(disk))
1379 g_raid_md_write_intel(md, NULL, NULL, NULL);
1380 } else {
1381 /* If we haven't started yet - check metadata freshness. */
1382 if (mdi->mdio_meta == NULL ||
1383 ((int32_t)(pdmeta->generation - mdi->mdio_generation)) > 0) {
1384 G_RAID_DEBUG1(1, sc, "Newer disk");
1385 if (mdi->mdio_meta != NULL)
1386 free(mdi->mdio_meta, M_MD_INTEL);
1387 mdi->mdio_meta = intel_meta_copy(pdmeta);
1388 mdi->mdio_generation = mdi->mdio_meta->generation;
1389 mdi->mdio_disks_present = 1;
1390 } else if (pdmeta->generation == mdi->mdio_generation) {
1391 mdi->mdio_disks_present++;
1392 G_RAID_DEBUG1(1, sc, "Matching disk (%d of %d up)",
1393 mdi->mdio_disks_present,
1394 mdi->mdio_meta->total_disks);
1395 } else {
1396 G_RAID_DEBUG1(1, sc, "Older disk");
1397 }
1398 /* If we collected all needed disks - start array. */
1399 if (mdi->mdio_disks_present == mdi->mdio_meta->total_disks)
1400 g_raid_md_intel_start(sc);
1401 }
1402}
1403
1404static void
1405g_raid_intel_go(void *arg)
1406{
1407 struct g_raid_softc *sc;
1408 struct g_raid_md_object *md;
1409 struct g_raid_md_intel_object *mdi;
1410
1411 sc = arg;
1412 md = sc->sc_md;
1413 mdi = (struct g_raid_md_intel_object *)md;
1414 if (!mdi->mdio_started) {
1415 G_RAID_DEBUG1(0, sc, "Force array start due to timeout.");
1416 g_raid_event_send(sc, G_RAID_NODE_E_START, 0);
1417 }
1418}
1419
1420static int
1421g_raid_md_create_intel(struct g_raid_md_object *md, struct g_class *mp,
1422 struct g_geom **gp)
1423{
1424 struct g_raid_softc *sc;
1425 struct g_raid_md_intel_object *mdi;
1426 char name[16];
1427
1428 mdi = (struct g_raid_md_intel_object *)md;
1429 mdi->mdio_config_id = mdi->mdio_orig_config_id = arc4random();
1430 mdi->mdio_generation = 0;
1431 snprintf(name, sizeof(name), "Intel-%08x", mdi->mdio_config_id);
1432 sc = g_raid_create_node(mp, name, md);
1433 if (sc == NULL)
1434 return (G_RAID_MD_TASTE_FAIL);
1435 md->mdo_softc = sc;
1436 *gp = sc->sc_geom;
1437 return (G_RAID_MD_TASTE_NEW);
1438}
1439
1440/*
1441 * Return the last N characters of the serial label. The Linux and
1442 * ataraid(7) code always uses the last 16 characters of the label to
1443 * store into the Intel meta format. Generalize this to N characters
1444 * since that's easy. Labels can be up to 20 characters for SATA drives
1445 * and up 251 characters for SAS drives. Since intel controllers don't
1446 * support SAS drives, just stick with the SATA limits for stack friendliness.
1447 */
1448static int
1449g_raid_md_get_label(struct g_consumer *cp, char *serial, int serlen)
1450{
1451 char serial_buffer[24];
1452 int len, error;
1453
1454 len = sizeof(serial_buffer);
1455 error = g_io_getattr("GEOM::ident", cp, &len, serial_buffer);
1456 if (error != 0)
1457 return (error);
1458 len = strlen(serial_buffer);
1459 if (len > serlen)
1460 len -= serlen;
1461 else
1462 len = 0;
1463 strncpy(serial, serial_buffer + len, serlen);
1464 return (0);
1465}
1466
1467static int
1468g_raid_md_taste_intel(struct g_raid_md_object *md, struct g_class *mp,
1469 struct g_consumer *cp, struct g_geom **gp)
1470{
1471 struct g_consumer *rcp;
1472 struct g_provider *pp;
1473 struct g_raid_md_intel_object *mdi, *mdi1;
1474 struct g_raid_softc *sc;
1475 struct g_raid_disk *disk;
1476 struct intel_raid_conf *meta;
1477 struct g_raid_md_intel_perdisk *pd;
1478 struct g_geom *geom;
1479 int error, disk_pos, result, spare, len;
1480 char serial[INTEL_SERIAL_LEN];
1481 char name[16];
1482 uint16_t vendor;
1483
1484 G_RAID_DEBUG(1, "Tasting Intel on %s", cp->provider->name);
1485 mdi = (struct g_raid_md_intel_object *)md;
1486 pp = cp->provider;
1487
1488 /* Read metadata from device. */
1489 meta = NULL;
1490 vendor = 0xffff;
1491 disk_pos = 0;
1492 g_topology_unlock();
1493 error = g_raid_md_get_label(cp, serial, sizeof(serial));
1494 if (error != 0) {
1495 G_RAID_DEBUG(1, "Cannot get serial number from %s (error=%d).",
1496 pp->name, error);
1497 goto fail2;
1498 }
1490 disk_pos = 0;
1491 g_topology_unlock();
1492 error = g_raid_md_get_label(cp, serial, sizeof(serial));
1493 if (error != 0) {
1494 G_RAID_DEBUG(1, "Cannot get serial number from %s (error=%d).",
1495 pp->name, error);
1496 goto fail2;
1497 }
1499 len = 2;
1498 vendor = 0xffff;
1499 len = sizeof(vendor);
1500 if (pp->geom->rank == 1)
1501 g_io_getattr("GEOM::hba_vendor", cp, &len, &vendor);
1502 meta = intel_meta_read(cp);
1503 g_topology_lock();
1504 if (meta == NULL) {
1505 if (g_raid_aggressive_spare) {
1506 if (vendor != 0x8086) {
1507 G_RAID_DEBUG(1,
1508 "Intel vendor mismatch 0x%04x != 0x8086",
1509 vendor);
1510 } else {
1511 G_RAID_DEBUG(1,
1512 "No Intel metadata, forcing spare.");
1513 spare = 2;
1514 goto search;
1515 }
1516 }
1517 return (G_RAID_MD_TASTE_FAIL);
1518 }
1519
1520 /* Check this disk position in obtained metadata. */
1521 disk_pos = intel_meta_find_disk(meta, serial);
1522 if (disk_pos < 0) {
1523 G_RAID_DEBUG(1, "Intel serial '%s' not found", serial);
1524 goto fail1;
1525 }
1526 if (intel_get_disk_sectors(&meta->disk[disk_pos]) !=
1527 (pp->mediasize / pp->sectorsize)) {
1528 G_RAID_DEBUG(1, "Intel size mismatch %ju != %ju",
1529 intel_get_disk_sectors(&meta->disk[disk_pos]),
1530 (off_t)(pp->mediasize / pp->sectorsize));
1531 goto fail1;
1532 }
1533
1534 G_RAID_DEBUG(1, "Intel disk position %d", disk_pos);
1535 spare = meta->disk[disk_pos].flags & INTEL_F_SPARE;
1536
1537search:
1538 /* Search for matching node. */
1539 sc = NULL;
1540 mdi1 = NULL;
1541 LIST_FOREACH(geom, &mp->geom, geom) {
1542 sc = geom->softc;
1543 if (sc == NULL)
1544 continue;
1545 if (sc->sc_stopping != 0)
1546 continue;
1547 if (sc->sc_md->mdo_class != md->mdo_class)
1548 continue;
1549 mdi1 = (struct g_raid_md_intel_object *)sc->sc_md;
1550 if (spare) {
1551 if (mdi1->mdio_incomplete)
1552 break;
1553 } else {
1554 if (mdi1->mdio_config_id == meta->config_id)
1555 break;
1556 }
1557 }
1558
1559 /* Found matching node. */
1560 if (geom != NULL) {
1561 G_RAID_DEBUG(1, "Found matching array %s", sc->sc_name);
1562 result = G_RAID_MD_TASTE_EXISTING;
1563
1564 } else if (spare) { /* Not found needy node -- left for later. */
1565 G_RAID_DEBUG(1, "Spare is not needed at this time");
1566 goto fail1;
1567
1568 } else { /* Not found matching node -- create one. */
1569 result = G_RAID_MD_TASTE_NEW;
1570 mdi->mdio_config_id = meta->config_id;
1571 mdi->mdio_orig_config_id = meta->orig_config_id;
1572 snprintf(name, sizeof(name), "Intel-%08x", meta->config_id);
1573 sc = g_raid_create_node(mp, name, md);
1574 md->mdo_softc = sc;
1575 geom = sc->sc_geom;
1576 callout_init(&mdi->mdio_start_co, 1);
1577 callout_reset(&mdi->mdio_start_co, g_raid_start_timeout * hz,
1578 g_raid_intel_go, sc);
1579 mdi->mdio_rootmount = root_mount_hold("GRAID-Intel");
1580 G_RAID_DEBUG1(1, sc, "root_mount_hold %p", mdi->mdio_rootmount);
1581 }
1582
1583 /* There is no return after this point, so we close passed consumer. */
1584 g_access(cp, -1, 0, 0);
1585
1586 rcp = g_new_consumer(geom);
1587 rcp->flags |= G_CF_DIRECT_RECEIVE;
1588 g_attach(rcp, pp);
1589 if (g_access(rcp, 1, 1, 1) != 0)
1590 ; //goto fail1;
1591
1592 g_topology_unlock();
1593 sx_xlock(&sc->sc_lock);
1594
1595 pd = malloc(sizeof(*pd), M_MD_INTEL, M_WAITOK | M_ZERO);
1596 pd->pd_meta = meta;
1597 pd->pd_disk_pos = -1;
1598 if (spare == 2) {
1599 memcpy(&pd->pd_disk_meta.serial[0], serial, INTEL_SERIAL_LEN);
1600 intel_set_disk_sectors(&pd->pd_disk_meta,
1601 pp->mediasize / pp->sectorsize);
1602 pd->pd_disk_meta.id = 0;
1603 pd->pd_disk_meta.flags = INTEL_F_SPARE;
1604 } else {
1605 pd->pd_disk_meta = meta->disk[disk_pos];
1606 }
1607 disk = g_raid_create_disk(sc);
1608 disk->d_md_data = (void *)pd;
1609 disk->d_consumer = rcp;
1610 rcp->private = disk;
1611
1612 g_raid_get_disk_info(disk);
1613
1614 g_raid_md_intel_new_disk(disk);
1615
1616 sx_xunlock(&sc->sc_lock);
1617 g_topology_lock();
1618 *gp = geom;
1619 return (result);
1620fail2:
1621 g_topology_lock();
1622fail1:
1623 free(meta, M_MD_INTEL);
1624 return (G_RAID_MD_TASTE_FAIL);
1625}
1626
1627static int
1628g_raid_md_event_intel(struct g_raid_md_object *md,
1629 struct g_raid_disk *disk, u_int event)
1630{
1631 struct g_raid_softc *sc;
1632 struct g_raid_subdisk *sd;
1633 struct g_raid_md_intel_object *mdi;
1634 struct g_raid_md_intel_perdisk *pd;
1635
1636 sc = md->mdo_softc;
1637 mdi = (struct g_raid_md_intel_object *)md;
1638 if (disk == NULL) {
1639 switch (event) {
1640 case G_RAID_NODE_E_START:
1641 if (!mdi->mdio_started)
1642 g_raid_md_intel_start(sc);
1643 return (0);
1644 }
1645 return (-1);
1646 }
1647 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
1648 switch (event) {
1649 case G_RAID_DISK_E_DISCONNECTED:
1650 /* If disk was assigned, just update statuses. */
1651 if (pd->pd_disk_pos >= 0) {
1652 g_raid_change_disk_state(disk, G_RAID_DISK_S_OFFLINE);
1653 if (disk->d_consumer) {
1654 g_raid_kill_consumer(sc, disk->d_consumer);
1655 disk->d_consumer = NULL;
1656 }
1657 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
1658 g_raid_change_subdisk_state(sd,
1659 G_RAID_SUBDISK_S_NONE);
1660 g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED,
1661 G_RAID_EVENT_SUBDISK);
1662 }
1663 } else {
1664 /* Otherwise -- delete. */
1665 g_raid_change_disk_state(disk, G_RAID_DISK_S_NONE);
1666 g_raid_destroy_disk(disk);
1667 }
1668
1669 /* Write updated metadata to all disks. */
1670 g_raid_md_write_intel(md, NULL, NULL, NULL);
1671
1672 /* Check if anything left except placeholders. */
1673 if (g_raid_ndisks(sc, -1) ==
1674 g_raid_ndisks(sc, G_RAID_DISK_S_OFFLINE))
1675 g_raid_destroy_node(sc, 0);
1676 else
1677 g_raid_md_intel_refill(sc);
1678 return (0);
1679 }
1680 return (-2);
1681}
1682
1683static int
1684g_raid_md_ctl_intel(struct g_raid_md_object *md,
1685 struct gctl_req *req)
1686{
1687 struct g_raid_softc *sc;
1688 struct g_raid_volume *vol, *vol1;
1689 struct g_raid_subdisk *sd;
1690 struct g_raid_disk *disk;
1691 struct g_raid_md_intel_object *mdi;
1692 struct g_raid_md_intel_pervolume *pv;
