Deleted Added
full compact
ar5210_misc.c (234873) ar5210_misc.c (235206)
1/*
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2004 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
1/*
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2004 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
17 * $FreeBSD: head/sys/dev/ath/ath_hal/ar5210/ar5210_misc.c 234873 2012-05-01 14:48:51Z adrian $
17 * $FreeBSD: head/sys/dev/ath/ath_hal/ar5210/ar5210_misc.c 235206 2012-05-09 18:17:01Z adrian $
18 */
19#include "opt_ah.h"
20
21#include "ah.h"
22#include "ah_internal.h"
23
24#include "ar5210/ar5210.h"
25#include "ar5210/ar5210reg.h"
26#include "ar5210/ar5210phy.h"
27
28#include "ah_eeprom_v1.h"
29
30#define AR_NUM_GPIO 6 /* 6 GPIO bits */
31#define AR_GPIOD_MASK 0x2f /* 6-bit mask */
32
33void
34ar5210GetMacAddress(struct ath_hal *ah, uint8_t *mac)
35{
36 struct ath_hal_5210 *ahp = AH5210(ah);
37
38 OS_MEMCPY(mac, ahp->ah_macaddr, IEEE80211_ADDR_LEN);
39}
40
41HAL_BOOL
42ar5210SetMacAddress(struct ath_hal *ah, const uint8_t *mac)
43{
44 struct ath_hal_5210 *ahp = AH5210(ah);
45
46 OS_MEMCPY(ahp->ah_macaddr, mac, IEEE80211_ADDR_LEN);
47 return AH_TRUE;
48}
49
50void
51ar5210GetBssIdMask(struct ath_hal *ah, uint8_t *mask)
52{
53 static const uint8_t ones[IEEE80211_ADDR_LEN] =
54 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
55 OS_MEMCPY(mask, ones, IEEE80211_ADDR_LEN);
56}
57
58HAL_BOOL
59ar5210SetBssIdMask(struct ath_hal *ah, const uint8_t *mask)
60{
61 return AH_FALSE;
62}
63
64/*
65 * Read 16 bits of data from the specified EEPROM offset.
66 */
67HAL_BOOL
68ar5210EepromRead(struct ath_hal *ah, u_int off, uint16_t *data)
69{
70 (void) OS_REG_READ(ah, AR_EP_AIR(off)); /* activate read op */
71 if (!ath_hal_wait(ah, AR_EP_STA,
72 AR_EP_STA_RDCMPLT | AR_EP_STA_RDERR, AR_EP_STA_RDCMPLT)) {
73 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: read failed for entry 0x%x\n",
74 __func__, AR_EP_AIR(off));
75 return AH_FALSE;
76 }
77 *data = OS_REG_READ(ah, AR_EP_RDATA) & 0xffff;
78 return AH_TRUE;
79}
80
81#ifdef AH_SUPPORT_WRITE_EEPROM
82/*
83 * Write 16 bits of data to the specified EEPROM offset.
84 */
85HAL_BOOL
86ar5210EepromWrite(struct ath_hal *ah, u_int off, uint16_t data)
87{
88 return AH_FALSE;
89}
90#endif /* AH_SUPPORT_WRITE_EEPROM */
91
92/*
93 * Attempt to change the cards operating regulatory domain to the given value
94 */
95HAL_BOOL
96ar5210SetRegulatoryDomain(struct ath_hal *ah,
97 uint16_t regDomain, HAL_STATUS *status)
98{
99 HAL_STATUS ecode;
100
101 if (AH_PRIVATE(ah)->ah_currentRD == regDomain) {
102 ecode = HAL_EINVAL;
103 goto bad;
104 }
105 /*
106 * Check if EEPROM is configured to allow this; must
107 * be a proper version and the protection bits must
108 * permit re-writing that segment of the EEPROM.
109 */
110 if (ath_hal_eepromGetFlag(ah, AR_EEP_WRITEPROTECT)) {
111 ecode = HAL_EEWRITE;
112 goto bad;
113 }
114 ecode = HAL_EIO; /* disallow all writes */
115bad:
116 if (status)
117 *status = ecode;
118 return AH_FALSE;
119}
120
121/*
122 * Return the wireless modes (a,b,g,t) supported by hardware.
123 *
124 * This value is what is actually supported by the hardware
125 * and is unaffected by regulatory/country code settings.
126 *
127 */
128u_int
129ar5210GetWirelessModes(struct ath_hal *ah)
130{
131 /* XXX could enable turbo mode but can't do all rates */
132 return HAL_MODE_11A;
133}
134
135/*
136 * Called if RfKill is supported (according to EEPROM). Set the interrupt and
137 * GPIO values so the ISR and can disable RF on a switch signal
138 */
139void
140ar5210EnableRfKill(struct ath_hal *ah)
141{
142 uint16_t rfsilent = AH_PRIVATE(ah)->ah_rfsilent;
143 int select = MS(rfsilent, AR_EEPROM_RFSILENT_GPIO_SEL);
144 int polarity = MS(rfsilent, AR_EEPROM_RFSILENT_POLARITY);
145
146 /*
147 * If radio disable switch connection to GPIO bit 0 is enabled
148 * program GPIO interrupt.
149 * If rfkill bit on eeprom is 1, setupeeprommap routine has already
150 * verified that it is a later version of eeprom, it has a place for
151 * rfkill bit and it is set to 1, indicating that GPIO bit 0 hardware
152 * connection is present.