1693 struct g_raid_md_intel_perdisk *pd;
1694 struct g_consumer *cp;
1695 struct g_provider *pp;
1696 char arg[16], serial[INTEL_SERIAL_LEN];
1697 const char *nodename, *verb, *volname, *levelname, *diskname;
1698 char *tmp;
1699 int *nargs, *force;
1700 off_t off, size, sectorsize, strip, disk_sectors;
1701 intmax_t *sizearg, *striparg;
1702 int numdisks, i, len, level, qual, update;
1703 int error;
1704
1705 sc = md->mdo_softc;
1706 mdi = (struct g_raid_md_intel_object *)md;
1707 verb = gctl_get_param(req, "verb", NULL);
1708 nargs = gctl_get_paraml(req, "nargs", sizeof(*nargs));
1709 error = 0;
1710 if (strcmp(verb, "label") == 0) {
1711
1712 if (*nargs < 4) {
1713 gctl_error(req, "Invalid number of arguments.");
1714 return (-1);
1715 }
1716 volname = gctl_get_asciiparam(req, "arg1");
1717 if (volname == NULL) {
1718 gctl_error(req, "No volume name.");
1719 return (-2);
1720 }
1721 levelname = gctl_get_asciiparam(req, "arg2");
1722 if (levelname == NULL) {
1723 gctl_error(req, "No RAID level.");
1724 return (-3);
1725 }
1726 if (strcasecmp(levelname, "RAID5") == 0)
1727 levelname = "RAID5-LA";
1728 if (g_raid_volume_str2level(levelname, &level, &qual)) {
1729 gctl_error(req, "Unknown RAID level '%s'.", levelname);
1730 return (-4);
1731 }
1732 numdisks = *nargs - 3;
1733 force = gctl_get_paraml(req, "force", sizeof(*force));
1734 if (!g_raid_md_intel_supported(level, qual, numdisks,
1735 force ? *force : 0)) {
1736 gctl_error(req, "Unsupported RAID level "
1737 "(0x%02x/0x%02x), or number of disks (%d).",
1738 level, qual, numdisks);
1739 return (-5);
1740 }
1741
1742 /* Search for disks, connect them and probe. */
1743 size = 0x7fffffffffffffffllu;
1744 sectorsize = 0;
1745 for (i = 0; i < numdisks; i++) {
1746 snprintf(arg, sizeof(arg), "arg%d", i + 3);
1747 diskname = gctl_get_asciiparam(req, arg);
1748 if (diskname == NULL) {
1749 gctl_error(req, "No disk name (%s).", arg);
1750 error = -6;
1751 break;
1752 }
1753 if (strcmp(diskname, "NONE") == 0) {
1754 cp = NULL;
1755 pp = NULL;
1756 } else {
1757 g_topology_lock();
1758 cp = g_raid_open_consumer(sc, diskname);
1759 if (cp == NULL) {
1760 gctl_error(req, "Can't open disk '%s'.",
1761 diskname);
1762 g_topology_unlock();
1763 error = -7;
1764 break;
1765 }
1766 pp = cp->provider;
1767 }
1768 pd = malloc(sizeof(*pd), M_MD_INTEL, M_WAITOK | M_ZERO);
1769 pd->pd_disk_pos = i;
1770 disk = g_raid_create_disk(sc);
1771 disk->d_md_data = (void *)pd;
1772 disk->d_consumer = cp;
1773 if (cp == NULL) {
1774 strcpy(&pd->pd_disk_meta.serial[0], "NONE");
1775 pd->pd_disk_meta.id = 0xffffffff;
1776 pd->pd_disk_meta.flags = INTEL_F_ASSIGNED;
1777 continue;
1778 }
1779 cp->private = disk;
1780 g_topology_unlock();
1781
1782 error = g_raid_md_get_label(cp,
1783 &pd->pd_disk_meta.serial[0], INTEL_SERIAL_LEN);
1784 if (error != 0) {
1785 gctl_error(req,
1786 "Can't get serial for provider '%s'.",
1787 diskname);
1788 error = -8;
1789 break;
1790 }
1791
1792 g_raid_get_disk_info(disk);
1793
1794 intel_set_disk_sectors(&pd->pd_disk_meta,
1795 pp->mediasize / pp->sectorsize);
1796 if (size > pp->mediasize)
1797 size = pp->mediasize;
1798 if (sectorsize < pp->sectorsize)
1799 sectorsize = pp->sectorsize;
1800 pd->pd_disk_meta.id = 0;
1801 pd->pd_disk_meta.flags = INTEL_F_ASSIGNED | INTEL_F_ONLINE;
1802 }
1803 if (error != 0)
1804 return (error);
1805
1806 if (sectorsize <= 0) {
1807 gctl_error(req, "Can't get sector size.");
1808 return (-8);
1809 }
1810
1811 /* Reserve some space for metadata. */
1812 size -= ((4096 + sectorsize - 1) / sectorsize) * sectorsize;
1813
1814 /* Handle size argument. */
1815 len = sizeof(*sizearg);
1816 sizearg = gctl_get_param(req, "size", &len);
1817 if (sizearg != NULL && len == sizeof(*sizearg) &&
1818 *sizearg > 0) {
1819 if (*sizearg > size) {
1820 gctl_error(req, "Size too big %lld > %lld.",
1821 (long long)*sizearg, (long long)size);
1822 return (-9);
1823 }
1824 size = *sizearg;
1825 }
1826
1827 /* Handle strip argument. */
1828 strip = 131072;
1829 len = sizeof(*striparg);
1830 striparg = gctl_get_param(req, "strip", &len);
1831 if (striparg != NULL && len == sizeof(*striparg) &&
1832 *striparg > 0) {
1833 if (*striparg < sectorsize) {
1834 gctl_error(req, "Strip size too small.");
1835 return (-10);
1836 }
1837 if (*striparg % sectorsize != 0) {
1838 gctl_error(req, "Incorrect strip size.");
1839 return (-11);
1840 }
1841 if (strip > 65535 * sectorsize) {
1842 gctl_error(req, "Strip size too big.");
1843 return (-12);
1844 }
1845 strip = *striparg;
1846 }
1847
1848 /* Round size down to strip or sector. */
1849 if (level == G_RAID_VOLUME_RL_RAID1)
1850 size -= (size % sectorsize);
1851 else if (level == G_RAID_VOLUME_RL_RAID1E &&
1852 (numdisks & 1) != 0)
1853 size -= (size % (2 * strip));
1854 else
1855 size -= (size % strip);
1856 if (size <= 0) {
1857 gctl_error(req, "Size too small.");
1858 return (-13);
1859 }
1860
1861 /* We have all we need, create things: volume, ... */
1862 mdi->mdio_started = 1;
1863 vol = g_raid_create_volume(sc, volname, -1);
1864 pv = malloc(sizeof(*pv), M_MD_INTEL, M_WAITOK | M_ZERO);
1865 pv->pv_volume_pos = 0;
1866 vol->v_md_data = pv;
1867 vol->v_raid_level = level;
1868 vol->v_raid_level_qualifier = qual;
1869 vol->v_strip_size = strip;
1870 vol->v_disks_count = numdisks;
1871 if (level == G_RAID_VOLUME_RL_RAID0)
1872 vol->v_mediasize = size * numdisks;
1873 else if (level == G_RAID_VOLUME_RL_RAID1)
1874 vol->v_mediasize = size;
1875 else if (level == G_RAID_VOLUME_RL_RAID5)
1876 vol->v_mediasize = size * (numdisks - 1);
1877 else { /* RAID1E */
1878 vol->v_mediasize = ((size * numdisks) / strip / 2) *
1879 strip;
1880 }
1881 vol->v_sectorsize = sectorsize;
1882 g_raid_start_volume(vol);
1883
1884 /* , and subdisks. */
1885 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
1886 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
1887 sd = &vol->v_subdisks[pd->pd_disk_pos];
1888 sd->sd_disk = disk;
1889 sd->sd_offset = 0;
1890 sd->sd_size = size;
1891 TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next);
1892 if (sd->sd_disk->d_consumer != NULL) {
1893 g_raid_change_disk_state(disk,
1894 G_RAID_DISK_S_ACTIVE);
1895 if (level == G_RAID_VOLUME_RL_RAID5)
1896 g_raid_change_subdisk_state(sd,
1897 G_RAID_SUBDISK_S_UNINITIALIZED);
1898 else
1899 g_raid_change_subdisk_state(sd,
1900 G_RAID_SUBDISK_S_ACTIVE);
1901 g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW,
1902 G_RAID_EVENT_SUBDISK);
1903 } else {
1904 g_raid_change_disk_state(disk, G_RAID_DISK_S_OFFLINE);
1905 }
1906 }
1907
1908 /* Write metadata based on created entities. */
1909 G_RAID_DEBUG1(0, sc, "Array started.");
1910 g_raid_md_write_intel(md, NULL, NULL, NULL);
1911
1912 /* Pickup any STALE/SPARE disks to refill array if needed. */
1913 g_raid_md_intel_refill(sc);
1914
1915 g_raid_event_send(vol, G_RAID_VOLUME_E_START,
1916 G_RAID_EVENT_VOLUME);
1917 return (0);
1918 }
1919 if (strcmp(verb, "add") == 0) {
1920
1921 if (*nargs != 3) {
1922 gctl_error(req, "Invalid number of arguments.");
1923 return (-1);
1924 }
1925 volname = gctl_get_asciiparam(req, "arg1");
1926 if (volname == NULL) {
1927 gctl_error(req, "No volume name.");
1928 return (-2);
1929 }
1930 levelname = gctl_get_asciiparam(req, "arg2");
1931 if (levelname == NULL) {
1932 gctl_error(req, "No RAID level.");
1933 return (-3);
1934 }
1935 if (strcasecmp(levelname, "RAID5") == 0)
1936 levelname = "RAID5-LA";
1937 if (g_raid_volume_str2level(levelname, &level, &qual)) {
1938 gctl_error(req, "Unknown RAID level '%s'.", levelname);
1939 return (-4);
1940 }
1941
1942 /* Look for existing volumes. */
1943 i = 0;
1944 vol1 = NULL;
1945 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
1946 vol1 = vol;
1947 i++;
1948 }
1949 if (i > 1) {
1950 gctl_error(req, "Maximum two volumes supported.");
1951 return (-6);
1952 }
1953 if (vol1 == NULL) {
1954 gctl_error(req, "At least one volume must exist.");
1955 return (-7);
1956 }
1957
1958 numdisks = vol1->v_disks_count;
1959 force = gctl_get_paraml(req, "force", sizeof(*force));
1960 if (!g_raid_md_intel_supported(level, qual, numdisks,
1961 force ? *force : 0)) {
1962 gctl_error(req, "Unsupported RAID level "
1963 "(0x%02x/0x%02x), or number of disks (%d).",
1964 level, qual, numdisks);
1965 return (-5);
1966 }
1967
1968 /* Collect info about present disks. */
1969 size = 0x7fffffffffffffffllu;
1970 sectorsize = 512;
1971 for (i = 0; i < numdisks; i++) {
1972 disk = vol1->v_subdisks[i].sd_disk;
1973 pd = (struct g_raid_md_intel_perdisk *)
1974 disk->d_md_data;
1975 disk_sectors =
1976 intel_get_disk_sectors(&pd->pd_disk_meta);
1977
1978 if (disk_sectors * 512 < size)
1979 size = disk_sectors * 512;
1980 if (disk->d_consumer != NULL &&
1981 disk->d_consumer->provider != NULL &&
1982 disk->d_consumer->provider->sectorsize >
1983 sectorsize) {
1984 sectorsize =
1985 disk->d_consumer->provider->sectorsize;
1986 }
1987 }
1988
1989 /* Reserve some space for metadata. */
1990 size -= ((4096 + sectorsize - 1) / sectorsize) * sectorsize;
1991
1992 /* Decide insert before or after. */
1993 sd = &vol1->v_subdisks[0];
1994 if (sd->sd_offset >
1995 size - (sd->sd_offset + sd->sd_size)) {
1996 off = 0;
1997 size = sd->sd_offset;
1998 } else {
1999 off = sd->sd_offset + sd->sd_size;
2000 size = size - (sd->sd_offset + sd->sd_size);
2001 }
2002
2003 /* Handle strip argument. */
2004 strip = 131072;
2005 len = sizeof(*striparg);
2006 striparg = gctl_get_param(req, "strip", &len);
2007 if (striparg != NULL && len == sizeof(*striparg) &&
2008 *striparg > 0) {
2009 if (*striparg < sectorsize) {
2010 gctl_error(req, "Strip size too small.");
2011 return (-10);
2012 }
2013 if (*striparg % sectorsize != 0) {
2014 gctl_error(req, "Incorrect strip size.");
2015 return (-11);
2016 }
2017 if (strip > 65535 * sectorsize) {
2018 gctl_error(req, "Strip size too big.");
2019 return (-12);
2020 }
2021 strip = *striparg;
2022 }
2023
2024 /* Round offset up to strip. */
2025 if (off % strip != 0) {
2026 size -= strip - off % strip;
2027 off += strip - off % strip;
2028 }
2029
2030 /* Handle size argument. */
2031 len = sizeof(*sizearg);
2032 sizearg = gctl_get_param(req, "size", &len);
2033 if (sizearg != NULL && len == sizeof(*sizearg) &&
2034 *sizearg > 0) {
2035 if (*sizearg > size) {
2036 gctl_error(req, "Size too big %lld > %lld.",
2037 (long long)*sizearg, (long long)size);
2038 return (-9);
2039 }
2040 size = *sizearg;
2041 }
2042
2043 /* Round size down to strip or sector. */
2044 if (level == G_RAID_VOLUME_RL_RAID1)
2045 size -= (size % sectorsize);
2046 else
2047 size -= (size % strip);
2048 if (size <= 0) {
2049 gctl_error(req, "Size too small.");
2050 return (-13);
2051 }
2052 if (size > 0xffffffffllu * sectorsize) {
2053 gctl_error(req, "Size too big.");
2054 return (-14);
2055 }
2056
2057 /* We have all we need, create things: volume, ... */
2058 vol = g_raid_create_volume(sc, volname, -1);
2059 pv = malloc(sizeof(*pv), M_MD_INTEL, M_WAITOK | M_ZERO);
2060 pv->pv_volume_pos = i;
2061 vol->v_md_data = pv;
2062 vol->v_raid_level = level;
2063 vol->v_raid_level_qualifier = qual;
2064 vol->v_strip_size = strip;
2065 vol->v_disks_count = numdisks;
2066 if (level == G_RAID_VOLUME_RL_RAID0)
2067 vol->v_mediasize = size * numdisks;
2068 else if (level == G_RAID_VOLUME_RL_RAID1)
2069 vol->v_mediasize = size;
2070 else if (level == G_RAID_VOLUME_RL_RAID5)
2071 vol->v_mediasize = size * (numdisks - 1);
2072 else { /* RAID1E */
2073 vol->v_mediasize = ((size * numdisks) / strip / 2) *
2074 strip;
2075 }
2076 vol->v_sectorsize = sectorsize;
2077 g_raid_start_volume(vol);
2078
2079 /* , and subdisks. */
2080 for (i = 0; i < numdisks; i++) {
2081 disk = vol1->v_subdisks[i].sd_disk;
2082 sd = &vol->v_subdisks[i];
2083 sd->sd_disk = disk;
2084 sd->sd_offset = off;
2085 sd->sd_size = size;
2086 TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next);
2087 if (disk->d_state == G_RAID_DISK_S_ACTIVE) {
2088 if (level == G_RAID_VOLUME_RL_RAID5)
2089 g_raid_change_subdisk_state(sd,
2090 G_RAID_SUBDISK_S_UNINITIALIZED);
2091 else
2092 g_raid_change_subdisk_state(sd,
2093 G_RAID_SUBDISK_S_ACTIVE);
2094 g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW,
2095 G_RAID_EVENT_SUBDISK);
2096 }
2097 }
2098
2099 /* Write metadata based on created entities. */
2100 g_raid_md_write_intel(md, NULL, NULL, NULL);
2101
2102 g_raid_event_send(vol, G_RAID_VOLUME_E_START,
2103 G_RAID_EVENT_VOLUME);
2104 return (0);
2105 }
2106 if (strcmp(verb, "delete") == 0) {
2107
2108 nodename = gctl_get_asciiparam(req, "arg0");
2109 if (nodename != NULL && strcasecmp(sc->sc_name, nodename) != 0)
2110 nodename = NULL;
2111
2112 /* Full node destruction. */
2113 if (*nargs == 1 && nodename != NULL) {
2114 /* Check if some volume is still open. */
2115 force = gctl_get_paraml(req, "force", sizeof(*force));
2116 if (force != NULL && *force == 0 &&
2117 g_raid_nopens(sc) != 0) {
2118 gctl_error(req, "Some volume is still open.");
2119 return (-4);
2120 }
2121
2122 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2123 if (disk->d_consumer)
2124 intel_meta_erase(disk->d_consumer);
2125 }
2126 g_raid_destroy_node(sc, 0);
2127 return (0);
2128 }
2129
2130 /* Destroy specified volume. If it was last - all node. */
2131 if (*nargs > 2) {
2132 gctl_error(req, "Invalid number of arguments.");
2133 return (-1);
2134 }
2135 volname = gctl_get_asciiparam(req,
2136 nodename != NULL ? "arg1" : "arg0");
2137 if (volname == NULL) {
2138 gctl_error(req, "No volume name.");
2139 return (-2);
2140 }
2141
2142 /* Search for volume. */
2143 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
2144 if (strcmp(vol->v_name, volname) == 0)
2145 break;
2146 pp = vol->v_provider;
2147 if (pp == NULL)
2148 continue;
2149 if (strcmp(pp->name, volname) == 0)
2150 break;
2151 if (strncmp(pp->name, "raid/", 5) == 0 &&
2152 strcmp(pp->name + 5, volname) == 0)
2153 break;
2154 }
2155 if (vol == NULL) {
2156 i = strtol(volname, &tmp, 10);
2157 if (verb != volname && tmp[0] == 0) {
2158 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
2159 if (vol->v_global_id == i)
2160 break;
2161 }
2162 }
2163 }
2164 if (vol == NULL) {
2165 gctl_error(req, "Volume '%s' not found.", volname);
2166 return (-3);
2167 }
2168
2169 /* Check if volume is still open. */
2170 force = gctl_get_paraml(req, "force", sizeof(*force));
2171 if (force != NULL && *force == 0 &&
2172 vol->v_provider_open != 0) {
2173 gctl_error(req, "Volume is still open.");
2174 return (-4);
2175 }
2176
2177 /* Destroy volume and potentially node. */
2178 i = 0;
2179 TAILQ_FOREACH(vol1, &sc->sc_volumes, v_next)
2180 i++;
2181 if (i >= 2) {
2182 g_raid_destroy_volume(vol);
2183 g_raid_md_write_intel(md, NULL, NULL, NULL);
2184 } else {
2185 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2186 if (disk->d_consumer)
2187 intel_meta_erase(disk->d_consumer);
2188 }
2189 g_raid_destroy_node(sc, 0);
2190 }
2191 return (0);
2192 }
2193 if (strcmp(verb, "remove") == 0 ||
2194 strcmp(verb, "fail") == 0) {
2195 if (*nargs < 2) {
2196 gctl_error(req, "Invalid number of arguments.");
2197 return (-1);
2198 }
2199 for (i = 1; i < *nargs; i++) {
2200 snprintf(arg, sizeof(arg), "arg%d", i);
2201 diskname = gctl_get_asciiparam(req, arg);
2202 if (diskname == NULL) {
2203 gctl_error(req, "No disk name (%s).", arg);
2204 error = -2;
2205 break;
2206 }
2207 if (strncmp(diskname, "/dev/", 5) == 0)
2208 diskname += 5;
2209
2210 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2211 if (disk->d_consumer != NULL &&
2212 disk->d_consumer->provider != NULL &&
2213 strcmp(disk->d_consumer->provider->name,
2214 diskname) == 0)
2215 break;
2216 }
2217 if (disk == NULL) {
2218 gctl_error(req, "Disk '%s' not found.",
2219 diskname);
2220 error = -3;
2221 break;
2222 }
2223
2224 if (strcmp(verb, "fail") == 0) {
2225 g_raid_md_fail_disk_intel(md, NULL, disk);
2226 continue;
2227 }
2228
2229 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
2230
2231 /* Erase metadata on deleting disk. */
2232 intel_meta_erase(disk->d_consumer);
2233
2234 /* If disk was assigned, just update statuses. */
2235 if (pd->pd_disk_pos >= 0) {
2236 g_raid_change_disk_state(disk, G_RAID_DISK_S_OFFLINE);
2237 g_raid_kill_consumer(sc, disk->d_consumer);
2238 disk->d_consumer = NULL;
2239 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
2240 g_raid_change_subdisk_state(sd,
2241 G_RAID_SUBDISK_S_NONE);
2242 g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED,
2243 G_RAID_EVENT_SUBDISK);
2244 }
2245 } else {
2246 /* Otherwise -- delete. */
2247 g_raid_change_disk_state(disk, G_RAID_DISK_S_NONE);
2248 g_raid_destroy_disk(disk);
2249 }
2250 }
2251
2252 /* Write updated metadata to remaining disks. */
2253 g_raid_md_write_intel(md, NULL, NULL, NULL);
2254
2255 /* Check if anything left except placeholders. */
2256 if (g_raid_ndisks(sc, -1) ==
2257 g_raid_ndisks(sc, G_RAID_DISK_S_OFFLINE))
2258 g_raid_destroy_node(sc, 0);
2259 else
2260 g_raid_md_intel_refill(sc);
2261 return (error);
2262 }
2263 if (strcmp(verb, "insert") == 0) {
2264 if (*nargs < 2) {
2265 gctl_error(req, "Invalid number of arguments.");
2266 return (-1);
2267 }
2268 update = 0;
2269 for (i = 1; i < *nargs; i++) {
2270 /* Get disk name. */
2271 snprintf(arg, sizeof(arg), "arg%d", i);
2272 diskname = gctl_get_asciiparam(req, arg);
2273 if (diskname == NULL) {
2274 gctl_error(req, "No disk name (%s).", arg);
2275 error = -3;
2276 break;
2277 }
2278
2279 /* Try to find provider with specified name. */
2280 g_topology_lock();
2281 cp = g_raid_open_consumer(sc, diskname);
2282 if (cp == NULL) {
2283 gctl_error(req, "Can't open disk '%s'.",
2284 diskname);
2285 g_topology_unlock();
2286 error = -4;
2287 break;
2288 }
2289 pp = cp->provider;
2290 g_topology_unlock();
2291
2292 /* Read disk serial. */
2293 error = g_raid_md_get_label(cp,
2294 &serial[0], INTEL_SERIAL_LEN);
2295 if (error != 0) {
2296 gctl_error(req,
2297 "Can't get serial for provider '%s'.",
2298 diskname);
2299 g_raid_kill_consumer(sc, cp);
2300 error = -7;
2301 break;
2302 }
2303
2304 pd = malloc(sizeof(*pd), M_MD_INTEL, M_WAITOK | M_ZERO);
2305 pd->pd_disk_pos = -1;
2306
2307 disk = g_raid_create_disk(sc);
2308 disk->d_consumer = cp;
2309 disk->d_md_data = (void *)pd;
2310 cp->private = disk;
2311
2312 g_raid_get_disk_info(disk);
2313
2314 memcpy(&pd->pd_disk_meta.serial[0], &serial[0],
2315 INTEL_SERIAL_LEN);
2316 intel_set_disk_sectors(&pd->pd_disk_meta,
2317 pp->mediasize / pp->sectorsize);
2318 pd->pd_disk_meta.id = 0;
2319 pd->pd_disk_meta.flags = INTEL_F_SPARE;
2320
2321 /* Welcome the "new" disk. */
2322 update += g_raid_md_intel_start_disk(disk);
2323 if (disk->d_state == G_RAID_DISK_S_SPARE) {
2324 intel_meta_write_spare(cp, &pd->pd_disk_meta);
2325 g_raid_destroy_disk(disk);
2326 } else if (disk->d_state != G_RAID_DISK_S_ACTIVE) {
2327 gctl_error(req, "Disk '%s' doesn't fit.",
2328 diskname);
2329 g_raid_destroy_disk(disk);
2330 error = -8;
2331 break;
2332 }
2333 }
2334
2335 /* Write new metadata if we changed something. */
2336 if (update)
2337 g_raid_md_write_intel(md, NULL, NULL, NULL);
2338 return (error);
2339 }
2340 return (-100);
2341}
2342
2343static int
2344g_raid_md_write_intel(struct g_raid_md_object *md, struct g_raid_volume *tvol,
2345 struct g_raid_subdisk *tsd, struct g_raid_disk *tdisk)
2346{
2347 struct g_raid_softc *sc;
2348 struct g_raid_volume *vol;
2349 struct g_raid_subdisk *sd;
2350 struct g_raid_disk *disk;
2351 struct g_raid_md_intel_object *mdi;
2352 struct g_raid_md_intel_pervolume *pv;
2353 struct g_raid_md_intel_perdisk *pd;
2354 struct intel_raid_conf *meta;
2355 struct intel_raid_vol *mvol;
2356 struct intel_raid_map *mmap0, *mmap1;
2357 off_t sectorsize = 512, pos;
2358 const char *version, *cv;
2359 int vi, sdi, numdisks, len, state, stale;
2360
2361 sc = md->mdo_softc;
2362 mdi = (struct g_raid_md_intel_object *)md;
2363
2364 if (sc->sc_stopping == G_RAID_DESTROY_HARD)
2365 return (0);
2366
2367 /* Bump generation. Newly written metadata may differ from previous. */