153 */
154 ar5210Gpio0SetIntr(ah, select, (ar5210GpioGet(ah, select) == polarity));
155}
156
157/*
158 * Configure GPIO Output lines
159 */
160HAL_BOOL
161ar5210GpioCfgOutput(struct ath_hal *ah, uint32_t gpio, HAL_GPIO_MUX_TYPE type)
162{
163 HALASSERT(gpio < AR_NUM_GPIO);
164
165 OS_REG_WRITE(ah, AR_GPIOCR,
166 (OS_REG_READ(ah, AR_GPIOCR) &~ AR_GPIOCR_ALL(gpio))
167 | AR_GPIOCR_OUT1(gpio));
168
169 return AH_TRUE;
170}
171
172/*
173 * Configure GPIO Input lines
174 */
175HAL_BOOL
176ar5210GpioCfgInput(struct ath_hal *ah, uint32_t gpio)
177{
178 HALASSERT(gpio < AR_NUM_GPIO);
179
180 OS_REG_WRITE(ah, AR_GPIOCR,
181 (OS_REG_READ(ah, AR_GPIOCR) &~ AR_GPIOCR_ALL(gpio))
182 | AR_GPIOCR_IN(gpio));
183
184 return AH_TRUE;
185}
186
187/*
188 * Once configured for I/O - set output lines
189 */
190HAL_BOOL
191ar5210GpioSet(struct ath_hal *ah, uint32_t gpio, uint32_t val)
192{
193 uint32_t reg;
194
195 HALASSERT(gpio < AR_NUM_GPIO);
196
197 reg = OS_REG_READ(ah, AR_GPIODO);
198 reg &= ~(1 << gpio);
199 reg |= (val&1) << gpio;
200
201 OS_REG_WRITE(ah, AR_GPIODO, reg);
202 return AH_TRUE;
203}
204
205/*
206 * Once configured for I/O - get input lines
207 */
208uint32_t
209ar5210GpioGet(struct ath_hal *ah, uint32_t gpio)
210{
211 if (gpio < AR_NUM_GPIO) {
212 uint32_t val = OS_REG_READ(ah, AR_GPIODI);
213 val = ((val & AR_GPIOD_MASK) >> gpio) & 0x1;
214 return val;
215 } else {
216 return 0xffffffff;
217 }
218}
219
220/*
221 * Set the GPIO 0 Interrupt
222 */
223void
224ar5210Gpio0SetIntr(struct ath_hal *ah, u_int gpio, uint32_t ilevel)
225{
226 uint32_t val = OS_REG_READ(ah, AR_GPIOCR);
227
228 /* Clear the bits that we will modify. */
229 val &= ~(AR_GPIOCR_INT_SEL(gpio) | AR_GPIOCR_INT_SELH | AR_GPIOCR_INT_ENA |
230 AR_GPIOCR_ALL(gpio));
231
232 val |= AR_GPIOCR_INT_SEL(gpio) | AR_GPIOCR_INT_ENA;
233 if (ilevel)
234 val |= AR_GPIOCR_INT_SELH;
235
236 /* Don't need to change anything for low level interrupt. */
237 OS_REG_WRITE(ah, AR_GPIOCR, val);
238
239 /* Change the interrupt mask. */
240 ar5210SetInterrupts(ah, AH5210(ah)->ah_maskReg | HAL_INT_GPIO);
241}
242
243/*
244 * Change the LED blinking pattern to correspond to the connectivity
245 */
246void
247ar5210SetLedState(struct ath_hal *ah, HAL_LED_STATE state)
248{
249 uint32_t val;
250
251 val = OS_REG_READ(ah, AR_PCICFG);
252 switch (state) {
253 case HAL_LED_INIT:
254 val &= ~(AR_PCICFG_LED_PEND | AR_PCICFG_LED_ACT);
255 break;
256 case HAL_LED_RUN:
257 /* normal blink when connected */
258 val &= ~AR_PCICFG_LED_PEND;
259 val |= AR_PCICFG_LED_ACT;
260 break;
261 default:
262 val |= AR_PCICFG_LED_PEND;
263 val &= ~AR_PCICFG_LED_ACT;
264 break;
265 }
266 OS_REG_WRITE(ah, AR_PCICFG, val);
267}
268
269/*
270 * Return 1 or 2 for the corresponding antenna that is in use
271 */
272u_int
273ar5210GetDefAntenna(struct ath_hal *ah)
274{
275 uint32_t val = OS_REG_READ(ah, AR_STA_ID1);
276 return (val & AR_STA_ID1_DEFAULT_ANTENNA ? 2 : 1);
277}
278
279void
280ar5210SetDefAntenna(struct ath_hal *ah, u_int antenna)
281{
282 uint32_t val = OS_REG_READ(ah, AR_STA_ID1);
283
284 if (antenna != (val & AR_STA_ID1_DEFAULT_ANTENNA ? 2 : 1)) {
285 /*
286 * Antenna change requested, force a toggle of the default.
287 */
288 OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_DEFAULT_ANTENNA);
289 }
290}
291
292HAL_ANT_SETTING
293ar5210GetAntennaSwitch(struct ath_hal *ah)
294{
295 return HAL_ANT_VARIABLE;
296}
297
298HAL_BOOL
299ar5210SetAntennaSwitch(struct ath_hal *ah, HAL_ANT_SETTING settings)
300{
301 /* XXX not sure how to fix antenna */
302 return (settings == HAL_ANT_VARIABLE);
303}
304
305/*
306 * Change association related fields programmed into the hardware.
307 * Writing a valid BSSID to the hardware effectively enables the hardware
308 * to synchronize its TSF to the correct beacons and receive frames coming
309 * from that BSSID. It is called by the SME JOIN operation.
310 */
311void
312ar5210WriteAssocid(struct ath_hal *ah, const uint8_t *bssid, uint16_t assocId)
313{
314 struct ath_hal_5210 *ahp = AH5210(ah);
315
316 /* XXX save bssid for possible re-use on reset */
317 OS_MEMCPY(ahp->ah_bssid, bssid, IEEE80211_ADDR_LEN);
318 OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
319 OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid+4) |
320 ((assocId & 0x3fff)<<AR_BSS_ID1_AID_S));
321 if (assocId == 0)
322 OS_REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_NO_PSPOLL);
323 else
324 OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_NO_PSPOLL);
325}
326
327/*
328 * Get the current hardware tsf for stamlme.