2368 mdi->mdio_generation++;
2369
2370 /* Count number of disks. */
2371 numdisks = 0;
2372 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2373 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
2374 if (pd->pd_disk_pos < 0)
2375 continue;
2376 numdisks++;
2377 if (disk->d_state == G_RAID_DISK_S_ACTIVE) {
2378 pd->pd_disk_meta.flags =
2379 INTEL_F_ONLINE | INTEL_F_ASSIGNED;
2380 } else if (disk->d_state == G_RAID_DISK_S_FAILED) {
2381 pd->pd_disk_meta.flags = INTEL_F_FAILED |
2382 INTEL_F_ASSIGNED;
2383 } else if (disk->d_state == G_RAID_DISK_S_DISABLED) {
2384 pd->pd_disk_meta.flags = INTEL_F_FAILED |
2385 INTEL_F_ASSIGNED | INTEL_F_DISABLED;
2386 } else {
2387 if (!(pd->pd_disk_meta.flags & INTEL_F_DISABLED))
2388 pd->pd_disk_meta.flags = INTEL_F_ASSIGNED;
2389 if (pd->pd_disk_meta.id != 0xffffffff) {
2390 pd->pd_disk_meta.id = 0xffffffff;
2391 len = strlen(pd->pd_disk_meta.serial);
2392 len = min(len, INTEL_SERIAL_LEN - 3);
2393 strcpy(pd->pd_disk_meta.serial + len, ":0");
2394 }
2395 }
2396 }
2397
2398 /* Fill anchor and disks. */
2399 meta = malloc(INTEL_MAX_MD_SIZE(numdisks),
2400 M_MD_INTEL, M_WAITOK | M_ZERO);
2401 memcpy(&meta->intel_id[0], INTEL_MAGIC, sizeof(INTEL_MAGIC) - 1);
2402 meta->config_size = INTEL_MAX_MD_SIZE(numdisks);
2403 meta->config_id = mdi->mdio_config_id;
2404 meta->orig_config_id = mdi->mdio_orig_config_id;
2405 meta->generation = mdi->mdio_generation;
2406 meta->attributes = INTEL_ATTR_CHECKSUM;
2407 meta->total_disks = numdisks;
2408 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2409 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
2410 if (pd->pd_disk_pos < 0)
2411 continue;
2412 meta->disk[pd->pd_disk_pos] = pd->pd_disk_meta;
2413 if (pd->pd_disk_meta.sectors_hi != 0)
2414 meta->attributes |= INTEL_ATTR_2TB_DISK;
2415 }
2416
2417 /* Fill volumes and maps. */
2418 vi = 0;
2419 version = INTEL_VERSION_1000;
2420 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
2421 pv = vol->v_md_data;
2422 if (vol->v_stopping)
2423 continue;
2424 mvol = intel_get_volume(meta, vi);
2425
2426 /* New metadata may have different volumes order. */
2427 pv->pv_volume_pos = vi;
2428
2429 for (sdi = 0; sdi < vol->v_disks_count; sdi++) {
2430 sd = &vol->v_subdisks[sdi];
2431 if (sd->sd_disk != NULL)
2432 break;
2433 }
2434 if (sdi >= vol->v_disks_count)
2435 panic("No any filled subdisk in volume");
2436 if (vol->v_mediasize >= 0x20000000000llu)
2437 meta->attributes |= INTEL_ATTR_2TB;
2438 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID0)
2439 meta->attributes |= INTEL_ATTR_RAID0;
2440 else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1)
2441 meta->attributes |= INTEL_ATTR_RAID1;
2442 else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID5)
2443 meta->attributes |= INTEL_ATTR_RAID5;
2444 else if ((vol->v_disks_count & 1) == 0)
2445 meta->attributes |= INTEL_ATTR_RAID10;
2446 else
2447 meta->attributes |= INTEL_ATTR_RAID1E;
2448 if (pv->pv_cng)
2449 meta->attributes |= INTEL_ATTR_RAIDCNG;
2450 if (vol->v_strip_size > 131072)
2451 meta->attributes |= INTEL_ATTR_EXT_STRIP;
2452
2453 if (pv->pv_cng)
2454 cv = INTEL_VERSION_1206;
2455 else if (vol->v_disks_count > 4)
2456 cv = INTEL_VERSION_1204;
2457 else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID5)
2458 cv = INTEL_VERSION_1202;
2459 else if (vol->v_disks_count > 2)
2460 cv = INTEL_VERSION_1201;
2461 else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1)
2462 cv = INTEL_VERSION_1100;
2463 else
2464 cv = INTEL_VERSION_1000;
2465 if (strcmp(cv, version) > 0)
2466 version = cv;
2467
2468 strlcpy(&mvol->name[0], vol->v_name, sizeof(mvol->name));
2469 mvol->total_sectors = vol->v_mediasize / sectorsize;
2470 mvol->state = (INTEL_ST_READ_COALESCING |
2471 INTEL_ST_WRITE_COALESCING);
2472 mvol->tid = vol->v_global_id + 1;
2473 if (pv->pv_cng) {
2474 mvol->state |= INTEL_ST_CLONE_N_GO;
2475 if (pv->pv_cng_man_sync)
2476 mvol->state |= INTEL_ST_CLONE_MAN_SYNC;
2477 mvol->cng_master_disk = pv->pv_cng_master_disk;
2478 if (vol->v_subdisks[pv->pv_cng_master_disk].sd_state ==
2479 G_RAID_SUBDISK_S_NONE)
2480 mvol->cng_state = INTEL_CNGST_MASTER_MISSING;
2481 else if (vol->v_state != G_RAID_VOLUME_S_OPTIMAL)
2482 mvol->cng_state = INTEL_CNGST_NEEDS_UPDATE;
2483 else
2484 mvol->cng_state = INTEL_CNGST_UPDATED;
2485 }
2486
2487 /* Check for any recovery in progress. */
2488 state = G_RAID_SUBDISK_S_ACTIVE;
2489 pos = 0x7fffffffffffffffllu;
2490 stale = 0;
2491 for (sdi = 0; sdi < vol->v_disks_count; sdi++) {
2492 sd = &vol->v_subdisks[sdi];
2493 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD)
2494 state = G_RAID_SUBDISK_S_REBUILD;
2495 else if (sd->sd_state == G_RAID_SUBDISK_S_RESYNC &&
2496 state != G_RAID_SUBDISK_S_REBUILD)
2497 state = G_RAID_SUBDISK_S_RESYNC;
2498 else if (sd->sd_state == G_RAID_SUBDISK_S_STALE)
2499 stale = 1;
2500 if ((sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
2501 sd->sd_state == G_RAID_SUBDISK_S_RESYNC) &&
2502 sd->sd_rebuild_pos < pos)
2503 pos = sd->sd_rebuild_pos;
2504 }
2505 if (state == G_RAID_SUBDISK_S_REBUILD) {
2506 mvol->migr_state = 1;
2507 mvol->migr_type = INTEL_MT_REBUILD;
2508 } else if (state == G_RAID_SUBDISK_S_RESYNC) {
2509 mvol->migr_state = 1;
2510 /* mvol->migr_type = INTEL_MT_REPAIR; */
2511 mvol->migr_type = INTEL_MT_VERIFY;
2512 mvol->state |= INTEL_ST_VERIFY_AND_FIX;
2513 } else
2514 mvol->migr_state = 0;
2515 mvol->dirty = (vol->v_dirty || stale);
2516
2517 mmap0 = intel_get_map(mvol, 0);
2518
2519 /* Write map / common part of two maps. */
2520 intel_set_map_offset(mmap0, sd->sd_offset / sectorsize);
2521 intel_set_map_disk_sectors(mmap0, sd->sd_size / sectorsize);
2522 mmap0->strip_sectors = vol->v_strip_size / sectorsize;
2523 if (vol->v_state == G_RAID_VOLUME_S_BROKEN)
2524 mmap0->status = INTEL_S_FAILURE;
2525 else if (vol->v_state == G_RAID_VOLUME_S_DEGRADED)
2526 mmap0->status = INTEL_S_DEGRADED;
2527 else if (g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_UNINITIALIZED)
2528 == g_raid_nsubdisks(vol, -1))
2529 mmap0->status = INTEL_S_UNINITIALIZED;
2530 else
2531 mmap0->status = INTEL_S_READY;
2532 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID0)
2533 mmap0->type = INTEL_T_RAID0;
2534 else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 ||
2535 vol->v_raid_level == G_RAID_VOLUME_RL_RAID1E)
2536 mmap0->type = INTEL_T_RAID1;
2537 else
2538 mmap0->type = INTEL_T_RAID5;
2539 mmap0->total_disks = vol->v_disks_count;
2540 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1)
2541 mmap0->total_domains = vol->v_disks_count;
2542 else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1E)
2543 mmap0->total_domains = 2;
2544 else
2545 mmap0->total_domains = 1;
2546 intel_set_map_stripe_count(mmap0,
2547 sd->sd_size / vol->v_strip_size / mmap0->total_domains);
2548 mmap0->failed_disk_num = 0xff;
2549 mmap0->ddf = 1;
2550
2551 /* If there are two maps - copy common and update. */
2552 if (mvol->migr_state) {
2553 intel_set_vol_curr_migr_unit(mvol,
2554 pos / vol->v_strip_size / mmap0->total_domains);
2555 mmap1 = intel_get_map(mvol, 1);
2556 memcpy(mmap1, mmap0, sizeof(struct intel_raid_map));
2557 mmap0->status = INTEL_S_READY;
2558 } else
2559 mmap1 = NULL;
2560
2561 /* Write disk indexes and put rebuild flags. */
2562 for (sdi = 0; sdi < vol->v_disks_count; sdi++) {
2563 sd = &vol->v_subdisks[sdi];
2564 pd = (struct g_raid_md_intel_perdisk *)
2565 sd->sd_disk->d_md_data;
2566 mmap0->disk_idx[sdi] = pd->pd_disk_pos;
2567 if (mvol->migr_state)
2568 mmap1->disk_idx[sdi] = pd->pd_disk_pos;
2569 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
2570 sd->sd_state == G_RAID_SUBDISK_S_RESYNC) {
2571 mmap1->disk_idx[sdi] |= INTEL_DI_RBLD;
2572 } else if (sd->sd_state != G_RAID_SUBDISK_S_ACTIVE &&
2573 sd->sd_state != G_RAID_SUBDISK_S_STALE &&
2574 sd->sd_state != G_RAID_SUBDISK_S_UNINITIALIZED) {
2575 mmap0->disk_idx[sdi] |= INTEL_DI_RBLD;
2576 if (mvol->migr_state)
2577 mmap1->disk_idx[sdi] |= INTEL_DI_RBLD;
2578 }
2579 if ((sd->sd_state == G_RAID_SUBDISK_S_NONE ||
2580 sd->sd_state == G_RAID_SUBDISK_S_FAILED ||
2581 sd->sd_state == G_RAID_SUBDISK_S_REBUILD) &&
2582 mmap0->failed_disk_num == 0xff) {
2583 mmap0->failed_disk_num = sdi;
2584 if (mvol->migr_state)
2585 mmap1->failed_disk_num = sdi;
2586 }
2587 }
2588 vi++;
2589 }
2590 meta->total_volumes = vi;
2591 if (vi > 1 || meta->attributes &
2592 (INTEL_ATTR_EXT_STRIP | INTEL_ATTR_2TB_DISK | INTEL_ATTR_2TB))
2593 version = INTEL_VERSION_1300;
2594 if (strcmp(version, INTEL_VERSION_1300) < 0)
2595 meta->attributes &= INTEL_ATTR_CHECKSUM;
2596 memcpy(&meta->version[0], version, sizeof(INTEL_VERSION_1000) - 1);
2597
2598 /* We are done. Print meta data and store them to disks. */
2599 g_raid_md_intel_print(meta);
2600 if (mdi->mdio_meta != NULL)
2601 free(mdi->mdio_meta, M_MD_INTEL);
2602 mdi->mdio_meta = meta;
2603 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2604 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
2605 if (disk->d_state != G_RAID_DISK_S_ACTIVE)
2606 continue;
2607 if (pd->pd_meta != NULL) {
2608 free(pd->pd_meta, M_MD_INTEL);
2609 pd->pd_meta = NULL;
2610 }
2611 pd->pd_meta = intel_meta_copy(meta);
2612 intel_meta_write(disk->d_consumer, meta);
2613 }
2614 return (0);
2615}
2616
2617static int
2618g_raid_md_fail_disk_intel(struct g_raid_md_object *md,
2619 struct g_raid_subdisk *tsd, struct g_raid_disk *tdisk)
2620{
2621 struct g_raid_softc *sc;
2622 struct g_raid_md_intel_object *mdi;
2623 struct g_raid_md_intel_perdisk *pd;
2624 struct g_raid_subdisk *sd;
2625
2626 sc = md->mdo_softc;
2627 mdi = (struct g_raid_md_intel_object *)md;
2628 pd = (struct g_raid_md_intel_perdisk *)tdisk->d_md_data;
2629
2630 /* We can't fail disk that is not a part of array now. */
2631 if (pd->pd_disk_pos < 0)
2632 return (-1);
2633
2634 /*
2635 * Mark disk as failed in metadata and try to write that metadata
2636 * to the disk itself to prevent it's later resurrection as STALE.
2637 */
2638 mdi->mdio_meta->disk[pd->pd_disk_pos].flags = INTEL_F_FAILED;
2639 pd->pd_disk_meta.flags = INTEL_F_FAILED;
2640 g_raid_md_intel_print(mdi->mdio_meta);
2641 if (tdisk->d_consumer)
2642 intel_meta_write(tdisk->d_consumer, mdi->mdio_meta);
2643
2644 /* Change states. */
2645 g_raid_change_disk_state(tdisk, G_RAID_DISK_S_FAILED);
2646 TAILQ_FOREACH(sd, &tdisk->d_subdisks, sd_next) {
2647 g_raid_change_subdisk_state(sd,
2648 G_RAID_SUBDISK_S_FAILED);
2649 g_raid_event_send(sd, G_RAID_SUBDISK_E_FAILED,
2650 G_RAID_EVENT_SUBDISK);
2651 }
2652
2653 /* Write updated metadata to remaining disks. */
2654 g_raid_md_write_intel(md, NULL, NULL, tdisk);
2655
2656 /* Check if anything left except placeholders. */
2657 if (g_raid_ndisks(sc, -1) ==
2658 g_raid_ndisks(sc, G_RAID_DISK_S_OFFLINE))
2659 g_raid_destroy_node(sc, 0);
2660 else
2661 g_raid_md_intel_refill(sc);
2662 return (0);
2663}
2664
2665static int
2666g_raid_md_free_disk_intel(struct g_raid_md_object *md,
2667 struct g_raid_disk *disk)
2668{
2669 struct g_raid_md_intel_perdisk *pd;
2670
2671 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
2672 if (pd->pd_meta != NULL) {
2673 free(pd->pd_meta, M_MD_INTEL);
2674 pd->pd_meta = NULL;
2675 }
2676 free(pd, M_MD_INTEL);
2677 disk->d_md_data = NULL;
2678 return (0);
2679}
2680
2681static int
2682g_raid_md_free_volume_intel(struct g_raid_md_object *md,
2683 struct g_raid_volume *vol)
2684{
2685 struct g_raid_md_intel_pervolume *pv;
2686
2687 pv = (struct g_raid_md_intel_pervolume *)vol->v_md_data;
2688 free(pv, M_MD_INTEL);
2689 vol->v_md_data = NULL;
2690 return (0);
2691}
2692
2693static int
2694g_raid_md_free_intel(struct g_raid_md_object *md)
2695{
2696 struct g_raid_md_intel_object *mdi;
2697
2698 mdi = (struct g_raid_md_intel_object *)md;
2699 if (!mdi->mdio_started) {
2700 mdi->mdio_started = 0;
2701 callout_stop(&mdi->mdio_start_co);
2702 G_RAID_DEBUG1(1, md->mdo_softc,
2703 "root_mount_rel %p", mdi->mdio_rootmount);
2704 root_mount_rel(mdi->mdio_rootmount);
2705 mdi->mdio_rootmount = NULL;
2706 }
2707 if (mdi->mdio_meta != NULL) {
2708 free(mdi->mdio_meta, M_MD_INTEL);
2709 mdi->mdio_meta = NULL;
2710 }
2711 return (0);
2712}
2713
2714G_RAID_MD_DECLARE(intel, "Intel");
1500 if (pp->geom->rank == 1)
1501 g_io_getattr("GEOM::hba_vendor", cp, &len, &vendor);
1502 meta = intel_meta_read(cp);
1503 g_topology_lock();
1504 if (meta == NULL) {
1505 if (g_raid_aggressive_spare) {
1506 if (vendor != 0x8086) {
1507 G_RAID_DEBUG(1,
1508 "Intel vendor mismatch 0x%04x != 0x8086",
1509 vendor);
1510 } else {
1511 G_RAID_DEBUG(1,
1512 "No Intel metadata, forcing spare.");
1513 spare = 2;
1514 goto search;
1515 }
1516 }
1517 return (G_RAID_MD_TASTE_FAIL);
1518 }
1519
1520 /* Check this disk position in obtained metadata. */
1521 disk_pos = intel_meta_find_disk(meta, serial);
1522 if (disk_pos < 0) {
1523 G_RAID_DEBUG(1, "Intel serial '%s' not found", serial);
1524 goto fail1;
1525 }
1526 if (intel_get_disk_sectors(&meta->disk[disk_pos]) !=
1527 (pp->mediasize / pp->sectorsize)) {
1528 G_RAID_DEBUG(1, "Intel size mismatch %ju != %ju",
1529 intel_get_disk_sectors(&meta->disk[disk_pos]),
1530 (off_t)(pp->mediasize / pp->sectorsize));
1531 goto fail1;
1532 }
1533
1534 G_RAID_DEBUG(1, "Intel disk position %d", disk_pos);
1535 spare = meta->disk[disk_pos].flags & INTEL_F_SPARE;
1536
1537search:
1538 /* Search for matching node. */
1539 sc = NULL;
1540 mdi1 = NULL;
1541 LIST_FOREACH(geom, &mp->geom, geom) {
1542 sc = geom->softc;
1543 if (sc == NULL)
1544 continue;
1545 if (sc->sc_stopping != 0)
1546 continue;
1547 if (sc->sc_md->mdo_class != md->mdo_class)
1548 continue;
1549 mdi1 = (struct g_raid_md_intel_object *)sc->sc_md;
1550 if (spare) {
1551 if (mdi1->mdio_incomplete)
1552 break;
1553 } else {
1554 if (mdi1->mdio_config_id == meta->config_id)
1555 break;
1556 }
1557 }
1558
1559 /* Found matching node. */
1560 if (geom != NULL) {
1561 G_RAID_DEBUG(1, "Found matching array %s", sc->sc_name);
1562 result = G_RAID_MD_TASTE_EXISTING;
1563
1564 } else if (spare) { /* Not found needy node -- left for later. */
1565 G_RAID_DEBUG(1, "Spare is not needed at this time");
1566 goto fail1;
1567
1568 } else { /* Not found matching node -- create one. */
1569 result = G_RAID_MD_TASTE_NEW;
1570 mdi->mdio_config_id = meta->config_id;
1571 mdi->mdio_orig_config_id = meta->orig_config_id;
1572 snprintf(name, sizeof(name), "Intel-%08x", meta->config_id);
1573 sc = g_raid_create_node(mp, name, md);
1574 md->mdo_softc = sc;
1575 geom = sc->sc_geom;
1576 callout_init(&mdi->mdio_start_co, 1);
1577 callout_reset(&mdi->mdio_start_co, g_raid_start_timeout * hz,
1578 g_raid_intel_go, sc);
1579 mdi->mdio_rootmount = root_mount_hold("GRAID-Intel");
1580 G_RAID_DEBUG1(1, sc, "root_mount_hold %p", mdi->mdio_rootmount);
1581 }
1582
1583 /* There is no return after this point, so we close passed consumer. */
1584 g_access(cp, -1, 0, 0);
1585
1586 rcp = g_new_consumer(geom);
1587 rcp->flags |= G_CF_DIRECT_RECEIVE;
1588 g_attach(rcp, pp);
1589 if (g_access(rcp, 1, 1, 1) != 0)
1590 ; //goto fail1;
1591
1592 g_topology_unlock();
1593 sx_xlock(&sc->sc_lock);
1594
1595 pd = malloc(sizeof(*pd), M_MD_INTEL, M_WAITOK | M_ZERO);
1596 pd->pd_meta = meta;
1597 pd->pd_disk_pos = -1;
1598 if (spare == 2) {
1599 memcpy(&pd->pd_disk_meta.serial[0], serial, INTEL_SERIAL_LEN);
1600 intel_set_disk_sectors(&pd->pd_disk_meta,
1601 pp->mediasize / pp->sectorsize);
1602 pd->pd_disk_meta.id = 0;
1603 pd->pd_disk_meta.flags = INTEL_F_SPARE;
1604 } else {
1605 pd->pd_disk_meta = meta->disk[disk_pos];
1606 }
1607 disk = g_raid_create_disk(sc);
1608 disk->d_md_data = (void *)pd;
1609 disk->d_consumer = rcp;
1610 rcp->private = disk;
1611
1612 g_raid_get_disk_info(disk);
1613
1614 g_raid_md_intel_new_disk(disk);
1615
1616 sx_xunlock(&sc->sc_lock);
1617 g_topology_lock();
1618 *gp = geom;
1619 return (result);
1620fail2:
1621 g_topology_lock();
1622fail1:
1623 free(meta, M_MD_INTEL);
1624 return (G_RAID_MD_TASTE_FAIL);
1625}
1626
1627static int
1628g_raid_md_event_intel(struct g_raid_md_object *md,
1629 struct g_raid_disk *disk, u_int event)
1630{
1631 struct g_raid_softc *sc;
1632 struct g_raid_subdisk *sd;
1633 struct g_raid_md_intel_object *mdi;
1634 struct g_raid_md_intel_perdisk *pd;
1635
1636 sc = md->mdo_softc;
1637 mdi = (struct g_raid_md_intel_object *)md;
1638 if (disk == NULL) {
1639 switch (event) {
1640 case G_RAID_NODE_E_START:
1641 if (!mdi->mdio_started)
1642 g_raid_md_intel_start(sc);
1643 return (0);
1644 }
1645 return (-1);
1646 }
1647 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
1648 switch (event) {
1649 case G_RAID_DISK_E_DISCONNECTED:
1650 /* If disk was assigned, just update statuses. */
1651 if (pd->pd_disk_pos >= 0) {
1652 g_raid_change_disk_state(disk, G_RAID_DISK_S_OFFLINE);
1653 if (disk->d_consumer) {
1654 g_raid_kill_consumer(sc, disk->d_consumer);
1655 disk->d_consumer = NULL;
1656 }
1657 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
1658 g_raid_change_subdisk_state(sd,
1659 G_RAID_SUBDISK_S_NONE);
1660 g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED,
1661 G_RAID_EVENT_SUBDISK);
1662 }
1663 } else {
1664 /* Otherwise -- delete. */
1665 g_raid_change_disk_state(disk, G_RAID_DISK_S_NONE);
1666 g_raid_destroy_disk(disk);
1667 }
1668
1669 /* Write updated metadata to all disks. */
1670 g_raid_md_write_intel(md, NULL, NULL, NULL);
1671
1672 /* Check if anything left except placeholders. */
1673 if (g_raid_ndisks(sc, -1) ==
1674 g_raid_ndisks(sc, G_RAID_DISK_S_OFFLINE))
1675 g_raid_destroy_node(sc, 0);
1676 else
1677 g_raid_md_intel_refill(sc);
1678 return (0);
1679 }
1680 return (-2);
1681}
1682
1683static int
1684g_raid_md_ctl_intel(struct g_raid_md_object *md,
1685 struct gctl_req *req)
1686{
1687 struct g_raid_softc *sc;
1688 struct g_raid_volume *vol, *vol1;
1689 struct g_raid_subdisk *sd;
1690 struct g_raid_disk *disk;
1691 struct g_raid_md_intel_object *mdi;
1692 struct g_raid_md_intel_pervolume *pv;
1693 struct g_raid_md_intel_perdisk *pd;
1694 struct g_consumer *cp;
1695 struct g_provider *pp;
1696 char arg[16], serial[INTEL_SERIAL_LEN];
1697 const char *nodename, *verb, *volname, *levelname, *diskname;
1698 char *tmp;
1699 int *nargs, *force;
1700 off_t off, size, sectorsize, strip, disk_sectors;
1701 intmax_t *sizearg, *striparg;
1702 int numdisks, i, len, level, qual, update;
1703 int error;
1704
1705 sc = md->mdo_softc;
1706 mdi = (struct g_raid_md_intel_object *)md;
1707 verb = gctl_get_param(req, "verb", NULL);
1708 nargs = gctl_get_paraml(req, "nargs", sizeof(*nargs));
1709 error = 0;
1710 if (strcmp(verb, "label") == 0) {
1711
1712 if (*nargs < 4) {
1713 gctl_error(req, "Invalid number of arguments.");
1714 return (-1);
1715 }
1716 volname = gctl_get_asciiparam(req, "arg1");
1717 if (volname == NULL) {
1718 gctl_error(req, "No volume name.");
1719 return (-2);
1720 }
1721 levelname = gctl_get_asciiparam(req, "arg2");
1722 if (levelname == NULL) {
1723 gctl_error(req, "No RAID level.");
1724 return (-3);
1725 }
1726 if (strcasecmp(levelname, "RAID5") == 0)
1727 levelname = "RAID5-LA";
1728 if (g_raid_volume_str2level(levelname, &level, &qual)) {
1729 gctl_error(req, "Unknown RAID level '%s'.", levelname);
1730 return (-4);
1731 }
1732 numdisks = *nargs - 3;
1733 force = gctl_get_paraml(req, "force", sizeof(*force));
1734 if (!g_raid_md_intel_supported(level, qual, numdisks,
1735 force ? *force : 0)) {
1736 gctl_error(req, "Unsupported RAID level "
1737 "(0x%02x/0x%02x), or number of disks (%d).",
1738 level, qual, numdisks);
1739 return (-5);
1740 }
1741
1742 /* Search for disks, connect them and probe. */
1743 size = 0x7fffffffffffffffllu;
1744 sectorsize = 0;
1745 for (i = 0; i < numdisks; i++) {
1746 snprintf(arg, sizeof(arg), "arg%d", i + 3);
1747 diskname = gctl_get_asciiparam(req, arg);
1748 if (diskname == NULL) {
1749 gctl_error(req, "No disk name (%s).", arg);
1750 error = -6;
1751 break;
1752 }
1753 if (strcmp(diskname, "NONE") == 0) {
1754 cp = NULL;
1755 pp = NULL;
1756 } else {
1757 g_topology_lock();