329 */
330uint64_t
331ar5210GetTsf64(struct ath_hal *ah)
332{
333 uint32_t low1, low2, u32;
334
335 /* sync multi-word read */
336 low1 = OS_REG_READ(ah, AR_TSF_L32);
337 u32 = OS_REG_READ(ah, AR_TSF_U32);
338 low2 = OS_REG_READ(ah, AR_TSF_L32);
339 if (low2 < low1) { /* roll over */
340 /*
341 * If we are not preempted this will work. If we are
342 * then we re-reading AR_TSF_U32 does no good as the
343 * low bits will be meaningless. Likewise reading
344 * L32, U32, U32, then comparing the last two reads
345 * to check for rollover doesn't help if preempted--so
346 * we take this approach as it costs one less PCI
347 * read which can be noticeable when doing things
348 * like timestamping packets in monitor mode.
349 */
350 u32++;
351 }
352 return (((uint64_t) u32) << 32) | ((uint64_t) low2);
353}
354
355/*
356 * Get the current hardware tsf for stamlme.
357 */
358uint32_t
359ar5210GetTsf32(struct ath_hal *ah)
360{
361 return OS_REG_READ(ah, AR_TSF_L32);
362}
363
364/*
365 * Reset the current hardware tsf for stamlme
366 */
367void
368ar5210ResetTsf(struct ath_hal *ah)
369{
370 uint32_t val = OS_REG_READ(ah, AR_BEACON);
371
372 OS_REG_WRITE(ah, AR_BEACON, val | AR_BEACON_RESET_TSF);
373}
374
375/*
376 * Grab a semi-random value from hardware registers - may not
377 * change often
378 */
379uint32_t
380ar5210GetRandomSeed(struct ath_hal *ah)
381{
382 uint32_t nf;
383
384 nf = (OS_REG_READ(ah, AR_PHY_BASE + (25 << 2)) >> 19) & 0x1ff;
385 if (nf & 0x100)
386 nf = 0 - ((nf ^ 0x1ff) + 1);
387 return (OS_REG_READ(ah, AR_TSF_U32) ^
388 OS_REG_READ(ah, AR_TSF_L32) ^ nf);
389}
390
391/*
392 * Detect if our card is present
393 */
394HAL_BOOL
395ar5210DetectCardPresent(struct ath_hal *ah)
396{
397 /*
398 * Read the Silicon Revision register and compare that
399 * to what we read at attach time. If the same, we say
400 * a card/device is present.
401 */
402 return (AH_PRIVATE(ah)->ah_macRev == (OS_REG_READ(ah, AR_SREV) & 0xff));
403}
404
405/*
406 * Update MIB Counters
407 */
408void
409ar5210UpdateMibCounters(struct ath_hal *ah, HAL_MIB_STATS *stats)
410{
411 stats->ackrcv_bad += OS_REG_READ(ah, AR_ACK_FAIL);
412 stats->rts_bad += OS_REG_READ(ah, AR_RTS_FAIL);
413 stats->fcs_bad += OS_REG_READ(ah, AR_FCS_FAIL);
414 stats->rts_good += OS_REG_READ(ah, AR_RTS_OK);
415 stats->beacons += OS_REG_READ(ah, AR_BEACON_CNT);
416}
417
418HAL_BOOL
419ar5210SetSifsTime(struct ath_hal *ah, u_int us)
420{
421 struct ath_hal_5210 *ahp = AH5210(ah);
422
423 if (us > ath_hal_mac_usec(ah, 0x7ff)) {
424 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad SIFS time %u\n",
425 __func__, us);
426 ahp->ah_sifstime = (u_int) -1; /* restore default handling */
427 return AH_FALSE;
428 } else {
429 /* convert to system clocks */
430 OS_REG_RMW_FIELD(ah, AR_IFS0, AR_IFS0_SIFS,
431 ath_hal_mac_clks(ah, us));
432 ahp->ah_sifstime = us;
433 return AH_TRUE;
434 }
435}
436
437u_int
438ar5210GetSifsTime(struct ath_hal *ah)
439{
440 u_int clks = OS_REG_READ(ah, AR_IFS0) & 0x7ff;
441 return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
442}
443
444HAL_BOOL
445ar5210SetSlotTime(struct ath_hal *ah, u_int us)
446{
447 struct ath_hal_5210 *ahp = AH5210(ah);
448
449 if (us < HAL_SLOT_TIME_9 || us > ath_hal_mac_usec(ah, 0xffff)) {
450 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad slot time %u\n",
451 __func__, us);
452 ahp->ah_slottime = (u_int) -1; /* restore default handling */
453 return AH_FALSE;
454 } else {
455 /* convert to system clocks */
456 OS_REG_WRITE(ah, AR_SLOT_TIME, ath_hal_mac_clks(ah, us));
457 ahp->ah_slottime = us;
458 return AH_TRUE;
459 }
460}
461
462u_int
463ar5210GetSlotTime(struct ath_hal *ah)
464{
465 u_int clks = OS_REG_READ(ah, AR_SLOT_TIME) & 0xffff;
466 return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
467}
468
469HAL_BOOL
470ar5210SetAckTimeout(struct ath_hal *ah, u_int us)
471{
472 struct ath_hal_5210 *ahp = AH5210(ah);
473
474 if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
475 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad ack timeout %u\n",
476 __func__, us);
477 ahp->ah_acktimeout = (u_int) -1; /* restore default handling */
478 return AH_FALSE;
479 } else {
480 /* convert to system clocks */
481 OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
482 AR_TIME_OUT_ACK, ath_hal_mac_clks(ah, us));
483 ahp->ah_acktimeout = us;
484 return AH_TRUE;
485 }
486}
487
488u_int
489ar5210GetAckTimeout(struct ath_hal *ah)
490{
491 u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_ACK);
492 return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
493}
494
495u_int
496ar5210GetAckCTSRate(struct ath_hal *ah)
497{
498 return ((AH5210(ah)->ah_staId1Defaults & AR_STA_ID1_ACKCTS_6MB) == 0);
499}
500
501HAL_BOOL
502ar5210SetAckCTSRate(struct ath_hal *ah, u_int high)
503{
504 struct ath_hal_5210 *ahp = AH5210(ah);
505
506 if (high) {
507 OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
508 ahp->ah_staId1Defaults &= ~AR_STA_ID1_ACKCTS_6MB;
509 } else {
510 OS_REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
511 ahp->ah_staId1Defaults |= AR_STA_ID1_ACKCTS_6MB;
512 }
513 return AH_TRUE;
514}
515
516HAL_BOOL
517ar5210SetCTSTimeout(struct ath_hal *ah, u_int us)
518{
519 struct ath_hal_5210 *ahp = AH5210(ah);
520
521 if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
522 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad cts timeout %u\n",
523 __func__, us);
524 ahp->ah_ctstimeout = (u_int) -1; /* restore default handling */
525 return AH_FALSE;
526 } else {
527 /* convert to system clocks */
528 OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
529 AR_TIME_OUT_CTS, ath_hal_mac_clks(ah, us));
530 ahp->ah_ctstimeout = us;
531 return AH_TRUE;
532 }
533}
534
535u_int
536ar5210GetCTSTimeout(struct ath_hal *ah)
537{
538 u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_CTS);
539 return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
540}
541
542HAL_BOOL
543ar5210SetDecompMask(struct ath_hal *ah, uint16_t keyidx, int en)
544{
545 /* nothing to do */
546 return AH_TRUE;
547}
548
549void
550ar5210SetCoverageClass(struct ath_hal *ah, uint8_t coverageclass, int now)
551{
552}
553
554/*
555 * Control Adaptive Noise Immunity Parameters
556 */
557HAL_BOOL
558ar5210AniControl(struct ath_hal *ah, HAL_ANI_CMD cmd, int param)
559{
560 return AH_FALSE;
561}
562
563void
564ar5210RxMonitor(struct ath_hal *ah, const HAL_NODE_STATS *stats,
565 const struct ieee80211_channel *chan)
566{
567}
568
569void
570ar5210AniPoll(struct ath_hal *ah, const struct ieee80211_channel *chan)
571{
572}
573
574void
575ar5210MibEvent(struct ath_hal *ah, const HAL_NODE_STATS *stats)
576{
577}
578
579#define AR_DIAG_SW_DIS_CRYPTO (AR_DIAG_SW_DIS_ENC | AR_DIAG_SW_DIS_DEC)
580
581HAL_STATUS
582ar5210GetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
583 uint32_t capability, uint32_t *result)
584{
585
586 switch (type) {
587 case HAL_CAP_CIPHER: /* cipher handled in hardware */
588 return (capability == HAL_CIPHER_WEP ? HAL_OK : HAL_ENOTSUPP);
589 default:
590 return ath_hal_getcapability(ah, type, capability, result);
591 }
592}
593
594HAL_BOOL
595ar5210SetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
596 uint32_t capability, uint32_t setting, HAL_STATUS *status)
597{
598
599 switch (type) {
600 case HAL_CAP_DIAG: /* hardware diagnostic support */
601 /*
602 * NB: could split this up into virtual capabilities,
603 * (e.g. 1 => ACK, 2 => CTS, etc.) but it hardly
604 * seems worth the additional complexity.
605 */
606#ifdef AH_DEBUG
607 AH_PRIVATE(ah)->ah_diagreg = setting;
608#else
609 AH_PRIVATE(ah)->ah_diagreg = setting & 0x6; /* ACK+CTS */
610#endif
611 OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
612 return AH_TRUE;
613 case HAL_CAP_RXORN_FATAL: /* HAL_INT_RXORN treated as fatal */
614 return AH_FALSE; /* NB: disallow */
615 default:
616 return ath_hal_setcapability(ah, type, capability,
617 setting, status);
618 }
619}
620
621HAL_BOOL
622ar5210GetDiagState(struct ath_hal *ah, int request,
623 const void *args, uint32_t argsize,
624 void **result, uint32_t *resultsize)
625{
626#ifdef AH_PRIVATE_DIAG
627 uint32_t pcicfg;
628 HAL_BOOL ok;
629
630 switch (request) {
631 case HAL_DIAG_EEPROM:
632 /* XXX */
633 break;
634 case HAL_DIAG_EEREAD:
635 if (argsize != sizeof(uint16_t))
636 return AH_FALSE;
637 pcicfg = OS_REG_READ(ah, AR_PCICFG);
638 OS_REG_WRITE(ah, AR_PCICFG, pcicfg | AR_PCICFG_EEPROMSEL);
639 ok = ath_hal_eepromRead(ah, *(const uint16_t *)args, *result);
640 OS_REG_WRITE(ah, AR_PCICFG, pcicfg);
641 if (ok)
642 *resultsize = sizeof(uint16_t);
643 return ok;
644 }
645#endif
646 return ath_hal_getdiagstate(ah, request,
647 args, argsize, result, resultsize);
648}
649
650/*
651 * Return what percentage of the extension channel is busy.
652 * This is always disabled for AR5210 series NICs.
653 */
654uint32_t
655ar5210Get11nExtBusy(struct ath_hal *ah)
656{
657
658 return (0);
659}
660
661/*
662 * There's no channel survey support for the AR5210.