1758 cp = g_raid_open_consumer(sc, diskname);
1759 if (cp == NULL) {
1760 gctl_error(req, "Can't open disk '%s'.",
1761 diskname);
1762 g_topology_unlock();
1763 error = -7;
1764 break;
1765 }
1766 pp = cp->provider;
1767 }
1768 pd = malloc(sizeof(*pd), M_MD_INTEL, M_WAITOK | M_ZERO);
1769 pd->pd_disk_pos = i;
1770 disk = g_raid_create_disk(sc);
1771 disk->d_md_data = (void *)pd;
1772 disk->d_consumer = cp;
1773 if (cp == NULL) {
1774 strcpy(&pd->pd_disk_meta.serial[0], "NONE");
1775 pd->pd_disk_meta.id = 0xffffffff;
1776 pd->pd_disk_meta.flags = INTEL_F_ASSIGNED;
1777 continue;
1778 }
1779 cp->private = disk;
1780 g_topology_unlock();
1781
1782 error = g_raid_md_get_label(cp,
1783 &pd->pd_disk_meta.serial[0], INTEL_SERIAL_LEN);
1784 if (error != 0) {
1785 gctl_error(req,
1786 "Can't get serial for provider '%s'.",
1787 diskname);
1788 error = -8;
1789 break;
1790 }
1791
1792 g_raid_get_disk_info(disk);
1793
1794 intel_set_disk_sectors(&pd->pd_disk_meta,
1795 pp->mediasize / pp->sectorsize);
1796 if (size > pp->mediasize)
1797 size = pp->mediasize;
1798 if (sectorsize < pp->sectorsize)
1799 sectorsize = pp->sectorsize;
1800 pd->pd_disk_meta.id = 0;
1801 pd->pd_disk_meta.flags = INTEL_F_ASSIGNED | INTEL_F_ONLINE;
1802 }
1803 if (error != 0)
1804 return (error);
1805
1806 if (sectorsize <= 0) {
1807 gctl_error(req, "Can't get sector size.");
1808 return (-8);
1809 }
1810
1811 /* Reserve some space for metadata. */
1812 size -= ((4096 + sectorsize - 1) / sectorsize) * sectorsize;
1813
1814 /* Handle size argument. */
1815 len = sizeof(*sizearg);
1816 sizearg = gctl_get_param(req, "size", &len);
1817 if (sizearg != NULL && len == sizeof(*sizearg) &&
1818 *sizearg > 0) {
1819 if (*sizearg > size) {
1820 gctl_error(req, "Size too big %lld > %lld.",
1821 (long long)*sizearg, (long long)size);
1822 return (-9);
1823 }
1824 size = *sizearg;
1825 }
1826
1827 /* Handle strip argument. */
1828 strip = 131072;
1829 len = sizeof(*striparg);
1830 striparg = gctl_get_param(req, "strip", &len);
1831 if (striparg != NULL && len == sizeof(*striparg) &&
1832 *striparg > 0) {
1833 if (*striparg < sectorsize) {
1834 gctl_error(req, "Strip size too small.");
1835 return (-10);
1836 }
1837 if (*striparg % sectorsize != 0) {
1838 gctl_error(req, "Incorrect strip size.");
1839 return (-11);
1840 }
1841 if (strip > 65535 * sectorsize) {
1842 gctl_error(req, "Strip size too big.");
1843 return (-12);
1844 }
1845 strip = *striparg;
1846 }
1847
1848 /* Round size down to strip or sector. */
1849 if (level == G_RAID_VOLUME_RL_RAID1)
1850 size -= (size % sectorsize);
1851 else if (level == G_RAID_VOLUME_RL_RAID1E &&
1852 (numdisks & 1) != 0)
1853 size -= (size % (2 * strip));
1854 else
1855 size -= (size % strip);
1856 if (size <= 0) {
1857 gctl_error(req, "Size too small.");
1858 return (-13);
1859 }
1860
1861 /* We have all we need, create things: volume, ... */
1862 mdi->mdio_started = 1;
1863 vol = g_raid_create_volume(sc, volname, -1);
1864 pv = malloc(sizeof(*pv), M_MD_INTEL, M_WAITOK | M_ZERO);
1865 pv->pv_volume_pos = 0;
1866 vol->v_md_data = pv;
1867 vol->v_raid_level = level;
1868 vol->v_raid_level_qualifier = qual;
1869 vol->v_strip_size = strip;
1870 vol->v_disks_count = numdisks;
1871 if (level == G_RAID_VOLUME_RL_RAID0)
1872 vol->v_mediasize = size * numdisks;
1873 else if (level == G_RAID_VOLUME_RL_RAID1)
1874 vol->v_mediasize = size;
1875 else if (level == G_RAID_VOLUME_RL_RAID5)
1876 vol->v_mediasize = size * (numdisks - 1);
1877 else { /* RAID1E */
1878 vol->v_mediasize = ((size * numdisks) / strip / 2) *
1879 strip;
1880 }
1881 vol->v_sectorsize = sectorsize;
1882 g_raid_start_volume(vol);
1883
1884 /* , and subdisks. */
1885 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
1886 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
1887 sd = &vol->v_subdisks[pd->pd_disk_pos];
1888 sd->sd_disk = disk;
1889 sd->sd_offset = 0;
1890 sd->sd_size = size;
1891 TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next);
1892 if (sd->sd_disk->d_consumer != NULL) {
1893 g_raid_change_disk_state(disk,
1894 G_RAID_DISK_S_ACTIVE);
1895 if (level == G_RAID_VOLUME_RL_RAID5)
1896 g_raid_change_subdisk_state(sd,
1897 G_RAID_SUBDISK_S_UNINITIALIZED);
1898 else
1899 g_raid_change_subdisk_state(sd,
1900 G_RAID_SUBDISK_S_ACTIVE);
1901 g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW,
1902 G_RAID_EVENT_SUBDISK);
1903 } else {
1904 g_raid_change_disk_state(disk, G_RAID_DISK_S_OFFLINE);
1905 }
1906 }
1907
1908 /* Write metadata based on created entities. */
1909 G_RAID_DEBUG1(0, sc, "Array started.");
1910 g_raid_md_write_intel(md, NULL, NULL, NULL);
1911
1912 /* Pickup any STALE/SPARE disks to refill array if needed. */
1913 g_raid_md_intel_refill(sc);
1914
1915 g_raid_event_send(vol, G_RAID_VOLUME_E_START,
1916 G_RAID_EVENT_VOLUME);
1917 return (0);
1918 }
1919 if (strcmp(verb, "add") == 0) {
1920
1921 if (*nargs != 3) {
1922 gctl_error(req, "Invalid number of arguments.");
1923 return (-1);
1924 }
1925 volname = gctl_get_asciiparam(req, "arg1");
1926 if (volname == NULL) {
1927 gctl_error(req, "No volume name.");
1928 return (-2);
1929 }
1930 levelname = gctl_get_asciiparam(req, "arg2");
1931 if (levelname == NULL) {
1932 gctl_error(req, "No RAID level.");
1933 return (-3);
1934 }
1935 if (strcasecmp(levelname, "RAID5") == 0)
1936 levelname = "RAID5-LA";
1937 if (g_raid_volume_str2level(levelname, &level, &qual)) {
1938 gctl_error(req, "Unknown RAID level '%s'.", levelname);
1939 return (-4);
1940 }
1941
1942 /* Look for existing volumes. */
1943 i = 0;
1944 vol1 = NULL;
1945 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
1946 vol1 = vol;
1947 i++;
1948 }
1949 if (i > 1) {
1950 gctl_error(req, "Maximum two volumes supported.");
1951 return (-6);
1952 }
1953 if (vol1 == NULL) {
1954 gctl_error(req, "At least one volume must exist.");
1955 return (-7);
1956 }
1957
1958 numdisks = vol1->v_disks_count;
1959 force = gctl_get_paraml(req, "force", sizeof(*force));
1960 if (!g_raid_md_intel_supported(level, qual, numdisks,
1961 force ? *force : 0)) {
1962 gctl_error(req, "Unsupported RAID level "
1963 "(0x%02x/0x%02x), or number of disks (%d).",
1964 level, qual, numdisks);
1965 return (-5);
1966 }
1967
1968 /* Collect info about present disks. */
1969 size = 0x7fffffffffffffffllu;
1970 sectorsize = 512;
1971 for (i = 0; i < numdisks; i++) {
1972 disk = vol1->v_subdisks[i].sd_disk;
1973 pd = (struct g_raid_md_intel_perdisk *)
1974 disk->d_md_data;
1975 disk_sectors =
1976 intel_get_disk_sectors(&pd->pd_disk_meta);
1977
1978 if (disk_sectors * 512 < size)
1979 size = disk_sectors * 512;
1980 if (disk->d_consumer != NULL &&
1981 disk->d_consumer->provider != NULL &&
1982 disk->d_consumer->provider->sectorsize >
1983 sectorsize) {
1984 sectorsize =
1985 disk->d_consumer->provider->sectorsize;
1986 }
1987 }
1988
1989 /* Reserve some space for metadata. */
1990 size -= ((4096 + sectorsize - 1) / sectorsize) * sectorsize;
1991
1992 /* Decide insert before or after. */
1993 sd = &vol1->v_subdisks[0];
1994 if (sd->sd_offset >
1995 size - (sd->sd_offset + sd->sd_size)) {
1996 off = 0;
1997 size = sd->sd_offset;
1998 } else {
1999 off = sd->sd_offset + sd->sd_size;
2000 size = size - (sd->sd_offset + sd->sd_size);
2001 }
2002
2003 /* Handle strip argument. */
2004 strip = 131072;
2005 len = sizeof(*striparg);
2006 striparg = gctl_get_param(req, "strip", &len);
2007 if (striparg != NULL && len == sizeof(*striparg) &&
2008 *striparg > 0) {
2009 if (*striparg < sectorsize) {
2010 gctl_error(req, "Strip size too small.");
2011 return (-10);
2012 }
2013 if (*striparg % sectorsize != 0) {
2014 gctl_error(req, "Incorrect strip size.");
2015 return (-11);
2016 }
2017 if (strip > 65535 * sectorsize) {
2018 gctl_error(req, "Strip size too big.");
2019 return (-12);
2020 }
2021 strip = *striparg;
2022 }
2023
2024 /* Round offset up to strip. */
2025 if (off % strip != 0) {
2026 size -= strip - off % strip;
2027 off += strip - off % strip;
2028 }
2029
2030 /* Handle size argument. */
2031 len = sizeof(*sizearg);
2032 sizearg = gctl_get_param(req, "size", &len);
2033 if (sizearg != NULL && len == sizeof(*sizearg) &&
2034 *sizearg > 0) {
2035 if (*sizearg > size) {
2036 gctl_error(req, "Size too big %lld > %lld.",
2037 (long long)*sizearg, (long long)size);
2038 return (-9);
2039 }
2040 size = *sizearg;
2041 }
2042
2043 /* Round size down to strip or sector. */
2044 if (level == G_RAID_VOLUME_RL_RAID1)
2045 size -= (size % sectorsize);
2046 else
2047 size -= (size % strip);
2048 if (size <= 0) {
2049 gctl_error(req, "Size too small.");
2050 return (-13);
2051 }
2052 if (size > 0xffffffffllu * sectorsize) {
2053 gctl_error(req, "Size too big.");
2054 return (-14);
2055 }
2056
2057 /* We have all we need, create things: volume, ... */
2058 vol = g_raid_create_volume(sc, volname, -1);
2059 pv = malloc(sizeof(*pv), M_MD_INTEL, M_WAITOK | M_ZERO);
2060 pv->pv_volume_pos = i;
2061 vol->v_md_data = pv;
2062 vol->v_raid_level = level;
2063 vol->v_raid_level_qualifier = qual;
2064 vol->v_strip_size = strip;
2065 vol->v_disks_count = numdisks;
2066 if (level == G_RAID_VOLUME_RL_RAID0)
2067 vol->v_mediasize = size * numdisks;
2068 else if (level == G_RAID_VOLUME_RL_RAID1)
2069 vol->v_mediasize = size;
2070 else if (level == G_RAID_VOLUME_RL_RAID5)
2071 vol->v_mediasize = size * (numdisks - 1);
2072 else { /* RAID1E */
2073 vol->v_mediasize = ((size * numdisks) / strip / 2) *
2074 strip;
2075 }
2076 vol->v_sectorsize = sectorsize;
2077 g_raid_start_volume(vol);
2078
2079 /* , and subdisks. */
2080 for (i = 0; i < numdisks; i++) {
2081 disk = vol1->v_subdisks[i].sd_disk;
2082 sd = &vol->v_subdisks[i];
2083 sd->sd_disk = disk;
2084 sd->sd_offset = off;
2085 sd->sd_size = size;
2086 TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next);
2087 if (disk->d_state == G_RAID_DISK_S_ACTIVE) {
2088 if (level == G_RAID_VOLUME_RL_RAID5)
2089 g_raid_change_subdisk_state(sd,
2090 G_RAID_SUBDISK_S_UNINITIALIZED);
2091 else
2092 g_raid_change_subdisk_state(sd,