663 */
664HAL_BOOL
665ar5210GetMibCycleCounts(struct ath_hal *ah, HAL_SURVEY_SAMPLE *hsample)
666{
667
668 return (AH_FALSE);
669}
18 */
19#include "opt_ah.h"
20
21#include "ah.h"
22#include "ah_internal.h"
23
24#include "ar5210/ar5210.h"
25#include "ar5210/ar5210reg.h"
26#include "ar5210/ar5210phy.h"
27
28#include "ah_eeprom_v1.h"
29
30#define AR_NUM_GPIO 6 /* 6 GPIO bits */
31#define AR_GPIOD_MASK 0x2f /* 6-bit mask */
32
33void
34ar5210GetMacAddress(struct ath_hal *ah, uint8_t *mac)
35{
36 struct ath_hal_5210 *ahp = AH5210(ah);
37
38 OS_MEMCPY(mac, ahp->ah_macaddr, IEEE80211_ADDR_LEN);
39}
40
41HAL_BOOL
42ar5210SetMacAddress(struct ath_hal *ah, const uint8_t *mac)
43{
44 struct ath_hal_5210 *ahp = AH5210(ah);
45
46 OS_MEMCPY(ahp->ah_macaddr, mac, IEEE80211_ADDR_LEN);
47 return AH_TRUE;
48}
49
50void
51ar5210GetBssIdMask(struct ath_hal *ah, uint8_t *mask)
52{
53 static const uint8_t ones[IEEE80211_ADDR_LEN] =
54 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
55 OS_MEMCPY(mask, ones, IEEE80211_ADDR_LEN);
56}
57
58HAL_BOOL
59ar5210SetBssIdMask(struct ath_hal *ah, const uint8_t *mask)
60{
61 return AH_FALSE;
62}
63
64/*
65 * Read 16 bits of data from the specified EEPROM offset.
66 */
67HAL_BOOL
68ar5210EepromRead(struct ath_hal *ah, u_int off, uint16_t *data)
69{
70 (void) OS_REG_READ(ah, AR_EP_AIR(off)); /* activate read op */
71 if (!ath_hal_wait(ah, AR_EP_STA,
72 AR_EP_STA_RDCMPLT | AR_EP_STA_RDERR, AR_EP_STA_RDCMPLT)) {
73 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: read failed for entry 0x%x\n",
74 __func__, AR_EP_AIR(off));
75 return AH_FALSE;
76 }
77 *data = OS_REG_READ(ah, AR_EP_RDATA) & 0xffff;
78 return AH_TRUE;
79}
80
81#ifdef AH_SUPPORT_WRITE_EEPROM
82/*
83 * Write 16 bits of data to the specified EEPROM offset.
84 */
85HAL_BOOL
86ar5210EepromWrite(struct ath_hal *ah, u_int off, uint16_t data)
87{
88 return AH_FALSE;
89}
90#endif /* AH_SUPPORT_WRITE_EEPROM */
91
92/*
93 * Attempt to change the cards operating regulatory domain to the given value
94 */
95HAL_BOOL
96ar5210SetRegulatoryDomain(struct ath_hal *ah,
97 uint16_t regDomain, HAL_STATUS *status)
98{
99 HAL_STATUS ecode;
100
101 if (AH_PRIVATE(ah)->ah_currentRD == regDomain) {
102 ecode = HAL_EINVAL;
103 goto bad;
104 }
105 /*
106 * Check if EEPROM is configured to allow this; must
107 * be a proper version and the protection bits must
108 * permit re-writing that segment of the EEPROM.
109 */
110 if (ath_hal_eepromGetFlag(ah, AR_EEP_WRITEPROTECT)) {
111 ecode = HAL_EEWRITE;
112 goto bad;
113 }
114 ecode = HAL_EIO; /* disallow all writes */
115bad:
116 if (status)
117 *status = ecode;
118 return AH_FALSE;
119}
120
121/*
122 * Return the wireless modes (a,b,g,t) supported by hardware.
123 *
124 * This value is what is actually supported by the hardware
125 * and is unaffected by regulatory/country code settings.
126 *
127 */
128u_int
129ar5210GetWirelessModes(struct ath_hal *ah)
130{
131 /* XXX could enable turbo mode but can't do all rates */
132 return HAL_MODE_11A;
133}
134
135/*
136 * Called if RfKill is supported (according to EEPROM). Set the interrupt and
137 * GPIO values so the ISR and can disable RF on a switch signal
138 */
139void
140ar5210EnableRfKill(struct ath_hal *ah)
141{
142 uint16_t rfsilent = AH_PRIVATE(ah)->ah_rfsilent;
143 int select = MS(rfsilent, AR_EEPROM_RFSILENT_GPIO_SEL);
144 int polarity = MS(rfsilent, AR_EEPROM_RFSILENT_POLARITY);
145
146 /*
147 * If radio disable switch connection to GPIO bit 0 is enabled
148 * program GPIO interrupt.
149 * If rfkill bit on eeprom is 1, setupeeprommap routine has already
150 * verified that it is a later version of eeprom, it has a place for
151 * rfkill bit and it is set to 1, indicating that GPIO bit 0 hardware
152 * connection is present.
153 */
154 ar5210Gpio0SetIntr(ah, select, (ar5210GpioGet(ah, select) == polarity));
155}
156
157/*
158 * Configure GPIO Output lines
159 */
160HAL_BOOL
161ar5210GpioCfgOutput(struct ath_hal *ah, uint32_t gpio, HAL_GPIO_MUX_TYPE type)
162{
163 HALASSERT(gpio < AR_NUM_GPIO);
164
165 OS_REG_WRITE(ah, AR_GPIOCR,
166 (OS_REG_READ(ah, AR_GPIOCR) &~ AR_GPIOCR_ALL(gpio))
167 | AR_GPIOCR_OUT1(gpio));
168
169 return AH_TRUE;
170}
171
172/*
173 * Configure GPIO Input lines
174 */
175HAL_BOOL
176ar5210GpioCfgInput(struct ath_hal *ah, uint32_t gpio)
177{
178 HALASSERT(gpio < AR_NUM_GPIO);
179
180 OS_REG_WRITE(ah, AR_GPIOCR,
181 (OS_REG_READ(ah, AR_GPIOCR) &~ AR_GPIOCR_ALL(gpio))
182 | AR_GPIOCR_IN(gpio));
183
184 return AH_TRUE;
185}
186
187/*
188 * Once configured for I/O - set output lines
189 */
190HAL_BOOL
191ar5210GpioSet(struct ath_hal *ah, uint32_t gpio, uint32_t val)
192{
193 uint32_t reg;
194
195 HALASSERT(gpio < AR_NUM_GPIO);
196
197 reg = OS_REG_READ(ah, AR_GPIODO);
198 reg &= ~(1 << gpio);
199 reg |= (val&1) << gpio;
200
201 OS_REG_WRITE(ah, AR_GPIODO, reg);
202 return AH_TRUE;
203}
204
205/*
206 * Once configured for I/O - get input lines
207 */
208uint32_t
209ar5210GpioGet(struct ath_hal *ah, uint32_t gpio)
210{
211 if (gpio < AR_NUM_GPIO) {
212 uint32_t val = OS_REG_READ(ah, AR_GPIODI);
213 val = ((val & AR_GPIOD_MASK) >> gpio) & 0x1;
214 return val;
215 } else {
216 return 0xffffffff;
217 }
218}
219
220/*
221 * Set the GPIO 0 Interrupt
222 */
223void
224ar5210Gpio0SetIntr(struct ath_hal *ah, u_int gpio, uint32_t ilevel)
225{
226 uint32_t val = OS_REG_READ(ah, AR_GPIOCR);
227
228 /* Clear the bits that we will modify. */
229 val &= ~(AR_GPIOCR_INT_SEL(gpio) | AR_GPIOCR_INT_SELH | AR_GPIOCR_INT_ENA |
230 AR_GPIOCR_ALL(gpio));
231
232 val |= AR_GPIOCR_INT_SEL(gpio) | AR_GPIOCR_INT_ENA;
233 if (ilevel)
234 val |= AR_GPIOCR_INT_SELH;
235
236 /* Don't need to change anything for low level interrupt. */
237 OS_REG_WRITE(ah, AR_GPIOCR, val);
238
239 /* Change the interrupt mask. */
240 ar5210SetInterrupts(ah, AH5210(ah)->ah_maskReg | HAL_INT_GPIO);
241}
242
243/*
244 * Change the LED blinking pattern to correspond to the connectivity
245 */
246void
247ar5210SetLedState(struct ath_hal *ah, HAL_LED_STATE state)
248{
249 uint32_t val;
250
251 val = OS_REG_READ(ah, AR_PCICFG);
252 switch (state) {
253 case HAL_LED_INIT:
254 val &= ~(AR_PCICFG_LED_PEND | AR_PCICFG_LED_ACT);
255 break;
256 case HAL_LED_RUN:
257 /* normal blink when connected */
258 val &= ~AR_PCICFG_LED_PEND;
259 val |= AR_PCICFG_LED_ACT;
260 break;
261 default:
262 val |= AR_PCICFG_LED_PEND;
263 val &= ~AR_PCICFG_LED_ACT;
264 break;
265 }
266 OS_REG_WRITE(ah, AR_PCICFG, val);
267}
268
269/*
270 * Return 1 or 2 for the corresponding antenna that is in use
271 */
272u_int
273ar5210GetDefAntenna(struct ath_hal *ah)
274{
275 uint32_t val = OS_REG_READ(ah, AR_STA_ID1);
276 return (val & AR_STA_ID1_DEFAULT_ANTENNA ? 2 : 1);
277}
278
279void
280ar5210SetDefAntenna(struct ath_hal *ah, u_int antenna)
281{
282 uint32_t val = OS_REG_READ(ah, AR_STA_ID1);
283
284 if (antenna != (val & AR_STA_ID1_DEFAULT_ANTENNA ? 2 : 1)) {
285 /*
286 * Antenna change requested, force a toggle of the default.
287 */
288 OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_DEFAULT_ANTENNA);
289 }
290}
291
292HAL_ANT_SETTING
293ar5210GetAntennaSwitch(struct ath_hal *ah)
294{
295 return HAL_ANT_VARIABLE;
296}
297
298HAL_BOOL
299ar5210SetAntennaSwitch(struct ath_hal *ah, HAL_ANT_SETTING settings)
300{
301 /* XXX not sure how to fix antenna */
302 return (settings == HAL_ANT_VARIABLE);
303}
304
305/*
306 * Change association related fields programmed into the hardware.
307 * Writing a valid BSSID to the hardware effectively enables the hardware
308 * to synchronize its TSF to the correct beacons and receive frames coming
309 * from that BSSID. It is called by the SME JOIN operation.
310 */
311void
312ar5210WriteAssocid(struct ath_hal *ah, const uint8_t *bssid, uint16_t assocId)
313{
314 struct ath_hal_5210 *ahp = AH5210(ah);
315
316 /* XXX save bssid for possible re-use on reset */
317 OS_MEMCPY(ahp->ah_bssid, bssid, IEEE80211_ADDR_LEN);
318 OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
319 OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid+4) |
320 ((assocId & 0x3fff)<<AR_BSS_ID1_AID_S));
321 if (assocId == 0)
322 OS_REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_NO_PSPOLL);
323 else
324 OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_NO_PSPOLL);
325}
326
327/*
328 * Get the current hardware tsf for stamlme.