2093 G_RAID_SUBDISK_S_ACTIVE);
2094 g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW,
2095 G_RAID_EVENT_SUBDISK);
2096 }
2097 }
2098
2099 /* Write metadata based on created entities. */
2100 g_raid_md_write_intel(md, NULL, NULL, NULL);
2101
2102 g_raid_event_send(vol, G_RAID_VOLUME_E_START,
2103 G_RAID_EVENT_VOLUME);
2104 return (0);
2105 }
2106 if (strcmp(verb, "delete") == 0) {
2107
2108 nodename = gctl_get_asciiparam(req, "arg0");
2109 if (nodename != NULL && strcasecmp(sc->sc_name, nodename) != 0)
2110 nodename = NULL;
2111
2112 /* Full node destruction. */
2113 if (*nargs == 1 && nodename != NULL) {
2114 /* Check if some volume is still open. */
2115 force = gctl_get_paraml(req, "force", sizeof(*force));
2116 if (force != NULL && *force == 0 &&
2117 g_raid_nopens(sc) != 0) {
2118 gctl_error(req, "Some volume is still open.");
2119 return (-4);
2120 }
2121
2122 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2123 if (disk->d_consumer)
2124 intel_meta_erase(disk->d_consumer);
2125 }
2126 g_raid_destroy_node(sc, 0);
2127 return (0);
2128 }
2129
2130 /* Destroy specified volume. If it was last - all node. */
2131 if (*nargs > 2) {
2132 gctl_error(req, "Invalid number of arguments.");
2133 return (-1);
2134 }
2135 volname = gctl_get_asciiparam(req,
2136 nodename != NULL ? "arg1" : "arg0");
2137 if (volname == NULL) {
2138 gctl_error(req, "No volume name.");
2139 return (-2);
2140 }
2141
2142 /* Search for volume. */
2143 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
2144 if (strcmp(vol->v_name, volname) == 0)
2145 break;
2146 pp = vol->v_provider;
2147 if (pp == NULL)
2148 continue;
2149 if (strcmp(pp->name, volname) == 0)
2150 break;
2151 if (strncmp(pp->name, "raid/", 5) == 0 &&
2152 strcmp(pp->name + 5, volname) == 0)
2153 break;
2154 }
2155 if (vol == NULL) {
2156 i = strtol(volname, &tmp, 10);
2157 if (verb != volname && tmp[0] == 0) {
2158 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
2159 if (vol->v_global_id == i)
2160 break;
2161 }
2162 }
2163 }
2164 if (vol == NULL) {
2165 gctl_error(req, "Volume '%s' not found.", volname);
2166 return (-3);
2167 }
2168
2169 /* Check if volume is still open. */
2170 force = gctl_get_paraml(req, "force", sizeof(*force));
2171 if (force != NULL && *force == 0 &&
2172 vol->v_provider_open != 0) {
2173 gctl_error(req, "Volume is still open.");
2174 return (-4);
2175 }
2176
2177 /* Destroy volume and potentially node. */
2178 i = 0;
2179 TAILQ_FOREACH(vol1, &sc->sc_volumes, v_next)
2180 i++;
2181 if (i >= 2) {
2182 g_raid_destroy_volume(vol);
2183 g_raid_md_write_intel(md, NULL, NULL, NULL);
2184 } else {
2185 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2186 if (disk->d_consumer)
2187 intel_meta_erase(disk->d_consumer);
2188 }
2189 g_raid_destroy_node(sc, 0);
2190 }
2191 return (0);
2192 }
2193 if (strcmp(verb, "remove") == 0 ||
2194 strcmp(verb, "fail") == 0) {
2195 if (*nargs < 2) {
2196 gctl_error(req, "Invalid number of arguments.");
2197 return (-1);
2198 }
2199 for (i = 1; i < *nargs; i++) {
2200 snprintf(arg, sizeof(arg), "arg%d", i);
2201 diskname = gctl_get_asciiparam(req, arg);
2202 if (diskname == NULL) {
2203 gctl_error(req, "No disk name (%s).", arg);
2204 error = -2;
2205 break;
2206 }
2207 if (strncmp(diskname, "/dev/", 5) == 0)
2208 diskname += 5;
2209
2210 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2211 if (disk->d_consumer != NULL &&
2212 disk->d_consumer->provider != NULL &&
2213 strcmp(disk->d_consumer->provider->name,
2214 diskname) == 0)
2215 break;
2216 }
2217 if (disk == NULL) {
2218 gctl_error(req, "Disk '%s' not found.",
2219 diskname);
2220 error = -3;
2221 break;
2222 }
2223
2224 if (strcmp(verb, "fail") == 0) {
2225 g_raid_md_fail_disk_intel(md, NULL, disk);
2226 continue;
2227 }
2228
2229 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
2230
2231 /* Erase metadata on deleting disk. */
2232 intel_meta_erase(disk->d_consumer);
2233
2234 /* If disk was assigned, just update statuses. */
2235 if (pd->pd_disk_pos >= 0) {
2236 g_raid_change_disk_state(disk, G_RAID_DISK_S_OFFLINE);
2237 g_raid_kill_consumer(sc, disk->d_consumer);
2238 disk->d_consumer = NULL;
2239 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
2240 g_raid_change_subdisk_state(sd,
2241 G_RAID_SUBDISK_S_NONE);
2242 g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED,
2243 G_RAID_EVENT_SUBDISK);
2244 }
2245 } else {
2246 /* Otherwise -- delete. */
2247 g_raid_change_disk_state(disk, G_RAID_DISK_S_NONE);
2248 g_raid_destroy_disk(disk);
2249 }
2250 }
2251
2252 /* Write updated metadata to remaining disks. */
2253 g_raid_md_write_intel(md, NULL, NULL, NULL);
2254
2255 /* Check if anything left except placeholders. */
2256 if (g_raid_ndisks(sc, -1) ==
2257 g_raid_ndisks(sc, G_RAID_DISK_S_OFFLINE))
2258 g_raid_destroy_node(sc, 0);
2259 else
2260 g_raid_md_intel_refill(sc);
2261 return (error);
2262 }
2263 if (strcmp(verb, "insert") == 0) {
2264 if (*nargs < 2) {
2265 gctl_error(req, "Invalid number of arguments.");
2266 return (-1);
2267 }
2268 update = 0;
2269 for (i = 1; i < *nargs; i++) {
2270 /* Get disk name. */
2271 snprintf(arg, sizeof(arg), "arg%d", i);
2272 diskname = gctl_get_asciiparam(req, arg);
2273 if (diskname == NULL) {
2274 gctl_error(req, "No disk name (%s).", arg);
2275 error = -3;
2276 break;
2277 }
2278
2279 /* Try to find provider with specified name. */
2280 g_topology_lock();
2281 cp = g_raid_open_consumer(sc, diskname);
2282 if (cp == NULL) {
2283 gctl_error(req, "Can't open disk '%s'.",
2284 diskname);
2285 g_topology_unlock();
2286 error = -4;
2287 break;
2288 }
2289 pp = cp->provider;
2290 g_topology_unlock();
2291
2292 /* Read disk serial. */
2293 error = g_raid_md_get_label(cp,
2294 &serial[0], INTEL_SERIAL_LEN);
2295 if (error != 0) {
2296 gctl_error(req,
2297 "Can't get serial for provider '%s'.",
2298 diskname);
2299 g_raid_kill_consumer(sc, cp);
2300 error = -7;
2301 break;
2302 }
2303
2304 pd = malloc(sizeof(*pd), M_MD_INTEL, M_WAITOK | M_ZERO);
2305 pd->pd_disk_pos = -1;
2306
2307 disk = g_raid_create_disk(sc);
2308 disk->d_consumer = cp;
2309 disk->d_md_data = (void *)pd;
2310 cp->private = disk;
2311
2312 g_raid_get_disk_info(disk);
2313
2314 memcpy(&pd->pd_disk_meta.serial[0], &serial[0],
2315 INTEL_SERIAL_LEN);
2316 intel_set_disk_sectors(&pd->pd_disk_meta,
2317 pp->mediasize / pp->sectorsize);
2318 pd->pd_disk_meta.id = 0;
2319 pd->pd_disk_meta.flags = INTEL_F_SPARE;
2320
2321 /* Welcome the "new" disk. */
2322 update += g_raid_md_intel_start_disk(disk);
2323 if (disk->d_state == G_RAID_DISK_S_SPARE) {
2324 intel_meta_write_spare(cp, &pd->pd_disk_meta);
2325 g_raid_destroy_disk(disk);
2326 } else if (disk->d_state != G_RAID_DISK_S_ACTIVE) {
2327 gctl_error(req, "Disk '%s' doesn't fit.",
2328 diskname);
2329 g_raid_destroy_disk(disk);
2330 error = -8;
2331 break;
2332 }
2333 }
2334
2335 /* Write new metadata if we changed something. */
2336 if (update)
2337 g_raid_md_write_intel(md, NULL, NULL, NULL);
2338 return (error);
2339 }
2340 return (-100);
2341}
2342
2343static int
2344g_raid_md_write_intel(struct g_raid_md_object *md, struct g_raid_volume *tvol,
2345 struct g_raid_subdisk *tsd, struct g_raid_disk *tdisk)
2346{
2347 struct g_raid_softc *sc;
2348 struct g_raid_volume *vol;
2349 struct g_raid_subdisk *sd;
2350 struct g_raid_disk *disk;
2351 struct g_raid_md_intel_object *mdi;
2352 struct g_raid_md_intel_pervolume *pv;
2353 struct g_raid_md_intel_perdisk *pd;
2354 struct intel_raid_conf *meta;
2355 struct intel_raid_vol *mvol;
2356 struct intel_raid_map *mmap0, *mmap1;
2357 off_t sectorsize = 512, pos;
2358 const char *version, *cv;
2359 int vi, sdi, numdisks, len, state, stale;
2360
2361 sc = md->mdo_softc;
2362 mdi = (struct g_raid_md_intel_object *)md;
2363
2364 if (sc->sc_stopping == G_RAID_DESTROY_HARD)
2365 return (0);
2366
2367 /* Bump generation. Newly written metadata may differ from previous. */
2368 mdi->mdio_generation++;
2369
2370 /* Count number of disks. */
2371 numdisks = 0;
2372 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2373 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
2374 if (pd->pd_disk_pos < 0)
2375 continue;
2376 numdisks++;
2377 if (disk->d_state == G_RAID_DISK_S_ACTIVE) {
2378 pd->pd_disk_meta.flags =
2379 INTEL_F_ONLINE | INTEL_F_ASSIGNED;
2380 } else if (disk->d_state == G_RAID_DISK_S_FAILED) {
2381 pd->pd_disk_meta.flags = INTEL_F_FAILED |
2382 INTEL_F_ASSIGNED;
2383 } else if (disk->d_state == G_RAID_DISK_S_DISABLED) {
2384 pd->pd_disk_meta.flags = INTEL_F_FAILED |
2385 INTEL_F_ASSIGNED | INTEL_F_DISABLED;
2386 } else {
2387 if (!(pd->pd_disk_meta.flags & INTEL_F_DISABLED))
2388 pd->pd_disk_meta.flags = INTEL_F_ASSIGNED;
2389 if (pd->pd_disk_meta.id != 0xffffffff) {
2390 pd->pd_disk_meta.id = 0xffffffff;
2391 len = strlen(pd->pd_disk_meta.serial);
2392 len = min(len, INTEL_SERIAL_LEN - 3);
2393 strcpy(pd->pd_disk_meta.serial + len, ":0");
2394 }
2395 }
2396 }
2397
2398 /* Fill anchor and disks. */
2399 meta = malloc(INTEL_MAX_MD_SIZE(numdisks),
2400 M_MD_INTEL, M_WAITOK | M_ZERO);
2401 memcpy(&meta->intel_id[0], INTEL_MAGIC, sizeof(INTEL_MAGIC) - 1);
2402 meta->config_size = INTEL_MAX_MD_SIZE(numdisks);
2403 meta->config_id = mdi->mdio_config_id;
2404 meta->orig_config_id = mdi->mdio_orig_config_id;
2405 meta->generation = mdi->mdio_generation;
2406 meta->attributes = INTEL_ATTR_CHECKSUM;
2407 meta->total_disks = numdisks;
2408 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2409 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
2410 if (pd->pd_disk_pos < 0)
2411 continue;
2412 meta->disk[pd->pd_disk_pos] = pd->pd_disk_meta;
2413 if (pd->pd_disk_meta.sectors_hi != 0)
2414 meta->attributes |= INTEL_ATTR_2TB_DISK;
2415 }
2416
2417 /* Fill volumes and maps. */
2418 vi = 0;
2419 version = INTEL_VERSION_1000;
2420 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
2421 pv = vol->v_md_data;
2422 if (vol->v_stopping)
2423 continue;
2424 mvol = intel_get_volume(meta, vi);
2425
2426 /* New metadata may have different volumes order. */