329 */
330uint64_t
331ar5210GetTsf64(struct ath_hal *ah)
332{
333 uint32_t low1, low2, u32;
334
335 /* sync multi-word read */
336 low1 = OS_REG_READ(ah, AR_TSF_L32);
337 u32 = OS_REG_READ(ah, AR_TSF_U32);
338 low2 = OS_REG_READ(ah, AR_TSF_L32);
339 if (low2 < low1) { /* roll over */
340 /*
341 * If we are not preempted this will work. If we are
342 * then we re-reading AR_TSF_U32 does no good as the
343 * low bits will be meaningless. Likewise reading
344 * L32, U32, U32, then comparing the last two reads
345 * to check for rollover doesn't help if preempted--so
346 * we take this approach as it costs one less PCI
347 * read which can be noticeable when doing things
348 * like timestamping packets in monitor mode.
349 */
350 u32++;
351 }
352 return (((uint64_t) u32) << 32) | ((uint64_t) low2);
353}
354
355/*
356 * Get the current hardware tsf for stamlme.
357 */
358uint32_t
359ar5210GetTsf32(struct ath_hal *ah)
360{
361 return OS_REG_READ(ah, AR_TSF_L32);
362}
363
364/*
365 * Reset the current hardware tsf for stamlme
366 */
367void
368ar5210ResetTsf(struct ath_hal *ah)
369{
370 uint32_t val = OS_REG_READ(ah, AR_BEACON);
371
372 OS_REG_WRITE(ah, AR_BEACON, val | AR_BEACON_RESET_TSF);
373}
374
375/*
376 * Grab a semi-random value from hardware registers - may not
377 * change often
378 */
379uint32_t
380ar5210GetRandomSeed(struct ath_hal *ah)
381{
382 uint32_t nf;
383
384 nf = (OS_REG_READ(ah, AR_PHY_BASE + (25 << 2)) >> 19) & 0x1ff;
385 if (nf & 0x100)
386 nf = 0 - ((nf ^ 0x1ff) + 1);
387 return (OS_REG_READ(ah, AR_TSF_U32) ^
388 OS_REG_READ(ah, AR_TSF_L32) ^ nf);
389}
390
391/*
392 * Detect if our card is present
393 */
394HAL_BOOL
395ar5210DetectCardPresent(struct ath_hal *ah)
396{
397 /*
398 * Read the Silicon Revision register and compare that
399 * to what we read at attach time. If the same, we say
400 * a card/device is present.
401 */
402 return (AH_PRIVATE(ah)->ah_macRev == (OS_REG_READ(ah, AR_SREV) & 0xff));
403}
404
405/*
406 * Update MIB Counters
407 */
408void
409ar5210UpdateMibCounters(struct ath_hal *ah, HAL_MIB_STATS *stats)
410{
411 stats->ackrcv_bad += OS_REG_READ(ah, AR_ACK_FAIL);
412 stats->rts_bad += OS_REG_READ(ah, AR_RTS_FAIL);
413 stats->fcs_bad += OS_REG_READ(ah, AR_FCS_FAIL);
414 stats->rts_good += OS_REG_READ(ah, AR_RTS_OK);
415 stats->beacons += OS_REG_READ(ah, AR_BEACON_CNT);
416}
417
418HAL_BOOL
419ar5210SetSifsTime(struct ath_hal *ah, u_int us)
420{
421 struct ath_hal_5210 *ahp = AH5210(ah);
422
423 if (us > ath_hal_mac_usec(ah, 0x7ff)) {
424 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad SIFS time %u\n",
425 __func__, us);
426 ahp->ah_sifstime = (u_int) -1; /* restore default handling */
427 return AH_FALSE;
428 } else {
429 /* convert to system clocks */
430 OS_REG_RMW_FIELD(ah, AR_IFS0, AR_IFS0_SIFS,
431 ath_hal_mac_clks(ah, us));
432 ahp->ah_sifstime = us;
433 return AH_TRUE;
434 }
435}
436
437u_int
438ar5210GetSifsTime(struct ath_hal *ah)
439{
440 u_int clks = OS_REG_READ(ah, AR_IFS0) & 0x7ff;
441 return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
442}
443
444HAL_BOOL
445ar5210SetSlotTime(struct ath_hal *ah, u_int us)
446{
447 struct ath_hal_5210 *ahp = AH5210(ah);
448
449 if (us < HAL_SLOT_TIME_9 || us > ath_hal_mac_usec(ah, 0xffff)) {
450 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad slot time %u\n",
451 __func__, us);
452 ahp->ah_slottime = (u_int) -1; /* restore default handling */
453 return AH_FALSE;
454 } else {
455 /* convert to system clocks */
456 OS_REG_WRITE(ah, AR_SLOT_TIME, ath_hal_mac_clks(ah, us));
457 ahp->ah_slottime = us;
458 return AH_TRUE;
459 }
460}
461
462u_int
463ar5210GetSlotTime(struct ath_hal *ah)
464{
465 u_int clks = OS_REG_READ(ah, AR_SLOT_TIME) & 0xffff;
466 return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
467}
468
469HAL_BOOL
470ar5210SetAckTimeout(struct ath_hal *ah, u_int us)
471{
472 struct ath_hal_5210 *ahp = AH5210(ah);
473
474 if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
475 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad ack timeout %u\n",
476 __func__, us);
477 ahp->ah_acktimeout = (u_int) -1; /* restore default handling */
478 return AH_FALSE;
479 } else {
480 /* convert to system clocks */
481 OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
482 AR_TIME_OUT_ACK, ath_hal_mac_clks(ah, us));
483 ahp->ah_acktimeout = us;
484 return AH_TRUE;
485 }
486}
487
488u_int
489ar5210GetAckTimeout(struct ath_hal *ah)
490{
491 u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_ACK);
492 return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
493}
494
495u_int
496ar5210GetAckCTSRate(struct ath_hal *ah)
497{
498 return ((AH5210(ah)->ah_staId1Defaults & AR_STA_ID1_ACKCTS_6MB) == 0);
499}
500
501HAL_BOOL
502ar5210SetAckCTSRate(struct ath_hal *ah, u_int high)
503{
504 struct ath_hal_5210 *ahp = AH5210(ah);
505
506 if (high) {
507 OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
508 ahp->ah_staId1Defaults &= ~AR_STA_ID1_ACKCTS_6MB;
509 } else {
510 OS_REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
511 ahp->ah_staId1Defaults |= AR_STA_ID1_ACKCTS_6MB;
512 }
513 return AH_TRUE;
514}
515
516HAL_BOOL
517ar5210SetCTSTimeout(struct ath_hal *ah, u_int us)
518{
519 struct ath_hal_5210 *ahp = AH5210(ah);
520
521 if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
522 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad cts timeout %u\n",
523 __func__, us);
524 ahp->ah_ctstimeout = (u_int) -1; /* restore default handling */
525 return AH_FALSE;
526 } else {
527 /* convert to system clocks */
528 OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
529 AR_TIME_OUT_CTS, ath_hal_mac_clks(ah, us));
530 ahp->ah_ctstimeout = us;
531 return AH_TRUE;
532 }
533}
534
535u_int
536ar5210GetCTSTimeout(struct ath_hal *ah)
537{
538 u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_CTS);
539 return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
540}
541
542HAL_BOOL
543ar5210SetDecompMask(struct ath_hal *ah, uint16_t keyidx, int en)
544{
545 /* nothing to do */
546 return AH_TRUE;
547}
548
549void
550ar5210SetCoverageClass(struct ath_hal *ah, uint8_t coverageclass, int now)
551{
552}
553
554/*
555 * Control Adaptive Noise Immunity Parameters
556 */
557HAL_BOOL
558ar5210AniControl(struct ath_hal *ah, HAL_ANI_CMD cmd, int param)
559{
560 return AH_FALSE;
561}
562
563void
564ar5210RxMonitor(struct ath_hal *ah, const HAL_NODE_STATS *stats,
565 const struct ieee80211_channel *chan)
566{
567}
568
569void
570ar5210AniPoll(struct ath_hal *ah, const struct ieee80211_channel *chan)
571{
572}
573
574void
575ar5210MibEvent(struct ath_hal *ah, const HAL_NODE_STATS *stats)
576{
577}
578
579#define AR_DIAG_SW_DIS_CRYPTO (AR_DIAG_SW_DIS_ENC | AR_DIAG_SW_DIS_DEC)
580
581HAL_STATUS
582ar5210GetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
583 uint32_t capability, uint32_t *result)
584{
585
586 switch (type) {
587 case HAL_CAP_CIPHER: /* cipher handled in hardware */
588 return (capability == HAL_CIPHER_WEP ? HAL_OK : HAL_ENOTSUPP);
589 default:
590 return ath_hal_getcapability(ah, type, capability, result);
591 }
592}
593
594HAL_BOOL
595ar5210SetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
596 uint32_t capability, uint32_t setting, HAL_STATUS *status)
597{
598
599 switch (type) {
600 case HAL_CAP_DIAG: /* hardware diagnostic support */
601 /*
602 * NB: could split this up into virtual capabilities,
603 * (e.g. 1 => ACK, 2 => CTS, etc.) but it hardly
604 * seems worth the additional complexity.
605 */
606#ifdef AH_DEBUG
607 AH_PRIVATE(ah)->ah_diagreg = setting;
608#else
609 AH_PRIVATE(ah)->ah_diagreg = setting & 0x6; /* ACK+CTS */
610#endif
611 OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
612 return AH_TRUE;
613 case HAL_CAP_RXORN_FATAL: /* HAL_INT_RXORN treated as fatal */
614 return AH_FALSE; /* NB: disallow */
615 default:
616 return ath_hal_setcapability(ah, type, capability,
617 setting, status);
618 }
619}
620
621HAL_BOOL
622ar5210GetDiagState(struct ath_hal *ah, int request,
623 const void *args, uint32_t argsize,
624 void **result, uint32_t *resultsize)
625{
626#ifdef AH_PRIVATE_DIAG
627 uint32_t pcicfg;
628 HAL_BOOL ok;
629
630 switch (request) {
631 case HAL_DIAG_EEPROM:
632 /* XXX */
633 break;
634 case HAL_DIAG_EEREAD:
635 if (argsize != sizeof(uint16_t))
636 return AH_FALSE;
637 pcicfg = OS_REG_READ(ah, AR_PCICFG);
638 OS_REG_WRITE(ah, AR_PCICFG, pcicfg | AR_PCICFG_EEPROMSEL);
639 ok = ath_hal_eepromRead(ah, *(const uint16_t *)args, *result);
640 OS_REG_WRITE(ah, AR_PCICFG, pcicfg);
641 if (ok)
642 *resultsize = sizeof(uint16_t);
643 return ok;
644 }
645#endif
646 return ath_hal_getdiagstate(ah, request,
647 args, argsize, result, resultsize);
648}
649
650/*
651 * Return what percentage of the extension channel is busy.
652 * This is always disabled for AR5210 series NICs.
653 */
654uint32_t
655ar5210Get11nExtBusy(struct ath_hal *ah)
656{
657
658 return (0);
659}
660
661/*
662 * There's no channel survey support for the AR5210.
663 */
664HAL_BOOL
665ar5210GetMibCycleCounts(struct ath_hal *ah, HAL_SURVEY_SAMPLE *hsample)
666{
667
668 return (AH_FALSE);
669}
670
671void
672ar5210EnableDfs(struct ath_hal *ah, HAL_PHYERR_PARAM *pe)
673{
674}
675
676void
677ar5210GetDfsThresh(struct ath_hal *ah, HAL_PHYERR_PARAM *pe)
678{
679}