2427 pv->pv_volume_pos = vi;
2428
2429 for (sdi = 0; sdi < vol->v_disks_count; sdi++) {
2430 sd = &vol->v_subdisks[sdi];
2431 if (sd->sd_disk != NULL)
2432 break;
2433 }
2434 if (sdi >= vol->v_disks_count)
2435 panic("No any filled subdisk in volume");
2436 if (vol->v_mediasize >= 0x20000000000llu)
2437 meta->attributes |= INTEL_ATTR_2TB;
2438 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID0)
2439 meta->attributes |= INTEL_ATTR_RAID0;
2440 else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1)
2441 meta->attributes |= INTEL_ATTR_RAID1;
2442 else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID5)
2443 meta->attributes |= INTEL_ATTR_RAID5;
2444 else if ((vol->v_disks_count & 1) == 0)
2445 meta->attributes |= INTEL_ATTR_RAID10;
2446 else
2447 meta->attributes |= INTEL_ATTR_RAID1E;
2448 if (pv->pv_cng)
2449 meta->attributes |= INTEL_ATTR_RAIDCNG;
2450 if (vol->v_strip_size > 131072)
2451 meta->attributes |= INTEL_ATTR_EXT_STRIP;
2452
2453 if (pv->pv_cng)
2454 cv = INTEL_VERSION_1206;
2455 else if (vol->v_disks_count > 4)
2456 cv = INTEL_VERSION_1204;
2457 else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID5)
2458 cv = INTEL_VERSION_1202;
2459 else if (vol->v_disks_count > 2)
2460 cv = INTEL_VERSION_1201;
2461 else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1)
2462 cv = INTEL_VERSION_1100;
2463 else
2464 cv = INTEL_VERSION_1000;
2465 if (strcmp(cv, version) > 0)
2466 version = cv;
2467
2468 strlcpy(&mvol->name[0], vol->v_name, sizeof(mvol->name));
2469 mvol->total_sectors = vol->v_mediasize / sectorsize;
2470 mvol->state = (INTEL_ST_READ_COALESCING |
2471 INTEL_ST_WRITE_COALESCING);
2472 mvol->tid = vol->v_global_id + 1;
2473 if (pv->pv_cng) {
2474 mvol->state |= INTEL_ST_CLONE_N_GO;
2475 if (pv->pv_cng_man_sync)
2476 mvol->state |= INTEL_ST_CLONE_MAN_SYNC;
2477 mvol->cng_master_disk = pv->pv_cng_master_disk;
2478 if (vol->v_subdisks[pv->pv_cng_master_disk].sd_state ==
2479 G_RAID_SUBDISK_S_NONE)
2480 mvol->cng_state = INTEL_CNGST_MASTER_MISSING;
2481 else if (vol->v_state != G_RAID_VOLUME_S_OPTIMAL)
2482 mvol->cng_state = INTEL_CNGST_NEEDS_UPDATE;
2483 else
2484 mvol->cng_state = INTEL_CNGST_UPDATED;
2485 }
2486
2487 /* Check for any recovery in progress. */
2488 state = G_RAID_SUBDISK_S_ACTIVE;
2489 pos = 0x7fffffffffffffffllu;
2490 stale = 0;
2491 for (sdi = 0; sdi < vol->v_disks_count; sdi++) {
2492 sd = &vol->v_subdisks[sdi];
2493 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD)
2494 state = G_RAID_SUBDISK_S_REBUILD;
2495 else if (sd->sd_state == G_RAID_SUBDISK_S_RESYNC &&
2496 state != G_RAID_SUBDISK_S_REBUILD)
2497 state = G_RAID_SUBDISK_S_RESYNC;
2498 else if (sd->sd_state == G_RAID_SUBDISK_S_STALE)
2499 stale = 1;
2500 if ((sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
2501 sd->sd_state == G_RAID_SUBDISK_S_RESYNC) &&
2502 sd->sd_rebuild_pos < pos)
2503 pos = sd->sd_rebuild_pos;
2504 }
2505 if (state == G_RAID_SUBDISK_S_REBUILD) {
2506 mvol->migr_state = 1;
2507 mvol->migr_type = INTEL_MT_REBUILD;
2508 } else if (state == G_RAID_SUBDISK_S_RESYNC) {
2509 mvol->migr_state = 1;
2510 /* mvol->migr_type = INTEL_MT_REPAIR; */
2511 mvol->migr_type = INTEL_MT_VERIFY;
2512 mvol->state |= INTEL_ST_VERIFY_AND_FIX;
2513 } else
2514 mvol->migr_state = 0;
2515 mvol->dirty = (vol->v_dirty || stale);
2516
2517 mmap0 = intel_get_map(mvol, 0);
2518
2519 /* Write map / common part of two maps. */
2520 intel_set_map_offset(mmap0, sd->sd_offset / sectorsize);
2521 intel_set_map_disk_sectors(mmap0, sd->sd_size / sectorsize);
2522 mmap0->strip_sectors = vol->v_strip_size / sectorsize;
2523 if (vol->v_state == G_RAID_VOLUME_S_BROKEN)
2524 mmap0->status = INTEL_S_FAILURE;
2525 else if (vol->v_state == G_RAID_VOLUME_S_DEGRADED)
2526 mmap0->status = INTEL_S_DEGRADED;
2527 else if (g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_UNINITIALIZED)
2528 == g_raid_nsubdisks(vol, -1))
2529 mmap0->status = INTEL_S_UNINITIALIZED;
2530 else
2531 mmap0->status = INTEL_S_READY;
2532 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID0)
2533 mmap0->type = INTEL_T_RAID0;
2534 else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 ||
2535 vol->v_raid_level == G_RAID_VOLUME_RL_RAID1E)
2536 mmap0->type = INTEL_T_RAID1;
2537 else
2538 mmap0->type = INTEL_T_RAID5;
2539 mmap0->total_disks = vol->v_disks_count;
2540 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1)
2541 mmap0->total_domains = vol->v_disks_count;
2542 else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1E)
2543 mmap0->total_domains = 2;
2544 else
2545 mmap0->total_domains = 1;
2546 intel_set_map_stripe_count(mmap0,
2547 sd->sd_size / vol->v_strip_size / mmap0->total_domains);
2548 mmap0->failed_disk_num = 0xff;
2549 mmap0->ddf = 1;
2550
2551 /* If there are two maps - copy common and update. */
2552 if (mvol->migr_state) {
2553 intel_set_vol_curr_migr_unit(mvol,
2554 pos / vol->v_strip_size / mmap0->total_domains);
2555 mmap1 = intel_get_map(mvol, 1);
2556 memcpy(mmap1, mmap0, sizeof(struct intel_raid_map));
2557 mmap0->status = INTEL_S_READY;
2558 } else
2559 mmap1 = NULL;
2560
2561 /* Write disk indexes and put rebuild flags. */
2562 for (sdi = 0; sdi < vol->v_disks_count; sdi++) {
2563 sd = &vol->v_subdisks[sdi];
2564 pd = (struct g_raid_md_intel_perdisk *)
2565 sd->sd_disk->d_md_data;
2566 mmap0->disk_idx[sdi] = pd->pd_disk_pos;
2567 if (mvol->migr_state)
2568 mmap1->disk_idx[sdi] = pd->pd_disk_pos;
2569 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
2570 sd->sd_state == G_RAID_SUBDISK_S_RESYNC) {
2571 mmap1->disk_idx[sdi] |= INTEL_DI_RBLD;
2572 } else if (sd->sd_state != G_RAID_SUBDISK_S_ACTIVE &&
2573 sd->sd_state != G_RAID_SUBDISK_S_STALE &&
2574 sd->sd_state != G_RAID_SUBDISK_S_UNINITIALIZED) {
2575 mmap0->disk_idx[sdi] |= INTEL_DI_RBLD;
2576 if (mvol->migr_state)
2577 mmap1->disk_idx[sdi] |= INTEL_DI_RBLD;
2578 }
2579 if ((sd->sd_state == G_RAID_SUBDISK_S_NONE ||
2580 sd->sd_state == G_RAID_SUBDISK_S_FAILED ||
2581 sd->sd_state == G_RAID_SUBDISK_S_REBUILD) &&
2582 mmap0->failed_disk_num == 0xff) {
2583 mmap0->failed_disk_num = sdi;
2584 if (mvol->migr_state)
2585 mmap1->failed_disk_num = sdi;
2586 }
2587 }
2588 vi++;
2589 }
2590 meta->total_volumes = vi;
2591 if (vi > 1 || meta->attributes &
2592 (INTEL_ATTR_EXT_STRIP | INTEL_ATTR_2TB_DISK | INTEL_ATTR_2TB))
2593 version = INTEL_VERSION_1300;
2594 if (strcmp(version, INTEL_VERSION_1300) < 0)
2595 meta->attributes &= INTEL_ATTR_CHECKSUM;
2596 memcpy(&meta->version[0], version, sizeof(INTEL_VERSION_1000) - 1);
2597
2598 /* We are done. Print meta data and store them to disks. */
2599 g_raid_md_intel_print(meta);
2600 if (mdi->mdio_meta != NULL)
2601 free(mdi->mdio_meta, M_MD_INTEL);
2602 mdi->mdio_meta = meta;
2603 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2604 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
2605 if (disk->d_state != G_RAID_DISK_S_ACTIVE)
2606 continue;
2607 if (pd->pd_meta != NULL) {
2608 free(pd->pd_meta, M_MD_INTEL);
2609 pd->pd_meta = NULL;
2610 }
2611 pd->pd_meta = intel_meta_copy(meta);
2612 intel_meta_write(disk->d_consumer, meta);
2613 }
2614 return (0);
2615}
2616
2617static int
2618g_raid_md_fail_disk_intel(struct g_raid_md_object *md,
2619 struct g_raid_subdisk *tsd, struct g_raid_disk *tdisk)
2620{
2621 struct g_raid_softc *sc;
2622 struct g_raid_md_intel_object *mdi;
2623 struct g_raid_md_intel_perdisk *pd;
2624 struct g_raid_subdisk *sd;
2625
2626 sc = md->mdo_softc;
2627 mdi = (struct g_raid_md_intel_object *)md;
2628 pd = (struct g_raid_md_intel_perdisk *)tdisk->d_md_data;
2629
2630 /* We can't fail disk that is not a part of array now. */
2631 if (pd->pd_disk_pos < 0)
2632 return (-1);
2633
2634 /*
2635 * Mark disk as failed in metadata and try to write that metadata
2636 * to the disk itself to prevent it's later resurrection as STALE.
2637 */
2638 mdi->mdio_meta->disk[pd->pd_disk_pos].flags = INTEL_F_FAILED;
2639 pd->pd_disk_meta.flags = INTEL_F_FAILED;
2640 g_raid_md_intel_print(mdi->mdio_meta);
2641 if (tdisk->d_consumer)
2642 intel_meta_write(tdisk->d_consumer, mdi->mdio_meta);
2643
2644 /* Change states. */
2645 g_raid_change_disk_state(tdisk, G_RAID_DISK_S_FAILED);
2646 TAILQ_FOREACH(sd, &tdisk->d_subdisks, sd_next) {
2647 g_raid_change_subdisk_state(sd,
2648 G_RAID_SUBDISK_S_FAILED);
2649 g_raid_event_send(sd, G_RAID_SUBDISK_E_FAILED,
2650 G_RAID_EVENT_SUBDISK);
2651 }
2652
2653 /* Write updated metadata to remaining disks. */
2654 g_raid_md_write_intel(md, NULL, NULL, tdisk);
2655
2656 /* Check if anything left except placeholders. */
2657 if (g_raid_ndisks(sc, -1) ==
2658 g_raid_ndisks(sc, G_RAID_DISK_S_OFFLINE))
2659 g_raid_destroy_node(sc, 0);
2660 else
2661 g_raid_md_intel_refill(sc);
2662 return (0);
2663}
2664
2665static int
2666g_raid_md_free_disk_intel(struct g_raid_md_object *md,
2667 struct g_raid_disk *disk)
2668{
2669 struct g_raid_md_intel_perdisk *pd;
2670
2671 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
2672 if (pd->pd_meta != NULL) {
2673 free(pd->pd_meta, M_MD_INTEL);
2674 pd->pd_meta = NULL;
2675 }
2676 free(pd, M_MD_INTEL);
2677 disk->d_md_data = NULL;
2678 return (0);
2679}
2680
2681static int
2682g_raid_md_free_volume_intel(struct g_raid_md_object *md,
2683 struct g_raid_volume *vol)
2684{
2685 struct g_raid_md_intel_pervolume *pv;
2686
2687 pv = (struct g_raid_md_intel_pervolume *)vol->v_md_data;
2688 free(pv, M_MD_INTEL);
2689 vol->v_md_data = NULL;
2690 return (0);
2691}
2692
2693static int
2694g_raid_md_free_intel(struct g_raid_md_object *md)
2695{
2696 struct g_raid_md_intel_object *mdi;
2697
2698 mdi = (struct g_raid_md_intel_object *)md;
2699 if (!mdi->mdio_started) {
2700 mdi->mdio_started = 0;
2701 callout_stop(&mdi->mdio_start_co);
2702 G_RAID_DEBUG1(1, md->mdo_softc,
2703 "root_mount_rel %p", mdi->mdio_rootmount);
2704 root_mount_rel(mdi->mdio_rootmount);
2705 mdi->mdio_rootmount = NULL;
2706 }
2707 if (mdi->mdio_meta != NULL) {
2708 free(mdi->mdio_meta, M_MD_INTEL);
2709 mdi->mdio_meta = NULL;
2710 }
2711 return (0);
2712}
2713
2714G_RAID_MD_DECLARE(intel, "Intel");